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Summary

Background Actinic keratoses (AKs) are common premalignant skin lesions trig-
gered by excessive ultraviolet exposure. The majority of AKs regress or persist,
but some progress to squamous cell carcinomas. Biomarkers associated with their
persistence, progression and regression have not been characterized.
Objectives We performed skin biopsies in patients with extensive actinic damage to
identify biomarkers that correlate with clinical progression and regression of AKs.
Methods This was an observational study of a cohort of patients with extensive
actinic damage. AKs were mapped on a clear plastic template in 26 patients at
months 3, 6, 9 and 11. Biopsies were taken from randomly selected, predeter-
mined AKs and were evaluated for p53, E-cadherin, Snail, Slug and Twist. The
study is registered at Clinicaltrials.gov: NCT00027976.
Results p53 exhibited greater expression in clinically apparent AKs (histological
score 2�89 � 1�45) than in regressed AKs (0�75 � 0�96); P < 0�01. There was also
significantly less membrane E-cadherin, the lack of which is a marker of epithe-
lial–mesenchymal transition, in clinically apparent AKs (1�89 � 1�81) than in
sun-exposed skin (3�07 � 1�75); P < 0�005. The E-cadherin transcription repres-
sors Snail, Slug and Twist were increased in AKs compared with sun-exposed skin.
A limitation of the study is that measurement of histological biomarkers was not a
primary end point. In addition, patients were allowed to apply sunscreens.
Conclusions At the molecular level, loss of E-cadherin and an increase in p53 are
linked to the dynamic interplay between the persistence, progression and regres-
sion of AKs.

What’s already known about this topic?

• Actinic keratoses (AKs) are common dysplastic epidermal lesions that result from

chronic and excessive ultraviolet exposure.

• Biomarkers associated with progression and regression of AK have not been charac-

terized.

What does this study add?

• Decreased E-cadherin and increased p53, Snail, Slug and Twist (E-cadherin tran-

scription factors) were associated with progression from AK to nonmelanoma skin

cancer.
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What is the translational message?

• Strategies targeting these molecules may be effective in reversing rising skin cancer

rates.

• E-cadherin, p53, Snail, Slug and Twist are potential biomarkers that may be used

to assess the efficacy of existing chemopreventive agents.

Actinic keratoses (AKs), also known as solar keratoses, are

common dysplastic epidermal lesions that result from chronic

and excessive ultraviolet (UV) exposure. Clinically, they range

from small, flesh-coloured, erythematous papules to large pla-

ques with yellow or brown scales and crusts that appear on

sun-exposed areas of the face, scalp and extremities.1,2 In indi-

viduals with multiple AKs, the cumulative lifetime risk of

developing an invasive squamous cell skin cancer is as high as

6–10%.3 Histologically, AKs are composed of atypical ker-

atinocytes characterized by alternating areas of parakeratosis

and orthokeratosis, a loss of polarity, pleomorphic or hyper-

chromatic nuclei and an inflammatory infiltrate comprised of

lymphocytes or plasma cells.

AKs are more frequent in individuals over the age of 45

years, due to escalating photodamage from cumulative sun

exposure.4,5 Other risk factors include lower Fitzpatrick sun

reactive skin types, residence in lower latitudes, male sex,

baldness, a prior history of skin cancer and an immunocom-

promised state.4,6–8 Management of actinically damaged skin

represents a considerable burden to the healthcare systems of

many countries worldwide.5 Based on U.S. health claims data,

estimates are that over 10 million individuals in the U.S.A. are

evaluated and treated annually for actinically damaged skin, at

a cost of U.S. $1�68 billion.5

The p53 tumour suppressor gene controls cell proliferation,

regulates apoptosis and facilitates DNA repair by interrupting

cell-cycle progression. p53 mutations are the most common

genetic alteration associated with the development of various

types of cancers including squamous cell carcinoma

(SCCs).9,10 Chromosomal p53 mutations are present in 90%

of SCCs and up to 100% of AKs.9

E-cadherin is an intercellular adhesion molecule that plays a

significant role in maintaining epithelial architectural integrity.

E-cadherin repression permits nonmotile epithelial cells to

transform into motile mesenchymal-like cells through a pro-

cess known as epithelial–mesenchymal transition.11,12 The

resulting cellular phenotype is characterized by loss of inter-

cellular bonds and an increase in migrational ability, leading

to tumour invasion.13 E-cadherin expression is a highly regu-

lated process, and the E-cadherin transcription repressors Snail,

Slug and Twist play an important regulatory role in epithelial–
mesenchymal transition.14

The purpose of this study was to investigate the natural his-

tory of AKs in patients with extensive actinic damage and to

determine whether biomarkers might predict which AKs are

likely to progress to keratinocyte cancers (KCs) and which are

likely to regress back to non-AK-bearing, sun-exposed skin. KCs

are also known as nonmelanoma skin cancers (NMSCs), and the

two terms are used interchangeably in this manuscript.

Materials and methods

Actinic keratosis mapping

This was an observational study of a cohort of patients with

extensive actinic damage. We used data and biopsy specimens

collected from 26 participants in the celecoxib NMSC chemo-

prevention trial who were randomized to receive placebo.15

Only samples from patients on placebo were included in the

study. Approval for the study was obtained prior to its initiation

from the University of Alabama at Birmingham (UAB) institu-

tional review board. Individuals at high risk for NMSC were eli-

gible to participate if they were over 18 years of age, had an

extensive number of AKs and had Fitzpatrick skin types I, II or

III. To be qualified as high risk, patients were required to have

10–40 AKs on the upper extremities, neck, face and scalp along

with prior histological evidence of at least one AK or NMSC.15

Participants were instructed to abstain from topical prescrip-

tion and over-the-counter medications; however, moisturizers,

emollients and sunscreens were allowed. The patients were

evaluated for AKs at 0, 3, 6, 9 and 11 months. A study inves-

tigator marked the location of each AK on a clear plastic tem-

plate that was placed over the upper extremities, neck, face

and scalp. Lesions with characteristic scaling, keratotic patches,

erythema and sandpaper-like scale were identified as AKs.15

The study investigators used different plastic templates to mark

AKs at each visit and were blinded to the template results

from previous visits. At the end of the study, AK templates

from months 0, 3, 6, 9 and 11 were compared to assess the

number of new, persistent and regressed AKs.

Skin biopsies and histological grading

At baseline, two AKs on the upper extremities were randomly

selected for biopsy, one of which was removed at baseline and the

other at month 9. If, at month 9, an AK selected for biopsy was no

longer present clinically, the site at which it had been located (i.e.

regressed AK) was still biopsied. AK biopsies were evaluated based

on the degree of proliferation and severity of atypia.

Each component in this grading scheme was given a score

of 1–3 (Table 1). Nodular basal cell carcinoma (BCC) and

well-differentiated SCC samples were obtained from the UAB

tissue bank and were not from the patients who had been fol-

lowed for 11 months.
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Biomarker expression

Biomarker expression was graded based on staining intensity and

the continuity of expression. For p53, Snail, Slug and Twist this

was 0, no staining; 1, minimal; 2, mild; 3, moderate; 4, strong;

5, very strong; and for E-cadherin: 0, no staining; 1–2 minimal;

3–4, mild; 5–6, moderate; 7–8, strong; 9–10, very strong.

Immunofluorescence staining

Paraffin tissue sections after deparaffinization and rehydration

were processed further for immunofluorescence staining. Non-

specific antibody binding was blocked with 2% bovine serum

albumin. After overnight incubation with primary antibodies

to E-cadherin and p53 (Santa Cruz Biotechnology, Dallas, TX,

U.S.A.), the tissue sections were incubated with a fluores-

cence-coupled secondary antibody and visualized using fluo-

rescence microscopy.

Immunohistochemical staining

The paraffin-embedded tissue sections were deparaffinized and

rehydrated. The antigen unmasking was done with 10 mmol

L�1 citrate buffer (pH 6�0) and the nonspecific antigen bind-

ing was blocked by incubation with 2% bovine serum albu-

min. The sections were incubated overnight at 4 °C with

primary antibodies to Snail, Slug and Twist (Santa Cruz

Biotechnology). This was followed by incubation with peroxi-

dase-coupled secondary antibody and, finally, visualization

with 3,30-diaminobenzidine substrate.

Statistical analysis

The primary objective of this analysis was to assess whether

there are biomarkers that can correlate with progression to

skin cancer. The secondary objective was to determine the nat-

ural history of AKs. An independent Student’s t-test was con-

ducted to compare biomarker expression grading scores

among the various tissue sample groups.

Results

Twenty-six white patients with extensive actinic damage on

the upper extremities, neck, face and scalp were enrolled in

the study. Table 2 summarizes the patient characteristics. In

total 610 AKs were present at baseline, with a mean � SD of

23�5 � 7�9 AKs per person. The total number of lesions

remained steady over the 11-month observation period

(Table 3). At 11 months there was a mean increase of only

1�7 � 11�8 AKs per patient from baseline, which was not sta-

tistically significant. This is because over the 11 months, a

nearly equivalent number of new AKs appeared as regressed.

Overall, 43% clinically regressed without recurrence, while 87

(14�3%), 52 (8�5%), 42 (6�9%) and 82 (13�4%) regressed at

3, 6, 9 and 11 months, respectively. The mean time to regres-

sion was 6�2 months. On the other hand, 32�6% of AKs pre-

sent at baseline regressed and recurred at one of the follow-up

visits; 24% never regressed, 8% regressed twice and 1%

regressed twice and recurred twice.

Histological features of actinic keratoses

There were 18 pairs of biopsies evaluated at baseline and at 9

months, for a total of 36 biopsies. Of the 36 AKs clinically

present and biopsied, five were not confirmed as AKs based

on histological analysis (lichen simplex chronicus or solar

lentigines). Five of 18 of the 9-month biopsies had regressed

and did not show histological evidence of AK. There was not

a statistically significant change in the degree of proliferation

or atypia of the AKs over the 9-month period (Fig. 1).

Biomarker analysis

Because changes in mutant p53 and E-cadherin are associated

with SCC development in animal models,9,11,16 we sought to

Table 1 Histological grading scheme

Atypia Proliferation Score

< 1/3 epidermal

involvement

No downward budding 1

1/3 to 2/3 epidermal

involvement

Focal downward budding 2

2/3 to full epidermal

involvement

Extensive downward budding

with irregular contours

3

Table 2 Patient characteristics

Characteristic Number of patients

Age range (years)

30–39 1
40–49 2

50–59 7
60–69 8

70–79 8
Fitzpatrick skin type

I 4
II 16

III 6
Sex

Male 19
Female 7

Table 3 Number of actinic keratoses (AKs) present on each patient

Timepoint AKs per patient, mean � SD Total no. of AKs

Baseline 23�5 � 7�9 610

Month 3 25�8 � 13�1 671
Month 6 23�1 � 11�6 600

Month 9 27�8 � 16�9 723
Month 11 25�0 � 16�6 650
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determine whether there was a change in p53 and/or E-cad-

herin expression when sun-protected skin, chronically sun-

damaged skin and AKs were compared. AKs and sun-exposed

skin both expressed p53. Significantly reduced p53 was

observed in regressed AKs and non-sun-exposed skin samples

compared with clinically apparent AKs and sun-exposed skin

(Fig. 2). BCC and SCC specimens were not collected from the

patients enrolled in the study. Therefore, representative

Fig 1. Histological score for the atypia and proliferation severity of randomly selected actinic keratoses (AKs) at baseline and when biopsied at 9

months. At baseline vs. month 9: P = 0�52 for proliferation, P = 0�44 for atypia and P = 0�37 for atypia and proliferation (both).

(a)

(b)

p53   

  DAPI     

B  D  F H 

NSE SE AK 
Regressed 

AK 

Fig 2. (a) Average nuclear expression score of p53 in skin biopsy samples: non-sun-exposed skin (NSE), sun-exposed skin (SE), clinically present

actinic keratosis (AK), regressed AK, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and combined BCC and SCC (i.e. nonmelanoma

skin cancer, NMSC). (b) Immunofluorescence of p53 with 40,6-diamidino-2-phenylindole (DAPI). The arrows depict nuclear expression of p53.
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samples were taken from the UAB tissue bank of cutaneous

diseases. Those tissues showed enhanced expression of p53

relative to non-sun-exposed skin.

As E-cadherin is associated with progression of skin cancers

in animal models,11 sun-protected skin, chronically sun-

damaged skin, AKs and KCs were analysed for E-cadherin

expression. There was a progressive decline from non-sun-

exposed skin to sun-exposed skin to AKs (Fig. 3). E-cadherin

expression in BCC and SCC was similar to that in AKs, sug-

gesting at this point that it may be more of a marker of AK

persistence rather than progression to KCs. In sites in which

AKs had regressed, E-cadherin expression was less, although

not significantly, than in AKs that had not regressed (Fig. 3).

E-cadherin is carefully regulated by the transcription repres-

sors Snail, Slug and Twist.16 We investigated whether these

proteins might be altered in actinically damaged skin. Sun-

exposed skin, AK, BCC and SCC expressed significantly greater

levels of Snail, Slug and Twist than non-sun-exposed skin

(Fig. 4). In addition, expression levels of these proteins were

significantly reduced in regressed AK samples compared with

sun-exposed skin, AK and BCC (Fig. 4).

Discussion

AKs are common preneoplastic lesions that are precursors and

risk factors for cutaneous SCCs.1,6,7,17–20 Their prevention and

treatment reduce the significant likelihood of developing one

or more KCs.1 We found that the appearance and regression

of AKs is a dynamic process. The same AKs that were present

at one time were absent at another, but had the capacity to

reappear later. Over 40% of AKs identified at baseline

regressed over the 11-month observation period, 33%

recurred, 11% regressed twice and a small number reappeared

twice. As a result, the aggregate number of AKs over 11

months remained relatively constant. Moreover, there was no

change in the histological severity of the AKs biopsied at 9

(a)

(b)

Fig 3. (a) Average E-cadherin expression in skin biopsy samples. Non-sun-exposed skin (NSE), sun-exposed skin (SE), clinically present actinic

keratosis (AK), regressed AK, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and combined BCC and SCC (i.e. nonmelanoma skin

cancer, NMSC). (b) Immunofluorescence of E-cadherin with 40,6-diamidino-2-phenylindole. Note that the cell membrane staining that outlines

the cells is greater in the NSE and SE than in the AK, regressed AK, BCC and SCC.
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months, suggesting that additional insults are required for

them to progress on to become SCCs. In this regard, treatment

with the cyclooxygenase-2 inhibitor celecoxib has been shown

to diminish the incidence of BCCs and SCCs, but has no effect

on AKs.15

The percentage of lesions that regressed in our analysis is

similar to that reported in some,21 but not all studies.22–26

This may be due to differences in the extent of actinic dam-

age, the experimental design, regional AK prevalence and/or

factors such as patients’ age, sex, sunscreen use and/or

amount of UV exposure.

There are multiple options for the treatment of AKs, includ-

ing, but not limited to, local (liquid nitrogen cryotherapy,

electrodesiccation and curettage) and field therapy (topical 5-

fluorouracil, imiquimod, diclofenac, ingenol mebutate and

photodynamic therapy).1 The concept that AKs can regress

and recur has important clinical implications for AK treatment

in individuals with extensive actinic damage. As only a minor-

ity of AKs are present at any one time, either field treatment

or repeated aggressive local treatment is necessary for adequate

management of these lesions. Based on the observation that

AKs can persist, progress or regress, another implication is that

it should be possible to intervene to promote regression and/

or retard progression of AKs.

A main goal of this study was to identify biomarkers that

are associated with progression and regression of AKs, in

order to develop pharmacological agents that might be

employed to inhibit the development of KC. Our analysis

found significantly increased p53 expression in AK, BCC, SCC

and sun-exposed samples compared with non-sun-exposed

(a)

(b)

NSE vs. SE NSE vs. AK NSE vs. Reg AK SE vs. Reg AK AK vs. Reg AK SE vs. AK

Snail P < 0·001 P < 0·001 P < 0·01 P < 0·001 P < 0·001 P > 0·05

Slug P < 0·001 P < 0·001 P < 0·01 P < 0·01 P < 0·01 P < 0·01

Twist P < 0·001 P < 0·001 P < 0·01 P > 0·05 P > 0·05 P > 0·05

TSIWTGULSLIANS

Fig 4. (a) Average group score of Snail, Slug and Twist expression in non-sun-exposed skin (NSE), sun-exposed skin (SE), clinically present

actinic keratosis (AK), regressed AK, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and combined BCC and SCC (i.e. nonmelanoma

skin cancer, NMSC). (b) Histochemical staining for Snail, Slug and Twist.
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and regressed AKs. p53 alterations have been associated with

the early stages of UV-induced carcinogenesis both in animal

models and in human studies.9,27 Mutant p53 exhibits a

longer half-life than its wild-type counterpart and, as a

result, is likely to accumulate in the cell nucleus.28–30 We

observed that there was a progressive increase in nuclear p53

staining as the skin progressed from actinically damaged skin

to AK to KCs. p53 decreased in regressed AKs. These findings

suggest that p53 may be a good biomarker of AK progres-

sion. While it is uncertain whether AKs can progress to

BCCs, it is well established that people with large numbers

of AKs are at increased risk of developing BCCs.3 This associ-

ation is most likely due to the fact that extensive sun expo-

sure causes both.

Downregulation of E-cadherin expression, which leads to a

reduction in intercellular adhesion, has previously been linked

to AK and KC progression.31,32 In contrast to the increased

expression of p53 with more advanced premalignancies and

malignancies, there was a progressive decrease in E-cadherin

from non-sun-exposed skin to sun-exposed skin to AKs.

Although it was significantly less than in non-sun-exposed

skin, it is important to note that there was no further decline

in E-cadherin from AKs to NMSCs, implying that loss of E-

cadherin may be required for clinical progression of normal

skin to sun-damaged skin to AKs, but not for further progres-

sion to NMSCs.

Snail, Slug and Twist contribute to the downregulation of

E-cadherin and consequently have been connected to invasion

and metastasis of cancer cells.11,33 Various studies have sug-

gested that such transcriptional repressors are involved in KCs

as well,34–36 but none has examined the implications of Snail,

Slug and Twist in UV-exposed, AK and regressed AK samples.

There were higher levels of these proteins in UV-exposed skin

and in AKs than in control non-UV-exposed skin. The corre-

sponding reduction of E-cadherin in these samples suggests

that increased activity of these transcriptional regulators in AKs

and KCs contributes to the loss of E-cadherin and ultimately

to the progression of sun-exposed skin to UV-induced cuta-

neous tumours.

One limitation of our study was that biomarkers were not a

primary end point of the study. In addition, for ethical rea-

sons, all patients were allowed to use sunscreen, which may

itself alter the natural history of AKs.

An estimated 5 million new cases of NMSC will be treated

in the U.S.A. this year.37 While the mortality rate for most

NMSCs is not high, they can be locally destructive and their

treatment represents a tremendous economic impact on the

U.S. healthcare system and healthcare systems around the

world.5 Current methods for their prevention (AK treatment,

limiting sun and tanning bed exposure, sunscreens and other

photoprotective measures) have not been successful in stem-

ming the increasing incidence of these types of malignancy.

Thus, there has been great interest in identifying novel agents

for chemoprevention. By examining changes in the expression

of p53 and E-cadherin, the findings from this study can be

employed to determine the potential efficacy of existing and

novel measures for the prevention of NMSCs. Moreover, p53,

E-cadherin or one of the E-cadherin repressors could be used

as a biomarker to identify subsets of AKs that are at high risk

of progressing to SCCs. Our results also confirm that p53 and

E-cadherin are relevant targets for the prevention of skin can-

cer. In this regard, preclinical studies from our laboratory have

shown that CP-31398, a pharmacological agent that produces

conformational changes in mutant p53, enhancing its biologi-

cal activity, confers resistance to UV-induced cancer develop-

ment when applied topically.38 Additional therapeutic

strategies that enhance E-cadherin expression or lower mutant

p53 levels may be effective in reversing the rising incidence

of KC.
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