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Abstract 

With the development of digital technologies, more and more brick-and-mortar stores are 

starting to offer the online channel to sell their products. For example, Walmart and Whole Foods 

are selling fresh groceries from both their websites and store locations. As a result, such omni-

channel retailers need to serve both online and in-store demand. To do that, the retailer may choose 

to fulfill online demand from a centralized distribution center (DC), or by utilizing inventory of 

stores. In this thesis, I explore the optimal fulfillment strategies of an omni-channel retailer. Firstly, 

consider customers’ behavior when they face online and in-store purchase options. Using utility 

theory, model customers’ behavior in preferring either channel. Secondly, I explore the impacts of 

retailers’ fulfillment choices on its inventory cost, shipping and delivery cost, as well as overall 

profitability. This thesis identifies conditions under which either fulfillment strategy (i.e., from DC 

or stores) is optimal. And find that the optimal fulfillment strategy is dependent on the total number 

of stores, unit inventory cost at the stores and DC, unit delivery cost, product prices and number 

of stores. Case studies based on Manhattan and Los Angeles are provided to further investigate the 

retailer's fulfillment decision as well as the impacts of its pricing decision, and geographic and cost 

characteristics. For Manhattan, for both exogenous and endogenous price cases, the regions where 

store fulfillment are optimal first decrease and then increases as the total number of stores increases. 

For Los Angeles, the region where store fulfillment is optimal always increases with the total 

number of stores.  
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Chapter 1: Introduction 

For a retailer, how to make the suitable products available to targeting customer is a very 

important issue (Tsay and Agrawal, 2004). Traditionally, it offers products via stores located in 

proximity to its customers, providing them a chance to experience and touch the product. On the 

other hand, with the advancement in digital technologies in recent years, offering products via the 

online channel has become an increasingly popular route that many retailers take these days. The 

online channel has the ability to provide product information, and therefore less search cost for 

customers. This advantage of online channel allows the online retailer provides a large range of 

products. In the same way, the Internet can improve the retailers’ decision efficiency through the 

quick information feedback and make the collaboration between different partners (Giménez and 

Ramalhinho, 2004). Customers are increasingly choosing to place orders online and getting 

products directly delivered to their doorsteps, saving time associated with travel, by just paying a 

small fee or sometimes for free (Brynjolfsson et al., 2003). 

As a result, a growing number of retailers, such as Walmart and Whole Foods are adding or 

switching completely to online channel (Nunes and Cespedes, 2003, Lang and Bressolles, 2013, 

Bayram and Cesaret, 2020, Singh et al., 2005). While omni-channel retail provides a significant 

opportunity for providing better customer service, it also introduces another dimension of 

complexity in the retailer’s fulfillment strategy (Aspray et al., 2013). A successful fulfillment 

strategy in an omni-channel retail supply chain can not only reduce the operation cost and increase 

the profit, but also provide competitive advantages in the market (Nicholls and Watson, 2005). 

Within omni-channel operations, fulfillment is commonly thought as one of the most expensive 

and crucial (De Koster, 2002, Lummus and Vokurka, 2002). To fulfill online demand, retailers 

have two options, using inventory from either stores or distribution centers (DC). The benefit of 

fulfilling from stores is saving last-mile delivery cost due to their closer proximity to customers’ 
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homes, especially when there are large number of stores. However, doing so incurs extra shipping 

cost related to the transportation of the online orders from DC to stores. More importantly, storing 

inventory at stores versus the DC results in a loss of pooling effect between different locations. 

Conversely, fulfilling online orders directly from DC leads to lower shipping cost, while allowing 

the retailer to better leverage the inventory pooling effect across different locations. Due to these 

tradeoffs, it is not an easy decision for retailer on fulfillment sources. In addition to these cost 

tradeoffs, fulfillment strategy will also affect consumers’ purchasing behavior, which in turn can 

influence the demand from either channel as well as retail prices. In this research, following 

important research questions are examined. First, what is the optimal fulfillment strategy for an 

omnichannel retailer facing online (and in-store) demand? Second, how do important drivers, such 

as the total number of stores, inventory costs, transportation cost and retail price, impact the 

optimal fulfillment strategy and the retailer’s profit? Finally, how do fulfillment and pricing 

decisions influence one another? 

This thesis considers a retailer with one DC and several stores who faces online and in-store 

demands. I examine its optimal fulfillment strategies to maximize the total profit. I first apply 

utility theory to model customers’ channel selection decision when shopping with the retailer. Then 

explore the retailer’s optimal fulfillment strategy for maximizing profitability while expecting the 

customers’ behavior. This thesis considers inventory holding cost, transportation cost from DC to 

stores, and online delivery cost from stores to customers for the retailer. In addition, this thesis 

performs analysis on the impacts of various factors, such as the number of stores, product price, 

and costs related to transportation and customer inconvenience, on the performance of the 

omnichannel supply chain. I find that the retailers optimal fulfillment strategy depends on the 

store's inventory cost ℎ𝑠, DC's inventory cost ℎ𝑐, delivery cost 𝜙𝑑 and the total number of stores 

𝑁. The retailer prefers store fulfillment when the store's inventory cost is low, the delivery cost is 

high, the number of stores is neither too small nor too large. On the contrary, if the delivery cost is 

high and number of stores is either high or low, store fulfillment is only preferred if DC has very 
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high inventory cost. Store fulfillment is also preferred when DC's inventory cost is sufficiently 

high and the delivery cost is sufficiently low. Interestingly, I find that store fulfillment may be 

optimal even when the stores' inventory cost is high. In particular, this happens when DC's 

inventory cost is very high, delivery cost is high, and the number of stores is either small or large. 

Finally, this thesis compares the results using case studies of Manhattan and Los Angeles with 

distinctive characteristics, with which study the impacts of pricing decision, and geographic and 

cost characteristics. For Manhattan, for both exogenous and endogenous price cases, the region 

where store fulfillment is optimal first decrease and then increase as the total number of stores 

increases. For Los Angeles, the region where store fulfillment is optimal always increases with the 

total number of stores.  

The contributions are as follows:  

1) This thesis provided a model framework for identifying the optimal fulfillment strategy 

of an omnichannel retail supply chain.  

2) This thesis identifies conditions under which either fulfillment strategy is optimal.  

3) This thesis explains the main tradeoffs between the fulfillment strategies in terms of 

transportation cost, inventory cost, demand and revenue.  

4) This thesis illustrates the impacts of pricing decision, and geographic and cost 

characteristics using case studies of two US cities with differing characteristics.   

The remainder of this thesis is organized as follows. In Chapter 2, I review the related 

researches. In Section 3, I describe the model setup, and provide analytical solutions and insights 

for the retailer’s optimal fulfillment strategy under exogenous demand. Section 4 offers case 

studies of Manhattan and Los Angeles to the model and further illustrates the fulfillment strategy 

decision when the pricing decision is also endogenous. Sections 5 concludes and summarizes 

future research directions.
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Chapter 2: Literature Review 

I have witnessed the growth omni-channel supply chains in various industries, especially with 

the development of e-commerce. With online sales increasing globally, many bricks-and-mortar 

retailers like Walmart are constructing online systems to serve more customers (Biggs and Suhren, 

2013). Meanwhile, online retailers like Amazon are also increasingly opening or collaborating with 

physical stores to expand their distributions (Verhoef et al., 2007). An omni-channel retailer 

operates both bricks-and-mortar stores and online channel, with grocery retailers seeing the fastest 

expansion into omni-channel supply chains (Hübner et al., 2016), whole non-food products still 

comprise the majority of omni-channel supply chains (Forrester 2014). Carrol (2018) (Carroll, 

2018) reports that about 91% retailers have or plan to choose omnichannel. What this thesis 

concerned about is non-perishable products that can be food or non-food items.  

The literature explores omnichannel from various aspects, such as pricing strategy, distribution, 

technology adoption, etc. Managing an omnichannel supply chain leads to increasing complexity 

in the retailer’s operations and therefore making the fulfillment decision tradeoff more complicated. 

With the coexistence of online and in-store channels, the retailer now also faces decision of how 

to best satisfy online customer demand. This decision can have important implications for the 

retailer’s distribution cost, inventory, pricing decision, and customer behavior. The fulfillment 

strategy is the focus of this thesis. 

2.1 Omnichannel Retail Supply Chain Management 

This thesis reviews the literature on omnichannel retail supply chain management. Several 

papers focus on online retail supply chains. Småros et al. (2000) (Småros et al., 2000) study two 

factors that they believe are most important in online grocery business, with the first being the 

improvement of purchase opportunities and the second being the optimization of physical 

distribution. They conclude that providing various products and flexible services to customers 
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matter for online grocery, and that online grocery retailer needs to factor in the customers’ 

acceptance when provide service. Swaminathan and Tayur (2003) (Swaminathan and Tayur, 2003) 

present a model for online retail supply chain, and point out that due to the prevalence of online 

channel, bricks-and-mortar retailers needs to consider not only the impact of each single parameter, 

but also the interaction between multiple parameters, such as supplier relationship, customization, 

real-time decision, distribution and pricing. They also suggest that integrating online and offline 

operations is becoming more important for groceries sellers. Xing et al. (2010) (Xing et al., 2010) 

carries out an empirical study to test a conceptual framework for physical distribution service 

quality on non-food supply chain. They compare the customer service of an omni-channel retailer 

and a purely online retailer, and argue that omni-channel retailing is a good strategy to improve 

retailer’s service and revenue.  

The most relevant to this thesis is the literature on omni-channel supply chain management. In 

particular, inventory fulfillment strategy is the emphasis. As a result of the physical retailing’s 

growing overlap with online retailing, the fulfillment process is becoming increasingly nonlinear 

(Beck and Rygl, 2015). A number of papers study the challenges associated with fulfillment 

strategies in omni-channel supply chains (Melacini et al., 2018). For example, Khouja (2001) 

(Khouja, 2001) assumes that when the store has a stock out only part of customers accept drop-

shipping, and develops a newsvendor model for the optimal fulfillment strategies. He shows that 

the optimal strategy is to use a mix of the fulfillment options. Beamon (2001) (Beamon, 2001) has 

a similar conclusion, while describing the major issues and challenges in hybrid distribution 

system that can serve retailers, in-store customers and online customers, with multiple order-entry 

system, demand pattern, transportation types, inventory and information systems, and performance 

measurement methods being parts of the challenge. Agrawal and Smith (2015) (Agrawal and Smith, 

2015) study empirically two major furniture retailers to analyze the supply chain planning process 

and materials flow, and conclude that omnichannel is good method to improve the supply chain 

performance. Gao and Su (2017) (Gao and Su, 2017) examine the channel choice for a retailer 
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who offer the option to buy online and pick up in store. They find that store fulfillment may hurt 

online fulfillment’s profit when store fulfillment costs more. Thus, allocating revenue into multiple 

channels can benefit the retailer. Agatz et al. (2008) offer a review of papers on the fulfillment 

process in omni-channel environment. They provide conceptual and quantitative reviews in 

purchasing, warehousing, delivery and sales functions in omnichannel supply chains, and point 

out that few dedicated models on omnichannel retailing exist. Alptekinoğlu and Tang (2005) 

(Alptekinoğlu and Tang, 2005) model a distribution system with stochastic demand. They study 

how orders should be placed, and how demand should be allocated between different sales 

locations. They also apply the model to find a cost-effective way to distribute products after two 

retailers merge. Compared to their paper, this thesis work considers the addition of an online sales 

channel in which products are directly delivered to customers, and the thesis studies how the online 

demand should be allocated among different facilities. Li et al. (2015) (Li et al., 2015) compare 

the influences of assortment, selling price and delivery time for online retailers and bricks-and-

mortar retailers. They conclude that it is optimal for the retailer choose the online channel when 

delivery cost is low and delivery speed is fast. On the contrary, if the customer is impatient and 

delivery cost is high, traditional channel is preferred. This thesis also studies the channel 

fulfillment decision for retailer in omni-channel, but extends their work by investigating the joint 

influence of inventory, shipping and delivery. Ishfaq et al. (2016) (Ishfaq et al., 2016) consider the 

case when a traditional retailer adds an online channel, and show that the capability and 

configuration of retailer’s distribution network influent the choice of fulfillment policy, and that 

integrating the online channel can generate scaling effect with a large store network. This thesis 

also considers the influence of retailer’ s distribution network to fulfillment decision and 

distribution system. In contrast, this thesis focuses on the fulfillment strategy of online orders. In 

the next section, I provide more detailed reviews on papers that focus on retailers’ fulfillment 

decisions. 
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2.2 Online Demand Fulfillment  

The fulfillment decision in terms of online order preparation locations generally fall into one 

of two methods. The first method is to fulfill online orders from distribution center or warehouse, 

with all the orders are picked, packed and delivered by the DC or warehouse (DC Fulfillment). DC 

fulfillment can be beneficial for omni-channel retailers because of the DC’s ability to aggregate 

inventory, and thus provide consistently high service level (Boyer et al., 2003). Moreover, it is also 

much easier for the DC to set up stock levels, including cycle and safety stock, as a result of the 

its large warehouse space (Agatz et al., 2008), and tailored inventory levels based on the type of 

the product (Chiang and Monahan, 2005). In contrast, stores may need to decrease their inventory 

space in order to increase the selling space (De Koster, 2002). DeValve et al. (2018) (DeValve et 

al., 2018) aim at providing a method for online retailers to decide when and what should they do 

when they choose DC fulfillment. They develop a data-driven method with stochastic demand that 

consider local fulfillment constraints and customer abandonment to find the optimal strategy. 

Hübner et al. (2016) (Hübner et al., 2016) focus on solving the last-mile delivery problem as the 

fulfillment strategy for a single channel, either online channel or bricks-and-mortar channel.   

The second method of fulfilling online demand is for all orders and products to be prepared 

and delivered from existing retail stores (Store Fulfillment). A key benefit of this is that it utilizes 

the close proximity of retail store and end consumers, thus reducing last-mile delivery distance 

and delivery time. The convenience of backward distribution system, such as exchange and return, 

makes it can provide higher backward customer service (Lang and Bressolles, 2013). Smith and 

Sparks (2009) (Smith and Sparks, 2009) use Tesco as an example to illustrate the store fulfillment 

strategy. They discuss the success story of Tesco’s supply chain transformation into omnichannel 

operatoins and provide lessons for other omni-channel retailers. Bayram and Cesaret (2020) 

(Bayram and Cesaret, 2020) assume that the online orders are fulfilled from inventory of nearby 

stores, and investigate the dynamic decision of where to fulfill an incoming order from through a 

heurist method. Uncertain demand, handling cost and shipping cost are involved in their dynamic 

model. Different from their work, this thesis focuses on the higher-level strategic decision of 
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whether online orders are to be fulfilled from stores or a centralized warehouse. In addition, this 

thesis also considers the role of transportation and inventory costs in the retailer’s decision.  

Bailey and Rabinovich (2005) (Bailey and Rabinovich, 2005) study online book retailer that 

fulfill orders from store inventory or by drop-shipping, where they assume the costs include fixed 

and linear cycle costs. Their results suggest that using both fulfillment options at the same time is 

beneficial for the omni-channel retailer. The objective of the retailer is to minimize the inventory 

cost while maximizing the customer’s order fill rate. This thesis extends their setting considering 

the combination of in-store and online channels, while adding other operational cost including 

shipping and delivery. Bendoly et al. (2007) (Bendoly et al., 2007) study the operational strategy 

for an omnichannel retailer based on the assumption that the stores hold either all or none of the 

inventory. This thesis extends their discussion by allowing stores to hold only part of the inventory, 

and model customer channel choice as well as last-mile delivery. Jalilipour Alishah et al. (2015) 

(Jalilipour Alishah et al., 2015) explore the allocation of inventory between one store and one 

fulfillment distribution center while assuming that the offline channel holds extra inventory for 

fulfilling demand from the online channel. Then they increase the store number based on previous 

setting in 2018 (Alishah et al., 2018). They show that the online channel can benefit more from 

inventory pooling effect than the physical channel because it can more easily change the inventory 

quantity and location according to customers’ distribution, and that the inventory from multiple 

locations can be shared to satisfy online demand. In contrast from their work, this thesis assumes 

that the online order inventory can be stored in distribution centers or stores, DC does not hold 

store inventory, and also models the last-mile delivery of online demand to end consumers. In 

addition to the pooling of inventory from different locations, this thesis also points out another 

type of inventory pooling effect associated with the pooling of online and in-store demand.  

2.3 The Traveling Salesman Problem  

Order fulfillment strategy for online channel is different from physical channels, as a result of 

the small order size from individual customers and the large total volume of orders (Tarn et al., 

2003). Thus, the logistics of delivering customer orders to them is an import aspect of the 
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fulfillment strategy. This thesis takes into consideration of shipment from the distribution center 

to stores and last-mile delivery to customers’ homes, and finds that this transportation cost plays 

an important role in determining fulfillment strategy.  

The transportation from DC to multiple retail stores in this work is modeled as a traveling 

salesman problem (TSP), which is concerned with finding the optimal route that minimizes 

transportation cost or distance to visit a given set of locations and return to the starting point. TSP 

has been studied extensively in the literature. Dantzig and Ramser (1959) (Dantzig and Ramser, 

1959) consider the problem when there are a number of service stations with given demand 

between two points. They study how to design routing to let a fleet of vehicles satisfy the demand 

while minimizing total travel distance. Beardwood et al. (1959) (Beardwood et al., 1959) prove 

that the shortest distance through 𝑁  locations in a unit bounded region is asymptotically 

proportional to √𝑁 . Daganzo (1984a, 1984b) (Daganzo, 1984, 1984) develop formulas for 

estimating the vehicle's travel distance as a function, the function considers the influences of the 

depot’s area and shape. Lawler et al. (1985) (Lawler, 1985) discuss the theory, solution methods 

and application on this problem. Haimovich and Rinnooy Kan (1985) (Haimovich and Rinnooy 

Kan, 1985) study the property and solution methods of a capacitated vehicle routing problem 

where a fleet of vehicles with limited capacities is serving some customers who are located in 

Euclidean plane. Some researchers (Burns et al., 1985, Federgruen and Zipkin, 1984, Gallego and 

Simchi-Levi, 1990) extend the problem by considering inventory management.  

Matai et al. (2010) (Matai et al., 2010) divides research on TSP into seven directions based on 

the applications. The first direction is drilling of printed circus boards problem that minimizes the 

movement time of drill heads (Grötschel and Holland, 1991). Lim et al. (2014) (Lim et al., 2014) 

propose a combinatorial cuckoo search algorithm and apply it to three cases to optimize the path 

of drill holes. The second direction is overhauling gas turbine engines while guaranteeing gas is 

uniformly distributed through the turbine. Plante et al. (1987) (Plante et al., 1987) develop a 

heuristic algorithm for placing the vanes in the turbine. Third, TSP can be used in X-Ray 
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crystallography to determine the sequence of detectors. Bland and Shallcross (1989)  problem 

(Bland and Shallcross, 1989) compare different TSP algorithms in solving the. Fourth, TSP 

problem is used to minimize the length of wires in computer wiring. Lenstra and Kan (1975) 

(Lenstra and Kan, 1975) provide the TSP fomulations for not only computer wiring and vechicle 

routing, but also clustering and job-shop scheduling problems. Grötschel and Holland (1991) 

(Grötschel and Holland, 1991) point out another application of TSP which is mask plotting in 

printed circuit boards. Another application and the most relevant to this thesis is vehicle routing, 

for example to determine the route and capacity assignment for delivering products to a number 

customers with a fleet of trucks with the objective of minimizing the length of the delivery distance. 

In addition, TSP has been applied to solve order warehouse order picking problems, where the 

sequence and routes for the pickers to pick up multiple products for one or more orders are 

determined. For example, Theys et al. (2010) (Theys et al., 2010) compare the solution generation 

using two algorithms and eight hybrid heristics for a warehouse order picking problem with 

multiple parallel aisles. They recommend the hybrid algorithm in order to improve effectiveness.   

The traveling behavior among end customers is another important strategic issue for TSP. In 

general, the customers desire the convenience of nearby stores. Pancras et al. (2012)  (Pancras et 

al., 2012) show that customers consider their travel cost when shopping, and estimate that the fast 

food customers' inconvenient travel cost per mile is $0.6 on average. As a result, many large 

grocers like Walmart, have been increasing the total number of stores (FORM 10-K, 2016). Cachon 

(2014) (Cachon, 2014) studies a retailer’s facility location problem while modeling the shipping 

from a warehouse to stores as a TSP. He also studies the impact of an emission tax on this decision 

and its impact of overall emissions.  

Due to the complexity of TSP, few papers in the literature study the combination of TSP with 

other problems. Cachon (2014) combines TSP with a retailer’s facility location decisions. However, 

he does not consider the fulfillment of omnichannel demand or the last-mile delivery decisions. 

This thesis contributes to the literature on TSP by studying an integrated model that synthesizes 



 11 

shipping, omnichannel order fulfillment, last-mile delivery and consumer channel purchasing 

behavior. 

2.4 Last-mile Delivery 

The cost efficiency of delivering online demand to end consumers is a major challenge for the 

omnichannel retailer. A high-efficiency delivery system is an determining factor of the retailer's 

business viability (Agatz, Fleischmann and Van Nunen, 2008). Meanwhile, customer service, 

especially for last-mile delivery service, is an important factor of customer satisfaction (Boyer et 

al., 2005). There is a growing number of researches focusing on the quality of the last-mile delivery 

service (Rabinovich and Bailey, 2004). In the highly competitive retail market, finding the balance 

between cost efficiency and customer service is key for the retailer (Boyer, Hult and Frohlich, 

2003). As a result, there has been an increasing number of research papers on this topic. They 

(Belavina et al., 2017, Hsu and Li, 2006, Punakivi and Saranen, 2001, Punakivi and Tanskanen, 

2002, Punakivi et al., 2001, Yrjo, 2001) compare the distribution costs among several fulfillment 

strategies, and find that the retailer should gradually expand the traditional stores' capabilities to 

satisfy the customers. Hsu and Li (2006) (Hsu and Li, 2006) study lead-time dependent demand, 

and develop a non-linear profit model to find the optimal delivery shipment cycle to balance the 

delivery cost and customer service. Their numerical analysis suggests that compared to imposing 

a static policy, adjusting shipping frequencies to temporary and regional demand is a better strategy. 

Belavina et al. (2017)  (Belavina et al., 2017) study the tradeoff between two revenue models for 

an omnichannel retailer, including the per-order model and the subscription model. They also study 

the retailer’s last-mile delivery decision and the resulting environmental performance. Lin and 

Mahmassani (2002) (Lin and Mahmassani, 2002) perform a simulation to illustrate the influence 

of potential cost on customer service, where cost is estimated based on the delivery time window 

for different delivery policies. Robusté et al. (2003) (Robusté et al., 2003) use continuous 

approximation method to analyze the delivery time window and efficiency. They show that the 

influence of time window increases with the increase of delivery vehicle capacity.  
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In this thesis, according to the review of last-mile research in Olsson et al. (2019) (Olsson et 

al., 2019), there are very little literatures on the last-mile fulfillment problem. Leung et al. (2018) 

(Leung et al., 2018) use genetic algorithm to re-engineer the last-mile order fulfillment process in 

a distribution center. Other papers (Letnik et al., 2018, Daniela, 2017, Nathanail et al., 2016, 

Handoko et al., 2016) related to last-mile fulfillment direction mainly focus on urban freight 

terminals problems. This thesis enriches this research direction by combining the retailer’s 

fulfillment strategy decision with last-mile delivery problem. Specifically, this thesis considers 

retailer’s shipping cost, last-mile delivery cost, customers’ channel choice and demand. The 

impacts of various factors such as the geographic characteristics of the service region, unit 

inventory holding cost, and customer valuation are also studied. 
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Chapter 3: The Model  

Consider a retailer selling a generalized product for price 𝑝 to customers in a given service 

region of size 𝐴. Note that the price can either be an exogenous value set by market competition 

or an endogenously determined by the retailer. This thesis discusses the exogenous price case in 

this section, and then considers endogenous price cases in Section 4.2. According to Proposition 

B.1 (see in Appendix B), the optimal profit can be got in either store fulfillment or DC fulfillment. 

As a result, this thesis limits the attention to discrete fulfillment strategy only in all following 

discussion. The notations of the paper are shown in Table 3.1. 

Customers are uniformly distributed throughout the service region. Without loss of generality, 

this thesis normalizes the population density to be 1. The retailer has a single distribution center 

(DC) at the geometric center of the region, which fulfills orders from 𝑁 identical and uniformly 

distributed retail stores. The retailer offers both in-store and online channels. In-store customers 

travel to the stores in their personal vehicles, while online orders are delivered to customer's homes 

by the retailer's trucks. Figure 3.1 illustrates the service region. 

 

Figure 3.1: Service region 
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Table 3.1: Notations 

Symbol Meaning 

𝒗 Customer's valuation of a product, 𝑣 is uniform distributed on [0, 𝑉] 

 𝒑 A product's exogenous selling price 

𝑵 Number of retail stores 

𝒄𝒐 Online shopping cost for online customers 

𝒄𝒊 Inconvenience cost for in-store customers, 𝑐𝑖 is uniform distributed on [0, 𝐶/𝑁] 

𝑼𝒋  In-store or online customer's utility, where 𝑗 = 𝑖, 𝑜 

𝑫𝒋  In-store, online and total demand rate, 𝑗 = 𝑖, 𝑜 𝑎𝑛𝑑 𝑡 

𝑫𝒔 Demand fulfilled from store 

𝚪𝒋 Average delivery distance of one order from retailers to end customers, 𝑗 = 𝑆, 𝐶 

𝑾 Delivery distance determined by service region 

𝝀 Delivery distance determined by truck's capacity 

𝝓𝒅 Delivery cost from store to customer per unit distance per unit product 

𝝓𝒕 Shipping cost from DC to customer per unit distance per unit product 

𝚽𝒕 Coefficient dependent on the area and region’s tessellation type 

𝑪𝒕 Shipping cost per unit product 

𝝓𝑰 A retailer's service level 

𝒉𝒋 Inventory cost per unit product per unit time in store or DC, 𝑗 = 𝑆, 𝐶 

𝑯𝒋 Total inventory cost per unit time when online orders fulfilled from store or DC, 𝑗 = 𝑆, 𝐶 

𝑪𝑺 Retailer's total cost if online orders are fulfilled from stores 

𝑪𝑪 Retailer's total cost if online orders are fulfilled from DC 

𝚫𝑪𝒉 Inventory cost difference under two fulfillment strategies 

𝚫𝑪𝒅 Delivery cost difference under two fulfillment strategies 

𝚫𝑪𝒕 Shipping cost difference under two fulfillment strategies 

𝚫𝑪𝑻 Total transportation cost difference under two fulfillment strategies 

𝝅𝑺 Retailer's profit if online orders are fulfilled from stores 

𝝅𝑪 Retailer's profit if online orders are fulfilled from DC 

 

3.1 A Customer’s Channel Choice 

Each customer first makes channel choice between buying online versus in-store when she 

purchases a product. The customer has a valuation 𝑣 for the product, which is assumed to be 

heterogeneous and follows a uniform distribution on [0, 𝑉] , where 𝑉  is the highest possible 

valuation. If the customer chooses buying online, then she incurs an associated cost 𝑐𝑜, such as 

order delivery fee. Similarly, when the customer purchases in-store, then an inconvenient cost 𝑐𝑖 
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is incurred for the time and cost associated with traveling to the store and hand picking up the 

product. This thesis assumes that 𝑐𝑖  is uniformly distributed on [0,
𝐶

𝑁
] , where 𝐶  is the 

maximum inconvenient cost if there is only one store in the region. Therefore, the more stores 

there are in the region, the less inconvenience cost is incurred by customers to shop in-store. This 

is because of the distance that customers need to travel is shorter when the number of stores 

increases. 𝑐𝑖 is independent from 𝑣. This thesis also assumes that 𝑉 >  𝑐𝑜 + 𝑝 and  
𝐶

𝑁
 >  𝑐𝑜 

to eliminate the non-trivial case where online demand is non-zero.  

If a customer chooses the online channel, her pay-off is 𝑈𝑜  =  𝑣 − 𝑐𝑜 − 𝑝 . If a customer 

chooses the in-store channel, her pay-off is 𝑈𝑖 = 𝑣 − 𝑐𝑖 − 𝑝. Therefore, she would choose to buy 

online if and only if 𝑈𝑜 ≥ 𝑈𝑖  and 𝑈𝑜 ≥  0 . This is equivalent to 𝑐𝑜 ≥ 𝑐𝑖  and 𝑣 ≥ 𝑐𝑜  +  𝑝 . 

Similarly, she would choose to buy from the in-store channel if and only if 𝑈𝑖 ≥ 𝑈𝑜 and 𝑈𝑖 ≥ 0, 

or equivalently, 𝑐𝑜 ≤ 𝑐𝑖 and 𝑣 ≥ 𝑐𝑖  +  𝑝. Otherwise, 𝑈𝑖 ≤  0 and she would buy nothing. The 

regions for these choices are illustrated in Figure 3.2.  

 

Figure 3.2: Customers' channel choice 

Therefore, the expected demand for the in-store channel is given by 

𝐷𝑖(𝑝) = ∫
𝑁

𝐶

𝑐𝑜
0

∫
1

𝑉

𝑉

𝑐𝑖+𝑝
𝑑𝑣𝑑𝑐𝑖 = (𝑉 − 𝑝 −

𝑐𝑜

2
)
𝑐𝑜𝑁

𝐶𝑉
, (1)    

and the expected demand for the online channel is given by 
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𝐷𝑜(𝑝) = ∫
𝑁

𝐶

𝐶

𝑁
0

∫
1

𝑉

𝑉

𝑐𝑜+𝑝
𝑑𝑣𝑑𝑐𝑖 = (𝑉 − 𝑝 − 𝑐𝑜)

𝐶−𝑐𝑜𝑁

𝐶𝑉
. (2)   

The total expected demand rate for both channels is hence 

𝐷𝑡(𝑝) = 𝐷𝑖(𝑝) + 𝐷𝑜(𝑝) =
𝑁𝑐𝑜

2

2𝐶𝑉
−
𝑐𝑜 + 𝑝

𝑉
+ 1. (3)  

In the following Lemma 3.1, I examine the impacts of price 𝑝 and the total number of stores 

𝑁 on the demands of each channel. All proofs are provided in the appendix for ease of exposition.  

Lemma 3.1: 
𝜕𝐷𝑖

𝜕𝑝 
< 0  , 

𝜕𝐷𝑖

𝜕𝑁 
> 0 , 

𝜕𝐷𝑖

𝜕𝑉 
> 0 , 

𝜕𝐷𝑖

𝜕𝐶 
< 0 , 

𝜕𝐷𝑖

𝜕𝑐𝑜 
> 0   

𝜕𝐷𝑜

𝜕𝑝 
< 0  , 

𝜕𝐷𝑜

𝜕𝑁 
< 0 , 

𝜕𝐷𝑜

𝜕𝑉 
> 0 , 

𝜕𝐷𝑜

𝜕𝑐𝑜 
< 0, 

𝜕𝐷𝑜

𝜕𝐶 
> 0. 

From Lemma 3.1, both online and in-store demands are decreasing in the price 𝑝  and 

increasing in customers valuation of the product 𝑣, with the increase of max value of customer's 

inconvenient cost 𝐶, in-store demand decrease and online demand increase, as expected. With 

increase of 𝑐𝑜, online demand decreases and in-store demand increases. Result from increase cost 

in online channel, part of the customers who can’t adopt online channel transfer to in-store channel. 

In addition, as the total number of stores increase or as 𝐶 decreases, in-store demand increases, 

while online demand decreases. This is because the distances between customers and the stores 

decrease as the number of stores increases, and thus their inconvenience cost associated with in-

store shopping decreases, making shopping in-store a more attractive option. 

3.2 The Retailer’s Problem 

The retailer anticipates customers' channel choice behavior as described in the last section. 

This thesis assumes that customer orders for the in-store and online channels arrive following the 

Poisson distribution, whose averages are given by 𝐷𝑖 and 𝐷𝑜 respectively (I omit the term 𝑝 in 

𝐷𝑖(𝑝) and 𝐷𝑜(𝑝) wherever applicable from this point on for ease of exposition). The retailer 

then chooses the optimal fulfillment options for online orders, that is, whether to fulfill them from 

retail store inventory or directly from DC inventory. This thesis refers to the former as store 

fulfillment and the latter as DC fulfillment. Note that this thesis examines the base setting in this 

section, where the retail price is assumed to be exogenous (i.e., set by market competition). Figure 
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3.3(a) and Figure 3.3(b) illustrate the retailer’s behavior if online orders are fulfilled from stores 

or DC, respectively.  

 

(a) Store fulfillment  

 

(b) DC fulfillment 

Figure 3.3: Retailer’s decision behaviors under two fulfillment strategies 

3.2.1 Inventory Cost 

Independent of the fulfillment strategy, the retailer's inventory cost per unit of product sold per 

unit time is concave increasing in the number of stores 𝑁 and the store's order quantity 𝑄𝑠, and 

decreasing in total demand rate 𝐷𝑠 fulfilled by all of the stores (Cachon, 2014). Note that 𝐷𝑠 

includes the demand from in-store, as well as the portion of online demand that is fulfilled from 

store inventory. Specifically, the stores' inventory cost per unit of product per unit time is given by 

ℎ𝑠𝜙𝐼𝑄𝑠

1
2𝜎𝑠𝐷𝑠

−
3
2√𝑁 = ℎ𝑠𝜙𝐼𝑄𝑠

1
2𝐷𝑠

−1√𝑁, (4)  

where 𝜙𝐼  is the desired service level (assumed to be the same for DC and stores), σ𝑠  is the 

standard deviation of the demand fulfilled by the stores, and ℎ𝑠 is the space cost of inventory per 

unit per unit time for the store. The derivation of this equation can be found in (Cachon, 2014). 

Based on the Poisson demand assumption, σ𝑠 = 𝐷𝑠

1

2, and hence the equation in (4) holds. 

Therefore, the stores' total inventory cost per unit time 𝐻𝑆 is given by 
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𝐻𝑆 = ℎ𝑠𝜙𝐼𝑄𝑠

1
2𝐷𝑠

−1√𝑁 × 𝐷𝑠 = ℎ𝑠𝜙𝐼𝑄𝑠

1
2√𝑁 . (5)  

This thesis assumes lot-for-lot ordering policy at the DC, that is, the DC matches the total order 

size (and frequency) from the stores and only holds inventory if it fulfills online orders directly. 

The base stock order policy is used for online orders. Let 𝑄𝑐  be DC's order quantity, which 

consists of the quantity for fulfilling both store orders, and that for fulfilling online orders if it uses 

the DC fulfillment strategy. Then, the DC's inventory cost 𝐻𝐶 per unit time is given by 

𝐻𝐶 = ℎ𝑐𝜙𝐼(𝑄𝑐 − 𝑄𝑠)
1
2 , (6)  

where ℎ𝑐 is the inventory cost per unit per unit time for the DC. This thesis assumes ℎ𝑠 > ℎ𝑐 to 

reflect that the unit inventory cost at DC is less than that in store due to economy of scale. 

Therefore, the retailer's total inventory cost per unit time is 

𝐻𝑆 + 𝐻𝐶 = ℎ𝑠𝜙𝐼𝑄𝑠

1
2√𝑁 + ℎ𝑐𝜙𝐼(𝑄𝑐 − 𝑄𝑠)

1
2. (7)  

If the retailer chooses to fulfill online orders from stores, then the stores need to order both in-

store and online demands and the DC orders the same amount. That is, 

𝑄𝑠 = 𝑄𝑐 = 𝐷
𝑜 + 𝐷𝑖. (8)  

Substituting equation (8) into (5) gives the retailer's inventory cost per unit time under the store 

fulfillment strategy: 

𝐶ℎ
𝑆 = ℎ𝑠ϕ𝐼(𝐷

𝑜 + 𝐷𝑖)
1
2√𝑁. (9)  

If the retailer chooses to fulfill online orders from DC inventory, then the stores only need to 

order to fulfill in-store demand while the DC orders for both channels. That is, 

𝑄𝑠 = 𝐷𝑖, 𝑄𝑐 = 𝐷
𝑜 + 𝐷𝑖 . (10)  

Substituting Equation (10) into Equation (7) gives the retailer's inventory cost per unit time 

under the DC fulfillment strategy: 

𝐶ℎ
𝐶 = ℎ𝑐𝜙𝐼𝐷

𝑜
1
2 + ℎ𝑠𝜙𝐼𝐷

𝑖
1
2√𝑁. (11)  

The inventory cost difference between two fulfillment strategies Δ𝐶ℎ is given by 
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𝛥𝐶ℎ = 𝐶ℎ
𝑆 − 𝐶ℎ

𝐶 = ℎ𝑠𝜙𝐼√𝑁 [(𝐷
𝑜 + 𝐷𝑖)

1
2 − 𝐷𝑖

1
2] − ℎ𝑐𝜙𝐼𝐷

𝑜
1
2. (12)  

The following Lemma 3.2 suggests that the store fulfillment strategy can lead to higher or 

lower inventory cost than the DC fulfillment strategy. 

Lemma 3.2: Δ𝐶ℎ ≥ 0  if ℎ𝑐 ≤ ℎ𝑐0 , where ℎ𝑐0 = 
ℎ𝑠√𝑁 {[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑝−𝑐𝑜)

2
]

1
2
−[𝑐𝑜𝑁(𝑉−𝑝−

𝑐𝑜
2
)]

1
2}

[(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)]
1
2

  . 

Δ𝐶ℎ < 0, otherwise. 

Lemma 3.2 suggests that fulfilling from the DC leads to lower inventory cost than store 

fulfillment if the unit inventory cost in DC is smaller than a threshold ℎ𝑐0, and to higher 

inventory cost otherwise. 

Corollary 3.1: ℎ𝑐0 defined in Lemma 3.2 has the following properties: 

(i) 
∂ℎ𝑐0

∂𝑝
< 0,  

(ii) 
𝜕ℎ𝑐0

𝜕𝐶
> 0, 

(iii)  
𝜕ℎ𝑐0

𝜕𝑉
> 0, 

(iv)  There exists 𝑁0 > 1 such that 
𝜕ℎ𝑐0

𝜕𝑁
 ≤ 0 if 𝑁 ≥ 𝑁0, and 

𝜕ℎ𝑐0

𝜕𝑁
 > 0 otherwise 

Corollary 3.1 suggests that ℎ𝑐0  increases with the total number of stores 𝑁  for small 𝑁 , 

while it decreases with 𝑁 for large 𝑁. Then based on Lemma 3.2, when 𝑁 is small, an increase 

in 𝑁 leads to higher likelihood of that store fulfillment has higher inventory cost. In contrast, 

when 𝑁 is small, an increase in 𝑁 leads to lower likelihood of that store fulfillment has higher 

inventory cost. 

This effect can be explained as follows. Two types of inventory pooling effects may come into 

play in this system. If online demand is fulfilled from the DC, then there is benefit due to the 

pooling of online demand inventory from different store locations into the DC's warehouse, to 

which this thesis refers as location pooling. If the store fulfills online demand, then a second effect 

as a result of the pooling of online and store inventory at each store also occurs, to which this thesis 
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refers as channel pooling. The balance of these two pooling effects determines the holding cost 

difference.  

The total number of stores 𝑁 in turn impacts the above two pooling effects in two important 

ways. First, an increase in 𝑁 has a direct increasing effect on location pooling. Second, it reduces 

the portion of online demand, while increases the portion of in-store demand. When 𝑁 is small, 

the first way dominates and hence location pooling effect is increasing in 𝑁. When 𝑁 is large, 

the second way dominates and hence location pooling effect is decreasing in 𝑁 . The channel 

pooling effect, that depends on the volume of online and in-store demand. Specifically, if either 

demand is small, then the channel pooling effect would be small. Since in-store demand increases 

with 𝑁 and online demand decreases with 𝑁, the channel pooling effect firstly increases with 𝑁 

when 𝑁 is small, and then decreases with 𝑁 when 𝑁 is sufficiently large. 

When the above two pooling effects are combined, the impacts of 𝑁 on the inventory cost 

difference between the two strategies can be observed. If 𝑁 is relatively small, then both effects 

are increasing in 𝑁, while the rate of increase is higher for location pooling than channel pooling. 

Therefore, in this case, the advantage of DC fulfillment in inventory cost increases with 𝑁. If 𝑁 

is relatively large, then both effects are decreasing in 𝑁, while the rate of decrease is higher for 

location pooling than channel pooling. Therefore, in this case, the advantage of DC fulfillment in 

inventory cost decreases with 𝑁. 

3.2.2 Logistic Cost 

To fulfill the in-store demand, the DC solves a traveling salesman problem (Lin and Kernighan, 

1973) and ships products to stores at a cost of 𝜙𝑡 per unit distance per unit product. this thesis 

follows Cachon (2014) (Cachon, 2014) and assume that 𝑁 ≫ 1  , under which condition the 

transportation cost is solely dependent on the area of the service region denoted by 𝐴 and the 

shape of the tessellations. Specifically, the shipping cost 𝐶𝑡 per unit product from DC to stores is 

given by 

𝐶𝑡 = 𝜙𝑡𝛷𝑡√𝑁, (13)  
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where 𝛷𝑡 is a constant dependent only on the area of the region and the type of tessellation. For 

example, for square tessellation (see Figure 3.4 for an illustration), 𝛷𝑡 = √𝐴. In what follows, this 

thesis considers square tessellation for ease of exposition. However, the results can be extended to 

other types of tessellations. 

 

Figure 3.4: Square tessellation of stores 

Obviously, the delivery distance for fulfilling online orders if they were fulfilled by stores 

would be different from if they were fulfilled directly from DC inventory. Following Belavina et 

al. (2017) (Belavina et al., 2017), the average delivery distance per order can be calculated as 

{
Γ𝑆 = 

𝑊

√𝑁
+ 𝜆,      if orders are fulfilled from stores,   

Γ𝐶 =  𝑊 +  𝜆,     if orders are fulfilled from DC,         

(14)  

where 𝑊 is a constant determined by size and shape of the service region as well as the number 

of orders that each truck can deliver, and λ is also a constant determined by the number of orders 

that each truck can deliver, days in operation, the density of customers and the total annual order 

frequency. The detailed expressions of 𝑊 and 𝜆 are provided in the appendix.   

Let 𝜙𝑑 be the transportation cost per unit distance per unit product for delivery. The last-mile 

delivery cost is usually much higher than the transportation cost from DC to stores, due to a lack 

of economy of scale (Lee and Whang, 2001). To reflect this relationship, this thesis assumes that 

𝜙𝑑 > 𝜙𝑡. Therefore, the delivery cost under store fulfillment is  

𝐶𝑑
𝑆 = 𝜙𝑑𝐷

𝑜𝛤𝑆,  

and under DC fulfillment is  

𝐶𝑑
𝐶 = 𝜙𝑑𝐷

𝑜𝛤𝐶 .   

I can now derive the shipping cost difference Δ𝐶𝑡 and delivery cost difference Δ𝐶𝑑, which 

are respectively 
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Δ𝐶𝑡 = 𝜙𝑡𝛷𝑡√𝑁𝐷
𝑜 , (15)  

Δ𝐶𝑑 = [(
1

√𝑁
− 1)𝜙𝑑𝑊]𝐷

𝑜 . (16)  

Therefore, the total transportation cost difference Δ𝐶𝑇 is given by 

Δ𝐶𝑇 =Δ𝐶𝑡 +Δ𝐶𝑑 = 𝜙𝑡𝛷𝑡√𝑁𝐷
𝑜 + [(

1

√𝑁
− 1)𝜙𝑑𝑊]𝐷

𝑜 . (17)  

Lemma 3.3: The cost differences between store fulfillment and DC fulfillment strategies are 

as follows  

(i) Δ𝐶𝑡 ≥ 0, 
𝜕𝛥𝐶𝑡

𝜕𝑝
≤ 0  

𝜕𝛥𝐶𝑡

𝜕𝑁
≥ 0 if 𝑁 ≤

𝐶

3𝑐𝑜
, and 

𝜕𝛥𝐶𝑡

𝜕𝑁
< 0 otherwise. 

(ii) Δ𝐶𝑑 ≤ 0, 
𝜕𝛥𝐶𝑑

𝜕𝑝
≥ 0  There exists a unique 𝑁𝑑 > 1 such that 

𝜕𝛥𝐶𝑑

𝜕𝑁
≤ 0 when 𝑁 ≤

𝑁𝑑 and 
𝜕𝛥𝐶𝑑

𝜕𝑁
> 0 otherwise. 

(iii) Δ𝐶𝑇 < 0 if 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
 and 𝑁1 < 𝑁 < 𝑁2  and Δ𝐶𝑇 ≥ 0 otherwise,  

where 𝑁1 =
[𝜙𝑑𝑊−√𝜙𝑑𝑊(𝜙𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2  and 𝑁2 =
[𝜙𝑑𝑊+√𝜙𝑑𝑊(𝜙𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2 . 

From Lemma 3.3, fulfilling from the DC always leads to lower transportation cost. This is 

because the DC needs to transport both online and in-store orders to stores if online orders are 

fulfilled from stores, whereas it only needs to transport in-store orders to stores if online orders are 

fulfilled from the DC. Lemma 3.3 also suggests that fulfilling from the DC always leads to higher 

delivery cost. This is because stores have a closer proximity to customers than the DC. When the 

two effects are synthesized, then store fulfillment leads to less combined transportation and 

delivery cost if unit delivery cost 𝜙𝑑 is sufficiently high and the number of stores 𝑁 is neither 

too high nor too low.  

Lemma 3.3 also suggests that the transportation cost difference is decreasing in the product 

price 𝑝 . In other words, the added transportation cost from fulfilling from the DC instead of stores 

decreases as price increases, due to the decrease in the total demand. The added transportation cost 

is also increasing in 𝑁  if 𝑁  is small, and is decreasing in 𝑁  otherwise. This is due to the 
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balancing of two effects as 𝑁 increases. On the one hand, it increases the transportation distance 

from DC to stores, while on the other hand, it reduces the amount of products transported for 

fulfilling online orders. If 𝑁  is large, the second effect dominates leading to a reduction in 

transportation cost difference, and vice versa. Similarly, the delivery cost increases from fulfilling 

from the DC instead of stores is decreasing in price, and is decreasing in 𝑁 if and only if 𝑁 is 

sufficiently small. Figure 3.5 (a) and (b) show the results of Lemma 3.3. 

 

(a)    (b)                                  

 

(c) 

Figure 3.5: Cost differences between two fulfillment strategies  (a) Δ𝐶𝑡 v.s. 𝑁, 𝑝 (b) Δ𝐶𝑑 v.s. 𝑁, 𝑝 (c) Δ𝐶ℎ 

v.s. 𝑁, 𝑝  （𝜙𝑑 = 2  𝛷𝑡 = 1  𝜙𝐼 = 0.5   𝜆 = 2   ℎ𝑠 = 2  ℎ𝑐 = 1.5  𝑉 = 25   𝐶 = 25   𝑐𝑜 = 1  𝑊 = 1.） 
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3.2.3 Total Operational Cost and Optimal Fulfillment Strategy 

The retailer's total operation cost is the sum of the shipping cost from DC to stores (this thesis 

refers to this as shipping cost from here on for ease of exposition), the delivery cost for online 

demand, and the inventory holding cost at the DC and stores. These costs are dependent on the 

order fulfillment strategy and given by 

{
 
 

 
 𝐶𝑆 = 𝐶𝑡(𝐷

𝑜 + 𝐷𝑖) + 𝜙𝑑𝐷
𝑜𝛤𝑆 + ℎ𝑠𝜙𝐼(𝐷

𝑜 + 𝐷𝑖)
1
2√𝑁,

if orders are fulfilled from stores,

𝐶𝐶 = 𝐶𝑡𝐷
𝑖 + 𝜙𝑑𝐷

𝑜𝛤𝐶 + (ℎ𝑐𝜙𝐼𝐷
𝑜
1
2 + ℎ𝑠𝜙𝐼𝐷

𝑖
1
2√𝑁) ,

if orders are fulfilled from DC.

(18)   

The first term in Equation (18) represents the shipping cost from DC to stores, which includes 

the portion of online demand if they are fulfilled from store inventory and excludes it otherwise. 

The second term in Equation (18) represents the retailer's delivery cost, which is determined by 

the delivery distance associated with the given fulfillment strategy. The third term represents the 

holding cost incurred by the retailer's facilities (i.e., the DC and stores). 

Combining Equation (13)-(18), I can simplify the retailer's total operational cost under either 

fulfillment strategy as 

{
 
 

 
 𝐶𝑆 = 𝜙𝑡𝛷𝑡√𝑁(𝐷

𝑜 + 𝐷𝑖) + 𝜙𝑑𝐷
𝑜
𝑊

√𝑁
+ 𝜙𝑑𝜆𝐷

𝑜 + ℎ𝑠𝜙𝐼(𝐷
𝑜 + 𝐷𝑖)

1
2√𝑁,

if orders are fulfilled from stores, 

𝐶𝐶 = 𝜙𝑡𝛷𝑡√𝑁𝐷
𝑖 + 𝜙𝑑𝑊𝐷

𝑜 +𝜙𝑑𝜆𝐷
𝑜 + (ℎ𝑐𝜙𝐼𝐷

𝑜
1
2 + ℎ𝑠𝜙𝐼𝐷

𝑖
1
2√𝑁) ,

 if orders are fulfilled from DC.

(19)   

In what follows, this thesis examines the retailer's optimal strategy to maximize its expected 

profit under either fulfillment strategy. Specifically,   

{
𝜋𝑆 =  𝑝[𝐷𝑖(𝑝) + 𝐷𝑜(𝑝)] + 𝑐𝑜𝐷

𝑜(𝑝) − 𝐶𝑆,     if orders are fulfilled from stores,

𝜋𝐶 =  𝑝[𝐷
𝑖(𝑝) + 𝐷𝑜(𝑝)] + 𝑐𝑜𝐷

𝑜(𝑝) − 𝐶𝐶 ,     if orders are fulfilled from DC.
 

After plug in the demand and cost functions (1)-(19), the profit functions dependent on the 

online order fulfillment strategy become as follows, 
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{
 
 
 

 
 
 𝜋𝑆 = (𝑝 − 𝜙𝑡𝛷𝑡√𝑁)𝐷

𝑖(𝑝) + (𝑝 + 𝑐𝑜 − 𝜙𝑡𝛷𝑡√𝑁 − 𝜙𝑑
𝑊

√𝑁
− 𝜙𝑑𝜆)𝐷

𝑜(𝑝)

−ℎ𝑠𝜙𝐼 (𝐷
𝑜(𝑝) + 𝐷𝑖(𝑝))

1
2
√𝑁,    if orders are fulfilled from stores, 

𝜋𝐶 = (𝑝 − 𝜙𝑡𝛷𝑡√𝑁)𝐷
𝑖(𝑝) + (𝑝 + 𝑐𝑜 −𝜙𝑑W−𝜙𝑑𝜆)𝐷

𝑜(𝑝)

−ℎ𝑐𝜙𝐼𝐷
𝑜(𝑝)

1
2−ℎ𝑠𝜙𝐼𝐷

𝑖(𝑝)
1
2√𝑁 ,   if orders are fulfilled from DC.

(20)   

The following proposition describes the retailer's optimal fulfillment strategy. 

Proposition 3.1: It is optimal for the retailer to fulfill online orders from stores if and only if 

one of the following conditions holds  

(i) ℎ𝑠 ≤ ℎ𝑠1, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2, 

(ii) ℎ𝑐 > ℎ𝑐1, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁 ≤ 𝑁1 or 𝑁 ≥ 𝑁2,  

(iii) ℎ𝑐 > ℎ𝑐1, 𝜙𝑑 ≤
4𝜙𝑡𝛷𝑡

𝑊
, 

(iv) ℎ𝑐 > ℎ𝑐1, ℎ𝑠 > ℎ𝑠1, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2 

where ℎ𝑐1 =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐0−𝑝)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]+ℎ𝑠𝜙𝐼𝐶𝑉√𝑁{[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

𝐶𝑉𝜙𝐼[
(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)

𝐶𝑉
]

1
2

 and 

ℎ𝑠1 = −
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐𝑜−𝑝)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝐶𝑉𝜙𝐼√𝑁{[
𝑁𝑐𝑜

2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

.  

From Proposition 3.1, the retailer's optimal strategy depends on the store's inventory cost ℎ𝑠, 

DC's inventory cost ℎ𝑐, delivery cost 𝜙𝑑 and the total number of stores 𝑁. 

Corollary 3.2:  Δ𝐶ℎ has the following properties: 

(i) Under the conditions of Proposition 3.1 (i), ℎ𝑐0 > ℎ𝑐1, then 𝛥𝐶ℎ ≥ 0 if ℎ𝑐 ≤ ℎ𝑐0, 

and 𝛥𝐶ℎ < 0 otherwise. 

(ii) Under the conditions of Proposition 3.1 (ii) and (iii), ℎ𝑐0 ≤ ℎ𝑐1, then 𝛥𝐶ℎ < 0. 

(iii)  Under the conditions of Proposition 3.1 (iv), ℎ𝑐0 > ℎ𝑐1, then Δ𝐶ℎ ≥ 0 if ℎ𝑐1 <

ℎ𝑐 ≤ ℎ𝑐0, and 𝛥𝐶ℎ < 0 if ℎ𝑐 > ℎ𝑐0. 
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First, the retailer prefers store fulfillment when the store's inventory cost is low, the delivery 

cost is high, the number of stores is neither too small nor too large. This is because when delivery 

cost is high and the number of stores is neither too small nor too large, store fulfillment leads to 

lower total transportation (shipping and delivery) cost as suggested by Lemma 3.3. In this case, if 

the store's inventory cost is sufficiently low, then the savings in transportation cost from store 

fulfillment is larger than the associated cost increase, and therefore leads to overall cost saving 

associated with store fulfillment. On the contrary, if the delivery cost is high and the number of 

stores is either small or large, then store fulfillment leads to higher combined transportation and 

delivery cost based on Lemma 3.3. In this case, store fulfillment is only preferred if DC has very 

high inventory cost. It is straightforward to see that store fulfillment is also preferred when DC's 

inventory cost is sufficiently high and the delivery cost is sufficiently low.  

Interestingly, case (iv) in Proposition 3.1 tells that store fulfillment may be better even when 

the stores' inventory cost is sufficiently high. In particular, this happens when DC's inventory cost 

is very high, delivery cost is high, and the number of stores is either small or large. According to 

Lemma 3.3, the combination of high unit delivery cost and moderate number of stores leads to 

lower combined shipping and delivery cost with store fulfillment. Meanwhile, if the DC's unit 

inventory cost is very high, the inventory cost under store fulfillment is lower than that of DC 

fulfillment for reasons explained after Corollary 3.1. Even if the DC's unit inventory cost is not 

high enough to lead to lower inventory cost by store fulfillment, the total transportation cost saving 

under store fulfillment still exceeds the inventory cost increase, rendering store fulfillment to be 

the better strategy. 

It is also worthwhile to note that the threshold on unit inventory cost ℎ𝑐1 is dependent on 

various parameters, as detailed in the following corollary. 

Corollary 3.3:  Analyze ℎ𝑐1 defined in Proposition 3.1, this thesis has following corollaries, 

(i) 
𝜕ℎ𝑐1

𝜕𝑝
≥ 0 if hs ≤ hs2, 𝜙𝑑 ≥

4𝜙𝑡𝛷𝑡

𝑊
, N1 < N < N2  

𝜕ℎ𝑐1

𝜕𝑝
< 0, otherwise. 

(ii) 
𝜕ℎ𝑐1

𝜕𝐶
≤ 0 if ℎ𝑠 ≤ ℎ𝑠3, 𝜙𝑑 ≥

4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2  

𝜕ℎ𝑐1

𝜕𝐶
> 0, otherwise. 
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(iii) 
𝜕ℎ𝑐1

𝜕𝑉
≤ 0 if ℎ𝑠 ≤ ℎ𝑠4, 𝜙𝑑 ≥

4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2  

𝜕ℎ𝑐1

𝜕𝑉
> 0, otherwise. 

where ℎ𝑠2 = −
2(𝐶−𝑐𝑜𝑁)

3
2(𝑉−𝑝−𝑐𝑜)

3
2[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝜙𝐼𝐶
1
2𝑉

1
2𝑐𝑜
2𝑁

3
2[𝑦

−
1
2−(1+𝑦)

−
1
2]

, 

ℎ𝑠3 = −
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)

3
2[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝜙𝐼𝐶
3
2𝑉

1
2𝑁

1
2[𝑦

−
1
2−(1+𝑦)

−
1
2](𝑉−𝑝−

𝑐𝑜
2
)

,  

ℎ𝑠4 = −
2(𝐶−𝑐𝑜𝑁)

3
2(𝑉−𝑝−𝑐𝑜)

3
2(𝑝+𝑐𝑜)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝜙𝐼𝐶
1
2𝑉

3
2𝑐𝑜
2𝑁

3
2[𝑦

−
1
2−(1+𝑦)

−
1
2]

. 

According to Corollary 3.3, ℎ𝑐1  is increasing with the increase of product price 𝑝 , and 

decreasing with the increases of 𝐶 and 𝑉 when unit store inventory cost is low, unit delivery 

cost is high and number of stores is intermediate. Using Proposition 3.1, this suggests that in this 

case, an increase in product price or a decrease in in-store inconvenience cost and customer 

valuation lead the store fulfillment strategy to have worse performance. This is because the high 

unit delivery and intermediate number of stores lead to lower total transportation cost under store 

fulfillment, while low unit inventory cost at the store creates inventory cost advantage for store 

fulfillment. As 𝑝  increases, and 𝐶  and 𝑉  decrease, online demand decreases, which in turn 

reduces the savings from store fulfillment. 

Figure 3.6 illustrates the retailer's optimal strategy under several example scenarios. Figure 3.6 

(a) corresponds to case (i) in Proposition 3.1 where the unit delivery cost is high. When the store's 

inventory cost is low, store fulfillment strategy is optimal for intermediate number of stores 𝑁, 

while DC fulfillment is optimal for smaller and larger 𝑁. Case (ii) of Proposition 3.1 is illustrated 

in Figure 3.6 (b) when 𝑁 ∈ [1,2,3,6,7,8]. When the unit delivery cost is high, the retailer prefers 

store fulfillment if the number of store locations is large and DC's inventory cost is high. When 

the unit delivery cost is low, then store fulfillment is preferred if DC's inventory cost is sufficiently 

high, while DC fulfillment is preferred otherwise (this corresponds to case (iii) in Proposition 3.1). 

Figure 3.6(d) and Figure 3.6(b) when 𝑁 ∈ [4,5,6] illustrate case (iv) in Proposition 3.1 where the 

unit delivery cost is high. 



 28 

 

(a) 𝜙𝑑 = 3.5  𝛷𝑡 = 0.9  𝑝 = 8   𝑊 = 2.1                 (b)  𝜙𝑑 = 2.9  𝛷𝑡 = 1  𝑝 = 10   𝑊 = 1.4 

 

 

(b) 𝜙𝑑 = 2.8  𝛷𝑡 = 1  𝑝 = 10   𝑊 = 1.4             (d) 𝜙𝑑 = 2.8  𝛷𝑡 = 0.9  𝑝 = 8   𝑊 = 2.1  

Figure 3.6: The retailer's optimal fulfillment strategy with respect to 𝑝 and 𝑁   

（𝜙𝑡 = 1  𝜙𝐼 = 0.5   𝜆 = 2   ℎ𝑠 = 2  𝑉 = 25   𝐶 = 25   𝑐𝑜 = 3.） 

3.3 Special Case With 𝒄𝒐 = 𝟎  

In this section, this thesis considers the special case where 𝑐𝑜 = 0, i.e., the customer's online 

order cost is zero (the retailer delivers orders for free). In this case, all customers would choose to 

purchase online. Therefore, in-store demand is 𝐷𝑖0 = 0 , and online demand is 𝐷𝑜0 =
𝑉−𝑝

𝑉
 . 

Essentially, the fulfillment problem now becomes facility location problem, i.e., whether to fulfill 

from a centralized warehouse or a number of smaller warehouses located closer to customers.  



 29 

The shipping and delivery cost differences are now 

Δ𝐶𝑡0 = 𝜙𝑡𝛷𝑡√𝑁𝐷
𝑜0, (21)  

Δ𝐶𝑑0 = [(
1

√𝑁
− 1)𝜙𝑑𝑊]𝐷

𝑜0. (22)  

Therefore, total transportation cost difference Δ𝐶𝑇0 is given by 

Δ𝐶𝑇0 =Δ𝐶𝑡0 +Δ𝐶𝑑0 = 𝜙𝑡𝛷𝑡√𝑁𝐷
𝑜0 + [(

1

√𝑁
− 1)𝜙𝑑𝑊]𝐷

𝑜0. (23)  

Lemma 3.4: The logistics cost differences between store fulfillment and DC fulfillment 

strategies when 𝑐𝑜 = 0 satisfy the following properties 

(i) ΔCt0 ≥ 0, 
𝜕𝛥𝐶𝑡0

𝜕𝑝
≤ 0, 

𝜕𝛥𝐶𝑡0

𝜕𝑁
≥ 0. 

(ii) Δ𝐶𝑑0 ≥ 0, 
𝜕𝛥𝐶𝑑0

𝜕𝑝
≤ 0, 

𝜕𝛥𝐶𝑑0

𝜕𝑁
≥ 0. 

(iii) Δ𝐶𝑇0 < 0 if 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
 and 𝑁1 < 𝑁 < 𝑁2  Δ𝐶𝑇 ≥ 0, otherwise. 

where 𝑁1 =
[𝜙𝑑𝑊−√𝜙𝑑𝑊(𝜙𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2  and 𝑁2 =
[𝜙𝑑𝑊+√𝜙𝑑𝑊(𝜙𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2 . 

The inventory cost difference is now given by 

Δ𝐶ℎ0 = 𝜙𝐼𝐷
𝑜
1
2(ℎ𝑠√𝑁 − ℎ𝑐). (24)  

Lemma 3.5: Δ𝐶ℎ0 ≥ 0, 
𝜕𝛥𝐶ℎ0

𝜕𝑁
≥ 0 and 

𝜕𝛥𝐶ℎ0

𝜕𝑝
< 0. 

Lemma 3.5 suggests that when 𝑐𝑜 = 0 fulfilling from stores always leads to higher inventory 

cost. This is because in this case, the only remaining pooling effect is location pooling. 

The retailer's profits under the two fulfillment schemes can now be simplified as 

      𝜋𝑆(𝑝)|𝑐𝑜=0 = (𝑝 −
𝜙𝑑𝑊

√𝑁
− 𝜙𝑑𝜆 − 𝜙𝑡𝛷𝑡√𝑁)𝐷

𝑜 − ℎ𝑠𝜙𝐼(𝐷
𝑜 + 𝐷𝑖)

1
2√𝑁 

                                            =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝)(𝑝−

𝜙𝑑𝑊

√𝑁
−𝜙𝑑𝜆−𝜙𝑡𝛷𝑡√𝑁)

𝐶𝑉
− ℎ𝑠𝜙𝐼𝐷

𝑜
1

2√𝑁 ,    

𝜋𝐶(𝑝)|𝑐𝑜=0 = (𝑝 − 𝜙𝑑𝑊 −𝜙𝑑𝜆)𝐷
𝑜 − ℎ𝑠𝜙𝐼𝐷

𝑖
1
2√𝑁  − ℎ𝑐𝜙𝐼𝐷

𝑜
1
2 

                     =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝)(𝑝−𝜙𝑑𝑊−𝜙𝑑𝜆)

𝐶𝑉
− ℎ𝑐𝜙𝐼𝐷

𝑜
1

2  

The profit difference when 𝑐𝑜 = 0 is thus 
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𝜋𝑆(𝑝) − 𝜋𝐶(𝑝)|𝑐𝑜=0 = −𝐷𝑜 [(
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁] + 𝜙𝐼𝐷

𝑜
1
2(ℎ𝑐 − ℎ𝑠√𝑁) 

                                             = −
(𝑉−𝑝)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝑉
+ 𝜙𝐼 (

𝑉−𝑝

𝑉
)

1

2
(ℎ𝑐 − ℎ𝑠√𝑁)  

Proposition 3.2: It is optimal for the retailer to fulfill online orders from stores with 𝑐𝑜 =

0 if and only if one of the following conditions holds 

(i) ℎ𝑠 ≤ ℎ𝑠5, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
 and 𝑁1 < 𝑁 < 𝑁2, 

(ii) ℎ𝑐 > ℎ𝑐2, ℎ𝑠 > ℎ𝑠6, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
 and 𝑁1 < 𝑁 < 𝑁2, 

where ℎ𝑐2 =
[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

𝜙𝐼𝑉
1
2

+ ℎ𝑠𝑁
1

2 , ℎ𝑠5 = −
[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

𝜙𝐼𝑁
1
2𝑉

1
2

  and ℎ𝑠6 =

−
[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

𝜙𝐼(𝑁
1
2−1)𝑉

1
2

. 

According to Lemma 3.5, store fulfillment is better than DC fulfillment when 𝑐𝑜 = 0 if and 

only if the unit delivery cost is sufficiently high, the number of stores is neither too large or too 

small, and either the stores' inventory cost is sufficiently low or DC's inventory cost is sufficiently 

high. This result can be explained as follows.  

Inventory cost under store fulfillment is always higher when the customers only shop online, 

but transportation cost can be higher or lower. The combination of these costs determines which 

strategy is better. When the unit delivery cost is high and the number of stores is intermediate, the 

transportation cost is lower under the store fulfillment strategy, as suggested by Lemma 3.3. When 

the stores' inventory cost is sufficiently low or DC's inventory cost is sufficiently high, the savings 

from transportation cost exceeds the cost increase due to inventory, and thus result in higher profit 

under store fulfillment.  

The following corollary summarizes additional properties of ℎ𝑐2.  

Corollary 3.4: 
∂ℎ𝑐2

∂𝑝
≥ 0, 

∂ℎ𝑐2

∂𝑉
< 0. 

Corollary 3.4 suggests that as the retail price increases or as customer valuation decreases, it 

becomes less likely for store fulfillment strategy to be the dominant strategy. This is because a 
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retailer price increase (or valuation of the product decrease) reduces the online demand. It will 

reduce the saving of total transportation cost. Although the reduction in online demand also reduces 

the inventory cost difference, the rate of its decrease is lower than that of the total transportation 

cost saving. 
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Chapter 4: Case Studies 

In this section, this thesis examines several case studies using real world data to find the best 

strategy for an omni-channel retailer. Two US cities/area are selected for the analysis: Manhattan 

and Los Angeles. They are chosen as representations of varying geographic and demographic 

characteristics 

The geography and population data of these two cities are listed in Table 4.1. The shape 

parameter 휀  measures the city's irregularity, indicating level of symmetry, with higher 휀 

indicating a more irregular region (a circle has the smallest 휀 ). To calculate 휀 , I approximate 

Manhattan with a rectangle whose height-to-length ration is 1:5, Los Angeles with a rectangle 

whose height-to-length is 2:3. Then use the formulas for calculating 휀 of rectangles and circles 

provided by Belavina et al. (2017)，and calculate 휀 of Manhattan to be 1.16, that of Los Angeles 

to be 0.8. Between two cities, Manhattan has the smaller area 𝐴, the higher population density, 

and the more irregular shape. 

Table 4.1: Geography and population 

City Area, 𝐴 Population density, 𝜌 Shape, 휀 

 (km2) (resident/km2)  

Manhattan 59 28220 1.16 

Los Angeles 1300 3077 0.8 

 

Table 4.2 summarizes the parameters associated with shipping in the two cities. 𝛷𝑡  is a 

constant dependent only on the area of the region and tessellation type. This thesis assumes square 

tessellation in the discussion, for which the value of 𝛷𝑡  is √𝐴 . The results can be similarly 

derived for other types of tessellations. The estimations of 𝜙𝑡 is shown below. 

The shipping cost per truck on average consists of fuel cost (39%), driver's salary cost (26%), 
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truck cost (17%), repair maintenance cost (10%), and other cost (8%)1. Given that fuel and driver 

salary are different between two cities, I calculate the shipping cost by 𝜙𝑑 = 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 +

𝑑𝑒𝑖𝑣𝑒𝑟 𝑠𝑎𝑙𝑎𝑟𝑦 + 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑠𝑡 . The 2017 American Public Transit Association's Public 

Transportation Fact Book reports that the average gas mileage of a shipping truck is 6.5 mpg2. The 

2016 gasoline price in Manhattan is $3.04 per gallon, in LA is $3 per gallon. Therefore, the 

estimation of fuel cost in Manhattan as $0.4677/mile/truck, or equivalently $0.2923/km/truck. 

Since fuel cost on average accounts for 39% of the shipping cost, the estimation the total the 

shipping cost to be $0.7495/km/truck in Manhattan. This thesis assumes a delivery truck load of 

20000kg (Cachon, 2014). Each parcel's weight is typically within the range [1.88kg, 8.31kg]3, and 

assumes each parcel is 2 kg. Therefore, I assume that each truck load contains 10000 orders. 

Therefore, the shipping cost per order per km is $0.00007495 in Manhattan. Similarly, this thesis 

estimates that the shipping costs in Los Angeles is $0.00007396/km/order. 

Table 4.2: Shipping parameters in cities 

City 𝛷𝑡 Shipping rate, ϕ𝑡 

  ($/km/order) 

Manhattan 59 28220 

Los Angeles 1300 3077 

 

Table 4.3 summarizes the delivery parameters. 𝑊 is a constant determined by the size and 

shape of the service region and the number of orders delivered by each delivery truck (which 

estimated as 15. 𝜆  is another constant determined by the number of orders delivered by each 

delivery truck, days in operation, customer density and their order frequency. 𝑒 is the retailer's 

market penetration rate. The thesis assumes 0.1% of the population shop at the retailer. Therefore, 

customer density for retailer is �̅� = 𝑒. Then the Delivery distances 𝑊 and 𝜆 can be calculated 

 

1 Source: https://www.thetruckersreport.com/infographics/cost-of-trucking/. 

2 Source: https://www.apta.com/wp-content/uploads/2017-APTA-Fact-Book.pdf. 

3 Source: https://www.statista.com/statistics/771219/e-trade-weight-way-parcel-sent-at-l-export-france/. 
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according to the formulas of 𝑊 and 𝜆, which are provided in the appendix.4 𝜙𝑑 is the last-mile 

delivery cost from store to customers. The Bureau of Transportation statistics tells that the delivery 

truck's mpg is 17.4 in 20165, and each delivery truck can carry 15 packages per day. Similar to the 

estimation of shipping cost, I can calculate that the delivery cost per truck in two cities are 

$ 0.01866 /km/order and $ 0.01842 /km/order, respectively. 

Table 4.3: Delivery parameters in cities 

City 𝑊  λ  𝜙𝑑  

 (km/order) (km/order) ($/km/order) 

Manhattan 1.1880 0.1077 0.01866 

Los Angeles 3.8459 0.3262 0.01842 

 

Estimates of inventory-related parameters are shown in Table 4.4. 𝜙𝐼 is retailer's service level, 

with 𝜙𝐼 = 2  suggesting an in-stock probability is 97.7%. ℎ𝑠  is the stores' inventory cost per 

order per day, calculated by ℎ𝑠 =
𝑣ℎ+𝑓ℎ𝑝ℎ

𝑞ℎ
, where 𝑣ℎ is space cost rate, 𝑓ℎ is utility consumption, 

𝑝ℎ is utility price, and 𝑞ℎ is weight that can be stored per square kilometer in the store space. 

According to the method of Cachon, electricity and natural gas consist the utility cost for 

mercantile retailer. 𝑓ℎ𝑝ℎ = 𝑓𝑒𝑝𝑒 + 𝑓𝑔𝑝𝑔 , where 𝑓𝑒  is electricity usage, 𝑝𝑒  is the price of 

electricity, 𝑓𝑔 is the natural gas usage and 𝑝𝑔 is price of natural gas. I estimate 𝑣ℎ according to 

obtaining warehouse rent fee online (https://www.loopnet.com/). The retail grocery rent fee range 

in Manhattan is [1.6222, 5.1589] $/km2/day, in Los Angeles is [0.9016, 2.8300] $/km2/day. To 

simplify the calculation, I choose average values to estimate. For 𝑞ℎ  and 𝑓ℎ𝑝ℎ , I use the 

estimations from (Cachon, 2014). 𝑞ℎ=71 order/km2. The average electricity usage for retailers in 

United States is 0.5570 kWh/km2/day and the average natural gas usage is 0.6819 kWh/km2/day 

(Cachon, 2014). According to U.S. Energy Information Administration (EIA) report in 2016, 

 
4 In 𝑊 and λ, the estimation of market penetration rate 𝑒=0.1%, 𝐾=15$ orders/truck, customer usually 

place one order per day (Belavina et al. 2017). 

5 Source: https://www.bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles. 
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commercial price of electricity is $0.1557/kWh in New York and $0.1701/kWh in California6. 

According to the US Energy Information Administration, the natural gas price for commercial 

customers is $6.19/thousand cubic feet in New York and $8.42/thousand cubic feet in California. 

Therefore 𝑓ℎ𝑝ℎ in Manhattan is 0.5570*0.1557+0.6819*0.00619=0.0909 $/km2/day. Similarly, 

𝑓ℎ𝑝ℎ in Los Angeles is 0.1005 $/km2/day. These utility-related estimates are summarized in Table 

4.4. 

Table 4.4: Inventory parameters in cities 

City 𝑣ℎ 𝑓ℎ𝑝ℎ ℎ𝑠 ϕ𝐼 

 ($/km2/day) ($/km2/day) ($/order/km2/day)  

Manhattan 3.3905 0.0909 0.04903 2 

Los Angeles 1.8658 0.1005 0.02769 2 

 

Lastly, the thesis estimates consumer-related parameters. For customer's online ordering cost 

𝑐𝑜, Hann and Terwiesch (2003) (Hann and Terwiesch, 2003) estimate that, on average, it costs the 

customer $5 for each online order placed. Meanwhile, some retailers provide free shipping. In the 

numerical study, this thesis considers a range of online order cost between $0 to $10 per order. 

 

Table 4.5: Utility consumption and utility price in cities 

City 𝑓𝑒  pe  𝑓𝑔  𝑝𝑔 

 (kWh/order) (km/order) ($/km/order) ($/ft3) 

Manhattan 0.5570 0.1557 0.6819 0.00619 

Los Angeles 0.5570 0.1701 0.6819 0.00842 

 

Table 4.6 shows the base case estimates of 𝜙𝐼, 𝐶, 𝑐𝑜, 𝑝, 𝑉 and ℎ𝑐. Later, I vary their base 

values to study the results in alternative scenarios. Both cities turn out to have relatively high 

delivery cost and store holding cost, that is, they both fall into case (iv) of Proposition 3.1.  

 

 
6 Source: https://www.eia.gov/electricity/monthly/archive/october2016.pdf. 
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Table 4.6: Baseline parameters 

Parameters Values 

𝜙𝐼 𝜙𝐼 = 2 

𝐶 𝐶 = $50/order 

𝑐𝑜 𝑐𝑜 = $5/order 

𝑝 𝑝 = $4/order 

𝑉 𝑉 = $25/order 

ℎ𝑐  In Manhattan, ℎ𝑐 = 0.036/𝑜𝑟𝑑𝑒𝑟/𝑘𝑚
2/𝑑𝑎𝑦 

In Los Angeles, ℎ𝑐 = 0.020/𝑜𝑟𝑑𝑒𝑟/𝑘𝑚
2/𝑑𝑎𝑦 

 

4.1 Exogenous Price Cases 

In this section, the case studies based on exogenous pricing strategy. 

 

(𝑎) 𝜙𝐼 = 1                     (b) 𝜙𝐼 = 2                       (c) 𝜙𝐼 = 3 

Figure 4.1: Impacts of 𝜙𝐼 and 𝑁 on the retailer's optimal fulfillment strategy (Manhattan) 

 

(a) 𝜙𝐼 = 1                     (b) 𝜙𝐼 = 2                     (c) 𝜙𝐼 = 3 

Figure 4.2: Impacts of 𝜙𝐼 and 𝑁 on the retailer's optimal fulfillment strategy (Los Angeles) 

Figures 4.1 and 4.2 illustrate the optimal strategies for Manhattan and Los Angeles, 

respectively. Note that between the two cities, their unit delivery costs 𝜙𝑑 are very close, but 

store inventory cost in Manhattan is much higher than in Los Angeles. Thus, for both cities, DC 

fulfillment is the preferred strategy with low DC inventory cost and moderate number of stores, 



 37 

while store fulfillment strategy is optimal for high DC inventory cost and a large number of stores. 

However, the region for store fulfillment to be optimal increases with total number of stores for 

Los Angeles, whereas it first decreases and then increases for Manhattan. This effect can be 

explained as follows. When 𝑁 is small, the benefit of DC fulfillment on inventory cost increases 

with 𝑁, while that on transportation cost decreases with 𝑁. Because inventory holding cost in 

Manhattan is sufficiently high, when 𝑁  is small, the first effect dominates, leading to DC 

fulfillment becoming better as 𝑁 increases. In contrast, the inventory cost in Los Angeles is too 

low for the inventory effect to ever dominate. Therefore, the region where DC fulfillment is 

optimal always decreases. 

 

(a) Manhattan                          (b) Los Angeles 

Figure 4.3: Impacts of 𝜙𝐼 and 𝑁 on profit difference 

Figures 4.1-4.2 also illustrate impacts of service levels 𝜙𝐼 on the retailer's optimal fulfillment 

strategy for the two cities. Specifically, the thesis considers 𝜙𝐼  values of 1, 2 and 3, which 

correspond to probabilities of no stockouts of 84.1%, 97.7% and 99.9%, respectively. With the 

increase of service level, the area for DC fulfillment to be optimal increase for both cities. Similar 

results are shown in Figure 4.3, in Figure 4.3(a), the values of 𝛥𝜋 below zero, which means DC 

fulfillment is optimal in Manhattan, increase with increase of 𝜙𝐼. In Figure 4.3(b), the values of 

𝛥𝜋  above zero, which means store fulfillment is optimal in Los Angeles, decrease with the 

increase of 𝜙𝐼.   
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This is because that the retailer needs to hold more inventory to serve customers when 𝜙𝐼 

increases. Due to the cheaper inventory cost at the DC, DC fulfillment becomes increasingly 

desirable in this situation. In the meantime, the increase for Los Angeles is more significant than 

that for Manhattan. This is because the shipping cost is significantly lower in Manhattan compared 

to Los Angeles as a result of its geographic characteristics. Therefore, the shipping cost saving 

from DC fulfillment is much smaller for Manhattan, and thus its benefit overall is reduced. 

 

(a)  𝐶 = 25                     (b) 𝐶 = 50                     (c) 𝐶 = 75 

Figure 4.4: Impacts of 𝐶 and 𝑁 on the retailer's optimal fulfillment strategy (Manhattan) 

 

(a)  𝐶 = 25                     (b) 𝐶 = 50                     (c) 𝐶 = 75 

Figure 4.5: Impacts of 𝐶 and 𝑁 on profit difference (Manhattan) 

Figure 4.4 illustrates the customer's in-store inconvenience cost 𝐶  using Manhattan as an 

example. Higher inconvenient cost renders DC fulfillment to be increasingly beneficial. Similarly, 

in Figure 4.5, the positive values of profit differences are decreasing with increase of 𝐶 . In 

addition, the total number of stores where DC fulfillment remains beneficial for the widest range 

of ℎ𝑐 also increases with 𝐶. This is because when 𝐶 increases, online demand increases and 
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inventory holding at stores become more efficient. Therefore, for DC fulfillment to remain 

competitive, DC's inventory cost needs to be even more efficient. 

 

(𝑎) 𝑐𝑜 = 2.5                     (b) 𝑐𝑜 = 5.0                        (c) 𝑐𝑜 = 75  

Figure 4.6: Impacts of 𝑐𝑜 and 𝑁 on the retailer's optimal fulfillment strategy (Manhattan) 

 

(𝑎) 𝑐𝑜 = 2.5                     (b) 𝑐𝑜 = 5.0                        (c) 𝑐𝑜 = 75  

Figure 4.7: Impacts of 𝑐𝑜 and 𝑁 on profit difference (Manhattan) 

Figure 4.6 and Figure 4.7 illustrate the impact of the customer's online shopping cost 𝑐𝑜 on 

the retailer's optimal fulfillment strategy, again using Manhattan as an example. Specifically, we 

vary customer's online cost 𝑐𝑜 between 2.5 and 7.5. The effect of 𝑐𝑜 works in opposite direction 

of that of 𝐶 and can be similarly explained.    

Figure 4.8 illustrates the impacts of the retail price 𝑝  on the retailer's optimal fulfillment 

strategy. With the increase of 𝑝, the region where store fulfillment strategy is optimal expands. 

This effect is further studied in Figure 4.9 which illustrates the impacts the profit difference 

between the two strategies 𝛥𝜋 behave under different 𝑝 values. It can be seen that 𝛥𝜋 flattens 

as 𝑝 increases. This is because higher price leads to lower demand both in-store and online. For 

Manhattan, this means that the portion of the curve below zero decreases with p, suggesting the 

region where DC fulfillment is better is shrinking. 
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(𝑎) 𝑝 = 4                     (b) 𝑝 = 11                        (c) 𝑝 = 18  

Figure 4.8: Impacts of 𝑝 and 𝑁 on the retailer's optimal fulfillment strategy (Manhattan) 

 

Figure 4.9: Impacts of 𝑝 and 𝑁 on profit difference (Manhattan) 

 

(𝑎) 𝑉 = 15                     (b) 𝑉 = 40                        (c) 𝑉 = 65  

Figure 4.10: Impacts of 𝑉 and 𝑁 on the retailer's optimal fulfillment strategy (Manhattan) 

Similarly, Figure 4.10 illustrates, for Manhattan, the impacts of customer's product valuation 

𝑉 on the retailer's optimal fulfillment strategy, while Figure 4.11 illustrates its effect on the profit 

difference between the two fulfillment strategies. The effect of 𝑉 is the opposite of that of 𝑝, and 

can be similarly explained. 
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Figure 4.11: Impacts of 𝑉 and 𝑁 on profit difference (Manhattan) 

4.2 Endogenous Price Cases 

In this section, the thesis considers an extension where the price of the product is endogenous. 

That is, in addition to the fulfillment strategy and order quantities, the retailer also chooses the 

selling price under each strategy. This thesis continues to illustrate the results using the previous 

case study setting, and study the influences of different parameters on the optimal prices and the 

optimal profit differences between the two fulfillment strategies. 

 

(a) 𝑝𝑆
∗                          (b) 𝑝𝐶

∗  

Figure 4.12: Impacts of 𝜙𝐼 and 𝑁 on optimal prices under endogenous price (Manhattan) 

Figure 4.12 and Figure 4.13 illustrate behavior of the optimal price. Specifically, they illustrate 

the impacts of ϕ𝐼 and 𝑁 on optimal prices under store fulfillment strategy and DC fulfillment 

strategy in Manhattan and Los Angeles, respectively. Note that 𝑝𝑆
∗   denotes the optimal price 
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under the store fulfillment strategy while 𝑝𝐶
∗  denotes that for the DC fulfillment strategy. Overall, 

the figures show that 𝑝𝑆
∗ > 𝑝𝐶

∗  for Manhattan, and that both 𝑝𝑆
∗ and 𝑝𝐶

∗  are increasing with the 

total number of stores 𝑁  under both fulfillment strategies (this is because the retailer's costs 

increase with the total number of stores).  

It is easy to see that the impact of 𝜙𝐼 is the opposite between the two strategies for Manhattan, 

while they work in the same direction for Los Angeles. The optimal price increases with 𝜙𝐼 in all 

scenarios except for Manhattan under DC fulfillment. This is because under DC fulfillment in 

Manhattan, decreasing the retail price and increasing demand allows the retailer to make better use 

of the inventory pooling effect. In all other scenarios, in order to meeting increasing service level 

requirement, the retailer charges higher price to reduce the demand. 

 

(a) 𝑝𝑆
∗                          (b) 𝑝𝐶

∗  

Figure 4.13: Impacts of 𝜙𝐼 and 𝑁 on optimal prices under endogenous price (Los Angeles) 

Figure 4.14(a) and 4.14(b) illustrate how the profit difference between the two fulfillment 

strategies are affected by 𝜙𝐼 and 𝑁 in Manhattan and Los Angeles, respectively, when the retail 

optimizes its retail price. For Manhattan, the profit difference is positive for small and large 𝑁 

(Store fulfillment is optimal), and negative for intermediate 𝑁 (DC fulfillment is optimal). For 

Los Angeles, the profit difference is negative for small 𝑁, and positive for large 𝑁. In fact, the 

behavior of the profit difference is very similar to that under the exogenous demand setting, as 

illustrated in Figure 4.3(a) and 4.3(b).       
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(a) Manhattan                          (b) Los Angeles 

Figure 4.14: Impacts of 𝜙𝐼 and 𝑁 on profit difference under endogenous price 
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Chapter 5: Conclusions 

With the development of digital technology, more and more retailers are operating omni-

channel supply chain to meeting the changing demand. This thesis examines the optimal online 

order fulfillment strategy for an omni-channel retailer who is facing both in-store and online 

demands in order to maximize its overall profit. Two strategies including fulfilling from store 

inventory and fulfilling from the distribution center are considered.  

An integrated model is developed, which accounts for consumers' channel choice decision, the 

retailer's inventory holding cost, its shipping cost from the distribution center to the stores, and the 

last-mile delivery cost to customers' homes. The influences of the two fulfillment strategies on 

various cost elements was studied. In addition, two interesting inventory pooling effects are 

identified, namely, channel pooling effect and location pooling effect. It is shown that both 

fulfillment strategy can yield lower inventory cost, determined by the tradeoff between the two 

pooling effects, which is in turn affected by the total number of stores.  

The analytical solution to retailer's optimal fulfillment problem was provided. It was found 

that the retailers' optimal fulfillment strategy depends on the store's unit inventory cost, DC's 

inventory cost, delivery cost and the total number of stores. Specifically, if the delivery cost is high, 

then the retailer prefers store fulfillment when the store's inventory cost is low, the number of 

stores is neither too small nor too large. On the contrary, if the delivery cost is high and number of 

stores is either high or low, store fulfillment is only preferred if DC has very high inventory cost. 

Interestingly, store fulfillment may be better even when the stores' inventory cost is high. In 

particular, this happens when DC's inventory cost is very high, delivery cost is high, and the 

number of stores is either small or large. 

Case studies based on Manhattan and Los Angeles are provided to further investigate the 

retailer's fulfillment decision as well as the impacts of its pricing decision, and geographic and cost 
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characteristics. For Manhattan, for both exogenous and endogenous price cases, the regions where 

store fulfillment are optimal first decrease and then increase as the total number of stores increases. 

For Los Angeles, the region where store fulfillment is optimal always increases with the total 

number of stores.  

It is worth pointing out a few limitations of this work. First, the interaction between pricing 

and fulfillment decisions are complex and more analytical results should be developed to better 

understand it. Second, potential demand transfer between channels was not considered in the 

current model. This happens, for example, when customers switch from in-store to the online 

channel if they do not find the products in store. Third, retailer's shipping price can also be 

considered as a decision to further improve the results. Finally, it will be interesting to conduct 

empirical studies on the effect of the retailer's fulfillment decisions on various performance factors 

such as profitability, customer service, and customers' channel choices.  
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Appendices 

Appendix A: Theorem Proofs 

Proof of Lemma 3.1: 

This thesis gets the results from taking the first order derivation of demands.  

(i) 
𝜕𝐷𝑖

𝜕𝑝
= −

𝑐𝑜𝑁

𝐶𝑉
< 0 , 

𝜕𝐷𝑖

𝜕𝑁
=

𝑐𝑜

𝐶𝑉
(𝑉 − 𝑝 −

𝑐𝑜

2
) > 0 , 

𝜕𝐷𝑖

𝜕𝑉
=

2𝑐𝑜𝑁𝑝+𝑐𝑜
2𝑁

2𝐶𝑉2
> 0 , 

𝜕𝐷𝑖

𝜕𝑐𝑜
=

𝑁(𝑉−𝑝−𝑐𝑜)

𝐶2𝑉
> 0, 

𝜕𝐷𝑖

𝜕𝐶
= −

𝑐𝑜𝑁(𝑉−𝑝−
𝑐𝑜
2
)

𝐶2𝑉
< 0. 

(ii) 
𝜕𝐷𝑜

𝜕𝑝
=

𝑐𝑜𝑁−𝐶

𝐶𝑉
< 0 , 

𝜕𝐷𝑜

𝜕𝑁
= −

𝑐𝑜

𝐶𝑉
(𝑉 − 𝑝 − 𝑐𝑜) < 0 , 

𝜕𝐷𝑜

𝜕𝑉
=

(𝐶−𝑐𝑜)(𝑐𝑜+𝑝)

𝐶𝑉2
> 0 , 

𝜕𝐷𝑜

𝜕𝑐𝑜
=

−
(𝐶−𝑐𝑜𝑁)+𝑁(𝑉−𝑝−𝑐𝑜)

𝐶2𝑉
< 0, 

𝜕𝐷𝑜

𝜕𝐶
=

𝑐𝑜𝑁(𝑉−𝑝−𝑐𝑜)

𝐶2𝑉
> 0. 

 

Proof of Lemma 3.2: 

The expression of inventory cost difference is given as, 

𝛥𝐶ℎ  = ℎ𝑠𝜙𝐼√𝑁 [(𝐷
𝑜 + 𝐷𝑖)

1
2 − 𝐷𝑖

1
2] − ℎ𝑐𝜙𝐼𝐷

𝑜
1
2 

 = ℎ𝑠𝜙𝐼√𝑁 [(
𝑁𝑐𝑜

2

2𝐶𝑉
−
𝑐𝑜+𝑝

𝑉
+ 1)

1

2
− (

𝑐𝑜𝑁(𝑉−𝑝−
𝑐𝑜
2
)

𝐶𝑉
)

1

2

] − ℎ𝑐𝜙𝐼 (
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)

𝐶𝑉
)

1

2
.  

It is easy to say that Δ𝐶ℎ ≥ 0  if and only if ℎ𝑐 ≤ ℎ𝑐0 where ℎ𝑐0 =

ℎ𝑠√𝑁{[
𝑁𝑐𝑜

2+2𝐶(𝑉−𝑝−𝑐𝑜)

2
]

1
2
−[𝑐𝑜𝑁(𝑉−𝑝−

𝑐𝑜
2
)]

1
2}

[(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)]
1
2

. 

 

Proof of Lemma 3.3: 

The expression of shipping, delivery and total transportation cost differences are given as, 
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𝛥𝐶𝑡 = 𝜙𝑡𝛷𝑡√𝑁(𝑉 − 𝑝 − 𝑐𝑜)
𝐶−𝑐𝑜𝑁

𝐶𝑉
,  

𝛥𝐶𝑑 = (
1

√𝑁
− 1)𝜙𝑑𝑊(𝑉 − 𝑝 − 𝑐𝑜)

𝐶−𝑐𝑜𝑁

𝐶𝑉
,  

𝛥𝐶𝑇 = 𝛥𝐶𝑡 + 𝛥𝐶𝑑 = [𝜙𝑡𝛷𝑡√𝑁 + (
1

√𝑁
− 1)𝜙𝑑𝑊] (𝑉 − 𝑝 − 𝑐𝑜)

𝐶−𝑐𝑜𝑁

𝐶𝑉
.  

It is easy to say that 𝛥𝐶𝑡 ≥ 0 and 𝛥𝐶𝑑 ≤ 0. 

(i) 
𝜕𝛥𝐶𝑡

𝜕𝑝
=

−(𝐶−𝑐𝑜𝑁)𝜙𝑡𝛷𝑡√𝑁

𝐶𝑉
≤ 0  

 
𝜕𝛥𝐶𝑡

𝜕𝑁
=

(𝑉−𝑝−𝑐𝑜)𝜙𝑡𝛷𝑡

2𝐶𝑉
(
𝐶

√𝑁
− 3𝑐𝑜√𝑁) , 

𝜕𝛥𝐶𝑡

𝜕𝑁
≥ 0  if 𝑁 ≤

𝐶

3𝑐𝑜
  and 

𝜕𝛥𝐶𝑡

𝜕𝑁
< 0   

𝜕𝛥𝐶𝑡

𝜕𝑁
< 0 , 

otherwise. 

(ii) 
𝜕𝛥𝐶𝑑

𝜕𝑝
= −(

1

√𝑁
− 1)𝜙𝑑𝑊

𝐶−𝑐0𝑁

𝐶𝑉
≥ 0  

𝜕𝛥𝐶𝑑

𝜕𝑁
= −

(𝑉−𝑝−𝑐𝑜)𝜙𝑑𝑊

𝐶𝑉√𝑁
(
𝐶

2𝑁
+
𝑐𝑜

2
− 𝑐𝑜√𝑁), 

𝜕𝛥𝐶𝑑

𝜕𝑁
≥ 0 if 

𝐶

2𝑁
+
𝑐𝑜

2
− 𝑐𝑜√𝑁 ≥ 0. 

𝜕(
𝐶

2𝑁
+
𝑐𝑜
2
−𝑐𝑜√𝑁)

𝜕𝑁
= −

𝐶

2𝑁2
−

𝑐𝑜

2√𝑁
< 0  and 

𝐶

2𝑁
+
𝑐𝑜

2
− 𝑐𝑜√𝑁|𝑁=1 =

𝐶−𝑐0

2
> 0 . Thus, there 

exists a unique 𝑁𝑑 > 1 such that 
𝜕𝛥𝐶𝑑

𝜕𝑁
≤ 0when 𝑁 ≤ 𝑁𝑑 and  

𝜕𝛥𝐶𝑑

𝜕d𝑁
> 0, otherwise. 

(iii) 𝛥𝐶𝑇 < 0  if 𝜙𝑡𝛷𝑡√𝑁 + (
1

√N
− 1)𝜙𝑑W < 0 , then 𝜙𝑑 >

4𝜙𝑡𝛷𝑡

𝑊
 , 𝑁1 < 𝑁 < 𝑁2   

𝛥𝐶𝑇 ≥ 0 , otherwise, where 𝑁1 =
[𝜙𝑑𝑊−√𝜙𝑑𝑊(𝜙𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2   and 𝑁2 =

[𝜙𝑑𝑊+√𝜙𝑑𝑊(𝜙𝑑𝑊−4𝜙𝑡𝛷𝑡)]
2

4𝜙𝑡
2𝛷𝑡

2 . 

 

Proof of Corollary 3.1: 

The expression of ℎ𝑐0 is given as, 

ℎ𝑐0 =
ℎ𝑠√𝑁[(𝐷

𝑜+𝐷𝑖)
1
2−𝐷𝑖

1
2]

𝐷𝑜
1
2

=
ℎ𝑠√𝑁{[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑝−𝑐𝑜)

2
]

1
2
−[𝑐𝑜𝑁(𝑉−𝑝−

𝑐𝑜
2
)]

1
2}

[(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)]
1
2

.  

Let 𝑦 =
𝐷𝑖

𝐷𝑜
=

(𝑉−𝑝−
𝑐𝑜
2
)𝑐𝑜𝑁

(𝑉−𝑝−𝑐0)(𝐶−𝑐𝑜𝑁)
.  After taking the first order derivation of 𝑦,  
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∂𝑦

∂𝑝
=

𝑐𝑜
2𝑁

2(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)2
> 0,  

∂𝑦

∂𝑁
=

(𝑉−𝑝−
𝑐𝑜
2
)𝐶𝑐𝑜

(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)2
=

𝐶𝑦

(𝐶−𝑐𝑜𝑁)𝑁
> 0,  

∂2𝑦

∂𝑁2
=

2𝐶𝑐𝑜𝑦

(𝐶−𝑐𝑜𝑁)2𝑁
> 0,  

∂𝑦

∂𝐶
= −

𝑐𝑜𝑁(𝑉−𝑝−
𝑐𝑜
2
)

(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)2
< 0,  

∂𝑦

∂𝑉
= −

𝑐𝑜
2𝑁

2(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)2
< 0.  

(i) First, I calculate the square power of ℎ𝑐0,  

ℎ𝑐0
2 = ℎ𝑠

2𝑁 [(1 + 𝑦)
1

2 − 𝑦
1

2]
2

= ℎ𝑠
2𝑁 [1 + 2𝑦 − 2𝑦

1

2(1 + 𝑦)
1

2].  

Consider the first order derivation of ℎ𝑐0 to 𝑝, 

 
∂ℎ𝑐0

2

∂𝑝
  = ℎ𝑠

2𝑁
∂𝑦

∂𝑝
[2 − 𝑦−

1

2(1 + 𝑦)
1

2 − 𝑦
1

2(1 + 𝑦)−
1

2] = ℎ𝑠
2𝑁

∂𝑦

∂𝑝

−[(1+𝑦)
1
2−𝑦

1
2]

2

𝑦
1
2(1+𝑦)

1
2

< 0.  

Then 
∂ℎ𝑐0

∂𝑝
< 0. 

(ii) For the first order derivation of ℎ𝑐0
2  to 𝐶,  

∂ℎ𝑐0
2

∂𝐶
= ℎ𝑠

2𝑁
∂𝑦

∂𝐶
[2 − 𝑦−

1
2(1 + 𝑦)

1
2 − 𝑦

1
2(1 + 𝑦)−

1
2] 

 = ℎ𝑠
2𝑁

[(1+𝑦)
1
2−𝑦

1
2]

2

[𝑦(1+𝑦)]
1
2

𝑐𝑜𝑁(𝑉−𝑝−
𝑐𝑜
2
)

(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)2
> 0 .  

(iii) For the first order derivation of ℎ𝑐0
2   to 𝑉, 

∂ℎ𝑐0
2

∂𝑉
= ℎ𝑠

2𝑁
∂𝑦

∂𝑉
[2 − 𝑦−

1

2(1 + 𝑦)
1

2 − 𝑦
1

2(1 + 𝑦)−
1

2]  

= ℎ𝑠
2𝑁

[(1+𝑦)
1
2−𝑦

1
2]

2

[𝑦(1+𝑦)]
1
2

𝑐𝑜
2𝑁

2(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)2
 .  

(iv) Next, this thesis considers the first order derivation of ℎ𝑐0
2  to 𝑁,  
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∂ℎ𝑐0
2

∂𝑁
= ℎ𝑠

2 [1 + 2𝑦 − 2𝑦
1
2(1 + 𝑦)

1
2] + ℎ𝑠

2𝑁
∂𝑦

∂𝑁
[2 − 𝑦−

1
2(1 + 𝑦)

1
2 − 𝑦

1
2(1 + 𝑦)−

1
2], 

1 + 2𝑦 − 2𝑦
1

2(1 + 𝑦)
1

2 = 1 +
2𝑦

1
2[𝑦

1
2−(1+𝑦)

1
2][𝑦

1
2+(1+𝑦)

1
2]

𝑦
1
2+(1+𝑦)

1
2

=
(1+𝑦)

1
2−𝑦

1
2

𝑦
1
2+(1+𝑦)

1
2

> 0,  

∂[1+2𝑦−2𝑦
1
2(1+𝑦)

1
2]

∂𝑁
= [2 − 𝑦−

1

2(1 + 𝑦)
1

2 − 𝑦
1

2(1 + 𝑦)−
1

2]
∂𝑦

∂𝑁
= −

[(1+𝑦)
1
2−𝑦

1
2]

2

𝑦
1
2(1+𝑦)

1
2

∂𝑦

∂𝑁
< 0, 

2 − 𝑦−
1

2(1 + 𝑦)
1

2 − 𝑦
1

2(1 + 𝑦)−
1

2 = −
[(1+𝑦)

1
2−𝑦

1
2]

2

[𝑦(1+𝑦)]
1
2

< 0, 

∂[2−𝑦
−
1
2(1+𝑦)

1
2−𝑦

1
2(1+𝑦)

−
1
2]

∂𝑁
= [

𝑦
1
2

(1+𝑦)
3
2

+
(1+𝑦)

1
2

𝑦
3
2

−
2

𝑦
1
2(1+𝑦)

1
2

]
∂𝑦

∂𝑁

1

2
=

1

2[𝑦(1+𝑦)]
3
2

∂𝑦

∂𝑁
> 0, 

𝜕2ℎ𝑐0
2

𝜕𝑁2
= ℎ𝑠

2
𝜕[1+2𝑦−2𝑦

1
2(1+𝑦)

1
2]

𝜕𝑁
+ ℎ𝑠

2 [2 − 𝑦−
1

2(1 + 𝑦)
1

2 − 𝑦
1

2(1 + 𝑦)−
1

2] (
𝜕𝑦

𝜕𝑁
+ 𝑁

𝜕2𝑦

𝜕𝑁2
) +

ℎ𝑠
2𝑁

𝜕𝑦

𝜕𝑁

𝜕[2−𝑦
−
1
2(1+𝑦)

1
2−𝑦

1
2(1+𝑦)

−
1
2]

𝜕𝑁
= ℎ𝑠

2{−
[(1+𝑦)

1
2−𝑦

1
2]

2

[𝑦(1+𝑦)]
1
2

[2𝑦
𝐶

(𝐶−𝑐𝑜𝑁)𝑁
+ 𝑁𝑦

2𝐶𝑐𝑜

(𝐶−𝑐𝑜𝑁)2𝑁
]} +

ℎ𝑠
2𝑁

1

2[𝑦(1+𝑦)]
3
2

𝐶2𝑦2

(𝐶−𝑐𝑜𝑁)2𝑁2
=

− ℎ𝑠
2𝐶2𝑦 [(1+𝑦)

1
2−𝑦

1
2]

2

[𝑦(1+𝑦)]
1
2(𝐶−𝑐𝑜𝑁)2𝑁 

[2 −
1

2(1+𝑦)[(1+𝑦)
1
2−𝑦

1
2]

2] < 0    

Since (1 + 𝑦)
1

2 − 𝑦
1

2 =
1

(1+𝑦)
1
2+𝑦

1
2

>
1

2(1+𝑦)
1
2

> 0,  

then 
∂2ℎ𝑐0

2

∂𝑁2
<

−ℎ𝑠
2𝐶2𝑦[(1+𝑦)

1
2−𝑦

1
2]

2

[𝑦(1+𝑦)]
1
2(𝐶−𝑐𝑜𝑁)2𝑁

[2 −
4(1+𝑦)

2(1+𝑦)
] = 0. 

Then there exist an optimal number of stores 𝑁0, 
∂ℎ𝑐0

∂𝑁
≤ 0 if 𝑁 ≥ 𝑁0  

∂ℎ𝑐0

∂𝑁
> 0, otherwise. 

As a result of 𝑁 ∈ [1,
𝐶

𝑐𝑜
], so I can calculate the limit of ℎ𝑐0 when 𝑁 = 1  is, ℎ𝑐0|𝑁=1 =

ℎ𝑠
[𝐶(𝑣−𝑝−𝑐𝑜)+

𝑐𝑜
2

2
]

1
2
−[𝑐𝑜(𝑉−𝑝−

𝑐𝑜
2
)]

1
2

[(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜)]
1
2

> 0. The limit of ℎ𝑐0 when 𝑁 =
𝐶

𝑐𝑜
 is, ℎ𝑐0|𝑁= 𝐶

𝑐𝑜

= 0. 
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In a word, there exists 𝑁0 > 1 such that Δ𝐶ℎ < 0 for 𝑁 ≥ 𝑁0, and Δ𝐶ℎ ≥ 0, otherwise. 

 

Proof of Proposition 3.1: 

The retailer's profits under the two fulfillment schemes are respectively given by, 

𝜋𝑆(𝑝) =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐𝑜𝑁−𝑝)(𝑝−

𝜙𝑑

√𝑁
𝑊−𝜙𝑑𝜆−𝜙𝑡𝛷𝑡√𝑁)

𝐶𝑉
− ℎ𝑠𝜙𝐼(𝐷

𝑜 +𝐷𝑖)
1

2√𝑁 +

𝑐𝑜𝑁(𝑐𝑜−2𝑉+2𝑝)(𝜙𝑡𝛷𝑡√𝑁−𝑝)

2𝐶𝑉
, 

𝜋𝐶(𝑝) =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐𝑜𝑁−𝑝)(𝑝−𝜙𝑑𝑊−𝜙𝑑𝜆)

𝐶𝑉
− ℎ𝑐𝜙𝐼𝐷

𝑜
1
2 − ℎ𝑠𝜙𝐼𝐷

𝑖
1
2√𝑁 +

𝑐𝑜𝑁(𝑐𝑜−2𝑉+2𝑝)(𝜙𝑡𝛷𝑡√𝑁−𝑝)

2𝐶𝑉
. 

The profit difference is thus, 

𝜋𝑆(𝑝) − 𝜋𝐶(𝑝) = −𝐷
𝑜 [(

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁] + ℎ𝑐𝜙𝐼𝐷

𝑜
1
2 − ℎ𝑠𝜙𝐼√𝑁 [(𝐷

𝑜 + 𝐷𝑖)
1

2 −

𝐷𝑖
1
2] = −

(𝐶−𝑐𝑜𝑁)(𝑉−𝑐𝑜−𝑝)[(
1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝐶𝑉
+ ℎ𝑐𝜙𝐼 [

(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)

𝐶𝑉
]

1

2
−

ℎ𝑠𝜙𝐼√𝑁  {[
𝑁𝑐𝑜

2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1

2
− [

(𝑉−𝑝−
𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1

2

 }.  

The retailer should fulfill from stores if and only if π𝑆 − π𝐶 ≥ 0 or equivalently ℎ𝑐 ≥ ℎ𝑐1, 

where ℎ𝑐1 =
𝐷𝑜[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]+ℎ𝑠ϕ𝐼√𝑁[(𝐷

𝑜+𝐷𝑖)
1
2−𝐷𝑖

1
2]

ϕ𝐼𝐷𝑜
1
2

 

=
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐0−𝑝)[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]+ℎ𝑠ϕ𝐼𝐶𝑉√𝑁{[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

𝐶𝑉ϕ𝐼[
(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)

𝐶𝑉
]

1
2

. 

There are 2 cases under above conditions, 

(i) ℎ𝑐1 ≤ 0, 

(ii) ℎ𝑐1 > 0, then ℎ𝑐 > ℎ𝑐1. 

For case(i), it's easy to see that case (i) holds if and only is ℎ𝑠 ≤ ℎ𝑠1, ℎ𝑠 ≤ ℎ𝑠1 exists if and 

only if ℎ𝑠1 ≥ 0, which is equivalent to (
1

√𝑁
− 1)ϕ𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0,  
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where ℎ𝑠1 = −
𝐷𝑜[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

ϕ𝐼√𝑁[(𝐷
𝑖+𝐷𝑜)

1
2−𝐷𝑖

1
2]

= −
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝐶𝑉ϕ𝐼√𝑁{[
𝑁𝑐𝑜

2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

. 

Similarly, for case(ii), ℎ𝑐1 > 0 holds when ℎ𝑠 > ℎ𝑠1, 

(i) ℎ𝑠1 < 0, 

(ii) ℎ𝑠1 > 0, ℎ𝑠 > ℎ𝑠1. 

It's easy to see that ℎ𝑠1 < 0 if and only (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 > 0, (

1

√𝑁
− 1)𝜙𝑑𝑊 +

𝜙𝑡𝛷𝑡√𝑁 > 0 happens when (i) 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁 ≤ 𝑁1 or 𝑁 ≥ 𝑁2, and (ii) 𝜙𝑑 ≤

4𝜙𝑡𝛷𝑡

𝑊
. 

ℎ𝑠 > ℎ𝑠1 exists if and only if ℎ𝑠1 > 0, which is equivalent to (
1

√𝑁
− 1)ϕ𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 <

0. (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 < 0 happens when  𝜙𝑑 >

4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2. 

The proposition can be summarized as, 

(a) ℎ𝑠 ≤ ℎ𝑠1, (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0, 

(b) ℎ𝑐 > ℎ𝑐1, (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 > 0, 

(c) ℎ𝑐 > ℎ𝑐1, ℎ𝑠 > ℎ𝑠1, (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 < 0, 

where  ℎ𝑐1 =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐0−𝑝)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]+ℎ𝑠𝜙𝐼𝐶𝑉√𝑁{[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

𝐶𝑉𝜙𝐼[
(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)

𝐶𝑉
]

1
2

 , 

ℎ𝑠1 = −
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝐶𝑉𝜙𝐼√𝑁{[
𝑁𝑐𝑜

2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

. 

Combine these equations, can have the Proposition 3.1. 

(i) hs ≤ hs1, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2, 

(ii) hc > hc1, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁 ≤ 𝑁1 or 𝑁 ≥ 𝑁2,  

(iii) ℎ𝑐 > ℎ𝑐1, 𝜙𝑑 ≤
4𝜙𝑡𝛷𝑡

𝑊
, 

(iv) ℎ𝑐 > ℎ𝑐1, ℎ𝑠 > ℎ𝑠1, 𝜙𝑑 >
4𝜙𝑡𝛷𝑡

𝑊
, 𝑁1 < 𝑁 < 𝑁2. 
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Proof of Corollary 3.2: 

ℎ𝑐0 defined in Lemma 3.2 and ℎ𝑐1 defined in Proposition 3.1 are 

ℎ𝑐0 =
ℎ𝑠√𝑁{[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑝−𝑐𝑜)

2
]

1
2
−[𝑐𝑜𝑁(𝑉−𝑝−

𝑐𝑜
2
)]

1
2}

[(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)]
1
2

, 

ℎ𝑐1 =
(𝐶−𝑐𝑜𝑁)(𝑉−𝑐0−𝑝)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]+ℎ𝑠𝜙𝐼𝐶𝑉√𝑁{[

𝑁𝑐𝑜
2+2𝐶(𝑉−𝑐𝑜−𝑝)

2𝐶𝑉
]

1
2
−[
(𝑉−𝑝−

𝑐𝑜
2
)𝑐𝑜𝑁

𝐶𝑉
]

1
2

}

𝐶𝑉𝜙𝐼[
(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)

𝐶𝑉
]

1
2

, 

hc0 − hc1 = −
1

ϕI
Do

1
2 [(

1

√N
− 1)ϕdW+ϕtΦt√N]. 

ℎ𝑐0 − ℎ𝑐1 ≤ 0 when (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≥ 0  otherwise, ℎ𝑐0 − ℎ𝑐1 > 0. 

Combine the proof of Lemma 3.2 can have the Corollary 3.2. 

 

Proof of Corollary 3.3: 

According to Corollary 3.2,  

ℎ𝑐1 = ℎ𝑐0 + 𝜙𝐼
−1𝐷𝑜

1
2 [(

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁],  

After taking the first order derivation of ℎ𝑐1,  

∂ℎ𝑐1

∂𝑝
= −

ℎ𝑠𝑐𝑜
2𝑁

3
2[𝑦

−
1
2−(1+𝑦)

−
1
2]

4(𝑉−𝑝−𝑐𝑜)2(𝐶−𝑐𝑜𝑁)
−
(𝐶−𝑐𝑜𝑁)

1
2[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

2ϕ𝐼[𝐶𝑉(𝑉−𝑝−𝑐𝑜)]
1
2

, 

∂ℎ𝑐1

∂𝐶
=

ℎ𝑠𝑐𝑜𝑁
3
2[𝑦

−
1
2−(1+𝑦)

−
1
2](𝑉−𝑝−

𝑐𝑜
2
)

2(𝑉−𝑝−𝑐𝑜)(𝐶−𝑐𝑜𝑁)2
+
𝑐𝑜𝑁(𝑉−𝑝−𝑐𝑜)[(

1

√𝑁
−1)ϕ𝑑𝑊+ϕ𝑡Φ𝑡√𝑁

]

2ϕ𝐼𝐶
3
2𝑉

1
2[(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)]

1
2

, 

∂ℎ𝑐1

∂𝑉
=

ℎ𝑠𝑐𝑜
2𝑁

3
2[𝑦

−
1
2−(1+𝑦)

−
1
2]

4(𝑉−𝑝−𝑐𝑜)2(𝐶−𝑐𝑜𝑁)
+
(𝐶−𝑐𝑜𝑁)

1
2(𝑝+𝑐𝑜)[(

1

√𝑁
−1)ϕ𝑑𝑊+ϕ𝑡Φ𝑡√𝑁

]

2ϕ𝐼𝐶
1
2𝑉

3
2(𝑉−𝑝−𝑐𝑜)

1
2

. 

(i) As a result of 
∂ℎ𝑐1

∂𝑝
≤ 0 if ℎ𝑠 ≥ ℎ𝑠2, there are two situations when ℎ𝑠 ≥ ℎ𝑠2 holds, 

(a) ℎ𝑠2 ≤ 0 if (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≥ 0,  

(b) ℎ𝑠2 > 0, (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 < 0, ℎ𝑠 ≥ ℎ𝑠2. 
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(ii) Similarly, as a result of 
∂ℎ𝑐1

∂𝑝
> 0 , if (

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 < 0, ℎ𝑠 < ℎ𝑠2, 

where ℎ𝑠2 = −
2(𝐶−𝑐𝑜𝑁)

3
2(𝑉−𝑝−𝑐𝑜)

3
2[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

ϕ𝐼𝐶
1
2𝑉

1
2𝑐𝑜
2𝑁

3
2[𝑦

−
1
2−(1+𝑦)

−
1
2]

. 

(iii) 
∂ℎ𝑐1

∂𝐶
≤ 0 if ℎ𝑠 ≤ ℎ𝑠3, ℎ𝑠 ≤ ℎ𝑠3 holds when (

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0 . 

(iv) Similarly, 
∂ℎ𝑐1

∂𝐶
> 0  if (

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 > 0 , or if (

1

√𝑁
− 1)𝜙𝑑𝑊 +

𝜙𝑡𝛷𝑡√𝑁 < 0, ℎ𝑠 > ℎ𝑠3,  

where ℎ𝑠3 = −
(𝐶−𝑐𝑜𝑁)(𝑉−𝑝−𝑐𝑜)

3
2[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝜙𝐼𝐶
3
2𝑉

1
2𝑁

1
2[𝑦

−
1
2−(1+𝑦)

−
1
2](𝑉−𝑝−

𝑐𝑜
2
)

. 

(v) 
∂ℎ𝑐1

∂𝑉
≤ 0  if ℎ𝑠 ≤ ℎ𝑠4  , ℎ𝑠 ≤ ℎ𝑠4   holds if and only if (

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤

0 . 

(vi) Similarly, 
∂ℎ𝑐1

∂𝑉
> 0 if ℎ𝑠 > ℎ𝑠4, ℎ𝑠4 ≤ 0 if and only if (

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 > 0  

ℎ𝑠4 > 0 if (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 > 0, 

where ℎ𝑠4 = −
2(𝐶−𝑐𝑜𝑁)

3
2(𝑉−𝑝−𝑐𝑜)

3
2(𝑝+𝑐𝑜)[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

𝜙𝐼𝐶
1
2𝑉

3
2𝑐𝑜
2𝑁

3
2[𝑦

−
1
2−(1+𝑦)

−
1
2]

. 

 

Proof of Corollary 3.4: 

As a result of ℎ𝑐2 =
[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

𝜙𝐼𝑉
1
2

+ ℎ𝑠𝑁
1

2, (
1

√𝑁
− 1)ϕ𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0. 

After taking the first order of ℎ𝑐2 to 𝑝 and 𝑉 ,  

(i) 
𝜕ℎ𝑐2

𝜕𝑝
= −

[(
1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

2𝜙𝐼𝑉
1
2

≥ 0, 

(ii) 
∂ℎ𝑐2

∂𝑉
=

𝑝[(
1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁]

2ϕ𝐼𝑉
3
2(𝑉−𝑝)

1
2

≤ 0. 
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Proof of Proposition 3.2: 

The retailer should fulfill from stores with 𝑐𝑜 = 0 if and only if 𝜋𝑆(𝑝) − 𝜋𝐶(𝑝)|𝑐𝑜=0 ≥ 0, 

or equivalently ℎ𝑐 ≥ ℎ𝑐2,  where ℎ𝑐2 = 𝜙𝐼
−1 [(

1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁]𝐷

𝑜
1
2 + ℎ𝑠𝑁

1

2 =

[(
1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

𝜙𝐼𝑉
1
2

+ ℎ𝑠𝑁
1

2.  

According to ℎ𝑠 ≥ ℎ𝑐, then ℎ𝑠 ≥ ℎ𝑐 ≥ ℎ𝑐2, or equivalently ℎ𝑠 ≤ ℎ𝑠6,  

where ℎ𝑠6 = −
[(

1

√𝑁
−1)ϕ𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

ϕ𝐼(𝑁
1
2−1)𝑉

1
2

. 

As a result of Δ𝐶ℎ0 ≥ 0 , so π𝑆(𝑝) − π𝐶(𝑝)|𝑐𝑜=0 ≥ 0  happens if and only if Δ𝐶𝑇0 ≤ 0 , 

which is equivalent to (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0. 

There are two cases if ℎ𝑐 ≥ ℎ𝑐2, 

(i) ℎ𝑐2 ≤ 0, 

(ii) ℎ𝑐2 > 0, ℎ𝑐 ≥ ℎ𝑐2. 

For case (i), ℎ𝑐2 ≤ 0  holds if ℎ𝑠 ≤ ℎ𝑠5 , ℎ𝑠 ≤ ℎ𝑠5  exists if and only if (
1

√𝑁
− 1)𝜙𝑑𝑊 +

𝜙𝑡𝛷𝑡√𝑁 ≤ 0, where ℎ𝑠5 = −
[(

1

√𝑁
−1)𝜙𝑑𝑊+𝜙𝑡𝛷𝑡√𝑁](𝑉−𝑝)

1
2

𝜙𝐼𝑁
1
2𝑉

1
2

.  

For case (ii), ℎ𝑐2 > 0 holds if ℎ𝑠 > ℎ𝑠5. There are two situations when ℎ𝑠 > ℎ𝑠5 holds, 

(a) ℎ𝑠5 ≤ 0 if (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0, 

(b) ℎ𝑠5 > 0, hs > hs5 if  (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0.  

Then the conditions are (
1

√𝑁
− 1)ϕ𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0, ℎ𝑠5 < ℎ𝑠6. In a word, the retailer 

prefers store fulfillment strategy if on only if in following conditions: 

(i) ℎ𝑠 ≤ ℎ𝑠5 , (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0, 

(ii) ℎ𝑐 > ℎ𝑐2, ℎ𝑠 ≤ ℎ𝑠6, (
1

√𝑁
− 1)𝜙𝑑𝑊 +𝜙𝑡𝛷𝑡√𝑁 ≤ 0. 
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Proof of Lemma 3.4: 

The expression of shipping, delivery and total transportation cost difference without online 

cost are given as,  

Δ𝐶𝑡0 = 𝜙𝑡𝛷𝑡√𝑁
𝑉−𝑝

𝑉
,  

Δ𝐶𝑑0 = [(
1

√𝑁
− 1)ϕ𝑑𝑊]

𝑉−𝑝

𝑉
,  

Δ𝐶𝑇0 =Δ𝐶𝑡0 +Δ𝐶𝑑0 = [𝜙𝑡𝛷𝑡√𝑁 + (
1

√𝑁
− 1)ϕ𝑑𝑊]

𝑉−𝑝

𝑉
.  

It is easy to say that Δ𝐶𝑡0 ≥ 0 and Δ𝐶𝑑0 ≤ 0. 

(i) 
𝜕𝛥𝐶𝑡0

𝜕𝑝
=

−𝜙𝑡𝛷𝑡√𝑁

𝑉
≤ 0  

𝜕𝛥𝐶𝑡0

𝜕𝑁
=

𝜙𝑡𝛷𝑡(𝑉−𝑝)

2√𝑁𝑉
≥ 0. 

(ii) 
𝜕𝛥𝐶𝑑0

𝜕𝑝
=

−[(
1

√𝑁
−1)𝜙𝑑𝑊]

𝑉
≥ 0  

𝜕𝛥𝐶𝑑0

d𝜕𝑁
=

−𝜙𝑑𝑊(𝑉−𝑝)

2𝑉𝑁
3
2

≤ 0.   

(iii) Δ𝐶𝑇0 < 0  if 𝜙𝑡𝛷𝑡√𝑁 + (
1

√𝑁
− 1)𝜙𝑑𝑊 < 0 , which is equivalent to ϕ𝑑 >

4𝜙𝑡𝛷𝑡

𝑊
  , 

𝑁1 < 𝑁 < 𝑁2. Δ𝐶𝑇0 ≥ 0, otherwise, 

where 𝑁1 =
[ϕ𝑑𝑊−√ϕ𝑑𝑊(ϕ𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2  and 𝑁2 =
[ϕ𝑑𝑊+√ϕ𝑑𝑊(ϕ𝑑𝑊−4𝜙𝑡𝛷𝑡)]

2

4𝜙𝑡
2𝛷𝑡

2 . 

 

Proof of Lemma 3.5: 

The expression of inventory cost difference without online cost is given as,  

𝛥𝐶ℎ0 = 𝜙𝐼 (
𝑉−𝑝

𝑉
)

1

2
(ℎ𝑠√𝑁 − ℎ𝑐).  

It is easy to say that Δ𝐶ℎ0 > 0. 

(i) 
d𝛥𝐶ℎ0

d𝑁
= 𝜙𝐼 (

𝑉−𝑝

𝑉
)

1

2 ℎ𝑠

2√𝑁
> 0. 

(ii) 
d𝛥𝐶ℎ0

d𝑝
> 0  if 𝑁 < (

ℎ𝑐

ℎ𝑠
)
2

   
𝜕𝛥𝐶ℎ0

𝜕𝑝
≤ 0 , otherwise. Because of ℎ𝑠 > ℎ𝑐 , and 𝑁 ≥ 1 , 

then condition is 
𝜕𝛥𝐶ℎ0

𝜕𝑝
≤ 0 if 𝑁 ≥ 1. 
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Proof of 𝑾 and 𝛌: 

The expressions of 𝑊 and λ are given as Belavina et al., (2017),  

𝛤(�̅�, 𝜏, 𝐴, 𝐾) ≅
2 √𝐴

𝐾
+ 𝛬(𝐾)√

𝛿

�̅�𝜏
,  

where 

𝛬(𝐾) = {

(𝐾−2)+

𝑘+1
/√𝛽∗ 𝐾 +

𝐾−1

𝐾
 𝜙(𝛽∗ 𝐾),  if 𝐾 ≤ 4

𝜑(𝛽∗ 𝐾) −
1

√𝛽∗ 𝐾
,                            if 𝐾 > 4

 , 

𝜑(𝑥) = {
√𝑥

6
+

2

√𝑥

2

(𝑥/4)2
[(1 +

𝑥

4
) 𝐼𝑛 (1 +

𝑥

4
) −

𝑥

4
] , if 𝑥 < 12

0.9, 𝑖𝑓 𝑥 ≥ 12
, 

𝛽∗ = 1 for 𝐾 ∈ [1,7] and 𝛽∗ =
6.7

𝐾
 for 𝐾 ≥ 7. 

𝛿 indicates the days that retailer needs to delivery per day. 𝜏 is the daily order number for 

each customer. 𝐾 is the order number that each truck can delivery per day. The retailer can only 

serve limited customers because of the internet penetration and preference. 𝑒 indicate the market 

penetration of the retailer. Then the targeting population density �̅� = 𝑒𝜌. When the online orders 

are fulfilling from stores, it is noticeable that the region size would be 
𝐴

𝑁
.  

Then the expression can be simplified as 

{
𝛤𝑆 =

𝑊

√𝑁
+ 𝜆  , if online orders are fulfilled from stores,

𝛤𝐶 = 𝑊 +  𝜆 , if online orders are fulfilled from DC.
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Appendix B 

When consider the case where the retailer operates under a continuous fulfillment strategy, that 

is, it determines the proportion of online demand that is fulfilled from in-store, which in this thesis 

is denoted as 𝛽. The retailer chooses 𝛽 and 𝑝 to maximize its total expected profit, 

𝑚𝑎𝑥
𝛽,𝑝

𝛱 = 𝑝[𝐷𝑜(𝑝) + 𝐷𝑖(𝑝)] + 𝑐𝑜𝐷
𝑜(𝑝) − 𝜙𝑡𝛷𝑡√𝑁[𝛽𝐷

𝑜(𝑝) + 𝐷𝑖(𝑝)] − 𝜙𝑑(
𝑊

√𝑁
+ 𝜆)𝛽𝐷𝑜(𝑝)

− ℎ𝑠𝜙𝐼[𝛽𝐷
𝑜(𝑝) + 𝐷𝑖(𝑝)]

1
2√𝑁 − 𝜙𝑑(𝑊 + 𝜆)(1 − 𝛽)𝐷𝑜(𝑝)

− [(1 − 𝛽)𝐷𝑜(𝑝)]
1
2ℎ𝑐𝜙𝐼  

= 𝑚𝑎𝑥
𝛽,𝑝

𝛱 = 𝑝[𝐷𝑜(𝑝) + 𝐷𝑖(𝑝)] − 𝜙𝑡𝛷𝑡√𝑁[𝛽𝐷
𝑜(𝑝) + 𝐷𝑖(𝑝)] − 𝜙𝑑𝐷

𝑜(𝑝)[𝜆 +
𝛽𝑊

√𝑁
+ (1

− 𝛽)𝑊] − ℎ𝑠𝜙𝐼[𝛽𝐷
𝑜(𝑝) + 𝐷𝑖(𝑝)]

1
2√𝑁 − ℎ𝑐𝜙𝐼[(1 − 𝛽)𝐷

𝑜(𝑝)]
1
2 

𝑠. 𝑡. 0 ≤ 𝛽 ≤ 1 

𝐷𝑖(𝑝) ≥ 0 

𝐷𝑜(𝑝) ≥ 0 

𝑝 ≥ 0 

Solving the models, I can have the Proposition B.1. 

Proposition B.1: The optimal proportion of online demand that is fulfilled from in-store with 

continuous fulfillment strategy is 0 or 1. 

Proposition B.1 tells that the optimal choice of the retailer is to fulfill the online demand 

entirely from the DC or from the store. As a result, I can limit the attention to discrete fulfillment 

strategy only, as discuss below. 

The retailer's profits under the two fulfillment schemes are given by 

𝜋𝑆(𝑝) = (𝑝 + 𝑐𝑜 −
𝜙𝑑

√𝑁
𝑊 −𝜙𝑑𝜆 − 𝜙𝑡𝛷𝑡√𝑁)𝐷

𝑜(𝑝) + (𝑝 − 𝜙𝑡𝛷𝑡√𝑁)𝐷
𝑖(𝑝) −

ℎ𝑠𝜙𝐼 (𝐷
𝑜(𝑝) + 𝐷𝑖(𝑝))

1

2
√𝑁, when 𝛽 = 1, 

𝜋𝐶(𝑝) = (𝑝 + 𝑐𝑜 − 𝜙𝑑𝑊 −𝜙𝑑𝜆)𝐷
𝑜(𝑝) − ℎ𝑐𝜙𝐼𝐷

𝑜(𝑝)
1

2 + (𝑝 + 𝜙𝑡𝛷𝑡√𝑁)𝐷
𝑖(𝑝) −

ℎ𝑠𝜙𝐼𝐷
𝑖(𝑝)

1

2√𝑁, when 𝛽 = 0. 
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Under fulfillment strategy 𝑋 (𝑋 ∈ {𝑆, 𝐶} ) the retailer's pricing decision can be modeled as: 

𝑚𝑎𝑥𝑝≥0           𝜋𝑋(𝑝) 

            𝑠. 𝑡.               𝐷𝑋
𝑜(𝑝) ≥ 0 

                                   𝐷𝑋
𝑖 (𝑝) ≥ 0  

 

Proof of Proposition B.1 

Taking the first and second order derivations of Π,  

𝜕𝛱

𝜕𝛽
= −𝜙𝑡𝛷𝑡√𝑁𝐷

𝑜(𝑝) − 𝜙𝑑 (
𝑊

√𝑁
+ 𝜆)𝐷𝑜(𝑝) −

1

2
ℎ𝑠𝜙𝐼[𝛽𝐷

𝑜(𝑝) + 𝐷𝑖(𝑝)]
−
1

2√𝑁𝐷𝑜(𝑝) +

𝜙𝑑(𝑊 + 𝜆)𝐷𝑜(𝑝) +
1

2
𝐷𝑜(𝑝)[(1 − 𝛽)𝐷𝑜(𝑝)]−

1

2ℎ𝑐𝜙𝐼,  

and 

𝜕2𝛱

𝜕2𝛽
=

1

4
ℎ𝑠𝜙𝐼[𝛽𝐷

𝑜(𝑝) + 𝐷𝑖(𝑝)]
−
3

2√𝑁𝐷𝑜(𝑝)2 +
1

4
𝐷𝑜(𝑝)2[(1 − 𝛽)𝐷𝑜(𝑝)]−

1

2ℎ𝑐𝜙𝐼. 

As a result of 𝛽∗ ∈ 0,1, the maximum profit happens when 𝛽 = 0 or 𝛽 = 1. 

 

 

 

 

 

 

 

 

 


