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Genomic and Clinical Characterization of Stromal Infiltration 
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Brandon A. Mahal, MD 1; Mohammed Alshalalfa, PhD1,2; Shuang G. Zhao, MD3; Himisha Beltran, MD1;  

William S. Chen, MD 2; Fallon Chipidza, MD1; Elai Davicioni, PhD4; R. Jeffrey Karnes, MD5; Sheng-Yu Ku, PhD1;  

Tamara L. Lotan, MD6; Vinayak Muralidhar, MD1; Timothy R. Rebbeck, PhD1,7; Edward M. Schaeffer, MD8;  

Daniel E. Spratt, MD 3; Felix Y. Feng, MD2; and Paul L. Nguyen, MD1

BACKGROUND: The progression of prostate cancer is a complex, multistep process that involves molecular alterations in cells of the 

tumor and the microenvironment, with associated interactions between the stroma and epithelium. Genomic expression analyses of stromal  

infiltration markers were performed to determine the significance thereof in prostate cancer. METHODS: Genome-wide expression profiles 

of formalin-fixed, paraffin-embedded radical prostatectomy samples were evaluated from a prospective registry cohort (n = 5239) and 3 

retrospective institutional cohorts (n = 1135). Two independent stromal gene expression signatures implied stromal infiltration. Cox propor-

tional hazards regression defined the association between stromal infiltration expression and metastasis-free survival (MFS). RESULTS: 

Stromal expression scores were correlated with stromal signature genes and with other key stromal markers (CAV1, VIM, and TAGLN), basal 

activity, and CD3 and CD4 immune biomarkers (r > 0.5 for all). The top decile of stromal expression was associated with high genomic 

risk scores  (Decipher ≥ 0.6)  , high Cancer of the Prostate Risk Assessment–Postsurgical scores, Gleason 9 to 10 disease, and a higher 

risk for metastasis (hazard ratio, 2.35; 95% CI, 1.37-4.02; P = .001). A higher stromal infiltration score was also associated with decreased 

expression of DNA repair genes and higher radiation sensitivity genomic scores. Postoperative radiation therapy (RT) was associated 

with an MFS benefit for patients with high stromal scores, but not for patients with low stromal scores (Pinteraction = .02). CONCLUSIONS: 

Expression of stromal infiltration markers is correlated with prostate cancer aggressiveness/progression and may be predictive of a response 

to RT. Stromal infiltration markers should be studied and considered for incorporation into clinical prognostication and decision making.  
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INTRODUCTION
Prostate cancer is the most commonly diagnosed nonskin cancer in men.1 Prognostication and treatment decisions have 
been guided by tumor stage, prostate cancer–specific antigen, and Gleason score for the last several decades.2 Nevertheless, 
the progression of prostate cancer is a complex, multistep process that involves molecular alterations in cells of the tumor 
and the microenvironment, with associated interactions between the stroma and epithelium that cannot be entirely  
explained by clinical factor risk criteria alone.3

Genomics in prostate cancer has led to a  more in-depth investigation and understanding of molecular alterations in 
cells of the tumor and the microenvironment.4-6 As such, genomics is increasingly being incorporated into prognostication, 
treatment decisions, and targeted therapy design for prostate cancer. Still, the clinical significance and implications of stro-
mal infiltration in primary prostate cancer are not well-defined or understood.3

Therefore, we performed genomic expression analyses of stromal infiltration markers and sought to determine the 
clinical significance thereof in prostate cancer.

MATERIALS AND METHODS

Study Cohorts
Genome-wide expression profiles of formalin-fixed, paraffin-embedded (FFPE) radical prostatectomy (RP) tumor sam-
ples, from patients with clinically localized prostate cancer, were evaluated from a prospective registry cohort (n = 5239) 
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and 3 retrospective institutional cohorts (n = 1135). The 
Cancer Genome Atlas (TCGA) prostate cohort was used 
for validation across platforms (n  =  498).7 The prospec-
tive cohort was composed of anonymized genome-wide 
expression profiles from clinical use of the Decipher test 
between February 2014 and August 2016 retrieved from 
the Decipher Genomics Resource Information Database 
(GRID; NCT02609269), and basic demographic and 
pathological data were included. The retrospective co-
horts included patients treated with RP at Johns Hopkins 
University (n = 355) and the Mayo Clinic (I, n = 545; II, 
n = 235) and included adequate follow-up for the endpoint 
of metastasis-free survival (MFS).8-10 Supporting Figure 1 
summarizes the patient cohorts in a flow diagram.

A central pathology review was performed for all cases. 
Before tissue sampling for the clinical Decipher assay, a his-
tologic review of the submitted FFPE block was performed 
by a pathologist. Details regarding pathology procedures, 
including microarray preprocessing and normalization, 
have been previously described.11-13 Notably, an attempt 
was made to identify all available FFPE blocks (including 
lymph node blocks); the block containing the dominant 
Gleason tumor was selected for RNA isoloation.11 From 
there, freshly cut sections from the FFPE blocks (four 
10-μm sections) were deparaffinized before macrodissec-
tion of the dominant Gleason tumor for RNA extraction. 
The acceptance criteria for the Decipher assay included at 
least 0.5 cm2 of tumor with at least 60% neoplastic cells. 
Details regarding RNA extraction and laboratory methods 
have been previously described.4

Statistical Analysis
We used the Estimation of Stromal and Immune Cells 
in Malignant Tumor Tissues Using Expression Data 
(ESTIMATE) algorithm of 141 stromal genes to infer stro-
mal infiltration from gene expression data.14 In addition, 
we used a 27-gene stromal signature3 with overlap of 9 
genes from the 141-gene signature. For the TCGA prostate 
adenocarcinoma cohort, we downloaded the ESTIMATE 
stromal scores, immunohistochemistry (IHC), and con-
sensus measurement of purity estimates scores.7 ERG-
fusion frequency was examined across deciles of stromal 
scores as a proxy for tumor purity/tumor signal.15

The distribution of high genomic risk for metastasis 
(Decipher score ≥ 0.6), high Cancer of the Prostate Risk 
Assessment–Postsurgical (CAPRA-S) scores, and Gleason 
9 to 10 disease across deciles of stromal infiltration  
expression was assessed.

Cox proportional hazards regression defined the 
asso ciation between stromal infiltration expression (high 

[top decile] vs low) and MFS (metastases defined by  
radiographic evidence) after RP; a multivariable analysis 
was also performed with adjustments for Gleason score to 
evaluate the association of stromal infiltration expression 
and MFS, independent of Gleason score. Lastly, associa-
tions between stromal infiltration and radiation response 
scores were tested with a 24-gene radiation sensitivity 
signature (Post-Operative Radiation Therapy Outcomes 
Score [PORTOS])12 and an IFN-related DNA dam-
age resistance signature. Cox proportional hazards were 
used to examine the association between stromal infiltra-
tion (high [top decile] vs low) and MFS by the receipt 
of post-RP radiation therapy (RT), including a stromal 
infiltration × RT interaction term, in a previously pub-
lished matched cohort (n  =  196; half of the patients  
received post-RP RT); this cohort was specifically matched  
(exactly 1:1) on preoperative prostate-specific antigen lev-
els, surgical Gleason scores, surgical margin status, extra-
capsular extension, seminal vesicle invasion, lymph node 
invasion, and androgen deprivation therapy.12

Spearman's correlation was used for correlation 
analysis. Statistical analyses were performed with R 
v3.3.1, and a 5% significance level was applied for all 
tests. Local institutional review boards approved all data 
collection.

RESULTS

Baseline Characteristics
In the prospective (n = 5239) and retrospective cohorts 
(n = 1135), at diagnosis, the median ages were 65 and 
64 years, the median prostate-specific antigen levels were 
6.6 and 9.0 ng/mL, and 18% and 43% of the patients 
had Gleason scores of 8 to 10, respectively.

Distribution of Stromal Genomic Expression
In the prospective cohort, there was a strong correla-
tion between stromal expression scores (based on the 
ESTIMATE algorithm) and the 141 genes composing 
that signature (Supporting Fig. 2A). The stromal score was 
strongly correlated with other key well-established stromal 
markers (genes) not included in the 141-gene stromal  
signature (CAV1 [r = 0.59], VIM [r = 0.74], TAGLN  
[r = 0.62], and CNN1 [r = 0.6]), basal activity (r = 0.72), 
and CD3 (r = 0.45) and CD4 (r = 0.5) immune biomark-
ers and with another independent stromal score based on 
27 genes (r = 0.84; Supporting Fig. 2B). Furthermore, 
ERG-fusion frequency was similar across deciles of stro-
mal scores (Supporting Fig. 2C). Because IHC data for 
stromal markers were not available in the GRID data, 
IHC data and consensus purity estimates were used from 
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the TCGA prostate adenocarcinoma cohort;7 Both tumor  
purity measures were negatively associated with the stromal 
score, and this indicated that the stromal score reflected 
stromal infiltration (Supporting Fig. 2D,E). Stromal  
expression scores were similar across Gleason scores and 
genomic risk (Decipher) scores (Supporting Fig. 3).

Outcomes by Stromal Genomic Expression
The top decile of stromal expression was associated with 
high genomic risk for metastasis (Decipher ≥ 0.6), high 
CAPRA-S scores, and Gleason 9 to 10 disease (P <  .05 
for all [Mann-Kendall trend test]; Fig. 1A-C). The distri-
bution of stromal expression across Gleason and genomic 
risk (Decipher) scores is displayed in Supporting Figure 3; 
notably, 41% of Gleason 3 + 3 tumors, 47% of Gleason 
3 + 4 tumors, and 48% of Gleason 4 + 3 tumors had 
stromal expression scores above the median, and 36% of 
Gleason 9 to 10 tumors had stromal expression scores 
below the median. The top decile of stromal expression 
(compared with lower stromal expression) was associated 
with a higher risk of metastasis in the Johns Hopkins 
University (hazard ratio [HR], 2.35; 95% CI, 1.37-4.02; 
P = .001) and Mayo Clinic cohorts (HR, 1.38; 95% CI, 
1.02-1.86; P =  .04; Fig. 1D,E); there was a higher but 
nonsignificant risk of disease progression in the TCGA 
cohort (HR, 1.82; 95% CI, 0.94-3.50; P = .06; Fig. 1F). 
In a multivariable analysis with adjustments for Gleason 
score, the top decile of stromal scores remained indepen-
dently associated with a higher risk of metastasis (adjusted 
HR, 2.15; 95% CI, 1.25-3.7; P = .005).

Furthermore, the stromal score was correlated with the 
radiation sensitivity PORTOS score (r = 0.37), and a high 
PORTOS score (>0) was associated with higher stromal 
infiltration (P < .001; Fig. 2A). The stromal score was also 
negatively correlated with DNA repair activity (r = –0.75; 
Fig. 2B). In a matched cohort of patients treated with post-
operative RT (n = 98) versus not  (n = 98), postoperative 
RT was associated with an MFS benefit for patients with 
high (top-decile) stromal scores but not for patients with 
low stromal scores (Pinteraction  =  .02; Fig. 2C-E); 10-year 
MFS rates for high versus low stromal scores were 24% 
versus 68% (P =  .0015) and 50% versus 54% (P =  .45) 
for patients who did not  versus who did receive postoper-
ative RT, respectively.

DISCUSSION
This study highlights the novel finding that the expression 
of stromal infiltration markers is correlated with prostate 
cancer aggressiveness/progression and may be predic-
tive of a response to RT. Specifically, high expression of 

stromal infiltration markers was associated with a high-
risk Decipher genomic risk score (≥0.6), a high CAPRA-S 
score, Gleason 9 to 10 disease, and a higher risk of  
metastases after RP. Lastly, higher expression of stromal 
infiltration was associated with high radiation sensitivity 
genomic scores, low DNA repair activity, and improved 
MFS with RT. There was an interaction between high 
stromal expression and the receipt of RT such that the sig-
nificant MFS benefit of RT was limited to patients with 
high stromal expression. To our knowledge, this study  
includes the first data to demonstrate such findings.

Together, these results suggest that stromal infil-
tration marker expression may be both prognostic and 
predictive in prostate cancer. Notably, although high 
expression of stromal infiltration markers was associated 
with a high Gleason score, stromal expression was prog-
nostic for the risk of metastasis independent of Gleason 
score in the multivariable Cox regression analysis. As 
such, the expression of stromal microenvironment mark-
ers may have an important independent role in predicting 
the risk of adverse events in prostate cancer. Furthermore, 
whether higher expression of stromal infiltration markers 
is associated with a better response to RT needs further 
exploration in studies with long clinical follow-up.

Because infiltrating stromal cells and other immune 
cells account for a majority of “normal” cells found in solid 
tumor tissues, these findings have important, clinically 
relevant implications. The mechanisms of prostate cancer 
development and progression are a complex process that 
involves alterations of the tumor and microenvironment, 
where stromal cells likely affect disease progression and 
treatment response.3 At present, prognostic tools for pros-
tate cancer are principally based on information provided 
by tumor cells (eg, the Gleason score, size of tumor, or 
tumor genomics).16,17 However, increasing evidence sug-
gests that stromal and immune cells are critical for disease 
progression and drug resistance.18-20

The infiltration of stromal and microenviron-
ment cells may influence genomic or gene expression  
approaches to prognostic and predictive models because of 
the implications for tumor heterogeneity and purity. The 
ESTIMATE method uses gene expression data to infer the 
fractional content of stromal and immune cells in tumor 
samples, and this allows for a straightforward approach to  
assessing tumor purity and stromal infiltration in tumor 
samples by the use of gene expression data.14 Therefore, 
stromal expression scores can help to inform tumor  
purity/heterogeneity estimates by assessing for the pres-
ence of stromal infiltration. Furthermore, the findings 
in this study suggest that levels of stromal infiltration 
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Figure 1. Distribution of (A) high genomic risk scores (Decipher scores ≥ 0.6), (B) high CAPRA-S scores, and (C) Gleason 9 to 10 
disease, across deciles of stromal expression scores (P <  .05 [Mann-Kendall trend test]). Survival analyses stratified by stromal 
scores (high =  top decile) of (D,E) metastasis-free survival over time after RP in the Johns Hopkins University and Mayo Clinic 
cohorts, respectively, and (F) progression-free survival in the TCGA cohort. CAPRA-S indicates Cancer of the Prostate Risk 
Assessment–Postsurgical; ESTIMATE, Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data; 
GRID, Genomics Resource Information Database; GS, Gleason score; HR, hazard ratio; JHMI, Johns Hopkins Medical Institute;  
RP, radical prostatectomy; TCGA, The Cancer Genome Atlas.
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are likely associated with clinical characteristics and out-
comes. With the ongoing shift toward the incorporation 
of genomics into prognostication and trial design for 
prostate and other cancers, stromal infiltration and other 
tumor microenvironment markers must be considered.

The major limitations of this study include the lack 
of long-term clinical follow-up for the prospective cohort 
to allow for clinical analyses and the inherent limitations of 
retrospective analyses in the clinical findings. Moreover, the 
study was limited by a lack of IHC-based stromal quantifi-
cation for samples from the Decipher cohort. Nevertheless, 
the clinical analyses were explored in multiple independent 
retrospective cohorts, and ERG+ distribution and purity 
analyses support a strong tumor signal in the findings. 
Furthermore, the distribution of stromal scores across 
well-established prostate cancer risk factors suggests possi-
ble nonmonotonic behavior in which a low stromal score 

may also represent an adverse feature; however, this study 
may be underpowered to detect such differences.

Ultimately, stromal infiltration markers should be 
further investigated and considered for incorporation into 
clinical trials and ultimately clinical prognostication and 
treatment decision making.

In conclusion, despite any potential limitations, this 
study demonstrated the novel finding that high genomic 
expression of stromal infiltration markers was associated 
with aggressive disease, adverse prostate cancer outcomes, 
and a better response to RT. Stromal infiltration markers 
should be considered for incorporation into clinical prog-
nostication and treatment decision making.
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