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Purpose: Modern inverse radiotherapy treatment planning requires nonconvex, large-scale optimiza-
tions that must be solved within a clinically feasible timeframe. We have developed and tested a quan-
tum-inspired, stochastic algorithm for intensity-modulated radiotherapy (IMRT): quantum tunnel
annealing (QTA). By modeling the likelihood probability of accepting a higher energy solution after
a particle tunneling through a potential energy barrier, QTA features an additional degree of freedom
(the barrier width, w) not shared by traditional stochastic optimization methods such as Simulated
Annealing (SA). This additional degree of freedom can improve convergence rates and achieve a
more efficient and, potentially, effective treatment planning process.
Methods: To analyze the character of the proposed QTA algorithm, we chose two stereotactic body
radiation therapy (SBRT) liver cases of variable complexity. The “easy” first case was used to con-
firm functionality, while the second case, with a more challenging geometry, was used to characterize
and evaluate the QTA algorithm performance. Plan quality was assessed using dose-volume his-
togram-based objectives and dose distributions. Due to the stochastic nature of the solution search
space, extensive tests were also conducted to determine the optimal smoothing technique, ensuring
balance between plan deliverability and the resulting plan quality. QTA convergence rates were inves-
tigated in relation to the chosen barrier width function, and QTA and SA performances were com-
pared regarding sensitivity to the choice of solution initializations, annealing schedules, and
complexity of the dose-volume constraints. Finally, we investigated the extension from beamlet inten-
sity optimization to direct aperture optimization (DAO). Influence matrices were calculated using the
Eclipse scripting application program interface (API), and the optimizations were run on the Univer-
sity of Michigan’s high-performance computing cluster, Flux.
Results: Our results indicate that QTA’s barrier-width function can be tuned to achieve faster conver-
gence rates. The QTA algorithm reached convergence up to 46.6% faster than SA for beamlet inten-
sity optimization and up to 26.8% faster for DAO. QTA and SA were ultimately found to be equally
insensitive to the initialization process, but the convergence rate of QTAwas found to be more sensi-
tive to the complexity of the dose-volume constraints. The optimal smoothing technique was found to
be a combination of a Laplace-of-Gaussian (LOG) edge-finding filter implemented as a penalty
within the objective function and a two-dimensional Savitzky–Golay filter applied to the final itera-
tion; this achieved total monitor units more than 20% smaller than plans optimized by commercial
treatment planning software.
Conclusions: We have characterized the performance of a stochastic, quantum-inspired optimization
algorithm, QTA, for radiotherapy treatment planning. This proof of concept study suggests that QTA
can be tuned to achieve faster convergence than SA; therefore, QTA may be a good candidate for
future knowledge-based or adaptive radiation therapy applications. © 2019 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.13840]
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1. INTRODUCTION

Radiation therapy has been established as one of the primary
modalities for cancer treatment, used either exclusively or in
combination with other techniques such as chemotherapy or
surgery.1,2 A critical challenge for radiation therapy (and all

cancer therapies) is to deliver an adequate dose to the tumor
to ensure curative or palliative results while minimizing the
dose delivered to normal tissues. Intensity-modulated radia-
tion therapy (IMRT) is a type of external beam radiation ther-
apy in which each beam is subdivided into a grid of beamlets
whose intensities are determined by dynamic shielding via a
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multileaf collimator (MLC). Because IMRT and other radia-
tion therapy techniques which rely on dynamic intensity
modulation [such as volumetric arc therapy (VMAT)] are
capable of creating concave-shaped dose distributions, they
are particularly effective for challenging cases in which the
tumor volume is irregular and near critical organs at risk
(OARs).3,4 The intensity modulations determined from this
dynamic shielding optimization are characterized by aperture
or beamlet weights. The challenge of calculating optimal
weights for a treatment plan often represents a nonconvex,5

large-scale optimization problem that must be solved within a
clinically reasonable timeframe. The ability to quickly per-
form robust optimizations is particularly significant in online
adaptive radiotherapy, in which a patient’s plan may be reop-
timized several times during the treatment course to account
for changes such as tumor shrinkage or organ deformations.6

Quantum computing research is believed to hold promise
for achieving computational speedup for certain types of prob-
lems.7 In quantum computing, classical bits (whose two states
are often represented by 0 and 1) are replaced by quantum bits
(qubits) which may exist in any linear superposition of 0 and
1.8 This allows quantum computers to explore multiple solu-
tions simultaneously, and quantum algorithms can take advan-
tage of this to achieve a significant computational speedup.8,9

However, the direct use of quantum computers is still limited
by challenges related to creating a proper hardware environ-
ment where qubits are maintained in quantum coherence7 and
the number of qubits deployed is still limited (11–200010–15) to
effectively handle large-scale optimization problems like plan-
ning optimization. On the other hand, quantum-inspired algo-
rithms also hold promise for achieving computational speedup
of complex optimization problems. Such algorithms are not
necessarily quantum processes per se (though some can be for-
mulated to run on a quantum computer); rather, they are quan-
tum simulations designed to run on a classical computer.

The idea of incorporating quantum-inspired techniques
into stochastic algorithms was first proposed by de Falco
et al. in 1989.16 A few years later, Kadowaki and Nishimori
demonstrated the use of Quantum Annealing (QA) on an
Ising model of atomic spins by applying a transverse field,
which was annealed to 0° and numerically solving the time-
dependent Schr€odinger equation for small systems; they
found that the probability of reaching the ground state was
consistently higher for QA than Simulated Annealing (SA).
Many studies have since ensued that have demonstrated QA’s
potential for a variety of problems.16–20

While QA holds a theoretical promise for certain problem
classes with limited dimensionality,21 its implementation on a
classical computer is impractical for IMRT optimization19

and deployment on a quantum computer is currently hindered
by the limited number of qubits built into existing hardware
systems.19,21 To avoid these computational limitations, we
have implemented another quantum-inspired optimization
scheme that models the exploration of higher energy solu-
tions based on the probability of a particle tunneling through
a one-dimensional (1D) potential energy barrier. We refer to
our algorithm as quantum tunnel annealing (QTA) to

distinguish it from the classical QA algorithms described by
de Falco and others.16–22 In this paper, we present a proof-of-
concept study that (a) demonstrates the behavior of QTA
when applied to beamlet intensity and direct aperture opti-
mization for IMRT treatment planning, and (b) compares
QTA performance with that of SA as a representative bench-
mark of traditional optimization methods.

2. MATERIALS AND METHODS

2.A. Quantum tunnel annealing

Quantum tunnel annealing works by modeling an opti-
mization problem as a biased random walk over a fixed num-
ber of iterations. During each iteration, a new potential
solution (e.g., beamlet-weight vector) is selected from within
the neighborhood of the current solution. The energy associ-
ated with the new potential solution, given by the objective
function, is then calculated and compared against that of the
current solution. Potential solutions with lower energies are
immediately accepted and set as the current solution. A sig-
nificant challenge associated with nonconvex optimization
problems is that the algorithm can become stuck in a local
minimum before it has a chance to reach the globally optimal
solution. To avoid this pitfall and ensure adequate exploration
of the solution space, QTA simulates quantum fluctuations,
allowing the algorithm to accept a worse solution with some
probability P. In this process, consider a quantum particle
with energy E, traversing through a 1D potential energy land-
scape, V(x). The particle’s wavefunction, W xð Þ; obeys the
time-independent Schr€odinger equation:

HW xð Þ ¼ EW xð Þ; (1)

where the Hamiltonian operator, H, is a function of the parti-
cle’s potential V and kinetic energy T:

H ¼ T þ V : (2)

Figure 1 illustrates such a particle encountering a potential
energy barrier (denoted VB). The particle’s wavefunction prior,
during, and after encountering the barrier can be expressed as:

W xð Þ ¼
Aeikx þ A0e�ikx

; in region A

Bejx þ B0e�jx; in region B

Ceik
0x; in region C

8><
>: ;

V xð Þ ¼
VA; in region A

VB; in region B

VC; in region C

8><
>:

(3)

with wave-numbers23:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�h2
C� VA
� �r

; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�h2
ðVB � CÞ

r
;

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�h2
C� VC
� �r

:23
(4)

A positive exponent represents the particle traveling to the
right, and a negative exponent represents the particle travel-
ing to the left. Thus, A A0ð Þ and B B0ð Þ represent the
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amplitudes for the incident (reflected) waves in regions A
and B, respectively, and C is the amplitude of the wave trans-
mitted through the barrier. The probability of tunneling
through the barrier is given by the transmission coefficient

T= k0
k

C
A

�� ��2. This value has suggested by Mukherjee and Chak-

rabarti to be on the order of e
�w

ffiffiffiffiffiffiffiffiffi
VB�VA

p
C using a Wentzel–

Kramers–Brillouin (WKB) approximation.18,23

Hence, the probability of QTA accepting a worse solution

can be redefined to be proportional to exp �w� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vnew�Vold

p
C

� �
,

where C is the kinetic energy of the system (an annealing
variable synonymous with the temperature, T, in SA), Vi is
the potential energy of the system at solution i defined by
the objective function, and w is the width of the barrier
being tunneled through. This barrier width is a dynamic
parameter, which serves as an additional degree of freedom
that is not present in the SA formalism, as discussed in Sec-
tion 2.B.

2.A.1. Calculation of barrier width

As stated in Section 2.A, the barrier width represents an
additional degree of freedom, which QTA can use to obtain
an optimal solution in a shorter timeframe. The expected
trend in the barrier width’s evolution over the course of the
optimization can be derived from the following argument: At
the start of the optimization, energy barriers that the system
encounters have finite widths; as the system approaches its
global minimum, the widths of any barriers encountered
would grow increasingly large.

In the interest of modeling the barrier width after a physi-
cal system in nature, one of the common barrier width sched-
ules tested was modeled after the growth rate of Gallium
Arsenide (GaAs) during the process of metal organic chemi-
cal vapor deposition (MOCVD). A typical MOCVD setup
consists of a reaction chamber and a substrate material on a
heated platform. As the substrate is heated by the platform,
chemical reactions take place in the gas of the reaction

chamber, leading to the growth of thin films upon the surface
of the substrate. In a horizontal-type reaction chamber, the
reactants are passed through the chamber horizontally. One
of the most common semiconductors grown using MOCVD
is GaAs.24 The growth of semiconductors using MOCVD is
a complex process influenced by many parameters. It was
shown experimentally that GaAs’s growth rate is proportional
to the square root of the gas velocity.25 Given that kinetic
energy is also proportional to the square root of velocity, we
can express the growth rate as:

dw
dt

tð Þ /
ffiffiffiffiffiffiffiffiffi
C tð Þ4

p
; (5)

where t represents the annealing time defined as the iteration
number, and C is the kinetic energy of the annealing system,
defined in this study as:

C tð Þ ¼ 10� 1� log tð Þ
log Nð Þ

� 	
; (6)

with N defined as the total number of iterations performed
during the optimization.

The values corresponding to w tð Þ were obtained using
MATLAB’s numerical integration function, “integral()” and
applying a proportionality factor (k); through trial and error,
this was found to work well with k = 1� 10�5. Both dw

dt and
w tð Þ with t ≤ N = 5 9 105 iterations are displayed in
Figs. 2(a) and 2(b), respectively.

Because QTA occasionally accepts worse solutions, it
stands to reason that the barrier width does not grow continu-
ously but rather experiences local width fluctuations com-
bined with a globally increasing trend. Therefore, in addition
to the MOCVD-inspired barrier width schedule, another
schedule was also tested, defined as:

wa tð Þ ¼ wb tð Þ sin2
50pt
N

þ 1

� 	
; (7)

where:

wb tð Þ ¼ 10�
ffiffi
½

p
3� w0 � tð Þ (8)

with w0 [ 0 used as a tunable parameter to control how
quickly the width increases over the course of the optimiza-
tion. The form of wa was chosen to introduce more local vari-
ations in the barrier width schedule in addition to the global
trend of increasing width at a decreasing rate. This was done
by coupling a fractional power function (given by wb) with a
sinusoidal function. A squared sine function was chosen to
ensure that the width was always at least as large as the global
trend. For an annealing schedule where N = 5 9 105, the
period of 10,000 corresponded to 10 full cycles during the
search time.

2.B. Simulated annealing (SA)

For comparison purposes, we used SA, a stochastic search
algorithm, which was first introduced for IMRT optimization
by Webb in 1989.1,26 Like QTA, SA models the optimization

FIG. 1. Figurative illustration of a particle (represented by its wave-function,
W) tunneling through a potential energy barrier (in region B) in a one-dimen-
sional energy landscape.
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problem as a system which undergoes a biased random walk.
Over the course of the random walk, the system will always
accept new solutions, which improve on the old solution. In
order to avoid getting trapped in local minima, the system
accepts worse solutions with a probability proportional to

exp �ðVnew�VoldÞ
T

� �
, where T is the temperature of the system

that is annealed (decreased) over the course of the algorithm
search. Mathematically, SA was proven to converge to a glo-
bal optimal solution with minor assumptions on the cooling
schedule and appropriate conditions on irreducibility, aperi-
odicity, and reversibility of the induced Markov chain.27,28

Because SA has a long history of use in our clinic and the lit-
erature, it served as our benchmark algorithm for evaluating
the success of QTA.29 The annealing schedule for Twas iden-
tical to the schedule used for the QTA annealing variable, C,
and is defined in Eq. (6). Note that while the formalism of
QTA shares many similarities with SA, the probability of
accepting a worse solution in QTA differs from SA in two
key respects: (a) reduced dependence on the potential energy
difference between the current and new solution and (b) the
presence of an additional dynamic parameter in the barrier
width. These differences provide QTA with more freedom to
explore the solution space.

2.C. IMRT case selection

To analyze the performance of our quantum-inspired algo-
rithm, we compared QTA and SA on two stereotactic body
radiation therapy (SBRT) liver cases chosen from the Univer-
sity of Michigan Radiation Oncology Department’s clinical
database.

Case 1, a 12-field three-dimensional IMRT liver plan, was
selected as an “easy” test case to confirm that both QTA and
SA were performing properly. This case was not expected to
pose a significant challenge for either optimization algorithm
because it featured a minimal amount of overlap between the
planning target volume (PTV) and the liver, and no overlap
with other structures. For simplicity, the structures selected
for optimization from Case 1 were the PTV and liver exclu-
sive of the gross tumor volume (Liver - GTV) as shown in
Fig. 3(a). Influence matrices for these structures were calcu-
lated using built-in functions defined in the Eclipse scripting
application program interface (API). The voxel size used was

2 mm and the beamlet size was 5 mm 9 5 mm, for a total of
158 720 voxels, 768 beamlets, and 1 602 504 nonzero ele-
ments in the dose influence matrices.

Case 2 served as a “challenge” case to determine if the addi-
tional degree of freedom associated with QTA facilitated better
results — such as plan quality, robustness, or speed — for
more clinically relevant and difficult optimization problems.
Designed as a five-field IMRT plan, Case 2 was selected
because it had a significant overlap between the PTV, stomach,
and liver structures as shown in Fig. 3(b). Because this was a
proof of concept study, only a subset of structures from the
original treatment plan were included in our optimization. The
structures were selected based on the priority assigned to them
in the original clinical treatment plan. In addition, the dose-vol-
ume histogram (DVH) constraints were also inspired by those
used clinically. The influence matrices for these structures (3-
mm voxel size, 2.5 mm 9 5 mm beamlet size) were again cal-
culated using built-in functions available in the Eclipse script-
ing API. Case 2 contained 79 977 voxels, 4166 beamlets, and
1 558 612 nonzero elements in the dose influence matrices.
Because Case 2 contained more than four times more beamlet
weights, it also represented a more challenging optimization
problem than Case 1.

The DVH constraints used in the optimization of Case 1
and Case 2 can be viewed in Tables I and II, respectively.

2.D. Objective function

The objective function used for both SA and QTA IMRT
optimization is defined by:

min
b

E bð Þ
subject to b� 0

(9)

where:

E bð Þ ¼
XN
n¼1

kn Dn � dn bð Þk k2
Jn

þ b

XM
m¼1

X
ij

L� Bmð Þij
��� ���2

þ
XN
n¼1

anPn b;DVHconstraintsð Þ

(10)

FIG. 2. (a) Barrier width rate extrapolated from metal organic chemical vapor deposition studies by Leys and Veenvliet.25 (b) Barrier width function calculated
via numerical integration of (a). (c) Additional width functions explored in this study. [Color figure can be viewed at wileyonlinelibrary.com]
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and:

dn bð Þ ¼ In � b: (11)

The first term in the objective function represents the
mean squared error between the prescribed dose, Dn; and the

delivered dose, dn bð Þ; for each structure n of N structures.
dn bð Þ represents the dose delivered to each voxel in structure
n; and is defined in Eq. (2) as the product of the structure’s
influence matrix, In, and the beamlet-weight vector, b. Jn is
the number of voxels in structure n. The influence matrices
for each structure were calculated using the Eclipse Scripting
API’s built-in “CalculateInfluenceMatrixToMemory()” func-
tion. The point cloud which was input into this influence
matrix function was calculated using an in-house script that
generates a normally distributed random set of point locations
whose average distance is the cube root of the desired voxel
size.

For an influence matrix I, matrix element Iij is defined as
the dose contribution to voxel i from beamlet j. Any given
beamlet is expected to contribute primarily to the voxels it
overlaps with and their nearest neighbors. However, due to
scattering effects Eclipse-generated influence matrices con-
tain no nonzero values; they contain a subset of elements
whose values are orders of magnitude smaller than the largest
values in the matrix — corresponding to a beamlet’s contri-
bution to a distant voxel. To facilitate faster optimization, a
tolerance value was defined below which influence values
were deemed negligibly small and reset to 0. This allowed for
the influence matrices to be saved as sparse matrices, reduc-
ing calculation times. An acceptable tolerance value was
determined by trial and error to be 0.015. We loaded fluence
vectors that were optimized using filtered influence matrices
into the Eclipse scripting API, performed MLC leaf sequenc-
ing and dose-volume calculation, and compared the resulting
DVH histograms with those produced in-house.

The second term in objective function represents a
smoothing penalty which was implemented to ensure the
treatment plans could be delivered efficiently. In order to
determine the optimal filter, L, a series of QTA optimizations
were performed on Case 2 using a number of different filter
types — including median, Savitzky–Golay (SG), plan inten-
sity map variation (PIMV), and Laplacian and Laplace of
Gaussian (LOG) filters with kernels of sizes 3, 5, 7, 9, and
15, respectively.30 For the smoothing filters, a penalty value
was defined as the squared difference between the original

(a) (b)

FIG. 3. Computed tomography scans show contours for structures optimized for Case 1 (a) and Case 2 (b), respectively. Case 1 features a PTV that is roughly
spherical in shape and far from major organs. (with the exception of the liver). Case 2 features a PTV with convex geometrical features and close proximity to
both the liver and the stomach. PTV: planning target volume [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. DVH constraints applied to objective function for Case 1.

Structure
Constraint

type Limit
Volume
(%)

Dose
(Gy) Penalty

Case 1 DVH constraints

PTV DVH point Lower 100 29.7 50

DVH point Lower 95 30 50

DVH point Upper 0 60 100

Max dose
range

N/A N/A [30
42]

100

Liver - GTV DVH point Upper 0 42 100

DVH: dose volume histogram; GTV: gross tumor volume; Gy: Gray; PTV: plan-
ning target volume.

TABLE II. DVH constraints applied to objective function for Case 2.

Structure
Constraint

type Limit
Volume
(%)

Dose
(Gy) Penalty

Case 2 DVH constraints

PTV DVH point Lower 99 33 100

DVH point Lower 95 30 200

DVH point Lower 100 28 200

DVH point Upper 0 48 160

GTV deformed MR DVH point Lower 100 43 100

DVH point Upper 0 48 160

Liver - GTV Mean N/A N/A 4 50

Stomach DVH point Upper 0.001 28 150

Stomach PRV DVH point Upper 0.003 25 300

DVH: dose volume histogram; GTV Deformed MR: gross tumor volume
deformed from magnetic resonance imaging; Gy: Gray; PRV: planning organ at
risk volume; PTV: planning target volume.
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and smoothed fluence map. For the PIMV-type filter, the
square of the PIMV value for each beam was used as the pen-
alty. For the edge-finding filters of kernel size n, the filter ker-
nel was convolved with the beamlet matrix Bm (reshaped
from the beamlet weight vector) for each beam. The squared
sum of the indices of the resulting matrix yielded a value cor-
related to the degree of irregularity for each beamlet matrix.
With the exception of the Laplace filter and the PIMV filter,
all filters tested were implemented using MATLAB built-in
functions. Each filter’s performance was evaluated by visu-
ally inspecting fluence maps and comparing the total number
of MUs necessary after MLC leaf sequencing.

The third term in Eq. (10) represents additional penalties
based on DVH constraints associated with each structure.
The dose constraints and penalties, Pn, used in each case
can be viewed in Tables I and II. For Case 1, simple Boo-
lean conditions were used to assign penalty values (e.g., if
99% of the PTV receives <33 Gy, add 100 to the DVH pen-
alty). The weighting factors an used in Case 1 were set to 1
for all structures. For the more challenging Case 2, we found
it necessary to adjust the calculation of the DVH penalty.
Specifically, for Case 2, penalties for missed DVH con-
straints were assigned as the penalty value (listed in the last
columns of Tables I and II) multiplied by the absolute differ-
ence between the DVH constraint and the actual metric
achieved. For example, if 99% of the PTV volume received
≥29 Gy, the penalty for that constraint would be (30–
29) � 100. Because the constraint type is designated as
“lower,” no penalty is assigned if 99% of the PTV volume
receives >33Gy. Finally, for Case 2, aPTV and aLiver�GTV

were set to 9 and 10, respectively.

2.E. Extension to influence-based direct aperture
optimization

In addition to fluence map optimization, the objective
function described in Section 2.D can be generalized to
directly optimize apertures (defined by MLC leaf positions)
and their weights using a method known as influence-based
direct aperture optimization (DAO).31,32 This is accomplished
by defining the fluence weights as a function of the MLC leaf

segment positions and aperture weights, which for small
beamlets can be written as:

b l;wð Þ ¼
X

i
T lð Þi�wi; (12)

where l defines the MLC leaf positions, wi is the weight
assigned to aperture i, and T lð Þi is a transmission matrix
whose values represent the fraction of each beamlet unob-
structed by the MLC leaf segments for aperture i.31

2.F. Criteria for convergence

In order to compare QTA and SA’s performance in a faith-
ful manner, it is necessary to develop a quantitative method
for defining convergence. For both optimization methods, the
energy at each iteration t was saved in a vector, E(t). The gra-
dient of E(t) was calculated numerically in MATLAB. From
this gradient, a moving average mean (MAM) with width 100
was then calculated. A tolerance value, ctol, was selected by
trial and error, and the largest index position, j — for which |
MAM(j)| > ctol — was identified. The convergence point for
the algorithm was then defined as iteration j + 1. Figure 4
displays the process of finding the j (and thus j + 1) from E
(t). An appropriate value for ctol was found to be 0.1.

2.G. Computing environment

All beamlet-weight optimizations described in this paper
were performed using MATLAB scripts with GPU accelera-
tion on the University of Michigan’s High-Performance Com-
puting Linux-based cluster, Flux (central processing unit
(CPU): Intel Haswell, graphics processing unit (GPU): Nvi-
dia K40). Each job was submitted with 2 CPU cores (4 GB/
core) and 1 GPU.

MLC leaf sequencing and dose volume calculations used
for final plan visualization were performed using clinical soft-
ware (Varian Medical Systems, Inc. Eclipse Treatment Plan-
ning System: Varian Leaf Motion Calculator Version 13.6.23,
Anisotropic Analytical Algorithm Version 15.5.11).

The complete QTA algorithm for IMRT optimization is
summarized in Fig. 5. The maximum possible number of iter-
ations performed in each run was defined as N = 5 9 105.

FIG. 4. Process of calculating the convergence iteration number from a representative QTA optimization. The energy gradient (middle) is calculated from the
saved energy history (right). From this gradient a MAM of width 100 was calculated (left). The black vertical line is plotted at the maximum iteration number j
for maxj(|MAM(j)| > ctol). MAM: moving average mean; QTA: quantum tunnel annealing. [Color figure can be viewed at wileyonlinelibrary.com]
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Because the parameter N was used as a variable in both the
annealing schedule (T or C) and the barrier width schedule
(w), its value was not altered over the course of the reported
studies. Therefore, in order to vary the actual number of itera-
tions performed, an additional break parameter was defined
which forced the algorithm to end early at iteration n = nbreak.
This break parameter was implemented both to shorten the
duration of optimizations when it was clear an optimal solu-
tion had been reached prior to N as well as to confirm that
the convergence iteration numbers — whose calculation was
described in Section 2.F — represented clinically acceptable
plans.

3. RESULTS

3.A. Case 1

Preliminary studies on a geometrically simple case, desig-
nated “Case 1”, confirmed that the QTA and SA algorithms
were performing properly. Figures 6(c) (a) through 6(d) dis-
play the DVH and potential energy (PE) trajectory results
acquired by running the QTA and SA algorithms 20 times

each for N = 5 9 105 iterations and no premature breaks
(i.e., nbreak > N). Figures 6(e) through 6(f) display represen-
tative dose distributions for QA and SA, respectively, which
were calculated in Eclipse using optimized beamlet weights
from the tenth run. For Case 1, the incorporation of a Laplace
edge-finding filter with a kernel size of 3 into the objective
function was found to yield sufficiently deliverable plans.
Beamlet-weights generated from both QTA and SA were
found to consistently yield plans that satisfied the DVH con-
straints.

The DVH curves for QTA [Fig. 6(a)] and SA [Fig. 6(b)]
indicate that for this case, QTA exhibited greater stability over
SA with respect to the quality of the final plan. SA converged
to a solution with worse PTV coverage 60% of the time. Fig-
ures 6(c) and 6(d) display the PE trajectories for the QTA and
SA runs, respectively. The PE trajectories for QTA indicate that
QTA explored higher energy solutions prior to sudden extreme
drops around the (n = 5 9 105)th iteration, whereas SA fea-
tured a more linear decrease. The resulting dose distribu-
tions [Fig. 6(e) and Fig. 6(f)] were found to be similar between
both algorithms and featured reasonable tumor coverage while
minimizing the dose to the surrounding normal tissues.

3.B. Case 2

3.B.1. Refined smoothing filter

In the pursuit of designing an objective function that can
produce clinically acceptable and deliverable plans, a com-
prehensive study (described in detail in Section 2.D) was per-
formed to determine the optimal measure of smoothness for
use as a penalty in the objective function. Smoothness was
assessed qualitatively using the fluence maps and quantita-
tively using the total MU required (summed over each beam).
Figure 7(a) displays the optimized fluence map for one of the
Case 2 beams using a LOG filter within the objective func-
tion. The speckled appearance of 7(a) suggests that smooth-
ing within the objective function alone is not sufficient, and
the MU necessary for this plan was more than 20% larger
than predicted for an Eclipse-optimized plan which met the
same DVH constraints. Adjustments to the size of the kernel
and the type of filter used within the objective function did
not yield discernable improvement to fluence regularity or
total MU.

We also explored directly applying a smoothing filter to
the beamlet weights outside of the objective function. We
found that the optimal smoothing process consisted of the
7 9 7 LOG filter within the objective function, combined
with a two-dimensional (2D) Savitzky–Golay filter applied to
the beamlet-weights during the final iteration of the algo-
rithm. The optimized fluence map using this refined smooth-
ing filter is displayed in Fig. 7(b) and appears markedly
smoother than the LOG-filter alone. This refined smoothing
filter resulted in a total of 2877 MU, which was 34% lower
than the LOG filter alone and more than 20% lower than the
Eclipse-optimized plan. The plan quality, as gauged by DVH
constraints, experienced only a slight reduction.

FIG. 5. Quantum tunnel annealing algorithm for intensity-modulated radia-
tion therapy optimization.
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3.B.2. Barrier width schedule effect

As discussed in Section 2.A.1, four different barrier
width schedules were investigated for QTA. One was
inspired by the growth rate of GaAs in MOCVD, while
the remaining three were designed to allow for local fluc-
tuations in the barrier width within a globally increasing

trend. Table III lists convergence rates calculated for QTA
optimizations using the four barrier-width schedules as
well as optimizations for SA. Three of the four barrier
widths tested yielded convergence faster than SA. The
optimal barrier width schedule was found to be the wa

function with w0 ¼ 1� 10�5, and it reached convergence
in less than half the time required for SA.

FIG. 6. Optimization results for QTA and SA applied to Case 1. (a) and (b) display DVH curves for 10 separate optimizations using QTA and SA, respectively.
(c) and (d) display the PE trajectories for the 10 QTA and SA optimizations. (e) and (f) display representative dose distributions calculated in Eclipse using flu-
ence values from the 10th QTA and SA optimization. DVH: dose volume histogram; PE: potential energy; QTA: quantum tunnel annealing; SA: simulated
annealing. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. (a) displays the fluence map results for a single beam in Case 2 resulting from the QTA optimization without refined smoothing. (b) displays the fluence
map results from QTA optimization with refined smoothing. QTA: quantum tunnel annealing. [Color figure can be viewed at wileyonlinelibrary.com]
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3.B.3. Annealing schedule effect

Each algorithm’s sensitivity to the choice of annealing
schedule was assessed by comparing their performance
across five different functions [shown in Fig. 8(a)]: T1, a lin-
ear function; T2, a sigmoidal function; T3, an exponential
function; T4, a logarithmic function; and T5, a power law
function with fractional exponent. Figure 8(b) displays box
and whisker plots of the convergence rates for QTA and SA,
respectively, for each annealing schedule. For schedules T1,
T2, and T3, SA failed to reach convergence prior to the
breakpoint at nbreak ¼ 2:5� 105, resulting in the tight spread
of data for SA at these schedules. QTA exhibited lower aver-
age convergence rates for all five annealing schedules. Note
that for this paper, T4 [defined by Eq. (6)] served as the
default annealing schedule.

3.B.4. Optimization stability

Quantum tunnel annealing’s stability was verified by per-
forming a series of optimization tests using different starting
beamlet-weight vectors (10 runs per initial beamlet-weight
vector tested, N ¼ 5� 105 iterations, which ran until
nbreak ¼ 2:5� 105). As a comparison, SA optimizations were
also performed under the same conditions. The optimizations
began with initial beamlet-weight vector values set to 0, 11,
and 20, respectively. These values represent the minimum,

average, and maximum fluence values expected for the opti-
mized beamlet-weight vector. In addition, tests were also con-
ducted using an initial beamlet-weight vector whose values
were randomly distributed over a range from 0 to 20. In order
to assess whether QTA is primarily advantageous later in the
annealing schedule after the algorithm has become stuck in
local minima, additional tests were performed on a hybrid
SA-QTA algorithm, which ran SA for the first 5� 104 itera-
tions after which the algorithm switched to QTA. The initial
beamlet-weights used for the hybrid tests were also randomly
distributed over a range from 0 to 22.

Figure 9 displays the results for 10 QTA and SA optimiza-
tions using the randomly distributed initial beamlet-weight
vector. The DVH curves for QTA [9(a)] and SA [9(b)] sug-
gest that both reached final solutions with nearly identical
dose coverage. This finding was found to hold for all itera-
tions regardless of the initial beamlet-weights used. The
energy trajectories for QTA [9(c)] and SA [9(d)] are plotted
on a Log scale to highlight differences in the shape of the
curves. Like Case 1, the QTA PE trajectories for Case 2 fea-
ture a region of rapid descent, located just after the 103 itera-
tion. All QTA and SA runs (for b0 = 0,1,20, and rand)
required � 1:1� 105 iterations to reach convergence. Figures
9(e) and 9(f) display the Eclipse-calculated dose distributions
from the tenth optimization for QTA and SA, respectively.
The final dose distributions were found to be nearly identical
and exhibited reasonable dose coverage

Table IV displays the mean convergence rates (in seconds)
for QTA, SA, and the hybrid SA-QTA algorithm. QTA con-
sistently exhibited faster convergence rates and had smaller
standard deviations than SA in all but one case (b0 = 11).
The convergence rates of the SA-QTA hybrid algorithm were
similar to the performance of SA.

The stability of QTA and SAwas also assessed by making
perturbations in the original dose constraints. For each of
these tests, a perturbation was made to a single constraint
while all others were held constant. Each optimization was
run for N ¼ 5� 105 iterations and stopped at
nbreak ¼ 2:5� 105. Table V summarizes the perturbations
tested and the corresponding convergence rates (in seconds).
For all perturbation types, QTA exhibited faster convergence.

TABLE III. Convergence times (in seconds) for QTA with different barrier
width schedules as well as SA.

Algorithm type Convergence (s)

Case 2 convergence results QTA barrier width testing

SA 1062.5

QTA, wa;w0 ¼ 1� 10�5 528.6

QTA, wa; w0 ¼ 1� 10�7 637.2

QTA, wa; w0 ¼ 1� 10�9 1762

QTA, MOCVD 874.2

MOCVD: metal organic chemical vapor deposition; QTA: quantum tunnel anneal-
ing; SA: simulated annealing.

FIG. 8. (a) Displays the annealing schedule functions tested for QTA and SA. Note that T4 was the annealing schedule used for all remaining studies. (b) displays
box and whisker plots of the convergence results for QTA and SA, respectively, for each annealing schedule. QTA: quantum tunnel annealing; SA: simulated
annealing. [Color figure can be viewed at wileyonlinelibrary.com]
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However, the percent difference in the perturbed convergence
rates from the original convergence rate ranged from 5.95%–
43.7% for QTA and 4.1%–5.1% for SA, indicating that QTA
may exhibit higher sensitivity than SA.

3.B.5. Aperture-weight optimization via influence-
based DAO

Influence-based DAO was performed on QTA and SA for
10 runs per initial beamlet-weight vector tested, N ¼ 5� 105

iterations, which ran until nbreak ¼ 2:5� 105 using the flu-
ence approximation formalism described in Section 2.E. For
these optimizations, leaf segment information was extracted
from a pre-existing Eclipse-optimized IMRT plan (with a
total of 431 apertures) on Case 2, and aperture weights were
optimized with the starting weight of each aperture set to 0.
Figure 10 displays the resulting cumulative DVHs [10(a) and
10(b)], potential energy trajectories [10(c) and 10(d)], and
representative dose distributions [10(d) and 10(e)] for QTA
and SA, respectively.

The DVHs displayed in Figs. 10(a) and 10(b) indicate that
QTA and SA achieved comparable tumor coverage and OAR
sparing. While the energy trajectories in Figs. 10(c) and 10(d)

indicate that QTA exhibited more stochastic exploration of
the solution space early on in the optimization, QTA con-
verged within 5234 � 622.4 (s) on average while SA had an
average convergence rate of 7151 � 504.5 (s). Figures 10(e)
and 10(f) show that both algorithms also produced similar
dose distributions.

4. DISCUSSION

The optimization results from Case 1 confirmed that both
algorithms were capable of delivering clinically acceptable
results. QTAwas found to be more stable than SAwith regard
to the quality of the final solution it converged to, as SA con-
verged to a worse solution 60% of the time.

Because it was more geometrically complex, Case 2 was
used to characterize QTA’s performance. One of the ways
QTA distinguishes itself from SA is that the probability of
accepting a worse solution during the course of the optimiza-
tion is a function of the estimated width of the potential
energy barrier, providing an additional degree of freedom
with which to explore the solution space. We tested several
expressions which were heuristically selected to represent
the barrier-width function. Adjusting the form of the barrier-

FIG. 9. DVH bands, PE trajectories, and representative dose distributions for stochastic optimizations (N = 10, 500 000 iterations) with the initial beamlet-weight
vector set to random values uniformly distributed between 0 and 22 on a challenging SBRT liver case for QTA [(a), (c), and (e)] and SA [(b), (d), and (f)], respec-
tively. DVH: dose-volume histogram; PE: potential energy; QTA: quantum tunnel annealing; SA: simulated annealing; SBRT: stereotactic body radiation therapy.
[Color figure can be viewed at wileyonlinelibrary.com]
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width function did not influence the quality of the final plan
if the algorithm was allowed to run for its fully allotted time.
However, the form of the barrier-width function did influence
how quickly the algorithm reached convergence. The conver-
gence results listed in Table IV suggest that the barrier-width
function can be used as a tunable parameter to achieve faster
convergence. While further tests are warranted to determine
an optimal expression for the barrier width, the majority of
the functions tested yielded faster convergence rates than SA.

The convergence rates of both algorithms were found to
be dependent on the annealing schedule chosen. For three of
the five functions tested, SA failed to converge 30–80% of
the time, while QTA reached convergence for all five evalu-
ated functions. In addition, QTA had faster mean conver-
gence rates for all five annealing functions tested. These
results suggest that QTA is more robust against the choice of
annealing schedule. Another way to conceptualize this advan-
tage is to interpret QTA as having a modified annealing
schedule in which the barrier width function serves as an
additional time-dependent, tunable parameter, coupled with a
dampened dependence on the energy difference between the
current and new solution.

Testing the sensitivity of QTA with respect to changes in
the initial beamlet-weights, b0, is useful for determining
whether the algorithm can reliably deliver clinically accept-
able plans under conditions where a “good” first guess is

unknown. In initial beamlet-weight tests (described in Sec-
tion 3.B.4), we found that QTA consistently achieved faster
convergence times over SA across all variations of b0.

Unlike Case 1, Figs. 8(a) and 8(b) suggest that both QTA
and SA consistently achieved final solutions of nearly identi-
cal plan quality for Case 2. These findings held even after
varying the initial starting guess. These results may seem sur-
prising given that Case 2 represented the more challenging
case. The explanation lies in the difference between the
objective functions used for Cases 1 and 2, which are
described in detail in Section 2.D. Case 1 penalties based on
the DVH constraints were assigned using Boolean conditions.
Implementing the DVH constraint portion of the objective
function was found to be insufficient for Case 2 because it
could not provide sufficient PTV coverage without delivering
an excessive dose to the organs at risk. Therefore, when we
began working on Case 2, it was necessary to adjust the
objective function so that penalties based on the DVH con-
straints were weighted more heavily as plan results strayed
farther from the objectives. The difference in the results
between Case 1 and Case 2 suggests that the additional con-
straints applied to Case 2’s objective function narrowed the
solution space available to the algorithms. In light of this
point, the combined results from both cases suggest that
QTA is more robust than SA to changes in the formulation of
the objective function.

To assess QTA’s sensitivity to changes in treatment plan
goals, a series of optimizations were run for QTA and SA in
which perturbations were made to the PTV dose prescription
and to OAR dose constraints. It was found that while QTA
continued to achieve faster convergence rates, those rates
exhibited greater variation from the original, unperturbed
convergence rate.

For Case 2, it was found that implementing smoothing
only within the objective function was insufficient for pro-
ducing plans with clinically deliverable fluence maps. This is
likely due to the algorithms’ stochastic nature and the fact that
Case 2 contained more than four times the number of beam-
lets as Case 1. Ultimately, a refined smoothing technique was
developed which combined a LOG filter — used to define an
irregularity penalty in the objective function, with a 2D SG
filter that was applied to each beamlet map during the final
iteration. The resulting fluence maps for these plans had total
MU values which were more than 20% less than those for an
Eclipse-optimized plan. It is perhaps unorthodox to include a
smoothing filter outside of the objective function, as this can
compromise plan quality.30 However, we found that imple-
menting the SG filter during the optimization’s final iteration
had only a small impact on plan quality, and all plans gener-
ated using this technique were comparable in quality to plans
generated using Eclipse-based IMRT optimization.

In order to further investigate the potential of QTA over
SA, it is necessary to test additional optimization formalisms
with known ill-behavior. One such representative approach is
to estimate the aperture weights directly using the influence-
based DAO approach described in Section 2.E. DAO was
evaluated on the more complex Case 2. The results from

TABLE IV. Mean convergence times (in s) for QTA and SAwith perturbations
to the initial beamlet-weight values.

b0 QTA (s) SA (s) SA-QTA hybrid (s)

Case 2 convergence results for initial beamlet-weight testing

0 637.9 � 63.2 982.4 � 96.3 N/A

11 644.8 � 84.4 987.4 � 82.1 N/A

22 693.2 � 75.9 1103 � 84.0 N/A

Randomly
distributed

611.0 � 72.4 996.4 � 103.0 953.1 � 65.5

QTA: quantum tunnel annealing; SA: simulated annealing.

TABLE V. Parameter changes and convergence times (in seconds) for QTA
and SAwith perturbations to the original dose constraints.

Parameter Organ From To
QTA
(s) SA (s)

Case 2 convergence results for parameter testing

DVH Stomach Max dose
= 28 Gy

Max dose
= 18 Gy

788.8 1038.9

DVH Liver - GTV Mean dose
= 4 Gy

Mean dose
= 2 Gy

951.6 1108.2

DVH
and dose

PTV Target dose
= 33 Gy

Target dose
= 43 Gy

701.2 1028.6

Original Original N/A N/A 661.8 1083.3

DVH: dose volume histogram; GTV: gross tumor volume; Gy: Gray; PTV: plan-
ning target volume; QTA: quantum tunnel annealing; SA: simulated annealing.
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these optimizations (presented in Section 3.B.5) indicate that
on average QTA converged up to 26.8% faster than SA. DAO
is a more complex optimization problem than fluence opti-
mization. While the results of this study example may suggest
that the performance gap between QTA and SA seemingly
becomes narrower, QTA still exhibits notable benefits over
SA overall.

The limitations of this study are summarized as follows:
Because only two patient cases were considered, our knowl-
edge of the algorithm’s sensitivity to different cases is still
limited. We chose to only optimize the most challenging and
critical structures in each case; for this reason, the conver-
gence times reported are not representative of a full treatment
plan. In addition, the expression used in QTA to define the
probability of a particle tunneling through a potential energy
barrier contains weaknesses in its assumptions about the size
of the annealing variable, C. Due to these assumptions, while
the formulation for QTA can be described as quantum
inspired, it does not represent a true simulation of a quantum
process. Nevertheless, QTAwas found to exhibit several qual-
ities that suggest it might be an attractive candidate for appli-
cations which necessitate rapid optimization of complex or
challenging treatment plans. QTA consistently performed fas-
ter than SA across multiple types of perturbations and yielded
treatment plans of equal quality. Furthermore, a hybrid SA-

QTA algorithm was found to perform only slightly better than
SA alone, reinforcing the merit of the full QTA algorithm.
The presence of an additional degree of freedom represented
by the barrier width schedule leaves open the possibility that
this parameter might be further fine-tuned to achieve even
faster results.

The results of this study suggest that the extra degree of
freedom associated with QTA’s barrier-width schedule
allowed for the algorithm to be better “tuned” to converge at
faster rates than SA. Natural future directions for this work
include performing QTA optimizations on full IMRT treat-
ment plans, as well as including VMAT plans, which repre-
sent a larger optimization problem. Based on QTA’s
computational speedup and ability to escape local minima, it
may be a useful tool for computationally demanding adaptive
radiotherapy applications. Finally, QTA would be a valuable
tool for implementing more complex (typically nonconvex)
objectives based on biological optimization objections com-
bining imaging and molecular biomarkers with dose–re-
sponse functions derived via multiple outcome and utility
modeling methods,33,34 which as of now are hindered in clin-
ical implementation by a lack of efficient and robust opti-
mization techniques.

In addition to further studies applying QTA to more chal-
lenging treatment problems, we would also like to explore

FIG. 10. DVH bands, PE trajectories, and representative dose distributions for stochastic optimizations (N = 10, 250 000 iterations) of aperture weights on a chal-
lenging SBRT liver case for QTA [(a), (c), and (e)] and SA [(b), (d), and (f)], respectively. DVH: dose-volume histogram; PE: potential energy; QTA: quantum
tunnel annealing; SA: simulated annealing; SBRT: stereotactic body radiation therapy. [Color figure can be viewed at wileyonlinelibrary.com]
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whether implementing QTA on a quantum computer could
lead to greater computational speedup. In their 2015 study,
Nazareth and Spans reported on the first use of a quantum
annealing computer for IMRT beamlet weight optimization;
they found that while SA consistently produced higher qual-
ity plans, optimizations performed on a quantum annealing
device (using a modified version of Tabu Search as the opti-
mization algorithm) were >2.5 times faster than SA.19 At the
time of their study, the researchers were limited to a 512 qubit
device, which restricted the complexity of the treatment prob-
lems they could tackle. For reference, if the beamlets in Case
1 were discretized using the same method used by Nazareth
and Spaans, 5376 qubits would be required. In early 2019, the
development of a 5000-qubit commercial quantum annealing
computer was announced,35 which would better allow QA to
be scaled to higher variable optimization problems but practi-
cal clinical application remains a subject for future studies.
We believe QTA would be an exciting candidate for quantum
computing because it has already shown promise over SA
when run on a classical computer.

5. CONCLUSIONS

In this study, we have explored the behavior of a novel
algorithm inspired by quantum tunneling, QTA, for IMRT
beamlet-weight optimization on two SBRT liver cases. We
compared QTA’s performance with classical SA, an algo-
rithm which has historically been used for this application.
On the easier case, QTA exhibited greater stability than SA.
On the challenging case, when allowed to run for the fully
allotted number of iterations, both algorithms performed well
and exhibited stability with respect to plan quality. With
regard to the differences observed between Case 1 and Case
2, it is worth noting that the primary benefit of QTA in a
more constrained solution space is the speedup at which it
converges, while in a larger (i.e., less constrained) solution
space, QTA appears to achieve both faster convergence and
plans of more robust quality. Extension to DAO is demon-
strated to be feasible with similar performance suggestion
potential application of QTA for VMAT-type applications as
well.
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