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Abstract 

Circulating tumor cell (CTC) and cell-free (cf) DNA-based genomic alterations are 

increasingly being used for clinical decision-making in oncology. However, the 

concordance and discordance between paired CTC and cfDNA genomic profiles 

remain largely unknown.  We performed comparative genomic hybridization (CGH) on 

CTCs and cfDNA, and low-pass whole genome sequencing (lpWGS) on cfDNA to 

characterize genomic alterations (CNA) and tumor content in two independent 

prospective studies of 93 men with mCRPC treated with enzalutamide/abiraterone, or 

radium-223. Comprehensive analysis of 69 patient CTCs and 72 cfDNA samples from 

93 men with mCRPC, including 64 paired samples, identified common concordant 

gains in FOXA1, AR, and MYC, and losses in BRCA1, PTEN, and RB1 between CTCs 

and cfDNA. Concordant PTEN loss and discordant BRCA2 gain were associated with 

significantly worse outcomes in Epic AR-V7 negative men with mCRPC treated with 

abiraterone/enzalutamide. We identified and externally validated CTC-specific 

genomic alternations that were discordant in paired cfDNA, even in samples with high 

tumor content. These CTC/cfDNA-discordant regions included key genomic regulators 

of lineage plasticity, osteomimicry, and cellular differentiation, including MYCN gain in 

CTCs (31%) that was rarely detected in cfDNA. CTC MYCN gain was associated with 

poor clinical outcomes in AR-V7 negative men and small cell transformation. In 

conclusion, we demonstrated concordance of multiple genomic alterations across 

CTC and cfDNA platforms; however, some genomic alterations displayed substantial 

discordance between CTC DNA and cfDNA despite the use of identical copy number 

analysis methods, suggesting tumor heterogeneity and divergent evolution associated 

with poor clinical outcomes.    
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Introduction 

Circulating tumor cells (CTCs) are rare cancer cells that are shed in the peripheral 

bloodstream during metastatic dissemination and progression [1, 2]. Previous 

studies have suggested CTC enumeration could be useful for prognosis and clinical 

response assessments for patients with advanced cancer while providing valuable 

information for drug target identification, treatment monitoring, and exploring tumor 

heterogeneity [3-6]. Tumor-derived cell-free DNA (cfDNA) in serum or plasma likely 

originates from apoptotic, dead or dying tumor cells, and may constitute genetic 

information associated with tumor cell evolution and heterogeneity during treatment 

and metastatic progression [7, 8]. Despite the utility of CTC and cfDNA analyses, 

there are several major challenges inherent in the development of CTC or cfDNA 

biomarkers [9] for treatment selection in clinical studies, namely reproducibility, 

defining actionable targets, and consistency across platforms [10, 11].  While some 

studies have found concordance between selected cfDNA genomic alterations and 

paired tumor biopsies [12, 13], few studies have examined the consistency of whole-

genome alterations across paired CTC and cfDNA samples. 

 

Metastatic castration resistant prostate cancer (mCRPC) is a lethal and complex 

disease [6]. While most men initially respond to novel hormonal therapies, such as 

abiraterone acetate or enzalutamide, nearly all men with mCRPC relapse and 

develop resistant progression over 1-3 years [14].  In addition, cross-resistance 

between abiraterone and enzalutamide is common in >50% of patients who are 
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treated sequentially [15].  Thus, optimal delivery of these agents in the second-line 

setting could be facilitated by the development of predictive biomarkers of treatment 

response and resistance. For example, detection of AR-V7 in CTCs, an important 

splice variant in the androgen receptor, is associated with resistance to hormonal 

therapies abiraterone acetate and enzalutamide [16-19]. Yet, despite the importance 

of AR-V7 as a predictive biomarker, many men with AR-V7 negative disease have 

resistance to therapy or develop resistance over time that is currently unexplained by 

AR alterations [16, 17, 20].  Thus, novel approaches to detect de novo biomarkers 

are needed. CTC- and cfDNA-based methods are minimally invasive technologies 

that can provide longitudinal insight into tumor biology of individual patients and 

provide a source of biomarkers for mCRPC response and progression. 

 

Given the increasing number of systemic treatment options available for men with 

mCRPC, predictive biomarkers that report on the underlying tumor biology and 

potential drug sensitivity would be desirable to maximize benefit and minimize harm 

and cost [21, 22]. However, metastatic biopsies in men with mCRPC are challenging, 

invasive, may not result in enough metastatic tissue for analysis, and can be limited 

by tumor heterogeneity or plasticity [22]. Conversely, CTC DNA and cfDNA are a 

ready source of cancer cell DNA that can be noninvasively collected and profiled 

longitudinally for molecular analysis for association with outcomes and potential 

mechanisms of drug resistance [23, 24]. However, the concordance of genomic 

alterations between CTC DNA vs. cfDNA is not well established, and data 

reproducibility and concordance across similar cfDNA platforms has proven to be a 

major challenge [12, 25]. Further, CTCs and cfDNA may represent different sources 

of tumor tissue and, in theory, could provide unique readouts of cancer biology and 

tumor heterogeneity over time depending on the specific clinical context and 

biomarker.   

 

Recently, studies have characterized whole-genomic copy number alterations (CNA) 

in CTCs and cfDNA; however, no systematic assessments of paired CTC and cfDNA 
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exist, especially in men with mCRPC [8, 10, 12, 26-29]. To address this, we 

analyzed whole-genome CNA in paired CTCs and cfDNA from men with mCRPC. 

Here, we describe the frequency of chromosomal aberrations in men with mCRPC 

treated with abiraterone, enzalutamide, or radium-223 and focus on genomic regions 

with concordance and discordance in paired CTCs and cfDNA and their association 

with clinical outcomes. The frequency and reproducibility of CTC-discordant CNAs 

were confirmed in publicly- available clinical samples, where both DNA CNA and 

mRNA expression were available. Our findings suggest that CTCs may provide 

unique biologic insights into mCRPC heterogeneity and clinical outcomes that may 

be missed through cfDNA analysis alone. 

 
 
 
 
 
 
Materials and Methods 
 
Patient selection 

We included two independent prospective cohorts of men with mCRPC, including 

men treated with radium-223 (NCT02204943) or abiraterone/enzalutamide 

(PROPHECY study [30], NCT02269982). All patients at study entry had mCRPC and 

progressive disease and were histologically confirmed to have prostate 

adenocarcinoma, evidence of metastases by clinical/radiographic, castrate levels of 

testosterone (<50 ng/dl), and evidence of cancer progression by computerized 

tomography/bone scan or prostate-specific antigen rises by The Prostate Cancer 

Clinical Trials Working Group (PCWG2) criteria [31]. PROPHECY patients were 

required to have two poor-risk features, including anemia, high LDH, high alkaline 

phosphatase, pain requiring opiates, PSA doubling time of <3 months, radiographic 
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progression, and prior abiraterone/enzalutamide therapy with planned cross-over to 

the other hormonal agent. For the radium-223 study, patients were excluded if they 

had visceral metastases, and men were eligible if they had more than two 

symptomatic bone metastases.  All patients provided informed consent under 

separate protocols approved by the Duke University Institutional Review Board (IRB, 

PROPHECY, and Radium-223) or the Weill Cornell Medical College IRB 

(PROPHECY). 

 

CTC DNA and cfDNA isolation 

CTCs were enumerated using the FDA-approved CellSearch platform in a Clinical 

Laboratory Improvement Amendments (CLIA)-approved laboratory [11].  Separately, 

for CTC isolation for copy number alteration (CNA) and aCGH, 7.5ml blood in EDTA 

tubes was diluted with blood lysis buffer (Gibco, A10492), centrifuged and washed 

with 0.5% BSA in PBS buffer, and incubated for 30 minutes at 4C° with Dyna Beads-

CD45 (Invitrogen, 11153D) to deplete leukocytes. The enriched cells were stained 

with an anti-EpCAM antibody (Serotek, AbD, CMA1870g) labeled with anti-Mouse 

IgG1 AlexaFluor-647 (Z25008, Invitrogen) and anti-Hu CD45 coupled to AlexaFluor-

488 (C1620, Leinco). Next, EpCAM+ and CD45- cells were sorted by flow cytometry 

[32]. Gating thresholds were set using unspiked and spiked EpCAM+ (T47D) cells 

into healthy volunteer blood. In parallel, peripheral blood mononuclear cells (PBMCs) 

were isolated from the blood collected in EDTA tubes for germline DNA analysis as 

controls for each CTC sample, diluted with PBS (1:1), and layered on 4ml of Ficoll-

Plaque (GE Healthcare, 17-1440). Ficoll-Plaque layers were washed and suspended 

in 100μl in Milli-Q-Water. For cfDNA isolation for CNA and aCGH, 2ml plasma was 

obtained from mCRPC patients and isolated using the QIAamp Circulating Nucleic 

Acid Kit (Cat No-55114, Qiagen) and quantified using Quant-iT™ PicoGreen™ 

dsDNA Assay Kit (Thermo Fisher Scientific, Cat no: P11496) by Tecan Infinite® 200 

PRO. CfDNA visualized on an Agilent 4200 TapeStation. Before hybridizing the 
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samples to the aCGH microarray, all DNAs were amplified by using the 

GenomePlex® Single Cell Whole Genome Amplification Kits (Sigma, WGA4) to the 

yield required for labeling (0.50μg/sample) according to Agilent’s aCGH manual. 

Amplified genomic DNA was visualized on 1.5% agarose gel to verify DNA ~200-

700bp (Figure S1). 

 

AR-V7 testing 

The Epic AR-V7 nuclear protein detection and JHU AR-V7 RNA based assays were 

used to detect AR-V7 in CTCs. A positive test for the Epic assay was defined as the 

presence of CTCs (CK+/-) expressing nuclear AR-V7 protein, as previously 

described [19, 33, 34]. The JHU AR-V7 assay is an RT-PCR based assay to detect 

AR-V7 mRNA expression [16, 30]. 

 

Array comparative genomic hybridization (CGH)   

Two-color probe-based aCGH was performed using Agilent Oligonucleotide Array-

based CGH for Genomic DNA Analysis (Sure Print G3 Human CGH array, 4x180K) 

[32]. Data were analyzed using the Agilent Cytogenomics Software, and all CNAs 

were manually analyzed [32]. CNAs were then cross-referenced with publicly-

available prostate cancer datasets using cBioportal [35]. The biological or clonality of 

CTCs genomic concordance (CNA present in CTCs were detected in cfDNA) and 

discordance (CNA present in CTCs, but not detected in paired cfDNA samples) were 

calculated by comparing CNA in CTCs and cfDNA. Next, to minimize the false 

positives result, stringent filtering criteria were applied by using a minimum 3+ 

contiguous probes distribution, and two independent calls were used to call a copy 

gain or loss event. Further, all genomic altered genes were assessed manually 

based on aCGH probe distribution within chromosomal aberrations region analyzed 

in the Agilent CytoGenomics software. In addition, genomic agreement and 
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disagreement between 64 CTCs and paired cfDNA CNAs (gain versus no gain, or 

loss versus no loss) from combined radium and PROPHECY studies were 

independently analyzed by Cohen’s Kappa method in Graph Pad prism software 

(Table S3). 

 

Low-pass whole genome sequencing, tumor content and copy number 
analysis in cfDNA 

Low-pass whole genome sequencing of 83 cfDNA from 73 mCRPC patients was 

generated using ThruPLEX DNA-seq kits according to the manufacturer's protocol 

with the Ion Torrent IonXpress barcode index and sequencing adapters. Libraries 

were quantified using an Agilent Bioanalyzer 2200 tape station with HS D1000 tape 

and sequenced with 16 samples per Proton PI chip on an Ion Proton sequencer.  

To determine the tumor content (TC) in cfDNA, we used a well-established method 

PRINCe (pan-cancer, rapid, inexpensive, whole-genome NGS of cfDNA approach) 

for tumor content determination and to identify focal CNAs in cfDNA from mCRPC 

patients’ samples via low coverage (~0.01x) through genome-wide CNAs analysis, 

where the least-squares based distance metric (LSS) was performed on whole-

genome copy number data, and guide the tumor content approximation with low 

tumor content samples (LSS < 0.1), where estimated tumor contents greater than 

8.75% by LSS analysis were considered as high tumor content as previously 

described by Daniel H. Hovelson et al., 2017 [36]. Focal CNAs were measured as 

CNAs 1.5–20 Mb long with the log2CNRatio cutoffs for genomic gain and loss 

analyzed in lpWGS were >= 0.50 and <= -0.50, respectively.  

 

Clinical Outcomes and Statistical Analysis 

Genomic CNA data from 40 baseline samples were grouped as copy gain, loss or 

neutral, and investigated for the presence of CNA and their associations with 

progression-free survival (PFS) with abiraterone/enzalutamide in the PROPHECY 
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study. Progression-free survival was defined as the date from registration to 

radiographic progression using PCWG2 criteria (26), clinical progression requiring a 

change in systemic therapy, or death, whichever came first.  Kaplan-Meier analysis 

was used to estimate the PFS distribution according to the presence of CTC DNA or 

cfDNA specific genomic alterations in men who were AR-V7 negative as defined by 

the Epic AR-V7 nuclear assay. The proportional hazards model was utilized to 

estimate the hazard ratios for PFS in men who were AR-V7 negative. Besides, 

Graph pad prism was used for plotting the graphs, and p-value calculation based on 

two-tailed Mann Whitney test.  
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Results 
 
Patients with mCRPC demonstrate heterogeneous cfDNA concentrations that 
correlate with CTC burden 
A total of 140 men with progressive mCRPC were consented and enrolled in two 

independent prospective studies prior to initiating a new systemic therapy. Patients 

were treated with enzalutamide or abiraterone acetate targeting androgen receptor 

signaling (n=120, PROPHECY clinical trial, NCT02269982) [19] or radium-223 

(n=20, radium-223 pharmacodynamic trial, NCT02204943) [37] targeting bone 

metastasis. As shown in Figure 1A and B (CONSORT diagrams), 93 of these men 

contributed either CTCs, cfDNA, or both in this analysis of the combined studies.  

Together, 32 patients contributed 64 time-matched/paired samples of both CTCs and 

cfDNA for the present concordance analysis.  In the PROPHECY study, men had a 

median age of 73 years (range 45-92), median PSA of 19ng/ml (0.08-4194); mean 

123, high alkaline phosphatase, prior abiraterone/enzalutamide therapy or 

radiographic progression, and 100% had bone metastases. In the radium-223 

prospective study, patients with mCRPC were enrolled with >2 symptomatic bone 

metastases. The median age was 72 years (range 54-86), median PSA was 50 

ng/ml (range 2-1896), and all patients had elevated serum alkaline phosphatase. A 

total of 95% of patients in the radium-223 study had prior enzalutamide, and 80% 

had prior abiraterone acetate/prednisone treatment. Tables S1-2 describe the 

baseline clinical characteristics of the radium-223 and PROPHECY cohorts of men 

with mCRPC, respectively. Figure 1 provides the CONSORT diagram for the 

patients included in the present analysis and describes the research plan in the 

combined cohort of 140 mCRPC men. A total of 52% (69/133) of mCRPC men at 

baseline had an unfavorable > 5 CTCs per 7.5mL blood by CellSearch criteria [6], 
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the median number of CTCs was 5 (Figure S2A), and 30 men had 0 CTCs detected 

by CellSearch criteria.   

 
Similar to CTC counts, we found a range of cfDNA concentrations (median 104 

ng/2ml, range 46-1,458 ng/2ml plasma) across all patients. In addition, unamplified 

cfDNA was visualized on Agilent TapeStation revealed two DNA bands between 

100-200bp and 500-700bp, where, no genomic DNA contamination was seen 

(Figure S3). We hypothesized that this variation in cfDNA concentration could be 

explained, at least in part, by the CTC count. We hypothesized that men with higher 

CTC burden would also have higher cfDNA concentrations [11]. To test this 

hypothesis, we examined the association of cfDNA concentrations with CTC 

enumeration by measuring cfDNA concentration among 90 mCRPC men. Consistent 

with our hypothesis, we found that the median cfDNA concentration was higher in 

the group of patients with >5 CellSearch CTCs (median 118 ng/2ml) in comparison 

to those men with <4 CTC (p-value = 0.003) (median 85 ng/2ml) (Figure S2B).  

 

Low-pass whole genome sequencing, an alternative approach for copy 
number and tumor content determination in mCRPC  

We next sought to evaluate tumor content CNAs in cfDNA. To do this, we first 

utilized a low-pass whole-genome sequencing method (lpWGS, coverage ~0.1x), 

which requires an input of cfDNA (1-5ng). We applied this technique to cfDNA 

isolated from 83 plasma samples from 73 men in the PROPHECY study (72 baseline 

and 11 progression) [19]. The tumor content was determined in cfDNA from whole-

genome sequencing data using the PRINCe method according to previously 

described methods [36]. After determining the tumor content in cfDNA, we compared 

the distribution of CellSearch CTCs in 68 baseline mCRPC men from PROPHECY 

study with low tumor content (lowTC) (n=40) and high tumor content (highTC) 

(n=28). We found that CellSearch CTC counts were significantly higher in highTC 
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cfDNA (p- value= 0.0001) in comparison to lowTC cfDNA samples (Figure S2C). 
While no significant differences in cfDNA concentration were noted in high vs. low 

TC samples (Figure S2D). Furthermore, to prove the hypothesis that men with 

higher CTC burden would also have higher tumor content, here, we examined the 

association of tumor content (lowTC vs. highTC) with CTC enumeration (0, 1-4 and 

>=5 CTC CellSearch) among 68 mCRPC men, and found that 71% (20/28) patients 

with highTC had >=5 CellSearch CTCs in comparison to those men with <4 CTC 

(Figure S2E). Finally, these data suggest that men with high CTCs tend to have a 

greater cfDNA tumor content. 

Using lpWGS, we detected the androgen receptor (AR) copy gain in 36% (30/83) of 

cfDNA samples. Of these, 70% (21/30) of patients with AR copy gain had highTC, 

while 30% (9/30) had lowTC in their paired cfDNA (File S1). Next, we compared 

cfDNA CNA reproducibility between aCGH and lpWGS by comparing whole genome 

and focal/gene-level copy number changes at the AR locus in 21 paired cfDNA 

samples from 15 mCRPC men (15 baseline and 6 progression) (Figure 1B). We 

identified high concordance (genomic alteration identified by both aCGH and lpWGS) 

of both AR copy gain detection (89%) and AR copy neutral status (92%) (Figure 
S4A-D). In highTC samples, AR gain detection was 67%, while in lowTC samples 

AR gain detection was only 33%, suggesting that TC clearly impacted the ability to 

detect this genomic alteration. The analysis of AR copy numbers provided an 

estimate of data reproducibility of cfDNA profiles across different whole-genome 

platforms.  

 
CTC DNA vs. cfDNA:  whole-genome copy number alteration analysis by aCGH 

After establishing the impact of TC on the detection of common genomic alteration in 

cfDNA using both low pass WGS and aCGH, we next compared CNAs in patients’ 

paired CTC DNA and cfDNA by identical aCGH methods across both the radium-223 

and PROPHECY prospective studies. For this analysis, we included 69 CTC DNA 

from 35 men (25 pre-treatment baseline samples and 40 longitudinal samples) and 
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72 paired cfDNA from 34 men (33 pre-treatment baseline and 39 longitudinal) with 

paired germline reference DNA (Figure 1A and B). In this comprehensive analysis, 

we focused on sixty common and recurrently altered genes that have been 

previously implicated with mCRPC for CNAs analysis in both CTCs and cfDNA [38]. 

We identified heterogeneity in the detection of multiple altered genomic regions in 

CTCs- and paired cfDNA samples, including common genomic gains in FOXA1 

(59% vs. 75%), KDM6A (52% vs. 18%), AR (46% vs. 63%), and MYC (17% vs. 21%) 

(Figure 2A). Similarly, common genomic losses included ZFHX3 (59% vs. 40%), 

FGFR2 (43% vs. 33%), PHLPP1 (36% vs. 29%), BRCA1 (26% vs. 28%), and PTEN 

(14% vs. 13%) (Figure 2B).  For example, at a focal or gene level, a representative 

gene view image of concordance in CTCs vs. cfDNA harboring AR copy gain and 

ZFHX3 copy loss with probes distributions are shown in Figure 2C and D, 

respectively. 

 

Further, we compared the prevalence of these CNAs from our cohort with publicly- 

available datasets in cBioportal [35]. The prevalence of these genomic alterations in 

both CTCs and cfDNA was similar to those reported in multiple primary and 

metastatic prostate cancer datasets, with copy gain or loss in the same direction as 

those identified in CTCs and cfDNA. For example, 52% (78/150) of SU2C/PCF 

mCRPC samples had AR gain, which is consistent with our AR copy gain detection 

in CTCs DNA and cfDNA (46% vs. 63%) (Figure 2E). In addition to AR, the 

prevalence of gain or loss of multiple additional genomic regions was confirmed in 

publicly-available prostate cancer data sets, including amplification of FOXA1, 

CYP11B1, and MYCN (Figure 2E), and deletions in ZFHX3, NCOR1, FGFR2, and 

NKX3-1 (Figure 2F). Thus, our findings suggest that aCGH consistently detects 

concordant CNAs in CTCs and cfDNA from men with mCRPC, similar to that 

reported from metastatic biopsies. 

 

To examine whether there are discordant genomic alterations between time- and 

patient-paired CTC DNA and cfDNA, we first analyzed the prevalence of genomic 
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alterations between 32-paired CTCs and cfDNA from 16 mCRPC men from the 

radium-223 treated cohort of men with mCRPC, including 14 baseline and 18 

longitudinal samples. We observed a high concordance in copy number gain of 

FOXA1 (86%) and AR (87%) between matched CTC and cfDNA sources, moderate 

concordance for copy gain of MYC (50%), NCOR2 (50%), AURKA (50%) and loss of 

ZFHX3 (47%) and PHLPP1 (45%), and low concordance between sources for gain 

of MYCN (11%), KDM6A (39%) and loss of BRCA1 (30%), RB1 (33%), and FGFR2 

(29%) in CTC and matched cfDNA (Figure S5A). For example, MYCN gain was 

detected in 28% of CTC DNA samples but was detected in only 9% of cfDNA 

samples. These data suggest significant variability in the detection of genomic 

alterations using these two different sources of tumor DNA.   

 

We next examined the degree of CNA discordance within each treatment cohort, 

where tumor heterogeneity was observed in both CTC and paired cfDNA. A number 

of discordances were observed between 32 paired CTCs and cfDNA (14 baseline 

and 18 progression) from the 16 men with mCRPC treated with radium-223, such as 

gain of CYP11B1 detection rate (59% vs. 3% in CTCs vs. cfDNA, respectively), and 

MYCN (28% vs. 9%), and copy loss in GRHL2 (75% vs. 19%), RUNX2 (63% vs. 

13%), PXN (38% vs. 0%), and NKX3-1(19% vs. 6%) (Figure 3A). These 

discordances were observed despite clear probe coverage of the genomic regions of 

interest in paired CTCs and cfDNA, as illustrated in Figure S6A and B. In addition, 

these discordant gain or loss of genomic regions were also observed in publicly 

available prostate cancer tissues data sets, as shown in Figure S7.  

 

To externally validate these CTC-discordant genomic alterations, we analyzed CTC 

vs. cfDNA concordance in the multicenter prospective PROPHECY study of men 

with mCRPC treated with abiraterone or enzalutamide, including 32 paired cases 

with matched CTCs and cfDNA samples from 16 mCRPC men (15 baseline and 17 

progression) treated with abiraterone or enzalutamide. Similar to our radium-223 

treated cohort, we detected concordant gains in FOXA1 (100%), AR (40%), MYC 
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(40%), and loss of ZFHX3 (58%), PHLPP1 (50%), BRCA1 (50%), RB1 (40%), and 

FGFR2 (50%) between paired CTC and cfDNA sources (Figure S5B).  

 

In the PROPHECY cohort, we likewise observed discordant gains in MYCN 

(detection frequency of 31% vs. 0%) and CYP11B1 (34% vs. 9%), and discordant 

loss in RUNX2 (47% vs. 3%) and PXN (28% vs. 3%) (Figure 3B), respectively. We 

next asked whether this CTC-discordance could be due to lowTC or due to high CTC 

counts in the paired samples. Surprisingly, however, we found similar rates of high 

CTC vs. cfDNA discordance even in those cfDNA cases with highTC or low CTCs 

(Figure 3C and D). Moreover, the prevalence of genomic alterations of these 

concordance/discordances were significantly higher in >=5 CTCs in comparison to 0, 

and 1-4 CTCs by CellSearch criteria (N=45 baseline, PROPHECY study) (Figure 
3E). In addition, we compared the overall genomic alterations, and genome 

discordance in CNAs at the whole-genome level in 21 paired CTCs and cfDNA 

based on their tumor content grouped into lowTC (n=12) and highTC (n=9). We 

observed a trend of increased in overall CNAs (Figure S8A), and genomic 

discordance of genomic regions with CTC DNA copy gain in highTC than lowTC 

samples, but no significant differences were observed in genomic regions with 

cfDNA copy gain or loss (Figure 3F-H, and Figure S8B and C). Further, to visualize 

inter- and intra-tumor heterogeneity among these CNAs in detail, the number of 

CTCs, and paired CTCs vs. cfDNA CNAs status of 60 genes from radium (top) and 

PROPHECY (bottom) studies are summarized in Figure S9A and B. Analysis of 

genomic copy gain agreement by Cohen’s Kappa in 64 paired CTCs and cfDNA 

CNAs was consistent with most of our previous concordance and discordance 

findings. However, we found low Cohen’s Kappa for AR gain, reflecting more 

abundance of AR gain detection in cfDNA over CTC DNA. Analysis of genomic copy 

loss agreement by Cohen’s Kappa, however, was variably consistent with our 

previous findings. The top agreement and disagreement between CTCs and cfDNA 

CNAs with Kappa scores are summarized in Table S3. Together, these data suggest 

that CTCs in some men with mCRPC have consistently different copy number 
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profiles as compared with paired cfDNA profiles, as exemplified by selected gene 

regions, which may be reflective of either biologic heterogeneity of the source of 

DNA or differences in detection for each assay related to CTC number or cfDNA 

concentration.   

 

Genomic and phenotypic evolution: heterogeneity and NEPC transformation 

To describe in detail the potential clinical significance of discordant CTC and cfDNA 

profiles, we collected paired CTCs and cfDNA with high tumor content from a 

PROPHECY cohort patient (# 809-33) at baseline and disease progression during 

treatment with abiraterone and enzalutamide. The patient had been determined to be 

negative for AR-V7 by the Epic AR-V7 assay [17] and had a CTC aCGH profile 

consistent with gains in AR, MYCN, FOXA1, and loss of BRCA1. His CTC phenotype 

suggested high tumor heterogeneity with an elevated Epic Shannon Index of 1.7 

[39]. Following continued disease progression on enzalutamide and docetaxel 

chemotherapy, the patient’s CTCs increased from 194 to 1,359, and his cfDNA 

concentration increased from 129 to 428 ng/2ml. These increases in cfDNA were 

accompanied by a rapid PSA rise and the development of soft tissue and liver 

metastases. A metastatic biopsy of a lymph node confirmed histologic transformation 

to small cell carcinoma (Figure 4).  His repeat CTC genomic analyses remained 

negative for AR-V7, but demonstrated an aCGH profile consistent with AR genomic 

loss, the persistence of MYCN gain and a small cell CTC and tissue phenotype 

suggestive of a neuroendocrine-like transformation [40] (Figure 4A). Interestingly, 

MYCN copy gain was found in longitudinal CTC samples but not in cfDNA despite 

the highTC in his cfDNA collected from the same time point. In addition, several new 

genomic alterations became dominant in this patient’s post-enzalutamide 

progression CTCs samples that were not detected in matched cfDNA samples 

(Figure 4B-D). The patient’s tumor cells also exhibited high nuclear to cytoplasmic 

ratio, inconspicuous nucleoli, foci of necrosis and abundant apoptotic debris, and 

PSA loss of expression, all of which are features characteristic for small cell 
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carcinoma. Immunohistochemical staining of pan-cytokeratin and synaptophysin 

confirmed the neuroendocrine differentiation of an epithelial lineage in this tumor 

while highlighting the minimal cytoplasm present in these tumor cells (Figure 4E-H).  

 

To assess the relevance of these findings in a broader context, we established that 

MYCN gain is one of the top discordant CNAs in PROPHECY 

abiraterone/enzalutamide treated mCRPC men (31% CTC vs. 0% cfDNA) (Figure 
4Ia). In support of the PROPHECY findings, MYCN gain was also observed to be 

discordant in 32 matched CTCs and cfDNA from 16 mCRPC men treated with 

radium-223 (28% MYCN gain detection in CTC vs. 9% in matched cfDNA) (Figure 
4Ib). In addition, MYCN gain was observed in multiple publicly-available prostate 

cancer datasets, including both primary and metastatic tumors (TCGA, SU2C, and 

NEPC) in cBioportal [35] (Figure 4Ic). Taken together, these data suggest that CTCs 

may discern clonal selection of AR-independent and treatment-emergent genomic 

events that may be contributing to enzalutamide resistance and may not be identified 

in cfDNA. 

 

Genomic discordance of osteomimicry genes in mCRPC 
Among those genes with discordant gains or losses in our mCRPC cohort (Figure 
3A and B) were genes related to osteoblast biology, suggesting a role for potential 

osteomimicry in metastatic dissemination in men with mCRPC [37, 41]. We identified 

discordant gains and losses in seven key osteoblastic regulating genes: ALPL 

(alkaline phosphatase), RUNX2 (runt-related transcription factor 2), BGLAP (bone 

gamma carboxyglutamate protein, osteocalcin), SPP1 (secreted phosphoprotein 1, 

osteopontin), CDH11 (osteoblast cadherin), TNFSF11 (tumor necrosis factor ligand 

superfamily 11 or RANKL) and SPARC (secreted protein acidic and cysteine-rich, 

osteonectin). When examined by aCGH in 32 paired CTCs and cfDNA DNA from 16 

mCRPC men, we found genomic gains in CTCs for ALPL (12%), CDH11 (19%), 

SPP1 (22%), and TNFSF11 (13%), whereas copy loss of RUNX2 was notable in 

63% of CTCs. Of these, 69% of RUNX2 copy loss cases also harbored highTC in 
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their matched cfDNA samples. Remarkably, however, we did not identify common 

gains or losses of these osteoblastic gene regulators in cfDNA samples by aCGH 

from the same patients at the same time points (Figure S10A). It is important to note 

that gains and losses at other loci were highly concordant in these same-paired 

samples using the same aCGH methodology, suggesting that differences in 

osteoblastic gene alterations found in CTCs and absent cfDNA were not due to 

differences in CTC number, cfDNA concentration, or assay sensitivity.  For example, 

we found common genomic gains in AR and FOXA1, and losses in PHLPP1 and 

BRCA1 in both CTCs and matched cfDNA from the same patients at the same time 

points, and while slight differences were noted in the frequency of these gains in the 

cfDNA, there was overall consistency between CTCs and cfDNA of these genes.  

 

We also observed discordant genomic findings of osteoblastic regulators in CTCs in 

our PROPHECY cohort of 32 CTCs and matched cfDNA from 16 patients. For 

example, we identified copy gains for these seven osteoblast genes in patients, 

including ALPL (19%), CDH11 (16%), SPP1 (9%), and TNFSF11 (6%) and SPARC 

(9%), whereas, copy loss of RUNX2 was notable in 47% of CTCs [19]. However, in 

matched cfDNA samples from the same patients, copy gain/loss of these key genes 

were not observed despite the collection of samples at the same time points and 

using the same aCGH method of detection, and despite highTC of many cfDNA 

samples (Figure S10B). In detail, the CNAs in osteomimicry genes in paired CTCs 

and cfDNA from radium (top) and PROPHECY (bottom) studies are summarized in 

File S2. These data, together with discordances of MYCN gain in CTCs, suggest 

that CTCs may harbor genomic alterations important to the metastatic biology of 

CRPC that is missed by examining only the cfDNA fraction. 

 

We next sought to validate the presence of key genomic alterations identified in our 

CTCs, particularly those discordant genes not found in cfDNA, in public datasets of 

men with mCRPC.  To explain if genomic alteration confers mRNA expression in 

mCRPC, we analyzed two independent prostate cancer datasets containing 286 
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metastatic tissue samples [38, 42], where both CNV and mRNA-expression profiling 

were performed simultaneously and analyzed in cBioportal [35]. We identified 

several CTC-discordant genes, such as KDM6A, UGT2B17, NRAS, and NCOR1, in 

which genomic loss correlated with lower mRNA expression and genomic gain 

correlated with higher mRNA expression in mCRPC tumor tissues (Figure S11). 

However, for several CTC discordant genes, we failed to identify a relationship 

between these CNAs and altered mRNA expression and CNAs. These data support 

our findings that several CTC-specific genomic alterations may be a common driving 

mechanism in mCRPC, but caution that some genomic alterations may not be 

associated with mRNA dysregulation or have functional significance, and thus 

require mechanistic and functional validation. 

 

Genomic loss of PTEN is prognostic for poorer survival in AR-V7 negative 
patients   

Finally, we sought to examine the clinical implications of CTC-specific genomic 

alterations in our PROPHECY study cohort. We focused our analyses on those men 

with mCRPC who tested negative for AR-V7 nuclear protein using the Epic AR-V7 

test [30, 33], given that these men have significantly heterogeneous clinical 

outcomes when treated with abiraterone or enzalutamide.  First, as a positive control 

biomarker, we examined the prognostic relevance of AR-V7 mRNA detection by the 

Johns Hopkins Adnatest method (JHU AR-V7) in CTCs of 40 baseline mCRPC men 

in the PROPHECY study who tested negative for AR-V7 by the Epic nuclear assay 

(Epic AR-V7) [16, 17]. A total of 18% (7/40) baseline CTCs samples were AR-V7 

mRNA positive (median CTC 45, range 3-194) by the JHU AR-V7 assay, but 

negative by Epic AR-V7 nuclear protein detection assay. The median radiographic 

PFS with abiraterone or enzalutamide treatment was significantly lower at 2.7 

months for AR-V7 positive disease as compared with 8.4 months for AR-V7-negative 

disease (HR 3.2, 95% CI, 1.4 – 7.4) (Figure 5A). These data support the relevance 

of JHU CTC AR-V7 positivity, even in Epic AR-V7 negative men. 
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Next, we examined common concordant CNAs in CTCs for their prognostic 

relevance in 40 Epic AR-V7 negative men with mCRPC treated with 

abiraterone/enzalutamide.  A total of 45% (18/40) cases harbored AR copy gain by 

aCGH. These patients with AR copy gain had a trend toward lower median PFS (4.7 

months) vs. copy neutral/loss (8.4 months, HR 1.6, 95% CI, 0.8 - 3.2) (Figure 5B), 

though these differences were not statistically significant. In addition, the median 

PFS of men with CTC PTEN loss was significantly lower at 3.4 months in 

comparison to 8.4 months for men without PTEN loss (HR 0.4, 95% CI, 0.2 – 0.8) 

(Figure 5C). Given the small sample size, we are unable to perform multivariable-

adjusted analyses including CTC enumeration or other clinical prognostic factors, 

and these results are hypothesis-generating only. 

 

We next explored the prognostic potential of common CTC-cfDNA discordant genes 

and their association with PFS in these 40 Epic AR-V7-negative men with mCRPC 

treated with abiraterone or enzalutamide. Patients with CTCs who had discordant 

copy gains in MYCN, BRCA2 or KDM5D, or had discordant copy loss of RUNX2 had 

shorter progression-free survival (PFS) times compared with patients whose CTCs 

were copy neutral for these genes. For example, median radiographic PFS was 3.5 

months for MYCN copy gain in CTCs compared with 8.4 months for copy neutral 

(HR= 1.9, 95% CI, 0.9 – 3.9) (Figure 5D). Similarly, for BRCA2, PFS was 

significantly shorter at 2.8 months for copy gain and 8.4 months for copy neutral 

(HR= 4.3, 95% CI, 1.9 – 9.8) (Figure 5E), whereas PFS for RUNX2 copy loss was 

3.8 months compared with 7.4 months for copy neutral (HR= 0.8, 95% CI, 0.4 – 1.6) 

(Figure 5F). The median PFS for additional concordant and discordant copy gains or 

losses are summarized in Figure S12A-F. Moreover, some gains/losses were not 

associated with outcomes, suggesting that just detection of an alteration as a 

surrogate of high CTC number is insufficient for prognostication, and those specific 

genomic alterations are likely critical. While we consider these results exploratory 

and hypothesis-generating, our analyses suggest the following: 1) both concordant 

This article is protected by copyright. All rights reserved.



and discordant CNAs in CTCs versus cfDNA may be clinically relevant and 

prognostic for outcomes with AR inhibitor therapy; 2) CTC genomic alterations 

provide a unique source of DNA (and RNA) as compared to cfDNA, and 3) these 

differences may impact metastatic biology and the progression of treatment 

resistance. 

 

 

 

 

 

 

 

 

 

Discussion 
In this study of prospectively-collected blood samples from two independent cohorts 

of men with mCRPC, we identified critical discordances in a series of genes related 

to prostate cancer pathobiology in CTC DNA compared to patient- and time-paired 

cfDNA samples. Our study confirms that the detection of whole-genome alterations 

is feasible in the majority of patients, and we identified common concordantly-altered 

genes in CTCs and cfDNA, such as AR, FOXA1, and PTEN.  We identified strong 

concordance of AR genomic alterations between paired cfDNA samples using both 

aCGH and lpWGS in cases with high and low tumor content.  Interestingly, we found 

consistent discordances in CTC samples, which were identified in independent 

cohorts, even in the presence of high cfDNA tumor content, suggesting that the 

genomic copy discrepancies identified between CTC DNA and cfDNA sources are 

platform-independent and may suggest different biological processes. While 

detection of genomic alterations is challenging in the absence of CTCs or lowTC 

plasma samples, these data support divergent biology in CTCs that may have 

clinical implications for therapy and biomarker development. 
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We observed significant between-patient and longitudinal genomic heterogeneity of 

CTCs and cfDNA in mCRPC patients, suggesting the presence of patient-specific 

diversity as well as clonal evolution over time. The detection of CTC-specific 

genomic alterations was linked to 1) neuroendocrine and lineage plasticity 

regulators, such as MYCN gain, 2) osteomimicry regulators, such as RUNX2 loss, 

and 3) epigenetic regulators, such as KDM6A and KDM5D. These CTC-specific 

alterations were associated with shorter progression-free survival times with 

abiraterone or enzalutamide in AR-V7 negative men with mCRPC, suggesting that 

CTCs may harbor clinically-relevant genomic information that could be missed by 

focusing solely on cfDNA analysis.  Critically, these poor outcomes were present in 

AR-V7 negative men, an important group of patients with a wide range of clinical 

outcomes with AR inhibitor therapy. We identified variable concordance in CTC DNA 

vs. cfDNA CNAs depending on the specific gene, type of alteration, and CTC 

enumeration, possibly reflecting biologic variability and single-cell tumor 

heterogeneity.   

 

We also established that aCGH and lpWGS were highly concordant in detecting AR 

(89%) gain in the same cfDNA samples. We also showed in mCRPC that CTCs and 

cfDNA are largely concordant in key genes, likely reflecting the clonal origin of CTCs 

[43]. For example, AR and FOXA1 gains were commonly observed in both CTC and 

cfDNA compartments and mirrors that of public mCRPC datasets.  In a prospective 

study, Wyatt et al. (2017) compared genomic alterations in paired metastatic 

prostate cancer tissues and cfDNA using whole-exome sequencing and identified 

64.7% concordance in AR amplification detection [12]. Similarly, we also confirmed 

AR copy gain concordance between paired CTC DNA and cfDNA samples collected 

from the same patients and at the same time point from two-combined concordance 

across both datasets, and in highTC samples. The amplification of AR in baseline 

CTC DNA was also associated with shorter survival times. Hence, this aCGH assay 

is appropriate to reproducibly identify alterations of selected driver genes, such as 

This article is protected by copyright. All rights reserved.



AR, which supports the development of liquid biopsy platforms using CTC or cfDNA-

based biomarkers to understanding potential resistance mechanisms in cancers at 

the molecular level [38, 44].  
 

Interestingly, we also observed a number of discordant genomic alterations that may 

be critical to tumor progression, drug resistance, and lethal disease heterogeneity 

[43]. For example, previous studies have shown that MYCN is amplified and capable 

of inducing a neuroendocrine-like prostate cancer phenotype, where it is thought to 

be involved in developing resistance to androgen deprivation therapy [45, 46]. In our 

PROPHECY study, MYCN copy gain was observed in 31% of CTCs from mCRPC, 

whereas, none of the paired cfDNA cases harbored copy gain. The presence of 

MYCN in CTCs was also associated with shorter PFS with abiraterone or 

enzalutamide treatment, which suggests that CTC DNA and not cfDNA, may be 

more useful biospecimen source of certain prognostic or predictive biomarkers, and 

supports the enrichment of NEPC-like CTCs and non-AR dependent mCRPC during 

hormonal therapy [47].  The lack of MYCN gain in cfDNA may relate to the fact that 

CTCs remain viable in the circulation and are not shedding sufficient DNA to be 

detected in the cfDNA assays.  More sensitive cfDNA assays may reduce this 

discordance with CTC DNA detection; however, our study illustrates the need for 

close attention to both assay sensitivity and biologic heterogeneity.  

 

Our observation of discordance in genes detected in CTC CNAs that regulate 

osteoblast biology suggests the importance of these genes to bone metastasis.  One 

hundred percent of the men in our two cohorts had bone metastases, and we 

identified genomic alterations in seven osteomimicry markers in mCRPC CTC and 

paired cfDNA from two independent clinical trials (NCT02204943 and 

NCT02269982) [19, 37].  These alterations in osteoblastic gene regulators, including 

ALPL, RUNX2, SPP1, CDH11, and TNFSF11, were present in CTCs and not in 

paired cfDNA. Moreover, the genomic alterations in these genes were confirmed in 

both datasets in the same direction of genomic alteration (gain or loss) for each 
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gene, suggesting that these genomic alterations may be important for metastasis to 

the bone. Furthermore, Cohen’s kappa analysis of CTCs and cfDNA showed that AR 

has a discordance in the opposite direction, with greater detection in cfDNA than 

CTC DNA.  This may be due to an increase in AR-expressing cells dying during 

hormonal therapy (abiraterone/enzalutamide).  While the other CTC discordant 

genes may be the resistant, living clones that survive differentially and do not 

contribute as much to the cfDNA pool  [32, 37], the AR-dependent genes may be 

more concordant (truncal) or discordant favoring cfDNA.  Functional validation and 

mechanistic studies are needed to validate further and determine the clinical 

relevance of these CTC discordant genes to bone metastasis formation.    

 

Our findings are limited by the small and exploratory nature of the present dataset 

and are considered hypothesis-generating. There are several key limitations of the 

present analysis. First, our sample size is small, and we lack sufficient power to 

conduct multivariable prognostic analyses of individual CTC-specific genomic 

alterations, adjusting for CTC enumeration and clinical prognostic factors, similar to 

what we have reported for AR-V7 [19].  Future studies will need to evaluate the 

independent prognostic utility of these CTC discordant alterations and characterize 

their functional relevance. Second, our CNA studies suggest that low tumor content 

will reduce the ability to detect such genomic alterations, either through low CTC 

enumeration or through low cfDNA tumor content, similar to findings by others [6, 8].  

However, our findings of CTC discordant alterations persisted even in samples with 

high tumor content, suggesting potentially real biologic divergence. Finally, DNA 

copy number alterations may not be associated with differences in mRNA or protein 

expression could be due to epigenetic repression, segment amplification, or partial 

gene amplification of chromatin regions that may influence mRNA expression, and 

single-copy differences may have little functional consequences vs. high-level gains 

or biallelic losses. To address this limitation, we examined CNA and mRNA 

expression in paired samples in public datasets and confirmed significant positive 

correlations between CNAs and mRNA for many key concordant and discordant 
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genes observed in CTC DNA, such as gains in AR, MYC, FOXA1, KAT6B, and 

KDM6A, and losses in PTEN, RB1, and ZFHX3. Other discordant genes, such as 

MYCN, are already established to be critically relevant to small cell prostate cancer 

divergence [46].  Further mechanistic studies of CTC divergent genes are needed to 

evaluate their impact on treatment resistance and metastasis biology.  

 

Our data establish that CTCs and cfDNA are valuable sources of genetic information 

that provide important, but potentially distinct and complementary information 

regarding tumor progression, treatment response/resistance, and metastasis biology. 

Additional larger studies of paired samples prospectively collected in clinically 

annotated datasets of patients with cancer in different disease states and during 

different treatments are needed to define whether CTCs, cfDNA, or a combined 

approach has greater clinical utility [48, 49]. Our collective data suggest that CTCs 

harbor critical genomic information that may be missed by cfDNA analysis alone.  

Yet, reliance on CTC genomic data alone has limitations because many patients with 

metastatic prostate cancer lack detectable CTCs, particularly in earlier disease 

settings, limiting the clinical utility of this approach [50, 51]. Therefore, analysis of 

both CTCs and cfDNA, as well as CTC or cell-free RNA and/or protein, could 

represent a valuable integrated approach. Our data support the need for the 

continued development of sensitive CTC DNA or RNA and cfDNA detection methods 

to identify clonal heterogeneity and the emergence of rare cells during the selection 

pressure of systemic therapies. 

 

In summary, we find that while CTC DNA and cfDNA CNAs are largely concordant, a 

range of discordant findings in CTCs suggests that CTCs may report on divergent 

tumor evolution and heterogeneity that may be missed by cfDNA analysis. Genomic 

alterations in AR signaling, critical lineage oncogenes or tumor suppressors, 

epigenetic regulators, and osteomimicry pathways support a variety of progression 

and metastatic pathways important to CRPC lineage plasticity and bone metastasis 
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biology. Efforts to functionally characterize these CTC-divergent genomic alterations 

and assess their clinical impact are critical. 
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