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Abstract 

Patients suffering from a chronic disease often require regular appointments and treatments. 

Due to the constraints on the availability of office appointments and the capacity of physicians, 

access to chronic care can be limited; consequently, patients may fail to receive the recommended 

care suggested by clinical guidelines. Virtual appointments can provide a cost-effective alternative 

to traditional office appointments for managing chronic conditions. Advances in information 

technology infrastructure, communication, and connected medical devices are enabling providers 

to evaluate, diagnose, and treat patients remotely. In this study, we first build a capacity allocation 

model to study the use of virtual appointments in a chronic care setting. We consider a cohort of 

patients receiving chronic care and model the flow of the patients between office and virtual 

appointments using an open migration network. We formulate the planning of capacity needed for 

office and virtual appointments with a newsvendor model to maximize long-run average earnings. 

Moreover, we develop two optimization models to determine the optimal follow-up rate for 

patients and a two-stage stochastic programming model to investigate the capacity allocation 

decisions along with the patients’ scheduling decisions under uncertainty. We consider differences 

in treatment and diagnosis effectiveness for office and virtual appointments. We derive optimal 

policies and perform numerical experiments. With the model developed, capacity allocation, 

follow-up rate determination and patient scheduling decisions for office and virtual appointments 

can be made more systematically with the consideration of patients’ disease progressions. 
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Chapter 1: Introduction 

Chronic care involves the treatment and monitoring of pre-existing and long-term diseases 

such as diabetes, high blood pressure, asthma, Alzheimer's disease, and cardiovascular disease 

(Bodenheimer 2002). In the U.S., 45% of the population has at least one chronic disease, and the 

cost of chronic care contributes to over 75% of the entire health care spending in the U.S. (Wu 

2000, Heffler 2002). Given that the population is increasing and aging, the need for chronic care 

in the future will increase faster. Current care processes are insufficient to address the coming 

mismatch in supply and demand for chronic care (Gupta 2008). To improve patient access to 

chronic care and to reduce their burden, health care providers increasingly rely on virtual 

appointments as a new alternative way to provide effective and consistent long-term care. Virtual 

appointments, consisting of e-mail, phone, and online consultations, can improve patient access 

and ensure continuity of care and, consequently, better health outcomes (Perednia 1995, Caceres 

2006). 

Virtual appointments can be used as a substitute for, or complementary to office appointments, 

and they can take many different forms. For example, virtual appointments can be used for 

diagnosis only, for treatment only, and for both treatment and diagnosis similar to the office 

appointments (Bayram 2019). More specifically, through virtual appointments that provide 

diagnosis only, chronic care patients can be monitored in real time remotely and updates regarding 

the patients' status can be obtained (Marcin 2013, Association 2020). Through virtual 

appointments that provide treatment only, educational support and reliable resources can be 

provided to patients without diagnosing patients' status (Goodarzi 2012). Finally, virtual 

appointments can be also used to provide both diagnosis and treatment in which both patients' 

health statuses are diagnosed, and proper treatment is provided (Bayram 2019). Since virtual 

appointments are provided remotely, they can enhance the delivery of health care to geographically 

disadvantaged and medically underserved populations (Ackerman 2010). In addition, patients who 

are unable or unwilling to leave their homes to seek medical treatments or are in the poor physical 
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conditions can also benefit from the virtual appointments (Bashshur 1995, Bedi 2009). 

Virtualappointments have the potential to enhance primary care delivery by enabling both health-

delivery and travel-cost reductions and larger panel sizes without sacrifices in the quality of health 

care (Russo 2016). Parallel to its benefits, more patients are willing to receive care through this 

convenient way. Thus, the demand for virtual appointments is increasing quickly. The total number 

of virtual consultations is growing by around 10% a year, with growth projected to reach around 

25 million in 2020 (Wu 2018). 

The focus of this thesis is on the integration of virtual appointments with traditional office 

appointments. We combine the advantages of virtual appointments and office appointments by 

considering that virtual appointments are more cost-effective than office appointments while office 

appointments can have better treatment effectiveness than virtual appointments. In Chapter 2, we 

review related literature in the area of capacity planning in chronic care. In Chapter 3, we develop 

a migration network to simulate the clinic system with both virtual and office appointments. Then, 

we develop a newsvendor-type optimization model to determine the capacity of office and virtual 

appointments that maximize the average long-term profit of the clinic. With the model developed, 

we perform numerical experiments to present the application of the mathematical model. In 

Chapter 4, we use the migration network model that we build in Chapter 3 and investigate the 

optimal follow-up rate for a given capacity of office and virtual appointments. We develop a linear 

and nonlinear programming models to determine the optimal follow-up rate to help healthcare 

providers in their decision-making process. In Chapter 5, we consider capacity allocation decisions 

and patient scheduling decisions for office and virtual appointments simultaneously under 

uncertainty. We develop a two-stage stochastic programming model to investigate capacity 

allocation and patient scheduling decisions that maximize patients’ overall health condition. We 

consider that patients’ health states are uncertain, and this information is realized over time. Our 

results provide managerial insights for clinics in allocating capacity and patient scheduling for 

varying parameter values. 
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Chapter 2: Literature Review 

Our study builds on the literature of decision models in community-based chronic care 

delivery. Related to this area, Kucukyazici, et al. (2013) present and analyze three representative 

examples of prevailing quantitative decision models for managing community-based chronic care. 

For each example, they analyze the background of the problem, present the methodology, and 

show their findings and implications. Among these examples, Batun, et al. (2013) study the 

optimization-based problems in healthcare delivery, such as workforce scheduling, operating room 

scheduling, appointment scheduling, capacity planning, and some other practical problems. They 

refer to recent studies and present detailed examples with the use of optimization methods, 

especially stochastic programming, discrete convex analysis, and approximate dynamic 

programming. Kucukyazici, et al. (2011) propose a Markov decision process to model multiple 

care-provider visit patterns for stroke patients, while Deo, et al. (2013) combine a Markovian 

disease progression model with a capacity allocation model to determine revisit intervals for 

childhood asthma care. A major difference of our study from the listed literature is that we consider 

different types of appointments (i.e., virtual and office appointments) and investigate the optimal 

capacity allocation decisions among the different types of appointments. 

Related to the virtual appointment setting, studies that investigate the management of virtual 

and office appointments are limited. In a relevant study, Liu et al. (2018) build an optimization 

model to design effective checkup plans (i.e., phone calls, office visits) for individual patients to 

monitor after hospital discharge. Their study considers only the diagnosis impact of the virtual 

appointments, whereas we include both the treatment and the diagnosis impact of the virtual 

appointments. Among the studies considering both treatment and diagnosis impact of virtual 

appointments, Bavafa, et al. (2019) develop a Markovian model to determine the patients’ revisit 

intervals in primary care by incorporating virtual appointments into an office appointment setting. 

In another study, Bayram, et al. (2019) develop a stochastic dynamic programming model to 

determine the follow-up rates for virtual and office appointments, and they investigate the value 
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of virtual appointments in patients' health outcomes. In these related papers, the capacity of the 

appointments is assumed to be given. Different from these studies, we investigate the optimal 

capacity allocation of office and virtual appointments for different settings. 

Another stream of literature that is relevant to our study is on the capacity planning problem 

in health care, which addresses the issue of allocating limited resources to satisfy the demand of 

the patients. There are several studies in this area, and Hulshof, et al. (2012) provide a 

comprehensive review of resource allocation and capacity planning in health care. Among this 

literature, the following papers are more relevant to our methodology. Bretthauer, et al. (1998) 

develop an optimization/queuing network model for optimal planning of resource allocations (e.g., 

beds and nurses) and apply it to a blood bank and a health maintenance organization.  Lee and 

Zenios (2009) develop a multi-class migration network model as an optimization model to 

determine the optimal capacity that maximizes the overall profit of a dialysis clinic. Li, et al. (2016) 

present a long-term care network model to determine the optimal capacity for nursing homes and 

community-based services. Different from the above literature, we consider both patient flow and 

patients' disease progression to determine optimal capacity allocations. Moreover, our study 

focuses on two different appointments with varying effectiveness in both diagnosis and treatment. 
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Chapter 3: Capacity Planning Using the Newsvendor Model 

In this chapter, we build mathematical models to understand the patient flows and to provide 

managerial insights for capacity allocation decisions among office and virtual appointments. This 

chapter is organized as follows. Section 3.1 provides introduction and motivation related to the 

capacity planning of virtual and office appointments in chronic care. Section 3.2 presents the 

migration network model to understand patients’ flow. Section 3.3 presents newsvendor models 

and algorithms to allocate the capacity among office and virtual appointments that maximizes 

clinics’ average earnings. Section 3.4 presents numerical experiments, estimates parameters, and 

shows sensitivity analysis results to illustrate the application of the model. Section 3.5 outlines the 

conclusion of the chapter and provides some future research directions. 

3.1 Introduction 

Despite the increased usage of virtual appointments and their observed benefits in chronic 

care, the integration of virtual appointments with office appointments can be operationally 

challenging for the clinics. One of the reasons of this challenge is that virtual and office 

appointments can have differences in their treatment/diagnosis effectiveness and in their costs. 

More specifically, although virtual appointments can provide cost-effective treatments, they can 

result in similar (Craig 2000) or worse patient-related outcomes (Leggett 2001, McKinstry 2010) 

compared to the office appointments which makes it harder to decide how to allocate the available 

capacity among different appointments. Moreover, with the integration of virtual appointments, 

the patients' flow dynamics become complex, and it gets difficult to identify the expected number 

of patients that can be scheduled for office and virtual appointments. Indeed, faced with rising 

costs and patient populations, managers of health facilities, like clinics, strive to determine an 

appropriate capacity to meet the needs of the patients and avoid the opportunity cost and over-

utilization cost as much as possible. Thus, it is important to develop strategies to determine the 

expected number of patients and allocate available capacity efficiently by considering the patients' 

flow dynamics. To address the need for capacity allocation policies, in this chapter, we study a 
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chronic care setting in which patients are scheduled for virtual or office appointments. We consider 

that similar to office appointments, virtual appointments can also provide both treatment and 

diagnosis, and parallel to previous studies (Leggett 2001, McKinstry 2010, Bayram 2019), we 

assume that virtual appointments can be less effective than office appointments. We develop a 

modeling framework to determine the optimal allocation of the capacity for both office and virtual 

appointments and aim to answer the following operational questions: 

1. What is the expected number of patients scheduled for office and virtual appointments for 

the given follow-up, service, arrival, and departure rates? 

2. How should the available capacity be allocated among office and virtual appointments? 

To address these questions, we develop a migration network model to analyze patients’ flow 

and disease progressions. Using the migration network model, we first analytically investigate the 

number of patients in the steady state who are scheduled for virtual and office appointments. 

Second, we develop a newsvendor-type model to maximize the long-run average earnings of a 

health clinic. We further propose an algorithm to find the optimal capacity allocations among 

virtual and office appointments. Third, we analytically investigate how limited capacity impacts 

the proposed algorithm and the optimal capacity allocation decisions. Finally, through our 

numerical studies, we analyze the effect of model parameters on the allocation of the capacity of 

the office and virtual appointments by analyzing different scenarios. 

3.2 Migration Network Model for Office and Virtual Appointments 

In this section, we consider a cohort of patients receiving chronic care via both office and 

virtual appointments. In this network, two types of patients are served (i.e., new patients and 

returning patients), and physicians provide both office and virtual appointments. We use a 

continuous-time open migration network (Kelly 1979, p.48-p.57) to simulate the population 

dynamics (i.e., patient flows and disease progression) in which patients' arrivals are considered as 

Poisson process and the time intervals between patient transitions are independently and 

exponentially distributed. 

We illustrate our migration network model in Figure 3.1, and we describe nodes and flows of 

the network in this section. We use 𝑖 ∈ {𝑜, 𝑣}, where "𝑜" corresponds to office appointments and 

"𝑣" corresponds to virtual appointments, to denote the type of appointments. New patients with 

office and virtual appointments arrive with Poisson arrival rate 𝜆𝑖 ,  𝑖 ∈ {𝑜, 𝑣}. We define the 

“service” as the diagnosis and the treatment of a patient, and we consider that virtual and office 
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Figure 3.1: Migration network with imperfect diagnosis and treatment 

appointments provide both diagnosis and treatment during the appointment. More Specifically, 

service time corresponds to the duration of an appointment, and service times of patients are 

exponentially and independently distributed. We use 𝜇𝑖,  𝑖 ∈ {𝑜, 𝑣} to denote the service rate of 

office and virtual service, respectively. We define follow-up time (i.e., revisit interval) as the time 

between the current visit and the next time the patient initiates an appointment. We consider that 

after each appointment, the physician recommends to the patient the type and the time of the next 

visit. Hence, based on the physician's recommendation, patients are scheduled for appointments. 

Patients' follow-up time are assumed to be independently and exponentially distributed with an 

average 1/𝜎𝑖 ,  𝑖 ∈ {𝑜, 𝑣}. Hence, 𝜎𝑖  represents the rate of patients' revisits. Patients may depart 
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from the physicians' panel before making another appointment (i.e., change the physician). 

Patients' departure times are independently and exponentially distributed with a mean of 1/𝛿. 

We use the “control” measure to characterize the patient health status. “Control” measure 

helps to understand how well chronic-care related symptoms are currently controlled in a patient. 

Depending on the types of chronic diseases these categorizations may differ. For example, for 

asthma, four categories can be used as follows: (i) controlled, (ii) improved, (iii) unchanged, and 

(iv) worsened, and the last three are classified as an uncontrolled state (Deo 2013). For the sake of 

simplification, in our model, we consider two health states as controlled and uncontrolled to 

characterize the patients’ health status. 

We assume that patients in the network may not be scheduled for an appointment (we note 

that patients who are not scheduled for an appointment are the ones who are not receiving service 

or who are not in the queue for service) and are waiting for their next appointment time (i.e., system 

state, ℎ), or are scheduled for a virtual appointment and receiving care (i.e., system state, 𝑣), or are 

scheduled for an office appointment and receiving care (i.e., system state, 𝑜 ). Let 𝑗 ∈ {0,1} 

represent the set of health states, where "0" corresponds to the controlled health state and "1" 

corresponds to the uncontrolled health state. To model the disease deterioration, we denote ℎ0 as 

patients who are in a controlled health state and not scheduled for an appointment, while we use 

ℎ1 to denote patients who are in an uncontrolled health state and not scheduled for an appointment. 

We assume that there is no transition from the uncontrolled state to the controlled state without 

treatment. However, due to disease progression, some of the patients in the controlled health state 

and not receiving care (i.e., ℎ0) may transition into the uncontrolled health state (i.e., ℎ1) within 

the unit time. The time for a controlled patient to progress into the uncontrolled state is assumed 

to follow an exponential distribution with an average 1/𝛾. 

At each type of appointment, the health state of the patient is diagnosed, and the patient is 

treated. We assume that office appointments can be more effective than virtual appointments 

(Leggett 2001, McKinstry 2010, Bayram 2019). We assume that the treatment and the diagnosis 

in the office appointments are perfect, while those of the virtual appointments are imperfect. 

Perfect treatment means that a patient's health state recovers to the best health state after treatment, 

while the perfect diagnosis means that a patient's health state is revealed accurately during the 

diagnosis. On the other hand, imperfect treatment means that a patient's health state can transit into 

a different health state with some probability, while the imperfect diagnosis means that a patient's 
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health state may be revealed inaccurately during the diagnosis. Perfect diagnosis/treatment 

assumption is similar to the ones in the machine maintenance and repair literature as well (Block 

1993, Pham 2000). Moreover, in the healthcare literature, the perfect diagnosis and treatment 

assumption is also used by (Deo 2013, Bayram 2019). More specifically, patients in each health 

state are assumed to be always diagnosed accurately if they are scheduled for an office appointment, 

and they will be in a controlled health state after the office appointment regardless of their initial 

health state before the appointment. On the other hand, patients scheduled for a virtual appointment 

may be diagnosed inaccurately, since virtual appointments are expected to be less precise than 

office appointments (Leggett 2001, McKinstry 2010, Bayram 2019). Also, since the virtual 

appointments are not as effective as office appointments, a patient diagnosed in an uncontrolled 

health state at the virtual appointment, may remain in the uncontrolled health state with probability 

(1 − 𝑃1) or may transition into the controlled health state with probability 𝑃1. Similarly, a patient 

diagnosed in a controlled health state at the virtual appointment may remain in the controlled 

condition with probability 𝑃0 after the virtual appointment or may be in the uncontrolled health 

state with probability (1 − 𝑃0) after the virtual appointment (since not all patients in a controlled 

health state may be diagnosed accurately). Thus, to capture these effects, we use 𝑣0 to denote 

patients who are scheduled for a virtual appointment and diagnosed in a controlled health state 

after the virtual appointment and 𝑣1 to denote patients who are scheduled for a virtual appointment 

and diagnosed in an uncontrolled health state after the virtual appointment. We use the conditional 

probability to define the perfect diagnosis probability for the virtual appointments. We denote 

𝑃𝑗|𝑗′ ,  𝑗, 𝑗′ ∈ {0,1} as the probability that the patient in health state 𝑗′ is diagnosed in health state 𝑗 

at virtual appointment. We have 𝑃0|𝑗 + 𝑃1|𝑗 = 1,  𝑗 ∈ {0,1} . We further assume that the new 

patients scheduled for virtual appointments will be diagnosed in controlled health state with 

probability 𝑃ℎ. 

Overall, we consider five nodes in the network, and we use 𝑘 ∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} to represent 

the set of nodes in the migration network. In Figure 3.1, we illustrate the described flow of patients 

between each node through arcs. The arcs in between nodes represent the process of a patient that 

flows from one node to another. For example, the arc from node "𝑜" to "ℎ0" represents the flow of 

patients from office appointments to their home after they have their appointment. We also show 

the inflow and outflow for each node next to each arc. For example, there are two out flows from 
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node "𝑣1" where uncontrolled patients can improve to the controlled health state or can remain in 

uncontrolled health state after receiving the virtual appointment. 

We define 𝛼𝑘 to denote the expected number of patients at node 𝑘 ∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} in the 

steady-state condition. The number of patients at node 𝑘 satisfy the following balance equations, 

which are derived from Figure 3.1 (Kelly 1979, p.49): 

𝜇𝑣𝛼𝑣0
− 𝜎𝑣𝑃0|0𝛼ℎ0

− 𝜎𝑣𝑃0|1𝛼ℎ1
= 𝑃ℎ𝜆𝑣 (3.1) 

𝜇𝑣𝛼𝑣1
− 𝜎𝑣(1 − 𝑃0|0)𝛼ℎ0

− 𝜎𝑣(1 − 𝑃0|1)𝛼ℎ1
= (1 − 𝑃ℎ)𝜆𝑣 (3.2) 

−𝜇𝑣𝑃0𝛼𝑣0
− 𝜇𝑣𝑃1𝛼𝑣1

+ (𝜎𝑣 + 𝜎𝑜 + 𝛿 + 𝛾)𝛼ℎ0
− 𝜇𝑜𝛼𝑜 = 0 (3.3) 

−𝜇𝑣(1 − 𝑃0)𝛼𝑣0
− 𝜇𝑣(1 − 𝑃1)𝛼𝑣1

− 𝛾𝛼ℎ0
+ (𝜎𝑣 + 𝜎𝑜 + 𝛿)𝛼ℎ1

= 0 (3.4) 

−𝜎𝑜𝛼ℎ0
− 𝜎𝑜𝛼ℎ1

+ 𝜇𝑜𝛼𝑜 = 𝜆𝑜 (3.5) 

These equations represent that the inflow to node 𝑖 must to be equal to outflow from node 𝑖. 

Equations (3.1-3.5) are five equations with five unknowns, then we can solve the traffic equations 

and obtain the average number of patients in each node at steady-state. The result for each 𝛼𝑖 is in 

the Appendix. We use 𝛼𝑘, ∀𝑘 ∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} to define the steady-state distribution 𝜋𝑘, ∀𝑘 ∈

{ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1}. Hence, let 𝑥𝑘 denote the number of patients at node 𝑘. It shows that in steady 

state, the nodes states are independent and the steady-state distribution for each node 𝑘 is a Poisson 

distribution (Kelly 1979, p.53) and given by 

𝜋𝑘(𝑥𝑘 = 𝑥) =
𝛼𝑘

𝑥

𝑥!
/ ∑

𝛼𝑘
𝑛

𝑛!
∞
𝑛=0 = 𝑒−𝛼𝑘

𝛼𝑘
𝑥

𝑥!
,  𝑘 ∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} (3.6) 

The steady-state distribution defines the probability of having 𝑥𝑘 number of patients at each 

node 𝑘. We use these probabilities to define the probabilistic capacity allocation model in Section 

3.3. 

3.3 Capacity Allocation Optimization Model 

In this section, we build newsvendor-type capacity allocation models to find the optimal 

capacity for office and virtual appointments to maximize the long-run average earnings of a clinic. 

As described in the previous section, we consider that the node capacities of the migration network 

are unlimited where the number of patients at each node is unlimited.  However, we consider a 

threshold capacity for office and virtual appointments (Li 2016). The capacity that we assign 

describes the number of patients that can be served under the regular cost, and the actual number 

of patients in office and virtual appointments can exceed this threshold capacity. When the number 

of patients in office and virtual appointments exceeds this threshold capacity, we consider that a 
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penalty cost due to patient overflow occurs. Hence, we aim to find the optimal threshold capacity 

for office and virtual appointments for the clinics under the assumption that node capacities are 

unlimited. In the following sections, we first introduce the capacity allocation model without 

constraints. Then, we modify the unconstrained model by adding constraints on the optimal office 

and virtual appointment capacities. 

3.3.1 Base Capacity Allocation Model 

We consider a clinic that provides both virtual and office appointments with office 

appointment capacity of 𝑀𝑜 , virtual appointment capacity of 𝑀𝑣, and the total capacity of 𝑀 =

𝑀𝑜 + 𝑀𝑣. Since in our migration network, we split the virtual appointments into two parts to reflect 

the imperfect diagnosis and treatment, we define 𝑀𝑣0
 and 𝑀𝑣1

, which denote the virtual 

appointment capacity for controlled and uncontrolled patients, respectively (i.e., 𝑀𝑣 = 𝑀𝑣0
+

𝑀𝑣1
). Defining different types of capacities for virtual appointments ensures more flexibility in the 

model definition and policy development, and it does not necessarily mean to split the virtual 

appointment capacity for clinics. Clinics still can consider the total capacity in their decision 

making, and they do not need to split the capacity for controlled and uncontrolled patients. Also, 

patients' health status cannot be known with certainty without diagnosing patients. However, these 

insights can be helpful for clinics when they are making patient scheduling decisions. In practice, 

although there is not a direct application of splitting capacity, health care providers may tend to 

schedule patients according to patient needs leading to scheduling the uncontrolled patients for 

appointments more often than the controlled patients based on the physicians' beliefs (Deo 2013). 

Hence, knowing the expected number of patients in each health state may help clinics in their 

patient scheduling decisions. 

In our capacity allocation model, we use 𝑟𝑘,  𝑘 ∈ {𝑜,  𝑣0,  𝑣1} to denote the marginal profit for 

each patient treatment through office and virtual appointments, respectively; the marginal profit is 

the difference between revenue and variable cost (variable costs are the type of costs that can 

change depending on the number of patients served, such as hourly labor cost or the cost of 

materials or supplies). We note that there is one type of virtual appointment and 𝑟𝑣 = 𝑟𝑣0
= 𝑟𝑣1

. 

Similarly, each unit of capacity for office and virtual appointments is associated with a fixed cost 

𝑐𝑘,  𝑘 ∈ {𝑜, 𝑣0,  𝑣1} per unit of time, where unit capacity cost is the fixed cost of allocating capacity 

which can be employee salaries, building-related costs and equipment. Thus, the cost of capacity, 
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𝑐𝑘𝑀𝑘,  𝑘 ∈ {𝑜, 𝑣0, 𝑣1}, is independent of the patient flow. We assume that 𝑟𝑘 > 𝑐𝑘 (Lee 2009) and 

𝑐𝑣 = 𝑐𝑣0
= 𝑐𝑣1

. By assuming 𝑟𝑘 > 𝑐𝑘, we ensure that the optimal capacity 𝑀𝑘 is greater than 0. 

More specifically, if the unit capacity cost is larger than or equal to the marginal profit, it will be 

optimal to provide no service and 𝑀𝑘 = 0. We assume that the number of patients at the office and 

virtual appointments can exceed the allocated capacity, and in this case, the clinic provides the 

corresponding appointment but at a higher total cost. To reflect the cost of patient overflow, we 

define 𝑓𝑘,  𝑘 ∈ {𝑜,  𝑣0,  𝑣1} to represent the unit net penalty cost of the overflow, where 𝑓𝑣 = 𝑓𝑣0
=

𝑓𝑣1
. The definition is similar to the definition of the overbooking cost used by (Lee 2009). It is the 

net cost of meeting the overflow demand, which is the difference between the total variable cost 

of meeting the extra demand and the revenue earned for that appointment. The clinic still earns the 

marginal profit 𝑟𝑘  for the overflow patients, but the extra variable cost of meeting this excess 

demand is more than the marginal profit. Let 𝑥𝑘(𝑡) denote the current number of patients at the 

node 𝑘, ∀𝑘 ∈ {𝑜,  𝑣0,  𝑣1} at time 𝑡. Then, our base capacity allocation model can be defined as 

follows: 

max  𝐴(𝑀) (3.7) 

𝑠. 𝑡.   𝑀𝑘 ≥ 0     ∀𝑘 ∈ {𝑜,  𝑣0,  𝑣1} (3.8) 

Where 

𝐴(𝑀) = lim
𝑇→∞

1

𝑇
{ ∑ ∫ 𝑟𝑘𝑚𝑖𝑛

𝑇

0

[𝑥𝑘(𝑡), 𝑀𝑘]𝑑𝑡

𝑘∈{𝑜,𝑣0,𝑣1}

− ∫ 𝑐𝑘𝑀𝑘𝑑𝑡
𝑇

0

− ∫ 𝑓𝑘(𝑥𝑘(𝑡) − 𝑀𝑘)+𝑑𝑡
𝑇

0

} (3.9) 

As noted before, the objective function is defined as the function of allocated capacity and the 

number of patients at each node. Since the number of patients at each node is uncertain, we use 

the steady-state probabilities 𝜋𝑘 defined in Section 3.2. In objective function (3.9), the first term 

represents the marginal profit generated from office and virtual appointments, the second term 

represents the fixed capacity cost, and the third term represents the penalty costs associated with 

the capacity shortage. Equation (3.8) defines the non-negativity setting. 

Let 𝔼𝜋𝑘
(𝑥𝑘), 𝑘 ∈ {𝑜, 𝑣𝑜 , 𝑣1} be the expected number of patients at node 𝑘 under the steady 

state distribution 𝜋𝑘 , 𝑘 ∈ {𝑜, 𝑣𝑜 , 𝑣1}. Due to the ergodicity of the open migration network (Kelly 

1979, p.49), we can define the following equations: 

𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑥𝑘(𝑡)𝑑𝑡

𝑇

0

= 𝔼𝜋𝑘
(𝑥𝑘) = 𝛼𝑘 (3.10) 
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𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ [𝑀𝑘 − 𝑥𝑘(𝑡)]+𝑑𝑡

𝑇

0

= 𝔼𝜋𝑘
(𝑀𝑘 − 𝑥𝑘)+ (3.11) 

𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ [𝑥𝑘(𝑡) − 𝑀𝑘]+𝑑𝑡

𝑇

0

= 𝔼𝜋𝑘
(𝑥𝑘 − 𝑀𝑘)+ (3.12) 

Then, we reformulate the objective function (3.9) with the following equation, and we include 

the detailed steps of the reformulation in the Appendix.  

𝐴(𝑀) = ∑ [(𝑟𝑘 − 𝑐𝑘)𝛼𝑘 − 𝑐𝑘𝐸𝜋𝑘
(𝑀𝑘 − 𝑥𝑘)+ − (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘)𝔼𝜋𝑘

(𝑥𝑘 − 𝑀𝑘)+]

𝑘∈{𝑜,𝑣0,𝑣1}

(3.13) 

Similar to equation (3.9), in equation (3.13), the first term is the difference between the 

marginal profit and the fixed cost. The second term is the opportunity cost for unutilized capacity, 

and the last term represents the cost due to patient overflow.  

We define 𝐴𝑘(𝑀𝑘) as the individual objective function for appointment 𝑘 ∈ {𝑜, 𝑣0, 𝑣1}, and it 

can be defined as follows: 

𝐴𝑘(𝑀𝑘) = (𝑟𝑘 − 𝑐𝑘)𝛼𝑘 − 𝑐𝑘𝐸𝜋𝑘
(𝑀𝑘 − 𝑥𝑘)+ − (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘)𝔼𝜋𝑘

(𝑥𝑘 − 𝑀𝑘)+ (3.14) 

To maximize the objective 𝐴(𝑀), each sub-objective 𝐴𝑘(𝑀𝑘) can be maximized separately. 

We derive the optimal capacity for this unconstrained capacity planning model through 

Proposition 1.  

Proposition 1. The optimal solution of the base capacity allocation model, denoted by 𝑀∗ =

(𝑀𝑜
𝑚𝑖𝑛, 𝑀𝑣0

𝑚𝑖𝑛, 𝑀𝑣1
𝑚𝑖𝑛), is given by  

𝑀𝑘
𝑚𝑖𝑛 = 𝑚𝑖𝑛 {𝑀𝑘 ≥ 0: 𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘) ≥

𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘

𝑓𝑘 + 𝑟𝑘
} (3.15) 

where 𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘) is the cumulative probability that 𝑥𝑘 is less than and equal to 𝑀𝑘 and 𝑥𝑘 

follows Poisson distribution with parameter as 𝛼𝑘. 

The proof of Proposition 1 is in the appendix. According to equation (3.15), the optimal 

capacity is influenced by both the parameter of Poisson distribution, 𝛼𝑘 , and profit-related 

parameters, 
𝑓𝑘+𝑟𝑘−𝑐𝑘

𝑓𝑘+𝑟𝑘
. For a fixed Poisson parameter 𝛼𝑘, the cumulative probability function is a 

non-decreasing function of 𝑀𝑘. So, as 
𝑓𝑘+𝑟𝑘−𝑐𝑘

𝑓𝑘+𝑟𝑘
 increases, the new optimal capacity is no smaller 

than the old optimal capacity. For the value of 
𝑓𝑘+𝑟𝑘−𝑐𝑘

𝑓𝑘+𝑟𝑘
, increasing 𝑓𝑘, 𝑟𝑘, and decreasing 𝑐𝑘 leads 

to the increase of 
𝑓𝑘+𝑟𝑘−𝑐𝑘

𝑓𝑘+𝑟𝑘
. Hence, we conclude that to some extent, increasing the marginal profit, 
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𝑟𝑘, penalty cost on the overflow patients, 𝑓𝑘, and decreasing the fixed cost of each unit of capacity, 

𝑐𝑘 has a potential effect on increasing the optimal capacity for node 𝑘.  

3.3.2 Capacity Allocation Model with Capacity Constraint 

In practice, due to the limited resources of the clinic, the number of regular office and virtual 

appointments may be limited. In this section, we extend the base capacity allocation model 

presented in Section 3.3.1 and investigate the impact of adding a constraint on the optimal capacity 

allocation decisions. This change does not impact the balance equations of the migration network 

and patients' flows, and the objective function 𝐴(𝑀) remain the same as with the base model. More 

specifically, node capacities in the migration network are unlimited, and it is still allowed to have 

more than the 𝑀𝑘 number of patients. Hence, equations (3.1) - (3.6) still hold when the constraint 

(3.17) is added. We use 𝑇𝐶 to denote the limited total capacity. Then, the capacity allocation model 

can be updated as follows: 

max 𝐴(𝑀) (3.16) 

𝑠. 𝑡. ∑ 𝑀𝑘

𝑘∈{𝑜,𝑣0,𝑣1}

≤ 𝑇𝐶 (3.17) 

𝑀𝑘 ≥ 0∀𝑘 ∈ {𝑜, 𝑣0, 𝑣1} (3.18) 

In the model, equation (3.17) states that allocated capacity should be less than or equal to the 

total available capacity 𝑇𝐶, and equation (3.18) defines non-negativity constraints. Due to the 

capacity constraint, this problem becomes a resource allocation problem to optimally allocate the 

capacity to office and virtual appointments. Let 𝑀𝑇𝐶
∗  be the capacity allocation decision when the 

total capacity is limited. Recall that 𝑀∗ = (𝑀𝑜
𝑚𝑖𝑛, 𝑀𝑣0

𝑚𝑖𝑛, 𝑀𝑣1
𝑚𝑖𝑛) is the optimal capacity for the 

base capacity allocation model given in Proposition 1. It is clear that if ∑ 𝑀𝑖
𝑚𝑖𝑛

𝑖∈{𝑜,𝑣0,𝑣1} ≤ 𝑇𝐶, 

then 𝑀𝑇𝐶
∗ = 𝑀∗. This means that the clinic has enough capacity (resources), which maximizes 

their overall average earnings, and the clinic may consider not to have excess capacity. When the 

clinic doesn't have enough space, 𝑀𝑜 , 𝑀𝑣0
 and 𝑀𝑣1

 are no longer independent. We provide an 

algorithm based on the partial differential as shown in Algorithm 1. Let 𝑀𝑘
𝑡 ,  𝑘 ∈ {𝑜, 𝑣0, 𝑣1} 

represent the capacity of node 𝑘 at 𝑡𝑡ℎ iteration. In addition, we define the partial differential of 

the objective function for 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} as follows: 

𝐴′(𝑀𝑘) =
Δ𝐴(𝑀)

Δ𝑀𝑘
= 𝐴(𝑀𝑘 + 1) − 𝐴(𝑀𝑘) = 𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘 − (𝑓𝑘 + 𝑟𝑘)𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘) (3.19) 
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Then, Algorithm 1 can be stated as follows: 

Algorithm 1 Capacity Allocation  Algorithm based on the Partial Differential 

Input: 𝑇𝐶 > 0, 𝑇𝐶 ≥ 0 

Output: 𝑀𝑇𝐶
∗  

1. 𝑡 =  0 

2. 𝑀𝑘
𝑡 ← 0 for any 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} 

3. While ∑ 𝑀𝑘
𝑡

𝑘∈{𝑜,𝑣0,𝑣1} < 𝑇𝐶 

4.  𝐴′(𝑀𝑘
𝑡 ) = 𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘 − (𝑓𝑘 + 𝑟𝑘)𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘

𝑡 ) for any 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} 

5.  if 𝐴′(𝑀𝑘
𝑡 ) ≤ 0 for any 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} then 

6.   break 

7.  end if 

8.  𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝐴′(𝑀𝑘
𝑡 ) for 𝑘  ∈ {𝑜, 𝑣0, 𝑣1} 

9.  𝑀𝑥
𝑡+1 ← 𝑀𝑥

𝑡 + 1 

10.  𝑡 ← 𝑡 + 1 

11.  𝑀𝑇𝐶
𝑡 ← (𝑀𝑜

𝑡 , 𝑀𝑣0
𝑡 , 𝑀𝑣1

𝑡 ) 

12. end while 

13. 𝑀𝑇𝐶
∗ ← 𝑀𝑇𝐶

𝑡  

 

In Algorithm 1, we calculate the marginal gain of having one more unit of capacity of the 

office and virtual appointments. At each step, we compare the marginal gain of having one office 

and one virtual appointment and increase the capacity of the appointment with the highest gain by 

one. The algorithm stops when the allocated capacity reaches the available capacity or when 

adding one more capacity for all appointments yields a negative profit gain. Through Algorithm 1, 

𝑀𝑇𝐶
∗ = (𝑀𝑜

∗, 𝑀𝑣0
∗ , 𝑀𝑣1

∗ ) is the optimal solution to this problem. We adopt Algorithm 1 in our 

numerical studies for the capacity allocation model with capacity constraint. 

3.3.3 Capacity Allocation Model with Time Constraint 

In this section, we take into account the total time required for providing each type of 

appointment. Section 3.3.2 assumes that office and virtual appointments both take an equal amount 

of time. However, virtual appointments are expected to be shorter than office appointments. Hence, 
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we update equation (3.17) by considering the total available time and service time of office and 

virtual appointments. 

We use 𝑇𝑤 to denote the average total available time for the clinic. As we define in Section 

3.3.1, 𝜇𝑖, 𝑖 ∈ {𝑜, 𝑣} represents the service rate of office and virtual service, respectively. And we 

assume virtual appointments for controlled and uncontrolled patients have the same service rate, 

𝜇𝑣 (i.e., 𝜇𝑣0
= 𝜇𝑣1

= 𝜇𝑣). Hence, 
1

𝜇𝑖
,  𝑖 ∈ {𝑜, 𝑣} represents the average service time of one office 

and virtual service, respectively. Then the average long-run earnings maximization problem under 

time constraint becomes: 

max 𝐴(𝑀) (3.20) 

𝑠. 𝑡.  
1

𝜇𝑜
𝑀𝑜 +

1

𝜇𝑣
(𝑀𝑣0

+ 𝑀𝑣1
) ≤ 𝑇𝑤 (3.21) 

Where the objective function remains the same. Recall that 𝑀∗ = (𝑀𝑜
𝑚𝑖𝑛, 𝑀𝑣0

𝑚𝑖𝑛, 𝑀𝑣1
𝑚𝑖𝑛) is the 

optimal capacity for the base capacity allocation model given in Proposition 1. We use 𝑀𝑇𝑤

∗  to 

denote the optimal capacity to the problem with average limited working time, 𝑇𝑤. It is clear that 

if 
1

𝜇𝑜
𝑀𝑜

𝑚𝑖𝑛 +
1

𝜇𝑣
(𝑀𝑣0

𝑚𝑖𝑛 + 𝑀𝑣1
𝑚𝑖𝑛) ≤ 𝑇𝑤 , then 𝑀𝑇𝑤

∗ = 𝑀∗ . It is the case that the physicians have 

enough time to address the total number of both office and virtual appointments. When physicians 

don't have enough working time, 𝑀𝑜, 𝑀𝑣0
and 𝑀𝑣1

 are no longer independent, they compete for the 

physicians' working time. Li et al. (2016) provide an approximation algorithm based on marginal 

analysis to solve this problem as shown Algorithm 2. We use 𝑀𝑇𝑤
 to denote the solution from 

Algorithm 2. we still define three intermediate variables, 𝑀𝑘
𝑡 ,  𝑘 ∈ {𝑜, 𝑣0, 𝑣1}, to represent the 

capacity of node 𝑘  at 𝑡𝑡ℎ  iteration. We use 𝑍𝑘(𝑀𝑘) = 𝐴′(𝑀𝑘)/
1

𝜇𝑘
= 𝜇𝑘𝐴′(𝑀𝑘)  to denote the 

marginal profit of node 𝑘 under unit of time. 

 Through Algorithm 2, We get the solution to this problem, 𝑀𝑇𝑤
. Algorithm 2 is similar to 

Algorithm 1, but since the coefficients of the decision variables are not the same, Algorithm 2 

cannot make sure the optimal solution to the problem under time constraint. Hence, we analyze 

the relative error of the solution from Algorithm 2 to the optimal solution. 
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Algorithm 2 Approximation algorithm based on marginal analysis 

Input: 𝑇𝑤 > 0 

Output: 𝑀𝑇𝑤
 

1. 𝑡 =  0 

2. 𝑀𝑘
𝑡 ← 0 for any 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} 

3. While 
1

𝜇𝑜
𝑀𝑜

𝑚𝑖𝑛 +
1

𝜇𝑣
(𝑀𝑣0

𝑚𝑖𝑛 + 𝑀𝑣1
𝑚𝑖𝑛) ≤ 𝑇𝑤 do 

4.  𝑍𝑘(𝑀𝑘
𝑡 ) = 𝜇𝑘𝐴′(𝑀𝑘

𝑡 ) for any 𝑡 ∈ {𝑜, 𝑣0, 𝑣1} 

5.  for any 𝑘 ∈ {𝑜, 𝑣1, 𝑣0} do 

6.   if ∑
1

𝜇𝑗
𝑗∈{𝑜,𝑣0,𝑣1} 𝑀𝑗

𝑡 +
1

𝜇𝑘
> 𝑇𝑤 then 

7.    𝑍𝑘 = −1 

8.   endif 

9.  end for 

10.  if 𝑍𝑘(𝑀𝑘
𝑡 ) ≤ 0 for any 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} then 

11.   break 

12.  endif 

13.  𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑍𝑘 for 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} 

14.  𝑀𝑥
𝑡+1 ← 𝑀𝑥

𝑡 + 1 

15.  𝑡 ← 𝑡 +  1 

16.  𝑀𝑇𝑤

𝑡 ← (𝑀𝑜
𝑡 , 𝑀𝑣0

𝑡 , 𝑀𝑣1
𝑡 ) 

17. end while 

18. 𝑀𝑇𝑤
← 𝑀𝑇𝑤

𝑡  

 

Proposition 2. The relative error by using the solution from Algorithm 2, 𝑀𝑇𝑤
, as an 

approximation of 𝑀𝑇𝑤

∗  is no greater than 
𝑚𝑎𝑥 𝐴′(𝑀𝑖

𝑘)

𝐴(𝑀𝑇𝑤)
. We state the corresponding equations as 

follows: 

𝐴(𝑀𝑇𝑤

∗ ) − 𝐴(𝑀𝑇𝑤
)

𝐴(𝑀𝑇𝑤

∗ )
≤

𝐴(𝑀𝑇𝑤

∗ ) − 𝐴(𝑀𝑇𝑤
)

𝐴(𝑀𝑇𝑤
)

<
𝑚𝑎𝑥 𝐴′(𝑀𝑘

𝑡 )

𝐴(𝑀𝑇𝑤
)

(3.22) 
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where 𝑀𝑘
𝑡  represents the capacity in the final iteration of the algorithms. Also, 𝐴′(𝑀𝑘

𝑡 ) is the 

marginal gain of appointment type 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} in the final iteration. Proposition 2 ensures that 

the percent profit gap between the optimal solution and the proposed algorithm solutions is not 

greater than the percent marginal profit gain in the final iteration. The proof of Proposition 2 is in 

the Appendix, we use Algorithm 2 in our numerical studies for the capacity allocation with time 

constraint. 

3.3.4 Capacity Allocation Model with Imperfect Diagnosis 

In this section, we extend our base capacity allocation model present in Section 3.3.1 and 

study the effect of imperfect diagnosis (i.e., 𝑃0|0 and 𝑃0|1) on the optimal capacity and average 

long-run earnings for the migration network in Figure 3.1. 

The model incorporates three decision variables: the capacity of office appointments, 𝑀𝑜 , 

capacity of virtual appointments for controlled patients, 𝑀𝑣𝑜
, and the capacity of virtual 

appointments for uncontrolled patients, 𝑀𝑣1
. Let 𝑀 = (𝑀𝑜 ,  𝑀𝑣0

,  𝑀𝑣1
). To consider the imperfect 

diagnosis in the model, we define 𝑒𝑖𝑑  to denote the penalty cost on each imperfect diagnosis. 

Hence, for the patient that receives an inaccurate diagnosis, the physicians can still earn the 

revenue from the patient but face a penalty cost on his imperfect diagnosis. We still let 𝑥𝑘(𝑡) 

denote the current number of patients at the node 𝑘 at time 𝑡. Our objective is to determine the 

optimal capacity 𝑀 that the network long-run average earning is maximized, that is 

max 𝐴(𝑀) (3.23) 

𝑠. 𝑡.   𝑀 ∈ 𝑁+ (3.24) 

where 

𝐴(𝑀) = ∑ 𝐴𝑘(𝑀𝑘)

𝑘∈{𝑜,𝑣0,𝑣1}

− 𝑙𝑖𝑚
𝑇→∞

1

𝑇
{∫ 𝑒𝑖𝑑 (𝜎𝑣(1 − 𝑃0|0)𝑥ℎ0

(𝑡) + 𝜎𝑣𝑃0|1𝑥ℎ1
(𝑡))

𝑇

0

𝑑𝑡} (3.25) 

The first term represents the total average long-run earnings of nodes 𝑜, 𝑣0  and 𝑣1 before 

considering penalty cost on imperfect diagnosis, the second term represents the average long-run 

penalty cost on the imperfect diagnosis. 

We reformulate the objective function (3.24), 

𝐴(𝑀) = ∑ 𝐴𝑖(𝑀𝑖)

𝑘∈{𝑜,𝑣0,𝑣1}

− 𝑊𝑖𝑑 (3.26) 
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We denote the second term, which is the average long-run penalty cost on imperfect diagnosis, 

as 𝑊𝑖𝑑. The decision variables of the capacity allocation model with imperfect diagnosis are the 

capacity of office appointments, virtual appointments for controlled patients, and virtual 

appointments for uncontrolled patients (i.e., 𝑀𝑜, 𝑀𝑣0
, and 𝑀𝑣1

). From function (3.25), we can see 

that the value of 𝑊𝑖𝑑  is determined by 𝑒𝑖𝑑 , 𝜎𝑣 , 𝑃0|0 , 𝑃0|1 , 𝛼ℎ0
, and 𝛼ℎ1

. The values of these 

parameters are defined in the migration network, which is not related to the decision variables in 

the capacity allocation model. Hence, in this capacity allocation model, 𝑊𝑖𝑑  is constant. The 

optimal solution to the capacity allocation model with imperfect diagnosis can still obtained 

through Proposition 1. The optimal solution is denoted by 𝑀∗ = (𝑀𝑜
𝑚𝑖𝑛, 𝑀𝑣0

𝑚𝑖𝑛, 𝑀𝑣1
𝑚𝑖𝑛). Since 𝑃0|0 

and 𝑃0|1  affect the optimal capacity through affecting the steady condition of the migration 

network and also affect the average long-run earnings through capacity allocation model, we do a 

sensitivity analysis in the numerical experiments to find the effect of imperfect diagnosis. 

3.4 Numerical Studies 

In this section, we perform numerical experiments to analyze how the optimal capacity 

allocation decision varies under different scenarios. To this end, we first describe the model 

parameter estimation process. Then, we investigate the change in the optimal capacity allocation 

with respect to the follow-up rate and capacity constraint. Finally, we compare some common 

policies in practice with the proposed solutions. 

3.4.1 Parameter Estimation 

In this section, we describe how the model parameters are obtained. We note that our data are 

based on the literature, and we use several sources to find the parameter values. The parameter 

values we obtain represent different characteristics. Due to the variation of the parameters' 

characteristics, fluctuation in the results can be expected. The parameters that we present in this 

section are our initial setting and results that are obtained based on a single setting may not be 

generalized. To overcome these issues, from Section 3.4.2 to Section 3.4.6, we define several 

scenarios and investigate the change in the proposed office and virtual appointment capacities by 

considering possible fluctuations in the parameter values. We present minimum, average and 

maximum values of the proposed capacity values to provide a range for the decision-makers. 

Flow Parameters. Based on a survey of American physicians (Foundation 2018), on average, 

doctors see 20.2 patients per day, and physicians work on-average 51.40 hours per week (including 
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all clinical and non-clinical duties). Of these, physicians work average 11.37 hours per week on 

non-clinical (paperwork) duties only. Hence, we obtain the average service time for each patient 

as (51.4 − 11.37)/(5 × 20.2) = 0.396 hours. Thus, the office service rate is estimated as 𝜇𝑜 =

1/0.396 = 2.525/hour. In addition, the average appointment time of the virtual appointments is 

less than that of the office appointments, and it is reported as around 12 minutes (Valero 2000). 

Thus, the virtual service rate is estimated as 𝜇𝑣 = 60/12 = 5/hour. To calculate the new patient 

arrival rate, we consider the state of Michigan. The population of Michigan is 9.976 million in 

2017, and 47.9% of them suffered chronic diseases (Disease 2017). While in 2018 the Michigan 

population increases to 9.996 million and 48.1% of them suffered chronic disease (Bureau 2018). 

Then the increasing number of chronic patients in Michigan can be calculated as 

(9.996 × 48.1% − 9.976 × 47.9%) × 106 = 29,572 . There are 278 clinics in the state of 

Michigan (Clinics.com 2019). Then, the total monthly new arrival rate is estimated as 𝜆𝑜 + 𝜆𝑣 =

29572/(278 × 12) = 8.865/month. Besides, about 10.4% percent of the patients occur through 

virtual appointments (Foundation 2018). Thus, 𝜆𝑜 = 8.865 × (1 − 10.4%) = 7.943/ month, 

𝜆𝑣 = 8.865 − 7.943 = 0.922/ month. According to CPT code 99490 in Chronic Care 

Management (CCM) (Services 2016), a patient should receive at least 20 minutes of clinical staff 

time directed by a physician or other qualified health care professional per calendar month. 

Considering the service rates of office and virtual appointments, the follow-up rate can be 

estimated as 𝜎𝑜 =
20minutes/month

0.396hour
= 0.842/month, and 𝜎𝑣 =

20minutes/month

12minutes
= 1.667/month. 

Based on a CDC report (Prevention 2009), generally incurable and ongoing, chronic diseases affect 

approximately 133 million Americans in 2009, representing more than 40% of the total population 

of this country. In 2009, 7 out of 10 deaths in the U.S. were due to chronic diseases, and the death 

population due to chronic disease is 1.706 million (Kochanek 2011). Thus, the monthly 

departure/death rate is estimated as 𝛿 = 1.706/(133 × 12) = 0.00107/month. In addition, the 

disease progression (i.e., transferring from a controlled health state to an uncontrolled health state) 

is estimated as 𝛾 =  0.5 /week (C. f. Prevention 2010). To estimate the new patients' health status, 

we consider a study that considers diabetes patients. Dall et al. (2011) present that 43% of new 

patients among their analytic sample had indications of uncontrolled diabetes. Hence, we assume 

𝑃ℎ = 1 − 43% = 57%, which is the probability that the new arrival patient in virtual appointment 

is in controlled condition. We have no historical data to rely on in terms of the probability that the 
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patients diagnosed in a controlled condition stay in controlled condition after a virtual treatment 

and the probability that the patients diagnosed in an uncontrolled condition improve in controlled 

condition after a virtual treatment. We note that for the remaining parameters (𝑃0, 𝑃1, 𝑃0|0, and 

𝑃1|1), we perform sensitivity analysis to investigate their effects on the capacity allocation. 

Revenue and Cost. We assume that the workday for a clinic is 20 days per month. For the 

revenue and cost parameters of the office appointment, we refer to the study of (Lee 2009). Then, 

the marginal profit of office appointments is estimated as 𝑟𝑜  =  $131 /day × 20 day/month =

 $2620/month, the fixed capacity cost is estimated as 𝑐𝑜  =  $ 84.6/day × 20 day/month =

 $ 1692/month, and the penalty cost is estimated as 𝑓𝑜 = 50/day × 20day/month = 1000/

month (Lee 2009). For the virtual appointments, there are no direct historical data to refer to. Thus, 

the marginal profit and penalty cost are estimated as the same as those of office, 𝑟𝑣0
= 𝑟𝑣1

= 𝑟𝑜, 

and 𝑓𝑣0
= 𝑓𝑣1

= 𝑓𝑜 . But the total cost of virtual appointments care was 32 percent less than 

traditional hospital care (A. H. Association 2016). Therefore, the fixed capacity cost is estimated 

as 𝑐𝑣0
= 𝑐𝑣1

= 1692/month × (1 − 32%) = 1150.56/month . We have no information 

regarding to imperfect diagnosis penalty cost. But Pinnacle (2016) reports that 30% of annual 

healthcare spending in the United States is wasted due to unnecessary services and other 

inefficiencies. Here we assume that 𝑒𝑖𝑑 = 30% 𝑟𝑣 = 30% × 2620/month = 786/month. Table 

3.1 summarizes the value of the patients flow and profit-related parameters together with the 

sources from which they are estimated. We note that the parameter values listed in Table 3.1 are 

used in one of the scenarios. Then, we analyze several scenarios by considering the possible 

fluctuations in the parameter values. 

3.4.2  Impact of Follow-up Rate 

In the following sections, we investigate the change in the optimal capacity and average 

earnings, as some of the key parameters in the model change. The parameters we use in the model 

are obtained from the literature which are not specific to any healthcare organization. For that 

reason, we perform sensitivity analysis to investigate the optimal capacity for varying parameter 

values to ensure that the changes in the parameter values due to the different clinics' characteristics 

can be addressed. We show how the optimal capacity can change with respect to a change in other 

parameter values. Through our results, we show not only how the optimal capacity changes but 

also the range of the change in optimal capacity and average earnings. 
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Table 3.1: List of flow and profit-related parameters 

Parameters  Values  Sources 

Office service rate (𝜇𝑜)  2.525/hour  (Foundation 2018) 

Virtual service rate (𝜇𝑣)  5/hour  (Valero 2000) 

Office arrival rate (𝜆𝑜)  7.943/month  (Bureau 2018, Disease 2017, 

Foundation 2018, Clinics.com 

2019) Virtual arrival rate (𝜆𝑣)  0.922/month  

Office follow-up rate (𝜎𝑜)  0.842/month  
(Services 2016) 

Virtual follow-up rate (𝜎𝑣)  1.667/month  

Departure/death rate (𝛿)  0.00107/month  
(C. f. Prevention 2009, B. a. 

Kucukyazici 2011) 

Transfer rate from controlled to 

uncontrolled (𝛾)  
0.5/week  (C. f. Prevention 2010) 

Probability that the new arrival 

patient in virtual appointment is 

in controlled condition (𝑃ℎ)  

0.57 (Dall 2011) 

Probability that patients 

diagnosed in a controlled 

condition stay in controlled 

condition (𝑃0)  

0.9  

Probability that patients 

diagnosed in an uncontrolled 

condition improve in controlled 

condition (𝑃1)  

0.7  

Probability controlled patient is 

diagnosed as controlled (𝑃0|0)  
0.9  

Probability uncontrolled patient 

is diagnosed as controlled 

(𝑃0|1)  
0.2  

Office marginal profit (𝑟𝑜)  $2620/month  

(Lee 2009) 

Virtual marginal profit (𝑟𝑣0
, 𝑟𝑣1

)  $2620/month  

Office overflow penalty cost 

(𝑓𝑜)  
$1000/month  

Virtual overflow penalty cost 

(𝑓𝑣0
, 𝑓𝑣1

)  
$1000/month  

Office fixed capacity cost (𝑐𝑜)  $1692/month  

Virtual fixed capacity cost 

(𝑐𝑣0
, 𝑐𝑣1

)  
$1150.56/month  (A. H. Association 2016) 

Penalty cost of imperfect 

diagnosis (𝑒𝑖𝑑)  
$786/month  (Care 2016) 



 

23 

 

First, we study the impact of follow-up rate (i.e., 𝜎𝑜 , 𝜎𝑣 ) on the optimal capacity. It has 

important relevance since reducing or increasing the follow-up rate implies less or more frequency 

of patients’ visits. We vary the follow-up rate in a range between 0.5𝜎𝑜 and 1.5𝜎𝑜, and present the 

corresponding optimal capacities in Figure 3.2. The results show that as we increase the follow-up 

rate of office appointments, the optimal capacity of office appointments increases monotonically, 

while the total optimal capacity for virtual appointments does not change. This is reasonable 

because the increase in the office follow-up rate would result in an increase in the expected number 

of patients in the office appointments at the steady state, but not in the expected number of patients 

in the virtual appointments. It is also observed that the expected number of patients in virtual 

appointments is not a function of the office follow-up rate as stated with equation (A.11) in the 

Appendix. There occurs a slight increase in the optimal capacity of controlled patients, the reason 

for which is that the increasing follow-up rate of office appointments transfers more patients from 

the uncontrolled condition into the controlled condition. Similarly, as the follow-up rate of virtual 

appointments increases, it is observed that the optimal capacity for controlled health status 

increases more than the optimal capacity for uncontrolled health status. 

 

Figure 3.2: The impact of follow-up rate on the optimal capacity 

Although in practice there is no distinction between capacity for uncontrolled and controlled 

conditions, this is an indication that the increasing follow-up rate of virtual appointments relatively 

reduces the number of patients in an uncontrolled health state. Thus, increasing the follow-up rate 

of either office or virtual appointments can improve the health condition of the patients, but it 

simultaneously increases the demand for office and virtual appointments, which is a challenge for 

the clinic. This result is consistent with the practice that as the average follow-up rates of the 
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patients increase, the panel size of one physician would decrease. Thus, to serve the same number 

of patients, more physicians are needed for the clinic. 

3.4.3 Impact of Capacity on Capacity Allocation Model with Capacity Constraint 

Next, we analyze the impact of limited total capacity (𝑇𝐶) on the optimal capacity and the 

average earnings of the clinic. To this end, we first determine 𝑴∗, which is the optimal capacity 

allocation vector for the unconstraFigur 

 

Figure 3.3: The impact of limited capacity (𝑇𝐶) on the optimal capacity and average earnings 

In addition, as we increase the limited total capacity, the average long-run earnings of office 

and virtual appointments increase, and the marginal profit gain decreases, which is consistent with 

equation (3.19) that the first-order differential of the long-run average earnings is a monotonic 

decreasing function. 

We also notice that the increasing ratio of the total long-run average earnings slows down. 

This is because of Algorithm 1. Algorithm 1 makes sure that in each iteration, one more capacity 

is added to the allocated appointments which can bring the most marginal earnings. In the next 

iteration, there are two options: first, if the capacity addition in the current iteration is not the same 

as the last iteration, the marginal profit that it brings to the clinic must be less than that of 

appointments added one more capacity in the last iteration; second, if capacity addition in the 

current iteration is the same as last iteration, the attribute that the first-order differential of the 

long-run average earnings' function is a monotonic decreasing function makes sure that the 

marginal profit that it brings to the clinic must be less than that of appointments added one more 

capacity in the last iteration. Hence, we can say that the benefits of adding one more capacity to 
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the clinical system are diminishing marginally and the stopping rule for adding one more capacity 

to the clinic system is when the marginal earnings are not positive. 

Table 3.2: The impact of limited capacity (𝑇𝐶) on the optimal capacity and average earnings 

𝑇𝐶 𝑀𝑜
∗ 𝑀𝑣0

∗  𝑀𝑣1
∗  𝐴𝑜(𝑀𝑜

∗) 𝐴𝑣0
(𝑀𝑣0

∗ ) 𝐴𝑣1
(𝑀𝑣1

∗ ) 𝐴(𝑀) 

25 12 8 5 32.981 50.219 26.708 109.907 

26 13 8 5 42.289 50.219 26.708 119.216 

27 13 8 6 42.289 50.219 35.450 127.957 

28 13 9 6 42.289 58.686 35.450 136.425 

29 14 9 6 50.208 58.686 35.450 144.343 

30 15 9 6 56.410 58.686 35.450 150.545 

31 15 10 6 56.410 64.393 35.450 156.252 

32 15 10 7 56.410 64.393 40.839 161.641 

33 16 10 7 60.634 64.393 40.839 165.866 

34 16 11 7 60.634 67.276 40.839 168.749 

35 17 11 7 62.721 67.276 40.839 170.836 

36 17 11 8 62.721 67.276 42.858 172.854 

37 17 12 8 62.721 67.534 42.858 173.112 

38 17 12 8 62.721 67.534 42.858 173.112 

39 17 12 8 62.721 67.534 42.858 173.112 

40 17 12 8 62.721 67.534 42.858 173.112 

 

3.4.4 Impact of Work Time on Capacity Allocation Model with Time Constraint 

We also study the impact of limited working time (𝑇𝑤) on the optimal capacity and the average 

earnings of the clinic. Recall that the optimal capacity for the unconstrained model is 𝑴∗ =

(𝑀𝑜
𝑚𝑖𝑛 = 17, 𝑀𝑣0

𝑚𝑖𝑛 = 12, 𝑀𝑣1
𝑚𝑖𝑛 = 8). By considering the service rates (i.e., 𝜇𝑜 =  2.525/hour 

and 𝜇𝑣 = 5/hour), the optimal capacity for the unconstrained model is around 11 hours. Hence, 

we vary the range of the limited working time from 8 to 12 hours. Then, we use Algorithm 2 to 

obtain the allocation decision for this problem. As shown in Figure 3.4 and Table 3.3, when 𝑇𝑤 =

8 hours, the optimal capacities for office and virtual appointments for controlled and uncontrolled 

patients are 11, 11, and 7, and when 𝑇𝑤 = 10 hours, the optimal capacities for office and virtual 

appointments for controlled and uncontrolled patients are 16, 11, and 7. 

We observe that the change in the limited time affects the office appointment capacity more 

than the virtual appointment capacity. This is because the average service time of office 

appointments is nearly twice that of virtual appointments. Hence, if the limited time decreases, it 
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becomes more profitable to reduce the office appointment capacity by one unit rather than reducing 

the virtual appointment capacity by two units. As it is shown, if the limited time is greater than 11 

hours, the actual working time remains constant, which is consistent with the analysis in the 

Section 3.3.3 that as 
1

𝜇𝑜
𝑀𝑜

𝑚𝑖𝑛 +
1

𝜇𝑣
(𝑀𝑣0

𝑚𝑖𝑛 + 𝑀𝑣1
𝑚𝑖𝑛) ≤ 𝑇𝑤, then 𝑀𝑇𝑤

∗ = 𝑀∗. It is the case that the 

physicians have enough time/resources to satisfy the need of patients through both office and 

virtual appointments. 

 

Figure 3.4: The impact of limited working time (𝑇𝑤) on the optimal capacity 

 

Figure 3.5: The impact of limited working time (𝑇𝑤) on the average earnings 
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Table 3.3: The impact of limited working time (𝑇𝑤) on the optimal capacity and average earnings 

𝑇𝑤 𝑇𝑢𝑠𝑒 𝑀𝑜
∗ 𝑀𝑣0

∗  𝑀𝑣1
∗  𝐴𝑜(𝑀𝑜

∗) 𝐴𝑣0
(𝑀𝑣0

∗ ) 𝐴𝑣1
(𝑀𝑣1

∗ ) 𝐴(𝑀) 

8 7.956 11 11 7 22.627 67.276 40.839 130.742 

8.5 8.352 12 11 7 32.981 67.276 40.839 141.095 

9 8.945 14 10 7 50.208 64.393 40.839 155.439 

9.5 9.341 15 10 7 56.410 64.393 40.839 161.641 

10 9.937 16 11 7 60.634 67.276 40.839 168.749 

10.5 10.337 16 12 8 60.634 67.534 42.858 171.025 

11 10.733 17 12 8 62.721 67.534 42.858 173.112 

11.5 10.733 17 12 8 62.721 67.534 42.858 173.112 

12 10.733 17 12 8 62.721 67.534 42.858 173.112 

 

Table 3.4: The values of the 𝑍𝑖(𝑀𝑖) in Algorithm 2 

𝑀𝑖 𝑍𝑜(𝑀𝑖) 𝑍𝑣0
(𝑀𝑖) 𝑍𝑣1

(𝑀𝑖) 

0 30.43 77.17 77.07 

1 30.43 77.12 76.37 

2 30.43 76.91 73.91 

3 30.42 76.18 68.15 

4 30.42 74.31 58.00 

5 30.39 70.50 43.71 

6 30.33 63.99 26.95 

7 30.17 54.49 10.09 

8 29.82 42.34 -4.74 

9 29.14 28.53  

10 27.98 14.42  

11 26.14 1.29  

12 23.50 -9.89  

13 19.99   

14 15.66   

15 10.67   

16 5.27   

17 -0.22   

 

In addition, since we apply Algorithm 2, the physicians cannot fully spend the total limited 

working time as shown in the second graph in Figure 3.4. From Table 3.4, we can see that 

𝑍𝑜(𝑀𝑜
𝑘 = 11) > 𝑍𝑣0

(𝑀𝑣
𝑘 = 10) , but when 𝑇𝑤 = 8 hours, the optimal capacity for office and 

virtual appointments for controlled patients are 11 and 11, not 12 and 10, respectively. This is 

because in Algorithm 2, when adding one more capacity to the office appointments, the time 
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exceeds the limited working time (
1

𝜇𝑜
× 11 +

1

𝜇𝑣
× (10 + 7) +

1

𝜇𝑜
= 8.152 hours > 𝑇𝑤 = 8 hours). 

In that case, Even through 𝑍𝑜(𝑀𝑜
𝑘 = 11) is greater than 𝑍𝑣(𝑀𝑣

𝑘 = 10), Algorithm 2 still adds one 

more capacity to virtual appointments if adding one capacity to virtual appointments does not 

exceed the limited working time and the marginal profit is positive (i.e., 
1

𝜇𝑜
× 11 +

1

𝜇𝑣
× (10 + 7) +

1

𝜇𝑣
= 7.956 hours < 𝑇𝑤 = 8 hours). Also, we notice that as the 𝑇𝑤 changes from 

8.5 hours to 9 hours, we observe a decrease in the capacity of virtual appointments for controlled 

patients. This is because when 𝑇𝑤 = 9 hours, there is enough time to add two more slots to the 

office appointments, such as from 12 to 14 (i.e., 
1

𝜇𝑜
× 12 +

1

𝜇𝑣
× (10 + 7) +

2

𝜇𝑜
= 8.945 hours<

𝑇𝑤 = 9  hours). From Table 3.4, we notice that 𝑍𝑜(𝑀𝑜
𝑘 = 12) > 𝑍𝑣(𝑀𝑣

𝑘 = 10)  and 𝑍𝑜(𝑀𝑜
𝑘 =

13) > 𝑍𝑣(𝑀𝑣
𝑘 = 10). Based on the value of 𝑍𝑖(𝑀𝑖

𝑘), the algorithm adds two more slots to the 

office appointments. After that, there are not enough resources (i.e., time) to add one more capacity 

for virtual appointments (9 − 8.945 = 0.055 hour <
1

𝜇𝑣
= 0.2 hour). Hence, 𝑀𝑣

𝑘 = 10 , which 

accounts for the decreasing when 𝑇𝑤 changes from 8.5 hours to 9 hours. 

3.4.5 Imperfect Diagnosis Effect on Optimal Capacity and Average Earnings 

In this section, we study the impact of the imperfect diagnosis on the optimal capacity and the 

average earnings of the clinic based on the capacity allocation model presented in Section 3.3.4. 

First, we have two separate analysis to study the effect of 𝑃0|0 and 𝑃0|1 independently. We let 

𝑃0|1 = 0.2, and vary 𝑃0|0 from 0.5 to 1, to find out the impact of 𝑃0|0 on the optimal capacity (i.e., 

depicted in the left Figure 3.6); then, we let 𝑃0|0 = 0.9, and vary 𝑃0|1 from 0 to 0.5, to find out the 

impact of 𝑃0|1 on the optimal capacity (i.e., depicted in the right Figure 3.6). From Figure 3.6, we 

can see that as 𝑃0|0  or 𝑃0|1  increases, capacity of virtual appointments for controlled patients 

increases. Because the probability that a patient is diagnosed in the controlled condition increases 

no matter what his real condition is, the number of patients at node 𝑣0 increases. Hence, more 

capacity should be allocated to node 𝑣0  to provide treatment, improve earnings, and prevent 

patients overflow. While 𝑃0|0 or 𝑃0|1 decreases, capacity of virtual appointments for uncontrolled 

patients increases, and the reason is similar to the former. In addition, as 𝑃0|0 or 𝑃0|1 changes, the 

total capacity of virtual appointments (i.e., 𝑀𝑣0
+ 𝑀𝑣1

) is stable in most of the cases, which shows 

that the accuracy of the diagnosis does not have a significant impact on the number of patients 
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scheduled for virtual appointments. The accuracy of the diagnosis impacts the proportion of 

patients diagnosed in controlled and uncontrolled conditions. 

 

Figure 3.6: Effect of imperfect diagnosis on optimal capacity 

In another analysis, we set 𝑃0|0 ∈ {0.7,0.8,0.9}, and 𝑃0|1 ∈ {0.3,0.2,0.1}, then we have 9 

different settings for the sensitivity analysis. In each setting, we obtain the optimal capacity for 

office appointments, and the optimal capacity for virtual appointments in controlled and in 

uncontrolled states according to Proposition 1 (i.e., 𝑀𝑜
𝑚𝑖𝑛 , 𝑀𝑣0

𝑚𝑖𝑛 , 𝑀𝑣1
𝑚𝑖𝑛 ). We also calculate 

average long-run earnings for each type of appointments and the total average long-run earnings 

(i.e., 𝐴𝑜(𝑀𝑜
𝑚𝑖𝑛) , 𝐴𝑣0

(𝑀𝑣0
𝑚𝑖𝑛) , 𝐴𝑣1

(𝑀𝑣1
𝑚𝑖𝑛) , 𝐴(𝑀) ) for each setting. Besides, we calculate the 

average penalty cost on imperfect diagnosis (𝑊𝑖𝑑) to find how the accuracy of diagnosis affects its 

cost. The result is shown in Table 3.5. We can see that the imperfect diagnosis of virtual 

appointment does not affect the optimal capacity and average long-run earnings of office 

appointments. However, it affects the capacity allocation of virtual appointments, and the impact 

of the imperfect diagnosis on the optimal virtual appointment capacity is analyzed in Figure 3.6. 

Its effect on the average long-run earnings is consistent with its impact on the optimal capacity. 

More specifically, as 𝑃0|0 or 𝑃0|1 increases, average long-run earnings of virtual appointments for 

controlled patients increases, while that of virtual appointments for uncontrolled patients decreases. 

In addition, we notice that, as the diagnosis becomes more accurate, i.e., 𝑃0|0 increases and 𝑃0|1 

decreases, total average long-run earnings increases and the average penalty cost on imperfect 

diagnosis decreases as expected. 
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Table 3.5: Effect of imperfect diagnosis on optimal capacity and average earnings 

(𝑃0|0, 𝑃0|1) 𝑀𝑜
𝑚𝑖𝑛 𝑀𝑣0

𝑚𝑖𝑛 𝑀𝑣1
𝑚𝑖𝑛 𝐴𝑜(𝑀𝑜

𝑚𝑖𝑛) 𝐴𝑣0
(𝑀𝑣0

𝑚𝑖𝑛) 𝐴𝑣1
(𝑀𝑣1

𝑚𝑖𝑛) 𝐴(𝑀) 𝑊𝑖𝑑 

(0.7, 0.3) 17 10 9 62.721 58.034 51.965 45.505 127.214 

(0.7, 0.2) 17 9 10 62.721 51.640 58.384 64.590 108.155 

(0.7, 0.1) 17 9 11 62.721 45.268 64.900 84.133 88.756 

(0.8, 0.3) 17 11 8 62.721 65.835 44.339 69.402 103.493 

(0.8, 0.2) 17 11 9 62.721 59.388 50.645 87.944 84.809 

(0.8, 0.1) 17 10 10 62.721 53.135 57.059 107.127 65.789 

(0.9, 0.3) 17 12 7 62.721 73.818 36.699 93.888 79.350 

(0.9, 0.2) 17 12 8 62.721 67.534 42.858 112.069 61.043 

(0.9, 0.1) 17 11 9 62.721 61.211 49.146 130.673 42.405 

 

Finally, we perform a sensitivity analysis on the accuracy of the diagnosis on the capacity 

allocation model with an imperfect diagnosis under the time constraint. We set total limited 

working time 𝑇𝑤 ∈ {8,10,12} and the time unit is hour. Then, we vary 𝑃0|0 from 0.5 to 1 and vary 

𝑃0|1 from 0 to 0.5 respectively, to find out the effect of the accuracy of diagnosis and the time 

constraint as shown in . There are six graphs in Figure 3.7. The independent variable is 𝑃0|0 in the 

first column and 𝑃0|1  in the second column. From the first to the third row, the total limited 

working time 𝑇𝑤 equals to 8, 10, and 12, respectively. In terms of each column, where the total 

limited working time is fixed, we can see that as 𝑃0|0  or 𝑃0|1  increases, capacity of virtual 

appointments for controlled patients increases. While 𝑃0|0 or 𝑃0|1 decreases, capacity of virtual 

appointments for uncontrolled patients increases. Hence, no matter what total limited working time 

is, the effect of the accuracy of diagnosis is similar, just like their influence on the model without 

time constraint in Figure 3.6. 

3.4.6  Comparison of Policies 

In this section, we compare the total profits of some common benchmark policies with our 

proposed policies (i.e., optimal policy, Algorithm 1, and Algorithm 2). As benchmark policies, we 

consider three varying ratios of office appointment capacity to virtual appointment capacity (i.e., 

𝑀𝑜/𝑀𝑣): (i) Policy-1: 𝑀𝑜/𝑀𝑣 = 2, (ii) Policy-2: 𝑀𝑜/𝑀𝑣 = 1, and (iii) Policy-3: 𝑀𝑜/𝑀𝑣 = 1/2. 

Initially, we consider that the virtual appointment capacities allocated for controlled and 

uncontrolled patients are equal to each other. For comparison, we analyze several scenarios by 

varying the parameter values. As the number of varying parameters increases, the number of 

scenarios and the complexity of the analyses increase. Hence, considering that the impact of the 𝛿 
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Figure 3.7: Effect of imperfect diagnosis and time constraint on optimal capacity 

and 𝛾  variables on the capacity allocation decisions can be small and that preserving the 

relationship of 𝜇𝑜 ≤ 𝜇𝑣  is important, we keep these variables constant. For all 16 remaining 

parameters, we use two possible values (i.e., low, high). We use the following formulas to calculate 

the low and high levels for each parameter: 

Low Value of a Parameter = (1 − Fluctuation Rate) × Orginal Parameter Value (3.27) 

High Value of a Parameter = (1 + Fluctuation Rate) × Orginal Parameter Value (3.28) 
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By considering all possible combinations, we evaluate 215 = 32,768 scenarios for the base 

capacity allocation model, and for the model with the capacity and time constraint, we analyze 

216 = 65,536 scenarios as we also change the parameter 𝑇𝐶 and 𝑇𝑤. In Table 3.6 and Table 3.7, 

we present the solutions obtained from the proposed algorithms (i.e., the ratio of 𝑀𝑜/𝑀𝑣, 𝑀𝑣0
/𝑀𝑣1

, 

and 𝐴(𝑀)) and the comparison results of the policies (i.e., Policy-1, Policy-2, and Policy-3) with 

respect to the proposed algorithms for the base capacity allocation model, the capacity-constrained 

model, and the time-constrained model. Table 3.6 shows the results for a fluctuation rate of 5% 

while Table 3.7 shows the results for a fluctuation rate of 10%. To calculate the percent gap 

between the profit function of the policies and of the proposed algorithms, we use the following 

formula: 

% Profit Gap =
Profit of Proposed Algorithm − Profit of  Policy

Profit of Proposed Algorithm
× 100% (3.29) 

In Table 3.6 and Table 3.7, we present the average, maximum, and minimum values obtained 

overall scenarios, and we observe that the optimal capacities for office and virtual appointments 

fluctuate as parameters change. When the three common policies are compared, we can see that 

Policy-2 (i.e., 𝑀𝑜/𝑀𝑣 = 1) is the best, even though the result becomes worse as fluctuation 

increases. For the base capacity allocation model, the optimal capacity allocation ratio (i.e., 

𝑀𝑜/𝑀𝑣) varies between 0.71 and 1.11 when the fluctuation rate is 5%, while it varies between 

0.62 and 1.27 when the fluctuation rate is 10%. As expected, when the uncertainty in the parameter 

values increases, the optimal capacity allocation ratio varies more. It also shows that even if the 

fluctuation rate is high, it is not reasonable to use a capacity allocation ratio of less than 0.62 or 

more than 1.27. Similar to the base capacity allocation model, in the model with the capacity and 

time constraint, Policy-2 performs the closest to the proposed solutions, but the variation is more 

compared to the unconstrained model where the model with time constraint has the highest 

variability. In the model with capacity constraint, the suggested 𝑀𝑜/𝑀𝑣 ratio varies between 0.7 

and 1.14 when the fluctuation rate is 5%, and it varies between 0.5 and 1.5 when the fluctuation 

rate is 10%. In the time-constrained model, the proposed 𝑀𝑜/𝑀𝑣 ratio changes between 0.64 and 

1.11 when the fluctuation rate is 5%, while it changes between 0.54 and 1.29 when the fluctuation 

rate is 10%. According to the results of the proposed policies (i.e., optimal, Algorithm 1, and 

Algorithm 2), the average capacity allocation ratio 𝑀𝑜/𝑀𝑣 should be 0.89 for the unconstrained 

model, 0.92 for the capacity-constrained model, and 0.86 for the time-constrained model. 
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Table 3.6: Comparison of policies with benchmark policies when the fluctuation rate is 5% 

  Optimal % Profit Gap 

Unconstrained 

Model 
𝑴𝒐 𝑴𝒗 

𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-1 Policy-2 Policy-3 

Average 17.45 19.75 0.89 11.59 8.16 1.43 47.61% 5.12% 28.60% 

Max 20.00 23.00 1.11 14.00 10.00 1.86 83.31% 18.31% 53.08% 

Min 15.00 17.00 0.71 9.00 6.00 1.11 25.40% 0.00% 12.81% 
          

  Algorithm-1 % Profit Gap 

Model with 

Capacity 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-1 Policy-2 Policy-3 

Average 15.28 16.71 0.92 9.94 6.76 1.49 43.25% 6.20% 27.94% 

Max 18.00 20.00 1.14 12.00 9.00 2.20 82.79% 24.33% 53.14% 

Min 13.00 14.00 0.70 8.00 5.00 1.11 16.31% 0.00% 7.93% 

                    

  Algorithm-2 % Profit Gap 

Model with 

Time 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-1 Policy-2 Policy-3 

Average 16.50 19.25 0.86 11.30 7.95 1.43 47.58% 9.97% 28.57% 

Max 20.00 23.00 1.11 14.00 10.00 2.00 86.77% 31.28% 58.69% 

Min 14.00 16.00 0.64 9.00 6.00 1.11 25.20% 0.95% 10.88% 

 

We also compare the distribution of total virtual appointment capacity for all models in Table 

3.6 and Table 3.7. For the base capacity allocation model, the optimal 𝑀𝑣0
/𝑀𝑣1

 ratio varies from 

1.11 to 1.86 when the fluctuation is 5%, and it varies between 0.88 and 2.43 when the fluctuation 

is 10%. For the model with capacity constraint the suggested 𝑀𝑣0
/𝑀𝑣1

 ratio ranges between 1.11 

and 2.2 when the fluctuation rate is 5%, while this ratio ranges between 0.88 and 3.33 when the 

fluctuation rate is 10%. Finally, for the time-constrained model, the optimal 𝑀𝑣0
/𝑀𝑣1

 ratio 

changes between 1.1 and 2 for the fluctuation rate of 5%, while this change is between 0.88 and 

2.6 for the fluctuation rate of 10%. For all models, we observe that the average suggested 𝑀𝑣0
/𝑀𝑣1

 

ratio is greater than 1 which suggests that more capacity should be allocated for the patients in the 

controlled state. These results also suggest that virtual appointments can be used to complement 
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office appointments where the patients in controlled health state can be scheduled for virtual 

appointments more frequently than the others. 

Table 3.7: Comparison of policies with benchmark policies when the fluctuation rate is 10% 

 Optimal % Profit Gap 

Unconstrainted 

Model 
𝑴𝒐 𝑴𝒗 

𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-1 Policy-2 Policy-3 

Average 17.41 19.74 0.89 11.61 8.12 1.47 50.69% 7.88% 31.41% 

Max 22.00 25.00 1.27 17.00 12.00 2.43 136.90% 50.33% 101.14% 

Min 13.00 15.00 0.62 7.00 5.00 0.88 12.34% 0.00% 3.56% 
          

 Algorithm-1 % Profit Gap 

Model with 

Capacity 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-1 Policy-2 Policy-3 

Average 15.10 16.61 0.92 9.90 6.71 1.54 47.83% 9.71% 31.07% 

Max 20.00 21.00 1.50 14.00 10.00 3.33 155.82% 65.40% 101.58% 

Min 10.00 12.00 0.50 6.00 3.00 0.88 3.43% 0.00% 0.00% 
          

 Algorithm-2 % Profit Gap 

Model with 

Time 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-1 Policy-2 Policy-3 

Average 16.15 19.05 0.86 11.24 7.80 1.49 52.66% 15.00% 33.45% 

Max 21.00 25.00 1.29 17.00 12.00 2.60 170.39% 101.08% 136.46% 

Min 13.00 14.00 0.54 7.00 5.00 0.88 11.44% -0.77% 3.08% 

 

In terms of the profit, as the fluctuation rate increases from 5% to 10%, the % Profit Gap under 

Policy-2 for the base capacity allocation model increases from 5.12% to 7.88%, which shows that 

the optimal policy brings more profit to the clinic than Policy-2, and this gap is larger under more 

fluctuation. The similar tendency also works for model with capacity and time constraint. Another 

important result is that as the fluctuation rate is 10%, the % Profit Gap under all three policies with 

time constraint are greater than 100%, which means the long-run average earnings under these 

policies are negative. We check the parameters settings for these scenarios and find that the 

marginal profit for office appointments, 𝑟𝑜
′ = 0.9𝑟𝑜 = 2358/month, the fixed capacity cost for 

office appointments, 𝑐𝑜
′ = 1.1𝑐𝑜 = 1861.2/ month, and the overflow penalty cost for office 

appointments, 𝑓𝑜
′ = 1.1𝑓𝑜 = 1100/month. The virtual appointments have the similar scenario 



 

35 

 

setting, which is the worst situation for the clinic. In this system, the long-run average earnings are 

much more sensitive to the allocation of the capacity and the three fixed-ratio policies are not 

suitable in this situation and lead to negative long-run average earnings, which results in % Profit 

Gap is greater than 100%. In addition, we notice that the minimum % Profit Gap under "Algorithm 

2 vs Policy-2" with time constraint as the fluctuation rate is 10% is negative, which shows that 

Algorithm 2 cannot ensure the optimal allocation of the capacity just as we explain in the Section 

3.3.3, but the difference to the optimal is not much, which is accepted. 

Next, we note that the capacity allocation ratio of the proposed policies (i.e., optimal, 

Algorithm 1, and Algorithm 2) varies for each scenario and it is not fixed. However, we consider 

the average proposed capacity allocation ratios and present two more policies by fixing them to 

test its performance. For the base capacity allocation model, we analyze two more policies, namely, 

Policy-4 and Policy-5, where 𝑀𝑜/𝑀𝑣 = 0.89 and 𝑀𝑣0
/𝑀𝑣1

= 1for Policy-4 and 𝑀𝑜/𝑀𝑣 = 0.89 

and 𝑀𝑣0
/𝑀𝑣1

= 1.5 for Policy-5. In Policy-5, which is based on Algorithm 2, we further consider 

varying capacity allocations among controlled and uncontrolled virtual appointments. We present 

our results in Table 3.8 and Table 3.9 for fluctuation rates of 5% and 10%, respectively. According 

to our results, both Policy-4 and Policy-5 perform better than the previous policies. For a 

fluctuation rate of 5%, the variation between the smallest and largest gap is 0%-18.85% for Policy-

4 and 0%-4.71% for Policy-5. Also, on average Policy-4 deviates from the proposed policy by 

5.26% while Policy-5 deviates by 1.04%. On the other hand, when the fluctuation rate is 10%, 

both the average percent gap and the range between the maximum and the minimum percent gap 

increase as expected. Among the suggested fixed policies, Policy-5 is the best fixed policy which 

suggests that more virtual appointment capacity should be allocated for controlled patients, 

compared to uncontrolled patients. The reason for this is that treatment and diagnosis from virtual 

appointments are imperfect. Since the treatment and diagnosis effectiveness of virtual 

appointments is not as good as that of office appointments, they can be mostly used to follow-up, 

controlled patients. Office appointments, on the other hand, can be used to treat both controlled 

and uncontrolled patients. Although Policy-5 performs very well, as the uncertainty in parameter 

values occurs, a policy with a fixed allocation ratio becomes worse and less stable. The long-run 

average earnings are much more sensitive to the allocation of the capacity. Hence, applying the 

optimal policy dynamically would be better for the clinics. We note that the comparison results of 

the Policy-4 and Policy-5 with the proposed algorithms for the capacity-constrained model and 
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time-constrained model are similar to the unconstrained model, and we included those results in 

Appendix. 

Table 3.8: Comparison of Policy-4 and 5 with benchmark policies when the fluctuation rate is 5% 

  Optimal % Profit Gap 

Unconstrained 

Model 
𝑴𝒐 𝑴𝒗 

𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-4 Policy-5 

Average 17.45 19.75 0.89 11.59 8.16 1.43 5.26% 1.04% 

Max 20.00 23.00 1.11 14.00 10.00 1.86 18.85% 4.71% 

Min 15.00 17.00 0.71 9.00 6.00 1.11 0.00% 0.00% 

 

Table 3.9: Comparison of Policy-4 and 5 with benchmark policies when the fluctuation rate is 10% 

  Optimal % Profit Gap 

Unconstrained 

Model 
𝑴𝒐 𝑴𝒗 

𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-4 Policy-5 

Average 17.41 19.74 0.89 11.61 8.12 1.47 8.11% 4.01% 

Max 22.00 25.00 1.27 17.00 12.00 2.43 51.71% 21.66% 

Min 13.00 15.00 0.62 7.00 5.00 0.88 0.00% 0.00% 

 

 

Figure 3.8: The impact of fluctuation rate to the office to virtual appointment ratio, 𝑀𝑜/𝑀𝑣 

After the comparison of different policies under 5% and 10% of fluctuation of parameters' 

values, it shows that a fixed policy might lead to negative long-run average earnings with high 

fluctuation of the values of the parameters. Hence, we next analyze the impact of the fluctuation 

rate on the optimal policy. We vary the fluctuation rate between 2.5% and 20%. In Figure 3.8, we 

present the impact of the fluctuation rate on the average, maximum, minimum, and standard 
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deviation of the optimal 𝑀𝑜/𝑀𝑣 ratio for the base capacity allocation model. As the fluctuation 

rate increases, the average increases slightly, but the range of the ratio of office appointment 

capacity to virtual appointment capacity and the fluctuation of this ratio become larger. This 

indicates that the increasing uncertainty in parameter values makes the allocation decision harder 

for the policymakers. Although our results do not explore all the possible scenarios, we believe 

they are informative to the policy-makers in the clinic to better allocate the capacity of the office 

and virtual appointments to maximize the average long-run earnings of the clinic. 

3.5 Conclusion 

Virtual appointments, consisting of email, phone, cloud-electrocardiography, and online 

consultations, are increasingly changing our point of view of traditional office appointments, 

which makes the integration of the virtual appointments and the office critical for healthcare 

providers. Nowadays, many health clinics and hospitals are transitioning in virtual health services, 

which brings several operational challenges. Hence, capacity allocation between these two 

interventions with different effectiveness becomes an important but complex problem in the field 

of healthcare. 

In this chapter, we use a migration network to model chronic patients’ flows between 

controlled condition, uncontrolled condition, office appointments, and virtual appointments. Our 

model further reflects the varying effectiveness of office and virtual appointments in treatment and 

diagnosis. Then, we build a newsvendor optimization model to determine how to allocate the 

capacity of office and virtual appointments to maximize the network’s long-run average earnings. 

We present a base model and three extended models with capacity and time constraints to 

demonstrate the potential use of this model in the clinic network under different scenarios. Through 

numerical studies, we present one clinic network with parameters estimated from the previous 

literature and open data sources. We study the use of our three optimization models under different 

scenarios and perform sensitivity analysis for the comparison of different allocation policies. 

Our numerical studies bring us several insights about the clinic system and the application of 

virtual appointments. First, the follow-up rate is an important parameter in chronic care, and it 

represents the patient’s revisit frequency. Our numerical results show that increasing follow-up 

rate for both office and virtual appointments tend to improve the health condition of the patients 

and transfer more patients from uncontrolled condition to controlled condition. However, at the 

same time, higher follow-up rates reduce the panel size of physicians, thus, to serve the same 
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number of patients, the clinic should allocate more capacity of the office and virtual appointments. 

Thus, considering the potential number of patients that a clinic should serve, and the capacity that 

one clinic has, the policymakers of the clinic have to cooperate with the physicians to determine 

an appropriate follow-up rate. Second, the comparison of the results of capacity allocation under 

capacity and time constraint shows that the scarce service time makes the virtual appointments a 

more efficient way to provide service for the patients since they allow healthcare providers to serve 

more patients during the same time compared to office appointments in a more cost-effective way. 

Thus, the policymakers should consider providing more virtual appointments in the clinic system 

to improve the efficiency of the service. Finally, our comprehensive sensitivity analyses show that 

the average long-run earnings are sensitive to different fixed-allocation-ratio policies, but an 

appropriate fixed-allocation-ratio policy would be easy to apply for the policymakers in the clinic 

and can improve clinics’ earnings. As the fluctuation rate increases significantly, the fixed-

allocation-ratio policy will be no longer robust. Thus, updating the parameters frequently and 

applying the optimal policy dynamically is complex but better for the policymakers. Our results 

also suggest that virtual appointments should be used more to follow up controlled patients than 

for treating uncontrolled patients. Also, although virtual appointments are not as effective as office 

appointments, due to their lower costs, they have equal importance to office appointments.  
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Chapter 4: Optimization of Patient Revisit Intervals 

In this chapter, we investigate the patients’ revisit intervals in chronic care for virtual and 

office appointments. The section is organized as follows. Section 4.1 is the introduction to the 

optimization of patient revisit intervals in chronic care. Section 4.2 presents two different 

optimization models to determine the optimal follow-up rate that maximizes the average earnings 

of the clinics. Section 4.3 presents numerical studies for the clinic network. Section 4.4 outlines 

the conclusion and provides some future research directions. 

4.1 Introduction 

Scheduling patients for virtual and office appointments is one of the most important 

operational decisions for the health care providers. A good follow-up rate (i.e., patient revisit 

interval) leads to the efficient use of the clinics’ resources, and it can ensure the regular and 

consistent care of patients to keep their chronic diseases under control. On the other hand, if there 

is not an efficient policy to determine the follow-up rates, this can cause capacity over bookings or 

can impact patients’ health status negatively. Hence, it is important to have efficient policies to 

determine the follow-up rate (i.e., revisit interval) for both virtual and office appointments. 

In this study, we consider the integration of office and virtual appointments and aim to answer 

the following operational question: 

• Given the number of patients at the steady state, what should be the optimal follow-up rate 

decision that maximizes the clinic’s overall earnings? 

To address the above questions, we apply the migration network in Chapter 3 to analyze the 

flow of patients and determine the number of patients that need virtual and office appointments in 

the steady state. We further develop two follow-up rate optimization models by using the output 

of the migration network model to determine the optimal follow-up rates where the overall 

earnings are maximized. One of the models is a linear programming model that considers the linear 

overbooking cost, while the second one is the nonlinear model that considers a nonlinear convex 

overbooking cost function. With our numerical experiments, we show the change of the optimal 
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follow-up rate for varying conditions. We note that the models that present in this chapter are 

different from Chapter 3 since we investigate the patients’ revisit intervals. 

4.2 The Mathematical Model 

In this section, we consider a chronic care network with both office and virtual appointments, 

where physicians provide a diagnosis of the patients’ condition and the required treatment through 

either office or virtual appointments. We describe the linear and the non-linear optimization models 

which are used to obtain the optimal follow-up rate decisions to maximize the clinics’ average 

earnings. 

4.2.1 The Model with Linear Overbooking Cost 

In this section, we build a linear programming model to determine the optimal follow-up rate 

for office and virtual appointments to maximize the overall earnings of a clinic. We define 𝜎𝑖, 𝑖 ∈

{𝑜, 𝑣} to denote the upper-bound of the follow-up rate of the office and virtual appointments, 

respectively. For other parameters, we use the same notation that we define in Chapter 2. We 

summarize that notation as follows: 

𝑀𝑖 , 𝑖 ∈ {𝑜, 𝑣}: the capacity of office and virtual appointments, respectively; 

𝑟𝑖, 𝑖 ∈ {𝑜, 𝑣} : the marginal profit of each patient treatment through office and virtual 

appointments, respectively; 

𝑐𝑖, 𝑖 ∈ {𝑜, 𝑣}: the fixed costs of office and virtual appointments, respectively; 

𝑓𝑖 , 𝑖 ∈ {𝑜, 𝑣}: the extra variable cost of office and virtual appointments due to overbooking. 

In the model, we consider two decision variables: the follow-up rate of office and virtual 

appointments, 𝜎𝑜  and 𝜎𝑣 . We also define two intermediate decision variables to describe the 

overbooking cost as follows: the number of overbooked office and overbooked virtual 

appointments, 𝑢𝑜 and 𝑢𝑣. As defined above, the expected number of patients at node 𝑖 in the steady 

state is 𝛼𝑖, 𝑖 ∈ {𝑜, 𝑣} . Since 𝛼𝑖  is the function of 𝜎𝑜  and 𝜎𝑣 , we denote it as 𝛼𝑖(𝜎𝑖)  in our 

optimization model. Then, our model with linear overbooking cost can be defined as follows: 

max 𝐴(𝜎𝑘) = ∑ 𝑟𝑖𝛼𝑖(𝜎𝑖)

𝑖∈{𝑜,𝑣}

− ∑ 𝑐𝑖𝑀𝑖

𝑖∈{𝑜,𝑣}

− ∑ 𝑓𝑖𝑢𝑖

𝑖∈{𝑜,𝑣}

(4.9) 

Subject to 
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𝑢𝑖 ≥ 0 ∑ ∀𝑖 ∈ {𝑜, 𝑣} (4.10)

𝑢𝑖 ≥ 𝛼𝑖(𝜎𝑖) − 𝑀𝑖 ∀𝑖 ∈ {𝑜, 𝑣} (4.11)

𝜎𝑖 ≤ 𝜎𝑖 ∑ ∀𝑖 ∈ {𝑜, 𝑣} (4.12)

𝜎𝑖 ≥ 0 ∀𝑖 ∈ {𝑜, 𝑣} (4.13)

 

Equation (4.9) states the objective function which is to maximize the overall clinic’s earning. 

In the objective function, the first term is the marginal profit, the second term is the total cost of 

the appointment capacity, and the last term represents the extra cost due to patient overflow. 

Constraint (4.10) and (4.11) ensures that the overbooking cost occurs only when there are 

overbooked patients and the number of overbooked patients is the difference between the average 

number of patients and the capacity. Constraint (4.12) and (4.13) ensures that the follow-up rate is 

greater than 0 and less than the upper-bound. 

4.2.2 The Model with Non-linear Overbooking Cost 

In practice, when the clinic is slightly overbooked, its impact on the cost may be tolerated and 

the marginal profit of overbooking a few patients can be still positive. However, if the clinic is 

highly overbooked, its impact on cost would be high as well and the marginal profit can be negative. 

Hence, to reflect this change, it is better to model the overbooking cost as a nonlinear function. In 

the literature, there are studies that define and use the non-linear cost structure in their model (Lee 

2009, LaGanga 2012). Similar to the literature and different from the model defined in Section 

4.2.1, we define the overbooking cost function as a nonlinear increasing convex function and we 

use an exponential function to define this relationship. Thus, the marginal cost of overbooking a 

patient is increasing as the number of overbooked patients increases. More specifically, we redefine 

the overbooking function as𝑢𝑖
′ = 𝑚𝑎𝑥{0, 𝑒𝛼𝑖(𝜎𝑖)−𝑀𝑖 − 1}. In this relation, we ensure that the 

overbooking cost occurs only when the number of scheduled patients is greater than the assigned 

capacity. Since the smallest value of the term 𝑒𝛼𝑖(𝜎𝑖)−𝑀𝑖  can be ‘1’, we subtract ‘1’ from the 

exponential term to ensure that if the capacity equals to the number of scheduled patients no 

overbooking cost occurs. Then our model can be defined as follows: 

max 𝐴(𝜎𝑘) = ∑ 𝑟𝑖𝛼𝑖(𝜎𝑖)

𝑖∈{𝑜,𝑣}

− ∑ 𝑐𝑖𝑀𝑖

𝑖∈{𝑜,𝑣}

− ∑ 𝑓𝑖𝑢𝑖

𝑖∈{𝑜,𝑣}

(4.14) 

Subject to 
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𝑢𝑖 ≥ 0 ∑ ∀𝑖 ∈ {𝑜, 𝑣} (4.15)

𝑢𝑖 ≥ 𝑒𝛼𝑖(𝜎𝑖)−𝑀𝑖 − 1 ∀𝑖 ∈ {𝑜, 𝑣} (4.16)

𝜎𝑖 ≤ 𝜎𝑖 ∑ ∀𝑖 ∈ {𝑜, 𝑣} (4.17)

𝜎𝑖 ≥ 0 ∀𝑖 ∈ {𝑜, 𝑣} (4.18)

 

Since the described model is non-linear, it is not easy to find the optimal solution through 

standard solvers where the starting points would impact the final solution. Also, since our model 

does not include several constraints, we investigate the Karush–Kuhn–Tucker (KKT) necessity 

and sufficiency conditions to determine the optimal solution. To solve this problem, for 𝑖 ∈ {𝑜, 𝑣}, 

we define the sub-problem as follows: 

𝑚𝑎𝑥 𝐴(𝜎𝑖) = 𝑟𝑖𝛼𝑖(𝜎𝑖) − 𝑐𝑖𝑀𝑖 − 𝑓𝑖𝑢𝑖 (4.19)

= 𝑟𝑖 [
𝜎𝑖(𝜆𝑜 + 𝜆𝑣)

𝛿𝜇𝑖
+

𝜆𝑖

𝜇𝑖
] − 𝑐𝑖𝑀𝑖 − 𝑓𝑖𝑢𝑖 (4.20)

 

Subject to 

𝑔1(𝜎𝑖 , 𝑢𝑖) = −𝑢𝑖 ≤ 0 ∑ (4.21)

𝑔2(𝜎𝑖 , 𝑢𝑖) = 𝑒𝛼𝑖(𝜎𝑖)−𝑀𝑖 − 1 − 𝑢𝑖 ≤ 0 (4.22)

𝑔3(𝜎𝑖 , 𝑢𝑖) = 𝜎𝑖 − 𝜎𝑖 ≤ 0 ∑ (4.23)

𝑔4(𝜎𝑖 , 𝑢𝑖) = −𝜎𝑖 ≤ 0 (4.24)

 

Where 𝑔(𝜎𝑖 , 𝑢𝑖)  represents the constraints. The objective is a linear function and the 

constraints are all convex in the format of 𝑔(𝜎𝑖, 𝜇𝑖) ≤ 0 . Let 𝐿(𝜎𝑖 , 𝑢𝑖, 𝜆)  be the Lagrangian 

function to represent the Lagrangian relaxed objective function, and 𝜆𝑖  be the corresponding 

Lagrangian multiplier of each constraint. Then, we can use sufficiency of KKT conditions to reach 

the global optimum as below: 

max 𝐿(𝜎𝑖 , 𝑢𝑖, 𝜆) = 𝑟𝑖 [
𝜎𝑖(𝜆𝑜 + 𝜆𝑣)

𝛿𝜇𝑖
+

𝜆𝑖

𝜇𝑖
] − 𝑐𝑖𝑀𝑖 − 𝑓𝑖𝑢𝑖 − ∑ 𝜆𝑗𝑔𝑗(𝜎𝑖 , 𝑢𝑖)

4

𝑗=1

(4.25) 

Subject to 

𝜆𝑗𝑔𝑗(𝜎𝑖, 𝑢𝑖) = 0 ∑ ∀𝑗 ∈ {1,2,3,4} (4.26)

𝜆𝑗 ≥ 0 ∀𝑗 ∈ {1,2,3,4} (4.27)
 

We set 
𝜕𝐿(𝜎𝑖,𝑢𝑖,�⃗⃗⃗�)

𝜕𝜎𝑖
= 0 and 

𝜕𝐿(𝜎𝑖,𝑢𝑖,�⃗⃗⃗�)

𝜕𝑢𝑖
= 0 (i.e., find its derivative with respect to follow-up rate 

and the overbooking level and set it equal to zero) to reach the optimality by solving the equation 
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set numerically and obtain the optimal solution for 𝜎𝑖  ∀𝑖 ∈ ℐ. In the numerical studies, we apply 

this method to solve the problem. 

4.3 Numerical Studies 

In this section, we numerically analyze a clinic network with office and virtual appointments. 

We conduct numerical experiments to investigate the optimal follow rate with respect to a change 

in different parameter values. Since the study is the extension of Chapter 3, we refer to Chapter 3 

for the estimation of the model parameters. 

With the flow parameters, revenue and cost parameters discussed, we study the impact of the 

arrival rate of office appointments and the upper-bound of the follow-up rate. (i.e., 𝜆𝑜, 𝜎𝑜, and 𝜎𝑣) 

on the optimal follow-up rate in both linear and nonlinear models. It has important relevance since 

reducing (resp. increasing) the new patients' arrival rate leads to less (resp. more) more patients in 

the entire system. With the fixed capacity of office and virtual appointments, the clinic and the 

physicians need to adjust the follow-up rate to the system. In the parameter estimation, we set the 

original patient follow-up rates as 𝜆𝑜 = 7.94/month as described in Chapter 3. We vary this rate 

by 50-150%, from 3.97 to 11.91, and present the corresponding optimal follow-up rate in Figure 

4.1. The two black lines are the upper-bound of the follow-up rate for office and virtual 

appointments, respectively. In the left figure, 𝜎𝑜 = 2/month and 𝜎𝑣 = 4/month while in the right 

figure, 𝜎𝑜 = 1.6/month and 𝜎𝑣 = 4/month, which is 20% less than the former one. In Figure 4.1, 

we show the results of both linear and nonlinear models where the linear model is represented by 

the solid line, and the nonlinear model is represented by the dashed line. As observed, the behavior 

of the follow-up rate change is similar in linear and nonlinear models. The virtual follow-up rate 

changes between 1.6 and 4.2, and the office follow-up rate changes between 0.6 and 1.8 where the 

range of change for the virtual appointments is more than that of office appointments. As we 

increase the arrival rate of office appointments, the optimal follow-up rates for both types of 

appointment decrease monotonically with a decreasing rate (i.e., convex). The optimal follow-up 

rate in the nonlinear model is greater than that of the linear model, but the difference between the 

optimal follow-up rate for different models is decreasing when the arrival rate increases. The result 

is consistent with the practice that as the average arrival rate of office appointments increases, the 

total number of the patients in the whole clinic system increases. To serve more patients with a 

fixed capacity, the healthcare providers need to decrease the frequency to see the same patient but 

allocate time for more patients. Thus, when the arrival rates of new patients increase, for a given 
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capacity, the patients’ follow-up rate decrease to adjust to the increasing number of patients in the 

whole system. 

 

Figure 4.1: The impact of office arrival rate on the optimal follow-up rate 

Next we study the impacts of marginal profit and the extra cost due to overbooking patients 

on the optimal follow-up rate and the overbooking level. To figure out the relationship, we define 

a new variable: 𝑟𝑖 𝑓𝑖⁄ , 𝑖 ∈ {𝑜, 𝑣}, which is the ratio of marginal profit to the extra cost. In the linear 

model, the behavior of the overbooking cost is straightforward as it is a linear function. Hence, in 

Figure 4.2 and Figure 4.3, we analyze this change for the nonlinear model. From both figures, we 

can see that the relationship between the 𝑟𝑖/𝑓𝑖 ratio and optimal follow-up rate and the relationship 

between the 𝑟𝑖/𝑓𝑖 ratio and the overbooking function are increasing concave. More specifically, as 

we linearly increase the marginal profit or decrease the extra cost due to overbooking, the increase 

rate of the optimal follow-up rate and the overbooking function are decreasing. In addition, when 

the 𝑟𝑖/𝑓𝑖 ratio increases from 1 to 11, the optimal follow-up rate of virtual appointments increases 

by nearly 0.25/month and the overbooking level approaches to 2.5 patients. This means that the 

impact of office arrival rate on the optimal follow-up rate and overbooking function is more than 

the impact of the 𝑟𝑖/𝑓𝑖 ratio. 

Finally, we study the impact of the capacity of the office and virtual appointments on the 

optimal follow-up rate for both linear and nonlinear models. Since increasing the capacity of 

appointments means that the clinic can serve more patients during the same time, it is important to 

investigate its impact on the optimal follow-up rate. We vary the capacity of office appointments 

from 14 to 26, and the capacity of virtual appointments from 16 to 28 and present the corresponding 

optimal follow-up rate in Figure 4.4. 
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Figure 4.2: The impact of 𝑟𝑜/𝑓𝑜 on optimal follow-up rate and overbooking level of office appointments 

 

Figure 4.3: The impact of 𝑟𝑣/𝑓𝑣 on optimal follow-up rate and overbooking level of virtual appointments 

In Figure 4.4, we show the results of both linear and nonlinear models where the linear model 

is represented by the solid line, and the nonlinear model is represented by the dashed line. The red 

line represents the virtual appointments while the blue line represents the office appointments. As 

observed, the behavior of the follow-up rate change is similar in linear and nonlinear models. The 

relationship between the follow-up rate and the capacity is linear for both office and virtual 

appointments. However, office and virtual appointments are independent of the observation. More 

specifically, the capacity of office appointments just affects the follow-up rate of office 

appointments and does not affect the follow-up rate of virtual appointments. The influence of the 

capacity of virtual appointments is similar. The virtual follow-up rate changes from 1.6 to 2.7 when 

the capacity increases 12 while the office follow-up rate changes from 0.65 to 1.25 when the office 

capacity increases 12. Thus, we conclude that the optimal follow-up rate of virtual appointments 
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is more sensitive to the changes in capacity. The optimal follow-up rate in the nonlinear model is 

greater than that of in the linear model, but the difference between models for office appointments 

is less than that of virtual appointments. The result is consistent with the practice that as the 

capacity increases, for a given new patients’ arrival rate, the physicians need to increase the follow-

up rate and shorten the patients’ revisit intervals to ensure the maximization of the profits of the 

clinic. 

 

Figure 4.4: The impact of 𝑀𝑖 on the optimal follow-up rate 

4.4 Conclusion 

Virtual appointments are gaining ground rapidly and they are used to complement and 

substitute for the office appointments. Nowadays, many health clinics and hospitals are 

transitioning in virtual health services and integrating virtual appointments with office 

appointments. However, this integration brings several operational challenges and the 

determination of the revisit intervals for office and virtual appointments becomes an important but 

complex problem. 

In this chapter, with the foundation of the migration network model in Chapter 3, we build 

two optimization models by considering linear and nonlinear cost functions to determine the 

optimal follow-up rates of office and virtual appointments that maximizes the clinic’s long-run 

average earnings. Through numerical studies, we investigate the impact of parameters on the value 

of the optimal follow-up rates. Based on the numerical studies, we conclude that when the arrival 

rate of office appointments increases, the follow-up rates of both office and virtual appointments 

decrease to ensure the service of more new patients. When the total overbooking cost is modeled 

as a nonlinear function, the marginal earnings and the marginal overbooking cost are also found 
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to impact the optimal follow-up rate based on the mathematical model and the optimal follow-up 

rate is shown to be greater than that of the linear model based on the numerical studies. 
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Chapter 5: Capacity Planning and Patients Scheduling 

In this chapter, we study patient scheduling decisions for office and virtual appointments along 

with capacity management decisions. Different from Chapter 3, this chapter applies stochastic 

programming to determine the capacity planning decisions and the patients’ schedule for office 

and virtual appointments. The chapter is organized as follows. Section 5.1 gives an introduction. 

Section 5.2 presents the two-stage stochastic programming model. Section 5.3 presents numerical 

studies, estimates parameters, and provides the sensitivity analysis results that illustrate the 

application of the model. Section 5.4 outlines the conclusion of the chapter and provides some 

future research directions. 

5.1 Introduction 

In Chapter 3, we consider solely capacity planning decisions by considering the flow of 

patients among different states of the clinical network. However, in practice, the capacity planning 

decisions are also considered along with patient scheduling decisions.  Moreover, patients’ health 

statuses also impact both capacity management and patient scheduling decisions. In Chapter 3, we 

include the diagnosis only for the virtual appointments but not for the office appointments. In this 

chapter, we incorporate the diagnosis for office appointments as well. 

To reflect the influence of the stochastic health status and patient scheduling decisions, we 

develop a two-stage stochastic programming model considering different scenarios that patients’ 

health status is realized stochastically. The decision process is to determine the capacity of the 

office and virtual appointments along with the patient scheduling decisions to maximize the 

average patients’ health status among all scenarios. In our model, we further incorporate patients’ 

disease progression. With our numerical experiments, we show the changes in capacity allocation 

decisions for different settings as model parameters vary. 

5.2 Two-stage Stochastic Programming Model 

In this section, we build a two-stage stochastic programming model. More specifically, the 

decision process we consider for the capacity planning and the patients’ scheduling optimization 
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framework consists of two decision periods where 𝑡 ∈ 𝑇 = {1,2}. In the first period, the capacity 

allocation decisions among office and virtual appointments are made under the uncertainty of 

patients’ health states. The physicians have a belief about patients’ health statuses at the beginning 

of the first period. Over time due to the disease progress, patients’ health statuses can change, and 

patients’ health statuses are realized. In the second period, patients are scheduled for the office and 

virtual appointments which are determined in the first period. We consider that once the patients' 

scheduling decisions are made, patients are treated, and the disease progression occurs after the 

second period. The capacity assignment decisions are made without knowing the patient’s health 

status realization, whereas patients' scheduling decisions are made based on the realized 

information. The stochastic characterizations in our framework are the changes in the patients’ 

health status and the changes in the disease progression after the treatment. The stochastic 

parameters in our model are exogenous. We use a discrete distribution of these random parameters 

and denote each possible realization 𝜓 ∈ 𝛹 as a scenario with a corresponding probability 𝑧𝜓. 

Using this framework, we develop a two-stage stochastic programming model for capacity 

planning and patients’ scheduling problem. Representation of the described general decision 

process is depicted in Figure 5.1. 

 

Figure 5.1: General decision process for capacity planning and patients’ schedule 

For a general mathematical representation of this problem, let ℒ represent the set of patients 

that need chronic care and 𝑖 ∈ ℒ represents patient 𝑖 in the set of patients ℒ. We consider two 

health status 𝑗 ∈ {0,1}  where 0 represents the controlled health state and 1 represents the 

uncontrolled health state in chronic disease. The physician has a prior belief about patients’ health 

status, which is described using the probability of patient 𝑖 being in the health status at period 𝑡 in 

scenario 𝜓 (𝜋𝑖𝑡
𝜓

) before appointments are scheduled. Then, we denote the health information vector, 

𝝅𝑖𝑡
𝜓

= (𝜋𝑖𝑡
𝜓

, 1 − 𝜋𝑖𝑡
𝜓

), to reflect the health status of patient 𝑖 at period 𝑡 in scenario 𝜓. Patients’ 
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health status is stochastic and is realized after the first period. A patient can be in the controlled 

health state with probability 𝜋𝑖𝑡
𝜓

 and in the uncontrolled health state with probability (1 − 𝜋𝑖𝑡
𝜓

). To 

reflect the realization of a patient’s true health state 𝑗 ∈ {0,1}, we define a vector 𝒆𝑖𝑡
𝜓

. 𝒆𝑖𝑡
𝜓

= (1,0) 

if patient 𝑖 is in controlled heath state at period 𝑡 in scenario 𝜓 and 𝒆𝑖𝑡
𝜓

= (0,1) if patient 𝑖 is in 

uncontrolled health state at period 𝑡 in scenario 𝜓. 

To differentiate office and virtual appointments, we define 𝑘 ∈ 𝒦 = {𝑜, 𝑣} , where "𝑜" 

corresponds to office appointments and "𝑣" corresponds to virtual appointments. To reflect the 

treatment process, we define matrices, 𝑺𝑜 and 𝑺𝑣, to represent the effect of treatment for office and 

virtual appointments, respectively, as follows: 

𝑺𝑜 = [
1 0
𝑠𝑜 1 − 𝑠𝑜

]                  𝑺𝑣 = [
1 0
𝑠𝑣 1 − 𝑠𝑣

] 

For both types of appointments, we assume that if a patient is diagnosed in the controlled 

heath state at period 𝑡, she/he will remain in the controlled heath state after the treatment with 

probability 1. If a patient is diagnosed in the uncontrolled heath state at period 𝑡, she/he will be in 

the controlled heath state with probability 𝑠𝑜 after the treatment in the office appointments. This 

probability is 𝑠𝑣 if the patient is scheduled for a virtual appointment. Since office appointments 

are expected to be more effective than virtual appointments in treatment, we assume 𝑠𝑜 ≥ 𝑠𝑣.  

In our model, we further incorporate the disease progression. Due to the disease progression, 

we assume that a patient in the controlled health state at period 𝑡 will remain in the controlled 

heath state at the beginning of period 𝑡 + 1 with probability 𝑤. We assume that there is no natural 

improvement in a patient’s status if s/he is in the uncontrolled health state, thus, a patient in the 

uncontrolled health state at period 𝑡 will remain in the uncontrolled health state at the beginning 

of period 𝑡 + 1 with probability 1. Hence, the disease progression matrix 𝑾 can be defined as 

follow: 

𝑾 = [
𝑤 1 − 𝑤
0 1

] 

After the definition of the treatment process and the disease progression, we can update the 

patients’ health information vector by linking period 𝑡  and period 𝑡 + 1 . If a patient is not 

scheduled for office or virtual appointments in period 𝑡, the patients’ health information vector at 

the beginning of period 𝑡 + 1 is updated by multiplying the health information vector at period 𝑡 

with the disease progression matrix (i.e., 𝝅𝑖(𝑡+1)
𝜓

= 𝝅𝑖𝑡
𝝍

𝑾). If a patient is scheduled for a virtual 
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appointment at period 𝑡, the patient’s health status will be realized, s/he will receive the treatment, 

and a disease progression will occur until the next appointment. Hence, the patients’ health 

information vector at the beginning of period 𝑡 + 1  will be 𝝅𝑖(𝑡+1)
𝜓

= 𝒆𝑖𝑡
𝜓

𝑺𝑣𝑾  after virtual 

appointments. This health information vector is 𝝅𝑖(𝑡+1)
𝜓

= 𝒆𝑖𝑡
𝜓

𝑺𝑜𝑾 for office appointments case. 

To reflect the cost that clinic assign the appointments, we denote 𝑐𝑜 and 𝑐𝑣 as the fixed cost of unit 

time of office and virtual appointments, respectively. 

To model the capacity planning and the patients’ schedule, the number of appointments 

planned for an appointment type 𝑘 ∈ 𝒦 is denoted by 𝑀𝑘, which is the decision variable in the 

first stage. We define 𝑥𝑖𝑡
𝑘𝜓

= 1 if patient 𝑖 ∈ ℒ is scheduled for an appointment type 𝑘 ∈ 𝒦  at 

period 𝑡 ∈ 𝑇  in scenario 𝜓 ∈ 𝛹 , and 𝑥𝑖𝑡
𝑘𝜓

= 0  otherwise. We note that 𝑥𝑖𝑡
𝑘𝜓

 denotes patient 

scheduling decisions, and it is made in the second stage. We also define 𝒃 = [1,0] as the QALY 

score vector corresponding to the health information vector. Then, the two-stage stochastic 

programming model can be written as follows: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑚𝑎𝑥 𝔼𝜓 ∑ ∑ 𝝅𝑖𝑡
𝜓

𝒃

𝑖∈ℒ𝑡∈𝑇

(5.1) 

Subject to: 

∑ 𝑥𝑖𝑡
𝑘𝜓

𝑘∈𝒦

≤ 1 ∀𝑖 ∈ ℒ, ∀𝑡 ∈ 𝒯, ∀𝜓 ∈ 𝛹 (5.2)

∑ 𝑥𝑖𝑡
𝑘𝜓

𝑖∈ℒ

≤ 𝑀𝑘 ∀𝑘 ∈ 𝒦, ∀𝑡 ∈ 𝒯, ∀𝜓 ∈ 𝛹 (5.3)

𝝅𝑖,𝑡+1
𝜓

= ∑ 𝑥𝑖𝑡
𝑘𝜓

𝒆𝑖𝑡
𝜓

𝑺𝑘𝑾

𝑘∈𝒦

+ (1 − 𝑥𝑖𝑡
𝑜𝜓

− 𝑥𝑖𝑡
𝑣𝜓

)𝝅𝑖𝑡
𝜓

𝑊 ∀𝑖 ∈ ℒ, ∀𝑡 ∈ 𝒯, ∀𝜓 ∈ 𝛹 (5.4)

𝑐𝑜𝑀𝑜 + 𝑐𝑣𝑀𝑣 ≤ 𝐵 (5.5)

𝑀𝑜 + 𝑀𝑣 ≤ |ℒ| ∑ (5.6)

𝑥𝑖𝑡
𝑣𝜓

, 𝑥𝑖𝑡
𝑜𝜓

∈ {0,1} ∀𝑖 ∈ ℒ, ∀𝑡 ∈ 𝒯, ∀𝜓 ∈ 𝛹 (5.7)

𝑀𝑜 , 𝑀𝑣 ≥ 0 ∑ (5.8)

 

Function (5.1) is the objective function, which is to maximize the expected total QALY score 

of all patients. Constraint (5.2) ensures that a patient can be scheduled for at most one type of 

appointment in any period. Constraint (5.3) states that the sum of patients scheduled for an 

appointment type 𝑘 ∈ 𝒦  is less than the total capacity planned for that type of appointment. 

Constraint (5.4) is the health information vector transition equation that is used to update the health 
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information vector between periods. Constraint (5.5) ensures that the total cost is limited by 𝐵. 𝐵 

is a constant parameter representing the budget and resources for capacity allocation decisions. 

Constraint (5.6) ensures that the total number of appointments allocated in one period is less than 

the number of patients who need the care. Constraint (5.7) ensures the decision variables are binary. 

Constraint (5.8) defines that the total capacity allocated is non-negative for both types of 

appointments. 

5.3 Numerical Studies 

In this section, we numerically analyze a clinic that provides chronic care through office and 

virtual appointments. We conduct numerical experiments to investigate the optimal capacity 

planning and patients scheduling decisions with respect to a change on different parameter values. 

Since patient scheduling decisions are the second stage decisions that vary for each scenario, we 

present our result for the first stage variables (i.e., the capacity allocation decisions) which are the 

same for all scenarios. 

We consider 20 patients within the clinic network that |ℒ| = 20 and 4096 scenarios in the 

two-stage stochastic programming model. We randomly assign their health information vector at 

the beginning of the first period, 𝝅𝒊𝟏
𝝍

, as shown in Table 5.1, by ensuring that the probability of 

being in the controlled health state is uniformly distributed between 0 and 1 for each patient. The 

fixed capacity cost of office appointments is estimated as 𝑐𝑜  =  $84.6/day, and that of virtual 

appointments is estimated as 𝑐𝑣 = $57.53/day (Lee 2009, A. H. Association 2016). In terms of 

the treatment matrix, the effectiveness of treatment of office and virtual appointments are initially 

assigned as 𝑠𝑜 = 0.95 and 𝑠𝑣 = 0.7, respectively. We note that we perform sensitivity analysis by 

changing the values of these parameters to see the impact of treatment effectiveness on capacity 

allocation decisions. Similarly, the probability that is used to describe the disease progression is 

initially assumed as 𝑤 = 0.8. Since there is no reference for these parameters, we perform the 

sensitivity analysis in this section to investigate the effect of these parameters. 

5.3.1 Impact of Budget on Capacity Allocation 

We study the impact of the budget on the optimal capacity planning of office and virtual 

appointments. Capacity allocation decision among office and virtual appointments is challenging 

since office and virtual appointments have different treatment effectiveness and unit costs. More 

specifically, office appointments have higher treatment effectiveness than virtual appointments, 



 

53 

 

Table 5.1: Initial health information vector of patients 𝑖 ∈ ℒ 

Patient 𝑖 ∈ ℒ 𝝅𝒊𝟏 

1 [0.82, 0.18] 

2 [0.74, 0.26] 

3 [0.56, 0.44] 

4 [0.35, 0.65] 

5 [0.24, 0.76] 

6 [0.88, 0.12] 

7 [0.78, 0.22] 

8 [0.63, 0.37] 

9 [0.45, 0.55] 

10 [0.79, 0.21] 

11 [0.62, 0.38] 

12 [0.84, 0.16] 

13 [0.26, 0.74] 

14 [0.45, 0.55] 

15 [0.74, 0.26] 

16 [0.18, 0.82] 

17 [0.35, 0.65] 

18 [0.27, 0.73] 

19 [0.69, 0.31] 

20 [0.86, 0.14] 

 

while virtual appointments are less costly than office appointments. Hence, the clinic should 

balance those points by ensuring that the overall health statuses of patients are maximized with 

limited budget and resources. To make the budget variation easy to present, we first define the 

maximum budget that the clinic needs for the appointment assignment, 𝐵𝑚𝑎𝑥. Since there are |ℒ| 

patients in total, there can be at most |ℒ| patients who can be scheduled for an appointment at one 

period. Since the cost of office appointments is greater than that of virtual appointments, we define 

the maximum budget as follows: 𝐵𝑚𝑎𝑥 = |ℒ| × 𝑐𝑜 = $1692/day. Then, we consider that 𝐵 =

𝛼𝐵𝑚𝑎𝑥 and we vary the budget coefficient, 𝛼, from 0 to 1 to show the changes in budget and its 

impact on the capacity allocation decisions in Figure 5.2. 

In Figure 5.2, the solid and dashed lines represent the changes in office and virtual 

appointment capacities, respectively. The dotted line represents the change in the value of the 

objective function. As observed, the objective is a non-decreasing function with respect to the 

budget, and the marginal impact of the unit budget increase on the objective function is decreasing 
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Figure 5.2: Budget influence on capacity allocation, 𝑠𝑜 = 0.95, 𝑠𝑣 = 0.7 

until 𝛼 ≥ 1.We allow 𝛼 greater than 1 to investigate the effect of excessive budget. It is shown 

that the excessive budget does not improve the objective function and does not change the capacity 

allocation, which means that the health statuses of patients are not improved. Also, the number of 

virtual appointments increases from 0 to 10 when 𝛼 increases from 0 to 0.8 and decreases from 10 

to 0 when 𝛼  increases from 0.8 to 1. we assume that the treatment effectiveness of office 

appointments is greater than that of virtual appointments. In this setting, 𝑠𝑜 = 0.95 and 𝑠𝑣 = 0.7. 

Due to the cost advantage of virtual appointments, when the budget is limited (i.e., 𝛼 ≤ 0.8), more 

virtual appointments are assigned than the office appointments in most settings. However, as the 

budget increases (i.e. when the budget is not scarce), the cost advantage of virtual appointments is 

less significant in capacity allocation decisions. In this case, the impact treatment effectiveness is 

more significant in capacity allocation decisions, thus, office appointments start to replace virtual 

appointments as expected. As we increase 𝑠𝑣 from 0.7 to 0.8 and 0.9, this phenomenon is clearer 

as shown in Figure 5.3 and Figure 5.4. However, no matter the value of 𝑠𝑣,  𝛼 = 0.8 is always a 

turning point that the clinic assigns 10 virtual appointments and 9 office appointments. When 𝛼 >

0.8, the number of office appointments starts to exceed that of virtual appointments. 

5.3.2 Impact of Treatment Effectiveness on Capacity Allocation 

Next, we study the impact of treatment effectiveness on the capacity allocation of office and 

virtual appointments. We define 𝑠𝑜/𝑠𝑣 as the relative treatment effectiveness. We set 𝑠𝑜 = 0.95 

and adjust the value of 𝑠𝑣 based on the relative treatment effectiveness. The range of 𝑠𝑜/𝑠𝑣 is set 
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Figure 5.3: Budget influence on capacity allocation, 𝑠𝑜 = 0.95, 𝑠𝑣 = 0.8 

 

Figure 5.4: Budget influence on capacity allocation, 𝑠𝑜 = 0.95, 𝑠𝑣 = 0.9 

from 1 to 1.5, which means that the treatment effectiveness of virtual appointments becomes worse 

as the ratio increases. As shown in Figure 5.5, we set the budget as 𝐵 = 0.4𝐵𝑚𝑎𝑥. The dashed and 

solid lines are the changes in the number of virtual and office appointments, respectively. When 

𝑠𝑜/𝑠𝑣  equals to 1, the virtual appointments have the same treatment effectiveness as office 

appointments. Since virtual appointments are more cost-effective and they have the same treatment 

effectiveness with office appointments, all the budget is used to allocate the virtual appointments. 
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Figure 5.5: Influence of 𝑠𝑜/𝑠𝑣 on capacity allocation, budget coefficient 𝛼 = 0.4 

However, as the ratio of 𝑠𝑜/𝑠𝑣 increases, the number of office appointments increases as well until 

𝑠𝑜/𝑠𝑣 = 1.35. 

We consider more settings by changing the budget where 𝛼 = 0.6 and 0.8 as shown in Figure 

5.6 and Figure 5.7. When 𝛼 = 0.4, 𝑀𝑜 and 𝑀𝑣 become stable when 𝑠𝑜/𝑠𝑣 ratio reaches 1.35. On 

the other hand, 𝑀𝑜 and 𝑀𝑣 become stable when the 𝑠𝑜/𝑠𝑣 ratio is 1.25 and 1.05 for 𝛼 = 0.6 and 

0.8, respectively. It shows that the impact of treatment effectiveness of virtual appointments is 

sensitive to the changes in budget. When the budget is scarce, even if the treatment effectiveness 

of virtual appointments is low, the cost advantage of virtual appointments is still a strength to the 

clinic. However, as the budget increases and as the clinic has sufficient budget the clinic replaces 

the number of virtual appointments with office appointments. 

In Figure 5.7, it shows that even when 𝑠𝑜/𝑠𝑣 equals to 1.5, number of virtual appointments is 

still more than that of office appointments that 𝑀𝑜 = 9 and 𝑀𝑣 = 10. We find that under the 

budget constraint that 𝐵 = 0.8𝐵𝑚𝑎𝑥, if we add one more office appointment, we need to decreases 

the number of virtual appointments by 2 where 𝑀𝑜 = 10 and 𝑀𝑣 = 8. The total number of all 

appointments decreases by one in this case. 

Table 5.2 and Figure 5.8 show the initial probability and the distribution of the number of 

patients in uncontrolled condition, which works for all the scenarios. We can see that there are on-

average 9.27 patients in the uncontrolled health state and the number of uncontrolled patients is 

less and equal to 9 with the probability of 53.58%. Also, if a patient is in a controlled health state, 



 

57 

 

 

Figure 5.6: Influence of 𝑠𝑜/𝑠𝑣 on capacity allocation, budget coefficient 𝛼 = 0.6 

 

Figure 5.7: Influence of 𝑠𝑜/𝑠𝑣 on capacity allocation, budget coefficient 𝛼 = 0.8 

the office and virtual appointments provide the same treatment service that ensures the patient 

remains in the controlled health state. Hence, in this situation, when the virtual appointments have 

relatively worse treatment effectiveness, its job is to serve the patients in the controlled patients 

and maintain their controlled condition while office appointments are responsible for serving the 

patients in uncontrolled condition, providing effective service, and improving their health 

condition. At this logic, the clinic can take greatly the advantages of both office and virtual 

appointments when the budget is limited for supporting enough office appointments. 
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Table 5.2: Distribution of number of patients in uncontrolled condition 

# of patients in 

uncontrolled 

condition 

Probability 

0 0.000289 

1 0.000928 

2 0.003992 

3 0.010306 

4 0.022866 

5 0.046139 

6 0.070370 

7 0.108204 

8 0.126824 

9 0.145863 

10 0.137669 

11 0.117590 

12 0.089937 

13 0.057291 

14 0.034512 

15 0.016475 

16 0.007281 

17 0.002568 

18 0.000713 

19 0.000167 

20 0.000018 

Avg 9.27 

 

5.4 Conclusion 

In this study, we use a two-stage stochastic programming model to formulate a capacity 

planning and patients scheduling problem. We consider the stochastic process of patients’ disease 

progression and based on this fact, we develop the model to allocate the office and virtual 

appointments along with the patient scheduling decisions to maximize the patients’ health 

conditions which are reflected by the probability that the physicians’ belief that the patients stay 

in the controlled health condition. From the numerical studies, we find that even though the 

treatment effectiveness of virtual appointments is worse than that of office appointments, virtual 

appointments are still valuable due to its cost advantage, especially when the budget is limited for 

providing enough office appointments. However, the capacity allocation decision is more sensitive  
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Figure 5.8: PDF and CDF function of the distribution of uncontrolled patients 

to the relative treatment effectiveness of the interventions as the budget increases. We find that 

virtual appointments should be used more often to schedule controlled patients compared to 

treating uncontrolled patients. When virtual appointments and office appointments have the same 

treatment effectiveness, virtual appointments can be considered for all appointments since they are 

more cost-effective than the office appointments. 
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Chapter 6: Conclusion and Discussion 

In the thesis, we study the integration of virtual appointments with traditional office 

appointments in a chronic care setting. Nowadays, virtual appointments play a significant role in 

the management of chronic conditions since virtual appointments are more convenient and cost-

effective than office appointments. Deriving decision rules to combine virtual appointments with 

office appointments in an appropriate way will help healthcare providers and also provide patients 

efficient and affordable care in chronic care management. 

To address the management issues in the integration of virtual appointments with the office 

appointments, we build several mathematical models in the thesis. In Chapter 3, we develop a 

migration network model to simulate the clinic system with both office and virtual appointments. 

We build a newsvendor-type optimization model to determine the capacity of the office and virtual 

appointments that maximize the average long-term profit of the clinic. We perform numerical 

experiments by using the data sources from the literature and open data sources. We show that as 

the follow-up rate increases, the required capacities of both office and virtual appointments 

increase which also results in an increase in the clinic’s overall profit. We propose easy-to-

implement policies for healthcare providers and we compare those policies for varying parameter 

values. We further find that the fixed-ratio capacity allocation policy performs worse than the 

dynamic optimal capacity allocation policy. Hence, our capacity allocation model is helpful for 

clinics when making capacity allocation decisions. 

In Chapter 4, we use the migration network model that we develop in Chapter 3 and we 

investigate the optimal follow-up rate for office and virtual appointments when the capacity is 

fixed. We develop linear and nonlinear programming models to help clinics in the determination 

of the optimal follow-up rate for office and virtual appointments that maximizes the usage of 

resources and maximizes the clinics’ profit. Our numerical experiments show that the number of 

patients that the clinic can serve is limited and as the new patients’ arrival rate increases, the 

follow-up rate for existing patients needs to be decreased for a given capacity. The clinics should 



 

61 

 

balance the number of existing patients and the new patients to keep the panel size in an appropriate 

range. 

In Chapter 5, we consider capacity allocation and patient scheduling decisions simultaneously 

under uncertainty. More specifically, we develop a two-stage stochastic programming model to 

investigate capacity allocation decisions along with the patient scheduling decisions that maximize 

patients’ overall health statuses. We consider that patients’ health states are uncertain and this 

information is realized over time. Different from previous chapters, we also consider maximizing 

the overall health statuses of patients for a given budget. Our results show that due to the cost-

effectiveness of virtual appointments, it is better to allocate more virtual appointments when the 

budget is limited. However, when the resources are not scarce, the difference in the treatment 

effectiveness of interventions becomes more important and the number of allocated virtual 

appointments decreases. Our results provide managerial insights for clinics in allocating capacity 

for varying parameter values. We find that virtual appointments can substitute for office 

appointments, which opens office appointment slots for other patients in need. 

There are some limitations of this study that can be extended in several directions. First, the 

investigation of the new patients’ arrival rate for virtual and office appointments can be another 

direction to study. Considering the arrival rate as a decision variable refers to the physician's panel 

size decision, where the physician can decide on the rate of new patients to accept in her/his panel 

(Green 2008, Ozen 2013, N. a. Liu 2014). Second, we assume the population of the patients is 

finite, which is a common but unrealistic assumption in the migration network literature. Our next 

step will be to consider an infinite number of patients that a clinic system can serve. Third, our 

data are based on the literature, which limits the generalization of the model. In the future, the 

model can be verified by using a specific clinic's or hospital's data. Finally, we consider that 

patients return to home from the office and virtual appointments and define one system state for 

this case. In a future study, the migration network model can be extended, and the system states 

can be divided to differentiate the patients who are back from office and virtual appointments. 

Despite these limitations and directions of extension and improvement, we believe the 

mathematical models in the thesis will bring value to the research topic focusing on the integration 

of office and virtual appointments and will ultimately help more policymakers to apply the virtual 

appointments in practice. Our models will further provide insights and easy-to-implement policy 
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rules in capacity allocation, follow-up rate determination and patient scheduling decisions for the 

office and virtual appointments in a chronic care setting. 
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Appendices 

Appendix A: Summary of the Notations 

Notation Definition 

Migration Network 

Model 
 

𝜇𝑖, 𝑖 ∈ {𝑜, 𝑣} The service rate of office and virtual appointments, respectively 

𝜆𝑖, 𝑖 ∈ {𝑜, 𝑣} The arrival rate of new patients of office and virtual appointments, 

respectively 

𝜎𝑖 , 𝑖 ∈ {𝑜, 𝑣} The frequency that a patient re-visit the physician of office and 

virtual appointments, respectively 

𝛿 The departure rate of the patients in the system. 
1

𝛾
 

The average time for a controlled patient to progress to 

uncontrolled state. 

𝑃0 The probability that the patients diagnosed in a controlled 

condition stay in controlled condition after a virtual treatment. 

𝑃1 The probability that the patients diagnosed in an uncontrolled 

condition improve in controlled condition after a virtual 

treatment. 

𝑃𝑗|𝑗′ , 𝑗, 𝑗′ ∈ {0,1} The probability that the virtual diagnosis treats the patient in 

condition 𝑗 as patient in condition 𝑗′ , where 𝑗, 𝑗′ = 0 represents 

the controlled condition; 𝑗, 𝑗′ = 1  represents the uncontrolled 

condition. 

𝑃ℎ The probability that the new arrival patient in virtual appointment 

is in controlled condition. 

ℎ0 The state represents controlled condition at home. 

ℎ1 The state represents uncontrolled condition at home. 

𝑜 The state represents scheduled patients at the office appointment. 

𝑣 The state represents scheduled patients at the virtual appointment. 

𝑣0 The state represents scheduled controlled patients at the virtual 

appointment. 

𝑣1 The state represents scheduled uncontrolled patients at the virtual 

appointment. 

𝛼𝑘, 𝑘 ∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} The expected number of patients at node 𝑘  in the steady-state 

condition. 

𝑥𝑘, 𝑘 ∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} The number of patients at node 𝑘 in the steady-state condition. 

𝜋𝑘(𝑥𝑘), 𝑘
∈ {ℎ0, ℎ1, 𝑜, 𝑣0, 𝑣1} 

The probability that 𝑥𝑘 patients at node 𝑘 in the steady state. 
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Notation Definition 

Capacity Allocation 

Model 
 

𝑟𝑘, 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The marginal profit for each patient treatment at node 𝑘. 

𝑐𝑘, 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The fixed cost of each unit of capacity at node 𝑘. 

𝑓𝑘 , 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The penalty cost for each overflow patient at node 𝑘. 

𝑥𝑘(𝑡), 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The current number of patients in the node 𝑘 at time 𝑡. 

𝑒𝑖𝑑 The penalty cost on each imperfect diagnosis. 

  

Capacity Allocation 

Model 
 

𝑀𝑜 The capacity of office appointments. 

𝑀𝑣 The capacity of virtual appointments. 

𝑀𝑣0
 The capacity of virtual appointments for controlled patients. 

𝑀𝑣1
 The capacity of virtual appointments for uncontrolled patients. 

𝑴 = (𝑀𝑜 , 𝑀𝑣0
, 𝑀𝑣1

) The vector to save the decision variables (capacity of each node). 

𝐴(𝑀) The total long-run average earnings of the clinic system. 

𝐴𝑘(𝑀𝑘), 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The long-run average earnings from the node 𝑘. 

𝑇𝐶 The limited total capacity added to the base model. 

𝑇𝑤 The limited total working time per day. 

𝑀𝑘
𝑚𝑖𝑛, 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The optimal capacity that maximize the average long-run earnings 

at the node 𝑘. 

𝑀𝑘
𝑡 , 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The variable used to save the value of the capacity of node 𝑘 in 

the 𝑡𝑡ℎ iteration. 

𝐴′(𝑀𝑘), 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The partial differential of objective function to 𝑀𝑘. 

𝑍𝑘(𝑀𝑘), 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} The marginal profit of node 𝑘 under unit of time. 

𝑀∗ The vector to save the optimal value of the decision variables 

(optimal capacity of each node) for basic capacity allocation 

model. 

𝑀𝑇𝐶
∗  The vector to save the optimal value of the decision variables 

(optimal capacity of each node) under limited total capacity, 𝑇𝐶. 

𝑀𝑇𝑤

∗  The vector to save the optimal value of the decision variables 

(optimal capacity of each node) under limited total working time, 

𝑇𝑤. 

𝑀𝑇𝑤
 The vector to save the value of the decision variables (capacity of 

each node) under limited total working time, 𝑇𝑤 from Algorithm 

2. 

𝑊𝑖𝑑 The average long-run penalty cost on imperfect diagnosis. 
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Notation Definition 

Stochastic Programming  

𝑡 ∈ {1,2} The state period 𝑡 in the problem framework. 

𝜓 ∈ 𝛹 The specific scenario 𝜓 in the problem. 

𝑧𝜓, 𝜓 ∈ 𝛹 The probability that scenario 𝜓 happens. 

ℒ The set of patients that need chronic care. 

𝜋𝑖𝑡 , 𝑖 ∈ ℒ, 𝑡 ∈ {1,2} Probability of patient 𝑖 being in the health status at period 𝑡. 

𝝅𝑖𝑡 = (𝜋𝑖𝑡, 1 − 𝜋𝑖𝑡) The health information vector of patient 𝑖 at period 𝑡. 

𝒆𝑖𝑡 The diagnosis information vector of patient 𝑖 at period 𝑡. 
𝑠𝑘, 𝑘 ∈ {𝑜, 𝑣} The treatment effectiveness of appointment with appointments’ 

type 𝑘 for uncontrolled patients. 

𝑺𝑘, 𝑘 ∈ {𝑜, 𝑣} The treatment matrix of appointment with appointments’ type 𝑘. 

𝑤 The probability that patients in controlled status stay controlled. 

𝑾 The disease progress matrix. 

𝑥𝑖𝑡
𝑘𝜓

 𝑥𝑖𝑡
𝑘𝜓

= 1 if patient 𝑖 ∈ ℒ is scheduled for an appointment type 𝑘 ∈

{𝑜, 𝑣} at period 𝑡 ∈ 𝑇 in scenario 𝜓 ∈ 𝛹, and 𝑥𝑖𝑡
𝑘𝜓

= 0 otherwise. 

𝒃 
QALY score vector corresponding to the health information 

vector. 

𝐵 The budget that the clinic plans for the appointments. 

𝐵𝑚𝑎𝑥 Maximum budget that needs for the appointment’s assignment. 

𝛼 The budget coefficient, 𝐵 = 𝛼𝐵𝑚𝑎𝑥. 
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Appendix B: Proofs 

B.1. Proof of Average Number of Patients at Each Node 

Recall that the model with imperfect diagnosis and treatment meets the definition of an open 

migration network (Kelly 1979), number of patients at each node satisfy the following traffic 

equations: 

𝜇𝑣𝛼𝑣0
− 𝜎𝑣𝑃0|0𝛼ℎ0

− 𝜎𝑣𝑃0|1𝛼ℎ1
= 𝑃ℎ𝜆𝑣 ∑ (𝐴. 1)

𝜇𝑣𝛼𝑣1
− 𝜎𝑣(1 − 𝑃0|0)𝛼ℎ0

− 𝜎𝑣(1 − 𝑃0|1)𝛼ℎ1
= (1 − 𝑃ℎ)𝜆𝑣 (𝐴. 2)

−𝜇𝑣𝑃0𝛼𝑣0
− 𝜇𝑣𝑃1𝛼𝑣1

+ (𝜎𝑣 + 𝜎𝑜 + 𝛿 + 𝛾)𝛼ℎ0
− 𝜇𝑜𝛼𝑜 = 0 ∑ (𝐴. 3)

−𝜇𝑣(1 − 𝑃0)𝛼𝑣0
− 𝜇𝑣(1 − 𝑃1)𝛼𝑣1

− 𝛾𝛼ℎ0
+ (𝜎𝑣 + 𝜎𝑜 + 𝛿)𝛼ℎ1

= 0 (𝐴. 4)

−𝜎𝑜𝛼ℎ0
− 𝜎𝑜𝛼ℎ1

+ 𝜇𝑜𝛼𝑜 = 𝜆𝑜 ∑ (𝐴. 5)

 

These equations represent that the inflow to node 𝑘 must to be equal to outflow from node 𝑘. 

Equations (A.1) - (A.5) are five equations with five unknowns, then we can solve the traffic 

equations and obtain the average number of patients in each node at steady-state and get: 

𝛼𝑣0
 =

Φ1𝜆𝑣 + [(𝑃0|1 + 𝑃0|0𝑃1 − 𝑃0|1𝑃1)𝜎𝑣
2 + 𝑃0|0𝛿𝜎𝑣 + 𝑃0|0𝜎𝑜𝜎𝑣 + 𝑃0|1𝛾𝜎𝑣]𝜆𝑜

(𝛿𝜇𝑣(𝛿 + 𝛾 + 𝜎𝑜 + 𝜎𝑣 − 𝑃0𝑃0|0𝜎𝑣 + 𝑃0𝑃0|1𝜎𝑣 + 𝑃0|0𝑃1𝜎𝑣 − 𝑃0|1𝑃1𝜎𝑣))
(𝐴. 6)

𝛼𝑣1
=

Φ2𝜆𝑣 + [Φ3 + (1 − 𝑃0|1)𝛾𝜎𝑣]𝜆𝑜

(𝛿𝜇𝑣(𝛿 + 𝛾 + 𝜎𝑜 + 𝜎𝑣 − 𝑃0𝑃0|0𝜎𝑣 + 𝑃0𝑃0|1𝜎𝑣 + 𝑃0|0𝑃1𝜎𝑣 − 𝑃0|1𝑃1𝜎𝑣))
(𝐴. 7)

𝛼ℎ0
=

Φ4𝜆𝑣 + [𝜎𝑜 + (𝑃1 + 𝑃0|1(𝑃0 − 𝑃1)) 𝜎𝑣 + 𝛿] 𝜆𝑜

(𝛿(𝛿 + 𝛾 + 𝜎𝑜 + 𝜎𝑣 − 𝑃0𝑃0|0𝜎𝑣 + 𝑃0𝑃0|1𝜎𝑣 + 𝑃0|0𝑃1𝜎𝑣 − 𝑃0|1𝑃1𝜎𝑣))
(𝐴. 8)

𝛼ℎ1
=

Φ5𝜆𝑣 + [𝛾 + (1 − 𝑃1 − 𝑃0|0(𝑃0 − 𝑃1)) 𝜎𝑣] 𝜆𝑜

(𝛿(𝛿 + 𝛾 + 𝜎𝑜 + 𝜎𝑣 − 𝑃0𝑃0|0𝜎𝑣 + 𝑃0𝑃0|1𝜎𝑣 + 𝑃0|0𝑃1𝜎𝑣 − 𝑃0|1𝑃1𝜎𝑣))
(𝐴. 9)

𝛼𝑜 =
𝜎𝑜𝜆𝑣 + (𝛿 + 𝜎𝑜)𝜆𝑜

𝛿𝜇𝑜

(𝐴. 10)

𝛼𝑣 = 𝛼𝑣0
+ 𝛼𝑣1

=
𝜎𝑣𝜆𝑜 + (𝛿 + 𝜎𝑣)𝜆𝑣

𝛿𝜇𝑣

(𝐴. 11)

 

where 
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Φ1 = (𝑃0|1 + 𝑃0|0𝑃1 − 𝑃0|1𝑃1)𝜎𝑣
2 + (𝑃0|1 + 𝑃ℎ + 𝑃0|0𝑃1 − 𝑃0|1𝑃1)𝛿𝜎𝑣 (𝐴. 12)

+𝑃0|0𝜎𝑜𝜎𝑣 + 𝑃0|1𝛾𝜎𝑣 + 𝑃ℎ𝛿2 + 𝑃ℎ𝛿𝛾 + 𝑃ℎ𝛿𝜎𝑜

 

Φ2 = (1 − 𝑃0|1 − 𝑃0𝑃0|0 + 𝑃0𝑃0|1)𝜎𝑣
2 + (2 − 𝑃0|1 − 𝑃ℎ − 𝑃0𝑃0|0 + 𝑃0𝑃0|1)𝛿𝜎𝑣 (𝐴. 13)

+(1 − 𝑃0|0)𝜎𝑜𝜎𝑣 + (1 − 𝑃0|1)𝛾𝜎𝑣 + (1 − 𝑃ℎ)𝛿2 + (1 − 𝑃ℎ)𝛿𝛾 + (1 − 𝑃ℎ)𝛿𝜎𝑜

 

Φ3 = [1 − 𝑃0|1 + 𝑃0(𝑃0|1 − 𝑃0|0)]𝜎𝑣
2 + (1 − 𝑃0|0)𝛿𝜎𝑣 + (1 − 𝑃0|0)𝜎𝑜𝜎𝑣 (𝐴. 14) 

Φ4 = 𝜎𝑜 + (𝑃1 + 𝑃0|1(𝑃0 − 𝑃1)) 𝜎𝑣 + (𝑃1 + 𝑃ℎ(𝑃0 − 𝑃1))𝛿 (𝐴. 15) 

Φ5 = 𝛾 + (1 − 𝑃1 − 𝑃0|0(𝑃0 − 𝑃1)) 𝜎𝑣 + (1 − 𝑃1 − 𝑃ℎ(𝑃0 − 𝑃1))𝛿 (𝐴. 16) 

B.2. Proof of Reformulation of the Objective Function 

The original objective function of the base capacity allocation model is: 

𝐴(𝑀) = lim
𝑇→∞

1

𝑇
{ ∑ ∫ 𝑟𝑘𝑚𝑖𝑛

𝑇

0

[𝑥𝑘(𝑡), 𝑀𝑘]𝑑𝑡

𝑘∈{𝑜,𝑣0,𝑣1}

− ∫ 𝑐𝑘𝑀𝑘𝑑𝑡
𝑇

0

− ∫ 𝑓𝑘(𝑥𝑘(𝑡) − 𝑀𝑘)+𝑑𝑡
𝑇

0

} (A. 17) 

To simplify the objective function (A.17), we make some changes: 

𝑚𝑖𝑛[𝑥𝑘(𝑡), 𝑀𝑘] = 𝑥𝑘(𝑡) − [𝑥𝑘(𝑡) − 𝑀𝑘]+ (𝐴. 18) 

𝑀𝑘 = 𝑥𝑘(𝑡) − [𝑥𝑘(𝑡) − 𝑀𝑘]+ + [𝑀𝑘 − 𝑥𝑘(𝑡)]+ (𝐴. 19) 

Substitute equation (A.18) and (A.19) into objective function (A.17) gives: 

𝐴(𝑀) =
1

𝑇
{∫ (𝑟𝑘 − 𝑐𝑘)𝑥𝑘(𝑡)𝑑𝑡

𝑇

0

− ∫ 𝑐𝑘[𝑀𝑘 − 𝑥𝑘(𝑡)]+𝑑𝑡
𝑇

0

− ∫ (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘)[𝑥𝑘(𝑡) − 𝑀𝑘]+𝑑𝑡
𝑇

0

} (A. 20) 

Due to ergodicity, let 𝔼𝜋𝑘
(𝑥𝑘), 𝑘 ∈ {𝑜, 𝑣𝑜 , 𝑣1} be the expected number of patients at node 𝑖 

under the steady state distribution 𝜋𝑘, 𝑘 ∈ {𝑜, 𝑣𝑜 , 𝑣1}. We have: 

𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑥𝑘(𝑡)𝑑𝑡

𝑇

0

= 𝔼𝜋𝑘
(𝑥𝑘) = 𝛼𝑘 (A. 21) 

𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ [𝑀𝑘 − 𝑥𝑘(𝑡)]+𝑑𝑡

𝑇

0

= 𝔼𝜋𝑘
(𝑀𝑘 − 𝑥𝑘)+ (A. 22) 

𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ [𝑥𝑘(𝑡) − 𝑀𝑘]+𝑑𝑡

𝑇

0

= 𝔼𝜋𝑘
(𝑥𝑘 − 𝑀𝑘)+ (A. 23) 

Take equation (A.21) - (A.23) into objective function (A.20), we get: 

𝐴(𝑀) = ∑ [(𝑟𝑘 − 𝑐𝑘)𝛼𝑘 − 𝑐𝑘𝔼𝜋𝑘
(𝑀𝑘 − 𝑥𝑘)+ − (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘)𝔼𝜋𝑘

(𝑥𝑘 − 𝑀𝑘)+]

𝑘∈{𝑜,𝑣𝑜,𝑣1}

(A. 24) 
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In the Function (A.24), the first term is the marginal profit. The second term is the opportunity 

cost for unutilized capacity. The last term represents the cost due to patient overflow. 

B.3. Proof of Proposition 1 

Since the office and virtual processes are independent to each other, to maximize the objective 

𝐴(𝑀), it suffices to maximize the sub-objective 𝐴𝑘(𝑀𝑘), 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} separately. 

𝐴𝑘(𝑀𝑘) = (𝑟𝑘 − 𝑐𝑘)𝛼𝑘 − 𝑐𝑘𝐸𝜋𝑘
(𝑀𝑘 − 𝑥𝑘)+ − (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘)𝐸𝜋𝑘

(𝑥𝑘 − 𝑀𝑘)+ (A. 25) 

The differential and the second-order differential of function (A.25) are 

𝛥𝐴𝑘(𝑀𝑘)

𝛥(𝑀𝑘)
= 𝐴𝑘(𝑀𝑘 + 1) − 𝐴𝑘(𝑀𝑘) (A. 26)

= −𝑐𝑘 [ ∑ (𝑀𝑘 + 1 − 𝑥𝑘)𝜋𝑘(𝑥𝑘)

𝑀𝑘+1

𝑥𝑘=0

− ∑ (𝑀𝑘 − 𝑥𝑘)𝜋𝑘(𝑥𝑘)

𝑀𝑘

𝑥𝑘=0

]

−(𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘) [ ∑ (𝑥𝑘 − (𝑀𝑘 + 1))𝜋𝑘(𝑥𝑘)

∞

𝑥𝑘=𝑀𝑘+1

− ∑ (𝑥𝑘 − 𝑀𝑘)𝜋𝑘(𝑥𝑘)

∞

𝑥𝑘=𝑀𝑘

]

= −𝑐𝑘 ∑ 𝜋𝑘(𝑥𝑘)

𝑀𝑘

𝑥𝑘=0

+ (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘) ∑ 𝜋𝑘(𝑥𝑘)

∞

𝑥𝑘=𝑀𝑘+1

= −𝑐𝑘𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘) + (𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘)𝜋𝑘(𝑥𝑘 > 𝑀𝑘)

= 𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘 − (𝑓𝑘 + 𝑟𝑘)𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘)

 

Δ2𝐴𝑘(𝑀𝑘)

Δ2(𝑀𝑘)
= Δ𝐴𝑘(𝑀𝑘 + 1) − Δ𝐴𝑘(𝑀𝑘) (𝐴. 27)

= −(𝑓𝑘 + 𝑟𝑘)[𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘 + 1) − 𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘)] < 0

 

It is clear that the objective function 𝐴𝑘(𝑀𝑘)  is a discrete concave function. Hence, to 

maximize 𝐴𝑘(𝑀𝑘), the optimal capacity of node 𝑘 is the smallest positive integer 𝑀𝑘 = 𝑀𝑘
𝑚𝑖𝑛 that 

makes 𝛥𝐴𝑘(𝑀𝑘) ≤ 0, and we have 

∀𝑀𝑘 ∈ [0, 𝑀𝑘
𝑚𝑖𝑛),  𝛥𝐴𝑘𝑀𝑘 > 0,  𝑡ℎ𝑒𝑛,  𝐴𝑘(𝑀𝑘) < 𝐴𝑘(𝑀𝑘

𝑚𝑖𝑛) (𝐴. 28) 

∀𝑀𝑘 ∈ [𝑀𝑘
𝑚𝑖𝑛,∞) ,  𝛥𝐴𝑘𝑀𝑘 ≤ 0,  𝑡ℎ𝑒𝑛,  𝐴𝑘(𝑀𝑘) ≤ 𝐴𝑘(𝑀𝑘

𝑚𝑖𝑛) (A. 29) 

In one case that if 𝛥𝐴𝑘(𝑀𝑘
𝑚𝑖𝑛) = 0, the optimal capacity can be 𝑀𝑘

𝑚𝑖𝑛 or (𝑀𝑘
𝑚𝑖𝑛 + 1), since 

𝐴𝑘(𝑀𝑘
𝑚𝑖𝑛) = 𝐴𝑘(𝑀𝑘

𝑚𝑖𝑛 + 1). But it has a small probability that 𝛥𝐴𝑘(𝑀𝑘
𝑚𝑖𝑛) = 0 and even in that 

case, 𝑀𝑘
𝑚𝑖𝑛 is one of the optimal solutions. Hence, we conclude that 𝑀𝑘

𝑚𝑖𝑛 is the optimal capacity 

for node 𝑘 that maximize 𝐴𝑘(𝑀𝑘). 
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𝑀𝑘
𝑚𝑖𝑛 = 𝑚𝑖𝑛 {𝑀𝑘 ≥ 0: 𝜋𝑘(𝑥𝑘 ≤ 𝑀𝑘) ≥

𝑓𝑘 + 𝑟𝑘 − 𝑐𝑘

𝑓𝑘 + 𝑟𝑘
} (A. 30) 

From Function (A.30), we obtain 𝑀∗ = (𝑀𝑜
𝑚𝑖𝑛, 𝑀𝑣0

𝑚𝑖𝑛, 𝑀𝑣1
𝑚𝑖𝑛), which is the optimal capacity 

for the 𝐴(𝑀). 

B.4. Proof of Proposition 2 

When physicians do not have enough working time, the solution is obtained through the 

Algorithm 2. Assume through 𝑡𝑡ℎ iteration, we obtain the solution from the algorithm, and the 

solution is 𝑀𝑇𝑤
= 𝑀𝑇𝑤

𝑡 = (𝑀𝑜
𝑡 , 𝑀𝑣0

𝑡 , 𝑀𝑣1
𝑡 ). Hence, 𝑀𝑇𝑤

 satisfies: 

∑
1

𝜇𝑘
𝑘∈{𝑜,𝑣𝑜,𝑣1}

𝑀𝑘
𝑡 ≤ 𝑇𝑤 (𝐴. 31) 

∑
1

𝜇𝑘
𝑘∈{𝑜,𝑣𝑜,𝑣1}

𝑀𝑘
𝑡 +

1

𝜇𝑘
> 𝑇𝑤 ∀ 𝑘 ∈ {𝑜, 𝑣0, 𝑣1} (𝐴. 32) 

Now, if we relax the time constraint and let the algorithm runs one more iteration, we have 

𝑀𝑇𝑤

𝑡+1 = 𝑀𝑇𝑤
+ 𝑒𝑥, where 𝑒𝑥 is the 𝑥𝑡ℎ unit vector, and 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗  𝜇𝑗𝐴′(𝑀𝑗

𝑘). Refer to  (Fox 

1966), we have 

𝐴(𝑀𝑇𝑤

𝑡+1) > 𝐴(𝑀𝑇𝑤

∗ ) ≥ 𝐴(𝑀𝑇𝑤
) (𝐴. 33) 

∑
1

𝜇𝑘
𝑘∈{𝑜,𝑣𝑜,𝑣1}

𝑀𝑘
𝑡+1 > 𝑇𝑤 ≥ ∑

1

𝜇𝑘
𝑘∈{𝑜,𝑣𝑜,𝑣1}

𝑀𝑘,𝑇𝑤

∗ ≥ ∑
1

𝜇𝑘
𝑘∈{𝑜,𝑣𝑜,𝑣1}

𝑀𝑘
𝑡 (𝐴. 34) 

Inequality (A.33) and (A.34) shows that the optimal average long-run earnings and the 

working time are between those under the sub-optimal solution 𝑀𝑇𝑤
 and the solution 𝑀𝑇𝑤

𝑡+1 that 

we allow to run one more iteration. By considering inequality (A.33), we have 

𝐴(𝑀𝑇𝑤

∗ ) − 𝐴(𝑀𝑇𝑤
) < 𝐴(𝑀𝑇𝑤

𝑡+1) − 𝐴(𝑀𝑇𝑤
) = 𝐴′(𝑀𝑥

𝑡) ≤ 𝑚𝑎𝑥 𝐴′(𝑀𝑘
𝑡 ) (𝐴. 35) 

where 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗  𝜇𝑗𝐴′(𝑀𝑗
𝑡). 

With inequality (A.33) and (A.35), we are ready to prove that the relative error by using the 

solution from Algorithm 2, 𝑀𝑇𝑤
, as an approximation of 𝑀𝑇𝑤

∗  is no greater than 
𝑚𝑎𝑥 𝐴′(𝑀𝑘

𝑡)

𝐴(𝑀𝑇𝑤)
. 

𝐴(𝑀𝑇𝑤

∗ ) − 𝐴(𝑀𝑇𝑤
)

𝐴(𝑀𝑇𝑤

∗ )
≤

𝐴(𝑀𝑇𝑤

∗ ) − 𝐴(𝑀𝑇𝑤
)

𝐴(𝑀𝑇𝑤
)

<
𝑚𝑎𝑥 𝐴′(𝑀𝑘

𝑡 )

𝐴(𝑀𝑇𝑤
)

(𝐴. 36) 
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Appendix C: Graphs of Policies Comparison in Section 3.4.6 

Table C.1: Comparison of Policy-4 and 5 with time/capacity constraint when the fluctuation rate is 5% 

  Algorithm-1 % Profit Gap 

Model with 

Capacity 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-4 Policy-5 

Average 15.28 16.71 0.92 9.94 6.76 1.49 5.64% 1.20% 

Max 18.00 20.00 1.14 12.00 9.00 2.20 16.46% 7.18% 

Min 13.00 14.00 0.70 8.00 5.00 1.11 0.59% 0.00% 

                  

  Algorithm-2 % Profit Gap 

Model with 

Time 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-4 Policy-5 

Average 16.50 19.25 0.86 11.30 7.95 1.43 6.57% 3.69% 

Max 20.00 23.00 1.11 14.00 10.00 2.00 24.62% 23.29% 

Min 14.00 16.00 0.64 9.00 6.00 1.11 0.11% 0.00% 

 

Table C.2: Comparison of Policy-4 and 5 with time/capacity constraint when the fluctuation rate is 10% 

  Algorithm-1 % Profit Gap 

Model with 

Capacity 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-4 Policy-5 

Average 15.10 16.61 0.92 9.90 6.71 1.54 8.97% 4.59% 

Max 20.00 21.00 1.50 14.00 10.00 3.33 58.96% 33.66% 

Min 10.00 12.00 0.50 6.00 3.00 0.88 0.00% 0.00% 

                

  Algorithm-2 % Profit Gap 

Model with 

Time 

Constraint 

𝑴𝒐 𝑴𝒗 
𝑴𝒐

𝑴𝒗
 𝑴𝒗𝟎

 𝑴𝒗𝟏
 

𝑴𝒗𝟎

𝑴𝒗𝟏

 Policy-4 Policy-5 

Average 16.15 19.05 0.86 11.24 7.80 1.49 11.62% 8.85% 

Max 21.00 25.00 1.29 17.00 12.00 2.60 85.70% 90.13% 

Min 13.00 14.00 0.54 7.00 5.00 0.88 -1.78% 0.00% 
 


