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ABSTRACT

Worldwide regulations on greenhouse gas emissions demand a reduction in fuel

consumption from the transportation sector. This reduction requires incremental im-

provements in engine and powertrain efficiency. Feedback combustion control under

diluted conditions with exhaust gas recirculation (EGR) has the potential to improve

the overall efficiency of spark-ignition engines by optimizing combustion efficiency,

reducing heat transfer losses, and reducing pumping losses at medium loads. This

control problem requires the coordinated action of the EGR valve and the spark

advance. However, cycle-to-cycle variability in the combustion process limits the

closed-loop system performance. Moreover, the input-to-output coupling between

the actuators and measured combustion features need to be addressed in the control

design to avoid undesired combustion events such as knock, partially burned cycles,

and misfires. Therefore, the combustion control problem at high EGR-diluted con-

ditions is a constrained multivariable stochastic control problem. This dissertation

focuses on the control of the spark advance and the EGR valve in order to maximize

the EGR benefits while maintaining stable combustion during steady state and load

transients.

For a fixed engine speed/load condition, a two-input two-output discrete-time

dynamic system was derived from system identification in order to use model-based

control techniques. In particular, a linear quadratic Gaussian (LQG) controller was

designed and experimentally tested for controlling spark and EGR valve. Such a

controller was able to achieve an optimal combustion shape that maximizes EGR

benefits and proved to be superior compared to traditional proportional-integral (PI)

control strategies. An analytic solution for the amount of variability that the LQG

controller contributes during closed-loop operation was derived, which can be used to

modify the combustion targets to avoid misfire events. Given that sporadic misfires

can occur when the control targets high levels of EGR, a stochastic controller based

on the likelihood ratio test has been proposed to adjust the likelihood of misfires.

When the engine speed is fixed and the load demand is controlled by the driver,

the feedback combustion controller needs to react to such disturbance and maintain
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an optimal phasing. A physics-based model derived from manifold filling dynamics

was coupled with a simple combustion model to formulate a three-input two-output

dynamic system that considers not only the impact of the EGR valve and spark ad-

vance on the combustion, but also considers throttle tip-in and tip-out commands.

The retuned LQG controller was experimentally tested and successfully maintained

optimal phasing and maximized EGR levels during tip-in commands. However, dur-

ing throttle tip-outs the system transitions through conditions where misfires occur.

An explicit reference governor was designed to slow down the tip-out commands in

order to avoid fast transitions that drive the system over the misfire limit. Given

the inability to model misfires accurately, the reference governor was enhanced with

model-free learning which enabled it to avoid misfires over time. Experimental results

showed that successful misfire avoidance can be achieved in exchange for a slower tip-

out response. It is suggested that such combustion control strategies can be paired

with modern mild or full hybrid powertrain architectures to fully utilize the advan-

tages of combustion control at high dilution levels.
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CHAPTER I

Introduction

1.1 The Future Role of Internal Combustion Engines

Worldwide regulations on greenhouse gas (GHG) emissions demand a reduction

in fuel consumption from the transportation sector. In 2019, the U.S. Environmental

Protection Agency (EPA) published a report showing that 30% of the total of U.S.

GHG emissions in 2017 corresponded to the transportation sector [1]. Moreover, as

depicted in Figure 1.1, over half of this share is due to light-duty passenger cars. This

shows the impact that high efficiency powertrains in light-duty vehicles can have for

mitigating global warming.

Industry
22%

Agriculture
9%

Commercial
6%

Residential
5%

Electric Power
28%

Light-Duty Vehicles
59%

Medium- and
Heavy-Duty Trucks

23%
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Other
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Aircraft
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Ships & Boats
3%

Transportation
30%

Figure 1.1: Share of U.S. transportation sector GHG emissions by source in 2017
(Adapted from U.S.Transportation Sector Greenhouse Gas Emissions 1990-2017 [1])

In 2017 the International Energy Agency, which promotes sustainable energy poli-

cies for environmental protection in a global context, issued its annual report Energy

Technology Perspectives 2017, Catalysing Energy Technology Transformations [2].
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Such report provides information about technological trends and energy develop-

ment paths to 2060 while presenting various scenarios for technology deployment.

The objective of these scenarios is to show what types of measures and what level

of commitment would be required to attain specific policy goals. The scenarios are

described as follows:

• Reference Technology Scenario (RTS): It takes into account today’s com-

mitments by countries to limit emissions and improve energy efficiency, includ-

ing the Paris Agreement. These efforts would result in an average temperature

increase of 2.7˝C by 2100.

• 2˝C Scenario (2DS): It lays out an energy system pathway and a CO2 emis-

sions trajectory consistent with at least a 50% chance of limiting the average

global temperature increase to 2˝C by 2100. Annual energy-related CO2 emis-

sions are reduced by 70% from today’s levels by 2060, and carbon neutrality in

the energy system must be reached before 2100.

• Beyond 2˝C Scenario (B2DS): It explores how far deployment of technolo-

gies that are already available or in the innovation pipeline could take us beyond

the 2DS. Technology improvements and deployment are pushed to their max-

imum practicable limits across the energy system in order to achieve net-zero

emissions by 2060 and to stay net zero or below thereafter, without requiring un-

foreseen technology breakthroughs or limiting economic growth. This scenario

is equivalent to a 50% chance of limiting average future temperature increases

to 1.75˝C by 2100.

Figure 1.2 shows the current and predicted vehicle technology penetration in the

light-duty vehicle (LDV) sector for all three scenarios. The LDV market share has

been divided into five categories: traditional internal combustion engine vehicles

(ICEVs), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV),

fully electric vehicles (EV), and hydrogen fuel cell vehicles (HFCV). Given that in-

ternal combustion engines are an integral part of the HEV and PHEV powertrains,

the percentage of vehicles on the road with IC engines by 2060 are 92%, 73%, and

37% for the RTS, 2DS, and B2DS respectively. Therefore, a large part of the LDV

decarbonization requires improvement in ICEs (gasoline and diesel), especially in the

short- to medium-term. Such improvements also include hybridization technologies

since HEVs are instrumental to enable the transition from traditional internal com-

bustion engines to electric cars.
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Figure 1.2: Technology penetrations in light-duty vehicle (LDV) market share, pro-
jection until 2060. (Data extracted from Energy Technology Perspectives 2017 [2])

Fundamental research on engine design, combustion, and electrification has been

continuously advancing towards higher fuel efficiencies. The following modern ICE

powertrain technologies have shown to be better than the baseline ICE in power,

efficiency, emissions, cost of ownership, reliability and utility:

• Downsizing and boosting

• Dilution with exhaust gas recirculation (EGR)

• Variable compression ratio

• Gasoline/Diesel cycle convergence

• Dual fuel or reactivity controlled combustion

• Hybridization

• Variable displacement

Out of all these new technologies, this dissertation explores the advantages of external

cooled EGR and attempts to design control algorithms to maximize engine efficiency.

To sum things up, the reduction on greenhouse gas emissions requires incremental

vehicle improvements (including engines), specially in the short- to medium-term.

Improving the efficiency of the internal combustion engine, however, requires not

only the use of optimized component design but also the use of control algorithms to

maximize hardware benefits.
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1.2 Background

1.2.1 Exhaust Gas Recirculation in Spark Ignition Engines

External cooled exhaust gas recirculation (EGR) has been widely used in modern

spark-ignition (SI) internal combustion engine technologies due to its benefits associ-

ated with fuel economy and emissions [4]. Recirculation of the cooled exhaust gases of-

fers thermodynamic benefits by 1) increasing the heat capacity ratio (γ) of the air-fuel

mixture, and 2) lowering the peak cylinder temperature to effectively eliminate the

likelihood of knock. By increasing the autoignition tolerance of the cylinder charge,

spark advance (SA) can be adjusted for maximum brake torque (MBT). Additionally,

recent research showed that when syngas (synthesis gas) supplementation ratio is in-

creased, knocking is strongly suppressed, and the effect is more beneficial with EGR

dilution [5]. Moreover, the lower in-cylinder temperature reduces the production of

mono-nitrogen oxides (NOx). In addition to the thermodynamical benefits, the use of

external EGR requires a higher intake manifold pressure to maintain a certain load.

Hence, at part-load, there is a reduction in pumping losses. Additionally, EGR allows

for stoichiometric operation, making standard three-way catalysts effective for emis-

sions control. Therefore, EGR-levels should be maximized and spark advance should

be calibrated for MBT in order to increase engine efficiency and reduce fuel con-

sumption. However, EGR affects the combustion kinetics, reducing the flame growth

rate [6]. As a consequence, the sensitivity to perturbations during the flame devel-

opment period increases, intensifying the cycle-to-cycle combustion variability (CV)

and limiting the EGR-rate to a maximum for stable combustion [7, 8]. Furthermore,

depending on the ignition timing of the charge, sporadic partially burned and/or

misfire cycles can occur. In particular, MBT spark can be limited by misfires when

ignition occurs too early in the compression stroke where pressure and temperature

conditions cannot sustain the flame development. Such extreme events exacerbate

the combustion variability and diminish the fuel efficiency benefits of EGR.

The evolution of the combustion process is typically inferred from pressure-volume

(P-V) diagrams using in-cylinder pressure sensors (CPS) [9]. Figure 1.3 shows the

P-V diagram of two operating conditions (Points A and B) with different EGR and

spark timing calibrations. Note how pumping losses are reduced as the EGR valve

opens and dilution increases. The P-V diagram corresponding to Point B has a late

combustion phasing far from top dead center (TDC) consequence of the elongated

combustion duration due to EGR. Point A, however, has a combustion phasing

closer to TDC even though it operates at higher dilution levels. This results on a
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Figure 1.3: P-V diagrams for operating conditions A and B together with pumping
loop with different EGR valve openings. Cylinder pressure (Pcyl), fuel mass frac-
tion burned (MFB), and probability density function (PDF) of CA50 are plotted as
function of CA deg. Grey colored region represents 2000 engine cycles.

higher indicated mean effective pressure (IMEP) for Point A, which corresponds to

higher piston work. The difference here is the timing of ignition, which is more ad-

vanced for Point A, allowing time for a proper flame initiation (start of combustion)

and development (duration of combustion). The control problem then simplifies to a

spark control problem at a given level of dilution. Control of EGR valve and spark

timing, however, cannot be based solely on mean-value models since it is important

to keep combustion variability within certain levels.

1.2.2 Combustion Variability

The random fluctuation of the overall combustion process, manifested as variations

of the in-cylinder pressure trace, is known as combustion variability. This uncertainty

is often quantified by the coefficient of variation of the indicated mean effective pres-

sure (CoVIMEP). The combustion variability is tied to the cycle-to-cycle perturbations

during the flame development [10]. Moreover, engine features such as intake manifold

design, valve design, engine speed, compression ratio, and air-to-fuel ratio (AFR) can

contribute to CV by affecting the mixture homogeneity, strength, and flow character-

istics inside the cylinder. Table 1.1 describes the main sources of uncertainty during

three distinguishable stages of flame evolution [7]. The combination of all these dif-

ferent uncertainties at every stage generates an uncorrelated stochastic combustion

process. In other words, the CV does not depend on effects from any other previous

cycle but only on the uncertainties during the intake, compression, and power stroke

of each individual cycle [11].
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Table 1.1: Factors affecting variability in flame development

Flame Stage Uncertainty source

Spark and ‚ Mixture AFR and velocity near electrode
flame initiation ‚ Spark energy discharge

Initial flame ‚ Charge AFR and homogeneity
development ‚ EGR dilution

‚ Turbulence intensity (flame kernel convection)

Turbulent flame ‚ Total cylinder charge
propagation ‚ EGR dilution

‚ Turbulence intensity (flame front wrinkling)

The initial flame development period is highly susceptible to factors causing CV

and has a profound effect on the subsequent combustion [6, 12]. High EGR levels

reduce the laminar flame burning velocity, increasing the combustion duration. If

SA is not adjusted accordingly, such slow burn cycles will rapidly increase CV and

potentially lead to misfires. The maximum amount of CV the engine can tolerate

without affecting drivability or emissions is usually called the engine stable operat-

ing limit [13]. This constraint is closely related to the misfire limit, which can be

determined either experimentally [13, 14] or estimated by a physics-based model of

the early flame kernel development [15]. We seek to define combustion features that

correlate well with changes in spark advance, EGR valve, and combustion variability

for control.

The apparent heat release analysis is often used to calculate the fuel mass fraction

burned (MFB) as a function of crank angle degrees (CA deg) [16]. Based on this

calculation, the following combustion features are defined:

‚ CA10: CA degree at 10% MFB (start of combustion).

‚ CA50: CA degree at 50% MFB (combustion phasing).

‚ CA1090: CA duration between 10% and 90% MFB (duration of combustion).

The flame kernel develops at the spark plug and the fuel starts burning at the flame

front towards the end of the flame initiation period (between SA and CA10) [17].

The combustion feature CA10 is then related with the start of combustion and is of

great importance for misfire prevention. If spark timing, and consequently CA10, is

too advanced then the pressure and temperature conditions might not be adequate

for initiation or sustainment of the flame. On the other hand, if CA10 is too re-

tarded, the downward piston motion increases the air/fuel mixture mean velocity
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and turbulence and can halt or even extinguish the flame propagation, causing high

cycle-to-cycle combustion variability [13, 15], [18, Chap. 9.4]. The flame propagation

period is defined as the CA1090 duration. After a stable flame kernel is established, a

turbulent flame consumes most of the fuel. In this rapid-burning period, the increase

in cylinder pressure will contribute to the work done by the reciprocating engine.

The combination of long combustion duration (CA1090) and late combustion initi-

ation will cause the peak pressure to occur later on the expansion stroke, reducing

the piston work produced, as demonstrated by Point B in Figure 1.3. Although the

optimal CA50 has been correlated with MBT spark and peak pressure location [17],

we aim to control the combustion initiation in order to prevent misfires and the com-

bustion duration to prevent slow burning rates. Moreover, the combined control of

CA10 and CA1090 will shape the MFB trace to the desired phasing.

1.3 Problems in Open-loop Combustion Control

The spark advance for MBT is typically determined after a spark sweep for every

speed/load condition and coded as a lookup table. Although this procedure is simple,

it can be time-consuming. At certain operating conditions the MBT timing could be

knock limited and a feedback control algorithm must adjust SA to avoid it [19–22].

Moreover, different fuels, engine coolant temperatures, and ambient conditions have

different requirements that increase the complexity of the spark map [23]. When

cooled EGR is used, the spark calibration table needs compensation to achieve the

desired combustion phasing. Additionally, over-advanced spark timing can cause slow

burns and/or misfires. The boundary between healthy flames and misfires is difficult

to define due to the cycle-to-cycle combustion variability. In order to comply with

on-board diagnostics (OBD) regulations, the misfire rate limit must be kept under

2% [24]. However, drivability issues further constrain this limit to less than 0.5% [25],

motivating the implementation of a stochastic misfire controller [14].

The EGR valve position controls the EGR-rate into the cylinder. Such flow rate

depends on the pressure and temperature of the pulsating flow. This means that the

EGR-rate can vary even when the valve remains unchanged. For open-loop control,

the EGR valve is mapped from optimized values of cylinder flow and burned gas

fraction in the intake manifold. Since the additional gases at the intake become a

disturbance for the air-to-fuel ratio controller, an accurate estimation of the EGR-rate

is needed to correct the fuel injection amount. Feedforward control based on the orifice

flow equation is not robust under parameter variations such as ambient conditions,
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intake temperature, and effective flow area [26]. Moreover, engine aging reduces its

EGR tolerance [23]. Hence, accurate estimation of the EGR-rate is crucial to avoid

the misfire and partial burn regions that can ruin any potential fuel economy gains.

Although accurate estimation can be done despite the pulsating flow at different

operating conditions, it requires an extra differential pressure sensor for the EGR

loop [27,28].

Altogether, the calibration process for the optimal spark advance and maximum

EGR valve opening for minimum fuel consumption involves many engine hours and

off-line data analysis. New methods have been developed to reduce the calibration

time utilizing self-tuning algorithms for spark and EGR valve [29, 30]. However, tar-

geting a heat release profile (invariant over many speed/load conditions) can reduce

the burden in the calibration process dramatically [31]. More importantly, closed-loop

feedback combustion control can be inherently robust to uncertainties in fuel proper-

ties, atmospheric conditions, system aging, and even engine-to-engine and cylinder-

to-cylinder variations.

1.4 Closed-loop Combustion Control

Feedback combustion control has been previously developed to find the optimum

spark timing by targeting specific combustion features. Powell in [32] summarizes

the advantages and challenges of feedback combustion control based on CPS data.

Eriksson in [33] introduces the ionization current signal (ICS) as means to replace

the CPS and control spark timing based on the location of peak pressure (LPP). The

research performed by Zhu includes not only the control of spark for MBT and knock

but also considers the statistical properties of the cycle-to-cycle CV, either by using

CPS or ICS data [34, 35]. Emiliano in [36] compares PI control strategies using dif-

ferent filtered CPS-based parameters for feedback, such as CA50 and LPP. However,

the drawback of such a filtering method is that it slows down the system response.

Most recently, Gao et al. in [37] developed a spark controller based on the stochastic

properties of the LPP to minimize the overall increase of CV due to the feedback loop.

However, these strategies are fundamentally single-input single-output (SISO), tak-

ing certain signal for feedback and calculating the spark adjustment required to meet

the reference. Sellnau et al. in [38] were the first to achieve multivariable feedback

combustion control at diluted conditions by designing a SISO controller for spark

advance and a separate controller for EGR valve. Nonetheless, this strategy did not

take into consideration the coupling between inputs and outputs of the system.
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1.5 Dissertation Contributions and Organization

The overall contribution encompasses the design and testing of multivariable

stochastic control strategies to achieve an optimal combustion shape, maximizing

EGR levels, by adjusting the spark advance and the EGR valve simultaneously. The

study of the controllability and feasibility properties of the system is performed at a

fixed engine speed/load condition, as well as the study of the properties of the misfire

limit. The last chapter, however, shows how the combustion control problem can be

addressed during load transients. The specific contributions of this dissertation are:

1. Combustion shaping controller:

At a fixed engine speed/load condition, a multivariable controller was designed

to adjust the spark advance and the EGR valve in order to change the combus-

tion shape based on some optimal values for maximum efficiency. The combus-

tion shape is defined as the pair (CA50, CA1090), where CA50 is the combustion

phasing (50% MFB) and CA1090 is the combustion duration (from 10% to 90%

MFB). In order to perform model-based control design, a two-input two-output

discrete-time system was derived from system identification. A linear quadratic

Gaussian (LQG) controller was designed since it correctly addresses the feed-

back control limitations due to input-to-output coupling and cycle-to-cycle com-

bustion variability. A comparison between the centralized LQG controller and

a decentralized proportional-integral (PI) controller designed with similar char-

acteristics is presented. Experimental data showed that the LQG controller has

better performance and is less sensitive to cycle-to-cycle variability. This re-

sult coincides with the sensitivity analysis performed on the linear plant model,

which gives an insight into why the LQG controller performs better than the PI

controller. This topic is further discussed in Chapter II. The control design and

preliminary simulation results were presented at the 2017 American Control

Conference [39]:

• B. P. Maldonado, H. Lian, J. B. Martz, A. G. Stefanopoulou, K. Zaseck,

and E. Kitagawa. Combustion shaping using multivariable feedback con-

trol. In 2017 American Control Conference (ACC), pages 4760-4765, May

2017.

The experimental results and the sensitivity analysis were published in the IEEE

Transactions on Control Systems Technology [40]:
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• B. P. Maldonado, K. Zaseck, E. Kitagawa, and A. G. Stefanopoulou.

“Closed-loop control of combustion initiation and combustion duration”.

IEEE Transactions on Control Systems Technology, pages 1-15, 2019.

2. Cycle-to-cycle combustion variability propagation through feedback:

The control-oriented combustion model derived from system identification was

extended to a linear stochastic framework. Here, the cycle-to-cycle combus-

tion variability was modeled as an additive Gaussian disturbance. Under such

assumptions, the increase in the overall cycle-to-cycle variability can be analyt-

ically derived. Additionally, the stochastic properties of the control command

signals under closed-loop can be inferred from the open-loop statistics. The

experimental results indicated that the combustion model captures the mean,

covariance, and cyclic correlation of inputs and outputs of the closed-loop sys-

tem during steady state and transient operation. The details of this study are

described in Chapter III. These results were presented at the 5th IFAC Con-

ference on Engine and Powertrain Control, Simulation and Modeling (E-COSM

2018) [41]:

• B. P. Maldonado and A. G. Stefanopoulou. “Linear Stochastic Modeling

and Control of Diluted Combustion for SI Engines”. IFAC-PapersOnLine,

51(31):99 - 104, 2018. 5th IFAC Conference on Engine and Powertrain

Control, Simulation and Modeling E-COSM 2018.

3. Analysis of plant directionality for the tracking control problem at

the misfire limit:

This simulation study used previous data collected to mimic the results of an

aggressive combustion control strategy. Here, the LQG controller was retuned to

push EGR levels to the theoretical maximum, right before the misfire limit. The

combustion shape target is chosen not only to avoid the misfire limit but also

considers the closed-loop cycle-to-cycle variability. The linear plant model was

used to analyze the fundamental limitations of the feedback combustion control

problem at high levels of EGR dilution. Specifically, it was shown that the plant

directionally at the target operating point requires large control signals that can

1) cause sporadic misfires, and 2) cause significant changes in brake torque. The

results of this study are discussed in Chapter IV, which were presented at the

2018 American Control Conference [42]:
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• B. P. Maldonado, J. S. Freudenberg, and A. G. Stefanopoulou, “Stochastic

feedback combustion control at high dilution limit,” in 2018 American

Control Conference (ACC), June 2018, pp. 1598-1603.

4. Likelihood-based control for misfire occurrence rate:

This study shows that misfire events can be accurately modeled by a sequence

of independent and identically distributed Bernoulli random variables. Similar

to knock events, a probabilistic model can be inferred based on the distribu-

tion of the total number of misfires and their interarrival times. Under this

assumption, a likelihood-based controller was designed based on a desired mis-

fire probability to retard spark timing to a condition less prone to misfire. The

closed-loop system performance was evaluated by the probability distribution

of the combustion phasing. The results were compared to a more conventional

control strategy where spark retards every time a misfire is detected. A com-

parison of the steady state distribution of the combustion phasing shows that

the likelihood-based controller has a more compact distribution closer to the

misfire limit. The details of this study are presented in Chapter V and have

been published in the Journal of Engineering for Gas Turbines and Power [14]:

• B. P. Maldonado and A. G. Stefanopoulou, “Cycle-to-cycle feedback for

combustion control of spark advance at the misfire limit,” Journal of En-

gineering for Gas Turbines and Power, vol. 140, no. 10, pp. 102 812-102

812-8, 07 2018.

5. Non-equiprobable partitions for statistical analysis of misfire events:

A novel methodology is presented for understanding the cycle-to-cycle combus-

tion variability at the tipping point where high EGR levels suddenly trigger

sporadic misfires. The indicated mean effective pressure (IMEP) was used as

the cyclic parameter for categorizing combustion cycles into 1) high energy,

2) nominal, 3) partial burns, and 4) misfires. Deterministic patterns mainly

involved misfires followed by high energy cycles due to the extra oxygen and

fuel present at the intake stroke inside the cylinder immediately after a misfire.

However, this study suggests that previous cycles do not have a major influence

on the occurrence of misfires and partial burns, making them virtually random.

A detailed study using conditional probabilities was conducted in order to re-

duce the number of combustion cycles needed to accurately estimate the misfire

occurrence rate. The data showed that information about the occurrence of
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partial burns can be used to modify the engine operating condition and thus

reducing the probability of misfiring. This results were presented at the 2018

ASME Internal Combustion Engine Division Fall Technical Conference and can

be found in Chapter VI [43]:

• B. P. Maldonado and A. G. Stefanopoulou, “Non-Equiprobable Statis-

tical Analysis of Misfires and Partial Burns for Cycle-to-Cycle Control of

Combustion Variability,” ASME Internal Combustion Engine Division Fall

Technical Conference, 2(51999):V002T05A003; 12 pages, 2018.

6. Feedback combustion control during load transients:

When engine speed is fixed and the load demand changes due to throttle tip-

in/tip-out commands, the combustion controller needs to keep combustion phas-

ing at its optimum. In this case, throttle commands become a disturbance to

the system, which again utilizes spark advance and EGR valve to maintain

high levels of EGR with minimum fuel consumption. Additional modeling ef-

fort is required to include effects of throttle opening in the combustion pro-

cess. Chapter VII reformulates the combustion control problem, describes the

control-oriented model used for control design, designs an adaptive extended

Kalman filter for estimating the changes in EGR rate inside the intake man-

ifold, and designs a state feedback law based on a linear quadratic regulator

(LQR). Such a control strategy was experimentally validated and the results

show a close agreement with the modeling approach proposed. Although the

controller can maintain and optimal phasing at high levels of EGR during throt-

tle tip-in commands, throttle tip-outs drive the system momentarily over the

misfire limit. In order to address this challenge, a learning reference governor

strategy was proposed to slow down the system and avoid the transient states

that causes misfires. The modeling and simulation results were presented at the

2019 Symposium for Combustion Control [44]:

• B. P. Maldonado, N. Li, I. Kolmanovsky, and A. G. Stefanopoulou. “Sat-

isfying Unstable Combustion Limits in SI Engines at EGR Diluted Condi-

tions: A Learning Reference Governor Approach”. In 2019 Symposium for

Combustion Control (SCC), pages 8796. RWTH Aachen University, June

2019.

7. Learning reference governor for misfire avoidance:
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The later part of Chapter VII shows the learning algorithm that can achieve

misfire avoidance. This methodology was implemented in the experimental en-

gine with successful results. After eight iterations of the learning algorithm, the

reference governor was able to adjust the throttle tip-out command such that

the problematic transient states are avoided. The experimental results concern-

ing the closed-loop combustion controller and the learning reference governor

have been tentatively accepted for a special issue on the topic of combustion

control in the International Journal of Engine Research, and the full article will

be submitted for publication in the same timeline as this dissertation:

• B. P. Maldonado, N. Li, I. Kolmanovsky, and A. G. Stefanopoulou. “Learn-

ing Reference Governor for Cycle-to-Cycle Combustion Control with Mis-

fire Avoidance in SI Engines at High EGR-Diluted Conditions”. Interna-

tional Journal of Engine Research, under review.

The following table summarized the main contributions by chapter:

Table 1.2: Dissertation contributions by chapter

Ch. II Ch. III Ch. IV Ch. V Ch. VI Ch. VII
Contributions Combustion Gaussian Control at the Misfire Non-equiprobable Control for

Control LTI Misfire Limit Control Classification Load Transients

Experimental study

Simulation study

Combustion modeling

Misfire modeling

PI control design

LQG control design

Misfire control design

Deterministic analysis

Stochastic analysis

Sensitivity analysis

Fundamental limitations

Combustion cycle
classification

Reference governor

Finally, conclusions and outlook are presented in Chapter VIII.
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CHAPTER II

Closed-loop Control of Combustion Initiation and

Combustion Duration

2.1 Motivation

When high levels of cooled external exhaust gas recirculation (EGR) are used to

increase engine efficiency, the laminar flame speed during the flame initiation period

is reduced and the combustion duration is elongated. The reduction in flame propa-

gation speed together with the increase in cycle-to-cycle variability makes the com-

bustion process prone to failure of flame initiation (misfire) or slow burning rates. A

highly visited operating speed/load point is used to investigate the feedback control

of spark advance and EGR-valve. A decentralized Proportional-Integral (PI) con-

troller and a centralized Linear Quadratic Gaussian (LQG) controller are designed to

maintain a desired combustion initiation and duration that indirectly ensure a proper

flame kernel initiation and flame propagation. A simple control-oriented combustion

model is derived from system identification to perform simulation and linear analysis

of the closed-loop system. Experimental validation of the controllers shows that the

LQG performs better in transients and produces the least amount of cycle-to-cycle

variability in closed-loop operation. Analysis of the linearized system in frequency

domain shows that a multivariable architecture is required to handle the input-output

coupling efficiently. Sensitivity analysis of PI and LQG controllers under gain vari-

ability is reported to guide the tuning process, which also influences the cycle-to-cycle

variability. The two-input two-output (TITO) controllers designed in this study are

compared with a single-input single-output (SISO) controller designed to only adjust

spark advance for maximum brake torque. When the EGR-valve is adjusted based on

a lookup table, uncertainty in the EGR-rate will affect directly the combustion dura-

tion for which the SISO controller alone cannot handle. In conclusion, a coordinated
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spark and EGR controller based on the measured combustion features is deemed to

be required for combustion control under diluted conditions.

2.2 Experimental Conditions

A production gasoline-fueled Toyota 1NR-FKE engine was used for this study.

The four-cylinder, SI engine is port fuel injected, naturally aspirated, and uses cooled

external EGR with a quick response valve. The EGR actuator is located upstream

of the intake runners. This engine is equipped with variable valve timing, which is

used to generate Atkinson combustion cycles with high compression for high thermal

efficiency. The engine parameters are summarized in Table 2.1.

Table 2.1: Toyota 1NR-FKE engine parameters

Compression Ratio: 13.5
Displacement [cc]: 1329
Stroke [mm]: 80.5
Bore [mm]: 72.5
Engine Speed [RPM]: 1,600
Engine Load [NM]: 50
Injection Strategy: PFI
Global Equivalence Ratio: 1
Intake Charge Composition: Air
Intake Air Volume Flow Rate [cc/s]: 8
Intake Charge Temperature [K]: 370
Number of Repetitive Cycles: 2,000

Reference [45] provides more technical information about the hardware develop-

ment. This production engine was equipped with production combustion pressure

sensors (CAS-23A by Citizen Finedevice CO.,LTD.) for this work. In-cylinder pres-

sure data was sampled every 2.5 [CA deg] and combustion features were calculated at

the end of every cycle. A dynamometer regulated the engine speed and the throttle

was manipulated to maintain a constant load. This work focuses in one speed/load

condition, namely 1600 [RPM] and 50 [N-m], which is a frequently visited operating

point in many regulated drive cycles world-wide. Tables 2.2, 2.3, and 2.4 show the

mean and standard deviation (STDv) of the combustion features CA10, CA1090,

and CA50 for 2000 engine cycles at various spark advance and EGR-valve combina-

tions. Points that do not contain data correspond to regions where engine operation

is problematic due to knock, misfires, or slow burns. To analyze and develop the feed-
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Table 2.2: Statistics of CA10 [deg bTDC]: Mean and (STDv).

EGR-valve Spark Advance [deg bTDC]

opening 5 10 15 20 25 30 35 40 45

10%
-13.1 -6.8 -1.5
(2.1) (1.8) (1.6)

20%
-18.3 -13.0 -8.4 -4.3 -0.2 3.3 Misfire
(2.6) (2.4) (2.3) (2.2) (2.0) (2.0)

30%
-10.2 -6.4 -3.7 -0.4 2.2
(2.4) (2.3) (2.4) (2.2) (2.3)

40%
Partial Burn -5.8 -2.9 -1.2 0.9 2.5

(2.5) (2.4) (2.6) (2.9) (3.7)

Table 2.3: Statistics of CA1090 [CA deg]: Mean and (STDv).

EGR-valve Spark Advance [deg bTDC]

opening 5 10 15 20 25 30 35 40 45

10%
24.7 21.1 18.8
(2.2) (1.7) (1.6)

20%
35.7 32.2 29.4 24.9 24.5 23.0 Misfire
(4.3) (4.1) (3.7) (3.3) (3.0) (2.6)

30%
33.4 31.1 30.5 28.2 27.1
(4.5) (4.3) (4.2) (3.9) (3.7)

40%
Partial Burn 33.7 31.4 30.7 29.9 29.5

(4.9) (4.4) (4.3) (4.3) (4.6)

Table 2.4: Statistics of CA50 [deg bTDC]: Mean and (STDv).

EGR-valve Spark Advance [deg bTDC]

opening 5 10 15 20 25 30 35 40 45

10%
-25.1 -17.5 -10.9
(1.9) (1.7) (1.7)

20%
-35.9 -28.8 -23.0 -17.7 -12.4 -8.0 Misfire
(3.3) (3.3) (3.2) (3.2) (3.0) (2.7)

30%
-26.7 -22.0 -19.0 -14.4 -11.3
(3.7) (3.8) (3.9) (3.6) (3.8)

40%
Partial Burn -22.7 -18.6 -16.6 -14.2 -12.3

(4.3) (4.1) (4.5) (4.7) (5.2)

back combustion controller, steps were performed between the conditions described

in Tables 2.5 and 2.6.

These two points were chosen due to the similar standard deviation for the com-
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Table 2.5: Operating conditions at Point A
IMEP = 6.07 [bar]
SA = 30 [deg bTDC]
EGR valve = 30 [% open]
CA10 = 0 [deg bTDC] (STDv = 2.2)
CA50 = -14 [deg bTDC] (STDv = 3.6)
CA1090 = 28 [CA deg] (STDv = 3.9)

Table 2.6: Operating conditions at Point B
IMEP = 5.85 [bar]
SA = 10 [deg bTDC]
EGR valve = 20 [% open]
CA10 = -13 [deg bTDC] (STDv = 2.4)
CA50 = -29 [deg bTDC] (STDv = 3.3)
CA1090 = 32 [CA deg] (STDv = 4.1)

bustion features. Note that Point A has a higher IMEP than Point B. Hence, this

point will be used as the desired target for control. Note also that Point A has more

residuals, which translates to less pumping losses and less NOx emissions.

2.3 Control Design

2.3.1 System Identification

In order to develop a control-oriented combustion model, step changes in EGR-

valve and spark advance were performed around the operating conditions shown in

Tables 2.2-2.4. Figure 2.1 shows how the system behaves locally around Point B.

Given the sharp slope after the step command and the lack of significant overshoot,

a first-order dynamical model is deemed appropriate for control analysis and design.

The lag identified in response to the spark advance perturbation can be attributed to

the change in heat flux through the cylinder walls. According to [46], spark advance

strongly affects the cylinder surface heat flux during the combustion process, when

both intake and exhaust valves are closed. More interestingly, the response to the step

in EGR-valve (related to manifold filling dynamics) is quite fast due to the specialized

finger-type cooled EGR system of the engine [45].

Additionally, note the coupling between increasing spark advance and advancing

both CA10 and CA50. On the other hand, opening the EGR-valve increases the

combustion duration due to its effect on combustion kinetics. Since the main purpose

of the controller is to guarantee a correct flame initiation and development, the TITO
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system will consist of spark advance and EGR-valve as inputs and CA10 (combustion

start) and CA1090 (combustion duration) as outputs. The choice of CA10 over CA50

was made not only due to the desire to control the initial flame development period

but also because the STDv of CA10 is lower than the STDv of CA50. Consider the

following first order linear dynamical model:

«

∆CA10

∆CA1090

ff

“KDC

»

—

—

—

–

aSA

z ´ p1´ aSAq
∆SA

aEGR

z ´ p1´ aEGRq
∆EGR

fi

ffi

ffi

ffi

fl

(2.1)

where KDC is the 2ˆ2 DC gain matrix, a{SA,EGR} are the first order coefficients, and

the frequency-domain variable z has a sample rate ∆t “ 0.075 [s] (one engine cycle at
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Figure 2.1: CA10, CA1090, and CA50 responses to step commands around the oper-
ating Point B: SA = 10 [deg bTDC] and EGR-valve = 20 [% open]. Each individual
window is equivalent to a period of 3 [s].
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Table 2.7: System Identification: DC gain matrix KDC

EGR Spark Advance [deg bTDC]

[%] 5 10 15 20 25 30 35

10

„

1.4 –.6
–.7 2.

 „

1.1 –.8
–.5 1.

 „

.9 –.6
–.4 .9



Misfire

κ “ 2.5 κ “ 3.9 κ “ 4.0

20

„

1.5 –.6
–1.9 1.6

„

1.4 –.6
–1.6 1.5

„

1.2 –.8
–1.1 1.6

 „

1. –.8
–.8 1.4

 „

.8 –.7
–.5 .9

„

.6 –.7
–.3 .8



κ “ 6.7 κ “ 6.4 κ “ 5.5 κ “ 5.5 κ “ 5.1 κ “ 5.0

30

„

1.2 –.4
–1.7 1.2

„

1. –.5
–1.1 .9

„

.7 –.5
–.7 1.

„

.6 –.5
–.5 1.

„

.4 –.6
–.1 .9



κ “ 9.1 κ “ 8.9 κ “ 6.5 κ “ 5.5 κ “ 3.9

40
Partial Burn

„

.9 –.3
–.9 .6

„

.5 –.3
–.4 .6

„

.5 –.5
–.3 .6



κ “ 9.0 κ “ 5.1 κ “ 6.2

Table 2.8: System Identification: Time constants at 1600 [RPM]

EGR Spark Advance [deg bTDC]

[%] 5 10 15 20 25 30 35

10
τSA .15
τEGR .39

τSA .15
τEGR .29

τSA .09
τEGR .39

Misfire

20
τSA .12
τEGR .33

τSA .15
τEGR .31

τSA .13
τEGR .35

τSA .11
τEGR .38

τSA .11
τEGR .29

τSA .05
τEGR .21

30
τSA .13
τEGR .39

τSA .12
τEGR .40

τSA .12
τEGR .37

τSA .12
τEGR .44

τSA .11
τEGR .37

40 Partial Burn
τSA .17
τEGR .35

τSA .14
τEGR .41

τSA .11
τEGR .42

1600 [RPM]). Table 2.7 shows KDC for each combination of spark advance and EGR-

valve, as well as its condition number (κ). Note that the condition number increases

as EGR levels increase, indicating a bad conditioning for matrix inversion. Feasibility

of multivariable integral control requires the existence of the inverse of KDC to allow

the augmentation of integrator states [47, Chap. 3]. Therefore, moving to high EGR

levels will be problematic for control design. Note however that advancing spark

improves the feasibility of the tracking problem at high EGR levels. Using a zero-

order hold conversion to obtain the equivalent continuous-time transfer functions, the
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time constant can be calculated by the formula: τ “ ´
∆t

lnp1´ aq
. The time constants

for each input combination are shown in Table 2.8. To simplify the control-oriented

model, a unique time constant was considered for all conditions, which equals to the

average of the values in Table 2.8:

τSA “ 0.12[s] « 1.5[cyc], τEGR “ 0.36[s] « 5[cyc]. (2.2)

Note, however, that this dynamic model depends on engine speed and should be

recalibrated for different speed/load conditions. Robust control or gain scheduling

will be eventually needed for the entire engine map. The steady state values were

replaced by a third order polynomial function of SA and EGR-valve that interpolates

the mean values reported in Tables 2.2-2.4. The estimated values of the combustion

features can be found in Figure 4.2. Figure 2.2 summarizes the combustion model

used for control design.

Spark
Advance

EGR-valve
Opening

fCA10(SA,EGR)

fCA1090(SA,EGR)

CA10

CA1090

Input 1st order dynamics
OutputNonlinear map

fCA50(SA,EGR) CA50

0.44

z � 0.56

0.19

z � 0.81

Figure 2.2: Control-oriented combustion model for simulation.

Given the strong coupling between spark advance and start of combustion, intu-

ition suggests using a PI controller to track CA10 set points using the spark timing.

Due to the time constant separation, it is also feasible to use the EGR command to

reject the effect of spark advance on CA1090, and track CA1090 to its desired value

using another PI controller. However, the second PI controller might not be able to

completely reject the spark timing perturbations due to the input-output coupling of

the system. The following sections will determine if 1) the decentralized architecture

can be improved by a multivariable design and 2) if the multivariable controller will

sustain its benefits despite the high cycle-to-cycle CV which acts as a disturbance to

the performance outputs, namely CA10 and CA1090.

20



2.3.2 Input/Output Coupling Analysis

The DC gain matrix can point to the combinations of combustion start and du-

ration (CA10 and CA1090) that will require high actuator action and hence are less

feasible than others [48]. Table 2.9 summarizes the properties of KDC for Points A

and B. Note that neither of the two matrices are diagonally dominant, meaning that

a coupled multivariable controller is necessary to coordinate the two actuators and

fully utilize their joint effect on combustion shaping. Nonetheless, we still analyze

the decoupled PI controller for comparison.

Table 2.9: DC gain matrix properties

Point A Point B

KDC “

„

0.55 ´0.51
´0.48 1.03



KDC “

„

1.36 ´0.62
´1.61 1.46



det “ 0.32
κ “ 5.56

σmin “ 0.24
σmax “ 1.34

det “ 0.98
κ “ 6.93

σmin “ 0.38
σmax “ 2.61

RGAp1,1q “ RGAp2,2q “ 1.76 RGAp1,1q “ RGAp2,2q “ 2.01

det = determinant σ = singular value

In order to decide an input-to-output pairing for the decentralized control archi-

tecture, we will use the relative gain array (RGA) approach [49, 50]. The RGA for

both matrices has positive diagonal entries, suggesting the pairing of CA10 with SA

and CA1090 with EGR.

2.3.3 Proportional-Integral (PI) Controller

Consider the decoupled control architecture depicted in Figure 2.3. The closed-

loop system uses one single-input single-output PI controller per actuator, paired

Figure 2.3: Block diagram of decoupled PI controller for feedback control.
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to a specific performance output. The integral component guarantees a zero-mean

steady state tracking error and filters the cycle-to-cycle CV from the measurements.

The proportional component is mainly used to reduce the transient response time.

The relative gain array (RGA) analysis performed in [39] suggested the pairing of

spark advance with CA10 control and EGR-valve with CA1090 control. The PI gains

were tuned using the sequential loop closing technique, closing the spark loop first

since its action is faster than the EGR-valve (higher bandwidth) [51]. The spark

loop is tuned targeting a fast response without overshoot in CA10 command, while

the EGR-valve loop is tuned to reduce CA1090 overshoot without harming the spark

loop performance. Table 2.10 shows the gain values selected according to the control-

oriented combustion model.

Table 2.10: PI gain values

Controller Spark Advance EGR-valve

PIpzq “ P `
I

z ´ 1

PSA “ 0.50
ISA “ 0.17

PEGR “ 0.10
IEGR “ 0.20

2.3.4 Linear Quadratic Gaussian (LQG) Controller

For multivariable feedback combustion control, let’s define the inputs and outputs

of the system at cycle k as follows:

uk “

«

SAk

EGRk

ff

, yk “

«

CA10k

CA1090k

ff

. (2.3)

Hence, the control-oriented combustion model described by Eqn (2.1) can be repre-

sented in state space form by:

xk`1 “ Axk `Bpuk ` wkq

yk “ Cxk ` vk (2.4)

where xk is the state at cycle k, the random variables wk, vk are Gaussian white noise

with covariance kernels:

V “ diagtVCA10, VCA1090u, W “ diagtWCA10,WCA1090u, (2.5)

and the matrices A,B, and C can be computed as follows:
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A “

«

1´ aSA 0

0 1´ aEGR

ff

, B “

«

aSA 0

0 aEGR

ff

, and

C “

»

—

—

–

BfCA10

BSA

BfCA10

BEGR

BfCA1090

BSA

BfCA1090

BEGR

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Point B

. (2.6)

The linear time-invariant model for control design was based on the DC gain matrix

at Point B. The covariance matrix V can be estimated from the measured steady

state values shown in Tables 2.2 and 2.3. Using the average standard deviation of all

operating conditions, the estimated covariance is:

VCA10 “ 2.32 rdeg2
s, VCA1090 “ 42 rdeg2

s. (2.7)

Similar to the PI controller, consider the case of tracking a desired combustion shape

r “
”

CA10ref CA1090ref

ıT

using output feedback. Define the following integrator

states:

zk`1 “ zk ` pyk ´ rq. (2.8)

Additionally, consider the case where the controller is designed to minimize the ex-

pected quadratic cost:

J “ E

«

8
ÿ

k“0

yTkQyk ` z
T
kQ

şzk ` u
T
kRuk

ff

(2.9)

subject to the discrete-time dynamics described by Eqns. (2.4) and (2.8). The weight-

ing matrices penalizing the system output, integrator states, and control effort are

the following:

Q “ diagtQCA10, QCA1090u

Qş “ diagtQş

CA10, Q
ş

CA1090u

R “ diagtRSA, REGRu. (2.10)
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A control law linear on the states is sufficient to minimize the cost function J . Hence,

consider the following state feedback:

uk “ ´Kxxk ´Kzzk (2.11)

Since the states are not available for feedback, the conditional distribution of xk

given all the information up to cycle k, i.e. ty0, . . . , yk, u0, . . . , uk´1u, is required for

feedback control. In the linear Gaussian case, the conditional distribution ppxk |

y0, . . . , yk, u0, . . . , uk´1q is given by the Kalman filter and is finite-dimensional [52,

Chap. 6]. Consider the steady state Kalman filter for state estimation:

pxk`1 “ pA´ LCqpxk `Buk ` Lyk (2.12)

where L is the estimator gain. For feedback control, replace the state in Eqn. (2.11) by

the estimated state for Eqn. (2.12). The feedback gains Kx, Kz are the solution of the

infinite horizon Linear Quadratic Regulator (LQR) control problem and the estimator

gain L is the solution of the steady state Linear Quadratic Estimator (LQE).

The coupled controller depicted in Figure 2.4 uses a linear quadratic estimator to

filter the variability in the measured combustion features (CA10 and CA1090) and

estimate the control-oriented model states. The estimated states, together with the

augmented integrator states, are used by the state feedback gain for step tracking. The

random variable wk corresponds to the uncertainty of the combustion dynamics when

spark advance and EGR-valve are adjusted. However, recall that such dynamics are

due to manifold filling and heat transfer properties. Since these uncertainties cannot

Figure 2.4: Block diagram of coupled LQG controller for feedback control.
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be measured, we assume that the cycle-to-cycle variability of the combustion features

is mainly due to the cycle-to-cycle perturbations of the turbulent environment inside

the cylinder (modeled as output disturbance). Hence, the diagonal elements of the

matrix W were kept relatively low. The following values were chosen based on the

variability reduction for engine estimated states in simulations:

WCA10 “ WCA1090 “ 0.1. (2.13)

The measurements of the combustion features, however, are not filtered before the

input to the integrator for tracking and performance purposes. Hence, the control

gains product of the LQR algorithm should not be arbitrarily high since the cycle-to-

cycle CV will be directly propagated through the integrator states and amplified by

the feedback gain. Table 2.11 summarizes the costs used in the weighting matrices for

the LQR algorithm. Tuning was performed manually, aiming for a fast rise-time and

avoiding overshoot for both CA10 and CA1090. Additionally, simulations presented

in [39] showed that such gains will not amplify dramatically the overall closed-loop

cycle-to-cycle CV.

Table 2.11: Diagonal values for LQR weighting matrices

Cost
System output: Q Integrator state: Qş Control: R

QCA10 QCA1090 Qş

CA10 Qş

CA1090 RSA REGR

LQR 5 5 0.6 0.4 5 5

2.4 Response Comparison

The closed-loop response of the system is analyzed in time domain based on rise-

time, settling-time and overshoot performance. The closed-loop transfer function

based on the control-oriented combustion model is analyzed in frequency domain

via Bode magnitude plots. Additionally, statistics of the open-loop and closed-loop

experimental data measured from the engine with each controller in place is also

reported.

2.4.1 Time Domain

Steps from Point A to Point B and vice versa were performed using both

(decentralized and centralized) controllers. Although control of the spark advance
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is performed at each cylinder individually, the EGR-valve adjustment is calculated

based on the CA10 and CA1090 measurements of cylinder number 1. Therefore, the

experimental data presented in this section corresponds only to cylinder 1. In order

to analyze the time domain performance of the closed-loop system, the measured

data was filtered using a Savitzky-Golay finite impulse response smoothing filter [53].

Figure 2.5 presents the measured, filtered, and simulated responses of the combustion

features of interest when a step command is performed. Tables 2.12 and 2.13 summa-

rize the transient performance, cycle-to-cycle variability, and cylinder-to-cylinder dif-

ference of the target combustion features. A symbolic qualitative comparison is given

for a quick assessment, based on a relative evaluation between controllers. Consider

the following performance parameters to be evaluated:

Rise-time: Time between 0% to 90% of step magnitude.

Settling-time: Time until the signal reaches the error band ˘5% of the target value.

Overshoot: Maximum peak exceeding the final value, with respect to the step di-

rection. Percentage is given relative to step magnitude.

STDv: Standard deviation calculated at steady state for 60 cycles.

PI controller LQG controller
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Figure 2.5: Experimental response of closed-loop system for command step Points
B Ñ A Ñ B. Boxplot contains data within 1st and 3th quartiles, whiskers depict 2
STDv from mean. (Left: PI, Right: LQG)
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Root Mean Square Error (RMSE): Used as a measure of the difference between

the simulated values (y) and the filtered values (ỹ), calculated as follows:

RMSE “

d

ÿ

pyi ´ ỹiq
2

n
(2.14)

max∆cyl: Maximum cylinder-to-cylinder difference between mean values (ȳ) at steady

state. In other words:

max ∆cyl “ max |ȳcylpiq ´ ȳcylpjq|, i, j P t1, 2, 3, 4u. (2.15)

Table 2.12: Performance comparison between PI and LQG for step: B Ñ A

CA10 Rise-time Settling-time Overshoot STDv RMSE max ∆cyl

PI
2.2 [sec] 444 2.6 [sec] ©©© 0.4 ÄÄÄ

2.3
ÄÄÄ

0.5 ©©© 0.5 ©©©
29 [cyc] 34 [cyc] 2.8%

LQG
2.0 [sec] 444 2.6 [sec] ©©© 0.2 ÄÄÄ

2.2
ÄÄÄ

0.4
ÄÄÄ

0.5 ©©©
26 [cyc] 34 [cyc] 1.5%

CA1090 Rise-time Settling-time Overshoot STDv RMSE max ∆cyl

PI
0.2 [sec] ÄÄÄ 3.1 [sec] ©©© 3.7 ŚŚŚ

3.4 ©©© 0.6 ©©© 2.3
ŚŚŚ

3 [cyc] 41 [cyc] 94%

LQG
1.1 [sec] ©©© 1.1 [sec] ÄÄÄ 0.4 ©©© 3.0

ÄÄÄ

0.6 ©©© 1.7 444
15 [cyc] 15 [cyc] 9.2%

Table 2.13: Performance comparison between PI and LQG for step: A Ñ B

CA10 Rise-time Settling-time Overshoot STDv RMSE max ∆cyl

PI
1.7 [sec] 444 2.6 [sec] ©©© 0.6 ÄÄÄ

3.2 444 0.3
ÄÄÄ

0.0
ÄÄÄ

22 [cyc] 34 [cyc] 4.8%

LQG
2.0 [sec] 444 2.4 [sec] ©©© 0.6 ÄÄÄ

2.5
ÄÄÄ

0.8 ©©© 0.2
ÄÄÄ

27 [cyc] 32 [cyc] 4.8%

CA1090 Rise-time Settling-time Overshoot STDv RMSE max ∆cyl

PI
0.3 [sec] ÄÄÄ 2.9 [sec] ©©© 3.6 ŚŚŚ

4.5 ©©© 0.4
ÄÄÄ

1.4 444
4 [cyc] 30 [cyc] 89%

LQG
1.7 [sec] 444 1.7 [sec] ÄÄÄ 0.6 ©©© 3.9

ÄÄÄ

0.4
ÄÄÄ

0.8 ©©©
23 [cyc] 23 [cyc] 15%

ÄÄÄ

: Very good 444: Medium sec: Seconds

©©©: Good
ŚŚŚ

: Bad cyc: Cycles @ 1600 [RPM]
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Note how similar the CA10 responses are between the two controllers. This is

a consequence of the control tuning, since the spark loop of the PI controller and

the LQR algorithm aimed for a fast response without overshoot in CA10. In fact,

rise-time and settling-time of CA10 for both cases are fairly similar. Nonetheless,

the variability of CA10 in the LQG controller is less than the variability in the PI

controller. On the other hand, CA1090 response differs significantly. This is related

to the control architecture since the LQG controller utilizes a coordinated action of

both actuators to minimize overshoot. The EGR loop in the decoupled PI controller

does not have enough authority to compensate for overshoot since the tuning process

prioritized the spark loop. Although the PI controller has the fastest rise-time for

CA1090, it generates excessive overshoot and a longer settling-time. Once again, the

LQG controller achieves the desired CA1090 response with the lowest variability. Note

that the cycle-to-cycle variability in the commanded spark advance and EGR-valve

is significantly reduced when using the LQG controller. This direct consequence of

the LQE also contributes to the overall reduction of cycle-to-cycle CV. All the RMSE

values are less than 1 [CA deg], indicating a good agreement between the filtered and

the simulated responses. This shows that the first-order control-oriented model can

be used to design a feedback combustion controller and predict the response of the

closed-loop system. In addition to the lower cycle-to-cycle variability achieved with

the LQG controller, the cylinder-to-cylinder variability is also significantly reduced

when the LQG controller is in place. Finally, note that the only way for the PI

controller to match the LQG cycle-to-cycle CV is to reduce the controller gains. By

doing so, the rise-time and settling-time of both CA10 and CA1090 are increased,

jeopardizing the performance of the controller. Therefore, the PI controller is not

able to match the transient performance and the closed-loop variability of the LQG

controller simultaneously.

2.4.2 Frequency Domain

The frequency response of the closed-loop transfer function T pzq is reported here

for completeness. Figure 2.6 shows the Bode magnitude plot of the components of

T pzq, each of one represents the transfer function from a certain reference command

(CAxx˚) to a measured combustion feature (CAxx). Note that the bandwidth is sim-

ilar for both controllers in the diagonal components. They also have an off-diagonal

compensation in a similar band. However, the Tp2,1q component for the LQG controller

has a lower magnitude than its counterpart at all frequencies. This lower off-diagonal

compensation avoids overshoot after the step change in the reference for CA1090.
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Figure 2.6: Bode magnitude plot for the components of T pzq. (˚ “ command)

2.4.3 Steady State Distribution

Steady state data of the three combustion features of interest was recorded during

1600 engine cycles. The statistics for the open-loop and closed-loop PI and LQG

controllers at Points A and B recorded during the same day, and hence same condi-

tions, are stated in Table 2.14. Since the spark advance and EGR-valve were manually

adjusted in open-loop, they are fixed values with zero STDv. Note that the LQG con-

troller has a reduction in the variability of the combustion features compared with

the PI controller. Therefore, the centralized LQG controller has a better performance

regarding the management of cycle-to-cycle CV in closed-loop during steady state.

Figure 2.7 shows the probability density function (PDF) of each combustion fea-

Table 2.14: Statistics at steady state for open-loop (OL) and closed-loop system with
PI and LQG controllers: Mean (STDv).

SA EGR-valve CA10 CA50 CA1090
Point [deg bTDC] [% open] [deg bTDC] [deg bTDC] [CA deg]

A 30 (0) 30 (0) -0.4 (2.2) -14.4 (3.5) 28.2 (3.3)

O
L

B 10 (0) 20 (0) -13 (2.0) -28.8 (3.7) 32.2 (3.9)

A 28.3 (1.3) 28.3 (1.4) 0.0 (2.3) -14.5 (3.7) 28 (3.4)

P
I

B 9.71 (1.7) 15.1 (1.3) -13 (3.2) -29.0 (5.2) 32 (4.5)

A 28.3 (1.2) 30.8 (1.5) 0.0 (2.2) -14.0 (3.5) 28 (3.0)

L
Q
G

B 9.95 (1.1) 19.6 (0.9) -13 (2.5) -28.9 (4.2) 32 (3.9)
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Figure 2.7: Probability density function (PDF) of combustion features at Points A
and B, along with fitted theoretical normal distribution (solid line).

ture at open-loop and closed-loop operation. A theoretical normal distribution has

been fitted using the statistics stated in Table 2.14. Note that all distributions in the

open-loop and closed-loop system are fairly symmetrical and unimodal. Moreover,

they seem to follow closely the theoretical Gaussian bell. Such plots confirm that the

cycle-to-cycle CV in open-loop can be modeled by a Gaussian random process, with

the difference that the measured values present slightly heavier or lighter tails. From

now on, we will assume that the cycle-to-cycle CV can be modeled as a Gaussian

random process.

Based on the previous discussion, the signals measured in open-loop at steady

state conditions can be modeled as:

CAxxOLrks “ µOL ` wOLrks, wOLrks „ N p0, σ2
OLq (2.16)

where CAxx = {CA10, CA50, CA1090}, µOL and σOL are the open-loop mean and

standard deviation, and wOLrks is a Gaussian random variable. Analogously, the

stochastic model for the measured combustion features during closed-loop control

can be formulated as follows:

CAxxCLrks “ µCL ` wCLrks, wCLrks „ N p0, σ2
CLq (2.17)
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where µCL is the target mean value and wCLrks is a zero-mean Gaussian distributed

random variable with variance σ2
CL. The goal then is to determine which components

in the feedback loop affect the variance of wCLrks, increasing the cycle-to-cycle CV.

This model is exploited in the next section to better understand how STDv changes

between open and closed-loop operation and how sensitive it is to feedback gains.

2.5 Sensitivity Analysis

2.5.1 Closed-loop System with Random Output Disturbance

Let P pzq be the linearization of the control-oriented combustion model (plant) and

Cpzq be the feedback controller (either PI or LQG). To better analyze the sensitivity of

the system, the plant and controller signals need to be scaled by their nominal values.

In doing so, control signals and output signals will correspond to percentage changes

about nominal, making all signals comparable. Let Pspzq and Cspzq be the scaled

plant and controller respectively. The output sensitivity function (SOpzq) relates the

plant output disturbances to the closed-loop system output, and is calculated as

follows:

SOpzq “ pI2 ` PspzqCspzqq
´1. (2.18)

Given the normality assumption for the distribution of the combustion features in

open-loop, the cycle-to-cycle CV can be modeled as an unbiased additive Gaussian

process acting as a disturbance to the plant output. In closed-loop operation, each

combustion feature will also behave as a random variable due to this random source.

Figure 2.8 shows the block diagram of the model proposed for sensitivity analysis.

Neglecting measurement noise and input disturbance effects, the output of the

Figure 2.8: Block diagram of closed-loop feedback combustion control with additive
Gaussian output disturbance.
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closed-loop system can be calculated as:

CAxxpzq “ SOpzqWOLpzq ` T pzqRpzq (2.19)

where WOLpzq is the disturbance, Rpzq is the reference signal and T pzq is the closed-

loop transfer function. Given the uncertainties in the real plant parameters, the LQE

previously designed is unable to completely filter the CV from the estimated states.

Moreover, the integrator estate is not estimated (and hence not filtered) since it can

be directly measured. As a consequence, the control command does not truly achieve

a steady state value, as seen in Figure 2.5. Therefore, the feedback system is in a

perpetual transient state, reacting to wOLrks at each engine cycle. However, the steady

state distribution of the closed-loop system has a fixed mean (µCL) that matches the

reference value. Under these observations, the response of the system after the step

command can be further simplified to:

���µCL `WCLpzq “ SOpzqWOLpzq `�����
T pzqRpzq

WCLpzq “ SOpzqWOLpzq.
(2.20)

Given that SOpzq is a linear time-invariant (LTI) transfer function, and assuming that

wOLrks is a zero mean stationary random process, it should hold that wCLrks is also

a zero mean stationary random process. Moreover, wCLrks should maintain a normal

distribution after the open-loop random variables pass through the LTI system [54,

Chap. 4]. The previous Section showed that the outputs in closed-loop operation

are indeed approximately Gaussian distributed with a fixed variance, supporting the

original hypothesis that locally the system is well approximated by an LTI system.

To conclude the statistical analysis of the Gaussian random output disturbance, it

suffices to look at the normalized autocorrelation function ROLrls, defined as follows:

ROLrls “
E rwOLrkswOLrk ` lss

σ2
OL

(2.21)

where Er¨s is the expected value operator and l is the signal lag. Figure 2.9 shows

the sample autocorrelation functions for the measured combustion features at open-

loop operation. The bounds shown in solid lines correspond to the 95% confidence

limits assuming that wOLrks is uncorrelated @k. Note that almost all values of ROLrls

when l ‰ 0 fall within such bounds, suggesting that the process wOLrks is indeed

uncorrelated. In other words, the variability of the combustion features does not

depend on effects from any other previous cycle but only on the uncertainties during
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Figure 2.9: Normalized autocorrelation function at Points A and B for CA10, CA50,
and CA1090 at steady state. Solid line represents the 95% confidence bounds for a
Gaussian White Noise process.

the intake, compression, and power stroke of each individual cycle [11]. Under these

observations, ROLrls can be modeled by a discrete-time impulse:

ROLrls “ δrls “

#

1 if l “ 0

0 if l ‰ 0
(2.22)

which corresponds to a Gaussian White Noise process. The power spectral density

(PSD) of a random process is defined as the Fourier transform of the autocorrelation

function, hence, for the Gaussian White Noise process:

SOLpωq “ F
 

σ2
OLROLrls

(

“ σ2
OLF tδrlsu “ σ2

OL (2.23)

which means that the white noise has an equal distribution of energy over all frequen-

cies of interest (equivalent to the open-loop variance). The transfer function SOpzq

relates the PSD of wOLrks with the PSD of wCLrks in the following way:

SCLpwq “ |SOpωq|
2 SOLpωq “ p|SOpωq|σOLq

2 . (2.24)

Consequently, the spectral power of the combustion features in closed-loop (signal

variance) is directly related to the magnitude of the output sensitivity function SOpωq.
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Recall that for a multivariable system, each element of SOpωq is bounded by the

largest singular value at any given frequency [47, Chap. 8]:

ˇ

ˇSOpi,jqpωq
ˇ

ˇ ď σmaxpSOpωqq. (2.25)

Therefore, knowledge of σmaxpSOpωqq at different frequencies determines how SCLpwq

is affected by the closed loop configuration. Since the PSD is directly related to

the variance of wCLrks, frequencies where σmaxpSOpωqq ą 1 will amplify the signal

variability with respect to the open-loop case. Since any frequency can be potentially

exited by wOLrks, the peak of σmaxpSOpωqq is of special interest and should be kept as

low as possible. This peak however is not only important for CV amplification, but

also for stability and robustness. Moreover, it is recommended that σmaxpSOpωqq ă

2, @ω [47, Chap. 8]. In order to provide guidance with the control tuning process, the

output sensitivity function is analyzed when the feedback gains change with respect

to the values stated in Tables 2.10 and 2.11. This analysis provides insight into how

closed-loop cycle-to-cycle CV will change as we increase or decrease the aggressiveness

of the controller.

2.5.2 Sensitivity of PI Controller

In order to determine which PI gain contributes to combustion variability ampli-

fication, the SOpzq function has been computed for different PI gains. Figure 2.10

shows how σmaxpSOpωqq changes when the PI controller gains change. In all four plots,

the black line represents the designed controller, which gain values are stated in Ta-

ble 2.10. Note that increasing the integral gain of either independent PI controller

increases the peak of σmaxpSOpωqq at high frequencies, especially when increasing the

IEGR gain. This result suggests that the variability of the closed-loop system will

increase. Note, however, that the σmaxpSOpωqq remains practically invariant under

proportional gain sweep. So the cycle-to-cycle variability should not be significantly

amplified when PSA or PEGR increase. A closer look at the components of SOpwq in

Figure 2.10 shows how the CV measured in one input is amplified and directed to

which output. For a high integral gain in the spark advance controller (ISA “ 0.7),

the component with the highest amplification is SO(1,1). This means that CV from

the CA10 measurement directly affects the CA10 response of the system but does

not interact significantly with the CA1090 response. For the case with a high inte-

gral gain in the EGR-valve controller (IEGR “ 0.7), Figure 2.10 indicates that the

components SO(1,2) and SO(2,2) generate the highest amplification. This suggests
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that the variability in the measurements of CA1090 will affect CA10 and CA1090 re-

sponses simultaneously. It is advised that integral gains remain low to avoid negative

consequences in the combustion process during closed-loop control.

The system with the PI controller in place was subject to gain variations and

the measured steady state standard deviation was calculated at the targeted Point

A. Table 2.15 shows the STDv values for the combustion features in experiments

performed. Note that the values for gains P and I do not exceed 0.7 in both PI

controllers because the cycle-to-cycle CV of the closed-loop system became excessively

large. When changing the gains of the PI controller for spark advance, note that

increasing the integral gain increases the STDv of CA10 and CA1090. However,

the average change in STDv from I “ 0.2 to I “ 0.7 is ∆STDv “ 0.7 for CA10,

while ∆STDv “ 0.3 for CA1090. This means that the effect on the CA10 response

is higher than the effect on CA1090 response, matching the behavior predicted by

the analysis of SO. Changing the proportional gain, on the other hand, increases the

variability on both outputs, for which the linear model is unable to predict. Increasing
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the integral gain in the EGR-valve loop increases the variability of each feature in

a similar manner, although increasing the proportional gain does not change the

variability of the combustion features. The average increase in STDv for the CA10

response from I “ 0.2 to I “ 0.7 is ∆STDv “ 0.4, while ∆STDv “ 0.6 for CA1090.

Both trends qualitatively agree with the behavior expected from the linear analysis

of the system, confirming that the control-oriented combustion model is a simple, yet

powerful tool to analyze the closed-loop properties of the system.

2.5.3 Sensitivity of LQG Controller

Recall that the LQG controller consists of a state estimator (LQE) and a state

feedback gain (LQR). Considering that the LQE design depends on the statistical

properties of the open-loop measured signals, the observer gains will remain un-

changed in the sensitivity analysis. The state feedback gains, on the other hand, will

change according to four different sets of cost values in the LQR algorithm. Each of

the following sets contains the numerical values corresponding to the diagonal entries

of the matrices penalizing the system output, integrator states, and control effort, as

Table 2.15: STDv at steady state using different PI gains at Point A

SA controller EGR-valve controller

CA10: I “ 0.2 I “ 0.5 I “ 0.7 I “ 0.2 I “ 0.5 I “ 0.7

P “ 0.3 2.4 2.6 2.9 2.4 2.5 2.8
P “ 0.5 2.5 2.8 3.2 2.3 2.6 2.8
P “ 0.7 2.7 3.2 3.6 2.4 2.5 2.7

CA50: I “ 0.2 I “ 0.5 I “ 0.7 I “ 0.2 I “ 0.5 I “ 0.7

P “ 0.3 3.8 4.0 4.4 4.1 4.4 4.7
P “ 0.5 4.0 4.4 4.8 3.9 4.4 4.8
P “ 0.7 4.2 4.7 5.3 4.0 4.3 4.7

CA1090: I “ 0.2 I “ 0.5 I “ 0.7 I “ 0.2 I “ 0.5 I “ 0.7

P “ 0.3 3.4 3.6 3.7 3.9 4.2 4.5
P “ 0.5 3.6 3.7 3.8 3.8 4.1 4.6
P “ 0.7 3.6 3.9 4.1 3.8 4.1 4.5
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previously described in Table 2.11:

QCA10 QCA1090 Qş

CA10 Qş

CA1090 RSA REGR

C1 “ t 10, 5, 0.6, 0.4, 3, 5u,

C2 “ t 5, 5, 0.6, 0.4, 5, 5u,

C3 “ t 5, 5, 0.5, 0.1, 5, 5u,

C4 “ t 10, 10, 0.5, 0.5, 5, 5u.

(2.26)

Note that all the combinations penalize heavily the system outputs in order to avoid

overshoot and achieve the faster rise-time. The penalty on integrator states is smaller

since high integral gain generated an excessive amount of cycle-to-cycle CV, similar

to the previous case with the PI controller. The penalty on the actuators is kept

almost constant at a high value to minimize the actuator variability. Note also that

the set C1 corresponds to the selected weights for the LQR algorithm previously

discussed. The left plot of Figure 2.11 shows the transient response of CA1090 for all

four calibrations. This shows that the sets of weights C2, C3, and C4 do not generate

overshoot on CA1090.
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Figure 2.11: Left: CA1090 response with LQG controller under different set of state
feedback gains. Right: Maximum singular values σmaxpSOpωqq

The right plot of Figure 2.11 shows the maximum singular value σmaxpSOpωqq

for different frequencies using the four different sets of tuning parameters in the

LQR algorithm. All sensitivities are similar in magnitude, meaning that the LQG

controller is robust under perturbations in state feedback gains. This implies that,

for this specific step command, the choice of feedback gains mainly depends on the

desired transient performance rather than the amplification of cycle-to-cycle CV. Each

state feedback gain resulting from the different cost sets was tested under closed-loop

operation at the target condition (Point A). Table 2.16 shows the STDv values
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of each combustion feature. Note that the cycle-to-cycle CV remains practically

unchanged under gain adjustment, which agrees with the linear analysis of the closed-

loop system.

Table 2.16: STDv at steady state using different feedback gains at Point A

Set C1 Set C2 Set C3 Set C4

CA10 2.4 2.4 2.4 2.4

CA50 3.8 3.9 3.9 3.9

CA1090 3.6 3.7 3.7 3.8

2.5.4 Uncertainty in EGR-rate

The feedback combustion controller relies on in-cylinder pressure measurements to

calculate combustion features and adjusts the EGR-valve that generates the desired

EGR-rate to match the target combustion features. Suppose that the target for con-

trol is MBT timing to maximize torque, rather than start and duration of combustion

for proper flame development. Similar to the work done by [19,33–37,55,56], a SISO

PI controller can be designed to adjust spark advance in response to a CA50 desired

target. In general, the optimal torque, hence most fuel efficient, combustion phasing

in SI engines is between ´7 and ´10 [deg bTDC] [18, Chap. 9], [57]. Therefore, Point

A will be the control target since its CA50 value is closer to the aforementioned range.

For the SISO controller, EGR-valve must be controlled in an open-loop fashion and

calibration of the valve must be performed under several speed/load/spark/EGR-rate

conditions. Using the same first order combustion model shown in Figure 2.2, the

PI controller for CA50 can be designed to cancel the stable pole and track the de-

sired CA50 target without overshooting any combustion feature, such as CA1090.

The following discrete-time controller achieved the transient constraints minimizing

settling-time:

PICA50 “ 0.75
z ´ 0.56

z ´ 1
. (2.27)

Figure 2.12 shows the simulated transient response of the PI, LQG, and the new

SISO PICA50, which relies on CA50 measurements solely. When the opening of the

EGR-valve is overestimated, due to the inaccuracy of the EGR-rate estimation, for

example, the spark is forced to advance even further to compensate for excess in

dilution. The PICA50 controller cannot achieve the desired combustion duration due

to the lack of control authority over this feature and can potentially lead to undesir-

38



able conditions, such as misfires or slow burns. This result stresses the importance

of TITO feedback control for robustness under EGR drifts and for a reduction in

calibration burden, given that the PI and LQG controllers do not depend on EGR-

rate estimation for EGR-valve actuation. Note however that the CA10 value is not
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significantly affected on either step command, suggesting that the spark solely can

achieve correct CA10 and CA50 values. Figure 2.13 shows plots for the mean values

of the combustion features for all spark advance/EGR-valve conditions. Only CA10

and CA50 are linearly related for all these conditions, which means that controlling

one feature is equivalent to controlling the other. Also note that the slope of the

interpolation is close to one, explaining why the error in CA10 in the PICA50 con-

troller under EGR uncertainty is small. Thus, another possible TITO controller can

use CA50 and CA1090 measurements to control the combustion process using SA

and EGR-valve. This new input-to-output coupling is of special interest because of

the known robustness of CA50 to disturbances in speed, load, fuel characteristics,

and equivalence ratio. However, this relationship also implies that the optimal CA10

value should be somehow constant across operating conditions. If that is the case,

CA10 has the additional advantage of a lower STDv compared with CA50. Further

testing of this claim is needed across different engine speed/load conditions.

2.6 Summary

The main objective of this study was to use feedback combustion control to en-

sure a healthy flame development without slow burns or misfires. A decentralized

(PI-based) and a centralized (LQG-based) TITO controllers have been designed and

implemented for a robust combustion initiation (CA10) with targeted combustion

duration (CA1090). Although typically CA50 is used as a target for combustion con-

trol, CA10 has been chosen due to its close relation with the initial flame development

period and its lower cycle-to-cycle variability. The controllers adjust spark advance

and EGR-valve in a cycle-to-cycle base according to the measured performance out-

puts (CA10 and CA1090). A control-oriented combustion model was developed based

on system identification and used as a tool for control design and linear analysis of

the closed-loop system. Evaluation of the transient response demonstrates that the

centralize (LQG) controller is better at managing the input-output coupling of the

system and the cycle-to-cycle CV compared with the decentralize (PI) controller.

Frequency domain analysis points to the advantage of using the LQG controller for

efficient actuator coordination. Quantification of the combustion variability indicates

that the LQG controller is better than the PI controller at managing and attenuat-

ing the cycle-to-cycle and cylinder-to-cylinder variability at steady state operation.

Sensitivity analysis of the system under feedback gain variation shows that integral

gains have a high impact in CV at steady state, and the authors recommend to use
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low gain values for further applications. Similar results were obtained when looking

at the output sensitivity function based on the LTI combustion model, which indi-

cates that such model can be a powerful design and analysis tool for at least the one

speed/load condition explored in this paper. Although the control-oriented model will

change at different speed/load conditions, the methodology explained in this paper

for implementing and tuning a feedback combustion controller will be the same.
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CHAPTER III

Linear Stochastic Modeling and Control of Diluted

Combustion for Spark Ignition Engines

3.1 Motivation

The combustion process in spark-ignition (SI) engines exhibits cycle-to-cycle vari-

ability, which imposes limits on engine operation. When exhaust gas recirculation

(EGR) is used to increase engine efficiency, the combustion variability (CV) increases

and spark advance (SA) must be re-tuned to achieve maximum brake torque. In or-

der to maximize EGR benefits without excessive cyclic CV, feedback control can be

applied to modify EGR and SA accordingly. This study presents a control-oriented

combustion model that captures the stochastic properties of combustion features. A

linear quadratic Gaussian (LQG) controller is used to modify SA and EGR to achieve

a particular combustion shape, characterized by the initiation and duration angles.

Using stochastic control theory for linear Gaussian systems, analytical solutions for

the cyclic variability of the combustion process and the control commands under

closed-loop operation are derived. This methodology is validated against experimen-

tal engine data and results at transient and steady state operation are presented.

3.2 Open-loop Model

It was showed in the previous Chapter that combustion features CA10, CA50

and CA1090 present normal distributions N pµxx, σ
2
xxq (mean: µxx and standard de-

viation: σxx) when the system is operated at stationary conditions. Under that

assumption, the probability density function (PDF) and time series properties of all
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features CAxx,CAyy are completely characterized by:

Expectations: µxx “ ErCAxxs

Variances: σ2
xx “ varpCAxxq

Covariances: covpCAxxk,CAyykq

Covariance functions: covpCAxxk`m,CAyykq

for {xx,yy}P t10,1090u and for any cycle k [52]. This behavior motivates the use of

a Gaussian stochastic model for the open-loop system. Figure 3.1 shows the cylin-

der pressure trace and fuel mass fraction burned for 2000 steady state engine cycles.

The motored pressure curve is shown as a reference for incomplete combustion. As

discussed by [3], incomplete combustion leaves residual charge available for the next

cycle. This works as a coupling mechanism and generates nonzero covariance func-

tions covpCAxxk`1,CAxxkq, implying serial correlation for the combustion process.

Hence, the SA/EGR combination for this study was chosen such that no partial

burned cycles or misfires occurred.
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Figure 3.1: In-cylinder pressure (Pcyl) and fuel mass fraction burned (MFB) as func-
tions of CA deg. Grey colored region represents 2000 engine cycles.
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3.2.1 General Linear Gaussian System

Consider the linear discrete-time stochastic system:

xk`1 “ Axk `Buk `Gwk

yk “ Cxk `Hvk
(3.1)

where:

x0 „ N p0,Σ0q, wk „ N p0, Qq, vk „ N p0, Rq (3.2)

are the basic random variables, which are assumed to be mutually independent. Sup-

pose that under certain constant open-loop command uk “ U the system reaches

steady state. Define:

State Covariance: Σx
8 “ lim

kÑ8
covpxk, xkq (3.3)

then, using Eqn. (3.1), the steady state covariance and covariance function of the

output can be calculated as [52, Chap.3]:

Output Covariance: Σy,OL
8 “ lim

kÑ8
covpyk, ykq “ CΣx

8C
T
`HRHT (3.4)

Output Cov. Function: Σy,OL
8 pmq “ lim

kÑ8
covpyk`m, ykq “ CAmΣx

8C
T , (3.5)

for m ě 1. Steady state requires stability of matrix A and reachability of the pair

pA,
a

GQGT q. Under these assumptions, the steady state covariance Σx
8 can be

obtained by finding the positive definite root of:

Lyapunov equation: Σx
8 “ AΣx

8A
T
`GQGT . (3.6)

3.2.2 Open-loop Steady State Properties

For feedback combustion control, the inputs and outputs of the system are defined:

uk “

«

SAk

EGRk

ff

, yk “

«

CA10k

CA1090k

ff

(3.7)

The feature CA10 was chosen for control since, according to Section 2.2, it displays the

least amount of variability. The start of combustion CA10 also correlates well with the

initial flame development angle, which is mainly determined by the spark advance.

The combustion duration CA1090 captures the effect of EGR in the combustion

kinetics, elongating the combustion as EGR levels increase. For any two features
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CAxx and CAyy, with xx,yy P t10, 1090u, define:

Correlation Function: corrpCAxxk`m,CAyykq “
covpCAxxk`m,CAyykq

σxxσxx

(3.8)

which is the normalized version of the covariance function. By compiling the four

possible combinations of correlations between CA10 and CA1090 in one matrix:

Correlation matrix:

χy,OL
8 pmq “

«

corrpCA10k`m,CA10kq corrpCA10k`m,CA1090kq

corrpCA1090k`m,CA10kq corrpCA1090k`m,CA1090kq

ff

. (3.9)

Note that the output covariance function Σy,OL
8 pmq and the correlation matrix χy,OL

8 pmq

are related by:

χy,OL
8 pmq “ diagtσ10, σ1090u

´1
¨ Σy,OL

8 pmq ¨ diagtσ10, σ1090u
´1 (3.10)

with Σy,OL
8 p0q “ Σy,OL

8 . Figure 3.2 shows the different elements of χy,OL
8 pmq as a

function of engine cycle lags. Recall that if the measurements {CAxx1, . . ., CAxxN}
are independent Gaussian random variables (white noise), the normalized standard

error (SE) of the sample mean can be estimated as:

SE “
1

σxx

d

var

ˆř

CAxxi
N

˙

“
1

σxx

c

σ2
xx

N
“

1
?
N
. (3.11)

In order to determine if the time series behaves as a white noise process with 95%

confidence, the corresponding SE equals 2{
?
N . This bound is represented in Fig-

ure 3.2 by the solid red line and it is assumed that the coefficients falling between

such bounds are equivalent to zero. Therefore, the correlation matrix is equivalent

to:

χy,OL
8 pmq “

$

’

’

’

&

’

’

’

%

«

1 ρ

ρ 1

ff

, if m “ 0

0 , if m ě 1.

(3.12)

The zero correlation is a product of the cyclic independence of the combustion process.

Note that this result will not hold if partially burned cycles of misfires are present.

Given that σ10, σ1090 ‰ 0, and assuming that the system dynamic behavior is not
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Figure 3.2: Coefficients of correlation matrix χy,OL
8 pmq for a sample of 1600 engine

cycles during steady state.

trivial, Eqns. (3.5) and (3.10) imply the following:

χy,OL
8 pmq “ 0 ðñ Σy,OL

8 pmq “ 0 ðñ Σx
8 “ 0. (3.13)

The output covariance on the other hand, simplifies to:

Σy,OL
8 “ HRHT

“

«

σ2
10 ρσ10σ1090

ρσ10σ1090 σ2
1090

ff

. (3.14)

Given that Σy,OL
8 is a symmetric, positive definite matrix, the spectral decomposition

can be written as Σy,OL
8 “ V ΛV T . Here, Λ is the diagonal matrix of eigenvalues and

V is an orthogonal matrix with corresponding eigenvectors. Therefore, the output

equation for the open-loop combustion model can be written as:

yk “ Cxk ` V vk, vk „ N p0,Λq. (3.15)

Figure 3.3 compares the theoretical output covariance Σy,OL
8 with the experimental

distribution of the random variable:

∆CAxx “ CAxx´ µxx. (3.16)
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8 .

Equiprobable level curves of joint PDF represent compact sets containing 38%, 68%,
and 95% of the total distribution.

The linear Gaussian model not only captures the properties of marginal PDFs, but

can also reproduce the behavior of the joint PDF. Looking back to the Lyapunov

Eqn. (3.6), Σx
8 “ 0 implies that GQGT “ 0. Assuming G ‰ 0, the only way to

satisfy the equality is with Q “ 0. Therefore, the random variable wk degenerates

to a constant value of zero. Hence, the dynamics of the system are purely determin-

istic. Combining this observation with Eqn. (3.15), the linear stochastic model for

combustion control is:

Open-loop system:
xk`1 “ Axk `Buk

yk “ Cxk ` V vk
(3.17)

where tvku „ N p0,Λq is a white noise precess.

3.2.3 Open-loop Transient Properties

Although the stochasticity of the flame development governs the combustion pro-

cess at steady state, the transient response has different characteristics. A step change

in EGR valve will alter the manifold filling dynamics and the heat transfer properties

of the charge. Moreover, the study performed by [46] showed that changes in spark
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timing strongly affect the cylinder surface heat flux during the power stroke. Based

on such observations, a first order response is expected for changes in command val-

ues. System identification was performed in in the previous Chapter to determine

matrices A and B in the linear model. The matrix C, however, was determined by

calculating the Jacobian of a nonlinear model of the output, as follows:

CA10 “ f10pSA,EGRq

CA1090 “ f1090pSA,EGRq
ñ C “

»

—

—

—

–

Bf10

BSA

Bf10

BEGR

Bf1090

BSA

Bf1090

BEGR

fi

ffi

ffi

ffi

fl

(3.18)

Functions f10 and f1090 were computed after steady state engine mapping. Figure 3.4

shows the open-loop model validation, excluding the variability induced by vk. Al-

though the cyclic CV makes it hard to evaluate the accuracy of the model, the com-

parison of statistical properties for the closed-loop system will further validate of the

model.

-10

-5

0

5

C
A
10

[d
eg

b
T
D
C
]

Measured Model

20

30

40

C
A
1
09
0

[C
A

d
eg
]

25

30

35

O
p
en
-l
o
op

co
m
m
an

d

Spark Adv. EGR-valve

3 [s]

Figure 3.4: Comparison of linear model and experiments under step perturbations in
SA and EGR valve.

48



3.3 Closed-loop Model

Recall that in Section 2.3.4 the stochastic control problem of tracking a step

reference command r based on output feedback was discussed. Integral control can

achieve zero steady state tracking error with the additional advantage of rejecting

constant output disturbances. The open-loop system is then augmented with the

following integrator states:

Discrete-time integrator: zk`1 “ zk ` pyk ´ rq (3.19)

Consider further the case when the controller is designed to minimize the expected

quadratic cost:

Cost: J “ E

«

8
ÿ

k“0

yTk Γyyk ` z
T
k Γzzk ` u

T
kΩuk

ff

(3.20)

subject to the dynamics described by Eqns. (3.17) and (3.19). From stochastic control

theory, we know that from all feasible control policies that minimize the cost, Markov

policies (which only depend on the current state) are optimal [52, Chap. 6]. In

particular for linear systems, the use of a control law linear on states:

State Feedback: uk “ ´Kxxk ´Kzzk (3.21)

is sufficient to minimize the cost function J . Since we do not have access to the

states, the conditional distribution of xk given all the information at time k, i.e.

ty0, . . . , yk, u0, . . . , uk´1u, is required for feedback control. In the linear Gaussian case,

the conditional distribution ppxk | y0, . . . , yk, u0, . . . , uk´1q is given by the Kalman

filter and is finite-dimensional. Moreover, the steady state Kalman filter is a linear

estimator of the states. Consider the following linear observer for state estimation:

State Estimator: pxk`1 “ pA´ LCqpxk `Buk ` Lyk (3.22)

where L is the estimator gain. For feedback control, replace the current state in

Eqn. (3.21) by the estimated state for Eqn. (3.22). The feedback gains Kx, Kz resulted

from the solution of the Linear Quadratic Regulator control problem and the estimator

gain L is the solution of the Linear Quadratic Estimator.

By augmenting the open-loop system (3.17) with the discrete-time integrator

(3.19) and the state estimator (3.22), and by using the state feedback law (3.21)
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to close the loop, one can determine that the system under control satisfies:

Closed-loop system:
»

—

–

xk`1

zk`1

pxk`1

fi

ffi

fl

“

»

—

–

A ´BKz ´BKx

C I 0

LC ´BKz A´ LC ´BKx

fi

ffi

fl

»

—

–

xk

zk

pxk

fi

ffi

fl

`

»

—

–

0

´I

0

fi

ffi

fl

r `

»

—

–

0

V

LV

fi

ffi

fl

vk

yk “

”

C 0 0
ı

»

—

–

xk

zk

pxk

fi

ffi

fl

` V vk, vk „ N p0,Λq.

(3.23)

Let Ψ “

”

xk zk pxk

ıT

, we simplify the notation by:

Ψk`1 “ ACLΨk `BCLr `GCLvk

yk “ CCLΨk ` V vk.
(3.24)

Note the similarities between the closed-loop system and the general linear Gaussian

system described in Section 3.2.1. We will summon previous results to analyze steady

state properties of the closed-loop system.

3.3.1 Closed-loop Steady State Properties

Since the matrix ACL is stable by design, the system will eventually reach steady

state. Let ΣΨ
8 be the closed-loop state covariance at steady state, then:

ΣΨ
8 “ lim

kÑ8
covpACLΨk `BCLr `GCLvkq

“ lim
kÑ8

covpACLΨk `GCLvkq

“ lim
kÑ8

covpACLΨkq ` lim
kÑ8

covpGCLvkq

6 ΣΨ
8 “ ACLΣΨ

8A
T
CL `GCLΛGT

CL. (3.25)

The first equality follows from Eqn. (3.24). The second holds since BCLr is constant

at steady state. The third equality holds because Ψk is a function of the random

variables {vk´1, . . . , v0}; hence, Ψk and vk are independent. Note that Eqn. (3.25)

is the closed-loop Lyapunov equation. Given that the pair pACL, GCL

?
Λq is reach-

able, the Lyapunov equation has a unique positive definite solution. Intuitively, the

reachability condition is satisfied because the output noise propagates through the

closed-loop system via the integrator and estimator states. Note also that the state
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covariance ΣΨ
8 is a function of state feedback gain, estimator gain, and open-loop

steady state covariance. Since the control is a linear function of the states, its steady

state covariance can be calculated as:

Control Covariance: Σu
8 “

”

0 Kz Kx

ı

ΣΨ
8

»

—

–

0

Kz

Kx

fi

ffi

fl

(3.26)

which is directly determined by the feedback gains. Note that if the state gains

are high (aggressive feedback) then the variability of the control commands will be

amplified. Moreover, similar to Eqn. (3.5), the covariance function of the control

signal can be computed from ΣΨ
8 as follows:

Control Cov. Function: Σu
8pmq “

”

0 Kz Kx

ı

AmCLΣΨ
8

»

—

–

0

Kz

Kx

fi

ffi

fl

(3.27)

Finally, define the control correlation matrix as follows:

χu8pmq “ diagtσSA, σEGRu
´1
¨ Σu

8pmq ¨ diagtσSA, σEGRu
´1 (3.28)

The left set of plots in Figures 3.5 and 3.6 compares the theoretical steady state

control covariance Σu
8 and correlation matrix χu8pmq with the experimental distribu-
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Figure 3.5: Joint and marginal PDFs for theoretical and experimental Σu
8 (left)

and Σy,CL
8 (right). Equiprobable level curves of joint PDF represent compact sets

containing 38%, 68%, and 95% of the total distribution.
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tion of the zero-mean random variables:

∆SA “ SA´ µSA, ∆EGR “ EGR´ µEGR. (3.29)

The analytical solution closely describes the marginal and joint distributions of the

control commands, as well as the time series properties. One can also define the

output covariance and covariance function for the closed-loop system, as follows:

Output Covariance:
Σy,CL
8 “ CCLΣΨ

8C
T
CL ` V ΛV T

“ CCLΣΨ
8C

T
CL ` Σy,OL

8

(3.30)

Output Cov. Function: Σy,OL
8 pmq “ CCLA

m
CLΣΨ

8C
T
CL. (3.31)

The change in output covariance from open-loop to closed-loop operation is the pos-

itive definite matrix:

Combustion Variability Increase:
∆Σy

8 “ Σy,CL
8 ´ Σy,OL

8

“ CCLΣΨ
8C

T
CL.

(3.32)

This result gives an analytical expression for the increase in variability due to the

feedback loop. Consider the closed-loop output correlation matrix χy,CL
8 pmq similarly

defined as in Eqn. (3.28). The right set of plots in Figures 3.5 and 3.6 compare the

theoretical steady state covariance Σy,CL
8 and the coefficients of χy,CL

8 pmq with the
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Figure 3.6: Coefficients of correlation matrices χu8pmq (left) and χy,CL
8 pmq (right) for

a sample of 600 engine cycles.
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experimental distribution. The linear model in closed-loop steady state operation

can describe the stochastic properties of the joint and marginal distributions and it

can also capture the time series correlation of the output signals.

3.3.2 Closed-loop Transient Response

Simultaneous step commands in CA10 and CA1090 were issued in closed-loop

operation. A full study of the transient properties of the step response can be found in

[40]. Figure 3.7 shows the experimental response together with the model simulation.

In this case, the non-linear functions f10, f1090 were used to calculate the output values

for feedback control. This results further validate the usefulness of the stochastic

model to determine steady state and transient properties of the combustion process

under closed-loop control.
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3.4 Summary

A simple stochastic control-oriented combustion model has been developed for

diluted combustion when cyclic events are independent. A linear quadratic Gaussian

multivariable controller was implemented to regulate EGR valve and spark advance

in order to achieve a target combustion process. In closed-loop operation, the linear

model is able to predict the stochastic properties of the controlled combustion process

at steady state, based on the statistical information collected in open-loop operation.

In other words, given the open-loop stochastic linear model and the LQG gains,

the closed-loop statistics of the system can be predicted. Moreover, an analytical

solution is presented for the increase in combustion variability due to the feedback

loop. Experimental results show the accuracy of the analytical prediction. The serial

correlation properties, however, will not hold if the engine operates at the misfire limit,

where incomplete combustion induces cyclic correlation. Although the controller has

been tested at one operating condition, the methodology is valid for any operating

condition with nominal combustion events.
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CHAPTER IV

Stochastic Feedback Combustion Control at High

Dilution Limit

4.1 Motivation

This study focuses on the development of a feedback control strategy to maxi-

mize the benefits of cooled EGR while, simultaneously, minimizing CV introduced

by the feedback loop. A two-input two-output (TITO) controller was designed in

Section 2.3.4 for spark advance and EGR valve to control the combustion process at

conservative EGR levels with low CV. Extending such prior work, the linear quadratic

Gaussian (LQG) controller has been redesigned to shift the engine operating condi-

tion from low-EGR to high-EGR levels. The controller gains were tuned to accurately

track the target combustion, but minimize the CV that is re-introduced in the system

as a result of the TITO feedback loop.

Figure 4.1 shows the block diagram of the proposed controller. The main compo-

nents are discussed as follows: Section 4.2 shows the engine operating condition used

as control target. Section 4.3 describes the stochastic control-oriented combustion

model used for control design and simulations. Section 4.4 presents the LQG con-

troller design and the analysis of the fundamental limitations of the control problem

at the high dilution limit. Specifically, it is shown that the plant directionally at

the target operating point requires large control signals that can 1) cause sporadic

misfires, and 2) cause significant changes in brake torque.

4.2 Target Combustion Shape

The data presented in this study was collected the same engine as Section 2.2.

Combustion phasing is a well known metric for engine efficiency since its optimum
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x̂[k]

w[k]

�LQG

Combustion Model:
. y ⇠ N (M,⌃)
. Z ⇠ Ber(p)

Figure 4.1: Block diagram of closed-loop system used in simulations with stochastic
combustion model, misfire masking logic, and LQG controller.

value lies between ´5 and ´11 [deg bTDC] for a conventional engine and it has low

sensitivity with respect to changes in equivalence ratio, EGR, speed, and load [31].

Control of the combustion duration is particularly important at high EGR levels since

overly long CA1090 reduces the cylinder peak pressure and increases CV [13]. The

combustion shape is defined by the MFB trace, characterized by the pair (CA50,

CA1090). In this study, we identified an operating condition with high EGR levels

located close to the misfire limit that can improve fuel economy. This point was

compared against a high efficient point without EGR, close to the knock limit, as

shown in Table 4.1. As expected, EGR increases CV, reduces brake specific fuel

consumption (BSFC), and suppresses the likelihood of knock.

Table 4.1: Operating conditions at same load but different EGR levels.

Point X Point Y

SA [deg bTDC] 20 45
EGR valve [% open] 0 40
CA50 [deg bTDC] ´8.3 (σ50 = 1.8) ´11.1 (σ50 = 4.7)
CA1090 [CA deg] 23.2 (σ1090 = 2.1) 40.1 (σ1090 = 5.6)
CoVIMEP 0.6% 5.2%
BSFC [g/kWh] 258.8 253.8 (´1.9%)

Steady state data within the feasible combustion region were recorded at different

combinations of SA and EGR valve positions. The estimation of the mean values of

CA50 and CA1090 (µ50 and µ1090) was accomplished by third order polynomial inter-

polations of such values. Figure 4.2 shows the contour plots of the estimated combus-

tion features. Experimentally, not all SA/EGR valve combinations were achievable

due to combustion instability, mainly due to combustion variability. Therefore, a

feasible region has been outlined based on the following three limits [18]:

1. Knock limit: Maximum SA at low EGR levels at which spark knock is avoided.
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2. Misfire limit: Maximum SA at medium-high EGR levels at which low cylin-

der temperature, dilution, and excessive turbulence prevent combustion from

starting.

3. Partial burn limit: Minimum SA at high EGR levels where the flame quenches

before consuming completely the end gas, increasing CV.

These limits however, often require a probabilistic approach. For instance, Quader

[58] defines the misfire limit where the misfire rates is around 0.5-0.8%, while Peyton

Jones [59] defines the knock limit where the probability of knocking is 1%.

Note that a constant value of CA50 “ ´11 [deg bTDC] maintains the engine

operating close to the knock and misfire limit, maximizing SA for better fuel economy.

Therefore, the engine operation will be restricted to such constant CA50 level curve

near the engine stable operating limit. This static map however does not capture the

CV. Thus, a more rigorous statistical model is required to estimate the amount of

CV produced by the controlled system.

4.3 Combustion Model

4.3.1 Stochastic Model for Combustion Variability

Similar to Figure 4.2, standard deviation values of the CA50 and CA1090 (denoted

by σ50 and σ1090) estimated at different steady state points can be interpolated by

third order polynomials. Figure 4.3 shows the steady state statistics of CA50 and
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CA1090 experimentally measured during 2000 engine cycles at Point Y. Note that

both combustion features are approximately Gaussian distributed, then:

CAxx „ N pµxx, σ
2
xxq, xx P t50, 1090u. (4.1)

These combustion features however are not independent variables since CA10 ă

CA50 ă CA90, if measured bTDC. Let ρ be the correlation coefficient between

the system outputs, which experimentally was determined to be ρ “ ´0.85 . If

such variables have a bivariate normal distribution, then the open-loop response

y “
”

CA50 CA1090
ıT

satisfies:

y „ N pM,Σq, where

M “

«

µ50

µ1090

ff

, Σ “

«

σ2
50 ρσ50σ1090

ρσ50σ1090 σ2
1090

ff

.

(4.2)
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The covariance Σ is a symmetrical, positive definite matrix. Hence, the singular value

decomposition can be written as:

Σ “ V
?

Λ
`

V
?

Λ
˘T
, V

?
Λ “

”?
λv̄

?
λ v

ı

(4.3)

where tλ, λu are the minimum and maximum eigenvalues with corresponding eigen-

vectors tv, vu. The values t
?
λ,
?
λu can be interpreted as the standard deviations in

the eigenvector basis. Therefore, approximately 95% of the measured data should be

contained within the ellipse with axis lengths t2
?
λ, 2
?
λu in the basis tv, vu, which

is a level curve of the probability density function (PDF) of y. The top right plot

in Figure 4.3 shows that the data matches the elliptic level curves of the bivariate

Gaussian distribution. Hence, the random variables (RVs) CA50 and CA1090 can be

modeled as jointly Gaussian.

Figure 4.3 also shows that both outputs have an approximately constant sample

autocorrelation, which equals zero for l ą 0. Therefore, the marginal distributions

CA50 and CA1090 can be modeled by Gaussian white noise (GWN) processes. Fun-

damentally, these RVs are deterministic functions sharing the same sample space,

i.e. tCA50,CA1090u : Ω Ñ R where Ω is the set of all feasible combustion events.

Therefore, as expected, the absence of serial correlation between cycles k and k ` l

for both combustion features is the result of the uncorrelation of the elements in the

same space Ω. Although the stochasticity of the flame development governs the com-

bustion process at steady state, the transient response has different characteristics.

A step change in EGR valve will alter the manifold filling dynamics and the heat

transfer properties of the charge. Moreover, the study performed in [46] showed that

changes in SA strongly affect the cylinder surface heat flux during the power stroke.

Therefore, a dynamical model is essential for an accurate control of the system along

the high dilution limit.

4.3.2 Control-oriented Transient Combustion Model

A simple, first order, discrete-time dynamical model obtained from system iden-

tification was previously shown to be useful for control design and simulation. The

proposed TITO system has the following structure:

xSArk ` 1s “ p1´ aSAqxSArks ` aSASArks

xEGRrk ` 1s “ p1´ aEGRqxEGRrks ` aEGREGRrks
(4.4)
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CA50k “ µ50pxSArks, xEGRrksq

CA1090k “ µ1090pxSArks, xEGRrksq
(4.5)

Equation (4.4) captures the linear dynamics from the control inputs to the states,

where atSA,EGRu are obtained from system identification. Note that at steady state

xSA “ SA and xEGR “ EGR. Figure 4.4 shows the model validation performed around

the target Point Y. If we model the CV as a superposition of the mean value and a

stochastic output disturbance, large control signals could be required to stabilize the

system under integral control.

After full understanding of the system properties, the feedback controller proposed

here will: a) shape the combustion from a no-EGR to a high-EGR condition, b)

maintain a constant, near optimal, combustion phasing, and c) reduce cycle-to-cycle

variability in the control signal.
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4.4 Feedback Combustion Control Design

4.4.1 Feasibility of Integral Control at the High Dilution Limit

Let PDC be the DC gain matrix at Point Y. Consider the singular value decom-

position (SVD) of such matrix:

PDC “ Y SUT (4.6)

where,

Y “

”

ȳ y
ı

“

«

´0.79 0.62

0.62 0.79

ff

S “ diagtσ̄, σu “ diagt0.57, 0.07u

U “

”

ū u
ı

“

«

´0.73 0.68

0.68 0.73

ff

.

(4.7)

The singular vectors ȳ, ū are associated with the singular value σ̄ and y, u are linked to

the singular value σ. The maximum plant gain σ̄ is obtained when the input follows

ū, which moves the actuators in opposite directions. Increasing EGR and retarding

SA will drastically increase CA1090 and retard CA50 since EGR will slow the com-

bustion process and SA will locate the phasing later in the power stroke. Similarly,

decreasing EGR and advancing SA will increase the burn rate (decrease CA1090)

and advance CA50. The minimum plant gain σ corresponds to the input u, which

moves the actuators in the same direction. In fact, if SA is advanced (or retarded)

accordingly to the EGR increment (or reduction), the combustion phasing and the

combustion duration could remained practically unchanged. In this particular direc-

tion the actuators have an almost identical effect on the outputs, yielding effectively

only one degree of control authority and becoming almost redundant. The left plot

in Figure 4.5 shows the directionality of the plant when a unit step is commanded.

Since combustion control with a fixed phasing is desired, the system could potentially

operate close to the direction of minimum gain.

Suppose that the closed-loop system under integral control is used to track a

unit step command y˚, then the steady state control satisfies u˚ “ P´1
DCy

˚. Using

Eqn. (4.6) it is possible to determine the directions where the command effort will be

maximum and minimum, as follows:

P´1
DCY “ US´1Y TY “ US´1

“

”

ū{σ̄ u{σ
ı

. (4.8)
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Control for output: P−1
DCY = US−1
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ū/σ̄

u/σ

-12 -11 -10

39

40

41

Output: Y

-11.5 -11 -10.5

CA50 [deg bTDC]

3
9
.5

4
0

4
0
.5

C
A
10

90
[C

A
d
eg
]

Response to input: PDCU = Y S

Direction of constant
CA50, moving away
from misfire limit

M
isfire

Lim
ity × σ
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The right plot of Figure 4.5 shows the control input required to track y˚. Note that the

directions with low plant gain need large control signals, which could be problematic

for two reasons: 1) a control action following u (Õ) will drive the system towards

regions of non-zero misfire probability, and 2) a control action following the desired

CA50 level curve moving away from the misfire limit (Ö) will require a large change

in SA causing a significant change in torque.

It is well known that scaling the inputs and/or outputs with a different choice

of engineering units could potentially reduce the directionality of the system [47,

Chap.3]. A more robust way to analyze the fundamental limitation of integral control

for ill-conditioned system is by analyzing the maximum scaled input redundancy angle

(MSRA) introduced in [60]. Let PDC “

”

P1 P2

ı

, then the input redundancy angle

(IRA) defined in [60] is calculated as:

φin “ arccos

ˇ

ˇP T
1 P2

ˇ

ˇ

}P1} }P2}
“ 13.7˝. (4.9)

The low value of φin confirms that SA and EGR valve affect the combustion features

in approximately the same direction. Although this angle is independent from input

scaling, it does depend on output scaling. Suppose that one of the outputs is scaled
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by a factor λ ą 0 and that the IRA is denoted by φλin, then the MSRA of PDC is:

φmax
in “ sup

λą0
φλin “ 14.1˝. (4.10)

Details of the calculation are explained in [60]. Given that the MSRA is maximum

among all possible scaling factors, we conclude that the directionality is a fundamental

limitation of the system itself, independent from the choice of units.

If the misfire limit drift towards (or away from) Point Y, the operating condition

can be modified by decreasing (or increasing) CA1090 while maintaining the constant

CA50. This new command will generate a large control signal due to the plant

directionality. Therefore, the closed-loop system does not need to be designed only

for the transient response XÑY, but also for steady state operation at Point Y.

4.4.2 Linear Quadratic Gaussian (LQG) Controller

Consider the linearized TITO system with states x, control u, output y, and

augmented integrator states z at Point Y:

xk`1 “ Axk `Buk ` γ2k

yk “ Cxk ` γ1k (4.11)

zk`1 “ zk ` pyk ´ y
˚
q

where y˚ is the desired target and γt1,2u are additive GWN vectors with covariance

matrices Γt1,2u respectively. The LQG controller consists of a state feedback gain K

and a state estimator gain L. A steady state linear quadratic estimator (LQE) was

used to calculate L based on the stochastic properties of the system. The infinite hori-

zon linear quadratic regulator (LQR) technique was used to calculate K, minimizing

the following quadratic cost function:

Jpuq “ E

«

8
ÿ

k“0

yTkQyyk ` z
T
kQ

şzk ` u
T
kRuk

ff

(4.12)

where Er¨s denotes expected value. Table 4.2 shows the diagonal matricesQty,
ş

u, R,Γt1,2u

used for calculation.

Since the desired engine operation occurs along the constant CA50 level curve,

larger LQR weights are assigned to the CA50{SA output{control combination. By

doing so, deviations from the desired steady state value are penalized and, simultane-
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Table 4.2: Tuning parameters for LQG controller

LQR weights LQE weights

Variable
Output
pQyq

Integrator
`

Qş

˘

Control
pRq

Output
Cov. pΓ1q

Process
Cov. pΓ2q

CA50{SA 22 0.07 1 42 0.12

CA1090{EGR 1 0.02 0.3 52 0.12

ously, the higher bandwidth actuator SA is used to adjust the system more quickly.

The low penalty to the integrator reflects the lack of concern about changes in the

states. Since the integrator states are calculated directly from the measured out-

puts, the CV affecting yk will propagate to the closed-loop system through wk. Low

integral gains can reduce the cycle-to-cycle variability of the control signals and, con-

sequently, reduce the CV of the closed-loop system. It was discussed in Section 4.3.1

that the system output is not autocorrelated due to the underlying random process it

describes. Therefore, at steady state, any attempt of using previous cycle information

is futile and could increase the variability of the control signal. This result suggests

that the LQE should operate in open-loop (L “ 0). For this reason, the covariance

matrix Γ2 has much smaller diagonal components than Γ1 in order to set L « 0 which

will contribute to the estimation of x̂ only if the difference yk ´ ŷk is large.

Figure 4.6 shows the simulated closed-loop system using the combustion model

presented in Eqn. (4.4) and (4.5). The solid-dotted line ( ) shows average behavior

of the system without CV. Note that the transient response converges to the constant

CA50 level curve shortly after the command is issued, operating the engine perma-

nently at the misfire limit. The dotted line (ˆ ) represents the response when CV is

introduced as an output disturbance. The low variability in the control signal is the

result of low integral gain and low state estimation gain. The dash-dotted line ( )

shows the estimated open-loop CV based on the covariance matrix Σ. Comparison of

the closed-loop and open-loop CV in the output space shows that the cycle-to-cycle

fluctuations in the control signal does not amplify the output CV by a large factor.

The variability of the actuators however drives the system occasionally where the

misfire probability is non-zero. Hence, the implementation of the feedback controller

needs to account for misfires.
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Figure 4.6: Simulated closed-loop system under LQG control during 2000 cycles.
Estimated open-loop variability was based on SVD of Σ (Eqn (4.3)).

4.4.3 Implementation of Feedback Controller

During a misfire event, the feedback loop is effectively broken since CA50 and

CA1090 cannot be calculated and the tracking problem could be problematic. For in-

stance, if the default value during misfire is CA1090k “ 0, the controller will generate

a control signal to compensate for this change. Thus, misfires should be masked so the

LQG controller does not respond to these sporadic events. This can be accomplished

by the following misfire masking logic:

CAxxk “

#

CAxxk if No Misfire

CAxxrk ´ 1s if Misfire
. (4.13)

Figure 4.7 shows the simulated steady state response of the closed-loop system

at Point Y. Note that the PDF of inputs and outputs correspond to Gaussian

distributions with averages that coincide with the target combustion shape. The

estimated misfire probability p̂k is calculated using the maximum likelihood principle
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applied to the Bernoulli random variable Z „ Berppq. In other words,

Zk “

#

0 if No Misfire

1 if Misfire
, p̂k “

1

N

N´1
ÿ

i“0

Zrk ´ is (4.14)

where N “ 2000 is the size of the moving window for estimation. Since SA can

rapidly adjust CA50, a tight control of this feature requires a low variability in SA.

Note that the standard deviation of SA in closed-loop (σ “ 1.9) is relatively low, which

contributes to the low increment in σ50 from 4.7 (open-loop) to 4.9 (closed-loop). The

normality of the distributions also show that the feedback loop is not broken when

misfires occur and Eqn. (4.13) do not perturb the LQG commands. Note that for

this realization of the random variables CA50, CA1090 and Z, p̂ reached a maximum

of 0.3%. This occurrence rate can be problematic from the drivability point of view.

The presence of misfire is a concern for implementation on a real engine. Given the

similarities in the statistical properties between knock and misfire events, stochastic
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control architectures such as [35, 61, 62] could be implemented to protect the engine.

However, this additional misfire controller should not create conflicts with the com-

mands issued by the LQG in the closed-loop system.

4.5 Summary

Closed-loop control of the combustion process of a spark-ignition, internal com-

bustion engine can be achieved by a coordinated action of SA and EGR valve. When

a higher fuel economy is required at a given load, high levels of EGR improve engine

efficiency but increase CV. In order to fully characterize the engine operation at this

high dilution limit, the statistical properties of the combustion features are required

for control design. The LQG controller designed tracks the desired operating con-

dition without amplifying CV by a large factor. The variability introduced in the

control signals however could drive the system occasionally to condition with a non-

zero misfire probability. Consequently, the closed-loop system should be designed for

adequate transient and steady state operation. Simulated results show the potential

this control strategy has to ultimately manage the CV at the high dilution limit and

operate at steady state without large variability in combustion phasing.
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CHAPTER V

Cycle-to-cycle Feedback for Combustion Control

of Spark Advance at the Misfire Limit

5.1 Motivation

Exhaust gas recirculation (EGR) in spark-ignited (SI) internal combustion engines

is a well known strategy to improve fuel economy (FE). By lowering the tempera-

ture inside the cylinder, the combustion process becomes more resilient to knock and

auto-ignition. Pushing the knock limit allows to advance the spark towards maximum

brake torque (MBT) and, consequently, obtain a better combustion efficiency and FE.

However, as EGR increases, the ignition delay and the combustion duration elongate

due to the reduction in flame propagation speed. Occasionally this slow flame may

lead to partial burns or misfires, increasing the combustion variability (CV) and de-

teriorating drivability. Controlling the start and duration of combustion guarantees

the operation at high EGR levels while sustaining a healthy flame. However, even

though on average the start and duration of combustion are timed to produce the de-

sired combustion process, random misfire events can still occur. A strategy to correct

the combustion process is required if the rate of misfire events exceeds a predefined

allowable limit, where minimum drivability requirements and emission regulations are

violated. This study focuses on the design of a feedback misfire controller to push en-

gine efficiency to the misfire limit, maximizing the use of EGR, while not exceeding a

maximum allowable misfire rate to comply with drivability and emission constraints.

Although misfire events are acknowledged as random, no study has formally char-

acterized this process. It is shown that misfire events can be modeled as a Bernoulli

random process, similarly to knocking events, based on the distribution of the total

number of misfires and the distribution of the number of cycles between each misfire

(interarrival time). Under this assumption, a likelihood-based controller is designed
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based on a desired misfire probability to retard spark timing to a condition less prone

to misfire. The closed-loop system was simulated using a control-oriented combustion

model and a random generator for misfire events which obeys the Bernoulli process

characteristics. Given the stochasticity of the system response, the closed-loop per-

formance is evaluated by the probability distribution of the combustion features. The

results were compared to a more conventional control strategy where spark retards

every time a misfire is detected. Comparison of the steady state distribution of

combustion features shows that the likelihood-based controller has a more compact

distribution closer to the misfire limit, while the conventional controller has a wider

distribution that contributes to cycle-to-cycle variability in the combustion process.

5.2 Combustion at the Misfire Limit

The data presented in this study was collected the same engine as Section 2.2.

Engine operating conditions are Points X and Y described in Table 4.1. Figure 5.1

shows the combustion characteristics of two operating conditions, Point X without

EGR and Point Y with EGR. Although CA1090 is elongated and CA50 is retarded at

Point Y, the break specific fuel consumption (BSFC) is reduced by 1.9%, reflecting

the fuel economy improvement. Points X and Y, in average, have similar IMEP

values. However, EGR reduces pumping losses that decreases the pumping mean

effective pressure (PMEP). Thus, according to the equation

NMEP “ IMEP´ PMEP (5.1)

the net mean effective pressure (NMEP) at Point Y is higher. The pressure and fuel

mass fraction burned (MFB) traces, as well as the standard deviation of combustion

features, indicate how the combustion variability is increased in Point Y. Note

that the distribution of CA50 over 2000 engine cycles follows a normal distribution

(similarly for CA10 and CA1090). Hence, it is assumed the parameters of the normal

distribution vary continuously as SA/EGR valve conditions change.

5.2.1 On-board Diagnostics

On-board diagnostics (OBD) in commercial vehicles alert the driver when a com-

ponent is failing. The misfire detection monitor is in charge to continuously detect

if the engine is operating at misfire conditions. The most cost-effective approach for

misfire detection uses engine crankshaft speed information to determine if a certain
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Figure 5.1: Normalized P-V diagram for two operating conditions (Point X and
Point Y). Normalized cylinder pressure (Pcyl), fuel mass fraction burned (MFB),
and probability density function (PDF) of CA50 are plotted as function of CA deg.
Grey colored region represents 2000 engine cycles.

cylinder has misfired. Since factors such as cold start, rough roads and sudden throt-

tle opening (blip) also cause variability in crankshaft speed, the detection algorithm

is quite involved and occupies a significant space in the OBD-II software [63]. There

are two emission-related type of faults that will trigger a malfunction indicator light

(MIL) in the dashboard:

• Type A: Misfires that can overheat and damage the catalyst.

• Type B: Misfires that can cause an increase of exhaust emissions exceeding 1.5

times the standard.

According to [64], the misfire rate that causes catalyst damage is speed/load depen-

dent, ranging from 5% to 25%. However, only a misfire rate of 2% is necessary to

raise emission levels over the threshold defined in OBD-II [24, 64].

Drivability is another important factor when dealing with diluted combustion. The

coefficient of variation of IMEP (CoVIMEP) is widely used as a metric of CV. Table 5.1

shows the CoVIMEP values of all SA/EGR operating conditions together with the

percentage of misfire cycles. In order to achieve the conditions with high CoVIMEP, it

was necessary to overwrite the production maps and manually modify spark advance

and EGR valve. Kuroda et. al. performed similar experiments in [13] at the same

speed/load condition. They concluded that for CoVIMEP ą 10%, torque fluctuations

are high enough to jeopardize drivability (stability limit). Note that Point Y in

Table 5.1 is right at the stability limit. Increasing SA or EGR valve opening will

deteriorate the combustion process and cause occasional misfires, increasing CoVIMEP.
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Table 5.1: Coefficient of Variation of IMEP in percentage (CoVIMEP [%]) together
with misfire rate at 60% EGR valve opening.

EGR Spark Advance [deg bTDC]

valve 10 15 20 25 30 35 40 45 50

0% 1.6 1.0 0.6 Knock

20% 5.9 4.2 3.3 2.2 1.7 Misfire

40% 9.1 8.1 7.0 5.2 5.2 |||

60%
Partial 12.1 9.0 8.4 7.9 9.0 ||| 16.3

Burn – – – – 0.2% ||| 0.6%

´ ´ ´´ ´ ´´ ´ ´: Misfire limit

Figure 5.2 shows the normalized IMEP during a period of 2000 engine cycles for

Points X, Y, and a point over the stability limit. Point X shows minimum CoV

since exhaust gases are not present in the combustion chamber and SA is at MBT. In

contrast, Point Y shows an increase in CV, mainly due to slow burning cycles. The

third point shows a dramatic increase in combustion variability due to a high number

of partial burns and sporadic misfires (IMEP ă 0). Therefore, the misfire limit in this

study is defined at 0.2% misfire rate to maintain CoVIMEP ă 10%. Since 0.2% ă 2%,

operating close to this limit will not trigger the MIL in the dashboard. After modeling

the combustion process, a model for misfire event generation is required for simulating

the combustion process at the misfire limit.

5.3 Misfire Event as a Random Variable

Although the randomness of misfire events is widely acknowledged, no formal

study has been done to determine the distribution from which misfires emerge. Sta-

tistical tools have been developed for detection relaying on the randomness of variables

related to misfires, such as torque fluctuations [65], but a stochastic control-oriented

model requires the knowledge of the random behavior of the variable under control.

5.3.1 Misfires and the Bernoulli Process

Let tXnu be a stochastic process where Xi “ t0, 1u, @i P t1, . . . , nu. For this

study, n is the number of engine cycles and 0 = ‘No Misfire’, 1 = ‘Misfire’. Let p

be the probability that a misfire event occurs in a given cycle. Then, Xi „ Berppq.

Moreover, if tXnu is a sequence of independent random variables (RV), then they
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describe a Bernoulli random process. In order to prove that the misfire events can be

modeled as independent RV, two necessary conditions from the Bernoulli process are

tested:

1. Let K “

n
ÿ

i“1

Xi (number of misfires in n engine cycles), then K „ Binompn, pq

2. Let Yk “ mintn | K “ ku for k ě 1 (arrival time of the kth misfire). Define Y0 “

0, then Tk “ Yk ´ Yk´1 is the kth interarrival time. Moreover, Tk „ geomppq.

Following the frequentist inference, the maximum likelihood estimator of p is calcu-

lated as follows:

pest “
1

n

n
ÿ

i“i

Xi “
k

n
, Xi P t0, 1u (5.2)

A total of n “ 150, 000 engine cycles were recorded at the operating condition SA =

55 [deg bTDC] and EGR valve = 45 [% open] (over the misfire limit). Figure 5.3 shows

the comparison between the probability mass functions (PMFs) of the experimental

distribution of interarrival times Tk and the theoretical geometric distribution with

parameter pest. It is clear that the hypothesis of Tk
iid
„ geomppestq is satisfied.

If Xi
iid
„ Berppq, then the stationarity property indicates that partitioning n cycles

into m samples generates sets S1, . . . , Sm of Bernoulli RVs with the same distribution.
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Figure 5.2: Variability or normalized IMEP at Point X, Point Y and condition
EGR valve = 60% open, SA = 50 [deg bTDC] (over the stability limit).
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Note that the number of cycles in each of the m samples is n{m. Then,

Km “

n{m
ÿ

j“1

Xj, Xj P Sm ùñ Km „ Binompn{m, pestq. (5.3)

Note that if n and pest are fixed, then the distribution of Km changes with m. Fig-

ure 5.4 shows the distribution of the number of misfires Km for m “ 150. The

comparison of the experimental data at SA = 55 [deg bTDC] and EGR valve =

45 [% open] with the theoretical binomial distribution with parameters pn{m, pestq

confirms the hypothesis that Km „ Binompn{m, pestq.

Therefore, by satisfying these conditions, we conclude that misfire events can be

modeled as a stochastic Bernoulli process with parameter pest. Note that at each

operating condition in Table 5.1, pest “ ‘No. of misfires’{2000 is the estimated misfire

probability, which is equivalent to the misfire rate previously mentioned. With this

information, a stochastic misfire controller can be designed to control the misfire

probability to a target value lower than the misfire limit.

5.4 Likelihood-based Controller

Given the similarities between the distributions from which knock and misfires are

drawn, stochastic control architectures such as [20,59,66] could be implemented in the

misfire case. The likelihood-based controller developed in [61] has been considered

for the misfire control case since the final distribution of the control command is
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Figure 5.3: Probability mass function (PMF) of interarrival times between misfires
in n “ 150, 000 engine cycles. SA = 55 [deg bTDC], EGR valve = 45 [% open].
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concentrated closed to the mean (less cycle-to-cycle CV).

The likelihood ratio for a binomial random variable is defined as follows:

Lnpkq “
pkdes p1´ pdesq

n´k

pkest p1´ pestq
n´k

(5.4)

where pdes is the desired or allowable misfire probability. Considering that the misfire

limit occurs at pest “ 0.2%, the allowable misfire rate was set to pdes “ 0.1%. As dis-
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Figure 5.5: Likelihood ratio Lnpkq with a fixed moving average window n “ 2000 and
threshold Lth “ 0.6.
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cussed in [61,67], if n is free and increases unbounded in a Key ON/Engine Run/Key

OFF cycle, then pest becomes insensitive to changes in k “
ř

Xi. In other words,

as n Ñ 8, pest “ k{n filters out changes in Xi. This behavior is undesirable if the

engine experiences a sequence of misfire events with small interarrival times. If n is

large, this (locally) abrupt change will not be captured by pest. In this study, n will

be a moving window with fixed size.

The fresh-start property of a Bernoulli process states that for any i P N, the

sequence of RVs tXi`1, . . . , Xi`nu is also a Bernoulli process with parameter p. Note

that any time the window moves and calculates pest, the distribution of misfires will

not be altered. Hence, pest can be seen as a moving average of the variable Xi

(Eq. 5.2). For accuracy in the calculation of pest, the window size was set to n “ 2000

engine cycles. A threshold Lth for the likelihood ratio determines the values of k

that will trigger a control action. Figure 5.5 shows Lnpkq for n “ 2000. Note that

if k “ t1, 2, 3u misfires are detected in the window, L2000pkq ą 0.7. Moreover, the

rates associated with each k are pest “ t0.05%, 0.10%, 0.15%u respectively, which

are considered allowable and no control action is taken. On the other hand, when

L2000pkq ă 0.5 two possible control actions occur:

• k “ 0: The operating condition is consider ‘conservative’ with respect to pdes.

The controller will force the engine to operate closer to pdes.

• k ě 4: The misfire rate is too high with respect to pdes. The controller will

move away from conditions with misfire rates pest ě 0.2%.

Hence, the threshold Lth “ 0.6 was used for simulations. Figure 5.6 shows the block

diagram of the closed-loop system with the misfire controller in place. Knowledge of

the control architecture allows for gain tuning and simulation.

5.4.1 Gain Tuning

The likelihood-based misfire controller has the following control law:

SAris “

#

SAri–1s , if Lnpkq ě Lth

SAri–1s `Kp1´ Lnpkqq , if Lnpkq ă Lth

(5.5)

where: K “

#

Kadvance , if pest ă pdes

´Kretard , if pest ą pdes

. (5.6)
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Figure 5.6: Block diagram of the closed-loop system with the likelihood-based misfire
feedback controller.

Since only spark retard is needed for misfire prevention, Kadvance “ 0. Also note that

the retarding action of the controller is proportional to 1´ Lnpkq, which means that

0 ă SAri´ 1s ´ SAris ă Kretard, when pest ą pdes. (5.7)

According to Table 2.2, it suffices to move SA from 45 to 40 [deg bTDC] at 40% EGR

valve opening to avoid a high misfire rate. Hence, for a fast reaction under a sudden

increase in misfire rate, Kretard “ 5.

For verification purposes, suppose that the misfire limit drifts towards a more

retarded SA condition. The closed-loop system will respond to a high misfire rate by

shifting the spark to a retarded position, by maintaining the open-loop EGR valve

position.

5.5 Closed-loop Response

Suppose that over time the operating conditions change and the misfire limit

drifts towards Point Y, then the misfire controller should reduce the misfire rate

and protect the engine. Figure 5.7 shows the simulation of the closed-loop system

when the misfire controller is in place. Note that as the misfire probability increases,

and the estimated misfire probability gets over the allowable limit, spark advance is

retarded from the original value at Point Y, causing CA10 to retard as well. As

CA10 retards due to the control action, CA50 also retards. On the other hand, the

EGR valve still has its open-loop value and CA1090 increases as CA10 retards. Since

the CA50 value retards by at most 2 [CA deg] and CA1090 increases by at most 1.5

[CA deg], we expect that the average fuel efficiency is still superior than Point X.

Since Kadvance “ 0, spark advance never exceeds its original value at Point Y.
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Nevertheless, the misfire controller has the potential to push the engine to the misfire

limit if the open-loop value of SA is conservative. Ideally, the spark table should

provide the ideal condition for fuel economy, if not, a small Kadvance gain could push

the engine to a higher efficiency condition. In order to compare the performance of

the likelihood-based controller with a more familiar case, we consider the application

of the conventional knock controller for the misfire case [23].

5.5.1 Comparison with a Conventional Event-driven Controller for Mis-

fire Prevention

Consider the conventional feedback control for sporadic misfire events that in-

creases slowly SA but abruptly retards its timing any time a misfire is detected:

SAris “ SAri´ 1s `Kadvance ´Kretard ˆ 1Misfire (5.8)
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where 1Misfire is an indicator function for misfire events. In order to maintain the

desired misfire probability pdes, the feedback gains must satisfy the relation:

Kadvance “
pdes

1´ pdes

Kretard. (5.9)

Moreover, since the controller should not exceed the value of SA at Point Y, the

feedback compensation must be only negative:

Kadvance ´Kretard ˆ 1Misfire ď 0. (5.10)

Note that this is equivalent to the restriction Kadvance “ 0 for the likelihood-based

controller. Figure 5.7 shows the closed-loop response of the system using the con-

ventional strategy of retarding SA using Kretard “ 5. Note the typical saw-tooth

profile for the commands and the combustion features. The range of CA10, CA50

and CA1090 values has increased with respect to the likelihood-based controller. Due

to the slow rate at which SA advances towards the desired value at Point Y, the

closed-loop system spends most of the time operating in sub-optimal conditions.

Figure 5.8 shows the PDF of CA10 and CA1090 when the system operates at

Point Y after simulation of 106 engine cycles. Both control strategies for retarding

SA are compared, assuming that the distribution depicted in Fig. 5.8 is closed to

the steady state distribution. The likelihood-based controller locates the mean values

of CA10 and CA1090 closer to the desired values at Point Y. The conventional

controller on the other hand locates the mean value of CA10 in a more retarded
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Figure 5.8: PDF of CA10 and CA1090 at closed-loop operation for the likelihood-
based and the conventional misfire controller.
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timing and the mean of CA1090 in a more elongated duration. The likelihood-based

controller is more likely to hold the values of CA10 and CA1090 at Point Y for longer

time, resulting in an overall higher fuel efficiency. Note also the wider distribution

that the conventional controller generates in the combustion features. This wider

distribution combined with the combustion variability of CA10 and CA1090 could

increase the probability of partial burns and/or misfires, increasing CoVIMEP and

jeopardizing drivability.

5.6 Summary

A likelihood-based misfire controller has been designed to operate the engine close

to the misfire limit. Due to the combustion variability present in the system with

high EGR levels, the misfire controller monitors the operation of the engine and com-

mands a retarded condition when the misfire rate is higher than the allowable. In

order to assess the closed-loop behavior with simulations, a simple model for the

combustion process and a stochastic model for the misfire event generation are dis-

cussed. The feedback gains chosen guarantee a fast reaction to high misfire rate

regions. Comparison with a conventional feedback controller for misfire events shows

that the likelihood-based approach reduces cycle-to-cycle variability in the closed-loop

operation.
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CHAPTER VI

Non-Equiprobable Statistical Analysis of Misfires

and Partial Burns for Cycle-to-Cycle Control of

Combustion Variability

6.1 Motivation

A new methodology is proposed for understanding the cycle-to-cycle variability of

the combustion process at the tipping point where high EGR levels suddenly trigger

sporadic misfires. The indicated mean effective pressure (IMEP) was used as the

cyclic parameter for categorizing combustion cycles into 1) high energy, 2) nominal,

3) partial burns, and 4) misfires. Thresholds for IMEP based on return maps are

suggested for cycle classification. Deterministic patterns, similar to those discussed

by Daw et al. in [68] for the lean case and Finney et al. [69] for the EGR case, mainly

involved misfires followed by high energy cycles due to the extra oxygen and fuel

present at the intake stroke inside the cylinder immediately after a misfire. However,

this paper suggests that previous cycles do not have a major influence on the occur-

rence of misfires and partial burns, making them random in nature. Furthermore,

a multinomial distribution can be used to describe the joint distribution of partial

burns and misfires.

It is demonstrated that observation of partial burns can increase the probability of

observing a misfire when the conditional probability is used as the metric. Based on

these findings, future work will be able to use the observation of partial burns alone

to control the upper bound on the probability of misfire events. To this end, different

metrics are proposed to control directly and indirectly the probability of misfires, and

their advantages and disadvantages for feedback combustion control are discussed.
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6.2 Combustion Variability at Different EGR Levels

As EGR levels increase, the laminar flame burning velocity decreases and combus-

tion duration elongates. In particular, the initial flame development period is highly

susceptible to charge homogeneity, charge dilution, and turbulence intensity [6, 12].

A physics-based model for flame burning velocity under high EGR levels at this early

stage was developed by [15] in order to understand and extend the benefits of di-

luted combustion. The effect of EGR on combustion kinetics changes the combustion

phasing due to the elongated combustion duration. Spark advance is then required

to increase in order to achieve maximum break torque (MBT). Table 6.1 shows three

different spark/EGR valve combinations at the same engine speed and load. The

EGR-rate, defined as the percentage of exhaust gas respect to total cylinder mass,

was obtained from the estimation algorithm in the stock engine control unit (ECU).

Point X is a condition without EGR dilution and MBT spark. Point Y is a condi-

tion with approximately 20% EGR rate and spark advance at the MBT. Note that, as

previously discussed, EGR dilution reduces break specific fuel consumption (BSFC)

at the cost of a more advanced spark timing and a significant increase in cyclic com-

bustion variability, quantified by the coefficient of variation (CoV) of IMEP. Point Z

is a condition with the maximum amount of EGR-rate (25%) at the same engine load.

The spark has been over-advanced to cause sporadic misfires, which are captured by

the drastic increase in CoVIMEP.

Figure 6.1 shows the return map of the normalized IMEP for Points X, Y, and

Z. In such plot, cycle k ` 1 is a function of cycle k in order to capture deterministic

correlation between consecutive cycles. The resulting map for Point X consists of a

disk centered at the nominal value, which reflects the randomness of the combustion

process. The return plot for Point Y is no longer circular but stretches to a “Delta”

Table 6.1: Engine operating conditions with similar indicated mean effective pressure
(IMEP) and different EGR levels.

Point X Point Y Point Z

Spark Adv. [deg bTDC] 20 45 50

EGR valve [% open] 0 40 60

EGR rate (ECU est.) [%] 0 20 25

CoVIMEP [%] 0.60 5.24 16.33

BSFC [g/kWh] 258.8 253.8 278.4
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shape that reflects an increasing tendency to cycles with lower energy release. As

discussed in [70], the presence of EGR decreases combustion efficiency due to its

effect on flame kinetics, generating incomplete combustion cycles. However, the maps

for Points X and Y are symmetric with respect to the 45˝ diagonal, indicating no

major cyclic deterministic behavior between consecutive cycles. On the other hand,

Point Z presents a clear asymmetry with respect to the diagonal, indicating prior-

cycle determinism. At the high EGR levels and high spark advance of Point Z, the

return map present “arms” that extend all the way to the misfire zone, where IMEP

ă 0. This phenomenon is due to the sensitivity of the flame kernel development at

the misfire limit with respect to mixture composition, as observed initially by Quader

in [58] and further modeled by Daw et al. in [68] and Ayala et al. in [71].

Figure 6.2 shows the autocorrelation function Rpmq of IMEP for 2000 engine

cycles recorded at Points X, Y and Z, where m denotes the number of cycle lags for

the delayed signal. Note that if m “ 0 then Rpmq “ 1, which explains why Figure 6.2

shows Rpmq for m ą 0. Recall that if the measurements tIMEPr1s, . . . , IMEPrNsu are

independent random variables (white noise), the normalized standard error (SE) of
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Figure 6.1: Return maps of normalized IMEP for different Spark/EGR valve combi-
nations producing similar net output torque.

82



the sample mean can be estimated as:

SE “
1

a

VarrIMEPs

d

Var

ˆ
ř

IMEPris
N

˙

“
1
?
N

(6.1)

where Var[¨] denotes the variance operator. If one wants to determine if the time series

behaves as a white noise process with 95% confidence, the corresponding SE equals

2{
?
N . This bound is represented in Figure 6.2 by the solid line and it is assumed

that the coefficients falling between such bounds are equivalent to zero. Similar to

Figure 6.1, the autocorrelation function for Point X shows no cyclic correlation,

and hence no deterministic patterns. One can see the increasing trend on the value of

Rp1q as EGR levels increases. For m ą 1 however, Rpmq seems to stay close to zero.

This observation suggests that cycle k` 1 will feel only the effects of the combustion

characteristics of cycle k, while cycles k ´m for m ě 1 will have no significant effect

on cycle k`1. This apparent cycle dependence has been used by Wagner et al. in [72]

for the lean case to derive non-linear dynamic equations that relate cycle k ` 1 with

cycle k. We will use a similar technique to study the deterministic component of

cyclic CV at the misfire limit. Previously, Kaul et al. in [73] showed that, at high

enough levels of dilution, the EGR loop induces periodic patterns alternating between

high-energy and low-energy cycles. This periodic behavior, with a period in the order

of tens of cycles, was achieved with EGR levels above 30% where the occurrence of
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Figure 6.2: Autocorrelation function for samples of 2000 engine cycles recorded in
steady state at Points X, Y and Z.
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misfires is very frequent. Since our study focuses on the diluted combustion process

at the edge of stability, such periodic patterns have not been identified. Hence, we

assume that prior-cycle correlation is the major contributor to deterministic CV.

6.3 Deterministic Patterns of Cycle-to-Cycle Combustion Vari-

ability at the Misfire Limit

Based on the observations in Section 6.2, assume that the deterministic component

of cyclic CV can be modeled as follows:

IMEPk`1 “ f pIMEPkq (6.2)

where f is a non-linear function. Moreover, analogous to the analysis done by Finney

et al. in [74] to identify deterministic patterns in time series with noisy data, we will

categorize the combustion cycles into four groups: 1) nominal cycles (N), 2) partial

burns (P), 3) misfires (M), and 4) high energy cycles (H).

6.3.1 Equiprobable Classification of Cycles

Following the methodology in Kaul et al. in [3], we classified combustion cycles in

binary symbols: “1” = above nominal IMEP, and “0” = below nominal IMEP. Ac-

cording to their study, deterministic patterns could be observed when the symbols are

arranged in sequences of 6. In particular, sequences of alternating high-low cycles (1-

0-1-0-1-0 and 0-1-0-1-0-1) were clearly occurring with a frequency higher than random

sequences. Figure 6.3 shows the sequence frequency histogram of such cycles classified

into binary symbols for the study performed in [3] (top) and Points Y and Z used

in this study (bottom). The solid line represents the expected uniform probability

mass function (PMF) when all possible outcomes are equiprobable: PrpXq “ 1{26.

Note that, form the plot extracted from [3], the CoVIMEP is much larger than 16%

and the corresponding probabilities of alternating high-low sequences (1-0-1-0-1-0 and

0-1-0-1-0-1) are above 5%. For our study, at 5.2% CoVIMEP, where no misfires were

reported, the PMF is close to a uniform distribution. At 16.3% CoVIMEP, where

misfires occur sporadically, a small peak appears around the sequence 0-1-0-1-0-1.

However, the magnitude is not large enough to suggest a strong determinism.

Therefore, the equiprobable binary classification method is not useful to discern

deterministic patterns at the ragged edge of combustion stability where partial burns

and misfires occur with a very low occurrence rate.
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Symbol sequence histograms using 2 partitions and 6-cycle sequence lengthImage 1 of 4

� Kaul et al. [3]
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Figure 6.3: Sequence frequency histogram for sequences of 6 equiprobable binary
symbols for data reported in [3] (top) and University of Michigan data recorded at
Point Y (bottom left) and Z (bottom right).

6.3.2 Non-equiprobable Classification of Cycles

The autocorrelation function in Figure 6.2 suggests that there is no serial correla-

tion between the delayed signals tIMEPku and tIMEPk`2u. This remark also suggests

that if either abnormal cycle P,M, or H occur at instance k, then the dynamic system

will adjust itself and return to the nominal value N by cycle k` 2. Such observations

can be used to determine upper and lower bounds for nominal combustion cycles N.

To infer statistical properties with a high confidence level, 150,000 steady state

measurements were taken at spark advance of 55 [deg bTDC] and 45% EGR valve

opening. Figure 6.4 shows the return map of the normalized IMEP for signals with

2 cycles delay. As expected, the data points look symmetric with respect to the 45˝

diagonal clustered around IMEP “ 1. The nominal band (indicated by the shaded

region) was chosen such that more than 99% of the data is contained within. We

assume that the scattered points outside the bands are due to random noise. In this

case, the nominal value falls between the bounds: 87% ă N ă 107%. Note that

the interval for N is not symmetric around 1 since at these EGR levels combustion

efficiency is reduced and the likelihood of having lower than nominal energy release

increases. Hence, the following IMEP bounds define the 4 combustion cycle categories
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Figure 6.4: Return map of normalized IMEP for a sample of 150,000 engine cycles
with a cycle lag of m “ 2.

used in this study:

M ď 0 ă P ď 87% ă N ă 107% ď H. (6.3)

This classification differs from the one proposed by Heywood in [18, Chap. 9] in the

number of combustion categories. Here, we add the new category H and combine

slow-burn cycles and partial-burn cycles into the category P. The later sections will

show that this new grouping will result in a simple probabilistic model for combustion

events, based only on three categories.

For better visualization of the new combustion cycle categories, the left plot of

Figure 6.5 shows the time evolution of the normalized IMEP at Point Z. Note imme-

diately that the discrete bins tH,N,P,Mu are not equiprobable since nominal cycles

N occur with a very high frequency. The right plot of Figure 6.5 shows examples

of fuel mass fraction burned (MFB) traces of three combustion events: H, N, and

P. The high energy cycle H in this plot reports 8% more IMEP than the nominal,

slightly above the upper bound for N. High energy release is characterized by early

flame kernel initiation and fast combustion rate. On the other hand, the partially

burned cycle P in Figure 6.5 reports an IMEP value 15% less than nominal, right

below the limit stated in Eqn. (6.3). In this case, the combustion process extends all

the way past BDC (90 [deg aTDC]), suggesting a not optimal utilization of the fuel’s

chemical energy. This approach for categorizing combustion cycles is different from
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Figure 6.5: Left: Normalized IMEP at Point Z with cycle categorization. Right:
Fuel mass fraction burned (MFB) of H, N, and P cycles.

the analysis in [3,68,69,75], where they divide the cycles into equiprobable categories.

The reason behind this lies in the difficulty to identify deterministic patterns at the

high dilution limit, where misfires are very infrequent (as illustrated in Seciton 6.3.1).

6.3.3 Nonlinear Dynamics and Deterministic Cyclic Characteristics

The categorization tH,N,P,Mu together with the nonlinear function f in Eqn. (6.2)

can be used to unravel the deterministic component of cyclic combustion variability.

Figure 6.6 shows the return map of the normalized IMEP used for studying prior-

cycle determinism. Wagner in [72] used a seventh order polynomial interpolation to

capture more complex dynamics. In our case, since the dynamic system only has

one equilibrium point (N) at the nominal IMEP “ 1, a third order polynomial is

deemed sufficient (black solid line). To better understand the deterministic behavior,

Figure 6.7 shows the plot of fpIMEPkq solely. Starting from elements in each cate-

gory tH,N,P,Mu, one can find the deterministic sequence that leads to equilibrium.

One can show that the equilibrium point is attractive, meaning that every element

in the domain of f will eventually converge to IMEP “ 1. Moreover, note that the

set N “ tx P IMEPk | 87% ă x ă 107%u is a positive invariant set for the dynamic

system IMEPk`1 “ fpIMEPkq. Therefore, it suffices to start with any element in

the domain of f and continue until an element in N is reached. As an example, four

different initial conditions (one from each category) have been chosen and their de-

terministic sequences have been indicated with arrows in Figure 6.7. The following
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Figure 6.6: Return map of normalized IMEP for a sample of 150,000 engine cycles
with a cycle lag of m “ 1.

symbolic sequences are then considered deterministic:

HÑ N, NÑ N, PÑ N, MÑ HÑ N. (6.4)

After any element from H or P occur, the system returns to its nominal state N. In

this case, most of the fuel has been burned or no significant amount of residual charge

is present in the next cycle. However, after a misfire M occurs, there is a substantial

amount of residual oxygen and fuel that will remain during the next cycle, causing a

high energy release H. In more general terms, at the EGR dilution limit, combustion

cycles with significantly low energy release (or no energy release at all) are followed by

cycles with high energy release. This observation has been previously made by Kaul

et al. in [3]. However, this deterministic behavior only predicts what will happen after

M occurs, and it does not provide information of what triggers the events P or M. To

further understand how the occurrence of events P or M can be modeled, we remove

the deterministic component of cyclic CV to study only its stochastic component.

88



0 0.2 0.4 0.6 0.8 1 1.2

0.8

0.9

1

1.1

1.2

PN

M P N

M HN

NN HN

H

Figure 6.7: Nonlinear polynomial function fpIMEPkq. Arrows describe the determin-
istic sequence starting with an element from tH,N,P,Mu continuing until the nominal
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6.4 Stochastic Cycle-to-Cycle Combustion Variability at the

Misfire Limit

The previous Chapters showed that the occurrence of misfires can be modeled

as a Bernoulli random process, when combustion cycles are classified into misfiring

and non-misfiring cycles. In this case, however, combustion cycles are divided into

four different categories. To do so, we first use the deterministic pattern discussed in

Section 6.3.3 to simplify the number of categories for the analysis. Intuitively, we can

reduce the number of symbols, i.e. tH,N,P,Mu, in the time series by considering the

deterministic sequences tNN,PN,MHNu as the new “symbols”. Formally, this can be

done by defining the following random variables:

Wk`1 “ IMEPk`1 ´ f pIMEPkq , k ą 0

W0 “ IMEP0 ´ 1
. (6.5)

This relation intrinsically defines the categorical transformation

T : tH,N,P,Mu ÝÑ tH,N,P,Mu , where the new categories are defined by the

following bounds:

M ď ´1 ă P ď ´13% ă N ă 7% ď H. (6.6)

This categorization captures the true nature of the variables Wk, which are the de-

viations from the expected IMEP cyclic behavior. Figure 6.8 shows the return map

of the time series tWku. First, note that the plot is symmetric with respect to the

45˝ diagonal, which indicates no cyclic correlation between the events Wk and Wk`1.

Second, the set H “ tx P Wk | 7% ď xu is empty (indicated by the shaded area),

meaning that the transformation T effectively maps onto the simplified set tN,P,Mu.
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Figure 6.8: Return map of random variable W defined in Eqn. (6.5).

This result stresses the fact that the occurrence of high energy cycles is determin-

istic. Furthermore, this behavior is the only deterministic component of cyclic CV,

suggesting that the occurrence of partial burned cycles and misfires are stochastic in

nature and require a probabilistic approach for modeling and control.

The normalized IMEP data was divided into the four original categories tH,N,P,Mu.

After the time series tWku was computed, the number of elements in each new cat-

egory tH,N,P,Mu was also calculated. Table 6.2 compares the number of engine

cycles that fall into each category. Note that the number of elements in the categories

P and P is very similar, despite the 2% reduction in cardinality. A similar scenario

is apparent for categories M and M. Therefore, the transformation T induced by

Eqn. (6.5) can be approximated by:

pT : tH,N,P,Mu ÝÑ tN,P,Mu

tH,Nu ÞÝÑ tNu

tPu ÞÝÑ tPu

tMu ÞÝÑ tMu.

(6.7)

The reduction of the number of categories follows directly from removing the deter-

ministic component of cyclic CV. Hence, the elements of the new categories N, P,

and M are independent random variables. Note that the transformation pT does not

require the calculation of the nonlinear function f . The advantage here is that the
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Table 6.2: Cardinality of combustion cycles categories.

Time series tIMEPku Time series tWku Reduction

|H| “ 575 |H| “ 0 100%

|P| “ 1365 |P| “ 1337 2%

|M| “ 809 |M| “ 807 0.25%

bounds for IMEP defined in Eqn. 6.3 are sufficient to categorize combustion cycles

and separate the deterministic from the stochastic component of cyclic CV. The fol-

lowing sections rely on the stochastic component to determine probability metrics

that can be used as feedback signals for combustion control.

6.4.1 Partial Burns and Misfires as Multinomial Random Variables

Consider any sequence of n symbols N, P, and M extracted from the time series

tWku. The previous result showed that such events are purely stochastic and statis-

tically independent. Let pN , pP , and pM be the probability that a cycle falls in the

category N, P, or M respectively. Within these n samples, let XN , XP and XM be

the number of cycles classified as N, P, or M respectively. Since any Wk can only be

classified into one of the three previously mentioned categories, the following holds:

pN ` pP ` pM “ 1 and XN `XP `XM “ n. (6.8)

Let X “

”

XN XP XM

ıT

and p “
”

pN pP pM

ıT

. Then, X brings together the

characteristic of a multinomial random variable with parameters n and p, denoted as

X „ Multinompn,pq. The probability mass function (PMF) of X can be calculated

as follows:

Pr

¨

˚

˝

X “

»

—

–

xN

xP

xM

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n,p

˛

‹

‚

“
n!

xN !xP !xM !
pxNN pxPP pxMM (6.9)

where Prp¨ | n,pq represents conditional probability given n and p. By means of

Eqn. (6.8), we can simplify this calculation as a function of the two random variables
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of interest, as follows:

Pr

¨

˚

˝

X “

»

—

–

xN

xP

xM

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n,p

˛

‹

‚

“ Pr

˜«

XP

XM

ff

“

«

xP

xM

ff
ˇ

ˇ

ˇ

ˇ

ˇ

n,

«

pP

pM

ff¸

“

n!

pn´ xP ´ xMq!xP !xM !
p1´ pP ´ pMq

n´xP´xMpxPP pxMM . (6.10)

Recall that if X „ Multinompn,pq, the marginal random variables XP and XM must

follow binomial distributions:

XP „ Binompn, pP q and XM „ Binompn, pMq (6.11)

Using the maximum likelihood estimator (MLE), the probabilities pP and pM can be

estimated as ppP “
xP
n

and ppM “
xM
n

.

This behavior of XM was expected based on previous results. Using a similar

procedure described in our previous study, the 150,000 experimental cycles where

divided into smaller samples of size n and the distributions of the variables XP and

XM were computed. Figure 6.9 shows the PMF of the random variables XP and

XM for a sample size of n “ 200, utilizing the estimates ppP and ppM respectively. As

expected, the marginal PMFs are in close agreement with the theoretical binomial

distribution, according to Eqn. (6.11).
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Figure 6.9: Experimental and theoretical marginal PMFs of random variables XP

(number of partial burns: left) and XM (number of misfires: right).

Figure 6.10 shows the theoretical and experimental joint PMF of XP and XM .

Although the overall shape resembles the theoretical multinomial distribution, it

is not immediate that the hypothesis of X „ Multinompn,pq is true. The Pear-

son’s chi-squared goodness-of-fit test was used to establish if the differences be-
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Figure 6.10: Experimental and theoretical multinomial PMF of X, or equivalently,
joint PMF of XP and XM .

tween the observed frequency and theoretical distribution arose by mere randomness.

The result shows that there is no statistical evidence against the hypothesis that

X „ Multinompn,pq.

6.4.2 Pearson’s Chi-squared Goodness-of-fit Test for Multinomial Distri-

bution

Table 6.3 shows the comparison between the observed (O) and expected (E) fre-

quencies of pairs pxP , xMq for xP P t0, 1, 2, 3, 4, 5u and xM P t0, 1, 2, 3, 4u. These values

were calculated by dividing the experimental set of 150,000 engine cycles into sam-

ples of size n “ 200 and counting the numbers of samples that contain xP number of

partially burned cycles and xM number of misfires. Define the following test-statistic:

χ2
“

M
ÿ

i“1

pOi ´ Eiq
2

Ei
ÝÑ χ2

pdfq (6.12)

93



Table 6.3: Observed and Expected frequencies (Oi |||Ei) of pairs pxP , xMq, equivalent
to the joint PMF showed in Figure 6.10.

Misfires: Partial burned cycles: xP
xM 0 1 2 3 4 5

0 44 ||| 42 83 ||| 76 65 ||| 69 41 ||| 41 14 ||| 18 12 ||| 6
1 49 ||| 46 76 ||| 83 77 ||| 74 34 ||| 44 20 ||| 19 8 ||| 7
2 17 ||| 25 40 ||| 45 45 ||| 40 32 ||| 24 14 ||| 10 3 ||| 4
3 10 ||| 9 18 ||| 16 19 ||| 14 7 ||| 8 1 ||| 4 1 ||| 1
4 1 ||| 2 3 ||| 4 6 ||| 4 0 ||| 2 3 ||| 1 0 ||| 0

Assuming that the sample size is adequate, the random variable χ2 approaches asymp-

totically a chi-squared distribution with degrees of freedom df “M ´mp ´ 1, where

mp “ 2 is the number of estimated parameters. Note that some cells in Table 6.3 have

a expected cell count Ei ă 5. It is common practice to group such cells into a larger

class where Ei ą 5. Hence, M is smaller than the number of cells in the Table 6.3. If

the data indeed follow a multinomial distribution and using a confidence level of 95%,

the corresponding critical value from the chi-squared distribution is χ2
.95pdfq “ 31.4.

The value of the test-statistic is χ2 “ 21. Therefore, there is insufficient statistical

evidence against the hypothesis that X „ Multinompn,pq.

6.5 Estimation and Control of the Misfire Probability

A stochastic control strategy can be design to target a given misfire probability

p˚M using the likelihood ratio approach developed by Peyton Jones in [21, 61, 67].

This controller, however, assumes that there are only two categories (misfires or no

misfires). By extending this notion to three categories (N, P, and M) one can use the

information of events P to update the PMF of XM . By observing partial burns, which

occur with a higher probability than misfires, the sample size required for MLE can

be reduced. Consequently, the response of the controller is expected to 1) improve

with respect to aggressively adjusting EGR-vale and/or spark to move away from

misfires, and 2) reduced cyclic CV induced by closed-loop control.

6.5.1 Estimating the Misfire Probability Given the Probability Mass Func-

tion (PMF) of Partial Burns

Consider that, in a given sample, the number of partial burned cycles xP are

counted. Given the join probability distribution of the number of misfires and partial
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burns, the conditional probability of XM given that xP partial burned cycles have

occurred can be calculated as follows:

Proposition 6.1. Let X „ Multinompn,pq with X “

”

XN XP XM

ıT

and p “
”

pN pP pM

ıT

. Then,

PrpXM “ xM | XP “ xP , n,pq „ Binom

ˆ

n´ xP ,
pM

1´ pP

˙

. (6.13)

Proof. By the definition of conditional probability:

PrpXM “ xM | XP “ xP , n,pq “
PrpXM “ xM , XP “ xP | n,pq

PrpXP “ xP | n,pq

“

n!

pn´ xP ´ xMq!xP !xM !
p1´ pP ´ pMq

n´xP´xMpxPP pxMM

n!

xP !pn´ xP q!
pxPP p1´ pP q

n´xP

“
pn´ xP q!

xM !pn´ xP ´ xMq!
¨
pxMM p1´ pP ´ pMq

n´xP´xM

p1´ pP qn´xP

“
pn´ xP q!

xM !pn´ xP ´ xMq!

ˆ

pM
1´ pP

˙xM
ˆ

1´
pM

1´ pP

˙n´xP´xM

.

Note that this distribution is different from the one defined in Eqn.(6.11), where

no information of partial burned cycles is used.

Remark 1. pM ď
pM

1´ pP
always holds for 0 ď pM , pP ď 1. This means that when P

cycles are observed, the conditional probability of observing misfiring cycles increases.

Remark 2. According to Eqns.(6.11) and (6.13), if xp ! n and pP ! 1, then

PrpXM “ xM | XP “ xP , n,pq « PrpXM “ xM | n, pMq. This means that ob-

serving P cycles does not alter significantly the distribution of XM if the probability

pP is too small and the sample window is large compared with xp.

Remark 3. Recall that the expected value of the variable XM is ErXM | n, pM s “

npM . On the other hand, the conditional expectation is ErXM | XP “ xP , n,ps “

pn´xpq
pM

1´ pP
. However, when the maximum likelihood estimator ppP “ xP {n is used:

ErXM | XP “ xP , n, ppP , pM s “ ErXM | n, pM s “ npM . (6.14)
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The information from P cycles is lost when MLE of pP is used for calculating condi-

tional expectation.

Although the expected number of misfires ErXM s is not altered when partially

burned cycles are observed, the misfire probability pM is affected in the conditional

case. Let pM |P “
pM

1´ pP
, then the probability of observing a misfire given that xM

misfires and xP partial burns have been observed can be estimated as follows:

Proposition 6.2. If the conditional density

PrpXM “ xM | xP , n, pP , pMq „ Binom
`

n´ xp, pM |P
˘

where pM |P “
pM

1´ pP
, then the

maximum likelihood estimator (MLE) for the parameter pM |P is

ppM |P “
ppM

1´ ppP
“

xM
n´ xP

. (6.15)

Proof. For the binomial distribution described by Proposition 6.1, the log-likelihood

function is defined as:

lnLppM |P , xM , xP q “ ln PrpXM “ xM | XP “ xP , n,pq

“ ln

ˆ

pn´ xP q!

xM !pn´ xP ´ xMq!

˙

` xM ln
`

pM |P
˘

` pn´ xP ´ xMq ln
`

1´ pM |P
˘

.

Taking the partial derivative with respect to the parameter of interest:

B

BpM |P
lnLppM |P , xM , xP q “

xM
pM |P

´
n´ xP ´ xM

1´ pM |P
.

The log-likelihood function is maximized when the partial derivative equals zero, then:

xM
ppM |P

´
n´ xP ´ xM

1´ ppM |P
“ 0 ðñ ppM |P “

xM
n´ xP

.

So far, three different probabilities related to events P and M can be estimated:

ppP , ppM , and ppM |P . Either of this values can be targeted for control. However, since

all of them are inverse proportional to the parameter n, choosing maxtppP , ppM , ppM |P u

can reduce the number of samples required for estimation, increasing effectively the

responsiveness of the control strategy.
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6.5.2 Relationship between Conditional Probabilities

Remark 1 shows that ppM ď ppM |P . In order to derive a relationship between ppM |P

and ppP consider defining the function:

ΦpppM , ppP q “ ppP pppP ´ 1q ` ppM . (6.16)

Note that if Φ ď 0 then ppM |P ď ppP . Let pcP be the critical value for the probability

of P events such that ppM |P “ pcP , then:

pcP “
ppM

1´ pcP
ùñ pcP “

1

2
˘

c

1

4
´ ppM . (6.17)

Note further that ΦpppM , p
c
P q “ 0. Assuming that the function Φ is defined over the

domain D : pppM , ppP q P r0, 1{4s ˆ r0, 1{2s, Eqn. (6.17) has a unique real solution for a

given ppM . Figure 6.11 shows the function Φ evaluated in the domain D. The solid

line indicates the critical value of Φ where ppM |P “ pcP . The shaded area to the left of

such line represents the subset of D where Φ ă 0, and hence where ppM |P ă ppP . The

dashed line in Figure 6.11 represents the equality ppP “ 2ppM . Note that it suffices

that:

if
ppP ě 2ppM

(or xP ě 2xMq
and ppM P r0, 1{4s ùñ ppM ď ppM |P ď ppP . (6.18)

Figure 6.12 shows the estimated probabilities ppM , ppM |P and ppP for a variety of

spark advance/EGR valve combinations. For each estimator, three different sample
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Figure 6.11: Function ΦpppM , ppP q evaluated over domain D.
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sizes n P t200, 1000, 2000u were used for all operating conditions. As expected, ppP in-

creases as EGR valve opening increases. Also, ppM increases when EGR valve opening

and spark advance increase. The experimental values show that ppP « 20ppM , which

corroborates the analytical result that ppM ď ppM |P ď ppP . The different columns of

Figure 6.12 show the sensitivity of the estimation with respect to the parameter n.

Although n “ 2000 provides the highest level of accuracy, the estimator will have a

very slow transient response when either spark advance of EGR valve are adjusted.

If either ppM or ppM |P is the target for control, n “ 1000 resembles accurately the esti-

mated values. However, when n “ 200 the estimators ppM or ppM |P loose resolution. On

the other hand, the estimator ppP is relatively accurate for any n P t200, 1000, 2000u.

Despite the fact that targeting a desired ppP requires the least amount of sampled

cycles, this strategy only controls the upper bound of ppM and not the misfire proba-

bility itself. In other words, control of the probability ppP provides indirect control over

the misfire probability ppM but it requires the least amount of cycles for estimation,

making it preferable for a fast response feedback controller.
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Figure 6.12: Comparison between ppM , ppM |P and ppP for experimental data at different
spark advance and EGR valve positions. When n “ 200, ppM and ppM |P loose resolution.
However, ppP is relatively accurate.
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6.5.3 Implementation of Non-equiprobable Cyclic Categorization for Feed-

back Combustion Control

Figure 6.13 summarizes how the non-equiprobable categorization method can be

implemented in a feedback control strategy. After calculating the magnitude of IMEP,

the first block categorizes the combustion cycle into tH,N,P,Mu according to the in-

equalities described in Eqn. (6.3). Immediately after, the categorical transformation
pT , described in Eqn. (6.7), is applied and the new categories tN,P,Mu are used.

Recall that the transformation pT is the approximation of the actual removal of the

deterministic component of cyclic CV. Once the combustion cycle has been catego-

rized as either N, P, or M, and using a fixed window size n for estimation, the MLE

is used to estimate the probabilities ppM , ppM |P , and ppP . If the conditions discussed in

Eqn. (6.18) are met, ppP achieves the highest value, which requires the least amount of

samples for estimation (decreasing n). Hence, ppP can be used to indirectly control the

misfire probability by using the least amount of cycles for estimation, which improves

the speed of response without the drawback of high cyclic variability. On the other

hand, if a precise control of pM is needed, the conditional probability ppM |P should be

used for feedback. The feedback (stochastic) controller will target a desired proba-

bility, either p˚M |P or p˚P , and will adjust spark advance and/or EGR valve to change

the operating condition. By adjusting the dilution and keeping spark at MBT, the

controller can reduce the probability of misfire while maximizing EGR benefits.
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M
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Figure 6.13: Block diagram of proposed control strategy using non-equiprobable com-
bustion cycle classification.
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6.6 Summary

A non-equiprobable categorization method has been developed to classify engine

combustion cycles at high levels of EGR. Upper and lower bounds on the normalized

IMEP were used to group combustion cycles into four different categories:

1. High energy release (H): values above nominal conditions

2. Nominal (N): values between predefined bounds

3. Partial Burns (P): values below nominal, but with nonzero energy release

4. Misfires (M): values with zero energy release

Time series analysis of IMEP showed that deterministic prior cycle correlation corre-

sponds to sequences of misfires followed by high energy cycles (MÑ H). Meanwhile,

the occurrence of misfires and partial burns appear to be random. These categories

can be used to easily separate the deterministic from the stochastic component of

cycle-to-cycle combustion variability. Therefore, stochastic control theory can be ap-

plied for controlling the probability of misfire events while a deterministic controller

can be designed to avoid high energy cycles after misfires.

A multinomial distribution was fitted to the experimental joint PMF of partial

burns and misfires. After this process, observation of partial burns can be used to

obtain a better estimate of the misfire probability. Hence, three different probability

measures can be estimated by observing partial burns and/or misfires:

1. ppM : estimated misfire probability

2. ppM |P : estimated conditional misfire probability given that some number of par-

tial burns have been observed

3. ppP : estimated probability of partial burns

Under certain conditions, ppP achieves the highest value, which requires a smaller win-

dow for estimation. This metric is preferred for feedback control due to their respon-

siveness when the actual probability changes. However, targeting ppP only changes the

upper bound on ppM , resulting in indirect control of the misfire probability. On the

other hand, ppM |P guarantees a direct control over the misfire probability but requires

a larger sample size for estimation.
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CHAPTER VII

Learning Reference Governor for Cycle-to-Cycle

Combustion Control with Misfire Avoidance in SI

Engines at High EGR-Diluted Conditions

7.1 Motivation

Worldwide regulations on greenhouse gas emissions demand a reduction in fuel

consumption from the transportation sector. As a consequence, increasingly strin-

gent tailpipe emission targets have to be met, especially during real-world driving

cycles. Feedback combustion control has the potential to improve the overall effi-

ciency of spark-ignition (SI) engines by optimizing combustion efficiency, reducing

heat transfer losses, and reducing pumping losses at medium loads. In particular,

external cooled exhaust gas recirculation (EGR) in modern SI engines has provided

numerous benefits in fuel economy and emissions. This study focuses on the control

problem of optimizing combustion phasing while maximizing EGR benefits during

load transients. Additionally, the controller will be designed to avoid transient states

where the EGR level is higher than the dilution tolerance of the charge, thereby

avoiding occasional misfires. The methodology presented in this Chapter is intended

to be applied for different load demands during real-world driving scenarios.

The control strategy was designed from a control-oriented model that includes the

effects of throttle changes in the combustion. An adaptive extended Kalman filter

was designed to estimate intake manifold states and filter combustion measurements

used for feedback. A linear quadratic regulator (LQR) was designed to reject throttle

disturbances and maintain an optimal combustion phasing while maximizing EGR

levels at different loads. A learning reference governor was designed to modify ag-

gressive throttle commands in order to avoid transient states located over the misfire
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Figure 7.1: Block diagram of proposed control algorithm.

limit. Figure 7.1 shows the block diagram of the proposed control strategy explored

in this Chapter.

7.2 Optimal Phasing and Combustion Limits

The single-zone heat release analysis was performed in order to calculate com-

bustion features. The net heat release (Qnet) was calculated by considering only the

changes in sensible internal energy and work transfer to the piston but omitting heat

transfer and blow-by effects. Assuming a constant polytropic coefficient of γ “ 1.32,

the rate of heat release can be calculated as [18]:

dQnet “
γ

γ ´ 1
P dV `

1

γ ´ 1
V dP, (7.1)

where P and V are the in-cylinder pressure and volume respectively. Integrating

over the crank angle (CA) domain and normalizing by maxtQnetu results in the mass

fraction burned (MFB) shown in Figure A.1. Define the combustion features based

on the MFB trace as:

CAxx: Crank angle at xx% of MFB, xx P r0, 100s.

In particular, CA50 will be used as the indicator of optimal combustion phasing due

to the large modeling efforts for engine optimization and calibration found in the

literature in recent years [31,76–79].

The three actuators influencing the combustion process in this study are 1) the

throttle valve to adjust airflow, 2) the EGR valve to adjust the EGR rate into the

102



7

7

10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

35

7

7

10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

35

7

7

7

10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

35

7

7

7

10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

35

Figure 7.2: Steady state spark/EGR sweep at different intake manifold pressures.
2000 engine cycles were recorded at each spark/EGR pair. Partial-burns, misfires, and
knocking cycles constraint the nominal operating region. Minimum fuel consumption
is indicated by the grey shaded area and optimal combustion phasing (CA50 “ 7 [CA
deg]) by the blue solid line.

cylinders, and 3) the spark advance to adjust phasing. Figure 7.2 shows a spark/EGR

sweep at four different intake manifold pressures (50, 65, 80, and 95 [kPa]). Each

spark/EGR combination was ran at steady state and 2000 engine cycles were recorded.

Experimentally, not all combinations were achievable due to the occurrence of unde-

sired combustion events. Therefore, the nominal stable operating region is constraint

by the following three combustion limits:

Partial-burn limit: Minimum spark advance and maximum EGR rate for complete

combustion ( ).

Misfire limit: Maximum spark advance and maximum EGR rate where no misfire

event is identified ( ).

Knock limit: Maximum spark advance at low EGR levels at which knock is avoided

( ).

Misfire and partial-burn cycles are defined based on their net mean effective pressure

(NMEP). Here, if cycle k has NMEP ď 0 then it is classified as misfire and if NMEP

is positive but produces less than 70% of the nominal expected NMEP, it is classified

as a partial-burn. The grey shaded area on each subplot corresponds to the region

where the minimum indicated specific fuel consumption (ISFC) is achieved. Note

that, across load conditions, the minimum fuel consumption is achieved right before

the misfire limit. Since the misfire limit changes with load, increasing the dilution

tolerance as intake pressure increases, the optimal EGR valve and spark advance need
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to be adjusted continuously. Nonetheless, the optimal combustion phasing seems to

be fairly constant across EGR and load conditions, with a value of CA50 “ 7 [CA

deg] (solid blue line).

7.2.1 Combustion Control Targets

Consider a controller that automatically adjusts the spark advance and EGR valve

to achieve the target combustion phasing of CA50˚ “ 7 [CA deg]. Figure 7.2 shows

that, at any given load, such a spark/EGR combination is not unique. Hence, it is re-

quired to choose another target variable that renders a unique solution for a two-input

two-output (TITO) system. Based on the effect that EGR has on the combustion

kinetics, previous studies done by the authors used the crank angle duration from

CA10 to CA90 (CA1090) as the second variable for feedback control [40]. However,

further analysis showed that the feasibility of the tracking control problem could be

compromised if the pair (CA50, CA1090) is used as a target [42]. A more recent study

showed that the angle ΘSA50 “ CA50`SA, which is the duration from spark to CA50,

together with CA50 is sufficient for a feasible TITO tracking control problem [80]. By

using the pair pCA50,ΘSA50q, the modeling effort for control design is reduced, while

guaranteeing a unique equilibrium point for the closed-loop system. Note that, for

intake pressures between 65 and 95 [kPa], the optimal spark timing is fairly constant

around 37 [deg bTDC] even though the EGR rate increases from around 17 to 27 [%].

Therefore, the optimal duration for these conditions is ΘSA50˚ “ 44 [CA deg]. At 50

[kPa] intake manifold pressure the target needs to be adjusted to ΘSA50˚ “ 50 [CA

deg], reflecting the increase in spark advance needed.

The TITO system then consists of EGR valve and spark advance as inputs, CA50

and ΘSA50 as outputs, and changes in throttle angle as a disturbance induced by the

driver’s load demand. The controller will be based on a control-oriented model that

captures the effects of actuators on the combustion targets.

7.3 Control-Oriented Engine Model

During load transients, changes on the throttle and EGR valve generate a change

in the air and EGR flow into the cylinder. This directly affects the combustion

process and needs to be accounted for in the control design. The gas properties in

the intake manifold are captured by a two-state model representing the dynamics of

intake manifold pressure (Pm) and EGR rate (XEGR). The manifold filling dynamics

are derived from the total gas and EGR gas flow balances, together with the ideal
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gas law [81]. This results in the following:

d

dt
Pm “

RTm
Vm

pWair `WEGR ´Wcylq (7.2)

d

dt
XEGR “

RTm
PmVm

rWEGRp1´XEGRq ´WairXEGRs . (7.3)

Here, Tm and Vm are the intake manifold temperature and volume, R is the spe-

cific gas constant for dry air, and Wair, WEGR, and Wcyl correspond to the airflow

through the throttle body, EGR flow through the EGR valve, and engine pumping

rate, respectively.

The air and EGR flows were modeled using standard orifice equations that depend

on upstream conditions, pressure differential across the valves, and the corresponding

valve openings [23]:

Wair “ Aθpdθq
Pb
?
RTb

Ψ

ˆ

Pm
Pb

˙

(7.4)

WEGR “ AEGRpUEGRq
PEGR
?
RTEGR

Ψ

ˆ

Pm
PEGR

˙

. (7.5)

Here, Tb and Pb are the boost temperature and pressure, TEGR and PEGR are the

temperature and pressure in the EGR loop, dθ is the throttle position, and UEGR is

the EGR valve position. The functions Aθp¨q and AEGRp¨q correspond to the effective

flow area of each valve that is determined by regressing experimental data. The

function Ψp¨q is the standard orifice flow function:

Ψpxq “

$

’

’

’

’

’
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’

’

’
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’

%

g

f

f

e
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ˆ
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γ´1

, x ă
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γ
γ´1
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1
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, x ě

ˆ

2

γ ` 1

˙

γ
γ´1

(7.6)

where γ is the ratio of specific heats. The total engine intake mass flow (Wcyl)

depends on the volumetric efficiency, which itself depends on intake and exhaust

pressures. This dependence needs to be experimentally regressed. Therefore, at a

specific constant engine speed:

Wcyl “ hcylpPm, Tm, PEGRq (7.7)

where hcylp¨q is a nonlinear function regressed from steady state data. According to
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Figure A.1, most of these variables are known or measured by pressure-temperature

sensors. The only quantity that is not currently measured directly in the engine is

the EGR rate (XEGR). Therefore, XEGR needs to be estimated in order to use a state

feedback controller.
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Figure 7.3: Control-oriented modeling of intake manifold filling dynamics and com-
bustion phasing with CCV.

The engine breathing dynamics are described by a set of continuous-time nonlinear

ordinary differential equations. However, the combustion events occur at discrete-

time instants with a sample time equivalent to one engine cycle. In addition to

this, cycle-to-cycle variability (CCV) affects the measurement of combustion-related

parameters, such as CA50. Based on the observations made from Figure 7.2, the

combustion phasing with stochastic CCV is modeled as follows:

CA50k “ gpPmrks, XEGRrks, USArksq ` σCA50rkswk. (7.8)

The index k emphasizes the discrete-time nature of the observations. Here, gp¨q is

a nonlinear function regressed from the experimental results reported in Figure 7.2

and USA is the spark advance command that acts on a cycle-by-cycle basis. The

combustion CCV is introduced by the set of variables twkukPN as additive output

disturbances. Based on previous literature, such variables are modeled by a sequence

of independent and identically distributed Gaussian random variables with zero mean

and unit variance [40, 82]. The magnitude of the CCV is captured by the standard

deviation σCA50 which depends on intake pressure, EGR rate, and spark advance.
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Figure 7.3 shows the main components of the proposed TITO system. Note that this

modeling approach only focuses on the intake manifold conditions and the combustion

phasing. Hence, turbocharger modeling is not required.

Given the measured CA50k at each cycle and using the proposed model, a cycle-

by-cycle estimate of XEGR can be obtained using a dynamic estimator. This state

estimate not only will be used for state feedback control but could also filter the CA50

signal used for tracking.

7.4 State Estimation and CA50 Filtering

Consider the EGR rate dynamics described in Eqn.(7.3). Such a differential equa-

tion can be rewritten as:

d

dt
XEGR “ ´

WEGR `Wair

PmVm
RTm

XEGR `
WEGR

PmVm
RTm

d

dt
XEGR “ ´aXEGR ` b (7.9)

which is linear with respect to XEGR. The combustion measurements are described by

the nonlinear Eqn. (7.8). Since combustion events occur in discrete-time, Eqn. (7.9)

needs to be discretized in order to use the CA50 measurements to estimate XEGR

at each cycle. Therefore, an extended Kalman filter (EKF) can be used for state

estimation. The standard EKF approach depends on additive noise disturbances for

the system dynamics and output. Note, however, that the dynamics in the model are

not corrupted by noise. Since such disturbance is a quantification of the uncertainty

on the states, the variable vk „ N p0, G|Pm´Pm|q will be introduced in the estimation

algorithm. Here, Pm is the measured intake manifold pressure, Pm is the estimated

value using the model, and G is a calibration parameter. This variable is only used

for estimation and reflects the uncertainty on XEGR modeling. Hence, consider the

equivalent time-varying discrete-time system for EGR rate estimation, assuming zero-

order hold for the inputs:

XEGRrk ` 1s “ akXEGRrks ` bk ` vk (7.10)

CA50k “ gpXEGRrksq ` σEGRrkswk. (7.11)

where

ak “ ea∆Tk , bk “ a´1
pea∆Tk ´ 1qb, (7.12)
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and ∆Tk is the time interval for cycle k. The EKF algorithm consists of the following

steps:

{CA50k “ gp pXk|kq (output filtering)

pXk|k “
pXk|k´1 ` Lkek (state estimate)

pXk`1|k “ ak pXk|k ` bk (state prediction)

ek “ CA50k ´ gp pXk|k´1q (prediction error)

Σk|k “ p1´ LkCkqΣk|k´1 (estimate variance)

Σk`1|k “ a2
kΣk|k `G|Pm ´ Pm| (prediction variance)

Lk “
Σk|k´1Ck

Σk|k´1C
2
k ` σ

2
EGRrks

(Kalman Gain)

where pXi|j “ E rXEGRris | Ijs, Σi|j “ Var rXEGRris | Ijs, Ik “ tCA50k,CA50k´1, . . .u is

the set of observations, and Ck “ Bg{BXEGR is the linearization of Eqn. (7.11). The

state estimate pXk|k will be used for state feedback while the filtered {CA50k will be

used for tracking the optimal phasing. However, the variance σ2
EGRrks is not known

a priori and online estimation is required.

Mehra [83] discusses different methods of adaptive filtering. One of them is the

covariance-matching method, where the variance is approximated by an online unbi-

ased estimate. This variance estimation can be achieved by either an infinite impulse

response (IIR) filter, as previously done by Akhlaghi et al. [84], or by a finite impulse

response (FIR) filter as originally suggested by Mehra. Given that the system will be

tested during throttle tip-ins and tip-outs, the following minimum variance unbiased

estimator for σ2
EGRrks (realized by FIR filters) was shown to have better transient

properties than equivalent IIR filters [85]:

S2
k “

1

N´1

N´1
ÿ

i“0

˜

CA50k´i ´
1

N

N´1
ÿ

j“0

CA50k´j

¸2

. (7.13)

Note that a large N could be a potential problem during transients since the variance

estimate will be affected by the error between CA50 and the mean estimate. Ad-

ditionally, the algorithm should be robust under misfire events, which can generate

wrong estimates in the adaptive EKF.
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7.4.1 Adaptive EKF modification during transients

Let us rewrite Eqn. (7.13) into the following two:

Yk “
1

N

N´1
ÿ

i“0

CA50k´i (sample mean) (7.14)

S2
k “

1

N ´ 1

N´1
ÿ

i“0

pCA50k´i ´ Ykq
2 (sample variance) (7.15)

and define Zk “ CA50k ´ Yk. It should hold that ErZks “ 0 @k. However, this

becomes nonzero during transients, which affects the estimate S2
k . As soon as ErZks

converges to zero after a throttle tip-in or tip-out, the estimator S2
k becomes accurate

again. Therefore, the modified algorithm freezes the variance estimation when ErZks

is nonzero. To determine when such event occurs, one can define a confidence interval

for Zk based on its stochastic properties. Recall that if Z „ N p0, SE2
q, then the

probability Pr r|Z| ď 3.3SEs « 99.9%. Here, SE denotes the standard error of the

mean estimate, which can be computed by the following unbiased estimator [85]:

SEk “

c

pN ´ 1q2

2N

Γ
`

N´1
2

˘

Γ
`

N
2

˘

b

S2
k (7.16)

where Γp¨q if the Gamma function. Therefore, if |Zk| ď 3.3SEk´1 then the innovation

variance estimator updates normally; otherwise, the estimator stops updating and

outputs the last stored value.

7.4.2 Adaptive EKF modification during misfires

During a misfire event, the adaptive EKF algorithm cannot provide an estimate

since CA50 cannot be calculated. Thus, misfires should be masked so the algorithm

does not stop estimating. This can be accomplished by the following misfire masking

logic:

CA50k “

#

CA50k if No Misfire

CA50k´1 if Misfire
. (7.17)

7.4.3 Experimental results

For implementation in the RPECS, XEGR in Eqn. (7.10) was scaled to obtain EGR

rate values in percentage. The calibration variables for the adaptive EKF algorithm

were chosen as G “ 0.05 and N “ 20. Note that a value of G “ 0 forces the EKF to
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Figure 7.4: Comparison between experimental data, engine model, and adaptive EKF
algorithm under step disturbances in throttle position, EGR valve position, and spark
advance.

use open-loop estimation, ignoring CA50 measurements. The relatively small value of

G was used to ignore very noisy measurements (σ2
EGR " G|Pm´ pPm|) by reducing the

Kalman gain. This reduces the CCV propagation from CA50k to pXk|k but increases

the convergence time of the algorithm, generating initially biased estimates after

transients.

Figure 7.4 shows the performance of the adaptive EKF and the proposed engine

model during actuator disturbances. The top plot shows the magnitude of the distur-

bances in the throttle valve, EGR valve, and spark advance. The second plot shows

the measured intake manifold pressure (Pm) and the estimated pressure using the

model described in the previous section (Pm). One can see that the error |Pm ´ Pm|
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varies with the operating conditions, but is generally small. The third plot shows

the measured, modeled, and estimated EGR rate. Firstly, note that the dynamic

response is different between the measurements (solid line) and the model/estimator

(dashed/dotted lines). This is due to the location of the measurement device with

respect to the engine. The intake/exhaust gases need to be removed from the in-

take/exhaust manifolds and rerouted to the AVL SESAM exhaust measurement sys-

tem, which is located far away from the engine. This generates a pure time delay (« 5

[s]), which was compensated in the plot, and extra filtering due to the additional vol-

ume the gasses need to fill. Nonetheless, the steady state values are relatively close

between all three signals. As expected, the EKF tries to minimize the amount of

CCV propagated towards the XEGR estimate, which generates a prediction closer to

the open-loop model. Note, however, that the conditions where the model mismatch

is larger, the adaptive EKF estimate drifts towards the measured values. The last

plot shows the measured, modeled, and filtered CA50. Note that around the optimal

CA50˚ “ 7 [CA deg] the model is fairly accurate and the filtering is highly effective.

For late-burns, when CA50 ą 15 [CA deg], the combustion CCV is very high, reduc-

ing the Kalman gain even more. This causes a very slow convergence of the estimator

towards the mean values, and the plot shows an initial mismatch between the mea-

sured and filtered signals. All in all, Figure 7.4 shows a large variety of conditions,

some of which the adaptive EKF has a faster convergence time and increased filtering

than others. After the controller is in place, however, the adaptive EKF will prove

useful for feedback control.

7.5 Controller Design

The engine model presented in this study corresponds to a nonlinear, hybrid

(continuous- and discrete-time), stochastic dynamic system. For control design, how-

ever, linear feedback theory is exploited in this section as it adequately addresses

the control design requirements. In particular, a discrete-time infinite-horizon linear

quadratic regulator (LQR) is designed to adjust the EGR valve and spark advance

to achieve optimal combustion phasing and maximize EGR levels while, at the same

time, rejecting disturbances caused by the driver’s load demand. In order to design

such a controller, the nonlinear state equations corresponding to the system dynamics

(Eqns. (7.2) and (7.3)), usually denoted as fp¨q, need to be linearized and discretized

while the observation Eqn. (7.8) needs to be linearized. For the linear system, let

x “
”

∆Pm ∆XEGR

ıT

be the state vector, u “
”

∆UEGR ∆USA

ıT

be the input
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vector, y “
”

CA50 ∆ΘSA50
ıT

be the output vector, and d “ ∆dθ be the throttle

disturbance. Here, ∆ designates the deviation from the equilibrium point. Therefore,

consider the following linear discrete-time parameter-varying system:

d

dt
x “ fpx, u, dq

Linearize
ÝÝÝÝÝÑ
Discretize

xk`1 “ Akxk `Bkuk

` Ekdk

CA50k “ gpxk, ukq
Linearize
ÝÝÝÝÝÑ yk “ Ckxk `Dkuk. (7.18)

Note that the stochastic component of Eqn. (7.8) has been dropped. Moreover, the

adaptive EKF design will be ignored assuming some level of separation between es-

timation and control, typical of a linear quadratic Gaussian (LQG) control problem.

Linearizing around the nominal condition shown in Figure 7.4 results in the following

system:

xk`1 “

«

0.13 0

´0.03 0.54

ff

loooooooomoooooooon

A

xk `

«

0.45 0

0.71 0

ff

loooomoooon

B

uk `

«

1.79

´1.2

ff

loomoon

E

dk

yk “

«

´0.37 1.53

´0.37 1.53

ff

loooooooomoooooooon

C

xk `

«

0 ´0.82

0 0.18

ff

looooomooooon

D

uk. (7.19)

Note how the gains reflect the trends observed in Figure 7.4. Opening the throttle

increases the manifold pressure but reduces the EGR rate, while advancing CA50.

Opening the EGR valve increases both EGR rate and intake pressure, but generates

more retarded combustion. Advancing spark does not affect the intake manifold

conditions, but advances CA50.

The control objective is to achieve optimal combustion phasing of CA50˚ while

maximizing EGR levels, captured by the optimal ΘSA50˚. Assuming that the lin-

earization was performed around such optimal values, the discrete-time integrators

zk`1 “ zk`yk are introduced to guarantee offset-free tracking. The augmented system

can be written as:

«

xk`1

zk`1

ff

“

«

A 0

C I2

ff«

xk

zk

ff

`

«

B

D

ff

uk `

«

E

0

ff

dk

ξk`1 “ ΓAξk ` ΓBuk ` ΓEdk (7.20)
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Table 7.1: Diagonal values for weighting matrices Q and R

System states (Q) Control (R)

∆Pm ∆XEGR zCA50 zΘSA50 ∆UEGR ∆USA

0.2 0 0.2 0.08 85 5.5

where ξk and Γp¨q are the augmented system states and matrices, respectively. Con-

sider a control law consisting of a state feedback term and a feedforward term related

to the magnitude of the disturbance:

uk “ ´Kξk `Hdk. (7.21)

The state feedback gain K at the given equilibrium point can be designed using the

infinite-horizon LQR theory:

min
uk“´Kξk

8
ÿ

k“0

ξTk Qξk ` u
T
k Ruk, s.t. ξk`1 “ ΓAξk ` ΓBuk. (7.22)

Here, Q and R are tunable diagonal matrices. Table 7.1 shows the diagonal values

chosen. Such quantities were manually calibrated according to the following logic:

• Changes in Pm should be penalized since they translate to changes in torque,

which can be perceived as poor drivability by the driver.

• Changes in XEGR should not be penalized since, for implementation, the esti-

mated state pXk|k propagates combustion CCV from the combustion measure-

ments.

• Penalty over the integrator states z should be small since they are directly

related to the integral gain of the controller [40]. A high integral gain will

amplify the propagation of combustion CCV in the closed-loop system. This

could cause unacceptable levels of variability that reduce engine performance

and fuel economy.

• Penalty on zCA50, which is used for tracking the combustion phasing, should be

higher than zΘSA50 . This reflects the control goal of optimal phasing.

• Penalty over changes in UEGR (EGR valve) should be larger than the penalty

on the spark advance change since the EGR flow directly affects the intake

manifold dynamics, influencing the overall engine torque and drivability.
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7.5.1 Feedforward Control Design

The components of the feedforward gain H “

”

h1 h2

ıT

correspond to the EGR

valve command (h1) and the spark advance command (h2). Since the spark timing

should not change significantly between conditions, according to Figure 7.2, consider

h2 “ 0. Note that h1 should be positive since dilution tolerance increases with load.

In other words, as the throttle opens/closes the EGR valve should also open/close.

Hence, the feedforward component not only can reduce disturbance effects but can

also contribute to a faster intake manifold pressure increase/decrease during tran-

sients. In order to pick h1, consider the closed-loop system:

ξk`1 “
`

ΓA ´ ΓBK
˘

ξk `
`

ΓE ` ΓBH
˘

dk. (7.23)

Based on the matrices described by Eqn. (7.19), and exploiting the system structure,

we get that:

ΓE ` ΓBH “

«

E

0

ff

`

«

b1 0

0 d2

ff«

h1

0

ff

“

«

E ` b1h1

0

ff

where

E ` b1h1 “

«

1.79

´1.2

ff

`

«

0.45

0.71

ff

h1. (7.24)

Then, we can choose such gain to cancel the throttle disturbance effect on the EGR

rate. Taking the second row equal to zero results in h1 “ 1.7.

7.5.2 Experimental results

The control law described in Eqn. (7.21) was tested in the experimental engine

using the state estimate pXk|k and the filtered {CA50k from the adaptive EKF. In

addition to this, the engine model used for control design was simulated in RPECS

during the same execution time. In such a model, the same feedback control policy

was applied and the resulting commands drove the model forward in time. Figure 7.5

shows the block diagram of the control law applied to the engine and the online

model calculated simultaneously. For the online simulation, the throttle and EGR

valve dynamics were modeled by first-order unit-DC gain stable systems with time

constants of τθ “ 0.02 [s] and τEGR “ 0.04 [s] respectively.

Figure 7.6 shows how the experimental engine under closed-loop control, together

with the proposed online model, responds to a sequence of throttle commands. The

solid red lines represent the measured experimental values while the black dashed lines
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Figure 7.5: Block diagram of control strategy tested on experimental engine together
with online model simulated concurrently in RPECS.

show the accuracy of the online model. In general, the model accurately represents

the steady state and the dynamic response of the real system, further validating the

model-based control strategy. The top plot shows the throttle disturbance that affects

the closed-loop system. The mismatch between the recorded throttle values and the

square command is due to the low-level controller that cannot perfectly track the step

command.

During a throttle tip-in command, the EGR valve immediately opens to rapidly

increase intake manifold pressure. However, as the EGR rate increases, the EGR valve

needs to back off to avoid excessive EGR levels. Since the throttle valve has a faster

response time (smaller time constant) than the EGR valve, the simultaneous opening

of the throttle and EGR valves generates an initial reduction of EGR rate before its

expected increase. This is due to the initial rush of air that reaches the manifold before

the EGR flow does. Using the linearized model described by Eqn. (7.19) and the

feedback law from Eqn. (7.21), the closed-loop transfer function from ∆dθ Ñ ∆XEGR

shows a non-minimum phase (NMP) zero, which explains how the model matches the

experiment. After this NMP behavior, however, we see that the EGR rate increases

rapidly. To maintain the desired combustion phasing during the initial EGR valve

response, the spark advance increases. As expected, at steady state the spark change

is minimal, while the EGR valve opening increases.
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On the other hand, the throttle tip-out presents serious problems regarding com-

bustion behavior. As the command is issued, the EGR valve rapidly closes to reduce

intake manifold pressure. This combined effort results in a 95% rise-time of 0.45 [s]

for Pm. However, due to the NMP response, the EGR rate initially increases. Note

that the measured EGR rate presents a wider peak of similar magnitude. Although

the dynamic response is distorted at the emission’s analyzer, the initial increase of

the EGR rate might last longer than expected since the physical system has a small

volume between the EGR valve and the intake manifold. In response to this, the
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Figure 7.6: Response of the experimental engine under closed-loop control (together
with online simulated model) under throttle step perturbations.
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spark advance increases to maintain the desired phasing. However, according to the

combustion limits shown in Figure 7.2, the simultaneous increase of spark advance

and EGR rate crosses the misfire limit and generates the series of misfires experimen-

tally observed. Although misfires are masked in order to maintain a stable controller,

the spark advance begins to decrease assuming that the reduction in the EGR rate

will result in adequate combustion. However, the late phasing observed after the mis-

fires forces the spark to rapidly advance and the EGR valve to back off again. This

generates the oscillatory response towards the end of the tip-out.

Given that the stock engine is driven by an electronic throttle, this study pro-

poses to filter the aggressive tip-out commands before they reach the control policy.

By limiting the throttle closing rate, the NMP effect can be reduced, replicating a

quasi-steady transition, and the misfire events will be avoided. This task can be

accomplished by an explicit reference governor which filters the step command and

slows down the overall system response to avoid constraint violations [86].

7.6 Learning Reference Governor for Avoiding Misfire Events

Reference governors (RG) are add-on strategies applied to pre-stabilized systems

that can enforce input, output, and state constraints. For automotive applications,

load governors are popular strategies to limit the fueling and/or throttling rates dur-

ing transients. For instance, a fuel governor has been previously implemented in a

homogeneous-charge compression-ignition (HCCI) engine to avoid poor combustion

(including misfires) during tip-outs [87]. Such a strategy, however, requires a detailed

combustion model and complete knowledge of the constraint boundary to predict if

the fuel command will result in a constraint violation. Unfortunately, the misfire

limit is very hard to characterize with a model and requires an intense calibration

effort. Additionally, the limit changes with operating conditions and engine aging.

To address these challenges, a learning-based reference governor approach to avoid

misfire limit violation is proposed.

Recently, Liu et al. [88] introduced the concept of model-free learning applied to

systems where constraint violations are undesirable but not catastrophic. Under such

an assumption, the system will initially exhibit occasional constraint violations (e.g.

misfires) and the reference governor will learn, over time, to avoid them. In order to

achieve this goal, the throttle command dθ will be modified by the following feedback
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law:

d

dt
v “

$

’

&

’

%

Kp
dθ ´ v

max t|dθ ´ v|, ηu
, if εpx, vq ă Γpvq

0, otherwise

(7.25)

where v is the modified throttle command, Kp and η are positive constants to be

tuned, and the functions εp¨q, Γp¨q are such that the current state and constant throttle

command pairs px, vq satisfying εpx, vq ď Γpvq do not lead to constraint violations for

all current and future time. The feedback gain Kp is usually large for fast command

tracking, and the parameter η ! 1 guarantees Lipschitz continuity of the differential

equation and facilitates numerical stability. The function εp¨q is typically chosen as

}x ´ xv}˚ where xv is the steady state value under the command v and } ¨ }˚ is

an arbitrary vector norm. The function Γp¨q is adjusted during the learning phase

of the algorithm, typically starting with a constant-value initial condition Γ0pvq “

γ @v with γ ą 0 sufficiently large. During the learning period, the value of the

function Γprvk´1, vksq is decreased every time a misfire is detected (NMEPk ď 0)

at cycle k. Here, rvk´1, vks corresponds to the time period preceding the misfire.

This is done to compensate for the one-cycle delay generated in calculations done

by the Xilinx Zynq module (see Figure A.2). Such a learning procedure is formally

presented in Algorithm 1. Theoretical properties of the learning algorithm, including

its convergence, are given in Liu et al. in [88]. Note that the algorithm is contractive

in nature and is not able to increase the point-wise values of Γpvq to “hunt” for the

misfire limit. Such limitations will be a subject of future studies.

7.6.1 Experimental results

For implementation in the experimental engine, the learning RG parameters were

chosen as Kp “ 12, η “ 0.01, γ “ 16, λ “ 0.8, and εpx, vq as the uniform norm:

εpx, vq “ ‖x´ xv‖8
“ max

!

| pXk|k ´X
v
EGR|, |Pm ´ P v

m|
)

. (7.28)

Note that the states pXk|k and Pm are estimated/measured at each cycle, respectively.

However, the steady state values Xv
EGR and P v

m as functions of v need to be known

a priori. This is done by experiments with constant throttle commands applied for

sufficiently long time until the state estimates/measurements have converged to their

steady state values, which are then stored in a lookup table with respect to v. The RG

gain Kp cannot be chosen arbitrarily large since the quantization of the digital signal
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Algorithm 1 Learning Reference Governor

1: Input: Kp, η, εpx, vq, γ ą 0, λ ă 1
2: Output: Γpvq
3: Initialization: n “ 0, Γ0pvq “ γ @v
4: while Misfire do
5: Perform a throttle tip-out.
6: Use the following RG feedback policy:

d

dt
v “

$

’

’

&

’

’

%

0,
if εpx, vq ě Γnpvq
or NMEPk ď 0

Kp
dθ ´ v

max t|dθ ´ v|, ηu
, otherwise

(7.26)

7: if NMEPk ď 0 then
8: Shrink Γp¨q at the cycle where misfire occurs:

Γn`1
prvk´1, vksq “ min

 

λˆ Γnprvk´1, vksq,

ε
`

rpxk´1, vk´1q, pxk, vkqs
˘ (

(7.27)

9: Enforce that Γn`1pvq is continuous in v and satisfies 0 ă Γn`1pvq ď
Γnpvq @v.

10: else Γn`1p¨q “ Γnp¨q
11: end if
12: nÐ n` 1
13: end while

v gets coarser as the rate of change increases. This affects the learning algorithm

since the interval rvk´1, vks where misfire occurs needs to be as accurate as possible.

It was experimentally determined that Kp “ 12 was a good compromise between a

fast closing rate and a good resolution of the throttle position v. Figure 7.7 shows

the experimental results of the closed-loop system with the learning RG before and

after the learning phase.

The set of plots corresponding to the left column in Figure 7.7 shows how the

RG adjusts the system response according to Eqn. (7.25) before the learning phase.

The top plot shows that the throttle closes with an almost constant decrease rate.

The EGR valve and the intake manifold pressure present similar responses. However,

towards the end of the tip-out, two misfire events occurred, generating an abrupt

response on spark advance and EGR valve. Note that the oscillatory behavior is very

similar to the one observed previously in Figure 2.4. After such a step, the function

Γp¨q was updated according to Algorithm 1. This procedure was repeated sequentially

until, after 8 iterations, the throttle tip-out command did not cause misfire events
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Figure 7.7: Closed-loop response of experimental engine with learning reference gover-
nor. Left column: tip-out before learning phase. Right column: tip-out after learning
phase.

anymore.

The right column of Figure 7.7 shows the response of the system to a throttle tip-

out command after the learning phase was completed. Although the filtered throttle

command v has a similar decrease rate as before, it pauses momentarily towards the

end of the tip-out. This happens when the condition εpx, vq ě Γpvq is met. The pair

pε,Γq plays an analogous role as the dynamic safety margin defined by Nicotra and

Garone [89], which determines how fast the reference v can evolve without running
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into constraint violation. By doing so, the misfires are avoided and the oscillatory

response in Pm is heavily damped. Although the combustion still presents late CA50

cycles, the EGR estimation from the adaptive EKF presents moderate oscillations.

Such effects combined translate into less spark advance effort and less EGR valve

oscillations. The 95% rise-time for intake manifold pressure during this tip-out was

0.80 [s], almost double compared to the original value without RG. However, since

the parameters Kp, η and function εp¨q in the explicit RG feedback law have not been

optimized, there is room for future improvement.

To better understand how the learning RG avoids misfires, Figure 7.8 shows the

evolution of dynamic safety margin pε,Γq before and after the learning period. At

initialization (0 iterations), the signal corresponding to the function εp¨q increases as

the throttle closes and always satisfies εpx, vq ă Γ0pvq “ γ. Figure 7.7 shows that

misfires occurred towards the end of the tip-out. Consequently, the values of the

function Γpvq got updated and decreased at low throttle opening values. Following

Algorithm 1, it took 8 iterations until misfires were successfully avoided. Note that, for

throttle values of v ă 11 [%], as soon as εpx, vq ě Γpvq the tip-out pauses (dv{dt “ 0)

until εpx, vq returns to a lower value, closer to steady state. This particular function

Γp¨q at the end of the learning phase, however, is attached to the particular set of

engine conditions in this study, and further testing is required to expand the controller
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Figure 7.8: Dynamic safety margin functions εpx, vq, Γpvq before and after learning
phase.

121



capabilities to different throttle tip-out commands and engine speeds. Nonetheless,

these experiments confirm the potential that a learning RG strategy has for avoiding

misfire events during load transients at high-efficiency combustion regimes.

7.7 Summary

This study showed the potential of multivariable state feedback control together

with a learning reference governor to achieve optimal combustion phasing while max-

imizing the benefits of EGR. Spark advance and EGR valve were used as main ac-

tuators for combustion control while the desired throttle position was treated as a

disturbance imposed by the driver. A control-oriented model was developed and val-

idated which captured the effects of breathing dynamics on the combustion process.

An adaptive extended Kalman filter was designed to use combustion measurements

in order to estimate the EGR rate in the intake manifold. Such a dynamic estimator

provided a filtered CA50 estimate that reduces cycle-to-cycle variability propagation

through the feedback loop. A discrete-time infinite-horizon LQR controller was de-

signed to adjust spark advance and EGR valve position in order to maintain optimal

combustion phasing while maximizing EGR levels during a load transient. It was

shown that during throttle tip-outs the high levels of EGR cannot be immediately

reduced due to a non-minimum phase response. This effect forces the spark advance

to increase in order to maintain the optimal phasing. The combination of advanced

spark timing and high EGR levels caused misfires during the tip-out. A reference

governor approach was used to slow down the throttle tip-out commands in order to

avoid constraint violation at the misfire limit. Given that such a limit is usually un-

known, a learning strategy was employed to evolve the reference governor parameters

and learn over time to maintain the system response within the constraint boundaries.

When this control strategy was tested in the experimental engine, the learning algo-

rithm took eight iterations to converge to a throttle tip-out profile that successfully

avoids misfires.
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CHAPTER VIII

Conclusions and Outlook

Linear stochastic control theory was used to achieve an optimal combustion pro-

cess while maximizing the benefits of EGR. The two main actuators use throughout

this study were the spark advance and the EGR valve. The spark advance has the

main effect on combustion phasing, while the EGR valve has authority over the EGR

rate, which alters the combustion kinetics and increases the combustion duration.

A particular combustion shape, which is the appearance of the MFB trace, can be

determined by a specific combustion phasing and combustion duration. Combustion

phasing can be determined by either CA10 or CA50, the crank angle at 10% and 50%

MFB respectively. The combustion duration can be determined by the crank angle

duration from 10% MFB to 90% MFB, called CA1090, or by the angle between spark

timing and CA50, called ΘSA50.

Initial studies used the pair (CA10, CA1090) for combustion shape. Targeting par-

ticular values that maximizes EGR levels while optimizing fuel consumption. This

particular pair was utilized since the target CA10 value was chosen such that com-

bustion initiation is guaranteed, avoiding misfires. The target CA1090, on the other

hand, was chosen such that long combustion events, i.e. partial-burns, are avoided.

A decentralized (PI-based) and a centralized (LQG-based) TITO controllers were

originally designed and implemented for a robust combustion initiation with targeted

combustion duration. It became apparent that an LQG control strategy has a better

performance and better cycle-to-cycle variability management. This is a direct result

of the centralized architecture which considers input-to-output system coupling and

the LQG tuning methodology which includes the additive Gaussian disturbance.

During steady state closed-loop operation, the linear stochastic model was able

to predict the statistical properties of the control commands (EGR valve and spark

timing) and the closed-loop combustion parameters based on the statistical informa-

tion collected in open-loop operation. In other words, given the open-loop stochastic
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linear model and the LQG gains, the closed-loop statistics of the system can be pre-

dicted. In addition, time-series correlation was also predicted using the linear model.

Such results were used to determine combustion shape targets that, with a given con-

fidence interval, can guarantee a safe operation with EGR-dilution without crossing

into misfiring conditions.

With respect to combustion shaping targets, it was shown that the optimal com-

bustion phasing CA50 remains fairly constant across different EGR rate and load

conditions. However, the combustion shaping pair (CA50, CA1090) becomes in-

creasingly ill-conditioned when considering a tracking control problem at the dilution

limit. The plant directionality generates large actuator commands that drive the

system towards the misfire limit, forcing to select a more conservative combustion

shape reference target. For this reason, the combustion shaping pair (CA50, ΘSA50)

was chosen for more recent control designs. This pair not only has the advantage of

guaranteeing a unique solution for the tracking control problem but also reduces the

calibration effort since only the combustion phasing CA50 is required.

Nonetheless, even if the combustion shaping targets are conservative, changes in

ambient conditions, engine aging, fuel quality, etc. could drive the misfire limit closer

to the combustion shape target. Hence, a supervisory control strategy should be

designed to adjust the control targets to a more conservative state. A likelihood-

based misfire controller is proposed for engine operation close to the misfire limit.

This stochastic control strategy generates a significantly small amount of variability

in the control commands compared to other event-based control policies. However, it

cannot directly control the occurrence of misfire events but rather the probability of

observing one. Online estimation of such probabilities requires heavy filtering since

the misfire probability near the limit is very small (ą 0.5%). This reduces the overall

response time of the supervisory action.

In order to increase the response time of such a supervisory controller, one should

either anticipate the occurrence of misfire events (predictive model) or should estimate

the misfire probability based on non-misfiring events (conditional model). In order

to address this, a novel non-equiprobable categorization method was developed to

classify engine combustion cycles at the misfire limit. Using the normalized IMEP,

the following categories were proposed:

1. High energy release (H): values above nominal conditions

2. Nominal (N): values between predefined bounds

3. Partial Burns (P): values below nominal, but with nonzero energy release

4. Misfires (M): values with zero energy release
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It was shown that deterministic prior cycle correlation corresponds to sequences of

misfires followed by high energy cycles (M Ñ H). Meanwhile, the occurrence of mis-

fires and partial burns appear to be random. These combustion events, misfires and

partial-burns, follow a multinomial distribution. Hence, conditional probability can

be used to estimate the misfire occurrence rate based on observation of partial burns.

Experimental results showed that, although the filtering required for estimation is

reduced, such reduction is not significant. This limits the use of a supervisory con-

trol to steady state conditions where there is enough time to generate an accurate

estimate of the misfire probability.

Following the study at a fixed engine speed and load, the combustion control prob-

lem was extended to include load changes generated by throttle tip-in and tip-out

commands. Here, a new modeling approach was taken which includes the manifold

filling dynamics. Although the throttle angle was considered as a disturbance for the

system, the EGR valve and spark timing remained as the main actuators for com-

bustion control. A linear quadratic Gaussian control problem was considered, which

includes the design of a Kalman filter and a linear quadratic regulator. Experimental

results showed that such a control strategy is effective at maintaining high engine

efficiency during throttle tip-in commands, but drives the system towards misfire

conditions during tip-outs. A learning reference governor approach was used to slow

down the throttle tip-out commands in order to avoid constraint violation at the mis-

fire limit. It was experimentally demonstrated that, after a given learning phase, the

proposed control strategy successfully performed a throttle tip-out command without

causing misfires.

The main disadvantage of this control strategy, however, is the filtering of the

tip-out command which slows down the system and takes almost double the amount

of time to reduce the load. This is undesirable not only from the drivability point of

view but also for safety concerns. Future work will consider the application of the

proposed feedback combustion control strategy to hybrid electric vehicles (HEVs). In

such architecture, the toque generated during the longer throttle tip-out can be used

to charge the battery, rather than driving the vehicle. Therefore, electrification has

the potential to enable a highly optimized combustion process that maximizes fuel

efficiency for a variety of drive cycle scenarios.
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APPENDIX A

Powertrain Control Laboratory Experimental

Engine

A.1 Experimental Setup

A 1.6 liter 2013 Ford EcoBoost engine was employed for data collection. This 4

cylinder gasoline engine is turbocharged direct injection (GTDI) and is equipped with

a high-pressure (HP) water-cooled EGR loop. The engine speed was kept constant at

2000 [RPM] using an AVL AC-Dynamometer. The stock control strategy was used for

valve timing and for controlling the stoichiometric air-to-fuel ratio. However, the fuel

injection timing was kept constant at 300 [deg] before firing top dead center (TDC)

to facilitate mixing for a homogenous charge, and the turbocharger wastegate was

kept closed at all times. Premium E10 gasoline was used with a rated 93 anti-knock

index (AKI). The EGR rate in the intake manifold, defined as the EGR fraction with

respect to total gas (air and EGR), was measured using an AVL SESAM i60 FT multi-

component exhaust measurement system based on CO2 concentration. Kistler 6052C

piezoelectric cylinder pressure sensors (CPS) have been installed in each cylinder to

monitor combustion.

The airflow and the EGR flow into the intake manifold are determined primarily by

the position of the throttle and the EGR valve, respectively. Additionally, such flows

depend on the pressure difference across the valves and the upstream temperature

conditions. Therefore, the stock manifold and boost pressure/temperature sensors

will be used from modeling and control. Additional pressure/temperature sensors

have been instrumented in the HP-EGR loop right before the valve and after the
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<latexit sha1_base64="JTwjQcQfhND9lFRCRxjDJGF3SNQ=">AAACD3icbVC7SgNBFJ31GddX1NJmMSgpJOzGQsuAjWWEvCC7LLOzN8mQ2dllZlYIS7AXG39FCwtFbG3t7Owt/AUnj0ITD1w4nHPvzL0nSBiVyrY/jIXFpeWV1dyaub6xubWd39ltyDgVBOokZrFoBVgCoxzqiioGrUQAjgIGzaB/PvKbVyAkjXlNDRLwItzltEMJVlry80duAF3KMywEHgwzNjSrfuC6Zs0PTBd4ODX8fMEu2WNY88SZkkLl+Ov68+b7oern390wJmkEXBGGpWw7dqI8/ZqihMHQdFMJCSZ93IW2phxHIL1sfM/QOtRKaHVioYsra6z+nshwJOUgCnRnhFVPznoj8T+vnarOmZdRnqQKOJl81EmZpWJrFI4VUgFEsYEmmAiqd7VIDwtMlI7Q1CE4syfPk0a55JyUypc6jSKaIIf20QEqIgedogq6QFVURwTdonv0hJ6NO+PReDFeJ60LxnRmD/2B8fYDmeKhcQ==</latexit>

Pm, Tm
<latexit sha1_base64="+t+oIdvVJDdVG7X7n2gBYg1spvI=">AAAB73icbVDLSsNAFL3xWeurKq7cDBahCylJXeiy4MaFiwh9QRvCZDpph84kcWYilNCf6MaFIm79CsFPcCf+jNPHQlsPXDiccy/33hMknClt21/Wyura+sZmbiu/vbO7t184OGyoOJWE1knMY9kKsKKcRbSumea0lUiKRcBpMxhcT/zmA5WKxVFNDxPqCdyLWMgI1kZqub44RzVf+IWiXbanQMvEmZNi9Xj8/n374bp+4bPTjUkqaKQJx0q1HTvRXoalZoTTUb6TKppgMsA92jY0woIqL5veO0JnRumiMJamIo2m6u+JDAulhiIwnQLrvlr0JuJ/XjvV4ZWXsShJNY3IbFGYcqRjNHkedZmkRPOhIZhIZm5FpI8lJtpElDchOIsvL5NGpexclCt3Jo0SzJCDEziFEjhwCVW4ARfqQIDDGJ7g2bq3Hq0X63XWumLNZ47gD6y3Hz5dkxc=</latexit>

WEGR
<latexit sha1_base64="w3NxETOdb40YIajShXeSQuKWjEY=">AAAB83icdVDJSgNBEO1xjXGL5phLYxCCh2EmCjG3gIgeo5gFMkPo6fQkTXoWumvEMOQ3vOSgiFd/ww/w5qd4s7MIKvqg4PFeFVX1vFhwBZb1biwtr6yurWc2sptb2zu7ub39pooSSVmDRiKSbY8oJnjIGsBBsHYsGQk8wVre8Gzqt26ZVDwKb2AUMzcg/ZD7nBLQktPqOsDuID2/uB53c0XLrM6A56RysiBVG9umNUOxlo8nH69HhXo39+b0IpoELAQqiFId24rBTYkETgUbZ51EsZjQIemzjqYhCZhy09nNY3yolR72I6krBDxTv0+kJFBqFHi6MyAwUL+9qfiX10nAP3VTHsYJsJDOF/mJwBDhaQC4xyWjIEaaECq5vhXTAZGEgo4pq0P4+hT/T5pl0z42y1c6jRKaI4MK6ACVkI0qqIYuUR01EEUxukcP6NFIjInxZDzPW5eMxUwe/YDx8glRupV6</latexit>

EGR valve
(UEGR)

<latexit sha1_base64="lbhMzhOmL9yGqhzpMQ2TOlKl/kw="></latexit>

Throttle (d✓)
<latexit sha1_base64="VPvgIzJRw5ScgaykD6WneELmaRk=">AAAB/nicbVBNS0JBFL3Pvsy+XkWrNkMaGIS8Z4taCm1aGmgK+pB546iD8z6YuS+Qh9BfadOiiLb9jnb9m8ani9IODBzOuYd75/ixFBod59vKra1vbG7ltws7u3v7B/bh0YOOEsV4k0UyUm2fai5FyJsoUPJ2rDgNfMlb/vh25rceudIiChs4ibkX0GEoBoJRNFLPPmmMVIQmRsqlfq+LI460dNGzi07FyUBWibsgxVoeMtR79le3H7Ek4CEySbXuuE6MXkoVCib5tNBNNI8pG9Mh7xga0oBrL83On5Jzo/TJIFLmhUgy9XcipYHWk8A3kwHFkV72ZuJ/XifBwY2XijBOkIdsvmiQSIIRmXVB+kJxhnJiCGVKmFsJG1FFGZrGCqYEd/nLq+ShWnGvKtX7arF2OW8D8nAKZ1AGF66hBndQhyYwSOEZXuHNerJerHfrYz6asxaZY/gD6/MHOOOU9Q==</latexit>

Intake Volume (Vm)
<latexit sha1_base64="4MakZeGhsbvY5L3qI496pPZeI1s=">AAAB/nicbVDLSsNAFL3xWesrKq7cDLZCdVGSutBlwY3uKti00IYwmU7aoZNJmJkIJRT8FTcuFHHrd7jzb5w+Ftp64MLhnHtn7j1hypnSjvNtrayurW9sFraK2zu7e/v2waGnkkwS2iQJT2Q7xIpyJmhTM81pO5UUxyGnrXB4M/Fbj1QqlogHPUqpH+O+YBEjWBspsI/vhMZDiryEZzFFlbIXxOXzwC45VWcKtEzcOSnVCzBFI7C/ur2EmBeEJhwr1XGdVPs5lpoRTsfFbqZoiskQ92nHUIFjqvx8uv4YnRmlh6JEmhIaTdXfEzmOlRrFoemMsR6oRW8i/ud1Mh1d+zkTaaapILOPoowjnaBJFqjHJCWajwzBRDKzKyIDLDHRJrGiCcFdPHmZeLWqe1mt3ddK9YtZGlCAEziFCrhwBXW4hQY0gUAOz/AKb9aT9WK9Wx+z1hVrPnMEf2B9/gCEfpR+</latexit>
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<latexit sha1_base64="meh7qXDOTEcI3lo96ay46CnxEcQ=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7JbKXqs9OKxgv2AdinZNNuGJtklyQpl6V/w4kERr/4hb/4bs9setPXBwOO9GWbmBTFn2rjut1PY2t7Z3Svulw4Oj45PyqdnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaCWSvze09UaRbJRzOPqS/wRLKQEWwyqXXXcEfliltzc6BN4q1IpVmEHO1R+Ws4jkgiqDSEY60HnhsbP8XKMMLpojRMNI0xmeEJHVgqsaDaT/NbF+jKKmMURsqWNChXf0+kWGg9F4HtFNhM9bqXif95g8SEt37KZJwYKslyUZhwZCKUPY7GTFFi+NwSTBSztyIyxQoTY+Mp2RC89Zc3Sbde865r9Yd6pVldpgFFuIBLqIIHN9CEe2hDBwhM4Rle4c0Rzovz7nwsWwvOauYc/sD5/AFcgY27</latexit>

Spark Advance (USA)
<latexit sha1_base64="o5lLCaq7uzG89fi7+ilbCLZdQ38=">AAACBnicbVA9SwNBEJ3zM8avqKUIi1GITbiLhZYRG8tIjApJCHubiS7Z2zt258RwpLLxr9hYKGLrb7Dz37hJLPx6MPB4b4aZeWGipCXf//Cmpmdm5+ZzC/nFpeWV1cLa+rmNUyOwIWIVm8uQW1RSY4MkKbxMDPIoVHgR9o9H/sUNGitjfUaDBNsRv9KyJwUnJ3UKW/WEmz476t5wLZCVdhqdFuEtZfWj4c5ep1D0y/4Y7C8JvkixmoMxap3Ce6sbizRCTUJxa5uBn1A744akUDjMt1KLCRd9foVNRzWP0Laz8RtDtuuULuvFxpUmNla/T2Q8snYQha4z4nRtf3sj8T+vmVLvsJ1JnaSEWkwW9VLFKGajTFhXGhSkBo5wYaS7lYlrbrggl1zehRD8fvkvOa+Ug/1y5bRSrJYmaUAONmEbShDAAVThBGrQAAF38ABP8Ozde4/ei/c6aZ3yvmY24Ae8t0+qsZfq</latexit>

Wcyl
<latexit sha1_base64="lT4crCywr2QIffmU5II6H5VlAbQ=">AAAB83icbVDLSsNAFJ3UV62vqktdDBbBhZSkLhTcFNy4ESvYBzahTCaTduhkEmZuxBD6G25cKOLWn3Hnyl9x+lho9cCFwzn3cu89fiK4Btv+tAoLi0vLK8XV0tr6xuZWeXunpeNUUdaksYhVxyeaCS5ZEzgI1kkUI5EvWNsfXoz99j1TmsfyFrKEeRHpSx5ySsBIbrvnAnuAnGZi1CtX7Ko9Af5LnBmp1Pevrr/Og7tGr/zhBjFNIyaBCqJ117ET8HKigFPBRiU31SwhdEj6rGuoJBHTXj65eYQPjRLgMFamJOCJ+nMiJ5HWWeSbzojAQM97Y/E/r5tCeOblXCYpMEmni8JUYIjxOAAccMUoiMwQQhU3t2I6IIpQMDGVTAjO/Mt/SatWdU6qtRuTxjGaooj20AE6Qg46RXV0iRqoiShK0CN6Ri9Waj1Zr9bbtLVgzWZ20S9Y799Z55TD</latexit>

Crank Angle
<latexit sha1_base64="U1HRLnBrxmfslLWrjVdyBC5m7Zg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFqNgFe5ioWUkjWUE8wHJEfY2c8mSvb1jd08IR36GjYUitv4aO/+Nm0sKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTxtzvPKHSPJaPZpqgH9GR5CFn1Fip11BUTsidHAkclCtu1c1B1om3JJV6EXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7Wf5yTNyaZUhCWNlSxqSq78nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBki0VhKoiJyfx/MuQKmRFTSyhT3N5K2JgqyoxNqWRD8FZfXiftWtW7rtYeapX6xSINKMIZnMMVeHADdbiHJrSAQQzP8ApvjnFenHfnY9FacJYzp/AHzucPD7+RCg==</latexit>

M
F
B

<latexit sha1_base64="qW6HJG/siHeX+IdNrKZsbmD/bO8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBqPgKezGgx6DgngRIpoHJEuYnUySIbOzy0yvEJZ8ghcPinj1i7z5N042OWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRtdTv/nEtRGResRxzP2QDpToC0bRSg93N1fdYsktuxnIMvHmpFTNQ4Zat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPs1Ak5tUqP9CNtSyHJ1N8TKQ2NGYeB7QwpDs2iNxX/89oJ9i/9VKg4Qa7YbFE/kQQjMv2b9ITmDOXYEsq0sLcSNqSaMrTpFGwI3uLLy6RRKXvn5cp9pVQ9maUBeTiCYzgDDy6gCrdQgzowGMAzvMKbI50X5935mLXmnPnMIfyB8/kDF3WNmQ==</latexit>

Figure A.1: Sketch of GTDI experimental engine with required instrumentation for
control.

EGR cooler. Figure A.1 shows a diagram of the experimental engine with the required

instrumentation.

A.2 Rapid Prototyping Engine Controller

Full authority over the engine actuators was possible by replacing the stock en-

gine control unit (ECU) with a rapid prototyping electronic control system (RPECS)

developed at Southwest Research Institute [90]. This system has a programmable

controller (developed originally in MATLAB/Simulink) running on a QNX operat-

ing system optimized for real-time applications. This approach has been previously

shown to be appropriate for cycle-to-cycle control applications [91]. High-speed data

coming from the CPS were processed through a Xilinx Zynq processor, which inte-

grates a field-programmable gate array (FPGA) processor and dual-core ARM CPUs

in a single integrated circuit chip. This feature allows ultra-fast data communication

between the FPGA and the ARM CPUs. The high-speed data acquisition (DAQ)

is done by the FPGA module, which reads the stock cam/crank sensors to measure

engine position and the high-speed voltage signals from the CPS during one entire cy-

cle. The ARM module performs the signal processing and heat release analysis using

user-defined algorithms developed in Simulink. Cycle-to-cycle results from the anal-

ysis are transmitted over Ethernet to the RPECS where the engine control strategy
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RPECS
<latexit sha1_base64="GA3MI372sAWbZWxNMy1XC6j8vKw=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DEQBI/xsUkgWcLsZDYZMju7zPQKYck3ePGgiFc/yJt/4+Rx0MSChqKqm+6uMJXCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpH9anfeuLaiEQ94jjlQUwHSkSCUbSSf9+4qT/0SmW34s5AVom3IOVaAWZo9Epf3X7CspgrZJIa0/HcFIOcahRM8kmxmxmeUjaiA96xVNGYmyCfHTsh51bpkyjRthSSmfp7IqexMeM4tJ0xxaFZ9qbif14nw+g6yIVKM+SKzRdFmSSYkOnnpC80ZyjHllCmhb2VsCHVlKHNp2hD8JZfXiXNasVzK95dtVy7nKcBBTiFM7gAD66gBrfQAB8YCHiGV3hzlPPivDsf89Y1ZzFzAn/gfP4AZZ2OYQ==</latexit><latexit sha1_base64="GA3MI372sAWbZWxNMy1XC6j8vKw=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DEQBI/xsUkgWcLsZDYZMju7zPQKYck3ePGgiFc/yJt/4+Rx0MSChqKqm+6uMJXCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpH9anfeuLaiEQ94jjlQUwHSkSCUbSSf9+4qT/0SmW34s5AVom3IOVaAWZo9Epf3X7CspgrZJIa0/HcFIOcahRM8kmxmxmeUjaiA96xVNGYmyCfHTsh51bpkyjRthSSmfp7IqexMeM4tJ0xxaFZ9qbif14nw+g6yIVKM+SKzRdFmSSYkOnnpC80ZyjHllCmhb2VsCHVlKHNp2hD8JZfXiXNasVzK95dtVy7nKcBBTiFM7gAD66gBrfQAB8YCHiGV3hzlPPivDsf89Y1ZzFzAn/gfP4AZZ2OYQ==</latexit><latexit sha1_base64="GA3MI372sAWbZWxNMy1XC6j8vKw=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DEQBI/xsUkgWcLsZDYZMju7zPQKYck3ePGgiFc/yJt/4+Rx0MSChqKqm+6uMJXCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpH9anfeuLaiEQ94jjlQUwHSkSCUbSSf9+4qT/0SmW34s5AVom3IOVaAWZo9Epf3X7CspgrZJIa0/HcFIOcahRM8kmxmxmeUjaiA96xVNGYmyCfHTsh51bpkyjRthSSmfp7IqexMeM4tJ0xxaFZ9qbif14nw+g6yIVKM+SKzRdFmSSYkOnnpC80ZyjHllCmhb2VsCHVlKHNp2hD8JZfXiXNasVzK95dtVy7nKcBBTiFM7gAD66gBrfQAB8YCHiGV3hzlPPivDsf89Y1ZzFzAn/gfP4AZZ2OYQ==</latexit><latexit sha1_base64="HMP5xg0l93Tv6ngoRYSIglSANcs=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DEQBI/xkQckS5idzCZDZmeXmV4hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uIJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY12d++4lrI2L1iJOE+xEdKhEKRtFKzfvGTf2hXyq7FXcOskq8nJQhR6Nf+uoNYpZGXCGT1Jiu5yboZ1SjYJJPi73U8ISyMR3yrqWKRtz42fzYKTm3yoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjMPicDoTlDObGEMi3srYSNqKYMbT5FG4K3/PIqaVUrnlvx7qrl2mUeRwFO4QwuwIMrqMEtNKAJDAQ8wyu8Ocp5cd6dj0XrmpPPnMAfOJ8/A8WOGQ==</latexit>

Xilinx Zynq - System on Chip
<latexit sha1_base64="/YvH5xLyfXZhO5iFJh2cwQF8CqI=">AAACBnicbVDLSgMxFL3js9bXqEsRgkVwY5mpgi4L3bisaB/YDiWTpm1oJjMmGXEYunLjr7hxoYhbv8Gdf2M67UJbDwQO59zDzT1+xJnSjvNtLSwuLa+s5tby6xubW9v2zm5dhbEktEZCHsqmjxXlTNCaZprTZiQpDnxOG/6wMvYb91QqFoobnUTUC3BfsB4jWBupYx80mYk+oNtE3KEThK4TpWmAQoEqAxZ17IJTdDKgeeJOSaGcgwzVjv3V7oYkDqjQhGOlWq4TaS/FUjPC6SjfjhWNMBniPm0ZKnBAlZdmZ4zQkVG6qBdK84RGmfo7keJAqSTwzWSA9UDNemPxP68V696FlzIRxZoKMlnUiznSIRp3grpMUqJ5Yggmkpm/IjLAEhNtmsubEtzZk+dJvVR0T4ulq1KhfDZpA3KwD4dwDC6cQxkuoQo1IPAIz/AKb9aT9WK9Wx+T0QVrmtmDP7A+fwDMXZgK</latexit>

FPGA
High-Speed DAQ
Engine Position

<latexit sha1_base64="9KYMumiWYbtElXPAiVruZIoPaNo="></latexit>

IMEPk

CA50k

etc.
<latexit sha1_base64="oPKJwGfzh15Pe4hRA2gBQ6PQ4Bc="></latexit>

USER
<latexit sha1_base64="Pu1yC44ZQSNCCauA/YhQNgM/tAw=">AAAB9HicbVDJSgNBEK2JW4xb1KOXxiDkFGbiQY8BETzGZZJAMoSeTk/SpGexuyYYhnyHFw+KePVjvPk3dpaDJj4oeLxXRVU9P5FCo21/W7m19Y3Nrfx2YWd3b/+geHjU0HGqGHdZLGPV8qnmUkTcRYGStxLFaehL3vSHV1O/OeJKizh6wHHCvZD2IxEIRtFIXgf5E/pB5t5f3026xZJdsWcgq8RZkFItDzPUu8WvTi9macgjZJJq3XbsBL2MKhRM8kmhk2qeUDakfd42NKIh1142O3pCzozSI0GsTEVIZurviYyGWo9D33SGFAd62ZuK/3ntFINLLxNRkiKP2HxRkEqCMZkmQHpCcYZybAhlSphbCRtQRRmanAomBGf55VXSqFac80r1tlqqledpQB5O4BTK4MAF1OAG6uACg0d4hld4s0bWi/Vufcxbc9Zi5hj+wPr8ASsPkkw=</latexit>

CPS
<latexit sha1_base64="pvtncxzLJ4Ll2nsf+dU0vUfChMk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyuBz0GcvEYiXlAsoTZSW8yZHZ2mZkVwpJP8OJBEa9+kTf/xsnjoIkFDUVVN91dYSq4Nq777RS2tnd294r7pYPDo+OT8ulZWyeZYthiiUhUN6QaBZfYMtwI7KYKaRwK7IST+tzvPKHSPJGPZppiENOR5BFn1FipWW80B+WKW3UXIJvEW5FKrQgLNAblr/4wYVmM0jBBte55bmqCnCrDmcBZqZ9pTCmb0BH2LJU0Rh3ki1Nn5MoqQxIlypY0ZKH+nshprPU0Dm1nTM1Yr3tz8T+vl5noLsi5TDODki0XRZkgJiHzv8mQK2RGTC2hTHF7K2FjqigzNp2SDcFbf3mTtP2qd1P1H/xKzV+mAUW4gEu4Bg9uoQb30IAWMBjBM7zCmyOcF+fd+Vi2FpzVzDn8gfP5AzVljbg=</latexit>

Spark
Advance

<latexit sha1_base64="A3aPL+dxmfY5eXn9J8xklQ/NAQk=">AAACGXicbVBNS8NAFHzxs8avqkcvwSJ4Kkk96LHixaOiVaEp5WXzWpduNmF3Uyihf8OLf8WLB0U86sl/47YV0daBhWFmHm/fRJng2vj+pzM3v7C4tFxacVfX1jc2y1vb1zrNFaMGS0WqbiPUJLikhuFG0G2mCJNI0E3UOx35N31SmqfyygwyaiXYlbzDGRortct+GFGXy8JglAtUw4IN3csMVS8M3ZO4j5KRG5KMfwLtcsWv+mN4syT4JpV6CcY4b5ffwzhleULSMIFaNwM/M60CleFM0NANc00Zsh52qWmpxIR0qxhfNvT2rRJ7nVTZJ403Vn9PFJhoPUgim0zQ3OlpbyT+5zVz0zluFVxmuSHJJos6ufBM6o1q8mKuiBkxsASZ4vavHrtDhczYMl1bQjB98iy5rlWDw2rtolap1yZtQAl2YQ8OIIAjqMMZnEMDGNzDIzzDi/PgPDmvztskOud8z+zAHzgfX8kPoWM=</latexit>

EGR-valve
<latexit sha1_base64="x4b+7n3a/MzpZ2SgopZUAUyUXQk=">AAACE3icbVA9SwNBEJ2LX/H8ilraHAZBBMNdLLQMiGipYlRIQpjbTJIle3vH7l4gHPkPNv4VGwtFbG3s/DduEhGNPhh4vDfDzLwwEVwb3/9wcjOzc/ML+UV3aXllda2wvnGt41QxqrJYxOo2RE2CS6oabgTdJoowCgXdhL3jkX/TJ6V5LK/MIKFGhB3J25yhsVKzsFcPqcNlZjBMBaphxobuyenlfh9Fn9w6yda31SwU/ZI/hveXBF+kWMnDGOfNwnu9FbM0ImmYQK1rgZ+YRobKcCZo6NZTTQmyHnaoZqnEiHQjG/809Has0vLasbIljTdWf05kGGk9iELbGaHp6mlvJP7n1VLTPmpkXCapIckmi9qp8EzsjQLyWlwRM2JgCTLF7a0e66JCZmyMrg0hmH75L7kul4KDUvmiXKyUJ2lAHrZgG3YhgEOowBmcQxUY3MEDPMGzc+88Oi/O66Q153zNbMIvOG+fBKie2w==</latexit>

Throttle
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Figure A.2: Sketch of rapid prototyping cycle-to-cycle engine controller and data
acquisition system.

is executed. Finally, measurements, as well as commands issued by RPECS, are sent

through CAN bus to the AVL-PUMA system that controls the AC-Dynamometer.

Here, data are recorded at 50 [Hz], which suffices for capturing cycle-to-cycle phe-

nomena. Figure A.2 shows a sketch of the DAQ and engine control systems used in

this dissertation.
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