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Abstract We report the first observations of Martian thermospheric warming associated with the
Planet Encircling Dust Event (PEDE) of 2018. We used dayglow observations made by the Imaging
Ultraviolet Spectrograph instrument aboard the MAVEN spacecraft to retrieve the upper atmosphere
temperature structures. Our analysis shows that the two-cell meridional circulation pattern may be
operating before the PEDE-2018, which resulted in the cooling of lower/middle latitudes and warming at
higher latitudes. However, after the onset, the existing circulation pattern gets dampened, resulted in a
weaker latitudinal temperature structure. We saw that mean temperatures rose by about 20 K for the same
local time after the onset of the dust storm. Our 3-D Mars General Ionosphere Thermosphere Model
calculations were able to reproduce the temperatures during the predust and early dust storm but failed to
fully capture the temperature trend during the growth phase of the PEDE of 2018.

1. Introduction
The coupled nature of Mars' lower and upper atmosphere requires crucial understanding of how a phe-
nomenon such as regional and global dust storms affects thermospheric structure and dynamics. The effect
of dust storms on the lower atmosphere has been studied in detail (Cantor, 2007; Elrod & Toon, 2010;
Gurwell et al., 2005; Heavens et al., 2011; Kass et al., 2019; Smith et al., 2002). However, dust storm effects
on the dynamics, energetics, and circulation in the Martian thermosphere are not well understood due to
insufficient observations of thermospheric temperatures during dust storm events. The measurements by
Mariner 9, Mars Global Surveyor, and SPICAM have shown the responses due to dust storms by the ther-
mospheric structure, especially the neutral and ionospheric densities (Bougher et al., 1999; Cox et al., 2010;
Forget et al., 2009; Keating et al., 1998; Stewart & Hanson, 1978; Withers & Pratt, 2013). The upper atmo-
spheric expansion due to the dust storm was also observed in elevated airglow peak heights measured by the
MAVEN Imaging Ultraviolet Spectrograph (IUVS) (Gérard et al., 2019) and increased in neutral densities
measured by the MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) (Elrod et al., 2019; Liu et al.,
2018). Forget et al. (2009) reported temperatures from altitudes around 130 km using the SPICAM stellar
occultation data but did not report any significant effect of dust storms on the temperatures with exception
of a few observations. However, the majority of their temperatures measurements were from the nightside.

The model simulations using three-dimensional general circulation models (GCMs) have shown that sig-
nificant dust loading in the lower atmosphere affects the circulation patterns in the upper atmosphere (e.g.,
Bougher et al., 1999; Bell et al., 2007; González-Galindo et al., 2015; Medvedev et al., 2013). These model
studies reported modification of the wind patterns in the thermosphere due to the dust loading, which in
turn affects the interhemispheric Hadley circulation. The concomitant adiabatic heating gets modified by
the radiative effects of vertical dust mixing ratio, and this effect is most prominent in the high latitudes
(Bougher et al., 1999; Bell et al., 2007; González-Galindo et al., 2015; Medvedev et al., 2013). Bell et al. (2007)
used the Mars Thermospheric GCM to calculate the importance of dust loading in affecting the winter polar
warming, thus emphasizing the role of lower atmospheric dust in the circulation and wind patterns in the
upper atmosphere. González-Galindo et al. (2015) and Medvedev et al. (2013) have used the Laboratoire
de Météorologie Dynamique-MGCM and Max Planck Mars GCM, respectively, to simulate the global dust
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Figure 1. Integrated visible opacities from MCS are displayed as a function
of latitude for nine intervals distributed throughout the growth and initial
decay phases of the PEDE-2018. These values are column integrated and
are derived from the V5.2.7 MCS vertical dust distributions obtained during
the PEDE-2018 period (e.g., Kass et al., 2019). Plotted values are time and
zonally averaged (over all longitudes). These column integrated values are
also fixed to a constant 6.1-mbar reference pressure surface. The dust
opacity started slightly in the first week of June (coinciding with our storm
onset data analysis of 25 May to 8 June), followed by a rapid growth phase
in mid-June (coinciding with second time period of 11–20 June considered
in our study). The dust peaks around mid-July (close to the third time
period of 1–10 July considered in our analysis). The dust opacities followed
a more gradual decline thereafter.

storm in Mars years (MY) 25 and 28. For MY 25, Medvedev et al. (2013)
predicted a decrease in the temperatures in the lower thermosphere at
all latitudes except at very high polar latitudes. González-Galindo et al.
(2015) predicted a cooling in low latitudes-mid in the lower thermo-
sphere but a warming at exobase levels at latitudes below 60◦. For MY
28, both models predicted significant warming at all latitudes except at
northern polar region. Overall, all these models have shown the effect of
dust storms in modifying the circulation and wind patterns in the upper
atmosphere.

In this analysis, we are seeking to understand the impacts of the Planet
Encircling Dust Event (PEDE) of 2018 on the thermospheric tempera-
tures and its latitudinal structure and the implications of the underlying
circulation patterns affecting the Mars thermosphere. This is the first
global dust storm event since MAVEN went into orbit, and it provided a
unique opportunity to study its effect on the Mars upper atmosphere. We
use dayglow observations made by the IUVS instrument to retrieve the
upper atmosphere temperatures during the 2018 PEDE event. To under-
stand the underlying dynamics, which in turn controls the temperatures,
we use the Mars-Global Ionosphere Thermosphere Model (M-GITM)
with the measured dust opacity for the 2018 PEDE event. The results pre-
sented in this analysis will help us constrain the potential role of lower
atmospheric dust in altering the upper atmospheric circulation, which in
turn may affect the temperatures.

2. Observation and Methodology
The PEDE-2018 started around 1 June 2018 (Ls = 185◦), as viewed in con-
text imaging from the MRO/MARCI instrument (e.g., Kass et al., 2019).
Enhanced temperatures were first noted in the middle atmosphere on
2–4 June (Ls = 186–187◦) along with corresponding enhanced densities
in the upper atmosphere on 8 June (Ls = 189◦). The growth of the dust

storm over the next 4–5 weeks (up to around 7 July, near Ls = 207◦) witnessed the horizontal redistribu-
tion of dust around the planet, lofting dust up to ∼60–70 km, resulting in substantial warming of middle
atmosphere temperatures (e.g., 50 Pa or ∼25–30 km) as observed by the MRO/Mars Climate Sounder (MCS)
instrument (Kass et al., 2019). The PEDE of 2018 decayed thereafter until approximately mid-late October
2018 (Ls = 270–280◦). Figure 1 shows the integrated optical depth measured by MRO/MCS, displayed as
a function of latitude for nine intervals distributed throughout the growth and initial decay phases of the
PEDE-2018. This figure illustrates the time evolution of the PEDE dust opacities, which will be important
in section 2.2 for describing the empirical dust distributions used for incorporation into model simulations.

2.1. Observations
We use dayglow measurements made by the IUVS onboard the MAVEN spacecraft. IUVS takes 12 limb scans
at the periapse segment of the MAVEN's orbit. The details of limb observations are provided in our earlier
studies and the references therein (Jain et al., 2018; McClintock et al., 2015; Stevens et al., 2015; Schneider
et al., 2015). For the analysis presented in this paper, we use the CO+

2 Ultraviolet Doublet (UVD) dayglow
emission at 289 nm, which is one of the brightest midultraviolet emissions in the Martian dayglow (Jain
et al., 2015; Leblanc et al., 2006). This emission is mainly produced by photon and electron impact ioniza-
tion of CO2 (Gronoff et al., 2012; Jain & Bhardwaj, 2012), making it an ideal diagnostic tool for retrieving
information about the background neutral atmosphere (Jain et al., 2012, 2018). To retrieve scale heights and
infer temperatures (at ∼170 km), we use an empirical Chapman fit to the CO+

2 UVD emission intensity pro-
file (Bougher et al., 2017; Lo et al., 2015). We only use profiles for which the solar zenith angle is below 85◦.
Another correction to the retrieved temperatures has been made for the profiles that are observed when the
MAVEN spacecraft altitude was below 200 km. When the spacecraft is within the emitting layer, allowance
must be made for the photons emitted “behind,” and not seen by, the instrument. We used a simple Chapman
layer model to examine the ratio of the signal seen by the instrument to the signal that would be seen from
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Figure 2. Evolution of latitudes at IUVS tangent points at the periapse with time (orbit numbers). The corresponding
solar longitude and dates are shown in top and second bottom x axis. The latitudes are colored according to the local
time of the observations. The IUVS data is from May to July 2018. Three sampling intervals are illustrated for detailed
data-model comparisons and subsequent analysis to be presented in sections 3 and 4.

infinity along the same line-of-sight, for a range of exospheric temperatures, spacecraft altitudes above the
emission peak to correct the emission profiles when the spacecraft is within the emitting layer. The MAVEN
orbit precesses with time to provide observations at different local time and latitudes. During the start of the
PEDE-2018, the MAVEN periapsis was mostly sampling the southern hemisphere, while it was approach-
ing the dawn terminator from the morningside. The spacecraft was moving from low latitudes toward high
southern hemisphere latitudes. Figure 2 shows the orbital evolution of the latitudes of all the profiles used
in this analysis. The symbols are colored according to the local time of the observation.

Unfortunately, due to some observational limitations, the IUVS only took a few periapse observations before
the start of the dust storm, with every even orbit between 7072 and 7082 (18–20 May 2018) and a few good
orbits during 22–23 May 2018 (Orbits 7094-7096). Starting from Orbit 7109 (25 May 2018), the IUVS obtained
good periapse observations with few gaps (due to a stellar occultation campaign and regular communication
passes and sharing time with other instruments onboard MAVEN), until the lighting conditions were not
at all favorable (MAVEN periapsis had moved closer to the night side) to obtain the temperatures from the
dayglow profiles.

As MAVEN periapsis was moving toward the dawn terminator, the side segment limb observations were
moving toward lower solar zenith angle as shown in Figure 2. The inbound/outbound segment (side seg-
ment) of the MAVEN orbit is antipodal to the MAVEN periapse segment, which can provide dayside airglow
measurements when MAVEN periapsis is on the nightside. The limb scans during the inbound/outbound
segment are effectively similar to the periapse limb scans in terms of binning and have a similar data reduc-
tion process. The side segment limb observations were taken around 17 hr Mars local time (compared to
local time of 8 hr during the periapse limb observations). With both sets of limb scans, we could attempt to
characterize the overall effects of the Martian PEDE-2018 storm on the upper atmosphere. The three sam-
pling periods—PEDE-2018 onset (Ls = 181–189◦), growth phase (Ls = 191–197◦), and the peak phase of
PEDE-2018 (Ls = 203–208◦)—are shown within the boxes and will be discussed in the following section to
assess the impact of PEDE-2018 on Martian thermospheric temperatures.

2.2. M-GITM Model
The M-GITM code is a 3-D spherical model that was developed to address the physics of the entire Mars
atmosphere system, capturing the basic observed features of the dynamical, thermal, and compositional
structure of the atmosphere from ground to ∼250 km (Bougher et al., 2015). The M-GITM framework was
built from the terrestrial GITM framework (Ridley et al., 2006), now utilizing Mars fundamental physical
parameters, ion-neutral chemistry, and key radiative processes (Bougher et al., 2015). This ground to exo-
sphere code is also constructed using existing physical formulations (e.g., CO2 15-micron cooling, near IR
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heating, and photochemistry) found in other modern Mars GCMs (see details in Bougher et al., 2015). A fast
and modern NLTE CO2 15-micron cooling scheme is now being used (e.g., González-Galindo et al., 2013) to
accurately compute CO2 cooling rates. Typically, M-GITM is setup to run with a 5◦ × 5◦ latitude-longitude
grid, using a 2.5-km vertical resolution.

Recent upgrades to the M-GITM code were tested and implemented to permit accurate solar irradiance and
dust opacity inputs to be used for the PEDE-2018 simulations. First, the solar EUV-UV fluxes measured at
Mars by the MAVEN Extreme Ultraviolet Monitor instrument have been used to generate daily averaged full
solar spectra based upon the FISM-M (Flare Irradiance Spectral Model) empirical model (Thiemann et al.,
2017). These daily averaged data sets provide solar EUV-UV fluxes to M-GITM corresponding to MAVEN
measurements obtained during the PEDE-2018.

Second, model inputs are selected and utilized for time-varying dust-integrated optical depths and vertical
dust distributions during the PEDE-2018. The latter are based upon available MRO/MCS dust opacity data
sets (V5.2.7) (Kleinböhl et al., 2009, 2011, 2017) as a function of MCS measured pressure intervals (up to
105) and zonally averaged latitude elements (36), thereby matching the M-GITM horizontal resolution. The
resulting maps of vertical dust distribution are utilized to compute PEDE-2018 aerosol heating rates within
the M-GITM code. These zonal averaged maps are derived from MCS opacity data sets for nine reference
time intervals chosen to correspond to milestones during the PEDE-2018 evolution (see Figure 1). Linear
interpolation in time between these reference intervals is conducted, yielding vertical dust distributions
that M-GITM uses throughout each simulated day. This time evolving dust scheme implemented within
M-GITM, although based upon MCS measurements during the PEDE-2018, is a first-order formulation and
is subject to the availability of updated MCS products and how they are used. For instance, this initial dust
formulation assumes dust is well mixed at low altitudes and can reasonably be zonally averaged.

Finally, temperatures corresponding to IUVS CO+
2 UVD dayglow measurements are extracted from the

M-GITM output datacubes throughout this PEDE-2018 period. An M-GITM flythrough routine is utilized
for this extraction at each measurement location, yielding the corresponding M-GITM temperature at the
same location.

3. Results
Figure 3a shows the retrieved temperatures (at ∼170 km) binned in latitude and solar longitude. As men-
tioned before, there was a limited amount of IUVS data just before the dust storm started, with slightly
different local time. It is suggestive from the predust storm data set that the latitudinal temperatures gradi-
ent was not large in magnitude. However, after Ls = 180◦, significant cooling at low latitudes resulted in a
larger magnitude latitudinal temperature gradient through Ls = 190◦, after which low latitude temperatures
increased and the latitudinal gradient was reduced. As mentioned in section 2.1, the later orbits considered
in this analysis were from early morning compared to those taken between Ls = 180◦ and 190◦; however,
the small difference in time might not able to explain this latitudinal behavior of thermospheric tempera-
ture. The temperatures retrieved from side segment limb scans around Ls = 205–208◦ show higher mean
temperatures mostly because they are from afternoon hours, where Mars' thermospheric temperatures tend
to be higher than the morning hours (Stone et al., 2018). These warmer afternoon temperatures are also
simulated by the M-GITM model (Bougher et al., 2015). Unlike morning hours, the afternoon temperatures
seem to be higher near the equator, with no significant latitudinal gradient.

Figure 3b shows the longitudinally mean temperature after the onset/start of the dust storm. The figure
contains data from IUVS observations made between 25 May and 8 June 2018 (Ls = 181–189◦). The figure
highlights the latitudinal gradient in the observed temperatures. Temperatures between −70◦ and −30◦ are
200–210 K, while at lower latitudes, temperatures exhibit a substantial declining gradient to values of 145 K
near the equator. The M-GITM temperatures extracted for similar conditions as that of observations show
that there is a very good agreement between the model and observed temperatures, and the model is able
to reproduce the observed latitude gradient in the temperatures. This time period contains data at the very
beginning of the dust storm as shown in Figure 1.

Figure 3c shows the IUVS longitudinally mean temperatures from Orbits 7200 to 7250 (Ls = 191–197◦).
By this time, the dust storm has started to spread over the globe with significant increase in the dust opti-
cal depth (see Figure 1). Although the mean local time during Ls = 191–197◦ was an hour earlier (6.6 hr)
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Figure 3. (a) The retrieved temperatures at ∼170 km from IUVS data in the time span shown in Figure 2. The
temperatures are binned in solar longitude and geographic latitude grid. The three boxes (I, II, and III) include the
observational ranges where data-model comparison is performed and shown in subsequent panels as indicated by the
corresponding roman numerals. (b) The longitudinally mean temperatures for Ls = 181–189◦ (orbit range: 7109–7182;
date: 25 May to 8 June 2018 at the start of PEDE-2018 along with the 1-𝜎 standard deviation. The orange symbols show
the data from IUVS for the PEDE-2018. The black symbols are temperatures from M-GITM model (only for the
PEDE-2018) extracted at similar local time, latitude, longitude, and lighting conditions as described in section 2.2 for
the PEDE-2018 dust. The gray symbols are M-GITM model runs for nominal dust optical depths (assuming no dust
storm). The green symbol shows the observed temperatures from Martian year 33 for the same solar longitude range.
(c) The longitudinally mean temperatures for Ls = 191–197◦ (orbit range: 7200–7250; date: 11–20 June). (d) The
longitudinally mean temperatures for Ls = 203–208◦ (orbit range: 7308–7358; date: 01–10 July). The observed local
time and the mean temperatures are shown in the panels for both IUVS and M-GITM temperatures. The model values
are only for MY 34.

compared to the dust storm onset case (Ls = 181–189◦), the mean observed temperature has increased by
almost ∼20 K. The temperatures also show large geophysical variability as shown by the error bars in the
figure. The equatorial cooling has also diminished. The corresponding M-GITM temperatures are shown in
the same plot. Although the latitudinal trend is roughly similar in both MGITM and IUVS temperatures,
the model temperatures are underestimating the observations. The mean model temperatures are about
∼35–40 K cooler (at high latitudes) than the mean IUVS temperatures and ∼12 K lower than for the predust
storm period. Near the equator, the model-IUVS temperatures are 20–30 K different.
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The IUVS longitudinally mean temperatures for Ls = 203–208◦ (Orbits 7308–7358) are shown in Figure 3d.
It is very difficult to infer a clear latitudinal trend in temperatures due to large variability observed in a given
latitude bin, but the temperatures do indicate higher temperatures at equator region compared to those at
30–40◦ south. The average temperatures are about 238 K, larger than the previous two cases, but this could
be due to the difference in the local time. During this time, the dust optical depth was at its peak, which
was included in this model run along with the solar forcing observed at Mars during this time. The overall
M-GITM temperatures are ∼50 K warmer than those for Ls = 191–197, in line with the difference between
LT = 17 (evening terminator) and LT = 6.6 (morning terminator) sampling. This baseline difference in
terminator temperatures (∼40–50 K) is a nondust storm feature of the observed and simulated atmosphere
(e.g., Bougher et al., 2015; Stone et al., 2018). Nevertheless, the dust-storm-driven M-GITM temperatures
(black dots) are underestimating the LT = 17 observations, with average temperatures are about 20 K cooler
than the observations.

4. Discussion
Various numerical studies and recent observations have indicated that Mars atmosphere is an intimately
coupled system, making it necessary to account for the lower atmosphere when modeling the structure and
winds of the upper atmosphere (Bell et al., 2007; Jain & Bhardwaj, 2015; Lo et al., 2015). In this regard,
around the solstices, a single cell summer-to-winter interhemispheric mean Hadley circulation should exist,
extending from the lower atmosphere to the thermosphere. For solstices, upwelling in the summer hemi-
sphere (leading to adiabatic cooling) and sinking (subsiding) in the winter hemisphere (yielding adiabatic
warming) should occur. Alternatively, near the equinoxes, a double cell circulation pattern should exist,
with rising motion (and adiabatic cooling) near the equator and subsiding motion (and adiabatic warming)
at middle-to-high latitudes approaching both poles (Bell et al., 2007; McCleese et al., 2010). Are these heat-
ing and cooling impacts observed in the changing longitudinally mean temperature versus latitude plots
presented in Figure 3? If so, what do these impacts imply about the changing circulation patterns affecting
the thermosphere, especially during the large events such as a global dust storm?

The thermospheric temperatures prior to Ls = 180◦ (see Figure 3a) showed a weak solstitial meridional
circulation (north to south). The temperatures started to decrease near the equator after Ls = 180◦. This sug-
gests that a very different global circulation pattern is at work. A two-cell meridional circulation pattern may
be operating, for which upwelling maximizes near the equator, thereby providing adiabatic cooling in this
region. Conversely, the same meridional winds must sink (downwelling) at middle-to-high latitudes, pro-
viding adiabatic warming (Bell et al., 2007; González-Galindo et al., 2015). The equatorial upwelling around
Ls = 181–189 has a significant impact on the local temperatures (cooling effect) as shown in Figure 3b.
Although the dust opacities started to increase during this early PEDE-2018 period (see Figure 1), they were
relatively similar in magnitude to the climatological dust scenario at that time, and the model runs were
also very similar.

Figure 3c shows an interesting case study during the growth phase of the PEDE-2018 (Ls = 191–197◦). The
observed temperatures are larger compared to predust storm case, although they are measured 1 hr ear-
lier in the morning. Also, the latitudinal temperature gradient is not as large in magnitude as it was during
the PEDE-2018 onset case (Ls = 181–189◦). Our model simulation using the M-GITM shows qualitative
agreement with the observations in terms of the trend of the latitudinal distribution but underestimated
the measurements by an average of about 40 K. Moreover, M-GITM temperatures also failed to simulate
the afternoon temperatures shown in Figure 3d, where the IUVS observed an average temperature of about
238 K compared to the simulated value of about 220 K. For this sampling period, M-GITM dust-driven
upwelling winds increase in magnitude from the equator toward 30◦ south latitude, in accord with an
enhanced meridional circulation (south to north) pattern owing to the dust storm. This yields relatively
constant ∼220 K temperatures from the equator to 30◦ (black dots).

The IUVS temperatures do show larger thermospheric temperatures during the global dust storm (Figures 3c
and 3d) as predicted by earlier model calculations (González-Galindo et al., 2015; Medvedev et al., 2013).
To confirm whether this warming is associated with the dust storm, we have plotted thermospheric tem-
peratures observed by IUVS during the nominal dust year of MY 33 (side segment data only; Date: 6
July 2016 to 21 August 2016; Orbit range: 3444–3694) in Figure 3 for the same solar longitudes as for the
PEDE-2018. Although local time and latitudinal coverage is not exactly similar during the two Martian years,
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we could still try to understand the temperatures difference between the two years. During the growth phase
(Ls = 191–197◦) of the PEDE-2018, the temperatures during the early dawn hours are similar in magnitude
to that of afternoon temperature measured during the MY 33 (mean temperature is ∼205). Given the diur-
nal cycle of thermospheric temperatures (Stone et al., 2018), the apparent similar temperatures are actually
indicating the possible thermospheric warming during the PEDE-2018. For the Ls = 208◦ (Figure 3d), the
PEDE-2018 temperatures are about 35 K larger than that during the MY 33. The local time difference (17 hr
for PEDE-2018 and 11 hr for MY 33) cannot fully justify this difference because thermospheric temperature
are supposed to be of the same magnitude during these times (Stone et al., 2018). The solar ionizing flux
was about 15–20% larger during the MY 33, which should have resulted in higher thermospheric temper-
atures during the MY 33 not the opposite as we have seen in this analysis. Although comparative studies
between MY 33 and MY 34 would have been more helpful, if latitudinal and local time coverage had been
similar, however, the available observations do suggest that the thermospheric warming may be associated
with PEDE-2018.

González-Galindo et al. (2015) showed that the circulation gets damped at the thermopsheric altitudes by
the development of the dust storm (which modifies the zonal and meridional winds at high altitudes), which
in turn can modify the thermospheric temperatures. For simulations carried out for MY 25, which occurred
at similar solar longitude as the PEDE-2019, González-Galindo et al. (2015) reported a strong increase in
the temperature at latitudes below 60◦ and decrease in temperature at polar latitudes during the peak of the
storm. This scenario is similar to what IUVS observed during the peak of the PEDE-2019, where we observed
higher temperatures near equator region. For MY 28, González-Galindo et al. (2015) showed significant
increase in exobase temperatures at all latitudes except at very high northern latitudes with the onset of dust
storm. This increase in the exobase temperature in their simulation was not related to the solar forcing.

We also modeled the temperature using the climatological dust (outside any dust event) for both growth
phase and peak of the PEDE-2018, which are shown in Figure 3 with gray symbols. The computed temper-
atures are up to ∼10 K warmer for climatology dust, indicating that PEDE-2018 dust opacities are actually
making the thermosphere colder in our M-GITM simulation. This is not in agreement with the earlier model
calculations. The M-GITM model failed to capture the changing IUVS temperature versus latitude trends at
170 km during the PEDE-2018 event. This is most probably due to the lack of coupling between the lower
and upper atmosphere via a gravity wave momentum and energy deposition mechanism that is presently not
included in the M-GITM simulations. This mechanism is likely responsible for modifying winds and temper-
ature distributions in the Mars thermosphere, especially at middle-to-high latitudes (e.g., González-Galindo
et al., 2015; Medvedev et al., 2013, 2015), thus affecting the MGITM model ability to accurately capture the
dust storm thermospheric temperatures.

Withers and Pratt (2013) have studied the effect of dust storm on Mars' lower and upper atmosphere.
Although they did not report any temperature observations, Withers and Pratt (2013) had inferred possi-
ble cooling in the upper atmosphere based on the apparent decrease in the density enhancement factor
between 130 and 160 km using the MGS accelerometer data. A very recent study by Liu et al. (2018) has
shown possible increase in thermospheric temperature related to local dust storms in MY 32 and MY 33.
Elrod et al. (2019) have shown NGIMS densities and derived temperatures throughout the time evolution
of the PEDE-2018 storm and reported slightly higher scale heights during the onset of the PEDE-2018, but
no dayside temperatures were reported during the peak dust storm. This in situ view is not easily compared
to the remote IUVS temperatures described in this paper due to difference in the observing geometry. The
latitude and altitudes in the NGIMS observations are coupled and cannot be compared to latitudinal temper-
ature distribution of IUVS. Due to the sparse and small number of Mars thermospheric observations during
the global dust storm, we rely more on the GCMs to understand the thermospheric response to the PEDE.
More observations of thermospheric temperatures in future would be really helpful in assessing the impact
of the global dust storm from lower to upper atmosphere.

5. Summary and Conclusion
We present IUVS observations of thermospheric temperatures before and during the PEDE-2018. Our anal-
ysis shows that the two-cell meridional circulation pattern may be operating before the PEDE-2018, which
resulted in the cooling of lower/middle latitudes and warming at higher latitudes. The comparison between
the observed temperatures during PEDE-2018 and MY 33 indicates that there is warming associated with the
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dust storm. The three-dimensional GCM (M-GITM) calculations were able to reproduce the temperatures
during the dust storm onset but failed to fully capture the temperature trend during the growth phase of the
PEDE-2018. This could be due to the lack of any treatment of gravity waves in the MGITM. The extended
spectral nonlinear gravity wave parameterization of Yiǧit and Medvedev (2009) and Yiǧit et al. (2015) has
recently been implemented within M-GITM and will be applied to updated PEDE-2018 simulations to carry
this research forward. In addition, heat balance terms can be carefully examined for M-GITM simulations,
yielding needed information about the role of the circulation in regulating the temperature structure. We
also plan to perform detailed modeling by the LMD-GCM for the dust storm. The comparative study by two
models may provide us better insight about the underlying circulation pattern in the upper atmosphere in
the case of PEDE-2018 dust storm event.
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