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Abstract

Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite

advances in microsurgical techniques and improved understanding of nerve regeneration,

obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical

problem. There is a growing body of evidence in preclinical animal studies demonstrating

the supportive role of stem cells in peripheral nerve regeneration after injury. The charac-

teristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in

peripheral nerve regeneration are discussed, specifically focusing on the presentation of

both foundational laboratory studies and translational applications. The current state of

clinical translation is presented, with an emphasis on both ethical considerations of using

stems cells in humans and current governmental regulatory policies. Current advance-

ments in cell-based therapies represent a promising future with regard to supporting nerve

regeneration and achieving significant functional recovery after debilitating nerve injuries.
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1 | INTRODUCTION

Peripheral nerve injury remains a major cause of morbidity in trauma

patients.1 Despite advances in microsurgical techniques and improved

understanding of nerve regeneration, obtaining satisfactory outcomes

after peripheral nerve injury remains a serious clinical problem.2-4

Unfortunately, a large proportion of patients with severe peripheral

nerve injuries fail to recover normal function.5,6 Even after the most

optimal surgical situation of direct nerve repair, return of motor and

sensory function is slow and often incomplete.7-9

The regeneration of damaged peripheral nerves occurs though a

complex process in which Schwann cells (SCs) play a crucial role.10 After

axonal injury, SCs proliferate, phagocytose debris, and recruit macro-

phages11 to help establish the optimal regenerative milieu.12 These cells

further aid in axonal regrowth by synthesizing neurotrophic factors,13-15

producing both extracellular matrix and cell-adhesion molecules,16 and

providing physical guidance to regenerating axons.17,18 SC-based thera-

pies have been successfully utilized in preclinical animal models to

enhance nerve regeneration.19-22 However, due to the invasive nature

of SC harvest23 and the difficulty of cell expansion in vitro,24 there remain

significant barriers to clinical use.25

In light of the practical limitations associated with SCs, there has

been growing enthusiasm for the use of both precursor and stem cell–
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based therapies (we use the term “stem cell” throughout this review

to maintain consistency while recognizing that few of the cell sources

mentioned are true stem cells) for peripheral nerve regeneration.26-29

We are also cognizant of the fact that embryonic stem cells generally

have a higher regenerative capacity and are less lineage committed

than adult precursor and/or stem cells.30,31 There is a growing body

of evidence in preclinical animal studies showing that stem cells play a

positive role in the regeneration of peripheral nerves after injury.32-37

These effects are thought to be based on the ability of transplanted

stem cells to promote regeneration by cell differentiation into tissue-

specific cell types,38-40 signaling through cell-to-cell contact, and/or

sustained release of neurotrophic factors.27,41,42 A number of stem

cell types with varying phenotypic and gene expression profiles have

been investigated. In this review we summarize the literature

supporting the utilization of various stem cell types that have been

employed to enhance peripheral nerve regeneration. A detailed list of

the stem cell types discussed is presented in Table 1. We review the

foundational laboratory studies for each type and then focus on trans-

lational works using human-derived cells in animals. If available, the

current use of these cells in humans for the treatment of peripheral

nerve conditions is also highlighted.

2 | BONE MARROW STROMAL STEM
CELLS

One of the most comprehensively studied cell types with respect to

peripheral nerve regenerative potential is the bone marrow stromal

stem cell (BMSC). These multipotent cells may differentiate into mes-

enchymal lineages but can also be persuaded to adopt an SC pheno-

type in vitro.26 However, their eventual fate in vivo may not robustly

retain this differentiation.43,44

BMSCs effectively produce and secrete numerous neurotrophins

(eg, nerve growth factor [NGF], brain-derived neurotrophic factor

[BDNF], glial-cell-line–derived neurotrophic factor [GDNF], ciliary

neurotrophic factor [CNTF]) in peripheral nerve repair and have been

previously shown to enhance regeneration.45,46 Chen et al convinc-

ingly showed improved walking track scores, wet muscle weights, and

increased axonal counts in a 15-mm-gap sciatic transection model45

using BMSC therapy. These cells have also been tested (and found

efficacious) as supplements to nerve scaffolds using inside-out arterial

grafts,47 decellularized nerve grafts,48-51 and veins.52 One study

showed a relative inferiority of BMSCs when directly compared with

SCs for electrophysiological recovery of a sciatic transection/silicone

tube model, although functionally the groups performed at equivalent

levels.53 BMSCs have also been studied in larger animal models of

long-gap nerve regeneration, including rabbits54 and nonhuman

primates,55 and in the latter demonstrated efficacy on par with both

SCs and allografts.

A further notable observation is the ability of BMSCs to “home

in” to injured targets, where they have demonstrated this ability in

central nervous system animal injury models when administered

intravenously.56 Although BMSCs are yet to be used in humans, the

practicality of an effective systemic stem cell therapy makes these

cells a prime candidate for translational study.

3 | ADIPOSE-DERIVED STEM CELLS

Originally described by Zuk et al, adipose-derived stem cells (ADSCs)

present a potential adjunct to improve nerve repair and are derived

from adipose tissue, which in turn is derived from embryonic meso-

derm.57,58 However, they can be effectively differentiated along ecto-

dermal lines, with SC-like ADSCs, first described in 2007 by Kingham

and colleagues.38 Numerous studies have focused on neu-

roregenerative effects of adipose tissue using purified, cultured, dif-

ferentiated, or dedifferentiated adipose-derived tissues.59-61 ADSCs

have also been extensively investigated for use in peripheral nerve

regeneration, with promising results. They produce mRNA for the

growth factors BDNF, glial-growth–like factor (GGF), neurogulin-1

(NRG-1), vascular endothelial growth factor (VEGF), hepatocyte

growth factor (HGF), and insulin-like growth factor (IGF) on par or

greater than SCs in culture.41 ADSCs support a robust neurite

response38 and myelinate dorsal root ganglion (DRG) neurites

in vitro.62 When used in animal models, they may be superior to both

SCs and mesenchymal cells for regeneration through a fibrin con-

duit.63 They have also demonstrated efficacy in improving recovery in

both acute and chronic sciatic denervation injury paradigms in

rodents.62,64

One benefit of ADSCs for clinical translation is the relative abun-

dance of adipose tissue for harvest. In this regard, human adipose-

derived mesenchymal cells obtained from abdominal fat was shown to

improve recovery metrics when injected into a murine sciatic crush

model, as demonstrated by sciatic functional index (SFI) and walking

track analysis. Remarkably, in the study, these cells were injected sys-

temically (intravenously) and were found to localize at the area of

injury.65 As a counterpoint, it would seem that mesenchymal cells

derived from human adipose tissue may not maintain their SC-like

phenotype for long when withdrawn from the permissive in-vitro

cocktail of mitogens and growth factors, as recently demonstrated by

Faroni et al.66 Adult adipose mesenchymal cells also have known limi-

tations in terms of senescence and donor-age–dependent efficacy,

making their specific clinical indications the subject of future research.

4 | AMNIOTIC MESENCHYMAL STROMAL
CELLS

Amniotic mesenchymal stromal cells (AMSCs) are derived from the avas-

cular amniotic mesoderm, and are relatively non-immunogenic cells.67-70

Because of this, their membrane has been investigated as a cellular scaf-

fold both in vivo71 and ex vivo.67 Recently, the in-toto amniotic membrane

has been differentiated toward an SC phenotype and proposed as a scaf-

fold alternative to autograft repair.72 AMSCs have been compared with
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ADSCs in a sciatic nerve crush model, and were found to be better at

improving electrophysiological and functional recovery at 4 weeks post-

injury.73 Interestingly, the AMSCs markedly improved the overall perfu-

sion vascularity of the injured sciatic nerve distal to the crush (Figure 1),

in keeping with their known angiogenic profile.74

AMSCs are an interesting candidate for human transplantation

experiments, with their demonstrated ability to graft effectively into

non-autologous environments.75,76 Such biocompatibility may enable

allograft cell banks to be developed for immediate human use, without

the need for posttransplant immunosuppression.

5 | UMBILICAL CORD MESENCHYMAL
CELLS

The umbilical cord is a valuable source for mesenchymal stem cells,

both from the Wharton jelly77,78 and umbilical cord blood.79-83 These

are multipotent cells that are likely of two distinct populations: one

with a propensity to differentiate into neuronal ectodermal pheno-

types, and another with a mesodermal lineage production.79 These

cells have been previously shown to express pluripotent stem cell

markers, such as Oct4, Nanog, Sox2, ABCG2, and the neu-

roectodermal marker nestin.79 There are several potential advantages

to the use of these cells, including: 1) ease of accessibility; 2) the fact

that they are immunologically inert; 3) their use bears no ethical

considerations; and 4) they possess a low probability of resulting in

graft-vs-host disease.83,84

As peripheral nerve regeneration support cells, the therapeutic

potential of human umbilical cord blood–derived stem cells

(hUCBDSCs) has been investigated in studies of cavernous nerve

injury, recurrent laryngeal nerve injury, optic nerve injury, and sciatic

nerve injury,85-89 all with varying degrees of success. hUCBDSCs were

shown to improve recovery from rat sciatic nerve crush injury, with

improved SFI over noninjured controls as well as increased expression

of both BDNF and tyrosine kinase B (TrkB) receptor mRNA. Wharton

jelly–derived umbilical mesenchymal cells also seem to improve recov-

ery from rodent sciatic nerve crush, showing improvements in SFI,

myelin histology, and sensory hindlimb function.78

6 | DENTAL PULP STEM CELLS

Thought to be an embryological derivative of the cranial neural

crest,39,90 human dental pulp houses a progenitor mesenchymal popu-

lation that easily differentiates into both a neural and SC phenotype

in vitro.91-93 First described by Gronthos and colleagues in 2000,

DPSCs are self-renewing, and express numerous stem cell markers

such as CD29, CD90, CD271, nestin, and glial fibrillary acidic protein

(GFAP), and do not express hematopoietic markers.94-97 These cells

have been shown to be able to differentiate into numerous tissue

types, including neurons,98 myoctes,99 hair follicle cells,100 and hepa-

tocytes.101 However, research has also shown that these cells are sus-

ceptible to cellular senescence, and that they secrete toxic factors to

adjacent tissues when they develop this phenotype.102

DPSCs were used in experimental models of optic nerve injury,

where they have been shown to promote neurotrophin mediated reti-

nal ganglion cell (RGC) survival, and axonal regeneration after optic

nerve injury.103 When cocultured in vitro with DRG cells, DPSCs

displayed increased survival, neuritogenesis, and myelination when

compared with undifferentiated DPSC cultures.92,104 These cells also

demonstrated myelinating capacity and improved functional recovery

from rodent sciatic nerve transection.105 They have been shown to

counterbalance peripheral nerve injury–induced oxidative stress and

neuroinflammation.106 Interestingly, these cells may have their regen-

erative effects seen in crush injury enhanced by application of an

external pulsed electromagnetic field.107 Clinically, wisdom teeth may

one day be a potential source of autologous donation for this particular

type of stem cell for use in the treatment of peripheral nerve injuries.

7 | SKELETAL MUSCLE–DERIVED STEM
CELLS

Isolated skeletal muscle–derived stem cells (Sk-SCs) obtained from

skeletal muscle satellite cells are able to differentiate into multiple lin-

eages, including myogenic, adipogenic, osteoblastic, neuronal, and

glial.42,108-110 These cells therefore display a clonal productivity some-

where on the spectrum between ectodermal and mesodemeral.111

F IGURE 1 Transplantation of AMMs augments blood
perfusion. A, Representative images of blood perfusion in the sciatic
nerve. Blood perfusion was performed 4 weeks after the initial
operation with LDPI (Moor Instrument, Wilmington, Delaware). B,
Quantitative analysis using LDPI. AMMs significantly improved blood
perfusion compared with ADM stem cells and PBS. LDPI of blood was
done 4 weeks after the operation, as described elsewhere.14 Briefly,
the mice were anesthetized and placed on a heating blanket to

maintain a constant temperature. The nerves were exposed by using
blunt dissection and scalpel incision. The blood flow in the sciatic
nerve was examined using LDPI. ADM, adipose-derived
mesenchymal; AMM, amniotic membrane–derived mesenchymal stem
cell; LDPI, laser Doppler perfusion imaging; PBS, phosphate-buffered
saline. **P < .01; *P < .05 (n = 9 per group). Source: Data excerpted
from Li et al (2014).73
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In a murine model of a long nerve gap injury using an acellular scaf-

fold, Sk-SC–seeded grafts demonstrated improved histomorphological

metrics of recovery vs control grafts. These cells formed SCs as well as

cells of both the endo- and perineurial architecture, suggesting that Sk-

SCs may help in forming coordinated regeneration by being able to

reconstitute the muscle-nerve-blood vessel unit.112 Interestingly, the

F IGURE 2 Differentiated NCCs show enhanced in-vivo sciatic nerve regeneration. A-P, Immunohistochemical and histological analyses of
longitudinal sections through transplanted biodegradable conduits seeded with control rat Schwann cells (a-d), hESCs (e-h), or differentiated
NCCs (i-p). Dashed lines mark the walls of the conduits. Asterisks represent the site of nerve transection and the beginning of the regeneration
front. Q, Axon profile numbers beginning 1 mm distal to the proximal stump. The data represent the mean ± standard deviation of five
independent measurements from each animal and condition. Scale bars: 500 μm for a, e, i, and m; 200 μm for b, c, f, j, g, k, and n; 50 μm for d, h,
and l; and 20 μm for o and p. hESCs, human embryonic stem cells; HNA, human nuclear antigen; NCC, neural crest cell; SC, Schwann cells.
P values are denoted as follows: ns = not significant; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001. Source: Data adapted from Jones et al (2018).138
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same research group also used human-derived Sk-SCs in a murine sciatic

graft model with similar positive results in both histological parameters

as well as metrics of tibial muscle health.113

8 | OLFACTORY ENSHEATHING CELLS

This cell class originates as the myelinating cell of the olfactory bulb in

fetal development.114 Olfactory ensheathing cells (OECs) have dem-

onstrated an ability to respond to injury by secretion of an extensive

array of neurotrophins,115 and also act as the primary phagocytic cell

of the olfactory bulb,116 clearing debris and bacteria alike.117

OECs have shown great promise in restoring function and improving

histological injury parameters in animal models of spinal cord

injury,118-122 and they remain one of the few cell types to be utilized

experimentally in clinical human spinal cord injury.123,124 However, their

utility in peripheral nerve injury remains less clear; although they inte-

grate and may improve function after rat sciatic nerve injury,125 their

efficacy in doing so may not be on par with transplanted SCs.126

9 | HAIR FOLLICLE–ASSOCIATED
PLURIPOTENT CELLS

Hair follicle–associated pluripotent (HAP) cells are nestin-expressing

cells that reside in the hair follicle and are thought to be intimately

involved in the formation of the hair follicle sensory nerve.127 They

are pluripotent and can differentiate into cells of both glial and neuro-

nal lineage,128 as well as smooth muscle myocytes, keratinocytes, and

melanocytes.129-131 One challenge is that HAP cells remain pluripo-

tent in regenerative models, transforming into both neurons and glia

in vivo.132 This presents a significant problem for the translatable util-

ity of these cells clinically. It is speculated that the skin-derived pre-

cursor (SKP) cell may be one of the early fates of the HAP cell.133

Newly regenerated axons from explanted hair follicles are highly

enriched in HAP cells in vitro, with their primary in-vivo function

thought to be the caretaking of the hair follicle sensory nerve.127 One

study showed that HAP cells appear to incorporate into the reg-

enerating microenvironment of a sciatic nerve transection injury,

although robust quantitative evidence of improved regeneration was

not present.134 Further investigation into seeding HAP cells in poly-

vinylidene fluoride membranes for a sciatic gap injury also demon-

strated good incorporation at the injury site. However, there was no

additional evidence of functional benefit according to walking track

analysis when compared with controls.132

10 | NEURAL CREST STEM CELLS

Neural crest stem cells (NCCs) originate in embryological development as

migratory progenitors that initially appear between the neural and sur-

face ectoderm at approximately embryologic day 8.112,135 These cells

maintain their multipotency during and after migration.136 NCCs have

been identified in both embryonic and postnatal adult tissues, including

bone marrow, DRG, carotid body, cornea, gut, heart, sciatic nerve, and

skin.137 NCCs are a promising strategic intervention for nerve repair

given that they are the parent population to several peripheral nervous

system lineages, including immature SC-like cells.138

NCCs that were differentiated from human embryonic–derived

support cells (hESCs) were shown to incorporate well into a murine

model of sciatic nerve repair and convincingly demonstrate histologi-

cal benefit over nontreated nerves, with more robust nerve diameter

and myelination demonstrated in cell treatment groups.139 Interest-

ingly, medium from differentiated NSCs enhanced outgrowth of DRG

neurites in vitro, while at the same time convincingly demonstrated

improved regeneration of NCC/scaffold-assisted sciatic nerve repair

on par with an SC-assisted cohort (Figure 2).138 Of note, these cells

were derived from hESCs, suggesting their efficacy in rodent models

of peripheral nerve regeneration.

11 | SKIN-DERIVED PRECURSOR CELLS

First isolated and characterized by Toma et al,140 skin-derived precursor

cells (SKPs) originate in dermal papilla and readily differentiate into

F IGURE 3 Lentiviral enhanced BFP SCs injected into Thy-1 GFP
rats that underwent doxorubicin-induced focal demyelination of the
tibial nerve. High-magnification intravital images of BFP-positive SKP-
SC myelination is shown, including a three-channel unmixed spectral
image demonstrating live in-vivo myelination by SKP-SCs 27 days

after doxorubicin tibial nerve injury, 19 days after cell injection. A,
GFP axons. B, Nile red myelin. C, BFP Schwann cells. D, Merged
image, where the arrow indicates a probable node of Ranvier, as
evidenced by BFP-positive cytoplasm crossing the axon, likely in
loosely packed paranodal myelin. BFP, blue fluorescent protein; SC,
Schwann cells; SKP-SC, skin-derived precursor Schwann cell. Source:
Data adapted from Grochmal et al (2018).144
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neurons and glia, as well as smooth muscle cells.40 Early work demon-

strated the efficacy of the SKP in assuming an SC lineage (SKP-SC) when

exposed to the proper mitogens,40 and extensive work followed to

investigate the role of the SKP-SC in peripheral nerve repair.27,141-143

SKP-SCs have proven beneficial in sciatic nerve repair with acellular

nerve grafts,142 and a delayed cross-reinnervation paradigm also demon-

strated an ability to improve regeneration after chronic denervation.27

We have previously injected lentiviral enhanced blue fluorescent protein

(BFP) SCs into Thy-1 green fluorescent protein (GFP) rats that underwent

doxorubicin-induced focal myelination.144 Our group showed that these

cells may aid regeneration through growth factor production,27 debris

clearance,145 and myelination144,146,147 (Figure 3).

In one experiment, SKP-SCs were impressively shown to improve

behavioral recovery, even after acute transection repair.145 Skilled loco-

motor assessments such as ladder rung and tapered beam were seen to

be improved in animals administered SKP-SCs after acute, chronic, and

nerve graft repair.145 In addition, it was recently shown that SKP-SC

action may in part involve their local immunomodulatory effect on both

neurites and macrophages, which appears to be mediated by an

interleukin-6–dependent mechanism.148 As a cell for translational ther-

apy, SKP-SCs seem quite promising. Human SKP-SCs are able to be pro-

duced by differentiation of human-induced pluripotent stem cells,149

whereas the practical expansion of clinically relevant numbers of SKP-

SCs has been shown to be possible through the use of bioreactors.143

12 | CURRENT STATE OF CLINICAL
TRANSLATION

In recent years we have seen tremendous progress in precursor and

stem cell biology and its application in the treatment of various neuro-

logical disorders. Clinical trials in the United States have evaluated the

regenerative benefits of stem cells in the context of multiple sclerosis

(MS), amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD),

Duchenne muscular dystrophy (DMD), traumatic spinal cord injury,

and other disorders of the nervous system.35,124,150 Unfortunately,

there have been very few clinical trials examining the use of stem cells

in the clinical treatment of peripheral nerve pathologies,151 and none

specifically investigating the neuroregenerative benefits of stem cells

after traumatic peripheral nerve injury.35

Although the neuroprotective and regenerative potential of stem

cells in the repair of peripheral nerves has been demonstrated both

in vitro and in vivo in a number of animal models, it is currently unclear

when widespread clinical implementation of stem cell therapies will

become a reality. Of note, no cell-based approach has shown clear

superiority over another, and few preclinical studies have attempted

to compare one cell type with another.152 The literature is also limited

by the lack of data on the clinical safety and efficacy of stem cell–

derived therapies, with no long-term reports currently available. The

clinical use and early promise of autologous SC therapies in clinical

nerve repair153,154 suggest that cell types that can be readily pre-

differentiated in vitro to SCs (such as SKPs) or demonstrate

transdifferentiation to SCs in vivo (such as BMSCs and ADSCs) may

have the highest potential for clinical success. Levi and colleagues

from the University of Miami recently detailed the first-in-human use

of autologous SCs to supplement sciatic nerve repair.153,154 In these

groundbreaking studies, two patients were enrolled in a US Food and

Drug Administration–approved trial to assess both the safety and abil-

ity of autologous cultured SCs to enhance regeneration through sural

nerve autografts. Long-term follow-up in both patients demonstrated

nerve graft patency, absence of tumor formation, and significant

improvements in both sensory and motor impairments compared with

preoperative values.154

Although these initial clinical studies are encouraging, more rigor-

ous studies examining stem cell stability, differentiation, and migration

patterns are required before clinical safety is definitively

established.155 Metrics that accurately characterize the clinical effi-

cacy of stem cell–based therapies must also be identified. Current

peripheral nerve stem cell literature exhibits wide variability in animal

models, nerve injury type, stem cell source, differentiation protocols,

cell-delivery methods, and assessment of nerve regeneration. In par-

ticular, variations in the timing of diverse outcome measures between

different stem cell treatment modalities make specific treatments dif-

ficult to assess.35,37 These inconsistencies make it extremely difficult

to establish clear conclusions about efficacy or safety in a clinical

population. In addition, ethical considerations are a necessity when

translating research from the bench to bedside. Furthermore, govern-

mental restrictions and regulations may negatively affect the speed of

translation of stem cell therapy into clinical practice.156-158 Strategies

to manipulate cells using genetic and viral transduction approaches

in vitro to potentially enhance their effect in vivo (as recently

reviewed159) raise additional regulatory considerations. Nevertheless,

the evidence presented in this review suggests an promising future

for stem cell–based approaches to traumatic peripheral nerve damage,

although continued high-quality research is essential for bench-to-

bedside translation. Our opinion is that approaches that use stem and

precursor cells akin to an SC phenotype have the greatest potential

for clinical translation.

13 | CONCLUSION

Peripheral nerve injuries remain a common problem with unsatisfac-

tory functional outcomes after standard therapeutic interventions.

Several stem cell–based therapies have been investigated in both in-

vitro and in-vivo experiments to positively modulate the regenerative

milieu after nerve injury. These advancements suggest a promising

future for stem cell–based approaches in enhancing regeneration and

functional recovery after nerve injury.
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