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Summary

Background Pachyonychia congenita (PC), a rare genodermatosis, primarily affects
ectoderm-derived epithelial appendages and typically includes oral leukokeratosis,
nail dystrophy and very painful palmoplantar keratoderma (PPK). PC dramatically
impacts quality of life although it does not affect lifespan. PC can arise from
mutations in any of the wound-repair-associated keratin genes KRT6A, KRT6B,
KRT6C, KRT16 or KRT17. There is no cure for this condition, and current treatment
options for PC symptoms are limited and palliative in nature.
Objectives This review focuses on recent progress made towards understanding the
pathophysiology of PPK lesions, the most prevalent and debilitating of all PC
symptoms.
Methods We reviewed the relevant literature with a particular focus on the Krt16
null mouse, which spontaneously develops footpad lesions that mimic several
aspects of PC-associated PPK.
Results There are three main stages of progression of PPK-like lesions in Krt16 null
mice. Ahead of lesion onset, keratinocytes in the palmoplantar (footpad) skin
exhibit specific defects in terminal differentiation, including loss of Krt9 expres-
sion. At the time of PPK onset, there is elevated oxidative stress and hypoactive
Keap1–Nrf2 signalling. During active PPK, there is a profound defect in the abil-
ity of the epidermis to maintain or return to normal homeostasis.
Conclusions The progress made suggests new avenues to explore for the treatment
of PC-based PPK and deepens our understanding of the mechanisms controlling
skin tissue homeostasis.

What’s already known about this topic?

• Pachyonychia congenita (PC) is a rare genodermatosis caused by mutations in

KRT6A, KRT6B, KRT6C, KRT16 and KRT17, which are normally expressed in skin

appendages and induced following injury.

• Individuals with PC present with multiple clinical symptoms that usually include

thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts

and oral leukokeratosis.

• The study of PC pathophysiology is made challenging because of its low incidence

and high complexity. There is no cure or effective treatment for PC.
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What does this study add?

• This text reviews recent progress made when studying the pathophysiology of PPK

associated with PC.

• This recent progress points to new possibilities for devising effective therapeutics

that may complement current palliative strategies.

Pachyonychia congenita (PC; OMIM #1672000 and 167210)

is a rare genodermatosis with a collection of symptoms pri-

marily affecting ectoderm-derived appendages; it includes oral

leukokeratosis, nail dystrophies, sebaceous cysts, natal teeth

and palmoplantar keratoderma (PPK). While PC does not

impact lifespan, it dramatically impacts quality of life for

affected individuals. For instance, individuals with PC experi-

ence severe plantar pain from PPK lesions daily, often making

everyday tasks difficult. There is currently no known cure or

effective therapeutics for the treatment of PC.1

PC can arise from autosomal dominant mutations in any of

five keratin genes including KRT6A, KRT6B, KRT6C, KRT16 or

KRT17.1–5 These keratins are normally expressed in epithelial

appendages and are otherwise robustly inducible, e.g. after

injury or exposure to environmental stresses, together account-

ing in part for the clinical presentation of this disorder. Most

PC-causing mutations are missense alleles, with occasional

small insertions or deletions in the keratin coding sequence.

Until recently, two major types of PC – type 1 (Jadassohn–
Lewandowsky6) and type 2 (Jackson–Lawler7) – were recog-

nized based on their prevalent clinical features. Nowadays, five

subtypes of PC are recognized based on genetic aetiology – for

example, PC caused by a KRT6A mutation corresponds to the

PC-K6a subtype. Owing in part to the heterogeneity in the

clinical presentation of PC (even among patients with very

similar alleles), a definitive diagnosis can be ascertained only

through sequencing of these keratin genes.1,8,9

The Pachyonychia Congenita Project

The Pachyonychia Congenita Project is a U.S. public charity

that was founded in 2003 and has evolved into a life-changing

resource for individuals with PC and for clinicians and

researchers interested in this condition. This organization con-

nects individuals with PC and their families to others with this

condition, and to clinicians, translational and basic science

researchers. The Pachyonychia Congenita Project provides

assistance to individuals with PC to attend support meetings

and qualify for genetic testing. Further, the Pachyonychia Con-

genita Project is home to the International Pachyonychia Con-

genita Research Registry (IPCRR), which gathers extremely

valuable data from questionnaires, photos and notes on genet-

ically confirmed PC cases. As of January 2019, the IPCRR

includes 864 genetically confirmed cases of PC in 49 coun-

tries. This PC registry has evolved into a transformative

resource for patients, clinicians and researchers working

together towards understanding this disorder and developing

effective therapeutics. Finally, the Pachyonychia Congenita

Project plays a lead role in fostering basic and clinical research

on PC. More information about the Pachyonychia Congenita

Project and how to get involved can be found on the publicly

available website: www.pachyonychia.org.

Asserting a focus on palmoplantar
keratoderma

While individuals with PC present with many symptoms of sig-

nificance, PPK is highly penetrant and reportedly the most debil-

itating (Fig. 1a).1 Virtually all individuals with PC (> 90%1)

present with PPK lesions restricted primarily to pressure points

in the palmar and/or plantar epidermis and consisting of dra-

matic epidermal thickening and hyperkeratosis.3–5,10 PPK lesions

are debilitating in part because of the extreme pain associated

with them.11–13 Interestingly, these lesions do not display signs

of keratinocyte fragility and/or lysis. The latter represents a pre-

dominant element in epidermolysis bullosa simplex (EBS), a

genetically determined skin blistering condition caused by muta-

tions in either KRT14 or KRT5.14–17 Keratinocyte fragility is also a

dominant pathophysiological feature in epidermolytic PPK,

which is often caused by mutations in KRT9,18 the major differ-

entiation-specific keratin in the volar epidermis.19,20 The greater

complexity of keratin gene expression in the volar epidermis

likely contributes to maintain keratinocyte structural integrity in

spite of mutations in individual genes such as KRT6A-C, KRT16

and KRT17. That said, the pathophysiology of PC-associated PPK

is only partially understood at present, reflecting significant limi-

tations related to the low incidence of this orphan disease and

the severe pain associated with these lesions.21,22 Accordingly,

there is no effective treatment for PC-based PPK. The current

standard of care for PPK consists of routine removal of calluses

followed by treatment with moisturizers (see below for

details).23 A deeper understanding of the pathophysiology of

PPK might spearhead the development of effective therapeutics

for individuals with PC and also inform researchers, clinicians

and drug developers on other genetic and clinical subtypes of

PPK (Fig. 1b). This text focuses on recent progress made in deci-

phering the pathophysiology of PC-associated PPK lesions.

A short primer on the nomenclature of
pachyonychia congenita-associated keratin
genes

The original catalogue of human keratin proteins devised by

Moll et al.24 already recognized the existence of K6 as a type II
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keratin, and of K16 and K17 as type I keratins. However, the

true diversity of keratin genes and proteins was underesti-

mated until the advent of whole-genome sequencing efforts,25

which necessitated a revision of the Moll nomenclature.26 As

per the internationally accepted nomenclature, human genes

are designated using upper-case lettering (e.g. KRT16) and

mouse genes are designated using lower-case lettering (e.g.

Krt16). The multiplicity of K6 sequences was originally uncov-

ered in the human.27 Currently, we know of two functional

genes in the mouse, Krt6a and Krt6b,28 and three functional K6

genes in the human, KRT6A, KRT6B and KRT6C.2,29 In contrast,

a single gene codes for each of K1630,31 and K17 proteins32,33

in the human and mouse genomes. The high degree of con-

servation known to apply to orthologous keratin genes in the

mouse and human, in terms of sequence features and regula-

tion, applies to the PC-associated keratin genes.29,31,32 This

information is relevant to discussing the utilization of trans-

genic mouse models to study keratin mutation-based human

conditions such as PC.

Lessons learned from transgenic mouse
models

As there are no in vitro human cell culture models that can be

used to investigate the cellular and molecular mechanisms

underlying PPK pathophysiology or screen potential therapeu-

tics, researchers have relied on the use of transgenic mouse

models (summarized in Table 1) to study PC and PPK.34

Among the models available, the Krt16 null mouse strain is the

only one that spontaneously develops footpad skin lesions

mimicking PC-associated PPK lesions. Characterization of Krt16

null mice has revealed three phases in PPK, each with a some-

what unique molecular signature: pre-PPK, PPK onset and

active PPK (Fig. 2).

In 2-week-old Krt16 null mice, corresponding to the ‘pre-PPK

stage’, footpad skin keratinocytes exhibit defects in selective

aspects of terminal differentiation. At this early time point there

are minimal alterations to the skin tissue histology but, already,

a dramatic loss of K9 (Krt9/K9) expression has occurred, which

Structural 
proteins

Terminal 
differentiation 
effectors

Ion channels 
& connexins

Others

Adhesion 
proteins

Gene family Genes PPK subtype

KRT1, KRT9, 
KRT6, KRT14, 
KRT16, KRT17

DSP, PKP1, 
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SERPINB7, LOR

TRPV3, AQP5, 
GJB2, GJA1

AAGAB, Slurp1, 
CARD14, WNT10A, 
RHBDF2, CTSC

Pachyonychia congenita, focal nonepidermo-
lytic PPK, epidermolytic PPK, Naegeli–Fran-
ceschetti–Jadassohn syndrome

McGrath syndrome, keratosis palmoplantaris 
striata, Naxos disease

Nagashima–type PPK, Vohwinkel syndrome, 
ichthyosiform variant

Olmstead syndrome, Bothnian PPK, 
oculodentodigital dysplasia, keratitis–ichthyo-
sis–deafness

Type I punctate PPK, Papillon–Fefevre 
syndrome, pityriasis pubra pilaris, tylosis with 
oesophageal cancer, Schopf–Schulz–Passarge 
syndrome, odonto–onycho–dermal dysplasia
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  - Epidermal thickening
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  - Minimal tissue fragility

Refs.

1–5,18
89–91

92–96

97,98

99–104

105–
111

(a)

(c)

(b)

Fig 1. PPK, a genetically heterogeneous disorder. (a) Photograph of PC-based PPK lesions from an individual with a KRT16 L124R mutation.

Source: Pachyonychia Congenita Project (www.pachyonychia.org). (b) Table summarizing the diversity of genes which, when mutated, can elicit

a PPK clinical presentation. Various clinical subtypes of PPK are accounted for.18,89–111 (c) Schematic of select mutations in K16 protein that are

causative for PC, FNEPPK, or both PC and FNEPPK. K16 exhibits the tripartite domain structure shared by all IF proteins, with an N-terminal

‘head’ domain, central a-helical ‘rod’ domain and C-terminal ‘tail’ domain. The central rod domain is comprised of heptad repeat-containing a-
helical coils (1A, 1B, Coil 2) separated by non-heptad repeat linkers (L1 and L12). Many attributes of the central rod domain (red bars) are highly

conserved and represent a signature element among IF proteins. Representative mutations that are causative for FNEPPK are in blue text, mutations

causative for PC are in gold text, and mutations that are causative for both FNEPPK and PC are in purple text. FNEPPK, focal nonepidermolytic

PPK; IF, intermediate filament; K16, keratin 16; PC, pachyonychia congenita; PPK, palmoplantar keratoderma.
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then persists throughout lesion progression.35 Krt9 occurs exclu-

sively in differentiating keratinocytes of volar skin and repre-

sents a predominant marker gene in this setting.19,20,36 In

contrast to Krt9, several differentiation markers appear to be

upregulated in Krt16 null footpad skin, potentially as a compen-

satory mechanism.35 While this partial defect in terminal differ-

entiation is currently unexplained,35 it occurs independent and

ahead of the oxidative stress phenotype observed at a later stage

of progression of PPK-like lesions in this mouse model.35,37

In 1-month-old Krt16 null mice, corresponding to ‘onset

stage’ of PPK-like lesions, footpad skin epidermis displays sev-

eral features of oxidative stress, including decreased levels of

the master cell antioxidant glutathione and decreased expres-

sion of glutathione synthesis genes compared with WT con-

trols. Keap1–Nrf2 signalling, a central regulator of the cellular

antioxidant response, is markedly attenuated at that time while

Nrf2 itself, a transcription factor, is upregulated though inef-

fective in Krt16 null footpad skin (likely reflecting an attempt

to restore redox homeostasis). While difficult to ascertain

given restricted access to plantar skin biopsies from patients

with PC, there is evidence of reduced Nrf2 activity in PC–PPK
lesions of individuals with KRT16 mutations.37

In 2-month-old Krt16 null mice, corresponding to an ‘active

stage’ of PPK, there is a profound defect in the ability of foot-

pad skin to maintain or return to normal tissue homeostasis.

By this time all Krt16 null mice have spontaneously developed

PPK-like lesions on their paws, and while these lesions prefer-

entially arise in areas exposed to the substratum and thus

experience mechanical stress, they are not associated with ker-

atinocyte fragility.38,39 At a molecular level, the Krt16 null

footpad lesions exhibit a gross misregulation of many danger-

associated molecular patterns (DAMPs) and barrier homeosta-

sis genes, which mimics human PC-based PPK lesions.39

Lessons learned from computational
endeavours

Along with targeted molecular analyses, computational analysis

of genomic datasets has also provided significant insight into

the pathophysiology of PC-based PPK. Systems genetics has

been used to explore the role of K16 in regulating the skin’s

response to stress. Re-analysing a powerful systems genetics

dataset that related the risk of developing skin tumours to the

regulation of skin inflammation and barrier function40

revealed a tight link between Krt16, skin barrier genes and

innate immunity effectors including DAMPs.39,41 Moreover, in

this dataset, Krt16 expression is significantly correlated with

expression of barrier homeostasis and inflammation genes in

tail skin, both at baseline and in response to 12-O-tetradeca-

noylphorbol-13-acetate (TPA), which acts as a chemical irri-

tant.41 The discovery that Krt16 belongs to a network of

barrier homeostasis genes pointed to a role for Krt16 in cali-

brating the skin’s response to barrier-compromising stresses,39

which converged nicely with the phenotype of PPK-like

lesions exhibited by Krt16 null mice. These efforts lent strong

support to the notion that a better understanding of how K16

calibrates the skin’s stress response could be applicable to PC

as KRT16 expression is often elevated in PC-based PPK lesions.

The availability of genome-wide surveys of gene expression

from both Krt16 null footpad skin lesions35 and PPK lesions

from individuals with PC22 has provided an excellent opportu-

nity to further test the strengths and limitations of the Krt16

null mouse as a valid model for PC-based PPK. Merging the

human PPK datasets with the murine Krt16 null footpad lesions

dataset, based on human–mouse orthologous gene pairings,

enabled multiple computational analyses.35 Pairwise compar-

isons of global transcriptional changes in Krt16 null footpad

Table 1 Mouse models with phenotypes that are potentially relevant to pachyonychia congenita (PC)

Year Mouse model Genetic modification Main phenotype(s) References

1996 Krt6aD21P Deletion of 52 amino acids

(residues 125–176) between
head and 1A helix domain

Intraepidermal blistering 82

1999 Krt6a transgenic Truncation deleting the 2B
region of the central rod domain

Lethal blister or alopecia 83

1999 Krt6a transgenic Replacement of E2 by HK1-tag Hyperkeratosis and late-onset alopecia 83

2000 Krt6a/Krt6b–/– Deletion of Krt6a and Krt6b loci Oral lesions 49,84

2000 Krt6a–/– Deletion of Krt6a loci Delay of reepithelialization
after wounding

85

2002 Krt17–/– Deletion of Krt17 locus Age- and strain-dependent alopecia 48

2005 Krt6a/Krt6b–/–; Krt17–/– Deletion of Krt6a, Krt6b and Krt17 loci Severe cell lysis in nail bed epithelium 86

2008 Krt75 knock-in Point mutation of codon N158
(corresponding to mutation

N171 in PC case)

Defects in hair shaft, nail fragility 87

2011 KRT6A N171K humanized skin Bioengineered skin equivalents derived

from individuals with PC with N171K
mutation engrafted onto immunodeficient mice

Acanthosis and epidermal blistering 88

2012 Krt16–/– Deletion of Krt16 locus Oral lesions, footpad lesions
resembling human PPK

38,47

PPK, palmoplantar keratoderma
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lesions and individual PC cases (three KRT6 cases, three KRT16

cases) generated statistically significant positive correlation val-

ues in all cases (Fig. 3a,b). Additionally, pairwise comparisons

of global transcriptional changes further highlight the high

degree of heterogeneity between individual cases involving

different keratin mutations, and between cases with the same

mutated keratin allele (Fig. 3c). Altogether these comparisons

provided a strong case that lesional Krt16 null mouse footpad

skin mimics PC-associated PPK lesions at a global gene expres-

sion level, reinforcing and extending the notion that the Krt16

null mouse is an appropriate model for the study of pathogen-

esis of PC-associated PPK lesions.

A role for keratin imbalances and genetic
background in the pathophysiology of
palmoplantar keratoderma

Because the presentation of PC symptoms varies greatly

between individuals even with similar or the same mutated

keratin allele,1,42–44 there is likely a role for genetic back-

ground and gene modifiers in the pathophysiology of this

condition. Remarkably, similar alleles in KRT16 (N125S and

R127C) can elicit a presentation of focal nonepidermolytic

PPK vs. full-blown PC (Fig. 1c),44–46 suggesting that the con-

sequences associated with alterations in KRT16 are subject to

modifier gene(s) effects. Consistent with this notion, despite

the immunological differences between mice and humans,

several phenotypic aspects of Krt16 null mice including the

PPK-like lesions are modestly impacted by genetic strain back-

ground.47 Interestingly, select phenotypic traits in Krt17 null

mice48 and Krt6a/Krt6b double-null mice49 also exhibit a

dependence on genetic background.

In addition to genetic background, imbalances in keratin

expression also appear likely to play a significant role in the

pathophysiology of PC-based PPK. For example, the differenti-

ation-specific keratins KRT2 and KRT9 are both decreased in

Krt16 null footpad lesions and human PC-based PPK.22,35,50 Of

note, mice that are double-null for the differentiation-specific

2 weeks
Pre-PPK

4 weeks
Onset of PPK 

8 weeks
Active PPK

Altered terminal 
differentiation

   

Loss of Krt9/K9 
expression

Oxidative stress
   

Hypoactive 
Keap1–Nrf2 

signalling

Impaired barrier 
homeostasis

   

Inflammation
   

Elevated DAMPs

(a)

(b)

Derm

Epi
SC

Derm

Epi

SC

Derm

Epi
SC

Age of Krt16 null mice

Restore Nrf2 
activity via topical 
application of SF 

(or SF+DPN)

Restore barrier 
homeostasis by 
targeting stress 
response path-

ways

(c)
Restore Krt9/K9 
expression via 
stimulation of  

terminal 
differentiation

Fig 2. Development of PPK-like lesions in Krt16 null footpad skin proceeds in three stages: pre-PPK (at 2 weeks of age), onset of PPK (at 4 weeks) and

active PPK (at 8 weeks). (a) Representative histology of Krt16 null footpad skin at 2, 4 and 8 weeks of age. At 2 weeks, the epidermis shows a normal

thickness and overall architecture but, on closer inspection, alterations including the abnormal appearance of the granular layer, crowding of basal

keratinocytes, and a decreased nuclear aspect ratio of basal keratinocytes can be seen. At 4 weeks, prior to macroscopic appearance of lesions, mild

epidermal thickening is observed. By 8 weeks, there is dramatic thickening of the living epidermis (Epi) and the stratum corneum (SC), infiltration of

immune cells, and limited suprabasal cell lysis. The dotted line shows the epidermal–dermal junction. Scale bar = 100 lm. Images acquired using a

Zeiss microscope with Apotome attachment and processed using Zen 2�3 software. (b) Summary of key molecular changes that occur at 2, 4 and 8

weeks of age in Krt16 null footpad skin.35,37–39,47,77 (c) Potential therapeutic interventions for each stage of lesion development.35,37,39,77 DAMPs,

damage-associated molecular pattern molecules; Derm, dermis; DPN, diarylpropionitrile; PPK, palmoplantar keratoderma; SF, sulforaphane.
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Krt2 and Krt10 develop a keratoderma-like phenotype on foot-

pad skin51 while mice null for Krt9 develop an epidermolytic

PPK that closely resembles the corresponding human disor-

der.36 Aside from these (and other) alterations,22,35 the

expression of KRT6A, KRT6B, KRT16 and/or KRT17 (including

the mutated alleles) is dramatically increased in PC-based PPK,

as expected given the stress- and wound-sensitive regulation

of these genes.22 Given the knowledge that K6, K16 and K17

proteins have pleiotropic and context-dependent proper-

ties,35,37,39,52–56 such alterations in keratin protein levels and

balance among them are poised to have a striking impact on

the development and evolution of PPK lesions.

Pathophysiological unknowns in palmoplantar
keratoderma and other clinical features of
pachyonychia congenita

While all clinical manifestations associated with PC are

worth a deep investigation, two stand out as remaining par-

ticularly intriguing at a cellular and molecular level. One is

KRT6a
N171K #1

KRT6a
N171K #2

KRT6b
E492K

Krt16 null

KRT6a
N171K #1

KRT6a
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R127C #2
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0·400·17 0·36

0·28 0·28 0·25

0·13 0·19 0·19

0·19

0·290·13

0·180·190·081

Krt16 null

0·18

0·480·12

0·300·290·062

KRT16
R127C#1

KRT16
R127C #2

KRT16
R127G

Correlation between mouse Krt16 null paw skin 
lesions and human PPK lesions (KRT6 cases)

Correlation between mouse Krt16 null paw skin 
lesions and human PPK lesions (KRT16 cases)

Correlation between human KRT6- and 
KRT16-based PPK lesions

Highest Correlation: 
K16R127C cases (R = 0·48)

Lowest Correlation: 
K6aN171K #1 and K16R127G (R = 0·13)

Purple text: P-values

2·80e–1322·67e–1356·41e–27

5·34e–63

9·881e–137

0·000 0·000

0·0000·0006·72e–16

3·09e–54

2·43e–122

2·54e–64 1·56e–136 2·75e–135

2·38e–313 4·79e–311 2·45e–257

7·09e–120 0·000 0·000

Guide

(a)

(c)

(b)

Fig 3. Correlation of transcriptional changes between Krt16 null footpad lesions and human PC-based PPK lesions. (a,b) Correlation coefficients (R)

calculated from pairwise comparisons of microarray data from Krt16 null footpad lesions35 and human PC-based PPK lesions22 resulting from

mutations in KRT6 (a) or KRT16 (b). (c) Correlation coefficients calculated from pairwise comparisons between individual cases of PC-based PPK

with either KRT6 or KRT16 mutations. An R-value of –1 would convey perfect negative correlation, whereas an R-value of 1 conveys perfect

correlation between samples. P-values for each correlation are denoted in purple text underneath the corresponding R-values. Figure adapted from

Zieman et al.35 PC, pachyonychia congenita; PPK, palmoplantar keratoderma
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the occurrence of individual or multiple cysts (steatocystoma

multiplex; see OMIM entries #184500 and #184510) in

patients with PC, which are benign fluid-filled cysts believed

to originate from sebaceous glands and which can occur all

over the body and arise preferentially in individuals with

mutations in KRT17.57–59 These cysts often require surgical

drainage or removal as their rupture and/or inflammation

pose a risk of infection and can be painful for patients.1

Another intriguing manifestation is natal teeth, which refers

to presence of teeth in newborns and is also preferentially

associated with mutations in KRT17.1,59 Natal teeth are soft,

friable and prone to caries, and are usually lost within the

first few months of life.1,60–63 Of note, Krt17 is expressed at

a very early stage of the development of ectodermal appen-

dages, including the tooth.32 Recent studies have shown that

genetic variants in the PC-associated keratin genes increase

susceptibility to tooth decay.64 There is currently no model

to study the cystic skin lesions and phenomenon of natal

teeth associated with PC.

Limitations of past and current therapeutic
strategies for pachyonychia congenita

PC-associated PPK has been treated with a combination of ker-

atolytics, pain medication, orthotics and mechanical removal

of calluses.23,65 While the keratolytics salicylic acid and urea

soften calluses, they cannot control the significant overgrowth

associated with most cases of PC–PPK. Pain medication and

custom orthotics can partially alleviate discomfort, but do not

treat the underlying PPK. Routine mechanical removal of cal-

luses by filing, grinding or cutting has been the most satisfy-

ing treatment for individuals with PC.23 Significant efforts are

currently under way to develop new and effective therapeutics

for the management of these lesions. Two distinct strategies

are highlighted here. The first strategy involves the develop-

ment of short interfering RNAs (siRNAs) that specifically tar-

get mutant keratin alleles and reduce their expression. It has

shown some promise in a trial of the siRNA TD101, which

targets the KRT6A N171K allele, albeit in a single

patient.21,66,67 In its current form, this approach suffers from

the limitation that delivery of such nucleic acid-based thera-

peutics requires intradermal injections that cause intense pain

to the patient. The generation of self-delivery siRNAs for

mutant keratin alleles improves the uptake of siRNAs by ker-

atinocytes68 but does not improve penetration through the

stratum corneum. Accordingly, a method to deliver siRNA-

based therapeutics that involves topical application of thera-

peutic agents is sorely needed.69

The second strategy to treat PC-based PPK consists of drug-

based interventions aimed at reducing mutant keratin gene

expression. The mammalian target of rapamycin (mTOR) inhi-

bitor rapamycin/sirolimus suppresses K6a expression and,

when taken orally, improves PC symptoms.70 However, severe

side-effects associated with systemic rapamycin treatment pre-

vent it from being a viable long-term treatment for PC.

Recently, topical sirolimus treatment of two patients with

K6a-based disease improved PC–PPK without the toxicity of

systemic treatment71 but requires additional studies to confirm

the safety and efficacy of this treatment. Oral retinoids success-

fully reduced callus thickness in some individuals with PC, but

like rapamycin, adverse side-effects including increased pain

prevent oral retinoids from being a viable long-term treatment

for PC.72 Statins can also downregulate KRT6A expression,73

but so far only oral rosuvastatin has been shown to be effec-

tive in a single case of K6a-based PC.74 Finally, injections of

botulinum toxin (Botox) into plantar calluses improved plan-

tar blistering and pain associated with PC–PPK lesions,75 but

injections are costly and must be performed under anaesthesia.

While each of these drug-based interventions provides some

relief, none of them in present form provide viable long-term

treatment strategies for PC-based PPK.

Opportunities for novel therapies

A promising opportunity to complement ongoing efforts to

develop effective therapeutics for PC-based PPK would be to

target stress response pathways and/or pathways capable of

promoting the restoration of normal epidermal differentiation.

In Krt16 null mice, topical treatment with the small natural

molecule sulforaphane (SF), which activates Nrf2 signalling by

modifying Keap1,76 can prevent PPK-like lesions in male

mice.37 Addition of the ER-b agonist diarylpropionitrile to the

SF treatment regimen is necessary for successful activation of

Nrf277 and prevention of PPK-like lesions in female mice. SF is

available in pure form or as part of broccoli sprout extract,78

can be safely delivered topically, and has shown therapeutic

promise in the treatment of EBS arising from mutations in

either keratins K5 or K14.79,80 The sexual dimorphism in

response to SF treatment in mice is a reminder that sex-based

differences are important considerations when developing ther-

apeutics for any disease.81 Whether there is a sexual dimor-

phism in the setting of PC remains an open question.

Another strategy worth considering is to normalize terminal

differentiation in volar skin. In male Krt16 null mice treated

with SF prior to lesion onset, restoration of Nrf2 activity coin-

cided with induction of Krt9 expression.35 Additional efforts

should be focused on testing this specific strategy. In the end,

the prospect of combining treatment modalities that act to

prevent and/or treat active lesions represent an attractive pro-

spect for the treatment of a condition featuring the complexity

of PC-associated PPK.

Future directions

PC is a monogenic skin disease with a complex, polygenic

presentation. Despite the plethora of challenges that arise in

studying this disease, the use of transgenic mouse models and

of computational biology has been invaluable and has pro-

vided novel insight into the pathophysiology of PC-based PPK,

one of the most debilitating symptoms for individuals with

PC. The study of PPK pathophysiology not only paves the way

for researchers to devise therapeutics to treat PC, but also
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provides an opportunity to better understand the mechanisms

that control skin tissue homeostasis.
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