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Abstract 
The statistical practice of modeling interaction with two linear main effects and a product term is 

ubiquitous in the statistical and epidemiological literature. Most data modelers are aware that the 

misspecification of main effects can potentially cause severe type I error inflation in tests for 

interactions, leading to spurious detection of interactions. However, modeling practice has not 

changed. In this paper, we focus on the specific situation where the main effects in the model are 

misspecified as linear terms and characterize its impact on common tests for statistical interaction. 

We then propose some simple alternatives that fix the issue of potential type I error inflation in 

testing interaction due to main effect misspecification.  We show that when using the sandwich 

variance estimator for a linear regression model with a quantitative outcome and two independent 

factors, both the Wald and score tests asymptotically maintain the correct type I error rate. However, 

if the independence assumption does not hold or the outcome is binary, using the sandwich 

estimator does not fix the problem. We further demonstrate that flexibly modeling the main effect 

under a generalized additive model can largely reduce or often remove bias in the estimates and 
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maintain the correct type I error rate for both quantitative and binary outcomes regardless of the 

independence assumption.  We show, under the independence assumption and for a continuous 

outcome, overfitting and flexibly modeling the main effects does not lead to power loss 

asymptotically relative to a correctly specified main effect model. Our simulation study further 

demonstrates the empirical fact that using flexible models for the main effects does not result in a 

significant loss of power for testing interaction in general. Our results provide an improved 

understanding of the strengths and limitations for tests of interaction in the presence of main effect 

misspecification. Using data from a large biobank study “The Michigan Genomics Initiative”, we 

present two examples of interaction analysis in support of our results. 

 

Keywords: Generalized Additive Model (GAM), Gene-Environment Interaction, Independence, 

Joint Tests, Power, Robust Tests, Sandwich Variance Estimator, Type I error. 

 

Introduction 
The scientific notion of interaction between two factors tries to capture the phenomenon that the 

effect of one factor is different in the presence or absence of another factor.1 This could be of the 

nature that one factor is activated/silenced only in the presence of another factor, thus exhibiting a 

complete synergistic or antagonistic effect. It could also be more subtle in terms of modification 

of the strength of association of one factor with the outcome when the other factor is set at two 

different levels. This definition does not assume any particular structure of the joint response 

surface determined by the two factors, except that under the hypotheses of no-interaction, the 

implied marginal response surfaces of one factor are simple constant shifts when the other factor 

is fixed at two different levels.   Interaction is often statistically assessed by fitting a regression 

model for a quantitative or binary outcome by including two linear main effects and products 

between the two factors. However, missing a quadratic term (say) in one variable that truly exists 

can lead to the detection of spurious interactions in a linear model as the cross-product term then 

tries to mimic/approximately capture the second order features of the model.  There exists some 

This article is protected by copyright. All rights reserved.



literature on this topic in statistics, genetics, and epidemiology.2-8 For longitudinally measured 

quantitative outcomes main effect misspecification is discussed in He et al.9  

 

In this paper, we consider a specific scenario related to the effect of misspecification of main effect 

structure on tests for statistical interaction: when the true underlying main effect is nonlinear but a 

linear model is specified for the main effects. When such main effect misspecification is present, 

then, in general, the standard statistical tests (e.g., the Wald or score test based on model-based 

standard error) will lead to an invalid test of interaction and potentially severe type I error rate 

inflation. Under certain conditions, the type I error inflation may be fixed by using robust inference 

(e.g., using sandwich variance estimator) and this phenomenon has been empirically observed by, 

for example, Voorman et al.10 and  Cornelis et al,6 and formally studied by Tchetgen Tchetgen and 

Kraft,5 He et al,9 and Sun et al.8  This problem has also been discussed recently in analyzing 

treatment and biomarker interaction as it is natural to assume independence of treatment with other 

covariates in a randomized clinical trials.11-12 

 

We show that for quantitative outcomes when a linear regression model is applied, and the two 

factors are independent, both the usual Wald and score tests, when modified by the sandwich 

variance estimator asymptotically maintain correct type-1 error. However, if the independence 

assumption does not hold or the outcome is binary and analyzed by a logistic regression model, 

using the sandwich estimator does not fix the problem. We further demonstrate that flexibly 

modeling the main effect under a generalized additive model using a flexible nonparametric term 

can reduce bias in the estimates and maintain correct type-1 error for both quantitative and binary 

outcomes regardless of the independence between the two factors.  We show, under the 

independence assumption and for a continuous outcome, overfitting and flexibly modeling the 

main effects does not lead to power loss asymptotically relative to a correctly specified main effect 

model. Our simulation studies indicate by flexibly modeling the main effect we do not lose power 

significantly for testing interaction in general. Using data from the Michigan Genomics Initiative, 
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a large ongoing biobank study at the University of Michigan, we illustrate our theoretical and 

simulation results as they pertain to two examples on interaction analysis.   

 

This paper contributes to the current literature by considering both quantitative and binary 

outcomes, proposing and studying two general ways of handling main effect misspecification (i.e., 

robust inference and flexible modeling of main effects), and studying the advantages and 

disadvantages of each method in terms of both type I error control and power under different 

assumptions regarding independence. Our results provide an improved understanding of the 

strengths and limitations of each method, in both finite samples and large samples, for interaction 

tests in the presence of main effect misspecification. 

 

Methods 
Tests for statistical interaction 

We are interested in evaluating the interaction effect between two variables 𝑋𝑋1  and 𝑋𝑋2  on the 

outcome 𝑌𝑌, which can be quantitative or binary, based on a study with 𝑛𝑛 individuals. The observed 

data are denoted by (𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖, 𝑌𝑌𝑖𝑖)  for 𝑖𝑖 = 1, … , 𝑛𝑛.   Denoting 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋1𝑖𝑖,𝑋𝑋2𝑖𝑖) , we suppose the 

test of interaction is based on the following regression model,  

𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖             (1) 

where 𝛽𝛽 = [𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3]𝑇𝑇  are unknown regression parameters, and 𝑔𝑔(𝜇𝜇)  is a link function. 

Specifically, we assume a linear regression model is used for quantitative outcomes and a logistic 

regression model is used for binary outcomes, i.e.,  𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝜇𝜇𝑖𝑖  for quantitative outcomes and 

𝑔𝑔(𝜇𝜇𝑖𝑖) = logit(𝜇𝜇𝑖𝑖) ≡ log( 𝜇𝜇𝑖𝑖
1−𝜇𝜇𝑖𝑖

) for binary outcomes. The parameter 𝛽𝛽3 measures the magnitude of 

a linear statistical interaction between 𝑋𝑋1  and 𝑋𝑋2 . Based on the regression model, to test the 

interaction between 𝑋𝑋1  and 𝑋𝑋2 , one can test the hypothesis 𝐻𝐻0:  𝛽𝛽3 = 0  vs. 𝐻𝐻1: 𝛽𝛽3 ≠ 0 . We first 

describe two commonly used tests, namely, the Wald test and score test, and inferential procedures 

using the model-based standard error and the empirical sandwich standard error.  
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Wald test 

The Wald test is one of the most commonly used methods for testing unknown parameters in a 

parametric regression model. It is constructed using the maximum likelihood estimate of the 

parameter of interest and its standard error.    Considering model (1), let 𝛽̂𝛽  denote the usual 

maximum likelihood estimate of 𝛽𝛽. For both linear and logistic regression models, it is the solution 

to the estimating equation 

∑ 𝑋𝑋𝑖𝑖{𝑌𝑌𝑖𝑖 − 𝑔𝑔−1(𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽)}𝑖𝑖 = 0, 

where 𝑋𝑋𝑖𝑖 = [1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖, 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖]𝑇𝑇 .  Two methods can be used to estimate the variance and 

covariance matrix of 𝛽̂𝛽.  In model-based inference, the variance estimate is obtained by assuming 

the specified linear/logistic regression model is correct. Alternatively, one can obtain the empirical 

estimate of variance without assuming the corresponding mean regression model is correctly 

specified using the so-called sandwich variance estimate.  See Appendix for details. We denote the 

predictions and residuals as 𝜇̂𝜇𝑖𝑖 = 𝑔𝑔−1(𝑋𝑋𝑖𝑖𝑇𝑇𝛽̂𝛽) and 𝜖𝜖𝑖̂𝑖 = 𝑌𝑌𝑖𝑖 − 𝜇̂𝜇𝑖𝑖 respectively.  For a linear regression 

model with a quantitative outcome, the model-based and sandwich variance estimates of 𝛽̂𝛽 are  

𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝛽̂𝛽� =
1

𝑛𝑛 − 𝑝𝑝
��𝜖𝜖𝑖̂𝑖2

𝑖𝑖

���𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

�
−1

,   

𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛽̂𝛽� =
𝑛𝑛

(𝑛𝑛 − 𝑝𝑝)
��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

�
−1

��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

𝜖𝜖𝑖̂𝑖2 � ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

�
−1

, 

respectively, where 𝑝𝑝  is the dimension of 𝑋𝑋𝑖𝑖 .  For a logistic regression model with a binary 

outcome, the model-based and sandwich variance estimates of 𝛽̂𝛽 are 

𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝛽̂𝛽� =
𝑛𝑛

𝑛𝑛 − 𝑝𝑝
��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜇̂𝜇𝑖𝑖(1 − 𝜇̂𝜇𝑖𝑖) 

𝑖𝑖

�
−1

,   
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𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛽̂𝛽� =
𝑛𝑛

(𝑛𝑛 − 𝑝𝑝) ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜇̂𝜇𝑖𝑖(1 − 𝜇̂𝜇𝑖𝑖)
𝑖𝑖

�
−1

��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜖𝜖𝑖̂𝑖2

𝑖𝑖

� ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜇̂𝜇𝑖𝑖(1 − 𝜇̂𝜇𝑖𝑖)
𝑖𝑖

�
−1

, 

respectively. Under  𝐻𝐻0, if the model for main effects (i.e., effects of 𝑋𝑋1 and 𝑋𝑋2) is correct, then 

asymptotically the Wald test statistic  𝛽̂𝛽32/𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝛽̂𝛽3�   with model-based variance estimate and its 

sandwich version  𝛽̂𝛽32/𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛽̂𝛽3� follow a Chi-square distribution with 1 degree of freedom. 

For a level 𝛼𝛼 test, we reject 𝐻𝐻0: 𝛽𝛽3 = 0 when the test statistic is greater than 𝜒𝜒1,𝛼𝛼 
2 , where 𝜒𝜒1,𝛼𝛼 

2  

satisfies 𝑃𝑃�𝜒𝜒12 > 𝜒𝜒1,𝛼𝛼 
2 � = 𝛼𝛼.  

Score test 

Unlike the Wald test which is based on fitting a full model including both main effects of 𝑋𝑋1 and 𝑋𝑋2 

and their interaction term, the score test is based on the score statistics of a model under the null 

hypothesis.  Specifically, under the null hypothesis, model (1) reduces to the model with only main 

effects: 

𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖,           (2) 

where 𝛽𝛽 = [𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2]𝑇𝑇  are unknown parameters in the null model. Let 𝛽𝛽�  be the maximum 

likelihood estimate of 𝛽𝛽 under this null model and 𝛽𝛽� is the solution to the estimating equation  

∑ 𝑋𝑋𝑜𝑜,𝑖𝑖𝑖𝑖 {𝑌𝑌𝑖𝑖 − 𝑔𝑔−1�𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽�} = 0, 

where 𝑋𝑋𝑜𝑜,𝑖𝑖 = [1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖]𝑇𝑇 . We denote the predictions and residuals from model (2) as  𝜇𝜇�𝑖𝑖 =

𝑔𝑔−1�𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽�� and 𝜖𝜖𝑖̃𝑖 = 𝑌𝑌𝑖𝑖 − 𝑔𝑔−1�𝑋𝑋𝑜𝑜,𝑖𝑖

𝑇𝑇 𝛽𝛽�� respectively.  The score statistic with respect to 𝛽𝛽3 is 

𝑆𝑆 =
1
𝑛𝑛
�𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖(𝑌𝑌𝑖𝑖 − 𝜇𝜇�𝑖𝑖)
𝑖𝑖

. 

For a linear regression model for a quantitative outcome, the model-based and sandwich variance 

estimate of 𝑆𝑆 are  
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𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆) =
1

𝑛𝑛2(𝑛𝑛 − 𝑝𝑝)��𝜖𝜖𝑖̃𝑖2

𝑖𝑖

� 𝐴̃𝐴 ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

� 𝐴̃𝐴𝑇𝑇, 

𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆) =
1

𝑛𝑛(𝑛𝑛 − 𝑝𝑝)
𝐴̃𝐴 ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜖𝜖𝑖̃𝑖

2

𝑖𝑖

� 𝐴̃𝐴𝑇𝑇, 

respectively, where  𝐴̃𝐴 = �−�∑ 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇𝑛𝑛

𝑖𝑖=1 ��∑ 𝑋𝑋𝑜𝑜,𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇𝑛𝑛

𝑖𝑖=1 �
−1

, 1� and 𝑝𝑝 is the dimension of 𝑋𝑋𝑜𝑜,𝑖𝑖. 

For a logistic regression model for binary outcomes, the model based and sandwich variance 

estimate of 𝑆𝑆 are respectively,  

𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆) =
1

𝑛𝑛(𝑛𝑛 − 𝑝𝑝)𝐵𝐵
� ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜇𝜇�𝑖𝑖(1 − 𝜇𝜇�𝑖𝑖)

𝑖𝑖

�𝐵𝐵�𝑇𝑇, 

𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆) =
1

𝑛𝑛(𝑛𝑛 − 𝑝𝑝)
𝐵𝐵� ��𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝜖𝜖𝑖̃𝑖

2

𝑖𝑖

� 𝐵𝐵�𝑇𝑇 , 

where  𝐵𝐵� = �−{∑ 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖𝜇𝜇�𝑖𝑖(1 − 𝜇𝜇�𝑖𝑖)𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇𝑛𝑛

𝑖𝑖=1 }�∑ 𝜇𝜇�𝑖𝑖(1 − 𝜇𝜇�𝑖𝑖)𝑋𝑋𝑜𝑜,𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇𝑛𝑛

𝑖𝑖=1 �
−1

, 1�.  Under 𝐻𝐻0 , if the 

model for main effects is correct, both model based score test statistic 𝑆𝑆2/𝑉𝑉�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆) and its 

sandwich version 𝑆𝑆2/𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆)  follows a  Chi-square distribution with 1 degree of freedom. 

We reject 𝐻𝐻0: 𝛽𝛽3 = 0 when the test statistics are sufficiently large.   

  

Misspecification of Main effects 

So far, we have discussed four tests (Wald and score tests with a model-based variance estimate, 

Wald and score tests with a sandwich variance estimate). When the main effects for 𝑋𝑋1 and 𝑋𝑋2 are 

correctly specified, all four tests lead to correct type I error rates. However, the underlying model 

is often unknown, and  𝑋𝑋1 , 𝑋𝑋2  or both likely have a non-linear effect. Misspecifying the main 

effects may lead to spurious findings.  

 

To remedy the type I error inflation due to misspecification of main effects one solution is to 
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replace the usual model-based statistical inference by the robust inference based on sandwich 

variance estimation. An alternative solution is to use a Generalized Additive Model (GAM)13 to 

model the main effect of X1 more flexibly. GAM extends a generalized linear model to include 

smooth functions of explanatory variables with the smoothness determined by a parameter that 

either directly controls the smoothness of the curve or the estimated predictive accuracy. We 

consider two types of GAMs:  

GAM1: 𝑔𝑔�𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖)� = 𝛽𝛽0 + 𝛽𝛽1𝑠𝑠1(𝑋𝑋1𝑖𝑖) + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 

GAM2: 𝑔𝑔�𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖)� = 𝛽𝛽0 + 𝛽𝛽1𝑠𝑠1(𝑋𝑋1𝑖𝑖) + 𝛽𝛽2𝑠𝑠2(𝑋𝑋2𝑖𝑖) + 𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 

where 𝑠𝑠𝑗𝑗(𝑥𝑥)  , 𝑗𝑗 = 1, 2,  are smooth functions using thin plate splines.14 Although GAM is a 

common method to model non-linear effects, it has not been recognized and well discussed in 

interaction analysis to address main effect misspecification. The strategy here is to try to model 

the main effect of 𝑋𝑋1 and 𝑋𝑋2 correctly using nonparametric models where only a mild smoothness 

assumption is made to achieve type I error control. Modeling the main effect correctly and flexibly 

(or approximately so) can lead to an improvement in power relative to a robust sandwich  inference 

based on an incorrectly specified main effect model, as demonstrated in our simulation studies.  

Moreover, a flexible main effect model, even unnecessary, does not result in power loss under the 

independence assumption for continuous outcomes, relative to a correctly specified main effect 

model as we discuss later.  A similar phenomenon is discussed and proved in He et al.9 in the 

setting of testing for gene-environment interaction for repeated measurements.  However, note that 

we are still considering the true interaction term to be linear.  

 

In this paper, we focus on testing interaction alone, i.e., testing for 𝛽𝛽3 = 0. In Tchetgen Tchetgen 

and Kraft,4 they considered the joint test of one factor (e.g., genetic factor) and its interaction with 

another factor (e.g., environmental factor), i.e., testing for 𝛽𝛽2 = 0  and 𝛽𝛽3 = 0  jointly.  They 

showed that when assuming gene-environment independence for a binary outcome modeled using 

logistic regression, a joint test using a Wald or score test combined with the sandwich variance 

estimator leads to the correct type I error rate even when one of the main effects is misspecified.  
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As our results will show, for logistic regression, robustness against main effect misspecification 

using a sandwich variance estimator does not hold in general for testing for interaction alone.  Such 

robustness will only hold under the additional assumption that the true 𝛽𝛽2 is zero, as commented 

by Tchetgen Tchetgen and Kraft.5 

 

Simulation Design 

We conducted simulation studies under misspecification of main effects to evaluate the 

performance of the methods mentioned above based on 500 replicates: 1. Wald test with model-

based variance estimate; 2. Wald and score tests with sandwich variance estimate; 3. Wald test with 

model-based variance estimate but using GAM to model the possibly non-linear main effect.  

Additionally, when the outcome is quantitative, we also compare these methods with the rule 

ensemble method of Friedman and Popescu15 for testing interaction, where the form of the 

interaction is completely arbitrary. We refer to this method by RuleFit (Predictive Learning via 

Rule Ensemble) and we implemented it using the R-package pre.16  The details on implementation 

of the RuleFit are given in the Supplementary material. We simulated four continuous and binary 

outcome models with a linear, quadratic, log or exponential main effect for 𝑋𝑋1 as follows, 

 𝑔𝑔(𝜇𝜇) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋1𝑋𝑋2  

 𝑔𝑔(𝜇𝜇) = 𝛽𝛽0 + 𝛽𝛽1(𝑋𝑋1 + 2𝑋𝑋12) + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋1𝑋𝑋2  

 𝑔𝑔(𝜇𝜇) = 𝛽𝛽0 + 𝛽𝛽1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋1) + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋1𝑋𝑋2  

 𝑔𝑔(𝜇𝜇) = 𝛽𝛽0 + 𝛽𝛽1 𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋1) + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋1𝑋𝑋2  

where 𝜇𝜇 = 𝐸𝐸(𝑌𝑌|𝑋𝑋1, 𝑋𝑋2) ; 𝑔𝑔(𝜇𝜇) = 𝜇𝜇  for continuous outcomes; 𝑔𝑔(𝜇𝜇) = logit(𝜇𝜇)  for binary 

outcomes. The two factors 𝑋𝑋1 and 𝑋𝑋2 are both continuous variables generated from normal/log-

normal distributions, and we consider settings where they are independent or dependent, as 

detailed in Supplementary Tables S1 and S2. For continuous outcomes, we consider sample size 

𝑛𝑛 = 500 , (𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2) = (1,2,3)  and, for binary outcomes, we consider 𝑛𝑛 = 2,000 , (𝛽𝛽1, 𝛽𝛽2) =

(1,2) and 𝛽𝛽0 is chosen such that the  marginal prevalence of Y  is 0.2. We vary 𝛽𝛽3 to evaluate type 

I error rate (𝛽𝛽3 = 0) and power (𝛽𝛽3 > 0). We present the results in Figures 1 and 2. Additionally, 
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we evaluated the type I error rate (𝛽𝛽3 = 0) under greater sample size up to 10,000 and present the 

results in Figures 3 and 4. The exact numerical values can be found in Supplementary Tables 

S3-S6. 

 

Results 
Analytical results:  main effect misspecification and independence assumption 

Result 1 (Wald test): For quantitative outcomes, under the null hypothesis (i.e., there is no 

interaction between 𝑋𝑋1 and 𝑋𝑋2 in the true model) and under the assumption of independence of 𝑋𝑋1 

and 𝑋𝑋2, if a linear regression model is used, then regardless of whether the main effects for 𝑋𝑋1and 

𝑋𝑋2  are correctly specified or not,  𝛽̂𝛽3  converges in probability to 0, and √𝑛𝑛 𝛽̂𝛽3  converges in 

distribution to a normal distribution. The asymptotic variance can be consistently estimated by the 

empirical sandwich variance estimator. 

 

 Result 2 (score test): For quantitative outcomes, under the null hypothesis (i.e., there is no 

interaction between 𝑋𝑋1 and 𝑋𝑋2 in the true model) and under the assumption of independence of 𝑋𝑋1 

and 𝑋𝑋2, if a linear regression model is used and both  𝑋𝑋1 and 𝑋𝑋2 are centered, then regardless of 

whether the main effects for 𝑋𝑋1 and 𝑋𝑋2  are correctly specified or not, the score for testing the 

interaction of 𝑋𝑋1 and 𝑋𝑋2 , i.e., 𝑆𝑆 = 1
𝑛𝑛
∑ 𝑆𝑆𝑖𝑖�𝛽𝛽��𝑖𝑖 = 1

𝑛𝑛
∑ {𝑋𝑋𝑖𝑖1𝑋𝑋𝑖𝑖2�𝑌𝑌𝑖𝑖 − 𝛽𝛽�𝑋𝑋𝑖𝑖1 − 𝛽𝛽�2𝑋𝑋𝑖𝑖2�}𝑖𝑖 , is unbiased for 

zero and 1
√𝑛𝑛
∑ 𝑆𝑆𝑖𝑖�𝛽𝛽��𝑖𝑖  converges in distribution to a normal distribution. The asymptotic variance 

can be consistently estimated by the empirical sandwich variance estimator.  

 

The detailed proofs for results 1 and 2 are in Appendix (A) and (B). We refer to the assumption 

that 𝑋𝑋1  and 𝑋𝑋2  are independent as the independence assumption. The results show that in the 

interaction analysis of a quantitative trait based on a linear regression model, under the 

independence assumption, the type I error inflation caused by main effect misspecification can be 

corrected by replacing the model-based variance estimator with the empirical sandwich variance 
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estimator.  

 

However, for binary traits modeled using logistic regression with 𝑔𝑔(𝜇𝜇) = logit(𝜇𝜇), this robustness 

property against main effect misspecification does not hold for testing 𝛽𝛽3 = 0 unless, additionally, 

one of 𝑋𝑋1 or 𝑋𝑋2 has no main effect, say 𝛽𝛽2 = 0.  An explanation of why robustness does not hold 

for logistic regression models is given in Appendix (B).  The lack of robustness for logistic 

regression follows from a general result studied by Tchetgen Tchetgen.4  As a result, the Wald test 

and score test cannot be corrected by only changing the variance estimation. In general, for binary 

outcomes modeled using logistic regression, the simple correction using the empirical sandwich 

variance estimation only works for jointly testing 𝛽𝛽2 = 𝛽𝛽3 = 0.  We have provided codes for 

implementing the tests mentioned above at https://github.com/youfeiyu/GbyEtests. 

 

In summary, with respect to type I error control, inference based on the empirical sandwich 

variance estimation offers a simple solution to main effect misspecification in the setting where 

the outcome is quantitative, a linear regression model is used, and the independence assumption 

holds.  In other settings (e.g., binary outcomes, independence assumption is violated), a correct 

specification of the main effect is often required to guarantee correct type I error at the nominal 

level. In addition to type I error control, another consideration of importance in testing for 

interaction is power. Correct specification of the main effect offers an advantage in terms of power 

by reducing the residual variance even when robustness against main effect misspecification in 

terms of type I error control holds.  In general, overfitting the main effects but not the interaction 

term using models will not reduce power asymptotically relative to a correct specification of the 

main effect. In particular, flexibly modeling the main effects using GAM will not lead to power 

loss asymptotically under the independence assumption.  This result is shown in Appendix (C).   

 

Simulation results 

Because model-based score tests behave similarly to the model-based Wald test, we omit results 
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on modeled-based score tests in our Figures and Tables. Figure 1 presents empirical power curves 

of various methods for testing β3 = 0 when the outcome is continuous and the sample size is 500. 

Note that the point in each power curve corresponding to 𝛽𝛽3 = 0 is the empirical type I error rate. 

We observe that when there is no misspecification of main effects, model-based and sandwich 

Wald and score tests all maintain the type I error rate at nominal levels regardless of whether 𝑋𝑋1 

and 𝑋𝑋2 are independent (Figure 1, panels A and E) and have similar power.  When the true main 

effect of 𝑋𝑋1 is nonlinear but is mistakenly modeled using a linear form, model-based Wald test 

leads to inflated type I error rates, regardless of whether 𝑋𝑋1 and 𝑋𝑋2 are independent (Figure 1, 

panels B-D, F-H).  When 𝑋𝑋1 and 𝑋𝑋2 are independent, Figure 1, panels B and D show that both 

the sandwich Wald test and the sandwich score test can fix the type I error inflation and maintain 

type I error rate at the nominal level of 0.05 when the main effect of 𝑋𝑋1 is quadratic or exponential, 

while, for example, the corresponding model-based Wald test leads to a type I error rate of 0.37 

when the main effect of  𝑋𝑋1 is quadratic. When the main effect of 𝑋𝑋1 is a logarithmic function 

(Figure 1C), sandwich Wald and score tests still exhibit type I error inflation (0.11 and 0.07, 

respectively) even when 𝑋𝑋1 and 𝑋𝑋2 are independent.  However, this inflation decreases as sample 

size increases (Figure 3). When sample size >2000, sandwich score test achieves type I error rate 

at the nominal level of 0.05, while sandwich Wald test requires even larger sample size (> 105) 

to achieve the type I error rate at the nominal level of 0.05 (Supplementary Table S3). When 𝑋𝑋1 

and 𝑋𝑋2 are dependent and the true main effect of 𝑋𝑋1 is nonlinear, all model-based and sandwich 

tests assuming a linear main effect exhibit severe type I error inflation when the true main effect 

of 𝑋𝑋1 is nonlinear (Figure 1, panels F- H).  For example, the level 0.05 sandwich score test leads 

to a type I error rate ranging from 0.12-0.83 in Figure 3 F-H. Wald tests using GAM to flexibly 

model the main effect (GAM1 and GAM2) lead to a well-controlled type I error rate in all scenarios 

considered here regardless of whether 𝑋𝑋1 and 𝑋𝑋2 are independent.  

 

We have shown that when 𝑋𝑋1 and 𝑋𝑋2 are independent, then overfitting the main effect in a linear 

model will not lead to power loss asymptotically. Based on our empirical results, Wald tests using 
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GAM for main effects have good performance in terms of power even when the independence 

assumption is not met. They are almost as powerful as tests based on a correctly specified main 

effect model (Figure 1 A and E). Additionally, they are significantly more powerful than sandwich 

Wald and score tests based on a misspecified main effect model when the corresponding type I 

error rate is also well controlled (Figure 1, panels B-D), i.e., when 𝑋𝑋1 and 𝑋𝑋2 are independent.  

For example, as shown in Figure 1B, when 𝛽𝛽3 = 0.2, both GAM1 and GAM2 have power 0.99 

whereas sandwich Wald and Score tests have power 0.11 and 0.08, respectively. This result is 

observed because the nonparametric modeling can correctly approximate the main effect therefore 

reducing the residual variance and improving power. Because the true effect of 𝑋𝑋2 is linear in this 

setting, modeling the main effect of 𝑋𝑋2 using a nonparametric function as in GAM2 is not 

necessary. However, we see that power curves for GAM1 and GAM2 are almost indistinguishable, 

indicating there is little or no loss of efficiency empirically for testing interaction by using a 

flexible model, even when unnecessary, to model the main effect in  linear regression. Finally, we 

note the very flexible RuleFit method leads to severe inflated type I error and undesirable power 

in almost all scenarios considered here. The type I error inflation is likely due to the method not 

being able to evaluate the null distribution of the test statistics well since no analytic null 

distribution is available. One explanation for the power loss is the unnecessary flexible modeling 

of the interaction term.  Based on our experience, overfitting the interaction often leads to severe 

power loss as it changes the null distribution and degrees of freedom used for evaluating 

significance, which is in contrary to overfitting the main effects. 

 

Figure 2 presents empirical power curves of tests for interaction when the outcome is binary and 

the sample size is 2,000. As before, all model-based and sandwich Wald and score tests can control 

the type I error rate at the nominal level and have similar power when main effects are correctly 

modeled (Figure 2, panels A and E).  However, we observe that, when the main effect is 

misspecified, the sandwich Wald and score tests are not able to maintain the type I error rate at the 

nominal level even when 𝑋𝑋1 and 𝑋𝑋2 are independent and the type I error inflation persists even as 
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sample size increases (Figure 4).  For example, the sandwich Wald and score tests have a type I 

error rate of 0.83 when the main effect of 𝑋𝑋1 is quadratic.  The tests using GAM for main effects 

considerably improve type I error control and the type I error rates achieve the nominal level except 

for the scenario where the main effect of 𝑋𝑋1 is exponential (e.g., Figure 2D, 0.19 and 0.18 for 

GAM1 and GAM2, respectively).  We comment that this is a rather extreme case, and in this case, 

the type I error rates of other methods are almost 1.00. The type I error inflation decreases as 

sample size increases, which allows GAM to approximate the exponential function better (Figure 

4). Compared with a parametric model for a binary outcome with correctly modeled main effects, 

we note that flexibly modeling the main effects using GAM when unnecessary leads to some loss 

of efficiency as shown in Figure 2 panels A and E and that GAM2 leads to slightly more loss of 

power compared to GAM1.  

 

In summary, these results show that for continuous outcomes in a linear model, when 

𝑋𝑋1 and 𝑋𝑋2 are independent, replacing the model-based variance estimate with the sandwich 

estimate in Wald and score tests can reduce or remove type I error inflation. However, this does 

not hold for binary outcomes in a logistic regression model. Using GAM to flexibly model main 

effects appears to be a simple and appropriate solution for main effect misspecification in terms of 

both type I error rate and power.  

 

Data Application: Interaction analysis in the Michigan Genomics Initiative 

We illustrate our observations regarding the type I error inflation due to main effect 

misspecification and power enhancement by flexibly modeling   the main effect respectively using 

two data examples. The first example is a genome-wide gene-environment interaction study that 

investigated the effect of interaction between body mass index (BMI) and single nucleotide 

polymorphisms (SNP) on chronic ulcer of skin across the genome. A non-linear relationship 

between the log-odds of having skin ulcer and BMI is noted here. The second example examined 

a series of models for BMI as the outcome of interest, modeled as a function of age and sex, and 
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interaction between age and sex. In the second example, a quadratic relationship between age and 

BMI is observed. The data corresponding to both examples came from the Michigan Genomics 

Initiative (MGI), an electronic health record (EHR)-linked biobank at the University of Michigan 

that started in 2012. More detailed descriptions regarding the recruiting criteria, description of the 

study cohort, and the enrollment procedure in MGI can be found in Fritsche et al.17 

 

Example 1: Type I error inflation due to misspecified main effects 

This example included 38,162 unrelated individuals of recent European ancestry with genotyped 

data, 2,186 (5.5%) of whom had a “chronic ulcer of the skin” in their records. The analytic dataset 

is 47.5% male and has a mean age of 54.5 (range = [18.0, 102.3]) and a mean BMI of 29.8 (range 

= [12.3, 91.1]).  Age and BMI data came from the subjects’ EHR and age at the time of BMI 

measurement was used. We first inspected the functional form of the relationship between the 

chronic ulcer of skin (D, say) and BMI by fitting the following generalized additive model 

logit{𝑃𝑃(𝐷𝐷 = 1|BMI, 𝑋𝑋)} = 𝛼𝛼0 + 𝑠𝑠(BMI) + 𝛼𝛼𝑋𝑋𝑋𝑋,     

where 𝐷𝐷 denotes the disease status (1 being a case) and 𝑋𝑋 contains age, sex, genotyping array, and 

the first four principal components obtained from the principal component analysis of the 

genotyped markers. Both BMI and age were centered before analysis. The results from the model 

described above revealed a nonlinear relationship between chronic ulcer of skin and (centered) 

BMI (Supplementary Figure S1A).  

 

We then investigated the SNP-BMI interactions as risk factors for chronic ulcer of skin. We tested 

the interaction effects between BMI and 272,672 genotyped variants with minor allele frequency 

≥ 1% using PLINK 1.9. For each SNP considered in this analysis we fitted the model  

logit{𝑃𝑃(𝐷𝐷 = 1|SNP, BMI, 𝑋𝑋)} =  𝛽𝛽0 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆SNP + 𝑠𝑠(BMI) + 𝛽𝛽𝑋𝑋𝑋𝑋 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆×𝐵𝐵𝐵𝐵𝐵𝐵SNP × BMI 

where the notations are defined in the same way as in Model (3) and the nonlinear relationship as 

observed in Figure S1 was modeled using GAM through the smooth function 𝑠𝑠(BMI). We also 

fitted a model with a linear main effect term of BMI to explore the impact of incorrectly specifying 
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the main effect on testing for the SNP × BMI interaction and then tested the interaction using both 

model-based and sandwich Wald tests. 

 

Models were fitted using the full cohort (2,186 cases and 35,976 controls) as well as in a more 

balanced cohort with a 1:3 case-control ratio (2,186 cases and 6,558 randomly selected controls). 

For both cohorts, model-based Wald tests show an inflation of type I error (Figure 5), as the 

observed distribution of interaction p-values deviates from the expected distribution under the 

null hypothesis. The deviation was much more pronounced in the unbalanced full cohort than in 

the 1:3 case-control cohort, showing that the problem with misspecification is further amplified 

when coupled with unbalanced case-control ratios. The sandwich variance-based Wald tests also 

show some degree of type I error inflation, especially in the full cohort.  The inflation was 

remedied after we modeled the main effect of BMI flexibly using GAM. This example shows 

that main effect misspecification can lead to inflated type I error. 

 

Example 2: Power gain due to more accurate modeling of main effects 

We looked at the relationship between two continuous variables, age (independent variable) and 

BMI (outcome), and whether there is an interaction of age with sex on BMI. We used all 38,162 

individuals from the same cohort described in the previous example.  

 

 A generalized additive model for BMI as a function of age revealed a nonlinear relationship 

(Supplementary Figure S2A). We then constructed a series of generalized linear models 

(described in Table 2) for BMI using age and sex to explore the impact of accounting and not 

accounting for the nonlinearity of the main effect on the test of interaction. Table 2 reports 

estimates of coefficients and p-values associated with the terms included in each model.  

Supplementary Figure S3 plots BMI by age groups, stratified by sex to visually depict the 

interaction structure. Figure S3 shows an apparent sex and age interaction as the effect of age on 

BMI was larger for males than for females for individuals with age less than 65.  The model-based 
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Wald test with a linear main effect for age leads to a p-value of 8.53×10-4 and the sandwich 

variance-based Wald test leads to a p-value of 5.14×10-4. Both tests are statistically significant. 

The Wald test based on a model where the main effect of age is modeled using GAM leads to a 

much smaller p-value (5.52×10-6).   It is not possible to know the “truth” in any given data analysis, 

thus, our explanation cannot be proven and alternative explanations cannot be ruled out. If 

interaction truly does not exist, it is still possible to see a significant p-value from the model-based 

Wald test with a linear main effect due to type I error inflation. However, if this were the case, it 

will be unlikely to observe a highly significant p-value from the GAM-based method as this 

method does not have inflated type I error. Therefore, the considerably smaller p-value from GAM-

based method is most likely due to increased power by modeling the main effect flexibly and 

reducing the residual error. This example demonstrates that when the interaction effect is non-null, 

flexible specification of main effect can offer enhanced power in detecting interaction effect, 

though there are more parameters in the model to estimate.  

 

Discussion 
We consider the specific problem of main effect misspecification as linear terms when they are 

truly non-linear and its potential to lead to possibly severe type I error inflation in testing the 

interaction between two factors. We evaluated two simple strategies for addressing the problem 

with main effect misspecification. Namely, robust inference based on sandwich variance estimates 

and flexibly modeling the main effect using nonparametric methods such as GAM, using 

asymptotic theory and simulation studies. Our results show that for a linear regression model with 

a continuous outcome and two independent factors, replacing the model-based variance estimate 

with the sandwich variance estimate can lead to a valid test for interaction asymptotically. This 

result holds regardless of whether the main effects are correctly specified. However, this type of 

robustness using sandwich variance estimate does not hold in general for binary outcomes modeled 

using a logistic regression model, even under the assumption of independence of the two factors.  

Results from simulation studies are consistent with our asymptotic results. Further, based on our 
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simulation results, the sandwich score test converges faster than the sandwich Wald test as sample 

size increases and has better finite sample performance. The two examples from the Michigan 

Genomics Initiative further substantiate our points with actual data. 

 

Using the sandwich variance estimate in a Wald or score test offers a simple solution for robust 

inference against main effect misspecification under the independence assumption for a continuous 

outcome. However, when the independence assumption does not hold or when the outcome is 

binary, this strategy will not be able to control the type I error rate. Moreover, even when these 

conditions are met and the sandwich method can control the type I error rate, it is still advantageous 

to try to model the main effects correctly or flexibly. We see that a Wald test combined with GAM 

for main effects can control the type I error rate in all settings considered here except one extreme 

case. In the case it does not completely control the type I error rate, it still considerably reduces 

type I error inflation and the performance improves as sample size increases. We note that the 

GAM method requires less sample size to control the type I error rate relative to the sandwich 

method when it works (Figure 1C). The strategy of flexibly modeling main effects using GAM is 

also appealing in terms of power, especially when the outcome is continuous. When the outcome 

is continuous, our simulation studies show that the GAM method leads to almost no power loss 

compared to a parametric model with correctly specified main effects in the settings considered 

here. Additionally, the GAM method is considerably more efficient than the sandwich method 

when type I error rate is controlled. When the outcome is binary, there is not a lot of loss of power 

relative to a correctly specified parametric main effect model.  We comment that although we 

focused on Wald tests combined with GAM in our simulation studies, the strategy of using GAM 

or other nonparametric methods to model main effects flexibly can also be used with score test. 

Overall, the strategy to use GAM to model main effects flexibly offers an attractive and 

straightforward solution to robust and efficient testing of interaction under potential main effect 

misspecification. We have summarized our findings in a summary table (Table 1) as a useful guide 

for practitioners pursuing interaction analysis. 
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Our study complements previous work on main effect misspecification and tests of interaction. 

Among those, the most recent and closely related work is Sun et al.7 Sun et al.7 focus on 

theoretically identifying conditions under which valid tests can be obtained by using the sandwich 

estimator and further proposes to use a bootstrap inference with a corrected sandwich estimator to 

improve finite sample performances. Their simulation studies focus on Wald tests and scenarios 

where the robust inference can lead to valid inference asymptotically.  Moreover, Sun et al.7 only 

focus on type I error rate without considering power.  However, a robust inference procedure can 

only solve the issue of main effect misspecification under somewhat restrictive conditions.  Not 

all type I error inflation due to main effect misspecification can be fixed this way (e.g., generally, 

if independence does not hold for linear outcomes or if outcomes are binary). Our study considers 

both situations where the usual tests can and cannot be fixed by using a robust statistical inference. 

Further, it provides a solution that performs well in terms of both type I error rate and power for 

situations where valid tests cannot be obtained by using a robust inference.  We consider the finite 

sample performance and the large sample properties of both Wald test and Score tests.  In addition 

to the type I error rate, we focus on the power of various solutions under various situations as well.  

We provide an overall picture and improved understanding of various methods for tests of 

interaction when main effects may be possibly misspecified and provide practical guidance for 

data analysts. We also comment that the robustness property of the usual tests as shown in our 

results 1 and 2 can be viewed as a special case of the general results studied by Vansteelandt et 

al.2 and Tchetgen Tchetgen4 on multiply robust inference from the perspective of semiparametric 

theory. For if the test of interaction is robust to misspecification of the main effects, it must 

asymptotically be equivalent to the class of test statistics that are multiply robust. 

 

Several limitations and possible extensions of this study exist. First, we focus on the setting where 

one does not adjust for other covariates in the model. Similar results and insights from our study 

can apply to the case when covariates adjustment is needed under additional assumptions. For 
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example,  He et al.8 show a similar robustness property as our results 1 and 2 under the assumption 

that other covariates can be divided into two parts and each part is correlated with either 𝑋𝑋1 or 𝑋𝑋2 

but not both. In Sun et al8, a similar condition for covariates is assumed. However, we comment 

that the robustness as in results 1 and 2 does not hold in general under the assumption of 

independence of  𝑋𝑋1 and 𝑋𝑋2 conditional on other covariates.  Second, our results show that sample 

size is an important factor in type I error inflation. For continuous outcomes, although n=500 is 

usually considered relatively large for a model with  four parameters when the model is correctly 

specified, it may not be large enough for robust inference using the sandwich variance estimate 

when the model is severely misspecified.  Usually, the sandwich variance-based score test has 

better finite sample performance than the corresponding Wald test and extremely large (> 105) 

sample size may be needed for some extreme cases for the sandwich Wald test to work well. So 

small sample modification, for example, the Bootstrap Inference with Corrected Sandwich (BICS) 

procedure proposed in Sun and et al.8 may be necessary in practice. Third, the strategy of using 

GAM is quite appealing in terms of power when outcome is continuous and is almost as powerful 

as the ideal case where main effects are correctly specified in a parametric model. However, when 

the outcome is binary, there is still room for improvement in power, representing an important 

direction for future research. Forth, our simulation study only considers interaction between two 

variables. When the number of variables in the model increases to, for example, three, the inference 

on interaction becomes more challenging. The performance of tests on interactions among multiple 

variables is unknown. Finally, misspecification of the interaction effect needs to be considered in 

addition to main effect misspecification.  
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Appendix 

(A) Proof of Result 1 

Suppose we are interested in testing the interaction between 𝑋𝑋1 and 𝑋𝑋2 based on data (𝑌𝑌𝑖𝑖, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖),

𝑖𝑖 = 1, … , 𝑛𝑛, iid across 𝑖𝑖, where 𝑌𝑌𝑖𝑖  is the quantitative outcome for subject 𝑖𝑖, and 𝑋𝑋1𝑖𝑖 and 𝑋𝑋2𝑖𝑖  are 

independent variables. Without loss of generality, we suppose 𝑌𝑌𝑖𝑖, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖 are all centered. Suppose 

under the null hypothesis, the true model is  

𝑌𝑌𝑖𝑖 = ℎ1(𝑋𝑋1𝑖𝑖) + ℎ2(𝑋𝑋2𝑖𝑖) + 𝜖𝜖𝑖𝑖, 

where ℎ1 and ℎ2 are unknown functions, 𝑒𝑒𝑖𝑖 is an error  term with mean 0 and independent of 𝑋𝑋1𝑖𝑖 

and 𝑋𝑋2𝑖𝑖. Suppose instead we assume the following working model 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖, 

and we test the null hypothesis of no interaction by testing H0: β3 = 0. 

 

Consistency: The ordinary least square estimator 𝛽̂𝛽 = �𝛽̂𝛽0, 𝛽̂𝛽1, 𝛽̂𝛽2, 𝛽̂𝛽3�
𝑇𝑇

 satisfies the estimating 

equation:  

1
𝑛𝑛
∑ �[1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖, 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖]𝑇𝑇�𝑌𝑌𝑖𝑖 − 𝛽̂𝛽0 − 𝛽̂𝛽1𝑋𝑋1𝑖𝑖 − 𝛽̂𝛽2𝑋𝑋2𝑖𝑖 − 𝛽̂𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�� = 0.𝑖𝑖        (A1) 

Under standard regularity conditions and by a standard M-estimation (also referred to as Z-

estimation) theory (Boos and Stefanski, 201318; van der Vaart, 201219),   𝛽̂𝛽  converges in 

probability to  𝛽𝛽∗ = [𝛽𝛽0∗, 𝛽𝛽1∗, 𝛽𝛽2∗, 𝛽𝛽3∗]𝑇𝑇  , which satisfies the “population” version of this last 

estimating equation, i.e.,  

𝐸𝐸{[1, 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋1𝑋𝑋2]𝑇𝑇(𝑌𝑌 − 𝛽𝛽0∗ − 𝛽𝛽1∗𝑋𝑋1 − 𝛽𝛽2∗𝑋𝑋2 − 𝛽𝛽3∗𝑋𝑋1𝑋𝑋2)} = 0.             (A2) 

We can derive, by solving the above equation, that 𝛽𝛽0∗ = 0, 𝛽𝛽1∗ = 𝐸𝐸(𝑋𝑋1𝑌𝑌)
𝐸𝐸(𝑋𝑋12) 

, 𝛽𝛽2∗ = 𝐸𝐸(𝑋𝑋2𝑌𝑌)
𝐸𝐸(𝑋𝑋22)

,  and  𝛽𝛽3∗ =

𝐸𝐸(𝑋𝑋1𝑋𝑋2𝑌𝑌)
𝐸𝐸(𝑋𝑋12𝑋𝑋22)

 .  Regarding the numerator of 𝛽𝛽3∗, note that  

𝐸𝐸(𝑋𝑋1𝑋𝑋2𝑌𝑌) = 𝐸𝐸[𝑋𝑋1𝑋𝑋2{ℎ1(𝑋𝑋1) + ℎ2(𝑋𝑋2) + 𝜖𝜖}] 

= 𝐸𝐸{𝑋𝑋1ℎ1(𝑋𝑋1)𝑋𝑋2} + 𝐸𝐸{𝑋𝑋1𝑋𝑋2ℎ2(𝑋𝑋2)} + 𝐸𝐸(𝑋𝑋1𝑋𝑋2𝜖𝜖) 
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= 𝐸𝐸{𝑋𝑋1ℎ1(𝑋𝑋1)}𝐸𝐸𝑋𝑋2 + 𝐸𝐸𝑋𝑋1𝐸𝐸{𝑋𝑋2ℎ2(𝑋𝑋2)} + 𝐸𝐸(𝑋𝑋1𝑋𝑋2)𝐸𝐸(𝜖𝜖) 

= 0 

where the second equality is due to independence of 𝑋𝑋1 and 𝑋𝑋2, and the last equality is due to 

𝐸𝐸𝑋𝑋1 = 𝐸𝐸𝑋𝑋2 = 0 because of centering.  Therefore,  𝛽̂𝛽3 converges in probability to 𝛽𝛽3∗ = 0.  

 
Asymptotical normality:   Asymptotical normality follows as a standard result from M-estimation 

theory.  Let 𝑋𝑋𝑖𝑖 = [1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖, 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖]𝑇𝑇  be the covariate vector for the 𝑖𝑖-th subject, 𝑖𝑖 = 1, … , 𝑛𝑛 . 

Equation (A1) can be written as  
1
𝑛𝑛
�𝑋𝑋𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽̂𝛽� 
𝑖𝑖

= 0. 

 By a Taylor expansion of the left hand side of the above equation around 𝛽𝛽∗, we have  
1
𝑛𝑛
�𝑋𝑋𝑖𝑖(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗) −

1
𝑛𝑛
�𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖𝑖𝑖

�𝛽̂𝛽 − 𝛽𝛽∗� + 𝑜𝑜𝑝𝑝(1) = 0. 

Rearranging terms leads to  

√𝑛𝑛�𝛽̂𝛽 − 𝛽𝛽∗� = �
1
𝑛𝑛
�𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

�
−1

1
√𝑛𝑛

�𝑋𝑋𝑖𝑖(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗)
𝑖𝑖

+ 𝑜𝑜𝑝𝑝(1) . 

By Central Limit Theorem, 1
√𝑛𝑛
∑ {𝑋𝑋𝑖𝑖(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗)}𝑖𝑖  converges in distribution to a normal 

distribution with mean  𝐸𝐸{𝑋𝑋𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝛽𝛽∗𝑇𝑇𝑋𝑋𝑖𝑖�} = 0 and variance  

𝐸𝐸 {𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗)2}. 

By Slutsky Theorem, √𝑛𝑛�𝛽̂𝛽 − 𝛽𝛽∗� converges in distribution to Normal (0, Σ), where  

Σ = {𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇)}−1𝐸𝐸 {𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗)2}{𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇)}−1 , 

and Σ can be consistently estimated by  

Σ� = �
1
𝑛𝑛
�𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

�
−1

�
1

𝑛𝑛 − 𝑝𝑝
�𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽̂𝛽�

2

𝑖𝑖

� �
1
𝑛𝑛
�𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇

𝑖𝑖

�
−1

, 
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where 𝑝𝑝 is the dimension of 𝑋𝑋𝑖𝑖 . Therefore, the asymptotic variance of 𝛽̂𝛽  can be consistently 

estimated by Σ
n

, which equals 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛽̂𝛽� =  𝑛𝑛
(𝑛𝑛−𝑝𝑝)

(∑ 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝑖𝑖 )−1(∑ 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝑖𝑖 𝜖𝜖𝑖̂𝑖2 )(∑ 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇𝑖𝑖 )−1 

defined in the Methods Section. Regardless of whether the model is correctly specified or not, 

under the null hypothesis,  the Wald test statistic with the empirical sandwich variance estimate 
𝛽𝛽�32

𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛽𝛽�3�
~𝜒𝜒12, where 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ (𝛽̂𝛽3) is the diagonal element of 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛽̂𝛽�  corresponding 

to 𝛽𝛽3. 

 

    

(B) Proof of Result 2 

Unbiasedness of score: The score corresponding to β3  is 𝑆𝑆 = 1
𝑛𝑛
∑ 𝑆𝑆𝑖𝑖�𝛽𝛽��𝑖𝑖 = 1

𝑛𝑛
∑ {𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�𝑌𝑌𝑖𝑖 −𝑖𝑖

𝛽𝛽�0 − 𝛽𝛽�1𝑋𝑋1𝑖𝑖 − 𝛽𝛽�2𝑋𝑋2𝑖𝑖�}, where 𝛽𝛽� = �𝛽𝛽�0, 𝛽𝛽�1, 𝛽𝛽�2�
𝑇𝑇
 is the ordinary least squares estimator under the 

null working model:  

𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖. 

Specifically,𝛽𝛽� = �𝛽𝛽�0, 𝛽𝛽�1, 𝛽𝛽�2�
𝑇𝑇
  satisfies the estimating equation  

1
𝑛𝑛
∑ �[1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖]𝑇𝑇�𝑌𝑌𝑖𝑖 − 𝛽𝛽�0 − 𝛽𝛽�1𝑋𝑋1𝑖𝑖 − 𝛽𝛽�2𝑋𝑋2𝑖𝑖�� = 0𝑖𝑖 , 

and under standard regularity conditions, by M-estimation theory, it converges in probability to 

𝛽𝛽# = [𝛽𝛽0#, 𝛽𝛽1#, 𝛽𝛽2#]𝑇𝑇, which satisfies the “population” version of the last equation,  

𝐸𝐸{[1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖]𝑇𝑇(𝑌𝑌𝑖𝑖 − 𝛽𝛽0# − 𝛽𝛽1#𝑋𝑋1𝑖𝑖 − 𝛽𝛽2#𝑋𝑋2𝑖𝑖)} = 0. 

Solving the equation, we have 𝛽𝛽0# = 0, 𝛽𝛽1# = 𝐸𝐸(𝑋𝑋1𝑌𝑌)
𝐸𝐸(𝑋𝑋1 

2)
, 𝛽𝛽2# = 𝐸𝐸(𝑋𝑋2𝑌𝑌)

𝐸𝐸(𝑋𝑋22)
. It follows that, by law of large 

numbers and under regularity conditions, the score 𝑆𝑆  converges in probability to  

𝐸𝐸{𝑋𝑋1𝑋𝑋2(𝑌𝑌 − 𝛽𝛽0# − 𝛽𝛽1#𝑋𝑋1 − 𝛽𝛽2#𝑋𝑋2)} 

= 𝐸𝐸[𝑋𝑋1𝑋𝑋2{ℎ1(𝑋𝑋1) − 𝛽𝛽1#𝑋𝑋1}] + 𝐸𝐸[𝑋𝑋1𝑋𝑋2{ℎ2(𝑋𝑋2) − 𝛽𝛽2#𝑋𝑋2}] + 𝐸𝐸(𝑋𝑋1𝑋𝑋2𝜖𝜖)             (A3) 

= 𝐸𝐸[𝑋𝑋1{ℎ1(𝑋𝑋1) − 𝛽𝛽1#𝑋𝑋1}]𝐸𝐸𝑋𝑋2 + 𝐸𝐸𝑋𝑋1𝐸𝐸[𝑋𝑋2{ℎ2(𝑋𝑋1) − 𝛽𝛽1#𝑋𝑋1}] + 𝐸𝐸(𝑋𝑋1𝑋𝑋2)𝐸𝐸(𝜖𝜖) 

= 0.  
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Therefore, the score is unbiased for zero.  

 

Asymptotic normality: By a Taylor expansion around 𝛽𝛽#, we have  

1
√𝑛𝑛

�𝑆𝑆𝑖𝑖�𝛽𝛽��
𝑖𝑖

=
1
√𝑛𝑛

�𝑆𝑆𝑖𝑖(𝛽𝛽#)
𝑖𝑖

−
1
√𝑛𝑛

��𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑖𝑖

� �𝛽𝛽� − 𝛽𝛽#� + 𝑜𝑜𝑝𝑝(1)      (A4) 

where 𝑋𝑋𝑜𝑜,𝑖𝑖 = [1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖]𝑇𝑇. By an argument similar to that in the proof for result 1, we have  

√𝑛𝑛�𝛽𝛽� − 𝛽𝛽#� = �
1
𝑛𝑛
�𝑋𝑋0,𝑖𝑖 𝑋𝑋0,𝑖𝑖

𝑇𝑇

𝑖𝑖

�
−1

1
√𝑛𝑛

�𝑋𝑋𝑜𝑜,𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�

𝑖𝑖

+ 𝑜𝑜𝑝𝑝(1) ,  

and substituting this into (A4)  we have 1
√𝑛𝑛
∑ 𝑆𝑆𝑖𝑖�𝛽𝛽��𝑖𝑖  

=
1
√𝑛𝑛

�𝑆𝑆𝑖𝑖(𝛽𝛽#)
𝑖𝑖

− �
1
𝑛𝑛
�𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖

𝑇𝑇

𝑖𝑖

� �
1
𝑛𝑛
�𝑋𝑋𝑜𝑜,𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖

𝑇𝑇

𝑖𝑖

�
−1

1
√𝑛𝑛

�𝑋𝑋𝑜𝑜,𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�

𝑖𝑖

+ 𝑜𝑜𝑝𝑝(1) 

=
1
√𝑛𝑛

�𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�

𝑖𝑖

− 𝐸𝐸(𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 ){𝐸𝐸�𝑋𝑋𝑜𝑜,𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖

𝑇𝑇 �}−1
1
√𝑛𝑛

�𝑋𝑋𝑜𝑜,𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�

𝑖𝑖

+ 𝑜𝑜𝑝𝑝(1)      

 =
1
√𝑛𝑛

��−𝐸𝐸(𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 ){𝐸𝐸�𝑋𝑋𝑜𝑜,𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖

𝑇𝑇 �}−1 , 1�𝑋𝑋𝑖𝑖
𝑖𝑖

�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#� + 𝑜𝑜𝑝𝑝(1), 

where 𝑋𝑋𝑖𝑖 = [1, 𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖, 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖]𝑇𝑇  as defined before. By Central Limit Theorem, 1
√𝑛𝑛
∑ 𝑆𝑆𝑖𝑖�𝛽𝛽��𝑖𝑖  

converges to a normal distribution with mean 0 because 𝐸𝐸{𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�} = 0 as shown 

above and 𝐸𝐸�𝑋𝑋𝑜𝑜,𝑖𝑖�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�� = 0 by definition of 𝛽𝛽#, and with variance  

𝐴𝐴 𝐸𝐸 �𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽#�

2
� 𝐴𝐴𝑇𝑇,  

where 𝐴𝐴 = �−𝐸𝐸(𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 )�𝐸𝐸�𝑋𝑋0,𝑖𝑖𝑋𝑋0,𝑖𝑖

𝑇𝑇 ��
−1

 , 1�. The variance can be consistently estimated by the 

empirical variance estimator 𝐴̃𝐴{ 1
𝑛𝑛−𝑝𝑝

∑ 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇�𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇 𝛽𝛽��

2
}𝑖𝑖 𝐴̃𝐴𝑇𝑇, where 
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𝐴̃𝐴 = �−��𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇

𝑛𝑛

𝑖𝑖=1

� ��𝑋𝑋𝑜𝑜,𝑖𝑖 𝑋𝑋𝑜𝑜,𝑖𝑖
𝑇𝑇

𝑛𝑛

𝑖𝑖=1

�
−1

, 1�. 

Therefore, regardless of whether the model for the main effect of 𝑋𝑋1 and 𝑋𝑋2 is correctly specified 

or not, the score test statistic  𝑆𝑆2/𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆)   follows a 𝜒𝜒12 distribution asymptotically, when 

conditions stated in result 2 are satisfied.  

 

Comment: For a logistic regression for binary outcomes, the score converges to  

𝐸𝐸{𝑋𝑋1𝑋𝑋2expit(𝑌𝑌 − 𝛽𝛽𝑜𝑜 − 𝛽𝛽1𝑋𝑋1 − 𝛽𝛽2𝑋𝑋2)} for some 𝛽𝛽 = [𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2]𝑇𝑇,  where expit (𝜇𝜇) = exp(𝜇𝜇) /

{1 + exp(𝜇𝜇)},  and without making further assumptions we cannot separate expit(𝑌𝑌 − 𝛽𝛽1𝑋𝑋1 −

𝛽𝛽2𝑋𝑋2)  into terms that involve only 𝑋𝑋1 or 𝑋𝑋2  as in (A3) above.  As a result, in general 

𝐸𝐸{𝑋𝑋1𝑋𝑋2expit(𝑌𝑌 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋1 − 𝛽𝛽2𝑋𝑋2)}  is not equal to zero when the main effect model is 

misspecified even under the assumption of independence. Therefore, for a logistic regression 

model, the score test lacks the robustness against main effect misspecification.  Although not as 

obvious, the reason for non-robustness of the Wald test is similar. As a result, under the null 

hypothesis when main effects are misspecified, the estimator of 𝛽𝛽3 does not converge to 0 without 

making further assumptions on main effects. Therefore, for logistic regression the robustness of 

testing for interaction against main effect misspecification does not hold.  

 

(C) Effect of Overfitting the Main Effects 

We provide some intuition and explanation for why the use of flexible GAM to model main effects 

of 𝑋𝑋1  and/or 𝑋𝑋2  does not reduce power under the independence assumption of 𝑋𝑋1  and 𝑋𝑋2  for 

continuous outcomes.  The result is not specific to the use of GAM and methods other than GAM 

can be used to model main effect flexibly. This phenomenon is due to a general result that 

(informally) overfitting the main effect does not reduce power asymptotically under the 

independence assumption.   Taking a simple setting as an example, we show this explicitly. 

Specifically, suppose the true model for a continuous outcome is 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽11𝑋𝑋1𝑖𝑖 +
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𝛽𝛽12𝑋𝑋1𝑖𝑖2 + ⋯+ 𝛽𝛽1𝑝𝑝𝑋𝑋1𝑖𝑖
𝑝𝑝 + 𝛽𝛽2𝑋𝑋2𝑖𝑖+𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 +  𝜖𝜖𝑖𝑖 , where variance of 𝜖𝜖𝑖𝑖  is 𝜎𝜎2 .  Instead one tests 

interaction using a Wald test based on an overfitted main effect model, specified as 𝑌𝑌𝑖𝑖 =

𝛽𝛽0 + 𝛽𝛽11𝑋𝑋1𝑖𝑖 + 𝛽𝛽12𝑋𝑋1𝑖𝑖2 + ⋯+ 𝛽𝛽1𝑞𝑞𝑋𝑋1𝑖𝑖
𝑞𝑞 + 𝛽𝛽2𝑋𝑋2𝑖𝑖+𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 + 𝜖𝜖𝑖𝑖 , where 𝑞𝑞 > 𝑝𝑝  such that the main 

effect of 𝑋𝑋1𝑖𝑖  includes unnecessary higher order polynomial terms. Directly applying results in 

Appendix A, it is easy to check that the estimator for 𝛽𝛽, denoted by 𝛽̂𝛽, based on the overfitted 

model solves the estimating equation  
1
𝑛𝑛
���1, 𝑋𝑋1𝑖𝑖, … , 𝑋𝑋1𝑖𝑖

𝑞𝑞 , 𝑋𝑋2𝑖𝑖, 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�
𝑇𝑇
�𝑌𝑌𝑖𝑖 − 𝛽̂𝛽0 − 𝛽̂𝛽11𝑋𝑋1𝑖𝑖 − ⋯− 𝛽̂𝛽1𝑞𝑞𝑋𝑋1𝑖𝑖

𝑞𝑞 − 𝛽̂𝛽2𝑋𝑋2𝑖𝑖 − 𝛽̂𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�� = 0.
𝑖𝑖

 

We denote the limit of 𝛽̂𝛽 by 𝛽𝛽∗ and it satisfies the population version of the above equation. As in 

Appendix A, it is easy to check that 𝛽𝛽3∗ = 𝐸𝐸(𝑋𝑋1𝑋𝑋2𝑌𝑌)
𝐸𝐸(𝑋𝑋12𝑋𝑋22)

= 𝛽𝛽3 , which is nonzero if the alternative 

hypothesis is true.  In addition, √𝑛𝑛�𝛽̂𝛽 − 𝛽𝛽∗� converges to a normal distribution with variance equal 

to  

Σ = {𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇)}−1𝐸𝐸 {𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗)2}{𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇)}−1, 

where 𝑋𝑋𝑖𝑖 = �1, 𝑋𝑋1𝑖𝑖, … , 𝑋𝑋1𝑖𝑖
𝑞𝑞 , 𝑋𝑋2𝑖𝑖, 𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖�

𝑇𝑇
. By the independence of 𝑋𝑋1  and 𝑋𝑋2  and assuming 

𝑌𝑌, 𝑋𝑋1, 𝑋𝑋2  are centered, we can show that  𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐴𝐴, 𝐸𝐸(𝑋𝑋12𝑋𝑋22))  for some matrix 𝐴𝐴 

because it is easy to check that 𝐸𝐸(𝑋𝑋1𝑋𝑋2), 𝐸𝐸(𝑋𝑋12𝑋𝑋2), … , 𝐸𝐸(𝑋𝑋1
𝑞𝑞+1𝑋𝑋2) all equal to zero. Therefore, 

{𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇)}−1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐴𝐴−1, 1
𝐸𝐸�𝑋𝑋12𝑋𝑋22�

).  The middle term of Σ,  𝐸𝐸 {𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇(𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽∗)2}=𝜎𝜎2𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇).  

Therefore, Σ = σ2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝐴𝐴−1, 1
𝐸𝐸�𝑋𝑋12𝑋𝑋22�

). It follows that √𝑛𝑛�𝛽̂𝛽3 − 𝛽𝛽3�  converges to a normal 

distribution with mean zero and variance 𝜎𝜎2/𝐸𝐸(𝑋𝑋12𝑋𝑋22). The asymptotically distribution is exactly 

the same as the one based on a correctly specified model without overfitting and the same as the 

one had the true main effect been known without having to estimate it. Therefore, the Wald tests 

based on the overfitted model and the true model have the same asymptotic distribution and 

therefore lead to the same power.  When one uses GAM to flexibly model the main effect of 𝑋𝑋1 

(and/or 𝑋𝑋2), the basis functions used to approximate the main effect are not polynomial functions 

but linear spline terms. However, regardless it still holds that 𝐸𝐸(𝑙𝑙(𝑋𝑋1)𝑋𝑋2) = 0 and 𝐸𝐸(𝑙𝑙(𝑋𝑋2)𝑋𝑋1) =
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0, where 𝑙𝑙 is an arbitrary function. Therefore, the argument above still applies. Specifically, when 

𝑋𝑋1  is modeled using 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽11(𝑋𝑋1𝑖𝑖 − 𝜏𝜏1)+ + ⋯+ 𝛽𝛽1𝑝𝑝�𝑋𝑋1𝑖𝑖 − 𝜏𝜏𝑝𝑝�+ +

𝛽𝛽2𝑋𝑋2𝑖𝑖 +𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 + 𝜖𝜖𝑖𝑖  using penalized regression, where (𝑋𝑋1𝑖𝑖 − 𝜏𝜏𝑘𝑘)+ , 𝑘𝑘 = 1, … , 𝑝𝑝 , are linear 

spline terms, then the estimator for  𝛽𝛽 = �𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽11, … , 𝛽𝛽1𝑝𝑝, 𝛽𝛽2, 𝛽𝛽3�
𝑇𝑇
 has variance and covariance 

matrix proportional to 𝜎𝜎2 {𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇) + 𝜆𝜆2𝐷𝐷}−1 𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇){𝐸𝐸(𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑇𝑇) + 𝜆𝜆2𝐷𝐷}−1 , where 𝑋𝑋𝑖𝑖 =

(1, 𝑋𝑋1𝑖𝑖, (𝑋𝑋1𝑖𝑖 − 𝜏𝜏1)+, … , �𝑋𝑋1𝑖𝑖 − 𝜏𝜏𝑝𝑝�+, 𝑋𝑋2𝑖𝑖, 𝑋𝑋3), 𝜆𝜆 is a tuning parameter for roughness, and 𝐷𝐷 is a 

diagonal matrix where the diagonal terms corresponding to the linear spline terms are one and the 

other terms are zero. Using results that 𝐸𝐸(𝑙𝑙(𝑋𝑋1)𝑋𝑋2) = 0  and 𝐸𝐸(𝑙𝑙(𝑋𝑋2)𝑋𝑋1) = 0  and similar 

arguments as above, it can be checked that the asymptotic variance of 𝛽̂𝛽3  is again𝜎𝜎2/𝐸𝐸(𝑋𝑋12𝑋𝑋22).  

The above derivations and arguments provide an explicit and intuitive explanation for why 

overfitting the main effect model does not reduce power for continuous outcomes under the 

independence assumption of 𝑋𝑋1 and 𝑋𝑋2.  However, this result does not hold in general without the 

independence assumption, although our simulation studies show that the impact on power is small.  

Finally, we comment that in general overfitting the interaction term usually does significantly 

affect power.  
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Table 1.  Guidelines for choosing method for interaction analysis under misspecification of main 
effects.  We bold the method that is preferred under each scenario. 

Method Outcome: 
Continuous 
Factors Independent 

Outcome: 
Continuous 
Factors Correlated 

Outcome: Binary 
Factors Independent  

Outcome: Binary 
Factors Correlated 

Wald 
Model 
Based 

Type 1 error:  
inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

Wald 
Sandwich 

Type 1 error: 
Nominal 
Power: loss of 
power depending on 
the degree of 
misspecification 

Type I error: inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

Score 
Sandwich 

Type I error: 
Nominal 
Power: loss of 
power depending on 
the degree of 
misspecification 

Type I error: inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

Type I error: inflated 
Power comparison 
not valid 

GAM1 Type I error:  
Nominal if main 
effect of 𝑿𝑿𝟐𝟐 is 
linear 
Power: almost as 
powerful as the 
correct model if 
main effect of 𝑿𝑿𝟐𝟐 is 
linear 

Type I error: 
Nominal if main 
effect of 𝑿𝑿𝟐𝟐 is 
linear 
Power: almost as 
powerful as the 
correct model if 
main effect of 𝑿𝑿𝟐𝟐 is 
linear 

Type I error: 
Nominal if main 
effect of 𝑿𝑿𝟐𝟐 is 
linear 
Power: some  loss 
of power relative to 
the correct 
parametric model  

Type I error: 
Nominal if main 
effect of 𝑿𝑿𝟐𝟐 is 
linear  
Power: some loss of 
power relative to 
the correct 
parametric model 

GAM2 Type I error: 
Nominal 
Power: almost as 
powerful as the 
correct model 

Type I error: 
Nominal 
Power: almost as 
powerful as the 
correct model 

Type I error: 
Nominal 
Power: more loss of 
power relative to 
GAM1 when the 
extra smooth term 
is unnecessary 

Type I error: 
Nominal 
Power: more loss of 
power relative to 
GAM1 when the 
extra smooth term 
is unnecessary 
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Table 2. Example 2: comparing models for BMI as functions of age and sex.  

 

 

 

 

 

 Models 

Variables 0 1 2 3 

Age 0.018 
(2.46×10-16) 

0.026 

(5.71×10-16) 

- - 

Sex 0.230 

(1.37×10-3) 

0.233 

(1.21×10-3) 

0.096 

(1.76×10-1) 

0.100 

(1.59×10-1) 

Age-sex interaction - -0.015 

(8.53×10-4) 

[5.14×10-4] 

- -0.020 

(5.52×10-6) 

MSE 48.403 48.390 47.087 47.063 

Note: sex variable is coded as an indicator for female sex. P-values less than 0.05 are 
bolded. P-values in parentheses and brackets are computed using model-based and 
sandwich variance, respectively. 

Model 0: BMI = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝑨𝑨Age + 𝜷𝜷𝑺𝑺Sex + 𝝐𝝐 

Model 1: BMI = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝑨𝑨Age + 𝜷𝜷𝑺𝑺Sex + 𝜷𝜷𝑨𝑨𝑨𝑨Age*Sex + 𝝐𝝐 

Model 2: BMI = 𝜷𝜷𝟎𝟎 + s(Age) + 𝜷𝜷𝑺𝑺Sex + 𝝐𝝐 

Model 3: BMI = 𝜷𝜷𝟎𝟎 + s(Age) + 𝜷𝜷𝑺𝑺Sex + 𝜷𝜷𝑨𝑨𝑨𝑨Age*Sex + 𝝐𝝐 
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