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Abstract A novel modeling framework that simultaneously improves accuracy, predictability, and
computational efficiency is presented. It embraces the benefits of three modeling techniques integrated
together for the first time: surrogate modeling, parameter inference, and data assimilation. The use of
polynomial chaos expansion (PCE) surrogates significantly decreases computational time. Parameter
inference allows for model faster convergence, reduced uncertainty, and superior accuracy of simulated
results. Ensemble Kalman filters assimilate errors that occur during forecasting. To examine the
applicability and effectiveness of the integrated framework, we developed 18 approaches according to how
surrogate models are constructed, what type of parameter distributions are used as model inputs, and
whether model parameters are updated during the data assimilation procedure. We conclude that (1) PCE
must be built over various forcing and flow conditions, and in contrast to previous studies, it does not need to
be rebuilt at each time step; (2) model parameter specification that relies on constrained, posterior
information of parameters (so‐called Selected specification) can significantly improve forecasting
performance and reduce uncertainty bounds compared to Random specification using prior information of
parameters; and (3) no substantial differences in results exist between single and dual ensemble Kalman
filters, but the latter better simulates flood peaks. The use of PCE effectively compensates for the
computational load added by the parameter inference and data assimilation (up to ~80 times faster).
Therefore, the presented approach contributes to a shift in modeling paradigm arguing that complex,
high‐fidelity hydrologic and hydraulic models should be increasingly adopted for real‐time and ensemble
flood forecasting.

1. Introduction

Real‐time forecasting is an important component of flood risk management and mitigation but is subject to
multiple uncertainties caused by meteorological inputs, initial states, model structures, and model para-
meters (Ajami et al., 2007; Beven, 1989; Mockler et al., 2016; Moradkhani & Sorooshian, 2008). Due to the
complexities of natural phenomena represented by equifinality (Beven, 2006; Beven & Freer, 2001), hyster-
esis (Fatichi et al., 2015; Ivanov et al., 2010; Wei & Dewoolkar, 2006), nonuniqueness (Beven, 2000;
McKenna et al., 2003; Kim & Ivanov, 2014; Kim, Dwelle, et al., 2016), nonlinearity (Kim & Ivanov, 2015;
Kitanidis & Bras, 1980; Xie & Zhang, 2010), and internal variability (Kim et al., 2016a, 2016b; Kim et al.,
2018; Lafaysse et al., 2014; Mondal & Mujumdar, 2012; Nikiema & Laprise, 2011), perfect predictions using
numerical models are infeasible. The problem exacerbates, if one attempts to simulate constitutive models
derived from empirical or phenomenological observations rather than basic conservation laws of physics that
would also require embracing a large number of parameters. Forecasting systems must therefore rely on
approaches with intrinsic tools to quantify and reduce associated uncertainties and allow end users to make
informed decisions (Todini, 1999, 2004).

Forecasts made with sufficient lead time can mitigate flood damages considerably. Results should therefore
be providedwithin a predetermined time horizon and accurate enough to promote community confidence in
actions taken for emergency preparedness (Associated Programme on Flood Management (APFM), 2013;
Todini, 2004). Extensive efforts have been devoted to enhance forecast accuracy, predictability, and efficiency
in real time with uncertainty quantification (Table 1). However, simultaneous improvement of predictive
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accuracy and efficiency, while evaluating effectiveness, remains amajor challenge (Cintra &Velho, 2018; Liu
et al., 2012).

For the purpose of enhancing model accuracy in real‐time flood forecasting where no information of model
states and parameters is available, data assimilation (DA) has been proven useful. Due to the nature of fore-
casting, the effect of future unknowns (model parameters and states) on flood prediction will change over
time. In addition, uncertainty can be amplified not only by the features of the model itself but also by errors
in forcing data and observations. Therefore, model adjustment for the forecasting period may be necessary
(Moradkhani, Sorooshian, et al., 2005; Young, 2002). Several assimilation methods have been developed
using Kalman or particle filters and optimization or inference techniques such as the back‐fitting algorithm
(Zhang et al., 2018), shuffled complex evolution algorithm (Li et al., 2014), shuffled complex evolution
metropolis (Vrugt et al., 2005), generalized likelihood uncertainty estimation (GLUE) (Beven & Freer,
2001), and sequential Bayesian combination (DeChant & Moradkhani, 2014). Due to the higher computa-
tional requirements of the latter techniques, filter‐type approaches have attracted attention as assimilation
tools (Gharamti et al., 2013; Moradkhani & Sorooshian, 2008).

Currently, the ensemble Kalman filter (EnKF) (Evensen, 1994) and its modifications (e.g., ensemble Kalman
smoothers, ensemble square root filters, and gain function) are the most commonly used techniques in the
hydrology community (Table 1), despite the issue of slow convergence caused by intrinsic assumptions, espe-
cially for domains with complexities (Moradkhani et al., 2012; Moradkhani, Hsu, et al., 2005; Wang et al.,
2017; Weerts & El Serafy, 2006). Recent studies have suggested that particle filtering (Arulampalam et al.,
2002) is an alternative method to resolve the inclusion of unrealistic Gaussian assumptions in the EnKF.
The particle filteringmethod hasmore advantages than EnKF in reducing numerical instability by providing
particle weights and using non‐Gaussian state‐space models (Liu et al., 2012). However, this method is com-
putationally more expensive as it generally requires more ensemble members (Liu et al., 2012; Moradkhani,
Hsu, et al., 2005).

When assimilating data, model parameter specification and state initialization may play a crucial role, espe-
cially for short‐range forecasting (Houtekamer & Zhang, 2016). Generally, ensemble initialization of model
states and parameters for the forecasting period can be generated approximately, for example, using a ran-
dom selection from uniform distributions for parameters and setting up the initial state values as an

Table 1
Literature Review of Applications Involving Real‐Time, Ensemble Streamflow Forecasting

Study Deterministic model Surrogate model Parameter specification State initialization DA A

Zhang et al. (2018) Xinanjiang ‐ Optimization Warm‐up Dual A12
Abbaszadeh et al. (2018) SAC‐SMA ‐ Random Arbitrary Dual A12
Wang et al. (2018) HyMOD PCE NA Warm‐up Dual A6
Davison et al. (2017) MESH ‐ Random NA Dual A3
Thiboult et al. [2016] Multimodels ‐ NA Warm‐up Single A2
Fan et al. [2016] HyMOD PCE Random NA Dual A6
Zahmatkesh et al. (2015) HyMOD, HBV, SWMM ‐ Bayesian inference Warm‐up None A10
Li et al. (2014) GR4H ‐ Optimization NA Dual A12
DeChant and Moradkhani (2014) VIC ‐ NA Warm‐up Dual A3
Xie and Zhang (2013) SWAT ‐ Random Warm‐up Dual A3
Chen et al. (2013) HyMOD ‐ Bayesian inference NA Single A11
Moradkhani et al. (2012) HyMOD ‐ Random Warm‐up Dual A3
He et al. (2012) SNOW17+ SAC‐SMA ‐ Bayesian inference Warm‐up Single A11
Mendoza et al. (2012) TopNet ‐ Manual calibration Warm‐up Single A11
Clark et al. (2008) TopNet ‐ Bayesian inference Warm‐up Single A11
Ajami et al. (2007) HyMOD, SWB ‐ Bayesian inference Warm‐up None A10
Weerts and El Serafy (2006) HBV‐96 ‐ NA NA Single A2
Vrugt et al. (2005) HyMOD ‐ Random Arbitrary Dual A3
Moradkhani et al. [2005] HyMOD ‐ Random Arbitrary Dual A3
Madsen and Skotner [2005] Mike 11 ‐ Optimization Warm‐up Single A11
Beven and Freer (2001) TOPMODEL ‐ Bayesian inference Warm‐up Dual A12

Note. The last column corresponds to the taxonomy of the predictive approach (A) that we define in Table 3. “Warm‐up”methods have a warm‐up period, while
“Arbitrary” methods do not. NA = Not Available.
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arbitrary number (e.g., zero) at the beginning of the forecasting period (Abbaszadeh et al., 2018; Davison
et al., 2017; DeChant & Moradkhani, 2014; Moradkhani, Hsu, et al., 2005; Moradkhani et al., 2012; Vrugt
et al., 2005; Xie & Zhang, 2013). Alternatively, the ensemble can be generated more carefully, for example,
specifying parameters from relevant distributions (Ajami et al., 2007; Beven & Freer, 2001; Chen et al.,
2013; Clark et al., 2008; He et al., 2012; Madsen & Skotner, 2005; Mendoza et al., 2012; Zahmatkesh et al.,
2015) and using a warm‐up technique for states (Ajami et al., 2007; DeChant & Moradkhani, 2014; He
et al., 2012; Mendoza et al., 2012; Wang et al., 2018), as summarized in Table 1.

The assimilation techniques described above generally require a large number ofmodel evaluations to update
parameter and state values and present predictive uncertainties, leading to computational challenges (Vrugt,
2016; Vrugt et al., 2008; Zhang et al., 2017), even with the benefit of parallel computation with multiple pro-
cessors (Cintra & Velho, 2018). Because keeping calculation time to a minimum is a key element for timely
flood warnings and responding to emergency situations (Ballio & Guadagnini, 2004; Sene, 2008), it is neces-
sary to find alternatives that significantly increase forecast lead time. Surrogate modeling can address this
challenge by substituting computationally intensive models with computationally efficient metamodels,
such as the polynomial chaos expansion (PCE). Through the expansion of orthogonal polynomials, approx-
imate functions can be constructed and applied to hydrologic models. Recent studies have used PCE to per-
form robust uncertainty assessment of diverse hydrologic problems (Dwelle et al., 2019; Fan et al., 2014, 2016;
Sochala & Le Maître, 2013; Wang et al., 2015, 2017, 2018; Wu et al., 2014) rather than running deterministic
models. However, few studies have tested its effectiveness in a setting of real‐timeflood forecasting (Fan et al.,
2016; Wang et al., 2015, 2017, 2018).

To fill the above gaps, we propose a novel integrated modeling framework that improves accuracy, predict-
ability, and efficiency of real‐time flood forecasting. Eighteen approaches to the framework are presented,
combiningways of constructing the surrogatemodels, specifyingmodel parameters and states, and assimilat-
ing newly observed data. This study investigates (i) the effects of building methods of the PCE model and its
capacity for real‐time flood forecasting, (ii) the effects of specifying methods on predictive performance, (iii)
the effects of single‐ and dual‐assimilation techniques, and (iv) the computational time of the
proposed approaches.

2. Methodologies and Frameworks
2.1. Methodologies
2.1.1. Deterministic Rainfall‐Runoff Model: NAM
To construct a surrogate model, simulate streamflow, quantify uncertainty, and assimilate observed data, a
Nedbør‐Afstrømnings model (NAM) (Nielsen &Hansen, 1973) is employed. As one of the widely used deter-
ministic, lumpedmodels, it is considered useful and flexible and has been applied tomany catchments (Butts
et al., 2004; Madsen, 2000; Mockler et al., 2016; O'Brien et al., 2013; Thompson et al., 2004). Specifically, its
design assumes three different and mutually integrated storages representing a surface zone, lower zone,
and routing components that simulate overland flow, interflow, and base flow, respectively. The model
requires two input forcing variables (MI) of spatially averaged precipitation and evapotranspiration, five
model states (MS = 5), and nine model parameter values (MP = 9) listed in Table 2 (Danish Hydraulic
Institute, 2014). The latter states and parameters control the amount of water content and the rates of release
from the conceptualized storage compartments of the model. Because evapotranspiration is assumed to be
negligible during the rainy season with flooding events, the number of inputs used in this study is 1 (MI= 1).
2.1.2. Surrogate Model: Polynomial Chaos Expansion

PCE (Ghanem & Spanos, 1991; Wiener, 1938) can build a surrogate model (MPCEÞ for any (deterministic
rainfall‐runoff) model (M) through the expansions of orthogonal polynomials. This enables a polynomial
approximation of the model through its deterministic input/output relationship. The form of a PCE model
approximating a model output (e.g., streamflow yt) as a function of model parameters θt is given as follows:

yt ¼ M θtð Þ≈MPCEt θtð Þ (1)

Note that the surrogate model (MPCEÞ in equation (1) has the subscript of t, indicating that the surrogate
model is a collection of PCEs constructed at each time step of interest. Also, only the parameter θt (this
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includes a subscript of t as well) is chosen as an input variable during PCE construction, and other forcing or
state inputs required to simulate hydrologic models are held constant (Dwelle et al., 2019; Fan et al., 2016;
Meng & Li, 2018; Sochala & Le Maître, 2013; Tran & Kim, 2019; Wang et al., 2018). This mathematical
formulation conveys that PCE should be built separately for each time step at which a meteorological
condition or model state is updated.

Unlike previous studies based on equation (1), this study constructs the surrogate PCE model with equation
(2), which has three characteristics: (i) the model input consists of meteorological data, model states, and
model parameters; (ii) model parameters do not change over time, which is different from equation (1);
and (iii) there is no need to constantly create the PCEmodel over time (which is themost important practical
feature). The single PCE model represents streamflow phenomena over the entire calibration period during
which the PCE model was generated. Specifically, ensemble model output (Yt) at each time step, including
streamflow (yt) and states (xt), can be written as a function of model inputs (Xt), including states (xt − 1), cli-
mate data (ut), and time‐invariant parameters (θ):

Yt ¼ M X tð Þ≈MPCE X tð Þ ¼ ∑
α∈A

εαΨα X tð Þ (2)

Yt ¼ yt xt½ �; X t ¼ xt− 1 ut θ½ � (3)

where εα represents the PCE coefficients to be determined for all multiindices,α ¼ α1;…; αMXf gbelonging to
a set of candidate polynomials A,{α ∈ A}. Ψα(Xt) represents the multivariate polynomials corresponding to
the given input Xt. The polynomials are constructed as the product of univariate orthonormal polynomials:

Ψα X tð Þ ¼ ∏
MX

j¼1
Ψ jð Þ

αj X j
t

� �
(4)

whereΨ jð Þ
αj is the univariate orthonormal polynomials of the jth variables of the degree αj. In general, the size

of Xt,MX, is equal to the summation of the number of parameters, states, and forcing inputs of the determi-
nistic NAM model (i.e.,MX = MP+MS+MI). Set A is determined by MX and the polynomial degree, p of the
PCE model as follows:

A ¼ AMX ;p ¼ α∈NMX : αj j ≤ p
� �

; card AMX ;p ¼ MX þ p
p

� �
(5)

Various polynomial bases (e.g., uniform, Gaussian, beta, and gamma) can be chosen for Ψα(Xt) from the
Weiner‐Askey scheme, depending on the probabilistic characteristics of model input variables Xt (Xiu &
Karniadakis, 2002).

Table 2
Description of the NAM Model States and Parameters

Unit Description Lower Bound Upper Bound

States U mm Water content in surface storage 0 35
L mm Water content in lower zone/root storage 0 400
OF m3/s Overland flow 0 +∞
IF m3/s Inter flow 0 +∞
BF m3/s Base flow 0 +∞

Parameters Um mm Maximum water content in surface storage 5 35
Lm mm Maximum water content in lower zone/root storage 50 400
CQOF [‐] Overland flow coefficient 0 1
CKIF hr Interflow drainage constant 200 2,000
TOF [‐] Overland flow threshold 0 0.9
TIF [‐] Interflow threshold 0 0.9
TG [‐] Groundwater recharge threshold 0 0.9
CK12 hr Time constant for routing interflow and overland flow 3 72
CKBF hr Time constant for base flow 500 5,000

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 4 of 31



Given the set of multivariate orthonormal polynomials (Ψα(Xt)), the next step is to compute the PCE coeffi-
cients (εα), which are influenced by the number of model evaluations (called the experimental design,N) and
the polynomial degree, p (Blatman & Sudret, 2010, 2011). Increasing these numbers requires significant
computational resources and the requirement is higher. When using the projection method (Ghiocel &
Ghanem, 2002; Le Maı̂tre et al., 2002), one of the methods employed to compute PCE coefficients,N is deter-

mined based on p and the size of Xt,MX as N ¼ pþ 1ð ÞMX . This number is large enough that it takes a con-
siderable time to construct the surrogate model (Blatman & Sudret, 2011; Tran & Kim, 2019). Reducing N is
desirable as it lessens the computational cost. For the least squares regression method adopted in this study,
N is not defined a priori and is provided by the researcher, which can enable a significant decrease for the
value of N (Berveiller et al., 2006; Blatman & Sudret, 2010; Sudret, 2008). Also, p can be determined by
the complexity of model outputs and the subjectivity of researcher, with many studies choosing values of
2 or 3 (Fan et al., 2014; Sochala & Le Maître, 2013; Wang et al., 2015, 2017). Investigating the effects of vary-
ing values of N and p on the PCE model allows for determination of the optimal values of the both para-
meters. According to the approach by Blatman and Sudret (2010), a metric of the leave‐one‐out (LOO)
cross‐validation error in equation (A5) can illustrate the performance of the PCE model. A brief overview
of the construction of the PCE surrogate model is detailed in Appendix A.
2.1.3. Parameter Inference: GLUE
GLUE (Beven & Binley, 1992) refers to a series of procedures for inferring parameter posterior distributions
and quantifying the associated uncertainties. The objective of GLUE is to select “behavioral” model runs
based on the threshold values of likelihood functions with observations, among a large number of runs simu-
lated with random combinations of parameter values. The latter parameter's values can be sampled ran-
domly from the prior distributions of each parameter (constrained in this study with upper and lower
bounds of Table 2) using Monte Carlo or Latin hypercube sampling (LHS). For more efficient performance,
LHS was used (Helton & Davis, 2003). The likelihood functions proposed in this study are three metrics of
Nash‐Sutcliffe efficiency (NSE), peak error (PE), and volume error (VE) defined in Appendix B, representing
the model performance with respect to the shape, peak, and volume of hydrograph, respectively. Acceptance
threshold values are determined according to an approach (Tran & Kim, 2019) in which relationships
between accuracy and efficiency indices are identified for their determinations. Specifically, cutoff threshold
values for the likelihood functions of NSE, PE, and VE are suggested as 0.8, 5%, and 5%, respectively (Tran &
Kim, 2019). The model runs (or parameters) that satisfy the modelling error within the above thresholds for
all the likelihood functions are defined here as “behavioral” runs (or parameters).
2.1.4. Ensemble Data Assimilation: Single and Dual EnKFs
Among many reported techniques, the single EnKF and the dual‐ensemble Karman filter (dual EnKF) are
often chosen to optimally update the ensemble of model states (and parameters) of forecasting systems with
real‐time observations, which can be coupled with any models (Burgers et al., 1998; Evensen, 1994;
Moradkhani, Sorooshian, et al., 2005; Whitaker, 2012). Specific details are provided in Appendix C.

The EnKF allows for the perturbation of observations to generate replicates of xt − 1 and θt and the correction
of the ensemble forecast members through an update step (equations (C10) and (C18)) (Moradkhani,
Sorooshian, et al., 2005). This prevents the EnKF from a collapse in which all ensemble forecast members
are likely to have similar values (Burgers et al., 1998). As shown in equation (C11), observations can be per-
turbed by adding stochastic noise to the observed value. This observed error in measurements is assumed to
be independent and is set to be proportional to the observed values, following a Gaussian distribution with
predetermined variance. In this study, we assume that the standard deviation of the observational error is
5% of streamflow observations (i.e., noise) at each time step, similar to prior studies (Bauser et al., 2018;
Clark et al., 2008; DeChant & Moradkhani, 2012; Fan et al., 2016). Sensitivity analysis on the observation
error is illustrated in Text S1 in the supporting information. Furthermore, overshooting or filter divergence
problem in data assimilation happens when the ensemble size is small or the initial values of ensemblemem-
bers are quite different from the true. To resolve this issue, we used a sufficiently large ensemble size and the
posterior information of parameters to initialize the ensemble of EnKF.

2.2. New Modeling Framework
2.2.1. Obtaining Prior and Posterior Parameter Distributions of a Deterministic Model
The first preparation step of the modeling framework is to obtain the prior and posterior parameter dis-
tributions for a deterministic model. There could be various ways to handle this, but in this study the
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following assumptions and methodologies are specifically applied. We first assume that each of the
parameters follows a uniform distribution within specified bounds—the prior parameter distributions
are simply attained by utilizing prior‐known information for the bounds in Table 2. In contrast, the
posterior parameter distributions are fitted to the 500 behavior parameters of GLUE—the 500 NAM
behavior samples are identified as an optimal number from our previous study which has confirmed
that more than the 500 parameter sets does not change the shape of the posterior distributions (Tran
& Kim, 2019). For consistency, this number will be also used for making the posterior distributions
of PCE‐I and PCE‐II in section 2.2.2.

The mathematical expression of this step is as follows. For the warm‐up and calibration periods, a modelM
(NAM) can be simulated to attain behavioral runs with GLUE, that is,

yiit xiit
� 	 ¼ M xiit− 1;ut; θii


 �
; ii ¼ 1;…;nw; t ¼ 1;…; tc (6)

where nw is the number of model runs to obtain the n number of the behavioral set based on the likelihood
scores estimated with the GLUE method (Tran & Kim, 2019). Among the nw random runs (referring to the
light blue shaded region in Figure 1) that are simulated by using parameter sets (θii) sampled randomly from
the prior (uniform) distributions, the only n behavior runs (referring to the light red shaded region in
Figure 1) are employed for making the posterior distributions.

Reducing the effects of uncertainty by initial conditions (xii0) is necessary for modeling. In this framework, a
“warm‐up” technique was employed to calibrate the deterministic model. Generally, a sufficient period of
time (called the warm‐up period) can be set such that the influence of the initial condition is dissipated, and
the warm‐up is performed before entering the calibration period. This technique produces behavioral para-
meter sets much faster in GLUE, compared with cases that do not use the warm‐up technique.
2.2.2. Building PCE With Two Types of Experimental Design
We propose two types of approaches for constructing the PCE model, depending on how the sample collec-
tions of the experimental design (Xt) is composed. One approach is to build a PCEmodel (PCE‐I) by collect-
ing the training samples that are generated from the prior parameter distributions. The other approach is
(PCE‐II) uses samples that are formed by the posterior parameter distributions. The associated mathematical
expression is

Figure 1. A schematic illustration for real‐time ensemble flood forecasting, which consists of three intervals: warm‐up, calibration, and forecasting periods. The
light red shaded region in the warm‐up and calibration periods refers to the n behavior results of GLUE that are employed to estimate posterior parameter dis-
tributions, while the light blue region refers to the nw random results obtained from parameter sets sampled from prior (uniform) distributions to attain the n
behavior runs. The construction of PCEmodels is carried out over the calibration period: PCE‐I model is built from theNI training samples extracted from the light
blue region, while PCE‐II is from the NII samples from the light red region. The (dense) blue and red shaded regions correspond to the approaches using the
“Random” (A1 to A9) and “Selected” (A10 to A18) parameter specifications with the same n ensemble runs, respectively.
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yiiit xiiit
� 	 ¼ M xiiit− 1;ut; θiii


 �
; iii ¼ 1;…;N; t ¼ 1;…; tc (7)

where the NI set ofXt (i.e., N = NI for PCE‐I) consists of modelM simulation results calculated from para-
meters sampled from the prior distributions (correspond to NI set sampled randomly from the results in the
light blue shaded region over the calibration period in Figure 1) (Blatman & Sudret, 2010; Blatman & Sudret,
2011; Sudret, 2008). In contrast, the experimental design of the latter approach assumes that theNII set ofXt

(i.e., N = NII for PCE‐II) are drawn from the more constrained, posterior parameter distributions (corre-
spond to the light red shaded region over the calibration period in Figure 1) (Tran & Kim, 2019). All the sam-
ples were taken through LHS sampling (McKay et al., 1979).

The former approach can be implemented easily and therefore has been used more commonly in the litera-
ture (Blatman & Sudret, 2010; Blatman & Sudret, 2011; Sudret, 2008). However, for past periods in which
observations exist, the second approach using a well‐calibrated set of parameters is beneficial in significantly
reducing computational time (Tran & Kim, 2019). It takes less time to build PCE in the second approach
because less training samples (NI is generally larger than NII) are required when estimating coefficients.
On the other hand, in the context of real‐time forecasting when no observations have been attained, the lat-
ter approachmight cause a problem. Specifically, PCEmodels built with a set of “good” posterior parameters
sets obtained only for a certain historic period of time would not necessarily demonstrate validity for
unknown prediction periods. Evaluation of the applicability of the two approaches to real‐time flood fore-
casting will be addressed in section 4.

Once the PCE models were constructed, the same GLUE procedure is made to obtain the posterior para-
meter distributions of both PCE models:

yiit xiit
� 	 ¼ MPCE xiit− 1;ut; θii


 �
; ii ¼ 1;…; nw; t ¼ 1;…; tc (8)

Note that the number nw is different depending on Model = {NAM, PCE − I, PCE − II}.
2.2.3. Specifying Model Parameters for Data Assimilation
Determining initial conditions and parameter values before assimilating real‐time observations over the
forecasting period is a necessary step. Themathematical expression for preparing data assimilation (forecast-
ing) is written as follows:

yit xit
� 	 ¼ Model xit− 1;ut; θi


 �
; i ¼ 1;…;n; t ¼ 1;…; tc (9)

where the initial ensemble of states (xi0) is set to an arbitrary number (e.g., zero) at the beginning of simula-
tion (i.e., t = 0) (Figure 1). In terms of specifying the model parameters, two types of approach are proposed.
First, similarly to most previous studies of data assimilation (Davison et al., 2017; DeChant & Moradkhani,
2014; Gharamti et al., 2013; Moradkhani, Sorooshian, et al., 2005; Vrugt et al., 2005; Wang et al., 2009; Xie &
Zhang, 2013), the ensemble of parameters over the periods (0 ≤ t ≤ tc) is assumed to follow a prior distribu-
tion. That is, the n number of parameter sets are sampled from uniform distributions with predefined
bounded ranges (i.e., from the results in the light blue shaded region in Figure 1). The values of parameters
remain unchanged, while those of state vectors are continuously updated until the beginning of the forecast-
ing period (i.e., t= tc). This is hereafter named “Random” set—referring to the use of random parameter sets
for running Model of NAM, PCE‐I, and PCE‐II.

An alternative way to this Random specification method is enabled by taking the advantage of the ability to
calibrate model parameters with observed data before the forecasting period. Specifically, this method uses
the posterior results of GLUE behavioral runs (referring to the light red shaded region in Figure 1), that is,
selected parameter sets for runningModel—called “Selected” specification method. The selected parameter
sets for Model remain unchanged over the warm‐up and calibration periods as well. As with the former
approach, the values of state vectors are initially set to be zero at t=0 but are continuously updated until t= tc.
We expected to see the EnKF process converge much faster and the forecasting results improve.
2.2.4. Modeling Approaches for Forecasting
In total, 18 modeling approaches (see Figure 2) were developed by combining themodeling options with var-
ious techniques (NAM + PCE + GLUE + EnKF) in sections 2.2.2 and 2.2.3. The modeling techniques were
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Figure 2. The overview of an ensemble flood forecasting framework. The top box, “PCE construction,” is for the process of building two PCE models (blue box for
PCE‐I and red box for PCE‐II). The middle box, “Specification,” describes two distinct approaches of specifying model parameters before forecasting including
Random (blue box) and Selected (red box). The bottom box, “Forecasting,” corresponds to data assimilation for flood forecasting in real‐time (single and dual
EnKFs). The top and middle blue boxes correspond to sampling NI and n, independently from the same prior uniform distributions, respectively, while the red
boxes sampling NII and n from the same posterior distributions.
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coupled to successfully perform ensemble flood forecasting and to meet
the need for accurate and efficient flood forecasting. The 18 approaches
represent permutations of the 3 × 2 × 3 subcases (Table 3). First, they were
divided into three subcases corresponding to Model, depending on
whether a deterministic model or a PCE model was used over the calibra-
tion period (see section 2.2.2) and how the latter was developed. Second,
these modeling sets were divided into two subcases corresponding to
Random or Selected sets, depending on how the parameter sets before
the forecasting period were specified (see section 2.2.3). Lastly, they were
divided into three subcases depending on the methodology of data assim-
ilation. The first of the three subcases did not use any data assimilation,
and the other two used single‐ and dual‐ensemble Kalman filters (see
section 2.1.4). We evaluated the modeling performance of the coupling
framework by assessing accuracy, efficiency, and predictability in
section 4.2. The performance comparisons of the 18 approaches are
expected to be a guide to which approach demonstrates better skill and
most appropriate and which should be avoided.

2.3. Performance Metrics

To assess the modeling performance of the 18 approaches, metrics repre-
senting accuracy, predictability, and efficiency were chosen, beginning with the accuracy metrics of
Nash‐Sutcliffe efficiency (NSE), absolute error (AE), and relative entropy (RE) (Kleeman, 2002; Kullback,
1997; Kullback & Leibler, 1951). Second, Brier (1950) scores (BSs) and the range of uncertainty (UR) were
used to assess the predictability of probabilistic forecasts. Lastly, a metric calculating total runtime (TRT)
was evaluated to compare the computational efficiency of the tested approaches.

NSE, which is traditionally used to evaluate the accuracy power of deterministic models, is computed for
each ensemble member (i) over the entire computation time. In this study, NSE is expressed as follows:

NSEi ¼ 1−
∑
T

t¼1
yObst − yit

 �2

∑
T

t¼1
yObst − yimean


 �2 ; i ¼ 1;…; n (10)

where yObst and yit are the actual observation and ith predicted output at time t; yimean is the mean of the ith
predicted output over the entire forecasting period; T is the total number of time steps over the forecasting
period from tc to tf.

AE is differences between actual observations and predictions of each ensemble members at each time t.
Thus, it varies with time and can be written as follows:

AEi
t ¼ yObst − yit

�� ��; t ¼ 1;…;T; i ¼ 1;…; n (11)

RE is a measure of the statistical difference between probability distributions over the entire forecasting per-
iod of observations and model simulations (Giannakis & Majda, 2012; Kleeman, 2002; Shukla et al., 2006).
Following Kleeman (2002) and Heo et al. (2014), RE can be defined as follows:

REi ¼ log
σ2yObs
σ2yi

þ σ2
yi

σ2yObs
− 1

" #
þ

μyi− μyObs
� �2

σ2yObs

264
375; i ¼ 1;…; n (12)

where μyObs and μyi are the mean, while σyObs and σyi are the variance of streamflow observation and the ith

model prediction over the entire computation time from tc to tf. Small values of relative entropy indicate that
distribution of a given model is close to that of the observation. This is also called Kullback‐Leibler diver-
gence between the two distributions, model and data, assuming Gaussianity of both.

Table 3
Forecasting Approaches Employed in This Study

Approach Specification Model Data assimilation

A1 Random NAM None
A2 EnKF
A3 Dual EnKF
A4 PCE‐I None
A5 EnKF
A6 Dual EnKF
A7 PCE‐II None
A8 EnKF
A9 Dual EnKF
A10 Selected NAM None
A11 EnKF
A12 Dual EnKF
A13 PCE‐I None
A14 EnKF
A15 Dual EnKF
A16 PCE‐II None
A17 EnKF
A18 Dual EnKF
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The BS is one of the most commonly used verification measures for assessing the predictability of probabil-
istic forecasts. The score is defined as the mean squared error of the probabilistic forecasts over the verifica-
tion sample, expressed as follows:

BS ¼ 1
T
∑
T

t¼1
p f
t − ot

� �2
(13)

where p f
t is the forecast probability for the tth time, which refers to the ratio among ensemble reaching a

predefined flow threshold; ot is the observed probability, which is 1 if observation at tth time, yObst is larger
than the threshold, and 0 if it is not. In this study, this threshold value was chosen as the proportional rate
of 90% of the true discharge peak.

The uncertainty range (UR) is the range between the 5th and 95th percentiles of the ensemble outcomes (q).
It is computed over each computational time t in hydrographs, expressed in equation (14):

URt ¼ q95t − q5t ; t ¼ 1;…;T (14)

Lastly, the TRT for all of the approaches is defined as follows:

TRT ¼ RTwþc;Model × facModel þ RTf ;Model;DA

 �

× nþ RTbuild;Model (15)

where RTw+c, Model is the run time to compute one simulation ofModel (NAM, PCE‐I, and PCE‐II) over the
warm‐up and calibration periods, that is, from 0 to tc; RTf, Model,DA is the run time to compute one simula-
tion ofModel with different DA methods over the forecasting period, that is, from tc to tf; and RTbuild, Model

is the run time needed for buildingModel. For example, because it is unnecessary for constructing the deter-
ministic model, the time for NAM is zero. The building run times for PCE‐I and PCE‐II will be calculated in
detail in section 4.1.2. The factor facModel represents the number of Model runs to obtain a single behavior
run in GLUE and remains 1 in A1 to A9, while it depends on Model for the rest of approaches.

Equation (15) is a linear function with respect to the number of ensembles run, in which RTw+c,
Model × facModel+RTf,Model,DA serves as the slope of the linear function and RTbuild,Model the intercept.
The values of the slope and intercept and the executed times of the 18 approaches are addressed in
section 4.2.

3. Study Area and Experimental Setups

In this study, the unified framework is applied to predict hourly streamflow in the Vu Gia watershed as
shown in Figure 3. The watershed is one of the largest in central Vietnam, with a total area of 1,679.8
km2 in the tropical region. It experiences a typical continental monsoon climate, with concentrated rainfall
mainly from September to December. As the Vu Gia watershed is characterized by a large difference in ele-
vation (slopes of approximately 30%), floods occur rapidly and frequently. The region has experienced
intense severe flooding and significant damage (Nga et al., 2015; United Nations Development
Programme (UNDP), 1999).

Streamflow data used for the outlet of the basin was collected hourly at Thanh My station—the only hydro-
metric station in the domain. Rainfall data was also observed hourly and obtained from two weather stations
near the study area (Thanh My and Kham Duc station). The average rainfall over the basin (Figure 4) was
calculated through the Thiessen polygon method. Observations, from 1 to 17 December 2016, are employed,
in which the data from 1 to 13 December was used for the warm‐up period (i.e., from 0 to tw), the data from
13 to 15 December for the calibration period (i.e., from tw to tc), and the remaining data (assuming numeri-
cally that this data was newly provided at an hourly basis) corresponds to the forecasting period (i.e., from tc
to tf) (Figure 4). The effects of the length of warm‐up period are illustrated in the supporting information.
Note that rainfall forecasts have not been considered in this experimental design, what is done is hindcasting
but one refers to the period between tc and tf as the “forecasting period,” allowing for replicating real‐life
operational flood‐forecasting process. Also note that a source of uncertainty for rainfall forecasts has not
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Figure 3. Study area: Vu Gia watershed.

Figure 4. Flood event used in the study. The black line is the discharge of outlet, and the gray hyetograph represents the
average rainfall of Vu Gia watershed.
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been presented, but it could have been addressed in equation (2) that has the flexibility to include ensemble
precipitation inputs (ut).

Determining the size of ensemble for forecasting (n) is related to quantifying the uncertainty bounds and
representing the EnKF. In previous studies, the ensemble size was selected randomly or large enough (at
least 100 members) to fully identify the uncertainty confidence intervals (Beven & Freer, 2001; Blasone
et al., 2008; Cameron et al., 2000; Choi & Beven, 2007; Hossain & Anagnostou, 2005; Jin et al., 2010; Shen
et al., 2012). A sufficient number of ensemble parameter sets to achieve both goals of efficiency and uncer-
tainty quantification should be determined. Following our previous study (Tran & Kim, 2019), we used an n
of 500 as the optimal size of the ensemble.

4. Results
4.1. Preparation Steps Before Forecasting
4.1.1. Attaining Parameter Posterior Distributions
The posterior distributions of parameters can be generally attained by using Bayesian inference. As detailed
in section 2.1.3, we employed a relatively simple and robust method, GLUE (Beven & Binley, 1992), that does
not require reformulation of the deterministic model code. Details on why we choose the likelihood func-
tions of NSE, PE, and VE (presented in Appendix B), how we determine the cutoff threshold values of each
function, and which parameters are more sensitive, are described in Tran and Kim (2019). We confirmed the
benefits of a warm‐up technique that significantly speeds up the GLUE process of finding the behavioral
sets: without warm‐up, no behavioral set was obtained from GLUE even after a sufficiently large number
of NAM model runs, while with warm‐up, a behavioral set was obtained after approximately 118.0 model
runs for NAM (A10 to A12), 26.9 for PCE‐I (A13 to A15), and 3.6 for PCE‐II (A16 to A18), respectively.
Therefore, the factors, facModel are 118.0, 26.9, and 3.6 for NAM, PCE‐I, and PCE‐II, respectively, in A10
to A18.
4.1.2. Constructing the PCE Models
Determining the coefficients of the PCE‐I and PCE‐II models depends on the number of the experimental
design (N) and the polynomial degree (p) (Blatman & Sudret, 2010, 2011). To discover appropriate values
forN and p, the effect of experimental designN on PCE performance was first evaluated. Specifically, a num-
ber of simulations were repeated with theN value varied between 10 and 5,000 but the value of pwas set as 3,
and the performance results of LOO for streamflow (y) and the fivemodel states (Table 2) computed. Figure 5
shows that the LOO values for streamflow and five state variables become smaller as the value ofN increases
and ceases to become smaller when N approaches a certain value. For N values larger than this threshold,
the model performance was almost indistinguishable (the left column plots in Figure 5). From a visual
inspection of Figure 5, the optimal N value for constructing the PCE‐I and PCE‐II models would be 1,000
and 100, respectively.

A selection of the polynomial degree p was made in a fashion similar to the aforementioned procedure. The
value of pwas varied from 1 to 6 andNwas set as 1,000 (PCE‐I) and 100 (PCE‐II). From the results of Figure 5
(the right column), the gradients of the LOOmetrics assessed changed considerably when p was set to 3 and
the values remained stable for large magnitudes of p. In terms of reducing the computational time to con-
struct a PCE model, a low polynomial degree would be preferred. Thus, a p of 3 would be an appropriate
value to use when building both PCE models. With optimal values of N of 1,000 and 100 and a p of 3,
PCE‐I and PCE‐II models can be built to quantify the uncertainty range for flow prediction and to compare
the degree of accuracy and efficiency with the results of the deterministic NAM.

The total time to establish both PCE models is described (further details are in Tran & Kim, 2019).
Obviously, the larger the number of the experimental design set, the more time is needed for computing
N ensemble runs. The time required to perform the NI and NII ensemble runs of NAM was 121.9 and
12.6 s for PCE‐I and PCE‐II, respectively. It also takes much more time to estimate PCE‐I coefficients if
one uses an ensemble set (NI) generated from the prior distribution of the parameters than to compute
PCE‐II coefficients from parameter sets informed by the likelihood function. The time required to esti-
mate PCE coefficients was 419.3 and 11.3 s, respectively. The summation of these two times was con-
sidered to be the total time required to build the PCE models before forecasting: approximately 541.2
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and 23.9 s for PCE‐I and PCE‐II, respectively. The construction time of PCE‐II is much (~22 times) fas-
ter than that of PCE‐I.
4.1.3. Comparing the Ensemble Results of NAM and PCE Models
Over the calibration period, ensemble results composed of 500 Random and Selected runs were compared for
three different models. To make the 500 Selected behavioral results, 58,977, 13,444, and 1,822 (nw) random
runs were required for NAM, PCE‐I, and PCE‐II, respectively. Compared with the NAM itself, using PCE
models can reduce the amount of computational runs by a factor of about 4.4 for PCE‐I and 32.4 times for
PCE‐II model. The composing behavioral set for PCE‐II was even faster (~7.4 times) than for PCE‐I.

Figure 6 shows hydrographs for the 500 Random (A1 to A9) and Selected (A10 to A18) simulations for the
three models. Their uncertainties are illustrated with a 90% confidence interval, which corresponds to 5
and 95% quantiles of the 500 ensemble members. Because we controlled the conditions for the behavioral

Figure 5. The effects of (left plots) the experimental design,N and (right plots) the polynomial degree, p on the leave‐one‐
out cross‐validation error (LOO) in constructing PCE‐I and PCE‐II models, for (a) streamflow and (b–f) 5 model states in
Table 2.
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set of GLUE, the overall comparison with the observed values for the results of the Selected cases (A10 to
A18) is very satisfactory. Specifically, the NSE value was always higher than 0.9 and both PE and VE
values were less than 5% for all cases. However, streamflow curves for the Random simulations (A1 to A9)
clearly show different patterns depending on the model. It can be anticipated that the results of these
Random cases will not be encouraging and their uncertainties will be large. However, the results of some
cases using PCE‐II model were very satisfactory and their uncertainties small.

As mentioned above, when making using observations to constrain the parameter sets (A10 to A18), the
results of both PCE models are similar to those of the NAM and no substantial differences were observed.
This confirmed that both PCE models have an equivalent degree of accuracy as the NAM and can provide
an excellent match to the deterministic model. In terms of efficiency, it is also advantageous to use the
PCE model (discussed in sections 4.2.1 and 5.1), and there is no reason to hesitate adopting the PCE model
for streamflow prediction.

Figure 6. The left column plots show hydrographs for the calibration period. The shades in the plots correspond to 90% confidence interval for 500 Randommodel
runs (A1 to A9, light gray shade) and 500 Selected model runs (A10 to 18, dark gray shade) for 18 approaches in Table 3. The boxplots in the right column
demonstrate the verification metrics of NSE, PE, and VE for the 18 approaches used.
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4.2. Flood Forecasting With 18 Approaches

For past periods when observations for calibration were collected, all models performed well. We then tested
the forecasting performance of the three models using the permutation that resulted in 18 approaches in
Table 3. Results of the real‐time flood forecasting for these approaches are shown in Figures 7 and 8, in
which the 500 ensemble results are illustrated with a 90% confidence interval at each time step. The verifica-
tion metrics for the simulations, specifically NSE, AE, RE, BS, and UR, and the peak values of hydrographs
are compared in Figures 9 and 11. Lastly, the total run time with respect to the ensemble size was computed
for the 18 approaches in Figure 10. In this section, we analyze the results and draw conclusions from the fol-
lowing four perspectives: (i) the applicability of PCE‐I and PCE‐II models for real‐time flood forecasting, (ii)
the impact of estimating appropriate parameter conditions for forecasting, (iii) the effect of using EnKF and
dual EnKF, and (iv) the degree of improving efficiency performance among the approaches.
4.2.1. PCE‐I Versus PCE‐II Model for Real‐Time Flood Forecasting
Depending on the model used in forward simulations (NAM, PCE‐I, and PCE‐II), the results for the 18
approaches were divided into three groups. Almost all of the results of the six approaches using the PCE‐II
model were worse than those obtained with both NAM and PCE‐I (Figures 7 and 8). The only exception is
for the A1 and A4, which did not have assimilation and whose parameter sets used were based on prior uni-
form distributions. No verification metrics computed using the results of forecasting based on PCE‐II were

satisfactory, except for the metric of UR. However, if the accuracy is not ensured, the better performance

in terms of UR is not meaningful. Specifically, NSE values were low, approximately 0.7; AE values at flood
peak time (AEpeak) were larger than 750 m3/s; RE was approximately 0.01; and BS was equal to 1
(Figure 9). No metric improvements were found for the approaches based on PCE‐II, even if combinations
of assimilation and calibration techniques were applied. We concluded that the PCE‐II model can reproduce
streamflow characteristics well for the past period but not for the future.

Figure 7. Hydrographs over the forecasting period, with a 90% confidence interval of 500 Random model runs (A1 to A9).
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Conversely, the forecasting results of the approaches based on the PCE‐I model are almost similar to those
obtained with NAM and in some cases even better. The latter can be seen in Figure 9; the verificationmetrics

of NSE, AEpeak, RE, andUR show better performance for PCE‐I than for NAM results (e.g., A5 vs. A2, A6 vs.
A3, A14 vs. A11, and A15 vs. A12) (see Table 4). In particular, the RE results in Figure 9c illustrate that the
PCE‐I results are closer to the observed values than those obtained with NAM (A15 is the best result with
the smallest value of RE). BS corresponding to PCE‐I also has smaller values, close to zero, which indicates
instances of when predictability of probabilistic forecasts matched predictability of observation
(Figure 9d). Therefore, the PCE‐I model can be adapted to substitute the NAM in performing real‐time flood
forecasting, as well as in capturing the uncertainty of calibration period.

Comparing the modeling results in terms of the computation speed, it is clear that simulating a surrogate
model using the PCE theory is significantly faster thanwith a deterministicmodel such asNAM. The “slopes”
of the runtime curves of Figure 10 indicate both PCE approaches are approximately 20 times faster (A4 to A9)
and ~80 times faster (A13 to A18) than the corresponding approaches using the NAM. Similarly, if we com-
pare efficiency between PCE model approaches, using PCE‐II may or may not offer much improvement in
efficiency over PCE‐I. There is only 10% improvement when Random specification is applied (see the slope
of A4, A5, and A6 vs. A7, A8, and A9 in Figure 10), while there is about 6 times improvement when simulat-
ing Selected approaches (see the slope of A13, A14, andA15 vs. A16, A17, andA18). The use of surrogatemod-
els therefore did not sacrifice accuracy. The flood prediction accuracy of PCE‐1 model presented here is
similar to that of the original NAM, and computational efficiency has been found to be highly superior.

Figure 8. Hydrographs over the forecasting period, with a 90% confidence interval of 500 Selected model runs (A10 to A18).
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Figure 9. The performance metrics reflecting accuracy and predictability of the 18 approaches for the forecasting period. Boxplots of (a) NSE, (b) AEpeak (AE at
flood peak time), and (c) RE show 500 ensemble values with the statistics of median (central mark), the 25th and 75th percentiles (edges of the box), and maxi-
mum and minimum except for outliers (whiskers). (e) UR is the mean of uncertainty range, URt over the entire forecasting period.
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Figure 10. The total runtime (TRT) corresponding to 18 approaches in the forecasting period versus ensemble size (n). Note that although we plot on logarithmic
axis, the actual total runtime has the form of a linear function with the ensemble size at linear scale; its slope and intercept values for all approaches are tabulated on
the right.

Table 4
Performance Metric Values of 18 Approaches

Approach Median of NSE [‐] Median of AEpeak [m
3/s] Median of RE [−] BS [−] UR [m3/s]

A1 −3.62 2292.19 0.019 1.00 1834.18
A2 0.70 515.64 0.009 0.75 367.34
A3 0.75 500.45 0.009 0.66 340.12
A4 −3.84 1928.86 0.015 0.97 1760.11
A5 0.82 126.48 0.005 0.16 327.86
A6 0.79 55.84 0.005 0.20 131.92
A7 0.68 904.21 0.009 1.00 26.52
A8 0.68 901.91 0.010 1.00 20.59
A9 0.68 902.79 0.010 1.00 19.63
A10 0.82 612.60 0.007 1.00 193.95
A11 0.88 401.26 0.005 0.78 161.69
A12 0.89 242.62 0.005 0.24 172.18
A13 0.44 532.35 0.004 1.00 139.54
A14 0.74 157.07 0.003 0.25 102.98
A15 0.80 176.00 0.003 0.26 91.98
A16 0.73 787.18 0.010 1.00 55.75
A17 0.71 839.31 0.010 1.00 44.64
A18 0.71 840.19 0.010 1.00 46.37

Note. The values in the first three columns are themedians ofNSE,AEpeak, and RE, whichmatch the values in Figure 9.
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4.2.2. Random Versus Selected Specification for Forecasting
The approaches using the Selected specification generally show a better performance than those using the
Random specification. This is especially noticeable in the NAM and PCE‐I approaches and rarely in PCE‐
II. First, in the approaches without data assimilation, their accuracy was significantly improved (compare

A1 vs. A10 and A4 vs. A13). The performance of A10, represented by the NSE, AEpeak, RE, and URmetrics,
was improved by about 95%, 73%, 61%, and 89% compared with A1, and the performance of A13 about 86%,
72%, 79%, and 92% over A5, respectively. Despite the noticeable improvement of A10 and A13, these results
were still not ideal. The large AE error at the peak of A10 and A13 was approximately 450 m3/s less than the
observation, and the BS value was close to 1 (Figure 9 and Table 4). On the other hand, in the approaches in
which data assimilation was used, the improvement effect for Selected specification was not greater than
when it was not used. The increasing performance for the same metrics was about 55%, 22%, 36%, and
56% (A2 vs. A11) and about 56%, 52%, 44%, and 49% (A3 vs. A12). Here the parameter specification effect
was smaller because DA improves the absolute error magnitude.

Determination of states and parameters that can increase accuracy and predictability requires more compu-
tation time because a large number of model runs are carried out to make an inference for posterior distri-
butions. For approaches using NAM (A1 vs. A10, A2 vs. A11, and A3 vs. A12), it took 56, 41, and 30 times
longer; while for PCE‐I (A4 vs. A13, A5 vs. A14, and A6 vs. A15), it took 13, 10, and 8 times, respectively
(Figure 10). Because of this computational burden, parameter inference can be a weakness for real‐time
flood forecasts where it is important to ensure sufficient time ahead. However, if the surrogate model is
employed, the necessary repetition of estimating the posterior distribution can be performed quickly, and
such a weakness can be overcome.
4.2.3. Single Versus Dual EnKF in Real‐Time Flood Forecasting
Convincing evidence is presented that both single and dual EnKF can improve accuracy and predictability
during real‐time forecasting (with the exception of approaches using PCE‐II). Both of these techniques per-
form well but the dual EnKF is the superior choice. As an example of the approaches using NAM, the three

metrics of AEpeak, BS, andUR in the Random cases provided slightly better results: 515.64 versus 500.45, 0.75
versus 0.66, and 367.34 versus 340.12, respectively (A2 vs. A3). But, in the Selected cases, there was a

Figure 11. Comparisons of the three assimilation methods (none, EnKF, and Dual EnKF) for 500 ensemble flood peaks over the forecasting period. The left, mid-
dle, and right plots correspond to the approaches using NAM, PCE‐I, and PCE‐II, respectively. The first and second row plots correspond to the approaches
using Random and Selectedmethods for parameter specification. The black square represents observed value at peak time; the circles are the expected values of the
sample probability density functions.
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relatively large performance improvement for the two metrics of AEpeak and BS: 401.26 versus 242.62 and
0.78 versus 0.24 (A11 vs. A12). Similar trends were observed when using PCE‐I, and the difference is remark-
able, especially for the AEpeak metric (e.g., about 2.5 times for A5 vs. A6).

From the overall inspection, it can be determined that the dual EnKF can adjust the peak of a hydrograph
more accurately and give a more confident result with a smaller uncertainty range. Therefore, we compared
the distribution of flood peak values for 500 ensemble members in Figure 11. This figure confirms that the
joint update of states and parameters improves accuracy at flood peak more effectively than a single update
of states. Also, for the joint update, the expected value of the distribution was closer to the peak observation,
and its variability is smaller (a narrower distribution).

Because the updating process is made twice, the dual EnKF is computationally more expensive. The compu-
tation time it takes to update states and parameters increased almost linearly. That is, the calculation time
doubled or tripled for the cases of single and dual EnKF (using Random specification), respectively, as com-
pared to the case without assimilations. However, for the approaches using the Selected specification, the cal-
culation time did not seem to change significantly (Figure 10), not because the time required for Kalman
filtering was reduced but because the time required for the parameter inference was so large that the filtering
effect was masked.

5. Discussion
5.1. How Can PCE Be Constructed for Flood Forecasting?

From the simulated flood forecasting results presented in section 4.2, it is apparent that the manner of PCE
construction has a significant impact on forecasting. The biggest difference in building PCE‐I and PCE‐II
involves setting the range of the training sample (called experimental design). It is not surprising that a sur-
rogatemodel trained for an event provides acceptable results only for the event trained. The flexibility to gen-
eralize to well‐behaved outcomes for another event (e.g., a future event) is relatively low. This is why the
calibrated model is often not appropriate for future forecasting. On the other hand, if a surrogate model
can mimic the behavior of the original model to the greatest extent possible in a wide variety of situations
and conditions, it will be able to capture its characteristics more comprehensively, thus playing a sufficient
role in forecasting future events. Here we provide evidence the PCE‐I model behaves like the NAM for the
forecasting period, while the PCE‐II behaves differently (despite both models behaving properly for the cali-
bration period). To examine the robustness of both PCE model results, the Sobol' method (detailed in
Appendix D) was used to implement the variance‐based measures of parameter sensitivities (Sobol', 2001),
which is commonly used as a global sensitivity analysis technique to determine the key parameters in the
model (Wang et al., 2018).

First, the PCE‐I posterior histograms of the nine parameters obtained from GLUE for the calibration period
are similar to those of the NAM, except for Lm and TG (Figure 12). For these two parameters, a posterior
histogram difference is a minor issue because the choice of the parameter values does not affect the end
result, that is, the sensitivity of the parameters is low. Other parameters of CQOF (first) and CK12 (second)
are the two most influential parameters to the model results, that is, their sensitivities are high. This result is
consistent for both NAM and PCE‐I (Figure 13). The slight difference between the results of PCE‐I and
NAM, observed from the investigation of the sensitivity and the posterior distribution, is because we chose
an appropriate number of training samples when constructing the PCE‐I model. If one greatly increases the
number of training sets, the difference in the above results will essentially disappear.

Second, the failure of PCE‐II to mimic the NAM for the forecasting period can be explained largely due to the
fact that PCE‐II was trained using the only 100 behavioral parameter sets that were optimized for the calibra-
tion event. Model results will only vary within the boundaries that its trained data understand, and it will not
be able to simulate the behavior of another event with a high skill, that is, model “overfitting” occurs.
However, over the calibration period, PCE‐II always shows a good predictive performance for almost all para-
meter sets (compare the hydrographs of A1 to A3 with A7 to A9 in Figure 6). In other words, no matter what
parameter one chooses, satisfactory results are always achieved, which indicates that the influence of para-
meters is excluded. The posterior histograms of parameters for PCE‐II (Figure 12c) are almost uniform,
except for the parameter of CQOF, which is the only one that can affect the end result, especially maintain
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the accuracy of the flood peak (note that the sensitivity of this parameter
for PE is unusually high in Figure 13c). If we change the threshold value
of the likelihood function corresponding to the flood peak chosen to make
the behavior set a slightly less constrained, this parameter will no longer
play a role in constraining the result and follow a uniform distribution
as well.

Another interesting aspect of the sensitivity test is that the sensitivity
results of PCE‐II differ from those of NAM and PCE‐I but are similar to
those of NAM‐II. The sensitivities of parameters have been altered in
PCE‐II. The NAM‐II in Figure 13d is hypothetically introduced to mimic
the situations of PCE‐II. Specifically, it refers to the sensitivity results
when the NAM model was tested based on the posterior distributions
(which are also used to select the training parameter set for building
PCE‐II), not the prior distributions of the parameters.

5.2. Is It Feasible to Construct a Time‐Invariant PCE Model?

A long‐lasting challenge in hydrologic modeling is how to estimate para-
meters or state vectors optimized for all external and internal conditions.
This would not be an issue for estimating previously described variables if
the amount of data for calibration was sufficient. However, in the case of
future forecasts during which no observation for calibration is available, it
poses a problem. To tackle this challenging problem, Fan et al. (2016) and
Wang et al. (2017) adopted a modeling framework in equation (1), so that
PCEmodels should be reconstructed continuously at every time step. This
method is flawless in theory but requires additional computational
resources (see efficiency comparisons in the supporting). That is, the time
to configure the PCE at every time step must be added to the total model
simulation time, that is, making the slope in Figure 10 steeper. This disad-
vantage can be more pronounced when constructing surrogate models for
complex, process‐based deterministic models.

Unlike previous efforts, this study adopted an alternative modeling frame-
work such as equation (2); that is, the PCE model is time invariant and
thus developed only once over the calibration period. Therefore, during
real‐time forecasting, the total run time consists only of computational
intervals needed for data assimilation of all ensemble members. This
enhances computational efficiency significantly (see efficiency compari-
sons in the supporting information). This framework is not perfect, but
the potential error that can occur by using the time‐independent PCE
model is minimized by coupling the data assimilation technique, thus
complementing accuracy. From a comparison of the results of 18
approaches, we confirmed that the modeling framework needed for build-
ing a PCE model (especially PCE‐I) is feasible. This embraces the notion
that the PCE construction does not require information for future condi-
tions but can be made with historically available data available prior to
the forecasting period.

5.3. Do Surrogate and Specification Sacrifice Efficiency?

Our results indicate that a sophisticated combination of three independent
techniques (i.e., surrogate modeling, parameter inference, and data
assimilation) supplies superior predictive performance for real‐time
ensemble flood forecasting. The combination of many methods however
leads to an essential reduction in efficiency. Because data assimilation
has been shown to be necessary, we must accept efficiency deterioration.

Figure 12. The posterior histograms for the nine model parameters in
Table 2 from 500 behavioral sets of three models (NAM, PCE‐I, and PCE‐
II) inferred by GLUE over the calibration period.
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However, for surrogate modeling and parameter specification, it remains to be determined whether the
additional time required by the technique combination leads to efficiency deterioration. First, for
construction of the surrogate model, particularly PCE‐I, the efficiency issue may not be relevant because
the task does not require any observations for calibration and can be completed before the flooding season.
In contrast, obtaining an ensemble of parameter sets from posterior distributions should be carried out
immediately prior to the flood forecasting period, when observations are necessary. Therefore, it may take
an appreciable time for completing this task, and method efficiency may be affected.

5.4. What Are the Differences Between PCE and Data‐Driven Models?

Both PCE and data‐drivenmodels can provide satisfactory results for short‐term forecast, but key differences
between them exist. (1) PCE has a functionality of including model parameters and states as an input vector
—this enables formal uncertainty quantification and model sensitivity analysis; (2) hydrologic/hydraulic
model state variables (and parameters) are theoretically observable and in the case of process‐based models
have their own physical meaning, making it easier to physically interpret the results of PCE; (3) while purely
data‐driven methods are trained with observations, PCE is trained through high‐fidelity samples supervised
by physical relations, thus requiring fewer data samples for training; (4) data‐driven models often have
assumptions about the distributions governing variability of their outputs, and therefore, this can lead to
nonphysical results (e.g., negative outputs quantifying mass, and streamflow) and fail to display nonnormal,
bimodal, or other complex behaviors.

5.5. Can Modeling Framework Be Applied to High‐Dimensional Problems?

While the implementation and analysis of experiments is valid for the presented scope of the experimental
design, one needs to proceedwith carewhen extending this approach tomore complexmodels. Themost fun-
damental concern that remains is whether the proposed framework can be applied to high‐dimensional

Figure 13. Sobol' sensitivity analysis for the nine parameters, computed for the three likelihood functions of (top)NSE, (middle) PE, and (bottom) VE over the cali-
bration period. The sensitivity results are attained based on (a–c) the prior distributions of parameters for the threemodels of NAM, PCE‐I, and PCE‐II, respectively;
and (d) the posterior distributions of parameters for NAM model. The posterior is also used to select the training parameter set for building PCE‐II.

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 22 of 31



problems in which fully distributed models are used. The dimension of a distributed model can be defined as
the product of the number of grids cells and the number of parameters (and states). The dimension order of
any truly physical models is therefore large, and extending our framework directly to such a model is not
straightforward—known as the “curse of dimensionality” (Caflisch, 1998; Davis & Rabinowitz, 2007;
Sudret, 2007). By examining how each of the methods mentioned in the framework resolves the problem
of reducing dimensions efficiently and to what extent it has been applied, the feasibility of applying the pro-
posed framework can be estimated.

Regarding the surrogate modelling (PCE), techniques such as Bayesian compressive sensing (Sargsyan et al.,
2014) and sparse regression (Blatman& Sudret, 2008, 2010) proved capability and efficiency inmany prior stu-
dies using complex models with high dimensions, up to 80 dimensions (Sargsyan et al., 2014). However, these
studies avoided the calculation of fully distributed problems by assuming the spatial variability of parameters
to be homogeneous. Second, for the parameter specification, any optimization technique applied to
high‐dimensional problems could be relevant. For example, one of the large‐scale optimization algorithms,
the competitive swarm optimizer (Cheng& Jin, 2015) was employed up to the dimension of 5,000. These algo-
rithms have been successfully optimized for problems of very large scale, but their optimizations have been
applied to simple analytical functions rather than (hydrologic or meteorological) models. To our knowledge,
the number of dimensions has not yet been high in problems of hydrologic optimization, in which the dimen-
sion order is almost identical to the number of parameters. The spatial variability of parameters is not fully
addressed inmost studies, although a “multiplier” concept (Pokhrel et al., 2008). Lastly, EnKF ismade possible
in problems of higher dimensionality through covariance localization. It is mainly applied in meteorological
models withmany parameters, and the number of dimensions can be up to the order of millions, for example,
2,592,000 (Fujita et al., 2007). The localization technique was able to reduce the dimensions efficiently.

6. Conclusions

This study presents a new robust, accurate, and efficient modeling framework that consists of the novel inte-
gration of three individual techniques: surrogate modeling, parameter inference, and data assimilation. This
unified framework is suited for ensemble flood forecasts quantifying prediction uncertainty. The strengths of
each technique are (i) the use of PCE offers significant computational savings, (ii) the inference of para-
meters before data assimilation allows for faster convergence, smaller uncertainties, and greater accuracy
of the end results, and (iii) the Kalman filters assimilate errors that occur in real‐time flood forecasting.
Based on the results of the 18 refined approaches according to the permutations of the above methods,
the following conclusions can be drawn:

• Of the two methods for PCE construction, only PCE‐I (constructed based on prior, uniform distributions)
is acceptable for forecasting, although both methods reproduce observations of the calibration period
well. Note that PCE‐II (constructed based on posterior distributions) does not provide satisfactory results,
even when coupled with other inference and assimilation techniques. The results obtained from PCE‐I
are similar and, in some cases, even superior to those based on the original deterministic NAM model.
The PCE used is a single model constructed before the forecast period and thus does not change over
time—this is a unique feature different from previous studies in which PCEwas rebuilt at each calibration
or forecasting time step.

• Especially for short‐range forecasting, model parameter input and state initialization play a crucial role.
In some previous studies, posterior distributions were employed to derive a parameter ensemble before
forecasting, but the effect of such parameter specification was not quantified for the data assimilation.
Selected parameter specification (made through the GLUE framework in this study) offers improved accu-
racy and predictability of forecast outcomes over the Random parameter specification. However, it is less
computationally efficient, and the issue is expected to be especially problematic when using complex
deterministic models.

• The usefulness of single and dual EnKFs is demonstrated through comparisons of the 18 approaches. Both
techniques have excellent overall performance, but the dual EnKF showed a slightly better performance
than the single EnKF. There was a remarkable improvement in reproducing the hydrograph peak values
(Table 4). In the absence of assimilation, the Selected approach offers superior results and if it cannot be
used, data assimilation must be applied.
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• The computational time discussed in this study consists of three principal components: surrogate building
time, parameter inference time, and data assimilation time. Our conclusions may marginally vary
depending on the particular model used and the region in which it is applied, but here the efficiency
improvement from using the surrogate modeling technique overwhelms any efficiency deterioration
derived from the other two components. That is, the use of the metamodel makes it possible to effectively
address computational efficiency. This feasibility is maximized when many ensemble outcomes are
needed and when complex, physically based models should be simulated.

• From the comprehensive analyses presented above, A15 is our first choice and A14 is the second. When
only a deterministic model is used, we recommend A12 (or A11). Using the unified framework developed
here, real‐time and ensemble flood forecasting are promising directions, allowing for satisfactory mea-
sures of accuracy, predictability, and efficiency. Ultimately, the framework developed in this study contri-
butes to a shift in modeling paradigm arguing that complex, high‐fidelity, physical hydrologic and
hydraulic models should be increasingly adopted for real‐time and ensemble flood forecasting

Appendix A: The Construction of PCE Surrogate Model

A.1. The Determination of PCE Coefficients

The least squares regression method is employed to establish the PCE coefficients:

ε ¼ argminε∈R Aj jE Yt− ∑
α∈A

εαΨα X tð ÞÞ2
� 
�

(A1)

where Xt ¼ X
1ð Þ
t ;…;X

Nð Þ
t

n o
consists of N sets of input variables Xt (the set Xt is called the experimental

design), and Yt ¼ M X
1ð Þ
t

� �
;…;M X

Nð Þ
t

� �n o
be the corresponding model evaluations

Y
kð Þ
t ¼ M X

kð Þ
t

� �
; k ¼ 1;…;N

n o
. The estimates of the PCE coefficients are thus given by

bε ¼ argminε∈R Aj j
1
N

∑
N

k¼1
Y

kð Þ
t − ∑

α∈A
εαΨα X

kð Þ
t

� �
Þ
2

�
(A2)

which is equivalent to

bε ¼ FTF

 �− 1

FTYt (A3)

where F is so‐called the information matrix of size N × |A| whose elements are defined as

Fk;l ¼ Ψl X
kð Þ
t

� �
k ¼ 1;…;N; l ¼ 0;…; card A− 1 (A4)

Once a PCE model is derived, the prediction using the model is extremely simple and straightforward: Input
the values of model input to equation (2) and then obtain the values of model response Yt.

A.2. PCE Error Estimates

The leave‐one‐out cross‐validation error (LOO) was designed to overcome the overfitting limitation of nor-
malized empirical error by using cross validation (Blatman& Sudret, 2010). In this study, after the number of
setsXt is defined, the LOO is used to determine the polynomial degree. The leave‐one‐out cross‐validation
error can be written as follows:

LOO ¼ 1
N

∑
N

k¼1

M X
kð Þ
t

� �
−MPCE X

kð Þ
t

� �
1−hk

0@ 1A2

(A5)

where hk is the kth diagonal term of the matrix F(FTF)−1FT.
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Several software tools are currently available for research purposes to carry a range ofUQ tasks, including PCE
regression, for example, the MIT Uncertainty Quantification Library (Parno et al., n.d.), the Uncertainty
Quantification Toolkit (Debusschere et al., 2016), Dakota (Eldred et al., 2010), Chaospy (Feinberg &
Langtangen, 2015), and the UQLab (Marelli & Sudret, 2017). The latter libraries are used in this study.

Appendix B: Likelihood Functions Used in GLUE
Nash‐Sutcliffe efficiency (NSE, [‐])

NSEi ¼ 1−
∑
T

t¼1
yObst − yit

 �2

∑
T

t¼1
yObst − yimean


 �2 ; i ¼ 1;…; n (B1)

Peak error (PE, [%])

PEi ¼ yObsmax− yimax

�� ��
yObsmax

× 100; i ¼ 1;…; n (B2)

Volume error (VE, [%])

VEi ¼ VObs−Vi
�� ��

VObs × 100; i ¼ 1;…; n (B3)

where V is the total volume of hydrograph.

Appendix C: Ensemble Kalman Filter (EnKF)

C.1. States Updated

An ensemble of state vector, x consisting of n by MS is propagated through Model of both deterministic
model and PCE models, such that each state vector represents one realization of the model states. Then,
the state forecast is made for each ensemble member as follows (forecast step):

xi−t ¼ f xiþt− 1;ut; θi

 �þ wi

t; i ¼ 1;…;n (C1)

where xi−t is the ith forecasted states vector at time t, xiþt− 1 is the ith updated states vector at time t − 1,MS is
the number of model states x = {xj, j = 1,…,Ms}, and n is the number of ensemble members. The nonlinear

propagator f(·) containsMI model input vector ut; u1;t;…;uMI ;t
� �

and the ith model parameter vector θi cor-
responding to the model state xiþt− 1. The termwi

t is the ith model error and presents all uncertainty related to
model structure, forcing data, andmodel parameter (Moradkhani, Sorooshian, et al., 2005). In this study, the
model error is represented by the uncertainty of model parameters.

Suppose that the actual observation (yObstþ1Þ is taken at time t+1 and that we intend to assimilate the vector of

observations into themodel. The predicted output of model,yitþ1 at time t+1 is computed with the propagator

h(·) as a function of θi, ut+1, and xi−t , which can be written as follows:

yitþ1 ¼ h xi−t ;utþ1; θi

 �

(C2)

To represent the error statistics in the forecast step, we assume that at time t+1, we have an ensemble of n

forecasted states, x−t ≜ x1−t ;…; xn−t

 �

and an ensemble of n forecasted outputs, ytþ1≜ y1tþ1;…; y
n
tþ1


 �
. Then the

ensemble means of forecasted state (x−t ) and the ensemble mean of forecasted output (ytþ1) are estimated by

x−t ≜
1
n
∑
n

i¼1
xi−t (C3)

ytþ1≜
1
n
∑
n

i¼1
yitþ1 (C4)

Then, we define the ensemble error matrix of forecasted state, E−
tþ1 around the ensemble mean by
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E−
tþ1≜ x1−t − x−t …x

n−
t − x−t

� 	
(C5)

and the ensemble of output error matrix, Ey
tþ1 is as follows:

Ey
tþ1≜ y1tþ1− ytþ1…y

n
tþ1− ytþ1

� 	
(C6)

The error covariance matrix is calculated including

• The error covariance matrix of ensemble forecast state

Qx
tþ1 ¼

1
n− 1

E−
tþ1 E−

tþ1


 �T
(C7)

• The error covariance matrix of model output

Qy
tþ1 ¼

1
n− 1

Ey
tþ1 Ey

tþ1


 �T
(C8)

• The forecast cross covariance of the states and output

Qxy
tþ1 ¼

1
n− 1

E−
tþ1 Ey

tþ1


 �T
(C9)

In order for the EnKF to maintain sufficient spreads in ensemble and to prevent from filter divergence
(Whitaker & Hamill, 2002), observations should be treated as random variables. At each time, an observa-
tion is perturbed by adding noise drawn from a Gaussian distribution of mean zero and predefined covar-
iance (Burgers et al., 1998). Thus, in the updated step, the forecasted state set xi−tþ1 is updated using the

Kalman gain Kx
tþ1 as follows:

xiþt ¼ xi−t þ Kx
tþ1 yObs;itþ1 − yitþ1

� �
(C10)

where yObs;itþ1 is the ith trajectory of the observation replicates generated by adding to the actual observation (

yObstþ1Þ error, η (i.e., a perturbation to observation) that has zero mean and the covariance,EyObs

tþ1, which is deter-

mined in section 2.1.4, as follows:

yObs;itþ1 ¼ yObstþ1 þ ηitþ1; ηitþ1eN 0;EyObs

tþ1

� �
(C11)

The Kalman gain matrix can be calculated by

Kx
tþ1 ¼ Qxy

tþ1 Qy
tþ1 þ QObs

tþ1

� 	− 1
(C12)

where QObs
tþ1 is the covariance matrix of the observation, yObs;itþ1 , which is defined similar to Qy

tþ1.

QObs
tþ1 ¼

1
n− 1

EObs
tþ1 EObs

tþ1


 �T
(C:13)

EObs
tþ1≜ yObs;1tþ1 − yObstþ1…y

Obs;n
tþ1 − yObstþ1

h i
(C14)

C.2. Dual Parameters‐States Updated

The dual EnKF requires two interactive and parallel filters for the states and parameters estimation
(Moradkhani, Sorooshian, et al., 2005). The parameters are first updated and then the states. In order to
extend the applicability of the single EnKF to the simultaneous parameters‐states EnKF, one needs to treat
the ensemble size of parameter sets similar to the model state. However, the parameter values are not chan-
ged after the forecast step:
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θi−tþ1 ¼ θiþt (C15)

Using the parameters forecasted and the replicates of forcing data, states of the ensemble model and model
prediction are computed as follows:

xi−t ¼ f xiþt− 1;ut; θi−tþ1


 �þ wi
t; i ¼ 1;…n (C16)

yitþ1 ¼ h xi−t ;utþ1; θi−tþ1


 �
(C17)

Updating the ensemble parameter member is made

θiþtþ1 ¼ θi−tþ1 þ Kθ
tþ1 yObs;itþ1 − yitþ1

� �
(C18)

where Kθ
tþ1 is the Kalman gain for correcting the parameter trajectories obtained with

Kθ
tþ1 ¼ Qθy

tþ1 Qy
tþ1 þ QObs

tþ1

� 	− 1
(C19)

whereQθy
tþ1 is the cross‐covariancematrix of model parameters andmodel output. Now use the updated para-

meter θiþtþ1 to the step given in Appendix C1 to update the ensemble model states simultaneously.

Appendix D: Sobol' Sensitivity Analysis
Sobol' method is a variance‐based sensitivity analysis that identifies parameter sensitivities by evaluating the
variance of model output (y) due to the variability of individual parameters and their parameter interactions
(Crestaux et al., 2009; Saltelli, 2002; Sobol', 2001). Instead of themodel output, model performancemeasures
(e.g.,NSE, PE, and VE in this study) can be used (Tang et al., 2007). The total variance,D(y) is decomposed as
follows:

D yð Þ ¼ ∑
MP

a¼1
Da þ ∑

a < b
Dab þ …þ D1…MP (D1)

where Da is the variance of y due to the changes of ath model parameter, θa, denoting the first order contri-
bution toD(y);Dab is the variance of y due to the pairwise interactions of ath and bth parameters, referring to
the second order contribution.

The first (Sa) and total (STotal,a) order Sobol' sensitivity indices can be, respectively, expressed as follows:

Sa ¼ Da

D yð Þ (D2)

STotal;a ¼ 1−
Dea
D yð Þ (D3)

where D~a is the variance averaged over the contributions resulting from all parameters except for θa.

References
Abbaszadeh, P., Moradkhani, H., & Yan, H. (2018). Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov

Chain Monte Carlo. Advances in Water Resources, 111, 192–204. https://doi.org/10.1016/j.advwatres.2017.11.011
Ajami, N. K., Duan, Q., & Sorooshian, S. (2007). An integrated hydrologic Bayesian multimodel combination framework: Confronting

input, parameter, and model structural uncertainty in hydrologic prediction. Water Resources Research, 43, W01403. https://doi.org/
10.1029/2005wr004745

Associated Programme on Flood Management (APFM) (2013). Integrated flood management tools series: Flood forecasting and early
warning. Rep., Associated Programme on Flood Management.

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non‐Gaussian Bayesian
tracking. IEEE Transactions on Signal Processing, 50(2), 174–188. https://doi.org/10.1109/78.978374

Ballio, F., & Guadagnini, A. (2004). Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water
Resources Research, 40, W04603. https://doi.org/10.1029/2003wr002876

Bauser, H. H., Berg, D., Klein, O., & Roth, K. (2018). Inflation method for ensemble Kalman filter in soil hydrology. Hydrology and Earth
System Sciences Discussions, 1‐18. https://doi.org/10.5194/hess‐2018‐74

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 27 of 31

Acknowledgments
This research was supported by the
Water Management Research Program
funded by Ministry of Environment of
Korean government (127554) and by
the National Research Foundation of
Korea (NRF) grant funded by the Korea
government (MSIT) (NRF‐
2019R1C1C1004833). Sandia National
Laboratories is a multimission
laboratory managed and operated by
National Technology and Engineering
Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell
International, Inc., for the U.S.
Department of Energy's National
Nuclear Security Administration under
contract DE‐NA‐0003525. V. I.
acknowledges the “Catalyst Program”

of the Michigan Institute for
Computational Discovery and
Engineering at the University of
Michigan and the NSF grant 1725654.
We also would like to thank the
Uncertainty Quantification group,
UQLab of ETH Zurich for sharing
open‐source algorithms. The data used
in this study are provided fromNational
Centre for Hydro‐Meteorological
Forecasting, Vietnam Meteorological
and Hydrological Administration
(http://www.nchmf.gov.vn).

https://doi.org/10.1016/j.advwatres.2017.11.011
https://doi.org/10.1029/2005wr004745
https://doi.org/10.1029/2005wr004745
https://doi.org/10.1109/78.978374
https://doi.org/10.1029/2003wr002876
https://doi.org/10.5194/hess-2018-74
http://www.nchmf.gov.vn


Berveiller, M., Sudret, B., & Lemaire, M. (2006). Stochastic finite elements: A non intrusive approach by regression. Eur. J. Comput. Mech.,
15.

Beven, K. (1989). Changing ideas in hydrology—The case of physically‐based models. Journal of Hydrology, 105(1‐2), 157–172. https://doi.
org/10.1016/0022‐1694(89)90101‐7

Beven, K. (2000). Uniqueness of place and non‐uniqueness of models in assessing predictive uncertainty, paper presented at Computational
methods in water resources—Volume 2—Computational methods, surface water systems and hydrology.

Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1‐2), 18–36. https://doi.org/10.1016/j.
jhydrol.2005.07.007

Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction.Hydrological Processes, 6(3),
279–298. https://doi.org/10.1002/hyp.3360060305

Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex
environmental systems using the GLUE methodology. Journal of Hydrology, 249(1‐4), 11–29. https://doi.org/10.1016/s0022‐1694(01)
00421‐8

Blasone, R.‐S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., & Zyvoloski, G. A. (2008). Generalized likelihood uncertainty esti-
mation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 31(4), 630–648. https://doi.org/
10.1016/j.advwatres.2007.12.003

Blatman, G., & Sudret, B. (2008). Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach.
Comptes Rendus Mécanique, 336(6), 518–523. https://doi.org/10.1016/j.crme.2008.02.013

Blatman, G., & Sudret, B. (2010). An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element
analysis. Probabilistic Engineering Mechanics, 25(2), 183–197. https://doi.org/10.1016/j.probengmech.2009.10.003

Blatman, G., & Sudret, B. (2011). Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational
Physics, 230(6), 2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability.Monthly Weather Review, 78(1), 1–3. https://doi.org/10.1175/
1520‐0493(1950)078<0001:vofeit>2.0.co;2

Burgers, G., van Leeuwen, P. J., & Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6),
1719–1724. https://doi.org/10.1175/1520‐0493(1998)126<1719:asitek>2.0.co;2

Butts, M. B., Payne, J. T., Kristensen, M., & Madsen, H. (2004). An evaluation of the impact of model structure on hydrological modelling
uncertainty for streamflow simulation. Journal of Hydrology, 298(1‐4), 242–266. https://doi.org/10.1016/j.jhydrol.2004.03.042

Caflisch, R. E. (1998). Monte Carlo and quasi‐Monte Carlo methods. Acta Numerica, 7, 1–49.
Cameron, D., Beven, K., Tawn, J., & Naden, P. (2000). Flood frequency estimation by continuous simulation (with likelihood based

uncertainty estimation). Hydrology and Earth System Sciences Discussions, 4(1), 23–34.
Chen, H., Yang, D., Hong, Y., Gourley, J. J., & Zhang, Y. (2013). Hydrological data assimilation with the ensemble square‐root‐filter: Use of

streamflow observations to update model states for real‐time flash flood forecasting. Advances in Water Resources, 59, 209–220. https://
doi.org/10.1016/j.advwatres.2013.06.010

Cheng, R., & Jin, Y. (2015). A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern, 45(2), 191–204. https://doi.org/
10.1109/TCYB.2014.2322602

Choi, H. T., & Beven, K. (2007). Multi‐period and multi‐criteria model conditioning to reduce prediction uncertainty in an
application of TOPMODEL within the GLUE framework. Journal of Hydrology, 332(3‐4), 316–336. https://doi.org/10.1016/j.
jhydrol.2006.07.012

Cintra, R. S., & Velho, H. F. d. C. (2018). Data assimilation by artificial neural networks for an atmospheric General Circulation Model. In
Advanced Applications for Artificial Neural Networks (Chap. 14, pp. 266–286). Rijeka, Croatia: IN‐TECH. https://doi.org/10.5772/
intechopen.70791

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., et al. (2008). Hydrological data assimilation with the ensemble
Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 31(10),
1309–1324. https://doi.org/10.1016/j.advwatres.2008.06.005

Crestaux, T., Le Maıˆtre, O., & Martinez, J.‐M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System
Safety, 94(7), 1161–1172. https://doi.org/10.1016/j.ress.2008.10.008

Danish Hydraulic Institute (2014). DHI Mike 11: A modelling system for rivers and channels. Reference Manual, Danish Hydraulic Institute
(DHI) Water & Environment: Hørsholm, Denmark.

Davis, P. J., & Rabinowitz, P. (2007). Methods of numerical integration. Courier: Corporation.
Davison, B., Fortin, V., Pietroniro, A., Yau, M. K., & Leconte, R. (2017). Parameter‐state ensemble data assimilation using Approximate

Bayesian Computing for short‐term hydrological prediction. Hydrology and Earth System Sciences Discussions, 1‐38. https://doi.org/
10.5194/hess‐2017‐482

Debusschere, B. J., Sargsyan, K., Najm, H. N., & Safta, C. (2016). The Uncertainty Quantification Toolkit (UQTk). In in Handbook of
Uncertainty Quantification (Chap. 53, pp. 1807–1828). Livermore, CA: Sandia National Laboratories. https://doi.org/10.1007/978‐3‐319‐
11259‐6_56‐1

DeChant, C. M., & Moradkhani, H. (2012). Examining the effectiveness and robustness of sequential data assimilation methods for
quantification of uncertainty in hydrologic forecasting. Water Resources Research, 48, W04518. https://doi.org/10.1029/
2011wr011011

DeChant, C. M., & Moradkhani, H. (2014). Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial
condition uncertainty with ensemble data assimilation and Sequential Bayesian Combination. Journal of Hydrology, 519, 2967–2977.
https://doi.org/10.1016/j.jhydrol.2014.05.045

Dwelle, M. C., Kim, J., Sargsyan, K., & Ivanov, V. Y. (2019). Streamflow, stomata, and soil pits: Sources of inference for complex models
with fast, robust uncertainty quantification. Advances in Water Resources. https://doi.org/10.1016/j.advwatres.2019.01.002

Eldred, M. S., Dalbey, K. R., Bohnhoff, W. J., Adams, B. M., Swiler, L. P., Hough, P. D., et al. (2010). Dakota, A multilevel parallel
object‐oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.2
Theory ManualRep (Vol. 2007). Albuquerque, NM: Sandia National Laboratories.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error
statistics. Journal of Geophysical Research, 99(C5), 10143. https://doi.org/10.1029/94jc00572

Fan, Y., Huang, W., Huang, G. H., Huang, K., & Zhou, X. (2014). A PCM‐based stochastic hydrological model for uncertainty quantifi-
cation in watershed systems. Stochastic Environmental Research and Risk Assessment, 29(3), 915–927. https://doi.org/10.1007/s00477‐
014‐0954‐8

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 28 of 31

https://doi.org/10.1016/0022-1694(89)90101-7
https://doi.org/10.1016/0022-1694(89)90101-7
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1016/s0022-1694(01)00421-8
https://doi.org/10.1016/s0022-1694(01)00421-8
https://doi.org/10.1016/j.advwatres.2007.12.003
https://doi.org/10.1016/j.advwatres.2007.12.003
https://doi.org/10.1016/j.crme.2008.02.013
https://doi.org/10.1016/j.probengmech.2009.10.003
https://doi.org/10.1016/j.jcp.2010.12.021
https://doi.org/10.1175/1520-0493(1950)078%3c0001:vofeit%3e2.0.co;2
https://doi.org/10.1175/1520-0493(1950)078%3c0001:vofeit%3e2.0.co;2
https://doi.org/10.1175/1520-0493(1998)126%3c1719:asitek%3e2.0.co;2
https://doi.org/10.1016/j.jhydrol.2004.03.042
https://doi.org/10.1016/j.advwatres.2013.06.010
https://doi.org/10.1016/j.advwatres.2013.06.010
https://doi.org/10.1109/TCYB.2014.2322602
https://doi.org/10.1109/TCYB.2014.2322602
https://doi.org/10.1016/j.jhydrol.2006.07.012
https://doi.org/10.1016/j.jhydrol.2006.07.012
https://doi.org/10.5772/intechopen.70791
https://doi.org/10.5772/intechopen.70791
https://doi.org/10.1016/j.advwatres.2008.06.005
https://doi.org/10.1016/j.ress.2008.10.008
https://doi.org/10.5194/hess-2017-482
https://doi.org/10.5194/hess-2017-482
https://doi.org/10.1007/978-3-319-11259-6_56-1
https://doi.org/10.1007/978-3-319-11259-6_56-1
https://doi.org/10.1029/2011wr011011
https://doi.org/10.1029/2011wr011011
https://doi.org/10.1016/j.jhydrol.2014.05.045
https://doi.org/10.1016/j.advwatres.2019.01.002
https://doi.org/10.1029/94jc00572
https://doi.org/10.1007/s00477-014-0954-8
https://doi.org/10.1007/s00477-014-0954-8


Fan, Y. R., Huang, G. H., Baetz, B. W., Li, Y. P., Huang, K., Li, Z., et al. (2016). Parameter uncertainty and temporal dynamics of sensitivity
for hydrologic models: A hybrid sequential data assimilation and probabilistic collocation method. Environmental Modelling & Software,
86, 30–49. https://doi.org/10.1016/j.envsoft.2016.09.012

Fatichi, S., Katul, G. G., Ivanov, V. Y., Pappas, C., Paschalis, A., Consolo, A., et al. (2015). Abiotic and biotic controls of soil moisture
spatiotemporal variability and the occurrence of hysteresis. Water Resources Research, 51, 3505–3524. https://doi.org/10.1002/
2014wr016102

Feinberg, J., & Langtangen, H. P. (2015). Chaospy: An open source tool for designing methods of uncertainty quantification. Journal of
Computational Science, 11, 46–57. https://doi.org/10.1016/j.jocs.2015.08.008

Fujita, T., Stensrud, D. J., & Dowell, D. C. (2007). Surface data assimilation using an ensemble Kalman filter approach with initial condition
and model physics uncertainties. Monthly Weather Review, 135(5), 1846–1868. https://doi.org/10.1175/mwr3391.1

Ghanem, R. G., & Spanos, P. D. (1991). Stochastic finite elements: A spectral approach. Springer, Verlag New York. https://doi.org/10.1007/
978‐1‐4612‐3094‐6

Gharamti, M. E., Hoteit, I., & Valstar, J. (2013). Dual states estimation of a subsurface flow‐transport coupled model using ensemble
Kalman filtering. Advances in Water Resources, 60, 75–88. https://doi.org/10.1016/j.advwatres.2013.07.011

Ghiocel, D. M., & Ghanem, R. G. (2002). Stochastic finite‐element analysis of seismic soil‐structure interaction. Journal of Engineering
Mechanics, 128(1), 66–77. https://doi.org/10.1061/(asce)0733‐9399(2002)128:1(66)

Giannakis, D., &Majda, A. J. (2012). Quantifying the predictive skill in long‐range forecasting. Part II: Model error in coarse‐grained Markov
models with application to ocean‐circulation regimes, Journal of Climate, 25(6), 1814–1826. https://doi.org/10.1175/jcli‐d‐11‐00110.1

He, M., Hogue, T. S., Margulis, S. A., & Franz, K. J. (2012). An integrated uncertainty and ensemble‐based data assimilation approach for
improved operational streamflow predictions. Hydrology and Earth System Sciences, 16(3), 815–831. https://doi.org/10.5194/hess‐16‐
815‐2012

Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability
Engineering & System Safety, 81(1), 23–69. https://doi.org/10.1016/S0951‐8320(03)00058‐9

Heo, K.‐Y., Ha, K.‐J., Yun, K.‐S., Lee, S.‐S., Kim, H.‐J., &Wang, B. (2014). Methods for uncertainty assessment of climate models and model
predictions over East Asia. International Journal of Climatology, 34(2), 377–390. https://doi.org/10.1002/joc.3692

Hossain, F., & Anagnostou, E. N. (2005). Assessment of a stochastic interpolation based parameter sampling scheme for efficient uncer-
tainty analyses of hydrologic models. Computers & Geosciences, 31(4), 497–512. https://doi.org/10.1016/j.cageo.2004.11.001

Houtekamer, P. L., & Zhang, F. (2016). Review of the ensemble Kalman filter for atmospheric data assimilation.Monthly Weather Review,
144(12), 4489–4532. https://doi.org/10.1175/mwr‐d‐15‐0440.1

Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., & Huxman, T. E. (2010). Hysteresis of soil moisture spatial hetero-
geneity and the “homogenizing” effect of vegetation. Water Resources Research, 46, W09521. https://doi.org/10.1029/2009wr008611

Jin, X., Xu, C.‐Y., Zhang, Q., & Singh, V. P. (2010). Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method
for a conceptual hydrological model. Journal of Hydrology, 383(3‐4), 147–155. https://doi.org/10.1016/j.jhydrol.2009.12.028

Kim, J., Dwelle, M. C., Kampf, S. K., Fatichi, S., & Ivanov, V. Y. (2016). On the non‐uniqueness of the hydro‐geomorphic responses in a
zero‐order catchment with respect to soil moisture. Advances in Water Resources, 92, 73–89. https://doi.org/10.1016/j.advwatres.20
16.03.019

Kim, J., & Ivanov, V. Y. (2014). On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions
and surface shield. Water Resources Research, 50, 1025–1045. https://doi.org/10.1002/2013wr014580

Kim, J., & Ivanov, V. Y. (2015). A holistic, multi‐scale dynamic downscaling framework for climate impact assessments and challenges of
addressing finer‐scale watershed dynamics. Journal of Hydrology, 522, 645–660. https://doi.org/10.1016/j.jhydrol.2015.01.025

Kim, J., Ivanov, V. Y., & Fatichi, S. (2016a). Environmental stochasticity controls soil erosion variability. Scientific Reports, 6, 22065. https://
doi.org/10.1038/srep22065

Kim, J., Ivanov, V. Y., & Fatichi, S. (2016b). Soil erosion assessment—Mind the gap. Geophysical Research Letters, 43, 12,446–412,456.
https://doi.org/10.1002/2016gl071480

Kim, J., Tanveer, M. E., & Bae, D.‐H. (2018). Quantifying climate internal variability using an hourly ensemble generator over South Korea.
Stochastic Environmental Research and Risk Assessment, 32(11), 3037–3051. https://doi.org/10.1007/s00477‐018‐1607‐0

Kitanidis, P. K., & Bras, R. L. (1980). Real‐time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty, Water Resources
Research, 16(6), 1025–1033. https://doi.org/10.1029/WR016i006p01025

Kleeman, R. (2002). Measuring dynamical prediction utility using relative entropy, Journal of the Atmospheric Sciences, 59(13), 2057‐2072,
doi:10.1175/1520‐0469(2002)059 < 2057:mdpuur>2.0.co;2.

Kullback, S. (1997). Information theory and statistics. North Chelmsford, MA: Courier Corporation.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86. https://doi.org/

10.1214/aoms/1177729694
Lafaysse, M., Hingray, B., Mezghani, A., Gailhard, J., & Terray, L. (2014). Internal variability and model uncertainty components in future

hydrometeorological projections: The Alpine Durance basin. Water Resources Research, 50, 3317–3341. https://doi.org/10.1002/
2013wr014897

Le Maı̂tre, O. P., Reagan, M. T., Najm, H. N., Ghanem, R. G., & Knio, O. M. (2002). A stochastic projection method for fluid flow. Journal of
Computational Physics, 181(1), 9–44. https://doi.org/10.1006/jcph.2002.7104

Li, Y., Ryu, D., Western, A. W., Wang, Q. J., Robertson, D. E., & Crow, W. T. (2014). An integrated error parameter estimation and
lag‐aware data assimilation scheme for real‐time flood forecasting. Journal of Hydrology, 519, 2722–2736. https://doi.org/10.1016/j.
jhydrol.2014.08.009

Liu, Y., Weerts, A., Clark, M., Hendricks Franssen, H. J., Kumar, S., Moradkhani, H., et al. (2012). Advancing data assimilation in opera-
tional hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16(10),
3863–3887. https://doi.org/10.5194/hess‐16‐3863‐2012

Madsen, H. (2000). Automatic calibration of a conceptual rainfall‐runoff model using multiple objectives. Journal of Hydrology, 235(3‐4),
276–288. https://doi.org/10.1016/s0022‐1694(00)00279‐1

Madsen, H., & Skotner, C. (2005). Adaptive state updating in real‐time river flow forecasting—A combined filtering and error forecasting
procedure. Journal of Hydrology, 308(1‐4), 302–312. https://doi.org/10.1016/j.jhydrol.2004.10.030

Marelli, S., & Sudret, B. (2017). UQLab user manual—Polynomial chaos expansions Rep. Safety & Uncertainty Quantification, ETH Zurich:
Chair of Risk.

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis
of output from a computer code. Technometrics, 21(2), 239. https://doi.org/10.2307/1268522

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 29 of 31

https://doi.org/10.1016/j.envsoft.2016.09.012
https://doi.org/10.1002/2014wr016102
https://doi.org/10.1002/2014wr016102
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1175/mwr3391.1
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1016/j.advwatres.2013.07.011
https://doi.org/10.1061/(asce)0733-9399(2002)128:1(66)
https://doi.org/10.1175/jcli-d-11-00110.1
https://doi.org/10.5194/hess-16-815-2012
https://doi.org/10.5194/hess-16-815-2012
https://doi.org/10.1016/S0951-8320(03)00058-9
https://doi.org/10.1002/joc.3692
https://doi.org/10.1016/j.cageo.2004.11.001
https://doi.org/10.1175/mwr-d-15-0440.1
https://doi.org/10.1029/2009wr008611
https://doi.org/10.1016/j.jhydrol.2009.12.028
https://doi.org/10.1016/j.advwatres.2016.03.019
https://doi.org/10.1016/j.advwatres.2016.03.019
https://doi.org/10.1002/2013wr014580
https://doi.org/10.1016/j.jhydrol.2015.01.025
https://doi.org/10.1038/srep22065
https://doi.org/10.1038/srep22065
https://doi.org/10.1002/2016gl071480
https://doi.org/10.1007/s00477-018-1607-0
https://doi.org/10.1029/WR016i006p01025
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1002/2013wr014897
https://doi.org/10.1002/2013wr014897
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1016/j.jhydrol.2014.08.009
https://doi.org/10.1016/j.jhydrol.2014.08.009
https://doi.org/10.5194/hess-16-3863-2012
https://doi.org/10.1016/s0022-1694(00)00279-1
https://doi.org/10.1016/j.jhydrol.2004.10.030
https://doi.org/10.2307/1268522


McKenna, S. A., Doherty, J., & Hart, D. B. (2003). Non‐uniqueness of inverse transmissivity field calibration and predictive transport
modeling. Journal of Hydrology, 281(4), 265–280. https://doi.org/10.1016/s0022‐1694(03)00194‐x

Mendoza, P. A., McPhee, J., & Vargas, X. (2012). Uncertainty in flood forecasting: A distributed modeling approach in a sparse data
catchment. Water Resources Research, 48, W09532. https://doi.org/10.1029/2011wr011089

Meng, J., & Li, H. (2018). Uncertainty quantification for subsurface flow and transport: Coping with nonlinearity/irregularity via poly-
nomial chaos surrogate and machine learning. Water Resources Research. https://doi.org/10.1029/2018wr022676

Mockler, E. M., Chun, K. P., Sapriza‐Azuri, G., Bruen, M., & Wheater, H. S. (2016). Assessing the relative importance of parameter and
forcing uncertainty and their interactions in conceptual hydrological model simulations. Advances in Water Resources, 97, 299–313.
https://doi.org/10.1016/j.advwatres.2016.10.008

Mondal, A., & Mujumdar, P. P. (2012). On the basin‐scale detection and attribution of human‐induced climate change in monsoon pre-
cipitation and streamflow. Water Resources Research, 48. https://doi.org/10.1029/2011wr011468

Moradkhani, H., DeChant, C. M., & Sorooshian, S. (2012). Evolution of ensemble data assimilation for uncertainty quantification using the
particle filter‐Markov chain Monte Carlo method. Water Resources Research, 48(12). https://doi.org/10.1029/2012wr012144

Moradkhani, H., Hsu, K.‐L., Gupta, H., & Sorooshian, S. (2005). Uncertainty assessment of hydrologic model states and parameters:
Sequential data assimilation using the particle filter. Water Resources Research, 41. https://doi.org/10.1029/2004WR003604

Moradkhani, H., & Sorooshian, S. (2008). General review of rainfall‐runoff modeling: Model calibration, data assimilation, and
uncertainty analysis. In S. Sorooshian, K.‐L. Hsu, E. Coppola, B. Tomassetti, M. Verdecchia, & G. Visconti (Eds.), Hydrological
Modelling and the Water Cycle: Coupling the Atmospheric and Hydrologic Models (pp. 1–24). Berlin: Springer. https://doi.org/
10.1007/978‐3‐540‐77843‐1_1

Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R. (2005). Dual state‐parameter estimation of hydrological models using
ensemble Kalman filter. Advances in Water Resources, 28(2), 135–147. https://doi.org/10.1016/j.advwatres.2004.09.002

Nga, P. H., Takara, K., & Son, N. H. (2015). Flood hazard impact analysis in the downstream of Vu Gia‐Thu Bon River System, Quang Nam
Province, Central Vietnam. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 71(4), I_157–I_162. https://doi.
org/10.2208/jscejhe.71.I_157

Nielsen, S. A., & Hansen, E. (1973). Numerical simulation of the rainfall‐runoff process on a daily basis. Hydrology Research, 4(3),
171–190.

Nikiema, O., & Laprise, R. (2011). Budget study of the internal variability in ensemble simulations of the Canadian Regional Climate Model
at the seasonal scale. Journal of Geophysical Research, 116(D16). https://doi.org/10.1029/2011jd015841

O'Brien, R. J., Misstear, B. D., Gill, L. W., Deakin, J. L., & Flynn, R. (2013). Developing an integrated hydrograph separation and lumped
modelling approach to quantifying hydrological pathways in Irish river catchments. Journal of Hydrology, 486, 259–270. https://doi.org/
10.1016/j.jhydrol.2013.01.034

Parno, M., Davis, A., & Conrad, P. n.d. MIT Uncertainty Quantification (MUQ) library, edited.
Pokhrel, P., Gupta, H. V., & Wagener, T. (2008). A spatial regularization approach to parameter estimation for a distributed watershed

model. Water Resources Research, 44. https://doi.org/10.1029/2007wr006615
Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 22(3), 579–590. https://doi.org/10.1111/0272‐

4332.00040
Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D., & Thornton, P. (2014). Dimensionality reduction for complex models

via Bayesian compressive sensing. International Journal for Uncertainty Quantification, 4(1), 63–93. https://doi.org/10.1615/Int.J.
UncertaintyQuantification.2013006821

Sene, K. (2008). Flood warning, forecasting and emergency response. Springer Science & Business Media. https://doi.org/10.1007/978‐3‐540‐
77853‐0

Shen, Z. Y., Chen, L., & Chen, T. (2012). Analysis of parameter uncertainty in hydrological and sediment modeling using GLUEmethod: A
case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences, 16(1), 121–132.
https://doi.org/10.5194/hess‐16‐121‐2012

Shukla, J., DelSole, T., Fennessy, M., Kinter, J., & Paolino, D. (2006). Climate model fidelity and projections of climate change. Geophysical
Research Letters, 33. https://doi.org/10.1029/2005gl025579

Sobol', I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and
Computers in Simulation, 55(1‐3), 271–280. https://doi.org/10.1016/s0378‐4754(00)00270‐6

Sochala, P., & Le Maître, O. P. (2013). Polynomial Chaos expansion for subsurface flows with uncertain soil parameters. Advances in Water
Resources, 62, 139–154. https://doi.org/10.1016/j.advwatres.2013.10.003

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models. Contributions to structural reliability and stochastic
spectral methods. Habilitation thesis: Universite Blaise Pascal, Clermont‐Ferrand, France.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964–979.
https://doi.org/10.1016/j.ress.2007.04.002

Tang, Y., Reed, P., van Werkhoven, K., & Wagener, T. (2007). Advancing the identification and evaluation of distributed rainfall‐runoff
models using global sensitivity analysis. Water Resources Research, 43(6). https://doi.org/10.1029/2006wr005813

Thompson, J. R., Sørenson, H. R., Gavin, H., & Refsgaard, A. (2004). Application of the coupled MIKE SHE/MIKE 11 modelling
system to a lowland wet grassland in southeast England. Journal of Hydrology, 293(1‐4), 151–179. https://doi.org/10.1016/j.
jhydrol.2004.01.017

Todini, E. (1999). Using phase‐state modelling for inferring forecasting uncertainty in nonlinear stochastic decision schemes. Journal of
Hydroinformatics, 1(2), 75–82. https://doi.org/10.2166/hydro.1999.0007

Todini, E. (2004). Role and treatment of uncertainty in real‐time flood forecasting. Hydrological Processes, 18(14), 2743–2746. https://doi.
org/10.1002/hyp.5687

Tran, V. N., & Kim, J. (2019). Quantification of predictive uncertainty with a metamodel: Toward more efficient hydrologic simulations.
Stochastic Environmental Research and Risk Assessment, 33(7), 1453–1476. https://doi.org/10.1007/s00477‐019‐01703‐0

United Nations Development Programme (UNDP) (1999). Viet Nam: Flood damage summary 06 Nov 1999, edited, ReliefWeb. Hanoi,
Vietnam.

Vrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB imple-
mentation. Environmental Modelling & Software, 75, 273–316. https://doi.org/10.1016/j.envsoft.2015.08.013

Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., & Verstraten, J. M. (2005). Improved treatment of uncertainty in hydrologic modeling:
Combining the strengths of global optimization and data assimilation. Water Resources Research,
41(1). https://doi.org/10.1029/2004wr003059

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 30 of 31

https://doi.org/10.1016/s0022-1694(03)00194-x
https://doi.org/10.1029/2011wr011089
https://doi.org/10.1029/2018wr022676
https://doi.org/10.1016/j.advwatres.2016.10.008
https://doi.org/10.1029/2011wr011468
https://doi.org/10.1029/2012wr012144
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1007/978-3-540-77843-1_1
https://doi.org/10.1007/978-3-540-77843-1_1
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.2208/jscejhe.71.I_157
https://doi.org/10.2208/jscejhe.71.I_157
https://doi.org/10.1029/2011jd015841
https://doi.org/10.1016/j.jhydrol.2013.01.034
https://doi.org/10.1016/j.jhydrol.2013.01.034
https://doi.org/10.1029/2007wr006615
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821
https://doi.org/10.1007/978-3-540-77853-0
https://doi.org/10.1007/978-3-540-77853-0
https://doi.org/10.5194/hess-16-121-2012
https://doi.org/10.1029/2005gl025579
https://doi.org/10.1016/s0378-4754(00)00270-6
https://doi.org/10.1016/j.advwatres.2013.10.003
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1029/2006wr005813
https://doi.org/10.1016/j.jhydrol.2004.01.017
https://doi.org/10.1016/j.jhydrol.2004.01.017
https://doi.org/10.2166/hydro.1999.0007
https://doi.org/10.1002/hyp.5687
https://doi.org/10.1002/hyp.5687
https://doi.org/10.1007/s00477-019-01703-0
https://doi.org/10.1016/j.envsoft.2015.08.013
https://doi.org/10.1029/2004wr003059


Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., & Robinson, B. A. (2008). Equifinality of formal (DREAM) and informal (GLUE) Bayesian
approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment, 23(7), 1011–1026. https://doi.org/10.1007/
s00477‐008‐0274‐y

Wang, D., Chen, Y., & Cai, X. (2009). State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter.
Water Resources Research, 45(11). https://doi.org/10.1029/2008wr007401

Wang, S., Ancell, B. C., Huang, G. H., & Baetz, B.W. (2018). Improving robustness of hydrologic ensemble predictions through probabilistic
pre‐ and post‐processing in sequential data assimilation. Water Resources Research, 54(3), 2129–2151. https://doi.org/10.1002/
2018wr022546

Wang, S., Huang, G. H., Baetz, B. W., & Ancell, B. C. (2017). Towards robust quantification and reduction of uncertainty in hydrologic
predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion. Journal of Hydrology, 548,
484–497. https://doi.org/10.1016/j.jhydrol.2017.03.027

Wang, S., Huang, G. H., Baetz, B. W., & Huang, W. (2015). A polynomial chaos ensemble hydrologic prediction system for efficient para-
meter inference and robust uncertainty assessment. Journal of Hydrology, 530, 716–733. https://doi.org/10.1016/j.jhydrol.2015.10.021

Weerts, A. H., & El Serafy, G. Y. H. (2006). Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual
rainfall‐runoff models. Water Resources Research, 42(9). https://doi.org/10.1029/2005wr004093

Wei, C., & Dewoolkar, M. M. (2006). Formulation of capillary hysteresis with internal state variables.Water Resources Research, 42. https://
doi.org/10.1029/2005wr004594

Whitaker, J. S. (2012). Developments in ensemble data assimilation, paper presented at Proceedings of the Seminar on Data assimilation for
atmosphere and ocean, ECMWF, 6‐9. September, 2011.

Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130(7),
1913–1924. https://doi.org/10.1175/1520‐0493(2002)130<1913:edawpo>2.0.co;2

Wiener, N. (1938). The homogeneous chaos. American Journal of Mathematics, 60(4), 897. https://doi.org/10.2307/2371268
Wu, B., Zheng, Y., Tian, Y., Wu, X., Yao, Y., Han, F., et al. (2014). Systematic assessment of the uncertainty in integrated surface

water‐groundwater modeling based on the probabilistic collocation method. Water Resources Research, 50, 5848–5865. https://doi.org/
10.1002/2014wr015366

Xie, X., & Zhang, D. (2010). Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in
Water Resources, 33(6), 678–690. https://doi.org/10.1016/j.advwatres.2010.03.012

Xie, X., & Zhang, D. (2013). A partitioned update scheme for state‐parameter estimation of distributed hydrologic models based on the
ensemble Kalman filter. Water Resources Research, 49, 7350–7365. https://doi.org/10.1002/2012wr012853

Xiu, D., & Karniadakis, G. E. (2002). The Wiener‐Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific
Computing, 24(2), 619–644. https://doi.org/10.1137/s1064827501387826

Young, P. C. (2002). Advances in real‐time flood forecasting. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering
Sciences, 360(1796), 1433–1450. https://doi.org/10.1098/rsta.2002.1008

Zahmatkesh, Z., Karamouz, M., & Nazif, S. (2015). Uncertainty basedmodeling of rainfall‐runoff: Combined differential evolution adaptive
Metropolis (DREAM) and K‐means clustering. Advances in Water Resources, 83, 405–420. https://doi.org/10.1016/j.advwatres.201
5.06.012

Zhang, H., Hendricks Franssen, H.‐J., Han, X., Vrugt, J. A., & Vereecken, H. (2017). State and parameter estimation of two land surface
models using the ensemble Kalman filter and the particle filter. Hydrology and Earth System Sciences, 21(9), 4927–4958. https://doi.org/
10.5194/hess‐21‐4927‐2017

Zhang, X., Liu, P., Cheng, L., Liu, Z., & Zhao, Y. (2018). A back‐fitting algorithm to improve real‐time flood forecasting. Journal of
Hydrology, 562, 140–150. https://doi.org/10.1016/j.jhydrol.2018.04.051

10.1029/2019WR025727Water Resources Research

TRAN ET AL. 31 of 31

https://doi.org/10.1007/s00477-008-0274-y
https://doi.org/10.1007/s00477-008-0274-y
https://doi.org/10.1029/2008wr007401
https://doi.org/10.1002/2018wr022546
https://doi.org/10.1002/2018wr022546
https://doi.org/10.1016/j.jhydrol.2017.03.027
https://doi.org/10.1016/j.jhydrol.2015.10.021
https://doi.org/10.1029/2005wr004093
https://doi.org/10.1029/2005wr004594
https://doi.org/10.1029/2005wr004594
https://doi.org/10.1175/1520-0493(2002)130%3c1913:edawpo%3e2.0.co;2
https://doi.org/10.2307/2371268
https://doi.org/10.1002/2014wr015366
https://doi.org/10.1002/2014wr015366
https://doi.org/10.1016/j.advwatres.2010.03.012
https://doi.org/10.1002/2012wr012853
https://doi.org/10.1137/s1064827501387826
https://doi.org/10.1098/rsta.2002.1008
https://doi.org/10.1016/j.advwatres.2015.06.012
https://doi.org/10.1016/j.advwatres.2015.06.012
https://doi.org/10.5194/hess-21-4927-2017
https://doi.org/10.5194/hess-21-4927-2017
https://doi.org/10.1016/j.jhydrol.2018.04.051


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


