Israel Journal of Chemistry

Supporting Information

Deoxyfluorination of (Hetero)aryl Aldehydes Using Tetramethylammonium Fluoride and Perfluorobutanesulfonyl Fluoride or Trifluoromethanesulfonic Anhydride

Devin M. Ferguson, Patrick R. Melvin, and Melanie S. Sanford*

Supporting Information for:

Deoxyfluorination of (Hetero)aryl Aldehydes Using Tetramethylammonium Fluoride and Perfluorobutanesulfonyl Fluoride or Trifluoromethanesulfonic Anhydride

Devin M. Ferguson, Patrick R. Melvin, and Melanie S. Sanford

1.	Gen	eral Information	S1
2.	Mat	erials and Methods	S2
3. Characterization of Products Isolated from (Hetero)aryl Aldehydes			
	usir	ng PBSF	S2
4. Characterization of Products Isolated from (Hetero)aryl Aldehydes			
	usir	ng Tf₂O	S8
5. References			.S10
6.	NMR Spectra		.S11
	i.	1 Synthesized Using PBSF	.S11
	ii.	2 Synthesized Using PBSF	.S13
	iii.	3 Synthesized Using PBSF	.S15
	iv.	4 Synthesized Using PBSF	.S17
	V.	5 Synthesized Using PBSF	.S19
	vi.	6 Synthesized Using PBSF	
	vii.	7 Synthesized Using PBSF	. S23
	viii.	8 Synthesized Using PBSF	. S25
	ix.	9 Synthesized Using PBSF	. S27
	х.	10 Synthesized Using PBSF	. S29
	χi.	11 Synthesized Using PBSF	. S31
	xii.	12 Synthesized Using PBSF	. S33
	xiii.	1 Synthesized Using Tf ₂ O	
	xiv.	2 Synthesized Using Tf ₂ O	
	XV.	3 Synthesized Using Tf ₂ O	
	xvi.	4 Synthesized Using Tf ₂ O	. S38
	xvii.	6 Synthesized Using Tf ₂ O	
	xviii.	7 Synthesized Using Tf ₂ O	
	xix.	8 Synthesized Using Tf ₂ O	
	XX.	11 Synthesized Using Tf₂O	
	xxi.	12 Synthesized Using Tf₂O	

1. General Information

NMR spectra were obtained on a Varian MR400 (400.52 MHz for ¹H, 376.87 MHz for ¹⁹F), Varian VNMRS 500 (470.47 MHz for ¹⁹F), Varian Inova 500 (499.91 MHz for ¹H), or a Varian VNMRS 700 (699.75 MHz for ¹H, 175.97 MHz for ¹³C) spectrometer. ¹H and ¹³C NMR chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS), with the residual NMR solvent peak used as an internal reference. ¹⁹F NMR chemical shifts are reported in ppm and are referenced to the solvent lock. Abbreviations used to report the NMR data: app, apparent; s, singlet; d, doublet; t, triplet; dd, doublet of doublets; ddd, doublet of doublets of doublets; m, multiplet. ¹⁹F NMR yields were obtained on a Varian MR400 spectrometer (376.87 MHz for ¹⁹F) using (trifluoromethoxy)benzene (–58.3 ppm) as an internal standard with a relaxation delay of 5 s. High-resolution mass spectra were recorded on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer. Melting points were obtained using a Thomas Hoover Capillary Melting Point Apparatus and are uncorrected.

2. Materials and Methods

All commercial reagents were used as received unless stated otherwise. Black open-top caps (thread size: 13-425) and Teflon/silicone septa (for 13-425 open top caps) were purchased from Thermo Scientific. The solvents Et₂O (Alfa Aesar), DCM (Fisher Scientific) and THF (Alfa Aesar) used in the glovebox were deaerated by sparging with N₂ and were dried using an Innovative Technology, Inc. (now rebranded to Inert) solvent purification system. EtOAc used in the glovebox was purchased from Fisher Scientific and distilled from CaH₂. 5-bromo-2pyridinecarboxaldehyde and 4-isoquinolinecarboxaldehyde were purchased from Alfa Aesar. 3-methoxy-pyridine-2-carbaldehyde was purchased from TCI America. Dibenzofuran-4-carboxaldehyde was purchased from Chem-Impex International, Inc. 4-cyanobenzaldehyde. N-methyl-2-pyrrolidone (NMP, extra dry over molecular sieves in an AcroSealTM bottle), DMSO (anhydrous in an AcroSealTM bottle, stored over activated 3Å molecular sieves) were purchased from Acros Organics. 1-naphthaldehyde was purchased from AK Scientific, Inc. 2phenylbenzaldehyde was purchased from Ark Pharm. Perfluorobutanesulfonyl fluoride (stored in a nitrogen-filled glovebox), trifluoromethanesulfonic anhydride (stored in the freezer of a nitrogen-filled glovebox at -35 °C), and 4phenylbenzaldehyde were purchased from Oakwood Chemical. Tetramethylammonium fluoride (anhydrous, 97%, stored in a nitrogen-filled 4-bromobenzaldehyde, 4-nitrobenzaldehyde, glovebox), 4-(2pyridyl)benzaldehyde, 4-quinolinecarboxaldehyde (recrystallized from EtOAc/hexanes), and anhydrous *N,N*-DMF in a Sure/Seal[™] bottle were purchased from Aldrich. CDCl₃ was purchased from Cambridge Isotope Laboratories, Inc. All glassware used in the glovebox was dried in an oven at 150 °C for at least 3 h and cooled under an inert atmosphere. DCM (Fisher Scientific), Et₂O (EMD Millipore), and pentane (Fisher Scientific) used on the bench top were used as received. Silica (SiliaFlash F60) used on the bench top was purchased from SiliCycle, Inc. and used as received.

3. Characterization of Products Isolated from (Hetero)aryl Aldehydes using PBSF

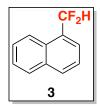
This reaction was performed with 4-phenylbenzaldehyde according to the general procedure using PBSF. Product **1** was obtained as a white solid (15 mg, 37% yield, R_f = 0.26 in 100% pentane, mp = 76-77 °C). The NMR spectra are consistent with those reported in the literature.¹

¹H NMR (499.91 MHz, CDCl₃): δ 7.68 (app d, J = 8.0 Hz, 2H), 7.61-7.58 (m, 4H), 7.48-7.45 (m, 2H), 7.41-7.37 (m, 1H), 6.70 (t, J = 56.4 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –110.42 (d, J = 56.4 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 143.85 (t, J = 2.0 Hz), 140.33, 133.35 (t, J = 22.4 Hz), 129.06, 128.04, 127.58, 127.39, 126.17 (t, J = 6.0 Hz), 114.88 (t, J = 238.5 Hz).

HRMS calcd. for C₁₃H₁₀F₂: 204.0751; Found: 204.0755


This reaction was performed with 2-phenylbenzaldehyde according to the general procedure using PBSF. Product **2** was obtained as a colorless oil (20 mg, 49% yield, $R_f = 0.39$ in 100% pentane). The NMR spectra are consistent with those reported in the literature.²

¹H NMR (499.91 MHz, CDCl₃): δ 7.80 (app d, J = 7.3 Hz, 1H), 7.54-7.35 (multiple peaks, 8H), 6.54 (t, J = 55.0 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –107.44 (d, J = 55.0 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 141.53 (t, J = 6.6 Hz), 138.80, 131.89 (t, J = 22.1 Hz), 130.59 (t, J = 2.0 Hz), 130.35, 129.59, 128.55, 128.01, 127.99, 125.74 (t, J = 5.2 Hz), 113.27 (t, J = 236.0).

HRMS calcd. for C₁₃H₁₀F₂: 204.0751; Found: 204.0758

This reaction was performed with 1-naphthaldehyde according to the general procedure using PBSF. 1-naphthaldehyde is an oil and the order of addition of reagents changed to accommodate this: 1-naphthaldehyde was added to the vial first, followed by THF, TMAF, and finally PBSF. Product **3** was obtained as a colorless oil (13 mg, 37% yield, R_f = 0.31 in 100% pentane). The NMR spectra are consistent with those reported in the literature.¹

¹H NMR (499.91 MHz, CDCl₃): δ 8.18 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1 H), 7.92 (app d, J = 8.0 Hz, 1H), 7.70 (app d, J = 7.0 Hz, 1H), 7.62-7.50 (multiple peaks, 3H), 7.14 (t, J = 55.2 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –110.95 (d, J = 55.2 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 133.93, 131.64 (t, J = 1.7 Hz), 129.88 (t, J = 2.6 Hz), 129.71 (t, J = 20.8 Hz), 128.92, 127.31, 126.52, 124.94 (t, J = 8.7 Hz), 124.82, 123.71 (t, J = 1.3 Hz), 115.55 (t, J = 238.4 Hz).

HRMS calcd. for C₁₁H₈F₂: 178.0594; Found: 178.0596

This reaction was performed with 4-cyanobenzaldehyde according to the general procedure using PBSF. Product **5** was obtained as a colorless oil (26 mg, 85% yield, R_f = 0.54 in 20% Et₂O / 80% pentane). The NMR spectra are consistent with those reported in the literature.¹

¹H NMR (499.91 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 6.69 (t, J = 55.8 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –113.19 (d, J = 55.8 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 138.71 (t, J = 22.8 Hz), 132.74, 126.55 (t, J = 6.1 Hz), 118.02, 114.97 (t, J = 2.1 Hz), 113.45 (t, J = 240.7).

HRMS calcd. for C₈H₅F₂N: 153.0390; Found: 153.0394

This reaction was performed with 4-nitrobenzaldehyde according to the general procedure using PBSF. Product **6** was obtained as a yellow oil and was pure after filtration through a silica plug using Et_2O (33 mg, 95% yield). The yield reported is an average of two independent runs (95% and 83%). The NMR spectra are consistent with those reported in the literature.¹

¹H NMR (499.91 MHz, CDCl₃): δ 8.33 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 6.74 (t, J = 55.8 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –113.00 (d, J = 55.8 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 149.55, 140.34 (t, J = 22.9 Hz), 126.99 (t, J = 6.0 Hz), 124.15, 113.31 (t, J = 241.1 Hz).

HRMS calcd. for C₇H₅F₂NO₂: 173.0288; Found: 173.0290

This reaction was performed with 4-(2-pyridyl)benzaldehyde according to the general procedure using PBSF. Product **7** was obtained as a white solid (21 mg, 51% yield, R_f = 0.48 in 30% Et₂O / 70% pentane, mp = 39-40 °C). The NMR spectra are consistent with those reported in the literature.³

¹H NMR (499.91 MHz, CDCl₃): δ 8.73-8.72 (m, 1H), 8.09 (d, J = 8.1 Hz, 2H), 7.81-7.75 (multiple peaks, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.28 (app ddd, J = 6.7, 4.8, 1.5 Hz, 1H), 6.71 (t, J = 56.5 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –110.96 (d, J = 56.5 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 156.51, 150.01, 141.86 (t, J = 1.9 Hz), 137.04, 134.88 (t, J = 22.3 Hz), 127.34, 126.14 (t, J = 6.1 Hz), 122.83, 120.92, 114.76 (t, J = 238.7 Hz).

HRMS calcd. for C₁₂H₉F₂N [M+H]+: 206.0776; Found: 206.0783

This reaction was performed with dibenzofuran-4-carboxaldehyde according to the general procedure using PBSF. Product **8** was obtained as a colorless oil (32 mg, 73% yield, R_f = 0.28 in 100% pentane). The yield reported is an average of two independent runs (73% and 52%). The NMR spectra are consistent with those reported in the literature.⁴

¹H NMR (499.91 MHz, CDCl₃): δ 8.06 (d, J = 7.7 Hz, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.67 (app d, J = 7.6 Hz, 1H), 7.63 (app d, J = 8.3 Hz, 1H), 7.53-7.49 (m, 1H), 7.44-7.37 (multiple peaks, 2H), 7.22 (t, J = 55.1 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –113.12 (d, J = 55.1 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 156.49, 153.19 (t, J = 5.1 Hz), 127.97, 125.32, 123.87 (t, J = 5.8 Hz), 123.53, 123.40, 123.24 (t, J = 1.5 Hz), 122.88, 120.93, 118.64 (t, J = 23.8 Hz), 112.10, 112.02 (t, J = 237.4 Hz).

HRMS calcd. for C₁₃H₈F₂O: 218.0543; Found: 218.0544

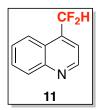
This reaction was performed with 3-methoxy-pyridine-2-carbaldehyde according to the general procedure using PBSF. Product **9** was obtained as a colorless oil (27 mg, 85% yield, $R_f = 0.31$ in 40% Et₂O / 60% pentane).⁵

¹H NMR (499.91 MHz, CDCl₃): δ 8.28 (app d, J = 4.4 Hz, 1H), 7.40-7.39 (m, 1H), 7.31 (app d, J = 8.4 Hz, 1H), 6.90 (t, J = 54.2 Hz, 1H), 3.91 (s, 3H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –119.51 (d, J = 54.2 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 154.37 (t, J = 2.5 Hz), 141.28, 141.11 (t, J = 22.7 Hz), 126.53 (t, J = 1.7 Hz), 119.15, 111.66 (t, J = 238.7 Hz), 55.87.

HRMS calcd. for C₇H₇F₂NO [M+H]+: 160.0568; Found: 160.0570

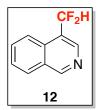

This reaction was performed with 5-bromo-2-pyridinecarboxaldehyde according to the general procedure using PBSF. Product **10** was obtained as a white solid (30 mg, 72% yield, R_f = 0.32 in 2% Et₂O / 98% pentane, mp = 40-41 °C). The yield reported is an average of two independent runs (72% and 68%). The NMR spectra are consistent with those reported in the literature.⁶

¹H NMR (499.91 MHz, CDCl₃): δ 8.72 (d, J = 2.0 Hz, 1H), 7.98 (dd, J = 8.3, 2.0 Hz, 1H), 7.55 (d, J = 8.3 Hz, 1H), 6.61 (t, J = 55.3 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –115.68 (d, J = 55.3 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 151.46 (t, J = 26.4 Hz), 150.90, 140.10, 122.97 (t, J = 2.0 Hz), 121.57 (t, J = 2.7 Hz), 113.62 (t, J = 240.8).

HRMS calcd. for C₆H₄BrF₂N [M+H]+: 207.9568; Found: 207.9565


This reaction was performed with 4-quinolinecarboxaldehyde according to the general procedure using PBSF. Product **11** was obtained as a white solid and was pure after filtration through a silica plug using Et_2O (34 mg, 95% yield, mp = 55-56 °C). The yield reported is an average of two independent runs (95% and 84%). The NMR spectra are consistent with those reported in the literature.⁵

¹H NMR (499.91 MHz, CDCl₃): δ 9.03 (d, J = 4.3 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.82-7.79 (m, 1H), 7.69-7.65 (m, 1H), 7.60 (d, J = 4.3 Hz, 1H), 7.17 (t, J = 54.6 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –115.13 (d, J = 54.6 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 150.14, 148.79, 137.96 (t, J = 21.7 Hz), 130.60, 130.08, 127.97, 124.30 (t, J = 3.1 Hz), 123.45-123.43 (m), 118.09 (t, J = 7.7 Hz), 113.44 (t, J = 240.4 Hz).

HRMS calcd. for $C_{10}H_7F_2N$ [M+H]+: 180.0619; Found: 180.0623

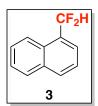
This reaction was performed with 4-isoquinolinecarboxaldehyde according to the general procedure using PBSF. Product **12** was obtained as a colorless oil (28 mg, 78% yield, R_f = 0.33 in 50% Et₂O / 50% pentane). The NMR spectra are consistent with those reported in the literature.⁵

¹H NMR (499.91 MHz, CDCl₃): δ 9.35 (s, 1H), 8.69 (s, 1H), 8.20 (app d, J = 8.5 Hz, 1H), 8.06 (app d, J = 8.2 Hz, 1H), 7.84-7.81 (m, 1H), 7.71 (app t, J = 7.6 Hz, 1H), 7.07 (t, J = 54.4 Hz, 1H).

¹⁹F NMR (470.47 MHz, CDCl₃): δ –110.95 (d, J = 54.4 Hz, 2F).

¹³C NMR (175.97 MHz, CDCl₃): δ 156.21-156.19 (m), 141.88 (t, J = 9.4 Hz), 132.33 (t, J = 1.6 Hz), 131.80, 128.58, 128.07, 123.41 (t, J = 21.6 Hz), 123.32 (t, J = 1.7 Hz), 115.22 (t, J = 238.5 Hz).

HRMS calcd. for $C_{10}H_7F_2N$ [M+H]+: 180.0619; Found: 180.0621


4. Characterization of Products Isolated from (Hetero)aryl Aldehydes using Tf₂O

This reaction was performed with 4-phenylbenzaldehyde according to the general procedure using Tf₂O. Product **1** was obtained as a white solid (23 mg, 56% yield, R_f = 0.26 in 100% pentane). The yield reported is an average of two independent runs (56% and 59%).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **1** isolated from the general procedure using PBSF.

This reaction was performed with 2-phenylbenzaldehyde according to the general procedure using Tf_2O . Product **2** was obtained as a colorless oil (19 mg, 47% yield, $R_f = 0.39$ in 100% pentane).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **2** isolated from the general procedure using PBSF.

This reaction was performed with 1-naphthaldehyde according to the general procedure using Tf_2O . 1-naphthaldehyde is an oil and the order of addition of reagents changed to accommodate this: 1-naphthaldehyde was added to the vial first, followed by DCM, TMAF, and finally Tf_2O . Product **3** was obtained as a colorless oil (21 mg, 59% yield, R_f = 0.31 in 100% pentane). The yield reported is an average of two independent runs (59% and 72%).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **3** isolated from the general procedure using PBSF.

This reaction was performed with 4-nitrobenzaldehyde according to the general procedure using Tf_2O . Product **6** was obtained as a colorless oil (17 mg, 49% yield, $R_f = 0.36$ in 6% Et_2O / 94% pentane).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **6** isolated from the general procedure using PBSF.

This reaction was performed with 4-(2-pyridyl)benzaldehyde according to the general procedure using Tf₂O. Product **7** was obtained as a white solid (26 mg, 63% yield, $R_f = 0.48$ in 30% Et₂O / 70% pentane).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **7** isolated from the general procedure using PBSF.

This reaction was performed with dibenzofuran-4-carboxaldehyde according to the general procedure using Tf₂O. Product **8** was obtained as a colorless oil (34 mg,

78% yield, R_f = 0.28 in 100% pentane). The yield reported is an average of two independent runs (78% and 50%).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **8** isolated from the general procedure using PBSF.

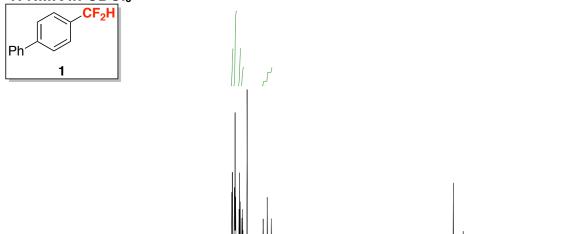
This reaction was performed with 4-quinolinecarboxaldehyde according to the general procedure using Tf_2O . Product **11** was obtained as an orange oil (14 mg, 39% yield $R_f = 0.46$ in 50% Et_2O / 50% pentane).

¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **11** isolated from the general procedure using PBSF.

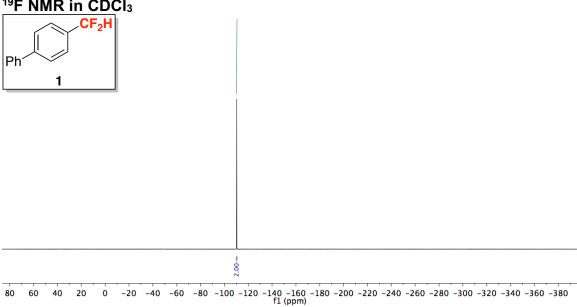
This reaction was performed with 4-isoquinolinecarboxaldehyde according to the general procedure using Tf_2O . Product **12** was obtained as a colorless oil (25 mg, 70% yield, $R_f = 0.33$ in 50% Et_2O / 50% pentane).

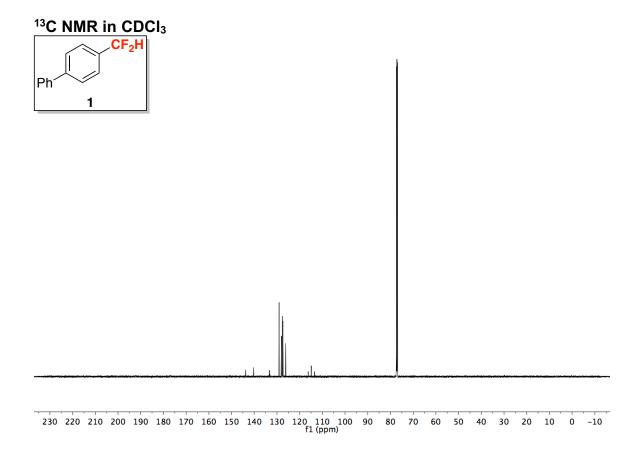
¹H and ¹⁹F NMR spectral data were consistent with the spectral data obtained for **12** isolated from the general procedure using PBSF.

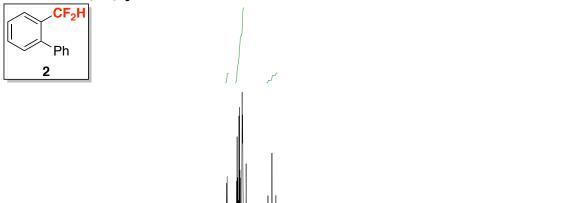
5. References


- ¹ Motohashi, H.; Mikami, K. Org. Lett. **2018**, 20, 5340.
- ² Pan, F.; Boursalian, G. B.; Ritter, T. Angew. Chem. Int. Ed. **2018**, *57*, 16871.
- ³ Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. *J. Am. Chem. Soc.* **2018**, *140*, 880.
- ⁴ Hori, K.; Motohashi, H.; Saito, D.; Mikami, K. ACS Catal. 2019, 9, 417.
- ⁵ Lu, C.; Gu, Y.; Wu, J.; Gu, Y.; Shen, Q. Chem. Sci. **2017**, *8*, 4848.
- ⁶ Zeng, X.; Wei, X.; Song, J. J.; Sarvestani, M.; Fandrick, D. R.; Qu, B.; Rodríguez, S.; Sieber, J. D.; Desrosiers, J.-N.; Yee, N. K.; Roschanger, F.; Senanayake, C. H. *Asian J. Org. Chem.* **2015**, *4*, 1262.

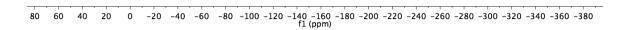
6. NMR Spectra

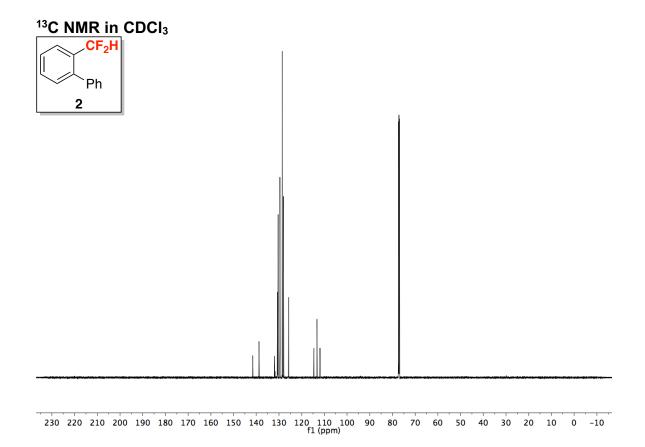

1 Synthesized Using PBSF i.


10


¹⁹F NMR in CDCI₃

ii. 2 Synthesized Using PBSF

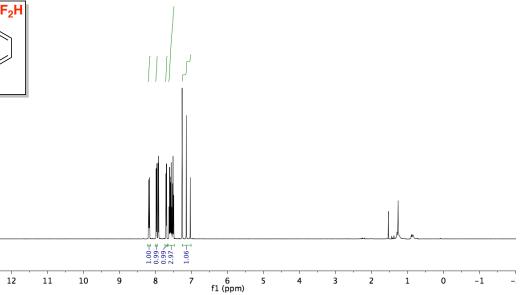




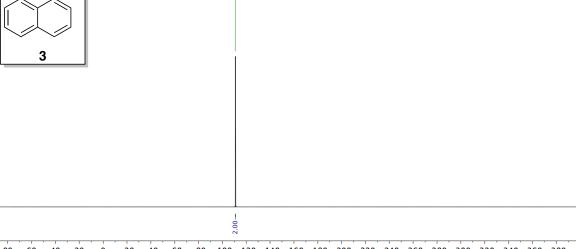
6 f1 (ppm)

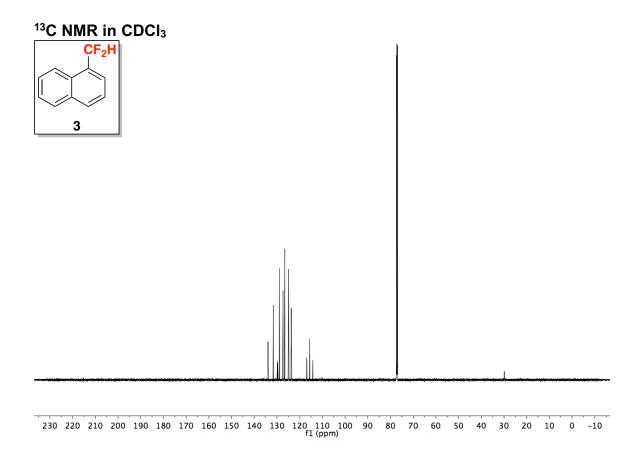
¹⁹F NMR in CDCI₃



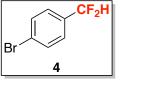


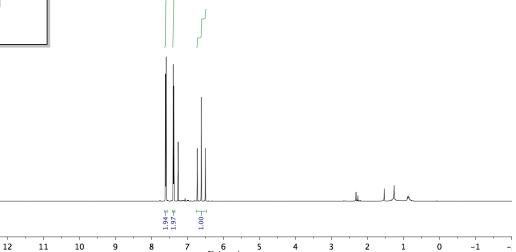
iii. 3 Synthesized Using PBSF

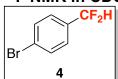


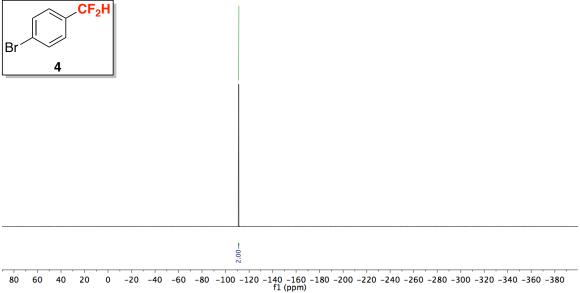


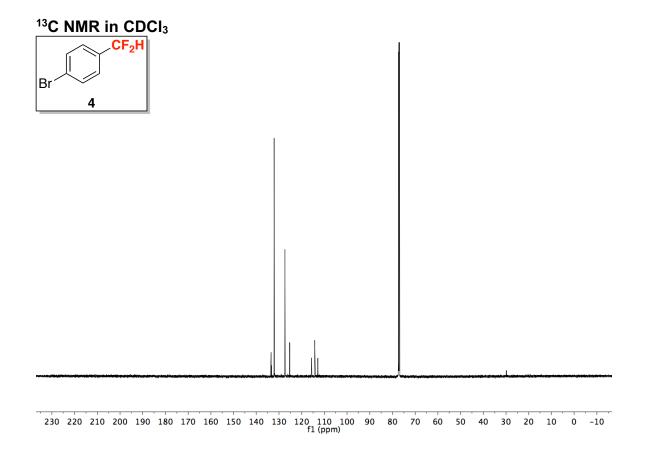
¹⁹F NMR in CDCl₃



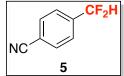


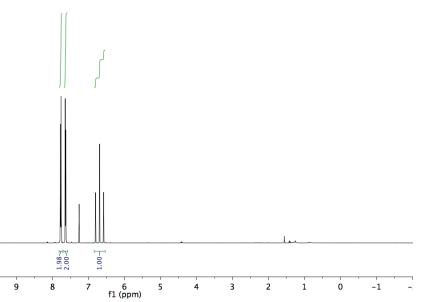

4 Synthesized Using PBSF iv.



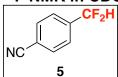


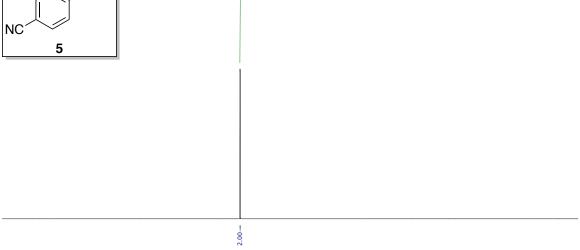
¹⁹F NMR in CDCI₃



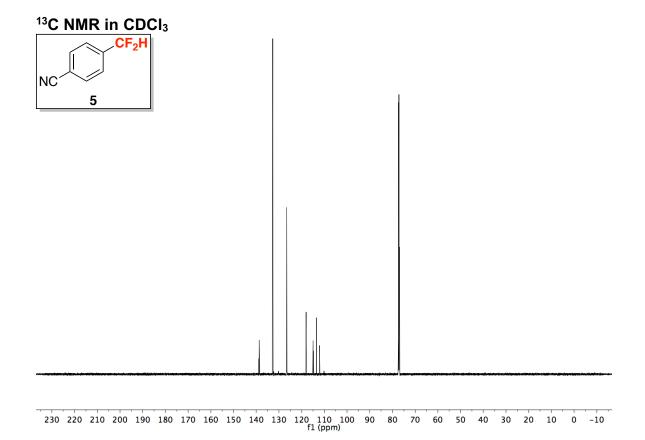


5 Synthesized Using PBSF V.

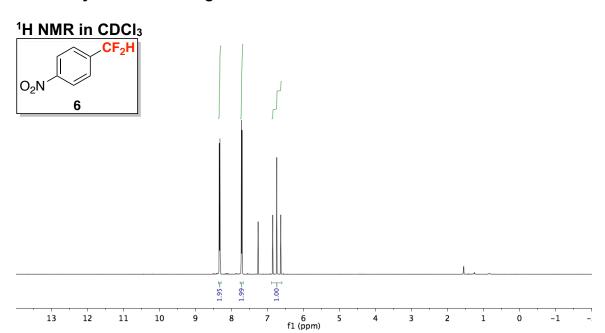

19F NMR in CDCI₃

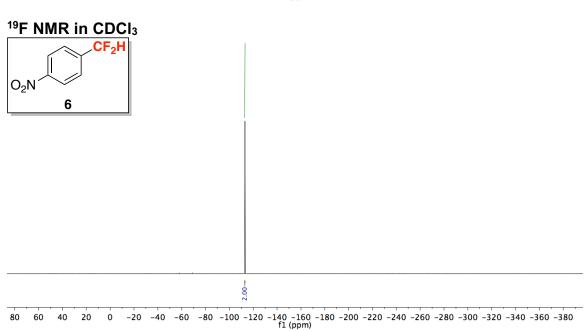

12

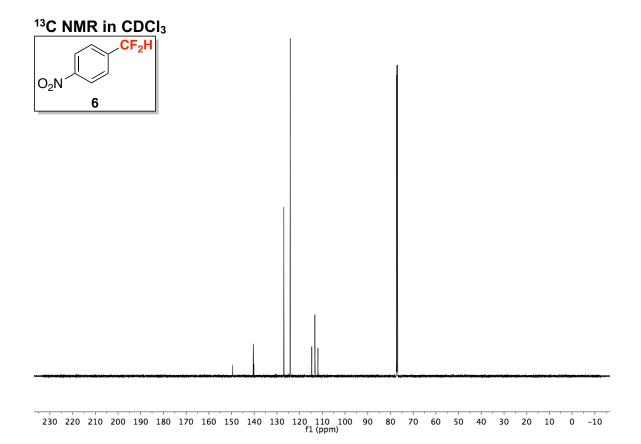
11


10

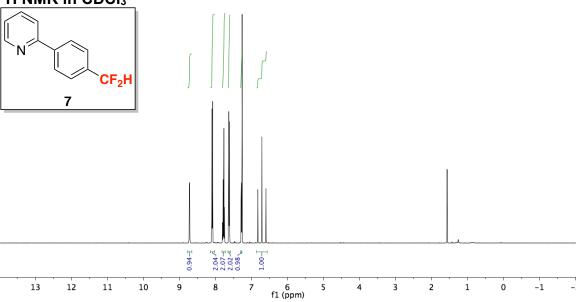
13

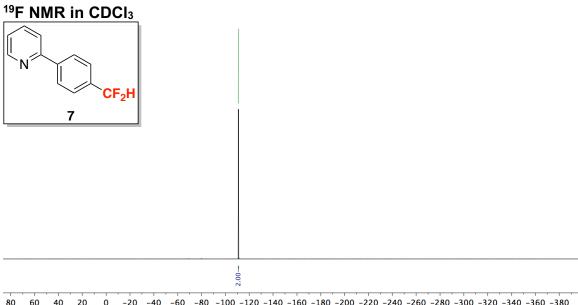


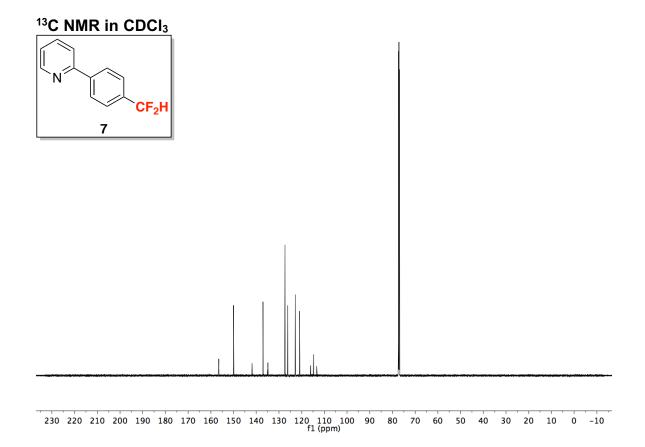



40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 -380 f1 (ppm)

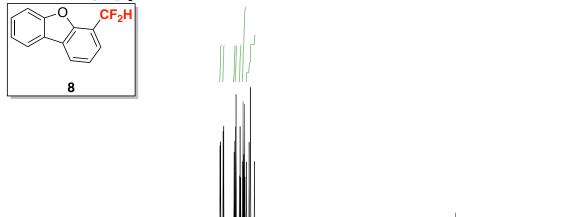
vi. 6 Synthesized Using PBSF



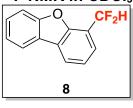


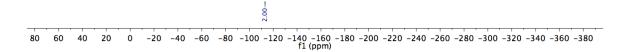


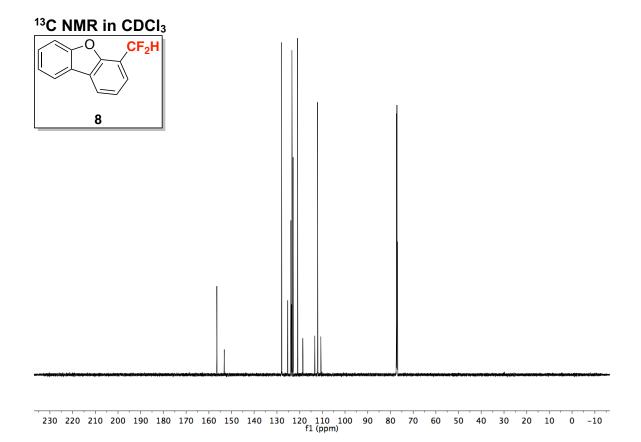
vii. 7 Synthesized Using PBSF



viii. 8 Synthesized Using PBSF

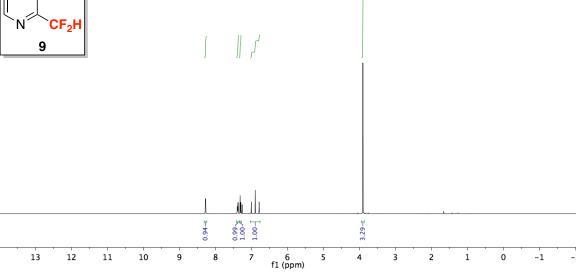



6 f1 (ppm)

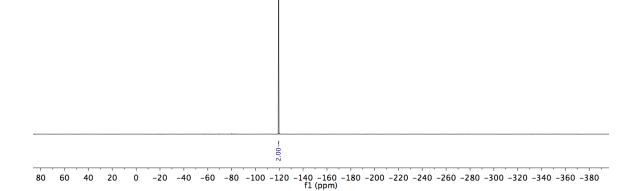

1.00 0.99 1.00 0.98 2.04 1.27

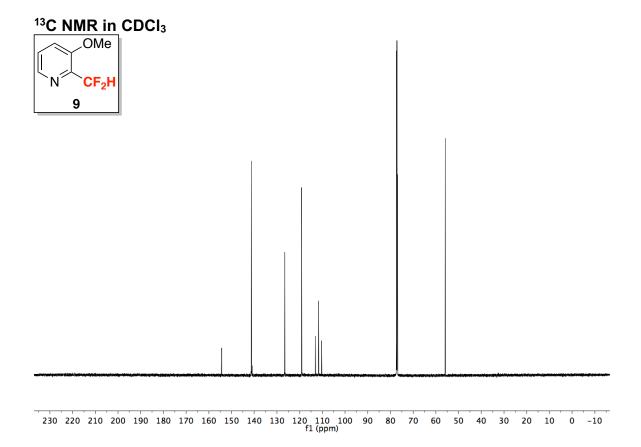
¹⁹F NMR in CDCI₃

11

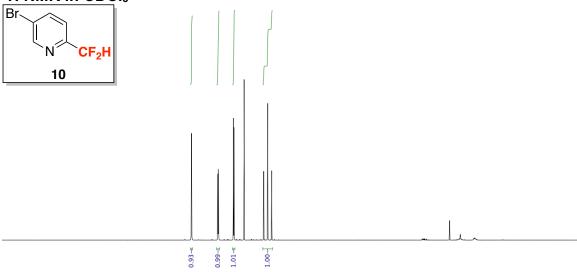


9 Synthesized Using PBSF ix.

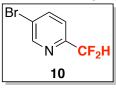

¹H NMR in CDCl₃

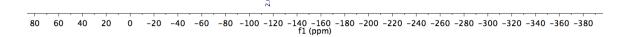


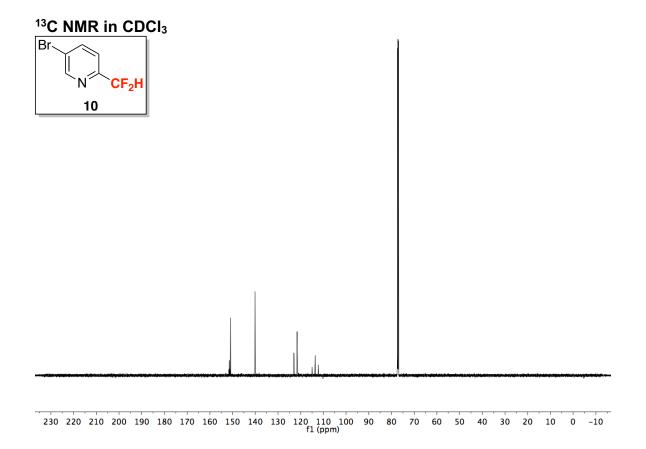
¹⁹F NMR in CDCl₃



x. 10 Synthesized Using PBSF

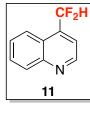

6 f1 (ppm)

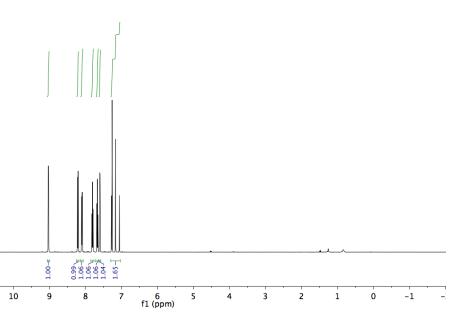

¹⁹F NMR in CDCI₃


12

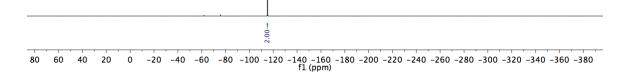
11

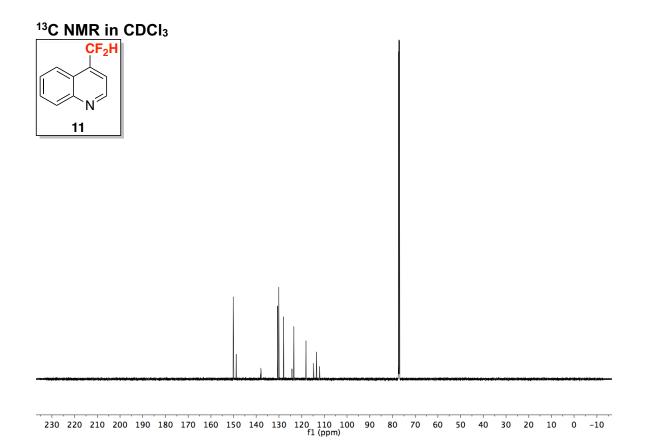
10



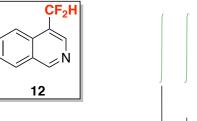


xi. 11 Synthesized Using PBSF

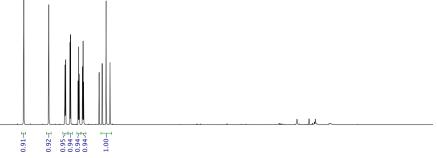




¹⁹F NMR in CDCl₃



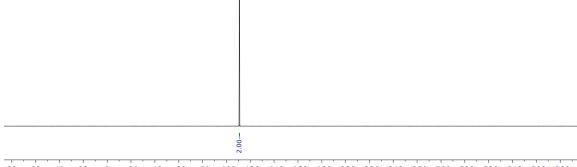
xii. 12 Synthesized Using PBSF



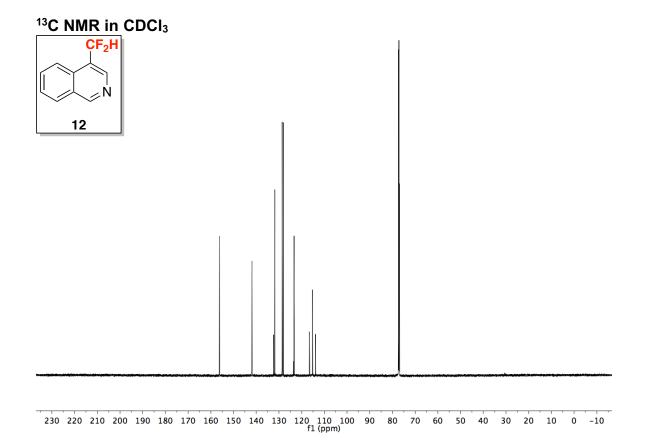
11

10

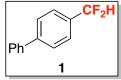
9

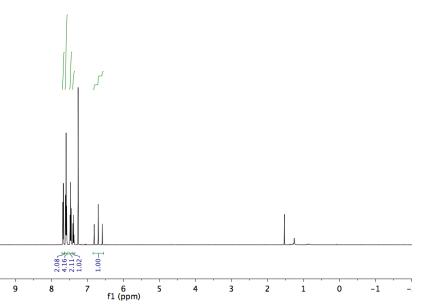


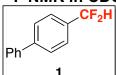
¹⁹F NMR in CDCl₃

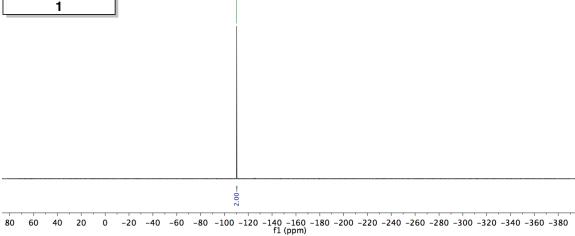

12

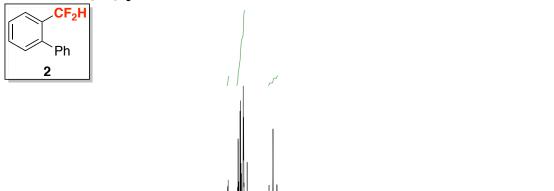
13




6 f1 (ppm)


xiii. 1 Synthesized Using Tf₂O




¹⁹F NMR in CDCI₃

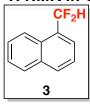
xiv. 2 Synthesized Using Tf₂O

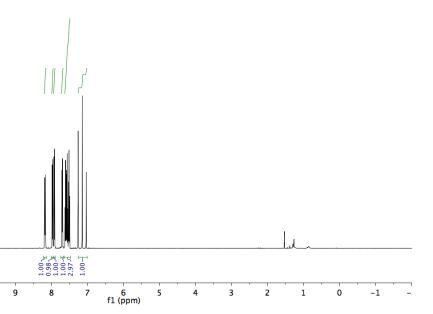
1.00−

7.83∃

¹⁹F NMR in CDCl₃

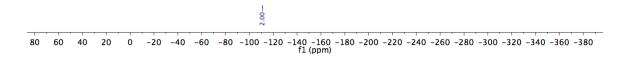
10

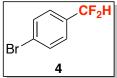


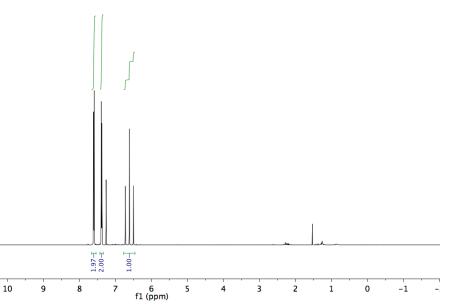


80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 -380 fl (ppm)

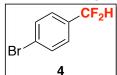
xv. 3 Synthesized Using Tf₂O

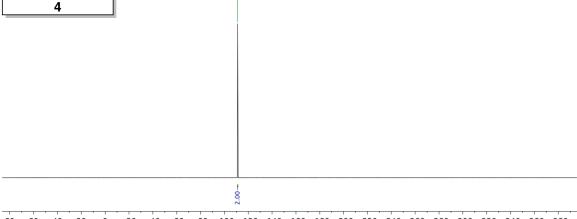



¹⁹F NMR in CDCl₃

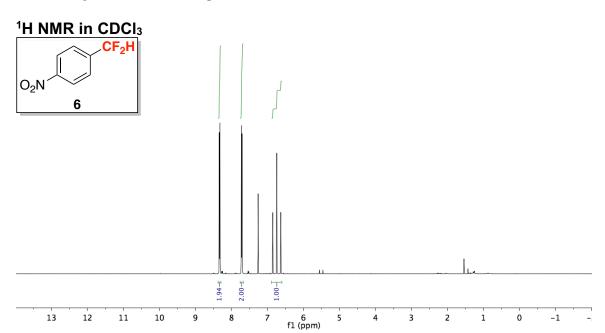


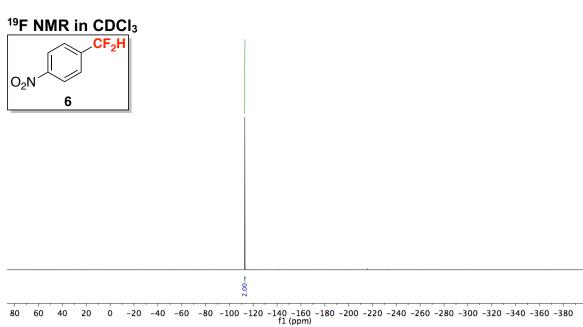
xvi. 4 Synthesized Using Tf₂O

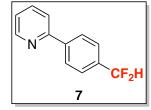


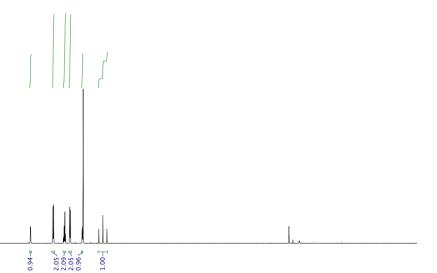


19F NMR in CDCI₃


12

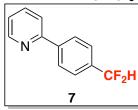

11

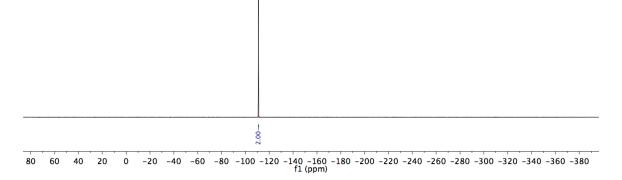

xvii. 6 Synthesized Using Tf₂O



xviii. 7 Synthesized Using Tf₂O

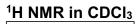
¹⁹F NMR in CDCI₃

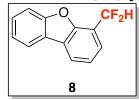

12

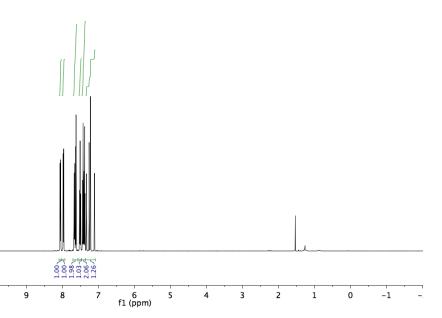

11

10

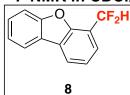
9

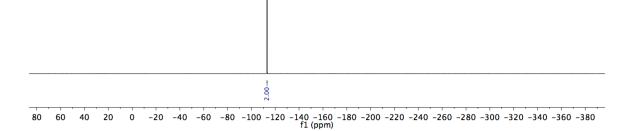

13

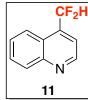


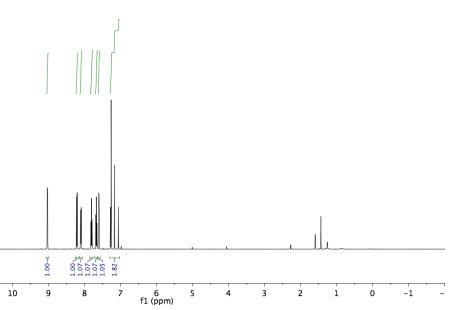


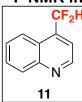
6 f1 (ppm)

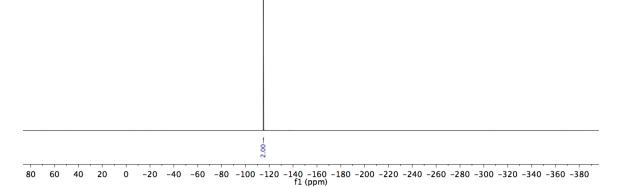

xix. 8 Synthesized Using Tf₂O




¹⁹F NMR in CDCI₃



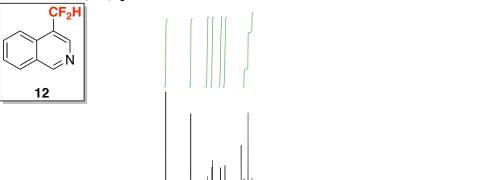

xx. 11 Synthesized Using Tf₂O



19F NMR in CDCI₃

xxi. 12 Synthesized Using Tf₂O

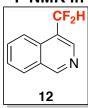
1.00-₹


9

10

1.01 1.03 1.04 1.03 1.03 1.03 1.03

> 6 f1 (ppm)



¹⁹F NMR in CDCI₃

12

11

13

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 -380 f1 (ppm)