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We study strategic capacity investment problems in joint ventures (JVs) with fixed-rate revenue sharing

contracts. We adopt a game-theoretical approach to study two types of JVs depending on how individual

resources determine the effective capacity of a JV. With complementary resources, the effective capacity

of a JV is constrained by the most scarce resource. We show that multiple Nash equilibria could exist.

Nevertheless, there exists a unique Strong Nash equilibrium. We show that there is an efficient and fair fixed-

rate revenue sharing contract which induces the system optimal outcome in the Strong Nash equilibrium.

On the other hand, with substitutable resources, the effective capacity of a JV is measured by aggregating

individual contributions. We show that there does not exist a fixed-rate revenue sharing contract that induces

the system optimum. We quantify that the efficiency of a JV which decreases with the number of participants,

the cost asymmetry and the cost margin of the JV. We propose provably-good fixed-rate revenue sharing

contracts with performance guarantees. We also propose a simple modified contract to achieve the channel

coordination. Finally, we fit our model with historical data to shed some insights on two JV examples in the

motion picture industry.
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1. Introduction

This paper studies revenue sharing joint ventures. A joint venture (JV) takes place when two or

more business partners pool resources and expertise to achieve a particular goal for a contrac-

tual period of time. We focus on fixed-rate revenue sharing JVs where participating partners are

rewarded according to a fixed and pre-negotiated percentage of the revenue. Facing demand uncer-

tainty, the business partners make individual investment decisions, which determine the effective

capacity of the JV. One main goal of this paper is to quantify the efficiency of a JV, that is,

comparing the effective capacity and the total profit achieved in a JV to their system optimal
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counterparts, where investment decisions are made centrally (as if the participating firms acted as

a single entity). We distinguish two types of JVs, depending on the nature of resources that affects

how a JV’s effective capacity is determined. With complementary resources, the final product or

service of a JV requires contribution from every individual partner. Thus, the effective capacity of a

JV is constrained by the most scarce resource. On the other hand, when resources are substitutable,

the final product can be made with any available resources. Thus, the effective capacity of a JV is

determined by aggregating individual contributions.

Examples of JVs abound. Sanofi (a French drug company) and Verily (a subsidiary of Google)

established Onduo, a joint venture integrating medicine and microelectronics to tackle diabetes (see

Wall Street Journal (2016)). IMAX, the entertainment technology company, has launched JVs with

theaters since 2008, where it installs its proprietary entertainment systems in theaters at minimal

charge, in return for a portion of box-office receipts. Both are examples of complementary resource

sharing: Onduo combines Sanofi’s drug development knowledge with Verily’s expertise in data

analytics, software, and miniaturized devices to create tools for diabetes care; IMAX contributes

the projection systems while the theaters provide the physical space and labor.

Meanwhile, there are also many examples of JVs with substitutable resource sharing, e.g., airline

alliances such as Sky Team, Star Alliance, OneWorld (see Vinod (2005)) as well as car rental JVs

between Avis and Shanghai Automotive Industry Corp (see Auto Rental News (2013)). In the

motion picture industry, theater operators also turn to JVs to develop and operate their theaters

together, e.g., Wanda Group with Reliance MediaWorks Ltd (see Reuters (2012)).

When firms agree to a partnership, disparate interests often remain as each firm is more concerned

with its own return. The misaligned incentives could be extremely detrimental to the health of a

partnership: Bamford et al. (2004) studied over 5000 JVs and concluded that more than half of

them eventually failed. The authors argued that many failures could be prevented had more effort

been spent on aligning the partners’ interests to create a coherent organization. With that in mind,

in this paper, we attempt to address the following research questions: How can we design efficient

revenue sharing contracts to better align the incentives of participating firms in a JV? We focus

on the fixed-rate revenue sharing contract due to its merits of relatively simple structure compared

to other coordinating contracts. For some cases, when such a simple scheme is not capable of

achieving coordination, we would address a follow-up question: How much efficiency is lost due to

incentive misalignment? The analysis helps us pinpoint the key factors that cause inefficiency in a

JV. Moreover, if the loss of efficiency is proven to be substantial, it provides evidence to advocate

more complex and costly contracts for JVs.
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1.1. Main Results and Contributions

We propose a game-theoretical approach to analyze the performance of resource sharing where

firms in a JV split the return via a fixed-rate revenue sharing contract. Our model differentiates

between two types of resource sharing, namely, complementary versus substitutable resources.

With complementary resource sharing, we show that multiple equilibria exist, as the strategy

space of each firm also depends on others’ strategies. Specifically, when one firm lowers his or her

investment from an existing equilibrium level, this action triggers off under-investment from all

other firms and establishes a new equilibrium. Nevertheless, we show that for any given fixed-rate

revenue sharing contract, there exists a unique Strong Nash equilibrium, which can be interpreted

as the “best” Nash outcome for inducing the highest effective capacity among other Nash equilibria.

We show that there exists a fixed-rate revenue sharing contract which induces the system optimal

outcome in the Strong Nash equilibrium setting. This contract rewards each firm proportionally to

its share of marginal cost evaluated at the optimal capacity level. Besides efficiency, we also show

that this contract embodies a notion of proportional fairness.

With substitutable resources, we show the existence and uniqueness of a Nash equilibrium. In

such a JV, we show that only the most “efficient” firms will actively participate and it is measured

in terms of the marginal cost as well as the positive externality to other participants. We show that

there does not exist any fixed-rate revenue sharing contract that is efficient. In particular, JVs tend

to under-invest in their effective capacities compared to the system optimal setting. We measure

a JV’s efficiency by quantifying a worst-case performance bound on the aggregate profit with

respect to its system optimal counterpart. In a two-player setting, we identify fixed-rate revenue

sharing contracts with a worst-case performance guarantee of 2. We show that such schemes reward

participants inverse proportionally to their costs, i.e., the firms with higher (lower) cost receive

less (more). In an n-player setting, we show that efficiency generally decreases with the number

of participants, cost asymmetry among the participants, and the cost margin of the JV. We also

propose a simple modified contract which rebalances the cost though subsidies or penalties in order

to achieve the channel coordination.

We consider an extension where the spillover effect exists which could stem from the transfer of

knowledge, skilled labor and technology among participating firms. For complementary resources,

we show that having the spillover effect changes the nature of the resources from perfect com-

plements to imperfect complements with partial substitutes. Thus, the resulting JVs inherit the

properties of substitutable resource sharing (e.g., a fixed rate revenue sharing contract can no

longer coordinate a JV). Meanwhile, for substitutable resources, having spillovers turns the per-

fectly substitutable resources into imperfect substitutes. Key drivers behind a JV’s performance
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will need to be modified to capture the externality impact due to spillovers. For instance, firms

with high cost might remain active in a JV, conditioned on providing high positive externality to

others.

In a numerical case study, we collect historical data to fit our models and evaluate the two

aforementioned JV examples in the motion picture industry. To study the JV between IMAX and

theater operators (i.e., complementary resources sharing), we utilize the companies’ financial data

and movie box office revenues between 2009 and 2013. We compare the optimum suggested by

our model and the actual performance that took place. Based on our fitted model, we show that

the optimal revenue sharing ratio is very close to what IMAX claims to be receiving from such

deals. Moreover, the model suggests that there is still significant room for growth for this type

of JVs. We also fit the model to study a JV between two theater operators (i.e., substitutable

resource sharing). We observe that such a JV partnership might not be desirable due to the low

profit margin and the risky nature of the business. This result provides some explanations to the

prevalence of mergers and acquisitions instead of JVs among theater chains in recent years.

1.2. Related Literature

In the literature on joint ventures, a plethora of theories have been employed (see Kogut (1988) for

an excellent review on theoretical and empirical perspectives of JVs). The most notable approaches

include the theory of transaction cost economics (e.g., Williamson (1981), Hennart (1991)), orga-

nization theories (e.g., Borys and Jemison (1989), Yiu and Makino (2002)), and theories on how

strategic behavior influences the competitive positioning of the firm (e.g., Vickers (1985), Balakr-

ishnan and Koza (1993)). This paper utilizes the approach of using strategic behavior to explain

the formation and the performance of JVs. In terms of positioning, our work is closely related to

two research streams in the operations management literature, namely, strategic capacity planning

and coordination using revenue sharing contracts.

Strategic capacity planning. The newsvendor model which studies a firm’s capacity decision

(before observing the demand) provides a central theme in the literature on capacity investment (see

Van Mieghem (2003) and Cachon and Netessine (2006)). Cachon and Lariviere (1999) considered

the manufacturer’s capacity investment and allocation problem when downstream retailers have

private information. Netessine et al. (2002) addressed the impact of demand correlations on a

firm’s resource investment decision. Caldentey and Wein (2003) analyzed the capacity decisions

in a production-inventory system and propose coordinating contracts that incorporate backorder,

inventory, and capacity levels. Boyaci and Özer (2010) studied the strategy of using advanced sales

to obtain more accurate demand information and evaluated the capacity investment decisions under
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various market and operating conditions. Kim and Tomlin (2013) focused on technological systems

that potentially face an outage and study investment decisions in recovery capacity and/or failure

prevention so as to enhance system availability. Chen et al. (2014) studied capacity allocation

model in supply chains with distributors as information intermediaries. Besides the single-location,

single-period models, Van Mieghem and Rudi (2002) introduced newsvendor networks to study

the stochastic capacity investment decisions. Shumsky and Zhang (2009) examined a multiperiod

dynamic capacity allocation model with product substitution. By contrast, our work focuses on

how players in a JV make capacity decisions depending on the resource type (complementary or

substitutable) and how effective revenue sharing mechanisms coordinate their capacity decisions.

When the resource type is complementary, our model closely resembles the well-studied assembly

systems in the literature. Wang and Gerchak (2003, 2004) investigated capacity games in assem-

bly systems with uncertain demand and designed optimal revenue sharing contracts to achieve

the channel coordination. Tomlin (2003) also studied price-only contracts in supply chain capac-

ity procurement games and showed that they could arbitrarily allocate the supply chain profit.

Bernstein and DeCroix (2004) considered modular assembly systems (which involves an extra layer

of subassemblers) and characterized equilibrium price and capacity choices. Carr and Karmarkar

(2005) considered a decentralized assembly system with price sensitive and deterministic demand.

Wang (2006) considered an assembly system with multiple suppliers who sell perfectly complimen-

tary products to a retailer with a price sensitive uncertain demand. Gumani and Gerchak (2007)

considered an assembly system with random component yield, and characterized the conditions

under which system coordination is achieved while respecting participation constraints. Nagara-

jan and Sošić (2009) studied dynamic alliance among suppliers with complementary products in a

decentralized assembly system and characterized the coalition structure with respect to different

power structures in the market. Yin (2010) studied how market demand conditions drive coalition

formation among complementary suppliers. While the efficiency result on the coordinating contract

resembles Wang and Gerchak (2003, 2004), we also draw an interesting connection from cooperative

games to show the fairness of the contract. More importantly, we also analyze the settings with sub-

stitutable resources as well as spillovers (i.e., from perfect complementary/substitutable resources

to imperfect complements/substitutes), which significantly depart from this line of literature.

In the context of JV models, Chevalier et al. (2013) analyzed the capacity investment decisions in

a JV, using a two-period model. In the first period, without knowing the demand, the JV partners

decide on their investments in a common resource which incurs a linear cost. In the second period,

after demand is realized, the partners choose how to allocate the joint capacity so as to fulfill their

respective demands. They proposed two contractual arrangements that allow JV partners to lease
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the joint capacity and studied how such contracts can align the incentives of the partners. Roels and

Tang (2017) proposed two types of bidirectional contracts, namely, the ex-post transfer payment

contract and the ex-ante capacity reservation contract, in a co-production and co-distribution JV.

They showed that either contract can improve the JV’s total profit in equilibrium but the capacity

reservation contract is preferred as it is Pareto-improving (leading to an increase in the profits of

both firms). Chen and Özer (2017) studied the strategic capacity planning problem in the context

of newsvendor competition and information leakage prevention, and proposed a mechanism to

characterize and categorize a variety of contracts. By contrast, our work focuses on the effectiveness

of revenue sharing contracts for their widespread usage and popularity in practice (e.g., Lafontaine

and Slade (2012)) depending on different types of resources.

Coordination via revenue sharing mechanisms. There has also been a large body of liter-

ature on using revenue sharing contracts to achieve coordination in supply chains. Dana and Spier

(2001), Cachon and Lariviere (2005), Yao et al. (2008), Linh and Hong (2009) showed that revenue

sharing contracts are capable of coordinating competing retailers in a supply chain via a Stackelberg

game setup. Kunter (2012) analyzed a royalty payment contract for a supply chain, which is a more

complex form of revenue sharing contract that includes wholesale price and marketing effort. More

recently, Kong et al. (2013) showed that revenue sharing contracts mitigate the negative effects

of potential information leakage when there is information asymmetry among downstream com-

peting retailers. While the majority of the literature has focused on vertical channel coordination

(i.e., upstream supplier and downstream retailers), our paper focuses on the horizontal coordina-

tion among participating firms as they simultaneously determine their investment decisions which

impact the effective capacity in a JV. In particular, we show that the ability of revenue sharing

contracts to align the incentives of individual firms depends on the type of resources.

Besides supply chain settings, revenue sharing contract has also found its way to many other

applications: e.g., car-sharing platforms (e.g., Cohen and Zhang (2017)), franchising (e.g., Math-

ewson and Winter (1985), Lal (1990)), video rental (e.g., Dana and Spier (2001), Giannoccaro and

Pontrandolfo (2004), Van der Veen and Venugopal (2005), Mortimer (2008)), the airline alliance

(e.g., Fu and Zhang (2010), Wright et al. (2010), Hu et al. (2013)). In particular, revenue sharing

is especially ubiquitous in the motion picture industry, e.g., actors being paid a share of revenues

or profits of their movies (Chisholm (1997)), studios receiving a share of box office revenues from

the movies they produce and distributors sharing box office revenues with theaters (see Hanssen

(2002), Filson et al. (2005)). Our work supplements this series of studies by analyzing two types

of JVs that use revenue sharing in the motion picture industry, that is, JV between theaters and

the projection system provider (IMAX), and JV between two theater operators.
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The rest of the paper is organized as follows. §2 describes the model formulation and key assump-

tions. We analyze our results for the complementary and substitutable resources sharing models in

§3 and §4, respectively. We present empirical studies to highlight two types of JVs in the motion

picture industry in §6. We conclude our paper in §7. All proofs are delegated to the appendix.

2. Model and Assumptions

We consider a JV consisting of n firms with asymmetric cost functions. We use a vector K =

(K1, . . . ,Kn) to denote investment decisions, or resources contributed by individual firms in terms

of capacity. Let fi(Ki) be the cost function associated with investing Ki resources by firm i. We

assume that each fi(Ki) is increasing and convex with fi(0) = 0. We will use its derivative f ′
i(·) to

denote firm i’s marginal cost.

We distinguish two types of resources pooling in JVs based on the notion of effective capacity,

denoted by L(K). The definitions for two types of resources are introduced as follows.

Definition 1 (Complementary resources). L(K) =miniKi.

With complementary resources, a JV requires contribution from every firm. Thus, the effective

capacity of a JV is limited by the most scarce resource, which is known as the bottleneck capacity.

Definition 2 (Substitutable resources). L(K) =
∑n

i=1Ki.

These resources are perfect substitutes. A JV can be established with a resource contributed by any

firm. The effective capacity in this JV is the sum of the capacity levels invested by each partner.

We denote the average revenue on the product or service produced in a JV as p, which is

exogenous. Given the aggregate random demand faced by the JV as D, we can then express the

expected revenue generated in this JV as pE[min(D,L(K)], where the expectation is taken over the

demand with a cumulative distribution function FD. Depending on the type of the resources, the

JV demand D can take various forms. For instance, with substitutable resources, it is plausible that

the JV demand exhibits the pooling effect, i.e., D =
∑

i
di, where di represents the demand faced

by each participant i. We assume the cumulative distribution function FD(·) is strictly increasing.

In order to evaluate the performance of a JV, we consider a benchmark, i.e., the system optimal

setting, which produces the highest possible aggregate profit.

Definition 3 (System optimum model). Partners make a collective decision to maximize

the joint profit, i.e.,

max
K

πT , pE[min(D,L(K)]−
n
∑

i=1

fi(Ki).

The system optimum mimics the decision-making in a merger, which can be thought as an alter-

native of resource pooling to JVs. In this model, partners are coordinated to make joint decisions
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as a single entity. Under the assumptions, there exists a unique solution to the system optimum.

We denote the optimal capacity decision, the effective capacity and the corresponding total profit

as K∗, L∗ and π∗
T .

As JVs stand in the middle ground between perfect competition and a merger, we present a

game-theoretic formulation to model the interaction in a JV. To be precise, we denote the fixed,

pre-negotiated revenue sharing ratio that firm i receives as βi, where 0≤ βi ≤ 1 and
∑n

j=1 βj = 1.

Definition 4 (JV model). Each firm determines her capacity investment Ki in order to max-

imize her share of return, i.e.,

max
Ki

πi(β), βipE [min(D,L(Ki |K−i))]− fi(Ki), ∀ i

where K−i denotes the individual decisions made by firms other than i.

With this model, we assume the partners behave according to a Nash equilibrium. We denote the

equilibrium investment decision, the effective capacity and the total profit generated in this JV

as KN , LN and πN
T (β) respectively, where πN

T (β) =
∑

i
πN
i (β). The existence of Nash equilibrium

is assured as the profit function is continuous and concave with respect to each player’s strategy

and the strategy space is compact and convex. However, we will show in §3 that the uniqueness of

Nash equilibrium might not be guaranteed. In such cases, we will utilize the following equilibrium

concept, which can be interpreted as a stronger notion of Nash equilibrium.

Definition 5 (Strong Nash equilibrium (Aumann (1959))). A strategy profile with the

property that no coalition of players can deviate in a manner which is profitable to all of its players.

The key difference between the two equilibrium concepts is that while the Nash concept of stability

defines an equilibrium only in terms of unilateral deviations, Strong Nash equilibrium allows for

deviations by every conceivable coalition. Clearly, every Strong Nash equilibrium must also be a

Nash equilibrium. We will use KSN , LSN and πSN
T to differentiate the equilibrium outcome in a

Strong Nash equilibrium.

One key focus of this work is to quantify the efficiency of JV models. There are two key quantities

of interest, LN/L∗ and πN
T (β)/π∗

T , that is, the comparison of the effective capacity and the total

profit generated in a JV with respect to their system optimal counterparts.

Remark 1. The JV model in this paper -assumes a pre-determined revenue sharing rate β

prior to making capacity decisions. There are many such examples in practice. For example, airline

alliance agreements often specify simple revenue sharing ratios that are fixed in advance, before

the reservation period when demand appears and seats are sold (see Shumsky (2006)). A typical

agreement would allocate 70% of the revenue to the marketing carrier who sells the ticket and 30%
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to the operating carrier who flies the passengers. Since the value of a flight for an alliance partner

depends on the allocation scheme, the capacity allocation decisions and the resulting revenues of

the airlines are affected by the pre-determined revenue sharing rules. For IMAX’s JV agreements,

it installs free entertainment systems at participating theaters in exchange for approximately 20%

of the box-office sales (see Businessinsider 7 October, 2013).

3. Complementary Resource Sharing

With complementary resources, we first analyze the system optimum model, and then study the

JV model and characterize its equilibrium condition. We will show that by appropriately designing

the revenue sharing contract, it is possible to induce the system optimal decision in a JV.

3.1. System Optimal Solution

The effective capacity L(K) =miniKi, the system optimal model can be reformulated as follows.

π∗
T ,max

L,K
pE[min(L,D)]−

n
∑

i=1

fi(Ki), s.t. L≤Ki, i= 1, . . . , n. (1)

Proposition 1. With complementary resource sharing, in the system optimal model, every par-

ticipant invests an equal amount of capacity, i.e., L∗ =K∗
i for all i= 1, . . . , n, where L∗ satisfies

P(D≤L∗) = 1−
n
∑

i=1

f ′
i(L

∗)

p
. (2)

3.2. Multiple Nash equilibria in a JV

In a JV with a revenue sharing ratio βi, firm i maximizes her profit by choosing her capacity

investment level Ki, based on other players’ strategiesK−i. We can rewrite the JV model as follows.

πN
i (β), max

Ki|K−i

βipE[min(D,L(Ki|K−i))]− fi(Ki), s.t. L≤Kj, j = 1, . . . , n. (3)

Proposition 2. In a JV with complementary resource sharing, the equilibrium behavior in a

JV can be characterized as follows.

(a) Any LN =KN
1 = . . .=KN

n ≤mini(Ai) is a Nash Equilibrium, where Ai solves

P(D≤Ai) = 1−
f ′
i(Ai)

βip
.

(b) LSN =KSN
1 = . . .=KSN

n =mini(Ai) is a unique Strong Nash equilibrium.

Proposition 2(a) states the existence of multiple Nash equilibria. With complementary resources,

since the expected revenue only depends on the effective capacity, every participant only invests up
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to the effective capacity. When one player lowers his or her investment to becomes the bottleneck,

no player has incentives to unilaterally deviate from it. In other words, the under-investment of one

firm triggers a chain-reaction of under-investment by all participating firms. Despite the existence

of multiple equilibria, Proposition 2(b) asserts that there exists a unique Strong Nash equilibrium

in the JV model. Strong Nash equilibrium can be interpreted as the “best” outcome, as it induces

the highest effective capacity in a JV. It is also known as the “dominant equilibrium point” in

Van Huyck et al. (1990) as it is not Pareto dominated by any other equilibrium point.

3.3. An Efficient and Fair Revenue Sharing Contract β∗

We shall show that there exists a unique efficient revenue sharing contract, in the sense that it

induces the optimal capacity decision as the Strong Nash equilibrium in a JV.

Theorem 1. Consider a JV with complementary resource sharing.

(a) There exists a unique efficient revenue sharing contract β∗ where

β∗
i =

f ′
i(L

∗)
∑n

j=1 f
′
j(L

∗)
, i= 1, . . . , n. (4)

Under this particular revenue sharing contract, the Strong Nash equilibrium in a JV is the

same as the system optimal solution, i.e., LSN(β∗) =L∗.

(b) In a JV with complementary resource sharing, the unique optimal revenue sharing contract β∗

is also proportionally fair. More precisely, under this optimal revenue sharing contract β∗, we

have L∗ =LNB(β∗), where LNB(β∗) is the Nash Bargaining Solution via solving (5).

Theorem 1(a) shows that there is a way to rely on the fixed-rate revenue sharing contract to

eliminate the incentive misalignment among the firms and induce the system optimal outcome. In

particular, it specifies that the marginal revenue share ratio to which firm i is entitled to should be

equal to the proportion of her marginal cost to the aggregate marginal costs f ′
i(L

∗)/
∑

j
f ′
j(L

∗) at

the system optimal solution. Under this particular revenue sharing contract β∗, every firm is willing

to invest up to the system optimal capacity level L∗ in the equilibrium. We point out that since

our model with complementary resources can be considered as a general variant of an assembly

system, this efficiency result is expected, which bears a close resemblance to the main results in

Wang and Gerchak (2003, 2004) as well as Tomlin (2003) and Bernstein and DeCroix (2004).

More interestingly, we show in Theorem 1(b) that this unique efficient revenue sharing contract

β∗ also captures a notion of proportional fairness, which is the solution concept of a Nash bargaining

problem (Nash (1950)). Contrary to the Nash equilibrium notion which is from a non-cooperative

approach, the Nash bargaining solution is a cooperative strategy, i.e., players unanimously agree on
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some solution outcome, under some fairness constraint. More specifically, the fairness constraint

states that, under the Nash definition, a transfer of resources between two players is favorable and

fair if the percentage increase in the profit of one player is larger than the percentage decrease in

profit of the other player. Formally, a Nash bargaining solution (NBS) corresponds to an outcome

characterized by a set of Nash axioms, as formalized below.

Definition 6. (Nash Bargaining Solution (Nash (1950))) An n-player Nash Bargaining game

consists of a pair (N ,v), where N ⊆ R
n
+ is a compact and convex set and v ∈ N . Set N is the

feasible set and its elements give utilities that the n players can simultaneously accrue. Point v

is the disagreement point, which gives the utilities that the n players obtain if they decide not to

cooperate. Game (N ,v) is said to be feasible if there is a point w ∈N such that w≥ v component-

wise. The solution to a feasible game is the point that satisfies the following four axioms:

(a) Pareto optimality : No point in N can weakly dominate υ.

(b) Invariance under affine transformation of utilities.

(c) Symmetry : The numbering of the players should not affect the solution.

(d) Independence of irrelevant alternatives: If w is the solution for (N ,v), and S ⊆R
n
+ is a compact

and convex set satisfying v ∈ S and w ∈ S ⊆N , then w is also the solution for (S,v).

If game (N ,v) is feasible then there is a unique point in N satisfying the axioms stated above. This

is also the unique point that maximizes
∏n

i=1(wi − vi) over all υ ∈N . This maximizer is referred

to as the Nash Bargaining Solution (NBS).

The Nash Bargaining Solution for a JV with complementary resources is presented as follows.

Based on a fixed-rate revenue sharing scheme β, n firms choose their capacity investment levels

according to a Nash Bargaining game, i.e.,

max
L,Ki

n
∏

i=1

(βipE[min(Ki,D)]− fi(Ki)− vi) , s.t. L≤Ki, i= 1, . . . , n, (5)

where v= (v1, . . . , vn) is the disagreement outcome or outside option, which represents the payoff

that the firms can attain if they decide not to cooperate. Let LNB(β),KNB
1 (β), . . . ,KNB

n (β) be the

NBS from solving (5). In our setting, it can be thought of as a two step procedure: players first

determine the disagreement point v which corresponds to any Nash Equilibria discussed in §3.2,

and then take part in the Nash bargaining game. This sharing mechanism captures the notion of

proportional fairness as mentioned earlier. The result of Theorem 1(b), together with Theorem 1(a),

also suggests that the Strong Nash equilibrium is “attainable” via a Nash bargaining framework if

the optimal revenue sharing contract β∗ is implemented.
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Levi et al.: Strategic Capacity Planning Problems in Revenue Sharing Joint Ventures 12

Remark 2. One can view our JV model with the coordinating contract as a two-stage game. In

the first stage, the players negotiate their revenue sharing allocations. In the second stage, based

on the agreed revenue allocation scheme, the players determine their respective capacity levels

to maximize their own profitability. To solve this two-stage game, we first focus on solving the

second stage problem to obtain the equilibrium capacity levels of all players for a given β. We then

optimize β to achieve the channel coordination, i.e., by choosing β∗, we ensure that the players’

capacity decisions in the equilibrium coincide with the system optimum.

4. Substitutable Resource Sharing

With substitutable resources, the effective capacity is determined by aggregating individual capac-

ity investment. We first characterize the investment decisions in the system optimum model and

the JV respectively. Contrary to the complementary resource sharing model in the previous sec-

tion, we will show that there does not exist a fixed-rate revenue sharing contract that is capable

of coordinating a JV. We then focus on quantifying the efficiency of a JV so as to address the

question: Compared to the optimal setting, how much profit is lost due to the lack of coordination

in a JV? To accomplish that, we first examine a 2-player setting with quadratic cost functions

and propose fixed-rate revenue sharing contracts that have the worst-case performance guarantee

in terms of efficiency. We then analyze the n-player setting with general convex cost functions.

4.1. System Optimal Solution

When resources are substitutable, the effective capacity, which is also known as the pooling capacity,

is the sum of the individual capacity invested by each player, i.e., L=
∑

i
Ki. The central planner

in the system optimal model maximizes the aggregate profit by collectively choosing the capacity

investment K, i.e.,

π∗
T ,max

Ki

pE

[

min

(

∑

i

Ki,D

)]

−
n
∑

i=1

fi(Ki), (6)

Proposition 3 characterizes the system optimal solution K∗.

Proposition 3. With substitutable resource sharing, in the system optimal model,

(a) for any pair of firms i and j such that f ′
i(x) < f ′

j(y) for all x, y > 0, then player j must be

inactive, i.e., K∗
j = 0;

(b) for any pair of active firms (i.e., K∗
i > 0 and K∗

j > 0), their marginal costs at optimality

must be the same, i.e., f ′
i(K

∗
i ) = f ′

j(K
∗
j ). In addition, K∗

i and K∗
j solve P(D ≤

∑n

k=1K
∗
k) =

1− f ′
i(K

∗
i )/p= 1− f ′

j(K
∗
j )/p.
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Proposition 3 states that in the system optimal setting, the marginal cost of every active firm

must be the same. Intuitively, as the resources are perfectly substitutable, only the most cost-

efficient firms should be involved. Later in §5, when we consider spillover effects, resources become

imperfectly substitutable and more firms other than “the cheapest” can also take part in the

optimal setting. We would like to point out that the “cost efficiency” is measured in terms of each

firm’s marginal cost f ′
i(K

∗
i ), as opposed to its total cost fi(K

∗
i ).

4.2. Nash Equilibrium in a JV

In a JV with substitutable resources, player i maximizes her profit by choosing her capacity invest-

ment level Ki by solving the following problem, i.e.,

πN
i (β),max

Ki

βipE

[

min

(

D,
∑

j

Kj|K−i

)]

− fi(Ki), (7)

We characterize the Nash equilibrium solution, KN , in a JV with substitutable resources.

Proposition 4. In a JV with substitutable resource sharing, there exists a unique equilibrium

outcome KN which satisfies the following condition,

P(D≤
∑

i

KN
i ) =

βip− f ′
i(K

N
i )

βip
, for all i= 1, . . . , n.

In a JV, all participants are active, whereas only the most cost-efficient firms remain in the system

optimum. Even with symmetric firms, comparing the conditions in Proposition 3 and 4, it is clear

that there does not exist a fixed-rate revenue sharing contract that can coordinate a JV with

substitutable resources. This is in contrast to the complementary resource sharing case, where an

efficient fixed-rate revenue sharing contract can be determined.

Besides inefficiency in costs, another source of inefficiency comes from under-investment in the

JV’s capacity as shown in the following result.

Proposition 5. In a JV with substitutable resource sharing, under any nontrivial revenue shar-

ing scheme (i.e., 0<βi < 1), the effective capacity is no greater than that in the system optimum,

i.e., LN =
∑n

i=1K
N
i ≤

∑n

i=1K
∗
i =L∗.

We want to highlight that Proposition 5 does not depend on the demand distribution or the

cost symmetry among the players. While a lower capacity leads to lower revenue in a JV, lower

investments also mean lower costs. It is not immediately clear how these two factors will influence

the aggregate profit in a JV, which will be our focus for the next subsection.
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4.3. Efficiency of Revenue Sharing Contracts in a JV

The purpose of this section is twofold. First, given a fixed-rate revenue sharing contract, we will

measure the efficiency of a JV, compared to the system optimum. Second, we will investigate how

to design a revenue sharing scheme that comes with a performance guarantee. We will begin with

a two-player model and quadratic costs, and we will generalize our results to an n-player model

with general convex costs.

4.3.1. A two-player game with quadratic costs. We consider a two-player model, where

the cost functions are quadratic, i.e.,

f1(K1) =
a1(K1 + b1)

2

2
+ c1, f2(K2) =

a2(K2 + b2)
2

2
+ c2. (8)

Without loss of generality, assume that a1 ≥ a2 > 0. We define K̄1 =K1+ b1 and K̄2 =K2+ b2, and

their corresponding modified effective capacity levels in the JV setting and the system optimum

can be shown as follows,

L̄N =LN + b1 + b2, L̄∗ =L∗ + b1 + b2.

We have seen from Proposition 5 that a JV with substitutable resources always under-invests,

i.e., L̄N

L̄∗ ≤ 1. The following result measures the extent of this under-investment. Since a1 >a2 (i.e.,

player 1 is less cost-efficient), we restrict to β1 ≤ 0.5.

Proposition 6. In a two-player substitutable resource sharing model, under any demand dis-

tribution D and quadratic cost functions, the effective capacity in a JV is bounded by

L̄N

L̄∗
≥

β1a2 +β2a1

a1 + a2

,

for all revenue sharing contracts with β1 ≤ 0.5.

Proposition 6 states that in a two-player model with quadratic costs, the effective capacity is

at least half of the corresponding system optimum. The worst case, i.e., L̄∗ = 2L̄N occurs under

two circumstances: (1) equal revenue sharing (i.e., β1 = β2) irrespective of cost asymmetry between

the two players, and/or (2) asymmetric revenue sharing with symmetric players (i.e., β1 6= β2 with

a1 = a2).

The next main result Theorem 2 quantifies the worst-case performance of a JV by comparing its

total profit πN
T to the optimum π∗

T . Given that there does not exist an efficient fixed-rate revenue

sharing contract, we will propose a revenue sharing contract β̃ that induces the highest possible

profit in a JV, with respect to cost parameters and demand uncertainty. To establish Theorem 2,

we derive the following lemma which shows that the expected profit attained in a JV is concave in

the capacity limit.
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Lemma 1. Define an auxiliary function

g(L̂),max
Ki

pE[min(L,D)]−
n
∑

i=1

fi(Ki), s.t. L≤ L̂.

Then g(L̂) is concave in L̂ where L̂ is the constraint on effective capacity investment.

Theorem 2. In a two-player substitutable resource sharing model, under any demand distribu-

tion D and quadratic cost functions, the efficiency of a JV is bounded by

πN
T (β)

π∗
T

≥
1

2
, for all β1 ∈

[

mp+ a2

2mp+ a1 + a2

,
1

2

]

,

where m is the mode of demand distribution, i.e., fD(L)≤m for all L≥ 0. Moreover, the revenue

sharing scheme β̃1 that maximizes the total profit in a JV falls in the following interval,

β̃1 ∈

[

a2

a1 + a2

,
mp+ a2

2mp+ a1 + a2

]

.

In Theorem 2, we propose an interval of revenue sharing contracts and establish a performance

guarantee. That is, we establish that the total profit generated in a JV is at least half of the

optimal profit, when the revenue is divided according to the interval. We want to emphasize that

this result holds under any demand distribution. The interval β1 depends on the cost asymmetry

between the two players and the mode of demand. It shrinks as the cost structures become more

similar. With symmetric players as an example, the interval converges to 1/2, i.e., the revenue

sharing scheme with performance guarantee asks for an equal division of the revenue. In addition,

the interval β1 also narrows down as the mode of demand m increases. In particular, consider two

demand distributions with the same support, the range of provably good revenue sharing contract

is smaller for the distribution that is concentrated around a small region (i.e., high mode).

Another interesting observation of Theorem 2 is on the guidance of the provably “good” revenue

sharing contracts. Note that in Theorem 1 for the complementary resources, the optimal revenue

sharing rule compensates each player proportionally for his or her share of the marginal cost.

That is, if a1 ≥ a2, the optimal way to share revenue must follow that β1 ≥ β2. Theorem 2 implies

the exact opposite, i.e., if a1 ≥ a2, a provably good contract with performance guarantee should

satisfy β1 ≤ β2. Intuitively, with complementary resources, the effective capacity is constrained by a

bottleneck firm. To induce an optimal effective capacity L∗ in a JV, these firms have to be awarded

such that they are willing to produce up to L∗. In contrast, with substitutable resources, every firm

can contribute to the effective capacity. Therefore, players who are cost-efficient are encouraged to

produce more while the inefficient players are discouraged from producing, which is reflected by a

lower (higher) revenue sharing ratio for the less (more) cost-efficient firm.
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4.3.2. An n-player game with general convex costs. In this section, we consider a more

general setting, i.e., an n-player model with asymmetric convex cost functions. The analysis involves

several steps where we utilize Lemmas 2 and 3 which are stated below.

Lemma 2. With substitutable resource sharing, the efficiency on the total profit of a JV is lower

bounded by

πN(f)

π∗(f)
≥

πN(f̄)

π∗(f̄)
,

where f̄ = (f̄1, . . . , f̄n) are linear cost functions such that f̄i = αi ·Ki where αi = f ′
i(K

N
i ).

Lemma 3. With substitutable resource sharing, the efficiency on the total profit of a JV is lowered

bounded by

πN(f̄)

π∗(f̄)
≥ α̃

L̃N

L̃∗
,

where the cost asymmetry factor is given by α̃= (miniαi)/(maxiαi)≤ 1.

In Lemma 2, we show that the efficiency of the original JV with nonlinear costs can be lower

bounded by the efficiency of a modified model with linear costs, which have the same marginal cost

as in the original model. Next, in Lemma 3, we show that the efficiency ratio can be further lower

bounded by comparing the effective capacity in the modified model to its optimal counterpart,

which is denoted as L̃N/L̃∗ (we use L̃ to note that the effective capacity in the modified model)

with a factor that measures the asymmetry in the players’ cost functions.

With substitutable resources, equal revenue sharing induces equal marginal costs for every player

in a Nash equilibrium, since βi = αi/
∑n

j=1αj. Thus, α̃= 1, and the comparison between the profit in

the two settings can be reduced to a comparison between the total investment level, i.e, πN (f̄)

π∗(f̄)
≥ L̃N

L̃∗ .

Our next result quantifies the efficiency of a JV with substitutable resource sharing.

Theorem 3. In the substitutable resource sharing model, for an n-player game with general

demand and general convex functions, the contract efficiency on the total profit of a JV is lower

bounded by

πN
T

π∗
T

≥ α̃
1−nr̄

1−nr̄+(n− 1)r̄θ̃
,

where r̄=maxi f
′
i(K

N
i )/p is the marginal cost to revenue ratio, α̃=mini f

′
i(K

N
i )/maxi f

′
i(K

N
i )≤ 1

as the cost asymmetry, and θ̃ is the demand spread, i.e., θ̃= max fD(x)

min fD(y)
≥ 1, for x≤ L̃N ≤ y≤ L̃∗.
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Theorem 3 suggests that the efficiency decreases with the number of firms, n, which is intuitive as

disparate self-interests increase. Since the cost asymmetry α̃≤ 1 by definition, Theorem 3 also states

that the efficiency also decreases as the cost structures of the players become more asymmetric.

This is not surprising since in the system optimum setting, only the most cost-efficient players

should be active. Moreover, the efficiency decreases as the marginal cost to revenue ratio increases.

In other words, a JV is more (less) efficient when it has a higher (lower) profit margin. To explain

this, we see that the inefficiency in JV is manifested as under-investment. With a higher profit

margin, players tend to invest in more capacity than in a JV with a lower margin. Lastly, Theorem 3

also suggests that the efficiency of a JV decreases as the demand spread increases. One explanation

is that when the distribution is more concentrated around some regions (i.e., high demand spread),

it is more likely for the JV to miss the bulk of demand due to under-investment, resulted in a large

profit loss. To illustrates this impact, we plot the efficiency bound with respect to four types of

demand distributions in Figure 1.
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Figure 1 Lower Bounds on the efficiency for uniform, normal, exponential and gamma Demand Distributions.
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The demand distributions are uniform, normal distributionN(400,100), exponential distribution

with rate 400, and a gamma distribution with Gamma(2,400), respectively. Note that in the

case with uniform demand, the demand spread θ̃ = 1, the bound in Theorem 3 is simplified to
πN
T

π∗
T
≥ α̃ 1−nr̄

1−r̄
. Figure 1 clearly illustrates the relationship between the efficiency of a JV and the

number of players and the marginal cost to revenue ratio. We also observe that the efficiency has

a steeper rate of decrease when the demand spread is higher. Note that in this simulation, for

the given input parameters, the gamma distribution has the highest demand spread with θ̃= 8.91,

followed by the exponential distribution (θ̃= 7.35), the normal distribution (θ̃= 3.86), and lastly,

the uniform distribution (θ̃= 1).

4.4. Cost Rebalancing Contract

As we have established that the simple fixed-rate revenue sharing scheme is not capable of achieve

JV coordination, we now propose what-we-call a cost rebalancing contract, to align the incentives

of the JV participants. To be precise, given a revenue sharing allocations β, each JV participant

will receive a subsidy or penalty defined as follows:

f̂i(Ki) = fi(Ki)−βi

n
∑

j=1

fj(Kj),

which is the difference between her own cost and the βi fraction of the total cost.

Under this new contract, player i maximizes her profit by choosing her capacity investment level

Ki by solving

πN
i (β),max

Ki

βipE

[

min

(

D,
∑

j

Kj|K−i

)]

− fi(Ki)+ f̂i(Ki), (9)

=max
Ki

βip

(

E

[

min

(

D,
∑

j

Kj|K−i

)]

−
n
∑

j=1

fj(Kj)

)

.

This simple cost rebalancing contract essentially achieves profit sharing allocation β, which induces

behavior perfectly coinciding with the system optimal solution. We formalize the result in the

following proposition and omit its proof.

Proposition 7. Consider a JV with substitutable resource sharing. Given any revenue shar-

ing ratio β ∈ [0,1], the cost rebalancing contract is coordinating, i.e., LN(β) = L∗. Moreover, this

contract allows for an arbitrary revenue (as well as profit) allocation β among players.

The key source of inefficiency in JV with substitutable resources occurs when some cost-inefficient

(cost-efficient) players over-produce (under-produce). In order to encourage a player to produce at

the system optimal capacity level, she should be subsidized by f̂i(Ki) if this term is positive, and

penalized if f̂i(Ki) is negative, i.e., the βi fraction of the total cost can be viewed as her “fair” share

of the cost that a JV participant should bear (as she receives βi fraction of the total revenue).
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5. An Extension with Spillovers

One extension which we shall consider is the presence of spillovers for JVs, which typically result

from transfer and exchange of knowledge, skilled labor and technology among participating firms

(see, e.g., Morton et al. (1992) and De Bondt (1997)). In this case, spillovers from one firm might

enable other firms to improve its product, accelerate innovation and enhance efficiency. Following

Katsoutacos and Ulph (1998) and Atallah (2007), we model spillovers as an affine function of

individual firms’ investment.

Definition 7 (Spillover). Denote γij as the spillover that player j contributes to player i.

• Complementary resources: L(K) =mini

(

Ki +
∑

j 6=i
γijKj

)

;

• Substitutable resources: L(K) =
∑n

i=1

(

Ki +
∑

j 6=i
γijKj

)

, where γij ≥ 0 for all j 6= i.

5.1. Complementary Resources

With the presence of the spillover effect, the effective capacity for a JV with complementary

resources is given by L(K) = mini

(

Ki +
∑

j 6=i
γijKj

)

, where γij ≥ 0 for all j 6= i. The following

result captures the capacity decision in the system optimal setting.

Proposition 8. With complementary resources with spillover, the joint capacity level L∗ in the

system optimal setting satisfies

pP(D≥L∗) = eTΓ−T∇f , where e=









1
1
...
1









,Γ=









1 γ12 . . . γ1n
γ21 1 . . . γ2n

. . .
γn1 γn2 . . . 1









, and ∇f =









f ′
1(K

∗
1 )

f ′
2(K

∗
2 )

...
f ′
n(K

∗
n)









.

Note that when there is no spillover, i.e., Γ becomes an identity matrix, Proposition 8 is reduced to

Proposition 1. With the presence of spillover, Proposition 8 requires the existence of the inverse of

matrix Γ. One such condition to guarantee its existence is symmetry of the matrix (γij = γji) and

strict diagonal dominance (
∑

j 6=i
γji < 1). The latter implies that the total impact from spillover

must be less than one’s own capacity contribution.

Corollary 1. With fully symmetric players, i.e., fi(Ki) = f(K) for all i and γij = γ for all

j 6= i, the joint capacity level L∗ satisfies pP(D≥L∗) = nf ′(K∗)

1−γ+γn
.

In Proposition 1, we obtain pP(D≥L∗) = nf ′(K∗) when spillover effect is absent. As (n− 1)γ < 1,

each individual participants could contribute a lower level while maintaining the same effective

capacity level L∗. This is an intuitive advantage of having spillover.

At the same time, spillover also leads to other subtle changes to a JV. In the absence of spillover,

every player contributes the same capacity level which is equal to the effective capacity, i.e., L∗
i =L∗
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for all i, regardless of whether the players are symmetric or asymmetric. The argument is that since

the resources are perfectly complementary, every player only invests up to the effective capacity

level. On the other hand, when the spillover effect is present, it is possible that some player i’s

contribution is strictly higher than the effective capacity, L∗
i >L∗. However, one cannot lower i’s

contribution, as some player j’s capacity contribution which includes i’s spillovers is binding, i.e.,

L∗
j = L∗. Nevertheless, the slack in player i’s contribution suggests inefficiency in the investment

decision in such a JV.

Remark 3. One can, in fact, construct examples to show that with spillovers, even for fully

symmetric players, there does not exist a coordinating revenue sharing contract. The fact that the

resource contributed by player i can now be shared with player j implies that spillover has turned

fully complementary resources into partially substitutable. Therefore, the resulting JV inherits the

properties of a substitutable resource sharing JV which was studied in §4, which include that the

simple revenue sharing contract is no longer capable of aligning the incentives of JV participants.

We do want to clarify that having spillover does not mean the JV becomes less efficient compared

to the case without spillover. Our results only suggest that it is less efficient than what it could

have been in a scenario if decisions were made centrally.

5.2. Substitutable Resources

With substitutable resources, when the spillover effect is present, the individual capacity invested

by each player is defined as Li =Ki +
∑

j 6=i
γijKj. Under this formulation, it effectively turns the

perfectly substitutable resources which we have analyzed in §4 to imperfect substitutes, depicting

a more realistic setting.

Recall in Proposition 3, without the spillover effect, when resources are fully substitutable, then

cost is the only consideration for JV participation, i.e., only the most cost-efficient firms should

be active. On the other hand, in the presence of spillover, it is possible that a firm with a higher

marginal cost remains active in a JV, as long as its “discounted” marginal cost after taking spillover

cost into consideration is small as shown in the following corollary.

Corollary 2. In the system optimal model with spillover, all active firms must have the same

discounted marginal costs, mini
f ′
i(x)

1+
∑

l 6=j γli
, which is lower than that of the inactive firms.

When there is no spillover, i.e., γij = 0 for all j 6= i, Corollary 1 reduces to Proposition 3,

which implies that every active player participating in a JV must have the same marginal costs at

optimality, i.e., f ′(K∗
i ) = f ′(K∗

j ). The ratio
f ′
i(x)

1+
∑

l 6=j γli
can be interpreted the “discounted marginal

cost” of having firm i, i.e., the numerator refers to the marginal cost of producing x units by i, and

the denominator quantifies the positive externality effect of having i which measures the spillover
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benefit to other active firms. This term which captures the marginal cost to benefit of individual

firms plays a central role in the analysis with spillover, as many results proved under the setting

without spillover can be carried over by replacing the marginal cost with this term.

Corollary 3. In a JV with substitutable resource sharing and spillover, there exists a unique

equilibrium outcome KN which satisfies the following condition,

P(D≤LN) = 1−
f ′
i(K

N
i )

βi(1+
∑

j 6=i
γji)p

, for all i.

Corollary 4. In the substitutable resource sharing model with spillover, for an n-player game

with general demand and general convex functions, the contract efficiency on the total profit of a

JV is lower bounded by

πN
T

π∗
T

≥ α̃
1−nr̄

1−nr̄+(n− 1)r̄θ̃
,

where the parameters

r̄,max
i

αi

(1+
∑

j 6=i
γji)p

, α̃,
miniαi/(1+

∑

j 6=i
γji)

maxiαi/(1+
∑

j 6=i
γji)

denote the maximum discounted marginal cost margin and the modified cost asymmetry respectively.

Corollary 4 is the analogous version of Theorem 3, which quantifies the efficiency of JV for a

general setting of n-players and convex cost. One the key difference is that the cost asymmetry α̃

is defined as the ratio between the minimum and the maximum discounted marginal costs.

6. Case Study: Motion Picture Industry

In the earlier sections, we have characterized the analytical solutions to quantify the performance

of JVs with respect to the system optimum. In this section, we will turn to the motion picture

industry and present two case studies that highlight the different types of JVs in this industry. We

will begin with a JV case study on complementary resource sharing between IMAX and theater

operators. Next, we will present a case by considering substitutable resource sharing between two

theater operators.

6.1. JV between IMAX and Theater Operators

The IMAX Corporation (IMAX), founded in 1968, is one of the leading entertainment technology

companies, specializing in immersive motion picture technologies. While IMAX has been synony-

mous with superior film experiences for decades, it historically struggled to reach a mass audience

because of the high cost of its equipment, since the upfront cost of an IMAX projection system is
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about $1.2m (IMAX (2015)). Seeking a solution to overcome the barriers that curtailed its growth,

IMAX introduced a revenue sharing joint venture strategy with theater operators in 2008. Under

this arrangement, IMAX installs its proprietary systems in participating theaters at no charge, in

return for a portion of the theater’s box-office receipts. By offering arrangements in which theaters

do not need to invest the substantial initial capital, IMAX has been able to expand its theater

network at a significantly faster pace than it had previously. According to the company’s annual

report (IMAX (2015)), its overall network and commercial network have increased by 255% and

437% respectively since the beginning of 2008. As of December 31 2015, IMAX entered into joint

revenue sharing arrangements for 741 theater systems worldwide, approximately 77% of its entire

commercial network. We will utilize historical data between 2009 and 2013 and conduct a back-

testing to compare IMAX’s existing JV strategy in the United States with the optimal strategy

and discuss its implications.

We denote IMAX and a theater operator in the United States as player 1 and 2, respectively.

We let the capacity K to denote the number of IMAX systems signed in a JV. To conduct the

backtesting, we first need to fit the model parameters in Equation (3), which includes the cost

functions for the two players, the uncertain demand distribution and the average revenue of the

JV, (i.e., f1(·), f2(·), D and p).

6.1.1. Cost and revenue estimation. We first consider the IMAX’s cost in a JV. While

an IMAX system is priced around $1.2m through outright sales, based on IMAX annual reports

between 2009 and 2013, the average cost of goods sold per IMAX screen is $0.5m. The joint

revenue sharing arrangements are typically for 10 to 13 years with renewal options. For simplicity,

we assume that the lifespan of an IMAX system is 10 years. Under straight-line depreciation, the

amortized cost for a period of 5 years per screen is $0.25m. Therefore, for K such systems, IMAX’s

cost ($m) is at f1(K) = 0.25K.

To extrapolate the cost of running a theater from 2009 to 2013, we investigate the financial data

of a large public movie theater chain, AMC Theaters. Based on its annual reports, the operating

expenses total $3.30b during the past five years. Meanwhile, during the same time, the number

of screens under AMC ranges from 4347 to 4976 with a coefficient of variation of 0.064, implying

a relatively small fluctuation across the time period. Therefore, we take the average number of

AMC screens, 4720, and estimate the operating cost per screen for the past five years as $0.7m.

To operate K such screens, the cost ($m) is f2(K) = 0.7K.

Next, we need to estimate the average return on an IMAX screen during the five-year period, p.

Table 1 shows the number of theaters from National Association of Theater Owners (NATO). The
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Year Box office Attendance Average ticket No. of No. of
($million) (million) price ($) theaters indoor screens

2013 10,921 1,343 8.13 5,281 39,264

2012 10,837 1,361 7.96 5,317 39,056

2011 10,174 1,283 7.93 5,331 38,974

2010 10,566 1,339 7.89 5,399 38,902

2009 10,596 1,413 7.50 5,561 38,605

Table 1 Theatrical numbers from National Association of Theater Owners (NATO).

total box office revenue between 2009 and 2013 is valued at $53,094m. As the number of screens

stays rather stable throughout the years (the coefficient of variation is merely 0.006), we take the

average and estimate $1.36m as the five-year revenue received by a screen in the U.S. Meanwhile,

the premium sight and sound experiences offered by IMAX allow theaters to impose a premium,

driving better economics for theater operators and the studios while also delivering audience a

superior experience. According to the AMC annual report, compared to the average ticket price

of $7.88, on average, IMAX pricing premiums amount to $4.34 per patron (an increase of 55.1%).

Therefore, we estimate the five-year revenue received by an IMAX screen by scaling the $1.36m

with a factor of 1.551 to $2.11m.

6.1.2. Demand estimation. IMAX theaters can only show movies that are in IMAX format

(which can be converted via post-processing or filmed with IMAX cameras). From IMAX’s website

and its annual reports, we identified 99 IMAX movies that were released in the United States

between 2009 to 2013. We excluded educational films and documentaries that were exclusively

shown in museums, re-releases of the “classics” in IMAX format (e.g., Titanic from 1997, Indiana

Jones and the Raiders of the Lost Ark from 1981), as well as foreign movies that were not released

in the United States.

We collected the domestic box office numbers from Box Office Mojo (www.boxofficemojo.com).

For any movie, it reports the total gross earning derived from both the conventional film format

and IMAX version. The histogram of the box office for the 99 movies is shown in Figure 2. It is

apparent that the distribution of box office revenue is skewed to the right, i.e., the median and

mean are $127m and $176m respectively. The distribution exhibits the fat-tailed nature, as the

majority of films earn little and a few blockbusters achieve stellar box office results, which is a

well-documented phenomenon in the motion picture industry1 (e.g., Clauset et al. (2009), Pan and

Sinha (2010)).

Taking into account the skewness and the fat-tail of the empirical distribution, we fit the data

with three distributions, i.e., Weibull, lognormal and gamma. To measure the goodness of fit, we use

1 Two movies which appear as “outliers” in the histogram are Avatar in 2009 and Marvel’s The Avengers in 2012,
which generated $760m and $623m in earnings respectively.
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Figure 2 Histogram of box office for the 99 movies between 2009 and 2013.

the Kolmogorov-Smirnov test which compares the empirical distribution to the fitted distribution.

The null hypothesis is that the data follow the fitted distribution. It is rejected if the p-value is

lower than the significance level. We performed the test for each fitted distribution and the p-

value is given by 0.4028 and 0.3835 and 0.4204 for Weibull, lognormal and gamma distributions

respectively. For all three distributions, we are unable to reject the null hypothesis because the

p-value is sufficiently higher than the significance levels usually referred in the statistical literature.
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Figure 3 Fitting the empirical box office numbers with Weibull, lognormal and gamma distributions.
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The comparative results based on the goodness of fit test are not surprising as shown in Figure

3, where we plot the fitted and the empirical distributions. For the rest of the analysis, we select

the gamma distribution as it appears to be superior in fitting the tail distribution compared to

the other two alternatives (see the Q-Q plot in Figure 3). The fitted distribution for the box office

earning in $million is given by

Y ∼Gamma(k= 1.866, θ= 0.0106),

where k and θ represent the shape and the rate parameters. We assume the earning of a movie

is an i.i.d. variable from this gamma distribution. Therefore, the total earnings from 99 movies

between 2009 to 2013 is a sum of 99 independent gamma distributions, which still follows a gamma

distribution with parameters k and 99θ, i.e.,

Y = Y1 +Y2 + · · ·+Y99 ∼Gamma(1.866,1.048).

Note that Y refers to the aggregate demand in $m earned by both the IMAX and non-IMAX

showings. We need to estimate how much demand is contributed by IMAX screens. In terms

of physical locations, there are 380 IMAX screens in the United States as of December 2013,

approximately 1% of the total screen count. However, the “IMAX experience” has been proven to

draw higher attendance levels despite its fewer locations and the premium pricing. For example,

during the opening weekend of the space epic Gravity in 2013, the IMAX showings accounted

for 20% of ticket sales (Businessinsider (7 October, 2013)). An IMAX presentation can also help

salvage a stinker of a film. The 2012 flop, John Carter, pulled in $30.2m during its opening on

3,749 screens, but an impressive $5m or 17% of the box office on a mere 289 IMAX screens (Time

(26 March, 2012)).

Denote by D the demand measured in terms of IMAX screens. To “extrapolate” D using the

total earning data, we use x to denote what-we-call the demand penetration for IMAX to vary

between 1% to 25% of the total earnings. As we have estimated that an IMAX screen earns $2.11m

over the past five years, we can obtain D by appropriately scaling Y , i.e.,

D=
x

2.11
Y ∼Gamma(1.866,0.497x),

where x as the demand penetration, x∈ [1%,25%].

While there is qualitative evidence that IMAX’s JVs with theaters experience spillovers in terms

of accelerated adoption of the digital technology2, we are unable to recover this value from the

2 Besides being prohibitively expensive, IMAX’s traditional large-format film stock and projectors are also cumber-
some. It requires screen towering over 70 feet high, leaving very few locations suitable for IMAX installation. The
Digital IMAX projector which was developed in 2008, which allows the company to retrofit existing spaces in multi-
plexes. Digital IMAX projection screens are only about 10 feet wider than traditional multiplex screens. Vanderhoef
(2013)
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available public financial data, we exclude this term from the analysis.

As the spillover effect between IMAX and movie theaters is hard to quantify and we are unable to

recover this value from the available public financial data, we exclude this term from the analysis.

6.1.3. Numeric analysis. With complementary resource sharing, we have shown in Theorem

1 that there exists a unique coordinating revenue sharing ratio β∗, which is invariant to demand and

only depends on the marginal cost structure of the players. Given the input parameters estimated

in the earlier subsections, we compute that the optimal revenue sharing ratio is β∗ = 25% for IMAX,

and 1 − β∗ = 75% for theaters. While IMAX has not disclosed the detailed contract terms, its

CEO, Rich Gelfond, revealed in a recent conference (Communacopia (2013)), that IMAX receives

roughly about 20% of revenue from theaters that participate in joint ventures. Interestingly, this

number is quite close to what we estimate as the efficient and fair revenue sharing scheme.
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Figure 4 Optimal number of IMAX screens, and profit under joint ventures with respect to IMAX demand

penetration.

Figure 4 depicts the optimal number of IMAX screens as the demand penetration increases

from 1% to 25%. Intuitively, as more moviegoers turn to IMAX (i.e., the demand penetration

increases), the optimal number of IMAX screens also increases to meet the rising demand. In

particular, suppose 20% of moviegoers choose to watch a movie in IMAX (such as Gravity), then

optimally there should be 2336 IMAX screens, or 6% of the total screens in the United States.

Given currently only 1% of the screens are IMAX, our analysis suggests that there is considerable

room for growth. Figure 4 also shows the optimal profit of the firms in this joint venture. At 20%

demand penetration, the model indicates that IMAX could have earned $386.5m over the period of

past five years from revenue sharing ventures. During the same period, considering all the revenue

streams, IMAX’s net income is $206.7m, implying huge earning potential of this JV. Our analysis

suggests that the theaters can also enjoy a tremendous upside from joint ventures. Between 2009 to

2013, the aggregate net income of AMC theaters is $666.4m. Having 4620 screens, this is translated

into a net income of $0.141m per screen. Figure 4 shows that at 20% demand penetration, the total
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profit earned by the theater from operating 2336 IMAX screens is $1080.8m, resulted in $0.468m

per screen, or an increase of over two fold from $0.141m.

6.2. JV between Theater Operators

Besides complementary resource sharing such as the IMAX example, there is also substitutable

resource sharing in the motion picture industry, i.e., when theater operators form a JV to operate

multiple theaters across regions. Nevertheless, resource sharing among theater operators via JVs

is much less common than consolidation via mergers and acquisition in this industry.

According to NATO, as of June 2013, there are 92 theater operators in the United States, where

the top four chains (Regal Entertainment Group, AMC, Cinemark, and Carmike) represent almost

half of the theater screens. Instead of JVs, the large theater chains primarily rely on mergers and

acquisitions to increase their market share. For instance, in 2012, Wanda acquired AMC for $2.6

billion and Regal Entertainment group acquired a total of 25 theaters representing 301 screens from

Great Escape Theaters for $91m (Reuters (29 November, 2012)). A year later, Regal bought 43

theaters with 513 screens for $191m from Hollywood Theaters (Businesswire (19 February, 2013)).

In the same year, Cinemark acquired 32 theaters representing 483 screens for approximately $240m

from Rave Cinemas theaters (Reuters (29 May, 2013)).

For the case study, we will fit the substitutable resource sharing model between two symmetric

theater operators who decide the number of screens to operate and evaluate the efficiency of such

a JV, by comparing to the system optimum, which in theory, can be attained via an acquisition.

In §6.1.1, we have estimated the operating expense of a screen is about $0.7m over five years, or

$0.14m per year. Thus, with Ki screens, the costs ($m) are given by fi(Ki) = 0.14Ki, for i= 1,2.

Meanwhile, we have also shown the annual revenue earned by a regular screen (non-IMAX) is

$0.272m, i.e., p= 0.272.

Pan and Sinha (2010) study 5,222 movies released in the U.S. between 1999 to 2008, and estimate

the distribution of the annual box office. Let Z denote the annual box office ($), then the authors

show that Z follows a lognormal distribution, i.e., Z ∼ logN(µ,σ2), where mean µ= 16.607 and

standard deviation σ= 1.471. To convert the demand in dollars to the number of screens, we utilize

the result from §6.1.1, where we have estimated that the average revenue earned by a regular screen

(non-IMAX) over the period of five years is $1.36m, or $272,000 per year. We let D′ to denote the

annual demand in terms of movie screens, where D′ =Z/272000. We make use of the property of

the lognormal distribution: If Z ∼ logN(µ,σ2), then aZ ∼ logN(µ+ loga,σ2), i.e.,

D′ =Z/272000∼ logN
(

µ− log(272000), σ2
)

= logN(4.093,1.4712).
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Based on these estimated values, our first observation is that theaters naturally will not enter a

JV. To see this, for a given revenue sharing ratio β, a theater’s objective function in a JV is given

by

πi = max
Ki|K−i

0.272βE[min(Ki +K−i),D
′)]− 0.14Ki.

Given two symmetric players and affine costs, the only feasible revenue sharing ratio β is 0.5. The

marginal revenue of this JV is 0.272β, or $0.136m, which is smaller than the marginal cost at

$0.14m. Therefore, neither theater has the incentive to participate in the JV of operating non-

IMAX screens due to the low return.

Suppose the JV is profitable, e.g., we have shown in §6.1.1 that IMAX screens fetch a premium

of 55.1%, with a revenue of $0.422m per screen per year. One can show that with β = 0.5, the

profit achieved in this JV is merely 59.3% of the optimum, implying a significant efficiency loss,

which can be eliminated in a merger or acquisition.

The results seem to provide some explanations for the prevalent acquisitions among theater

operators. JVs, which can be viewed as a potential alternative to acquisitions or mergers, appear

as an inferior option to achieve resource pooling. Operating theaters is a risky business with a

slim margin: According to McKenzie and Tullock (2012), theaters regularly bid 55% to 95% of

their box-office receipts to movie distributors for the rights to show a movie. Moreover, as the

success of a movie is very unpredictable, theaters have to assume a great deal of risk. Since joint

ventures require partners to share return, it further reduces the attractiveness of such a partnership.

Moreover, we have seen that even when the JV is profitable, inefficient investment decision due to

incentive misalignment could lead to efficiency loss by leaving money on the table. In addition, as

we have shown in Theorem 3, the loss could be further exacerbated by the slim profit margin. All

the aforementioned shortfalls of JVs can be largely corrected when a theater operator expands via

acquisitions.

7. Conclusion and Future Directions

In this paper, we focused on resource sharing in JVs under demand uncertainties. We quantified

the efficiency of a JV by comparing its effective capacity and its total profit with respect to its

system optimal counterpart. We distinguished two types of resources, i.e., complementary versus

substitutable, which affects how the effective capacity is determined. (i) When resources are com-

plementary, the effective capacity in a JV is constrained by the bottleneck resource. We have shown

that every participant in a JV is committed to making an equal capacity contribution. We have

also shown that, there exists a fixed-rate revenue sharing contract in which an efficient and fair

outcome can be induced in a JV by compensating every participant proportionally to her marginal
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cost. (ii) When resources are substitutable, the effective capacity in a JV is obtained by aggre-

gating the individual’s contributions. In contrast to the case with complementary resources, we

have shown that there does not exist an efficient fixed-rate revenue sharing contract. Nonetheless,

we have proposed an alternative scheme to share revenue with worst-case performance guarantees.

The scheme encourages (discourages) the participation from the cost-efficient (inefficient) players

by setting the revenue sharing ratio which is inversely proportional to the marginal cost of each

participant. (iii) We then presented two case studies in the motion picture industry which illus-

trated complementary and substitutable resource sharing, respectively. With our estimation based

on the data between 2009 and 2013, we showed an efficient and fair revenue scheme which was

rather close to what IMAX claimed for their JV contracts. Moreover, we also showed that there

could be a lot of room for growth for IMAX screens which would benefit both IMAX and theater

operators. We also studied substitutable resource sharing between theater operators. Our results

provided some explanations to the observation that theater operators primarily relied on mergers

and acquisitions to achieve resource pooling instead of JVs.

In conclusion, we briefly point out two plausible avenues for future research. First, it would be

very interesting to investigate other game theoretic formulations (potentially leveraging cooperative

game theory) where both the revenue sharing allocation β and the capacity investment levels

of all players are jointly decided. Second, the present work mainly focuses on fixed-rate revenue

sharing contracts that are used to coordinate JVs. A natural and important research direction is

to investigate whether there are other types of contracts that are both efficient and fair.
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Appendix. Proofs of Lemmas, Propositions, and Theorems

Proof of Proposition 1. Assume by contradiction that there exists a pair of players i and j such that

K∗
i <K∗

j , we can decrease the capacity invested by player j from K∗
j to K∗

i . By doing so, the profit increases,

since the revenue stays the same and the cost has decreased. Hence, we reach a contradiction to the optimality

of L∗. At system optimality, L∗ =K∗
i for all i= 1, . . . , n, and (1) reduces to a single variable optimization

with a concave objective function, so that L∗ can be obtained by the first-order condition. �

Proof of Proposition 2. Assume by contradiction that if there exists a pair of players i and j such that

KN
i <KN

j , then player j can decrease its capacity investment from KN
j to KN

i . By doing so, it lowers her

cost and improves her profit, without affecting the overall revenue. Thus, at Nash equilibrium, all players

must have the same capacity investment level, i.e., LN(β) =KN
i (β) for all i= 1, . . . , n.

Now assume that min1≤k≤n(Ak) =Am. Now if Am <KN =KN
m , player m always has incentives to unilat-

erally lower her investment level to Am since Am is her profit-maximizing level. This forces all players to

invest at Am. Any capacity investment level Ãm such that 0≤ Ãm ≤Am is also a Nash equilibrium since no

player has incentives to unilaterally deviate from Ãm.

To further check whether a Nash equilibrium is also a Strong Nash equilibrium, observe that at mini(Ai),

no coalition of firms can cooperatively deviate in a way that benefits all of its members in the coalition. This

Strong Nash equilibrium is also unique, since all players invest at mini(Ai) in this equilibrium, which is a

singleton point. �

Proof of Theorem 1(a). By Proposition 2, LSN equals min1≤k≤n(Ak), say Am, which implies

P(D≥LSN) =
f ′
m(LSN)

βmp
. (10)

By Proposition 1, the optimal effective capacity L∗ must also satisfy

P(D≤L∗) = 1−
n
∑

i=1

f ′
i(L

∗)

p
. (11)

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://www.wsj.com/articles/google-parent-and-sanofi-name-diabetes-joint-venture-onduo-1473659627
https://www.wsj.com/articles/google-parent-and-sanofi-name-diabetes-joint-venture-onduo-1473659627


Levi et al.: Strategic Capacity Planning Problems in Revenue Sharing Joint Ventures 33

Combining (10) and (11), if using β∗ defined in (4), we have LSN = L∗, and every player i is willing to

produce exactly at the system optimal level, i.e.,

P(D≥L∗) =
f ′
i(L

∗)

β∗
i p

=

∑n

i=1 f
′
i(L

∗)

p
, for i= 1, . . . , n. (12)

It remains to show the optimal revenue sharing ratio must take the form specified in (4) and is unique.

Suppose, otherwise, that there exists another optimal revenue sharing contract β̃. Since
∑n

j=1 β̃j = 1 and

β̃j ≥ 0 for all j, then there must exist some other player m′ whose revenue sharing rate

β̃m′ <
f ′
m′(L∗)

∑n

j=1 f
′
j(L

∗)
. (13)

Note that since L∗ equals Am =min1≤k≤n(Ak), we must have

P(D≥L∗) =
f ′
m(L∗)

β̃mp
≥

f ′
i(L

∗)

β̃ip
, for i= 1, . . . , n and i 6=m. (14)

Combining (13) and (14), we have

P(D≥L∗)≥
f ′
m′(L∗)

β̃m′p
>

∑n

i=1 f
′
i(L

∗)

p
, (15)

which contradicts with (11). This shows the optimal revenue sharing contract β∗ is unique. �

Proof of Theorem 1(b). The optimization problem (5) is equivalent to

max
L,Ki

n
∑

i=1

log (βipE[min(Ki,D)]− fi(Ki)− vi) , s.t. L≤Ki, i= 1, . . . , n. (16)

Denote the admissible set of contracts as Λ, where

Λ= {β : βipE[min(Ki,D)]− fi(Ki)− vi > 0 for all i= 1, . . . , n}.

The admissible set only includes the revenue sharing contracts that satisfy individual rationality, i.e., yielding

positive gain for every player compared to the non-cooperative payoff.

We first show that in a Nash bargaining model with β ∈ Λ, the capacity invested by each partner is the

same, i.e., LNB(β) =KNB
i (β) for all i= 1, . . . , n. To see this, the constraint set enforces that LNB ≤KNB

i

for all i= 1, . . . , n. Assume by contradiction, if there exists a player j such that LNB <KNB
j , then player j

can decrease her capacity investment from KNB
j to LNB thereby strictly lowering her cost and improving

her profit. Thus, at optimality, LNB =KNB
i for all i= 1, . . . , n. This then implies that (16) reduces to the

following single variable optimization problem

max
L

N
∑

i=1

log (βipE[min(L,D)]− fi(L)− vi) . (17)

It is straightforward to verify by (17) that, for each parnter i, her payoff function βipE[min(L,D)]−fi(L)−vi

is concave in L. Since log(·) is concave and non-decreasing, her logarithm payoff function is concave in L.

Thus, the objective function in (17) is concave in L (since summation preserves concavity), which can be

uniquely solved using the first-order condition as follows,
N
∑

i=1

βipP(D≥LNB)− f ′
i(L

NB)

βipE[min(LNB,D)]− fi(LNB)− vi
= 0. (18)

On the other hand, by (12), we also have

β∗
i pP(D≥L∗)− f ′

i(L
∗) = 0, for all i= 1, . . . , n. (19)

Comparing the conditions (18) and (19), it shows that L∗ also solves (18). �

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Levi et al.: Strategic Capacity Planning Problems in Revenue Sharing Joint Ventures 34

Proof of Proposition 8. The system optimal solution can be solved by using the KKT conditions.

πT =max
L,K

pE[min(D,L)]−
n
∑

i=1

fi(Ki)

s.t. L≤Ki +
∑

j 6=i

γijKj for all i, (µi)

Ki ≥ 0 for all i. (vi)

The stationarity conditions with respect to L and Ki are given by the following,

− pP (L≤D)+
∑

i

µi = 0, (20)

f ′
i(Ki)−µi −

∑

j 6=i

γjiµj − vi = 0 for all i. (21)

While the complementary slackness requires that

µi(L−Ki +
∑

j 6=i

γijKj) = 0 for all i,

viKi = 0 for all i.

The last condition requires for all active participants with Ki > 0, then vi = 0. Thus, Equation (21) becomes

f ′
i(Ki) =

∑

j
γjiµj , where γii = 1 for all i. Stack the equations into a matrix form, we obtain ∇f = ΓTµ, or

µ=Γ−T∇f , where µ is a column vector of µi. Substituting this condition into Equation (20), we obtain the

desired result, i.e., pP (L≤D) = eTΓ−T∇f . �

Proof of Corollary 1. Assuming that the inverse of the spillover matrix

Γ=







1 γ . . . γ
. . .

γ . . . γ 1







exists, the key step of the proof is to show that the inverse can be expressed as Γ−1 = 1
1−γ

I− γ

(1−γ)(1−γ+γn)
H

via the series expansion, where I is an identify matrix and H is a matrix of all 1s. To do so, one needs to

expand Γ= (1− γ)I+ γH. We refer readers to Sun (2006) for more details on the inverse expansion.

Since the players are fully symmetric, then K∗
i = K∗ and f ′

i(K
∗
i ) = f ′(K∗) for all i. It is straightfor-

ward to show that eTΓ−1∇f = f ′(K∗)eTΓ−1e= nf ′(K∗)

1−γ+γ∗n
, once we substitute the expression derived for Γ−1

previously. �

Proof of Proposition 3. To show (a), we see that if the marginal cost function of j dominates i across

the entire feasible region, i.e., f ′
j(y)> f ′

i(x) for all x, y ≥ 0, then firm j’s capacity can be invested by firm

i at a lower cost, without affecting the revenue. (b) follows from the first-order condition of (6), which is

P(D≤
∑

k
K∗

k) = 1− f ′
i(K

∗
i )/p= 1− f ′

j(K
∗
j )/p, for all i and j’s. �

Proof of Proposition 4. The equilibrium condition follows from the first-order condition of (7), which is

P(D≤
∑

i

KN
i ) =

βip− f ′
i(K

N
i )

βip
, for all i= 1, . . . , n.
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Next, we argue that KN to the above system of equations is unique. First, we rewrite the above system as

F̄D

(

n
∑

i=1

KN
i

)

= P(D>
∑

i

KN
i ) =

f ′
1(K

N
1 )

β1p
= . . .=

f ′
n(K

N
n )

βnp
, (22)

whhere F̄D(·) is the complementary cumulative distribution function (CCDF) of D. Now suppose there exists

an alternative solution K̃N that is different than KN . Without loss of generality, let us assume K̃N
1 >KN

1 .

Because f ′
1(·), . . . , f

′
n(·) are all increasing and both KN and K̃N are feasible solutions to (22), we have

f ′
n(K

N
n )

βnp
= . . .=

f ′
1(K

N
1 )

β1p
<

f ′
1(K̃

N
1 )

β1p
= . . .=

f ′
n(K̃

N
n )

βnp
,

which implies that K̃N
2 >KN

2 , . . . , K̃N
n >KN

n . Thus, we must have
∑n

i=1 K̃
N
i >

∑n

i=1K
N
i . However, again by

the fact that both KN and K̃N are feasible solutions to (22), we have

F̄D

(

n
∑

i=1

KN
i

)

=
f ′
1(K

N
1 )

β1p
<

f ′
1(K̃

N
1 )

β1p
= F̄D

(

n
∑

i=1

K̃N
i

)

.

Since F̄D(·) is decreasing, we must have
∑n

i=1K
N
i >

∑n

i=1 K̃
N
i , which leads to a contradiction. A symmetric

argument applied to the case K̃N
1 <KN

1 . Hence, we must have K̃N =KN , which completes the proof. �

Proof of Proposition 5. If KN
i ≤ K∗

i for all i = 1, . . . , n, it is clear that
∑n

i=1K
N
i ≤

∑n

i=1K
∗
i . Suppose

now that, without loss of generality, there exists one player j such that KN
j ≥K∗

j , we still want to show that
∑n

i=1K
N
i ≤

∑n

i=1K
∗
i . By Proposition 4 and f ′

j(K
N
j )≥ f ′

j(K
∗
j ), we have

FD

(

n
∑

i=1

KN
i

)

=
βp− f ′

j(K
N
j )

βp
≤

βp− f ′
j(K

∗
j )

βp
≤

p− f ′
j(K

∗
j )

p
= FD

(

n
∑

i=1

K∗
i

)

,

where FD(x) = P(D ≤ x). Take F−1
D on both sides (i.e., F−1

D is monotonically increasing and the sign does

not change), we have
∑n

i=1K
N
i ≤

∑n

i=1K
∗
i . �

Proof of Proposition 6. We will prove this proposition with an intercept argument. With cost functions

given in Equation (8), using the optimality conditions, we have

P(D≤KN
1 +KN

2 ) =
β1p− a1(K

N
1 − b1)

β1p
=

β2p− a2(K
N
2 − b2)

β2p
.

By changing of variables, where K̄1 =K1 + b1 and K̄2 =K2 + b2,

P(D+ b1 + b2 ≤ K̄N
1 + K̄N

2 ) = 1−
a1K̄

N
1

β1p
= 1−

a2K̄
N
2

β2p
.

Then β2a1K̄
N
1 = β1a2K̄

N
2 and we have

L̄N =
β1a2 +β2a1

β1a2
K̄N

1 , or L̄N =
β1a2 +β2a1

β2a1
K̄N

2

Thus, we have

P(D+ b1 + b2 ≤ L̄N) = 1−
1

p

(

a1a2
β1a2 +β2a1

)

L̄N . (23)

Using a similar transformation on the first-order condition of the system optimum, we have

P(D+ b1 + b2 ≤ L̄∗) = 1−
1

p

(

a1a2
a1 + a2

)

L̄∗. (24)
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Figure 5 A graphical proof of Proposition 6. The horizontal axis is the modified total capacity investment level.

The curve represents the cumulative distribution function of the demand. The two downward sloping

lines represent the right hand sides of (23) and (24). The intersection points of the curve with the two

lines determine the modified total capacity investment levels in the Nash and system optimal settings.

As shown in Figure 5, the horizontal axis is the modified total capacity investment level and the vertical axis

is the cumulative distribution function of the demand. The upward sloping curve (cumulative distribution

function) represents the left hand sides of (23) and (24), and the two downward sloping lines represent the

right hand sides of (23) and (24). Thus, L̄N and L̄∗ can be identified graphically. We also observe that

L̄∗

L̄N
≤

B

L̄N
=

C

A
=

a1 + a2
β1a2 +β2a1

.

where the first equality holds because

HE

HG
=

EF

GA
and

HE

HG
=

ED

GC
and EF= L̄N , GA=A, ED=B, GC=C

by identifying two sets of similar triangles, namely, (HEF and HGA) and (HED and HGC), and the second

equality holds because the points C and A are the x-intercepts which can be readily evaluated from (23)

and (24). �

Proof of Lemma 1. Suppose L∗ is the optimal solution to the system problem. It is easy to see that for

all L̂≥L∗, g(L̂) = π∗
T . For all L<L∗, the budget constraint becomes tight. It suffices to show that

h(L̂) =min
Ki

n
∑

i=1

fi(Ki), s.t.
n
∑

i=1

Ki = L̂.

is convex in L̂. For any λ∈ [0,1], we can write

h(λL̂1 +(1−λ)L̂2) = min
Ki,K

′

i

n
∑

i=1

fi(λKi +(1−λ)K ′
i) s.t.

n
∑

i=1

Ki = L̂1,
n
∑

i=1

K ′
i = L̂2,

λh(L̂1)+ (1−λ)h(L̂2) = min
Ki,K

′

i

λ
n
∑

i=1

fi(Ki)+ (1−λ)
n
∑

i=1

fi(K
′
i) s.t.

n
∑

i=1

Ki = L̂1,
n
∑

i=1

K ′
i = L̂2.

By convexity of function fi for i= 1, . . . , n, for any Ki, we know that

fi(λKi +(1−λ)K ′
i)≥ λfi(Ki)+ (1−λ)fi(K

′
i).

Taking the minimum with respect to the same constraints preserves the inequality, we have

h(λL̂1 +(1−λ)L̂2)≥ λh(L̂1)+ (1−λ)h(L̂2).

This completes the proof. �
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Proof of Theorem 2. By Proposition 6, we know that

L̄N =
β1a2 +β2a1

β1a2
K̄N

1 , or L̄N =
β1a2 +β2a1

β2a1
K̄N

2 .

The Nash profit functions can be expressed as functions of L̄N , i.e.,

πN
T (β) = pE[min(L̄N − b1 − b2,D)]−

(

a1a
2
2β

2
1 + a2a

2
1β

2
2

2(a2β1 + a1β2)2

)

L̄N2 − c1 − c2. (25)

If we impose a budget constraint L ≤ L̄N on the system optimal, the budget-constrained system optimal

profit can also be expressed as functions of L̄N i.e.,

g(L̄N) = pE[min(L̄N − b1 − b2,D)]−

(

a1a2
2(a2 + a1)

)

L̄N2 − c1 − c2,

Observe that g(L̄N) = πN
T (β) when β1 =

1
2
. However, by Proposition 6, we know that for all β1 ≤

1
2
, L̄∗

L̄N ≤ 2.

In addition, g(L̄) is concave in L̄ by Lemma 1. Thus, we have

πN
T (β1 =

1
2
)

π∗
T

=
πN
T (β1 =

1
2
)

g(L̄∗)
≥

πN
T (β1 =

1
2
)

2g(L̄∗/2)
≥

πN
T (β1 =

1
2
)

2g(L̄N)
=

1

2
.

Now let D̄=D+ b1 + b2. Since

P(D̄≤ L̄N) = 1−
1

p

(

a1a2
β1a2 +(1−β1)a1

)

L̄N ⇒
dL̄N

dβ1

=
− L̄N

p

(

a1a2(a1−a2)

(β1a2+(1−β1)a1)2

)

fD̄(L̄N)+ 1
p

(

a1a2

β1a2+(1−β1)a1

) ,

By (25), we have

dπN
T (β1)

dβ1

=
−(1−P(D̄≤ L̄N))L̄N

(

a1a2(a1−a2)

(β1a2+(1−β1)a1)2

)

fD̄(L̄N)+ 1
p

(

a1a2

β1a2+(1−β1)a1

)

+
a21a

2
2(1− 2β1)

(a2β1 + a1(1−β1))3
L̄N2 −

(

a1a
2
2β

2
1 + a2a

2
1(1−β1)

2

(β1a2 +(1−β1)a1)2

)

L̄N dL̄N

dβ1

=
L̄N2

(β1a2 +(1−β1)a1)3

(

−
a21a

2
2(a1 − a2)(a1 + a2)β1(1−β1)

p(β1a2 +(1−β1)a1)fD̄(L̄N)+ a1a2
+ a21a

2
2(1− 2β1)

)

.

If the highest density of D is m (i.e., F ′
D(L)≤m,∀L≥ 0), then πN

T (β1) is decreasing in β1 for all

β ∈

[

mp+ a2
2mp+ a1 + a2

,
1

2

]

,

and πN
T (β1) is increasing in β1 for all

β ∈

[

0,
a2

a1 + a2

]

.

Thus, the revenue sharing scheme β̃1 which induces the highest profit in a JV lies in the following interval

β̃1 ∈

[

a2
a1 + a2

,
mp+ a2

2mp+ a1 + a2

]

.

This completes the proof. �
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Proof of Lemma 2. By convexity of fi for all i= 1, . . . , n, we know that

fi(K
∗
i )≥ fi(K

N
i )+ f ′

i(K
N
i )(K∗

i −KN
i ). (26)

Therefore we can write

Ω(f) =
pE[min(LN ,D)]−

∑n

i=1 fi(K
N
i )

pE[min(L∗,D)]−
∑n

i=1 fi(K
∗
i )

(27)

≥
pE[min(LN ,D)]−

∑n

i=1 fi(K
N
i )

pE[min(L∗,D)]−
∑n

i=1(fi(K
N
i )+ f ′

i(K
N
i )(K∗

i −KN
i ))

.

Notice that (26) is true for every K, by putting K∗
i = 0, we have

0 = fi(0)≥ fi(K
N
i )+ f ′

i(K
N
i )(−KN

i ) ⇒ fi(K
N
i )− f ′

i(K
N
i )(KN

i )≤ 0, (28)

we add (28) onto both the numerator and denominator of (27),

Ω(f) ≥
pE[min(LN ,D)] +

∑n

i=1(−fi(K
N
i )+ fi(K

N
i )− f ′

i(K
N
i )(KN

i ))

pE[min(L∗,D)] +
∑n

i=1(−fi(KN
i )− f ′

i(K
N
i )(K∗

i −KN
i )+ fi(KN

i )− f ′
i(K

N
i )(KN

i ))

≥
pE[min(LN ,D)]−

∑n

i=1 f
′
i(K

N
i )(KN

i )

pE[min(L∗,D)]−
∑n

i=1 f
′
i(K

N
i )(K∗

i )
.

Now let K̃N
i and K̃∗

i be the Nash equilibrium solution and the system optimal solution with respect to

the same problem but with the modified linear cost functions such that f̄i = αi ·Ki where αi = f ′
i(K

N
i ).

Correspondingly, L̃N =
∑n

i=1 K̃
N
i and L̃∗ =

∑n

i=1 K̃
∗
i .

Since K̃N
i =KN

i (having the same set of first-order conditions), we have

pE[min(LN ,D)]−
n
∑

i=1

f ′
i(K

N
i )(KN

i ) = pE[min(L̃N ,D)]−
n
∑

i=1

αiK̃
N
i .

Because K̃∗
i is the optimal capacity investment level for the modified problem, it implies that

pE[min(L∗,D)]−
n
∑

i=1

f ′
i(K

N
i )(K∗

i )≤ pE[min(L̃∗,D)]−
n
∑

i=1

αiK̃
∗
i .

Thus, we have

Ω(f) ≥
pE[min(L̃N ,D)]−

∑n

i=1αiK̃
N
i

pE[min(L̃∗,D)]−
∑n

i=1αiK̃∗
i

≥
πN(f̄)

π∗(f̄)
=Ω(f̄).

This completes the proof. �

Proof of Lemma 3. Assume that, without loss of generality, αm = α1 ≤ α2 ≤ . . .≤ αn = αM . Define the

set P = {j | αj = αm}. If |P |= s, then s symmetric players invest in the system optimal solution and therefore

L̃∗ = sK̃∗
j for i∈ P .

Ω(f̄) =
p
∫ L̃N

0
F̄D(x)dx−

∑N

i=1αiK̃
N
i

p
∫ L̃N

0
F̄D(x)dx+ p

∫ L̃∗

L̃N
F̄D(x)dx−αmL̃N

≥

∑N

i=1αiL̃
N −

∑N

i=1αiK̃
N
i

∑N

i=1αiL̃N +
∑N

i=1αi(L̃∗ − L̃N)−αmL̃∗

≥

∑N

i=1αi(L̃
N − K̃N

i )
∑N

i=1αiL̃∗ −αmL̃∗
≥

αm(n− 1)L̃N

αM(n− 1)L̃∗
≥ α̃

L̃N

L̃∗

where the cost asymmetry factor α̃= αm/αM ≤ 1. This completes the proof. �
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Figure 6 A graphical proof of Theorem 3.

Proof of Theorem 3. Denote f = (fi(Ki))
n
i=1 as general convex cost functions. Let πN(f) and π∗(f) be

the Nash and system profit of n players with respect to the general cost f , respectively. With Lemmas 2 and

3, we will present how to bound the efficiency ratio. Define

θM , max
0≤x≤L̃N

F ′
D(x) and θm , min

L̃N≤y≤L̃∗

F ′
D(x)

We first obtain a lower bound on the ratio of L̃N to L̃∗.

L̃N

L̃∗
≥

L̃N

L̃N +(
∑n

i=1αi −αm)/(θmp)

≥
(1−

∑n

i=1αi/p)/θM
(1−

∑n

i=1αi/p)/θM +(
∑n

i=1αi −αm)/(θmp)

=
p−

∑n

i=1αi

p−
∑n

i=1αi +(
∑n

i=1αi −αm)θ̃

≥
p−nαM

p−nαM +(n− 1)αM θ̃
=

1−nr̄

1−nr̄+(n− 1)r̄θ̃
,

where r̄= αM/p.

Combining this result with Lemma 3 which shows that the efficiency ratio in terms of the total profit

can be bounded from below by the product of the cost asymmetry factor and a comparison of the effective

capacity, we have completed the proof. �
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