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Summary

Background Pioneering effort has been made to facilitate the recognition of pathol-
ogy in malignancies based on whole-slide images (WSIs) through deep learning
approaches. It remains unclear whether we can accurately detect and locate basal
cell carcinoma (BCC) using smartphone-captured images.
Objectives To develop deep neural network frameworks for accurate BCC recogni-
tion and segmentation based on smartphone-captured microscopic ocular images
(MOIs).
Methods We collected a total of 8046 MOIs, 6610 of which had binary classifica-
tion labels and the other 1436 had pixelwise annotations. Meanwhile, 128 WSIs
were collected for comparison. Two deep learning frameworks were created. The
‘cascade’ framework had a classification model for identifying hard cases (images
with low prediction confidence) and a segmentation model for further in-depth
analysis of the hard cases. The ‘segmentation’ framework directly segmented and
classified all images. Sensitivity, specificity and area under the curve (AUC) were
used to evaluate the overall performance of BCC recognition.
Results The MOI- and WSI-based models achieved comparable AUCs around 0�95.
The ‘cascade’ framework achieved 0�93 sensitivity and 0�91 specificity. The ‘seg-
mentation’ framework was more accurate but required more computational
resources, achieving 0�97 sensitivity, 0�94 specificity and 0�987 AUC. The run-
time of the ‘segmentation’ framework was 15�3 � 3�9 s per image, whereas the
‘cascade’ framework took 4�1 � 1�4 s. Additionally, the ‘segmentation’ frame-
work achieved 0�863 mean intersection over union.
Conclusions Based on the accessible MOIs via smartphone photography, we devel-
oped two deep learning frameworks for recognizing BCC pathology with high
sensitivity and specificity. This work opens a new avenue for automatic BCC
diagnosis in different clinical scenarios.

What’s already known about this topic?

• The diagnosis of basal cell carcinoma (BCC) is labour intensive due to the large

number of images to be examined, especially when consecutive slide reading is

needed in Mohs surgery.

• Deep learning approaches have demonstrated promising results on pathological

image-related diagnostic tasks.

• Previous studies have focused on whole-slide images (WSIs) and leveraged classifi-

cation on image patches for detecting and localizing breast cancer metastases.
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What does this study add?

• Instead of WSIs, microscopic ocular images (MOIs) photographed from microscope

eyepieces using smartphone cameras were used to develop neural network models

for recognizing BCC automatically.

• The MOI- and WSI-based models achieved comparable areas under the curve

around 0�95.
• Two deep learning frameworks for recognizing BCC pathology were developed

with high sensitivity and specificity.

• Recognizing BCC through a smartphone could be considered a future clinical

choice.

Basal cell carcinoma (BCC) is the most common skin cancer,

with a rapidly rising incidence.1 The diagnosis of BCC is

straightforward for experienced pathologists but labour inten-

sive due to the large number of cases, especially when a con-

secutive slide reading is needed in Mohs surgery.2

Furthermore, the diagnosis is challenging when BCC areas

vary in architecture and size, or become obscured due to

inflammation. Therefore, a fast and rigorous computational

method for automatic BCC diagnosis is needed.

Computer-aided diagnosis of diseases has been developed

for decades to assist the analysis of microscopic images in

pathology.3,4 Most previous work has focused on ‘feature

engineering’, which required hand-crafted features specified

by domain experts.5,6 Recent progress in deep convolutional

neural networks (CNNs) has shown significantly improved

performance on a wide range of computer vision tasks,

including image recognition, face recognition, object detection

and semantic segmentation.7–11 Deep learning-based solutions

have also demonstrated promising results on pathological

image-related tasks. The CAMELYON challenge is an academic

competition in recognizing and localizing breast cancer metas-

tases in whole-slide images (WSIs).12 Wang et al. first demon-

strated the power of deep learning in breast cancer

pathological diagnoses.13 The group of Norouzi, who ranked

first in the challenge leaderboard in 2018, pointed out that

cancer metastases could be detected from whole-slide pathol-

ogy images through some carefully designed networks.14

These previous studies focused on WSIs and leveraged classifi-

cation on image patches for detecting and localizing metas-

tases.

In this study, microscopic ocular images (MOIs) pho-

tographed from microscope eyepieces using smartphone cam-

eras were used to develop neural network models for

recognizing BCC automatically. We first investigated a CNN

classification model, which did not perform well in detecting

BCC in hard cases (see details in the Materials and methods).

We further found that the hard cases could be well recognized

by pixelwise segmentation methods. Hence, a cascade frame-

work was created, with an initial CNN classification model

and a subsequent semantic segmentation model. Alternatively,

we created another framework of the semantic segmentation

model only. This segmentation framework achieved better

performance on BCC recognition, yet required more computa-

tional resources. Further analysis demonstrated that the perfor-

mances in recognizing BCC were comparable based on WSIs

or MOIs. This indicates that recognizing BCC through a smart-

phone could be considered a future clinical choice, especially

in some screening cases.

Materials and methods

General datasets introduction

Three histopathology image datasets with different types of

annotations were collected. In total 8046 MOIs were gathered,

within which 6610 images were labelled with a BCC/non-

BCC binary classification tag (positive or negative), regarded

as the microscopic ocular image classification (MOIC) dataset.

Images of BCC areas or normal tissues without BCC were con-

sidered as positive or negative samples, respectively. Other

skin diseases were not considered or involved in our dataset.

The other 1436 images with pixelwise annotations were

regarded as the microscopic ocular image segmentation

(MOIS) dataset.

For comparison, we also collected 128 WSIs with pixelwise

annotations, which would be cut into patches to train and

evaluate the models. In these segmentation datasets, BCC tissue

was pixelwise annotated. Pathologists outlined the BCC tissue

with closed-contour segmentation, which contained further

detailed information, including the shape, area and location of

the BCC tissues. The segmentation model trained on these

datasets was accurately able to dissect BCC tissue from the

normal tissue by predicting a pixel-level binary classification

in a given test image. The annotation area and prediction area

were further compared and used to calculate the confidence

score for BCC classification at the image level.

MOIC and MOIS images were photographed from micro-

scope eyepieces using smartphone cameras at 10 9 resolution

as previously described,15 resulting in round images of 3200

9 2500 pixels in size. WSI data were obtained for 128
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patients at 40 9 resolution. As the obtained tissue size varies

among patients, the size of the WSI varies from 63 488 9

53 248 to 22 784 9 19 840 pixels. Examples of MOIC/MOIS

and WSI are shown in Figure 1. Some test images had an

extremely small area of BCC, were not well focused or were

obscured due to inflammation. These images were regarded as

‘hard’ cases, and others were considered as ‘standard’ cases.

The reason to identify the hard cases is that these cases

degraded the performance, and an example is given in

Table S1 (see Supporting Information) to illustrate this phe-

nomenon. In this work, the cases with low prediction confi-

dence were considered as hard cases.

All cases were diagnosed at the Institute of Dermatology,

Peking Union Medical College & Chinese Academy of Medical

Sciences, from January 2013 to June 2018. All images were

manually labelled by pathologists at the Institute of Dermatol-

ogy. All methods and procedures were performed in accor-

dance with relevant guidelines and regulations. Written

informed consent was obtained from all participants, and the

study was carried out with the approval of the Institutional

Review Board of the Institute of Dermatology, Peking Union

Medical College & Chinese Academy of Medical Sciences (no.

2013-LC/KY-033).

Basal cell carcinoma classification and segmentation

framework

Figure 2 shows the flowchart of CNN classification and

semantic segmentation systems. The three systems accept WSIs

or MOIs as the inputs and return recognition results.

Cascade framework

The cascade framework consists of a general screening stage

and an in-depth analysis stage, as shown in Figure 2(c). In

the first stage of general screening, an image classification net-

work was trained and a confidence filter strategy was used to

determine the existence of BCC with high confidence. The

images with lower confidence (classification-predicted confi-

dence between 0�1 and 0�9) were regarded as hard cases and

sent to the in-depth analysis stage. At the in-depth analysis

stage, a semantic segmentation model was built, which seg-

mented the BCC regions in hard cases. The segmentation

results were further used to decide the existence of BCC. Only

when the area of BCC was higher than the threshold was the

image classified as positive.

General screening

GoogleNet inception v3 architecture with input size of 961

and global average pooling was used to build the classifica-

tion network.16,17 The network weights were pretrained on

the ImageNet dataset and fine-tuned on the MOIC and WSI

data.18

The 6610 MOIC images were partitioned into three subsets

to train (796, 12�0%), validate (88, 1�3%) and test (5726,

86�6%) our model. As the effective area of the MOIC images

is circular, and to balance the numbers of positive and nega-

tive samples, we augmented the 553 positive samples by

rotating an image with 60 degrees internal, as well as the 243

negative samples with 30 degrees internal, resulting in a total

(a) (c)

(d)

(b)

Fig 1. Examples of microscopic ocular image classification and microscopic ocular image segmentation images and a whole-slide image. (a, b, c)

Examples of pathology images photographed from the microscope eyepiece using smartphones (9 10 magnification). In hard examples (b, c), red

arrows point to the small foci of basal cell carcinoma. (d) Whole-slide image.
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of 3318 positive samples and 2916 negative samples as the

training set. The model was trained on the Caffe platform and

input mirror was also involved during training.19

To compare the BCC recognition performance of models

trained on smartphone-captured images or clinical WSIs, we

further developed a classification model using the WSI data-

set. As WSIs were huge and contained large invalid areas

(e.g. nontissue regions), we employed a field of valid pick-

ing algorithm to extract valid tissue areas. Then we cut the

valid area into small patches of size 1024 9 1024 pixels. In

total, 7084 patches were obtained (2789 BCC patches and

4295 normal tissue patches), 70% of which were used for

model training (4604 patches) and validation (355 patches),

and the other 30% (2125 patches) for model testing. Simi-

larly to the data augmentation in MOIs, the WSI patches

were also randomly mirrored and rotated, and the positive

and negative samples were balanced via random sampling.

The final training set consisted of 16 860 positive and

16 241 negative samples.

In-depth analysis

To detect and locate BCC accurately in hard cases, we

employed a semantic segmentation model at the in-depth

analysis stage. The model was built on the DeeplabV3 network

structure20 with Resnet 1017 as the backbone. The model

backbone was pretrained on ImageNet and fine-tuned with

the MOIS dataset.

To build the semantic segmentation model, 1436 MOIS

images with 1024 9 1024 resolution were pixelwise labelled

by histopathologists. Each MOSI image was split into four 512

9 512 patches and 5744 patches were obtained. We used

4030 patches as the training set and augmented them by

rotating the patch with 30 degree internal and mirroring the

patch, resulting in a total of 28 140 training and 2008 valida-

tion patches. The other 1714 patches were used for testing.

We used a threshold to determine the existence of BCC, and

only images with BCC segmentation areas larger than the

threshold were considered as positive.

The runtimes of the models mentioned above were tested.

For the semantic segmentation model we used Tensorflow

1�10�1.21 For the classification model we used the Caffe

framework. Both classification and segmentation models were

trained and tested on an NVIDIA Titan X GPU 92 with CUDA

version 9�0 cuDNN 7�0 (NVIDIA, Cambridge, U.K.). The

employed deep learning networks of DeepLab Resnet V3 and

GoogleNet Inception V3 are publicly available at https://gith

ub.com/rishizek/tensorflow-deeplab-v3 and https://github.c

om/smichalowski/google_inception_v3_for_caffe, respec-

tively.

Performance evaluation

Sensitivity, specificity and area under the curve (AUC) were

used to evaluate the overall performance of BCC recognition.

The receiver operating characteristic (ROC) curve represents

(a)

(b)

(c)

Fig 2. Schematic diagrams of basal cell carcinoma (BCC) recognition systems. (a) Segmentation-based BCC recognition system. (b) Classification-

based BCC recognition system. (c) Cascade BCC recognition system. Both the classification and segmentation models can classify BCC images, and

the segmentation model could further locate the BCC region. The cascade system returns the recognition result for a standard case (the high

confidence image) or transfers the hard case (the low-confidence image) to a segmentation model for further analysis.

© 2019 British Association of Dermatologists British Journal of Dermatology (2020) 182, pp754–762

Recognizing BCC on smartphone images with a DNN, Y.Q. Jiang et al. 757

https://github.com/rishizek/tensorflow-deeplab-v3
https://github.com/rishizek/tensorflow-deeplab-v3
https://github.com/smichalowski/google_inception_v3_for_caffe
https://github.com/smichalowski/google_inception_v3_for_caffe


a dynamic trade-off between sensitivity and specificity,

which can be controlled by adjusting the threshold of bin-

ary classification. An algorithm with an AUC of 1 represents

a perfect prediction performance. The baseline AUC of ran-

dom prediction is 0�5. The mean intersection over union

was used to evaluate the performance of segmentation and

localization.

Statistical comparison test

We performed statistical analysis to compare the WSI, MOIC

and MOIS models. For each model we randomly sampled

80% of the test images and used this subset to calculate the

AUC. We repeated this a total of 20 times and obtained 20

AUC values for each model. Then we performed the pair-

wise Wilcoxon signed-rank test based on the 20 AUC values

of different models, which does not require stringent

assumptions.

Results

Performance comparison of models trained on the

microscopic ocular image or whole-slide image datasets

To our knowledge, previous studies of recognizing specific tis-

sues in pathological images focused mainly on WSIs. In order

to demonstrate the efficiency of a CNN-based method in rec-

ognizing BCC on MOIs, we trained models on WSI and MOI

images separately, using the same neural network architecture.

As shown in Table 1 and Figure S1 (see Supporting Infor-

mation), the performances of the models trained on MOIs and

WSIs are comparable. The AUCs of the WSI (40 9), WSI (10

9) and MOI models are all above 0�95. The pairwise Wil-

coxon signed-rank test revealed a significant difference for

both the MOI segmentation model (AUC = 0�987) and the

MOI classification model (AUC = 0�976) when compared with

the WSI (10 9) model (AUC = 0�955) (both P-values <
0�001). The MOI models outperformed the WSI (10 9)

model. Therefore, the deep learning model trained on MOIs

could be an alternative and efficient way of diagnosing BCC in

pathological images.

Semantic segmentation improves basal cell carcinoma

recognition in hard cases

As mentioned in Materials and methods, the classification

model filtered out hard cases with low confidence at the first

stage. Subsequently, the semantic segmentation model further

analysed these hard cases at the in-depth analysis stage. The

generalization ability of a model was evaluated by cross-data-

set AUCs, as shown in Table 1. Of note, the segmentation

model not only had the best generalization ability (0�945
across dataset), but it also accurately classified hard cases

within the dataset, with an AUC of 0�933. In contrast, the

classification model at the first stage did not detect BCC very

well in hard cases, with an AUC of only 0�701. As the sizes of

BCCs in the hard cases were relatively small, the classification

model missed some small BCC regions. The segmentation

model captured the information of annotations at the pixel

level, which allowed the neural network to learn about the

context among pixels, resulting in higher performance in hard

cases.

The ROC curves of these models are shown in Figure 3. As

mentioned above, the ROC curve demonstrates a trade-off

between sensitivity and specificity. We selected three operation

points on the ROC curve to demonstrate the model perfor-

mance. The first operation point, on the right, emphasizes

sensitivity and sacrifices specificity. The second operation

point, in the middle, makes the best trade-off between the

overall sensitivity and specificity. The third operation point,

on the left, emphasizes specificity. The high sensitivity and

specificity indicate that the semantic segmentation model is

able to recognize BCC accurately based on smartphone-cap-

tured pathological MOIs.

The runtimes of the classification, cascade and

segmentation frameworks

To evaluate the runtimes, the classification and segmentation

models were tested on an NVIDIA Titan X GPU. In total 100

MOIs were used to calculate the prediction runtimes. The

average runtime of the MOI segmentation model is 500�2 �
163�2 ms per image (n = 100), whereas the MOI classification

Table 1 Area under the curve (95% confidence interval) of deep learning models and test datasets

Model

Test dataset

Across dataset Within dataset Within-dataset hard cases

WSI (40 9) 0�531 (0�516–0�542) 0�982 (0�969–0�993) 0�871 (0�736–0�980)
WSI (10 9) 0�783 (0�771–0�795) 0�955 (0�945–0�964) 0�552 (0�405–0�648)
MOI classification 0�885 (0�871–0�899) 0�976 (0�968–0�986) 0�701 (0�608–0�784)
MOI segmentation 0�945 (0�935–0�954) 0�987 (0�984–0�990) 0�933 (0�906–0�959)

The whole-slide image (WSI; 10 9 magnification images) classification model, WSI (40 9 images) classification model and microscopic ocu-

lar image (MOI) classification model are presented. Each model is tested within dataset (the same dataset on which the model is trained),

across dataset and as its own hard case. The hard cases processed by the MOI segmentation model are the same as those of the MOI classifica-

tion model. Further information is given in Figure S1 (see Supporting Information). 95% confidence intervals were calculated using 2000

bootstrap samples.
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model requires only 89�3 � 23�9 ms (n = 100) and the cas-

cade framework needs 127�5 � 43 ms per image on average

(n = 100). When tested on a CPU (Intel Xeon E5 2620), the

runtime of the segmentation model is 15�3 � 3�9 s (n = 100)

per image, but the classification model and cascade model are

much faster, with runtimes of 2�7 � 0�7 s and 4�1 � 1�4 s,

respectively (n = 100). These results show that the semantic

segmentation model requires more time to make predictions.

Locating basal cell carcinoma regions with semantic

segmentation

We also demonstrate the performance of locating a BCC area

through semantic segmentation. The training data were

labelled with BCC as the foreground and all other tissues as

the background. The mean intersection over union reached

0�863 on the 431 testing images. Examples of gold-standard

images and predictions are shown in Figure 4.

Discussion

Deep learning algorithms have shown promising results in

digital pathology.22 The deep neural network extracts semantic

features from the supervision of large-scale datasets. It recog-

nizes and segments mitotic figures or small foci of metastatic

cancers, which can be missed even by experienced patholo-

gists. Reading pathology images also requires considerable

time and effort.14,23,24 In contrast, automatic recognition of

cancerous regions of digital pathology frees histopathologists

from laborious labelling and allows them to concentrate on

difficult cases and work as supervisors for straightforward

cases with higher efficiency.22

The digital WSI is a fundamental data resource for novel

automatic recognition techniques. Previous deep learning

approaches for pathological image analysis have focused on

metastatic foci in breast, sentinel lymph node and prostate

cancer.14,25,26 Researchers integrated image patch classifica-

tion from WSIs and postprocess to recognize specific metas-

tasis in high-resolution images, such as at 40 9 resolution.

Liu et al.14 reported a sensitivity of 92�4% and image-level

AUC scores above 97% on both the CAMELYON16 test set

and an independent set of 110 slides. They found that a

combination of multiscale image patches at 10 9, 20 9 and

40 9 did not bring significant improvement in classification

performance. The network, trained on image patches either

at 40 9 or in multiscale resolution, concentrates on the local

details or the cellular level to distinguish the cancer meta-

static area.

During the practice of cutaneous pathologists diagnosing

BCC, it is the architecture rather than the cellular structure that

is more important in making diagnostic decisions. Based on

this observation, we designed our deep neural network to

identify BCC at 10 9 resolution instead of 20 9 or 40 9

magnification because higher magnification cannot distinct

BCC from normal follicular structures, where the pleomor-

phism or atypia may be subtle in BCC. To obtain multiple 10

9 digital pathology images we used a smartphone camera to

take pictures through microscope eyepieces, which was fast

and convenient, instead of a slide scanning machine. To evalu-

ate the effectiveness of smartphone-captured digital pathology

Fig 3. Receiver operating characteristic curves of the classification (Cls) and segmentation (Seg) models. The area under the curve (AUC) of the

classification system (red) on both standard and hard cases is 0�976. The segmentation system (blue) on all cases achieves the highest AUC of

0�987. The green symbols show the performance of the cascade framework. The blue diamond, square and triangle highlight the high-specificity

operating point, the high-accuracy operating point and the high-sensitivity operating point, respectively. Sens, sensitivity; Spec, specificity.
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images in detecting BCC, we built models using either smart-

phone-captured MOIs or regular WSIs. Notably, the results

reveal that the smartphone image-based model achieves com-

parably good performance in detecting BCC. The AUC of the

MOIC model reaches 0�976, while the AUCs of the WSI (10

9) and WSI (40 9) models are 0�955 and 0�982, respec-

tively. In addition, the smartphone image-based model can be

generalized to WSIs, indicating the robustness of our method.

The classification model trained on MOIC data is able to

detect ‘standard’ cases of BCC, yet it misclassifies the ‘hard’

cases, which are small BCC areas or BCCs obscured by

inflammation. We introduced the cascade framework to distin-

guish the standard cases from the hard ones based on the pre-

diction confidence, then applied the segmentation model to

the hard cases to improve the final prediction performance. It

is speculated that the improved performance after using seg-

mentation is attributed to the pixelwise annotation, as the

information related to the annotation confidence, such as the

area and shape of BCC, is given in segmentation. The hard

cases should be annotated with low annotation confidence.

Segmentation presents the area and the shape of the tissue,

which indicate how confident the labelling can be.

Fig 4. Segmentation of basal cell carcinoma (BCC) with microscopic ocular image segmentation images. The left column is the original

microscope ocular image. The middle column is the manual labels (BCC tissue in grey and normal tissue in black). The right column is the

prediction of the microscope ocular segmentation model (BCC tissue in red).
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We further developed an end-to-end segmentation model

to predict BCC directly. This model achieves the best predic-

tion performance, with a mean intersection over union of

0�863 and classification AUC of 0�987, comparable with pre-

vious studies. The mean intersection over union of the Dee-

pLab V3 model on the Pascal VOC 2012 validation dataset is

0�764.20 A similar study that employed DeepLab V3 on skin

lesion segmentation achieved mean intersections over union

of 0�816, 0�885 and 0�774 on three open datasets.27 Regard-

ing classification accuracy, Cruz-Roa et al. proposed a deep

learning architecture that has 0�927 specificity and 0�869 sen-

sitivity.28 In comparison, our segmentation model achieves

0�969 specificity and 0�939 sensitivity. Compared with the

cascade framework, this end-to-end model achieves higher

prediction performance, yet it requires more computational

time and resources. Regarding the runtime of these different

frameworks, the ‘segmentation’ framework requires 15�3 �
3�9 s to predict one image, whereas the classification frame-

work needs only 2�7 � 0�7s and the ‘cascade’ framework

needs 4�1 � 1�4 s. For devices that have limited computa-

tional resources (e.g. mobile devices), the classification model

is far more time efficient. When the computational resources

are sufficient, the MOI segmentation model is a better alterna-

tive to achieve higher prediction performance. These two

approaches can be adopted under different circumstances.

Of note, the adoption of WSIs in disease diagnosis by

pathologists has been slow worldwide,29 as it is limited by

the cost of the system, digital slide storage and inability to

handle high-throughput routine work. So, remarkably differ-

ently from the previous WSI-based dataset, the resources of

the dataset we used to train the CNN algorithm were designed

creatively, and the digital pathology images were obtained

from microscope eyepieces using smartphone cameras at 10 9

resolution. The images presented efficient characteristic pattern

features rather than cytological features, which are more prac-

tical in BCC diagnosis for histopathologists. The experiment

showed the effectiveness and efficiency of this architecture. It

would generate a novel computer-aided diagnostic method to

extend the diagnostic capability of hospitals without WSI scan-

ning facilities. The advantages of using MOIs include low cost,

easy smartphone storage and capability to handle high-

throughput routine work. All of these advantages of MOIs will

benefit pathologists and patients in practice. To the best of

our knowledge, this is the first attempt to use a deep neural

network to recognize histopathology images photographed

from microscope eyepieces. The faster classification and cas-

cade models also provide feasible alternatives for diagnosing

BCC when computational resources are limited.

In conclusion, in this study we developed deep neural net-

work models for BCC recognition, based on smartphone-cap-

tured images of digital pathology through the eyepiece of a

microscope. Compared with the model trained on WSIs, we

showed that the MOI-based model achieves better perfor-

mance on detecting hard BCC cases, and this model is gener-

alizable across types of MOIs and WSIs. The accurate

prediction performance of the MOI-based model and the

feasibility of collecting MOIs will benefit the diagnosis of

BCC in practice.
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