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Web Appendix A Conditional Distributions and Poste-

rior Computation

In our AFT model for group correlation structure, most of the conditional distributions are
available explicitly, hence we can employ Gibbs sampling (Gelfand et al., 1990) technique to
explore the posterior distribution. In particular, the complete conditional distributions of β,
σ2, and bP are given by:

β|w, λ, τ, σ2 ∼N(A−1(XTw +D−1bP ), σ2A−1)

σ2|w, β, λ, τ ∼ Inverse Gamma
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where, A = (XTX +D−1), D = τ 2diag
(
λ2

11, . . . , λ
2
pr

)
, and bP = (bP1, . . . , bPp)

′.
Due to the nature of the prior on λ and τ , straightforward Gibbs sampling approach may

not be possible. An alternative approach, which is based on the idea of slice sampling (Neal,
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2003), has been discussed in the online supplement of Polson et al. (2014). It follows that,

π(λjk|βjk, τ, σ2) ∝ 1

λjk
exp
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2σ2

)
1

1 + λ2
jk

I(λjk > 0).

De�ning φjk = 1
λ2jk

and introducing a latent parameter ujk, the conditional posterior

distribution looks like,

π(ujk, φjk|βjk, τ, σ2) ∝ exp

(
−1

2

φjkβ
2
jk

τ 2σ2

)
I(0 < ujk <

1

1 + φjk
)I(φjk > 0).

Then the following scheme will be used to sample the posterior distribution of λ:

1. Sample ujk|φjk ∼ U(0, 1
1+φjk

).

2. Sample φjk|ujk, βjk, τ, σ2 ∼ truncated Exponential(
β2
jk

2λ2jτ
2σ2 )I(0, 1

ujk
− 1).

3. Plug back in λjk = 1√
φjk

.

Updating τ can be carried out in the similar fashion. We introduce a latent variable v
and let ξ = 1

τ2
to yield desired posterior samples:

1. Sample v|ξ ∼ U(0, 1
1+ξ

).

2. Sample ξ|v, βjk, λjk, σ2 ∼ truncated Gamma(pr+1
2
, 1

2σ2

∑r
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∑p
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jk

λ2jk
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v
− 1).

3. Plug back in τ = 1√
ξ
.

Finally, we update the censored responses from wik ∼ N
(∑p

j=1 xijkβjk, σ
2
)
lower trun-

cated at log t∗ik.
The Markov Chain Monte Carlo (MCMC) chain for simultaneous correlation among

groups and proteins (Section 2.3 in the main article) can be constructed extending the
strategies detailed above. We implement both types of correlation models along with original
horseshoe for a single log normal AFT model in R package hsaft and make them available
at https://github.com/arnabkrmaity/hsaft/tree/master/hsaft.

Web Appendix B Prediction of Survival Curve

When the interest is to predict the survival time of a new subject having covariate vector
xnew, the estimation of log survival time proceeds as,

log Tnew =

∫
w

∫
β

∫
λ

∫
τ

xT
new
βp(w, β, λ, τ, σ2|t∗, δ)dwdβdλdτdσ2
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with the corresponding MCMC estimate,

̂log Tnew =
1

M

M∑
m=1

xT
new
β(m)|λ(m), τ (m), (σ2)(m)

where M is the MCMC sample size.
In a very similar manner one obtains the estimated survival probability at time t0,

Ŝ(t0) = P̂r(T > t0)

=
1

M
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)
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]
.

Web Appendix C Impact of the Variance of the mean

hyperparameter

To demonstrate that the kidney tumor groups for each protein are correlated, we compute the
posterior correlation of β given in (2) using MCMC samples from the �rst chain. We consider
4 proteins� X1433EPSILON, X4EBP1, FOXO3A_pS318S321, DIRAS3, among which the
last two proteins were declared signi�cant by our analysis. Web Table S1 exhibits the
computed posterior correlations and one can note that the estimates are indeed high which
supports the argument in favor of correlated (or integrated) data analysis. Additionally, we
provide the posterior summaries such as trace plots of correlation between tumor groups for
the proteins X1433EPSILON, X4EBP1, FOXO3A_pS318S321, and DIRAS3 which indicates
of borrowing high correlation in the TCPA data. The plots are provided in Web Figure S2.
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Figure S1: Observed Kaplan-Meier plots for three tumor groups � KICH, KIRC, and KIRP.
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Table S1: Posterior correlation of tumor groups for proteins.

Protein KICH and KIRC KICH and KIRP KIRC and KIRP

X1433EPSILON 0.832 0.860 0.842
X4EBP1 0.886 0.892 0.885
FOXO3A_pS318S321 0.727 0.729 0.739
DIRAS3 0.701 0.708 0.725

In the following, we examine the variable selection behavior under the in�uence of the
choice of the variance σ2

P in (2) in the main article. To do this, we consider group-corr
method in the setting of Example 1 discussed before. We consider several values of the
hyperparameter σ2

P and compute the area under the ROC curve (AUC). Table S2 reports
the results. From these results one can conclude that the variable selection performance is
insensitive to the choice of the hyperparameter σ2

P .

Table S2: AUC under di�erent choices of σ2
P in (2) in the main article.

σ2
P AUC

0.25 0.638
0.50 0.630
0.75 0.642
1 0.634
5 0.649
10 0.648
15 0.648
20 0.637
25 0.653
30 0.646
40 0.634
50 0.631

Web Appendix D Consistency

In this section, we investigate the frequentist asymptotic behavior of parameter estimates
in an AFT log-normal model with a horseshoe prior on the regression coe�cients. Bradic
et al. (2011) have shown consistency of nonconcave penalized methods for non-polynomial
(NP) dimensional data with censoring in the framework of frequentist Cox proportional
hazards model. For high-dimensional linear regression models, posterior consistency for the
horseshoe prior and its variants have been shown by Armagan et al. (2013). In the context of
nonparametric AFT models, Wu and Ghosal (2008) established posterior consistency of the
regression function. A combination of these two results provides a consistency result for the
regression parameters in the present situation, which is summarized in the following corollary.
To be speci�c, we consider the AFT model prior formulation in (1) for a single tumor group
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with bPj = 0, and prove that the posterior distribution concentrates in neighborhoods of the
true parameter under certain conditions. The result for any bPj is beyond the scope of this
paper and is due for future research.

Let Π(β) denote the prior on β and qn be the number of nonzero elements in β0 where
β0 is the true value of β. We make use of the following assumptions,

1. p = o(n)

2. Let Λnmin and Λnmax be the smallest and the largest singular values of X, respec-
tively, where X denotes the design matrix. Then 0 < Λmin < lim infn→∞ Λnmin/

√
n ≤

lim supn→∞ Λnmax/
√
n < Λmax <∞

3. supj=1,...,rpn
|β0
j | <∞

4. qn = o(n/ log n)

Corollary 1. Under conditions (1), . . . , (4) and for the horseshoe prior Π(β), the posterior

of β is strongly consistent, that is, for any ε > 0, Π(β : ||β − β0|| > ε|t)
Prβ0 a.s.→ 0 as n→∞,

if

Π

(
β : ||β − β0|| < ∆

nρ/2

)
> exp(−dn)

for all 0 < ∆ < ε2Λ2
min/(48Λ2

max) and 0 < d < ε2Λ2
min/(32σ2) − 3∆Λ2

max/(2σ
2) and some

ρ > 0.

Proof. Under the log normal AFT model, for a given ε and for a continuous prior Π(β) on
β, Theorem 7.1 of Wu and Ghosal (2008) implies that, as n→∞,

Π

(
β : ||β − β0|| > ε|t

)
Prβ0 a.s.→ 0.

In addition, when Π(β) is the horseshoe prior given in (1) with bPj = 0, then the prior mass
condition is veri�ed by Theorem 1 of Armagan et al. (2013), which ensures that for any

ε > 0, Π(β : ||β − β0|| > ε|t)
Prβ0 a.s.→ 0 as n→∞, if

Π

(
β : ||β − β0|| < ∆

nρ/2

)
> exp(−dn)

for all 0 < ∆ < ε2Λ2
min/(48Λ2

max) and 0 < d < ε2Λ2
min/(32σ2) − 3∆Λ2

max/(2σ
2) and some

ρ > 0. This completes the proof.

Web Appendix E Kidney Tumors

We �t the Cox proportional hazard model and the log normal AFT model with randomly
selecting 10 covariates on the full dataset. We repeat this procedure 10 times and provide
the average AIC and BIC values in Table S3. We notice that goodness of �t criteria such
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Table S3: AIC and BIC for Cox proportional hazard model and log normal AFT model for
the kidney cancers proteomics data

Model AIC BIC

Cox 1895.847 1946.564
AFT 1658.371 1709.089

as AIC and BIC are smaller for the log normal AFT model than those of of the Cox model.
This implies that the AFT model provides a better �t at least on the subsets of the data.

Cross validation is a widely known method to test the model prediction performance. In
Bayesian statistics a similar technique was developed by Gelfand et al. (1990) based on the
conditional predictive ordinate (CPO). For the i-th observation yi = log ti, this is de�ned
by CPOi = f(yi|y−i) =

∫
f(yi|θ)π(θ|y−i)dθ, where y−i = y \ {yi}. Then the log pseudo

marginal likelihood (LPML) is constructed based on CPO as LPML = log
∏n

i=1 CPOi. By
construction, a model with higher LPML is preferred. In a time to data analysis setting
LPML has been routinely used, for example, see Ibrahim et al. (2002, 2005). When compared,
the LPML for our proposed group-corr method is higher than when the regressions are �tted
with in each kidney cancer group (Table S4). This implies that the proposed method provides
a better �t to the data with respect to the cross validation technique such as LPML.

Table S4: LPML results for TCPA kidney cancer data.

Method LPML

local -3052.78
group-corr -1494.08

Web Appendix F Tumors in Female Body

There exist at least 4 types of tumors � Breast invasive carcinoma (BRCA), Ovarian serous
cystadenocarcinoma (OV), Uterine Corpus Endometrial Carcinoma (UCEC), and Uterine
Carcinosarcoma (UCS), which are related to female body only. So the interest is to jointly
analyze the protein data for these tumors and to �nd out the common proteins associated
with these tumors. Table S5 provides the estimated �gures of new cancer cases and deaths
caused by these tumors in 2017 in the United States. Based on available TCPA data, in
Figure S4, we plot the observed Kaplan-Meier plots of these tumors. The BRCA data has
871 samples, the OV data has 430 samples and the two Uterine cancers are consist of 436
and 48 samples respectively. All four groups have 189 proteins as before.

We apply our developed methodologies in this data analysis to recover the major proteins
causing the cancers in female body. After running 4 MCMC chains the mean IBS produced
by group-corr method and all-corr method coincides at 0.170 while the same due to the local
method is 0.430 indicating the better predictive ability of the correlation structures. For
simplicity, again, we carry out the following analyses for group-corr method only because
both correlation structures have same IBS.
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Table S5: Estimated number of new Cancer Cases and Deaths in US, 2017 (American Cancer
Society 2017 report).

Tumor Cases Deaths

Breast invasive carcinoma 252,710 40,610
Ovarian serous cystadenocarcinoma 22,440 14,080
Uterine Corpus 61,380 10,920

In Figure S5, we depict the posterior estimates of the protein e�ects for local and group-
corr methods respectively. Next we identify top 14 signi�cant proteins which cause the
cancer in a female body using the method described in Section 3.1 in the main article. We
run 4 MCMC chains and the selected proteins for all 4 chains are listed in Table S6. Note
that, some of the proteins (e.g. FOXO3A_pS318S321, DIRAS3, SF2) are also signi�cant
related to kidney cancers. Nevertheless, Taylor et al. (2015) provided a detailed review
how FOXO3A has being targeted for breast cancer therapeutics. Moreover, Levanon et al.
(2014) suggested that the same FOXO3A should be targeted for ovary cancer therapeutics.
Similar conclusions have been drawn by Myatt et al. (2010) for uterine cancers. Among other
selected proteins the possible e�ect of RAD51 has been discussed in Lose et al. (2006), in Hu
and Sun (2015), and in Thacker (2005) for breast cancer, for ovary cancer, and for uterine
cancers respectively. The association of other proteins for development and progression of
female cancers are also well studied in the literature.

Table S6: Selected top 14 proteins for female cancers for 4 MCMC chains.

Chain 1 Chain 2 Chain 3 Chain 4

DIRAS3 DIRAS3 DIRAS3 DIRAS3
FOXO3A_pS318S321 SF2 RAD51 FOXO3A_pS318S321
PI3KP85 SHC_pY317 DIRAS3 SF2
BAK BAK PI3KP85 SHC_pY317
RAD51 FOXO3A_pS318S321 FOXO3A_pS318S321 MTOR
SF2 PI3KP85 SHC_pY317 BAK
MTOR MTOR MTOR MSH2
PCADHERIN RAD51 BAK BCLXL
DIRAS3 PRDX1 PCADHERIN PEA15
RAPTOR PAI1 RAPTOR RAD51
SHC_pY317 CYCLINE2 BAX DIRAS3
MSH2 DIRAS3 SF2 KU80
CD31 RBM15 PAI1 SHC_pY317
BCLXL SF2 BCLXL PI3KP85
EGFR_pY1068 BCLXL KU80 SMAD4

To con�rm that the selected proteins are indeed important for the survival of the subjects
we carry out the following analysis. First, after �tting a log normal AFT model using these
protein expressions the IBS is computed which is 0.187 which is close to the IBS obtained
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by group-corr method. We also randomly select 14 proteins and run a log normal AFT
model using these proteins. After repeating this procedure the resulting mean IBS of these
models is 0.669 which is higher than 0.187 and higher than the original IBS 0.170 obtained
by group-corr method.

Web Appendix G Correlation Between Coe�cients of Two

Groups

In the following we derive the correlation between two tumor groups k and k′, k 6= k′, given
the prior speci�cation (1).

Var(βjk) =E{Var(βjk|bPj)}+ V ar{E(βjk|bPj)}
=E(λ2

jkτ
2σ2) + Var(bPj)

=λ2
jkτ

2σ2 + σ2
P .

Similarly, Var(βjk′) = λ2
jk′τ

2σ2 + σ2
P .

Cov(βjk, βjk′) =E{Cov(βjk, βjk′ |bPj)}+ Cov{E(βjk|bPj), E(βjk′ |bPj)}
=0 + Cov(bPj , bPj)

=Var(bPj)

=σ2
P .

This follows that, Corr(βjk, βjk′) = σ2
P/{(λ2

jkτ
2σ2 + σ2

P )1/2(λ2
jk′τ

2σ2 + σ2
P )1/2}.

Web Appendix H Correlation Between Coe�cients of Two

Proteins

While borrowing strength among groups can be achieved using the prior structure as dis-
cussed in Section 2.2, one can argue for similar assumption of correlations among proteins
that is the proteins are correlated for each individual. This can be accomplished by sim-
ple addition of a mean parameter in prior (1), βjk|λjk, τ, σ2∼ N(bPj + bGk, λ

2
jkτ

2σ2), and
bGk∼ N(0, σ2

G).
Here we derive the correlation induced by the prior speci�cation in Section 2.3. We note

that, Cov(βjk, βj′k) = σ2
G and Var(βjk) = λ2

jkτ
2σ2 + σ2

P + σ2
G. This follows that, Corr(βjk, βj′k) =

σ2
G/{(λ2

jkτ
2σ2 + σ2

P + σ2
G)1/2(λ2

j′kτ
2σ2 + σ2

P )1/2 + σ2
G}.

Web Appendix I Additional Simulations

In this section we consider additional simulation studies by keeping the same settings as in
Section for except set the e�ect size as 0.2 or -0.2 randomly. The area under the ROC curve
(AUC) results are given in Table S7, when we assume the independence among the groups.
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Table S7: Area under the ROC curves when groups are independent

Censoring Rate 35% 48% 76%

local 0.659 0.646 0.562
group-corr 0.690 0.668 0.577
all-corr 0.688 0.662 0.565
lasso 0.419 0.412 0.449

Table S8: Area under the ROC curves when groups are correlated.

Censoring Rate 35% 56% 76%

local 0.645 0.641 0.488
group-corr 0.699 0.680 0.586
all-corr 0.686 0.677 0.574
lasso 0.487 0.498 0.512

Furthermore, when we consider a correlation structure among groups then the results are
provided in Table S8. We notice that the results are consistent with those found in Section
4 i.e. the group-corr method continues to be superior among the methods considered.

Web Appendix J Integrated Brier Score

One way to measure the prediction accuracy is to plot the observed Kaplan-Meier curve
along with the Kaplan-Meier curve based on samples from the posterior predictive model
(see Banerjee et al. 2003). We take a step further to calculate Brier score (BS) intro-

duced by Graf et al. (1999), BS(t) = n−1
∑n

i=1

[
Ŝ(t|xi)2I(ti≤t∧δi=1)

K̂(ti)
+ (1−Ŝ(1|xi))2I(ti>t)

K̂(t)

]
, where

K̂(.) denotes the Kaplan-Meier estimate of the censoring distribution which is based on the

observations (ti, 1− δi), and Ŝ(.) stands for the estimated survival function. As the mathe-
matical form suggests, BS provides a numerical comparison between observed and estimated
survival functions. It has been shown useful to measure the goodness of �t of a survival
model (Hothorn et al., 2006; Schumacher et al., 2007; Bonato et al., 2011). BS is de�ned
for each time point t, and hence can be added for the entire time range to obtain Integrated

Brier score, IBS = max(ti)
−1
∫ max(ti)

0
BS(t)dt. We can see that, models with smaller scores

are preferred. Following Van Wieringen et al. (2009), we compute IBS using ipred package.
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Figure S2: Trace plots of posterior correlations. The top panel shows the trace plots of
correlations between KIRC and KIRP, KICH and KIRC, and KICH and KIRP kidney tu-
mor groups respectively for X1433EPSILON protein. Similarly, the second, third, and the
fourth panels plots correlations for X4EBP1, FOXO3A_pS318S321, and DIRAS3 proteins
respectively.
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Figure S3: The upper panel plot is the posterior estimates of protein e�ects for di�erent
tumor groups when regressions are run for each group separately in Kidney cancer data.
The lower panel plot is same for our proposed group-corr method.
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Figure S4: Observed Kaplan-Meier plots for female tumors � BRCA, OV, UCEC, and UCS.
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Figure S5: The upper panel plot is the posterior estimates of protein e�ects for di�erent
female tumor groups when regressions are run for each group separately for female body
tumors. The lower panel plot is same for our proposed group-corr method.
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