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ABSTRACT

Emerging connected and automated vehicle (CAV) technologies are improving vehicle

safety and energy efficiency to the next level and creating unprecedented opportunities and

challenges for the control and optimization of the vehicle systems. While previous studies

have been focusing on improving the fuel efficiency via powertrain optimizations, vehicle

thermal management and its interaction with powertrain control in hot and cold weather

conditions have not been fully explored. For light-duty vehicles, the power used by the

climate control system usually represents the most significant thermal load. It has been

shown that the thermal load imposed by the climate control system may lead to dramatic

vehicle range reduction, especially for the vehicles with electrified powertrains. Besides

its noticeable impact on vehicle range reduction, the performance of the climate control

system also has a direct influence on occupant comfort and customer satisfaction.

Aiming at reducing the energy consumption and improving the occupant thermal com-

fort (OTC) level for the automotive climate control system, this dissertation takes air con-

ditioning (A/C) system as an example and is dedicated to developing practical A/C man-

agement strategies for electrified vehicles. In particular, the proposed strategies leverage

the predictive information enabled by the CAV technologies such as the traffic and weather

predictions. There are three novel MPC-based A/C management strategies developed in

this dissertation, the hierarchical optimization, the precision cooling strategy (PCS), and

the combined energy and comfort optimization (CECO). They can be differentiated by

their OTC assumptions, robustness considerations, and implementation complexities on

the testing vehicle.

xiv



In the hierarchical optimization, a two-layer hierarchical MPC (H-MPC) scheme is ex-

ploited for potential integration between the A/C and the powertrain systems of an Hybrid

Electric Vehicle (HEV). This hierarchical structure handles the timescale difference be-

tween power and thermal systems as well as the uncertainties associated with long predic-

tion horizon. Comprehensive simulation results over different driving cycles have demon-

strated the energy saving potentials of efficient A/C energy management, which is attributes

to leveraging the vehicle speed sensitivity of the A/C system efficiency. In terms of the

comfort metric, the average cabin air temperature is applied.

In contrast to this hierarchical optimization, PCS and CECO utilize the simpler single-

layer MPC structure assuming accurate predictive information. They are focusing on

formulating more practical OTC metrics and the implementation on the testing vehicle.

Specifically, the PCS renders the simplest control-oriented model structure and its energy

benefits are validated based on an industrial-level A/C system model. The proposed PCS

exploits a more practical comfort metric, Discharge Air Cooling Power (DACP), which di-

rectly motivates the design of an off-line eco-cooling strategy, which coordinates the A/C

operation with respect to the vehicle speed. Vehicle-level energy saving is confirmed ac-

cording to repeatable vehicle experiments.

Finally, the CECO strategy considers a comprehensive OTC model, Predicted Mean

Vote (PMV), and combines the energy and comfort optimizations simultaneously. Further

energy saving and OTC improvement can be achieved by explicitly leveraging both traffic

and weather predictive information.
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CHAPTER 1

Introduction

1.1 Connected and Automated Vehicles

The advent of Connected and Automated Vehicle (CAV) technologies [1] has created tremen-

dous opportunities from control and optimization perspective to improve mobility, safety,

and fuel economy/energy efficiency of the vehicles. With CAV, it is expected that the

vehicle control system is able to exploit the Vehicle to Vehicle (V2V) and Vehicle to In-

frastructure (V2I) communications for more efficient and safer vehicle operation. Different

real-world driving scenarios, including highway [2, 3] and urban driving [4, 5], have been

considered primarily for improving safety of CAVs. Meanwhile, significant energy saving

potentials of CAVs has been envisioned [6, 7, 8, 9].

However, most of existing CAV-related research focuses on utilizing information from

V2V/V2I or V2X (e.g., traffic signal and traffic flow information) to improve the powertrain

system efficiency via eco-driving/platooning and route planning strategies [10, 11, 12, 13,

14]. At the same time, the literature focusing on the vehicle thermal management and

co-optimization with traction power is relatively limited.

Typical thermal management systems in ground vehicles include the engine thermal

management system [15, 16], aftertreatment and exhaust heat recovery systems [17, 18],

battery and electric machine thermal management systems[19, 20], and cabin heating, ven-

tilation, & air conditioning (HVAC) system [21, 22]. The thermal conditions can directly

1



affect the performance, reliability, and energy efficiency of the vehicle subsystems, espe-

cially in hot or cold environment. Nevertheless, in the context of connected and automated

vehicles, how to leverage the V2X information for Integrated Power and Thermal Manage-

ment (iPTM) is still an open question.

One major challenge for the iPTM of CAVs is to handle the timescale difference be-

tween the power and thermal systems. Unlike the power system with fast dynamics, the

response of the thermal subsystem is slower due to larger thermal inertia and its optimiza-

tion often requires a long prediction/planning horizon. While the predictive information

such as vehicle speed and traction power demand can be accurately predicted over a short

time horizon, longer horizon prediction for thermal management using V2X information

is subject to greater uncertainties. Hence, an iPTM system is necessary that 1) can cap-

italize on the connectivity technology to improve the energy efficiency and 2) be able to

handle the uncertainties in the long horizon vehicle speed and traffic events predictions.

Moreover, real-time implementation requirements dictate that simple models are used on-

board to predict the thermal dynamics and loads over a long prediction horizon. To this

end, Hierarchical Model Predictive Control (H-MPC) [23, 24] can be a promising control

framework to handle the challenge. H-MPC allows for simultaneous planning of thermal

trajectories over a long horizon, and steering the system states toward the planned tra-

jectories over a short horizon. Recent H-MPC developments include the applications to

microgrids [25, 26], power flow systems [27], chemical plants [28], and building energy

management system.

In this dissertation, the hierarchical optimization framework will be explored for the

iPTM of the CAVs, focusing on demonstrating the benefits of incorporating predictive in-

formation for efficient climate control system. The proposed H-MPC strategy would allow

potential control integration between other thermal subsystems with the powertrain, such

as the engine thermal management [29] and battery thermal management [30, 31].

2



1.2 Automotive Climate Control System

Among all vehicle thermal subsystems, the climate control system, which performs the

Heating Ventilation and Air Conditioning (HVAC) functions for the passenger compart-

ment, usually represent the most significant auxiliary loads, especially for light-duty vehi-

cles. It has been estimated that, in the United States, about 7 billion gallons of fuel is con-

sumed per year just to power the air conditioning (A/C) system for light-duty vehicles [32].

A study performed at Argonne National Lab showed a 53.7% reduction in vehicle driving

range due to air conditioning and 59.3% reduction in vehicle driving range due to heating

for Ford Focus EV, tested over the Urban Dynamometer Driving Schedule (UDDS) [33].

Similarly, a significant reduction of driving range was also reported for Nissan Leaf [33]

and in a recent work by National Renewable Energy Lab [34]. Aim at developing more

efficient energy management strategies for the climate control system, the Air Condition-

ing (A/C) system in electrified powertrain is studied first, as electrified vehicle becomes

more popular recently.

Figure 1.1: Schematic of the A/C system in an electrified powertrain.

Fig. 1.1 provides a schematic of a typical A/C system in an electrified powertrain in

which an onboard battery supplies the power to the major power consumers in the A/C

3



system, namely, the compressor (Pcomp) and the other auxiliaries (Paux) including the con-

denser fan and the blower. There are two major loops of flow in the A/C system, the

Refrigerant Loop (RL) shown in yellow lines and the Cabin Air Loop (CAL) shown in blue

lines. In practice, depending on the cooling power demand from the CAL, the actuators

in the RL including the compressor, the condenser fan, and the thermal expansion valve,

etc., are coordinated to maintain the evaporator wall temperature (Tevap) within the desired

and safe range. The variables Vveh, Tamb, Tshell represent the vehicle speed, ambient air

temperature, and cabin shell temperature, respectively.

In the literature, the A/C energy management for the vehicle with traditional Internal

Combustion Engine (ICE) [35, 36, 37] have been studied, where the A/C compressor is

belt-driven by the ICE. However, as vehicle power sources are becoming more electrically

dominant, their energy management requires different strategies than those used for vehi-

cles with traditional ICEs. Regarding the A/C energy management for electrified power-

train, previous works [21, 38, 39, 40] have exploited the sensitivity of A/C system efficiency

to vehicle speed and vehicle speed preview for reducing energy consumption. The energy

saving potentials have been demonstrated based on two high-fidelity simulation models of

the electrified A/C systems, CoolSim and ACSim, over various driving cycles.

In general, the objective of A/C energy management is minimizing the energy con-

sumption while maintaining the Occupant Thermal Comfort (OTC) within the comfort

constraint. Uncomfortable cabin thermal conditions can increase the stress for the vehi-

cle passengers, thereby inducing higher chances of traffic accidents [41]. However, there is

no universal approach quantifying the comfort constraint, especially for automotive HVAC

applications. Previous work regarding automotive A/C energy management strategy de-

velopment in [21, 38, 39, 40] uses the average cabin air temperature (Tcab) as the comfort

metric and focuses on constraining Tcab within prescribed constraints. But, this comfort

metric cannot represent the OTC in practice considering the special features in automotive

climate control system[42]. In a passenger vehicle, occupants sit close to the vents and di-
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rectly feel the temperature and the amount of air flow, and are exposed to the solar radiation

directly. Therefore, the occupants thermal sensation is not directly correlated to Tcab.

Referring to the schematic shown in Fig. 1.1, there are many variables within the CAL

that will influence the OTC such as the average cabin air temperature (Tcab), the cabin

interior (e.g., seats and panels) temperature (Tint), the vent air temperature (Tain), the air

flow rate (ṁbl), and the solar radiation (Wrad) [42]. A thorough review on indoor thermal

comfort modeling can be found in [43]. In the review, the thermal comfort models are

categorized into three groups, empirical model, thermal-physiological model, and adaptive

model. Considering the modeling complexity and detailed model structure, the empirical

model can be applied for the real-time control design. Comfort-based design has been

widely studied for building HVAC applications [43, 44, 45, 46]. More recently, such control

design attracts more and more attentions in automotive applications [47, 48, 49, 50, 51].

In summary, the Combined Energy and Comfort Optimization (CECO) in a connected

environment is not fully-explored regarding automotive HVAC control system and the lit-

erature addressing predictive thermal management in the vehicle system is very limited.

Additionally, the study of the interactions between thermal management and power man-

agement systems for electrified vehicles would also require dedicated efforts. More impor-

tantly, how to implement the advanced iPTM strategy on vehicles and demonstrate the ben-

efits remain to be open questions. This dissertation is dedicated to seeking partial answers

to these questions. In particular, we are focusing on discovering the dynamic coupling

between the thermal and power systems, leveraging the special characteristics of the au-

tomotive HVAC system to facilitate the iPTM design, developing real-time implementable

algorithms to perform the energy and comfort optimizations, and demonstrating the energy

saving benefits on the test vehicle.
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1.3 Dissertation Work Scope and Contributions

In this dissertation, aiming at addressing the challenges and issues discussed in previous

two sections, the contributions are two-fold regarding the developments of MPC-based A/C

system management for electrified vehicles.

The first contribution is the modeling and analysis of the A/C system:

• Two high-fidelity simulation models (CoolSim and ACSim) are developed and used

as the virtual testbeds for the developments and evaluations of different A/C manage-

ment strategies. Through the studies of the two models, the vehicle speed sensitivity

of the A/C system efficiency has been discovered, which is one of the key ideas for

improving the system energy efficiency. The vehicle-level impact of A/C system op-

eration has been identified and analyzed in both simulations and vehicle experiments.

• Control-oriented modeling is performed to support the predictive control designs.

For developing MPC-based control strategies, simpler control-oriented models are

required for providing reasonably accurate predictions of the A/C system behaviors.

Two different control-oriented models have been proposed and validated for the cor-

responding simulation models. And motivated by the studies on the high-fidelity

simulation models, a control-oriented model for the onboard A/C system of the test-

ing vehicle is developed and validated against the experimental data as well.

The second contribution is the development of three novel MPC-based A/C energy

management strategies: the hierarchical optimization, the Precision Cooling Strategy (PCS),

and the combined energy and comfort optimization (CECO). All of them leverage predic-

tive information for improving the energy and comfort management of the A/C system.

They can be differentiated by their OTC assumptions, robustness considerations, and im-

plementation complexities on the testing vehicle.

• The development of a hierarchical optimization framework for the A/C energy man-

agement and integration with powertrain system: in the hierarchical optimization, a
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two-layer H-MPC control scheme is exploited for potential integration between the

A/C and powertrain systems of an HEV. The main reason for developing such hi-

erarchical structure is to handle the timescale difference between power and thermal

systems as well as the uncertainties associated with long prediction horizon. The

H-MPC is developed and evaluated based on the CoolSim model. Comprehensive

simulation results over different driving cycles have been performed to demonstrate

the energy saving potentials of efficient A/C energy management. In addition, the

impact of uncertain speed preview is also demonstrated. In terms of the comfort

metric, the average cabin air temperature is applied.

• The PCS and experimental validation of an eco-cooling strategy: in terms of MPC

structure, PCS utilizes a simpler single-layer MPC assuming accurate predictive in-

formation over the prediction horizon. It is focusing on formulating a more practical

OTC metric and the implementation on the testing vehicle. Specifically, the PCS has

the simplest control-oriented model structure and its benefits are validated based on

the ACSim model. The proposed PCS exploited a simpler yet more practical comfort

metric, DACP, which directly motivates the design of an off-line eco-cooling strat-

egy that can be easily implemented on the testing vehicle for demonstrating energy

saving benefit.

• The development of CECO strategy: the CECO strategy considers a comprehensive

OTC model, PMV, and combines the energy and comfort optimizations simultane-

ously while explicitly leveraging both traffic and weather predictive information. The

CECO strategy demonstrates additional energy saving and comfort improvement op-

portunities.
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1.4 Dissertation Outline

This dissertation reports the comprehensive research efforts on the MPC applications to

the automotive climate control system, which leverage predictive information enabled by

emerging CAV technologies. The energy and comfort benefits of applying the proposed

MPC-based strategies are demonstrated in both simulations and vehicle experiments.

Chapter 1 provides an introduction on the CAV research and automotive climate con-

trol system, highlighting the opportunities and challenges in efficient vehicle thermal man-

agement and the integration with the power management.

Chapter 2 introduces the two high-fidelity simulation models for the electrified A/C

system, which are used for the design and evaluation purposes throughout this dissertation.

The speed sensitivities of the A/C system efficiency for both models are studied and the

basic idea for energy efficient A/C operation, eco-cooling, will be presented.

Chapter 3 presents the development of a hierarchical two-layer MPC scheme which ex-

ploits vehicle speed and traffic preview predictions over short and long prediction horizons

for efficient A/C system energy management with uncertain predictive information. The

proposed A/C energy management scheme is then integrated with the powertrain model of

a power-split HEV for evaluating the impacts on vehicle-level energy consumption. The

energy saving benefits are demonstrated based on the simulations over various driving cy-

cles when comparing with a single-layer MPC results for the temperature tracking control.

In Chapter 4, the PCS is presented by incorporating a more practical comfort metric,

DACP. The proposed PCS is able to provide precise tracking of the DACP trajectory, which

is assumed to meet the passenger comfort requirements. The PCS is developed and eval-

uated based on an industrial-level A/C system model, ACSim, and the energy benefits are

demonstrated versus a baseline controller from Original Equipment Manufacturer (OEM)

calibration. It is also demonstrated that by coordinating with future vehicle speed and

shifting the A/C power load, the A/C energy consumption can be further reduced.

Directly motivated by the PCS development, in Chapter 5, an off-line eco-cooling
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strategy is formulated by solving an optimal control problem based on the control-oriented

model validated for the testing vehicle. In order to make fair comparisons, repeatable

vehicle test of the eco-cooling strategy is carefully designed and the vehicle-level energy

saving is confirmed based on the results from 18 sets of vehicle tests.

Chapter 6 considers incorporating a more comprehensive OTC model, PMV, into the

energy optimization of the A/C system. The resulting CECO-based strategies show that

additional energy saving can be achieved by avoiding the over-cooling while at the same

improving the OTC level, compared with conventional cabin temperature tracking strategy.

This is beyond the efficient operations exploited in previous chapters by leveraging the

vehicle speed sensitivity of the A/C system efficiency.

Chapter 7 draws the conclusions and provide insights on future working directions.
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CHAPTER 2

A/C System Speed Sensitivity and Eco-cooling

In this chapter, two high-fidelity A/C simulation models, CoolSim and ACSim, are intro-

duced, which is utilized for the design and evaluation purposes of the proposed control

strategies developed in this dissertation. Specifically, CoolSim is used in the developments

of the hierarchical optimization and the CECO strategies, while the ACSim model is used in

the development of the PCS. Although these two models are developed by different organi-

zations, CoolSim by National Renewable Energy Lab (NREL) and ACSim by Ford Motor

Company, they all simulate the behaviors of the electrified A/C system. More importantly,

the speed sensitivity of the A/C system efficiency has been discovered and validated in both

simulation models. Such speed sensitivity will be exploited repeatedly in simulations and

experiments for the rest of this dissertation.
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2.1 CoolSim Model and Speed Sensitivity Analysis

CoolSim is an open-source A/C system model available from the NREL, see [52]. Fig. 2.1

shows the schematics of the Simulink® model of the A/C system in CoolSim. The boundary

conditions block specifies the speed profiles and ambient conditions such as temperature

and pressure; Within the refrigerant loop (RL), the cooling circuit sub-models consists of

detailed models of the evaporator, condenser, condenser fan, evaporator valve, and con-

necting pipes, while, the compressor block, as the primary energy consumer in the A/C

system, is modeled separately from the cooling circuit; the cabin air loop (CAL) models

the thermal dynamics of the cabin; the control inputs block lists the most important controls

of the A/C system, including the cabin air flow rate, evaporator wall temperature set-point,

and recirculation rate. See [52] for the modeling details of each subcomponent. This model

is capable of simulating cycle-by-cycle behavior of the A/C system, and has been validated

versus experimental data. While both electric-driven and belt-driven compressor config-

urations are available, the electric-driven one is considered for the development in this

dissertation.

The nominal controller implemented in this model consists of two Proportional-plus-

Integral (PI) control loops with anti-windup and A/C on-off logic. One of the PI loops

adjusts the compressor speed for tracking the evaporator wall temperature set-point. The

other PI loop regulates the blower speed in order to track the cabin air temperature set-point.

The recirculation rate of the cabin air depends proportionally on the difference between the

cabin air temperature and the ambient temperature and is saturated according to physical

feasible limits. Fig. 2.2 gives an example of the system responses at different vehicle

speeds with the nominal controller. The simulation is performed for a time period of 600

sec at different constant vehicle speeds (Vveh = 0, 5, 10, 15, 20, and 25 m/s) and for the

same target cabin air temperature set-point. The simulation results of the CoolSim model

indicate that the efficiency of the A/C system increases as the vehicle speed increases. This

observation is consistent with the underlying physics, as the effective ram air speed through
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Figure 2.1: Schematic of the CoolSim model.

the condenser increases as vehicle speed increases, so that the condenser dissipates the heat

faster, which leads to higher overall efficiency for the A/C system. Similar conclusion is

reached in [53]. Table 2.1 summarizes the total energy consumption over the simulation

run for different cases shown in Fig. 2.2. According to the values listed in the second

row of Table 2.1, the efficiency of the A/C system increases by approximately 30% as

the vehicle speed increases from 0 m/s (stop condition) to 25 m/s. The sensitivity to

vehicle speed is even more pronounced if considering energy consumption normalized by

the traveling distance (see the last row of Table 2.1). A vehicle traveling at higher speed

spends less time to cover the same distance, reducing the A/C operating time and thus

the associated energy consumption. This speed sensitivity can be exploited in the A/C

predictive controller design. To put the numbers in Table 2.1 in perspective, we note that

the A/C energy consumption is about a third of traction power in city driving.
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Figure 2.2: Vehicle speed sensitivity demonstrated on CoolSim model.

Table 2.1: Energy consumption for each case in the speed sensitivity test in Fig. 2.2.

Vehicle
Speed (m/s) 0 5 10 15 20 25

Energy
Consumption

(MJ)
1.33 1.23 1.17 1.13 1.10 1.07

Energy
Consumption

(MJ/km)
NA 0.410 0.195 0.126 0.092 0.071

2.2 ACSim Model and Speed Sensitivity Analysis

ACSim is another high-fidelity model for the electrified A/C system, which is developed at

Ford Motor Company. General system schematics are illustrated in Fig. 2.3. This model

simulates the entire A/C system for a passenger car and is integrated with the controller

module which represents two levels of controls. A higher-level controller is inside the cli-

mate control panel block, and it reflects the control settings (e.g. blower level and temper-
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ature set-point) from the real vehicle, which directly affect the occupant thermal comfort.

Lower-level controllers take the command from the control panel and regulate the behav-

iors of the physical system via the electric compressor control and the front end air flow

control. Boundary conditions are set according to different simulation requirements. This

model has been validated versus the data from production vehicle.

Figure 2.3: Schematics of ACSim simulation model

Next, the same speed sensitivity tests as presented in previous section are performed

on the ACSim model. Fig. 2.4 summarizes the total A/C energy consumption (Etot =

Ecomp +EEDF , where Ecomp and EEDF represent the energy consumed by the compressor

and the Electric Ducted Fan (EDF), respectively) for each case with different constant

speed. Index values from 1 to 10 correspond to constant vehicle speed values from 0 m/s

to 25 m/s (equally spaced), respectively. As the simulation results show, the total A/C

energy consumption is reduced by 13.6% comparing case 10 with case 1, while the cooling

performance is kept the same. This observation is consistent with the findings presented on

CoolSim model.
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Figure 2.4: Total A/C energy consumption decreases as vehicle speed increases.

2.3 Eco-cooling Idea for Energy Saving

Since the speed sensitivity of the A/C system efficiency has been confirmed based the two

high-fidelity simulation models, the basic eco-cooling idea can be illustrated in Fig. 2.5

by leveraging such speed sensitivity. The energy consumption of the A/C system can be

reduced by manipulating the A/C operation with respect to the speed preview information

when compared with constant A/C operation, i.e., cooling the cabin more when vehicle is

at high speed and A/C is more efficient, and cooling the cabin less when vehicle is at low

speed and A/C is less efficient. Based on this eco-cooling idea, detailed development on

quantifying the A/C operation and maintaining corresponding comfort constraint is pursued

subsequently in this dissertation.
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Figure 2.5: Illustration of eco-cooling idea in CAV.
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CHAPTER 3

Hierarchical Optimization for Efficient A/C

Energy Management

Incorporating traffic information in power management optimization process for electri-

fied and connected vehicles offers opportunities for improving fuel economy. Integrating

the management of thermal load with the power management process can provide even

greater benefits for connected and automated vehicles (CAVs). However, given the rela-

tively slow dynamics associated with the thermal subsystems, the lack of reliable power

and thermal loads prediction over an extended prediction horizon increases the difficulty

for efficient thermal management using Model Predictive Control (MPC). Aiming at han-

dling the time-scale difference between the thermal and power systems and uncertainties

in vehicle speed prediction, a hierarchical two-layer MPC scheme is proposed in this chap-

ter, which exploits layers of future traffic events with different prediction accuracies over

short and long prediction horizons to schedule optimal thermal trajectories. The proposed

strategy is developed and evaluated based on high-fidelity simulation models. Vehicle en-

ergy saving potentials via efficient A/C energy management is demonstrated over different

driving cycles.
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3.1 Control-oriented Model Development for CoolSim

3.1.1 Predictive Model Structure

The detailed physical modeling of this A/C system and especially the modeling of the

RL shown in Fig.1.1 is complicated [54]. In order to validate the control design, a control-

oriented model for the dynamics of A/C system, which will be used as a prediction model in

the implementation of MPC, is described in this section. This prediction model is motivated

by physics [55] and is based on a similar approach as for building HVAC systems (see [56],

and [57]). The model is discrete-time, has two states (Tcab and Tevap), and has the form,

Tcab(k + 1) = fTcab(k) = Tcab(k) + γ1(Tint(k)− Tcab(k)) (3.1)

+ γ2(Tshell(k)− Tcab(k))

+ γ3(Tain(k)− Tcab(k))ṁbl(k) + τ1,

Tevap(k + 1) = fTevap(k) = γ4Tevap(k) (3.2)

+ γ5(Tevap(k)− T s.p.evap(k)) + τ2,

Tain(k) = γ6Tevap(k) + γ7ṁbl(k) + τ3. (3.3)

In Eqns. (3.1)-(3.3), Tcab, Tint, Tshell, Tevap, and Tain represent the temperatures (in K) of

the cabin air, the cabin interior (e.g. seats and panels), the cabin shell, the evaporator wall

and the cabin inlet air flow, respectively. The control inputs to the model are ṁbl (blower

flow rate in kg/s) and Tevap,set (evaporator wall temperature set-point in K). The model

parameters, γi (i = 1, 2, ..., 7) and τj (j = 1, 2, 3) are identified from CoolSim model. Note

that the model given by Eqns. (4.2)-(4.4) is nonlinear due to a bilinear term in Eqn. (4.2).

The structure of the model reflects the following assumptions:

1. The recirculation rate of the cabin air (αrecirc) is constant (αrecirc ∈ [0 1], where

αrecirc = 0 means cabin inlet air is all from ambient while αrecirc = 1 means all

cabin air is recirculated via A/C system).
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2. The dynamics of Tint and Tshell are slower than the dynamics of Tcab and Tevap. Thus,

Tint and Tshell are treated as measured inputs.

3. The sensitivity of the states to vehicle speed is not reflected in the prediction model;

accounting for this sensitivity is left to future research.

4. Blower dynamics can be ignored because of its small time constant.

3.1.2 Model Identification and Validation

Next, the outputs from the CoolSim model excited with random input signals are sampled

at 0.2Hz to generate data for identifying the unknown parameters in Eqns. (4.2)-(4.4). The

resulting identified parameters are

γ = [γ1 γ2 ... γ7] = [0.2451 0.0867 1.2999 1.0047 − 0.5176 0.4553 34.9579] ,(3.4)

τ = [τ1 τ2 τ3] = [−0.1842 − 1.3226 154.4995] . (3.5)

Fig. 3.1 shows the validation results of the control-oriented model, which predicts the sys-

tem behaviors over 300 steps into the future (1500 sec) given the measurements only at the

initial time step. Tint and Tshell, which are external inputs to the model, are assumed to be

constant over the prediction horizon. By comparing the behavior of the control-oriented

model with the high fidelity CoolSim model in Fig. 3.1, it can be seen that the identified

model (Eqns. (4.2)-(4.4)) provides reasonably accurate results.

19



Figure 3.1: Model predictions initialized at a specific time point.

3.2 Problem Formulation of the Hierarchical Optimiza-

tion

In this section, we will present the detailed problem formulations of the two-layer H-MPC,

which represents the hierarchical optimization for efficient A/C energy management and

potential integration with powertrain system control. For comparison purpose, a simpler

single-layer MPC is also formulated. For both control schemes, since the primary objective

is to minimize the energy consumption of the A/C system, accurate predictions in A/C

power consumption become important. Two major energy consumers in the A/C system

are the compressor and the blower. According to [56], their consumed powers can be
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estimated by:

Pcomp(k) =
cp

COP
ṁbl(k)(Tamb − Tain(k)),

=
cp

COP
ṁbl(k)(Tamb − γ6Tevap(k)− γ7ṁbl(k)− τ3), (3.6)

Pbl(k) = β1ṁ
2
bl(k) + β2ṁbl(k) + β3, (3.7)

where Pcomp and Pbl represent the powers of the compressor and blower (in W ), respec-

tively, cp is the specific heat capacity of air at constant pressure, COP is the Coefficient of

Performance (COP) of the A/C system [58], which is assumed to be constant for the case

studies on CoolSim model and [β1 β2 β3] = [24156 − 1974.2 49.318] are the parameters

identified from CoolSim data. These two power predictions will be utilized throughout the

development of control schemes on CoolSim model.

3.2.1 Single-layer MPC Formulation

For comparing purposes, a single-layer MPC is formulated as follows,

min
T s.p.
evap(·|k)
ṁbl(·|k)

N∑
i=0

{
Pcomp(i|k) + Pbl(i|k)

+wc(Tcab(i|k)− T s.p.cab )2

}
,

s.t. Tcab(i+ 1|k) = fTcab(i|k), i = 0, · · · , N,

Tevap(i+ 1|k) = fTevap(i|k), i = 0, · · · , N,

TLBcab ≤ Tcab(i|k) ≤ TUBcab , i = 0, · · · , N,

TLBevap ≤ Tevap(i|k) ≤ TUBevap, i = 0, · · · , N,

0.05 ≤ ṁbl(i|k) ≤ 0.15 kg/s, i = 0, · · · , N − 1,

3oC ≤ T s.p.evap(i|k) ≤ 10oC, i = 0, · · · , N − 1,

Tcab(0|k) = Tcab(k), Tevap(0|k) = Tevap(k).

(3.8)
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In (3.8), N is the prediction horizon for the single-layer MPC, (i|k) designates the predic-

tion for the time instant k + i made at the time instant k. The nonlinear MPC optimization

problem (3.8) is formulated with two objectives represented by its cost function. One is to

minimize the system energy consumption (Pcomp + Pbl) and the other one is minimize the

tracking error of the cabin temperature setpoint (T s.p.cab ) that the passenger selects. Mean-

while state and input constraints are also enforced. The values of the state and input con-

straints in (3.8) are selected according to the operation limits of the CoolSim® model. The

parameters TUBcab and TLBcab are the upper and lower limits on the cabin temperature, which

is intended to define the comfort zone of the passenger. Furthermore, TUBevap = 12oC and

TLBevap = 0oC are the upper and lower limits of the evaporator wall temperature. The weigh-

ing factors for tracking the cabin temperature setpoint is denoted by wc. The functions

fTcab and fTevap are used to represent the dynamics of Tcab and Tevap defined by Eqn. (3.1)-

Eqn. (3.3).

To formulate a baseline case based on this single-layer MPC, the prediction horizon

N is selected to be 30 sec and wc is selected to be a large positive number to guarantee

the passenger comfort. While in the reminder of this section, this single-layer MPC is

incorporated into a two-layer H-MPC design, which is further enhanced by incorporating

traffic data to improve the overall system energy efficiency.

3.2.2 Two-layer H-MPC Formulation

The two-layer solution uses a scheduling layer MPC at the upper layer, and a piloting layer

MPC at the lower layer. The scheduling layer MPC first calculates the optimal trajectories

for the A/C system with respect to future traffic events. These scheduled trajectories are

passed on to the piloting layer MPC to track these optimal trajectories. Given the relatively

slow thermal dynamics of the cabin, a long prediction horizon is required to schedule the

optimal cabin thermal trajectories. Consequently, the scheduling layer MPC is formulated

over a long prediction horizon (Hl). On the other hand, to reduce the computation burden,
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the piloting layer MPC is designed with a shorter prediction horizon (Hs) than the schedul-

ing layer MPC. Moreover, the design of the piloting layer MPC can be simplified compared

to (3.8), as the long horizon traffic information and system constraints are being included

and handled at the scheduling layer MPC.

3.2.2.1 Scheduling Layer MPC with Long Horizon

The cost function of the scheduling layer MPC is based on several modifications of (3.8). In

order to incorporate the future traffic information into the MPC design, a new variable, ηAC ,

is included to bring the sensitivity of the A/C system to vehicle speed into the optimization

problem formulation. Namely, the cost function associated with the A/C system power

consumption is defined as:

`power =
Pcomp(i|k)

ηAC(i|k)
+ Pbl(i|k), (3.9)

where, Pcomp is calculated according to Eqn. (3.6). ηAC in Eqn. (3.9) is dependent on the

vehicle speed forecast from the traffic data. When Vveh = 0, ηAC = 1. Once Vveh increases,

ηAC will increase to reflect the increase in the A/C system efficiency at higher speeds.

Another term is incorporated in the running cost function of the scheduling layer AC

MPC to reflect the objective of maintaining average cabin temperature at the setpoint

(T s.p.cab ):

`s.p. =
(
T s.p.cab −

∑Hl

i=0 Tcab(i|k)

Hl + 1

)2

, (3.10)

where,
∑Hl

i=0 Tcab(i|k)/(Hl + 1) is the average cabin temperature over the long prediction

horizon Hl.

The design of the MPC is dictated by the trade-off between the passenger comfort and

the system power consumption. To explicitly incorporate this design requirement, in addi-

tion to the physical control inputs of the A/C system (ṁbl, T
s.p.
evap), a synthetic optimization
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variable is required to determine the efficient trade-off between the A/C power consump-

tion and the passenger comfort. According to Eqn. (3.9), the energy efficient operation of

the A/C system is achieved if the upper limit of the cabin air temperature TUBcab is tracked by

the controller. On the other side, according to Eqn. (3.10), the ideal case for the passenger

comfort is to perfectly track the commanded temperature setpoint T s.p.cab . In order to lever-

age the A/C system sensitivity to the vehicle speed for improving the energy efficiency, it is

beneficial to follow TUBcab during the vehicle stops, and put more effort to track T s.p.cab during

the high efficiency periods of the A/C system operation, i.e., high vehicle speeds. To this

end, a third term is added to the running cost which is referred to as the Intelligent Online

Constraint Handling (IOCH) term (LIOCH):

LIOCH =
ηAC(i|k)− 1

ε(i|k) + ξ
, (3.11)

where, ξ > 0 is a constant. ε is a new “slack” (synthetic) optimization variable, which is

also used to update the upper limit of the cabin temperature comfort zone (TUBcab ) as follows:

T̃UBcab (i|k) = TUBcab (i)− ε(i|k). (3.12)

LIOCH defined in Eqn. (3.11) and the introduction of the slack variable lead to the following

properties:

1. when Vveh = 0 and ηAC = 1, LIOCH = 0.

2. when Vveh → 0, ε→ 0 and Tcab → TUBcab .

3. when ηAC > 1, the upper bound of Tcab is tightened to make the AC system work

harder when the AC system efficiency is higher.

Based on the above modifications, the scheduling layer MPC with traffic information

incorporated and IOCH mechanism is based on the solution of the following optimization

problem:
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min
T s.p.
evap(·|k)
ṁbl(·|k)
ε(·|k)

Hl∑
i=0

{Pcomp(i|k)

ηAC(i|k)
+ Pbl(i|k) + β

(ηAC(i)− 1

ε(i|k) + ξ

)
+λ
(
T s.p.cab (i|k)−

∑Hl

i=0 Tcab(i|k)

Hl + 1

)2

}
,

s.t. Tcab(i+ 1|k) = fTcab(i|k), i = 0, · · · , Hl,

Tevap(i+ 1|k) = fTevap(i|k), i = 0, · · · , Hl,

TLBcab ≤ Tcab(i|k) ≤ TUBcab − ε(i|k), i = 0, · · · , Hl,

TLBevap ≤ Tevap(i|k) ≤ TUBevap, i = 0, · · · , Hl,

0.05 ≤ ṁbl(i|k) ≤ 0.15 kg/s, i = 0, · · · , Hl − 1,

3oC ≤ T s.p.evap(i|k) ≤ 10oC, i = 0, · · · , Hl − 1,

0oC ≤ ε(i|k) ≤ 3oC, i = 0, · · · , Hl − 1,

Tcab(0|k) = Tcab(k), Tevap(0|k) = Tevap(k),

(3.13)

where β and ξ are constant weighting factors to adjust the trade-off between A/C system

energy consumption and cabin temperature setpoint tracking. Fig. 3.2 shows the results of

implementing the A/C MPC with IOCH mechanism on the control-oriented model. The

calculated ε(k) along with the driving cycle (UDDS) are plotted in Fig. 3.2-a. As expected

ε(k) decreases to zero whenever Vveh decreases to zero. As can be observed from Fig. 3.2-

b, Tcab follows the T̃UBcab = TUBcab − ε, which exhibits the desired energy efficient cooling

profile. Furthermore, Fig. 3.2-c verifies the desirable response of LIOCH as a function of

the vehicle speed (i.e., LIOCH(k) decreases to zero when Vveh(k) decreases to zero).

3.2.2.2 Piloting Layer MPC with Short Horizon

The planned trajectory of T̃UBcab (i|k) = TUBcab − ε(i|k) from the scheduling layer MPC is next

passed on to the piloting layer MPC, which is designed to track the scheduled trajectories.

The piloting layer MPC is defined based on the solution of the following problem over a

short horizon (Hs):
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min
T s.p.
evap(·|k)
ṁbl(·|k)

Hs∑
i=0

{
Pcomp(i|k) + Pbl(i|k)

+wc

(
Tcab(i|k)− (TUBcab (i)− ε(i|k))

)2

}
,

s.t. Tcab(i+ 1|k) = fTcab(i|k), i = 0, · · · , Hs,

Tevap(i+ 1|k) = fTevap(i|k), i = 0, · · · , Hs,

0.05 ≤ ṁbl(i|k) ≤ 0.15 kg/s, i = 0, · · · , Hs − 1,

3oC ≤ T s.p.evap(i|k) ≤ 10oC, i = 0, · · · , Hs − 1,

Tcab(0|k) = Tcab(k), Tevap(0|k) = Tevap(k).

(3.14)

As compared to the scheduling layer MPC (3.13), the piloting layer MPC has fewer

optimization variables and constraints, a less complicated cost function, and a shorter pre-

diction horizon (Hl > Hs). To reduce the fluctuation of the piloting layer MPC setpoint

(T̃UBcab ), the optimized values of ε from the scheduling layer MPC are quantized before being

passed on to the piloting layer MPC. Specifically, in our implementation, ε is quantized at

a quantization level of 0.5oC. Fig. 3.2-a shows the actual ε(k) = ε(0|k), and the quantized

ε(k), which is passed on to the piloting layer MPC.
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Figure 3.2: Intelligent online constraint handling (IOCH) performance for the UDDS (Hs=
6 (30 sec), and Hl=12 (60 sec).

3.2.2.3 Real-Time Implementation of the H-MPC

In order to validate the computational capability of the proposed two-layer hierarchical

MPC for the A/C system, the controller is implemented on a rapid prototyping system

using Speedgoat®, as an actual electronic control unit (ECU), with an Intel® Celeron Core

processor. The physical set-up of the controller can be seen from Fig. 3.3.

The controller is implemented on the control-oriented model to avoid the additional
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Figure 3.3: Speedgoat® controller and its configuration.

computation times required for simulating the high-fidelity CoolSim model. The MPC

is simulated in MATLAB/SIMULINK® using C-code based S-functions, and the SQP al-

gorithm [59, 60] has been used for solving the optimization problem numerically. The

computation times incurred at the scheduling and piloting layers and corresponding to tra-

jectories of the proposed two-layer MPC are plotted in Fig. 3.4 for the UDDS. The update

rates of both MPCs are 5 sec. As shown in Fig. 3.4, the piloting layer MPC with a short

prediction horizon of Hs = 6 requires an average computation time of 0.558 msec, with

maximum computation time of 2.9 msec. At the same time, the scheduling layer MPC re-

quires longer computation times, as it has more optimization variables and constraints with

longer prediction horizon. The results in Fig. 3.4 show that the scheduling layer MPC with

Hl = 24 requires an average computation time of 55.829 msec. The scheduling and pilot-

ing layer MPCs run simultaneously, thereby the overall computation time of the two-layer

MPC is dictated by the slower layer (scheduling layer) with the maximum computation

time of up to 62 msec. It can be observed that the computation times of the piloting and

scheduling layer MPCs are well below the ECU update rate of 5000 msec, thereby con-

firming the computational feasibility of the hierarchical MPC for real-time implementation

on an actual ECU.
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Figure 3.4: Real-time computation times of the scheduling and piloting layers MPC over
UDDS with Hs= 6 (30 sec), and Hl=24 (120 sec) implemented on the Speedgoat.

Figure 3.5: Overall schematic of the H-MPC implemented in closed-loop with CoolSim
Model.

3.3 Simulation Results and Performance Evaluation

3.3.1 A/C Energy Saving Demonstrated on CoolSim Model

Fig. 3.5 shows the overall schematic of implementing the proposed two-layer H-MPC in

closed-loop with the CoolSim model. While the hierarchical framework shown in Fig. 3.5

is generic and it allows for incorporation of weather forecast information, in this paper we

assume that the ambient temperature and weather conditions are constant.
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3.3.1.1 A/C load optimization and shift via IOCH mechanism

Fig. 3.6 presents the results of implementing the two-layer MPC for cabin thermal man-

agement and the decentralized MPC for BTM over UDDS on the high-fidelity thermal

simulation models. For the hierarchical MPC in (3.13) and (3.14), the sampling time of

T = 5 sec is considered at both layers. The passenger requests T s.p.cab = 26oC. Assuming

SOC(0) = 95%, it can be observed that the single-layer MPC (3.8) consumes a consider-

able part of the battery energy (Fig. 3.6-d) for tracking T s.p.cab . On the other hand, according

to the vehicle speed profile, the two-layer MPC schedules T̃ULbat to reduce the load on the

A/C compressor when Vveh decreases to zero (Fig. 3.6-a). In other words, the IOCH mech-

anism allows for shifting the A/C load from the inefficient periods, i.e., vehicle stops, to

the high efficiency periods, i.e., high vehicle speeds. As shown in Fig. 3.6-d, the two-layer

MPC is able to save 5.4% of the battery energy by taking proactive actions to minimize

the cooling load on the A/C compressor during low efficiency periods of the A/C system

operation.

The plotted results in Fig. 3.6-a show an average cabin temperature of 26oC for the

single-layer MPC, compared to the value of 26.5oC for the two-layer MPC with IOCH.

This means that 5.4% of the battery energy can be saved by allowing the average cabin

temperature to rise by less than 2%. Figs. 3.6-b,c, and e show the compressor speed, A/C

power demand (Pcomp +Pbl), and the quantized ε calculated by the scheduling layer MPC.

3.3.1.2 Cabin air as a thermal storage

The relatively slow dynamics of the cabin air temperatures provide a unique opportunity to

treat the cabin air as a “temporary” thermal storage. When a long stop duration is projected

by the scheduling layer MPC along the prediction horizon, the controller plans to reduce the

load on the A/C compressor. This means that when the vehicle comes to a complete stop,

Tcab starts to rise. However, due to the slow dynamics of Tcab, it does not rise immediately,

and it takes a while until Tcab reaches TUBcab . Thus, energy can be saved by shutting off
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Figure 3.6: Overall performance of the two-layer MPC with IOCH mechanism for constant
T s.p.cab and UDDS (N1=Hs= 6 (30 sec), and Hl=12 (60 sec)).

the compressor. When the vehicle starts to move again after a temporary stop, the A/C

compressor can start to run to compensate for the rise in the cabin temperature.

3.3.1.3 Compressor shut off logic

In order to take advantage of the available “temporary” thermal storage within the cabin,

we incorporate an add-on compressor shut off logic into the piloting layer MPC to increase

the energy saving potential of the proposed two-layer MPC solution. Note that if the com-

pressor is completely turned off during the vehicle stop period, Tcab may increase to even

above TUBcab . Moreover, recovering the cabin temperature from beyond TUBcab to the comfort

zone will increase the cooling load significantly, and such an increase may not be accept-

able to the passengers. Thus, to minimize TUBcab constraint violation and avoid imposing

unexpected cooling load on the A/C compressor, instead of completely turning the com-

pressor off, the compressor shut off logic (CSOL) is introduced to reduce the compressor
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Figure 3.7: Effect of increasing the scheduling layer MPC prediction horizon (Hl) of the
two-layer MPC on the battery energy consumption for UDDS. N1=Hs=6 (30 sec).

speed to below 2000 RPM when the following conditions hold:

• ε(1|k) = ε(2|k) = 0

• Tcab < TUBcab + ϑ, 1 > ϑ > 0 oC

The first criterion implies that CSOL could reduce the compressor speed if the vehicle

has come to a complete stop for at least 10 sec. This condition is imposed to ignore no-

significant vehicle stop events and minimize the transients in the compressor operation.

The second condition guarantees that Tcab will not go beyond TUPcab + ϑ threshold, where ϑ

is a small number (e.g., 0.5 oC).

The responses with the two-layer MPC and the add-on CSOL are also plotted in Fig. 3.6.

It can be seen from Fig. 3.6-a that when CSOL conditions are fulfilled, Tcab increases

slightly above TUBcab . At the same time, CSOL decreases the compressor speed (Fig. 3.6-b)

at vehicle stops, which consequently reduces the AC system power consumption (Fig. 3.6-

c). As shown in Fig. 3.6-d, the two-layer MPC equipped with IOCH and CSOL is able to

save 6.6% of the battery energy at the end of the driving cycle, compared to the single-layer

MPC.
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3.3.1.4 Impact of the prediction horizon (Hl) length

The results in Fig. 3.6 are based on a scheduling MPC with Hl = 12 (60 sec). Fig. 3.7

shows that by increasingHl from 12 to 36 (180 sec), the energy saving potential of the two-

layer MPC with IOCH mechanism will increase from 5.4% to 6.4%. This is expected as

increasing the prediction horizon makes more information available to the controller, and

the output of the scheduling layer MPC is closer to the global optimal solution. However,

there are two issues which complicate the implementation of the scheduling layer MPC

with a long horizon. Firstly, the prediction of future traffic events over a long horizon (e.g.,

greater than 30 sec) is not reliable. Secondly, extending the prediction horizon may signifi-

cantly increase the MPC computation effort, thereby making the real-time implementation

of the controller more difficult. Sec. 3.3.2 addresses the solution to these issues.

3.3.2 Impact of Uncertainties in Vehicle Speed Prediction

As discussed in the previous section (Fig. 3.7), the information about future driving condi-

tions, in particular, the vehicle speed profile over a long horizon, can facilitate the design

of an energy-efficient A/C system. In this section, we highlight the opportunity to base

an approximate knowledge of future vehicle speed profile on the average traffic flow ve-

locity (Vflow) estimate following the approach proposed in [61]. This knowledge, when

integrated into the two-layer MPC controller, can reduce energy consumption. While the

knowledge of the exact demanded traction power over a short horizon is essential for the

energy management of the HEVs, it will be shown in this section that even a very approx-

imate knowledge of the traffic flow information over a long horizon can be beneficial for

the cabin and battery thermal management.

In [61], the traffic flow data are extracted from a traffic monitoring system described

in [62], based on GPS-enabled smart phones. This system exploits the extensive coverage

of the cellular network, GPS-based position and velocity measurements, and the commu-

nication infrastructure of cellphones. Here, the traffic flow speed is calculated according to
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Figure 3.8: The average traffic flow speed estimate versus the actual speed over a driving
cycle.

the moving average of the recorded speed trajectories of 100 vehicles traveling following

the same route as the “host” vehicle over a moving time-window of 120 − 180 sec. Not

all of these vehicles are required to be on the same route as the host vehicle for the entire

simulation time, instead the speed signals of the vehicles exiting the route are replaced by

those entering the route, so that the traffic flow speed is estimated based on a large set of

vehicles speed trajectories along the host vehicle route. With this approach it is possible to

build a dynamic map of average traffic velocity over a long horizon.

In this paper, we assume that the vehicle speed can be accurately estimated over a

30-sec horizon according to V2V/V2I data, while for the rest of the long horizon, the

average traffic flow information is used to predict the thermal loads. It is envisioned that
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the traffic flow data are being collected, analyzed, and updated by a central/cloud server

in real-time, and they are available to the vehicle control system at no extra computational

cost. Additionally, Vflow is updated every 5 sec as the traffic flow changes downstream.

Fig. 3.8 illustrates the concept of the average traffic flow speed trajectory and compares it

against the actual speed profile. As can be observed from Fig. 3.8-b, over the long receding

horizon of the MPC, the vehicle speed is accurately predicted for the first 30 sec. Then, the

predicted vehicle speed merges into the average traffic flow speed band (the gray band in

Fig. 3.8-b) over the long horizon.

Figure 3.9: Overall performance of the two-layer MPC with IOCH mechanism with exact
vehicle speed profile and with traffic flow speed information for the UDDS (N1=Hs= 6
(30 sec), and Hl=24 (120 sec)).
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Fig. 3.9 represents the results of testing the two-layer MPC with exact vehicle speed

profile and estimated traffic flow speed information (Fig. 3.8) over the long prediction

horizon. It was previously shown in Fig. 3.7 that increasing Hl from 24 to 36 does not

considerably improve the energy saving results. Thus, to keep the computation time of the

scheduling layer MPC as low as possible, the value of Hl = 24 (corresponding to a 120 sec

time window) is selected. Compared with the two-layer MPC with exact vehicle speed pro-

file, it is observed that the two-layer MPC with exact vehicle speed profile and traffic flow

information results in similar cabin thermal management (Fig. 3.9-a), and that the energy

saving results from the two-layer MPC with traffic flow information are still substantial

(6.1% less battery energy consumed compared with the single-layer MPC). Furthermore,

by inclusion of the CSOL in the two-layer MPC solution, the battery energy saving from

the predictive controller with estimated vehicle speed from average traffic flow information

over the long horizon is increased to 7.5%. Eventually, Fig. 3.9-d shows that the BTM

results are similar for all studied cases, as the cabin temperature is the same. This is mainly

due to the relatively slow thermal dynamics of the vehicle. As a consequence, only major

events along the driving cycle will affect the thermal system behavior, and the proposed

approach to traffic flow speed estimation is able to capture these major traffic events for the

thermal management purpose.

3.3.3 Vehicle-level Implementation and Fuel Energy Saving

Previous simulation results were based on the assumption that the ICE power output is the

same for all scenarios. In this section, the ICE is considered as an active source of power.

To this end, the developed two-layer MPC in the previous sections is implemented at the

vehicle level hybrid controller of the Prius HEV simulation model, which also includes a

power split logic adopted from Autonomie® software [63]. The power split logic sustains

the battery charge by the end of the driving cycle so that SOC(0)=SOC(kf ). Fig. 3.10-

a shows that charge sustainability constraint is met over the UDDS for both controllers.
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However, since the two-layer MPC consumes less battery energy for thermal management

purpose, State of Charge (SOC) is higher on average for the two-layer MPC compared

to the single-layer MPC. This means that the power split logic commands the ICE to run

for a longer time to compensate the drop in SOC from the single-layer MPC, so that the

battery charge is sustained by the end of the driving cycle. Consequently, the overall fuel

consumption is higher from the single-layer MPC. As shown in Fig. 3.10-b, the two-layer

MPC reduces the HEV equivalent fuel consumption by 2.2%, while reducing the engine

ON percentage by 2.7% during the driving cycle. This improvement is attributed to the

inclusion of future vehicle speed prediction into the optimization.

Figure 3.10: Results of implementing the single-layer and two-layer MPC with IOCH
mechanisms on the high-fidelity Autonomie® HEV model for overall fuel consump-
tion evaluation over UDDS assuming SOC(0)=60% (N1=Hs= 6 (30 sec), and Hl=24
(120 sec)).
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Figure 3.11: Results of implementing the single-layer and two-layer MPC with IOCH
mechanism on the high-fidelity Autonomie® HEV model for overall fuel consumption eval-
uation over NYCC assuming SOC(0)=54% (N1=Hs= 6 (30 sec), and Hl=24 (120 sec)).

For the congested city driving cycle (e.g., New York City Cycle (NYCC)), as shown in

Fig. 3.11, the two-layer MPC with IOCH is able to reduce the HEV fuel consumption by

5.3%, compared to the single-layer MPC that tracks a constant cabin temperature setpoint.

Compared to the single-layer MPC, the two-layer MPC decreases the fuel consumption by

reducing the A/C cooling load on the battery at relatively long vehicle stops over the con-

gested driving cycle, which results in less battery charge depletion. Consequently, the ICE

needs to run for a shorter time by 6.7% (Fig. 3.11-c). By comparing UDDS and NYCC

results from Figs. 3.10 and 3.11, it can be observed that due to nature of the NYCC, the

energy saving resulted from two-layer MPC is larger for NYCC. This is because for the
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NYCC, the cumulative vehicle stop time is longer than on UDDS. Thus, if the A/C cool-

ing load is not optimized with respect to traffic conditions and the A/C compressor keeps

working during the long stops, the battery charge will drop quickly. Moreover, compared to

UDDS, the average traction power is lower by 70% for the congested traffic condition. As-

suming the same weather and initial cabin temperature conditions, the A/C system power

consumption is in the same range for both driving cycles. Therefore, the ratio of A/C

cooling power to the NYCC traction power is much higher than the same ratio for UDDS,

meaning that optimization of the A/C cooling load will have a more significant impact on

the fuel consumption rate for the congested driving cycle, as shown in Fig. 3.11.

Finally, the same A/C energy management strategy is implemented over different driv-

ing cycles. Fig. 3.12 shows the vehicle-level fuel energy saving of the proposed strategy

compared with the single-layer MPC baseline. As can be seen from Fig. 3.12, the energy

saving benefit of the proposed A/C energy management strategy is more pronounced as

the traffic congestion level increases, which confirms the conclusion made above when

comparing the results between the UDDS and NYCC driving cycles.

Figure 3.12: Vehicle level energy saving results over different driving cycles compared
with the single-layer MPC baseline.
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CHAPTER 4

Precision Cooling Strategy (PCS)

In Chapter 3, we proposed a hierarchical optimization framework for efficient A/C energy

management, which leverages the vehicle speed sensitivity of A/C system efficiency for

saving energy. In particular, the two-layer MPC structure considers the time-scale dif-

ference between the power and thermal systems and handles the uncertainties in vehicle

speed prediction. Simulations results over different driving cycles have demonstrated the

energy saving potentials. However, from the perspective of passenger comfort, only the

constraints on the average cabin temperature (Tcab) was applied in the H-MPC problem

formulation, which is not sufficient to represent practical occupant thermal comfort (OTC)

requirements. To this end, the subsequent development in this dissertation will focus more

on defining practical OTC metrics and incorporating them into overall A/C energy man-

agement problem.
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4.1 Discharge Air Cooling Power and Comfort Implica-

tions

In this chapter, a precision cooling strategy (PCS) is proposed, attempting to address the

trade-offs between the occupant thermal comfort and the A/C system energy consumption

[53]. In order to quantify such trade-offs, a new performance metric, discharge air cooling

power (DACP), is defined as follows:

PDACP (t) = cp(Tcab(t)− Tdischarge(t))ṁbl(t), (4.1)

where cp is the specific heat capacity of air, Tcab represents the average cabin temperature,

Tdischarge represents the discharge air temperature, namely, the temperature of the air after

the heat exchange with the evaporator, and ṁbl represents the air flow rate into the cabin

delivered by HVAC blower. Note that the DACP in Eqn. (4.1) is defined for the case

when A/C is running in the recirculation mode, which is also the simulation condition

investigated in this chapter. If fresh air mode is considered, Tcab should be replaced by Tamb

(ambient temperature). The integral of DACP over time is referred to as the Discharge Air

Cooling Energy (DACE) and it is denoted by EDACE , which will be used to quantify the

overall cooling delivered to the cabin over a specified time window. Note that if the heats

picked-up along the air delivery path is neglected, we may treat Tdischarge the same as Tain

(vent air temperature) as defined in previous chapter.

A key assumption behind this definition is that there exists a time-varying trajectory of

PDACP,targ that, if it is precisely tracked, the occupant comfort requirement can be satisfied.

In the definition, two major variables, temperature and flow rate of the cooling air, are

considered to primarily impact the comfort. Compared with the average room temperature,

which is commonly used as the performance metric in building HVAC control [56], [57]

and also in our previous works [21], [38], [39], the choice of PDACP accounts for special
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characteristics of the automotive A/C system. In a passenger vehicle, occupants sit close

to the vents and directly feel the temperature and the amount of air flow. The occupants’

sensation to A/C is therefore not directly correlated to average cabin temperature but instead

may be better captured by the new performance index proposed here. We note that realistic

occupant comfort requirements are much more complicated than the PDACP,targ metric

defined here and that a more comprehensive OTC model will be presented in Chapter 6.

Besides the precise tracking of PDACP,targ which is intended to prevent over-cooling of the

cabin, the idea similar to the development in Chapter 3 of exploiting the speed sensitivity

of A/C system efficiency will also be pursued in the design of the PCS.
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4.2 Control-oriented Model Development for ACSim

4.2.1 Predictive Model Structure

Like other high-fidelity A/C system models [54], ACSim model introduced in Chapter 2

involves detailed thermal and fluid dynamics of the refrigerant and has a large number

of look-up tables from calibrations, which make it impossible to be used in a controller

design. Therefore, a simplified model of the system dynamics is necessary. Specifically, the

following discrete-time model structure is proposed to satisfy the requirements for MPC-

based design:

Tevap(k + 1) = fTevap = Tevap(k)

+ γ1(Tevap(k)− Tevap,targ(k))

+ γ2(Tevap(k)− Tamb)ṁbl(k)

+ γ3(Tevap(k)− Tamb)∆ṁbl(k) + γ4, (4.2)

ṁbl(k + 1) = fṁbl
= ṁbl(k) + ∆ṁbl(k), (4.3)

Tdischarge(k) = fTdischarge

= γ5Tevap(k) + γ6Tcab(k) + γ7. (4.4)

In Eqns. (4.2)-(4.4), Tcab, Tevap, Tamb, ṁbl and Tdischarge represent the cabin average air

temperature, the evaporator wall temperature, the ambient temperature, the blower air flow

rate, and the discharge air temperature, respectively. All temperatures are in oC and the

blower air flow rate has the units of kg/s. The model states are Tevap and ṁbl. The model

inputs are the incremental blower air flow rate, ∆ṁbl, and the evaporator wall temperature

target, Tevap,targ. The model parameters, γi (i = 1, 2, ..., 7), are constants and to be identi-

fied for matching the system responses. This predictive model is nonlinear because of the

multiplicative coupling between model states and inputs in Eqn. (4.2).
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Compared with the evaporator wall temperature model proposed in [21] and presented

in Chapter 3, which is modeled as a first-order system with Tevap,targ as an input, air flow

effects (ṁbl and ∆ṁbl) are considered in this work based on the observation that with fixed

Tevap,targ, Tevap changes when air flow changes.

4.2.2 Model Identification and Validation

Next, the ACSim model is simulated with different random sinusoidal input signals. The

system responses are collected with the sampling time, Ts = 3sec, to identify the un-

known parameters in Eqn. (4.2) and Eqn. (4.4). The resulting identified parameters are

γ = [γ1 γ2 ... γ7] = [−0.084,−0.487,−1.121,−1.730, 0.729, 0.690,−11.457].

Fig. 4.1 provides the validation results of the simplified predictive model for matching

the outputs from ACSim model. It confirms the good accuracy of the proposed model in

modeling the key dynamics of the A/C system.
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Figure 4.1: Model validation results of ∆Tevap(k) = Tevap(k + 1) − Tevap(k) and
Tdischarge(k) for given sinusoidal excitations.

4.3 Problem Formulation of the PCS

In this section, the problem formulation of the proposed PCS is described, whose objective

is combining the minimization of overall A/C energy consumption and the tracking error

with respect to the target PDACP,targ trajectory. As may be observed in Fig. (??), the com-

pressor power is dominant as compared with the EDF power. Therefore, we decide to use

the predicted compressor power in the cost function to reflect the overall system energy

consumption in the proposed nonlinear MPC (NMPC) problem. According to [56], Pcomp

can be estimated by:

Pcomp(k) =
cp

COP (k)
(Tcab(k)− Tdischarge(k))ṁbl(k), (4.5)
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where cp = 1008 J/(kg ·K) is the specific heat capacity of air at constant pressure, COP

represents the A/C system coefficient of performance [58]. Note that, COP may be time-

varying, however, in the MPC problem formulation, it is assumed to be constant over the

prediction horizon and will be updated based on current measurements at the beginning

of each control iteration. Fig. 4.2 shows the comparison between the compressor power

estimated using Eqn. (4.5) and the actual compressor power computed by ACSim, which

is based on the thermo-dynamics of the vapor-compression refrigeration system.
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Figure 4.2: Estimated compressor power based on Eqn. (4.5) compared with actual com-
pressor power measured from ACSim.
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Then, we define the PCS strategy as the following nonlinear optimization problem:

min
∆ṁbl

Tevap,targ

Np∑
i=0

{
Pcomp(i|k) + α · (PDACP (i|k)

−β(i|k) · PDACP,targ(i|k))2

}
,

s.t. Tevap(i+ 1|k) = fTevap(i|k),

ṁbl(i+ 1|k) = fṁbl
(i|k),

0 oC ≤ Tevap(i|k) ≤ TUBevap(i|k),

0.05 kg/s ≤ ṁbl(i|k) ≤ 0.15 kg/s,

− 0.05 kg/s ≤ ∆ṁbl(i|k) ≤ 0.05 kg/s,

2 oC ≤ Tevap,targ(i|k) ≤ 10 oC,

Tevap(0|k) = Tevap(k), ṁbl(0|k) = ṁbl(k).

(4.6)

In (4.6), (i|k) denotes the prediction for the time instant k+imade at the time instant k,

fTevap and fṁbl
are from Eqn. (4.2) and Eqn. (4.3). In the cost function, α and β are design

parameters. In this study, α is set to be a large positive constant, e.g., 105, to ensure the

tracking performance. While β can be either constant, 1, or time-varying with respect to

vehicle speed preview, depending on the operating scenarios of the A/C system. Detailed

design of β and its impact will be discussed in the next section. PDACP,targ and TUBevap rep-

resent the target DACP trajectory and the time-varying upper bound for Tevap, respectively,

which are assumed to be known over the prediction horizon. Constant constraints for other

variables are given according to the system operating requirements. For the results pre-

sented in the next section, the prediction horizon, Np, is set to be 10. The NMPC problem

described by (4.6) is solved numerically using the MPCTools package [64]. This package

exploits CasADi [65] for automatic differentiation and IPOPT algorithm for the numerical

optimization.
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4.4 Simulation Results and Performance Evaluation of the

PCS

4.4.1 Simulation Results on the Simplified Model

The performance of the proposed MPC-based PCS is first evaluated on the simplified sys-

tem model developed in Section 4.3. In Fig. 4.3, an example of simulating a typical sum-

mer cabin cool-down scenario is shown. In order to ensure precise tracking of PDACP,targ,

constant β = 1 is set. Vehicle speed trajectory from Supplemental Federal Test Procedure-

1 (SC03) cycle is applied. It can been from Fig. 4.3 that all the state and input constraints

in red dotted lines are satisfied, and perfect tracking of PDACP,targ is achieved except for

the initial transient period. In this simulation, Tcab and COP are assumed to be constant

values.

4.4.2 Simulation Results on the ACSim Model

Next, the proposed control strategy is integrated in closed-loop with the ACSim model.

Fig. 4.4 illustrates the implementation in Simulink®. The model predictive controller takes

sensor measurements, predefined PDACP,targ trajectories, and future vehicle speed from the

traffic prediction as inputs, solves the optimization problem defined by (4.6), and provides

the control inputs to the ACSim model.

In this case study, the proposed MPC controller updates the control inputs every 3 sec,

while the outputs from ACSim model is originally sampled at 0.1 sec. The same cabin cool-

down process is considered and PDACP,targ trajectory is calculated from a Ford benchmark

case over SC03 cycle. In addition, a heuristic design of β with respect to the speed profile

from SC03 cycle is applied. The dependence of β on different vehicle speed can be seen

from Fig. 4.5. The idea behind such heuristic design of β coincides with the exploration of

the speed sensitivity of A/C operation, which is that energy efficiency may be improved by

shifting the A/C load from low efficiency region (at low vehicle speed) to high efficiency
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Figure 4.3: Performance evaluation of the proposed PCS on the simplified A/C system
model.

Figure 4.4: Schematics of integrating the MPC-based PCS with ACSim model in
Simulink®.
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region (at high vehicle speed). In the simulation with time-varying β, the vehicle speed

over the prediction horizon is assumed to be known via connectivity technology, thus the

values of β over the prediction horizon are also available.
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Figure 4.5: Heuristic design of speed-dependent β.

Fig. 4.6 compares the benchmark case with the NMPC results with constant β and

speed-dependent β, respectively. As observed from the results, for the constant β case,

the NMPC regulates the control inputs to achieve precise tracking of the PDACP,targ tra-

jectories. For the speed-dependent β, the actual PDACP varies around the target. In ad-

dition, clear coordination between the control inputs and vehicle speed can be seen in the

speed-dependent β case indicating successful load shift as intended. In this simulation,

Tcab and COP are assumed to have constant values along prediction horizon for each con-

trol iteration and are updated using measurements at every sampling instant. Additional

system responses including the trajectories of Pcomp, PEDF , Tcab and Tdischarge are shown

in Fig. 4.7. Detailed energy consumptions of different cases are reported in Table 4.1. It

can be seen that, compared with the benchmark case, the total A/C energy consumption is

reduced by 4.9% for the MPC results with constant β. This is because for matching the

PDACP,targ, the MPC-based controller tends to reduce the air flow (ṁbl) towards the end of

50



the cycle, which results in the same pull-down period of the cabin temperature (Tcab) but

slight increase in final cabin temperature (with difference less than 1oC). In other words,

the actual cooling capacity of the A/C system is reduced for the MPC case while achieving

the same occupant thermal comfort level according to the proposed metric. If we compare

the MPC results with speed-dependent β with the ones with constant β, we can see that the

energy consumption of the A/C system may be further reduced by 0.8% while providing

1.1% higher EDACE . The energy saving achieved by A/C load shifting can be even higher

if designing β optimally instead of designing it in a heuristic way.
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ṁ

bl
[k
g
/
s]

Figure 4.6: Comparison between the proposed PCS and the benchmark case on the ACSim
model (key control variables).
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Table 4.1: A/C system energy consumption comparisons of applying constant β = 1 and
speed dependent β with respect to the benchmark.

EDACE [kJ] Ecomp [kJ] EEDF [kJ] Etot [kJ]
Benchmark 1378.4 689.4 103.2 792.6

Constant β = 1 1377.7 (-0.1%) 653.4 100.6 754.0 (-4.9%)
Spd-dependent β 1392.0 (+1.0%) 647.2 100.6 747.8 (-5.7%)

Fig. 4.8 reports the elapsed CPU time for each control iteration compared with 3 sec

for the MPC sampling time. This result is obtained based on a 2.9 GHz Windows com-

puter for the speed-dependent β case considered in this section. Note that the worst case

execution time is significantly lower than the available time. These results suggest that

our NMPC approach could be computationally feasible even in slower ECU as the ECU

implementation will be based on highly optimized C-code (rather than Matlab) that, based
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Figure 4.8: Elapsed CPU time for computing MPC solution for each control instant on
ACSim model.

on our past experience, is likely to offset the processor differences.
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CHAPTER 5

Experimental Validation of an Eco-cooling

Strategy on a Hybrid Electric Vehicle

In this chapter, the design and vehicle tests of an eco-cooling strategy will be presented.

The eco-cooling strategy leverages the sensitivity of A/C system efficiency to vehicle speed

demonstrated in previous chapters. The design of eco-cooling strategy inherits the idea

from the precision cooling strategy (PCS) presented in Chapter 4, but is adapted to the

specific vehicle testing requirements. The energy savings on both A/C system level and

vehicle level will be demonstrated based on the average value of multiple repeatable tests.

Besides the energy saving from the eco-cooling tests, A/C recirculation impact will also be

discussed based on additional testing results.
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5.1 Vehicle Instrumentation and Baseline Tests on HVAC

System

5.1.1 Vehicle Instrumentation

Our testing vehicle is a 2017 Toyota Prius Four Turing HEV, which was procured in June

2017. It has been instrumented by Roush in order to enable the implementation of the

HVAC controls and demonstrate the vehicle energy saving. The schematic of the modified

HVAC system is shown in Fig. 5.1.

Figure 5.1: Schematic of the Modified Toyota Prius HVAC Control System with added
thermocouples, CAN open thermocouple module, auxiliary battery, and In-Car PC.

As can be seen from Fig. 5.1, the original control loops are modified to access the avail-

able signals (see the full list in Appendix A) on the Controller Area Network (CAN) and

Local Interconnect Network (LIN) buses through the In-Car PC via a NeoVI Fire mod-
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ules. The In-Car PC is communicating with the testing laptop via Ethernet, where the

CAN/LIN messages are read and logged through a LabVIEW interface. The LabVIEW

interface allows for real-time data collection from the vehicle, and intercepting the A/C

control commands by the user. All accessible vehicle measurements are listed in Appendix

A. The commands, which can be sent to the vehicle in real-time, include the A/C blower

speed, cabin temperature setpoint, blend door position setpoint, AC On/Off command, rear

HVAC On/Off command, recirculation On/Off command, ECO mode On/Off command,

rear/front defrost On/Off command, and auto mode On/Off command. In order to evaluate

the thermal behavior inside the cabin, additional thermocouples have been installed within

Figure 5.2: Schematic of the developed Simulink model to parse UDP data to be used in
real-time by the HVAC controller.
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the cabin, and added to the CAN bus. These thermocouples are shown on the top right in

Fig. 5.1, including the temperature measured above the dashboard and the vent air temper-

ature. Moreover, comprehensive airflow measurement tests have been performed by Roush

to generate the A/C blower air flow map (see Appendix B), which will be used to develop

the eco-cooling strategy.

To facilitate the design of the eco-cooling strategy and the vehicle tests in MATLAB/Simulink

environment, a Simulink model (shown in Fig. 5.2) was developed to parse the messages,

which will be used as feedback signals for the HVAC controller in real-time. Moreover,

the developed Simulink model sends the computed HVAC control signals to the vehicle

network by converting the control signals to UDP data. Overall, the instrumented vehi-

cle allows us to log the vehicle data and update control commands by a Simulnik-based

controller interface.

5.1.2 Vehicle Testing Results to Characterize HVAC System Impacts

To quantify the impacts of HVAC system on fuel economy, vehicle heating tests were

performed during December 2017 and January 2018 and cooling tests were performed

from May 2018 to July 2018. The testing results are reported separately in what follows.

5.1.2.1 Vehicle Tests to Characterize Heating System Impact

Unlike the cooling system, the heating system of our test vehicle utilizes the engine coolant

heat. The heating power is delivered to cabin by the HVAC blower. Whenever free energy

from engine waste heat is used for heating, there is no incremental energy consumption

penalty. However, in cold weather, when engine waste heat is not sufficient, the fuel con-

sumption may increase [29] during city driving and extended engine idling operation.

In the cold weather, extensive vehicle tests were performed to to understand the impacts

of vehicle heating system on fuel consumption. It was found that in a city driving test with

light traffic and ambient temperature around −8oC, vehicle fuel consumption increases
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by 21% due to the operation of the heating system, while negligible energy consumption

increase is observed for highway tests with the same HVAC operation. During the city driv-

ing tests, auxiliary components of the heating system (e.g. engine coolant pump and HVAC

blower) consume little energy and so most of the fuel consumption increase is attributed to

engine efficiency drop and extended engine idling time. The energy saving opportunities

exist in coordinating the control of HVAC system with engine operation to maintain the

high operation efficiency of the engine and minimize the engine idling time.

Details of the testing results are reported as follows. A local driving test was performed

at two different days when the ambient temperatures were around −8oC. The data of three

trips along the same route with HVAC on (75oF temperature setpoint and constant blower

flow rate) were collected on the same day, while, the data for HVAC off case were collected

on the other day. The same testing scenario were implemented for highway driving as well.

The testing routes and vehicle speed profiles of all trips are shown in Fig. 5.3 and Fig. 5.4

for local and highway driving, respectively. The energy consumption values are compared

in Table 5.1 and Fig. 5.5. Note that the vehicle-level energy consumptions is computed

using the following equation which will be used throughout this chapter for all vehicle

tests:

Eveh =

∫ T

0

ṁair(t)

AFR(t)
· LHV dt+

Ebatt ·∆SOC
ηsys

, (5.1)

AFR(t) = λ(t) · AFRstoich, (5.2)

∆SOC = SOC(0)− SOC(T ), (5.3)

where T represents the duration of each test run, ṁair represents the air flow rate into the

engine measured by the Mass Air Flow (MAF) sensor, AFR, λ, and AFRstoich repre-

sent the air-fuel ratio, equivalent air-fuel ratio (measured), and stoichiometric air-fuel ratio,

respectively, LHV represents the Lower Heating Value (LHV) of the gasoline, Ebatt repre-
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sents the battery capacity, ηsys represents the energy conversion efficiency from fuel energy

to battery energy, and SOC represents the estimated battery state of charge from the mea-

sured CAN data. In general, this vehicle-level energy consumption (Eveh) computation is

based on adjusted fuel energy which accounts for the SOC deviation over the entire test

trip.

Figure 5.3: Local driving tests: Route (left) and vehicle speed profiles (right).

Figure 5.4: Highway driving tests: Route (left) and vehicle speed profiles (right).
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Figure 5.5: Summary of the results for vehicle heating tests.

Table 5.1: Vehicle-level energy consumption comparison
Test1 (MJ) Test 2 (MJ) Test 3 (MJ) Average (MJ) Increase (%) MPG

Local test HVAC off 12.15 9.64 8.41 10.07 0 47.4
HVAC on 12.66 12.61 11.40 12.22 21.35 39.0

Highway test HVAC off 72.08 66.58 66.76 68.47 0 45.5
HVAC on 69.81 68.20 68.61 68.87 0.58 45.4

Key findings of the heating tests are summarized in Fig. 5.5. The differences in fuel

consumption between highway and local driving are correlated with the coolant tempera-

ture differences.

5.1.2.2 Vehicle Tests to Characterize Cooling System Impact

Two sets of vehicle tests to characterize the impact of A/C operation on vehicle-level energy

consumption have been performed:

• The first set of tests was performed in May 2018 on a local driving route in Ann Ar-

bor. While the driving route, travel time, and average vehicle speed were controlled
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to be similar, due to external disturbances, changing traffic dynamics, and variable

traffic light timings, the overall vehicle traction energy consumption may vary be-

tween tests. However, the energy consumed by the A/C system is consistent among

different cases.

• In order to achieve more consistent vehicle speed profiles among different tests, an-

other set of repeatable tests was performed in July 2018 to mimic the congested

driving conditions with accurate control of stop-and-go timing in a disturbance-free

driving environment.

Detailed testing conditions and results are reported as follows.

Tests performed on a local route: This set of tests was performed along a route shown

in Fig. 5.6. It is a 4.1-mile trip in Ann Arbor and the tests were done with no traffic.

Fig. 5.7 shows the speed trajectories during the six tests, three of which had A/C system off

and three of which had A/C system on. The A/C on tests and A/C off tests were performed

on two different sunny days with the same ambient temperature. The test conditions are

summarized in Table 4.2.

Figure 5.6: Local testing route information.
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Figure 5.7: Local tests speed profiles.

Table 5.2: Test conditions for local driving tests.
Ambient temperature A/C temp set-point A/C blower Recirculation

81F o 65F o Maximum No

Table 5.3: Vehicle-level energy consumption comparison (local driving tests).
Test 1 Test 2 Test 3 Average Increase MPG

HVAC off 5.84 MJ 5.65 MJ 5.19 MJ 5.56 MJ 0 85.9
HVAC on 10.14 MJ 8.19 MJ 8.17 MJ 8.83 MJ 58.8% 54.2

The vehicle-level energy consumption for each test was computed based on the testing

data. Table 4.3 provides energy consumption comparison between A/C off and on cases.

As inferred from the test results, the A/C operation can cause a significant increase in

the vehicle level energy consumption. Our energy consumption comparison results are

reasonable under the assumption that the energy used for driving the vehicle are the same

among all testing trips. This assumption is reasonable under the following conditions:

1. Each test trip starts and ends at the same location.

2. Overall trends in speed trajectories are similar (See Fig. 5.8 for the speed profile

comparison without stops due to red traffic signals). The detailed differences occur

mainly due to time shift related to the uncertainties in the traffic signals and traffic

flow conditions.

Detailed A/C compressor and evaporator behaviors can be seen in Fig. 5.9.
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Figure 5.8: Local tests speed profiles with removed stops.

Figure 5.9: A/C system responses during local tests.

Tests performed in “simulated and controlled” congested driving conditions: Al-

though we showed in Fig. 5.8 that the speed profiles are getting closer as we remove the

stops due to uncertain traffic signals, the differences in speed profiles may still cause dif-

ferences in fuel energy consumed for driving the vehicle. Therefore, the second set of tests
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with repeatable and accurate controlled vehicle speed was performed in a disturbance-free

environment aiming at mimicking the congested city driving scenario.

These tests were performed with testing conditions shown in Table 5.4. For this set of

tests, the vehicle speed trajectories are repeatable, see Fig. 5.10. Adjusted energy consump-

tion for each case and the A/C system responses are reported in Table 5.5 and Fig. 5.11,

respectively. Compared with the local driving test, the impact of A/C system operation on

vehicle fuel consumption is even more significant for congested driving scenario. This can

be explained by the fact that the average vehicle speed for emulated congested city driving

case (17.9 km/s) is lower than the one for the local driving case (29.7 km/h). There-

fore given the same time period, the energy consumed for driving the vehicle is less for

the former case. At the same time, energy consumed by A/C system is approximately the

same.

Table 5.4: Test conditions for parking lot tests.
Ambient temperature A/C temp set-point A/C blower Recirculation

90F o 65F o Maximum No

Figure 5.10: Parking lot tests with repeatable vehicle speed profiles.
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Table 5.5: Adjusted fuel energy consumption comparison (parking lot tests).
Test 1 Test 2 Average Increase MPG

HVAC off 4.28 MJ 4.55 MJ 4.42 MJ 0 72.9
HVAC on 9.09 MJ 8.06 MJ 8.58 MJ 94.0% 37.6

Figure 5.11: A/C system behaviors during parking lot tests.

5.2 Eco-cooling Strategy

In this section, the control-oriented model of the A/C system in the test vehicle will be pre-

sented followed by the detailed problem formulation of the proposed eco-cooling strategy.

5.2.1 Control-oriented Model Development of the A/C System

The control-oriented model for the A/C system of the test vehicle is similar to the one

used for the development of the precision cooling strategy (PCS) presented in Chapter 4.
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However, modifications were made to account for the differences between the physical

setup of the test vehicle and the ACSim simulation model. Specifically, in the test vehicle,

the vapor-compression process (i.e. the compressor and the evaporator) is not directly

controlled to avoid damaging A/C system components. In particular, the nominal controller

adjusts the evaporator wall temperature (Tevap,targ from Eqn. 4.2) is not accessible in the

vehicle tests while our controller manipulates the cabin cooling demand by adjusting the

blower flow rate (ṁbl) and cabin temperature setpoint (Tsp). The control-oriented model

then has the following form,

Tevap(k + 1) = fTevap

= γ1Tevap(k) + γ2(Tevap(k)− Tamb)ṁbl(k) + γ3, (5.4)

Tain(k) = fTain

= γ4Tevap(k) + γ5Tsp(k), (5.5)

where Tevap, Tamb, ṁbl and Tain represent the evaporator wall temperature, the ambient

temperature, the blower air flow rate, and the vent air temperature, respectively. All tem-

peratures are in oC and the blower air flow rate has the units of kg/s. The model state is

Tevap. The model inputs are the blower air flow rate, ṁbl, and the cabin temperature setpoint

(Tsp). The model parameters, γi (i = 1, 2, ..., 5), are constants identified from the vehicle

data. This model is nonlinear because of the multiplicative coupling between model state

and input in Eqn. (5.4). The model validation results are shown in Fig. 5.12 for the sinu-

soidal input excitation is applied while the vehicle is traveling on a local route. The sam-

pling period is 5 sec and γi (i = 1, 2, ..., 5) = [1.0719,−1.2265,−2.8523, 0.8964, 0.1252],

which was identified using a different data set. As can be seen from Fig. 5.12, the model

can capture the evaporator wall temperature dynamics and match the vent air temperature

well. This experimentally-validated control-oriented model will be used by our eco-cooling

strategy.
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Figure 5.12: Model validation results of ∆Tevap(k) = Tevap(k + 1)− Tevap(k) and Tain(k)
for the sinusoidal excitations applied to the A/C system on test vehicle.

5.2.2 Eco-cooling Strategy and A/C Controls

The proposed eco-cooling strategy is determined by solving the following nonlinear opti-

mization problem with the control-oriented model (Eqn. 5.4) used to predict the responses

of the A/C system:

min
ṁbl
Tsp

Np∑
i=0

{
(PDACP (i|k)− β(i|k) · PDACP,targ(i|k))2

}
,

s.t. Tevap(i+ 1|k) = fTevap(i|k),

0 oC ≤ Tevap(i|k) ≤ 12oC,

0.05 kg/s ≤ ṁbl(i|k) ≤ 0.13 kg/s,

16 oC ≤ Tsp(i|k) ≤ 23 oC,

Tevap(0|k) = Tevap(k),

(5.6)
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In (5.6), (i|k) designates predicted values at the time instant k + i when the prediction is

made at the time instant k, while fTevap is from Eqn. (5.4) and Eqn. (4.3). In the cost func-

tion, PDACP (i|k) = cp(Tamb(i|k) − Tain(i|k))ṁbl(i|k) and β(k) is the design parameter.

The main idea of this eco-cooling strategy is to leverage the sensitivity of the A/C system

efficiency to vehicle speed which is accounted for by the design of speed dependent β.

Fig. 5.13-(a) shows the dependence of β on the vehicle speed, Vveh. The increasing trend

of β as Vveh increases represents the eco-cooling idea illustrated in Fig. 2.5. Detailed β

values at different vehicle speeds are tuned by trial and error in order to match the overall

same average PDACP of the constant cooling case over the Plymouth driving cycle shown in

Fig. 5.13-(b). This driving cycle was selected based on optimization of vehicle speed pro-

file for a six intersection corridor at Plymouth Rd., Ann Arbor in [39]. The same driving

cycle were used for the vehicle tests.
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Figure 5.13: Speed-dependent β and Plymouth driving cycle.

Solving the optimization problem in (5.6) with respect to the control-oriented model

renders the control inputs, ṁbl and Tsp. The trajectories of the control inputs for the eco-

cooling strategy are shown in Fig. 5.14. In addition, constant cooling control is selected

for comparison. Note that in Fig. 5.14, the units of the two control inputs, ṁbl and Tsp, are

converted to percentage duty cycle (%) and degree Fahrenheit (oF ), respectively, which are

direct control inputs to the vehicle A/C system.
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Figure 5.14: Control inputs for the constant cooling and eco-cooling cases.

5.3 Vehicle Tests on Open Road

The primary objective of the road tests is to demonstrate the energy saving of the proposed

eco-cooling strategy with respect to the more conventional constant cooling strategy. In the

comparison, the overall cooling performance of the two cases will also be quantified. In

order to isolate the impact of the cabin thermal management, it is crucial that the uncer-

tainties over different test trips are well-controlled, especially for the powertrain traction

loss and cabin thermal conditions. To this end, the rest of this section discusses the testing

procedures for the repeatable tests.

5.3.1 Route Selection

The road tests were performed over two different routes outside Ann Arbor. The locations

of the two tests are shown in Fig. 5.15 and Fig. 5.16. Both routes are straight, with no stops

and very little traffic so that we can emulate the Plymouth driving cycle shown in Fig. 5.13-

b. The speed trajectory is followed by human-driver and the speed tracking performance

will be presented later.
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Figure 5.15: Route 1 along W. Waters Road with Plymouth corridor shown in the ellipse.

Figure 5.16: Route 2 along S. Zeeb Road with Plymouth corridor shown in the ellipse.
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In terms of the road conditions, Route 1 is mostly flat but unpaved and Route 2 is paved

but with larger deviations in road grade. The photos of the road conditions of the two routes

are shown in Fig. 5.17.

Figure 5.17: Road conditions of the two testing routes.

5.3.2 Testing Process for Each Comparable Data Set

In our vehicle tests, we refer to a comparable data set as the set of tests that are performed

sequentially in one day. For demonstrating the eco-cooling impact, a comparable data set

consists of 3 consecutive trips following the Plymouth driving cycle, with the first one as

the calibration test followed by the constant cooling test and the eco-cooling test. All three

tests started at the same location. Between two tests, the vehicle cabin was fully ventilated

using the ambient air when driving back to the starting location. At the beginning each test

trip, vehicle cabin temperature was controlled to be at 30oC. Note that the calibration test

was utilized to conditioning the test vehicle, whose data will not be used for the energy

consumption comparison.

5.3.3 Speed Tracking Performance Evaluation

In terms of vehicle testing on the open road, uncertainties associated with the speed tracking

of desired driving cycle may affect the vehicle energy consumption. In order to improve
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the speed tracking accuracy, an Matlab/Simulink® interface is created to guide the human

driver. As shown in Fig. 5.18, both current vehicle speed (in red dots) and future speed

preview (in blue line) are displayed on the testing laptop so that the drive will adjust the

speed accordingly in real-time.

Figure 5.18: A vehicle test trip is ongoing along Route 1.

Fig. 5.19 provides an example of the speed trajectories for the tests performed on May

31st, 2019. As can be seen from the comparison with the planned Plymouth driving cycle,

the speed tracking error for all tests can be maintained within 2 mph for most of the time.

In addition, the average speed tracking error (eavg) and the standard deviation of the speed

tracking error (σerr) for each test are listed in Table 5.3.3. As can be observed from the

table, the average speed tracking error of each test is negligible while the standard deviation

is well-controlled. The tests with similar speed tracking results to this example will be used

to evaluate the energy consumption and cooling performance. The table summarizes the

eavg and σerr for all the tests, in 18 comparable data sets, can be found in Appendix C. In

Fig. 5.20, the box plot shows the statistical evaluations of the speed tracking performance

for all eco-cooling tests.
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Figure 5.19: Vehicle speed trajectories for the tests performed on May 31st, 2019.

Table 5.6: Average speed tracking error (eavg) and the standard deviation of the speed
tracking error (σerr) for the tests performed on May 31st, 2019.

eavg [mph] σerr [mph]
Calibration 0.24 2.52

Constant cooling 0.04 2.13
Eco-cooling −0.11 1.98

Constant cooling Eco-cooling
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Figure 5.20: Statistical evaluations of the speed tracking performance for all the eco-
cooling tests.
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5.4 Experimental Results

5.4.1 Eco-cooling Impact

All the tests for demonstrating the eco-cooling impact were performed over the time period

from May 23th to September 5th in 2019. The ambient air temperature during the testing

period is within a large range between 22oC to 34oC. In total, 18 comparable data sets

were collected (13 from the tests on Route 1 and 5 from the tests on Route 2). With well-

controlled speed trajectories as presented in previous section, the average results of these

18 tests can demonstrate the impact of the proposed eco-cooling strategy.

Figure 5.21: Energy consumptions and cooling performance of each test.

Fig. 5.21 plots the energy consumptions and cooling performance of all tests with con-

stant cooling and eco-cooling. The energy consumptions consist of two metrics, EAC
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and Eveh, which represent the A/C system energy consumption and vehicle-level energy

consumption, respectively. A/C system energy consumption is the integral of compressor

power and blower power, which are measured. Vehicle-level energy consumption is com-

puted based on Eqn. 5.1. In terms of the cooling performance, the discharge air cooling

energy (DACE) is inherited from the PCS design, which is intended to quantify the over-

all cooling energy provided to the cabin over each test trip.For our vehicle tests, DACE is

calculated as follows,

EDACE =

∫ T

0

cp · (T adjamb(t)− Tain(t)) · ṁbl(t) dt. (5.7)

In Eqn. 5.7, T is the duration of the Plymouth driving cycle, cp is the specific heat capacity

of air, T adjamb is adjusted ambient temperature measurement, which represents the tempera-

ture of the air entering the A/C system (i.e., before heat exchange with the evaporator). T adjamb

is typically higher than the ambient air temperature (Tamb) considering extra heats picked

up along the air path, where the heat energy mostly comes from the engine compartment.

Tain is the vent air temperature measured by the thermal couple located at the front vent

shown in Fig. 5.1. ṁbl is the blower air flow rate determined by the map in Fig. B.1. In

Fig. 5.21, all 18 tests are sorted by the ambient air temperature and are separated into two

groups, mild weather and hot weather, for further comparisons. As can be observed, as the

ambient air temperature increases, the A/C system energy consumption increase dramat-

ically. More importantly, for most cases, the eco-cooling strategy saves energy from the

A/C system, which can translate into the vehicle-level energy saving. However, uncertain-

ties associated with the road condition, powertrain control, and weather conditions, cannot

be fully eliminated, which lead to several outliers in the results.

A more clear comparison can be seen from Fig. 5.22, where average energy consump-

tions and cooling performance are compared. Overall, the proposed eco-cooling strategy

saves 8% of A/C system energy, which translates into 5.7% energy saving in vehicle-level at
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Figure 5.22: Comparison of average energy consumptions and cooling performance.

the cost of compromising the cooling performance by 2.7%. The energy saving is achieved

by leveraging the A/C system efficiency to the vehicle speed. Comparing the results be-

tween mild weather and hot weather, we conclude that the impact of eco-cooling in hot

weather is more pronounced than the one in mild weather. This conclusion is drawn based

on the following observation that in mild weather, although eco-cooling saves much more

A/C system energy in terms of percentage than in hot weather, the cooling performance

is also considerably compromised, meanwhile the vehicle-level energy saving percentages

are at the same level for both cases.

Regarding the comparison of detailed time histories of the system responses, Fig. 5.23

provides an example of the tests performed on May 31st when it is sunny and the ambient

air temperature is 27oC. As shown in Fig. 5.23-(d), the eco-cooling is achieved by coordi-
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nating the A/C compressor power with respect to vehicle speed, while in constant cooling,

the compressor power is relatively constant. Note that the trajectories of the average cabin

temperature are similar for both cases. It is alsi worthy mentioning that the difference in the

auxiliary power trajectories between the eco-cooling and constant cooling cases may trig-

ger different powertrain control logic (e.g. power-split control). Whether the difference in

powertrain control contributes to the 5.7% vehicle-level energy saving or not requires fur-

ther investigations. This observation, in return, motivates the importance of the integrated

analysis of vehicle power and thermal systems.
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Figure 5.23: Time histories of the system responses for the tests performed on May 31st,
2019.
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5.4.2 Cabin Air Recirculation Impact

While the influence of cabin air recirculation on the air quality has been widely studied

(see [66] and [67]), its impact on the A/C system and vehicle energy consumption is not

clear. Besides the eco-cooling test results presented in previous section, additional vehicle

tests have been performed on Route 2 for preliminary studies on the recirculation impact

on the energy consumptions. The similar testing procedure was applied for comparing the

eco-cooling over Plymouth driving cycle with recirculation on and off cases.

Table 5.7: Average energy consumptions for recirculation on and off cases.
EAC [MJ ] Eveh [MJ ]

Recirculation off 0.385 6.54
Recirculation on 0.372 6.66

Table 5.4.2 summarizes the average energy consumptions from 5 comparable data sets

collected under mild weather conditions from August 18th to September 5th in 2019. As

shown in the energy consumption values, there is no clear energy consumption difference

between recirculation on and off cases. Detailed system responses of the tests on August

25th are plotted in Fig. 5.24. As shown in the figure, for this set of tests under mild weather

(Tamb = 25oC), the system behaviors are similar with and without recirculation. We con-

clude that the recirculation impact on vehicle energy consumptions is very limited under

mild weather condition, however, whether the conclusion is still hold for the tests under hot

weather conditions would require more investigations.
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Figure 5.24: Vehicle system responses for the tests performed on August 25th, 2019.
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CHAPTER 6

Combined Energy and Comfort Optimization

(CECO)

In Chapter 5, the vehicle testing results have been presented which confirms the effective-

ness of the proposed eco-cooling strategy on vehicle-level energy saving. Such eco-cooling

strategy coordinates the A/C operations with respect to the vehicle speed, taking advantage

of the speed sensitivity of the A/C system efficiency. However, the implication of such

A/C operation on OTC is not clear. To emphasize the impact of the eco-cooling on com-

fort, a more detailed OTC model is required. In this chapter, the OTC is is quantified by a

modified PMV model adapted for an automotive application. Compared with the comfort

metric proposed in Chapter 4, the PMV model proposed in this chapter is more comprehen-

sive and explicitly handles the solar radiation, which is one of the most important factors

regarding the OTC for automotive applications. Based on this more comprehensive met-

ric, we propose a combined energy and comfort optimization (CECO) strategy for the air

conditioning (A/C) system. By leveraging the weather and traffic predictions enabled by

the emerging CAV technologies, the proposed strategy is able to minimize the A/C system

energy consumption while maintaining the OTC within the comfort constraints. The ben-

efits of energy consumption and OTC improvement will be demonstrated via closed-loop

simulations on CoolSim.
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6.1 Occupant Thermal Comfort (OTC) Modeling

In this section, we present the OTC model based on the modified PMV which accounts for

multiple factors, including solar radiation and vent air temperature.

6.1.1 Original PMV Model

In the original PMV model for indoor spaces described in [68, 69], the PMV index compu-

tation exploits the following heat balance equation,

M −Wmech = H + Ec + Cres + Eres, (6.1)

where M and Wmech represent the metabolic rate of the occupant and the effective me-

chanical power due to work performed by the occupant, respectively. The terms on the

right of Eqn. (6.1), H , Ec, Cres, and Eres represent the dry heat loss, the evaporative heat

exchange at skin, the respiratory convective heat exchange, and the respiratory evaporative

heat exchange, respectively. All these variables are in units of W/m2. When Eqn. (6.1)

holds, the best OTC level is achieved. Otherwise, the occupant feels either warm or cold.
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Inspired by this heat balance equation, the PMV index is calculated by [68, 70]:

y∗PMV = (0.303e−0.036M + 0.028)[(M −Wmech)

− (H + Ec + Cres + Eres)], (6.2)

where,

H = 3.96 · 10−8fcl[(Tcl + 273)4 − (Tmr + 273)4]

+ fclhc(Tcl − Ta), (6.3)

Ec = 3.05 · 10−3[5733− 6.99 · (M −Wmech)− pa]

+ 0.42(M −Wmech − 58.15), (6.4)

Cres = 0.0014M(34− Ta), (6.5)

Eres = 1.7 · 10−5M(5867− pa), (6.6)

Tcl = 35.7− 0.0275(M −Wmech)− Icl{M −Wmech

− 3.05[5.73− 0.007(M −Wmech)− pa]

− 0.42(M −Wmech − 58.15)− 0.0173M(5.87− pa)

− 0.0014M(34− Ta)}, (6.7)

hc =

 2.38|Tcl − Ta|0.25, 2.38|Tcl − Ta|0.25 > 12.1
√
Vair,

12.1
√
Vair, 2.38|Tcl − Ta|0.25 ≤ 12.1

√
Vair,

fcl =

 1.05 + 0.645Icl, Icl > 0.078,

1.00 + 1.29Icl, Icl ≤ 0.078,
(6.8)

with Tcl, Tmr, Ta being the cloth surface temperature, the mean radiant temperature, and

the air temperature (in oC), respectively. The constants (or variables) fcl, hc, Icl, pa, and

Vair represent the clothing surface area factor, the convective heat transfer coefficient (in

W/(m2 ·K)), the clothing insulation (in m2 ·K/W ), the partial water vapor pressure (in

Pa), and the relative air velocity (in m/s), respectively. Note that this model represents the

comfort of an average people in population level. The model coefficients of this empirical
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model may change when applied to a specific individual.

6.1.2 Modified PMV Model for Automotive Applications

In automotive applications, the passengers are subject to direct solar radiation and their

thermal sensations are also influenced by the vent air velocity and temperature since they

sit close to the vents. To account for these effects, modifications to the original PMV model

are now proposed. Firstly, the heat balance equation Eqn. (6.1) is modified as

M +Wrad = H + Ec + Cres + Eres, (6.9)

where Wrad represents the effective solar radiation power in the unit of W/m2 and we

assume Wmech = 0 since there is no mechanical work associated with the occupant sitting

inside the cabin. Secondly, the PMV index computation by Eqn. (6.2) is modified to the

following form:

yPMV = (0.303e−0.036M + 0.028)[(M +Wrad)

− (H + Ec + Cres + Eres)], (6.10)

where H , Ec, Cres, and Eres are evaluated based on Eqns. (6.3)-(6.8) and with

Ta = α1Tcab + α2Tain, (6.11)

where α1 and α2 are the parameters introduced to account for the impact of Tain. As

compared to the original PMV model used in [71, 72], we introduced the new input Wrad

to account for the solar radiation impact on the OTC and we combined the impacts of Tcab

and Tain in Eqn. (6.11) instead of using Ta = Tcab. In this work, several assumptions have

been made in the yPMV evaluation:

1. Wrad is time-varying depending on average solar radiation, cloud coverage, vehicle
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orientation, etc. It is assumed to be known via V2X communications, e.g., using

the approach in [73]. In the simulations, Wrad trajectory over the driving cycle is

specified to qualitatively demonstrate the solar radiation impact on the OTC (i.e., the

occupant tends to feel hotter as Wrad increases);

2. Similar to [49], we use the cabin interior temperature to represent the mean radiant

temperature (i.e., Tmr = Tint), which is mainly used for capturing the radiative heat

transfer of the human body to the cabin;

3. Vair is assumed to be only affected by ṁbl so that Vair may be directly controlled.

Furthermore, there is a prescribed linear mapping between ṁbl and Vair;

4. For simplicity, humidity control is not considered in current MPC design, therefore

pa is assumed to be constant (1700 Pa) for the yPMV evaluation.

Note that according to the original definition of the PMV index, yPMV = 0, where

yPMV is defined by Eqn. (6.10), represents the best comfort level as the heat balance is

achieved in Eqn. (6.9). The occupant feels warm or cold depending on whether yPMV is

positive or negative, respectively. In Table 6.1, the PMV-based thermal sensation level is

determined according to [68].

Table 6.1: PMV-based occupant thermal sensation level.

yPMV Thermal sensation level
3 Hot
2 Warm
1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold
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6.1.3 Occupant Thermal Comfort (OTC) Constraints

As illustrated in Fig. 6.1, the upper and lower bounds on yPMV shown in the dotted black

lines are assumed to be prescribed, which may depend on occupant’s personal cooling

preference. The comfort zone is defined as the region between the upper and lower bounds.

The region complimentary to the comfort zone is referred to as the complain zone. We

further define the case when yPMV is above the upper bound as undercooling and the case

when yPMV is below the lower bound as overcooling. In the cooling case studied in this

paper, the upper bound on yPMV is time-varying to accommodate the realistic response

of the A/C system in summer as it usually takes some time to cool down the cabin to the

comfort level.

Figure 6.1: Illustration of the OTC constraints.
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6.2 Problem Formulation of the CECO-based Strategies

6.2.1 General CECO Problem Formulation

The general CECO problem is formulated as follows with the objectives of minimizing the

energy consumption while maintaining yPMV within comfort zone:

min
ṁbl(·|k)
T s.p.
evap(·|k)

Np∑
i=0

{
Pcomp(i|k) + Pbl(i|k)

}
,

s.t. Tcab(i+ 1|k) = fTcab(i|k), i = 0, · · · , Np,

Tevap(i+ 1|k) = fTevap(i|k), i = 0, · · · , Np,

yLBPMV (i|k) ≤ yPMV (i|k) ≤ yUBPMV (i|k), i = 0, · · · , Np,

TLBevap(i|k) ≤ Tevap(i|k) ≤ TUBevap(i|k), i = 0, · · · , Np,

0.05 kg/s ≤ ṁbl(i|k) ≤ 0.17 kg/s, i = 0, · · · , Np − 1,

3oC ≤ T s.p.evap(i|k) ≤ 10oC, i = 0, · · · , Np − 1,

Tcab(0|k) = Tcab(k), Tevap(0|k) = Tevap(k),

(6.12)

where (i|k) denotes the predicted value of the corresponding variable at time instant k + i

when the prediction is made at the time instant k, Np represents the prediction horizon,

the overall energy consumption of the A/C system is determined by the sum of compressor

(Pcomp) and blower (Pbl) powers in the cost function, fTcab(i|k) and fTevap(i|k) represent

the major system dynamics as defined in Eqns. (3.1) and (3.2), yLBPMV and yUBPMV are the

lower and upper bounds on yPMV , and TLBevap and TUBevap are the lower and upper bound on

Tevap, which account for the system operating limits. The lower and upper bounds on yPMV

applied in the simulation case studies over SC03 driving cycle are illustrated in Fig. 6.2.

The upper and lower bounds on ṁbl and T s.p.evap are determined based on our particular A/C

system operating limits. Note that in PMV-related studies [74], the comfort zone typically

corresponds to yLBPMV = −0.5 and yUBPMV = 0.5.
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Figure 6.2: yUBPMV and yLBPMV over SC03 driving cycle.

6.2.2 CECO-E and CECO-C

Based on the general CECO problem formulation in Sec. 6.2.1, different variations in the

controller design can be considered according to different objectives. To accommodate

the trade-off between the energy consumption and the OTC, a modified cost function as

compared to the one in (6.12) is proposed as follows,

min
ṁbl(·|k)
T s.p.
evap(·|k)

Np∑
i=0

{
Pcomp(i|k) + Pbl(i|k) + γ · y2

PMV (i|k)
}
, (6.13)

where γ is the penalty on the deviation from yPMV = 0, which represents the ideal OTC

level. We further refer to the case when γ = 0 as CECO with energy priority (CECO-

E) and refer to the case when γ equals to a large positive number (i.e., 105 in our case)

as CECO with comfort priority (CECO-C). Note that CECO-C is expected to consume

more energy for providing better OTC level compared with CECO-E.

87



6.2.3 CECO with Intelligent Online Constraint Handling (CECO-IOCH)

As discussed in the previous section, better OTC can be achieved by adding a penalty

term to the cost function of the general CECO problem, however, this may unnecessarily

increase energy consumption. Here, we propose a more energy efficient approach for im-

proving the OTC, which specifically leverages the vehicle speed preview. This approach

is implemented by solving the following variation of the CECO problem with intelligent

online constraint handling (IOCH), which is designated as CECO-IOCH.

min
ṁbl(·|k)
T s.p.
evap(·|k)
ε(·|k)

Np∑
i=0

{
Pcomp(i|k) + Pbl(i|k) + β

(ηAC(i|k)− 1

ε(i|k) + ξ

)}
,

s.t. Tcab(i+ 1|k) = fTcab(i|k), i = 0, · · · , Np,

Tevap(i+ 1|k) = fTevap(i|k), i = 0, · · · , Np,

yLBPMV (i|k) ≤ yPMV (i|k) ≤ yUBPMV (i|k)− ε(i|k), i = 0, · · · , Np,

TLBevap(i|k) ≤ Tevap(i|k) ≤ TUBevap(i|k), i = 0, · · · , Np,

0.05 kg/s ≤ ṁbl(i|k) ≤ 0.17 kg/s, i = 0, · · · , Np − 1,

3oC ≤ T s.p.evap(i|k) ≤ 10oC, i = 0, · · · , Np − 1,

0 ≤ ε(i|k) ≤ εUB, i = 0, · · · , Np − 1,

Tcab(0|k) = Tcab(k), Tevap(0|k) = Tevap(k),

(6.14)

where ηAC ≥ 1 is an efficiency multiplier [38], which is a function of the vehicle speed

(larger value of ηAC represents higher efficiency in A/C system), β, ξ, and εUB represent

the weighing factor, the regularity term, and the constant upper bound on ε, respectively.

When compared with the problem formulation in (6.12), an additional optimization variable

ε(i|k) is introduced and calculated online to actively tighten yUBPMV (i|k) considering the

speed sensitivity of the A/C system efficiency [21]. The basic idea of CECO-IOCH is

tightening yUBPMV (i|k) to provide better OTC only when A/C system is operating in high
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efficiency regions (i.e., high vehicle speed regions). By utilizing this speed sensitivity,

better energy efficiency may be achieved while maintaining the same OTC level. This

IOCH mechanism was first proposed in [38] for tightening the constraint on Tcab based on

the same speed sensitivity exploited here. yUBPMV (i|k) and yLBPMV (i|k) used in CECO-IOCH

case are the same as the ones applied in the general CECO problem. Note that CECO-

IOCH leverages both weather (Wrad) and traffic (Vveh) preview information while CECO-E

and CECO-C only utilize the weather prediction. The NMPC problems (6.12)–(6.14) are

solved numerically using the MPCTools package [64]. This package exploits CasADi [65]

for automatic differentiation and IPOPT algorithm for the numerical optimization.
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6.3 Simulation Results and Performance Evaluation of the

CECO-based Strategies

In order to compare with the CECO-based designs (i.e., CECO-E, CECO-C, and CECO-

IOCH), a baseline strategy is defined by applying a PI anti-windup controller to track a

constant cabin temperature set-point. This baseline strategy represents a more conven-

tional A/C system control strategy, which considers the average cabin temperature as the

only measure of the OTC. The implementation of CECO-based MPC controller in closed-

loop with CoolSim model is illustrated in Fig. 6.3, which takes the measurements from

the CoolSim model, the OTC evaluation, the weather and traffic predictions as inputs and

updates the controls of the A/C system. The three design scenarios are implemented by

solving variations of the general CECO problem in (6.12). The MPC controller is updated

at the sampling time Ts = 5 sec with prediction horizon Np = 6. The weather (Wrad)

and traffic (Vveh) previews are assumed to be known over the prediction horizon. Their

trajectories over SC03 cycle are shown in Fig. 6.4.

In Fig. 6.5, the time histories of major system outputs based on the closed-loop simu-

lations with the CoolSim model are shown for different control strategies. In Fig. 6.5-(a)

Figure 6.3: Schematic of implementing CECO-based MPC controller with CoolSim model
in Simulink®.
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Figure 6.4: Weather and traffic preview information for the case studies, which are assumed
available via CAV technologies.

which shows the yPMV trajectories, the hard constraints on the OTC are plotted in dotted

black lines. It is shown that the baseline controller regulates Tcab to track the set-point

(26 oC), however, according to yPMV , this baseline strategy violates the OTC constraints

for a significant amount of time, leading to both undercooling and overcooling cases. In

comparison, all CECO-based control designs are able to overall maintain the OTC within

the comfort zone. The energy and comfort comparisons of these four cases are provided in

Fig. 6.6. The total A/C energy consumption (Etot) over the simulation time T is calculated

by

Etot =

∫ T

t=0

(Pcomp(t) + Pbl(t))dt. (6.15)

To quantify the OTC level, two metrics are considered: IPMV is defined as

IPMV =

∫ T

t=0

y2
PMV (t)dt, (6.16)

and OTC violation is defined as

OTC violation =
T̃

T
× 100%, (6.17)
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where,

T̃ = {
∫ T

t=0

x(t)dt
∣∣∣ (6.18)

x(t) =

 1 : if yPMV (t) > yUBPMV (t) or yPMV (t) < yLBPMV (t),

0 : otherwise,
}.

As shown in Fig. 6.6, comparing CECO-E with the baseline strategy, the energy con-

sumption of the A/C system is reduced by 15.9%, and lower OTC violation is achieved

with higher IPMV value. When CECO-C is applied, 4.1% energy is saved compared with

the baseline strategy, meanwhile, lower values in Ipmv and OTC violation indicate that bet-

ter comfort level has also been achieved. By comparing the CECO-IOCH results with the

CECO-C, the benefit of incorporating traffic preview information is demonstrated. While

CECO-IOCH design provides similar OTC level, it saves more energy by exploiting the

speed sensitivity of the A/C system efficiency. Note that the OTC violations in CECO-C

and CECO-IOCH are all from the initial responses at the very beginning of the cycle while

in CECO-E, due to model mismatch, operating close to the constraint leads to higher OTC

violation which may occur at certain instants over the entire simulation period. CECO-

based designs save energy by avoiding the overcooling, which consumes energy and com-

promises the comfort. In our simulation case studies, as Wrad gradually decreases (shown

in Fig. 6.4), the CECO-based designs coordinate with the trend of Wrad and decrease the

A/C usage accordingly while enforcing the OTC constraints.
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Figure 6.5: Simulation results from CoolSim model when comparing different CECO-
based designs with the baseline strategy.
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To further validate the impact of the proposed CECO-based strategy on vehicle level

energy consumption, we utilize the same powertrain model from [38], which was devel-

oped and partially experimentally validated against a Prius HEV (MY 2017) data. For the

validation, the same powertain controller is applied with the A/C power trajectories from

different design cases shown in Fig. 6.5. As can be seen from Fig. 6.7, CECO-E, CECO-

C, and CECO-IOCH reduce the vehicle energy consumption by 6.4%, 1.8%, and 3.1%,

respectively, when compared with the baseline strategy over the SC03 driving cycle.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

Motivated by recent progress in CAV-related research for improving vehicle energy effi-

ciency, this dissertation has been focusing on developing efficient thermal management

strategies for the automotive climate control system. Three novel MPC-based A/C man-

agement strategies has been proposed depending on different OTC assumptions, robustness

considerations, and implementation complexities on the testing vehicle.

The first strategy, the hierarchical optimization, exploits a two-layer H-MPC design for

handling the potential uncertainties associated with the predictive information over long

horizon. It has been demonstrated in simulations over different driving cycles that, by

leveraging the vehicle speed sensitivity of the A/C system efficiency, the vehicle energy

consumption can be reduced while maintaining the cabin temperature within the constraints

when compared with a baseline of tracking constant cabin temperature.

The second strategy, the PCS, considers a more practical metric, DACP, for quantifying

the comfort level instead of the cabin temperature. The simulation results in closed-loop

with an industrial-level A/C system model shows that, the proposed PCS saves 4.9% of the

A/C energy consumption over SC03 driving cycle when compared with an OEM calibrated

benchmark. It is also demonstrated that by coordinating with future vehicle speed and shift-

ing the A/C power load, the A/C energy consumption can be further reduced. Compared
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with hierarchical optimization, the PCS has much simpler structure and is more suitable for

the vehicle demonstration. Therefore, inspired by the PCS, an off-line eco-cooling controls

for the A/C system have been computed and tested on an HEV for open road tests. The

results of 18 repeatable testing cases show that, over a real-world driving cycle, the eco-

cooling contributes to 8% A/C system energy saving, which translates to 5.7% vehicle-level

energy saving at the cost of slightly compromised overall cooling performance.

In the third strategy, the CECO, a comprehensive OTC model is developed and incor-

porated into the optimal control problem. In simulations, it has been shown that, besides

leveraging the speed sensitivity of the A/C system efficiency, additional vehicle energy

saving can be achieved with improved the OTC level by avoiding the over-cooling,.

Above all, in this dissertation, we’ve discovered the dynamic coupling between the

thermal and power systems, focused on leveraging the special characteristics of the auto-

motive HVAC system to facilitate the iPTM design, developed real-time implementable

algorithms to perform the energy and comfort optimizations, and demonstrated the energy

saving benefits via repeatable vehicle tests.
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7.2 Future Work

Future working directions beyond the scope of this dissertation may include the following

two aspects:

• Generalized iPTM to other thermal systems: This dissertation addresses the iPTM

problem with respect to the A/C system, which is one of the vehicle thermal subsys-

tems. The energy saving benefits in the context of CAV has not been fully explored

for other thermal management systems in electrified vehicles, such as those for en-

gine, battery, and electric machine. Even within the climate control system, the heat-

ing counterpart has not been fully investigated. The optimal control problem for the

heating system can be more interesting since multiple heat sources can be involved

for future electrified vehicle, such as the engine coolant, Positive Temperature Coef-

ficient (PTC) heater, and heat pump. Robust control solutions within each thermal

subsystem as well as for the integration with the power system are required for future

CAV design.

• Adaptive comfort optimization considering occupant feedback: In this disserta-

tion, the proposed combined energy and comfort optimization renders the solution

assuming that the personal comfort model is accurately known as priori. However,

in practice, each individual may have personal preference and the personal comfort

requirement may also change with time. To this end, it is necessary to make the

comfort optimization adaptive to the occupant’s feedback while still preserve the

capability of leveraging the speed sensitivity of the system efficiency. Besides the

adaptive design, the validation of a nominal OTC model for an average person is still

a challenging work considering the complex cabin thermal environment. Eventually,

a personalized efficient climate control would be ideal for future CAVs.
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APPENDIX A

List of Vehicle Onboard Measurements

The following list provide the information of all available onboard measurements of the

testing vehicle, which are used for the system analysis and control design. Note that the

”control signal” of the list indicates whether the signal can be directly controlled in real-

time for the HVAC system via the testing laptop.

Table A.1: List of vehicle onboard measurements.
Signal Name Unit Notation Control signal?

Cabin temperature setpoint oF Tsp Y
HVAC blower flow % ṁbl Y
Blend door positon Enum na Y

A/C on/off Commend Boolean na Y
Rear HVAC on/off Boolean na Y

Recirculation on/off Boolean na Y
ECO mode on/off Boolean na Y
Rear defrost on/off Boolean na Y
Front defrost on/off Boolean na Y

Auto mode on Boolean na Y
HVAC off Boolean na Y

Engine speed RPM Neng N
Engine torque Nm τeng N

Equivalent air/fuel ratio na λ N
Engine mass air flow g/s ṁair N
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Signal Name Unit Notation Control signal?
Engine coolant pump speed RPM Ncl N
Engine coolant temperature oC Tcl N

Catalyst temp oC Tcat N
Vehicle speed kph Vveh N

Vehicle acceleration m/s2 aveh N
Vehicle yaw rate deg/s ωyaw N

Accelerator pedal position % na N
Master cylinder control torque Nm na N

Front left wheel speed kph Vfl N
Front right wheel speed kph Vfr N
Rear left wheel speed kph Vrl N

Rear right wheel speed kph Vrr N
Steering angle deg αsteer N

Adjusted ambient temperature oC T adjamb N
Cabin temperature oC Tcab N
Glass temperature oC Tgl N

A/C compressor speed RPM Ncomp N
Evaporator fin temperature oC Tevap N

A/C compressor power W Pcomp N
HVAC blower power W Pbl N

Vehicle throttle position % na N
Traction motor speed RPM Nmg1 N
Traction motor torque Nm τmg1 N

Generator speed RPM Nmg2 N
Generator torque Nm τmg2 N
Battery voltage V Vbatt N
Battery current A Ibatt N
Battery SOC % SOC N
Battery temp oC Tbatt N

Battery resistance Ω Rbatt N
Battery cooling inlet temp oC Tbatt,in N
Battery cooling outlet temp oC Tbatt,out N

Cabin interior roof temp oC Troof N
Dashboard skin temp oC Tdash N

Vent air temp oC Tvent N
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APPENDIX B

HVAC Blower Air Flow Map
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Figure B.1: HVAC blower air flow map.

Fig. B.1 shows the map that converts the HVAC blower flow rate between percentage

PWM control signal and the actual flow rate into the cabin in kg/s. This map is calibrated

via the experiments of the third party. Note that this map is validated for the case with the

blend door position at the vent position (i.e. air comes in front of the driver) and with no
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cabin air recirculation, which is the case for the eco-cooling tests. While the blend door

position changes or the recirculation is on, due to the back-pressure changes, the same

percentage PWM control signal of the HVAC blower may results in different air flow rates

into the cabin. In addition, since the calibration experiments were performed in a well-

controlled lab environment, the uncertainties associated with the ambient conditions for

the open road tests, such as temperature, pressure, and humidity, may also affect the actual

air flow rate into the cabin.
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APPENDIX C

Speed Tracking Performance Evaluation for

Eco-cooling Tests

Table C.1: Speed tracking performance evaluation fro all eco-cooling tests.
Date Test case eavg σerr

23-May
1 0.17 1.98
2 0.19 1.93
3 0.20 2.04

25-May
1 -0.04 1.95
2 -0.22 2.03
3 -0.17 2.35

31-May
1 0.24 2.52
2 0.04 2.13
3 -0.11 1.98

9-Jun
1 -0.46 1.75
2 -0.09 1.60
3 -0.10 1.80

3-Jun
1 -0.14 1.96
2 0.16 1.54
3 -0.01 2.43

7-Jul
1 0.05 1.56
2 -0.04 1.80
3 0.05 1.55

14-Jul
1 0.05 1.56
2 -0.04 1.80
3 -0.05 1.55

19-Jul
1 -0.41 3.55
2 -0.08 1.98
3 -0.11 1.51
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Date Test case eavg σerr

20-Jul
1 0.15 1.47
2 0.19 1.61
3 0.18 1.72

28-Jul
1 -0.01 1.80
2 -0.06 1.54
3 -0.05 1.68

4-Aug
1 -0.13 1.54
2 0.09 1.25
3 -0.20 1.63

10-Aug
1 -0.27 1.43
2 0.06 1.70
3 -0.12 1.81

11-Aug
1 0.62 1.93
2 0.28 1.80
3 -0.15 2.40

18-Aug
1 0.07 2.09
2 0.12 1.84
3 -0.05 1.73

25-Aug
1 0.09 1.99
2 -0.27 2.93
3 -0.10 2.12

30-Aug
1 -0.02 2.07
2 0.07 1.49
3 -0.08 2.33

2-Sep
1 0.12 1.61
2 0.22 1.91
3 0.08 1.55

5-Sep
1 0.17 1.57
2 0.12 1.71
3 -0.20 1.59
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