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Key Points 
 

● Using waveforms of S and ScS we estimate the shear-wave velocity (Vs) structure in D” beneath 
the Indian-Eurasian plate collision zone 

● Vs is relatively high overall but we resolve horizontal variations by 3-7% over distances shorter 
than about 300 km 

● Our models place new constraints on geodynamic scenarios for the generation of thermo-
chemical heterogeneity in downwelling regions of D’’ 
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Abstract 

Seismic tomography has demonstrated that the shear-wave velocity is relatively high over a 3,000-
km wide region in the lowermost mantle beneath southern and eastern Asia. This seismic anomaly 
demarcates the current position of slab remnants that may have subducted in the Cretaceous. To further 
characterize the seismic structure at smaller scales, we measure 929 residual traveltime differences (δt) 
between the phases ScS and S using recordings of eight earthquakes beneath the Indian Ocean at stations 
from the Chinese Digital Seismic Network. We interpret variations of δt up to 10 seconds as due to 
horizontal shear-velocity variations in D” beneath northern India, Nepal, and southwestern China. The 
shear velocity can vary by as much as 7% over distances shorter than 300 km. Our observations provide 
additional observational evidence that compositional heterogeneity and possibly melt contribute to the 
seismic structure of the lower mantle characterized by long-term subduction and mantle downwelling. 

Plain Language Summary 

Seismic tomography indicates that the seismic wavespeed is relatively high in the lowermost mantle 
(i.e., the D’’ region) beneath regions, such as eastern Asia, influenced by subduction since the Mesozoic 
era. Our new analysis of the propagation time of shear-wave reflections off the outer core (i.e., the phase 
ScS) corroborates the result from seismic tomography that the shear velocity in D’’ beneath eastern Asia 
is high overall. However, we also find that the shear velocity can vary by as much as 7% over distances 
shorter than 300 km within a region of D” beneath northern India, Nepal, and southwestern China. This 
provides new evidence for the thermo-chemical nature of D’’ beneath downwelling regions of the mantle. 
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1 Introduction 

Seismic tomography models agree that the P-wave and S-wave velocities (Vp and Vs, respectively) 
are relatively high across a wide region of the lowermost mantle beneath eastern and southern Asia (e.g., 
Houser et al., 2008; Kustowski et al., 2008; Simmons et al., 2010; Ritsema et al., 2011) (Figure 1a). This 
broad seismic anomaly is the deepest portion of an elongated high-velocity anomaly from southeastern 
Asia to the Mediterranean at shallower depths in the lower mantle. Reconstruction of paleo-plates linked 
it to the subduction of the Neo-Tethyan and Pacific plates and the Paleo-Tethyan and Paleo-Pacific plates 
(e.g., Ricard et al., 1993; Van der Voo et al., 1999; Stampfli & Borel, 2002; Honza & Fujioka, 2004; 
Muller & Seton, 2015). Thus, the high seismic velocities in D’’ beneath eastern and southern Asia are 
likely related to prolonged subduction in the region and relatively cool fragments of subducted material. 

However, seismic tomography and various analyses of teleseismic body waves indicate that Vp and 
Vs vary also at smaller spatial scales. Studies of teleseismic S wave triplication (e.g., Young & Lay, 1987; 
Weber & Davis, 1990; Gaherty & Lay, 1992) showed that Vs increases discontinuously by about 2.8% at 
280 km above the CMB beneath the Indian Ocean and eastern Eurasia. The waveform complexity suggest 
that the strength and depth of the discontinuity varies considerably. The discontinuity may be related to 
the phase transition of perovskite to post-perovskite within a relatively cool lower mantle (e.g., Murakami 
et al., 2004; Grocholski et al., 2012). Within the wider D’’ region of southeastern Asia, there is evidence 
for anisotropy in Vs (e.g., Ritsema, 2000; Thomas et al., 2007), weak scattering producing PcP precursors 
(Zhang et al., 2019), albeit not for ultra-low velocity zones at the base of the mantle unless they are 
thinner than the detection thickness of about 5 km thick (Thorne & Garnero, 2004).  

Detailed seismic mapping of D’’ beneath Eurasia and other downwelling region is necessary to 
further evaluate the composition, mineralogy, and structural complexity of the ancient slabs that have 
accumulated above the core-mantle boundary (CMB). We contribute to such work a study of the arrival-
time differences of the phases S and ScS recorded by a network of more than thousand seismic stations in 
China (Figure 1b). Our unique data enable us to chart 100-km-scale variations of Vs within a 2000×2000 
km2 zone of D’’ beneath northern India, Nepal, and southwestern China near the plate boundary of the 
Neo-Tethys slab. 

2 ScS-S differential travel time residuals 

2.1 Recorded and synthetic waveforms 

The ScS-S difference time is a robust seismic observable and often used to study the seismic 
structure of the deep mantle. It is less strongly influenced by seismic structure in the upper mantle and by 
earthquake mislocations than the absolute travel times (e.g., Russell et al., 1998; Wysession et al., 2001; 
He et al., 2015; Zhao et al., 2017). We measure the arrival times of ScS and S by cross-correlating the 
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bandpass filtered recorded and computed waveforms to account for all propagation effects on the S and 
ScS waveforms. 

We use ScS and S waveforms recorded by the 1,024 stations from the Chinese Digital Seismic 
Network (CDSN) (Zheng et al., 2009). The waveform data were produced by eight shallow earthquakes 
with MW > 5.6 between 2009 (when the deployment of the CDSN began) and 2018 along the Owen 
Fracture Zone and beneath the Red Sea (Table S1 and Figure 1b). We determine their focal depths and 
source mechanisms by modeling the interference of the direct P wave with the pP and sP surface 
reflections (e.g., Kikuchi & Kanamori, 1986; Bai et al., 2017) (Figure S1) at stations not used in the study 
of S and ScS. The waveforms have been corrected for the effects of the instrument response. 

We calculate synthetic waveforms using the spectral-element method (Komatitsch & Tromp, 2002). 
The cross-correlation window has a width of 16 s corresponding to the dominant period of the ScS and S 
waveforms. The cross-correlation function does not change significantly if the time window is up to a 
factor of two wider (Figure S2). With resources available to us, we can only compute synthetic 
waveforms with periods longer than 10 s. We apply therefore a second-order Butterworth filter with 
corner frequencies of 0.02 Hz and 0.1 Hz (i.e., periods of 10−50 s). A filter of 10-50 s results in the 
sharpest ScS and S pulses and the best imaging results of shear-velocity variations in D’’ (Figure S3). We 
select waveforms in which the S and ScS signals have signal to noise ratios (defined as the square root of 
the energy ratio of signal to noise) higher than 2.0 and manually checked each waveform to ensure the 
high quality of data. After these quality checks, we retain 929 transverse-component waveforms for 
epicentral distances between 46° and 77°.  

We retain measurements only if the cross-correlation function has a maximum higher than 0.85 
(Figure S4). To quantify the residuals, we consider a 1-D and a 3-D reference model. The reference 1-D 
profile is AK135 (Kennett et al., 1995). In the reference 3-D model, S40RTS (Ritsema et al., 2011) is the 
Vs structure in the mantle to a depth of 2591 km and Vs follows the 1-D AK135 profile between 2591 km 
depth and the CMB. Supplementary Figure S5 compares S40RTS to nine other tomographic models. 

2.2 Measurements 

We write the traveltime differences between the S wave and the ScS wave in the recorded waveform 
and synthetic waveform for the reference 1-D profile as ΔS1D and as ΔScS1D, respectively. The residual 
δt1D = ΔScS1D - ΔS1D is the anomaly in the ScS and S arrival time difference with respect to AK135. 
Similarly, ΔS3D, ΔScS3D, and δt3D denote anomalies in the arrival times of S, ScS and the ScS-S arrival 
time difference with respect to the 3-D reference model. 

Using two examples we illustrate that the measurements of ΔS1D, ΔScS1D, ΔS3D, and ΔScS3D can be 
significantly different for the two reference models. Figure 2a shows measurements and recorded and 
synthetic waveforms for Event 4 at station HB.JME at an epicentral distance of 66.7°. The S-wave arrival 
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time is predicted within 1.5 s by either reference model but ScS arrives anomalously early by 3.9 s for the 
1-D reference models and 5.5 s for the 3-D reference model. The values for δt1D and δt3D are -2.4 s and -
5.9 s, respectively. This demonstrates that the Vs structure of the mantle above D’’ has a significant 
influence on the ScS arrival time in particular. In addition, the 3-D waveform of ScS reproduces the 
“down-and-up” swing in the recorded ScS waveform better than the 1-D model. 

  

Figure 2b shows the waveforms and modeling results for Event 6 recorded at station HN.CNS at an 
epicentral distance of 54.0°. The arrival time anomalies of both S and ScS differ by more than 5 s for the 
1-D and 3-D reference models. However, δt1D and δt3D are similar at +4.8 and +4.1 s, respectively. This 
indicates that the ScS-S arrival-time difference is determined primarily by structure in D’’. 

The values for δt3D for HB.JME (Figure 2a) and HN.CNS (Figure 2b) are extreme values in our 
collection. The ScS reflection points associated with these two waveforms are [31.7°N, 72.9°E] and 
[22.3°N, 83.7°E], respectively. If S40RTS is indeed effective in removing the contributions of the mantle 
above D’’ to the ScS-S arrival time difference, the 10-s variation of δt3D for HB.JME and HN.CNS points 
to a 6% difference in the average Vs velocity in D’’ over 800 km. 

Figure 3 shows the correlations of ΔS1D, ΔS3D, ΔScS1D, ΔScS3D, δt1D and δt3D for our 929 high-
quality measurements. It demonstrates that the anomaly in the ScS-S arrival time difference (i.e., δt1D and 
δt3D) correlates better with the anomaly in the ScS arrival time (i.e., ΔScS1D and ΔScS3D) (Figure 3b and 
3d) than the anomaly in the S arrival time (i.e., ΔS1D and ΔS3D) (Figure 3a and 3c). Further, ΔScS3D 
correlates better with δt3D than ΔScS1D with δt1D which suggest that using a 3-D reference model is 
essential in isolating the Vs structure in D’’ from the ScS-S arrival time measurements. 

3 Modeling 

The median value of the 929 measurements of δt3D
 is -1.75 s (Figure 4a). The predominantly 

negative values (84% of the total data set) indicates that Vs in the D’’ is higher than the AK135 value 
(and other reference seismic profiles), consistent with the high-velocity anomalies imaged by seismic 
tomography (e.g., Figure 1a). 95% of all values of δt3D fall between -4.57 s and +1.63 s, indicating that Vs 
varies significantly in the ScS reflection point region. Part of this signal is an epicentral distance effect; 
the absolute value of δt3D increases with increasing epicentral distance (Figure S2) because ScS 
propagates a longer distance through D’’. 

Since ScS propagates steeply through D’’, especially for the shortest epicentral distances, we cannot 
determine the thickness of D’’ and the Vs structure in D’’ independently from measurements of δt3D. 
Therefore, similar to previous studies (e.g., Garnero & Lay, 2003; He & Wen, 2011), we assume that D’’ 
has a uniform thickness, which is 300 km in our case, and adopt a tomographic model, S40RTS in our 
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case, to describe the Vs variation in the mantle above D’’. We relate a traveltime anomaly δt3D to a 
perturbation in Vs in D’’ assuming that Vs varies linearly from the AK135 value at 2591 km depth to 
VCMB at the CMB. We define VCMB by dVs which is the perturbation from the AK135 velocity, V0

CMB, at 
the CMB. Hence, VCMB = (1 + dVs) V0

CMB. 

We build a catalog of waveform synthetics for each of the eight earthquakes from Table S1, all 
stations of the CDSN, and 3-D models in which dVs varies from -5% to +5% with a step of 0.1%. We 
cross-correlate these waveforms with the waveforms for the 1-D reference model and determine dVs that 
reproduces δt3D for each of the 929 source-receiver pairs. Because we assume that D’’ is 300 km thick, 
we can only resolve the spatial variations of dVs associated with the variation of δt3D. The range in dVs 
would be larger or smaller if we had chosen D’’ to be thinner or thicker than 300 km, respectively. 

Figure 4b shows a map of dVs plotted at the ScS reflection points. Overall, dVs is positive. The 
highest and lowest values of dVs are +4.2% and -2.8% and resolved in the central portion and near the 
southeastern margin of the reflection point region separated by less than 300 km. ScS reflection points 
associated with negative values for dVs are scattered throughout the central portion and form two 
coherent clusters in the southeastern and westernmost parts of the sampling region, roughly coincident 
with patches of relative weak Vs perturbations in S40RTS (see Figure 1a). 

We show the average values of dVs in Figure 4c. For each average value of dVs, the ScS reflections 
points fall within a circular cap with a radius of 2°. The cap centers form a 0.5° × 0.5° grid. After 
averaging, the total variation in dVs is reduced by about a factor of 4 to about -1% to +2% but, as in 
Figure 4b, dVs appears to be lower within the central portion and lowest in two patches in the 
southeastern and western parts of the sampling region. 

The average values of dVs depend on the assumed cap radius (Figure S6). This indicates that our 
modeling of δt3D with 1-D profiles of Vs in D’’ cannot fully capture the complexity of the data and the 
sampling of D’’ by ScS along non-vertical paths. However, the relatively smooth spatial variation of dVs 
across the sampling region does not change when the cap radius is larger than 2°. In the smoothest maps, 
dVs varies by at least 2% over less than 300 km in some parts of the sampling region. These gradients are 
much stronger than the gradients resolved by S40RTS and other tomographic models. 

4 Discussion and Conclusions 

Based on the modeling of waveforms of the phases S and ScS produced by earthquakes along the 
Owen Fracture Zone and beneath the Red Sea and recorded at stations from the Chinese Digital Seismic 
Network, we constrain ScS-S traveltime (i.e., δt) variations and the 100-km scale Vs structure within a 
2000×2000 km2 zone of D’’ beneath northern India, Nepal, and southwestern China near the plate 
boundary of the Neo-Tethys slab. As expected for a region modified by subduction since the Cretaceous 
and as imaged consistently by tomographic studies, we find that Vs is high compared to standard seismic 
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profiles for the lowermost mantle. However, the variation of δt by more than 6 s indicates that horizontal 
variations of Vs are stronger than can be resolved by seismic tomography.  

It is widely recognized that the complex seismic structure implies that D’’ is thermo-chemical 
boundary layer, possibly with distributed partial melts and anisotropy (e.g., Lay et al., 2004). The 
proposed scenarios by which the heterogeneity is formed are diverse. The seismic heterogeneity may be 
explained by material left over after Earth’s differentiation (e.g., Labrosse et al., 2007; Lee et al., 2010), 
chemical reactions between the mantle and core (e.g., Dubrovinsky et al., 2003), basalt-harzburgite 
segregation within the subducted slab that has reached the CMB (e.g., Tackley, 2011; Andrault et al., 
2014; Pradhan et al., 2015), enrichment of Fe and Al in post-perovskite (Mao et al., 2014), or with 
thermal anomalies that may point to incipient plume formation (He et al., 2014). 

In the southeastern part of our sampling region, where data coverage is relatively high, horizontal 
variations in Vs are the strongest. The strength of the horizontal Vs gradients is uncertain because spatial 
variability in δt is high and the unilateral sampling of D’’ for the predominantly southwest-northeast 
oriented source-receiver combinations necessitates a 1-D modeling of δt. We estimate that Vs changes by 
3–7% over distances shorter than 300 km at the CMB, as strong as what has been observed near the 
margins of large low shear velocity provinces (e.g., Ford et al., 2006; Sun & Miller, 2013). This variation 
depends on the assumptions of the thickness of D’’ and the level at which we average δt. The estimated 
variation of Vs is higher if they are more strongly concentrated at the CMB. In the extreme case that ultra-
low velocity zones are responsible for the variability in δt, their shear velocity reductions must be about 
15−35% for thickness between 20−50 km in order to explain a variation of δt of 4 s. We note that there is 
no evidence for pervasive ULVZs in the lowermost mantle beneath eastern Asia (e.g., Yu & Garnero, 
2018). Our work cannot discriminate between geodynamic scenarios for the generation of thermo-
chemical heterogeneity in D’’ in downwelling regions of the mantle but our seismic modeling indicates 
that successful models must explain shear-velocity gradients of 3−7% over distances as short as 300 km. 
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Figure 1. (a) Map of the variation of shear velocity in the lowermost mantle beneath southern Asia according to 
model S40RTS (Ritsema et al., 2011). The thick line from the eastern Indian Ocean to Korea is the plate boundary 
between the Pacific and Eurasian plates during the late Cretaceous to the late Eocene (Honza & Fujioka, 2004). Two 
east-west oriented thick lines beneath the Arabian Sea and the western Indian Ocean are the boundaries of Neo-
Tethys Ocean and Eurasian plates during the late Cretaceous (Van der Voo et al., 1999). White lines denote current 
plate boundaries. (b) Map showing the locations of the eight earthquakes (black circles for the locations; beach balls 
for the focal mechanisms) and CDSN stations (red triangles) used in this study. The blue circles are the reflection 
points of 929 ScS phases. Green lines are the present plate boundaries. The dashed line marks the great-circle arc 
between Event 6 and station HN.CNS. The inset in the upper-left corner shows the S and ScS rays for an epicentral 
distance of 60°. 

 

Figure 2. Example of measurements of ΔS1D, ΔScS1D, ΔS3D, and ΔScS3D, indicated in the upper left corners, at 
stations (a) HB.JME for event 4 and (b) HN.CNS for event 6. The recorded waveform segments are shown with 
black lines. The synthetics for the 1D and 3D reference models are shown using dashed green and red lines, 
respectively. The waveforms are 80 s long and have been centered on the AK135 predicted arrival time (at 0 s) of S 
(on the left) and ScS (on the right). The waveforms have been normalized so their maximum amplitudes are 1. 

 

Figure 3. Comparison of the ScS and S arrival time anomalies. (a) ∆S1D versus δt1D, (b) ΔScS1D versus δt1D, (c) 
ΔS3D versus δt3D, and (d) ΔScS3D versus δt3D. 

 

Figure 4. (a) Cumulative frequency histogram of δt3D. The median value of δt3D is -1.75 s and 95% of the values fall 
between -4.57 s and +1.63 s. (b) Values of dVs plotted at the CMB reflection points of ScS. Blue crosses and red 
squares correspond to positive and negative values, respectively. The size of the symbols is proportional to the 
magnitude of dVs. (c) Map of dVs after cap smoothing using caps with radii of 2o and cap centers spaced every 0.5o. 
Each cap contains at least 10 values of dVs. 
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