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ABSTRACT

Random graphs are mathematical models for understanding real-world networks. Impor-

tant properties can be captured, processes studied, and rigorous predictions made. Phase

transitions (sudden changes in structural properties caused by varying an underlying param-

eter) are commonly observed in random graphs. Our work focuses on phase transitions in

three models. We study emergence of cascades and impact of community structure on phase

transition in threshold-based contagion models using modular random graphs generated by

configuration model and differential equation method. Using local weak analysis, we study

a new graph model generated by bilateral agreement of individuals and analyze when a gi-

ant component emerges. Using the objective method and motivated by particle tracking in

physics and object tracking in videos, we study detectability threshold of a hidden planted

matching in a complete bipartite randomly weighted graph.
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CHAPTER I

Introduction

1.1 Motivation

Networks are everywhere. The World Wide Web is a network of Web pages connected by

hyperlinks to each other. Social networks such as Facebook are networks of user accounts

with the connections governed by friendship status. Food webs are also networks where

the linkage illustrate feeding pathways. They also arise in many other biological systems:

e.g., the brain is a network of nerve cells connected by axons and even interactions between

proteins in the cells can be modeled using networks.

The study of networks has attracted increased attention during the last few decades.

Scientists from different fields are trying to understand the structure and the properties of

real-world networks. One of the main tools that have been used for the study of networks

is graph theory. The first use of graph theory dates back to the celebrated work of Euler on

the bridges of Königsberg in 1736. Ever since, graph theory has been developed into a rich

branch of discrete mathematics.

One of the central questions in network science is the following: given some examples

of real-world networks, how might you reason that observed phenomena are “typical” to

such networks? Often, there is only limited information available about the network. This

may arise due to lack of data, or the difficulty in analyzing a large data set. Despite this,

we need to understand and forecast the behavior of a process on a typical example of the

network. Running a process over the given network can be impossible or too costly, and

is prone to error because of a limited number of samples. The scientific method suggests

using mathematical models to make predictions, and to compare them with the observed

real-world phenomena. Based on these concerns, a reasonable and fruitful procedure is to

generate graphs randomly, using the structural properties of real-world networks.

The introduction of probabilistic methods to graph theory inspired a new branch of

mathematics called random graph theory. The term “random” usually refers to the ran-
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dom construction of the graph; generally speaking, a random graph model is a probability

distribution over graphs. The work of Erdös and Rényi in [2] and Gilbert in [3] were the

first formal introduction of random graphs. However, the first discussion related to random

graphs appeared in [4], where Erdös provided an easy and yet elegant lower bound for the

Ramsey number R(k, k).

The rich structure of random graphs captures some important properties of real-world

networks, and meanwhile, makes it possible to mathematically analyze processes over the

network and also to make rigorous predictions. These models have many applications in

different fields including, but not limited to, network sciences, social sciences, life sciences,

biological science, health studies, macroeconomics, etc. They have also been studied in a

large body of research over many years, but despite this many mathematical challenges and

open questions remain.

Among different phenomena associated with real-world networks, phase transitions par-

ticularly stand out. A phase transition refers to a sudden change in global properties of

the network, when an underlying parameter changes from one side of a critical value to the

other. Some examples of this phenomenon are: emergence of a giant connected network,

belief propagation in social networks, spread of epidemic disease on networks, detectability

of a hidden structure in networks, etc. Most random graphs experience a phase transition

as well. We say a random graph model experience a phase transition if the behavior of a

typical realization of this model is radically different when some parameter changes around

its critical value. The focus of this thesis is to understand phase transitions in some recently

introduced random graph models.

In short, my work rigorously studies the impact of macroscopic structural properties

of random graphs and microscopic foundational level schemes for constructing them on the

emergence of global-level phenomena. In this thesis, we study three specific problems related

to this. First, we study the impact of community structure on the emergence of cascades,

a phase transition where a large portion of the population adopts the new behavior, in

threshold-based contagion models using modular random graphs generated by the configu-

ration model and the differential equation method for the analysis. Next, using local weak

analysis, we study a new graph model generated by bilateral agreement of individuals and

analyze when a giant component emerges. We extensively study the associated branching

process, using a point process perspective. Finally, using the objective method and moti-

vated by particle tracking in physics and object tracking in videos, we study the detectability

threshold of a hidden planted matching in a complete bipartite randomly weighted graph.

The rest of the introduction is organized as follows. In Section 1.2, we review some well-

known random graph models. In Section 1.3, we discuss the main techniques that are used

2



in this thesis. Finally, in Section 1.4, we provide an overview of the thesis and summarize

our contributions.

1.2 Some Well-Known Random Graph Models

There are many random graph models, each of which generates a random graph in a

unique manner and defines a probability measure over the space of graphs. In general, a

random graph model is defined in one of the following ways: either by specifying a sample

space together with a probability measure, or by defining a random process that generates

a graph. In this section, we discuss some well-studied random graph models from each of

these two cases.

Erdös-Rényi Random Graph: The earliest random graph models are due to Erdös and Rényi

in [2] and Gilbert in [3]. They introduced two closely related models: G(n,m) and G(n, p).

The random graph model G(n,m) is the uniform probability distribution over the set of

all graphs with n nodes and m edges. The random graph model G(n, p) is the distribution

of random graphs of n nodes where each edge exists with probability p. The later is more

common, probably because of the inherent independence structure, but these two models

are closely related when m =
(
n
2

)
p.

Fixed Degree Sequence Random Graph: One natural modification of G(n,m) is to fix the

degree sequence rather than the total number of edges. The random graph model G(n,dn)

is the uniform probability distribution over the space of all graphs with n nodes and a fixed

degree sequence dn = (d1, d2, · · · , dn). Indeed, we need to assume dn is graphic, that is to say,

the space of graphs with degree sequence dn is non-empty. One important question though,

is how to generate such a random graph. The earliest and the most well-known generative

model is due to Bollobás [5], which is referred to as the configuration model in the literature.

This generative model realizes a graph by randomly pairing half-edges to form edge, where

di half-edges are assigned to node i. Under some regularity conditions, the resulted graph is

simple with positive probability. When these conditions hold, then conditioned on the graph

begin simple, it is distributed as G(n,dn).

Preferential Attachment Model : Some real-world networks, such as World Wide Web, are

the outcome of some random process after it has been executed for a period of time. The

preferential attachment model tries to capture this behavior. The construction begins with

a fixed graph G0. At time step t+ 1, the random graph Gt+1 is generated by adding a node

v with degree m to Gt. The probability that the node w is connected to the node v in Gt+1

is proportional to the degree of w in Gt. Hence, node v picks m neighbors from Gt according
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to a multinomial distribution with parameters m and p1, p2, · · · , pNt , where pi ∝ deg(i, Gt)

and Nt is the total number of nodes in Gt. This random graph model was first considered

by Price [6, 7] in the study of the citation network. Krapivsky, Redner and Leyvraz studied

various properties of a related model, called the growing random networks, in [8] and [9].

The name “preferential attachment” is due to Barabási and Albert [10], who proposed the

application of this model to the growth of the World Wide Web.

The above three models are the most well-known and heavily studied random graph

models in the literature. There are many other random graph models such as random

intersection graphs, random geometric graphs, small world model, etc. For an application

based survey on different types of random graph models see [11], and for a more rigorous

study see [12], or more recently [13] and [14].

1.3 Mathematical Tools and Methods

There are various tools to study a random graph model. The first and probably the

most well-known is the first and the second moment method. However, especially due to

the increased use and development of martingale methods in the recent decades, there are

many more rigorous techniques to understand and predict the behavior of random graphs,

e.g., concentration inequalities, differential equations method, entropy based analysis, etc.

In this section, we provide an overview of the methods that we use in this thesis.

The first and the second moment methods : As their name suggests, these two methods

are concerned with the first and the second moments of a random variable. Consider a

non-negative integer-valued random variable X. The first moment method is an easy appli-

cation of Markov inequality to bound the probability of the event {X > 0}: P (X > 0) ≤
E[X]. The second moment method involved a more careful analysis and typically uses the

Paley-Zygmund inequality that can be proved directly using the Cauchy-Schwarz inequality:

P (X > 0) ≥ (E[X])2/E[X2]. The main applications of these two methods is to bound the

probability of of the event {X = 0}. The first moment method is used to prove X = 0

with high probability, while the second moment method is used to prove X > 0 with high

probability.

One application of these methods is the disappearance of isolated nodes in G(n, p) for p =

c log n/n. Let X = I1 + I2 + · · · + In denote the total number of isolated nodes, where Ii

is an indicator random variable indicating whether node i is isolated or not. Using the first

moment method, it is easy to see that for c > 1 we have P (X > 0)→ 0. On the other hand,
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using the second moment method, for c ≤ 1 we have P (X > 0)→ 1. Hence, there is a phase

transition at the critical value c = 1 for G(n, c log n/n) random graph model.

While the simplicity of these methods has resulted in their immense popularity and suc-

cess [15, 16], they are not always applicable. The reason usually is the difficulty of finding

the first and/or the second moments of the random variable of interest. In chapter III, we

will see that even finding the first moment can be very challenging when the structure of

the random graph is interdependent. We face the same problem in chapter IV to find the

second moment.

Differential Equation Method : This method provides a deterministic approximation for the

dynamics of a random process. It was originally introduced by Kurtz [17] to study a con-

tinuous time random process. The earliest application of the differential equation method

to random graphs is due to the work of Karp and Sipser [18]. They used this method in

the analysis of a random greedy matching algorithm on G(n, λ/(n − 1)), where λ > 0 is a

constant.

The basic idea is simple: calculate the expected drift of the random variables of interest,

treat these expected changes as continuous functions, and write down the corresponding

differential equations suggested by these functions. The analysis uses large deviations results

and concentration inequalities to show the concentration of the random variables around the

solution of the differential equations. We use this method in chapter II to approximate belief

propagation in random graphs with community structure, generated by configuration model.

For an extensive survey and detailed discussion see [19].

The Objective Method : This method is applicable to a variety of combinatorial optimization

problems on random structures. The basic idea is as follows: identify an infinite probabilistic

object whose local properties are the same as the local limiting properties of a class of finite

problems, solve the optimization problem on this infinite object, and then use this solution to

construct a near-optimal solution to the class of finite problems as the size increases without

bound. Intuitively speaking, this method works if there is a correlation decay; that is to say,

the structure of the optimal solution are mostly given by the local properties of the problem.

The first rigorous application of this method is due Aldous [20, 21]. In a series of papers,

he proved the expected cost of the minimum matching on a complete bipartite graph with

uniformly distributed edge weights converges to π2/6; this established one of Mézard and

Parisi’s conjectures [22].

In chapter III, we use this method to identify the corresponding infinite object of the sparse

random graph introduced in [23]. In chapter IV, we closely follow the work of Aldous [20,21]
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to find a hidden planted matching in a complete bipartite graph with random edge weights.

See the survey by Aldous and Steele [24] and the lecture notes of Bordenave [25] for a detailed

discussion of this method.

Branching Processes : The idea of branching processes was first introduced by Bienaymé [26]

and more formally by Galton and Watson [27] to study the extinction of family names. A

branching process is a mathematical model for population dynamics. In the case of the

Galton-Watson branching process, there is only one individual in generation 0, and each

individual in generation n produces an i.i.d. random number of individuals in generation

n + 1 (with 0, i.e., death, also allowed). This model arises naturally in the study of locally

tree-like random graphs [28,29].

In chapter III, we extensively study the branching process associated with the sparse random

graph introduced in [23]. Because of the interdependent structure of the associated branching

process, the common techniques such as the first and the second moment method fail to

provide any meaningful insight. Instead, we use the point process perspective introduced by

Harris [30, Chapter 3] to study this branching process. An in-depth exposition of branching

processes can be found in the books by Harris [30] and Athreya and Ney [31].

1.4 Summary of Thesis

Using the techniques discussed in Section 1.3, we study phase transitions in three new

random graph families. We will discuss each of these techniques in greater detail in the

related chapters. For now, we provide the summary of the main technical chapters of the

thesis.

1.4.1 Chapter II: Impact of Community Structure on Cascades

In this chapter, we study the threshold model of cascades on random graphs with com-

munity structure. The threshold model is widely used to study the propagation of opinions,

behaviors and technologies in social networks, see e.g., [32]. In this model, individuals drop

the old behavior and adopt the new behavior based on how many neighbors have already

chosen it. A small portion of the population are early adopters, who introduce the new

behavior to the network. A cascade is said to happen if the number of individuals adopting

the new behavior is substantially greater than the number of early adopters.

Specifically, we consider the permanent adoption model where individuals that have

adopted the new behavior cannot change their state. We study cascades under the threshold
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model on sparse random graphs with community structure to see whether the existence of

communities affects the number of individuals who finally adopt the new behavior.

This problem has been rigorously analyzed when the underlying network is given by a

single community, see e.g., [33–36]. In the physics literature, however, this problem has been

studied in the case of multiple communities using heuristic methods, see e.g., [37,38]. In this

work, we close the gap by providing a rigorous analysis of this problem on random graphs

with community structure. These random graphs are given by a concatenation of multiple

sparse random graphs and bipartite random graphs.

A heuristically driven cavity-method like approximation developed in the physics litera-

ture [39,40] suggests that the number of individuals who eventually adopt the new behavior

is related to a fixed point of a particular set of mean-field equations. This approximation is

based on the fact that sparse random graphs are locally tree-like. In the case of two commu-

nities, this mean-field approximation suggests the final proportion of adopters is φ = Φ(µ)

where µ = (µ(1,1), µ(1,2), µ(2,1), µ(2,2)) is a fixed point of the mean-field equations µ = F (µ).

The components of functions Φ(·) and F (·) are defined as follows:

F(j,j)(µ) = E
[

Dj

E(Dj)
(1− αj(Dj, Dm)) 1

{Dj−1∑
i=1

Y
(j,j)
i +

Dm∑
i=1

Y
(j,−j)
i ≤ Kj(Dj, Dm)

}]
,

F(−j,j)(µ) = E
[

Dm

E(Dm)
(1− αj(Dj, Dm)) 1

{Dm−1∑
i=1

Y
(j,−j)
i +

Dj∑
i=1

Y
(j,j)
i ≤ Kj(Dj, Dm)

}]
,

Φj(µ) = E
[

(1− αj(Dj, Dm)) 1
{ Dj∑

i=1

Y
(j,j)
i +

Dm∑
i=1

Y
(j,−j)
i ≤ Kj(Dj, Dm)

}]
,

where for every j′, j ∈ {1, 2}, Y (j,j′)
i are i.i.d. Bernoulli random variables with parameter

1 − µ(j,j′), Dj is a random variable with the community j degree distribution, Dm has the

inter-community degree distribution, Kj(·, ·) is the threshold function for nodes in community

j, and αj(Dj, Dm) is the probability of a node in community j to be an early adopter, given

her neighbors in community j and −j to be dj and dm respectively. Notationally, we use

{−j} to denote {1, 2} \ {j}.
As the first step to prove the validity of the mean-field equations, we construct a Markov

chain that couples the evolution of the adoption process with the process of generating the

random graph. We then calculate the expected drift of the random variables associated with

this Markov process, treating them as continuous functions. However, there is a caveat here,

as the resulted continuous functions are not Lipschitz. This makes the analysis very chal-

lenging, since to apply the differential equation method we need to have Lipschitz continuous

functions.
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One way to fix this is to consider a truncated version of the original process, in which we

assume the state of nodes with high degrees does not change during the process. We also

have to stop the process before it terminates, to guarantee the Lipschitz property. We can

then use the differential equation approach to approximate the sample-path of the truncated

version of the Markov process of adoption, using a finite set of ordinary differential equations

(ODEs) given by these Lipschitz continuous functions. Next, we prove that the dimension

of this set of ODEs can be reduced significantly (in the case of 2 communities, the new

dimension is 4). This “surprising” dimension reduction has also been observed in the case of

one community [33,34]. We sketch a plausible reason behind this simplification by providing

a probabilistic solution to this set of ODEs.

We then show that in the case of two communities, the trajectory of the simplified ODEs

is the same as the trajectory of the following ODEs:

dµ

dt
= F (µ)− µ µ(0) = 1, µ ∈ [0, 1]4. (1.1)

By analyzing this set of finite dimensional ODEs, we prove the validity of the mean-field equa-

tions. We also show that the absorbing point of this ODEs is given by µ∗ = lims→∞ F
s(1),

where 1 = (1, 1, 1, 1) and F s is the sth iteration of the function F . This absorbing point is a

fixed point of the mean-field equations, and we show that this fixed point is the correct fixed

point to study for understanding the properties of contagion when µ∗ is a stable equilibrium

of the ODEs in (1.1).

In addition, for the case of linear thresholds (as a function of the total degree) we charac-

terize both necessary and sufficient conditions for contagion to happen no matter how small

the set of initial adopters is. Specifically, we prove that a contagion happens if and only if

ρ
(
JF (0,1)

)
is greater than 1, where ρ(·) is the Perron-Frobenius eigenvalue of a non-negative

matrix and JF (0,1) is the Jacobian matrix of F at point 1 when αj(·, ·) is set to be zero

for all j ∈ {1, 2}.
We also investigate the problem of optimum seeding given a budget constraint, and

propose a gradient-based heuristic seeding strategy, that numerically, dispels commonly held

beliefs in the literature that suggest the best seeding strategy is to seed over the nodes with

the highest number of neighbors.

Our preliminary results were presented at EC’2016 [41] with a more detailed version on

arXiv [42]. This work is in collaboration with Vijay Subramanian, Mingyan Liu, and Marc

Lelarge.
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1.4.2 Chapter III: Erlang Weighted Tree

In this chapter, we propose a new branching process which we named Erlang Weighted

Tree(EWT). This branching process arises naturally in the study of a locally tree-like random

graph model proposed in [23] by La and Kabkab. This model tries to capture the self-

optimizing behavior of individuals in which links are made based on the cost/benefit of the

connection. Cooper and Frieze [43] analyzed a related model, in which a one-sided interest

is enough for a connection to be established. We analyze the asymptotic behavior of this

graph model [23] in the sparse setting as the number of nodes increases without bound. We

prove that the model locally weakly converges [24,44] to the rooted tree associated with the

EWT. We then study the main properties of the EWT such as the probability of extinction,

the emergence of phase transition and growth rate.

The graph construction starts with a complete graph Kn = ([n], En), a fixed sequence

of positive integers dn = (d1(n), d2(n), · · · , dn(n)), and a random function Cn that assigns

independent and exponentially distributed random variables with mean n to the edges of

Kn. The empirical distribution of dn converges to some probability distribution P (·) as

n→∞. The value of di indicates the number of neighbors that node i wants to connect to,

and the value assigned to each edge by Cn represents the cost of the edge. Thereafter, each

node i selects the di lowest cost incident edges and declares them to be preferred edges. The

random graph Gn = ([n], Ẽn) is constructed by keeping the edges of En that are preferred

by both end nodes, where Ẽn is the set of edges that are kept.

We study the local weak limit of E(UGn), where UGn is the random measure associated

with the connected component of a uniformly selected node in Gn over the space of rooted

graphs. Note that UGn inherits the randomness of Cn, and thus is a random measure.

Moreover, the uniform choice of the root in E(UGn) implies some modest symmetry which is

preserved under the weak limit. This property is called unimodularity which is equivalently

described via a Mass-Transport Principle [44,45]. Intuitively speaking, unimodularity means

the expected mass that the root receives is equal to the expected mass it sends out. This

notion is also equivalent to involution invariance: a measure over the space of rooted graphs

is said to be involution invariant if it is invariant with respect to the root swapping operation

which swaps the root node with one of its uniformly selected neighbors [24,25,44]. We prove

E(UGn) converges weakly to Er(P ), the unimodular probability measure associated with the

EWT. Then we analyze the main properties of the EWT.

The branching process EWT is defined as follows. Let Nf denote the set of all sequences

of positive integers of length k together with ø. For each i ∈ Nf , define the following set

of random variables: 1) ni which is a non-negative integer distributed as P (·) if i = ø and

P̂ (·) otherwise, where P̂ (·) is the shifted version of P (·), i.e., P̂ (k) = P (k + 1) for all k ≥ 0;
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2) vi which is an Erlang random variable1 with parameters ni + 1 and 1; and 3) {ζ(i,j)}ni
j=1

which are i.i.d. uniformly distributed random variables on [0, vi] conditioned on vi. Insert

an edge between i and ij if j ≤ ni and vij ≥ ζij, where ij ∈ Nf is the concatenation of the

sequence i ∈ Nf and the positive integer j ∈ N. The Erlang Weighted Tree is the connected

component of ø, and Er(p) is the measure generated by EWT on the space of rooted graphs.

Unlike the Galton-Watson branching process, the degree distribution of nodes in EWT

depends on its generation (number of edges between the root and the node). This is closely

related to the bilateral agreement required for a connection to survive. As a result, it is not

possible to find a closed-form expression for the degree distribution of any node other than the

root. The interdependent structure also causes the first and second moment methods to fail.

Hence, to study this branching process we take a different approach, namely, a point process

perspective. This viewpoint was developed by Harris in [30] to study general branching

processes. He proved that, under some mild conditions, the growth/extinction operator

scales with its largest eigenvalue; establishing existence and positivity, and determining the

multiplicity of the eigenvalue is an integral part of the results.

The EWT does not satisfy the conditions required in [30], hence, it needs a separate

treatment. Using the point process perspective, we first simplify the growth operator and

show that it is sufficient to analyze a compact and bounded liner operator mapping a Hilbert

space of L2 functions from R+ to itself. Next, we show the existence of an eigenvalue with

non-negative eigenfunction for the simplified operator. To prove that this eigenvalue is the

unique Krein-Rutman eigenvalue [46, 47], we define a continuous state Markov process and

study the convergence of this Markov process to its stationary distribution using Baxandale’s

theorem [48]; this Markov process is reversible, which is closely related to the fact that

EWT is unimodular. Therefore, we derive the growth/extinction rate (denoted as β0) of

the EWT by proving the existence and the uniqueness of the Krein-Rutman eigenvalue β0

and characterizing the corresponding eigenfunction f0. Based on this analysis, we show that

the expected value of Zl, the number of nodes that are l hub away from the root, scales as

follows:

E[Zl]

β0
l

l→∞−−−→

(
∞∑
m=1

P (m)

∫ ∞
x=0

e−xxm

m!
× m

x
f0(x) dx

)(∫ ∞
0

∞∑
k=1

P (k)
e−zzk−1

(k − 1)!
f0(z) dz

)
.

Moreover, we prove that in the case of β0 > 1, the random variable Zl/β0
l converges almost

1The probability density function of an Erlang random variable with parameter i is given by

f(x) =
e−xxi−1

(i− 1)!
.
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surely and in L2 to a random variable W , and in particular Zl ∼ β0
lW .

We also study the probability of extinction. We prove that the probability of extinction

is given by a fixed point of another operator. However, this analysis does not relate β0

with the probability of extinction. To establish the classical connection between β0 and

the probability of extinction, we again combine the analysis of this operator with the point

process perspective. We then prove this operator has a unique non-trivial fixed point. Finally,

we relate the probability of extinction with β0: β0 > 1 if and only if Pr(extinction) < 1.

We leave the connection between the probability of extinction and the finite graph model

for future work as the following conjecture: if Pr(extinction) < 1, then the size of the giant

component in the finite graph is proportional to 1− Pr(extinction).

A preliminary version of this work was presented as an invited paper at the 2018 Allerton

conference [49], with a more detailed version on arXiv [50]. This is a joint work with Vijay

Subramanian, Mingyan Liu, and Rajesh Sundaresan.

1.4.3 Chapter IV: The Planted Matching Problem

In this chapter, we study the problem of recovering a planted matching in randomly

weighted complete bipartite graphs Kn,n. For some unknown perfect matching M∗, the

weight of an edge is drawn from one distribution P if e ∈M∗ and another distribution Q if

e /∈ M∗. The question then is whether it is possible to find the planted matching or not –

more specifically, to determine the conditions when it is possible to almost exactly recover

the planted matching (i.e., find a matching which coincides with the planted matching on

almost all the edges except o(n) ones). This model is motivated by the problem of tracking

moving objects in a video, such as flocks of birds, motile cells, or particles in a fluid [1].

Automated tracking of mobile objects/particles is of broad interest in the natural sci-

ences as well as in robotics and security or surveillance activities. The goal is to extract

the identities of the objects/particles from successive images of the system, obtained at an

appropriate rate, and then to track them. Ideally, the rate at which the images are sampled

is high, and the density of particles is low, so it is possible to easily track the particles.

But when the density of particles increases or if the sampling is not fast enough, this task

becomes much more difficult and in some cases even impossible. Chertkov et al. [1] studied

this problem and proposed a canonical mathematical model. The model consists of a com-

plete bipartite graph with random edge weights–nodes at each side of the bipartite graph

model the particles, and edge weights model the distance between them in two successive

images. There is an exact matching M∗ which matches each particle on the left side with

the corresponding one on the right side of the bipartite graph.

In this chapter we study this canonical model rigorously using local weak analysis and the
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objective method [24,44]. For the general model, we first identify the asymptotic object to be

studied as a rooted infinite tree together with a planted matching imposed on it. We call this

object the planted Poisson Weighted Infinite Tree (planted PWIT), because of its natural

connection to the Poisson Weighted Infinite Tree [24]. We relate the minimum-weighted

matching on the complete bipartite graph, Mmin, to a class of matchings on the planted

PWIT using an approach similar to that pioneered in [20, 21, 24]. This class of matchings

needs to satisfy a modest symmetry, namely involution invariance; again, this means that

the matching is not affected by swapping the root of the infinite tree “uniformly” with one

of its neighbors.

We study the minimum-weighted involution invariance matching, ℳ∞,opt, on the planted

PWIT. This matching is related to the following recursive distributional equation:

X
d
= min({ζi − Yi}∞i=0),

Y
d
= min(η −X, {ζi − Yi}∞i=0)

(1.2)

where X is independent of everything else, {Yi}∞i=1 and Y are i.i.d., {ζi}∞i=1 are the arrivals

of a Poisson process with rate 1, and η has the same distribution as the planted edges. We

prove this matching is unique as long as the system of recursive distributional equations (1.2)

has a non-trivial solution. We then relate the ℳ∞,opt on the planted PWIT to the Mmin on

the complete bipartite graph in two steps. First, using a simple compactness argument, we

prove that any subsequence of the minimum-weighted matchings on the complete bipartite

graph converges to an involution invariant matching on the planted PWIT in the local weak

sense. Next, we construct a matching on the finite graph with cost converging to the ℳ∞,opt

on the planted PWIT. Given the uniqueness property of the ℳ∞,opt, we deduce that the

minimum-weighted matching on the complete bipartite graph converges to the minimum-

weighted involution invariant matching on the planted PWIT in the local weak sense.

In the remainder of this chapter, we specialize our results to the case when the edge

weights of Kn,n are independent exponentially distributed random variable, where the rate

parameter of the distribution is given by λ > 0 for planted edges and 1/n for all the other

edges; that is to say, P = Exp(λ) and Q = Exp(1/n). In this case the maximum-likelihood

estimator of M∗ is the minimum-weighted matching. Chertkov et al. [1] used the cavity

method to analyze this model when P is a folded Gaussian and Q is the uniform distribution

over [0, n]. They observed there is a phase transition after which the Mmin cannot almost

exactly recover the planted matching.

Our analysis reveals that almost exact recovery using an algorithm that find the minimum

weighted matching is not possible if the recursive distributional equation has a finite solution.
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In particular, if the edge weights of the planted matching are distributed as Exp(λ), the

minimum weighted matching algorithm fails to almost exactly recover M∗ for λ < 4. On the

other hand, using the first moment method, we prove that the Mmin almost exactly recovers

M∗ for λ ≥ 4. We also calculate the expected overlap for λ < 4:

lim
n→∞

1

n
E|Mmin ∩M∗| = 1− 2

∫ ∞
0

(1− F (x)) (1−G(x))V (x)W (x) dx < 1 ,

where (F,G, V,W ) is the unique solution to the following coupled system of ODEs

dF

dx
= (1− F (x))(1−G(x))V (x),

dV

dx
= λ(V (x)− F (x)),

dG

dx
= −(1− F (x))(1−G(x))W (x),

dW

dx
= λ(G(x)−W (x)),

with the boundary conditions

F (−∞) = V (−∞) = G(+∞) = W (+∞) = 0,

F (+∞) = V (+∞) = G(−∞) = W (−∞) = 1.

This work was presented as an invited talk at Allerton conference 2019, with a more

detailed version on arXiv [51]. This is a joint work with Cristopher Moore and Jiaming Xu.

1.5 Summary of Contribution

In summary, the major contributions of this thesis, ordered in terms of the chapters, are

as follows:

• Using the differential equation method, we provide a tight approximation for the evolu-

tion of the stochastic process adoption under the threshold model. Our analysis also proves

the validity of the cavity method for finding the final proportion of adopters. Using this

method, we are able to analyze the impact of advertising by means of seeding of the nodes

with the new technology or opinion.

• Using a point process perspective, we extensively analyze a novel branching process.

We derive the main properties of this branching process such as the probability of extinction,

emergence of phase transition, growth/extinction rate, etc. We also prove that this branching

process is related to the random graph model introduced in [23].

• Using the machinery of local weak convergence, we study the detectability of a planted

matching in a complete randomly weighted bipartite graph. We explicitly calculate the

expected overlap between the minimum matching and the planted matching when the edge
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weights of the planted matching are distributed as Exp(λ). We also show that there is a

phase transition at λ = 4, before which the minimum matching cannot almost perfectly

recover the planted matching.

Notation of the Thesis: Notation varies across chapters. However, each chapter is self-

contained and the notation of each chapter is defined in that chapter. Appendices follow the

notation of the corresponding chapter.
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CHAPTER II

Impact of Community Structure on Cascades

Notation: Random variables are denoted by capital letters (sometimes using a bold

typeset too); realizations or deterministic quantities are in small letters. Vectors are denoted

by using a bold typeset and individual components without it. Adhering to game theoretic

notation, a node’s community is denoted by j ∈ {1, 2} and the other community by −j = {1,
2} \ {j}. Multigraphs are denoted by an asterisk and simple graphs without one. The words

community and side are used interchangeably.

2.1 Introduction

In this chapter, we investigate a type of cascade problem on graphs that has been used

to study the spread of new technology or opinions in social networks, see e.g., [32, 52–56].

This spread is also referred to as a contagion in networks. The underlying model typically

consists of a few (selected) initial adopters (nodes in the network) or “seeds” and a particular

adoption model that determines the condition under which a node will choose to adopt

given the states of its neighbors. A commonly studied model is the threshold model [57,58],

whereby individuals adopt the new technology based on how many neighbors have already

chosen it.

Prior work in this area has generally focused on analyzing what happens when the un-

derlying network is given by a single community modeled as a sparse random graph, either

heuristically, see e.g., [58, 59], or more rigorously, see e.g., [33–36]. In this work, we instead

consider graphs with a type of community structure (also known as modular networks),

whereby multiple sparse random graphs are weakly interconnected. This could model for

instance segments of the population (e.g., different age or ethnic groups), where members

of a single segment are more strongly connected (with a relatively high node degree) and

cross-segment connections are weak, i.e., fewer members are connected to those from a dif-

ferent segment. This would be a more realistic and interesting model for many practical
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scenarios and serves as a natural next step to the studies done with a single community.

We are particularly interested in whether the existence of communities affects the number

of individuals who eventually adopt the new technology. Also of interest is the question

whether seeding in all communities is a better strategy in terms of maximizing the number

of eventual adopters than exclusively in one community or, in particular, the optimum seed-

ing strategy given budget constraints. While earlier works have looked at this problem using

heuristic methods, see e.g., [37, 38, 59–61], we present a mathematically rigorous analysis of

this problem.

Specifically, we consider the permanent adoption model where nodes that have adopted

the new technology cannot change their state. Our analysis presents a differential-equation-

based tight approximation to the stochastic process of adoption under the threshold con-

tagion model. While this is a similar approach to the original analysis of contagions in a

single community [34], the additional community structure requires significant technical de-

velopment to establish the validity of this approach in the new scenario. The analysis of the

differential equation leads to a correctness proof of a mean-field equation for the contagion in

a large network, as well as an algorithm to calculate the properties of the contagion. Using

this analysis, we are able to analyze the impact of advertising by means of seeding of the

nodes with the new technology or opinion. The differential equation also leads to a charac-

terization of the sample-path of the adoption process as well as a sharp characterization of

the contagion threshold for the linear threshold model.

Our main contributions can be summarized as follows.

1. We prove the validity of a mean-field analysis of the contagion process over infinite

trees. This analysis yields a fixed point equation whose solution can be used to exactly

determine the final fraction of the population that are eventual adopters (the size of

the cascade). Furthermore, when the fixed point equation has multiple solutions, we

identify the correct solution among these and provide an algorithmic means to calculate

it.

2. We provide a tight differential equation approximation to the sample-path of the con-

tagion process. This allows us to track the evolution of the cascade, in particular, how

it moves from one community to the other. We also provide a probabilistic approach

to solve the differential equation, which also explains the “surprising” dimension re-

duction observed in [33, 34]. Specifically, we show that the solution of the differential

equation can be obtained by solving a much simpler k2-dimensional differential equa-

tion, where k is the number of communities. This dimension reduction is crucial to

developing a comprehensive understanding of the contagion process.
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3. For general thresholds we provide a sharp characterization of the contagion threshold—

the condition on the thresholds for which a contagion occurs with a finite set of seed

nodes—in terms of the Perron-Frobenius eigenvalue of an associated matrix.

4. Specializing to Poisson degree distributions and linear thresholds we prove that the

community structure does not matter for global properties like the contagion threshold

for the linear threshold model of [57,58]. In particular, when seeding a small number of

agents with the new technology, we find that the community structure has little effect

on the final proportion of adopters.

5. We numerically study the impact of the community structure on the viral seeding of

nodes. We find that seeding a fraction of population with the new technology has a

significant impact on the cascade, with the optimal seeding strategy depending on how

strongly the communities are connected.

6. We propose a gradient-based heuristic seeding strategy to maximize the size of the

cascade given budget constraints. Empirically, the algorithm dispels all commonly

held beliefs in the literature that suggest the best seeding strategy is to seed over the

nodes with the highest number of neighbors. Most notably, we can demonstrate many

cases wherein our seeding algorithm achieves a global cascade, while seeding over the

nodes with highest degree fails to spread much further from the seeds.

The remainder of this chapter is organized as follows. We present our model in Section 2.2

and a literature review in Section 2.3. In Section 2.4 we present a mean-field approximation

of the adoption process, whose validity is then established in Sections 2.5 through 2.9: in

Section 2.5, we construct a Markov process coupling the evolution of the adoption process

with the process generating the random graph; this Markov process is then approximated

using a set of Ordinary Differential Equations (ODEs) in Section 2.6; we then provide a

probabilistic approach to solve this set of ODEs in Section 2.7; the analysis of the ODEs

is presented in Sections 2.8 and 2.9. We discuss the results on the contagion threshold for

general thresholds in Section 2.10. Most of the results are specialized to the case of Poisson

degree distributions in Section 2.11. We present numerical results and discuss the optimal

seeding strategy in Section 2.12.

2.2 System Model

Consider a set [n] = {1, . . . , n} of agents that are organized into two communities,

community 1 {1, 2, . . . , n1} and community 2 {n1 + 1, . . . , n} with n2 := n − n1 individ-

uals. Assume that we are given three sequences of non-negative integers: d1 = (dn1,i)
n1
1 ,
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d2 = (dn2,i)
n
n1+1, and dm = (dnm,i)

n
1 , which satisfy the following conditions: 1)

∑n1

i=1 d
n
1,i is

even; 2)
∑n

i=n1+1 d
n
2,i is even; and 3)

∑n1

i=1 d
n
m,i =

∑n
i=n1+1 d

n
m,i. The sequence dj is the de-

gree sequence of the sub-graph for community j for j ∈ {1, 2} and dm is the degree sequence

of the bipartite graph connecting the two communities.

Construct a two-community random multigraph (allowing for self-loops and multiple

links) with given degree sequences d1, d2 and dm generated by the configuration model [12]

as the concatenation of G∗(n1,d1), G∗(n2,d2) (both generated via the configuration model)

and a random bipartite multigraph G∗(n1, n2,dm): generate half-edges for each node cor-

responding to the different degree sequences and combine the half-edges into edges by a

uniform random matching of the set of half-edges of each sequence. Conditioned on the

random multigraphs and the random bipartite graph being simple graphs, we obtain uni-

formly distributed random graphs G(n1,d1), G(n2,d2), and G(n1, n2,dm) with the given

degree sequences. The concatenation of these produces a simple two-community graph G(n,

d1,d2,dm) with the desired distributions. In Definition II.4 we impose standard regularity

assumptions [62] on the degree sequences so that the resulted multigraphs are simple with

positive probability. We assume that limn→∞ n1/n = β (equivalently limn→∞ n2/n = 1− β).

The stochastic block model [63] is a prototypical example of a two-community graph.

Following Lelarge [35], we analyze the threshold model of Morris [57] and Watts [58] on

the two-community random graph model described above. In this model, nodes have the

choice between two types of opinions/technologies, A and B; we sometimes also use “inactive”

to denote type A and “active” to denote type B. All nodes initially start in type A, i.e., are

inactive. Each node has a threshold that is a function of its community and degrees (in the

same community and across to the other community); the value of the threshold is fixed and

allowed to be any non-negative real number. If a node finds that the number of its neighbors

(across both communities) who have chosen type B is greater than its threshold, then it will

permanently choose to switch to type B. Again following [35] we initially seed nodes with

type B using a Bernoulli random variable (1 implying that a node gets seeded with type B)

that is independently chosen with the mean depending on the node’s parameters, namely,

community and degrees. Note that a degree and/or community-unaware seeding strategy

would imply an appropriate uniformity in the means of the seeding random variables. After

the seeding process is completed, the remaining nodes then react to the seed nodes and

decide whether to adopt type B. This process continues until a final state of the nodes is

reached. A cascade is said to happen if the number of nodes adopting type B is substantially

greater than the seed set.
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2.3 Literature Review

The threshold model [32, 52–54,64] is a well accepted model for explaining the adoption

of a new technology, opinion or behavior in a population that interacts via a social network.

The linear threshold model, where the threshold is a function of the degree, was analyzed for

the contagion threshold for specific graphs in [57], and using heuristically derived formulae

for single community random graphs in [58,59]. The results on the single community random

graphs were rigorously proved using branching processes in [35], where the importance of

pivotal players (those whose degree is low enough that one neighbor will make them adopt the

new behavior) was identified and studied. Similar results were derived using the differential

equation method in [33,34], and in [36] for the non-permanent adoption model.

The threshold model has been studied for networks with communities, but using heuris-

tically derived mean-field approximations and approximate differential equations [37,38,59–

61]. In these studies, it was numerically shown in [37,38] for the linear threshold model that

the community structure leads to a different dynamic in terms of the evolution of the cascade

itself. It is important to note that the authors in these works postulate both the mean-field

equation and the differential equations in an ad hoc manner without a formal proof. This is

particularly the case for the multi-community work in [37,38] where the authors combine the

adoption processes in the different communities without a proper mathematical justification.

The problem of maximizing influence propagation in networks, by targeting certain in-

fluential nodes that have the potential to influence many others, has been an important

follow-up problem [32,52–54] once the impact of a social network on behavior adoption was

discovered. While this problem is known to be NP hard for many influence models, sev-

eral approximate methods have been designed, see e.g., [65, 66]. A contrasting strategy to

identifying and targeting influential nodes is to use viral marketing [52, 53, 55]. A random-

ized version of viral marketing, also referred to as seeding or advertising in the chapter,

was studied in [34, 35] where the resulting cascade was precisely identified. The results

in [35] also suggested that targeting higher degree nodes is a better seeding strategy over

degree-unaware random seeding. With community structure, [38, 60, 61] showed that the

seeding strategies could be dramatically different from the one-community optimal strate-

gies. Typically asymmetric seeding strategies, wherein the seeding is principally carried out

in one community over another, were shown to perform better than more uniform (over the

communities) seeding strategies.
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2.4 Mean-Field Approximation

We start by presenting a mean-field approximation of the process of adoption of type B,

i.e., becoming active, in a typical simple graph generated through the configuration model

described in Section 2.2. The graphs that we consider are locally tree-like [67] so that the

structure up to any finite depth when viewed from a uniformly selected node of the graph

is a tree with high probability. Therefore, the local structure of a simple graph produced

by configuration model converges [24, 25, 44] to a rooted unimodular Galton-Watson Multi-

type Tree (GWMT∗). In a rooted unimodular Galton-Watson Tree, the degree distribution of

any non-root vertex is the size-biased/sampling-biased distribution of the root: for a random

variable D ∈ Z+ with distribution P(·) and finite mean E[D], the size-biased/sampling-biased

distribution P∗(·) is given by P∗(d) = dP(d)/E[D] for all d ∈ Z+. In the case of GWMT∗, the

degree distribution of each child depends on the community of its parent. The joint degree

distribution of the root node is Pj,m if the community of the root is j ∈ {1, 2}. The degree

distributions of each child is then given by the size-biased/sampling-biased distribution for

the community of the parent and the regular distribution for the other community. In

particular, if the parent is in community j ∈ {1, 2} and the child node is in community j

too, then the joint degree distribution is the size-biased distribution Pj∗,m given by Pj∗,m(dj,

d−j) = djPj,m(dj, d−j)/
∑

k kPj,m(k, d−j) for all dj, d−j ∈ Z+; on the other hand, if the parent

is in community j ∈ {1, 2} and the child node is in community −j ∈ {1, 2} \ {j}, then the

joint degree distribution of the child is the size-biased distribution P−j,m∗ given by P−j,m∗(d−j,
dj) = djPj,m(d−j, dj)/

∑
k kPj,m(d−j, k) for all dj, d−j ∈ Z+. We denote a random variable

with the size-biased distribution by D∗ + 1 where D∗ takes values in Z+. For a Poisson

random variable with parameter λ > 0, i.e., D ∼ Poi(λ), we have D∗ ∼ Poi(λ), so that the

size-biased/sampling-biased distribution is a shifted Poisson distribution. This is the only

distribution with this property.

An example of the limiting rooted GWMT∗ is shown in Figure 2.1 where the root node

is in community 1.

Assume that we have a rooted GWMT∗ (with root node ψ) denoted by Tψ. For a node

l 6= ψ let lp be its parent, indicated by l −→ lp, and Tl−→lp be the sub-tree rooted at l when

the link (lp, l) is excised. Then assuming that lp is inactive, state of node l only depends on

the state of her children in sub-tree Tl−→lp . Next, we define a few random variables that will

aid in describing the mean-field approximation.

X
(j)
ψ : Bernoulli r.v; = 1 if root node ψ of the rooted GWMT∗ is on side j and inactive.

Y
(j,j)
l : Bernoulli r.v; = 1 if node l(6= ψ) and its parent lp are both on side j and node l is

inactive on Tl→lp .
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Figure 2.1: Illustration of the limiting rooted unimodular Galton-Watson Multi-type Tree.
Solid circles denote nodes in community 1, and dotted circles denote nodes in
community 2.

Y
(j,−j)
l : Bernoulli r.v; = 1 if node l(6= ψ) is on side −j and its parent lp is on side j and node

l is inactive on Tl→lp .

α
(j)
l : Bernoulli r.v; = 1 if node l on side j is a seed node.

K
(j)
l : Threshold of node l on side j that is determined by number of its neighbors in either

community, i.e., by the degrees of the node on side j and −j.
Then we can write down the following equations:

(i) A non-root node l 6= ψ remains inactive on Tl→lp , if it is not seeded initially and the

number of her children who are active does not exceed her threshold, i.e.,

Y
(j,j)
l =

(
1−α(j)

l

)
1
{∑
i−→l

(
1− Y (j,j)

i

)
+
∑
i−→l

(
1− Y (j,−j)

i

)
≤ K

(j)
l

}
, (2.1)

Y
(j,−j)
l =

(
1−α(−j)

l

)
1
{∑
i−→l

(
1− Y (−j,−j)

i

)
+
∑
i−→l

(
1− Y (−j,j)

i

)
≤ K

(−j)
l

}
, (2.2)

where 1{O} is the indicator function of set O.

(ii) Root node ψ (on side j) remains inactive if it is not seeded initially and the number of

her active children falls below her threshold, i.e.,

X
(j)
ψ =

(
1−α(j)

ψ

)
1
{ ∑
i−→ψ

(
1− Y (j,j)

i

)
+
∑
i−→ψ

(
1− Y (j,−j)

i

)
≤ K

(j)
ψ

}
. (2.3)

For the mean-field approximation it is assumed that the random variables Y
(1,1)
l , Y

(1,2)
l ,

Y
(2,1)
l , and Y

(2,2)
l for l 6= ψ are, respectively, identically distributed when considering l

as the variable and keeping (j, j) or (j,−j) fixed. Moreover, it is assumed that all these
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random variables are mutually independent. These random variables are then related via

the following Recursive Distributional Equations (RDEs), where equality below should be

interpreted in terms of distribution.

Ỹ (j,j) d
=
(
1− ᾱ(j)(D∗j + 1, Dm)

)
1
{ D∗j∑

i=1

(
1− Ỹ (j,j)

i

)
+

Dm∑
i=1

(
1− Ỹ (j,−j)

i

)
≤ K(j)(D∗j + 1, Dm)

}
,

(2.4)

Ỹ (j,−j) d
=
(
1− ᾱ(−j)(D−j, D

∗
m + 1)

)
1
{ D∗m∑

i=1

(
1− Ỹ (−j,j)

i

)
+

D−j∑
i=1

(
1− Ỹ (−j,−j)

i

)
≤ K(−j)(D−j, D

∗
m + 1)

}
,

(2.5)

where for every j ∈ {1, 2}, Ỹ (j,j) and Ỹ
(j,j)
i as well as Ỹ (j,−j) and Ỹ

(j,−j)
i are i.i.d. copies

(Bernoulli random variables with unknown parameters). We also have a set of random

variables: Dj is a random variable with the community j degree distribution, D∗j + 1 is a

random variable with the size-biased distribution of Dj, Dm has inter-community degree

distribution, and D∗m + 1 is a random variable with the size-biased distribution of Dm; the

joint distribution of (D∗j +1, Dm) is given by Pj∗,m, and the joint distribution of (Dj, D
∗
m+1)

is given by Pj,m∗ (for all dj, dm ∈ Z+, we have Pj∗,m(dj, dm) = djPj,m(dj, dm)/E[Dj] and

Pj,m∗(dj, dm) = dmPj,m(dj, dm)/E[Dm]). We have also assumed, without loss of generality,

that the seeding Bernoulli random variables have means that depend on the community and

the degrees of the nodes, namely, αj(dj, d−j) for j ∈ {1, 2} and dj, d−j ∈ Z+. We also assume

that threshold random variables are deterministic functions of the community and degrees

of the nodes, namely, Kj(dj, d−j) for j ∈ {1, 2} and dj, d−j ∈ Z+. These are then used to

construct the random variables ᾱ(j)(D∗j + 1, Dm), ᾱ(−j)(D−j, D
∗
m + 1), K(j)(D∗j + 1, Dm) and

K(−j)(D−j, D
∗
m + 1).

Since we have RDEs with Bernoulli random variables, we can equivalently obtain the

solutions by taking expectations and solving for the means of the underlying random vari-

ables. We set E[X
(j)
ψ ] = φj, E[Ỹ (j,j)] = µ(j,j) and E[Ỹ (j,−j)] = µ(j,−j), taking expectation in

(2.4)-(2.5) and then (2.3) yields

µ(j,j) =
∑

uj+u−j≤Kj(dj ,d−j)

Pj∗,m(dj, d−j)(1− αj(dj, d−j))

×Bi(uj; dj − 1, 1− µ(j,j))Bi(u−j; d−j, 1− µ(j,−j)),

(2.6)
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µ(j,−j) =
∑

uj+u−j≤K−j(d−j ,dj)

P−j,m∗(d−j, dj)(1− α−j(d−j, dj))

×Bi(uj; dj − 1, 1− µ(−j,j))Bi(u−j; d−j, 1− µ(−j,−j)),

(2.7)

φj =
∑

uj+u−j≤Kj(dj ,d−j)

Pj,m(dj, d−j)(1− αj(dj, d−j))

×Bi(uj; dj, 1− µ(j,j))Bi(u−j; d−j, 1− µ(j,−j)),

(2.8)

where Bi(k;n, p) :=
(
n
k

)
pk(1− p)n−k is the probability mass function of the binomial distri-

bution.

To find the probability of a node in community j ∈ {1, 2} remaining inactive, i.e. φj = 1,

one needs to first solve the fixed point equations (2.6)-(2.7), and then substitute the result

into (2.8). For ease of understanding we write equations (2.6)-(2.8) as follows:

µ = F (µ), and φ = Φ(µ), (2.9)

for functions F(·) and Φ(·) defined component-wise via (2.6)-(2.7), and (2.8), respectively.

A basic question at this point is whether one can rigorously justify (2.9), particularly

given the various independence and uniformity assumptions for the derivation. A few other

questions also arise: i) Does a solution to (2.9) exist; ii) Are there multiple solutions to (2.9)?

Numerically, we observed that there are many cases where (2.9) has multiple solutions; and

iii) Which solution should one pick if there are multiple solutions? Note that for every

µ ∈ [0, 1]4 and j ∈ {1, 2}, we have

φj =
∑
dj ,d−j

Pj,m(dj, d−j)(1− αj(dj, d−j))×∑
uj+u−j≤Kj(dj ,d−j)

Bi(uj; dj − 1, 1− µ(j,j))Bi(u−j; d−j, 1− µ(j,−j))

≤
∑
dj ,d−j

Pj,m(dj, d−j)(1− αj(dj, d−j)) = P(α
(j)
ψ = 0),

(2.10)

so that the seeding distribution gets automatically accounted in any solution of (2.9), and

the final population of active nodes includes at least the seed nodes.

Before proceeding, we should again point out that equations of a similar form were

heuristically postulated in the literature [37, 38, 59–61]. An important contribution of our

work is thus to rigorously prove the validity of (2.9), and to identify the correct solution to

choose. As discussed in [35], the existence of multiple solutions and a lack of “monotonicity”

makes it extremely challenging to use the techniques developed in [24,44] to prove the needed
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results.

2.5 Markov Process of Adoption

As the first step to prove the validity of the mean-field equations, we construct a Markov

process that couples the evolution of the adoption process with the process of generating the

random graph using the configuration model.

The typical way to create a random graph with a given degree sequence (dni )n1 using the

configuration model is as follows: first label nodes of the graph 1, 2, . . . , n such that node i

has dni half-edges sticking out of it; next iterate through all the unpaired half-edges so that

at each step, two half-edges are paired randomly; and declare the final graph as the desired

random graph. In our setting, when there are two communities, the basic idea of generating

the random graph using the configuration model is just the same. However, to analyze

the adoption process we work a little differently. We start by realizing the early adopter

nodes using the seeding random variables. We set the early adopters to be active and make

all their half-edges active. Any other node and its half-edges will initially be counted as

inactive. We then run the adoption process and draw the random graph simultaneously

by iterating through the active half-edges (if any). At each iteration, we pick an active

half-edge, i.e., an half-edge connected to an active node, and connect it to some other half-

edge that belongs to the appropriate community. Then we remove both half-edges from

the graph. Moreover, if the second half-edge belongs to an inactive node, we reduce its

threshold by one. If the threshold of the inactive node becomes minus one after this change,

we activate this node and also all the half-edges that are still connected to this node. Note

that this process stops when all active half-edges have been omitted, and the remainder of

the graph (containing only inactive half-edges) is not realized (or can be realized but will

not influence the contagion process). This process is described in Algorithm 1. We keep
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track of active half-edges, inactive nodes and number of times that the process described in

Algorithm 1 picks half-edges from each community. The random variables associated with

these quantities are given as follows:

Aj(k): Number of active half-edges belonging entirely to community j at time k.

A
(j)
m (k): Number of active half-edges between the two communities belonging to nodes in

community j at time k.

Tj(k): Number of times the algorithm visits community j up to time k where a visit means

removing two half-edges within the same community.

I
(j)
dj ,d−j ,uj ,u−j

(k): Number of inactive nodes in community j with dj initially assigned half-edges

corresponding to community j where uj of them have been removed by k, and similarly, d−j

initially assigned half-edges corresponding to community −j where u−j of them have been

removed by k. Note that uj + u−j ≤ Kj(dj, d−j), 0 ≤ uj ≤ dj, and 0 ≤ u−j ≤ d−j.

It is easily verified that {Xn(k)}k∈Z+ is a discrete-time Markov chain, where

Xn(k) := (Aj(k), A(j)
m (k), Tj(k), I

(j)
dj ,d−j ,uj ,u−j

(k), . . . ),

and j ∈ {1, 2}. For ease of explanation we denote the number of edges entirely in community

j with mj(n) and the number of edges between the two communities by mm(n); these can

be determined once the degrees have been realized.

Remark II.1. We use the following notational convention throughout the chapter: whenever

the term I
(j)
dj ,d−j ,uj ,u−j

appears as a member of some sequence, it represents all I
(j)
dj ,d−j ,uj ,u−j

for

j ∈ {1, 2}, (dj, uj) ∈ Z2
+, (d−j, u−j) ∈ Z2

+, uj ≤ dj, u−j ≤ d−j, and uj + u−j ≤ Kj(dj, d−j).

We use the same notational convention for Aj(k), A
(j)
m (k), and Tj(k).

The mean-field analysis [19,34,68,69] proceeds by scaling both space and time by n and

considering the one-step drift of the scaled process. We will now present the one-step drift

analysis of our Markov chain (for the unscaled variables). At each iteration, one of the

following events will happen:

1.) Two active half-edges will be omitted. This event results in the half-edges being “wasted”,

in a manner of speaking. Here two sub-cases are possible:

i.) Both half-edges belongs to community j: This event happens with probability

Aj(k) (Aj(k)− 1)(
A1(k) + A2(k) + A

(1)
m (k) + A

(2)
m (k)

)
(2mj(n)− 2Tj(k)− 1)

.
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In this case, we should update the corresponding variables as follows:

Aj(k + 1) = Aj(k)− 2, Tj(k + 1) = Tj(k) + 1.

ii.) Half-edges belongs to different sides: This event happens with probability

2A
(1)
m (k)A

(2)
m (k)(

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

)
(mm(n)− (k − T1(k)− T2(k)))

.

In this case, we should update the variables as follows:

A(2)
m (k + 1) = A(2)

m (k)− 1, A(1)
m (k + 1) = A(1)

m (k)− 1.

2.) One active half-edge and one inactive half-edge will be omitted, while the inactive half-

edge belongs to inactive nodes in community j. Four sub-cases arise here:

i.) The inactive node belongs to I
(j)
dj ,d−j ,uj ,u−j

(k) and the active half-edges belongs to commu-

nity j, while Kj(dj, d−j) ≥ uj + u−j + 1. This event results in the threshold of an inactive

node in community j being lowered by 1 owing to a node within its own community. This

occurs with probability

Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(dj − uj) I(j)

dj ,d−j ,uj ,u−j
(k)

2mj(n)− 2Tj(k)− 1

In this case, we should update variables as follows:

Aj(k + 1) = Aj(k)− 1, I
(j)
dj ,d−j ,uj ,u−j

(k + 1) = I
(j)
dj ,d−j ,uj ,u−j

(k)− 1,

Tj(k + 1) = Tj(k) + 1, I
(j)
dj ,d−j ,uj+1,u−j

(k + 1) = I
(j)
dj ,d−j ,uj+1,u−j

(k) + 1.

ii.) The inactive node belongs to I
(j)
dj ,d−j ,uj ,u−j

(k) and the active half-edge belongs to commu-

nity j, while Kj(dj, d−j) = uj + u−j. Note that an inactive node becomes active during this

event and all remaining half-edges also become active. This is an important growth event

for our process. This occurs with probability

Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(dj − uj) I(j)

dj ,d−j ,uj ,u−j
(k)

2mj(n)− 2Tj(k)− 1
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Here we update the variables as follows:

Aj(k + 1) = Aj(k)− 1 + dj − uj − 1, Tj(k + 1) = Tj(k) + 1,

A(j)
m (k + 1) = A(j)

m (k) + d−j − u−j, I(j)
dj ,d−j ,uj ,u−j

(k + 1) = I
(j)
dj ,d−j ,uj ,u−j

(k)− 1.

iii.) The inactive node belongs to I
(j)
dj ,d−j ,uj ,u−j

(k) and the active half-edge comes from the

other community, while Kj(dj, d−j) ≥ uj + u−j + 1. Here the threshold of an inactive node

is being reduced by a node from the other community. This occurs with probability

A
(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(d−j − u−j) I(j)

dj ,d−j ,uj ,u−j
(k)

mm(n)− (k − T1(k)− T2(k))

Here we update the variables as follows:

A(−j)
m (k + 1) = A(−j)

m (k)− 1, I
(j)
dj ,d−j ,uj ,u−j

(k + 1) = I
(j)
dj ,d−j ,uj ,u−j

(k)− 1,

I
(j)
dj ,d−j ,uj ,u−j+1(k + 1) = I

(j)
dj ,d−j ,uj ,u−j+1(k) + 1.

iv.) The inactive node belongs to I
(j)
dj ,d−j ,uj ,u−j

(k) and the active half-edge comes from the

other community, while Kj(dj, d−j) = uj + u−j. This is another important growth event

for our process wherein an inactive node becomes active owing to a node from the other

community. This occurs with probability

A
(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(d−j − u−j) I(j)

dj ,d−j ,uj ,u−j
(k)

mm(n)− (k − T1(k)− T2(k))

Here we update the variables as follows:

A(−j)
m (k + 1) = A(−j)

m (k)− 1, Aj(k + 1) = Aj(k) + dj − uj,

A(j)
m (k + 1) = A(j)

m (k) + d−j − u−j − 1, I
(j)
dj ,d−j ,uj ,u−j

(k + 1) = I
(j)
dj ,d−j ,uj ,u−j

(k)− 1.

Finally, note that these random variables satisfy the balance equations given by the realiza-

tion of degrees. For j ∈ {1, 2} we have

Aj(k) +
∑

uj+u−j≤Kj(dj ,d−j)

(dj − uj)I(j)
dj ,d−j ,uj ,u−j

(k) = 2mj(n)− 2Tj(k),

A(j)
m (k) +

∑
uj+u−j≤Kj(dj ,d−j)

(d−j − u−j)I(j)
dj ,d−j ,uj ,u−j

(k) = mm(n)− (k − Tj(k)− T−j(k)),

(2.11)
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where the summations above are understood to be over both the degrees (dj, d−j) ∈ Z2
+ and

the used half-edges (uj, u−j) ∈ Z2
+ meeting the constraint listed underneath.

Remark II.2. The the coordinates of the discrete-time Markov chain {Xn(k)}k∈Z+ are de-

pendent because of the balance equations. Hence, we only need to keep track of Tj and

I
(j)
dj ,d−j ,uj ,u−j

for j ∈ {1, 2} and different values of dj, d−j, uj, and u−j.

The one-step drift for the unscaled random variables is obtained by summing over all

possible events, given the current state of the Markov chain. The details can be found in

Appendix A.2.

We now conclude this section by stating the regularity conditions on the degree sequences

and some consequences of these conditions. Recall that d1 = (dn1,i)
n1
1 and d2 = (dn2,i)

n
n1+1 are

the corresponding degree sequence of the sub-graph for community 1 and 2, respectively, and

dm = (dnm,i)
n
1 is the degree sequence of the bipartite graph connecting the two communities;

these sequences satisfy the following basic conditions: 1)
∑n1

i=1 d
n
1,i is even; 2)

∑n
i=n1+1 d

n
2,i is

even; and 3)
∑n1

i=1 d
n
m,i =

∑n
i=n1+1 d

n
m,i. The size of the community 1 is n1 and the size of the

community 2 is n2 = n− n1. We assume that limn→∞ n1/n = β, and limn→∞ n2/n = 1− β.

We denote these two quantities by variables β1 = β and β2 = 1 − β. We also assume that

as n → ∞, both mj(n) for j ∈ {1, 2} and mm(n) goes to infinity, where mj(n) denotes the

number of edges in community j and mm(n) denotes the number of edges between the two

communities.

Definition II.3. We say the degree sequences d1, d2, and dm satisfy the degree regularity

conditions if the followings hold:

1. The empirical degree distribution of nodes in community j ∈ {1, 2} converges to some

joint probability distribution:

|{i : dnj,i = r, dnm,i = s and i ∈ Community j}|/nj → Pj,m(r, s) for every r, s ≥ 0.

2. The average degree of nodes, and the number of nodes concentrates:

|2mj(n)/nj − λj,j| = O(n−ηj ), |mm(n)/nj − λj,m| = O(n−ηj ), |nj/n− βj| = O(n−η),

where η > 1
3
, λj,j > 0, and λj,m > 0 for j ∈ {1, 2} are some constants. Given assumption 1,

the following equalities hold:

λj,j =
∑
r≥0

r Pj,m(r,Z+) ∈ (0,∞), λj,m =
∑
s≥0

sPj,m(Z+, s) ∈ (0,∞),

where Pj,m(Z+, s) :=
∑

r Pj,m(r, s), and Pj,m(r,Z+) :=
∑

s Pj,m(r, s) for j ∈ {1, 2}.
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Definition II.4. We say the degree sequences d1, d2, and dm satisfy the graph regularity

conditions if they satisfy the degree regularity conditions and the followings hold:

1. The random multigraphs G∗(n1,d1) and G∗(n2,d2) are asymptotically simple random

graphs with positive probability. Mathematically, the condition is∑
i

(dnj,i)
2 = O(mj(n)) for j ∈ {1, 2},

which implies lim infn→∞ P(G∗(nj,dj) is simple) > 0 for j ∈ {1, 2} [62, Theorem 1.1].

2. The random bipartite multigraph G∗(n1, n2,dm) is asymptotically simple random bi-

partite graph with positive probability. Mathematically, the condition is

(i)

n1∑
i=1

n∑
i′=n1+1

dnm,i(d
n
m,i − 1)dnm,i′(d

n
m,i′ − 1) = O((mm(n))2),

(ii) for any M ≥ 1,
n1∑

i=min(dmax
2 ,M)

dnm,(i) = Ω(mm(n)) and
n∑

i=n1+min(dmax
1 ,M)

dnm,(i) = Ω(mm(n)),

where (dnm,(i))
n1
i=1 is the descending-sorted version of (dnm,i)

n1
i=1 , (dnm,(i))

n
i=n1+1 is the descending-

sorted version of (dnm,i)
n
i=n1+1, dmax

1 = dnm,(1), and dmax
2 = dnm,(n1+1). This implies that [62,

Theorem 6.1]

lim inf
n→∞

P(G∗(n1, n2,dm) is simple) > 0.

Recall that x = Ω(N(n)) means lim infn→∞ x/N(n) > 0.

Janson in [70] proved that the probability of the event “the random multigraph generated

by the configuration model is simple” is strictly positive if and only if assumption 1 holds.

Various sufficient conditions for this property were given by the authors of [5, 12, 71, 72].

The final result in [70] provides a necessary and sufficient condition. Blanchet and Stauffer

in [73] proved similar result for bipartite random graphs: “the random bipartite multigraph

generated by the configuration model is simple” with strictly positive probability if and only

if assumption 2 holds. Both results are presented in [62].

Remark II.5. Assumption 2 part (i) corresponds to assumption 1. Also, note that part (ii)

of assumption 2 follows from part (i) if dmax
1 = o(mm(n)) and dmax

2 = o(mm(n)) [62, Remark

6.1].

Remark II.6. Almost all the results presented in this chapter only need the degree regularity

conditions. The additional assumptions in the graph regularity conditions extend this results
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to uniformly sampled simple graphs. Note that in [34], assumption 2 appears only as a

convergence rather than a concentration. However, this assumption is necessary for the

analysis of [34] as well.

Remark II.7. Suppose the degree regularity conditions hold. Since
∑n1

i=1 d
n
m,i =

∑n
i=n1+1 d

n
m,i,

we have λ1,mβ1 = λ2,mβ2. We denote this quantity by λm := λm,1β1 = λm,2β2. Similarly, we

define λ1 := λ1,1β1 and λ2 := λ2,2β2. Note that by assumption 2:

λ1 = lim
n→∞

2m1(n)/n, λm = lim
n→∞

mm(n)/n, λ2 = lim
n→∞

2m2(n)/n.

2.6 Convergence to ODE

In this section, we use techniques developed for the mean-field analysis [19, 34, 68, 69] of

the resulting population density-dependent Markov processes to approximate the process by

a system of ordinary differential equations (ODEs). We show that a scaled-version of the

Markov process of adoption from Section 2.5 converges (in probability) to a set of continuous

functions obtained from the solution of a set of ODEs. We start by highlighting why the

analysis is non-trivial:

Point 1. The first point concerns some of the terms that appear in the one-step drift. Notice

that we have many terms like

Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

.

In terms of the scaled variables, these terms are not Lipschitz unless there is a lower bound

on the value of the (scaled) denominator. Owing to this, in our ODE approximation we will

have to stop the Markov process of adoption just before the sum of these scaled variables

hits zero (corresponding to the denominator above), i.e., before all the active half-edges have

been omitted; it is important that this be the sum and not the individual components. For

the exact same reason, we have to stop the process before we ran out of half-edges in any of

the two communities or between the communities.

Point 2. The second point is regarding the one-step drift of variables like Aj(k), i.e., the

number of active half-edges based on the community structure. The one-step drift can be

unbounded as the increase can equal the number of nodes (in the appropriate community)

minus one. However, owing to the balance equations as we pointed out in Remark II.2,

there is no need to keep track of the random variables associated with the number of active

half-edges.
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There is, however, another technical issue with the one-step drift of other quantities as

they depend on all terms I
(j)
dj ,d−j ,uj ,u−j

(k) through an infinite sum associated with A1(k) +

A2(k) + A
(1)
m (k) + A

(2)
m (k). For any finite n, we only need to account for a finite number of

terms but in the limit we have a countable number of terms leading to a similar property

for the functions associated with these variables. Since the coefficient of these variables

are increasing without bound, the associated functions are not Lipschitz continuous. This

precludes the direct application of the results of [19, 68]. On the other hand, given degree

regularity conditions, this should be a superficial problem as the total number of half-edges

associated with inactive nodes with high degrees is small.

To address the specific scenario outlined above we bound the original Markov chain, from

above and below, using two truncated versions. We denote these Markov chains with Xn
U,δ

and Xn
L,δ respectively. Set dδ > 0 large enough so that the following inequalities hold for all

n:

n1∑
i=1

(dn1,i + dnm,i)1{dn1,i + dnm,i > dδ} ≤ δn1,

n∑
i=n1+1

(dn2,i + dnm,i)1{dn2,i + dnm,i > dδ} ≤ δn2.

Xn
U,δ is defined by activating all nodes with total degree larger than dδ, i.e., by setting αj(dj,

d−j) = 1 for all dj+d−j > dδ and j ∈ {1, 2}. Xn
L is defined by assuming Kj(dj, d−j) = dj+d−j

for all j ∈ {1, 2} and all dj + d−j > dδ. Since none of the inactive nodes with degree higher

than dδ can be activated, instead of tracking the random variables I
(j)
dj ,d−j ,uj ,u−j

for these

nodes, we track the total number of half-edges associated with these random variables.

Intuitively speaking, the total number of inactive nodes with degree less than or equal

to dδ at the natural stopping time of Xn is bounded between the same quantities for Xn
L,δ

and Xn
U,δ; it is important to note that this bound only works for the stopping time of the

processes and not the whole trajectory. We use the techniques developed by Wormald [19,68]

to approximate Xn
L,δ and Xn

U,δ. In Section 2.9, we then show that the difference between these

two approximations can be made arbitrary small by tuning δ.

2.6.1 Convergence to ODE for Truncated Processes

As per say above, we focus on the case where inactive nodes with degree higher than

some constant dmax cannot be activated. Let us define a new set of random variables, to

keep track of half-edges associated with these inactive nodes:

Wj(k): Number of remaining half-edges belonging to inactive nodes with degree higher than

31



dmax in community j at time k.

W
(j)
m (k): Number of remaining half-edges between the two communities belonging to inactive

nodes with degree higher than dmax in community j at time k.

At each step of the Markov process of adoption, the value of Wj(k) or W
(j)
m (k) can reduce

at most by one.

Remark II.1. The one step drifts of these new set of random variables are given as follows:

E[Wj(k + 1)−Wj(k)|Xn(k)] =

Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

× −Wj(k)

2mj(n)− 2Tj(n)− 1
,

E[W (j)
m (k + 1)−W (j)

m (k)|Xn(k)] =

A
(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

× −W (j)
m (k)

mm(n)− (k − T1(k)− T2(k))
.

Note that these random variables do not change the dynamic of the Markov process of

adoption; hence, the one step drift of all other random variables remain the same. Also note

that the sum in the balance equations (2.11) has now a finite number of summands (less

than (dmax + 1)4) as the other terms are replaced with either Wj(k) or W
(j)
m (k):

Aj(k) +
∑

uj+u−j≤Kj(dj ,d−j)
dj+d−j≤dmax

(dj − uj)I(j)
dj ,d−j ,uj ,u−j

(k) +Wj(k) = 2mj(n)− 2Tj(k),

A(j)
m (k) +

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

(d−j − u−j)I(j)
dj ,d−j ,uj ,u−j

(k) +W (j)
m (k) = mm(n)− Tm(k),

(2.12)

where Tm(k) := k − Tj(k)− T−j(k).

Recall thatmj(n) denotes the total number of edges on side j ∈ {1, 2}, andmm(n) denotes

the total number of edges between the two communities. Recall also that by Remark II.7:

limn→∞ 2m1(n)/n = λ1, limn→∞mm(n)/n = λm, and limn→∞ 2m2(n)/n = λ2. Then the

ODEs follow by defining the real functions τj(t), i
(j)
dj ,d−j ,uj ,u−j

(t), wj(t), and w
(j)
m (t) to model

the behavior of their discrete counterpart, i.e., intuitively speaking:

τj(t) = lim
n→∞

1

n
Tj(tn), i

(j)
dj ,d−j ,uj ,u−j

(t) = lim
n→∞

1

n
I

(j)
dj ,d−j ,uj ,u−j

(tn),

wj(t) = lim
n→∞

1

n
Wj(tn), w(j)

m (t) = lim
n→∞

1

n
W (j)
m (tn),

(2.13)

where all the limits are in probability and sample-path-wise. We can then use the one-step

drift from Appendix A.2 and Remark II.1 to derive the ODEs corresponding to the modified
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process. The details are in Appendix A.3.

As we mentioned in Point 1, we have to stop the process just before we ran out of

half-edges in each community or between the two communities and before we ran out of

active half-edges. Using the same technique as in [19, Section 5], we can approximate the

(truncated) discrete-time Markov chain as long as the associated functions in the ODEs are

bounded away from zero.

Theorem II.2. Fix ε > 0 small enough, and consider the Markov process of adoption.

Assume there is a constant dmax > 0, independent of n, such that Kj(dj, d−j) = dj + d−j

for all dj + d−j > dmax and j ∈ {1, 2}. Assume the degree regularity conditions given

in Definition II.3 hold. Assume n is large enough such that the total number of half-edges

within community j ∈ {1, 2} is bounded by 4λjn and between the two communities is bounded

by 4λmn, where λ1, λ2 and λm are given as in Remark II.7. Condition on the event that the

total number of active half-edges is greater than 2εn. Let θ = O(n−γ) for some γ ∈ (1/3, η).

Then, with probability 1−O (θ−1 exp(−nθ3))∣∣∣I(j)
dj ,d−j ,uj ,u−j

(t)− ni(j)dj ,d−j ,uj ,u−j(t/n)
∣∣∣ = O(nθ),

|Tj(t)− nτj(t/n)| = O(nθ),

|Wj(t)− nwj(t/n)| = O(nθ),∣∣W (j)
m (t)− nw(j)

m (t/n)
∣∣ = O(nθ),

uniformly for 0 ≤ t ≤ σεn, where wj, w
(j)
m , i

(j)
dj ,d−j ,uj ,u−j

and τj are the solution of the

ODEs given in Appendix A.3 with the corresponding initial conditions, and σε = σε(n) is

the supremum of those x to which the solution of the ODEs can be extended before reaching

within l∞-distance Cθ of the boundary of Dε, for a sufficiently large constant C. The open

connected set Dε is defined as follows:

Dε :=

{
(t, τ1, τ2, w1, w2, w

(1)
m , w(2)

m , i
(1)
d1,d2,u1,u2

, i
(2)
d2,d1,u2,u1

) ∈ RK :

− ε < t− τ1 − τ2 < λm − ε,

for j ∈ {1, 2}: − ε

2
< τj <

λj − ε
2

, −ε < wj < 4λj, −ε < w(j)
m < 2λm,

for j ∈ {1, 2}, uj ≤ dj, u−j ≤ d−j, and dj + d−j ≤ dmax: − ε < i
(j)
dj ,d−j ,uj ,u−j

< 2,

ε < a1 + a2 + a(1)
m + a(2)

m < 4(λ1 + λ2 + λm)

}
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where K ≤ 6 + (dmax + 1)4 is a constant,

aj := −
∑

uj+u−j≤Kj(dj ,d−j)
dj+d−j≤dmax

(dj − uj)i(j)dj ,d−j ,uj ,u−j + λj − 2τj − wj,

a(j)
m := −

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

(d−j − u−j)i(j)dj ,d−j ,uj ,u−j + λm − τm − w(j)
m ,

and τm := t− τ1 − τ2.

Proof. See Appendix A.4.1.

2.7 A Probabilistic Method to Solve the ODE

To get a better understanding of the ODEs, we provide a probabilistic sketch to find the

form of the solution. Note that the purpose of this section is to provide a heuristic argument

on how to solve the ODEs given in Appendix A.3. Similar ideas were used in [19, Subsection

3.3.3]. Our sketch also provides an answer to the “surprising simplification” that has been

observed in the solution of the ODEs in [33,34].

Each step of our Markov process of adoption has two phases: first, we pick an active

half-edge and then, we pair it with a randomly chosen edge. Consider a fixed half-edge e in

community j that belongs to an inactive node v at the beginning of the Markov process of

adoption. We want to estimate the probability that e is not paired with any other half-edge

upto time k.

Condition on the event that v is inactive at time k. Then e is not paired with any half-

edge, if it has not been picked in the second phase of any step of the process up to time k.

Any additional dependencies introduced by the conditioning should fade away as n → ∞,

and we will proceed by ignoring them. Since half-edges are chosen uniformly at random in

the second phase of each step, we have

P({e is not paired with any other half-edge}|{v is inactive}) ≈(
1− 1

2mj(n)− 1

)
×
(

1− 1

2mj(n)− 2− 1

)
× · · · ×

(
1− 1

2mj(n)− 2Tj(k)− 1

)
.
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Using the simple approximation 1− x ≈ e−x for small values of x, we get

P({e is not paired with any other half-edge}|{v is inactive})

≈ exp

− Tj(k)∑
i=1

1

2mj(n)− 2i

 ≈ exp

(
−1

2

∫ mj(n)

mj(n)−Tj(k)

1

z
dz

)
=

(
1− Tj(k)

mj(n)

) 1
2

.

Next, we use the same argument for the half-edges that are supposed to connect to the

nodes in the other community. However, there is an important distinction here as two

phases happen in different communities: if in the first phase we pick an active half-edge

from community j, in the second phase we pick a random half-edge from community −j.
This makes the direct use of the above argument almost impossible. To fix it, we track two

half-edges, dangling from two nodes in communities 1 and 2. Consider two fixed half-edges

e1 and e2 between the communities such that that ej belongs to an inactive node vj in

community j for j ∈ {1, 2}. Now, we can use the exact same argument as above:

P({e1 and e2 are not paired with any other half-edges}|{v1 and v2 are inactive})

≈
(

1− 1

mm(n)

)
×
(

1− 1

mm(n)− 1− 1

)
× · · · ×

(
1− 1

mm(n)− Tm(k)− 1

)
≈
(

1− Tm(k)

mm(n)

)
.

where Tm(k) denotes the number of times the algorithm removes one half-edge from each

community. Note that Tm(k) = k−T1(k)−T2(k). For large values of n, intuitively speaking,

the events {ej is not paired with any other half-edges} for j ∈ {1, 2} are independent, and

we can write:

P({e1 and e2 are not paired with any other half-edges}|{v1 and v2 are inactive})

≈ P({e1 is not paired with any other half-edge}|{v1 is inactive})

× P({e2 is not paired with any other half-edge}|{v2 is inactive})

If we denote the two quantities on the RHS as Z1(k) and Z2(k) respectively, we expect to

have

Z1(k)Z2(k) ≈
(

1− Tm(k)

mm(n)

)
.

Next, consider a vertex v in community j with dj half-edges in community j and d−j

half-edges between the two communities. The above sketch together with some independence
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assumptions (which can be justified as n→∞) suggests the following proximate equality at

time k:

P
({uj out of dj half-edges and u−j out of d−j half-edges of

v has been removed where uj + u−j ≤ Kj(dj, d−j)

})
≈

Bi

(
uj, dj; 1−

(
1− Tj(k)

mj(n)

) 1
2

)
×Bi (u−j, d−j; 1− Zj(k)) ,

which further implies

E
[
I

(j)
dj ,d−j ,uj ,u−j

(k)
∣∣I(j)
dj ,d−j ,0,0

(0)
]
≈

I
(j)
dj ,d−j ,0,0

(0)×Bi

(
uj, dj; 1−

(
1− Tj(k)

mj(n)

) 1
2

)
×Bi (u−j, d−j; 1− Zj(k)) .

(2.14)

Now, we are ready to simplify the differential equations given in Appendix C. Let µ(j,j) and

µ(j,−j) model the limiting value of the probabilities defined above; intuitively speaking

µ(j,j)(t) = lim
n→∞

(
1− Tj(tn)

mj(n)

) 1
2

, and µ(j,−j)(t) = lim
n→∞

Zj(tn). (2.15)

Then the heuristic equality (2.14) suggests:

i
(j)
dj ,d−j ,uj ,u−j

(t) = i
(j)
dj ,d−j ,0,0

(0)Bi(uj; dj, 1− µ(j,j)(t))Bi(u−j; d−j, 1− µ(j,−j)(t)). (2.16)

Also, by the definition of scaled variables

τj(t) =
λj
2

(
1− µ(j,j)(t)

2
)
, (2.17)

τm(t) = λm
(
1− µ(1,2)(t)µ(2,1)(t)

)
, (2.18)

where τm is the continuous counterpart of Tm. Moreover, we expect the following equality

to hold:

λ1

2
µ(1,1)(t)

2
+
λ2

2
µ(2,2)(t)

2
+ λmµ

(1,2)(t)µ(2,1)(t) = λm +
λ1

2
+
λ2

2
− t, (2.19)

as it is equivalent to the equality T1(k) + T2(k) + Tm(k) = k. The importance of the above

equality is that given the vector
(
µ(1,1)(t), µ(1,2)(t), µ(2,1)(t), µ(2,2)(t)

)
, the value of t is uniquely

determined.
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2.8 Analysis of the ODE

Following the heuristic argument provided in Section 2.7, we start with presenting the

solution of the ODEs in Appendix A.3. The following lemma characterizes the solution of

the differential equations that (with high probability) approximate the adoption process.

Lemma II.1. The solution of differential equations (A.1)–(A.4) with initial condition (A.5)

in Dε, is given by equations (2.16), (2.17), and the following:

wj(t) = wj(0)µ(j,j)(t), w(j)
m (t) = w(j)

m (0)µ(j,−j)(t), (2.20)

where j ∈ {1, 2} and µ(j,j) and µ(j,−j) are the unique solution of the following four dimensional

differential equation,

−aj(t)
a1(t) + a2(t) + a

(1)
m (t) + a

(2)
m (t)

= λj
dµ(j,j)

dt

(
µ(j,j)(t)

)
(2.21)

−a(−j)
m (t)

a1(t) + a2(t) + a
(1)
m (t) + a

(2)
m (t)

= λm
dµ(j,−j)

dt

(
µ(−j,j)(t)

)
(2.22)

with the initial condition,

(
µ(1,1)(0), µ(1,2)(0), µ(2,1)(0), µ(2,2)(0)

)
= (1, 1, 1, 1) (2.23)

and
(
µ(1,1)(t), µ(1,2)(t), µ(2,1)(t), µ(2,2)(t)

)
∈ D̃ε. The set D̃ε is defined as follows:

D̃ε :=

{
(µ(1,1), µ(1,2), µ(2,1), µ(2,2)) ∈ [0, 1]4 :

for all j ∈ {1, 2}:
√

ε

λj
< µ(j,j),

√
ε

λm
< µ(j,−j)

ε < a1 + a2 + a(1)
m + a(2)

m

}
.

The functions aj(t) and a
(j)
m (t) are given as follows:

aj(t) = −
∑

uj+u−j≤Kj(dj ,d−j)
dj+d−j≤dmax

(dj − uj)i(j)dj ,d−j ,uj ,u−j(t) + λj − 2τj(t)− wj(t),

a(j)
m (t) = −

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

(d−j − u−j)i(j)dj ,d−j ,uj ,u−j(t) + λm − τm(t)− w(j)
m (t),
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and τm(t) is given by (2.18). Also, the solution of the four dimensional differential equation

satisfies the equality (2.19).

Proof. See Appendix A.4.2.

The significance of this result is in demonstrating that the set of ODEs from Section 2.6

can be reduced to a set of four dimensional ODEs (which has a unique solution). Note that

this dimension reduction applies to the sample-path of the adoption process and not just the

final population of active nodes as suggested by the mean-field approximation of Section 2.4.

The denominator of all four equations given by (2.21) and (2.22) are the same. Since in

D̃ε this quantity is bounded away from zero by ε > 0, it is safe to remove this term from the

denominator of the differential equations for equilibrium analysis. More specifically, if we

consider a particle at (1, 1, 1, 1) whose movement is governed by (2.21) and (2.22), removing

the denominator will not change the trajectory of the particle, but will affect its speed.

Hence, after some simple algebra we find that the trajectory of (2.21)-(2.22) is the same as

the trajectory of the following system of differential equation:

dµ(j,j)

dt
= F(j,j)(µ

(j,j), µ(j,−j))− µ(j,j), (2.24)

dµ(j,−j)

dt
= F(j,−j)(µ

(−j,−j), µ(−j,j))− µ(j,−j), (2.25)

for j ∈ {1, 2} with the same initial conditions (2.23), where the functions F(j,j) and F(j,−j)

are given as follows:

F(j,j)(µ
(j,j), µ(j,−j)) :=

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

dj
λj
i
(j)
dj ,d−j ,0,0

(0)

Bi(uj; dj − 1, 1− µ(j,j))Bi(u−j; d−j, 1− µ(j,−j)) +
wj(0)

λj
,

(2.26)

F(j,−j)(µ
(−j,−j), µ(−j,j)) :=

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

dj
λm

i
(−j)
d−j ,dj ,0,0

(0)

Bi(uj; dj − 1, 1− µ(−j,j))Bi(u−j; d−j, 1− µ(−j,−j)) +
w

(−j)
m (0)

λm
.

(2.27)

Remark II.2. In derivation of (2.24) and (2.25), we have used the following equalities, which
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are true as long as µ =
(
µ(1,1), µ(1,2), µ(2,1), µ(2,2)

)
> 0 component-wise or µ = 0:

aj = λjµ
(j,j)(µ(j,j) − F(j,j)(µ

(j,j), µ(j,−j))) (2.28)

a(−j)
m = λmµ

(−j,j)(µ(j,−j) − F(j,−j)(µ
(−j,−j), µ(−j,j))) (2.29)

These equalities are algebraic and straightforward.

Remark II.3. There is a clear connection between the function F given by (2.9) and the

function F := (F(1,1), F(1,2), F(2,1), F(2,2)). Note that as n→∞:

i
(j)
dj ,d−j ,0,0

(0) dj/λj → Pj∗,m(dj, d−j)(1− αj(dj, d−j)),

i
(−j)
d−j ,dj ,0,0

(0) dj/λm → P−j,m∗(d−j, dj)(1− α−j(d−j, dj)),

wj(0)/λj →
∑

dj+d−j>dmax

Pj∗,m(dj, d−j)(1− αj(dj, d−j)),

w(−j)
m (0)/λm →

∑
dj+d−j>dmax

P−j,m∗(d−j, dj)(1− α−j(d−j, dj)).

The same terms appear in (2.6) and (2.7) if we assume Kj(dj, d−j) = dj + d−j for all

dj + d−j > dmax and j ∈ {1, 2}. Almost all properties of these two functions are the same.

Abusing notation, we use the same symbol for both, the distinction is clear from the context.

Note that the function F is well-defined on [0, 1]4, hence, we do not need any restriction

on its domain. We continue with some basic properties of the function F . As the first step,

we prove that F is increasing in each of its components.

Lemma II.4. If µ ≥ µ′ component-wise with µ 6= µ′, then F (µ) ≥ F (µ′) component-wise,

and F (µ) 6= F (µ′).

Proof. See Appendix A.4.3.

To analyze the equilibrium of (2.24)-(2.25), we use the LaSalle Invariance Principle [74].

The following Lemma characterizes the most important properties of F which then enables

us to invoke this principle.

Lemma II.5. Let U ⊆ [0, 1]4 be the largest connected set containing 1 := (1, 1, 1, 1) such

that ∀µ ∈ U , µ ≥ F (µ). Then we have the followings:

(i) F (U) ⊆ U .

(ii) U is closed and compact.

(iii) ∀u ∈ U , limn→∞ F
n(u) converges to some point u∗ ∈ U , which is a fixed point of F .

39



(iv) If u∗ ∈ [0, 1]4 is a fixed point of F , then for any u ≥ u∗ such that u and u∗ are equal

in at least one component, we have u /∈ U .

Proof. See Appendix A.4.4.

An immediate and important corollary of the above Lemma is the following.

Corollary II.6. Let µ∗ denote the closest fixed point of F to 1 in sup norm, i.e.,

µ∗ := arg min
u:F (u)=u

‖u− 1‖∞,

where ‖x− y‖∞ := maxi |xi − yi|. Then, we have µ∗ ∈ U , and for all u ∈ U ∩ {x : 1 ≥ x ≥
µ∗}:

µ∗ = lim
n→∞

F n(u).

Proof. The proof follows by parts (iii) and (iv) of Lemma II.5, and the fact that 1 ∈ U .

Finally, we characterize the equilibrium point at which the ODE (2.24)-(2.25) settles

starting from (1, 1, 1, 1) and also provide an iterative method to find it.

Theorem II.7. Consider the following ODE:

dµ

dt
= F (µ)− µ µ(0) = 1, µ ∈ [0, 1]4. (2.30)

The solution to the ODE settles at µ∗, given by Corollary II.6. Equivalently, it converges to

F∞(1), where F∞(u) := limn→∞ F
n(u).

Proof. See Appendix A.4.5.

Let us for the moment pretend that the initial condition of the ODE in Appendix A.3

is not random. This assumption is not far from being correct since as n → ∞ the initial

values given by (A.5) concentrate around their mean (as we also pointed out in Remark II.3).

Now, solving the ODE (2.30), we obtain the trajectory of the ODE (2.21)-(2.22) as long as

µ(t) ∈ D̃ε.
By part (iv) of Lemma II.5 and Corollary II.6, the trajectory of ODE (2.30) hits the set

A := {x : 1 ≥ x ≥ µ∗ and ∃i, j ∈ {1, 2} : µ(i,j)
∗ = x(i,j)} (2.31)
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Figure 2.2: Schematic of A, U , and the choice of γ0 > 0 in (2.32) .

at µ∗. More specifically, A∩U = µ∗. Now, given the fact that both A and U are closed and

compact, we can pick γ0 > 0 small enough such that

{x ∈ U : ∃y ∈ A such that ‖x− y‖∞ < γ0} ⊂ B(2γ0,µ∗) (2.32)

where B(2γ0,µ∗) is a ball of radius 2γ0 centered at µ∗. Figure 2.2 provides a 2-dimensional

schematic for the choice of γ0 > 0.

It is easy to see that the equalities (2.28)-(2.29) holds for all µ ∈ U . Also, note that µ∗

is the only point in U such that a1 + a2 + a
(1)
m + a

(2)
m = 0. This justifies our claim earlier

in this section that removing the denominator of the ODE (2.21)-(2.22) will not affects its

trajectory. Since the function F is continuous, it is easy to see that there is an ε0 > 0 such

that for all ε < ε0,

U ∩ {x : 1 ≥ x ≥ µ∗} \ B(2γ0,µ∗) ⊂ D̃ε ⊂ U ∩ {x : 1 ≥ x ≥ µ∗}. (2.33)

Combining the above argument with Lemma II.1 and Theorem II.2, we can track the

Markov process of adoption (the truncated version) upto any ε (< max(ε0, γ0)) neighborhood

of µ∗. Intuitively speaking, if µ∗ is an stable equilibrium point of ODE (2.30), then µ∗ should

correspond to the natural stopping point of the Markov process of adoption. We can also

use equation (2.19) to estimate the natural stopping time. Define t∗ as follows:

t∗ := λm +
λ1

2
+
λ2

2
− λ1

2

(
µ(1,1)
∗
)2 − λ2

2

(
µ(2,2)
∗
)2 − λmµ(1,2)

∗ µ(2,1)
∗ .

Then, conjecturally, the natural stopping point of the Markov process of adoption is ∼ t∗n.

However, both of these arguments are far from being rigorous.
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2.9 Asymptotic Behavior of the Markov Process of Adoption

As we mentioned in Point 2 of Section 2.6, we have assumed that inactive nodes of

degree higher than dmax cannot be activated. In this section, we will study the behavior of

the original Markov process of adoption at its natural stopping time for large values of n. In

what follows, we focus on the truncated version; however, this assumption is relaxed in the

statement of the main theorem.

Recall the definition of ε0 and γ0 from the previous section and let ε < max(ε0, γ0)/16.

We can track the truncated version of the Markov process of adoption upto ε/2 neighborhood

of µ∗. However, the question is whether the process stops at µ∗. If µ∗ = 0, then the answer

is clear as we have removed almost all the half-edges. However, the same cannot be said if

µ∗ 6= 0.

The basic idea is to introduce a perturbation to the process, right after the total number

of active half-edges gets close enough to εn. Let tε denote the first time that a1(tε) +a2(tε) +

a
(1)
m (tε) +a

(2)
m (tε) ≤ ε, where aj(t) and a

(j)
m (t) are as in Lemma II.1. By Theorem II.2, at time

step tεn, the total number of active half-edges is around εn. At this point, we add 2εn active

half-edges to each community, εn of them for the in-community connections and the rest for

the connections between the two communities (in total, we add 4εn active half-edges). Now,

the question is how this type of perturbation changes µ∗. Intuitively speaking, if µ∗ is a

stable equilibrium point of ODE (2.30), then for small enough ε > 0 the above perturbation

should not change µ∗ much.

As a side note, recall that µ∗ depends on the initial condition, which is random in our

problem setting. However, as n→∞, the initial conditions (A.5) in Appendix A.3 converges

in probability to its mean. More specifically,

i
(j)
dj ,d−j ,0,0

(0)
P−→ βj Pj,m(dj, d−j)(1− αj(dj, d−j)),

wj(0)
P−→ βj

∑
dj+d−j>dmax

dj Pj,m(dj, d−j)(1− αj(dj, d−j)),

w(j)
m (0)

P−→ βj
∑

dj+d−j>dmax

d−j Pj,m(dj, d−j)(1− αj(dj, d−j)),

aj(0)
P−→ βj

∑
dj ,d−j

dj Pj,m(dj, d−j)αj(dj, d−j),

a(j)
m (0)

P−→ βj
∑
dj ,d−j

d−j Pj,m(dj, d−j)αj(dj, d−j).

(2.34)

where βj := limn→∞ nj/n. These initial values appear as coefficients in the definition of

function F . Hence, as long as the initial values are in a small neighborhood of their mean,
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the trajectory of the ODE (2.30) and the properties of the absorbing point µ∗ are almost

the same.

The exact same reasoning can be used to justify the fact that Xn
U,δ and Xn

L,δ (defined in in

Point 2 of Section 2.6) are close to each other. Let F U,δ and F L,δ denote the functions given

by (2.26)-(2.27) for Xn
U,δ and Xn

L,δ respectively, where dmax := dδ. Clearly, for all µ ∈ [0, 1]4,

we have F U,δ(µ) ≤ F L,δ(µ) as the only difference between these two functions is the value of

(w1(0), w
(1)
m (0), w

(2)
m (0), w2(0)). Moreover, F L,δ(µ)−F U,δ(µ) ≤ c1, where c > 0 is a constant

independent of µ, and c→ 0 as δ → 0. Hence, the trajectory of µU,δ and µL,δ given by ODE

(2.30) are close to each other. Moreover, using Lemma II.4, we have µU,δ(t) ≤ µL,δ(t) for

all t. Note that the later inequality may not hold for ODE (2.21)-(2.22) as it has a different

time scale.

Theorem II.1. Consider the Markov process of adoption. Assume there is a constant 0 <

dmax ≤ ∞, independent of n, such that Kj(dj, d−j) = dj + d−j for all dj + d−j > dmax and

j ∈ {1, 2}. Suppose the degree regularity conditions given in Definition II.3 hold. Let µ(t)

denote the solution of ODE (2.30) where the function F = (F(1,1), F(1,2), F(2,1), F(2,2)) is given

by the right-hand side of (2.6)-(2.7) (Mean-Filed equations). Let µ∗ = lims→∞ F
s(1) to be

the closest fixed point of F to 1 in sup norm. Define the function T : [0, 1]4 → R+ using

equation (2.19) as follows:

T (µ) :=
λ1

2

(
1−

(
µ(1,1)

)2
)

+
λ2

2

(
1−

(
µ(2,2)

)2
)

+ λm
(
1− µ(1,2)µ(2,1)

)
, (2.35)

and let t∗ := T (µ∗). For t ≤ t∗, define

i
(j)
dj ,d−j ,uj ,u−j

(t) = Pj,m(dj, d−j)Bi(uj; dj, 1− µ(j,j)
t )Bi(u−j; d−j, 1− µ(j,−j)

t ), (2.36)

τj(t) =

(
1−

(
µ

(j,j)
t

)2
)

(2.37)

where µt := T−1(t), and T−1 : [0, t∗] → {µ(x) : µ is the solution of ODE} is the inverse of

the function T restricted to the trajectory of ODE.

1. Assume dmax <∞ is finite. Then, for any t < t∗, we have

I
(j)
dj ,d−j ,uj ,u−j

(tn)

n

P−→ i
(j)
dj ,d−j ,uj ,u−j

(t),

Tj(tn)

n

P−→ τj(t).

2. Assume dmax ≤ ∞, where dmax = ∞ is interpreted as no constraint on the threshold
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function Kj(dj, d−j). Then, at the natural stopping time of the Markov process of

adoption Kn, we have:

I
(j)
dj ,d−j ,uj ,u−j

(Kn)

n

P−→ i
(j)
dj ,d−j ,uj ,u−j

(t∗),
Tj(Kn)

n

P−→ τj(t∗),

given µ∗ is a stable equilibrium, or equivalently given that the absolute value of all

eigenvalues of JF (µ∗) are smaller than 1, where JF (µ∗) is the Jacobian matrix of F

at µ∗.

Proof. See Appendix A.4.6.

Remark II.2. As we commented in Point 2 of Section 2.6, the natural stopping time of

the original Markov process of adoption Xn is bounded between the same quantities for

the truncated versions Xn
L,δ and Xn

U,δ. However, this bound does not apply to the whole

trajectory and the proof of part 1 of Theorem II.1 is restricted to the case dmax < ∞.

Nonetheless, we conjecture that part 1 holds for dmax =∞ as well.

Tallying all the (scaled) inactive nodes we can determine the total (scaled) number of

inactive nodes in community j. This is an immediate corollary of Theorem II.1.

Corollary II.3. Let In(k) denote the total number of inactive nodes at time step k of the

Markov process of adoption Xn.

1. Assume dmax <∞ is finite. Then for all t < t∗, we have

In(tn)

n

P−→
∑

uj+u−j≤Kj(dj ,d−j)

i
(j)
dj ,d−j ,uj ,u−j

(t) = β1Φ1(µ
(1,1)
t , µ

(1,2)
t ) + β2Φ2(µ

(2,2)
t , µ

(2,1)
t ).

where Φ = (Φ1,Φ2) is given by (2.9).

2. Assume dmax ≤ ∞ and suppose that µ∗ is a stable equilibrium of ODE (2.30). Then,

we have

In(Kn)

n

P−→
∑

uj+u−j≤Kj(dj ,d−j)

i
(j)
dj ,d−j ,uj ,u−j

(t∗) = β1Φ1(µ(1,1)
∗ , µ(1,2)

∗ ) + β2Φ2(µ(2,2)
∗ , µ(2,1)

∗ ),

where Φ = (Φ1,Φ2) is given by (2.9).

Similar statements are true for
Aj(tn)

n
and A

(j)
m (tn)
n

.

Proof. The proof follows from Theorem II.1, and the fact that for large enough dmax, the

total number of nodes with degree higher than dmax is arbitrary small.
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This machinery can easily be generalized to any finite number of communities. We

conclude this section by presenting an obvious generalization to k communities. The degree

conditions need not to be revised for this setting. Note that the only assumptions we used in

the proof of Theorem II.1 are the degree regularity conditions given in Definition II.3. The

other two assumptions of the regularity conditions are necessary to get a uniform simple

random graph using configuration model, with positive probability.

Theorem II.4. Assume there are k communities, and size of communities are given by n1,

n2, · · · , nk such that
∑

i ni = n. Assume limn→∞ ni/n = βi for all i ∈ {1, 2, · · · , k}. Suppose

the regularity conditions hold, and define λr := λr,rβr and λ
(r,s)
m := λr,sβr (note that λr,sβr =

λs,rβs), for all r, s ∈ {1, 2, · · · , k}. Assume there is a constant 0 < dmax ≤ ∞, independent

of n, such that the inactive nodes with degree higher than dmax cannot be activated. Let Xn

denote the Markov process of adoption. Let µ(t) = (µ(i,j)(t))i,j∈{1,2,···,k} denote the solution

of k2-dimensional ODE

dµ

dt
= F (µ)− µ µ(0) = 1, µ ∈ [0, 1]k

2

. (2.38)

where the function F is given by Mean-Field equations. Let µ∗ = lims→∞ F
s(1) to be the

closest fixed point of F to 1 in sup norm. Define T (µ) as follows:

T (µ) :=
k∑
r=1

λr
2

(
1−

(
µ(r,r)

)2
)

+
k∑

r,s=1
s 6=r

λ
(r,s)
m

2

(
1− µ(r,s)µ(s,r)

)
(2.39)

and let t∗ := T (µ∗). Now, the result of Theorem II.1 and Corollary II.3 holds by using the

following functions:

i
(j)
d1,d2,···,dr,u1,u2,···,ur = Pj,m(d1, d2, · · · , dk)

k∏
r=1

Bi(ur; dr, 1− µ(j,r)
t )

τr(t) =
λr
2

(
1−

(
µ

(r,r)
t

)2
)

τ (r,s)
m = λ(r,s)

m

(
1− µ(r,s)

t µ
(s,r)
t

)
where µt := T−1(t). Note that our notation is slightly different from the case of two commu-

nities, as we use I
(j)
d1,d2,···,dr,u1,u2,···,ur to denote the number of nodes in community j with dr

half-edges in community r, such that ur of them have been already removed.

Proof. The proof of the generalized k follows by recycling the proof of k = 2.
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2.10 Contagion Threshold

Recall that by definition, node i in community j with dnj,i neighbors in community j and

dnm,i neighbors in the other community is an early adopter with probability αj(d
n
j,i, d

n
m,i). If

we assume Kj(dj, d−j) ≡ θ(dj + d−j) for some θ ∈ (0, 1), then the largest value of θ that

results in a cascade (i.e., O(n) nodes becoming active) when a small number of nodes (o(n),

often taken to be a constant number) are initially seeded is called the contagion threshold;

denote it by θ∗. Morris [57] showed that θ∗ ≤ 0.5 and the upper-bound is loose for many

graphs. It’s argued that the contagion threshold of the graph family can be calculated by

choosing αj(dj, d−j) ≡ α, letting α→ 0, and varying θ. In this section we will formalize this

intuition and characterize the contagion condition for more general threshold functions.

Let α = {αj(dj, d−j)}j,dj ,d−j represent the seeding strategy. Let’s rewrite the function

F (µ) as F (α,µ) to emphasis on the dependency of function F over the seeding strategy.

The question of interest is the final proportion of adopters, if the seeding effects only a finite

number of population, i.e., the proportion of early adopters goes to 0 as n→∞. We provide

an answer this question in the following theorem.

Theorem II.1. Consider an arbitrary sequence {αs}∞s=1 that represent a sequence of non-

zero seeding strategies that converges to zero in sup norm, i.e., ‖αs‖∞ → 0. Let U(0) ⊆ [0,

1]4 to be the largest connected set containing 1 such that ∀µ ∈ U(0),µ ≥ F (0,µ). If

U(0) is singleton, i.e., U(0) = {1}, then the final proportion of adopters converges to 0 as

‖αs‖∞ → 0. Otherwise, the final proportion of adopters is strictly positive, and we have

lim
s→∞

µ∗(αs) = lim
r→∞

F r(0,u) ∀u ∈ U(0) ∩ {x : µ∗(0) ≤ x ≤ 1} \ {1},

where µ∗(αs) := limr→∞ F
r(αs,1), and µ∗(0) is the closest fixed point of F (0,1) to 1 other

than 1 itself.

Proof. See Appendix A.4.7.

As in the proof of Lemma A.2, it is easy to see that U(0) is singleton if and only if 0 is an

stable equilibrium of F (0, ·). This gives the following easy criteria to check whether contagion

happens or not: contagion does not happen if and only if all eigenvalues of JF (0,·)(1) are

smaller than 1, where JF (0,·)(1) is the Jacobian matrix of F (0, ·) at 1. From the proof

of Lemma II.4, all elements of JF (0,·)(1) are non-negative. Now, using Perron-Frobenius

theorem we get the following equivalent result.

Theorem II.2. Contagion happens if and only if ρ
(
JF (0,·)(1)

)
is greater than 1, where ρ(·)

is the Perron-Frobenius eigenvalue of a non-negative matrix, and JF (0,·)(1) is the Jacobian

matrix of F (0, ·) at 1.
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The discussion on contagion can also be generalized to k communities with exactly the

same statement as in Theorem II.2.

2.11 Poisson Degree Distributions

We will now specialize our results to Poisson degree distributions. An Erdos-Renyi ran-

dom graph is an example of a graph family that asymptotically yields a Poisson degree

distribution. The two community stochastic block model is then the appropriate general-

ization of the Erdos-Renyi random graph that will asymptotically produce Poisson degree

distributions within the community and across the communities. We will show in the fol-

lowing results that under some symmetry assumptions for the threshold and the advertising

strategy, the solution of ODE (2.30) simplifies considerably. In the case of Poisson degree

distribution, we assume

Pj,m(dj, d−j) = e−λj,j
(λj,j)

dj

dj!
× e−λj,m

(λj,m)d−j

d−j!

Note that Pj∗,m(dj, d−j) = Pj,m(dj − 1, d−j) and Pj,m∗(dj, d−j) = Pj,m(dj, d−j − 1).

Theorem II.1. Assume the threshold of each node depends on its community and the total

number of its neighbors, i.e. Kj(dj, d−j) = Kj(dj+d−j). Moreover, assume the advertisement

strategy is based on the community affiliation and the total number of neighbors, i.e. αj(dj,

d−j) = αj(dj +d−j). Now, if the asymptotic degree distributions are Poisson with parameters

λ1,1, λ1,m, λ2,m, and λ2,2, then the solution of ODE (2.30) with the function F given by

the right hand side of (2.6)-(2.7) simplifies as follows: µ(1,1)(x) = µ(2,2)(x) and µ(2,1)(x) =

µ(1,2)(x) for all x ≥ 0; that is to say, the dimension of the differential equations reduces to 2.

Proof. See Appendix A.4.8.

The next theorem concerns general distributions.

Theorem II.2. Assume both the advertisement strategy and the threshold function are sym-

metric in the following sense: αj(dj, d−j) = α−j(d−j, dj) and Kj(dj, d−j) = K−j(d−j, dj)

for all dj, d−j ≥ 0 and j ∈ {1, 2}. Also assume that the asymptotic degree distribution

in both communities are the same, i.e. P1,m = P2,m. Then, µ(1,1)(x) = µ(2,1)(x) and

µ(2,2)(x) = µ(1,2)(x) for all x ≥ 0; that is to say, the dimension of the differential equa-

tions reduces to 2.

Proof. See Appendix A.4.9.
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Similar generalization holds for the case of k communities. Given similar assumptions to

Theorem II.1 or Theorem II.2, in the case of k communities, the dimension of ODE reduces

to k. An immediate corollary is the following which assert that if both the assumptions hold,

then the dimension reduces to 1. This is also true for general k.

Corollary II.3. Assume the assumptions of Theorems II.1 and Theorems II.2 hold, then the

dimension of ODE (2.30) reduces to one. In this case, the formulation is the same as if there

was only one community with asymptotic degree distribution given by Poisson(λ1,1 + λ1,m).

It is interesting to note that given assumptions of Theorems II.1 and Theorems II.2,

the contagion threshold is the same as if there was only one community. The derivation of

contagion threshold matches with the ones presented in [34,35] for case of one community.

2.12 Numerical Investigation

We present some numerical results using the analysis presented above. The main point

is to show how the community structure impacts seeding strategies. A natural question to

ask is “what is the best seeding strategy given a budget constrain?”. In this section, we also

formalize this question and provide a partial answer to it using a gradient based heuristic

algorithm.

By Theorem II.1, the solution of the ODE (2.30) tracks the Markov process of adoption

upto points arbitrary close to µ∗. Moreover, if µ∗ is an stable equilibrium, the process stops

at µ∗ with high probability. Now, by Corollary II.3, our strategy is to pick α∗ that minimizes

β1Φ1(µ∗) + β2Φ2(µ∗).

Specifically, consider the following budget constraint which constraints the expected num-

ber of early adopters: ∑
j,dj ,d−j

βj Pj,m(dj, d−j)αj(dj, d−j) = ℬ,

where ℬ > 0 is the total available budget. We now formulate the “optimum seeding strategy”
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as follows:

inf
α

β1Φ1(α, µ∗) + β2Φ2(α, µ∗)

subject to (i) Budget constraint:
∑

j,dj ,d−j

βj Pj,m(dj, d−j)αj(dj, d−j) = ℬ,

(ii) Definition of µ∗: µ∗ = arg min
u:F (α,u)=u

‖u− 1‖∞,

(ii)′ Definition of µ∗: µ∗ = lim
s→∞

F s(α,1).

Note that by Corollary II.6, the conditions (ii) and (ii)′ are equivalent. As the constraints are

highly nonlinear, we take a heuristic approach to provide a partial answer to this optimization

problem. We comment that if µ∗ is not a stable equilibrium point, then the process may

not stop at µ∗ as we don’t know what happens beyond this point. However, the above

formulation is heuristically our best bet to maximize the contagion.

For sake of simplicity, let us assume the degrees are uniformly bounded. This assumption

is justified by noting that the total number of half-edges associated with high degree nodes

is small. The fixed point µ∗ is a function of α. Abusing notation, we denote this by µ∗(α).

Note that µ∗(α) = F (α,µ∗(α)). Using the chain rule we have

Jµ∗(α) = JF (·,µ∗(α))(α) + JF (α,·)(µ∗(α))Jµ∗(α)

where Jµ∗(α) is the Jacobian matrix of µ∗(·) at α, JF (·,µ)(α) is the Jacobian matrix of

F (·,µ) at α, and JF (α,·)(µ) is the Jacobian matrix of F (α, ·) at µ. Hence,

Jµ∗(α) =
(
I − JF (α,·)(µ∗(α))

)−1
JF (·,µ∗(α))(α), (2.40)

where I is the identity matrix.

The heuristic seeding algorithm is an iterative algorithm that has two stages. The logic

behind the algorithm is simple: at Stage 1 , the algorithm tries to find the best direction

for updating the seeding strategy while keeping the budged constraint, and at Stage 2 , the

algorithm validates the choice of the direction. Fix some ξ0 > 0, and pick ξ0 < ξ < 1

arbitrary. Also pick α arbitrary such that conditions (i), the budget constraint, holds. The

heuristic algorithm is given as follows:
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Stage 1 . Numerically solve the following linear optimization problem:

inf
∆α=[∆αj(dj ,d−j)]j,dj ,d−j

〈
∆α ,

∑
j

JΦj(·,µ∗(α))(α) + JΦj(α,·)(µ∗(α))Jµ∗(α)
〉

subject to
∑

j,dj ,d−j

βj Pj,m(dj, d−j) (αj(dj, d−j) + ξ∆αj(dj, d−j)) = ℬ,

αj(dj, d−j) + ξ∆αj(dj, d−j) ∈ [0, 1] for all j, dj, d−j

‖∆α‖F = 1

where 〈A,B〉 :=
∑
ai,jbi,j is the Frobenius inner product, JΦj(·,µ)(α) is the Jacobian matrix

of Φj(·,µ) at α, JΦj(α,·)(µ) is the Jacobian matrix of Φj(α, ·) at µ, and ‖·‖F is the Frobenius

norm.

Stage 2 . Let αnew = [αj(dj, d−j) + ξ∆αj(dj, d−j)]j,dj ,d−j . If

β1Φ1(α, µ∗(α)) + β2Φ2(α, µ∗(α)) > β1Φ1(αnew, µ∗(αnew)) + β2Φ2(αnew, µ∗(αnew)),

then update α← αnew and go to Stage 1 . Otherwise, update ξ ← ξ/2. If ξ < ξ0 terminate

the algorithm, otherwise go to Stage 1 .

Next, we compare different seeding strategies using Theorem II.1, Corollary II.3, and

Corollary II.6. Most of our results will be for Poisson degree distributions, owing to analytical

simplifications and the fact there are only three parameters to tune. Moreover, for simplicity

we assume that the threshold function is given by kj(dj, d−j) = θ × (dj + d−j) − 1 where

θ = 0.25. Henceforth, we assume β1 = β2.

The nodes that are seeded by the advertisers are early adopters. A few strategies that

we will consider are: (1) Random seeding: First, we assume the advertiser does not even

know about the existence of two communities. This scenario is named as global seeding.

Second, we assume the advertiser knows the community structure, and decides to seed just

asymmetrically in the two communities. This advertisement strategy is denoted by local

seeding. (2) Degree-targeted seeding: the advertiser knows the degree distribution of the

network and the identity of the nodes that possess a certain degree, but does not know the

underlying connectivity structure.

In Figure 2.3, we assume the both in-community degree distribution and out-community

degree distribution are Poisson distributions with parameters λ1,1 = λ2,2 = λin and λ1,2 =

λ2,1 = λout. The figure suggests that if the communities are symmetric, and if they are well-

connected (λout = 1), then the best strategy is to put the whole budget in one community.

In Figure 2.4 we consider the general case where distributions can have different parameters
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Figure 2.3: Random seeding strategy on symmetric communities. The ratio of of early
adopters is 2.5% of the population. λin denotes the in-community connectiv-
ity, and λout denotes the out-community connectivity.

in the two communities, i.e., λ1,1 and λ2,2 need not to be equal. We also assume λ1,2 = λ2,1 =

λout = 1. In this case, the community structure dramatically changes the cascade potential:

there are scenarios where global seeding can cause a cascade while local seeding won’t, and

vice-versa.
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Figure 2.4: Random seeding strategy on asymmetric communities. The ratio of of early
adopters is 2.5% of the population. λ1,1 and λ2,2 are parameters of the in-
community distributions. λ1,2 = λ2,1 = λout = 1 in both cases. Intensity of
grayscale indicates the final proportion of adopters.

Next, we consider degree-targeted seeding in Figures 2.5 and 2.6. In general, high-degree

nodes can potentially stop a cascade if they are not early adopters; hence it might make sense

to seed these nodes in each community. We will consider the following case: the budget is
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spread equally in both communities, denoted by (0.5, 0.5); the budget is concentrated in

community 1, denoted by (1, 0); and that 25% of budget is in community 1, denoted by

(0.25, 0.75). The outer connectivity is given by λ1,2 = λ2,1 = λout = 1. The main observation

is the dramatic difference in the proportion of final adopters based on how asymmetric the

targeting is. Additionally, a higher inter-community connectivity leads to a bigger cascade.

Also note that seeding nodes with the highest degree gives better result than random seeding.

In Figure 2.6, we compare the highest degree strategy with the heuristic algorithm proposed

in the beginning of the section, using the same parameters as in Figure 2.5. The results are

dramatically different. We also illustrate the resulted seeding distribution, α1(d1, d2) and

α2(d2, d1), for λ1,1 = 18 and λ2,2 = 10.5 in Figure 2.7. These two figures highlights the

importance of community structure on the optimum seeding strategy.

Figure 2.5: Highest degree seeding strategy on asymmetric communities.The ratio of of early
adopters is 2.5% of the population. λ1,1 and λ2,2 are parameters of the in-
community distributions. λ1,2 = λ2,1 = λout = 1 in all three cases. Intensity of
grayscale indicates the final proportion of adopters.

Next, we discuss the evolution of cascade using Theorem II.1 and Corollary II.3. Figure

2.8 illustrates the evolution of active half-edges and inactive nodes in the second community

for λ1,1 = 7, λ2,2 = 12, and λ1,2 = λ2,1 = 1 when the seeding strategy is to put the whole

budget in the first community. Figure 2.4 suggests that global seeding strategy will not result

in any cascade. On the other hand, a global cascade emerges following local seeding strategy:

it develops in the first community and then moves to the next community; this happens when

the inactive nodes in community 2 with d1 > θ × (d1 + d2) − 1 become active, causing a

cascade in the second community. In this figure, we also present the total number of active

half-edges in the second community for the Markov process of adoption, for n = 20000, to

numerically validate the result of Theorem II.1.
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Figure 2.6: Highest degree seeding strategy vs proposed heuristic seeding strategy on asym-
metric communities.The ratio of of early adopters is 2.5% of the population. λ1,1

and λ2,2 are parameters of the in-community distributions. λ1,2 = λ2,1 = λout = 1
in all three cases. Intensity of grayscale indicates the final proportion of adopters.
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Figure 2.8: Evolution of cascade for λ1,1 = 7, λ2,2 = 12, and λ1,2 = λ2,1 = 1 using local
seeding strategy. The total proportion of early adopters is 2.5%.

Finally, there are scenarios where neither global nor local seeding strategy can cause

cascade. Figure 2.9 illustrate the evolution of active half-edges, using (0.25, 0.75) seeding

strategy. As can be seen from Figure 2.5, the only seeding strategy (among the ones in

the figure) that can cause a global cascade for λ1,1 = 17, λ2,2 = 12 and λ1,2 = λ2,1 = 1

is (0.25, 0.75). Active half-edges in both communities get close to zero, but nevertheless a

cascade happens in the second community. This cascade then moves to the first community,

and almost all nodes adopt the new technology. This example illustrates the importance

of active half-edges a
(2)
m (t) in triggering a cascade in the first community. We also include
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Figure 2.7: Distribution of α1(d1, d2) (left) and α2(d2, d1) (right) in the proposed heuristic
seeding algorithm for λ1,1 = 18, λ2,2 = 10.5 and λout = 1. The ratio of of early
adopters is 2.5% of the population. Intensity of grayscale indicates the value of
αj(dj, d−j).

the total number of active half-edges for the Markov process of adoption, for n = 20000, to

numerically validate the result of Theorem II.1.
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Figure 2.9: Evolution of cascade, λout = 1, λin,1 = 17 and λin,2 = 12; proportion of early
adopters is 2.5%, x axis is time and y axis is the quantity of corresponding scaled
variables. The seeding strategy is given by (0.25, 0.75).
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CHAPTER III

Erlang Weighted Tree

Notation

Bold symbols are used for sequences while random variables are denoted by capital letters

and their realization by small letters. R+ denotes the set of non-negative real numbers.

Similarly, Z+ denotes the set of non-negative integers. The set of natural numbers is denoted

by N. The set of all finite sequences of N is denoted by Nf = ∪∞i=0Ni with the convention

N0 = {ø}. The set of positive integers less than or equal to n is denoted by [n], i.e., [n] = {1,
2, . . . , n}. Let L(R+; [0, 1]) be the set of Lebesgue measurable functions from R+ to [0, 1].

Let C1(R+; [0, 1]) be the set of continuously differentiable functions from R+ to [0, 1]. The

Erlang distribution with parameters k ∈ N and λ > 0 is denoted by Erlang(· ; k, λ), and the

binomial distribution with parameters n ∈ N and p ∈ [0, 1] is denoted by Bi(· ;n, p). The

Poisson distribution with parameter λ is denoted by Poiss(λ), and the geometric distribution

with parameter p and support on N is denoted by geo(p). A random variable X is said to

have a moment generating function at t ∈ R, if E[etX ] <∞. For a set S, P(S) is the set of

all Borel probability measures defined on S.

3.1 Introduction

This chapter studies a random tree object called the Erlang Weighted Tree (EWT). The

construction of the EWT begins with the construction of the “backbone tree”. The backbone

tree has more edges, some of which are then pruned to obtain the EWT.

Let Nf denote the labels of vertices of an infinite tree. Each i ∈ Nf is associated with three

types of random variables: 1) ni which is the potential number of descendants of the vertex

i, 2) vi which is the value associated with the vertex i, and, 3) {ζ(i,j)}ni
j=1 which represents

the cost of the potential edges {i, (i, j)} for j ∈ {1, 2, . . . , ni}. The probability distribution

of nø is given by P ∈ P(N) which is assumed to have a finite mean and P (1) < 1. The
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probability distribution of ni for i ∈ Nf \N0 is given by the shifted distribution P̂ ∈ P(Z+),

i.e., P̂ (k) = P (k+1) for all k ≥ 0. Conditioned on ni, vi is distributed as Erlang(· ;ni+1, λ)

for a positive and fixed real value λ. Conditioned on ni and vi, {ζ(i,j)}ni
j=1 are ni independent

and uniformly distributed random variables over the interval [0, vi]. When ni = 0, there are

no potential edges emanating from vertex i. The backbone tree is the connected component

of ø with the potential edges as its edge set.

The edges of the backbone tree are pruned to obtain the EWT. Define a rooted tree

T◦ = (V,E, ø, wv, we), rooted at ø, by preserving the edge between the vertices i and (i, j)

if and only if ζ(i,j) < v(i,j). The mark functions are defined as follows,

wv : V → N× R+, wv(i) =

(nø, vø) i = ø

(ni + 1, vi) otherwise

we : E → R+, we({i, (i, j)}) = ζ(i,j).

The random rooted tree T◦ is called an Erlang Weighted Tree with distribution for the

potential degree given by P . Henceforth, we call P the potential degree distribution. Let [T◦]
denote the equivalence class of T◦ up to isomorphisms (over vertex relabelings that preserve

the root). Denote by Er(P, λ) the probability distribution of [T◦] in G∗, which denotes the

set of rooted marked graphs up to isomorphisms. For a formal definition of G∗ and related

background material, see Section 3.2.1.

Remark III.1. The parameter λ in the definition of Er(P, λ) appears only as a scaling factor.

Usually, this value is set to be 1, and for ease of notation, Er(P ) is used instead of Er(P, 1).

Remark III.2. Throughout this chapter, a non-root vertex i with the mark (ni + 1, vi) will

be referred to as a vertex of type (ni, vi).

We will show that EWT appears as the local weak limit of a random graph model

introduced by La and Kabkab in [23]. The graph construction starts with a complete graph

Kn = ([n], En), a sequence of positive integers dn = (d1(n), d2(n), · · · , dn(n)) and a random

cost function Cn that assigns non-negative real values to the edges of Kn, independently. The

value of di(n) indicates the number of neighbors that vertex i wants to connect to. The value

assigned to each edge by Cn is an independent exponentially distributed random variable

with parameter 1/n that represents the cost of the edge. Each vertex i then selects the di(n)

lowest cost incident edges and declares them to be its preferred edges. The random graph

Gn = ([n], Ẽn) is constructed by keeping only those edges of En that are preferred by both

end vertices. This model is closely related to the k-th nearest neighbor graphs presented by

Cooper and Frieze in [43], in which a connection survives as long as at least one individual
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involved in the connection is interested in it. The bilateral agreement required in the above

random graph model makes the analysis much more challenging.

Main Results

In this work, we derive the following properties of the EWT:

(i) EWT is unimodular. We shall shortly define unimodularity.

(ii) Let F̄k(·) denote the complementary cumulative distribution function of Erlang(· ; k,
λ). The degree distribution of the root is given by,

P(Dø = d) =
∞∑
m=1

P (m)

∫ ∞
0

e−xxm

m!
Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
dx

E[Dø] =
∞∑
m=1

∞∑
k=1

P (m)P (k)

∫ ∞
0

F̄k(y)F̄m(y) dy.

Note that this is the asymptotic degree distribution of the random graph family in [23].

Unlike the canonical branching processes, the degree distribution of a vertex at depth

l ≥ 0 depends on l.

(iii) The probability of extinction is given by,

P({extinction}) =
∞∑
m=1

P (m)

∫ ∞
x=0

e−xxm

m!
(q(x))m dx,

where q(·) ∈ C1(R+; [0, 1]) is the smallest fixed point (point-wise smaller than all the

other fixed points) of the operator T : L(R+; [0, 1])→ C1(R+; [0, 1]) defined as,

T (f)(x) :=


1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
dy, x>0

∞∑
k=1

P (k)

∫ ∞
z=0

e−zzk−1

(k − 1)!
f(z)k−1 dz, x=0

.

This fixed point is also the pointwise limit of T l(0)(·) as l goes to infinity where 0(·) is

the zero function. If the probability of extinction equals 1, then the function q(x) ≡ 1

for all x ≥ 0 is the unique fixed point of T (upto sets of measure 0). If the probability

of extinction is smaller than 1, then assuming that the moment generating function of

nø exists for some θ > 0, the operator T has exactly two fixed points: q(·) and 1(·),
where 1(·) is the all 1 function.
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(iv) Assume that the moment generating function of nø exists for some θ > 0. Define the

function L(β, x) as follows,

L(β, x) =
∞∑
i=0

Gi(x)

(
−1

β

)i
,

where g2(x) = e−x
∑∞

k=2 P (k) xk−2

(k−2)!
and the function Gi(x) is defined recursively via

G0(x) = 1,

Gi(x) =

∫ ∞
x

∫ ∞
z=y

g2(z)Gi−1(z) dz dy ∀i > 0.

Let Zl denote the number of vertices at generation l. We have,

E[Zl]

β0
l

l→∞−−−→

(∫ ∞
0

∞∑
k=1

P (k)
e−zzk−1

(k − 1)!
f0(z) dz

)2

where β0 is the smallest zero of the function L(β, 0), f0(x) = L(β0, x)
√
CN for all

x ∈ R+, and CN = (
∫∞

0
g2(y)L(β0, y)2 dy)−1 is the normalization factor so that∫ ∞

0

g2(y)f0(y)2dy = 1.

(v) Let the assumption of part (iv) hold and let β0 > 1. Then there is a random variable

W such that Zl/β0
l converges to W almost surely and in L2. Moreover, Zl ∼ β0

lW ,

i.e., β0 is the growth rate of Zl, and the proportion of various types converges to a

non-random limit.

(vi) Let the assumption of part (iv) hold. If β0 > 1, then the probability of extinction is

less than 1, otherwise it equals 1. Moreover, if β0 > 1, then the number of vertices at

generation n as n→∞, goes to either 0 or ∞.

The organization of the rest of the chapter is as follows: In Section 3.2, we provide the

necessary background: a short background on random graphs and local weak convergence, a

short note on the point process perspective of a branching process, and a short description of

spectral theory for compact self-adjoint bounded linear operators. In Section 3.3, we describe

the finite graph model and discuss the local weak convergence of the finite graph model to

the EWT. In Section 3.4, we begin with the unimodularity of EWT. Then we derive the

degree distribution of the root vertex, expected number of vertices at generation l and the
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probability of extinction. Finally, we discuss the point process perspective and derive the

growth rate of the branching process and the phase transition. In Section 3.5, we present

some numerical illustrations of our results. Some proofs are presented in the Appendix for

ease of presentation.

3.2 Background Material

In this section, we present the necessary background for the rest of the chapter. The

essential background on “random graphs and local weak convergence” is mostly based on

lecture notes by Bordenave [25] and the work of Aldous and Lyons [44]. The background

on the “point process perspective of a branching process” is based on chapter 3 of Harris’s

book [30]. We use this background in Section 3.4.5 which proves the most significant result

of our work. The background on the “spectral theorem for compact self-adjoint bounded

linear operators” is based on a classical text book in functional analysis by Lax [75] and the

work of Toland [47]. The related topics from this subject are used in Section 3.4.5; however,

we will rederive the main theorems presented in this section using a probabilistic approach.

3.2.1 Random Graphs and Local Weak Convergence

We start with a few graph terminologies that are used in the chapter. Let G = (V,E)

denote an undirected graph, where V is the set of vertices (finite or countably infinite), and

E is the set of edges. A rooted graph G◦ = (V,E, ø) is a graph with a distinguished vertex

ø ∈ V . Vertices v1, v2 ∈ V are said to be neighbors, if {v1, v2} ∈ E. The degree of a vertex

v ∈ V , denoted by dv, is the number of its neighbors. A graph G is said to be locally-finite if

the degree of each vertex is finite. A path p of length n−1 is an ordered sequence of vertices

(v1, v2, . . . , vn) where {vi, vi+1} ∈ E, ∀i < n. A graph G is said to be connected if there is a

path between every pair of vertices.

Two graphs G = (V,E) and G′ = (V ′, E ′) are said to be isomorphic if there is a bijection

σ from V to V ′ such that {v1, v2} ∈ E if and only if σ({v1, v2}) := {σ(v1), σ(v2)} ∈ E ′.

The function σ is called an isomorphism from G to G′. A rooted-isomorphism between two

rooted graphs is an isomorphism that maps the root vertices to each other.

A network N = (V,E,wv, we) is a graph (V,E) with mark functions wv : V → Ω1 and

we : E → Ω2, where Ω1 and Ω2 are the mark spaces. A rooted network is a network with a

distinguished vertex as the root vertex. In this chapter, the mark spaces are assumed to be

Ω1 = N× R+ and Ω2 = R+, which are complete separable metric spaces equipped with the
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following metrics,

dΩ1 ((m,x), (n, y)) =
√

(m− n)2 + (x− y)2 ∀m,n ∈ N, ∀x, y ∈ R+

dΩ2 (x, y) = |x− y| ∀x, y ∈ R+

Two networks N and N ′ are said to be isomorphic if there is a bijection map from V to

V ′ that preserve the edges as well as the marks. A rooted-isomorphism between two rooted

networks N◦ and N ′◦ is an isomorphism that maps the root of one network to the other. For

a rooted network N◦ = (V,E, ø, wv, we), [N◦] denotes the class of rooted networks that are

isomorphic to N◦. Let G∗(Ω1,Ω2) denote the set of all isomorphism classes [N◦], where N◦

ranges over all connected locally-finite rooted networks with mark spaces Ω1 and Ω2. For

notational simplicity, we use G∗ instead of G∗(Ω1,Ω2).

There is a natural way to define a metric on G∗. Consider a connected rooted network

N◦ = (V,E, ø, wv, we)
1 and the corresponding rooted graph G◦ = (V,E, ø). The depth of a

vertex v ∈ V is defined to be the infimum length of the paths from v to the root vertex. Let

(G◦)t = (Vt, Et, ø) denote the subgraph of G◦ where Vt is the set of vertices in V at depth

less than or equal to t from φ, and Et is the set of edges in E between the vertices in Vt. For

any [N◦], [N
′
◦] ∈ G∗, a natural way to define a distance is given by

dG∗([N◦], [N
′
◦]) =

1

R + 1
,

where

R = sup

t ≥ 0 :

there exists a rooted-isomorphism σ from (G◦)t to

(G′◦)t such that ∀v ∈ Vt and ∀e ∈ Et, dΩ1(wv(v),

w′v(σ(v))) < t−1 and dΩ2(we(e), w′e(σ(e))) < t−1

 .

Note that in the definition of R, the isomorphism is between the rooted graphs and not the

corresponding rooted networks. The space G∗ equipped with dG∗ is a complete separable

metric (Polish) space [25]. Define P(G∗) as the set of all probability measures on G∗ and

endow this space with the topology of weak convergence. Since G∗ is a Polish space, the

space P(G∗) is a Polish space as well [25] with the Lévy-Prokhorov metric.

The members of G∗ are unlabeled connected locally-finite rooted networks; however, there

is a way to generalize the framework to unrooted, not necessarily connected, finite networks.

Consider a finite network N = (V,E,wv, we). For every vertex v ∈ V , define N(v) to be the

connected component of the vertex v in the network N . Let N◦(v) denote the rooted version

1Strictly speaking, N◦ is a member of the equivalence class [N◦].
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of N(v), rooted at v, and define δ[N◦(v)] ∈ P(G∗) to be the Dirac measure that assigns 1 to

[N◦(v)] and 0 to any other member of G∗. Define U(N) ∈ P(G∗) as follows,

U(N) =
1

|V |
∑
v∈V

δ[N◦(v)]. (3.1)

The probability measure U(N) is the law of [N◦(ø)], where ø ∈ V is picked uniformly

at random. This probability measure captures the local structure of N as viewed from a

randomly chosen vertex. The notion of local weak convergence studies the weak limit of

{U(Nn)}n≥0 for a sequence of finite networks {Nn}n≥0.

Definition III.1. (Local Weak Limit) A sequence of finite networks {Nn}n≥1 has a local

weak limit ρ ∈ P(G∗) if U(Nn)
w−→ ρ.

A necessary condition for a probability measure ρ ∈ P(G∗) to be a local weak limit is

unimodularity [44] which is defined next. Let G∗∗(Ω1,Ω2), or more simply G∗∗ denote the set

of isomorphism classes of connected locally-finite networks with an ordered pair of distinct

vertices. Let N◦◦(ø, v) denote a network in G∗∗. Equip G∗∗ with the natural metric dG∗∗

which is defined in the same way as dG∗ .

Definition III.2. (Unimodularity) A measure ρ ∈ P(G∗) is said to be unimodular if for all

Borel functions f : G∗∗ → R+,∫ ∑
v∈V

f([N◦◦(ø, v)]) dρ([N◦(ø)]) =

∫ ∑
v∈V

f([N◦◦(v, ø)]) dρ([N◦(ø)]). (3.2)

The function f in the definition of unimodularity ranges over all Borel functions from

G∗∗ to R+; however, it is sufficient to consider Borel functions f : G∗∗ → R that assign a

non-zero value to a doubly rooted network only if the roots are adjacent. This property is

known as involution invariance [44].

Lemma III.3. (Involution Invariance) A measure ρ ∈ P(G∗) is unimodular if and only

if the equality (3.2) holds for all Borel functions f : G∗∗ → R+ such that f([N◦◦(ø, v)]) = 0

unless {ø, v} ∈ E.

It is easy to show that the class of local weak limits are unimodular. The question of

whether the class of unimodular measures and local weak limits coincide or not, is still an

open problem.

3.2.2 Point Process Perspective of a Branching Process

Let Ω = Z+ × R denote the type space. A point distribution ω = ((m1, x1), a1; (m2, x2),

a2; . . . ; (mk, xk), ak) on type space Ω is a finite set of vertices that consists of aj vertices of
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type (mj, xj) for k ∈ Z+ \ {0}, and k = 0 corresponds to null point distribution. Let PΩ

denote the set of all point distributions. A point distribution ω ∈ PΩ defines a natural set

function ω̃(·) over all subsets of Ω,

ω̃(A) :=
∑

(mj ,xj)∈A

aj, ∀A ⊂ Ω.

It is easy to see that there is a one-to-one correspondence between point distributions and

set functions satisfying the following conditions:

(a) for any A ⊂ Ω, ω̃(A) is a non-negative integer.

(b) if A1,A2, . . .Ak are disjoint subsets of Ω, then ω̃ (∪jAj) =
∑

j ω̃(Aj).

(c) if A1 ⊃ A2 ⊃ . . . are subsets of Ω and ∩jAj = ∅, then ω̃(Aj) = 0 for all sufficiently

large j.

Abusing notation, we write ω(·) as the set function generated by the point distribution

ω ∈ PΩ. We now define a σ-algebra on PΩ.

A rational interval is a subset of Ω with elements of the form (m,x) such that q
1
≤ m < q1

and q
2
≤ x < q2, where q

1
and q1 are non-negative integers, q

2
and q2 are non-negative

rational numbers, and q1 and q2 are allowed to be∞. A basic set is a finite union of rational

intervals or the empty set. Given a collection of basic sets A1,A2, · · · ,Ak and a set of

non-negative integers r1, r2, · · · , rk, a cylinder set in PΩ is defined as follows:

C(A1,A2, · · · ,Ak; r1, r2, · · · , rk) = {ω ∈ PΩ : ω(Aj) = rj, ∀j ∈ [k]}.

Let A denote the σ-algebra generated by the cylinder sets. The following theorem defines

a probability measure on (PΩ,A ) using a set of probability distributions defined over basic

sets. The proof is based on the Kolmogorov extension theorem [30].

Theorem III.4. Let functions p(A1,A2, · · · ,Ak; r1, r2, · · · , rk) be given, defined for any col-

lection of basic sets and non-negative integers, satisfying the following.

(a) p(A1,A2, · · · ,Ak; r1, r2, · · · , rk) is a probability distribution on k-tuples of non-negative

integers r1, r2, · · · , rk.

(b) p(A1,A2, · · · ,Ak; r1, r2, · · · , rk) is permutation invariant, that is to say ∀σ ∈ Sk

p(A1,A2, · · · ,Ak; r1, r2, · · · , rk) = p(Aσ(1),Aσ(2), · · · ,Aσ(k); rσ(1), rσ(2), · · · , rσ(k)).

62



(c) The functions p are consistent,

p(A1,A2, · · · ,Ak; r1, r2, · · · , rk) =
∞∑

rk+1=0

p(A1,A2, · · · ,Ak,Ak+1; r1, r2, · · · , rk, rk+1).

(d) If A1,A2, · · · ,Ak are disjoint sets and A = ∪kj=1Aj, then p(A,A1,A2, · · · ,Ak; r, r1, r2,

· · · , rk) = 0 unless r =
∑k

j=1 rj.

(e) If A1 ⊃ A2 ⊃ · · · and ∩∞j=1Aj = ∅, then limj→∞ p(Aj; 0) = 1.

Then there exists a unique probability measure P on A that coincides with the functions p

whenever Aj’s are basic sets,

P (ω(A1) = r1, ω(A2) = r2, · · · , ω(Ak) = rk) = p(A1,A2, · · · ,Ak; r1, r2, · · · , rk).

For a point distribution ω = ((m1, x1), a1; (m2, x2), a2; . . . ; (mk, xk), ak) ∈ PΩ and a func-

tion h : Ω → R, the random integral
∫
hdω is defined as

∑k
j=1 aj × h(mj, xj). The term

“random” refers to the randomness of ω. Given a probability distribution P on (Ω,PΩ), the

Moment Generating Functional (MGF) of P is defined as follows:

Φ(s) = Ee−
∫
s dω =

∫
PΩ

e−
∫
s dω dP (ω),

where s : Ω→ R+ is a non-negative function. Similarly, given some conditions on a functional

Φ defined over non-negative functions s : Ω→ R+, there exists a unique probability measure

P on (Ω,PΩ) with MGF Φ [30]. This correspondence implies the following theorem:

Theorem III.5. Let Φ1,Φ2, · · · ,Φk be MGF’s on (Ω,PΩ). Then the functional Φ(s) =

Φ1(s)Φ2(s) · · ·Φk(s) defines an MGF on (Ω,PΩ).

Now, we revisit the EWT from point processes perspective. For any collection of basic sets

{A1,A2, · · · ,Ak} and non-negative integers {r1, r2, · · · , rk} define p(m,x)(A1,A2, · · · ,Ak; r1,

r2, · · · , rk) to be the probability that a vertex of type (m,x) has rj children of type Aj for

j ∈ [k]. Then, the functions p(m,x) determines a unique probability measure P
(1)
(m,x) on (PΩ,

A ) (Theorem III.4). The probability measure P
(1)
(m,x) determines, in turn, an MGF Φ

(1)
(m,x).

Note that p(m,x), for any fixed set of arguments Ais and ris , is a Borel-measurable function

of (m,x) ∈ Ω where Ω is equipped with the same metric as Ω1. Using the Theorem III.5, for

any point distribution ω = ((m1, x1), a1; (m2, x2), a2; . . . ; (mk, xk), ak) ∈ PΩ the functional
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Φ
(1)
ω

Φ(1)
ω (s) = [Φ

(1)
(m1,x1)(s)]

a1 [Φ
(1)
(m2,x2)(s)]

a2 · · · [Φ(1)
(m1,x1)(s)]

ak ,

is an MGF and induces a probability measure P
(1)
ω on (PΩ,A ). The probability measure P

(1)
ω

is the transition probability function of a generalized Markov chain defined by the branching

process,

P (1)
ω (A) = P(Zl+1 ∈ A|Zl = ω) ∀A ∈ A ,

where Zl is the point distribution of vertices at depth l (abusing the notation). As in

regular Markov chains, the m+ n-step transition probability function satisfies the following

Chapman–Kolmogorov recurrence relation,

P (m+n)
ω (A) =

∫
PΩ

P
(n)
ω′ (A) dP (m)

ω (ω′) ∀A ∈ A .

The MGF of P
(n)
ω is denoted by Φ

(n)
Ω which satisfies the following recurrence relation,

Φ
(m+n)
Ω = Φ

(n)
Ω (− log Φ(m)

· ).

3.2.3 Spectral Theorem for Compact Self-adjoint Bounded Linear Operators

A linear space X equipped with a norm ‖·‖X is called normed linear space. A complete

normed linear space is called Banach space. Every Banach space is a metric space. A metric

space (X , d) is called separable if it has a countable dense subset, i.e, a set {x1, x2, x3, · · · }
with the property that for all ε > 0 there exists xn such that d(xn, x) < ε. A linear space

equipped with an inner-product is called an inner-product space. We say S = {eα}α∈I is an

orthonormal basis of an inner-product space X , if ∀x ∈ X we have x =
∑

α∈I〈x, eα〉 and

〈eα, eβ〉 = 0 when α 6= β and 〈eα, eα〉 = 1. A Banach space with a norm induced by an

inner-product is called Hilbert space. It is easy to prove that a Hilbert space is separable if

and only if it has a countable orthonormal basis.

Let X and U be normed linear spaces over C with norms ‖·‖X and ‖·‖U , respectively. A

map M : X → U is called a bounded linear map if it is linear and there exists b > 0 such

that ∀x ∈ X , ‖Tx‖U ≤ b‖x‖X . Let L(X ,U) denote the set of all bounded linear maps from

X to U and equip this space with the natural norm ‖M‖L = supx∈X ,‖x‖X=1 ‖Mx‖U . Then

(L(X ,U), ‖·‖L) is a normed linear space. It is easy to check that if U is a Banach space then

L(X ,U) is also a Banach space.
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Consider L(X ,X ) together with its natural binary map, i.e., if N,M ∈ L(X ,X ) then

N ·M(x) := N(M(x)) for all x ∈ X . This forms an algebra over C which is called a normed

algebra. A complete normed algebra is called Banach algebra. A operator M in a Banach

algebra is called invertible if ∃N ∈ L(X ,X ) such that N ·M = M ·N = I, where I ∈ L(X ,X )

is the identity map.

Let L(X ,X ) be a Banach algebra over C and let M ∈ L(X ,X ). The resolvent set of M

is given by

ρ(M) = {λ ∈ C : λI −M is invertible }.

The set σ(M) = C \ ρ(M) is called the spectrum of M . If λ ∈ σ(M) then, 1) if λI −M
is not one-to-one then λ is called an eigenvalue of M , 2) if λI − M is one-to-one, but

R(λI −M) 6= X , where R(N) is the range of N , then λ is called a residual of σ(M), and 3)

if λ is neither an eigenvalue nor a residual, then it is said to be in the continuous spectrum

of M . The eigenvalues of M are denoted by σp(M), the residual spectrum of M is denoted

by σr(M), and the continuous spectrum of M is denoted by σc(M). The spectrum of M

is nonempty, bounded and closed in C. The spectral radius of an operator M is defined as

|σ(M)| := maxλ∈σ(M) |λ|.

Theorem III.6. We have |σ(M)| = limn→∞ (‖Mn‖L)
1
n

Let X and U be Banach spaces. A set S ⊂ X is called precompact if S is compact. A

map M ∈ L(X ,U) is a compact operator if M(B), where B is the ball of radius 1 in X , is

precompact in U . The following theorem is the Riesz-Schauder Theorem which is a spectral

theorem for compact operators.

Theorem III.7. Let X be a Banach space and let M ∈ L(X ,X ) be a compact operator.

Then the spectrum of M satisfies the following:

(i) 0 is in the spectrum of M unless the dimension of X is finite.

(ii) All non-zero elements of σ(M) are in σp(M).

(iii) If λ is a non-zero eigenvalue of M , then λ has finite multiplicity, i.e., the dimension

of the null space of λI −M is finite.

(iv) If λ0 is an accumulation point of σ(M) then λ0 = 0.

Let H denote a Hilbert space and let A ∈ L(H,H). The adjoint of A, written as A∗, is

defined by 〈x,A∗y〉H := 〈Ax, y〉H for all x, y ∈ H. If A∗ = A or equivalently 〈Ax, y〉 = 〈x,
Ay〉, ∀x, y ∈ H, we say A is symmetric or self-adjoint. The spectral theorem for compact

symmetric operators on a Hilbert space H is given as follows.
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Theorem III.8. Let H be a Hilbert space and let A ∈ L(H,H) be a compact symmetric

operator. Then the spectrum of A satisfies the following properties.

(i) The spectrum of A is a subset of R.

(ii) If λ, λ′ ∈ σp(A) and λ 6= λ′ then the null space of λI−A is orthogonal to the null space

of λ′I − A.

(iii) There exists x0 ∈ H with ‖x0‖H = 1 such that |〈Ax0, x0〉H| = sup‖x‖H=1 |〈Ax, x〉H| =

‖A‖L, and moreover, x0 is an eigenvector of A, i.e., Ax0 = λx0 for some λ ∈ R. The

corresponding eigenvalue λ is the largest eigenvalue of A in magnitude.

(iv) (Hilbert-Schmidt) There exists an orthonormal basis of H consisting of the eigenvectors

of A.

Let H be a Hilbert space. A cone K ⊂ H is a closed convex subset of H such that for all

λ ≥ 0, λK ⊂ K and K∩(−K) = {0} where (−1)K is denoted as −K. A closed subset S of H
is said to be invariant under A ∈ L(H,H) if AS ⊆ S. The following theorem by Toland [47]

is a version of the Krein-Rutman Theorem [46] for compact self-adjoint operators.

Theorem III.9. Suppose K ⊆ H is a closed cone such that K⊥ := {x ∈ H : 〈x, y〉 = 0,

∀y ∈ K} = {0}. Let A ∈ L(H,H) be a compact self-adjoint operator such that A : K → K.

Define X (A) := sup{〈Aw,w〉H : ‖w‖H = 1, w ∈ K}. We have the following.

(i) X (A) > 0 is the largest eigenvalue of A in magnitude and X (A) has an eigenvector in

K.

(ii) X (A) > 0 is a simple eigenvalue of A.

3.3 Finite Graph Model

Let Kn = ([n], En) denote a complete graph, i.e., En = {{i, j} : i, j ∈ [n], i 6= j}.
Consider some probability mass function P (·) defined over N. Let dn = (d1(n), d2(n), . . . ,

dn(n)) ∈ Nn denote the sequence of potential degrees such that di(n) ≤ n−2 and, as n→∞,

its empirical distribution converges to P (·), i.e.,

Pdn(k) =
1

n

n∑
i=1

δdi(n)(k)
n→∞−−−→ P (k) ∀k ∈ N.

Often, we just write di for di(n). Let Cn : En → R+ denote a random function that assigns

i.i.d. random variables distributed as Exp(1/n) to the edges of Kn. The value of an edge

corresponds to the cost of the edge.
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Remark III.1. Without loss of generality, we assume the cost of all the edges in Kn are

different.

For each vertex i, let Ti and Pi denote the threshold and the set of potential neighbors

of the vertex i,

Ti = di + 1st smallest value in {Cn({i, j}) : j ∈ [n] \ {i}} (3.3)

Pi = {j ∈ [n] \ {i} : Cn({i, j}) < Ti}. (3.4)

Vertices of the graph have the following self-optimizing behavior: they are willing to form

an edge only if the cost of the edge is less than each of their thresholds in (3.3) and an edge

is formed only if both endpoint vertices are willing. Call the resulting random graph the

random graph Gn = ([n], Ẽn) with

Ẽn = {{i, j} ∈ En : i ∈ Pj and j ∈ Pi} .

The bilateral agreement required for establishing an edge causes an interdependence struc-

ture; more precisely, inclusion of an edge into Ẽn depends on the preference of both ends,

which is in turn dictated by the values of all the incident edges. This makes the analysis of

the finite graph intricate; however, it is possible to study the model, using the framework of

local weak convergence.

Consider the random network Nn = ([n], Ẽn, W̃v,n, W̃e,n), where the mark functions are

defined as follows:

W̃v,n : [n]→ N× R, W̃v,n(i) = (di, Ti) ∀i ∈ [n],

W̃e,n : Ẽn → R, W̃e,n({i, j}) = Cn({i, j}) ∀{i, j} ∈ Ẽn.

Let N (n,dn) denote the law of the random network Nn. Define the random probability

measure U(Nn) over G∗ as follows,

U(Nn) =
1

n

∑
i∈[n]

δ[Nn,◦(i)],

where Nn ∼ N (n,dn) and Nn,◦(i) is the connected component of i in Nn rooted at i. Taking
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expectation with respect to the randomness of the network, for every event A ∈ G∗,

EU(Nn)(A) := E [U(Nn)(A)] =
1

n

∑
i∈[n]

E
[
δ[Nn,◦(i)](A)

]
=

1

n

∑
i∈[n]

P([Nn,◦(i)] ∈ A).

Hence, EU(Nn) is the law of [Nn,◦(ø)] where ø ∈ [n] is a random vertex chosen uniformly

from [n]. Then the primary motivation of our work is the claim that the sequence of random

networks Nn converges locally weakly to the EWT, i.e., EU(Nn)
w−→ Er(P ).

As is suggested by Aldous and Steele in [24], the first step to establish the local weak

convergence is to guess the object that the finite graph model converges to. Next, we provide

an argument to justify the EWT guess.

Aldous [21] proved that the complete graph Kn with i.i.d. edge weights distributed as

Exp(1/n) is locally tree-like, and it converges to the Poisson Weighted Infinite Tree(PWIT).

The idea is to modify the structure of PWIT to capture the behavior of the finite graph

model while preserving unimodularity of the asymptotic object. In our graph family the

root vertex ø is potentially connected to nø other vertices; hence, the nø + 1st edge weight in

the PWIT is considered as the threshold of the vertex nø. On the other hand, any non-root

vertex with label i, needs to know the edge weight of its nthi descendant to decide whether to

connect to its “parent” or not. Hence, the edge weight of the nthi descendant in the PWIT

is taken to be its real-valued threshold mark if i belongs to the connected component of ø.

Moreover, a pruning process is added to include the fact that the survival of an edge is based

on the marks at both endpoint vertices. Finally, the labels of the descendants of each vertex

are permuted to remove the order. This is an essential step to make the object unimodular.

However, there are quite a few technical issues to resolve to make this intuition work.

For example, there is interdependence beyond just pairs. The fact that this interdependence

can be ignored as was done in the intuitive reasoning that led to the pruned PWIT needs a

rigorous proof. It is worth mentioning that the mark space of PWIT and EWT are different

and the local weak convergence viewpoint is not the same for these two objects.

Theorem III.2. Let Nn ∼ N (n,dn), where Pdn converges weakly to P (·). Then

EU(Nn)
w−→ Er(P ).

Sketch of the proof. The main body of the proof consists of four steps:

1. Recall that EU(Nn) is the law of [Nn,◦(r)] for a uniformly chosen r ∈ [n]. The first

step is to redefine the construction of the random network Nn, as viewed from r.
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2. The random network Nn has an interdependence structure; however as n grows, the

dependency weakens. The second step is to exploit this weak dependence and to prove

that as n goes to infinity, the connected component of the vertex r becomes locally

tree-like.

3. As the dependency weakens, the local structure of [Nn,◦(r)] gets close to the local

structure of a rooted tree generated by Er(P ). The third step is to prove that for

every finite rooted network T◦ ∈ G∗ with depth t, the measure assigned to AT◦ =

{[N◦] ∈ G∗ : dG∗([N◦],T◦) < (1 + t)−1} by EU(Nn) converges to the measure assigned

to AT◦ by Er(P ).

4. Finally, since G∗ is a Polish space, the Portmanteau Theorem is applied to show the

desired convergence.

The formal proof of the theorem is given in Appendix B.1.

3.4 Properties of Erlang Weighted Tree

3.4.1 Unimodularity of EWT

From general results on local weak convergence, Theorem III.2 implies that Er(P, λ)

is unimodular; however, unimodularity of Er(P, λ) can be proved directly too. The proof

provides more insight into the structure of the EWT.

Theorem III.1. If P ∈ P(N) has a positive and finite mean and λ ∈ (0,∞), then Er(P, λ)

is a unimodular measure in P(G∗)

Proof. Using the involution invariance property, we need to prove for all Borel measurable

non-negative functions f : G∗∗ → R+,

E

(∑
v∼ø

f(G, ø, v)

)
= E

(∑
v∼ø

f(G, v, ø)

)
, (3.5)

where the expectation is with respect to Er(P, λ). Let us expand the left-hand side of (3.5)

by conditioning on the potential degree of the root vertex. By linearity of expectation, we

have,

E

(∑
v∼ø

f(G, ø, v)

)
=

∞∑
m=1

P (m)E

(∑
i∼ø

f(G, ø, i)

∣∣∣∣∣nø = m

)
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=
∞∑
m=1

P (m)E

(
m∑
i=1

f(G, ø, i)1i∼ø

∣∣∣∣∣nø = m

)

=
∞∑
m=1

P (m)
m∑
i=1

E (f(G, ø, i)1i∼ø|nø = m)

=
∞∑
m=1

mP (m)E (f(G, ø, 1)11∼ø|nø = m) .

where the last equality is based on the symmetric and conditionally independent structure of

{ζj}nø

j=1 and {(nj, vj)}nø

j=1 conditioned on nø. We now expand the term E(f(G, ø, 1)11∼ø|nø =

m) by realizing the values of vø, ζ1, n1, and v1:

E(f(G, ø, 1)11∼ø|nø = m)

=
∞∑
k=1

P̂ (k − 1)

∫ ∞
x=0

λe−λx(λx)m

m!

∫ x

y=0

1

x

∫ ∞
z=y

λe−λz(λz)k−1

(k − 1)!
×

E(f(G, ø, 1)|nø = m, vø = x, ζ1 = y, n1 = k − 1, v1 = z) dz dy dx

=
∞∑
k=1

P (k)

∫ ∞
x=0

∫ ∞
z=0

∫ min(x,z)

y=0

λ3e−λ(x+z)(λx)m−1(λz)k−1

m!(k − 1)!
×

E(f(G, ø, 1)|nø = m, vø = x, ζ1 = y, n1 = k − 1, v1 = z) dy dz dx,

where the last equality is obtained by changing the order of the integration and replacing

P̂ (k − 1) by P (k). Putting it all together, we have

E

(∑
v∼ø

f(G, ø, v)

)
=

∞∑
m=1

∞∑
k=1

P (m)P (k)λm+k

(m− 1)!(k − 1)!

∫ ∞
x=0

∫ ∞
z=0

∫ min(x,z)

y=0

λe−λ(x+z)xm−1zk−1×

E(f(G, ø, 1)|nø = m, vø = x, ζ1 = y, n1 = k − 1, v1 = z) dy dz dx. (3.6)

Similarly,

E

(∑
v∼ø

f(G, v, ø)

)
=

∞∑
m=1

∞∑
k=1

P (m)P (k)λm+k

(m− 1)!(k − 1)!

∫ ∞
x=0

∫ ∞
z=0

∫ min(x,z)

y=0

λe−λ(x+z)xm−1zk−1×

E(f(G, 1, ø)|nø = m, vø = x, ζ1 = y, n1 = k − 1, v1 = z) dy dz dx. (3.7)
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Figure 3.1: Structure of doubly rooted graphs (G, 1, ø) and (G, ø, 1) conditioned on a real-
ization of nø, vø, ζ1, n1 and v1 such that ζ1 < v1, where (G, ø) is distributed as
Er(P, λ)

In order to complete the proof, the following observation is crucial. Let (G, ø) be a realization

of Er(P, λ); conditioned on nø = m, vø = x, ζ1 = y, n1 = k− 1 and v1 = z such that min(x,

z) > y, the structure and distribution of the doubly rooted graph (G, ø, 1) is the same as

the structure and distribution of the doubly rooted graph (G, 1, ø) conditioned on nø = k,

vø = z, ζ1 = y, n1 = m− 1 and v1 = x. This symmetry property is evident from Figure 3.1.

Based on the above discussion, we have

E(f(G, ø, 1)|nø = m, vø = x, ζ1 = y, n1 = k − 1, v1 = z)

= E(f(G, 1, ø)|nø = k, vø = z, ζ1 = y, n1 = m− 1, v1 = x).

which implies (3.6) and (3.7) are equal. This completes the proof.

3.4.2 Degree Distribution

Next, we characterize the degree distribution of EWT. The conditional degree distribution

of a vertex conditioned on its type and the degree distribution of the root vertex is given as

follows.

Theorem III.2. Let Di denote the degree of the vertex i ∈ T ∼ Er(P ). The conditional

distribution of Di, conditioned on the type of the vertex i is given as follows:

P (Di = d|ni = m, vi = x) = Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
,

where F̄k(·) is the complementary cumulative distribution function of Erlang(k) and Bi(d;m,

η) = C(m, d)ηd(1− η)m−d, with C(m, d) = m!/(d!(m− d)!). Consequently, the degree distri-
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bution of the root vertex and its mean are given as follows:

P(Dø = d) =
∞∑
m=1

P (m)

∫ ∞
0

e−xxm

m!
Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
dx,

E[Dø] =
∞∑
m=1

∞∑
k=1

P (m)P (k)

∫ ∞
0

F̄k(y)F̄m(y) dy.

Proof. The proof is presented in Appendix B.2.

It is easy to derive in closed-form the degree distribution of the root vertex. However,

the degree distribution of a vertex at depth l is rather complex. To see why, let us focus on

the vertices at the first generation, i.e., the neighbors of the root vertex ø. For a unimodular

measure ρ with support on rooted trees, the following equality holds,

Eρ

[∑
v∼ø

1deg(ø)=k

]
= Eρ

[∑
v∼ø

1deg(v)=k

]
. (3.8)

The above relation is obtained by using the following function in the definition of the uni-

modularity,

fk([N◦◦(ø, v)]) =

1 if deg(ø) = k and v ∼ ø

0 otherwise
.

It is easy to check that the function fk is a Borel function from G∗∗ to R. Let D1 and

Dø denote the degree of a vertex at the first generation and the degree of the root vertex,

respectively. Simplifying (3.8), we have

kP(Dø = k) = Eρ [DøP(D1 = k|Dø)] . (3.9)

Now if D1 and Dø are independent, then D1 has the size-biased distribution corresponding

to Dø. This is the case for the unimodular Galton-Watson Tree [25]. However, D1 and

Dø are not independent in our setting. Another interesting observation is that the degree

distribution of different generations are not the same since the probability of the events

ni = m and vi = x depends on the depth of the vertex i. Owing to this interdependence

structure, at present we do not have a characterization of the degree distribution at any level

other than the root. We also believe that Dl, the degree distribution of a typical vertex at

generation l, converges in distribution to the size-biased distribution of Dø as l → ∞ but

establishing this is also an open problem. In Section 3.5, we investigate these claims via
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numerical simulation.

3.4.3 Probability of Extinction

The next natural quantity to study is the probability that the component containing the

root is finite, i.e., the probability of extinction. This is an important quantity associated

with the EWT which should be related to the size of the giant component in the finite graph

model, as in the unimodular Galton-Watson tree. Let us start with the definition of the

probability of extinction.

Definition III.3. Let Zl denote the number of vertices at depth l. The probability of extinc-

tion is defined as:

P({extinction}) := P

(
∞⋃
l=1

{Zl = 0}

)
.

Observe that the event {Zi = 0} is a subset of the event {Zj = 0} for every j < i; hence,

the continuity of probability measures implies that

P({extinction}) = lim
l→∞

P({Zl = 0}).

Using this, we can characterize the probability of extinction.

Theorem III.4. Consider the operator T : L(R+; [0, 1])→ C1(R+; [0, 1]) defined as

T (f)(x) :=


1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
f(z)k−1dz

)
dy, x > 0

∞∑
k=1

P (k)

∫ ∞
z=0

e−zzk−1

(k − 1)!
f(z)k−1 dz, x = 0

(3.10)

with the convention 00 = 1. Then the probability of extinction is

P({extinction}) =
∞∑
m=1

P (m)

∫ ∞
x=0

e−xxm

m!
(q(x))m dx,

where the function q(·) is the smallest fixed point of the operator T , i.e., for any other fixed

point of T (·) say f(·) ∈ C1(R+; [0, 1]), f(x) ≥ q(x) for all x ∈ R+. Equivalently, the function

q(·) is the point of convergence of T l(0)(·) as l goes to infinity, where 0(·) is the null function,

i.e., 0(x) ≡ 0 ∀x.
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Sketch of the proof. The main idea is to find the probability of the event {Zl = 0} and then,

let l increases to infinity. This can be done through the following steps.

1. Observe that conditioned on the type of the root vertex to be (m,x), there are m

potential branches and the probability that the depth of each branch is less than or

equal to l − 1 depends only on the value of x.

2. Starting from the first generation, all the vertices have the same behavior, i.e., for any

non-root vertex i, the distribution of ni is given by P̂ . Hence, it is possible to write

the probability that the depth of a branch is less than or equal to l− 1 via a recursion.

3. Taking the limit and using monotonicity, the result follows.

Proof. We now fill in the details. The theorem claims that the range of T is C1(R+; [0, 1])

and that there exists a fixed point q(·) such that for any other fixed point f(·) of T ,

q(x) = T (q)(x) ≤ T (f)(x) = f(x) ∀x ∈ R+,

i.e., it is the smallest fixed point of the operator T . The theorem also claims that

q(·) = lim
l→∞

T l(0).

Let us start with these important properties of the operator T .

Lemma III.5. Let 1(·) be the constant function with value 1 everywhere. The following

hold:

(i) For every f(·) ∈ L(R+; [0, 1]), the function T (f)(·) is non-decreasing and it belongs to

C1(R+; [0, 1]). Moreover, T (f)(·) ≡ 1 if and only if f(x) = 1 for almost every x ∈ R+.

(ii) The largest fixed point of the operator T is the constant function 1(·). Moreover, if

f(·) 6= 1(·) is a fixed point of T , then f(·) is strictly increasing.

(iii) For every pair of functions f1(·), f2(·) ∈ C1(R+, [0, 1]) with the property that f1(x) <

f2(x) ∀x ∈ R+, we have

T (f1)(x) < T (f2)(x) ∀x ∈ R+.

(iv) The function T l(0) converges point-wise to some function q(·) ∈ C[0, 1] as l goes to

infinity, which is the smallest fixed point of the operator T .
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Proof of Lemma III.5. The proof is algebraic and does not use the connection between the

operator T (·) and the probability of extinction.

(i) As the first step, we want to show the range of T (f)(·) is [0, 1]. The inequality

T (f)(x) ≥ 0 is trivial. For the other side of the inequality, note that f(x) ≤ 1 for

all x ∈ R+; hence,

T (f)(x) ≤ 1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
dz

)
dy (3.11)

=
1

x

∞∑
k=1

P (k)

∫ x

y=0

dy = 1.

The equality holds if and only if f(x) = 1 for almost every x ∈ R+. To see T (f)(·) is

non-decreasing, we show that it has a continuous non-negative derivative. Let x > 0.

We then have

dT (f)(x)

dx
= − 1

x2

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
dy

+
1

x

∞∑
k=1

P (k)

(∫ x

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=x

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
= − 1

x2

∞∑
k=1

P (k)

∫ x

y=0

(∫ x

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=x

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
dy

− 1

x2

∞∑
k=1

P (k)

∫ x

y=0

(
−
∫ x

z=y

e−zzk−1

(k − 1)!
dz +

∫ x

z=y

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
dy

+
1

x

∞∑
k=1

P (k)

(∫ x

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=x

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
=

1

x2

∞∑
k=1

P (k)

∫ x

y=0

∫ x

z=y

e−zzk−1

(k − 1)!
(1− f(z)k−1) dz dy

=
1

x2

∞∑
k=1

P (k)

∫ x

z=0

e−zzk

(k − 1)!
(1− f(z)k−1) dz ≥ 0.

Observe that the derivative exists and is continuous for all x > 0. Taking the limit

x ↓ 0, we have

lim
x↓0

dT (f)(x)

dx
= lim

x↓0

1

2x

∞∑
k=1

P (k)
e−xxk

(k − 1)!
(1− f(x)k−1) = 0.

Since f(0) := limx→0 f(x), the have right-hand derivative of T (f)(·) at x = 0 is zero.
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Hence, T (f) ∈ C1(R+; [0, 1]) is non-decreasing which completes the proof of (i).

(ii) It is easy to see that 1(·) is the largest fixed point of T . Moreover, for any other fixed

point of T (·) say f(·) ∈ C1(R+; [0, 1]), from (3.11) the function T (f)(·) is strictly less

than 1; hence, f(x) < 1 ∀x ∈ R+. Using the proof of part (i), it is easy to see that the

derivative of T (f) is strictly positive; hence, the fixed point f(·) is strictly increasing.

(iii) The proof is straightforward.

(iv) Using part (iii), since 0(x) < T (0)(x) < 1 for all x > 0,

0 ≤ T l(0)(x) < T l+1(0)(x) < 1 ∀x ∈ R+, l ∈ N.

Let fl(x) = T l(0)(x). Since, for every fixed value of x, the sequence {fl(x)}∞l=0 is

strictly increasing, it converges. Define q(x) = liml→∞ fl(x) ∀x ∈ R+. We then have

q(x) = lim
l→∞

1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
fl(z)k−1 dz

)
dy

=
1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
lim
l→∞

fl(z)k−1 dz

)
dy

= T (q)(x).

The second equality follows from monotone convergence theorem, which allows inter-

changing the order of the summation, the integration, and the limit.

To show that q(·) is the smallest fixed point of T , consider any other fixed pint of T ,

q̃ = T (q̃). Since 0(x) < q̃(x) for all x ∈ R+, the inequality q̃(x) = T (q̃)(x) > fl(x)

holds for all values of l ∈ N and x ∈ R+; hence, passing to the limit as l→∞, we get

q(x) ≤ q̃(x).

We now get back to the proof of the main theorem. As we mentioned, the main idea is to

characterize the probability of the event {Zl = 0}. Define Zl,i to be the number of children

at depth l in the ith subtree connected to the root. Fix an l > 1. Zl = 0 if for all i ∈ [nø]

either (i) vi < ζi, i.e., the ith edge does not form, or (ii) the ith edge forms but there are no

children at its lth level, i.e., Zl,i = 0. Recall that for i ∈ [nø], ζi is the cost of the potential

edge {ø, i}. Hence, for l ≥ 2 we have

P ({Zl = 0}|nø = m, vø = x)
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=
m∏
i=1

P
({
vi < ζi

}
∪
{
{vi ≥ ζi} ∩ {Zl,i = 0}

}
|nø = m, vø = x

)
=
(
P
(
{v1 < ζ1

}
|nø = m, vø = x

)
+ P

(
{v1 ≥ ζ1} ∩ {Zl,1 = 0}|nø = m, vø = x

))m
=

(
∞∑
k=1

P̂ (k − 1)

∫ x

y=0

1

x

∫ y

z=0

e−zzk−1

(k − 1)!
dz dy+

∞∑
k=1

P̂ (k − 1)

∫ x

y=0

1

x

∫ ∞
z=y

e−zzk−1

(k − 1)!
P ({Zl,1 = 0}|n1 = k − 1, v1 = z) dz dy

)m

.

(3.12)

Conditioning on the type of the vertex 1, the probability distribution of Zl,1 for l > 1 is

exactly the same as the probability distribution of Zl−1 conditioned on the corresponding

type of the root vertex; in particular,

P ({Zl,1 = 0}|n1 = k − 1, v1 = z) = P ({Zl−1 = 0}|nø = k − 1, vø = z) . (3.13)

A crucial observation is that P ({Zl = 0}|nø = m, vø = x) depends on m only through the

exponent. Define the function fl(·) without the mth-power as follows,

fl(x) :=
∞∑
k=1

P̂ (k − 1)

∫ x

y=0

1

x

∫ y

z=0

e−zzk−1

(k − 1)!
dz dy+

∞∑
k=1

P̂ (k − 1)

∫ x

y=0

1

x

∫ ∞
z=y

e−zzk−1

(k − 1)!
P ({Zl,1 = 0}|n1 = k − 1, v1 = z) dz dy.

The function fl(·) does not depend on the value of m and further,

P ({Zl = 0}|nø = m, vø = x) = fl(x)m.

Using (3.13) and the definition of the function fl(·), for every l > 0, we have

fl(x) =
∞∑
k=1

P (k)

∫ x

y=0

1

x

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
fl−1(z)k−1 dz

)
dy

= T (fl−1)(x),

where f1(·) should be taken to be T (0)(·) for consistency with (3.12) at l = 2. Lemma

III.5 implies that fl(·) = T l(0)(·) converges to q(·), the smallest fixed point of T , point-wise.
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Hence,

P ({extinction}|nø = m, vø = x) = lim
l→∞

P ({Zl = 0}|nø = m, vø = x)

= lim
l→∞

(
T l(0)(x)

)m
= q(x)m.

Taking expectation with respect to nø and vø and using monotone convergence theorem, we

have

P({extinction}) =
∞∑
m=1

P (m)

∫ ∞
x=0

e−xxm

m!
(q(x))m dx.

The above theorem suggests that for all f(·) ∈ L(R+; [0, 1]), the function T l(f)(·) con-

verges point-wise to a fixed point of T , as l goes to infinity; however, it is not clear how

many fixed points the operator T has and, if there is more than one fixed point, to which

one does T l(f)(·) converge. An immediate corollary is the following.

Corollary III.6. P({extinction}) = 1 if and only if 1(·) is the unique fixed point of the

operator T .

A sufficient condition to check P({extinction}) < 1 is to find a test function f(·) ∈
L(R+; [0, 1]) such that T (f)(x) ≤ f(x) for all x ∈ R+ and f(·) 6= 1(·). One natural choice is

fx0,ε(x) :=

1− ε, if x ≤ x0

1, otherwise.

Choosing ε > 0 to be small enough, we get the following corollary.

Corollary III.7. Assume that there is an x0 > 0 such that for all x ∈ [0, x0],∫ x0

z=0

z
min(x, z)

x
g2(z) dz > 1,

where g2(z) =
∑∞

k=2 P (k) e−zzk−2

(k−2)!
, and min(x, z)/x for x = 0 is interpreted as 1. Then

P(extinction) < 1.

Proof. Note that for ε ∈ (0, 1) we have (1 − ε)k−1 ≤ (1 + (k − 1)ε)−1. Using this, for all
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x ≤ x0 we have

fx0,ε(x)− T (fx0,ε)(x) =
1

x

∞∑
k=1

P (k)

∫ x0

z=0

e−zzk−1

(k − 1)!
min(x, z)(1− (1− ε)k−1) dz − ε

≥ ε

(
∞∑
k=1

(k − 1)

1 + (k − 1)ε
× P (k)

∫ x0

z=0

e−zzk−1

(k − 1)!

min(x, z)

x
dz − 1

)

We want to show that the given condition in the Corollary implies that fx0,ε(x)−T (fx0,ε)(x) ≥
0 for all x. It is sufficient to prove that the the right hand side of the above inequality is

non-negative for all x ≤ x0 when ε is small enough. Equivalently, we want to show the

following inequality holds

lim
ε↓0

∞∑
k=1

(k − 1)

1 + (k − 1)ε
× P (k)

∫ x0

z=0

e−zzk−1

(k − 1)!

min(x, z)

x
dz > 1

Using the monotone convergence theorem, the result follows by changing the order of sum-

mation and the limit.

The assumption of the corollary is not tight, i.e., there are examples where P(extinction) <

1, but the assumption of the above corollary fails. Two natural follow-up questions are: 1)

Is there a general test function f(·) such that P({extinction}) < 1 if and only if f ≥ T (f)?

2) If the answer is yes, what is the closed-form of f?

The idea of using test functions, as simple as it seems, combined with point process

perspective turns out to be a powerful tool for analyzing the branching process. We revisit

this idea in Section 3.4.8.

3.4.4 Expected Number of Vertices at Depth l

Let Zl and Wl denote the number of vertices and the number of potential vertices, re-

spectively, at depth l. The expected value of Zl and Wl are related to the growth rate of the

EWT. These are also closely related to the probability of extinction via the following:

E[Zl] < Const for all l if and only if P({extinction}) = 1. (3.14)

The proof of (3.14) is based on a classical property of branching processes that Zn goes to

either 0 or ∞. We will revisit this property later on. For now, we state the following.

Theorem III.8. We have

E[Wl] =E[nø]× (E[(nø − 1)])l−1
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E[Zl] =
∞∑
m=1

λP (m)
∞∑
k1=2

λP (k1) · · ·
∞∑

kl−1=2

λP (kl−1)
∞∑
kl=1

P (kl)∫ ∞
yl=0

∫ ∞
yl−1=0

· · ·
∫ ∞
y1=0

F̄m(y1)F̄k1−1(max(y1, y2)) . . .

F̄kl−1−1(max(yl−1, yl))F̄kl(yl) dy1 dy2 . . . dyl.

where, as before, F̄k(·) is the complementary cumulative distribution function of the Erlang(k)

distribution.

Proof. The proof is presented in Appendix B.3.

A necessary but not a sufficient condition for P({extinction}) to be non-zero, is stated in

the following corollary.

Corollary III.9. If the expected number of the potential neighbors of the root vertex, i.e.,

E[nø], is smaller than 2, then the population will eventually go extinct. See Section 3.4.8.

Proof. If E[nø] < 2, then E[Zl] ≤ E[Wl] = E[nø]× (E[(nø − 1)])l−1 l→∞−−−→ 0.

Theorem III.8 does not provide an easy way to check whether E[Zl] goes to zero or

not. There is no recursive representation for the quantities provided by the theorem either;

however, using the point process perspective leads to a full characterization of the growth

rate and provides a necessary and sufficient condition for the probability of extinction to be

less than 1.

3.4.5 Krein-Rutman Eigenvalue and the Corresponding Eigenfunctions

To obtain the growth rate of EWT more work needs to be done. We follow the discussion

of Chapter 3 of Harris [30]. Harris analyzes general branching processes from a point process

perspective. Although we use the same idea, our assumptions are different and the results

from Harris’s book [30] do not apply to our setting and require a generalization.

Abusing notation, let Zl(k−1, A) denote the number of vertices at depth l of type (k−1,

z) where k ∈ N and z ∈ A with A ⊂ R+ being a Borel set. Let Ml(m,x; k − 1, A) denote

the expected value of Zl(k − 1, A), conditioned on nø = m and vø = x, i.e.,

Ml(m,x; k − 1, A) := E[Zl(k − 1, A)|nø = m, vø = x].

Let ml(m,x; k − 1, z) denote the density of Ml(m,x; k − 1, A) at (m,x):

Ml(m,x; k − 1, A) =

∫
z∈A

ml(m,x; k − 1, z) dz.
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We show that β−lMl(m,x;Z+,R+) converges to some fixed function independent of l, for a

suitable β. Moreover, we show that β−lml(m,x; k − 1, z) converges to µ(m,x)ν(k − 1, z).

The quantity β is the largest eigenvalue of M1, and the functions µ(· , ·) and ν(· , ·) are the

unique right and the left eigenfunctions corresponding to the eigenvalue β, respectively.

Definition III.10. Let m1 denote the density of M1. If there exists a non-zero function µ(· , ·)
and a β ∈ R such that

βµ(m,x) =

∫ ∞
z=0

∞∑
k=1

m1(m,x; k − 1, z)µ(k − 1, z) dz, (3.15)

then µ(· , ·) is called the right eigenfunction of M1 corresponding to the eigenvalue β. Simi-

larly, the left eigenfunction corresponding to the eigenvalue β is defined as follows,

βν(k − 1, z) =

∫ ∞
x=0

∞∑
m=0

m1(m,x; k − 1, z)ν(m,x) dx. (3.16)

The main goal of this section is to prove a generalization of the Perron–Frobenius theorem.

We show that a version of Krein-Rutman Theorem by Toland [47] applies to our setting.

However, it does not provide an easy way to find the spectral radius. The specific structure

of the EWT makes it possible to directly prove the convergence of β−lml(m,x; k − 1, z) to

µ(m,x)ν(k − 1, z) and to show that β−lMl(m,x;R+,Z+) converges to some function that

only depends on x and m. Before presenting the main theorems and their proofs, let us

simplify the operator of interest,

M1(m,x; k − 1, A) = m

∫ x

y=0

1

x

∫
z≥y,z∈A

P̂ (k − 1)fk(z) dz dy

=
m

x

∫
z∈A

min(x, z)P (k)
e−zzk−1

(k − 1)!
dz,

where fk(·) is the probability density function of Erlang(k). Hence,

m1(m,x; k − 1, z) =
m

x
min(x, z)P (k)

e−zzk−1

(k − 1)!
. (3.17)

Let β be an arbitrary eigenvalue of M1. By (3.15) the right eigenfunction of β then satisfies

the following equation:

βµ(m,x) =

∫ ∞
z=0

∞∑
k=1

m

x
min(x, z)P (k)

e−zzk−1

(k − 1)!
µ(k − 1, z) dz.
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Dividing both sides by m, the right-hand side is independent of m (note that µ(0, x) = 0);

hence, µ(m,x) is linear in m and we can write

xµ(m,x)/m =: µ̃(x), (3.18)

where µ̃(·) is a solution to the following equation

βµ̃(x) =

∫ ∞
z=0

g2(z) min(x, z)µ̃(z) dz, (3.19)

and g2(x) = e−x
∑∞

k=2 P (k) xk−2

(k−2)!
. Note that if µ̃(·) satisfies the above relation, then a right

eigenfunction of M1 corresponding to the eigenvalue β is given by µ(x,m) := mµ̃(x)/x.

Similarly, for the left eigenfunction, we have

βν(k − 1, z) =

∫ ∞
x=0

∞∑
m=0

m1(m,x; k − 1, z)ν(m,x) dx

=

∫ ∞
x=0

∞∑
m=0

m

x
min(x, z)P (k)

e−zzk−1

(k − 1)!
ν(m,x) dx

= P (k)
e−zzk−1

(k − 1)!

∫ ∞
x=0

∞∑
m=0

m

x
min(x, z)ν(m,x) dx

= P (k)
e−zzk−1

(k − 1)!

∫ z

y=0

∫ ∞
x=y

∞∑
m=0

m

x
ν(m,x) dx dy.

Note that the dependence of ν(k−1, z) in k is through the term P (k) e−zzk−1

(k−1)!
. Hence, we can

write

ν(k − 1, z) = ν̃(z)P (k)
e−zzk−1

(k − 1)!
, (3.20)

for a suitable ν̃(·) that is a solution to the following equation,

βν̃(z) =

∫ z

y=0

∫ ∞
x=y

∞∑
m=0

m

x
P (m+ 1)

e−xxm

m!
ν̃(x) dx dy

=

∫ z

y=0

∫ ∞
x=y

∞∑
m=2

P (m)
e−xxm−2

(m− 2)!
ν̃(x) dx dy

=

∫ z

y=0

∫ ∞
x=y

g2(x)ν̃(x) dx dy

=

∫ ∞
x=0

min(x, z)g2(x)ν̃(x) dx.
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Observe that ν̃(·) satisfies the same equation as µ̃(·) does. To study this equation, we define

a new operator and rely on the background materials discussed in Section 3.2.3. Since H1 is

a compact self-adjoint operator, classical results from operator theory says H1 indeed

Let H = L2(R+, υ) denote the set of real-valued square integrable functions with respect

to a measure υ. It is easy to prove that L2(R+, υ) together with the inner product 〈f,
g〉 =

∫∞
0
f(x)g(x)dυ(x) is a real Hilbert space. Let H1 ∈ L (H,H) be an integral operator

with integrand min(· , ·) ∈ L2(R+ × R+, υ × υ), i.e.,

H1f(x) =

∫ ∞
0

min(x, y)f(y)dυ(y),

where υ(·) is a finite measure with Radon-Nikodym derivative g2(·) with respect to Lebesgue

measure. The integral operator H1 is self-adjoint since its integrand is symmetric. Moreover,

H1 is compact since H is separable (the proof follows by the fact that H has a countable

orthonormal basis). Putting these together, we see that H1 is a compact self-adjoint operator.

Let K denote the set of all non-negative functions in H. The set K is closed and convex.

Moreover, λK ⊂ K and K∩ (−K) = {0}; hence, K is a cone. Actually, it is a total cone, i.e.,

H = K −K. The following theorem is a direct implication of Theorem III.7-III.9.

Theorem III.11. The largest eigenvalue of H1 in magnitude is,

X (H1) = max
f(·)∈H,‖f‖H=1,
f(·) is non-negative

∫ ∞
0

∫ ∞
0

min(x, y)f(x)f(y)dυ(y)dυ(x).

X (H1) > 0 is a simple eigenvalue and corresponds to a non-negative eigenfunction. More-

over, all the eigenvalues of H1 are real and if ζ(·) is an eigenfunction of H1 with some

eigenvalue µ 6= X (H1), we have ∫ ∞
0

f(y)ζ(y)dν(y) = 0.

The following simplification will help in finding the Perron-Frobenius eigenvalue of H1

and the corresponding eigenfunction. Changing the order of integration, the operator H1

can be written as follows,

H1f(x) =

∫ x

y=0

∫ ∞
z=y

f(z)dυ(z) dy. (3.21)
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Define the operator H̃1 as follows,

H̃1f(x) =

∫ ∞
y=x

∫ ∞
z=y

f(z)dυ(z) dy.

Using (3.21), we have

H1f(x) + H̃1f(x) =

∫ ∞
0

∫ ∞
y

f(z)dυ(z) dy

=

∫ ∞
0

zf(z)dυ(z) = 〈f, I〉H,

where I(·) is the identity function, i.e., I(x) = x for all x ∈ R+. The Perron-Frobenius

eigenvalue of H1 and the corresponding eigenfunction are related to the operator H̃1.

Theorem III.12. Consider the function L(β, x) for x ∈ R+ and β ∈ C defined as follows,

L(β, x) :=
∞∑
i=0

Gi(x)

(
−1

β

)i
,

where the function Gi(x) is defined recursively via

G0(x) := 1,

Gi(x) :=

∫ ∞
y=x

∫ ∞
z=y

g2(z)Gi−1(z) dz dy = H̃1Gi−1(x) ∀i > 0,

where

g2(x) := e−x
∞∑
k=2

P (k)
xk−2

(k − 2)!
.

Assuming the moment generating function of nø exists for some θ > 0, the function L(β, x)

satisfies the following properties,

(i) The function L(β, x) is well-defined for all β ∈ C and x ∈ R+, i.e., the series converges

in the absolute sense.

(ii) The second partial derivative of L(β, x) with respect to x, satisfies the following equality,

β
∂2L(β, x)

∂x2
= −g2(x)L(β, x).

(iii) For every fixed x ∈ R+, all the zeros of the function L(β, x) are real-valued.
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(iv) There exists a real value β0 ∈
(

max
x

(xυ([x,∞))) ,E[nø]− 1
)

such that for every real

β > β0, the function L(β, x) is uniformly positive, i.e., ∃εβ > 0 such that L(β, x) > εβ,

∀x ∈ R+. Moreover, the function L(β0, x) is non-negative for all x ∈ R+ and L(β0,

0) = 0. Finally, for all β ≥ β0,

∂L(β, x)

∂x

∣∣∣∣
x=x0

> 0 ∀x0 ∈ R+.

(v) The function
x

L(β0,x) is well-defined, is strictly positive for all x ∈ R+, and is strictly

increasing.

Proof. In the course of the proof, it will become apparent that L(β, x) and the Bessel function

of the first kind of zeroth order share similar properties.

(i) Using the Chernoff bound,

P(nø ≥ k) ≤ E[eθnø ]

eθk
<∞.

We then have

gi(z) :=
∞∑
k=i

P (k)
e−zzk−i

(k − i)!

≤
∞∑
k=i

P(nø ≥ k)
e−zzk−i

(k − i)!

≤
∞∑
k=i

E[eθnø ]

eθk
e−zzk−i

(k − i)!

=
E[eθnø ]

eθi

∞∑
k=i

e−zzk−i

eθ(k−i)(k − i)!

=
E[eθnø ]

eθi
exp
(
−z(1− e−θ)

)
. (3.22)

Let C = E[eθnø ]/e2θ and Υ = 1− e−θ. It is easy to prove that Gi(x) is upper bounded

by Ci e−iΥx/(Υ2ii!i!), by induction. Indeed,

G0(x) = 1

Gi+1(x) =

∫ ∞
y=x

∫ ∞
z=y

Gi(z)g2(z) dz dy

≤
∫ ∞
y=x

∫ ∞
z=y

Ci

Υ2i

e−iΥz

i!i!
× Ce−zΥ dz dy
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=
Ci+1

Υ2(i+1)

e−(i+1)Υx

(i+ 1)!(i+ 1)!
,

which proves the upper bound by induction. Collectively we then have

∞∑
i=0

Gi(x)

(
1

|β|

)i
≤

∞∑
i=0

Ci

Υ2i

e−iΥx

i!i!

(
1

|β|

)i
= J0

(√
−4Ce−Υx

Υ2|β|

)

= I0

(√
4Ce−Υx

Υ2|β|

)
∈ (0,∞),

where J0(·) is the Bessel function of the first kind of order 0 and I0(·) is the modified

Bessel function of the first kind of order 0. This establishes that the series converges

absolutely.

(ii) Using the definition of L(β, x) and part (i),

β
∂2L(β, x)

∂x2
= β

∞∑
i=0

d2Gi(x)

dx2

(
−1

β

)i
=
∞∑
i=1

−Gi−1(x)g2(x)

(
−1

β

)i−1

= −g2(x)L(β, x).

(iii) Fix some x ∈ R+. Consider the function H1(β, x) defined as follows,

H1(β, x) := L(β, x)
∂L(β̄, x)

∂x
− L(β̄, x)

∂L(β, x)

∂x
,

where β̄ is the complex conjugate of β. The partial derivative of H1(β, x) with respect

to x, using the part (ii), is given as follows,

∂H1(β, x)

∂x
=
∂L(β, x)

∂x

∂L(β̄, x)

∂x
− β̄−1L(β, x)L(β̄, x)g2(x)

− ∂L(β̄, x)

∂x

∂L(β, x)

∂x
+ β−1L(β̄, x)L(β, x)g2(x)

= (β−1 − β̄−1)|L(β, x)|2g2(x),

where the last equality is obtained by the fact that L(β, x) = L(β̄, x). Note that,

lim
x→∞

L(β, x) = 1 and lim
x→∞

∂L(β, x)

∂x
= 0,
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since limx→∞Gi(x) = limx→∞
dGi(x)

dx
= 0 for all i > 0 and L(β, x) is absolutely

summable. Hence, limx→∞H1(β, x) = 0. Therefore,∫ ∞
x

(β−1 − β̄−1)|L(β, y)|2g2(y) dy = −H1(β, x).

Since for every fixed x ∈ R+ the coefficients of L(β, x) are real-valued, L(β, x) = 0

implies L(β̄, x) = 0. Moreover, if L(β, x) = 0 for some x ∈ R+ and β ∈ C, then

H1(β, x) = 0; hence, ∫ ∞
x

(β−1 − β̄−1)|L(β, y)|2g2(y) dy = 0,

from which we conclude that β = β̄, i.e., β ∈ R.

(iv) Pick any real-valued β ≥ E[nø]− 1. For all i ≥ 1, we have,

Gi(x)

(
1

β

)i
−Gi+1(x)

(
1

β

)i+1

=

∫ ∞
y=x

∫ ∞
z=y

g2(z)
1

β

(
Gi−1(z)

(
1

β

)i−1

−Gi(z)

(
1

β

)i)
dz dy,

and for i = 0,

1−G1(x)
1

β
= 1−

∫ ∞
y=x

∫ ∞
z=y

g2(z)
1

β
dz dy.

For each i ∈ N, the function Gi(x) is decreasing; hence, the function 1 − β−1G1(x) is

increasing and it achieves its minimum at x = 0, so

1−G1(0)
1

β
= 1−

∫ ∞
y=0

∫ ∞
z=y

g2(z)
1

β
dz dy

= 1−
∫ ∞
z=0

zg2(z)
1

β
dz

= 1−
∫ ∞
z=0

z
∞∑
k=2

P (k)
e−zzk−2

(k − 2)!

1

β
dz

= 1− 1

β

∞∑
k=2

(k − 1)P (k)

∫ ∞
z=0

e−zzk−1

(k − 1)!
dz

= 1− E[nø]− 1

β
≥ 0.
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By induction,

Gi(x)

(
1

β

)i
−Gi+1(x)

(
1

β

)i+1

> 0 ∀x ≥ 0, i > 0.

Hence, for every real value β ≥ E[nø]− 1, by rewriting L(β, x), we get

L(β, x) =
∞∑
i=0

(
G2i(x)

(
1

β

)2i

−G2i+1(x)

(
1

β

)2i+1
)
> 0 ∀x ∈ R+.

Moreover, if for a fixed real value β > 0 and for all x ∈ R+ the function L(β, x) is

non-negative, then the function L(β, x) is strictly increasing:

∂L(β, x)

∂x
=
∞∑
i=1

dGi(x)

dx

(
−1

β

)i
=
∞∑
i=1

∫ ∞
y=x

−g2(y)Gi−1(y) dy

(
−1

β

)i
=

1

β

∫ ∞
y=x

g2(y)
∞∑
i=1

Gi−1(y)

(
−1

β

)i−1

dy

=
1

β

∫ ∞
y=x

g2(y)L(β, y) dy > 0. (3.23)

Next, we prove that for some β ∈ R+ and x ∈ R+, the function L(β, x) is negative.

Let us rewrite the function L(β, x),

L(β, x) = 1 +

(
−1

β

) ∞∑
i=1

Gi(x)

(
−1

β

)i−1

= 1− 1

β

∫ ∞
y=x

∫ ∞
z=y

L(β, z)g2(z) dz dy (3.24)

where the last equality is based on the recursive relation between Gi(x) and Gi−1(x).

Using the above equality we have,

L(β, x)− L(β, 0) =
1

β

(∫ ∞
y=0

∫ ∞
z=y

L(β, z)g2(z) dz dy −
∫ ∞
y=x

∫ ∞
z=y

L(β, z)g2(z) dz dy

)
=

1

β

∫ x

y=0

∫ ∞
z=y

L(β, z)g2(z) dz dy

=
1

β

∫ ∞
0

min(x, z)L(β, z)g2(z) dz
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=
1

β

∫ x

0

zL(β, z)g2(z) dz +
1

β

∫ ∞
x

xL(β, z)g2(z) dz, (3.25)

where the third equality follows by changing the order of integration.

Suppose that for all β ∈ R+ and all x ∈ R+, the function L(β, x) is non-negative.

Hence, for any fixed β ∈ R+, the function L(β, x) is strictly increasing and,

−L(β, 0)− 1

β

∫ x

0

zL(β, z)g2(z) dz ≥ L(β, x)

(
x

β

∫ ∞
y=x

g2(y) dy − 1

)
∀x ∈ R+.

However, the left-hand side of the above equation is negative for all β ∈ R+ but the

right-hand side, for small enough β, is positive which is a contradiction. The above

argument shows that if there exist some x̂ > 0 such that β ≤ x̂υ([x̂,∞]), then the

function L(β, ·) takes negative values. Moreover, for every β ≥ E[nø]− 1 the function

L(β, x) is strictly positive. Combining these together and considering the fact that

L(β, x) is a continuous function of x ∈ R+ and β ∈ R+, we conclude that there exists

a largest β0 > 0 such that the function L(β0, x) is non-negative, and L(β0, x0) = 0 for

some x0 ∈ R+. The already established strictly increasing property of L(β0, x) implies

that x0 = 0, and the proof is complete.

(v) Using 3.25, L(β0, x) > 0 for all x > 0. Moreover, using the L’Hospital rule,

lim
z→0

z

L(β0, z)
=

1
∂L(β0,x)

∂x

∣∣
x=0

,

which is well-defined since ∂L(β0,x)
∂x

∣∣
x=0

is strictly positive. Next, taking the derivative

of
x

L(β0,x) , we get

∂ (x/L(β0, x))

∂x
=
L(β0, x)− x∂L(β0,x)

∂x

(L(β0, x))2
, (3.26)

Note that L(β0, 0) = 0 and L(β0, x) is a strictly concave function due to part (ii) and

(iv); therefore,

L(β0, 0) < L(β0, x) +
∂L(β0, x)

∂x
∀x > 0.

Hence the expression (3.26) is strictly positive for every x > 0, and we have established

that the function
x

L(β0,x) is strictly increasing.
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The following immediate corollary guarantees the existence of an eigenfunction f(·) and

an eigenvalue β of the operator H1.

Corollary III.13. Let β0 be the largest zero of L(· , 0). Let f0(x) = L(β0, x), then the

constant β0 and the function f0(·) satisfy the following fixed point equation,

β0f0(x) =

∫ x

y=0

∫ ∞
z=y

g2(z)f0(z) dz dy. (3.27)

Proof. Substituting the function L(β0, x) in the above equation, we get,∫ x

y=0

∫ ∞
z=y

g2(z)L(β0, z) dz dy

=
∞∑
i=0

∫ x

y=0

∫ ∞
z=y

g2(z)Gi(z) dz dy

(
−1

β0

)i
=
∞∑
i=0

(Gi+1(0)−Gi+1(x))

(
−1

β0

)i
= −β0(L(β0, 0)− L(β0, x)) = β0L(β0, x),

where the last equality follows from part (iv) of Theorem III.12, since L(β0, 0) = 0.

Using the Corollary III.13 and the equations (3.18) and (3.20), a left and a right eigen-

function of M1 for the eigenvalue β0 are obtained.

Observe that, from (3.17), ml(m,x; k − 1, z) satisfies the following recursive equation:

ml(m,x; k − 1, z) =

∫ ∞
z′=0

∞∑
k′=1

ml−1(m,x; k′ − 1, z′)m1(k′ − 1, z′; k − 1, z) dz′

=

∫ ∞
z′=0

∞∑
k′=2

ml−1(m,x; k′ − 1, z′)
k′ − 1

z′
min(z′, z)P (k)

e−zzk−1

(k − 1)!
dz′

= P (k)
e−zzk−1

(k − 1)!

∫ ∞
z′=0

∞∑
k′=2

ml−1(m,x; k′ − 1, z′)
k′ − 1

z′
min(z′, z) dz′.

The terms related to the values of k and m can be factored out. However, to avoid dividing

by zero, we consider the function hl(· , ·) defined recursively as follows:

hl(x, z) =

∫ ∞
z′=0

hl−1(x, z′)g2(z′)h1(z′, z) dz′ l ≥ 2,

h1(x, z) = min(x, z).

(3.28)

It is easy to see that the function ml is related to the function hl via the following equation;
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indeed, the relation holds between m1 and h1, which is just (3.17), and for a general l the

proof holds via induction:

ml(m,x; k − 1, z) = hl(x, z)×
P (k)e−zzk−1

(k − 1)!

m

x
. (3.29)

Recall that the kernel of the operator H1 is symmetric, hence, any right eigenfunction is also

a left eigenfunction. Moreover, Corollary III.13 implies that f0(·) is an eigenfunction of H1

with eigenvalue β0, i.e.,

β0f0(x) =

∫ ∞
z=0

min(x, y)f0(y)dυ(y). (3.30)

Hence, the question of whether or not β0 is the Krein-Rutman eigenvalue of M1 with right

eigenfunctions µ(· , ·) and left eigenfunction ν(· , ·), boils down to the same question for H1

with right and left eigenfunctions f0.

To show that β0 is the Perron-Frobenius eigenvalue of H1, we define a continuous state

Markov chain and prove uniform geometric ergodicity for the chain. Consider a continuous

state Markov chain, with the following transition probability kernel:

p(x, y) :=
h1(x, y)g2(y)f0(y)

β0f0(x)
∀x, y ∈ R+, (3.31)

where the transition probability at x = 0 is defined by taking the limit of p(x, ·) as x goes

to 0, i.e.,

p(0, y) := lim
x→0

h1(x, y)g2(y)f0(y)

β0f0(x)
=
g2(y)f0(y)

β0f0
′(0)

.

By Theorem III.12 part (iv), the term f0
′(0) is strictly positive; hence, the function p(· , ·)

is well-defined. Moreover, the function p(· , ·) is indeed a valid transition probability kernel

since ∫ ∞
z=0

p(x, z) dz =

∫ ∞
z=0

min(x, z)g2(z)f0(z)

β0f0(x)
dz =

∫ x

y=0

∫ ∞
z=y

g2(z)f0(z)

β0f0(x)
dz = 1∫ ∞

z=0

p(0, z) dz =

∫ ∞
z=0

g2(z)f0(z)

β0f0
′(0)

dz
(∗)
=

1

β0f ′0(0)

∂ (β0f0(x))

∂x

∣∣∣∣
x=0

= 1,

where (∗) follows from (3.23). By induction, it is easy to observe from (3.28) that the l step
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transition probability kernel is related to the function hl(· , ·) via the following equation,

p(l)(x, y) =

∫ ∞
z=0

p(l−1)(x, z)p(z, y) dz =
hl(x, y)g2(y)f0(y)

β0
lf0(x)

. (3.32)

The stationary density of the Markov chain can now be verified to be π(y) = CNg2(y)(f0(y))2,

where CN is the normalization factor. Indeed, from (3.30) and (3.31), we have∫ ∞
x=0

π(x)p(x, y) dx = CN

∫ ∞
x=0

g2(x)f0(x)
min(x, y)g2(y)f0(y)

β0

dx = π(y).

Observe that the stationary distribution equals the product of the left and the right eigen-

functions of H1 upto a normalization factor. Recall that g2(·) is the Radon-Nikodym deriva-

tive of υ(·). Moreover, the Markov chain is reversible with respect to the stationary distri-

bution π(·), i.e., π(x)p(x, y) = π(y)p(y, x).

It is natural to expect p(l)(x, y) converges point-wise to π(y) as l goes to infinity. To

prove this, we invoke the following result by Baxendale [48],

Theorem III.14 (Baxendale 2005). Let {Xn : n > 0} be a time homogeneous Markov chain

on a state space (S,S ). Let P (x,A), x ∈ S, A ∈ S denote the transition probability and by

abusing notation let P denote the corresponding operator on measurable functions S → R.

Assume that the following assumptions hold:

(A1) Minorization condition: There exists C ∈ S , β̃ > 0 and a probability measure ν on

(S,S ) such that,

P (x,A) ≥ β̃ν(A),

for all x ∈ C and A ∈ S .

(A2) Drift condition: There exist a measurable function V : S → [1,∞) and constants λ < 1

and K <∞ satisfying,

PV (x) ≤

λV (x), if x /∈ C

K, if x ∈ C
.

(A3) Strong aperiodicity condition: There exists β̂ > 0 such that β̃ν(C) ≥ β̂.

Then {Xn : n > 0} has a unique stationary probability measure π, say, and
∫
V dπ < ∞.

Moreover, there exists ρ < 1 depending only (and explicitly) on β̂, β̃, λ and K such that
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whenever ρ < γ < 1 there exists M < ∞ depending only (and explicitly) on γ, β̂, β̃, λ and

K such that,

sup
|g|≤V

∣∣∣∣(P ng)(x)−
∫
g dπ

∣∣∣∣ ≤MV (x)γn,

for all x ∈ S and n ≥ 0, where the supremum is taken over all possible measurable functions

g : S → R satisfying |g(x)| ≤ V (x) for all x ∈ S. In particular, P ng(x) and
∫
g dπ are both

well-defined whenever

‖g‖V ≡ sup{|g(x)|/V (x) : x ∈ S} <∞.

Baxendale [48] provides explicit values for ρ and M and improves the constants if the

corresponding Markov chain is reversible, which holds in our case. In the following lemma,

we prove that the Markov chain with transition probability p(x, y) from (3.31) satisfies the

assumptions (A1)− (A3).

Lemma III.15. Assume the moment generating function of nø exists for some θ > 0 and

is finite. Then, the Markov chain defined by the transition probability kernel p(x, y) on state

space (R+,ℬ) satisfies the assumptions (A1) − (A3) of Theorem (III.14) where the set C,

the constants β̃, λ, K, β̂, the function V : R→ [1,∞) and the probability measure ν(x) are

given as follows:

C := [0, c], β̃ :=

∫ ∞
0

W (y) dy, λ :=
1

2
,

K := f0
′(0)

c

f0(c)

E[eθnø ]

β0e2θ

1

(1− e−θ − η)2
, β̂ := min

(
1

β0f ′(0)
,

c/2

β0f0(c)

)∫ c

c/2

g2(y)f0(y) dy,

V (x) := f0
′(0)eηx

x

f0(x)
, (3.33)

ν(A) :=
1

β̃

∫
A

W (y) dy,

where the constants η and c, and the function W (y) are defined as follows,

η :=
1− e−θ

2
, c := max

(
1

η
ln

(
E[eθnø ]

β0e2θ

2

(1− e−θ − η)2

)
, 1

)
,

W (y) :=

 1
β0f0

′(0)
f0(y)g2(y) if y /∈ [0, c]

min( 1
β0f0

′(0)
, y
β0f0(c)

)f0(y)g2(y) if y ∈ [0, c]
. (3.34)

Proof. First, we prove that the assumption (A2) holds and derive the constants c, λ and K
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as well as the function V (·). Next, we show that the assumption (A1) holds and derive the

probability measure ν and the constant β̃ > 0. Finally, we illustrate that the assumption

(A3) holds and derive the constant β̂.

Assumption (A2): Define the operator P by its action on non-negative measurable

functions as follows:

PV (x) :=

∫ ∞
0

V (y)
min(x, y)g2(y)f0(y)

β0f0(x)
dy

≤ x

β0f0(x)

∫ ∞
0

V (y)g2(y)f0(y) dy.

Assuming the moment generating function of nø exists for some θ > 0 and using

inequality (3.22), we have

PV (x) ≤ x

β0f0(x)

∫ ∞
0

V (y)
E[eθnφ ]

e2θ
exp
(
−y(1− e−θ)

)
f0(y) dy. (3.35)

Let V (x) = f0
′(0)eηx x

f0(x)
where the constant η > 0 is small enough such that 1− e−θ−

η > 0. Part (v) of Theorem III.12 states that the function x
f0(x)

is strictly increasing.

Hence, V (·) is a strictly increasing function and its range is [1,∞). Substituting the

function V (·) into (3.35), we get

PV (x) ≤ f0
′(0)

x

f0(x)

E[eθnφ ]

β0e2θ

∫ ∞
0

y exp
(
−y(1− e−θ − η)

)
dy

= f0
′(0)

x

f0(x)

E[eθnφ ]

β0e2θ

1

(1− e−θ − η)2
. (3.36)

Consider the constants c, K and λ as in the statement of the Theorem. For every

x ≤ c, the right-hand side of the (3.36) is bounded by K. Moreover, for every x > c,

the following inequality holds

x

f0(x)

E[eθnø ]

β0e2θ

1

(1− e−θ − η)2
≤ x

f0(x)

1

2
eηc ≤ 1

2

x

f0(x)
eηx.

Hence, the assumption (A2) is satisfied.

Assumption (A1): Recall that P (x,A) is defined as follows,

P (x,A) =

∫
y∈A

p(x, y) dy =
1

β0f0(x)

∫
y∈A

f0(y)g2(y) min(x, y) dy.
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Define the set Ax = A ∩ [0, x] and Ax̄ = A ∩ (x,∞). Using A = Ax ∪ Ax̄, we have,

P (x,A) =
1

β0f0(x)

∫
y∈Ax

f0(y)g2(y)y dy +
x

β0f0(x)

∫
y∈Ax̄

f0(y)g2(y)dy.

Consider the function W (y) = minx∈[0,c] p(x, y). Using the fact that x
f0(x)

and f0(x)

are increasing functions, the function W (·) is given as in (3.34). Note that W (·) is

integrable since it is upper bounded by the integrable function β0f0
′(0)

−1
g2(y)f0(y).

Define the probability measure ν as follows,

ν(A) =
1

β̃

∫
y∈A

W (y) dy,

where β̃ is the normalization factor. The inequality P (x,A) ≥ β̃ν(A) for all x ∈ [0, c]

holds because of the following inequalities:

1

β0f0(x)

∫
y∈Ax

f0(y)g2(y)y dy ≥
∫
y∈Ax

min(
1

β0f0
′(0)

,
y

β0f0(c)
)f0(y)g2(y)dy

=

∫
y∈Ax

W (y) dy,

x

β0f0(x)

∫
y∈Ax̄

f0(y)g2(y) dy ≥
∫
y∈Ax̄

1

β0f0
′(0)

f0(y)g2(y) dy ≥
∫
y∈Ax̄

W (y) dy.

From here, the assumption (A1) immediately follows.

Assumption (A3): Using the definition of the probability measure ν, we have,

β̃ν([0, c]) =

∫ c

0

W (y) dy ≥ min(
1

β0f0
′(0)

,
c/2

β0f0(c)
)

∫ c

c/2

g2(y)f0(y) dy = β̂ > 0.

Remark III.16. The function V (·) in (3.33) provides us with more freedom, i.e., it is possible

to choose a function g : R+ → R that goes to infinity.

Lemma III.15 implies that the Theorem III.14 holds for the continuous state Markov chain

with transition probability p(x, y). The first implication is that the stationary distribution

π(x) = CNg2(x)f0(x)2 is unique. Moreover, there exists M <∞ and 0 < γ < 1 such that all

the measurable functions g : R+ → R with the property that |g(x)| ≤ V (x) for all x ∈ R+,
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satisfy ∣∣∣∣(P ng)(x)−
∫
g dπ

∣∣∣∣ ≤MV (x)γn.

Since V (0) = 1, and V (x) is increasing as can be gleaned from (3.33) and Theorem III.12

part (v), geometric ergodicity follows by restricting the function g(·) to satisfy |g(x)| ≤ 1,

for all x ≥ 0, that is

‖P n(x, ·)− π‖TV ≤MV (x)γn.

However, it is possible to prove uniform ergodicity by an appropriate choice of function V (·).

Lemma III.17. Let V (x) = 1 + a× 1x>x0. Let

λ :=
3

4
K := a+ 1 c = x0,

where the constant a is defined as follows,

a :=
8

β0

E[eθnφ ]

e2θ
× 1

(1− e−θ)2
,

and the constant x0 is large enough such that f0(x0) ≥ 0.5 and the following inequality is

satisfied for all x > x0:

2

β0

E[eθnφ ]

e2θ
× (x+ 1)e−x(1−e−θ)

(1− e−θ)2
<

1

4
.

Then, for a suitable M̃ > 0 and γ̃ < 1, we have

‖P n(x, ·)− π‖TV ≤ M̃(a+ 1)γ̃n, ∀x ≥ 0.

Proof. Again, we apply Baxendale’s Theorem (Theorem III.14), but this time the V (·) is

bounded. The only assumption affected by choice of the function V (·) is the assumption

(A2). Recall that the transition probability is given by,

p(x, y) =
min(x, y)g2(y)f0(y)

β0f0(x)
,
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Hence, the operator P performs on the measurable function V (·) as,

PV (x) =

∫ ∞
0

V (y)
min(x, y)g2(y)f0(y)

β0f0(x)
dy

=
1

β0f0(x)

∫ x

0

V (y)yg2(y)f0(y) dy +
x

β0f0(x)

∫ ∞
x

V (y)g2(y)f0(y) dy.

Recall that the function f0(x) is an increasing function, f0(0) = 0 and limx→∞ f0(x) = 1, see

for e.g., (3.24). Consider the function V (x) = 1 + a× 1{x>x0}, where a and x0 are constants

to be specified later. Substituting the choice of function V (·), we get

PV (x) =



1

β0f0(x)

∫ x

0

yg2(y)f0(y) dy +
x

β0f0(x)

∫ x0

x

g2(y)f0(y)dy

+
(a+ 1)x

β0f0(x)

∫ ∞
x0

g2(y)f0(y) dy

if x ≤ x0

1

β0f0(x)

∫ x0

0

yg2(y)f0(y) dy +
a+ 1

β0f0(x)

∫ x

x0

yg2(y)f0(y) dy

+
(a+ 1)x

β0f0(x)

∫ ∞
x

g2(y)f0(y) dy

if x > x0

≤


a+ 1

β0f0(x)

(
1

a+ 1

∫ x

0

yg2(y) dy + x

∫ x0

x

g2(y) dy + x

∫ ∞
x0

g2(y) dy

)
if x ≤ x0

a+ 1

β0f0(x)

(
1

a+ 1

∫ x0

0

yg2(y) dy +

∫ x

x0

yg2(y) dy + x

∫ ∞
x

g2(y) dy

)
if x > x0

.

Assume x > x0. Using the inequality (3.22), we have,

PV (x) ≤ (a+ 1)E[eθnφ ]

e2θβ0f0(x)

(
1

a+ 1

∫ x0

0

ye−y(1−e−θ) dy +

∫ x

x0

ye−y(1−e−θ) dy + x

∫ ∞
x

e−y(1−e−θ) dy

)
≤ a+ 1

β0f0(x)

E[eθnφ ]

e2θ

(
1

a+ 1

1

(1− e−θ)2
+

(x0(1− e−θ) + 1)e−x0(1−e−θ)

(1− e−θ)2
+ x

e−x(1−e−θ)

1− e−θ

)
.

(3.37)

The last inequality follows from evaluating the integrals and removing the negative terms.

The constants a and x0 are chosen such that t f0(x0) ≥ 0.5 and all the following inequalities

are satisfied:

2

β0

E[eθnφ ]

e2θ
× 1

a+ 1

1

(1− e−θ)2
<

1

4
(3.38)

2

β0

E[eθnφ ]

e2θ
× (z + 1)e−z(1−e−θ)

(1− e−θ)2
<

1

4
∀z > x0. (3.39)
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Note that the left-hand side of (3.38) is decreasing in a and the left-hand side of (3.39) can

be made arbitrary small by setting x0 to be large enough. The second of these upper bounds

the last two terms in (3.37), and we have PV (x) ≤ (3/4)(a + 1) for x > x0. For x ≤ x0,

PV (x) ≤ 1 + a. Given the above choice of constants a and x0, for λ = 3
4

and K = a + 1,

taking C = {x : x ≤ x0}, the assumption (A2) is satisfied; i.e.,

PV (x) ≤

3
4
(a+ 1) if x > x0

a+ 1 if x ≤ x0.

An application of Baxendale’s Theorem then completes the proof.

An immediate consequence of uniform ergodicity is the following.

Corollary III.18. For any x, y ∈ R+ and l > 1, we have

∣∣p(l)(x, y)− π(y)
∣∣ < 2M̃(a+ 1)γ̃l−1. (3.40)

Proof. The idea is same as in Doob [76, pages 216-217]. Note that π(·) is the unique sta-

tionary distribution. Hence, for any

∣∣p(l)(x, y)− π(y)
∣∣ =

∣∣∣∣∫ ∞
z=0

p(1)(z, y)
(
p(l−1)(x, z)− π(z)

)
dz

∣∣∣∣
≤
∣∣∣∣∫
p(l−1)(x,z)>π(z)

(
p(l−1)(x, z)− π(z)

)
dz

∣∣∣∣
+

∣∣∣∣∫
p(l−1)(x,z)<π(z)

(
p(l−1)(x, z)− π(z)

)
dz

∣∣∣∣
≤ 2M̃(a+ 1)γ̃l−1

To get rid of the constant factor CN , from now on, we assume the function f0 is normalized

such that, ∫ ∞
0

g2(y)f0(y)2 dy = 1.

That is f0(y) = L(β0, y)
√
CN , where CN = (

∫∞
0
g2(y)L(β0, y)2 dy)−1.
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Then inequality (3.40) implies that for every x ∈ R+ and y > 0,

hl(x, y) = β0
lf0(x)f0(y)

(
1 +

2M̃(a+ 1)O(γ̃l−1)

g2(y)f0(y)2

)
l ≥ 2. (3.41)

Harris [77] assumes the density of the M1 is uniformly positive and bounded, and deduces

that the corresponding eigenfunction is uniformly positive as well. However, in our setting

f0(0) = 0 and g(y) → 0 as y → ∞. As a result, the error term for hl(x, y)/βl0 explodes as

y goes to 0 or ∞. On the other hand, induction using (3.28) implies hl(x, 0) = hl(0, y) = 0.

Hence, we should expect a uniform bound. The idea is to use the function V (·) in (3.33)

and apply (3.28).

Lemma III.19. For some constant M̂ > 0, we have

hl(x, y) = β0
lf0(y)f0(x)

(
1 + M̂O(γl−2)

x

β0
2f0(y)f0(x)

)
l ≥ 2. (3.42)

Proof. Fix z ∈ R+ and define the function g(·) as follows,

g(x) =


h1(x, z)

f0(x)
× f0

′(0) if x 6= 0

1 if x = 0

.

The function g(·) is a well-defined continuous function by Theorem III.12 part (v). Moreover,

|g(x)| ≤ V (x) for all x ∈ R+ where V (·) is given by (3.33). Now using Lemma III.15 and

Theorem III.14 (Baxendale’s Theorem), we have∣∣∣∣∫ ∞
0

hl(x, y)g2(y)f0(y)

β0
lf0(x)

× h1(y, z)

f0(y)
f0
′(0) dy −

∫ ∞
0

g2(y)f0(y)2 × h1(y, z)

f0(y)
f0
′(0) dy

∣∣∣∣≤MγlV (x).

Using (3.28) and (3.30), we get∣∣∣∣hl+1(x, z)

β0
lf0(x)

− β0f0(z)

∣∣∣∣ ≤Mγl
xeηx

f0(x)
,

hence,

hl+1(x, y) = β0
l+1f0(y)f0(x)

(
1 +MO(γl)

xeηx

β0f0(y)f0(x)

)
.
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Now using (3.28) again, we have

hl+2(x, y) =

∫ ∞
0

h1(x, z)hl+1(z, y)g2(z) dz

=

∫ ∞
0

min(x, z)β0
l+1f0(y)f0(z)

(
1 +MO(γl)

zeηz

β0f0(y)f0(z)

)
dz

=

∫ ∞
0

min(x, z)β0
l+1f0(y)f0(z)g2(z) dz +MO(γl)

∫ ∞
0

min(x, z)β0
lzeηzg2(z) dz.

Applying inequality (3.22), we get

∣∣hl+2(x, y)− βl+2
0 f0(x)f0(y)

∣∣ ≤Mγl × βl0
E[eθnø ]

e2θ

∫ ∞
0

min(x, z)zeηz exp
(
−z(1− e−θ)

)
dz.

Now the result follows by the fact that min(x, z) ≤ x, and the fact that η < 1 − e−θ. Note

that

M̂ = M × E[eθnø ]

e2θ

∫ ∞
0

zeηz exp
(
−z(1− e−θ)

)
dz.

Remark III.20. In the proof of Lemma III.19, we bound min(x, z) by x instead of z. This

gives us a uniform error bound for ml. Specifically, as x → 0 the error term in (3.43) stays

bounded.

Combining (3.29) and (3.42), we get a similar bound for ml(m,x; k − 1, z): for every

x ∈ R+ and z > 0,

ml(m,x; k − 1, z) =
P (k)e−zzk−1

(k − 1)!

m

x
× β0

lf0(x)f0(z)

(
1 + M̂O(γl−2)

x

β0
2f0(z)f0(x)

)
l ≥ 2.

(3.43)

Note that the error term is uniformly bounded for all x, z ∈ R+ and k ∈ N (naturally, it is

not uniform in m). Next we prove that β0 is the Krein-Rutman eigenvalue of H1 with the

eigenfunction f0(x).

Theorem III.21. Assume that the moment generating function of nø exists for some θ > 0.

Then β0 ∈
(

max
x

(xυ([x,∞))) ,E[nø]− 1
)

is an eigenvalue of H1 larger in magnitude than

any other eigenvalue of H1. The corresponding eigenfunction is f0(·). Moreover, this is the

only non-negative eigenfunction of H1 up to a normalization factor.
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Proof. Assume there exists a real-valued function ζ(·) and β′ 6= 0 such that,

β′ζ(x) =

∫ ∞
z=0

h1(x, z)g2(z)ζ(z) dz.

Clearly, ζ(x) satisfies the following inequality,

|ζ(x)| ≤ 1

|β′|

∫ ∞
z=0

h1(x, z)g2(z)|ζ(z)| dz

≤ x

|β′|

∫ ∞
z=0

g2(z)|ζ(z)| dz = Const× x.

Moreover, ζ(0) = 0 since h1(0, z) = 0; hence the function g(x) = ζ(x)/f0(x) for all x ∈ R+

is well-defined. Letting V (x) = f0
′(0)eηx x

f0(x)
× max( Const

f0
′(0)
, 1) in Lemma III.15, we have

|g(x)| ≤ V (x) for all x ∈ R+. Using Baxendale’s Theorem (Theorem III.14), we have∣∣∣∣∫ ∞
0

hl(x, y)g2(y)f0(y)

β0
lf0(x)

ζ(y)

f0(y)
dy −

∫ ∞
0

g2(y).f0(y)2 ζ(y)

f0(y)
dy

∣∣∣∣ < MγlV (x)

Hence, ∣∣∣∣∣ β′lζ(x)

β0
lf0(x)

−
∫ ∞

0

g2(y)f0(y)ζ(y) dy

∣∣∣∣∣ < MγlV (x).

As l goes to infinity, the right-hand side of the above inequality goes to zero. If |β′| > β0,

then the left-hand side explodes. If |β′| = β0, then the left-hand side does not go to zero for

all x. Hence, |β′| < β0 and ζ(·) and f0(·) are orthogonal to each other, i.e.,∫ ∞
0

f0(y)ζ(y)dυ(y) = 0.

The above equality also proves that f0(·) is the only non-negative eigenfunction.

We summarize the key conclusions in the following theorem.

Theorem III.22. Assume the moment generating function of nø exists and is finite for some

θ > 0. Let β0 and f0(·) to be as in Theorem III.21. Then β0 ∈
(

max
x

(xυ([x,∞))) ,E[nø]− 1
)

is the largest eigenvalue of M1 in magnitude. The corresponding eigenfunctions are given as

follows

Right eigenfunction: µ(m,x) =
m

x
f0(x),
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Left eigenfunction: ν(k − 1, z) = P (k)
e−zzk−1

(k − 1)!
f0(z).

These eigenfunctions are the unique non-negative right and left eigenfunctions, respectively.

Moreover, there exists 0 < γ < 1 and a constant M̂ > 0 independent of x, m, z and k such

that for all x ∈ R+, y > 0, k ≥ 1 and m ≥ 0,

ml(m,x; k − 1, z) =
P (k)e−zzk−1

(k − 1)!

m

x
× β0

lf0(x)f0(z)

(
1 + M̂O(γl−2)

x

β0
2f0(z)f0(x)

)
l ≥ 2.

(3.44)

Finally, ml(m,x; k − 1, z) is related to the function hl(x, y) via the following equation,

ml(m,x; k − 1, z) = hl(x, z)×
P (k)e−zzk−1

(k − 1)!

m

x
,

and for all functions g : R+ → R satisfying |g(x)| ≤ V (x) for all x ∈ R+,∣∣∣∣∫ ∞
0

hl(x, y)g2(y)f0(y)g(y)

β0
lf0(x)

dy −
∫ ∞

0

g2(y)f0(y)2g(y) dy

∣∣∣∣ ≤MγlV (x) l ≥ 2.

where V (x) = f0
′(0) exp(ηx) x

f0(x)
and η = (1− e−θ)/2. The constants M and 0 < γ < 1 are

independent of x and l.

Using the above theorem, we get similar bounds for Ml which is useful for large l.

Corollary III.23. The growth rate of Ml(m,x;R+,Z+) equals β0 which is given by Theorem

III.22, i.e.,∣∣∣∣∣Ml(m,x;R+,Z+)

β0
l

− m

x
f0(x)

∫ ∞
0

∞∑
k=1

P (k)
e−zzk−1

(k − 1)!
f0(z) dz

∣∣∣∣∣ =
m

β0
2M̂O(γl−2), l ≥ 2

where the constant 0 < γ < 1 is independent of x, m and l.

Proof. By Theorem III.22, we have

Ml(m,x;R+,Z+)/β0
l =

∫ ∞
0

∞∑
k=1

ml(m,x; k − 1, z) dz/β0
l

=

∫ ∞
0

∞∑
k=1

P (k)e−zzk−1

(k − 1)!

m

x
×

f0(x)f0(z)

(
1 + M̂O(γl−2)

x

β0
2f0(z)f0(x)

)
dz
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=
m

x
f0(x)

∫ ∞
0

∞∑
k=1

P (k)
e−zzk−1

(k − 1)!
f0(z) dz +

m

β0
2M̂O(γl−2)

∫ ∞
0

g1(z)dz.

Recall that Zl denotes the number of vertices at generation l. As an immediate Corollary,

the growth/extinction rate of E[Zl] is β0 as well.

Corollary III.24. We have

E[Zl]/β0
l l→∞−−−→

(
∞∑
m=1

P (m)

∫ ∞
x=0

e−xxm

m!
× m

x
f0(x) dx

)(∫ ∞
0

∞∑
k=1

P (k)
e−zzk−1

(k − 1)!
f0(z) dz

)
.

If β0 > 1, the expected number of vertices at generation l explodes as l goes to infinity.

If β0 = 1, the expected number of vertices at generation l stays bounded. If β0 < 1, the

expected number of vertices at generation l goes to zero.

3.4.6 Analysis of the Second Moments and Asymptotic Results for β0 > 1

A follow-up question is the limit of the random variable Zl/β
l
0: 1) If β0 < 1, it is clear

that Zl → 0 almost surely as l → ∞ since the population will become extinct; however,

conditioned on Zl > 0, the distribution of the total number of vertices might be of interest.

We leave this problem for future work. 2) If β0 > 1, one way to study the limit is to

analyze the second moment. This methodology was introduced by Harris in [78] and was

generalized to finite type branching processes in [77]. In [79], Harris pointed out that a

similar generalization is possible for general branching processes and discussed this further

in [30, Chapter 3]. We follow his argument closely in this section. 3) The case β = 1 is

tricky and is discussed in Section 3.4.7. We will prove that Zl → 0 almost surely as l→∞,

however, a similar question as in 1) is left for future work.

Let Zl(A) denote the number of vertices at depth l of type (k− 1, ζ) ∈ A,A ⊂ Ω. Recall

that by the discussion of Section 3.2.2, Zl(·) is a set function. For Borel sets A1,A2 ⊂ Ω,

define,

M
(2)
l (m,x;A1;A2) := E[Zl(A1)Zl(A2)|nø = m, vø = x], ∀l = 0, 1, · · · , (3.45)

v(m,x;A1;A2) := M
(2)
1 (m,x;A1;A2)−M1(m,x;A1)M1(m,x;A2). (3.46)
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The conditionally independent structure of EWT implies

M
(2)
1 (m,x;A1;A2) =



m(m− 1)

x

 ∑∫
(k−1,ζ)∈A1

P (k)min(x, ζ)
e−ζζk−1

(k − 1)!
dζ

×
 ∑∫

(k−1,ζ)∈A2

P (k)min(x, ζ)
e−ζζk−1

(k − 1)!
dζ

 if x > 0

+
m

x

 ∑∫
(k−1,ζ)∈A1∩A2

P (k)min(x, ζ)
e−ζζk−1

(k − 1)!
dζ

 ,

m(m− 1)

 ∑∫
(k−1,ζ)∈A1

P (k)
e−ζζk−1

(k − 1)!
dζ


 ∑∫

(k−1,ζ)∈A2

P (k)
e−ζζk−1

(k − 1)!
dζ

 if x = 0

+m

 ∑∫
(k−1,ζ)∈A1∩A2

P (k)
e−ζζk−1

(k − 1)!
dζ

 ,

where by
∑∫

(k−1,ζ)∈A
dζ we mean

∑∞
k=1

∫
ζ:(k−1,ζ)∈A dζ. To get the above equality, note that

M
(2)
1 (m,x;A1;A2) = E[Zl(A1)Zl(A2)− Zl(A1 ∩ A2)|nø = m, vø = x]

+ E[Zl(A1 ∩ A2)|nø = m, vø = x],

and also note that Zl(A1)Zl(A2) − Zl(A1 ∩ A2) equals the number of ways to select two

different descendants of the root successively: first, a descendant of a type belongs to A1

and then a descendant of a type belongs to A2.

For any fixed (m,x), we can interpret M
(2)
l (m,x;A1;A2) as the measure of the “rectan-

gular” A1×A2, i.e., the measure of points (k1− 1, ζ1; k2− 2, ζ2) such that (k1− 1, ζ1) ∈ A1,

(k2−1, ζ2) ∈ A2, and (ki−1, ζi) ∈ Zl, where Zl (abusing notation) is the point distribution of

vertices in generation l. To make the matters rigorous, we need to define bivariate measures

and random double integrals.

Definition III.25. A function F (A,B), where A and B are subsets of Ω, is called a bivariate

measure if it satisfies the following conditions:
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(a) it is finite and non-negative;

(b) if A1,A2, . . .Ak are disjoint subsets of Ω, then F (∪jAj,B) =
∑

j F (Aj,B);

(c) if B1,B2, . . .Bk are disjoint subsets of Ω, then F (A,∪jBj) =
∑

j F (A,Bj);

F is called a signed bivariate measure if F = F1−F2, where F1 and F2 are bivariate measures.

Definition III.26. For a function f(k1 − 1, ζ1; k2 − 1, ζ2) defined over Ω × Ω, the random

double integral is defined as follows:

∑∫
(k2−1,ζ2)∈Ω

∑∫
(k1−1,ζ1)∈Ω

f(k1 − 1, ζ1; k2 − 1, ζ2) dω(ζ1, k1) dω(ζ2, k2) =
∑
i,j

aiajf(mi, xi;mj, xj)

where ω is the point distribution ((m1, x1), a1; (m2, x2), a2; . . . ; (mk, xk), ak).

By definition, M
(2)
l (m,x;A1;A2) and M1(m,x;A1)M2(m,x;A2) are bivariate measures,

and v(m,x;A1;A2) is a signed bivariate measure. Define a map T from the set of signed

bivariate measures to itself as follows,

T F (A1;A2) =∑∫
(k2−1,ζ2)∈Ω

∑∫
(k1−1,ζ1)∈Ω

M1(k1 − 1, ζ1;A1)M1(k2 − 1, ζ2;A2) dF (k1 − 1, ζ1; k2 − 1, ζ2).

To derive a recurrence relation between M
(2)
l and M

(2)
l+1, write

M
(2)
l+1(m,x;A1;A2) = E[E[Zl+1(A1)Zl+1(A2)|Zl = ω] |nø = m, vø = x].

Conditioned on Zl = ω ∈ P , the expected value of Zl+1(A1)Zl+1(A2) is given by the following

random integrals,

∑∫
(k2−1,ζ2)∈Ω

∑∫
(k1−1,ζ1)∈Ω

Ek1−1,ζ1 [Z̃1(A1)]Ek2−1,ζ2 [Z̃1(A2)] dZl(k1 − 1, ζ1) dZl(k2 − 1, ζ2)

−
∑∫

(k−1,ζ)∈Ω

Ek−1,ζ [Z̃1(A1)]Ek−1,ζ [Z̃1(A2)] dZl(k − 1, ζ)

+
∑∫

(k−1,ζ)∈Ω

Ek−1,ζ [Z̃1(A1)Z̃1(A2)] dZl(k − 1, ζ)

where Z̃1 is an i.i.d. copy of the point distribution Z1 and Emi,xi is the expected value

conditioned on the type of the root to be (mi, xi). Now, taking expectation of the above
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random integrals with respect to the point distribution Zl, we derive the following recurrence

relation,

M
(2)
l+1(m,x;A1;A2) =

TM (2)
l (m,x;A1;A2) +

∑∫
(k−1,ζ)∈Ω

v(k − 1, ζ;A1;A2) dMl(m,x; k − 1, ζ). (3.47)

Repeatedly using (3.47) and then applying (3.46), we get the following relation

M
(2)
l+1(m,x;A1;A2) = T lM1(m,x;A1)M1(m,x;A2)

+
l∑
l̂=0

T l−l̂

 ∑∫
(k−1,ζ)∈Ω

v(k − 1, ζ;A1;A2) dMl̂(m,x; k − 1, ζ)

 ,

(3.48)

where T 0 is the identity map. Finally, observe that

T lF (A1;A2) =∑∫
(k1−1,ζ1)∈Ω

∑∫
(k2−1,ζ2)∈Ω

Ml(k1 − 1, ζ1;A1)Ml(k2 − 1, ζ2;A2) dF (k1 − 1, ζ1; k2 − 1, ζ2),

(3.49)

which can be proved by induction and the following equality:

dT F (k − 1, ζ; k̃ − 1, ζ̃) =
∑∫

(k2−1,ζ2)∈Ω

∑∫
(k1−1,ζ1)∈Ω

m1(k1 − 1, ζ1; k − 1, ζ) dζ m1(k2 − 1, ζ2; k̃ − 1, ζ̃) dζ̃ dF (k1 − 1, ζ1; k2 − 1, ζ2).

Now, we can use the analysis of the previous section to approximate M
(2)
l (m,x;A1;A2) for

large values of l. This is basically the same result as in [30, page 72, eqn. (13.5)].

Theorem III.27. With β0 and µ(m,x) as specified in Theorem III.22, the growth rate of

M
(2)
l (m,x;A1;A2) equals β0

2, i.e.,

M
(2)
l (m,x;A1,A2)/β0

2l =U(m,x)

 ∑∫
(k−1,z)∈A1

ν(k − 1, z) dz


 ∑∫

(k−1,z)∈A2

ν(k − 1, z)dz


(3.50)
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+m2MO(γl−2), l ≥ 2,

where the constantsM > 0 and 0 < γ < 1 are independent of x, l, A1, and A2. The function

U(m,x) is defined as follows,

U(m,x) :=

µ(m,x)2 +
∞∑
l̂=1

β0
−2l̂
∑∫

(k−1,z)∈Ω

( ∑∫
(k1−1,z1)∈Ω

∑∫
(k2−1,z2)∈Ω

µ(k1 − 1, z1)µ(k2 − 1, z2)

dv(k − 1, z; k1 − 1, z1; k2 − 1, z2)

)
dMl̂−1(m,x; k − 1, z).

(3.51)

Remark III.28. Note that using Theorem III.22 the summand in the definition of U(m,x) is

O(β−l̂−1
0 ); hence, the sum is finite and U(m,x) is well-defined.

Proof. As we pointed out in the proof of Corollary III.23, using Theorem III.22 for any

A ∈ Σ we have,

Ml(m,x;A)/β0
l =

∑∫
(k−1,z)∈A

µ(m,x)ν(k − 1, z) dz +
m

β0
2M̂O(γl−2).

Substituting the above equality in (3.49), after some simple algebra we have

T lF (A1;A2)/β0
2l = ∑∫

(k1−1,z1)∈Ω

∑∫
(k2−1,z2)∈Ω

µ(k1 − 1, z1)µ(k2 − 1, z2) dF (k1 − 1, z1; k2 − 1, z2)

×
 ∑∫

(k−1,z)∈A1

ν(k − 1, z) dz


 ∑∫

(k−1,z)∈A2

ν(k − 1, z) dz

+ CF M̂O(γl−2),

Now the result follows by combining (3.47), the above equality, and the following relation

T l−1M1(m,x;A1)M1(m,x;A2) = Ml(m,x;A1)Ml(m,x;A2).

which can be proved using induction similar to (3.49). The constant CF depends on the

choice of the function F . It is easy to check that for v(m,x;A1,A2), we can replace CFM̂

with m2M for someM > 0 independent of x, l, A1, and A2 (note that min(x, z)/x ≤ 1).
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Remark III.29. Fix the value of l̃ > 0 and consider E[Zl(A1)Zl+l̃(A2)|nø = m, vø = x]. Using

the same argument as above, the conditional expectation converges to the same value as in

(3.50) with the error bounded by m2Ml̃O(γl−2).

Now, combining the above theorem and remark, we get a similar result as in [30, Theorem

14.1, page 72].

Theorem III.30. Let A ⊂ Ω and set Wl(A) = Zl(A)/β0
l. Then, conditioned on nø = m

and vø = x, where x ∈ R+ and m ∈ N, there is a random variable W (A) such that Wl(A)

converges to W (A) in L2 and almost surely. The first and the second moments of W (A)

are,

E [W (A)|nø = m, vø = x] =
m

x
f0(x)

 ∑∫
(k−1,z)∈A

P (k)
e−zzk−1

(k − 1)!
f0(z) dz

 ,

E
[
W (A)2

∣∣nø = m, vø = x
]

= U(m,x)

 ∑∫
(k−1,z)∈A

ν(k − 1, z) dz


2

,

where the function U(x,m) is given by (3.51). Furthermore, if A and B are subsets of Ω

such that
∑∫

(k−1,z)∈A
ν(k − 1, z) dz > 0, then

W (B) =

∑∫
(k−1,z)∈B

ν(k − 1, z) dz∑∫
(k−1,z)∈A

ν(k − 1, z) dz
W (A) a.s.

Proof. Remark III.29 and equation (3.50) imply that E[(Wl(A)−Wl+l̂(A))2] = m2Ml̃O(γl−2).

Hence, {Wl(A)}l satisfies the Cauchy criteria and converges to W (A) in L2. Since for any

l̂ > 0

∞∑
l=1

E[(Wl(A)−Wl+l̂(A))2] <∞,

{Wl(A)}l converges to W (A) almost surely as well. Finally, the relation between W (B) and

W (A) follows by the following relation between Wl(A) and Wl(B):

E


Wl(B)−

∑∫
(k−1,z)∈B

ν(k − 1, z) dz∑∫
(k−1,z)∈A

ν(k − 1, z) dz
Wl(A)


2
 = m2MO(γl−2).
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An immediate corollary of the above theorem and Corollary III.24 is the following, which

connects the growth rate and the probability of extinction.

Corollary III.31. If β0 > 1 then the probability of extinction is less than 1. If β0 < 1 then

the probability of extinction equals 1.

Proof. By Theorem III.30 if β0 > 1, then W (A) is positive with non-zero probability. Hence,

the probability of extinction is less than 1. The second part follows by Markov inequality

and Corollary III.24.

3.4.7 Transience of Zl

To analyze the case of β0 = 1 and to show that Zl ∼ β0
lW we need to show transience of

Zn, i.e., Zn either goes to zero or infinity. Consider the generalized Markov Chain introduced

in Section 3.2.2. Recall that Zl(A) is the number of vertices (k − 1, ζ) ∈ A, and Zl(Ω) is

the total number of vertices at generation l. Note that for any κ ∈ N, the probability of

extinction after κ steps conditioned on nø = m, vø = x can be arbitrary small when m is

large. As a result, the same proof technique as in [30, Theorem 11.2, page 69] does not

work in our problem setting. To show the transience of Zl, more work needs to be done.

The following lemma establishes the transience of Zl. We follow the notation introduced in

Section 3.2.2.

Lemma III.32. For all k ≥ 1 and for all ω ∈ PΩ we have,

P({0 < Zl(Ω) ≤ k, infinitely often}) = 0.

Proof. Define PΩ0 to be the set of non-null point distributions with at most k vertices,

PΩ0
:= {ω ∈ PΩ | 0 < ω(Ω) ≤ k}.

Let PΩ0,m be the set of point distributions ω = ((m1, x1), a1; (m2, x2), a2; . . . ; (mk̃, xk̃), ak̃) ∈
PΩ0 such that mi ≤ m for all i. Recall that ∅ denote the null point distribution.

Step 1: Using the same argument as in [30, Theorem 11.2, page 69], we show that

P(Zl ∈ PΩ0,m) = 0. Define Rm(ω) for ω ∈ PΩ as follows:

Rm(ω) = P({Zl ∈ PΩ0,m, infinitely often} |Z0 = ω).
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For P ⊂ PΩ0,m let Qm,2(ω,P ) be the conditional probability that, conditioned on Z0 = ω,

at least one of the point distributions Z2, Z3, · · · are in PΩ0,m and if Zl is the first one, then

Zl ∈ P . Then

Rm(ω) =

∫
PΩ0,m

Rm(ω′)dQm,2(ω, ω′).

Let Rm := supω∈PΩ0,m
Rm(ω). We have

Rm(ω) ≤Rm
∫
PΩ0,m

dQm,2(ω, ω′) =RmQm,2(ω,PΩ0,m). (3.52)

In the proof of Theorem III.4, we show that, if Z0 = (mi, xi), the probability of extinction

after 2 generations is given by (T 2(0)(xi))
mi . Recall that T 2(0)(·) is a decreasing and strictly

positive function. Hence,

Qm,2(ω,PΩ0,m) ≤ 1−
k̃∏
i=1

(
T 2(0)(xi)

)aimi ≤ 1−
(
T 2(0)(0)

)mk
< 1− ε. (3.53)

where ω = ((x1,m1), a1; (x2,m2), a2; · · · ; (xk̃,mk̃), ak̃) and ε > 0 is a constant which depends

only on m and k. Contradiction follows by taking supremum from both sides of (3.52).

Remark III.33. In Step 1 , we proved that the probability of the event {Zl ∈ PΩ0,m, infinitely

often} is zero. However (as PΩ0,m = ∪mPΩ0,m) this approach cannot rule out the possibility

of the event {Zl ∈ PΩ0 , infinitely often}. As an example, there might be a sequence {li}∞i=1

such that Zli ∈ PΩ0,mli
where ml1 < ml2 < ml3 < · · · . In Step 2 , we will prove that such

sequences are unlikely.

Step 2 : For the sake of notational simplicity, we prove the result for k = 1 and then

discuss the general case. Fix the value of m. Note that by the first step, the probability of

hitting PΩ0,m infinitely often is zero. Hence, we need to show that the probability of hitting

P̃Ω0,m := PΩ0 \ PΩ0,m infinitely often is zero to complete the proof.

Remark III.34. By conditional independence, the transition kernel of the generalized Markov

chain from the point distribution ω = ((m1, x1), a1; (m2, x2), a2; . . . ; (mk̃, xk̃), ak̃) ∈ PΩ0 is

exactly the same as the transition kernel from the point distribution ω = ((1, x1),m1×a1; (1,

x2),m2 × a2; . . . ; (1, xk̃),mk̃ × ak̃) which may or may not be in PΩ0 .

Assume k = 1 and let κ ∈ N. Define Q̃m,κ(ω,P ) and R̃m(ω) similar to Qm,2(ω,P ) and

Rm(ω) by considering the set P̃Ω0,m instead of PΩ0,m. Specifically, let Q̃m,κ(ω,P ) be the

conditional probability that, conditioned on Z0 = ω, at least one of the point distributions
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Zκ, Zκ+1, Zκ+2, · · · are in P̃Ω0,m and if Zl is the first one, then Zl ∈ P . Similarly, define

R̃m(ω) for ω ∈ P̃Ω as follows:

R̃m(ω) = P({Zl ∈ P̃Ω0,m, infinitely often} |Z0 = ω).

Assume Z0 = ω = (m1, x1), where m1 ≥ m. Note that the first time Zl ∈ P̃Ω0,m for some

l > 0, m1 − 1 out of m1 branches of Z0 go extinct. Hence, by Remark III.34

R̃m(ω) = m1q(x1)m1−1R̃m(ω̂) (3.54)

where q(·) is the smallest fixed point of the operator T defined in Theorem III.4, and ω̂ = (1,

x1) is a point distribution with only one point of type (1, x1). Next, using the same argument

as in step 1, we have

R̃m(ω̂) ≤ R̃m Q̃m,κ(ω̂, P̃Ω0,m) ≤ R̃m(1− T κ(0)(x1)).

Note that R̃m(ω̂) does note depend on κ. Now, if we take κ to infinity, we have

R̃m(ω̂) ≤ R̃m (1− q(x1)). (3.55)

Combining (3.54) and (3.55), and taking supremum with respect to ω, the result follows by

the fact that m1q(x1)m1−1(1− q(x1)) = Bi(1 ;m1, 1− q(x1)) ≤ 0.5 for m1 ≥ m > 1.

Now consider the case k = 2 and pick ω = ((m1, x1), a1; (m2, x2), a2), where a1 + a2 ≤ 2.

Assume R̃m(ω) > 0. Note that the point distribution ω has m1a1 +m2a2 potential branches

dangling from it. Conditioned on {Zl ∈ P̃Ω0,m, infinitely often} ∩ {Z0 = ω}, if two of these

potential branches survive, do not go extinct at all, then by Remark III.34 we have

P({Zl(Ω) = 1, infinitely often} |Z0 = (1, xi)) > 0,

for some i which is a contradiction. That is to say, conditioned on {Zl∈ P̃Ω0,m, infinitely often}
∩ {Z0 = ω}, if two out of m1a1 +m2a2 potential branches survives with positive probability

then each one will hit point distributions with only one vertex infinitely often.

Hence, only one of these branches can survive. Following the similar logic as before, we

have

R̃m(ω) = m1q(x1)a1m1−1q(x2)a2m2R̃m(ω̂1) +m2q(x1)a1m1q(x2)a2m2−1R̃m(ω̂2) (3.56)

where ω̂1 = (1, x2) and ω̂2 = (1, x2). The result follows by same argument using (3.55). The

111



exact same argument holds for any k > 2 as well, and we get similar relation as (3.56).

The above lemma together with Corollary III.31 and Corollary III.24 have an important

implication which completes the connection between probability of extinction and the growth

rate.

Corollary III.35. If β0 > 1 then the probability of extinction is less than 1. If β0 ≤ 1 then

the probability of extinction equals 1.

3.4.8 Probability of Extinction Revisited

To show that growth rate of Zn is β0 when β0 > 1, i.e., Zn ∼ β0
nW , we need to show that

P(W = 0 |Zn →∞) = 0. As Harris points out in [30, Remark 1, page 28], if there is a positive

probability that Zn →∞ at a rate less than β0, then P(W = 0 |Zn →∞) > 0. To rule out

such a scenario, we need to show that P(W = 0 |nø = m, vø = x) = P({extinction} |nø = m,

vø = x) = q(x)m, where q(·) is given by Theorem III.4. In fact, it is easy to see that

P(W = 0 |nø = 1, vø = x) is a fixed point of the operator T . However, to complete the

argument we need to show that T (·) does not have any fixed point other than q(·) and 1(·).
Using the point process perspective, we can rewrite the operator T as follows:

T (f)(x) =

∫
ω=(m1,x1)∈PΩ or ω=∅

(f(x1))m1dP (1)
ω0

(ω)

where ω0 = (1, x) is the type of the root vertex and P
(1)
ω0 is the one step transition probability

defined in Section 3.2.2. For ease of representation, we define∫
ω=∅

(f(x1))m1dP (1)
ω0

(ω) :=

∫
ω=∅

dP (1)
ω0

(ω) = P(Z1(Ω) = 0|Z0 = (1, x)). (3.57)

Inductively, using the same argument as in Remark III.34 we have

T l(f)(x) =

∫
ω=((m1,x1),a1;··· ;(mk,xk),ak)∈PΩ, k≥0

(f(x1))m1a1 · · · (f(xk))
mkakdP (l)

ω0
(ω), (3.58)

where by k = 0 we mean ω = ∅ which follows the same definition as in (3.57). The

above equality combined with an appropriate test function becomes a powerful tool to study

properties of the operator T and the branching process in general. Recall that q(·) is the

smallest fixed point of the operator T (Theorem III.4).

112



Lemma III.36. If β > 1, then the operator T has two fixed points, one of which is : q(·)
and 1(·). Moreover, for any function f ∈ L(R+; [0, 1]) such that the Lebesgue measure of the

set {x ∈ R+ : f(x) < 1} is positive, T l(f)(x)→ q(x) for all x ∈ R+.

Proof. Consider the function fx0,ε(·) defined as follows

fx0,ε(x) :=

ε if x ≤ x0

1 otherwise
.

The goal is to show that for every large enough x0, there is an ε > 0 such that T (fx0,ε)(x) ≤
q(x) for all x ∈ R+, where q(·) is the smallest fixed point of the operator T . One important

implication of this inequality is:

lim
l→∞

T l(fx0,ε)(x) = q(x), ∀x ∈ R+. (3.59)

Note that for x > 0,

q(x)− T (fx0,ε)(x) =
1

x

(
∞∑
k=1

P (k)

∫ x0

z=0

e−zzk−1

(k − 1)!
min(x, z)(q(z)k−1 − εk−1) dz

−
∞∑
k=1

P (k)

∫ ∞
z=x0

e−zzk−1

(k − 1)!
min(x, z)(1− q(z)k−1) dz

)

≥ 1

x

(
∞∑
k=1

P (k)(q(0)k−1 − εk−1)

∫ x0

z=0

e−zzk−1

(k − 1)!
min(x, z) dz

−
∞∑
k=1

P (k)

∫ ∞
z=x0

e−zzk−1

(k − 1)!
min(x, z) dz

)

By choosing x0 to be large enough, we can make the second term in the parenthesis to

be arbitrary small. Fixing x0, we can choose ε > 0 to be small enough such that q(x) −
T (fx0,ε)(x) > 0 for all x ∈ R+. Note that q(0) > 0 and q(x) is a strictly increasing function.

Now that we have proved (3.59), we use the alternative representation of T l(fx0,ε) as in

(3.58) to prove the lemma. Define the set PM as

PM :=

{
w = ((m1, x1), a1; (m2, x2), a2; · · · ; (mk, xk), ak), k ≥ 0

∣∣∣∣∣ ∑
i s.t. xi≤x0

miai < M

}
.
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Now, we have

T l(fx0,ε)(x) = P(Zl = 0 |Z0 = (1, x))

+

∫
ω∈PM

ε
∑
miaidP (l)

ω0
(ω1)

+

∫
ω∈PΩ\PM

(f(x1))m1a1(f(x2))m2a2 · · · (f(xk))
mkakdP (l)

ω0
(ω1).

Note that, ∫
ω∈PM

ε
∑
miaidP (l)

ω0
(ω1) ≥ εMP(Zl ∈ PM |Z0 = (1, x))

However, by (3.59), the left hand-side of the above inequality goes to 0 as l goes to infinity.

Hence,

P(Zl ∈ PM |Z0 = (1, x))→ 0 as l→∞.

For sake of contradiction, assume that T has another fixed point q̃(·). By Lemma III.5,

we already know that q(x) < q̃(x) < 1 for all x ∈ R+ and that q̃(·) is strictly increasing.

Note that,

q̃(x) = T l(q̃)(x) = P(Zl = 0 |Z0 = (1, x))

+

∫
ω∈PM

(q̃(x1))m1a1(q̃(x2))m2a2 · · · (q̃(xk))mkakdP (l)
ω0

(ω1)

+

∫
ω∈PΩ\PM

(q̃(x1))m1a1(q̃(x2))m2a2 · · · (q̃(xk))mkakdP (l)
ω0

(ω1).

As l goes to infinity, the first term converges to q(x). Using the analysis of fx0,ε , the second

term goes to 0 since∫
ω∈PM

(q̃(x1))m1a1(q̃(x2))m2a2 · · · (q̃(xk))mkakdP (l)
ω0

(ω1) ≤ P(Zl ∈ PM |Z0 = (1, x))
l→∞−−−→ 0.
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Finally, we can bound the third term as follows,∫
ω∈PΩ\PM

(q̃(x1))m1a1(q̃(x2))m2a2 · · · (q̃(xk))mkakdP (l)
ω0

(ω1)

≤ q̃(x0)MP(Zl ∈ PM |Z0 = (1, x)) ≤ q̃(x0)M

since q̃(·) is non-decreasing (Lemma III.5). Combining these inequalities, we have,

q̃(x) = lim
l→∞

T l(q̃)(x) ≤ q(x) + q̃(x0)M

The result follows by letting M to infinity.

Finally, if f ∈ L(R+; [0, 1]) such that the Lebesgue measure of the set {x ∈ R+ : f(x) < 1}
is positive, then by same analysis and the fact that T (f)(x) < 1 for all x ∈ R+, we have

lim
l→∞

T l(f)(x) = q(x) ∀x ∈ R+.

As we pointed out in Section 3.4.6, one implication of the above lemma is Zn ∼ β0
nW .

Theorem III.37. If β0 > 1, then the growth rate of Zn is β0, i.e., P(W = 0 |Zn →∞) = 0.

Moreover, conditioned on Zn →∞, the proportions of different types converges to a constant.

Proof. Let f(x) = P(W = 0|Z0 = (1, x)). Note that,

P(W = 0|Z0 = (m,x)) = (f(x))m,

and

P(W = 0|Z0 = (m,x)) =

∫
ω=(m1,x1)∈PΩ

(f(x1))m1dP (1)
ω0

(ω).

Hence, f(x) is a fixed point of the operator T . On the other hand, by Theorem III.30,

P(W = 0|Z0 = (1, x)) < 1 for all x ∈ R+. Hence, by Lemma III.36, f(·) = q(·). Now, the

result follows by law of total probability. The second part is just a corollary of the first part

and Theorem III.30.
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3.5 Numerical Simulation

In this section, we present some numerical results for the case when P , the distribu-

tion of nø, is the geometric distribution. We start by explicitly determining the the degree

distribution of the root vertex, and Krein-Rutman eigenvalue and the corresponding eigen-

functions of M1. Then we investigate various properties of the resulted EWT and compare

its structural properties with unimodular Galton-Watson Trees [25].

Proposition III.1. Assume P is the geometric distribution with parameter p, i.e., P (k) =

(1− p)k−1p for all k ∈ N. The following hold:

(i) The probability distribution of the root vertex is given as follows:

P(Dø = d) =
p

(1− p)2

1−
d∑

m=0

(
1−p
p

)m
e−

1−p
p

m!

− p

1− p
1{d = 0} ∀d ≥ 0

(ii) The extinction operator T is given as follows:

T (f)(x) :=


px− 1 + e−px

px
+
p

x

∫ ∞
z=0

min(x, z) exp (−z (1− (1− p)f(z))) dz, x > 0

p

∫ ∞
z=0

exp (−z (1− (1− p)f(z))) dz, x = 0

(iii) The Krein-Rutman eigenvalue and the corresponding eigenfunctions of M1 are given

as follows:

Eigenvalue: β0 =
4(1− p)
r0

2 p
,

Right eigenfunction: µ(m,x) =
m

x

J0

(
r0e−

p
2
x
)√∫∞

0
p(1− p)e−py J0

(
r0e−

p
2
y
)2
dy
,

Left eigenfunction: ν(k − 1, z) = P (k)
e−zzk−1

(k − 1)!

J0

(
r0e−

p
2
z
)√∫∞

0
p(1− p)e−py J0

(
r0e−

p
2
y
)2
dy
,

where J0(·) is the zeroth-order Bessel function of first kind J0(x) =
∑∞

i=0
(−1)i

i! i!

(
x
2

)2i
,

and CN = (
∫∞

0
g2(y)L(β0, y)2 dy)−1 is a normalization factor.

Proof. The proofs of part (i) and (ii) are elementary and are presented in the Appendix B.4.
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(iii) Recall the definition of g2 and Gi as in Theorem III.12. We have

g2(x) = e−x
∞∑
k=2

(1− p)k−1p
xk−2

(k − 2)!
= p(1− p)e−px.

Using the above equality together with a simple induction, we get

Gi(x) =

(
1− p
p

)i
e−ipx

i! i!

Substituting the above equality into the definition of L(β, x), we have

L(β, x) =
∞∑
i=0

(
4(1− p)e−px

2pβ

)i
(−1)i

i! i!
= J0

(√
4(1− p)e−px

pβ

)

Note that J0

(√
4(1−p)e−px

pβ

)
is the solution of the following differential equation:

β
d2q

dx2
+ p(1− p)e−px q(x) = 0

as we mentioned in Theorem III.12 part (ii) for the function L(β, x).

Now, Let r0 ≈ 2.4048 denote the smallest zero of J0(·). Recall that β0 is the small-

est root of L(·, 0), and the eigenfunction f0(·) is given by L(β0, ·)
√
CN where CN =

(
∫∞

0
g2(y)L(β0, y)2 dy)−1. Then, by simple algebra

β0 =
4(1− p)
r0

2 p
, and f0(x) =

J0

(
r0e−

p
2
z
)√∫∞

0
p(1− p)e−py J0

(
r0e−

p
2
y
)2
dy
.

The simple form of the geometric distribution makes it easier to study the associated

Erlang Weighted Tree. Next, we numerically compare the degree distribution of EWT with

unimodular Galton-Watson Trees (GWT∗). A GWT∗ with degree distribution Q ∈ P(N )

is a rooted tree, rooted at ø, such that the number of descendants of the root is distributed

as Q, and for all the other vertices, the offspring distribution is given by the size-biased

distribution Q∗:

Q∗(k − 1) =
k Q(k)∑
r r Q(r)

. (3.60)
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Figure 3.2: The degree distribution of the root vertex (zeroth generation) and the first gen-
eration of Erlang Weighted Tree (with potential degree distribution geo(p)), uni-
modular Galton-Watson Trees (with degree distribution Poiss(λ′) and geo(p′)),
and the size-biased degree distribution of the root of EWT. p = 0.08 and the
parameters p′ and λ′ are chosen so that the expected degree of the root vertex
is the same as in EWT.

In Figure 3.2, we compare the degree distribution of the zeroth and the first generation

of EWT with GWT∗. We consider a GWT∗ that has a Poisson degree distribution with

parameter λ′, and a GWT∗ that has a geometric degree distribution with parameter p′.

Both p′ and λ′ are chosen so that the expected degree of the root vertex is the same as

in EWT. We also consider the size-biased distribution of the root vertex of EWT, using

(3.60) and Theorem III.2. In this figure, the potential degree distribution of EWT is the

geometric distribution with parameter 0.08. The degree distribution of EWT has different

behavior compared with GWT∗. Most notably, the degree distribution of the first generation

is not the size-biased distribution of the root vertex, as we also mentioned in Section 3.4.2.

Since there is no closed-form for the degree distribution of the first generation in EWT, we

numerically derive this distribution by averaging over 106 rooted trees.

Next, we compare the degree distribution of different generations of EWT. In Figure 3.3,

we illustrate the degree distribution of the root, the first generation and the second generation

of EWT with potential degree distribution geo(0.08). Since EWT is the random weak limit

of the finite graph model, we numerically derive the degree distribution of the first two

generations of EWT by averaging over 1000 graphs with 10000 vertices. The error bars

are also included in Figure 3.3. Note that the degree distribution of the first generation in

Figures 3.2 and 3.3 are the same. Given the interdependence structure of EWT, the digree

distribution of different generations are not the same. Note that the size-biased distribution

of the root node is close to the degree distribution of the second generation. Intuitively
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speaking, this means that the dependency between the degree distribution of generation l

and the root node fades away as l → ∞. We conjecture that the degree distribution of the

lth generation converges to the size-biased degree distribution of the root vertex. This also

suggest that the growth/extinction rate of EWT should be close to the growth/extinction

rate of GWT∗ with probability distribution given by the degree distribution of the root

vertex in EWT.
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Figure 3.3: The degree distribution of the root vertex (zeroth generation), the first genera-
tion, and the second generation of a Erlang Weighted Tree with potential degree
distribution geo(0.08).
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Figure 3.4: The conditional degree distribution of the first generation, conditioned on the
degree of the root vertex of a Erlang Weighted Tree with potential degree distri-
bution geo(0.08).

Next, in Figure 3.4 we compare the conditional degree distribution of the first generation,

conditioned on the degree of the root node. Similar to Figure 3.3, we use the finite graph

model to estimate the conditional degree distribution. As we pointed out earlier, the degree

distribution of the first generation, D1, depends on the degree distribution of the root vertex,
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Dø. In particular, higher value of Dø increases the probability of observing larger values of

D1.

In Figure 3.5 we compare growth/extinction rate of the EWT with GWT∗. We consider

a GWT∗ that has a Poisson degree distribution with parameter λ′, a GWT∗ that has a geo-

metric degree distribution with parameter p′, and a GWT∗ with degree distribution given by

the degree distribution of the root vertex of EWT. As we mentioned, the growth/extinction

rate of EWT is close to the growth/extinction rate of GWT∗, however, they are not the

same.
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Figure 3.5: The growth rate of Erlang Weighted Tree (with potential degree distribu-
tion geo(p)) and unimodular Galton-Watson Trees (with degree distribution
Poiss(λ′), geo(p′), and the degree distribution of the root vertex in EWT).
p = 0.08 and the parameters p′ and λ′ are chosen so that the expected degree of
the root vertex is the same as in EWT.

Finally, in Figure 3.6 we compare the probability of extinction of EWT with GWT∗. We

consider the same set of unimodular Galton-Watson Trees as before. We also compare the

ratio of vertices in the giant component of the finite graph model (with potential degree

distribution geo(p)), with the random graphs generated by the configuration model (using

the same degree distribution as in the associated GWT∗) and the Erdös-Renyi random graph

(with parameter λ′/n, where n is the number of vertices), in Figure 3.7. We derive the size

of the giant component of the finite graph model by averaging over 1000 graphs with 10000

vertices. The error bars are also included. The configuration model generates a random graph

by uniformly pairing the half-edges assigned to vertices of the graph, where the number of

half-edges assigned to a vertex is given by a fixed degree distribution. The Erdös-Renyi

random graph with parameter λ′/n is given by connecting pairs of nodes to each other with

probability λ′/n. For the configuration model and the Erdös-Renyi random graph model,

this ratio equals 1 − P({extiction}), where P({extiction})is the probability of extinction of

the associated GWT∗ [25]. Figures 3.6 and 3.7 suggests that this is also true for EWT.
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Figure 3.6: The probability of extinction of Erlang Weighted Tree (with potential degree dis-
tribution geo(p)) and unimodular Galton-Watson Trees (with degree distribution
Poiss(λ′), geo(p′), and the degree distribution of the root vertex in EWT). The
parameters p′ and λ′ are chosen so that the expected degree of the root vertex
is the same as in EWT.
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Figure 3.7: The ratio of the giant component of the finite graph model (with potential de-
gree distribution geo(p)), random graphs generated by the configuration model
(with degree distributions geo(p′), and the degree distribution of the root ver-
tex in EWT), and the Erdös-Renyi random graph (with parameter λ′/n). The
parameters p′ and λ′ are chosen so that the degree distribution are the same.
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CHAPTER IV

Planted Matching Problem

Notation: The exponential distribution with rate ν is denoted by Exp(ν). Its cumulative

distribution function is P[x > t] = e−νt and its mean is 1/ν. For a Borel space (S,S)

consisting of a set S and a σ-algebra S, P(S) is the set of all Borel probability measures

defined on S. We use Z for the integers, N0 = {0, 1, 2, . . .} and N+ = {1, 2, . . .} for the

natural numbers, and R+ for the set of non-negative real numbers. The number of elements

of a set A is denoted by |A|. Random variables are denoted by capital letters; when we need

to refer to a specific realization we sometimes use small letters.

4.1 Introduction

Consider a weighted complete bipartite graph Kn,n with an unknown perfect matching

M∗, where for each edge e the weight we is independently distributed according to P when

e ∈ M∗ and Q when e /∈ M∗. The goal is to recover the “hidden” or “planted” matching

M∗ from the edge weights.

This problem is inspired by the long history of planted problems in computer science,

where an instance of an optimization or constraint satisfaction problem is built around a

planted solution in some random way. As we vary the parameters used to generate these

instances, such as the size of a hidden clique or the density of communities in the stochastic

block model of social networks, we encounter phase transitions in our ability to find this

planted solution, exactly or approximately. In an inference problem, the instance corresponds

to some noisy observation, such as a data set produced by a generative model, and the planted

solution corresponds to the ground truth—the underlying structure we are trying to discover.

More concretely, we are motivated by the problem of tracking moving objects in a video,

such as flocks of birds, motile cells, or particles in a fluid. Figure 4.1, taken from [1], shows

two frames of such a video, where each particle has moved from its original position by some
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amount. Our goal is then to find the most-likely matching between the two frames, assuming

some probability distribution of these displacements.

Figure 4.1: On the left, the positions of particles in two frames of a video, with one frame
red and the other blue. On the right, an inferred matching, hypothesizing how
each particle has moved from one frame to the next. Taken from [1].

For many planted problems such as Hidden Clique (e.g. [80]) or community detection

in the stochastic block model (e.g. [81, 82]), there are two types of thresholds: information-

theoretic and computational. When these are distinct, the region in between them has the

interesting property that finding the planted solution, or at least approximating it better

than chance, is information-theoretically possible but (conjecturally) computationally hard.

These regions are also known as statistical-computational gaps.

In the planted matching problem, one obvious estimator to try is the minimum weight

matching (a.k.a. the linear assignment problem) which can be found in polynomial time.

The natural question is then, as a function of the distributions P and Q on the planted and

un-planted edges, how much the minimum matching Mmin has in common with the planted

matching M∗. In general, we define the overlap of an estimator M ′ with M∗ as (assuming

that |M ′| = n)

overlap(M∗,M ′) = 1− 1

2n
|M∗4M ′| = 1

n
|M∗ ∩M ′| . (4.1)

We say that M ′ achieves almost perfect recovery if E[overlap(M∗,M ′)] = 1− o(1), or equiv-

alently if overlap(M∗,M ′) = 1− o(1) with high probability. We say that M achieves partial

recovery if E[overlap(M∗,M ′)] > 0 as n→∞.

Chertkov et al. [1] studied the case where P = |N (0, κ)| is a folded Gaussian and Q is

the uniform distribution over [0, n]. When κ = O(1), the planted edges are competitive with

the lightest un-planted edges at each vertex, which have expected weight 1. This suggests a

phase transition in this regime, and indeed they predicted a transition from almost perfect
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recovery to partial recovery at κ ≈ 0.17 using the cavity method of statistical physics.

We focus on exponential weight distributions, P = Exp(λ) and Q = Exp(1/n), so that

the planted and un-planted weights have expectation 1/λ and n respectively. For this family

of distributions we obtain exact results, proving a transition from almost perfect recovery to

partial recovery at λ = 4, and determining the expected overlap between M∗ and Mmin for

λ < 4.

Many of our results apply more generally for any distribution of un-planted edge weights

with density Q′(0) = 1/n, such as when Q is uniform in the interval [0, n]. However, our

assumption that the planted weights P are exponentially distributed is important for two

reasons. First, it makes possible to exactly analyze a message-passing algorithm, and obtain

precise results for the expected overlap. Secondly, it has the pleasing consequence of making

Mmin the maximum-likelihood estimator for M∗. To see this, note that all n! matchings are

equally likely a priori. Let G denote the observed complete bipartite graph with edge weights

W . The posterior probability for a given matching M ′, i.e., P[M∗ = M ′ | G], is proportional

to the density

P[G |M ′] =
∏
e∈M ′

P (we)
∏
e/∈M ′

Q(we) ∝
∏
e∈M ′

exp(−(λ− 1/n)we)

= exp

(
−(λ− 1/n)

∑
e∈M ′

we

)
.

(4.2)

Thus maximizing the likelihood is equivalent to minimizing the total weight of M ′.

Our main results are as follows.

� In Theorem IV.1, we show that the minimum matching Mmin achieves almost perfect

recovery with high probability whenever λ ≥ 4. This proof is a simple first-moment

argument using the expected number of augmenting cycles of each length.

� In Theorem IV.1, we compute the expected overlap between M∗ and Mmin for λ < 4,

showing that it is an explicit function α(λ) given by a system of differential equations.

The proof of Theorem IV.1 takes up most of the chapter. Our proof is inspired by Aldous’

analysis of the minimum matching in the un-planted case where all edges have the same

weight distribution with Q′(0) = 1/n. Using the machinery of local weak convergence [20,

21, 24] Aldous gave a rigorous justification for the cavity method of statistical physics [22],

modeling Kn,n as a Poisson-weighted infinite tree (PWIT). The cost of matching a vertex

with one of its children then follows a probability distribution which is the fixed point of

a recursive distributional equation (RDE) which can then be transformed into an ordinary
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differential equation (ODE). Solving this ODE proves the conjecture of Mézard and Parisi [22]

that the expected cost per vertex is ζ(2) = π2/6.

Generalizing Aldous’ analysis to the planted case presents several challenges. We now

have an infinite weighted tree we call the planted PWIT with two types of edges and two

types of vertices, since the partner of a vertex in M∗ can be its parent or one of its children.

The cost of matching a vertex with a child follows a pair of probability distributions fixed

by a system of RDEs, which (when P is exponential) we can transform into a system of four

coupled ODEs. We use techniques from dynamical systems to show that this system has a

unique solution consistent with its boundary conditions, and express the expected overlap

α(λ) as an integral involving this solution.

While we focus on the case where P is exponential, we claim that a qualitatively similar

picture to Theorems IV.1 and Theorem IV.1 holds for other distributions of planted weights.

Indeed, much of our proof applies to any distribution P , including the general framework

of a message-passing algorithm on the planted PWIT, and the resulting system of RDEs.

Thus while the location of the threshold and the overlap would change, in any one-parameter

family of distributions P we expect there to be a phase transition from almost-perfect to

partial recovery when P ’s expectation crosses some critical value.

The organization of the rest of the chapter is as follows: In Section 4.2, we use the first

moment method to prove that almost exact recovery is possible for λ ≥ 4. In Section 4.3,

we calculate the exact value of overlap(M∗,Mmin) for λ < 4, as number of nodes grows

without bound, using local weak framework. The remaining of the chapter focuses on the

details of the local weak convergence: in Section 4.4, we discuss the machinery of local weak

convergence; in Section 4.5, we define the planted PWIT, and we show the convergence of

the planted model to the planted PWIT in local weak sense; in Section 4.6, we characterize

the minimum matching on planted PWIT, that satisfies some modest symmetry condition

called involution invariance; Finally in Section 4.7, we prove that the minimum matching on

bipartite graphs given by the planted model converges to the minimum involution invariant

matching on planted PWIT. Some proofs are presented in the Appendix.

4.2 Almost Perfect Recovery for λ ≥ 4

We start by proving that the minimum matching achieves almost perfect recovery when-

ever λ ≥ 4.

Theorem IV.1. For any λ ≥ 4, we have E[overlap(M∗,Mmin)] = 1 − o(1). In particular,

E[|M∗4Mmin|] is O(1) for λ > 4 and O(
√
n) for λ = 4.
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To prove Theorem IV.1, we use the following Chernoff-like bound on the probability that one

Erlang random variable exceeds another. The proof is elementary and appears in Appendix

C.1.

Lemma IV.2. Suppose X1 is the sum of t independent exponential random variables with

rate λ1, and X2 is the sum of t independent exponential random variables with rate λ2 (and

independent of X1) where λ1 > λ2. Then

P[X1 > X2] ≤
(

4λ1λ2

(λ1 + λ2)2

)t
≤
(

4λ2

λ1

)t
.

Proof of Theorem IV.1. An alternating cycle is a cycle in Kn,n that alternates between

planted and un-planted edges, and an augmenting cycle is an alternating cycle C where

the total weight of its planted edges C ∩M∗ exceeds that of its un-planted edges C \M∗.

Now recall that the symmetric difference M∗4Mmin is a disjoint union of augmenting

cycles. The number of cyclic permutations of t things is (t − 1)!. Thus the number of

alternating cycles of length 2t, i.e., containing t planted edges and t un-planted edges, is at

most (
n

t

)
(t− 1)! =

1

t
nt
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− t− 1

n

)
≤ 1

t
nt e−t(t−1)/(2n) . (4.3)

Applying Lemma IV.2 with λ1 = λ and λ2 = 1/n, the probability that a given alternating

cycle of length 2t is augmenting is at most (4/(λn))t.

Now the size of the symmetric difference |M∗4Mmin| is at most the total length of all

augmenting cycles. By the linearity of expectation, its expectation is bounded by

E[|M∗4Mmin|] ≤
n∑
t=1

2t

(
4

λn

)t
1

t
nt e−t(t−1)/(2n) ≤ 2e1/2

∞∑
t=1

(
4

λ

)t
e−t

2/(2n) .

When λ > 4 the geometric sum
∑∞

t=1(4/λ)t converges, giving E[|M∗4Mmin|] = O(1). When

λ = 4, we have
∑∞

t=1 e−t
2/(2n) ≤

∫∞
0

e−t
2/(2n)dt =

√
πn/2, so E[|M∗4Mmin|] = O(

√
n).

To complete the proof, let ω(1) be any function of n that tends to infinity. By Markov’s

inequality, with high probability |M∗4Mmin| is less than ω(1) times its expectation, and

(4.1) gives w.h.p. overlap(M∗,Mmin) = 1− o(1).

We note that when λ > 4 is sufficiently large we have E[|M∗4Mmin|] < 1, implying that

Mmin achieves perfect recovery, i.e., Mmin = M∗, with positive probability. We also note that

a similar argument shows that, for λ < 4, the overlap is w.h.p. at least 1− 2 log 4
λ
. But this

bound is far from tight, and below we give much more precise results.
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4.3 Exact Results for the Expected Overlap when λ < 4

In this section we provide a characterization of the asymptotic overlap of Mmin, showing

exactly how well Mmin achieves partial recovery when λ < 4.

Theorem IV.1. Suppose 0 < λ < 4 is a fixed constant. Then the expected overlap between

the minimum matching and the planted one is

lim
n→∞

1

n
E[|Mmin ∩M∗|] = α(λ) ,

where

α(λ) = 1− 2

∫ ∞
0

(1− F (x)) (1−G(x))V (x)W (x) dx < 1 , (4.4)

and where (F,G, V,W ) is the unique solution to the coupled system of ordinary differential

equations (4.11)–(4.14) given below with boundary conditions (4.15)–(4.16).

Proof. We start by relating the planted model (`n, Kn,n) where `n denotes the random

edge weights, to a type of weighted infinite tree (`∞, T∞) as Aldous did for the un-planted

model [20, 21]. This tree corresponds to the neighborhood of a uniformly random vertex,

where “local” is defined in terms of shortest path length (sum of edge weights). While Kn,n

has plenty of short loops, this neighborhood is locally treelike since it is unlikely to have any

short loops consisting entirely of low-weight edges.

Starting at a root vertex ø, we define the tree T∞ shown in Figure 4.2. The root has a

planted child, i.e., a child connected to it by a planted edge (bold in red), and a series of un-

planted children (solid blue). We label these vertices with strings of integers as follows: the

root is labeled with the empty string ø. Appending 0 to a label indicates the planted child

of that parent, if it has one—that is, if its partner in the planted matching is a child rather

than its parent. We indicate the un-planted children by appending i for i ∈ {1, 2, 3, . . .}.
We sort the un-planted children of each vertex so that the one labeled with i is the

ith lightest, i.e., has the ith lightest edge. Since the distribution of un-planted weights has

density Q′(0) = 1/n at 0, these weights are asymptotically described by the arrivals of a

Poisson process with rate 1, while the weight of the planted edges are distributed as Exp(λ).

We call the resulting structure the planted Poisson weighted infinite tree, or planted PWIT,

and use `∞ to denote its edge weights. We define all this formally in Section 4.4 and Section

4.5, and prove that the finite planted model (`n, Kn,n) weakly converges to (`∞, T∞).

Following Aldous [21], in Section 4.6 we then construct a matching ℳ∞,opt on the planted

PWIT. Crucially, it has a symmetry property called involution invariance, which roughly

speaking means that it treats the root just like any other vertex in the tree. We prove that

it is the unique involution invariant matching that minimizes the expected cost at the root.
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Figure 4.2: The planted Poisson weighted infinite tree (planted PWIT) (`∞, T∞) with the
labeling scheme described in the text. The bold red edges are planted edges and
the solid blue edges are un-planted. The root is the empty string ø. Appending
0 to the label of a vertex indicates its planted child, if any, while appending i ≥ 1
indicates its un-planted child with the ith lightest edge.

We define ℳ∞,opt in terms of the fixed point of a message-passing algorithm that com-

putes, for each vertex v, the cost of matching v with its best possible child. This cost is the

minimum over v’s children w of the weight of the edge between them, minus the analogous

cost for w:

Xv = min
children w of v

(`∞(v, w)−Xw) .

Now suppose that the Xw’s are independent, and our goal is to compute the distribution of

Xv. Unlike the un-planted model, the two types of children will have their Xw drawn from

two different distributions. In the first case, w is v’s planted child, and w’s children are all

un-planted. In the second case, w is an un-planted child of v, and has a planted child of its

own. Let X and Y denote the distributions of Xw in these two cases. Then assuming that

Xv obeys the appropriate distribution gives the following system of recursive distributional

equations (RDE)s:

X
d
= min{ζi − Yi}∞i=1 (4.5)

Y
d
= min(η −X, {ζi − Yi}∞i=1)

d
= min(η −X,X ′) , (4.6)

where the Yi’s are assumption, X and X ′ are assumption, η ∼ Exp(λ), and the ζi for i = 1,

2, . . . are jointly distributed as the arrivals of a Poisson process of rate 1.

In general, analyzing recursive distributional equations (RDEs) is very challenging, since

they act on the infinite-dimensional space of probability distributions over the reals. How-
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ever, it is sometimes possible to “collapse” them into a finite-dimensional system of ordinary

differential equations. For the un-planted case of the random matching problem, Aldous [21]

derived a single differential equation whose solution is the logistic distribution. For the

planted case, we use a similar approach, but arrive at a more complicated system of four

coupled ODEs.

Lemma IV.2. Let fX , fY , FX(x) = P[X < x] and FY (y) = P[Y < y] denote the probability

density functions and cumulative distribution functions (CDFs) of X and Y , and let F̄X =

1− FX and F̄Y = 1− FY . If (4.5)–(4.6) have a solution, then

dFX(x)

dx
= F̄X(x)F̄X(−x)E[FX(η + x)]. (4.7)

Proof. First note that (4.6) gives

F̄Y (y) = F̄X(y)E[FX(η − y)] . (4.8)

Now the pairs {(ζi, Yi)} in (4.5) form a two-dimensional Poisson point process {(z, y)} on

R+ × R with density fY (y) dz dy. We have X > x if and only if none of these points have

z − y < x, so

F̄X(x) = exp

(
−
∫∫

z−y<x
fY (y) dz dy

)
= exp

(
−
∫ ∞
z=−x

F̄Y (z) dz

)
. (4.9)

Taking derivatives of both sides of this equation with respect to x and using (4.8) gives

fX(x) =
dFX(x)

dx
= −dF̄X(x)

dx
= F̄X(x)F̄Y (−x) = F̄X(x)F̄X(−x)E[FX(η + x)] .

For the sake of simplicity, we omit the subscript X in FX(·) in the sequel. Define

G(x) = F (−x), V (x) = E[F (η + x)], W (x) = V (−x). (4.10)

Lemma IV.3. When η ∼ Exp(λ), F is a solution to (4.7) if and only if (F,G, V,W ) is a

solution to the following four-dimensional system of ordinary differential equations (ODEs):

dF

dx
= (1− F (x))(1−G(x))V (x) (4.11)

dV

dx
= λ(V (x)− F (x)) (4.12)
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dG

dx
= −(1− F (x))(1−G(x))W (x) (4.13)

dW

dx
= λ(G(x)−W (x)) (4.14)

with the boundary conditions

F (−∞) = V (−∞) = G(+∞) = W (+∞) = 0

F (+∞) = V (+∞) = G(−∞) = W (−∞) = 1.
(4.15)

and

0 ≤ F,G ≤ 1, 0 < V,W ≤ 1 . (4.16)

Proof. For one direction, suppose F is a solution to (4.7). Then (4.11) and (4.13) directly

follow from (4.7) by plugging in the definition of (F,G, V,W ); thus they hold for any dis-

tribution of η. In contrast, (4.12) and (4.14) are derived via integration by parts under the

assumption that η ∼ Exp(λ). The conditions (4.15) and (4.16) hold because F must be a

valid CDF. Note that V (x),W (x) > 0 for any finite x by definition, as η is larger than any

fixed threshold with a positive probability.

For the other direction, suppose F is a solution to the system of ODEs (4.11)–(4.14) with

conditions (4.15)–(4.16). Clearly F satisfies (4.7). We only need to verify that F is a valid

CDF, which is equivalent to checking (1) F is non-decreasing; (2) F (+∞) = 1 and F (−∞) =

0; and (3) F is right continuous. All these properties are satisfied automatically.

We comment that RDEs can be solved exactly for some other problems with random

vertex or edge weights in the case of the exponential distribution, such as maximum weight

independence sets and maximum weight matching in sparse random graphs [83–85]. In some

cases this is simply because the minimum of a set of exponential random variables is itself

an exponential random variable. To our knowledge our situation involving integration by

parts is more unusual.

An interesting consequence of (4.11)–(4.16) is the following conservation law:

F (x)W (x) +G(x)V (x)− V (x)W (x) = 0, (4.17)

which further implies that V (0) = 2F (0).

Surprisingly, we find that the system (4.11)–(4.14) exhibits a sharp phase transition at

λ = 4. On the one hand, when λ ≥ 4, they have no solution consistent with (4.15)–(4.16),

corresponding to Theorem IV.1 that we have almost perfect recovery in that case. To see
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this, assume that V (x) 6= 0 and introduce a new function U(x) as

U(x) =
F (x)

V (x)
.

Then U(x) is differentiable and satisfies:

dU

dx
= −λU(1− U) + (1− F )(1−G). (4.18)

Lemma IV.4. If λ ≥ 4, then the system of ODEs (4.11)–(4.14) with conditions (4.15)–

(4.16) has no solution.

Proof. We prove by contradiction. Suppose the system of ODEs (4.11)–(4.14) has a solution

satisfying the conditions (4.15)–(4.16). Then U(x)→ 1 as x→ +∞ and by the conservation

law U(0) = F (0)/V (0) = 1/2. Moreover, since F,G ≥ 0, it follows from (4.18) that

dU

dx
≤ −λU(1− U) + 1.

We claim that U(x) ≤ 1/2 for all x ≥ 0. Suppose not. By the differentiability of U(x) and

U(0) = 1/2, there must exist x0 > 0 s.t. U(x0) = 1/2 and U ′(x0) > 0, which contradicts

U ′(x) ≤ 0 whenever U(x) = 1/2 and λ ≥ 4. Thus U(x) ≤ 1/2 for all x, which contradicts

the fact that U(x)→ 1 as x→∞.

On the other hand, Theorem C.1 in Appendix C.2 proves that for all λ < 4, there is

a unique solution to (4.11)–(4.14) consistent with the conditions (4.15)–(4.16), and hence

giving the CDFs of X and Y . The idea hinges on a dynamical fact, namely that the (U, V,

W ) = (1, 1, 0) is a saddle point, and there is a unique initial condition that approaches it as

x→∞ along its unstable manifold.

Along with Lemma IV.3, this unique solution to the ODEs gives the unique solution to

the RDEs (4.5) and (4.6). Moreover Theorem IV.1 in Section 4.7 tells us that the expected

overlap of Mmin converges to that of ℳ∞,opt, which in turn is the probability that the edge

weight of a planted edge is less than the cost of matching its endpoints to other vertices:

lim
n→∞

1

n
E[|Mmin ∩M∗|] = α(λ) = P[η < X +X ′] ,

where X and X ′ are assumption with CDF given by F and η ∼ Exp(λ) is independent.
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Figure 4.3: The solid blue line is α(λ) computed by numerically solving the system of ODEs
(4.11)–(4.14). The red dots are computed by finding the minimum matching on
bipartite graphs generated by the planted model with n = 1000. Each dot is the
average of 10 independent trials.

Finally, we compute P[η < X + X̂] as follows:

P[η < X + X̂] = 1− Eη
[∫ +∞

−∞
f(x)F (η − x) dx

]
= 1−

∫ +∞

−∞

dF (x)

dx
Eη[F (η − x)] dx

= 1−
∫ +∞

−∞
(1− F (x))(1−G(x))V (x)W (x) dx

= 1− 2

∫ +∞

0

(1− F (x))(1−G(x))V (x)W (x) dx .

where in the last line we used the fact that the integrand is an even function of x.

This completes the proof of Theorem IV.1. To illustrate our results, we plot the function

α(λ) in Figure 4.3, and compare with experimental results from finite graphs with n =

1000.

We comment that the connection between the finite planted model and the planted PWIT

is an integral part of the above argument. We explore this connection in detail in Sections

4.4–4.7. The results presented in these sections are true for any distribution of un-planted

edge weights with density Q′(0) = 1/n, and any distribution of planted edge weights P .

4.4 Planted Networks and Local Weak Convergence

In this section and the succeeding ones we define the planted Poisson Weighted Infinite

Tree (planted PWIT), define a matching ℳ∞,opt on it, prove that it is optimal and unique,
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and prove that the minimum weight matching Mn,min on Kn,n converges to it in the local

weak sense. We follow the strategy of Aldous’ celebrated proof of the π2/6 conjecture in the

un-planted model [20, 21], and in a few places the review article of Aldous and Steele [24].

There are some places where we can simply re-use the steps of that proof, and others where

the planted model requires a nontrivial generalization or modification, but throughout we

try to keep our proof as self-contained as possible.

In this section we lay out our notation, and formally define local weak convergence. We

apologize to the reader in advance for the notational complications they are about to endure:

there are far too many superscripts, subscripts, diacritical marks, and general doodads on

these symbols. But some level of this seems to be unavoidable if we want to carefully define

the various objects and spaces we need to work with.

Our graphs will be simple and undirected unless otherwise specified. Given an undirected

graph G = (V,E), a (perfect) matching M ⊂ E is a set of edges where every vertex v ∈ V
is incident to exactly one edge in M . For each v, we refer to the unique v′ such that {v,
v′} ∈M as the partner to v, and will sometimes denote it as M(v); then M(M(v)) = v. In a

bipartite graph, a matching defines a one-to-one correspondence between the vertices on the

left and those on the right. In a forgivable abuse of notation, will often write M(v, v′) = 1

if {v, v′} ∈M and 0 otherwise.

A rooted graph G◦ = (V,E, ø) is a graph G = (V,E) with a distinguished vertex ø ∈ V .

The height of a vertex v ∈ V in a rooted graph G◦ = (V,E, ø) is the shortest-path distance

from ø to v, i.e., the minimum number of edges among all paths from ø to v.

A planted graph G = (V,E,M∗) is a graph (V,E) together with a planted matching

M∗ ⊂ E. Similarly a rooted planted graph G◦ = (V,E,M∗, ø) is a planted graph with a

distinguished vertex ø. We refer to the edges in M∗ and E \M∗ as the planted edges and

un-planted edges respectively.

Two planted graphs G = (V,E,M∗) and G′ = (V ′, E ′,M∗′) are said to be isomorphic if

there exists a bijection γ : V → V ′ such that {v1, v2} ∈ E if and only if γ({v1, v2}) := {γ(v1),

γ(v2)} ∈ E ′, and {v1, v2} ∈ M∗ if and only if γ({v1, v2}) = {γ(v1), γ(v2)} ∈ M∗′. Thus

the isomorphism γ preserves the planted and un-planted edges. A rooted isomorphism from

G◦ = (V,E,M∗, ø) to G′◦ = (V ′, E ′,M∗′, ø′) is an isomorphism between G = (V,E,M∗) and

G′ = (V ′, E ′,M∗′) such that γ(ø) = ø′.

Next we endow a planted graph with a weight function. A planted network N = (G, `) is

a planted graph G = (V,E,M∗) together with a function ` : E → R+ that assigns weights

to the edges. For the sake of brevity, we write `(v, w) instead of `({v, w}).
Now let Kn,n = (Vn, En,M

∗
n) denote a complete bipartite graph together with a planted

matching. We use [n] to denote the set of integers {1, 2, . . . , n}. We label the vertices on the
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Figure 4.4: A realization of (K4,4, `4) for n = 4 and λ = 1. Red bold edges are in M∗
n

(planted edges), and solid blue edges are in En \M∗
n.

left-hand side of Kn,n as {1, 2, . . . , n}, and the vertices on the right-hand side as {1′, 2′, . . . ,
n′}. In a slight abuse of notation, we denote these sets of labels [n] and [n′] respectively. Thus

Vn = [n]∪ [n′], En = {{i, j′} : i ∈ [n] and j′ ∈ [n′]}, and M∗
n = {{i, i′} : i ∈ [n] and i′ ∈ [n′]}.

Let `n denote a random function that assigns weights to the edges of Kn,n as follows:

if e ∈ M∗, then `n(e) ∼ Exp(λ), and if e /∈ M∗
n then `n(e) ∼ Exp(1/n). We denote the

resulting planted network as (Kn,n, `n). We denote the minimum matching on (Kn,n, `n) as

Mn,min. Figure 4.4 illustrates a realization of the planted model.

We want to define a metric on planted networks, or rather on their isomorphism classes.

Two planted networks N = (G, `) and N ′ = (G′, `′) are isomorphic if there is an isomorphism

γ between G and G′ that preserves the length of the edges, i.e., if `(v1, v2) = `′(γ(v1), γ(v2)).

A rooted planted network N◦ = (G◦, `) is a rooted planted graph G◦ together with a weight

function `, and we define rooted isomorphism as before. Let [N◦] denote the class of rooted

planted networks that are isomorphic to N◦. Henceforth, we use N◦ to denote a typical

member of [N◦].

Next, we define a distance function d`(v, v
′) as the shortest-path weighted distance be-

tween vertices but treating planted edges as if they have zero weight. That is,

d`(v, v
′) := inf

paths p from v to v′

∑
e∈p\M∗

`(e) . (4.19)

For any vertex v ∈ V and any ρ ∈ R+, we can consider the neighborhood Nρ(v) = {v′ : d`(v,
v′) ≤ ρ}. A network is locally finite if |Nρ(v)| is finite for all v and all ρ.
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Now let G∗ denote the set of all isomorphism classes [N◦], where N◦ ranges over all

connected locally finite rooted planted networks. There is a natural way to equip G∗ with a

metric. Consider a connected locally finite rooted planted network N◦ = (G◦, `). Now, for

ρ ∈ R+, we can turn the neighborhood Nρ(ø) into a rooted subgraph (G◦)ρ. To be precise,

(G◦)ρ = (Vρ, Eρ,M
∗
ρ , ø) is given as follows:

1. Vertex set : Vρ = Nρ(ø) = {v : d`(v, ø) ≤ ρ}.

2. Edge set : e ∈ Eρ if e ∈ p for some path p starting from ø such that
∑

e∈p\M∗ `(e) ≤ ρ.

3. Planted matching : M∗
ρ = M∗ ∩ Eρ.

Given this definition, for any [N◦], [N
′
◦] ∈ G∗ a natural way to define a distance is

d([N◦], [N
′
◦]) =

1

R + 1
,

where R is the largest ρ at which the corresponding rooted subnetworks ((G◦)ρ, `) and

((G′◦)ρ, `
′) cease to be approximately isomorphic in the following sense:

R = sup

{
ρ ≥ 0 :

there exists a rooted isomorphism γρ : (G◦)ρ →
(G′◦)ρ such that ∀e ∈ Eρ, |`(e)− `′(γρ(e))| < 1/ρ

}
. (4.20)

(Note that this isomorphism is between the rooted subgraphs (G◦)ρ and (G′◦)ρ, not the

corresponding rooted networks, so it is not required to preserve the weights exactly.) In

other words, N◦ and N ′◦ are close whenever there is a large neighborhood around ø where the

edge weights are approximately the same, up to isomorphism. In particular, a continuous

function is one that we can approximate arbitrarily well by looking at larger and larger

neighborhoods of the root.

Equipped with this distance, we say that a sequence ([Nn,◦ = (Gn,◦, `n)])∞n=1 converges

locally to [N∞,◦], and write [Nn,◦]
loc−→ [N∞,◦], if the following holds: for all ρ ∈ R+ such that

N∞,◦ does not have a vertex at a distance exactly ρ from the root ø, there is an nρ ∈ N0

such that for all n > nρ there is a rooted isomorphism γn,ρ : (Gn,◦)ρ → (G∞,◦)ρ such that

`n(γ−1
n,ρ(e)) → `(e) for all e ∈ Eρ where Eρ is defined from G∞,◦ as above. That is, as n

increases, Nn,◦ becomes arbitrarily close to N∞,◦ on arbitrarily large neighborhoods.

It is easy to check that d defines a metric on G∗. Moreover, G∗ equipped with this

metric is a Polish space: a complete metric space which is separable, i.e., it has a countable

dense subset. Hence, we can use the usual tools in the theory of weak convergence to

study sequence of probability measures on G∗. More precisely, define P(G∗) as the set of all

probability measures on G∗ and endow this space with the topology of weak convergence: a
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sequence µn ∈ P(G∗) converges weakly to µ∞, denoted by µn
w−→ µ, if for any continuous

bounded function f : G∗ → R, ∫
G∗
f dµn →

∫
G∗
f dµ∞.

Since G∗ is a Polish space, P(G∗) is a Polish space as well with the Lévy-Prokhorov metric [86,

pp. 394–395, Thm. 11.3.1 and Thm. 11.3.3]. Also, Skorokhod’s theorem [87, p. 79, Thm.

4.30] implies that µn converges weakly to µ∞ if an only if there are random variables [Nn,◦]

and [N∞,◦] defined over G∗ such that [Nn,◦] ∼ µn, [N∞,◦] ∼ µ∞, and [Nn,◦]
loc−→ [N∞,◦] almost

surely.

This notion of convergence in G∗ was first discussed by Aldous and Steele in [24]. It

is called local weak convergence to emphasize the fact that this notion of convergence only

informs us about the local properties of measure around the root. We are going to use this

framework to study the asymptotics of a sequence of finite planted networks. This method-

ology is known as the objective method [24] and has been used to analyze combinatorial

optimization problems in a variety of random structures (e.g. [24,83–85,88,89]).

In order to apply this machinery to random finite planted networks, consider a finite

planted network N = (G, `). For a vertex v ∈ V , let N◦(v) denote the planted network rooted

at v consisting of v’s connected component. Then we can define a measure U(N) ∈ P(G∗)
as follows,

U(N) =
1

|V |
∑
v∈V

δ[N◦(v)] , (4.21)

where δ[N◦(v)] ∈ P(G∗) is the Dirac measure that assigns 1 to [N◦(v)] ∈ G∗ and 0 to to any

other member of G∗. In other words, U(N) is the law of [N◦(ø)] where ø is picked uniformly

from V . Now, to study the local behavior of a sequence of finite networks (Nn)n, the objective

method suggests studying the weak limit of the sequence of measures (U(Nn))n.

Definition IV.1. (Random Weak Limit) A sequence of finite planted networks (Nn)∞n=1

has a random weak limit µ ∈ P(G∗) if U(Nn)
w−→ µ.

IfNn is a random planted network, we replace U(Nn) in the above definition with EU(Nn),

where

EU(N) (A) := E[U(N)(A)] for all Borel sets A ⊆ G∗, (4.22)

and the expectation is taken with respect to the randomness of N . For us, in both (Kn,n, `n)

and the weighted infinite tree (N∞,◦, `∞) we define below, the only source of randomness is

the edge weights. It is easy to see that if N is vertex transitive, so that every vertex has the

same distribution of neighborhoods, then EU(N) is the law of [N(ø)] (or of [N(v)] for any
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vertex v). In many settings, e.g. sparse Erdős-Rényi graphs, U(N) converges in distribution

to N(ø), since averaging over all possible root vertices effectively averages over N as well.

But taking the expectation over N as we do here avoids having to prove this.

Not all probability measures µ ∈ P(G∗) can be random weak limits. The uniform rooting

in the measure associated with finite networks implies a modest symmetry property on the

asymptotic measure. One necessary condition for a probability measure to be a random

weak limit is called unimodularity [44].

To define unimodularity, let G∗∗ denote the set of all isomorphism classes [N◦◦], where

N◦◦ ranges over all connected locally finite doubly-rooted planted networks—that is, networks

with an ordered pair of distinguished vertices. We define G∗∗ as the set of equivalence classes

under isomorphisms that preserve both roots, and equip it with a metric analogous to (4.20)

to make it complete and separable. A continuous function f([N◦◦(ø, v)]) is then one which we

can approximate arbitrarily well by looking at neighborhoods of increasing size that contain

both ø and v.

Then we can define unimodularity as follows:

Definition IV.2. (Unimodularity) A probability measure µ ∈ P(G∗) is unimodular if for

all Borel functions f : G∗∗ → R+,∫
G∗

∑
v∈V

f([N◦◦(ø, v)]) dµ([N◦(ø)]) =

∫
G∗

∑
v∈V

f([N◦◦(v, ø)]) dµ([N◦(ø)]) . (4.23)

In other words, the expectation over µ of the sum (either finite or +∞) over all v of

f([N◦◦(ø, v)]) remains the same if we swap ø and v. Since in a connected graph we can swap

any vertex v with ø by a sequence of swaps between ø and its neighbors, each of which moves

v closer to the root, this definition is equivalent to one where we restrict f to Borel functions

with support on {[N◦◦(ø, v)] | ø and v are neighbors}. With this restriction, unimodularity

is known as involution invariance [44, Prop. 2.2]:

Lemma IV.3. (Involution Invariance) A probability measure µ ∈ P(G∗) is unimodular

if and only if (4.23) holds for all Borel functions f : G∗∗ → R+ such that f([N◦◦(ø, v)]) = 0

unless {ø, v} ∈ E.

Aldous in [24] uses another characterization of involution invariance. Given a probability

measure µ ∈ P(G∗), define a measure µ̃ on G∗∗ as the product measure of µ and the counting

measure on the neighbors of the root, i.e.,

µ̃(·) :=

∫
G∗

∑
v:{ø,v}∈E

1([N◦◦(ø, v)] ∈ ·) dµ([N◦(ø)]), (4.24)
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where 1 is the indicator function. Like µ, µ̃ is a σ-finite measure. Throughout the following

sections, we use the t̃ilde to distinguish a measure associated with doubly-rooted planted

networks from the corresponding measure associated with singly-rooted ones.

Then Aldous’ definition of involution invariance in [24] is as follows.

Definition IV.4. (Involution Invariance, again) A probability measure µ ∈ P(G∗) is said

to be involution invariant if the induced measure µ̃ on G∗∗ is invariant under the involution

map ι : G∗∗ → G∗∗, i.e.,

µ̃(A) = µ̃(ι−1(A)) for all Borel sets A ⊆ G∗∗,

where ι([N◦◦(ø, v)]) = [N◦◦(v, ø)].

Crucially, unimodularity and involution invariance are preserved under local weak con-

vergence. Any random weak limit satisfies unimodularity and is involution invariant [24,44]

(although the converse is an open problem).

The theory of local weak convergence is a powerful tool for studying random combinatorial

problems. In the succeeding sections we will prove a series of propositions analogous to [20,21]

showing local weak convergence between our planted model of randomly weighted graphs

Kn,n and a kind of infinite tree N∞,◦. These propositions make a rigorous connection between

the minimum matching on Kn,n and the minimum involution invariant matching ℳ∞,opt on

N∞,◦. Finally, we analyze ℳ∞,opt using the RDEs that we solved with differential equations

above.

4.5 PWIT and Planted PWIT

In this section we define the planted Poisson Weighted Infinite Tree, and show that it is

the weak limit of the planted model (Kn,n, `n).

Let us ignore the planted matching for the moment and assume that `n(e) ∼ Exp(1/n)

for all e ∈ En. The problem of finding the minimum matching on this un-planted network

is known as the random assignment problem. Kurtzberg [90] introduced this problem with

i.i.d. uniform edge lengths on [0, n], and Walkup [91] proved that the expected cost of the

minimum matching is bounded and is independent of n. In the succeeding years, many

researchers tightened the bound for E[Xn] (e.g. [92–94]). Using powerful but non-rigorous

methods from statistical physics, Meźard and Parisi [22] conjectured that E[Xn] has the

limiting value ζ(2) = π2/6 as n → ∞. Aldous first proved [20] that E[Xn] indeed has a

limit, and then [21] proved the π2/6 conjecture, using the local weak convergence approach

we follow here.
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Other methods have been introduced to study this problem [95–97], including the mar-

velous fact that for finite n, the expected cost of the minimum matching is the sum of the

first n terms of the Riemann series for ζ(2), namely 1 + 1/4 + 1/9 + · · · + 1/n2. But these

methods rely heavily on the specifics of the matching problem, and we will not discuss them

here.

As the first step in applying local weak convergence to the planted problem, we are going

to identify the weak limit of the planted model according to Definition IV.1: that is, the

kind of infinite randomly weighted tree that corresponds to Kn,n with weights drawn from

our model. To be more precise, we are interested in a probability measure µ∞ ∈ P(G∗) that

µn = EU(Nn) ∈ P(G∗) converges to in the local weak sense, where Nn = (Kn,n, `n) is the

planted model, U(Nn) is the random measure defined in (4.21) by rooting Nn at a uniformly

random vertex, and EU(Nn) is the measure defined in (4.22). Since every neighborhood has

the same distribution of neighborhoods in the planted model, the root might as well be at

vertex 1, so µn is simply the distribution of [Nn,◦(1)]. Thus

µn(A) = EU(Nn)(A)

=
1

2n

∑
v∈Vn

E[δ[Nn(v)](A)] = P[[Nn,◦(1)] ∈ A], for all Borel sets A ⊆ G∗.
(4.25)

In the un-planted model studied by Aldous and others, the weak limit of the random

matching problem is the Poisson Weighted Infinite Tree (PWIT). The planted case is similar

but more elaborate: the weights of the un-planted edges are Poisson arrivals, but the weights

of the planted edges have to be treated separately. We call this the planted PWIT , and define

it as follows.

We label the vertices V∞ of the planted PWIT with sequences over N0, which we denote

with bold letters. The root is labeled by the empty sequence ø. The children of a vertex

i = (i1, i2, · · · , it), are ij := (i1, i2, · · · , it, j) for some j ∈ N0, and if t > 0 its parent is

parent(i) := (i1, i2, · · · , it−1). We say that i belongs to the tth generation of the tree, and

write gen(i) = t.

Appending j ∈ {1, 2, . . .} to i gives the jth non-planted child, i.e., the child with the jth

smallest edge weight among the non-planted edges descending from the parent i. However,

appending j = 0 indicates i’s planted child if any, i.e., i’s partner in the planted matching if

its partner is one of its children instead of its parent. Since the planted partner of a planted

child is its parent, these sequences never have two consecutive zeroes. (Note that the root

has a planted child, so the first entry in the sequence is allowed to be 0.) We denote the set

of such sequences of length t as Σt, and the set of all finite such sequences as Σ =
⋃
t∈N0

Σt.

Thus the edge set is E∞ = {{i, ij} | j ∈ N0 and i, ij ∈ Σ}, and the planted matching
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M∗
∞ ⊂ E∞ consists of the edges {{i, i0} | i, i0 ∈ Σ}. Let T∞ = (V∞ = Σ, E∞,M

∗
∞) be the

resulting planted tree.

Next we define the random edge weights `∞ : E∞ → R+. The weights of the un-planted

edges are distributed just as in the PWIT: that is, for each vertex i ∈ V∞, the sequence(
`∞(i, ij)

)
j=1,2,...

is distributed jointly as the arrivals ζ1, ζ2, . . . of a Poisson process with

rate 1. Then we have the planted edges: if i0 ∈ Σ, then `∞(i, i0) ∼ Exp(λ) independent

of everything else. Note that these random weights are independent for different parents

i ∈ V∞.

Finally, let N∞ = (T∞, `∞) denote the random planted tree and let N∞,◦ denote the

version of N∞ rooted at ø. We call N∞,◦ the planted Poisson Weighted Infinite Tree or the

planted PWIT for short. Its structure is shown in Figure 4.2.

As in Section 4.4, let [N∞,◦] denote the equivalence class of N∞,◦ up to rooted isomor-

phisms, and denote by µ∞ ∈ P(G∗) the probability distribution of [N∞,◦] in G∗. The following

theorem shows that µn converges weakly to µ∞.

Theorem IV.1. The planted PWIT is the random weak limit of the planted model on Kn,n,

i.e, µn
w−→ µ∞.

Sketch of the proof. Similar to the un-planted case [20, Lemmas 10 and 11] the proof follows

from the following steps:

1. Recall that µn is the distribution of [Nn,◦(1)]. We define an exploration process that

explores the vertices of Nn,◦(1) starting from the root vertex 1 in a series of stages. At

stage m, this process reveals a tree of depth m+1 and maximum arity m+1, where the

children of each vertex are its m lightest un-planted neighbors (among the remaining

vertices) and possibly its planted partner (if its planted partner is not its parent).

2. In the limit n → ∞, the tree explored at each stage is asymptotically the same as a

truncated version of the planted PWIT, i.e., the analogous stage-m neighborhood of

the root ø.

3. For large enough m (independent of n), the ρ-neighborhood (Gn,◦(1))ρ of vertex 1

in Nn,◦(1) is a subgraph of the explored tree at stage m of the process with high

probability. This is due to the fact that, while Kn,n has plenty of cycles that are

topologically short, it is very unlikely that any short cycle containing vertex 1 consists

entirely of low-weight edges.

4. Finally, the result follows by using the Portmanteau Theorem, which enables us to ex-

tend the convergence of distributions on local neighborhoods in total variation distance

to the desired local weak convergence.

140



The complete proof is presented in Appendix C.3.

Since the planted model on Kn,n converges to the planted PWIT, we have every reason to

believe that—just as Aldous showed for the un-planted problem—the minimum matching on

the planted model converges locally weakly to the minimum involution invariant matching

on the planted PWIT. We make this statement rigorous in the following sections, following

and generalizing arguments in [20,21,24].

4.6 Optimal Involution Invariant Matching on Planted PWIT

In this section we define the optimal involution invariant random matching ℳ∞,opt on

the planted PWIT—or more precisely, the joint distribution (`∞,ℳ∞,opt). We define it in

terms of fixed points of a message-passing algorithm, construct it rigorously on the infinite

tree, and prove that it is optimal and unique.

Since the planted PWIT is an infinite tree, the total weight of any matching is infinite.

This makes it unclear whether there is a well-defined notion of a minimum-weight matching.

But since we are ultimately interested in the cost per vertex of the minimum matching on

Kn,n, we call a random matching (`∞,ℳ∞) on the planted PWIT optimal if it minimizes

the expected cost of the edge incident to the root, E[`∞(ø,ℳ∞(ø))].

However, since µn is involution invariant and involution invariance is preserved under

weak limit, we need to restrict our search for minimum matching to involution invariant

matchings. This restriction is crucial. For instance, if we simply want to minimize the

expected cost at the root, we could construct a matching as follows, akin to a greedy algo-

rithm: first match the root to its lightest child, i.e., the one with the lowest edge weight.

Then match each of its other children with their lightest child, and so on. For this matching,

E[`∞(ø,ℳ∞(ø))] = E[min(η, ζ)] = 1/(1 + λ) where η ∼ Exp(λ) is the weight of the root’s

planted edge and ζ ∼ Exp(1) is the weight of its lightest un-planted edge.

However, as pointed out by Aldous for the un-planted model [21, Section 5.1], this match-

ing is not involution invariant. For instance, suppose 1 is ø’s lightest child, but that 1 has a

descending edge whose weight is even less. In this case, if we swap ø and 1, we won’t include

the edge {1, ø} in the resulting matching. Indeed, in the un-planted case the optimal invo-

lution invariant matching has expected weight π2/6 per vertex, while this greedy matching

has expected weight 1. The lesson here is that the only matchings on the PWIT (or the

planted PWIT) that correspond to genuine matchings on Kn,n are those that are involution

invariant.

Before we proceed, we make a small increment to our formalism. For a network N we

define M[N ] as the set of all matchings on N . Now, a random matching (`,ℳ) on N is a
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joint distribution of edge weights and matchings, i.e., a probability measure on RE+ ×M[N ]

with marginal ` on RE+. Intuitively, the reader would probably interpret the phrase “random

matching” as a measurable function from RE+ →M[N ], assigning a distribution of matchings

to each realization of the edge weights `. However, here we follow Aldous by using it to mean

a distribution over both ` and ℳ. Note that ℳ may have additional randomness even after

conditioning on `; we will eventually learn, however, that ℳ∞,opt does not.

4.6.1 Message-Passing Algorithm

We start by describing a message-passing algorithm on the planted PWIT that we will

use to define ℳ∞,opt. We have already discussed this, but we do it here in our notation for

the infinite tree.

If (`∞,ℳ) is involution invariant, E[`∞(v,ℳ(v))] is independent of the choice of v ∈ V∞.

Let us pretend for now that the total weight of the minimum involution invariant matching

ℳ∞,opt is finite, and minimize it with a kind of message-passing algorithm.

For a vertex v ∈ V∞, let T∞(v) denote the subtree consisting of v and its descendants,

rooted at v (in particular, T∞(ø) = T∞). Let `∞(T∞(v)) and `∞(T∞(v)\{v}) denote the total

weight of the minimum involution invariant matching on T∞(v) and T∞(v)\{v} respectively.

The difference between these, which we denote

Xv = `∞(T∞(v))− `∞(T∞(v) \ {v}) , (4.26)

is the cost of matching v with one of its children, as opposed to leaving it unmatched

(or rather matching it with its parent, without including the cost of that edge). This is

the difference between two infinite quantities, but as Aldous and Steele say [24] we should

“continue in the brave tradition of physical scientists” and see where it leads. While we have

already seen the resulting RDEs in the proof of Theorem IV.1, it will be helpful to restate

them here in this more precise notation.

Suppose that in a realization of ℳ∞,opt, ø is matched with its child i. Then we have

`∞(T∞(ø)) = `∞(ø, i) + `∞(T∞(i) \ {i}) +
∑
j 6=i

`∞(T∞(j))

= `∞(ø, i) + `∞(T∞(i) \ {i}) + `∞(T∞(ø) \ {ø})− `∞(T∞(i)).

Rearranging and using (4.26), we have

Xø = `∞(ø, i)−Xi .
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We can read this as follows: by matching ø with its child i, we pay the weight `∞(ø, i) of the

edge between them, but avoid the cost Xi of having i matching with one of its own children.

But of course we want to match ø with whichever child minimizes this cost, giving

Xø = min
j≥0

(`∞(ø, j)−Xj) . (4.27)

Using the same argument, this relation holds for any vertex v ∈ V∞. Recalling that the

children of v are labeled vj (i.e., v’s label sequence with j appended) for j ≥ 0, we have

Xv = min
j≥0,vj∈V∞

(`∞(v, vj)−Xvj) . (4.28)

Now recall that v’s planted partner is either its parent or its 0th child. If the former, then

this minimization ranges over v’s un-planted children vj for j ≥ 1. If the latter, then it also

includes v’s planted child v0. Let us assume that Xv is drawn from one of two distributions

over R, and denote this random variable X in the first case and Y in the second case. We

expect these distributions to be fixed if we draw Xvj independently for each j, and obtain Xv

by applying (4.28). Since v’s un-planted children have planted children, but v’s planted child

(if any) only has un-planted children, we get the following recursive distributional equations

(RDEs):

X
d
= min({ζi − Yi}∞i=0), (4.29)

Y
d
= min(η −X, {ζi − Yi}∞i=0) (4.30)

where X is independent of everything else, {Yi}∞i=1 and Y are i.i.d. and {ζi}∞i=1 are the

arrivals of a Poisson process with rate 1, and η ∼ Exp(λ) is the weight `(v, v0) of the

planted edge—these are the edge weights of the planted PWIT described in Section 4.5.

As we saw in Section 4.3, the distributional equations (4.29)–(4.30) have a unique fixed

point supported on R whenever λ < 4. Our next task is to turn this heuristic derivation

into a rigorous construction of random variables on the planted PWIT, and use them to

construct the minimum involution invariant random matching ℳ∞,opt.

4.6.2 A Rigorous Construction of ℳ∞,opt

The construction is similar to the one in the un-planted model (see [21, Section 4.3]

and [24, Section 5.6]). We draw random variables X from a fixed point of the system of

recursive distributional equations (4.29)–(4.30). Then we show that these random variables

generate an involution invariant random matching, by constructing it (randomly) on finite
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neighborhoods, and then extending it to the infinite tree. In the next subsection, we analyze

this matching and show that it is optimal.

Define the set of directed edges
←→
E ∞ =

−→
E∞ ∪

←−
E∞ of T∞ by assigning two directions to

each edge e ∈ E∞: for an edge e = {i, ij} let −→e = (i, ij) ∈
−→
E∞ denote the edge directed

downward, i.e., away from the root, and let ←−e = (ij, i) ∈
←−
E∞ denote the edge directed

upward toward the root. We use ←→e to denote a typical member of
←→
E ∞. We extend the

edge weights to
←→
E ∞, as `∞(←−e ) = `∞(−→e ) = `∞(e).

The following lemma shows how to define “costs” or “messages” on
←→
E ∞. It is essentially

identical to [21, Lemma 14] and [24, Lemma 5.8], except that we have different distributions

of messages on the planted and un-planted edges.

Lemma IV.1. Let (X0, Y0) be a solution of the system of recursive distributional equa-

tions (4.29)–(4.30). Jointly with the edge weights `∞, we can construct a random function

X :
←→
E ∞ → R such that the following holds:

(i) For every edge (v, w) ∈
←→
E ∞ we have

X(u, v) = min
(v,w)∈E∞,w 6=u

(`∞(v, w)−X(v, w)) . (4.31)

(ii) For every planted edge e ∈ M∗
∞, X(−→e ) and X(←−e ) each have the same distribution as

X0.

(iii) For every un-planted edge e /∈M∗
∞, X(−→e ) and X(←−e ) each have the same distribution

as Y0.

(iv) For every edge e ∈ E∞, X(−→e ) and X(←−e ) are independent.

Proof. The idea is to construct these random variables on the subtree consisting of all edges

up to a given depth h. We do this by initially “seeding” them on the downward-pointing edges

at that depth, drawing their X independently from the appropriate fixed-point distribution.

We then use the message-passing algorithm given by (4.31) to propagate them through this

subtree. As with belief propagation on a tree, this propagation consists of one sweep upward

to the root, and then one sweep back downward toward the leaves. Finally, we use the

Kolmogorov consistency theorem [87, p. 115, Theorem 6.16] to take the limit h → ∞,

extending the distribution on these finite-depth subtrees to T∞.

Formally, let h ∈ N+. Let
−→
E∞(h) and

←−
E∞(h) respectively denote the set of downward-

and upward-directed edges at depth h− 1, and let
←→
E ∞(≤ h) denote the set of all directed
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Figure 4.5: The sets
−→
E∞(2) and

←→
E ∞(≤ 2). Bold red edges are in M∗

∞ and solid blue edges
are in E∞ \M∗

∞.

edges up to depth h:

−→
E∞(h) = {−→e = (v, vj) : gen(v) = h− 1, {v, vj} ∈ E∞},
←−
E∞(h) = {←−e = (vj, v) : gen(v) = h− 1, {v, vj} ∈ E∞},

←→
E ∞(≤ h) = {←→e = (v, w) : gen(v), gen(w) ≤ h, {v, w} ∈ E∞}.

In particular,
−→
E∞(h) is the set of downward-pointing edges at the leaves of the subtree

of depth h, and
←→
E ∞(≤ h) is the set of all edges, pointing in both directions, within that

subtree (see Figure 4.5). Our goal is to define X on
←→
E ∞(≤ h).

To initialize the process, for each −→e ∈
−→
E∞(h) we assign the random variable X(−→e ) by

drawing independently from X0 if e ∈ M∗
∞ and from Y0 if e /∈ M∗

∞. We then use (4.31)

recursively to define {X(−→e ) : −→e ∈
−→
E∞(k)} for k ∈ {h − 1, h − 2, . . . , 1}. Once we have

X(−→e ) for all edges incident to the root, we use (4.31) to obtain X(←−e ) for these edges,

i.e., for
←−
E∞(1). We then move back down the tree, using (4.31) at each level to define

{X(←−e ) :←−e ∈
←−
E∞(k)} for k ∈ {1, 2, . . . , h}.

Parts (ii) and (iii) of the lemma follow from the fact that (X0, Y0) are fixed points

of (4.29)–(4.30). Part (iv) follows from the fact that, for all e ∈ E∞(≤ h), X(−→e ) and X(←−e )

are determined by disjoint subsets of {X(−→e ) : −→e ∈
−→
E∞(h)} and hence are independent.

Finally, we extend these random variables to the entire planted PWIT. For each finite

depth h, the above construction gives a collection of random variables

Xh = {
(
`∞(←→e ), X(←→e )

)
:←→e ∈

←→
E ∞(≤ h)} ,

that satisfies (i), (ii), (iii), and (iv). Moreover, the marginal distribution of Xh+1 restricted to

depth h is the same as the distribution of Xh. Now, by the Kolmogorov consistency theorem,

there exists a collection of random variables X∞ that satisfies (i), (ii), (iii), and (iv), such

that the marginal distribution of X∞ restricted to depth h is the same as the distribution of
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Xh.

One important implication of Lemma IV.1 is the following corollary.

Corollary IV.2. Consider the collection of random variables X∞ given by Lemma IV.1.

(i) Let e = {ø, 0} denote the planted edge incident to the root. Then X(−→e ) and X(←−e )

are independent and identically distributed as X0, and are independent of `∞(e).

(ii) Suppose we condition on the existence of an un-planted edge e = {ø, i} incident to ø

with `∞(e) = ζ. Then X(−→e ) and X(←−e ) are independent and identically distributed as

Y0.

Proof. Part (i) follows immediately from the construction in Lemma IV.1. Part (ii) follows

from the fact that if we condition on the existence of a Poisson arrival at time ζ, the other

arrivals are jointly distributed according to the same Poisson process. There is a subtlety

here in that it is important to condition on ζ but not on i, since knowing where ζ is in the

sorted order of the un-planted weights affects their distribution. On the other hand, if we

fix an edge e before doing this sorting, then X(−→e ) and X(←−e ) are independent of `∞(e) for

both planted and un-planted edges, and we will use this fact below.

Our next task is to transform the above construction into a random matching (`∞,

ℳ∞,opt). There are two ways we might do this. One would be to define a function on

V∞ that yields a proposed partner w for each vertex v. As in (4.31), matching v with w

would cost the weight of the edge between them, but remove the cost of having w pair with

one of its other neighbors. Minimizing this total cost over all neighbors w (rather than over

all but one as in the message-passing algorithm) gives

ℳ∞,opt(v) = arg min
w:{v,w}∈E∞

(`∞(v, w)−X(v, w)) . (4.32)

Since each edge weight `∞(v, w) is drawn from a continuous distribution, and Corollary IV.2

implies that it is independent of X(v, w), with probability 1 the elements of the set we are

minimizing over are distinct and this arg min is well-defined.

Alternately, we could define a mark function on E∞ as described above, namely the

indicator function for the event that an edge e is in the matching. Including e in the

matching makes sense if `∞(e) is less than the cost of matching each of its endpoints to one

of their other neighbors. So (abusing notation) this suggests

ℳ∞,opt(e) =

1 if `∞(e) < X(−→e ) +X(←−e )

0 otherwise.
(4.33)
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A priori, there is no guarantee that either of these functions is a matching, or that they agree

with each other. The following lemma (which is a reformulation of [24, Lemma 5.9]) gives

the good news that they are, and they do.

Lemma IV.3. The following are equivalent:

1. u = arg minw:{v,w}∈E∞ (`∞(v, w)−X(v, w))

2. v = arg minw:{u,w}∈E∞ (`∞(u,w)−X(u,w))

3. `∞(u, v) < X(u, v) +X(v, u).

Therefore, u = ℳ∞,opt(v) if and only if v = ℳ∞,opt(u) (with ℳ∞,opt defined as in (4.32)),

and these are equivalent to ℳ∞,opt(u, v) = 1 (with ℳ∞,opt defined as in (4.33)).

Proof. By (4.31), condition (1) holds if and only if

`∞(v, u)−X(v, u) < arg min
w:{v,w}∈E∞,w 6=u

(`∞(v, w)−X(v, w)) = X(u, v) .

Rearranging gives (3), so (1) and (3) are equivalent. Since (3) is symmetric with respect to

swapping u and v, (2) and (3) are also equivalent.

Finally, given the symmetric dependency of ℳ∞,opt(e) on the values of X(−→e ) and X(←−e ),

it is intuitive that the random matching (`∞,ℳ∞,opt) is involution invariant. The following

lemma corresponds to [21, Lemma 24] in the un-planted case, but defining the involutions

in a way that preserves the (un)planted edges takes a little more work. We give the proof in

Appendix C.4.

Proposition IV.4. The random matching (`∞,ℳ∞,opt) is involution invariant.

4.6.3 Optimality of ℳ∞,opt

Now that we have constructed (`∞,ℳ∞,opt), it is time to prove that (`∞,ℳ∞,opt) is the

minimum involution invariant random matching. The steps we take to prove this claim are

mostly the same as in [21, Sections 4.4 and 4.5], but a few details differ in the planted model,

so for the sake of completeness and consistency with our notation we give a self-contained

proof.

As the first step, we are going to prove that (`∞,ℳ∞,opt) is a minimum involution in-

variant matching: that is, it achieves the minimum expected length at the root. We follow

the discussion at the beginning of Section 4.5 in [21].
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Proposition IV.5. Let (`∞,ℳ′
∞) be an involution invariant random matching on the planted

PWIT. Then E[`∞(ø,ℳ′
∞(ø))] ≥ E[`∞(ø,ℳ∞,opt(ø))].

Proof. Note that in addition to depending on the edge weights `∞, ℳ′
∞ might also have

additional randomness. However, we can always couple (`∞,ℳ′
∞) and (`∞,ℳ∞,opt) so that

if we condition on `∞ then ℳ′
∞ and ℳ∞,opt are independent. Let A be the event that

ℳ′
∞(ø) 6= ℳ∞,opt(ø), and assume without loss of generality that P[A] > 0.

Conditioned on A, there is a doubly-infinite alternating path that passes through the

root ø, alternating between edges in ℳ′
∞ and ℳ∞,opt. That is to say, there is a doubly-

infinite sequence of distinct vertices · · · , v−2, v−1, v0, v1, v2, · · · where v0 = ø, v1 = ℳ∞,opt(ø),

and v−1 = ℳ′
∞(ø), and where for all even integers m we have ℳ∞,opt(vm) = vm+1 and

ℳ′
∞(vm) = vm−1.

By the construction of ℳ∞,opt, we know that v1 achieves the minimum in Equation (4.32):

`∞(v0, v1)−X(v0, v1) = min
w:{v0,w}∈E∞

(`∞(v0, w)−X(v0, w)) . (4.34)

We also have the message-passing equation (4.31) for X(v−1, v0),

X(v−1, v0) = min
w:{v0,w}∈E∞,w 6=v−1

(`∞(v0, w)−X(v0, w)) . (4.35)

The right-hand sides of (4.34) and (4.35) are the same except that v−1 is excluded in (4.35).

But since the minimum is achieved by v1, excluding v−1 makes no difference, and the right-

hand sides are equal. Rearranging gives

`∞(v0, v1) = X(v0, v1) +X(v−1, v0) . (4.36)

On the other hand, (4.31) also implies X(u, v) ≤ `∞(v, w)−X(v, w) for any u, v, w where u

and w are distinct neighbors of v, and in particular

X(v1, v0) ≤ `∞(v0, v−1)−X(v0, v−1) . (4.37)

Now, using (4.36), the expected difference in the length at the root is

E[(`∞(ø,ℳ′
∞(ø))− `∞(ø,ℳ∞,opt(ø)))] = E[(`∞(v0, v−1)− `∞(v0, v1)) 1A]

= E[(`∞(v0, v−1)−X(v0, v1)−X(v−1, v0)) 1A] .

(4.38)

Now we use the fact that ℳ∞,opt and ℳ′
∞ are both involution invariant. There is a subtlety
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here in that conditioning on A breaks involution invariance, since it requires ℳ∞,opt and ℳ′
∞

to differ at the root specifically. However, the involutions that swap v0 with v1 or with v−1

maintain this conditioning, since ℳ∞,opt and ℳ′
∞ differ at these vertices as well. It follows

that X(v0, v1) and X(v1, v0) have the same conditional distribution and hence the same

conditional expectation, and similarly for X(v0, v−1) and X(v−1, v0). Then (4.38) becomes

E[(`∞(ø,ℳ′
∞(ø))− `∞(ø,ℳ∞,opt(ø)))] = E[(`∞(v0, v−1)−X(v1, v0)−X(v0, v−1)) 1A] ,

(4.39)

which is greater than or equal to zero by (4.37).

Even given Proposition IV.5, it is still possible a priori that there might be a random

involution invariant matching (`∞,ℳ′
∞) with the same expected length at the root as (`∞,

ℳ∞,opt). If we were simply trying to calculate the expected length of the minimum matching,

this would not be an issue. But our object is the overlap, not the length. If there are two

minimal matchings with the same length but different overlap, it would not be clear which

is the weak limit of the minimum matching on Kn,n.

Happily, we can follow a path similar to [21, Section 4.4 and 4.5] to show that ℳ∞,opt

is unique, making the inequality in Proposition IV.5 strict. The following is essentially

Proposition 18 of [21].

Proposition IV.6. Let (`∞,ℳ′
∞) be an involution invariant random matching on the planted

PWIT. If P[ℳ′
∞(ø) 6=ℳ∞,opt(ø)]>0 then E[`∞(ø,ℳ′

∞(ø))]>E[`∞(ø,ℳ∞,opt(ø))].

Proof. For sake of contradiction, assume there is an involution invariant random matching

(`∞,ℳ′
∞) such that E[`∞(ø,ℳ′

∞(ø))] = E[`∞(ø,ℳ∞,opt(ø))]. By the proof of Proposition

IV.5, we have E[D1A] = 0 where

D = `∞(v0, v−1)−X(v1, v0)−X(v0, v−1) ≥ 0 ,

and where A is again the event {ℳ′
∞(ø) 6= ℳ∞,opt(ø)}, and where the inequality D ≥ 0 is

given by Equation (4.37). Therefore, conditioned on A, almost surely

X(v1, v0) = `∞(v0, v−1)−X(v0, v−1) . (4.40)

Now recall that v1 achieves the minimum, over all w in v0’s neighborhood, of `∞(v0, w)−X(v0,

w). By Equation (4.31), X(v1, v0) is the minimum of this same quantity over all w 6= v1.

But this is the second minimum, i.e., the second-smallest value, and (4.40) implies

v−1 = arg min
i

[2](`∞(ø, i)−X(ø, i)) , (4.41)
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where min[2] denotes the second minimum. Thus the following holds almost surely: either

ℳ′
∞ agrees with ℳ∞,opt at the root, or it matches the root with the second minimum of

`∞(ø, i)−X(ø, i) rather than the minimum. That is, without conditioning on A,

P
(
ℳ′
∞(ø) ∈

{
arg min

i
(`∞(ø, i)−X(ø, i)) or arg min[2]

i
(`∞(ø, i)−X(ø, i))

})
= 1 .

Since (`∞,ℳ′
∞) is involution invariant, the same relation holds for each vertex v ∈ V∞, i.e.,

P

(
ℳ′
∞(v) ∈

{
arg min

w:{w,v}∈E∞
(`∞(v, w)−X(v, w)) or arg min[2]

w:{w,v}∈E∞
(`∞(v, w)−X(v, w))

})
= 1 .

(4.42)

Thus any matching with the same expected length as ℳ∞,opt must, almost surely at almost

all vertices v, match v with its best or second-best partner according to `∞(v, w)−X(v, w).

Surprisingly, no involution-invariant matching can choose the second-best partner with

nonzero probability. The following proposition shows that (4.42) cannot hold unless ℳ′
∞ =

ℳ∞,opt almost surely.

Proposition IV.7 (Proposition 20 of [21]). The only involution invariant random matching

that satisfies (4.42) is ℳ∞,opt.

Proof. The reader might be wondering why we can’t simply assign everyone to their second-

best partner. But recall the key fact from Lemma IV.3 that if

ℳ∞,opt(v) = arg min
w:{v,w}∈E∞

(`∞(v, w)−X(v, w)),

then ℳ∞,opt(ℳ∞,opt(v)) = v and {{v,ℳ∞,opt(v)} : v ∈ V∞} is indeed a matching. The

problem is that this fact does not generally hold if we replace arg min with arg min[2].

If ℳ′
∞ and ℳ∞,opt differ anywhere with positive probability, then by involution invariance

they differ at the root with positive probability. In that case, as before, there is a doubly-

infinite alternating path from the root to infinity. Thus once ℳ′
∞ matches the root with its

second-best partner, it must keep doing this forever on that path. But in order for ℳ′
∞ to

be involution invariant, it must make the same choices if we follow the path in reverse, and

so each vertex on this path must be the second-best partner of its second-best partner. We

will see that the probability that this is true on every step of the path, all the way to infinity,

is zero.

Let · · · , v−2, v−1, v0, v1, v2, · · · be the alternating path defined as follows. First let v0 = ø.

To define vt for t > 0, we extend the path by alternately apply the best and second-best
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rules,

vt+1 =

arg minu:{u,vt}∈E∞(`∞(vt, u)−X(vt, u)) if t is even

arg min[2]
u:{u,vt}∈E∞(`∞(vt, u)−X(vt, u)) if t is odd

Similarly, for t < 0 we extend the path backwards,

vt−1 =

arg min[2]
u:{u,vt}∈E∞(`∞(vt, u)−X(vt, u)) if t is even

arg minu:{u,vt}∈E∞(`∞(vt, u)−X(vt, u)) if t is odd

In particular, v1 = ℳ∞,opt(ø) and (if A holds) v−1 = ℳ′
∞(ø).

Now for each odd integer t, define the event Bt that vt and vt+1 are the second-best

partners of each other. For odd t > 0 we can write

Bt =

{
vt = arg min[2]

u:{u,vt+1}∈E∞
(`∞(vt+1, u)−X(vt+1, u))

}
,

and for odd t < 0,

Bt =

{
vt+1 = arg min[2]

u:{u,vt}∈E∞
(`∞(vt, u)−X(vt, u))

}
.

As discussed above, since ℳ′
∞ is involution invariant A implies Bt, in particular, for all

t = 1, 3, 5, . . .. Thus

A ⊂B∞ :=
∞⋂

t=1,3,5,...

Bt .

Writing Bt =
⋂t
t′=1,3,5,...Bt′ , this implies

P[A] ≤ P[B∞] =
∏

t=1,3,5,...

P[Bt+2 |Bt] =
∏

t=1,3,5,...

P[Bt+2]

P[Bt]
.

and so

if P[A] > 0 then lim
t→∞, t odd

P[Bt+2]

P[Bt]
= 1. (4.43)

Now we use involution invariance again. If we root the planted PWIT at v2 instead of v0,

sliding the alternating path two steps to the left, the eventBt+2 becomes the event B−1 ∩Bt
(and A still holds). By involution invariance the probability of these two events is the same,

so
P[Bt+2]

P[Bt]
=
P[B−1 ∩Bt]
P[Bt]

= P[B−1 |Bt] .
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By continuity of probability measure, if P[B∞] > 0 — which holds if P[A] > 0 — we also

have

lim
t→∞

P[B−1 ∩Bt] = P[B−1 ∩B∞] and lim
t→∞

P[Bt] = P[B∞] ,

in which case

lim
t→∞

P[B−1 |Bt] = P[B−1 |B∞] .

Thus (4.43) demands that this conditional probability is 1. But the following lemma, which

generalizes Lemma 22 of [21] to the planted case, shows that this is not so.

Lemma IV.8. If P[B∞] > 0 then P[B−1 |B∞] < 1.

Proof. As in [21, Remark on p. 402], the idea is that B−1 only depends on what happens

on the “leftward” branch of the alternating path, v0, v−1, v−2, . . ., whileB∞ depends only on

the “rightward” branch v0, v1, v2, . . . For the details, see Appendix C.5.

Lemma IV.8 implies that P (A) = 0, and by the discussion above that ℳ′
∞ = ℳ∞,opt almost

surely. This completes the proof of Proposition IV.7. . .

. . . which completes the proof of Proposition IV.6.

An immediate corollary of Proposition IV.6 is the following.

Corollary IV.9. In the minimum involution invariant random matching (`∞,ℳ∞,opt),

ℳ∞,opt is a function of the edge lengths `∞. That is to say, given a realization of (`∞(e),

e ∈ E∞), ℳ∞,opt is a fixed matching on the planted PWIT.

Proof. Consider a coupling (`∞,ℳ∞,opt,ℳ′
∞,opt) such that conditioned on (`∞(e), e ∈ E∞),

ℳ∞,opt and ℳ′
∞,opt are i.i.d.. Then, by Proposition IV.6 we have ℳ∞,opt = ℳ′

∞,opt almost

surely.

In other words, ℳ∞,opt does not have any additional randomness besides its dependence

on `∞. This was left as an open question for the un-planted case in [21, Remark (d)], although

we claim that that paper in fact resolved it! As later stated in [24], this implies that if we

use the construction of Section 4.6.2 to define random variables X on neighborhoods of

depth h, then (conditioning on `∞) the random matching defined by these variables becomes

concentrated around a single matching as h→∞.

This does not quite imply that the messages X on the directed edges of the planted

PWIT are determined by `∞. This was shown for the un-planted case by Bandyopadhyay

using the concept of endogeny [98]. We believe endogeny holds for the planted case, but we

leave this as an open question. In any case, as long as the system of recursive distributional
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equations (4.29)–(4.30) has a solution supported on R, whether it is unique or not, the

minimum involution invariant random matching ℳ∞,opt is uniquely defined. Therefore,

whenever we focus on a realization of `∞, there is no need to call ℳ∞,opt a random matching.

4.6.4 Uniqueness of The Solution of RDEs

Recall from Section 4.6.2 that ℳ∞,opt is defined by drawing messages at the boundary of

neighborhoods of increasing size from a fixed point of the RDEs (4.29)–(4.30), propagating

these messages throughout the neighborhood, and then including edges (u, v) whose weights

`∞(u, v) are less than the sum of their messages X(u, v) +X(v, u).

However, Corollary IV.9 shows that ℳ∞,opt is a function of the weights `∞. As we

commented there, this doesn’t quite imply that the messages X are also functions of `∞.

However, Corollary IV.9 imposes strong conditions on the possible solutions of the RDEs.

Specifically, if the RDEs have more than one solution, then each one must somehow result

in the same matching ℳ∞,opt given the edge weights. In this section, we show that this

implies that the fixed point is indeed unique. This provides an interesting counterpart to

the dynamical proof of uniqueness given in Theorem C.1.

First we show that any solution has a well-defined moment generating function in a

neighborhood of the origin.

Lemma IV.10. Let (X, Y ) be a solution of the system of recursive distributional equa-

tions (4.29)–(4.30) supported on R. Then the random variable X has a finite moment gen-

erating function E[eµX ] for µ in an open neighborhood of 0.

Proof. Recall that FX and FY denote the cumulative distribution functions of X and Y

respectively, and F̄X and F̄Y denote their complements. On the one hand, by (4.9), for all

x > 0 we have

F̄X(x) = exp

(
−
∫ ∞
z=−x

F̄Y (z) dz

)
≤ exp

(
−xF̄Y (0)

)
.

On the other hand, for every x0 > 0, Lemma IV.2 gives

fX(x0) = F̄X(x0)F̄X(−x0)E[FX(η + x0)] ≥ F̄X(−x0)F̄X(x0)E[FX(η − x0)] = fX(−x0) ,

where the inequality follows by the fact that FX(η − x0) ≤ FX(η + x0) for all η. Hence,

P[X < −x] ≤ P[X > x] ≤ exp
(
−xF̄Y (0)

)
,
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and F̄X(0) ≥ 1/2. Then (4.8) implies

F̄Y (0) = F̄X(0)E[FX(η)] ≥ 1

2
E[FX(η)] > 0 .

where the last inequality holds because η can be arbitrarily large and X is supported on R.

The result now follows by simple algebra. If 0 ≤ µ < F̄Y (0) we have

E[eµX ] =

∫ ∞
0

P[eµX > s] ds ≤ 1 +

∫ ∞
1

P[eµX > s] ds

= 1 +

∫ ∞
1

P
[
X >

ln s

µ

]
ds ≤ 1 +

∫ ∞
1

s−F̄Y (0)/µ ds <∞ ,

and the proof for−F̄Y (0) < µ ≤ 0 is similar. Hence E[eµX ] <∞ for µ ∈ (−F̄Y (0), F̄Y (0)).

Now recall that by Lemmas IV.1 and Lemma IV.3, given `(u, v) = x, the probability that

(u, v) ∈ℳ∞,opt equals P[X +X ′ > x] where X = X(u, v) and X ′ = X(v, u) are i.i.d. copies

of the random variable X. If the RDEs have two distinct solutions (X1, Y1) and (X2, Y2),

Corollary IV.9 implies that P[X1 +X ′1 > x] = P[X2 +X ′2 > x] for all x, so that X1 +X ′1 and

X2 +X ′2 have the same distribution. But since

E[eµ(X1+X′1)] =
(
E[eµX1 ]

)2
,

and similarly for X2, this implies that X1 and X2 have the same moment generating function,

which by Lemm IV.10 is well-defined in a neighborhood of the origin. It follows that X1 and

X2 have the same distribution [99, Theorem 1]. Using (4.6), Y1 and Y2 are equidistributed

as well, and we have proved the following theorem:

Theorem IV.11. Assume the system of recursive distributional equations (4.29)–(4.30) has

a solution supported on R. Then such solution is unique.

4.7 Convergence of the Minimum Matching on (Kn,n, `n) to ℳ∞,opt

At this point we have constructed (`∞,ℳ∞,opt) and shown that it is the unique involution

invariant matching on the planted PWIT that minimizes the weight at the root. It is finally

time to show that the minimum matching (`n,Mn,min) on our original planted model on Kn,n

converges to (`∞,ℳ∞,opt) in the local weak sense. This implies that these two objects have

the same joint distribution of edge weights, and which edges they include in the matching,

on neighborhoods of any finite radius. In particular, they have the same expected overlap—

which is the overlap we computed in Section 4.3. Thus we finally complete the proof of
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Theorem IV.1.

To use the framework of local weak convergence to study minimum matchings, we append

{0, 1} to the edges of planted networks in G∗. In a slight abuse of terminology, we add a

ĥat and also call N̂ = (G, `,ℳ) a planted network where ` is the weight function and

ℳ : E → {0, 1} is a mark function (which may or may not be a matching). This lets

us discuss the joint distribution of edge weights, the planted matching, and the minimum

matching of vertex neighborhoods in either model.

In particular, let µ̂n be this distribution in the vicinity of a uniformly random vertex in

the finite model,

µ̂n = EU(N̂n) is the law of [N̂n,◦(1)] where N̂n = (Kn,n, `n,Mn,min) ,

and let µ̂∞ be the analogous distribution at the root of the planted PWIT,

µ̂∞ is the law of [N̂∞,◦] where N̂∞ = (T∞, `∞,ℳ∞,opt) .

We will show that µ̂∞ is the weak limit of µ̂n. Thus the two models have all the same local

statistical properties, including their expected weight and overlap.

The proof consists of two main steps, namely, the easier half and the harder half. In

the easier half, using a simple compactness argument we prove that any subsequence of

probability measures µ̂n has a subsequence that converges to an involution invariant random

matching on planted PWIT. Using Skorokhod’s theorem this shows that the weight of the

minimum matching on Kn,n is at least that of ℳ∞,opt:

lim inf
n→∞

E[`n(1,Mn,min(1))] ≥ E[`∞(ø,ℳ∞,opt(ø))] . (4.44)

Informally, this follows by contradiction. If lim infn `n(1,Mn,min(1)) were smaller than this,

then the subsequence of sizes n on which it converges to that smaller value would itself have

a subsequence that convergences to an involution invariant matching on the planted PWIT

with that weight. . . but this would contradict the optimality of ℳ∞,opt.

In the harder half, using (`∞,ℳ∞,opt) we follow the strategy of [20]. First we construct

an almost-perfect matching on (Kn,n, `n) with weight close to E[`∞(ø,ℳ∞,opt(ø))]. Then, we

fix this almost-perfect matching matching to make a perfect matching on (Kn,n, `n) without

changing the weight too much. This proves that

lim sup
n→∞

E[`n(1,Mn,min(1))] ≤ E[`∞(ø,ℳ∞,opt(ø))] . (4.45)
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Combining (4.44) and (4.45), we have

lim
n→∞

E[`n(1,Mn,min(1))] = E[`∞(ø,ℳ∞,opt(ø))] . (4.46)

As in Aldous’ proof of the ζ(2) conjecture for the un-planted model, this establishes the

expected weight of the minimum matching in the planted model. But much more is true.

Since ℳ∞,opt is unique, we get the following theorem.

Theorem IV.1. The random weak limit of (Kn,n, `n,Mn,min) is (T∞, `∞,ℳ∞,opt), i.e., µ̂n
w−→

µ̂∞. In particular, their expected overlap is equal to

α(λ) := lim
n→∞

1

n
E[|Mn,min ∩M∗

n|]

= lim
n→∞

P({1, 1′} ∈M∗
n) = P({ø, 0} ∈ℳ∞,opt) .

Proof. In the easy-half proof, we show that every subsequence of µ̂n has a further subsequence

that converges to an involution random matching on the planted PWIT (see next subsection).

Now, by (4.46) and Proposition IV.6, every subsequence of µ̂n converges to µ̂∞; so does the

whole sequence. Hence, the random weak limit of (Kn,n, `n,Mn,min) is (T∞, `∞,ℳ∞,opt).

Finally, using Corollary IV.2 we have for the expected overlap

P({ø, 0} ∈ℳ∞,opt) = P(X + X̂ > `∞(ø, 0)) , (4.47)

where X and X̂ are independent copies of X0 and (X0, Y0) is the unique solution of the system

of recursive distributional equations (4.29)–(4.30). But this computation is exactly what we

have done in Section 4.3 by transforming these distributional equations into a system of

ordinary differential equations. This completes the proof of Theorem IV.1.

4.7.1 The Easy Half: A Simple Compactness Argument

As the first step toward the proof of the local weak convergence of µ̂n to µ̂∞, we show

that for any sequence of n that tends to infinity, there is a subsequence that converges weakly

to some involution invariant random matching µ̂′∞ on the planted PWIT. Saying this again

in symbols, for any sequence (nk) there is an involution invariant µ̂′∞ and a subsequence

(nj) ⊆ (nk) such that µ̂nj
w−→ µ̂′∞. Our argument is somewhat simplified from [24, Section

5.8, pp. 53-54].

By Theorem IV.1, we already know µnk
w−→ µ∞: that is, the two models agree on their

local distributions of weighted neighborhoods. Since G∗ is a Polish space, the Prokhorov
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theorem [87, p. 309, Thm. 16.3] implies that the sequence µnk is tight, i.e., for every ε > 0

there is a compact set K ⊂ G∗ such that P ([Nnk,◦(1)] ∈ K) > 1 − ε (recall that µnk is the

law of [Nnk,◦(1)]).

Define K̂ by appending {0, 1} to the edges of each member of K. Since K is compact, so

is K̂. Moreover, since P ([Nnk,◦(1)] ∈ K) > 1 − ε, so is P ([N̂nk,◦(1)] ∈ K̂) > 1 − ε. Hence,

the sequence µ̂nk is also tight, and by the Prokhorov theorem there is a further subsequence

nj such that µ̂nj
w−→ µ̂′∞ where µ̂′∞ is some random matching on the planted PWIT. Since

involution invariance passes through limit, µ̂′∞ is involution invariant.

By Skorokhod’s theorem we can assume that [N̂nj ,◦(1)]
loc−→ [N̂ ′∞,◦] almost surely, where

[N̂ ′∞,◦] ∼ µ̂′∞, and N̂ ′∞ = (T∞, `∞,ℳ′
∞). By the definition of local convergence,

`nj(1,Mnj ,min(1))→ `∞(ø,ℳ′
∞(ø)) as n→∞, almost surely.

Using Fatou’s Lemma, we have

lim inf
nj→∞

E[`nj(1,Mnj ,min(1))] ≥ E[`∞(ø,M ′
∞(ø))].

The lower bound (4.44) follows by assuming nk is a subsequence of n that achieves lim infn→∞

E[`n(1,Mn,min(1))].

4.7.2 The Harder Half

In the “easy half” above we proved the inequality (4.44), namely that the average weight

of the minimum matching on (Kn,n, `n) is bounded below by E[`∞(ø,ℳ∞,opt(ø))]. Now, we

are going to prove the inequality (4.45) in the opposite direction, and therefore that inequality

can be replaced by equality within arbitrarily small ε. The key idea is to construct a low

weight matching on (Kn,n, `n) using (`∞,ℳ∞,opt). In particular, we want the average weight

of this matching to be arbitrarily close to E[`∞(ø,ℳ∞,opt(ø))] for large enough n.

Recall that the weight of planted and un-planted edges in (Kn,n, `n) are distributed as

Exp(λ) and Exp(1/n) respectively, independent of everything else. Intuitively speaking,

Kn,n viewed from the planted directed edge (1, 1′) corresponds to the doubly-planted PWIT

viewed from the root’s planted edge (ø, 0), and Kn,n viewed from an un-planted directed edge

such as (1, 2) corresponds to the doubly-rooted planted PWIT viewed from an un-planted

edge incident to the root, namely (ø, i) where i ∈ N is arbitrary.

Now, using this “edge-centric” viewpoint, and following the approach of Aldous in [20,21],

we will assign possibly fractional values to the edges of (Kn,n, `n) such that the value assigned

to the edge e = {i, j′} ∈ En corresponds to the probability that ℳ∞,opt(e) = 1, assuming its
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local neighborhood in (Kn,n, `n) is a realization of the planted PWIT.

Consider the n×n matrix Qn where qi,j′ is the value assigned to the edge (i, j′). If these

values corresponded exactly to probabilities, then Qn would be doubly-stochastic. That is,

Qn would be a fractional matching, i.e., an element of the matching polytope, with weight

`n(Qn) =
∑

i∈[n],j∈[n′]

qi,j′`n(i, j′) .

Since minimizing the weight is a linear programming problem, there is a vertex of this

polytope, i.e., an honest matching M(π)i,j′ = 1 if j′ = π(i) and 0 otherwise for some

permutation π, whose weight is less than or equal to `n(Qn). Alternatively, we could use the

Birkhoff theorem to write Q as a convex combination of permutation matrices,

Q =
∑
π

cπM(π) .

Then if we choose a random matching π with probability cπ, the expected weight would be

`n(Qn). Finally, if (1/n)`n(Qn) also converges to the expected weight of ℳ∞,opt, we would

be done.

All this is almost true. As we will see, we will define Qn by looking at a bi-infinite

version of the planted PWIT, extending it in either direction from an edge [21, Section 5.2].

By looking at (`∞,ℳ∞,opt) on large neighborhoods of this edge, we will obtain probabilities

that almost, but not quite, sum to 1, since the true partner of a vertex in ℳ∞,opt might

be outside this neighborhood. As a result, Qn is almost doubly-stochastic in a certain

sense. Following [20], we then build an almost-perfect matching with weight close to that

of ℳ∞,opt, and then—by swapping a small fraction of edges—convert this into a perfect

matching within increasing the weight very much. At this point in the proof, we can use

lemmas in [20] virtually unchanged.

Remark IV.2. For sake of notational simplicity, for the remainder of the section, we will drop

the subscripts ∞ and ◦◦. Thus objects without the subscript n live on the planted PWIT,

while those with n live on the finite model.

4.7.2.1 The Bi-infinite Planted PWITs

As the first step toward the proof of the “harder half”, we change the viewpoint from

a vertex to an edge. There are two doubly-rooted infinite versions of the planted PWIT

that we need to study. One is rooted at a planted edge (ø, 0), and the other is rooted at an

un-planted edge (ø, i) for some i ∈ N. We illustrate these in Figure 4.6.
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Figure 4.6: The structure of (a) T↔u and (b) T↔p . The bold red edges are planted edges and
the solid blue edges are un-planted.

The measure on i ∈ N will be the uniform counting measure—that is, every position

in the order of ø’s un-planted edges has the same measure. Although this measure is not

normalizable, we will speak informally of i as “uniformly chosen.” One intuition for this

uniformity comes from the finite model Kn,n. If we choose uniformly from the n(n − 1)

un-planted edges, or (by symmetry) from the n − 1 un-planted edges of the root vertex 1,

then its order in the sorted list of edge weights is uniform on the set {1, . . . , n− 1}.
The other intuition is as follows. The edge weight of an un-planted edge is distributed

as Exp(1/n), which for weights of constant size is asymptotically 1/n times the Lebesgue

measure on R+. If the weight is x, the probability that the Poisson process of weight 1

generates i− 1 arrivals in the interval [0, x] is e−xxi−1/(i− 1)!. The total Lebesgue measure

of this event is then ∫ ∞
0

e−xxi−1

(i− 1)!
dx =

Γ(i)

(i− 1)!
= 1 for all i , (4.48)

so every i has equal measure.

We make this intuition rigorous below, showing how the appropriate measure on bi-

infinite PWITs around both types of edge is related to the planted PWIT by extending the

strategy of [21, Section 5.2] to the planted case.

In the case of the planted edge {ø, 0}, the corresponding bi-infinite tree is just a rela-

beling of the vertices: relabel ø as −ø and relabel 0 as +ø, and then relabel all the other

vertices “below” these two roots as we did before (see Figure 4.6). However, for a planted

edge {ø, i} for a “uniformly” selected i ∈ N, things are a bit more complicated. Since i ∈ N
is “uniformly” selected, the cost of the edge {ø, i} is “uniformly distributed” over R+, i.e.,
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Lebesgue measure on R+. On the other hand, as we pointed out in the proof of Corollary

IV.2, the other un-planted children of ø are still arrivals of a Poisson process. Specifically, if

we remove {ø, i}, the remaining connected component of ø is still a planted PWIT. Hence,

the corresponding bi-infinite tree is obtained by gluing two independent copies of the planted

PWIT, using an edge with edge weight “distributed” as Lebesgue measure, and then rela-

beling the vertices: ø as −ø, i as +ø, and the others accordingly (See Figure 4.6). In the rest

of the section, we are going to give detailed construction of the bi-infinite trees, and then we

show that they are equivalent to the corresponding doubly-rooted PWIT.

Remark IV.3. To distinguish the edge-centric viewpoint from the singly-rooted vertex view-

point, we use the superscript ↔.

Let Tu denote the planted PWIT rooted at ø, and let Tp denote the subtree, rooted at

0, obtained by removing the edge {ø, 0}. Relabel the root of Tp to be ø, and then relabel

all the vertices of Tp using the same rule as in the planted PWIT. Let T−u and T+
u be two

independent copies of Tu. Similarly, let T−p and T+
p be two independent copies of Tp. Relabel

the vertices of T+
u and T+

p by adding “ + ” sign to the original labels, and relabel the vertices

of T−u and T−p by adding “− ” sign to the original labels.

Now, let T↔u denote a bi-infinite tree, rooted at (−ø,+ø), obtained by joining the roots of

T−u and T+
u . Let V ↔u and E↔u denote the vertices and the edges of T↔u respectively. Let M↔

u

denote the set of planted edges of T↔u , which is the union of the planted edges in T−u and T+
u .

Let `↔u denote the function that assigns weight to the edges of T↔u by using the weight of the

edges in T−u and T+
u , and specifying the weight of {−ø,+ø} to be uniformly “distributed” on

[0,∞), i.e., Lebesgue measure on R+, independent of everything else. Write T↔u = (G↔u , `
↔
u ),

where G↔u = (V ↔u , E↔u ,M
↔
u , (−ø,+ø)), and let µ↔u denote the σ-finite measure associated

with T↔u .

Similarly, define T↔p by joining the roots of T−p and T+
p . However, this time include

{−ø,+ø} as a planted edge in M↔
p , and specify the weight of {−ø,+ø} to be an exponen-

tially distributed random variable with parameter λ, independent of everything else. Write

T↔p = (G↔p , `
↔
p ), where G↔p = (V ↔p , E↔p ,M

↔
p , (−ø,+ø)), and let µ↔p denote the probability

distribution of T↔p . Figure 4.6 illustrates a realization of T↔u and T↔p .

Recall that the doubly rooted PWIT is the product measure µ × count on {0, 1, 2, 3,
· · · }, where count is the counting measure. We can think of it as a product measure on

[0,∞)E × {0, 1, 2, · · · }. Similarly, we can think of µ↔u and µ↔p as a σ-finite measure on [0,

∞)E
↔
u and a probability measure on [0,∞)E

↔
p , respectively. Now, depending on whether the

second root is 0 or not, there is a natural map from the doubly rooted PWIT to T↔p or T↔u :

(1) If the second root is 0, relabel the vertices as

i. relabel 0 as +ø and ø as −ø,
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ii. relabel any sequence 0i1i2 · · · il for l ≥ 0 as +i1i2 · · · il,

iii. relabel any sequence i1i2 · · · il for l ≥ 1 such that i1 6= 0 as −i1i2 · · · il.

This relabeling induces a bijection ψ
∣∣
p

: [0,∞)E × {0} → [0,∞)E
↔
p ; (2) If the second root is

k ∈ {1, 2, 3, · · · }, relabel the vertices as

i. relabel k as +ø and ø as −ø,

ii. relabel any sequence ki1i2 · · · il for l ≥ 0 as +i1i2 · · · il,

iii. relabel any sequence i1i2 · · · il for l ≥ 1 such that i1 > k as −(i1 − 1)i2 · · · il,

iv. relabel any sequence i1i2 · · · il for l ≥ 1 such that i1 < k as −i1i2 · · · il.

This relabeling induces a bijection ψ
∣∣
u

: [0,∞)E × {1, 2, 3, · · · } → [0,∞)E
↔
u . Clearly, ψ

∣∣
p

maps µ× δ0 to µ↔p , where δ0 is the delta measure on the second root. It is also easy to see

that ψ
∣∣
u

maps µ × count on {1, 2, 3, · · · } to µ↔u using the following lemma. Finally, note

that

µ× count on {0, 1, 2, 3, · · · } = µ× δ0 + µ× count on {1, 2, 3, · · · }.

Lemma IV.4. [21, Lemma 25] Write ∆ := {(xi) : 0 < x1 < x2 < · · · , xi → ∞}. Write

Pois for the probability measure on ∆ which is the distribution of the Poisson process of

rate 1. Consider the map X : ∆ × {1, 2, 3, · · · } → ∆ × [0,∞) which takes ((xi), k) to ((xi,

i 6= k), xk). Then X maps Pois× count to Pois× Leb, where Leb is the Lebesgue measure

on [0,∞).

Remark IV.5. For sake of brevity, we use E↔· instead of E↔u or E↔p whenever the subscript

does not affect the discussion. Similar changes applies to other symbols. More specifically,

all the following arguments are true if we replace all the “ · ” with“ u ” or “ p ”.

We introduce two additional pieces of notation that we will use in the following sub-

sections. Recall that G↔· = (V ↔· , E
↔
· ,M

↔
· , (−ø,+ø)) is a bi-infinite tree (without the edge

weights). We define G↔·,B to be a subtree of G↔· induced by V ↔·,B := {±ø} ∪ {±i1i2 · · · il ∈
V ↔· : is ∈ {0, 1, · · · , B}}, i.e., the subtree obtained by restricting the number of un-planted

children of each vertex to B. We also define G↔·,B,H to be a subtree of G↔·,B induced by

V ↔·,B,H := {±ø} ∪ {±i1i2 · · · il ∈ V ↔·,B : l ≤ H + 1 and l = H + 1 iff il = 0}, i.e., the subtree

obtained by restricting the depth of vertices to H or H+1, depending on whether the vertex

is a planted pair of its parent or not. Define `↔·,B to be the restriction of `↔· to `↔·,B, and `↔·,B,H
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to be the restriction of `↔·,B to `↔·,B,H . Now, define T↔·,B := (G↔·,B, `
↔
·,B) and T↔·,B,H := (G↔·,B,H ,

`↔·,B,H), and let µ↔·,B and µ↔·,B,H to be the associated measures. Note that there is a natural

restriction ρ·,H that maps T↔·,B to T↔·,B,H .

Thus far, we show that the doubly rooted planted PWITs and bi-infinite trees are equiv-

alent. Next, we are going establish the connection between the planted model (Kn,n, `n) and

the bi-infinite trees.

4.7.2.2 The Unfolding Map

Now that we have discussed how to view the planted PWIT from an edge (a planted edge

or a “uniformly” selected un-planted edge), we are going to discuss the similar viewpoint

in Kn,n = (Vn, En,M
∗
n). This is done via an unfolding map that unfolds (Kn,n, `n) viewed

from a planted or un-planted edge. This unfolding map is similar to the one discussed

in [20, Section 3.2] with two additional properties: the number of un-planted children of

every vertex is the same (for a fixed B when n is large enough), and the set of un-planted

edges M∗
n is a matching on the unfolded graph. Eventually, we want to show that the local

neighborhood of an edge in Kn,n is the same as the local neighborhood of the edge in the

bi-infinite trees. This should not come as a surprise, given Theorem IV.1.

Next, we are going to give detailed construction of the unfolding map. Fix B ∈ N+, and

fix some edge {i, j′} from Kn,n. We are going to unfold (Kn,n, `n) from the viewpoint of the

edge {i, j′} and construct the doubly rooted tree U↔B,n(i, j′), rooted at (i, j′), with maximum

B + 1 arity. This unfolding map resembles the exploration process discussed in the proof of

Theorem IV.1, with one key difference: this map unfolds (Kn,n, `n) from an edge viewpoint.

Include the edge {i, j′} in U↔B,n(i, j′). The unfolding map proceeds as follows. In this

process, all vertices will be “live”, “dead”, or “neutral”. The live vertices will be contained

in a queue. Initially, i and j′ are live and the queue consists of only i, j′ in order and all

the other vertices are neutral. At each time step, a live vertex v is popped from the head of

the queue. If v’s planted neighbor M∗
n(v) is neutral, then include the edge {v,M∗

n(v)} in the

doubly rooted tree U↔B,n(i, j′), add M∗
n(v) to the end of the queue and let M∗

n(v) live. Let v1,

v2, . . . , vB denote the B closest un-planted, neutral neighbors of vertex v in a non-decreasing

order of distance to v. Include all the edges {v, vk} in the doubly rooted tree U↔B,n(i, j′) for

1 ≤ k ≤ B. Also, include all the edges {vk,M∗
n(vk)} in U↔B,n(i, j′) for 1 ≤ k ≤ B. The popped

vertex v is dead. Add those neutral vertices v1, v2, . . . , vB to the end of the queue in order

and they are live. Also, add those neutral vertices M∗
n(v1),M∗

n(v2), . . . ,M∗
n(vB) to the end of

the queue in order and they are live. The process ends when the queue is empty. According

to this rule, the order of the vertices that are selected after j′ is the planted neighbor i0 of i (if

{i, j′} is not planted), i1, i2, · · · , iB, M∗
n(i1), M∗

n(i2), · · · , M∗
n(iB), the planted neighbor j′0 of
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Figure 4.7: The doubly rooted trees (a) U↔1,4(1, 2′) and (b) U↔1,4(1, 1′) obtained by unfolding
the planted network in Figure 4.4.

j′ (if {i, j′} is not planted), j′1, j
′
2, · · · , j′B, M∗

n(j′1), M∗
n(j′2), · · · , M∗

n(j′B), etc. This unfolding

process stops when all vertices of Kn,n are included in U↔B,n(i, j′). Figure 4.7 illustrates the

U↔1,4(1, 2′) and U↔1,4(1, 1′) for the planted network given in Figure 4.4. Note that in both cases,

M∗
n is a matching.

Let us define a relabeling bijection φi,j
′

B,n (not to be confused with φ
∣∣
p

and φ
∣∣
u
) from Vn to

a subset of +Σ ∪ −Σ, where +Σ := {+i : i ∈ Σ} and −Σ := {−i : i ∈ Σ} denote the set of

vertex labelings of the bi-infinite planted PWIT. Define φi,j
′

B,n(i) = −ø and φi,j
′

B,n(j′) = +ø. At

each step of the unfolding process, when we pick vertex v and add {v, vk} and {vk,M∗
n(vk)}

to U↔B,n(i, j′), set φi,j
′

B,n(vk) = φi,j
′

B,n(v)k and φi,j
′

B,n(M∗
n(vk)) = φi,j

′

B,n(vk)0.

Now, using the bijection φi,j
′

B,n we can define the restriction map ρ·,H on U↔B,n(i, j′). It is

easy to see that the graph structure of ρu,H
(
U↔B,n(i, j′)

)
for j′ 6= i′ and all sufficiently large

n is isomorphic to G↔u,B,H , and the graph structure of ρp,H
(
U↔B,n(i, i′)

)
for all sufficiently

large n is isomorphic to G↔p,B,H . Let µ↔n,u,B,H denote the probability measure associated with

ρu,H
(
U↔B,n(i, j′)

)
for j′ 6= i′, and let µ↔n,p,B,H denote the probability measure associated with

ρu,H
(
U↔B,n(i, i′)

)
. Note that if Du,x = {T↔u,B,H : `↔u,B,H({−ø, ø}) < x}, then µ↔n,u,B,H(Du,x) =

1 − exp(−x/n) ≈ x/n as n → ∞. Also, note that µ↔u,B,H(Du,x) = x. We now generalize

Lemma 10 in [20] to the planted case.

Lemma IV.6. For any fixed B,H ∈ N+, and x > 0 we have

nµ↔n,u,B,H(Du,x ∩ · )
TV−−→ µ↔u,B,H(Du,x ∩ · )

µ↔n,p,B,H
TV−−→ µ↔p,B,H ,
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where the total variation convergence of positive measures is defined as:

µn
TV−−→ µ iff sup

A
|µn(A)− µ(A)| → 0.

Proof. The proof is almost identical to the proof of Lemma C.1, and has been omitted. The

only subtle difference is the restriction to Du,x, which causes no problem since n× 1
n
e−x/n → 1

as n→∞.

Next, we are going to use the involution invariant random matching (`,ℳopt) on the

planted PWIT to assign values to the edges of (Kn,n, `n). Ideally, the value assigned to an

edge e = {i, j′} corresponds to the probability of e being in the matching that we want to

construct.

4.7.2.3 Assigning Values to the Edges of (Kn,n, `n)

Now it’s time to assign fractional values to the edges of (Kn,n, `n). This is done by

pretending that the local neighborhood of an edge e in (Kn,n, `n), is a realization of the local

neighborhood of the corresponding bi-infinite tree. So, as the first step toward assigning

values to the edges of (Kn,n, `n), we need to know how to assign value to {−ø,+ø} in the

bi-infinite tree using the minimum matching on the planted PWIT. The idea is to use the

inverse image of ψ
∣∣
· and map the edge {−ø,+ø} to the corresponding edge on the planted

PWIT. This gives us a function g· : [0,∞)E
↔
· → [0, 1], which we then use to assign fractional

values to the edges of (Kn,n, `n), by conditioning on its neighborhood. We are going to discuss

these steps in detail. We follow the discussion in [21, Section 5.5] and then [20, Introduction].

Recall that µ̃ = µ × count on {0, 1, 2, 3, · · · } is the measure associated with the doubly

rooted planted PWIT. Also, recall that since µ is involution invariant, the product measure

µ̃ is invariant under the involution map ι that swaps the roots. Following the discussion

of [21, Section 5.5], we define the function γopt : [0,∞)E × {0, 1, 2, · · · } → [0, 1] by

γopt(w, i) = P[ℳopt(ø) = i|`(e) = w(e)∀e ∈ E]

As Aldous points out, the function γopt satisfies certain consistency properties:

(i)
∑∞

i=0 γopt(w, i) = 1 since ℳopt is a matching.

(ii) γopt(ι(w, i)) = γopt(w, i) since the random matching (`,ℳopt) is involution invariance,

where ι(w, i) swaps i and ø given {`(e) = w(e)∀e ∈ E}.
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Also, we have (iii) E[`(ℳopt(ø), ø)] =
∫
w

∑∞
i=0 γopt(w, i)w(ø, i)µ(dw). Now, define g· : [0,

∞)E
↔
· → [0, 1] as follows:

g.(w
↔
. ) = γopt(ψ

∣∣−1

· (w↔. )),

where ψ
∣∣
· is the bijection map that we defined earlier in Section 4.7.2.1, and ψ

∣∣−1

· is its

inverse. We can think of the function g· as the probability that the edge {−ø,+ø} is in the

matching. The function g· satisfies similar consistency properties corresponding to (i) and

(ii):

(i′) The function g· assigns honest probabilities to the neighbors of −ø as well as +ø. To be

more specific, let ι+p,i, ι
−
p,i : [0,∞)E

↔
p → [0,∞)E

↔
u denote the root swapping maps, that

change the root from (−ø,+ø) to (−ø,−i), and from (−ø,+ø) to (+i,+ø) respectively

(and then relabel all the vertices). Similarly, define ι+u,i and ι−u,i. We have:

(a) In T↔p , the values assigned to the neighbors of −ø as well as +ø sums to one:

gp(w
↔
p ) +

∞∑
i=1

gu(ι
±
p,i(w

↔
p )) = 1.

(b) In T↔u , the values assigned to the neighbors of −ø as well as +ø sums to one:

gu(w
↔
u ) + gp(ι

±
u,0(w↔u )) +

∞∑
i=1

gu(ι
±
u,i(w

↔
u )) = 1.

(ii′) Let ι↔· denote the root swamping map, that swaps the root (−ø,+ø) to (+ø,−ø) (and

then relabels all the vertices). We have g.(w
↔
. ) = g.(ι

↔
· (w↔. )).

Also note that the function g· is measurable with respect to the product σ-algebra on [0,

∞)E
↔
· . Hence, (iii) becomes (iii′)

E[`(ℳopt(ø), ø)] =

∫
w↔p

w↔p (−ø,+ø) gp(w
↔
p )µ↔p (dw↔p )

+

∫
w↔u

w↔u (−ø,+ø) gu(w
↔
u )µ↔u (dw↔u ).

Now, we use the function g· to assign fractional values to the edges of the planted model.

We store the values assigned to the edges of (Kn,n, `n) in an n×n matrix Qn = [qi,j′ ]i,j′ , where

qi,j′ is the value assigned to the edge {i, j′}. Let g·,B,H to be the conditional expectation of g·

given σ(`↔· (e), e ∈ E↔·,B,H), with respect to the measure µ↔· . Also, let gu,x,B,H = gu,B,H1Du,x .
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Now, qi,j′ is defined as follows:

qi,j′ :=

{
gu,x,B,H

(
ρu,H

(
U↔B,n(i, j′)

))
if j′ 6= i′

gp,B,H
(
ρp,H

(
U↔B,n(i, i′)

))
if j′ = i′

(4.49)

As we mentioned before, if Qn were doubly-stochastic, we could have used it to construct

a matching on Kn,n. However, it is not hard to see that P[Qn is doubly-stochastic] = 0.

Nevertheless, we expect Qn to become almost doubly-stochastic, as a larger neighborhood is

revealed.

Let us define a discrimination factor, as Aldous does in [20, Introduction]:

X (Qn) =
1

n

n∑
i=1

∣∣∣∣∣1−
n′∑

j′=1′

qi,j′

∣∣∣∣∣+
1

n

n′∑
j′=1′

∣∣∣∣∣1−
n∑
i=1

qi,j′

∣∣∣∣∣
Note that if Qn is doubly-stochastic, then X (Qn) = 0. Naturally, we should expect that

E[X (Qn)] ≈ 0, for large values x, B, H, and n. We should also expect the average expected

cost of Qn to be close to the expected cost of ℳopt, i.e.,

1

n
E[
∑
i,j′

qi,j′`n(i, j′)] ≈ E[`(ℳopt(ø), ø)],

for large enough values of x, B, H, and n. Using the same set of inequalities as in [20, Section

3.4], it follows that the both intuitions are correct.

Lemma IV.7. (i) For any ε > 0, there is an x0, B0, H0 and n0 such that for all x > x0,

B > B0, H > H0, and n > n0 we have E[X (Qn)] < ε. In the other words,

lim
x→∞

lim sup
B→∞

lim sup
H→∞

lim sup
n→∞

E[X (Qn)] = 0.

(ii) For any δ > 0, there is an x0 and n0 such that for all x > x0 and n > n0, the average

expected cost of Qn is in the δ neighborhood of the cost of ℳopt on the planted PWIT,

for all B and H. In the other words,

lim
x→∞

lim sup
n→∞

1

n
E[
∑
i,j′

qi,j′`n(i, j′)] = E[`(ℳopt(ø), ø)] for all B and H.

Proof. The proof is almost identical to the proof presented in [20, Section 3.4]. The proof of

part (ii) is a direct consequence of Lemma IV.6 and linearity of expectation. The proof of part

(i) needs more work, but the inequalities are the same as the one presented in [20, Section
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3.4]. The key factor is the consistency properties of functions gu and gp, Lemma IV.6, and

the fact that there is no short cycle containing the root consists entirely of low-weight edges

(as mentioned in the proof of Theorem IV.1).

Now that we know Qn eventually becomes a doubly-stochastic matrix with weight close

to that of ℳopt, we will construct a perfect matching on (Kn,n, `n) with (within ε) the same

weight. First, by invoking [20, Proposition 7], we construct a partial matching with the cost

close to the cost of Qn. Next, using [20, Proposition 9], we construct a perfect matching by

swapping operation while keeping the cost almost the same. The changes required to extend

this analysis to the planted case are very minor, but we present the strategy in the next

section for completeness.

4.7.2.4 Construction of the Matching

Finally, we are going to give the precise construction of the low cost matching on (Kn,n, `n)

and prove (4.45). By Lemma IV.7, we know that Qn becomes arbitrary close to a doubly-

stochastic matrix, i.e., X (Qn) becomes arbitrary close to 0 with high probability. Now,

using Qn for sufficiently large n, we construct a low cost partial matching which matches

most of the vertices and leaves a small fraction of vertices isolated. This is done by invoking

Proposition 7 in [20]. Then we use Proposition 9 in [20] and swap some of the edges to

obtain a perfect matching on (Kn,n, `n) while keeping the cost almost the same. On the rare

occasions that we fail to either construct the partial matching or swap the edges, we use

M∗
n. Since these events are rare, the use of planted matching won’t affect the total cost. We

follow the discussion in [20, Section 2].

Let us begin with describing how to construct a partial matching using an almost doubly-

stochastic matrix. We say Qn is an almost doubly-stochastic matrix if its discrimination

factor is close enough to 0, or more precisely, if X (Qn) < 1/200. We say νn : En → {0, 1, ø}
is a (1− θ) partial matching if vertices in U(νn) = {i ∈ [n] : νn(i, j′) = 1 for some j′ ∈ [n′]}
are matched to different vertices in [n′] and |U(νn)| ≥ (1− θ)n.

The first step is to convert Qn to a doubly-stochastic matrix. Define an n × n matrix

An = [ai,j′ ] as follows:

ai,j′ :=
qi,j′

max(1, qi,:) max(1, q:,j′)
,

where qi,: :=
∑

j′∈[n′] qi,j′ and q:,j′ :=
∑

i∈[n] qi,j′ . Similarly, define ai,: and a:,j′ for all i ∈ [n]
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and j′ ∈ [n′]. Note that ai,: ≤ 1 and a:,j′ ≤ 1. Define an n× n matrix Bn = [bi,j′ ] as follows:

bi,j′ =
(1− ai,:)(1− a:,j′)

n−
∑

i∈[n]

∑
j′∈[n′] ai,j′

.

It is easy to check that An + Bn is doubly-stochastic. Hence, by Birkhoff–von Neumann

theorem An+Bn can be written as a convex combination of permutations. Hence, there exists

a random matching ℳn on (Kn, `n) such that ∀i ∈ [n], j′ ∈ [n′] : P (ℳn(i) = j′) = ai,j′+bi,j′ .

Note that for all i ∈ [n] and j′ ∈ [n′] we have ai,j′ ≤ qi,j′ , however, there is no such a bound

for bi,j′ . As a result, we may end up assigning high probabilities to undesired edges which

can affect the expected cost of the matching ℳn. Now, the idea is to use some part of the

matching ℳn that is behaving well enough.

Proposition IV.8. [20, Proposition 7] Let Qn = [qi,j′ ] and `n = [`n(i, j′)] be given non-

random n × n matrices. Suppose 200X (Qn) ≤ θ < 1. Consider the random matching ℳn

given as above and define the random set D(ℳn) := {i ∈ [n] : bi,ℳn(i) ≤ ηai,ℳn(i)} where

η =
√

3X (Qn)/θ. Then

E[
∑

i∈D(ℳn)

qi,ℳn(i)`n(i,ℳn(i))] ≤ (1 + η)
∑
i∈[n]

∑
j′∈[n′]

qi,j′`n(i, j′),

P[|D(ℳn)| ≥ (1− θ)n] ≥ 1− 3(1 + η−1)X (Qn)

θ
,

that is, the random matching ℳn restricted to the random set D(ℳn) is a (1− θ) matching

with high probability with cost close to the cost of Qn. Specifically, there is a (1− θ) partial

matching νn(non-random) such that∑
i∈U(νn)

qi,νn(i)`n(i, νn(i)) ≤ (1 + 4
√
X (Qn)/θ)

∑
i∈[n]

∑
j′∈[n′]

qi,j′`n(i, j′).

Next, we patch the partial matching νn given by the Proposition IV.8 (which exists for

almost all realization of the edge weights and Qn), to construct a perfect matching without

distorting the expected cost and the given partial matching too much. Aldous suggests using

the greedy algorithm to do that. In the planted setting, the idea is to simply remove all the

planted edges and then use the greedy algorithm.

Proposition IV.9. [20, Proposition 9] Fix 0 < θ < 1/10, and let k = bθnc. Let `n = [`n(i,

j′)] denote the matrix of the edge weights. Let νn denote a 1 − θ partial matching. Let

N0 = [n] \U(νn) and N ′0 = [n′] \ νn(U(νn)) denote the set of unpaired vertices in either side.

(Here, N0, N ′0 and νn may depend on `n in an arbitrary way.) Then there exists a random
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subset S ⊂ [n] \ N0 of size k, random bijections ν1 : S → N ′0, ν2 : N0 → νn(S), and events

Ωn with P (Ωn)→ 0 such that

lim sup
n→∞

1

n
E

[
1Ωcn

(∑
i∈N0

`n(i, ν2(i)) +
∑
i∈S

`n(i, ν1(i))

)]
≤ 24 θ1/2.

It remains to combine Proposition IV.8 and Proposition IV.9 to construct a matching on

Kn,n. The key idea is to rewrite the edge weights of Kn,n as the minimum of two independent

exponential random variables.

Lemma IV.10. If X ∼ Exp(µ1) and Y ∼ Exp(µ2) are independent, then min(X, Y ) ∼
Exp(µ1 + µ2).

Now, for any fixed 0 < α < 1, we can write

`n(i, j′) = min

(
`1
n(i, j′)

1− α
,
`2
n(i, j′)

α

)
, (4.50)

where `1
n(i, j′) and `2

n(i, j′) are independent copies of `n(i, j′). We use `1
n(i, j′) to construct the

partial matching, and then `2
n(i, j′) to patch the partial matching and construct a complete

matching. On the event Ω∗n that the construction is not possible, that is either Proposition

IV.8 or Proposition IV.9 failed, we can always use the planted matching to construct a

matching on Kn,n. Since the probability of this failure goes to zero, this does not affect the

cost of the matching that much. Specifically, we need to show that Ln := 1
n

∑
i∈[n] `n(i, i′) is

uniformly integrable.

Lemma IV.11. There exists a function δ(·) with δ(x)→ 0 as x→ 0 such that for arbitrary

events Ω∗n,

lim sup
n→∞

E[Ln1Ω∗n ] ≤ δ(ε), (4.51)

where ε = lim supn→∞ P[Ω∗n].

Proof. Since E[(Ln)2] < ∞, Ln is uniformly integrable. In particular, by Cauchy-Schwarz

inequality, we have E[Ln1Ω∗n ] ≤
√
E[(Ln)2]P[Ω∗n] =

√
E[(Ln)2]ε.

Now, we are ready to present the formal proof of (4.45), which closely follows the proof

of Proposition 2 in [20]. Fix 0 < θ < 1 and let ε = θ3/200. Construct Qn = [qi,j′ ]i,j′ as

per (4.49) using the edge cost `1
n. It follows from Lemma IV.7 that for all sufficiently large
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x,B,H, n, E[X (Qn)] < ε and

1

n
E[
∑
i,j′

qi,j′`
1
n(i, j′)] ≤ E[`(ℳopt(ø), ø)] + ε. (4.52)

Define event Ω1
n = {200X (Qn) > θ2}. Then by Markov’s inequality,

P[Ω1
n] = P[200X (Qn) > θ2] ≤ 200E[X (Qn)]

θ2
≤ 200ε

θ2
= θ.

Outside event Ω1
n, we have 200X (Qn) ≤ θ2 < θ. It follows from Proposition IV.8 that outside

event Ω1
n, there exists a (1− θ) partial matching νn such that∑

i∈U(νn)

qi,νn(i)`
1
n(i, νn(i)) ≤ (1 + θ)

∑
i∈[n]

∑
j′∈[n′]

qi,j′`
1
n(i, j′), (4.53)

where U(νn) is the set of vertices i matched under νn. Now, condition on a realization

(outside of Ω1
n) of `1

n, and apply Proposition IV.9 to `2
n. Since `1

n and `2
n are independent,

it follows from Proposition IV.9 that there exist an event Ω2
n and bijections ν1 and ν2 such

that for all sufficiently large n, P[Ω2
n] ≤ θ and

1

n
E

1(Ω1
n)c

 ∑
i∈[n]\U(νn)

`2
n(i, ν2(i)) +

∑
i∈ν−1

n (ν2([n]\U(νn))

`2
n(i, ν1(i))

 ≤ 24 θ1/2. (4.54)

Outside event Ω∗n = Ω1
n∪Ω2

n, we can construct a complete matching πn : [n]→ [n′] such that

πn(i) = ν2(i) if i ∈ [n] \U(νn); and πn(i) = ν1(i) if i ∈ ν−1
n (ν2([n] \U(νn)); and πn(i) = νn(i)

otherwise. On event Ω∗n, we just let πn to be the planted matching. Combining (4.50), (4.52),

(4.53), (4.54), and (4.51) yields that

lim sup
n→∞

1

n
E[
∑
i,j′

πn(i, j′)`n(i, j′)] ≤ (1 + θ) (E[`(ℳopt(ø), ø)] + ε)

1− α
+

24θ1/2

α
+ δ(2θ).

Letting θ (and hence ε) → 0, then letting α→ 0, we establish (4.45).
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CHAPTER V

Open Problems and High-Level Takeaways

In this thesis, we discussed three examples of phase transitions in new random graph

families. We close the thesis by discussing some open problems related to each chapter, and

then providing the high-level takeaways of the thesis.

5.1 Open Problems

5.1.1 Chapter II: Impact of Community Structure on Cascades

1. What if µ∗ = lims→∞ F
s(1) is not an stable equilibrium point of the ODE (2.30)?

Intuitively speaking, the process stops at µ∗ with positive probability, or skips to the next

fixed point with positive probability. This problem has not been studied in the literature

due to the technicality of the problem. Another issue here is to develop the process-level

approximation beyond µ∗.

2. How many fixed points does F (·) have? In a related work, Balogh and Pittel [33]

showed that the answer is two for regular random graphs (given some additional conditions).

3. What is the trajectory of the contagion process? The evolution of the Markov process

of adoption is not the same as the evolution of cascades on the network. Since the random

graph model converges locally weakly to GWMT∗ defined in Section 2.4, the trajectory of the

contagion process on the random graph is related to the trajectory of the contagion process

on GWMT∗. Moreover, it is easy to see that the evolution of cascades on GWMT∗ is given

by the iterations of function F (·) starting from 1 (See [36] for a related discussion). This

intuitive argument also justifies the connection between lims→∞ F
s(1) and the equilibrium

of the ODE (2.30).

4. Finally, what is the optimum seeding strategy? We proposed a heuristic seeding

strategy in Section 2.12 that performs well in different scenarios (Figure 2.6). However, we
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have no proof that this seeding strategy is either optimum or its gap to optimality if not.

This question is also related to the question #2 above.

5.1.2 Chapter III: Erlang Weighted Tree

1. Conditioned on Zl > 0, for β0 ≤ 1, what is the asymptotic distribution of Zl as l grows

without bound? This problem has been studied for general multi-type branching processes,

e.g., [100–102].

2. What is the connection between the reversibility of the continuous state Markov pro-

cess and the unimodularity of the branching process? Exploring this connection can provide

a general framework to study an important class of branching processes.

3. What is the connection between the probability of extinction and the ratio of the giant

component in the finite graph model? For other random graph models (e.g. configuration

model, Erdos Renyi random graph, etc.) the ratio of the giant component converges to 1−
P[{Extinction}], where P[{Extinction}] is the probability the associated branching process

goes extinct eventually. We have observed the same relation via numerical simulation in

Figures 3.6 and 3.7 between the finite graph model and the EWT.

4. What is the local weak limit if vertices in the finite graph model iterate to use all their

budget, given by their potential degree? Naturally, one can imagine a scenario in which after

the realization of Gn, all vertices i with degree less than di(n) have a second chance to find

more neighbors by announcing an updated set of potential neighbors. Of particular interest

is the case when vertices can iterate as many times as possible until they achieve di(n) or

have checked all other n− 1 nodes.

5. How general is the methodology we developed in this thesis for finding the Krein-

Rutman eigenvalue and the corresponding eigenfunction?

6. Finally, what is the connectivity threshold of the random graph model, when the po-

tential degree of all the vertices are same, and is equal to k(n) = c log(n)? In [23, Conjecture

1], it is conjectured that the phase transition happens at c = 1, i.e., the probability of the

event {the graph is connected} goes to one if c > 1 and goes to zero if c < 1.

5.1.3 Chapter IV: Planted Matching Problem

1. We have focused here on the maximum-likelihood estimator, which for the exponential

distribution is also the minimum-weight matching. In physical terms, we have considered this

problem at zero temperature. In contrast, the posterior distribution P[M∗ = M ′ | G] given in
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(4.2) is a Gibbs distribution at nonzero temperature. The estimator with the largest expected

overlap would then be the maximum marginal estimator, i.e., the set of edges e for which

P[e ∈ M∗ | G] ≥ P[e /∈ M∗ | G]. This estimator is not generally a matching or even of size

n; nevertheless, one can restrict to estimators which are perfect matchings while increasing

the expected misclassification rate |M ′4M∗|/(2n) at most by a factor of two. We leave for

future work the problem of computing the expected overlap of this estimator. It is possible

that it achieves almost-perfect recovery for some λ < 4, i.e., that the information-theoretic

threshold for almost-perfect recovery is different from the threshold we have computed here,

but we conjecture this is not the case.

2. In physics, a phase transition is called continuous if the order parameter (in this case,

the overlap) is continuous at the threshold, and as pth order if its (p − 2)th derivative is

continuous. Although we have not proved this, α(λ) in Figure 4.3 appears to have zero

derivative at λ = 4. This suggests that the transition in the optimal overlap is of third or

higher order, unlike other well-known problems in random graphs such as the emergence of

the giant component (second order) [12], the stochastic block model with two groups (second

order) or with four or more groups (first order) [82], or the appearance of the k-core for k ≥ 3

(first order) [103].

3. A related question is how the minimum matching changes when the graph undergoes a

small perturbation. Aldous and Percus [104] introduced this problem formally and classified

combinatorial optimization problems based on how the cost of the optimal solution scales

with the size of the perturbation. Using a cavity–based analysis and Monto Carlo simula-

tion, they suggested that the minimum cost among all perfect matchings that differ from

the minimum matching by at least δn edges is larger than the cost of the minimum match-

ing by Θ(δ3). This framework has been studied rigorously in [105] and [106] for different

combinatorial optimization problems. It would be interesting to explore this same kind of

perturbation in the planted model, where we study the minimum cost among all matchings

that differ from the planted matching by at least δn edges.

4. Does the overlap of Mmin with M∗ concentrate around its expectation? This would

follow from correlation decay of messages in the planted PWIT, but we have not proved this.

5. Can Lemma IV.4 be turned into a proof of almost perfect recovery? More generally,

when the RDEs (4.5) and (4.6) lack a solution supported on R (i.e., excluding weights in

{±∞}) does this imply almost perfect recovery?

6. We have given two proofs that that the RDEs have a unique solution if λ < 4. Theorem

C.1 uses the dynamics of the ODEs, while Theorem IV.11 uses the uniqueness of ℳ∞,opt
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on the planted PWIT. These two types of reasoning seem completely orthogonal, but they

must be connected. When do the properties of the optimum involution invariant object on

an appropriate type of infinite tree imply the dynamical fact that a system of RDEs has a

unique fixed point?

7. What can we say about distributions P (w) of planted weights other than exponential?

For what distributions is it possible to collapse the RDEs into a finite-dimensional system

of ODEs? As stated above, Chertkov et al. [1] studied the folded Gaussian distribution P =

|N (0, κ)|, but we have been unable to reduce the RDEs to ODEs in this case. Nevertheless, in

the spirit of universality classes in physics, we expect any reasonable family of distributions

P to undergo a phase transition similar to what we have shown here for the exponential

distribution, namely from almost-perfect to partial recovery at some critical value of P ’s

expectation (where this critical value may depend on the shape of the distribution P ).

Moreover, with respect to question #2 above, we expect the order of this phase transition,

and other scaling properties in its vicinity, to be robust as long as P ′(0) > 0.

8. Finally, what about planted models with spatial structure, as in the original problem

of particle tracking from [1]?

5.2 High-Level Takeaways

In this thesis, we studied phase transitions in three new random graph families. We have

used different techniques in each case to characterize the phase transition and to understand

the behavior of the random graph before and after the critical value. We close the thesis by

discussing the main ideas developed in each technical chapter.

In chapter II, we used the differential equation method to provide a tight-approximation

for the trajectory of the Markov process of adoption. The differential equation method

is specifically useful in the study of discrete processes when the expected drift of random

variables of interest results in a simple ODE. However, the expected changes in the Markov

process of adoption is highly non-linear, and hence, the dimension of the resulted ODE is

high too. Nevertheless, we solve this ODE using a probabilistic method, which shows that

the dimension of the ODE is superficially high. The form of the solution is also related to the

mean-field equations. The differential equation method can be used in a variety of problems

to prove the correctness of mean-field type approximations.

In chapter III, we used a point process perspective to analyze the Erlang Weighted

Tree. The first and the second moment methods are the most common tools in the study

of branching processes. However, the interdependent structure of the EWT causes these
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methods to fail. Using a point process perspective, we found the Krein-Rutman eigenvalue

and the corresponding eigenfunction of the growth operator of the EWT. We also explored

the connection between this eigenvalue and the probability of the extinction of the branching

process and hence, random graphs. This method is quite general in the study of branching

processes. An important property that made the analysis possible is the unimodularity of

the branching process. We believe the techniques developed in this chapter are applicable

to other unimodular processes.

Finally, in chapter IV, we used the machinery of local weak convergence to analyze the

performance of the minimum matching algorithm to find the planted matching in Kn,n. This

framework has been used for different combinatorial optimization problems. This technique

is applicable as long as there is a correlation decay; that is to say, the solution of the

optimization problem is mostly given by the local structure of the random graph. Note

that, in general, the optimization problem may depend on the whole graph. However, the

structural properties of the random graph model may dictate the optimum solution in a

local manner. This makes it possible to solve the optimization problem on the asymptotic

object and then to use this solution to provide a near-optimum answer for the finite random

graph.
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APPENDIX A

Appendix of Chapter II

A.1 When Greedy Maximization Is Bad

We now give an example showing how the results in [65, 66] break if θv is assumed to

be fixed. We build a network as follows: start from a 3n × 3n torus, i.e. node (i, j) with

1 ≤ i, j ≤ 3n has four neighbors: (i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1) where operation

are done modulo 3n. Now for each 1 ≤ j ≤ 3n, and 0 ≤ k ≤ n − 1, we add a node v(j, k)

connected to the nodes of the torus (3k + 1, j), (3k + 2, j) and (3k + 3, j). Finally each of

these nodes v(j, k) are part of a cycle of size K ≥ 3 with no other common point with the

rest of the graph except through v(j, k). In summary, we have 9n2 nodes on the torus, and

3n2 disjoint cycles of size K which are connected to the torus only through the nodes v(j, k).

There is a total of 9n2 + 3n2K nodes. Note that the degree of a node on the torus is 5 (4

neighbors on the torus and 1 on a cycle) as well as for the nodes v(j, k). We take θ = 2/5 so

that a node of degree d becomes active as soon as θd of its neighbors are active. In particular

a node on the torus or a v(j, k) needs only 2 active neighbors to become active. Moreover,

activating a node v(j, k) will activate all the K nodes on the cycle. Because of this, it is easy

to see that any greedy algorithm with budget b ≤ 3n2 will only activate the nodes v(j, k).

Note however that by acting the set of nodes on the torus: (1, 1), (1, 2), . . . , (1, 3n) and (2, 1)

will result in a global activation of the network. Hence for any 3n + 1 ≤ b ≤ 3n2, we can

find a set activating the 9n2 + 3n2K nodes of the networks, whereas the greedy algorithm

only activate Kb nodes which is far from the optimum solution.
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A.2 One-Step Drift

Recall that mj(n) denotes the total number of edges on side j ∈ {1, 2}, and mm(n)

denotes the total number of edges between the two communities. The one-step drift of the

random variables associated with the Markov process of adoption are given as follows:

� One-step drift of Aj(·) for j ∈ {1, 2}:

E[Aj(k + 1)− Aj(k)|Xn(k)] =

− Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

− Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

× Aj(k)− 1

2mj(n)− 2Tj(k)− 1

+
Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×

∑
uj+u−j=Kj(dj ,d−j)

(dj − uj − 1)×
(dj − uj)I(j)

dj ,d−j ,uj ,u−j
(k)

2mj(n)− 2Tj(k)− 1

+
A

(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×

∑
uj+u−j=Kj(dj ,d−j)

(dj − uj)×
(d−j − u−j)I(j)

dj ,d−j ,uj ,u−j
(k)

mm(n)− (k − T1(k)− T2(k))

� One-step drift of Tj(·) for j ∈ {1, 2}:

E[Tj(k + 1)− Tj(k)|Xn(k)] = +
Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

� One-step drift of A
(j)
m (·) for j ∈ {1, 2}:

E[A(j)
m (k + 1)− A(j)

m (k)|Xn(k)] =

− A
(j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

− A
(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

× A
(j)
m (k)

mm(n)− (k − T1(k)− T2(k))

+
A

(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
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∑
uj+u−j=Kj(dj ,d−j)

(d−j − u−j − 1)×
(d−j − u−j)I(j)

dj ,d−j ,uj ,u−j
(k)

mm(n)− (k − T1(k)− T2(k))

+
Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×

∑
uj+u−j=Kj(dj ,d−j)

(d−j − u−j)×
(dj − uj)I(j)

dj ,d−j ,uj ,u−j
(k)

2mj(n)− 2Tj(k)− 1

� One-step drift of I
(j)
dj ,d−j ,uj ,u−j

(·) for j ∈ {1, 2}:

E[I
(j)
dj ,d−j ,uj ,u−j

(k + 1)− I(j)
dj ,d−j ,uj ,u−j

(k)|Xn(k)] =

− Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(dj − uj)I(j)

dj ,d−j ,uj ,u−j
(k)

2mj(n)− 2Tj(k)− 1

− A
(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(d−j − u−j)I(j)

dj ,d−j ,uj ,u−j
(k)

mm(n)− (k − T1(k)− T2(k))

+
Aj(k)

A1(k) + A2(k) + A
(1)
m (k) + A

(2)
m (k)

×
(dj − uj + 1)I

(j)
dj ,d−j ,uj−1,u−j

(k)

2mj(n)− 2Tj(k)− 1

+
A

(−j)
m (k)

A1(k) + A2(k) + A
(1)
m (k) + A

(−j)
m (k)

×
(d−j − u−j + 1)I

(j)
dj ,d−j ,uj ,u−j−1(k)

mm(n)− (k − T1(k)− T2(k))

Although we’ve presented the one-step drift of Aj and A
(j)
m for j ∈ {1, 2}, we are not going to

use them. As is pointed out in Remark II.2, we only need to keep track of Tj and I
(j)
dj ,d−j ,uj ,u−j

.

In particular, using the balance equations, we replace all the terms Aj and A
(j)
m by an affine

function of Tj and I
(j)
dj ,d−j ,uj ,u−j

.

A.3 Derivation of ODEs

The scaled variables are supposed to model the behavior of their discrete counterpart,

as we mentioned in (2.13). Using assumption 2 of Definition II.3, Remark II.7, Point 2 in
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Section 2.6, Remark II.1, and one-step drifts in Appendix A.2, the ODEs are given as follows:

di
(j)
dj ,d−j ,uj ,u−j

dx
= fj,dj ,d−j ,uj ,u−j(x, τ1, τ2, w1, w2, w

(1)
m , w(2)

m , i
(1)
d1,d2,u1,u2

, i
(2)
d2,d1,u2,u1

) :=

− aj(x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

×
(dj − uj)i(j)dj ,d−j ,uj ,u−j(x)

λj − 2τj(x)

− a
(−j)
m (x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

×
(d−j − u−j)i(j)dj ,d−j ,uj ,u−j(x)

λm − τm(x)

+
aj(x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

×
(dj − uj + 1)i

(j)
dj ,d−j ,uj−1,u−j

(x)

λj − 2τj(x)

+
a

(−j)
m (x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

×
(d−j − u−j + 1)i

(j)
dj ,d−j ,uj ,u−j−1(x)

λm − τm(x)
,

(A.1)

dτj
dx

= fj(x, τ1, τ2, w1, w2, w
(1)
m , w(2)

m , i
(1)
d1,d2,u1,u2

, i
(2)
d2,d1,u2,u1

) :=

aj(x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

,
(A.2)

dwj
dx

= fj+2(x, τ1, τ2, w1, w2, w
(1)
m , w(2)

m , i
(1)
d1,d2,u1,u2

, i
(2)
d2,d1,u2,u1

) :=

aj(x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

× −wj(x)

λj − 2τj(x)
,

(A.3)

dw
(j)
m

dx
= fj+4(x, τ1, τ2, w1, w2, w

(1)
m , w(2)

m , i
(1)
d1,d2,u1,u2

, i
(2)
d2,d1,u2,u1

) :=

a
(−j)
m (x)

a1(x) + a2(x) + a
(1)
m (x) + a

(2)
m (x)

× −w(j)
m (k)

λm − τm(x)
,

(A.4)

where τm(x) := x− τ1(x)− τ2(x),

aj(x) := −
∑

uj+u−j≤Kj(dj ,d−j)
dj+d−j≤dmax

(dj − uj)i(j)dj ,d−j ,uj ,u−j(x) + λj − 2τj(x)− wj(x), and

a(j)
m (x) := −

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

(d−j − u−j)i(j)dj ,d−j ,uj ,u−j(x) + λm − τm(x)− w(j)
m (x).
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The initial conditions are given as follows for j ∈ {1, 2}:

τj(0) = 0,

wj(0) =
∑

dj+d−j>dmax

dj
I

(j)
dj ,d−j ,0,0

(0)

n
,

w(j)
m (0) =

∑
dj+d−j>dmax

d−j
I

(j)
dj ,d−j ,0,0

(0)

n
,

i
(j)
dj ,d−j ,uj ,u−j

(0) =

 1
n
I

(j)
dj ,d−j ,0,0

(0) if uj = u−j = 0 and dj + d−j ≤ dmax

0 otherwise
.

(A.5)

Note that if αj(dj, d−j) = 1 for all dj + d−j > dmax, then wj(x) = w
(j)
m (x) = 0, ∀x.

A.4 Proofs of Theorems and Lemmas

A.4.1 Proof of Theorem II.2

By the assumptions of Theorem II.2, we have

( 0

n
,
T1(0)

n
,
T2(0)

n
,
W1(0)

n
,
W2(0)

n
,
W

(1)
m (0)

n
,
W

(2)
m (0)

n
,
I

(1)
d1,d2,u1,u2

(0)

n
,
I

(2)
d2,d1,u2,u1

(0)

n

)
∈Dε.

Moreover, it is easy to see that the functions given in Appendix A.3 satisfies a Lipschitz

condition on

Dε ∩ {(t, τ1, τ2, w1, w2, w
(1)
m , w(2)

m , i
(1)
d1,d2,u1,u2

, i
(2)
d2,d1,u2,u1

) : t ≥ 0}

with the same Lipschitz constant (“Lipschitz hypothesis”). Also, for θ1 = O(n−η)∣∣∣E(Tj(k + 1)− Tj(k) | Xn(k))−

fj

(k
n
,
T1(k)

n
,
T2(k)

n
, · · · ,

I
(1)
d1,d2,u1,u2

(k)

n
,
I

(2)
d2,d1,u2,u1

(k)

n

)∣∣∣ ≤ θ1,∣∣∣E(Wj(k + 1)−Wj(k) | Xn(k))−

fj+2

(k
n
,
T1(k)

n
,
T2(k)

n
, · · · ,

I
(1)
d1,d2,u1,u2

(k)

n
,
I

(2)
d2,d1,u2,u1

(k)

n

)∣∣∣ ≤ θ1,
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∣∣∣E(W (j)
m (k + 1)−W (j)

m (k) | Xn(k))−

fj+4

(k
n
,
T1(k)

n
,
T2(k)

n
, · · · ,

I
(1)
d1,d2,u1,u2

(k)

n
,
I

(2)
d2,d1,u2,u1

(k)

n

)∣∣∣ ≤ θ1,

and,∣∣∣E(I
(j)
dj ,d−j ,uj ,u−j

(k + 1)− I(j)
dj ,d−j ,uj ,u−j

(k) | Xn(k))−

fj,dj ,d−j ,uj ,u−j

(k
n
,
T1(k)

n
,
T2(k)

n
, · · · ,

I
(1)
d1,d2,u1,u2

(k)

n
,
I

(2)
d2,d1,u2,u1

(k)

n

)∣∣∣ ≤ θ1,

for all k < TDε , where TDε is the minimum k > 0 such that

(k
n
,
T1(k)

n
,
T2(k)

n
,
W1(k)

n
,
W2(k)

n
,
W

(1)
m (k)

n
,
W

(2)
m (k)

n
,
I

(1)
d1,d2,u1,u2

(k)

n
,
I

(2)
d2,d1,u2,u1

(k)

n

)
/∈Dε

(“Trend hypothesis”). Finally, the changes for each random variable in the successive steps

of the Markov process of adoption is bounded by 1 (“Bounded hypothesis”). Now, Theorem

II.2 follows by the direct application of Wormald’s Theorem [19, Theorem 5.1].

A.4.2 Proof of Lemma II.1

The proof follows by plugging in the form of the solution and check the validity of the

corresponding differential equations. Before plugging in the form of the solution, let us prove

the equality (2.19). Summing up (2.21) and (2.22) for j ∈ {1, 2}, we have

λ1
dµ(1,1)

dt

(
µ(1,1)(t)

)
+ λ2

dµ(2,2)

dt

(
µ(2,2)(t)

)
+

λm
dµ(1,2)

dt

(
µ(2,1)(t)

)
+ λm

dµ(2,1)

dt

(
µ(1,2)(t)

)
= −1.

Equality (2.19) follows by integrating the both sides of the above equation from 0 to t, where

the constant of integration is determined by the initial condition (2.23). Note that (2.19)

suggests τm(t) = t − τ1(t) − τ2(t), where τm(t) is defined by (2.18). Also, by (2.17), (2.21),

and (2.22) we have

dµ(j,j)

dt

(
µ(j,j)(t)

)−1
= λj

dµ(j,j)

dt

(
µ(j,j)(t)

)
×
(
λjµ

(j,j)(t)2
)−1

=
−aj(t)

a1(t) + a2(t) + a
(1)
m (t) + a

(2)
m (t)

× 1

λj − 2τj(t)
, (A.6)
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and

dµ(j,−j)

dt

(
µ(j,−j)(t)

)−1
= λm

dµ(j,−j)

dt
µ(−j,j)(t)

(
λmµ

(−j,j)(t)µ(j,−j)(t)
)−1

=
−a(−j)

m (t)

a1(t) + a2(t) + a
(1)
m (t) + a

(2)
m (t)

× 1

λm − (t− τ1 − τ2)
. (A.7)

Consider the form of i
(j)
dj ,d−j ,uj ,u−j

(t) given by (2.16). We have

di
(j)
dj ,d−j ,uj ,u−j

dt
= i

(j)
dj ,d−j ,0,0

(0)×{
+ (dj − uj)

dµ(j,j)

dt

(
dj
uj

)(
1− µ(j,j)(t)

)uj (
µ(j,j)(t)

)dj−uj−1

×Bi
(
u−j; d−j, 1− µ(j,−j)(t)

)
+ (d−j − u−j)

dµ(j,−j)

dt

(
d−j
u−j

)(
1− µ(j,−j)(t)

)u−j × (µ(j,−j)(t)
)d−j−u−j−1

×Bi
(
uj; dj, 1− µ(j,j)(t)

)
− uj

dµ(j,j)

dt

(
dj
uj

)(
1− µ(j,j)(t)

)uj−1 (
µ(j,j)(t)

)dj−uj
×Bi

(
u−j; d−j, 1− µ(j,−j)(t)

)
− u−j

dµ(j,−j)

dt

(
d−j
u−j

)(
1− µ(j,−j)(t)

)u−j−1 (
µ(j,−j)(t)

)d−j−u−j
×Bi

(
uj; dj, 1− µ(j,j)(t)

)}
.

Using (2.16), we have

di
(j)
dj ,d−j ,uj ,u−j

dt
= (dj − uj)×

dµ(j,j)

dt

(
µ(j,j)(t)

)−1 × i(j)dj ,d−j ,uj ,u−j(t)

+ (d−j − u−j)×
dµ(j,−j)

dt

(
µ(j,−j)(t)

)−1 × i(j)dj ,d−j ,uj ,u−j(t)

− (dj − uj + 1)× dµ(j,j)

dt

(
µ(j,j)(t)

)−1 × i(j)dj ,d−j ,uj−1,u−j
(t)

− (d−j − u−j + 1)× dµ(j,−j)

dt

(
µ(j,−j)(t)

)−1 × i(j)dj ,d−j ,uj ,u−j−1(t).

Now (A.1) follows by plugging in (A.6) and (A.7) into the above equality. Next, consider
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the function τj(t) given by (2.17). It is easy to see that,

dτj
dt

= −λjµ(j,j)dµ
(j,j)

dt
=

aj(t)

a1(t) + a2(t) + a
(1)
m (t) + a

(2)
m (t)

Finally, for the functions wj(t) and w
(j)
m (t) given by (2.20), we have

dwj
dt

= wj(0)
dµ(j,j)

dt
= wj(t)

dµ(j,j)

dt

(
µ(j,j)(t)

)−1

dw
(j)
m

dt
= w(j)

m (0)
dµ(j,−j)

dt
= w(j)

m (t)
dµ(j,−j)

dt

(
µ(j,−j)(t)

)−1

Now, using (A.6) and (A.7), the equations (A.3) and (A.4) follows.

A.4.3 Proof of Lemma II.4

Let Y (x) := Bi(u, d, 1− x). Then we have:

dY

dx
=

(
d

u

)(
(d− u)× xd−u−1(1− x)u − u× xd−u(1− x)u−1

)
= d× (Bi(u, d− 1, 1− x)−Bi(u− 1, d− 1, 1− x))

Now, the proof follows by straightforward algebraic simplification.

∂F(j,j)

∂µ(j,j)
=

∑
uj+u−j≤Kj(dj ,d−j)

dj+d−j≤dmax

dj
λj
i
(j)
dj ,d−j ,0,0

(0)Bi(u−j; d−j, 1− µ(j,−j))× (dj − 1)

(
Bi(uj; dj − 2, 1− µ(j,j))−Bi(uj − 1; dj − 2, 1− µ(j,j))

)
=

∑
u−j≤Kj(dj ,d−j)
dj+d−j≤dmax

dj
λj
i
(j)
dj ,d−j ,0,0

(0)Bi(u−j; d−j, 1− µ(j,−j))× (dj − 1)

Bi(Kj(dj, d−j)− u−j; dj − 2, 1− µ(j,j)) > 0

∂F(j,j)

∂µ(j,−j) =
∑

uj+u−j≤Kj(dj ,d−j)
dj+d−j≤dmax

dj
λj
i
(j)
dj ,d−j ,0,0

(0)Bi(uj; dj − 1, 1− µ(j,j))× d−j

(
Bi(u−j; d−j − 1, 1− µ(j,−j))−Bi(u−j − 1; d−j − 1, 1− µ(j,−j))

)
=

∑
uj≤Kj(dj ,d−j)
dj+d−j≤dmax

dj
λj
i
(j)
dj ,d−j ,0,0

(0)Bi(uj; dj − 1, 1− µ(j,j))× d−j

Bi(Kj(dj, d−j)− uj; d−j − 1, 1− µ(j,−j)) > 0
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Similar inequalities holds for other cases.

A.4.4 Proof of Lemma II.5

(i) Fix µ ∈ U . Consider the closed, convex, and compact set

S =
{
x ∈ [0, 1]4 : F (µ) ≤ x ≤ µ

}
,

where the inequalities are interpreted component-wise. Note that S is a hyperrectangle.

By Lemma II.4, F (s) ≤ F (µ) ≤ s for all s ∈ S since s ≤ µ. Hence, S is a subset of

U .

(ii) Define G(x) := x − F (x) for x ∈ [0, 1]. Clearly, the set A = {x : G(x) ≥ 0} is a

closed set as G(·) is a continuous function. Since U is the largest connected component

of A that contains 1 = (1, 1, 1, 1), U is closed as well. Now, compactness follows from

the fact that U is bounded.

(iii) Consider the sequence
{
F k(u)

}∞
k=1

for some u ∈ U . Since F (U) ⊂ U , we have

F k(u) ∈ U for all k. By compactness of U , this sequence has a subsequence that

converges to a point u∗ ∈ U . Now the result follows by the fact that F k+1(u) ≤ F k(u)

for all k ≥ 0, where F 0(u) := u.

(iv) Recall that F := (F(1,1), F(1,2), F(2,1), F(2,2)), and for any µ ∈ [0, 1]4 we use the notation

µ =
(
µ(1,1), µ(1,2), µ(2,1), µ(2,2)

)
. Also, recall that F(j,j) is a function of µ(j,j) and µ(j,−j),

and F(j,−j) is a function of µ(−j,−j) and µ(−j,j), for j ∈ {1, 2}. Now, by symmetry there

are two cases that we need to consider:

(a) u(j,j) = u
(j,j)
∗ : If u(j,−j) > u

(j,−j)
∗ , then by Lemma II.4 and equality F(j,j)(u

(j,j)
∗ ,

u
(j,−j)
∗ ) = u

(j,j)
∗ , we have u(j,j) < F(j,j)(u

(j,j), u(j,−j)). If u(j,−j) = u
(j,−j)
∗ , then

either u(−j,j) > u
(−j,j)
∗ or u(−j,−j) > u

(−j,−j)
∗ . Now, if u(−j,−j) > u

(−j,−j)
∗ then by

the same argument we have u(j,−j) < F(j,−j)(u
(−j,−j), u(j,−j)). Otherwise, we have

u(−j,j) > u
(−j,j)
∗ and by the same argument u(−j,−j) < F(−j,−j)(u

(−j,−j), u(−j,j)).

(b) u(j,−j) = u
(j,−j)
∗ : The argument is exactly the same as the previous case, and we

avoid repetition.

A.4.5 Proof of Theorem II.7

By Corollary II.6, µ∗ = limn→∞ F
n(1) is a fixed point of F . Let

N := U ∩
{
x ∈ [0, 1]4 : µ∗ ≤ x ≤ 1

}
.
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For any arbitrary point u ∈ N , define Su := {x : F (u) ≤ x ≤ u}. By the proof of Lemma

II.5 part (i), Su is a subset of U . Moreover, if u 6= µ∗, then F (u) ≥ F (µ∗) and hence Su is

a subset of N . So we have F (N ) ⊂ N . It is also easy to see that N is closed and compact,

and µ∗ is the unique fixed point of F in N .

Now, consider the ODE (2.30). Note that the initial conditions lies in N . Moreover, if

µ(t) ∈ N , then µ̇(t) = F (µ(t))−µ(t) is directing toward N as µ(t) + δ(F (µ(t))−µ(t)) ∈
Sµ(t) ⊂ N for all δ ∈ [0, 1]. Hence, N is a positive invariant set.

Consider the function V (µ) := (µ− µ∗)(µ− µ∗)T . Note that ∀µ ∈ N \ {µ∗}, we have

V̇ (µ)

2
=
(
µ− µ∗

)
(F (µ)− µ)T

=
(
µ− F (µ) + F (µ)− µ∗

)
(F (µ)− µ)T

= −(µ− F (µ))(µ− F (µ))T +
(
F (µ)− µ∗

)
(F (µ)− µ)T < 0,

where the last inequality follows by the fact that µ ≥ µ∗ implies F (µ) ≥ F (µ∗) = µ∗.

Also, note that V̇ (µ∗) = V (µ∗) = 0. Now, the proof of Theorem II.7 follows by the LaSalle

Invariance Principle. Specifically, all trajectories with initial value in N converges to µ∗.

A.4.6 Proof of Theorem II.1

Throughout the proof, we use the subscript n to denote the case of finite n (total number

of nodes), and we use no subscript to denote the behavior as n→∞, i.e., when we use the

right-hand side of (2.34) as initial conditions rather than the actual initial conditions (A.5)

given in Appendix A.3 (which is random). The proof is done via two steps: first, we analyze

the case when dmax < ∞; next, we relax this restriction for part 2 of Theorem II.1. Note

that we use the function F = (F(1,1), F(1,2), F(2,1), F(2,2)) given by (2.26)-(2.27) which is the

same as the function F given by the right-hand side of (2.6)-(2.7), if we use the right-hand

side of (2.34) as the initial conditions.

Before proceeding with the discussion of these two steps, we present four preliminary

lemmas that is used in the proof. The first lemma concerns with fixed points on the axis of

origin. The other 3 lemmas relates the trajectory of µn(t) to the trajectory of µ(t), where

µn(t) and µ(t) are the solutions of the ODE (2.30) with functions F n and F respectively.

Lemma A.1. Let µ∗ := lims→∞ F
s(1) to be the closest fixed point of F to 1 in sup norm.

Assume at least one of the components of µ∗ is zero. Then, we have µ∗ = 0.

proof of Lemma. The proof is similar to the proof of Lemma II.5 part (iv). Without loos of

generality, assume µ
(1,1)
∗ = 0. Since F is a non-negative function, using Lemma II.4, we have

µ
(1,2)
∗ = 0 as 0 ≤ µ∗. Using the exact same argument, we have µ

(2,2)
∗ = µ

(2,1)
∗ = 0.
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Figure A.1: Schematic of Aυ.

Lemma A.2. Let µ∗ := lims→∞ F
s(1) to be the closest fixed point of F to 1 in sup norm.

Assume µ∗ is an stable equilibrium of ODE (2.30), and assume µ∗ > 0 component-wise.

For any υ > 0, define the set Aυ as follows:

Aυ := (B(υ,µ∗) ∪ A) \ int(B(υ,µ∗))

where A is given by (2.31), B(υ,x) is a ball of radius υ centered at x, and int(C) is the

interior of the set C. The 2-dimensional schematic of Aυ is given in Figure A.1. Then,

there is a small enough υ0 > 0 such that Aυ0 ⊂ (0, 1]4 and F (u) � u component-wise,

∀u ∈ Aυ0. Moreover, we have F n(u) � u with high probability; that is to say, for any p > 0

there is a large enough np > 0 such that for any n > np, the event {F n(u) � u, ∀u ∈ Aυ0}
holds with probability greater than 1− p.

proof of Lemma. By part (iv) of Lemma II.5, for all u ∈ A we have F (u) � u. Since µ∗ is an

stable equilibrium point, ∃υ1 > 0 such that starting from any point u ∈ B(υ1,µ∗) ⊂ (0, 1]4,

the ODE (2.30) converges to µ∗. Next, we show that if F (u) ≤ u for some u ∈ B(υ1,µ∗),

then u ≥ µ∗ component-wise.

By the same argument as in the proof of Theorem II.7, if F (u) ≤ u then the ODE

(2.30) starting from u converges to the fixed point lims→∞ F
s(u) which is smaller than u

component-wise. Hence, u ≥ µ∗ so that µ∗ = lims→∞ F
s(u).

Let υ0 = υ1/2. By the above argument, we have F (u) � u component-wise, ∀u ∈ Aυ0 .

Pick ε0 > 0 small enough such that F (u) − ε01 � u for all u ∈ Aυ0 . Now, using (2.34)

and the fact that the dependency of F to the initial conditions is through coefficients, for

any p > 0 we can pick np > 0 large enough such that for any fixed n > np the event

{∀u ∈ Aυ0 : ‖F (u)− F n(u)‖∞ < ε0/2} holds with probability greater than 1− p.

Lemma A.3. Let µ∗ := lims→∞ F
s(1) and µ∗,n := lims→∞ F

s
n(1) to be the closest fixed

point of F and F n to 1 in sup norm, receptively. Note that µ∗,n is a random variable as it

187



depends on the initialization. Assume µ∗ is an stable equilibrium of ODE (2.30). Then, for

any ζ > 0, µ∗,n ∈ B(2ζ,µ∗), with high probability.

proof of Lemma. Pick k large enough such that F k(1) ∈ B(ζ,µ∗). Now, using (2.34), we

have F k
n(1) ∈ B(2ζ,µ∗) with high probability. If µ∗ = 0, the proof is complete. Otherwise,

by Lemma A.1, we have µ∗ > 0 component-wise. In the later case, using Lemma A.2, for

small enough υ0 < 2ζ, we have Aυ0 ∩ Un = ∅ with high probability (Recall that Un is the

largest connected set containing 1 := (1, 1, 1, 1) such that ∀u ∈ U , u ≥ F n(u). ). Hence,

lims→∞ F
s
n(1) ∈ B(2ζ,µ∗) with high probability.

Step 1: Assume there is a constant ∞ > dmax > 0 such that for all dj + d−j > dmax, we

have Kj(dj, d−j) = dj + d−j; that is to say, the inactive nodes with degree higher than dmax

cannot be activated.

Now, the proof of part 1 of Theorem II.1 follows immediately from Theorem II.2, Lemma

II.1, and the fact that the trajectory of µn(x) and µ(x) are uniformly close to each other

with high probability. The last statement follows by the exact same argument as in the proof

of Lemma A.2: for any ε0 > 0, we can pick np > 0 large enough such that the probability of

the event {∀u ≥ µt : ‖F (u)− F n(u)‖∞ < ε0} is less than 1− p for all n > np.

For the proof of part 2 of Theorem II.1, we use the idea that we introduced in Section

2.9. We skip some minor details, as we have already used similar arguments in other parts

of the chapter. If µ∗ = 0 there is nothing to prove as all the half-edges has been used and

the process has to stop. Note that by Lemma A.3, µ∗,n is in any fixed ball around µ∗ with

high probability.

Now, assume µ∗ 6= 0. By Lemma A.1, we know µ∗ > 0 component-wise. By Lemma A.2,

we can pick υ0 > 0 small enough such that Aυ0 ∩ U = ∅ and for all u ∈ Aυ0 we have u > 0

component-wise. Following the proof of Lemma A.2, let ε0 > 0 to be small enough such that

F (u)−ε01 � u for all u ∈ Aυ0 . Note that the event {∀u ∈ Aυ0 : ‖F (u)− F n(u)‖∞ < ε0/2}
holds with high probability. Define F n,κ(u) as in (2.26)-(2.27) by replacing the the terms

λ1, λ2, and λm with λ1 + κ, λ2 + κ, and λm + κ. Let κ0 > 0 to be small enough such that

{∀u ∈ Aυ0 : ‖F n,κ0(u)− F n(u)‖∞ < ε0/4} holds with high probability. Also, note that by

Lemma A.3, we have µ∗,n ∈ B(υ0/4,µ∗) with high probability.

To summarize the crucial results so far, we have {∀u ∈ Aυ0 : ‖F n,κ0(u)− F (u)‖∞ <

3ε0/4} and µ∗,n ∈ B(υ0/4,µ∗) with high probability, and F (u) − ε01 � u for all u ∈ Aυ0 .

Recall the choice of γ0 > 0 as in (2.32) (see Figure 2.2). Consider a point µ0,n = µn(x0) ∈
B(γ0,µ∗) on the trajectory of µn such that a1,n(x0) + a2,n(x0) + a

(1)
m,n(x0) + a

(2)
m,n(x0) = κ0/2.

Note that such a point exists with high probability. At the corresponding time step of the

process, the total number of active half-edges is of order of κ0n with high probability, and
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we expect the Markov process of adoption stop shortly thereafter.

At this point, we modify the process by adding one active node to each community, each

of which has κ0n active half-edges for in community connections and κ0n half-edges for out

community connections. In terms of one step drifts, we can recycle the one step drifts in Ap-

pendix A.2 by replacing the terms m1(n), m2(n), and mm(n) with m1(n)+κ0n, m2(n)+κ0n,

and mm(n) + κ0n. Similarly, this modification reflects in ODE by replacing F n with F n,κ0 .

Let µκ0
∗,n denote the equilibrium point after modification. Trivially, µκ0

∗,n ≤ µ∗,n as Un ⊂ Uκ0
n .

Moreover, Aυ0∩Uκ0
n = ∅ with high probability as {∀u ∈ Aυ0 : ‖F n,κ0(u)− F (u)‖∞ < 3ε0/4}

with high probability. Finally, since µ∗,n ∈ B(υ0/4,µ∗) with high probability, we have

µκ0
∗,n ∈ int(B(υ0,µ∗)) with high probability as well.

Using the exact same techniques as in Theorem II.2 and Lemma II.1, we can track the

modified process using the modified ODE (with the new set of initial conditions given by

the final values of the original ODE at the point of modification) up to any neighborhood

of µκ0
∗,n. In particular, we can track the modified process upto when a1,n(x) + a2,n(x) +

a
(1)
m,n(x) + a

(2)
m,n(x) = κ0/2 for the modified ODE. At the corresponding time step of the

modified process, we have already used all the original active half-edges from the original

process, and most of the active half-edges from the modified one. Hence, if we ignore the

modification, the original process runs out of active half-edges. Note that since µ∗ > 0, we

can pick υ0 small enough such that most of the newly added active half-edges are used to be

connected to inactive nodes, i.e., they are not wasted. Now, the result follows by adjusting

the constant υ0 to be arbitrary small.

Step 2: Consider the truncated processes Xn
L,δ and Xn

U,δ defined in Point 2 of Section 2.6.

Let F L,δ and F U,δ denote the functions correspond to these processes, with the coefficients

given by the right-hand side of (2.34). Let µ∗,L,δ and µ∗,U,δ denote the closets fixed points

of F L,δ and F U,δ to 1 in sup norm respectively.

First off, note that for any δ > 0, we have F U,δ(u) < F (u) < F L,δ(u) for all u ∈ [0, 1]4.

Moreover, F L,δ(u)−F U,δ(u) < 2δ. Now, if we pick δ > 0 small enough, the trajectory of the

corresponding ODEs (given by the functions F L,δ, F U,δ, and F ) are uniformly close to each

other. It is also easy to see that the corresponding equilibrium points are arbitrary close to

each other by small choice of δ, whenever µ∗ is stable. Moreover, if µ∗ is stable, so are µ∗,L,δ

and µ∗,U,δ for all small enough δ > 0.

Now, the proof of part 2 of Theorem II.1 for the case dmax =∞ follows by the fact that

for small δ > 0, both truncated processes Xn
U,δ and Xn

L,δ stops at points arbitrary close to

µ∗ (as µ∗,U,δ and µ∗,U,δ are arbitrary close to µ∗).
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A.4.7 Proof of Theorem II.1

We begin with the simple observation that given ‖αs‖∞ → 0, we have F (αs,u)→ F (0,

u) for all u ∈ [0, 1]4.

Lemma A.4. Assume {αs}∞s=1 converges to zero in sup norm. Then, we have

‖F (αs,u)− F (0,u)‖∞ → 0

uniformly over u ∈ [0, 1]4.

Proof. Fix δ > 0. Pick Sδ large enough such that ‖αs‖∞ < δ for all s > Sδ. It is easy to

see that F(0,u) ≥ F (αs,u) > F (δ1,u) component-wise for all u ∈ [0, 1]4. Now, for any

u ∈ [0, 1]4 we have

‖F(0,u)− F(αs,u)‖∞ ≤ ‖F(0,u)− F(δ1,u)‖∞
= δ‖F(0,u)‖∞

(A.8)

The proof follows by small choice of δ.

Define the set U(α) to be largest connected set containing 1 such that for every u ∈ U(α),

we have u ≥ F (α,u). It is easy to see that for any α 6= 0, we have F (α,u) < F (0,u), and

hence, U(0) ⊂ U(α).

Using the same idea as in the proof of Lemma A.4, for any δ > 0, we have F (0,u) >

F (αs,u) > F (δ1,u) for all s > Sδ. Hence, U(0) ⊂ U(αs) ⊂ U(δ1) for all s > Sδ. Now,

using the fact that ∩∞k=1U(1/k × 1) = U(0), we have lims→∞ U(0) ∩ U(αs) = U(0).

By Corollary II.6, µ∗(αs) = limr→∞ F
r(αs,1) is the closest fixed point of F r(αs, ·) to

1 in sup norm. Define µ∗(0) ∈ U(0) as follows: if U(0) is singleton, define µ∗(0) := {1},
otherwise, define µ∗(0) to be the closest fixed point of F (0, ·) to 1 other than 1 itself. Note

that for all u ∈ U(0) ∩ {x : µ∗(0) ≤ x ≤ 1} \ {1}, using the same argument as in the

proof of Lemma II.4, we have limr→∞ F
r(0,u) = µ∗(0). Now, the sequence {µ∗(αs)}∞s=0 is

sandwiched between the sequence {µ∗(1/k × 1)}∞s=0 and µ∗(0). Hence, if U(0) is singleton,

then the final proportion of adopters converges to 0 as αs → 0. Otherwise, the final

proportion of adopters is strictly positive, and we have

lim
s→∞

µ∗(αs) = lim
r→∞

F r(0,u) ∀µ ∈ U(0) ∩ {x : µ∗(0) ≤ x ≤ 1} \ {1}.
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A.4.8 Proof of Theorem II.1

By definition of F given in (2.6)-(2.7), and the fact that Pj∗,m(dj, d−j) = Pj,m(dj−1, d−j)

and Pj,m∗(dj, d−j) = Pj,m(dj, d−j − 1), we have

F(j,j)(µ
(j,j), µ(j,−j)) =

∑
uj+u−j≤Kj(dj+d−j)

Pj,m(dj − 1, d−j)(1− αj(dj + d−j))×

Bi(uj; dj − 1, 1− µ(j,j))Bi(u−j; d−j, 1− µ(j,−j))

=
∑

uj+u−j≤Kj(dj+d−j+1)

Pj,m(dj, d−j)(1− αj(dj + d−j + 1))×

Bi(uj; dj, 1− µ(j,j))Bi(u−j; d−j, 1− µ(j,−j))

F(−j,j)(µ
(j,j), µ(j,−j)) =

∑
uj+u−j≤Kj(dj+d−j)

Pj,m(dj, d−j − 1)(1− αj(dj + d−j))×

Bi(u−j; d−j − 1, 1− µ(j,−j))Bi(uj; dj, 1− µ(j,j))

=
∑

uj+u−j≤Kj(dj+d−j+1)

Pj,m(dj, d−j)(1− αj(dj + d−j + 1))×

Bi(u−j; d−j, 1− µ(j,−j))Bi(uj; dj, 1− µ(j,j))

Hence, F(1,1)(µ
(1,1), µ(1,2)) = F(2,1)(µ

(1,1), µ(1,2)) and F(2,2)(µ
(2,2), µ(2,1)) = F(1,2)(µ

(2,2), µ(2,1)).

Now, if we also have µ(1,1) = µ(2,1) and µ(2,2) = µ(1,2), then we have

F(1,1)(µ
(1,1), µ(1,2))− µ(1,1) = F(2,1)(µ

(1,1), µ(1,2))− µ(1,1)

F(2,2)(µ
(2,2), µ(2,1))− µ(2,2) = F(1,2)(µ

(2,2), µ(2,1))− µ(1,2)

Since these equalities hold at the initial stage of ODE (2.30) with the function F given

in (2.6)-(2.7), it holds on the whole trajectory; that is to say, µ(1,1)(x) = µ(2,1)(x) and

µ(2,2)(x) = µ(1,2)(x) for all x ≥ 0 where µ(x) is the solution of the ODE.

A.4.9 Proof of Theorem II.2

If µ(1,1) = µ(2,2) and µ(2,1) = µ(1,2) then we have F(1,1)(µ
(1,1), µ(1,2)) = F(2,2)(µ

(2,2), µ(2,1))

and F(2,1)(µ
(1,1), µ(1,2)) = F(1,2)(µ

(2,2), µ(2,1)). Using the same argument as in the proof of

Theorem II.1, we have µ(1,1)(x) = µ(2,2)(x) and µ(2,1)(x) = µ(1,2)(x) for all x ≥ 0.
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APPENDIX B

Appendix of Chapter III

B.1 Proof of Theorem III.2

Before presenting the proof, we revisit some basic properties of the order statistics of n

independent and identically distributed random variables.

Lemma B.1. Let {Xi}mi=1 denote a set of i.i.d. random variables. Let F (·) and f(·) represent

the cumulative distribution function and probability density function of X1 respectively. Con-

sider the order statistics of {Xi}mi=1 and denote it by {X(i)}mi=1. For every x1 ≤ x2 ≤ · · · ≤ xn

and l ≤ m, we have

fX(1),X(2),...,X(l)(x1, x2, . . . , xl) = l!

(
m

l

)
×

l∏
i=1

f(xi)× (1− F (xl))
m−l ,

fX(l),X(l+1),...,X(m)(xl, xl+1, . . . , xm) = (m− l + 1)!

(
m

m− l + 1

)
×

m∏
i=l

f(xi)× F (xl)
l−1,

fX(l)(xl) = l

(
m

l

)
× f(xl)× F (xl)

l−1 × (1− F (xl))
m−l,

fX(1),X(2),...,X(l−1)|X(l)(x1, x2, . . . , xl−1|xl) = (l − 1)!

∏l−1
i=1 f(xi)

F (xl)l−1
,

fX(l+1),X(l+2),...,X(m)|X(l)(xl+1, xl+2, . . . , xm|xl) = (m− l)!
∏m

i=l+1 f(xi)

(1− F (xl))m−l
.

Corollary B.2. Let {Yi}l−1
i=1 denote a random permutation of {X(i)}l−1

i=1, i.e., pick a permu-

tation σ ∈ Sl−1 uniformly at random and set Yi = X(σ(i)) for all 1 ≤ i ≤ l− 1. Similarly, let
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{Zi}mi=l+1 denote a random permutation of {X(i)}mi=l+1. Then we have

fY1,Y2,...,Yl−1|X(l)(y1, y2, . . . , yl−1|xl) =

∏l−1
i=1 f(yi)

F (xl)l−1
,

fZl+1,Zl+2,...,Zm|X(l)(zl+1, zl+2, . . . , zm|xl) =

∏m
i=l+1 f(zi)

(1− F (xl))m−l
.

Moreover, {Yi}l−1
i=1 are identically distributed and conditioned on X(l), they are independent.

Same holds for {Zi}mi=l+1:

fYi|X(l)(yi|xl) =
f(yi)

F (xl)
∀i ≤ l − 1

fZi|X(l)(yi|xl) =
f(zi)

1− F (xl)
∀i ≥ l + 1

Corollary B.3. Let {Xi}mi=1 to be independent exponentially distributed random variables

with mean n. Consider the random variables {Yi}i<l and {Zi}i>l as are defined in Corollary

B.2. Then, the conditional distribution of these random variables are given as follows:

fX(i)(xi) = i

(
n

i

)
× (1− e−

xi
n )i−1 × 1

n
e−(n−i+1)

xi
n

n→∞−−−→ e−xixi
i−1

(i− 1)!
∀i ∈ [n]

fYi|X(l)(yi|xl) =
1
n
e−yi/n

1− e−xl/n
n→∞−−−→ 1

xl
∀i ≤ l − 1

fZi|X(l)(zi|xl) =
1
n
e−zi/n

e−xl/n
=

1

n
e−(zi−xl)/n ∀i ≥ l + 1

Most notably, the conditional distribution of Yi for i < l conditioned on X(l) = xl converges

to the uniform distribution over [0, xl], as n goes to infinity. Moreover, the distribution of

X(i) converges to Erlang(i).

As we mentioned, EU(Nn) is the law of [Nn,◦(r)] for a uniformly chosen r ∈ [n]. The idea

is to first define an exploration process over Kn that realizes the connected component of

the vertex r in Nn. Then, we show that the connected component is locally tree-like and the

distribution of the connected component up to any finite time step of the exploration process

converges to Er(P ). Finally, using the Portmanteau Theorem, we prove EU(Nn)
w−→ Er(P ).

Step 1: Exploration Process
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The first step is to define a process that explores Kn and realizes the connected component

of a randomly selected vertex r ∈ [n] in Nn. Let En = {{i, j} : i 6= j ∈ [n]} denote the set

of all edges in Kn. In order to track the process, we also construct a map φ from Nf to

the connected component of r and a fictitious vertex. In particular, φ maps Nf \ {φ−1(v) :

v in connected component of r } to the fictitious vertex. The exploration is on En and the

cost of edges in En; at each step of the exploration process, En is partitioned into five sets,

defined as follows:

At = {({i, j}, Cn({i, j})) : {i, j} is active at time t}

Ct = {({i, j}, Cn({i, j})) : {i, j} belongs to the connected component at time t}

Dt = {({i, j}, Cn({i, j})) : {i, j} does not belong to the connected component at time t}

Rt = {({i, j}, Cn({i, j})) : the cost of the non-active edge {i, j} has been realized by time t}

Ut = {{i, j} : the cost of the edge {i, j} has not been realized by time t}

Remark B.4. During the proof, we may abuse the notation by saying {i, j} ∈ At without

including the cost. Even though At is a set of edges and their costs, we say i ∈ At (nota-

tionally), if there is a vertex j ∈ [n] such that {i, j} ∈ At. Finally, we say a vertex i ∈ [n]

has been explored by time step t, if both the threshold of i, Ti given by (3.3), and the set of

potential neighbors of i, Pi given by (3.4), have been realized.

Remark B.5. The partition of En at time t satisfies the following properties:

1. At: The set of active edges, At, consists of all the edges {v, z} such that: i) The cost

of {v, z} has been realized; ii) Exactly one of v or z (but not both) belongs to the

connected component at time t; and iii) If Pv has been realized, then z ∈ Pv. If Pz has

been realized, then v ∈ Pz.

2. Ct: The set of voted-in edges, Ct, consists of all the edges {v, z} such that: i) The cost

of {v, z} has been realized; ii) The vertices v and z belong to the connected component

at time t; and iii) Each vertex is a potential neighbor of the other, i.e., z ∈ Pv and

v ∈ Pz.

3. Dt: The set of erased edges, Dt, consists of all the edges {v, z} such that: i) The cost of

{v, z} has been realized; and ii) If only Pv (Pz) has been realized, then z /∈ Pv (v /∈ Pz);
if Pv and Pz have been realized, then either z /∈ Pv or v /∈ Pz (or both).

4. Rt: The set of realized edges, Rt, consists of all the edges {v, z} such that: i) The cost

of {v, z} has been realized; ii) Neither v nor z belongs to the connected component

194



at time t; and iii) If Pv has been realized, then z ∈ Pv; if Pz has been realized, then

v ∈ Pz.

5. Ut: The set of unrealized edges, Ut, consists of all the edges {v, z} such that the cost

of {v, z} has not been realized.

Remark B.6. At each step of the exploration process, we may add at most one vertex to the

connected component of r. Moreover, if the vertex v is added to the connected component

at time t+ 1, i.e., v ∈ Ct+1, then v is active at time t, i.e., v ∈ At and the exploration process

explores an edge {j, v} such that j ∈ Ct.

Exploration process details and an alternative viewpoint : The exploration process

starts by realizing the sets for t = 0. Set φ(r) = ø and define v0 := r and k := dr(n). Let

T0 and P0 denote the threshold and the set of potential neighbors of v0, respectively. By

definition, T0 and P0 are given by

T0 = k + 1th smallest value in {Cn({v0, j}) : j ∈ [n] \ {v0}} ,

P0 = {j ∈ [n] \ {v0} : Cn({v0, j}) < T0}.

Next, we present an alternative way to realize T0 and P0 without realizing the cost of {v0, j}
for all j ∈ [n] \ {v0}. This alternative construction of the finite graph is an essential part of

the proof of the weak convergence result, and is used at all time steps t ≥ 0 as well.

Pick a vertex z0 ∈ [n] \ {v0} uniformly at random and assume the threshold of the vertex

v0 is equal to the cost of the edge {v0, z0}, i.e., T0 = Cn({v0, z0}). Realize the value of

Cn({v0, z0}); according to Lemma B.1, the density function of Cn({v0, z0}) is given by

fCn({v0,z0})(w) = (k + 1)

(
n− 1

k + 1

)
× 1

n
e−w(n−k−1)/n × (1− e−w/n)k.

Next, pick I0 = {z1, z2, . . . , zk}, a subset of size k, from [n]\({z0}∪{v0}) uniformly at random

and assume I0 is the set of potential neighbors of v0, i.e., P0 = I0. Pick a permutation m0

over [|I0|] uniformly at random and define φ(zi) = m0(i) for all i ∈ [k]. Realize the values of

{Cn({v0, zi})}ki=1; by Corollary B.2, the conditional joint density function of these random

variables is given by

fCn({v0,z1}),Cn({v0,z2}),...,Cn({v0,zk})|T0(w1, w2, . . . , wk|w0) =

∏k
i=1

1
n
e−wi/n

(1− e−w0/n)k
.

195



Start the exploration process with

A0 = {({v0, j}, cn ({v0, j})) : j ∈ P0} , (B.1a)

C0 = {}, (B.1b)

D0 = {({v0, z0}, cn ({v0, z0}))}, (B.1c)

R0 = {}, (B.1d)

U0 = En \ {{v0, j} : j ∈ I0 ∪ {z0}} . (B.1e)

The description of the above equations is as follows:

1. Equation (B.1a): The vertex v0 is the root of the connected component. All the

potential neighbors of v0 are included in A0.

2. Equation (B.1b): Although the vertex v0 is the root of the connected component, there

is no edge in the connected component yet; hence, the set C0 is set to be empty at the

initial stage.

3. Equation (B.1c): The connection {v0, z0} determines the threshold of the vertex v0;

hence, the vertex z0 /∈ P0 and the edge {v0, z0} does not survive.

4. Equation (B.1d): The vertex v0 is the root of the connected component; hence, none

of the edges of form {v0, z} belongs to R0. The set R0 is set to be empty at the initial

stage.

5. Equation (B.1e): All the edges {v0, j} such that Cn{v0, j} has been realized are removed

from En to construct U0.

Figure B.1 depicts the preparation step for the exploration process. Define T̂0 to be equal

to T0. These two values might be different for t > 0. The definition and the role of T̂t will

become clear later on.

Before proceeding with the exploration process, we need to define an order on Nf : for two

sequence i = (i1, i2, . . . , il) and j = (j1, j2, . . . , jl′), we say i ≺ j if l < l′ or l = l′ and there

exist some g ∈ Z+ such that (i1, i2, . . . , ig−1) = (j1, j2, . . . , jg−1) and ig < jg.

Remark B.7. For the sake of notational simplicity, we denote the set of potential neighbors

and the threshold of the vertex vt by Pt and Tt instead of Pvt and Tvt . We may also use Pj as

the set of potential neighbors of the vertex j. The distinction is clear from the context.

The exploration process for t ≥ 0 is as follows; let et+1 = {φ−1(i), φ−1(j)} ∈ At such that

i is minimal among {φ(v) : v ∈ At} and j is minimal among {φ(z) : {φ−1(i), z} ∈ At}. The
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Figure B.1: Preparation step for the exploration process

choice of et+1 corresponds to the breadth-first search algorithm. As an example for t = 0,

the set {φ(v) : v ∈ A0} equals to {ø, 1, 2, . . . , k}; hence i = ø and φ−1(ø) = r. Moreover, the

set {φ(z) : {φ−1(ø), z} ∈ At} equals {1, 2, . . . , k}; hence j = 1 and φ−1(1) = zm−1
0 (1). Hence,

e1 = {φ−1(ø), φ−1(1)} = {r, zm−1
0 (1)}.

Remark B.8. Let φ(v) = (i1, i2, . . . , ig) and define par(v) := φ−1(i1, i2, . . . , ig−1). The ex-

ploration process ensures that par(v) belongs to the connected component of r; moreover,

par(v) is the first vertex in the connected component such that v belongs to the set of the

potential neighbors of par(v), i.e., for every z in the connected component if v ∈ Pz then

par(v) is attached to the connected component before z. However, it is possible to have

{par(v), v} ∈ Dt for some t > 0, which is the case if par(v) /∈ Pv and the vertex v has been

explored by time step t. Still, v may connect to the connected component through some

other vertex v′, i.e., {v′, v} ∈ Ct′ for some t′ > t. Figure B.2 illustrates such a situation,

where par(b) = r, {par(b), b} ∈ D2 and {d, b} ∈ C5. Note that the labeling is based on being

a “potential neighbor” rather than being an actual neighbor.

Remark B.9. A vertex v 6= r belongs to the connected component of r by time step t if and

only if v ∈ Ct. A vertex v ∈ [n]\{r} has been explored by time step t if and only if v belongs

to the connected component, or there is a vertex v′ ∈ Ct such that {v′, v} ∈ Dt ∪ Ct and

v belongs to the set of potential neighbors of v′, i.e., v ∈ Pv′ . Note that in the later case,

the vertex v′ may not be the vertex par(v); As an example, in Figure B.2 the vertex g is

explored at time step t = 5 (since e6 = {b, g}), but {par(g), g} = {d, g} ∈ A6.

Remark B.10. An important observation is that for every {v, z} ∈ At exactly one of v or z

(but not both) belongs to the connected component of the vertex r at time t. Moreover, at

least one of the vertices v or z has been explored; hence, at each time step we may explore

at most one vertex.
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Figure B.2: A realization of the exploration process up to t = 5. Cost of the edges, threshold
of the vertices, potential degree of the vertices, the permutation mt, and the sets
At, Ut, Ct, and Dt are not mentioned. Solid green edges belong to Ct, dashed
red edges belong to Dt, dashed dotted green edges belong to At, and dotted blue
edges belong to Rt. Note that par(b) is defined to be r although b is connected
to the root via d at time t = 5. Moreover, par(g) is d since the vertex d is the
first vertex in the connected component such that g ∈ Pd; although g ∈ Pb, the
vertex b is connected to the connected component after the vertex d. Based on
the exploration process, {b, g} ∈ A5 and e6 = {b, g}.

Based on the exploration strategy the vertex φ−1(i) has been explored, but it may not

belong to the connected component. More explicitly, par(φ−1(i)) belongs to the connected

component (Remark B.8), and φ(par(φ−1(i))) ≺ j; hence, the edge {par(φ−1(i)), φ−1(i)} ∈
Ct ∪ Dt or equivalently, φ−1(i) has been explored by time t (Remark B.9). However, the

vertex φ−1(j) has two different possibilities,

� Subcase I , where φ−1(j) has not been explored: in this case, the vertex φ−1(i) belongs

to the connected component. Let vt+1 = φ−1(j). Let m ≤ t+ 1 denote the number of

explored vertices by time step t. Note that at time t = 0, the root vertex has already

been explored and for each t > 0, we may explore at most one vertex at each time

step (Remark B.10). Define k′ := min(n −m − 2, dvt+1(n)). If n −m − 2 < 0, which

may happen if the graph is fully connected and the process is reaching to its end,
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then let k′ = 0. In order to explore vt+1, the first step is to choose Bt+1 = {z1, z2,

. . . , zk′}, a subset of size k′, uniformly at random from the set of unexplored vertices

(there are n − m − 1 unexplored vertices other than vt+1). Next, pick a vertex z0

out of remaining unexplored vertices uniformly at random (there are n −m − 1 − k′

option for z0). Assume that the cost of the edges {vt+1, zi}k
′
i=1 are the least k′ values

in {Cn({vt+1, z}) : z is not explored} and the cost of {vt+1, z0} is exactly the k′ + 1th

smallest one. As in t = 0, we do not realize the cost of {vt+1, z} for all unexplored

vertices z ∈ [n]. Using Lemma B.1 and Corollary B.3, the joint density function of

{Cn({vt+1, z})}k
′

i=0 is given by,

fCn({vt+1,z0}),Cn({vt+1,z1}),...,Cn({vt+1,zk′})(w0, w1, . . . , wk′) =

(k′ + 1)

(
n−m− 1

k′ + 1

)
×

k′∏
i=0

1

n
e−wi/n × e−w0(n−m−1−(k′+1))/n

where wi ≤ w0 for all i ∈ [k′]. Notice that for every vertex v /∈ Bt+1 ∪ {z0} such that

v has not been explored and the cost of {vt+1, v} has not been realized, the value of

Cn({vt+1, v}) is greater than cn({vt+1, z0}). Define T̂t+1 to be cn({vt+1, z0}),

T̂t+1 := cn({vt+1, z0})

Remark B.11. If, after realizing Bt+1 ∪ {z0}, the set of unexplored vertices v such that

{vt+1, v} has not been realized is non-empty, then dvt+1(n) < n−m−2 and Tt+1 ≤ T̂t+1.

The second step to explore vt+1 is to realize the cost of all the edges between vt+1

and the explored vertices; by Corollary B.3, for every explored vertex v such that

{vt+1, v} ∈ Ut, the density of Cn({vt+1, v}) conditioned on T̂v = wv is given by

fCn({vt+1,v})|T̂v(w|wv) =
1

n
e−(w−wv)/n

Remark B.12. Assume the vertex v has been explored but the value of Cn({vt+1, v})
has not been realized. Since v has been explored, we already know that vt+1 /∈ Pv
and Cn({vt+1, v}) > Tv. However, by the first step of the exploration process for the

vertex v we have Cn({vt+1, v}) > T̂v. Moreover, Remark B.11 suggests T̂v ≥ Tv since

{vt+1, v} ∈ Ut.

Note that the potential neighbors of vt+1 are either explored or belongs to Bt+1 ∪{z0}.
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Define k := dvt+1(n) and set the threshold and the set of potential neighbors of vt+1,

Tt+1 = k + 1th smallest value in {cn({vt+1, j}) : j ∈ [n] is explored or j ∈ Bt+1 ∪ {z0}}

Pt+1 = {j ∈ [n] : cn({vt+1, j}) < Tt+1 and j ∈ [n] is explored or j ∈ Bt+1 ∪ {z0}}

Remark B.13. The value of k′ is less than or equal to k. As the process reaches to its

end or if dvt+1(n) > n−m− 2, we have k′ < k; hence, it is possible to have z0 ∈ Pt+1.

Sub-subcase I.1 : If cn(et+1) ≥ Tt+1, then the connection et+1 does not survive;

however, all the potential neighbors of vt+1 has been realized and the vertex vt+1 has

been explored. In this case, update the sets as follows:

At+1 = At \ {({vt+1, j}, cn ({vt+1, j})) : j /∈ Pt+1 and {vt+1, j} ∈ At} (B.2a)

Ct+1 = Ct (B.2b)

Dt+1 = Dt ∪ {({vt+1, j}, cn ({vt+1, j})) : j /∈ Pt+1 and Cn({vt+1, j}) is realized}

∪ {({vt+1, j}, cn ({vt+1, j})) : j has been explored and vt+1 /∈ Pj}
(B.2c)

Rt+1 = (Rt ∪ {({vt+1, j}, cn ({vt+1, j})) : j ∈ Pt+1 and j has not been explored})

\ {({vt+1, j}, cn ({vt+1, j})) : j /∈ Pt+1 and {vt+1, j} ∈ Rt}
(B.2d)

Ut+1 = Ut \ {{vt+1, j} : Cn({vt+1, j}) is realized} (B.2e)

The description of the above equations is as follows:

1. Equation (B.2a): All the active edges {vt+1, j} in At such that j /∈ Pt+1 are

removed, including et+1. Note that if {vt+1, j} ∈ At, then vt+1 ∈ Pj (Remark

B.10); however, after exploring the vertex vt+1, it is clear whether j is a potential

neighbor of vt+1 or not. If j /∈ Pt+1 then the edge {vt+1, j} is moved to Dt+1. On

the other hand, if j ∈ Pt+1, then {vt+1, j} survives; however, this edge needs to be

revisited at a later time in order to add new members to the set of active edges.

2. Equation (B.2b): The vertex vt+1 is not connected to the connected component

through the edge et+1. Note that there might be some other vertex j such that

{vt+1, j} ∈ At and j ∈ Pt+1, i.e., {vt+1, j} survives (Remark B.10); however, the

exploration of the edge {vt+1, j} is postponed to some t′ > t.

3. Equation (B.2c): All the edges {vt+1, j} such that Cn{vt+1, j} has been realized

and j /∈ Pt+1 do not survive. Moreover, for all explored vertices j such that
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vt+1 /∈ Pj, the edge {vt+1, j} does not survive as well.

4. Equation (B.2d): For all j ∈ Pt+1 such that the vertex j has not been explored,

{vt+1, j} is added to Rt+1. Note that the cost of {vt+1, j} has been realized and

neither vt+1 nor j belong to the connected component. Moreover, for each explored

vertex j, if {vt+1, j} /∈ Rt then either vt+1 /∈ Pj or j belongs to the connected

component; hence, {vt+1, j} need not be included in Rt+1. Finally, for all edges

{vt+1, j} ∈ Rt, the vertex vt+1 is a potential neighbor of the vertex j; however, if

j /∈ Pt+1 then {vt+1, j} does not survive.

5. Equation (B.2e): All the edges {vt+1, j} such that Cn{vt+1, j} has been realized

are removed from Ut+1.

Remark B.14. Consider an edge e = {vt+1, j} such that the cost of e has been realized.

If the vertex j /∈ Pt+1, then the edge e does not survive and it belongs to Dt+1. Now

assume j ∈ Pt+1. If the vertex j has not been explored, then e belongs to Rt+1. If

the vertex j has been explored and vt+1 /∈ Pj, then the edge e does not survive and

it belongs to Dt+1. Assume j has been explored and vt+1 ∈ Pj. If j belongs to the

connected component, then e ∈ At. If j does not belong to the connected component,

then e ∈ Rt. In either case, e needs no update, and it is included in the corresponding

set at time step t+ 1.

Sub-subcase I.2 : If cn(et+1) < Tt+1, then the connection et+1 survives and vt+1 be-

longs to the connected component. Define It+1 = {p ∈ Pt+1 : φ(p) is not defined}. Let

It+1 = {p1, p2, . . . , p|It+1|}. Pick a permutation mt+1 over [|It+1|] uniformly at random

and set φ(pl) = (j,mt+1(l)) for all l ∈ [|It+1|], where j = φ(vt+1). Update the sets as

follows,

At+1 =
(

At ∪ {({vt+1, j}, cn ({vt+1, j})) : j ∈ Pt+1 and j has not been explored}

∪ {({vt+1, j}, cn ({vt+1, j})) : j has been explored and j ∈ Pt+1, vt+1 ∈ Pj}
)

\ {({vt+1, j}, cn ({vt+1, j})) : j belongs to the connected component}
(B.3a)

Ct+1 = Ct ∪ {({vt+1, j}, cn ({vt+1, j})) : j ∈ Pt+1 and {vt+1, j} ∈ At} (B.3b)

Dt+1 = Dt ∪ {({vt+1, j}, cn ({vt+1, j})) : j /∈ Pt+1 and Cn({vt+1, j}) is realized}

∪ {({vt+1, j}, cn ({vt+1, j})) : j has been explored and vt+1 /∈ Pj}
(B.3c)

Rt+1 = Rt \ {({vt+1, j}, cn ({vt+1, j})) : {vt+1, j} ∈ Rt} (B.3d)

Ut+1 = Ut \ {{vt+1, j} : Cn({vt+1, j}) is realized} (B.3e)
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The description of the above equations is as follows:

1. Equation (B.3a): All the edges {vt+1, j} such that j ∈ Pt+1 and j has not been

explored are added to At. Moreover, all the edge {vt+1, j} such that j has been

explored, j do not belongs to the connected component, j ∈ Pt+1 and vt+1 ∈ Pj
are also included in At+1.

2. Equation (B.3b): The vertex vt+1 is connected to the connected component

through the edge et+1; however, all the edges {vt+1, j} ∈ At such that j ∈ Pt+1

are also included in Ct+1; since for each edge {vt+1, j} ∈ At the vertex j belongs

to the connected component and vt+1 ∈ Pj.

3. Equation (B.3c): All the edges {vt+1, j} such that Cn{vt+1, j} has been realized

and j /∈ Pt+1 do not survive. Moreover, for all explored vertex j such that vt+1 /∈
Pj, the edge {vt+1, j} does not survive as well.

4. Equation (B.3d): Since vt+1 is connected to the connected component, no edge

needs to be added to Rt; however, all the edges {vt+1, j} ∈ Rt is removed from Rt,
since one end of such an edge belongs to the connected component.

5. Equation (B.3e): All the edges {vt+1, j} such that Cn{vt+1, j} has been realized

is removed from Ut+1.

Remark B.15. Consider an edges e = {vt+1, j} such that the cost of e has been realized.

If the vertex j /∈ Pt+1, then the edge e does not survive and it belongs to Dt+1. Assume

j ∈ Pt+1. If the vertex j has not been explored, then e belongs to At+1. If the vertex

j has been explored and vt+1 /∈ Pj, then the edge e does not survive, and it belongs

to Dt+1. Assume j has been explored and vt+1 ∈ Pj. If j belongs to the connected

component, then e ∈ At and e is moved to Ct+1. If j does not belong to the connected

component, then e ∈ Rt and e is moved to At+1.

Figure B.3 illustrates the update process for the case where only φ−1(i) has been

explored.

� Subcase II , φ−1(j) has been explored: Let vt+1 denote the one, amongst φ−1(j) and

φ−1(i), which is not connected to the connected component. Since vt+1 has already

been explored, all the potential neighbors of the vertex vt+1 has been realized.

Remark B.16. Since the vertex vt+1 has been explored and it does not belong to the

connected component by time t, there is a vertex v ∈ [n], which belongs to the con-

nected component of r by time t and vt+1 ∈ Pv and {v, vt+1} ∈ Dt. Note that v may

or may not be par(vt+1). To clarify the reason, consider the following cases,
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Figure B.3: The exploration process at time step t, when the vertex φ−1(j) has not been
explored. (c1) and (d1) illustrate the case when cn(et+1) ≥ Tt+1 while (c2) and
(d2) illustrate the case when cn(et+1) < Tt+1.
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1. Consider the case where φ−1(j) belongs to the connected component. As is

mentioned in Remark B.8, the vertex par(φ−1(i)) has been explored; hence,

{par(φ−1(i)), φ−1(i)} ∈ Dt. In Figure B.2, at t = 4, we have i = (2) and

φ−1(2) = b, and j = (3, 1) and φ−1(j) = d; however, d belongs to the connected

component and b does not and the edge {par(b), b} = {r, b} ∈ D4.

2. Consider the case where φ−1(i) belongs to the connected component. In this

case, the edge {par(φ−1(j)), φ−1(j)} may belong to At. In Figure B.2, at t = 5,

we have i = (2) and φ−1(2) = b, and j = (3, 1, 1) and φ−1(j) = g; assuming

b /∈ Pg and d ∈ Pg, the connection e6 does not survive but the vertex g is explored

and {par(g), g} = {d, g} ∈ A6.

Without loss of generality, assume φ−1(i) belongs to the connected component; hence,

vt+1 = φ−1(j). Define k := dvt+1(n) and set the threshold and the set of potential

neighbors of vt+1,

Tt+1 = k + 1th smallest value in {cn({vt+1, j}) : j ∈ [n] and {vt+1, j} ∈ Rt ∪ At ∪ Dt}

Pt+1 = {j ∈ [n] : {vt+1, j} ∈ Rt ∪ At ∪ Dt and cn({vt+1, j}) < Tt+1}

Remark B.17. Given that both φ−1(i) and φ−1(j) have been explored and one of them

does not belong to the connected component, the survival of {φ−1(i), φ−1(j)} should

have been determined, i.e., it survives. The edge {φ−1(i), φ−1(j)} has been added to

the set of active edges to revisit the vertex vt+1 and add new potential edges to At.

As is mentioned in Remark B.17, the connection et+1 survives and vt+1 belongs to the

connected component. Define It+1 = {z ∈ Pt+1 : φ(z) is not defined}. Let It+1 = {z1,

z2, . . . , z|It+1|}. Pick a permutation mt+1 over [|It+1|] uniformly at random and set

φ(zl) = (j,mt+1(l)) for all l ∈ [|It+1|], where j = φ(vt+1). Update the sets as follows,

At+1 = (At ∪ {({vt+1, j}, cn ({vt+1, j})) : {vt+1, j} ∈ Rt})

\ {({vt+1, j}, cn ({vt+1, j})) : {vt+1, j} ∈ At}
(B.4a)

Ct+1 = Ct ∪ {({vt+1, j}, cn ({vt+1, j})) : {vt+1, j} ∈ At} (B.4b)

Dt+1 = Dt (B.4c)

Rt+1 = Rt \ {({vt+1, j}, cn ({vt+1, j})) : {vt+1, j} ∈ Rt} (B.4d)

Ut+1 = Ut (B.4e)

The description of the above equations is as follows:
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1. Equation (B.4a): All the edges {vt+1, j} ∈ Rt is added to At; since, for every {vt+1,

j} ∈ Rt, the vertex j is a potential neighbor of vt+1 and if j has been explored,

then vt+1 ∈ Pj as well. In addition, all the edges {vt+1, j} ∈ At are removed from

At; since, j belongs to the connected component at time t (Remark B.10), the

edge {vt+1, j} survives (Remark B.17) and we do not need to revisit the vertex

vt+1 at a later time.

2. Equation (B.4b): All the edges {vt+1, j} ∈ At are moved to Ct+1; since, if {vt+1,

j} ∈ At then j ∈ Pt+1, vt+1 ∈ Pj and the vertex j belongs to the connected

component (Remark B.10 and Remark B.17).

3. Equation (B.4c): Note that both φ−1(i) and φ−1(j) have been explored; hence,

the cost of none of the edges in Ut is realized and the set Dt needs no update.

4. Equation (B.4d): All the edges {vt+1, j} ∈ Rt are removed from Rt, since exactly

one end of such an edge belongs to the connected component. All of these edges

are moved to At+1.

5. Equation (B.4e): The cost of none of the edges in Ut is realized; hence, Ut needs

no update.

Remark B.18. Consider an edges e = {vt+1, j} with realized cost. If e ∈ At, then j

belongs to the connected component, vt+1 ∈ Pj (Remark B.10) and j ∈ Pt+1 (vertex

vt+1 has been explored); hence, e is moved to Ct+1. If the edge e ∈ Dt, then e needs no

update. If the edge e ∈ Rt, then e is moved to At+1 since vt+1 belongs to the connected

component. Finally, e does not belong to Ut nor Ct.

Remark B.19. Recall that for any {v, z} ∈ Rt, if v has been explored then z ∈ Pv.
Moreover, neither z nor v belongs to the connected component of r by time t.

Figure B.4 illustrates the updating process for the case where both φ−1(i) and φ−1(j)

have been explored.

Exploration phase : The exploration terminates when At = ∅. Consider the following

filtration,

Ft = σ((A0, C0,D0,R0,U0), . . . , (At, Ct,Dt,Rt,Ut))

Let τ denote the time that the algorithm terminates. Indeed, τ is a stopping time of the

filtration where τ = inf{t ≥ 1 : At = ∅}.

Step 2: Locally tree-like property
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Figure B.4: The exploration process at time step t, when both the vertices φ−1(j) and φ−1(i)
have been explored.

In the second step, the goal is to show that the rooted graph induced by Ct∧τ for any fixed

t becomes a tree as the number of vertices, n, goes to infinity. This implies that the graph

Gn, induced by the network Nn after removing the marks, is asymptotically locally tree-like.

In fact, a stronger property holds: for every fixed t > 0, the probability that the vertex vl,

for all l ∈ [t ∧ τ ], has been touched twice during the exploration process prior to time step l

goes to zero as n→∞. The term “touching” is defined as follows,

Definition B.20. A vertex v is said to be touched at time t′ ≤ τ if the cost of {vt′ , v} is

realized at time t′, i.e., {vt′ , v} ∈ Ut′−1 \ Ut′ . The vertex vt′ is chosen according to the

exploration process. Note that the vertex v may have or may not have been explored.

If for every l ∈ [t ∧ τ ], the vertex vl has been touched only once before the time step l,

then el = {par(vl), vl}; moreover, for every l′ < l such that vl′ 6= par(vl), the vertex vl is not

the potential neighbor of the vertex vl′ . This implies that the rooted graph induced by Ct∧τ
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is a tree. A stronger condition is proved in the following lemma: with high probability, for

all l ∈ [t ∧ τ ] the potential neighbors of the vertex vl are touched for the first time, except

maybe par(vl).

Lemma B.21. Locally tree-like property For t′ > 0, let Jt′ denote the set of vertices

j such that Cn ({vt′ , j}) ≤ Tt′ and j has been touched at least twice during the exploration

process up to time t′, once at time step t′ and at least once at some time step t̃ < t′, i.e.,

Jt′={j ∈ [n] : Cn ({vt′ , j}) ≤ Tt′ , {vt′ , j} ∈ Ut′−1 \ Ut′ , and ∃ṽ 6= vt′ such that {ṽ, j} /∈ Ut′−1}

Consider a fixed value t > 0, then we have,

lim
n→∞

P (∃l ∈ [t ∧ τ ] such that |Jl| 6= 0) = 0. (B.5)

Remark B.22. Consider the event {Jl = ∅} for all l ∈ [t ∧ τ ]. This implies that for every

vertex j such that Cn ({vl, j}) ≤ Tl, either j is touched for the first time at time step l or

the value of Cn ({vl, j}) has been realized by time step l − 1. However, if j 6= par(vl), then

the later case is impossible; otherwise, the vertex vl should have been touched at least twice

during the exploration process up to time l− 1: once when we realized Cn ({vl, j}) and once

when we realized Cn ({par(vl), vl}).

Remark B.23. Even if the rooted graph induced by Ct∧τ is a tree, it does not mean that the

exploration process satisfies the property which is mentioned in Lemma B.21. In Figure B.2,

vertex b has been touched twice during the exploration process up to time step t = 1: at

time steps t = 0 (by the vertex a) and t = 1; however, C1 is a tree.

Proof. Observe that J0 = ∅. Fix t > 0. An obvious upper-bound for the left-hand side of

(B.5) is given by applying the union bound:

P (∃l ∈ [t ∧ τ ] such that |Jl| 6= 0) = P

(
t∧τ⋃
l=1

{|Jl| 6= 0}

)

= P

(
t⋃
l=1

({l ≤ τ} ∩ {|Jl| 6= 0})

)

≤
t∑
l=1

P ({l ≤ τ} ∩ {|Jl| 6= 0})

=
t∑
l=1

E [1{l ≤ τ}P ({|Jl| 6= 0} |Fl−1 )] . (B.6)
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We provide an upper-bound for each term on the right-hand side. If the vertex vl has been

explored by time step l − 1, then we do not need to touch any vertex at time l and Jl = ∅.
In Figure B.2, the vertex b has already been explored at time step t = 2 and J5 = ∅. Hence,

we only need to consider sample paths where vl has not been explored. Thus,

P(|Jl| = 0|Fl−1) = 1{vl has been explored}+ 1{vl has not been explored}P(|Jl| = 0|Fl−1).

Consider the sets δl, εl, εl ∈ Fl−1 defined as follows,

1. δl: set of vertices j 6= vl with at least one incident edge such that the cost of the edge

has been realized prior to time l. Equivalently, δl is the set of all vertices except vl

that have been touched prior to time l,

δl = {j ∈ [n] \ {vl} : ∃i 6= vl such that, {i, j} /∈ Ul−1} .

2. εl: set of all vertices except vl that have been explored prior to time l,

εl = {j ∈ [n] \ {vl} : j has been explored by l − 1} .

3. εl: set of vertices j 6= vl such that the cost of {vl, j} has been realized prior to time l,

εl = {j ∈ [n] \ {vl} : {vl, j} /∈ Ul−1} .

Observe that |εl| ≥ 1 since vl ∈ Al. Moreover, at each step of the time we may explore

at most one vertex (there might be cases in which we revisit an explored vertex); hence,

|εl| ≤ l. Furthermore, for all sample paths in Fl−1 in which vl has not been explored,

εl ⊆ εl since if {vl, j} has been realized and vl has not been explored, then j has been

explored. Finally, at each time step l′, we may touch at most dvl′ (n) + 1 new vertices; hence,

|δl| ≤ 1 +
∑l−1

i=0

(
dvi(n) + 1

)
Let k := dvl(n) denote the potential degree of the vertex vl. Let k̃ := min(k, n− |εl| − 2),

where n − |εl| − 1 equals to the number of vertices j such that {vl, j} ∈ Ul−1. Note that

n−|εl|−1 > 0 if vl has not been explored and n > l. Define T̃l and P̃l to be modified versions

of Tl and Pl, i.e.,

T̃l = k̃ + 1
th

smallest value in {Cn({vl, j}) : j ∈ [n] and {vl, j} ∈ Ul−1}

P̃l = {j ∈ [n] : {vl, j} ∈ Ul−1 and Cn({vl, j}) < T̃l}
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Recall that Tl and Pl is defined as follows,

Tl = k + 1th smallest value in {Cn({vl, j}) : j ∈ [n]}

Pl = {j ∈ [n] : Cn({vl, j}) < Tl}

In the definition of Tl, all possible vertices are considered; however, the definition of T̃l skips

all the vertices j, such that {vl, j} has been realized prior to time step l. Hence, if k̃ = k,

then Tl ≤ T̃l. Moreover, for every vertex j ∈ Pl such that the cost of {vl, j} is realized at

time l, i.e., {vl, j} ∈ Ul−1, we have j ∈ P̃l. To see this, consider the two cases: 1)If k̃ = k,

then j ∈ Pl implies Cn({vl, j}) < Tl ≤ T̃l. 2)If k̃ < k, then P̃l contains all the vertices j such

that {vl, j} ∈ Ul−1.

To realize T̃l and P̃l, we need to pick the k̃ + 1 closest vertices to vl, based on the cost of

the connection. For an unexplored vertex j, the cost of {vl, j} is an exponentially distributed

random variable with parameter 1
n
. For an explored vertex j such that {vl.j} ∈ Ul−1, the

cost of {vl, j} conditioned on T̂j is a shifted exponentially distributed random variable with

parameter 1
n

(Corollary B.3); that is Cn({vl, j}) ≡ T̂j + exp
(

1
n

)
, where T̂j is defined before

Remark B.11. Hence, we need to pick the k̃ + 1 smallest value in H1 ∪H2 where,

H1 = {Cn({vl, j}) : j ∈ [n], j has not been explored and {vl, j} ∈ Ul−1}

≡
{
Y1, Y2, . . . , Yn−|εl∪εl|−1 : Yi

i.i.d.∼ exp

(
1

n

)}
and,

H2 = {Cn({vl, j}) : j ∈ [n], j has been explored and{vl, j} ∈ Ul−1}

≡
{

exp

(
1

n

)
+ T̂j : j ∈ [n], j has been explored and{vl, j} ∈ Ul−1

}
Instead of H2 we consider Ĥ2, defined as follows,

Ĥ2 =
{
Cn({vl, j})− T̂j : j ∈ [n], j has been explored and{vl, j} ∈ Ul−1

}
≡
{
Y ′1 , Y

′
2 , . . . , Y

′
|εl\εl| : Y

′
i

i.i.d.∼ exp

(
1

n

)}
In fact, Ĥ2 is obtained by replacing Cn({vl, j}) with Cn({vl, j})− T̂j for all explored vertices

j such that {vl, j} ∈ Ul−1. Note that if k̃ + 1 smallest values in H1 ∪ H2 correspond to

{u0, u1, . . . , uk̃}, then the k̃ + 1 smallest values in H1 ∪ Ĥ2 correspond to {û0, û1, . . . , ûk̃}
where ûi is either ui or ui−Tj for some explored vertex j ∈ [n]. Note that if a member of H2
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is amongst k̃+ 1 smallest values in H1 ∪H2, then the corresponding element is also amongst

k̃ + 1 smallest values in H1 ∪ Ĥ2. Collecting everything together, we have

P(|Jl| = 0|Fl−1) = P


∀{vl, u} ∈ Ul−1 such that Cn({vl, u}) ≤ Tl, the

vertex u is touched for the first time at time

step l


∣∣∣∣∣∣Fl−1


≥ P



∀{vl, u} ∈ Ul−1 such that Cn({vl, u}) ≤ T̃l, the

vertex u is touched for the first time at time

step l


∣∣∣∣∣∣∣Fl−1


= P




The k̃+1 smallest values in H1∪H2 correspond

to the vertices that are touched for the first

time at time step l


∣∣∣∣∣∣∣Fl−1


≥ P




The k̃+1 smallest values in H1∪Ĥ2 correspond

to the vertices that are touched for the first

time at time step l


∣∣∣∣∣∣∣Fl−1

 ,

where the last inequality follows from the fact that members of H2 correspond to the vertices

that have been touched before time step l (note that some members of H1 may also corre-

spond to the vertices that have already been touched.). However, all the values in H1 ∪ Ĥ2

are independent and exponentially distributed with parameter 1
n
. There are n − |εl| − 1

vertices j 6= vl such that {vl, j} ∈ Ul−1 and the number of the vertices j that has not been

touched prior to time step l is n− |δl| − 1; hence,

P




The k̃+1 smallest values in H1∪Ĥ2 correspond

to the vertices that are touched for the first

time at time step l


∣∣∣∣∣∣∣Fl−1


=

(n−|δl|−1

k̃+1

)(n−|εl|−1

k̃+1

) ≥
(max(0,n−(

∑l−1
i=0(dvi (n)+1))−2)
k̃+1

)(
n−1

k̃+1

)
≥

(
max

(
0,
n− l −

∑l
i=0 dvi(n)− 2

n

))dvl (n)+1

.

Recall that k̃ ≤ k = dvl(n). Finally,
∑l

i=0 dvi(n) < M with arbitrary high probability

for a large enough constant M since the unique elements of the sequence (dvi(n))li=0 are

chosen uniformly at random (without replacement) from dn and empirical distribution of

dn converges to P ; hence,

E [1{l ≤ τ}P ({|Jl| 6= 0} |Fl−1 )]

210



= E [1{l ≤ τ} (1− P ({|Jl| = 0} |Fl−1 ))]

≤ 1− E

(max

(
0, 1− l +

∑l
i=0 dvi(n) + 2

n

))dvl (n)+1
 n→∞−−−→ 0,

using the law of total probability. Now, the result follows from the fact that the summation

in (B.6) has only t summands, each of which converges to zero as n goes to ∞.

Step 3: Convergence of the Exploration

In the third step, we study the local structure of the rooted graph induced by Ct∧τ for any

fixed t. The goal is to analyze the joint distribution of the sequence (X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . ,

X
(n)
t∧τ ) as n goes to infinity, where

X
(n)
0 :=

(
dv0(n), T0, Cn({v0, j1}), Cn({v0, j2}), Cn({v0, j3}), . . . , Cn({v0, jdv0 (n)})

)
such that Cn({v0, js}) < T0 for all s ∈ [dv0(n)] and φ(j1) ≺ φ(j2) ≺ · · ·φ(jdv0 (n)), and for all

l ∈ [t ∧ τ ] the random vector X
(n)
l is given by

X
(n)
l :=

(
dvl(n), T l, Cn({vl, j1}), Cn({vl, j2}), Cn({vl, j3}), . . . , Cn({vl, jdvl (n)−1})

)
such that Cn({vl, js}) < T l for all s ∈ [dvl(n) − 1] and φ(j1) ≺ φ(j2) ≺ · · ·φ(jdvl (n)−1); the

term T l is the dvl(n)th smallest value in the set {Cn({vl, j}) : j ∈ [n] and {vl, j} 6= el}. Note

that the second component of X
(n)
0 equals the threshold of the vertex v0 and the remaining

components correspond to the cost of connections between v0 and its potential neighbors.

Recall that dvl(n) is the potential degree of vertex vl, and that the edge el is picked according

to the exploration process.

An important observation is that for each l ∈ [t ∧ τ ], Tl = T l if Cn(el) < T l; moreover,

if Cn(el) > T l, then the edge el does not survive (note that by Remark III.1, we have

Cn(el) 6= T l.). Hence, the first two components of X
(n)
l together are the type of the vertex

vl if and only if the edge el survives. Note that the value of X
(n)
l depends on the number of

vertices.

Let us extend the sequence to (X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . , X

(n)
t ): for each l > t ∧ τ , the first

component of X
(n)
l is defined to be dv(n) where the vertex v is chosen uniformly at random

such that v /∈ {v0, v1, . . . , vl−1}, the second component is set to be dv(n)th smallest value in

S (n)
l = {s1, s2, . . . , sn : si

i.i.d.∼ exp
(

1
n

)
}, and, the remaining components are defined to be

(sl1 , sl2 , . . . , sldv(n)−1
) such that l1 < l2 < · · · < ldv(n)−1 and sli is among the dv(n)−1 smallest

values in S (n)
l .
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The following Lemma states that the sequence (X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . , X

(n)
t ) has the same

distribution as the corresponding sequence (X0, X1, X2, . . . , Xt) generated by Er(P ) and

extended up to time t. The proof is given by using a coupling argument.

Lemma B.24. Convergence of the Exploration Process The sequence (X
(n)
0 , X

(n)
1 , . . . ,

X
(n)
t ) converges to the sequence (X0, X1, . . . , Xt),

X0 := (D0,T0,C
(0)
1 ,C

(0)
2 , . . . ,C

(0)
Dl

)

Xl := (Dl,Tl,C
(l)
1 ,C

(l)
2 , . . . ,C

(l)
Dl−1) ∀l > 0,

in distribution where Dl is distributed as P (·) for all l ≥ 0, Tl is distributed as Erlang(Dl)

for all l ∈ [t] and T0 is distributed as Erlang(D0 + 1), {C(l)
i }i are i.i.d. random variables

uniformly distributed on [0,Tl] for all l ≥ 0, and Xis are independent.

Proof. Fix the value of n. Let l > 0 and consider the random vector

X̃
(n)
l = (d̃(l)(n), T̃l, C̃1, C̃2, . . . , C̃d̃(l)(n)−1)

where
(
d̃(i)(n)

)n−1

i=0
is a random reordering of

(
di(n)

)n
i=1

, T̃l is the d̃(l)(n)
th

smallest value in

S (n)
l = {s1, s2, . . . , sn−2 : si

i.i.d.∼ exp
(

1
n

)
} and C̃i equals to sli where l1 < l2 < · · · < ld̃(l)(n)−1

and sli < T̃l. Using Corollary B.3, it is easy to see that for any fixed l > 0, X̃
(n)
l converges

in distribution to (Dl,Tl,C
(l)
1 ,C

(l)
2 , . . . ,C

(l)
Dl−1) as n goes to infinity. Similarly, for a proper

definition of X̃
(n)
0 , the same property holds. Note that the distribution of X̃

(n)
l depends on

n.

The idea of the proof is to first construct a coupling between (X
(n)
l )tl=0 and (Y

(n)
l )tl=0

where conditioned on
⋂
l∈[t∧τ ]{Jl = ∅}, (Y

(n)
l )tl=0 has the same distribution as (X̃

(n)
l )tl=0, and

then show that

lim
n→∞

P
(

(X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . , X

(n)
t ) 6= (Y

(n)
0 , Y

(n)
1 , Y

(n)
2 , . . . , Y

(n)
t )

)
= 0.

For all l > t ∧ τ , let Y
(n)
l = X

(n)
l . Moreover, let Y

(n)
0 = X

(n)
0 . For all l ∈ [t ∧ τ ], let the

first component of Y
(n)
l to be equal to the first component of X

(n)
l . Conditioned on Fl−1,

construct the set S (n)
l as follows,

� For each vertex j such that the vertex j has not been explored and the value of Cn({vl,
j}) has not been realized by time step l − 1, include Cn({vl, j}) in S (n)

l .

� For each vertex j such that the vertex j has been explored, but the value of Cn({vl, j})
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has not been realized by time step l − 1, include Cn({vl, j}) − T̂j in S (n)
l , where T̂j is

defined before Remark B.11.

� For each vertex j such that the value of Cn({vl, j}) has been realized by time step

l − 1 and {vl, j} 6= el, add an exponentially distributed random variable with mean n

to S (n)
l .

Now define the second component of Y
(n)
l be the Y

(n)
l (1)

th
smallest value in S (n)

l and let

the remaining Y
(n)
l (1) − 1 components of Y

(n)
l to be the Y

(n)
l (1) − 1 smallest values in S (n)

l

(randomly ordered). Clearly conditioned on
⋂
l∈[t∧τ ]{Jl = ∅}, (Y

(n)
l )tl=0 and (X̃

(n)
l )tl=0 are

equidistributed.

The event X
(n)
l 6= Y

(n)
l for some l ∈ [t∧τ ] may happen if 1)the vertex vl has been touched

twice during the exploration process up to time step l−1 or if 2)the value of Cn({vl, j})− T̂j
for an explored vertex j is smaller than T l. Recall that in the proof of the Lemma B.21, we

replaced the set H2 with the set Ĥ2 where each value in Ĥ2 corresponds to Cn({vl, j})− T̂j
for an explored vertex j such that {vl, j} ∈ Ul−1. We also proved the following inequality:

P




The k̃ + 1 smallest values in H1 ∪ Ĥ2 corre-

sponds to the vertices that are touched for the

first time at time step l


∣∣∣∣∣∣∣Fl−1

 ≥
(

max

(
0,
n− l −

∑l
i=0 dvi(n)− 2

n

))dvl (n)+1

Hence, using the above inequality and the union bound, for all l ∈ [t ∧ τ ] we have

P(X
(n)
l 6= Y

(n)
l |Fl−1)

≤ 1{vl has been touched at least twice}+

1−

(
max

(
0,
n− l −

∑l
i=0 dvi(n)− 2

n

))dvl (n)+1

≤ 1

{
l−1⋃
i=1

{|Ji| 6= 0}

}
+ 1−

(
max

(
0,
n− l −

∑l
i=0 dvi(n)− 2

n

))dvl (n)+1

Using Lemma B.21 and the same reasoning as in its proof, we get

P((X
(n)
0 , X

(n)
1 , . . . , X

(n)
t ) 6= (Y

(n)
0 , Y

(n)
1 , . . . , Y

(n)
t )) ≤

t∑
l=1

E
[
1{l ≤ τ}P

(
{X(n)

l 6= Y
(n)
l } |Fl−1

)]
n→∞−−−→ 0.
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Step 4: Portmanteau Theorem

The final step is to prove the weak convergence of EU(Nn) to Er(P ) by using the Portman-

teau theorem. Let ρn = EU(Nn) and ρ = Er(P ). The goal is to prove ρn
w−→ ρ. For a finite

rooted tree [T◦] ∈ G∗ of depth R, define the set AT◦ as follows,

AT◦ =

{
[N◦] ∈ G∗ : dG∗([N◦], [T◦]) <

1

1 +R

}
Note that if [N◦] ∈ AT◦ , then the rooted subgraph (G◦)R obtained by removing the marks as

well as all the vertices of depth more than R from N◦ is homeomorphic to the graph structure

of T◦. Moreover, the first component of the mark of each vertex in N◦ up to depth R is

equal to the one in T◦. Recall that this value for each vertex corresponds to the number of

potential neighbors while the first component of the type of each vertex equals the number

of potential descendants (see Remark III.2).

The first step is to prove that the measure assigned to AT◦ by ρn converges to the measure

assigned by ρ. Let l <∞ denote the sum of the first component of the type of the vertices

in T◦. To see whether the rooted network generated by ρn is in AT◦ or not, we need to

look at the first l steps of the exploration process; however, by Lemma B.24 the sequence

corresponds to the first l steps of the exploration process converges to the one generated by

ρ in distribution. Therefore we have

|ρn(AT◦)− ρ(AT◦)| =∣∣∣P((X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . , X

(n)
l ) ∈ K

)
− P ((X0, X1, X2, . . . , Xl) ∈ K)

∣∣∣ n→∞−−−→ 0,

whereK is defined such that (X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . , X

(n)
l ) ∈ K if and only if the rooted network

induced by Cl∧τ belongs to the set AT◦ .

The second step is to prove that for any bounded uniformly continuous function f ,∣∣∣∣∫ fdρn −
∫
fdρ

∣∣∣∣ n→∞−−−→ 0.

Fix the value of ε > 0. Since f is continuous, there exists a δ > 0 such that for every N◦

and N ′◦ in G∗, dG∗(N◦, N
′
◦) < δ implies |f(N◦)− f(N ′◦)| < ε. Let t to be large enough such

that (t+ 1)−1 < δ.

Note that the space G∗ is separable; hence the restriction of G∗ to the rooted trees is

also separable. Moreover, ρ assigns zero measure to the set of rooted networks in G∗ that
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are not rooted trees. Hence, there exists a finite set S of rooted trees of depth less than or

equal to t in G∗ such that, ∑
T◦∈S

ρ(AT◦) > 1− ε

Moreover, since ρn(AT◦) converges to ρ(AT◦), for large enough n we have
∑

T◦∈S ρn(AT◦) >

1− 2ε. Using all of these points, we have∣∣∣∣∫ fdρn −
∫
fdρ

∣∣∣∣ ≤ 3ε‖f‖∞ +
∑
T◦∈S

f(T◦) |ρn(AT◦)− ρ(AT◦)|+ 2ε

Finally, let n go to infinity and then ε to zero, and the apply the Portmanteau Theorem to

complete the proof.

B.2 Proof of Theorem III.2

Conditioned on ni = m and vi = x, the probability of the event
{
ζ(i,j) < v(i,j)

}
is given

as follows,

P
({
ζ(i,j) < v(i,j)

}
|ni = m, vi = x

)
=

∫ x

y=0

1

x

(
∞∑
k=1

P̂ (k − 1)

∫ ∞
y

e−zzk−1

(k − 1)!
dz

)
dy

=

∫ x

y=0

1

x

∞∑
k=1

P (k)F̄k(y) dy.

The symmetric and conditionally independent structure of EWT implies that the random

variable Di conditioned on ni = m and vi = x has the binomial distribution. Hence,

P (Di = d|ni = m, vi = x) = P

(
ni∑
j=1

1
{
ζ(i,j) < v(i,j)

}
= d

∣∣∣∣∣ni = m, vi = x

)

= Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
.

The degree distribution of the root follows immediately by integrating/summing over all

possible values of vø and nø. The mean of Dø is obtained as follows:

E[Dø] =
∞∑
d=1

d× P(Dø = d)
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=
∞∑
m=1

P (m)

∫ ∞
0

e−xxm

m!

m∑
d=1

d×Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
dx

=
∞∑
m=1

P (m)

∫ ∞
0

e−xxm

m!
×m

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy dx

=
∞∑
m=1

P (m)
∞∑
k=1

P (k)

∫ ∞
0

F̄k(y)

∫ ∞
y

e−xxm−1

(m− 1)!
dx dy

=
∞∑
m=1

∞∑
k=1

P (m)P (k)

∫ ∞
0

F̄k(y)F̄m(y) dy.

B.3 Proof of Theorem III.8

Let Wl,i denote the number of potential vertices at depth l on the backbone tree, all of

whose paths to the root vertex pass through the potential vertex i ∈ Nf . In the following,

we write i = (i1, i2, · · · , ik) where k ≥ 0. We have

E[Wl] =
∞∑
m=1

P (m)E[Wl|nø = m]

=
∞∑
m=1

P (m)E

[
m∑
j=1

Wl,(j)

∣∣∣∣∣nø = m

]

=
∞∑
m=1

mP (m)E
[
Wl,(1)

]
=

∞∑
m=1

mP (m)
∞∑
k1=0

P̂ (k1)E
[
Wl,(1)

∣∣n1 = k1

]
=

∞∑
m=1

mP (m)
∞∑
k1=0

P (k1 + 1)E

[
k1∑
j=1

Wl,(1,j)

∣∣∣∣∣n1 = k1

]

=
∞∑
m=1

mP (m)
∞∑
k1=1

k1P (k1 + 1)E
[
Wl,(1,1)

]
...

=
∞∑
m=1

mP (m)
∞∑
k1=2

(k1 − 1)P (k1) · · ·
∞∑

kl−1=2

(kl−1 − 1)P (kl−1)× 1

= E[nø]× (E[(nø − 1)])l−1 .
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For the expected number of vertices at depth l, rewrite Zl as the sum of indicator functions

of survival over the potential vertices at depth l. A vertex at depth l survives if and only if

all the potential edges on its path to the root survive. Writing tj = (t1, t2, . . . , tj) and t0 = ø

by convention, we then have

E[Zl] = E

 ∑
(t1,t2,...,tl)

s.t. tj∈[n
tj−1 ]

1

(
l⋂

j=1

{ζtj < vtj}

)

=
∞∑
m=1

P (m)× E

 ∑
(t1,t2,...,tl)

s.t. tj∈[n
tj−1 ]

1

(
l⋂

j=1

{ζtj < vtj}

)∣∣∣∣∣nø = m



Using the symmetric structure of the EWT, we have

E[Zl] =
∞∑
m=1

mP (m)× E

 ∑
(t1=1,t2,...,tl)
s.t. tj∈[n

tj−1 ]

1

(
l⋂

j=1

{ζtj < vtj}

)∣∣∣∣∣nø = m


...

=
∞∑
m=1

mP (m)
∞∑
k1=2

(k1 − 1)P (k1) · · ·
∞∑

kl−1=2

(kl−1 − 1)P (kl−1)
∞∑
kl=1

P (kl)×

E

[
1

(
l⋂

j=1

{ζ1j < v1j}

)∣∣∣∣∣nø = m,
l⋂

j=1

{n1j = kj − 1}

]

=
∞∑
m=1

mP (m)
∞∑
k1=2

(k1 − 1)P (k1) · · ·
∞∑

kl−1=2

(kl−1 − 1)P (kl−1)
∞∑
kl=1

P (kl)×∫ ∞
x=0

fm+1(x)

∫ x

y1=0

1

x

∫ ∞
z1=y1

fk1(z1)

∫ z1

y2=0

1

z1

∫ ∞
z2=y2

fk2(z2)

∫ z2

y3=0

1

z2

· · ·
∫ zl−1

yl=0

1

zl−1

∫ ∞
zl=yl

fkl(zl) dzl dyl . . . dz1 dy1 dx

where fl(·) is the probability density function of Erlang(l) and 1j ∈ Nf is a sequence of

all 1 of length j. Using the equality fk(x) × (k − 1)/x = fk−1(x), interchanging order of

integration in pairs, e.g., zl and yl−1, and using the complementary cumulative distribution
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functions to simplify the integrals involving the z’s, we have,

E[Zl] =
∞∑
m=1

P (m)
∞∑
k1=2

P (k1) · · ·
∞∑

kl−1=2

P (kl−1)
∞∑
kl=1

P (kl)∫ ∞
yl=0

∫ ∞
yl−1=0

· · ·
∫ ∞
y1=0

F̄m(y1)F̄k1−1(max(y1, y2)) . . .

F̄kl−1−1(max(yl−1, yl))F̄kl(yl) dy1 dy2 . . . dyl

B.4 Proof of Proposition III.1 part (i) and part (ii)

(i) Let {Xi}∞i=1 denote a set of independent and exponentially distributed random variables

with mean 1. Let N ∼ geo(p) be independent of {Xi}ni=1. Recall that F̄k(·) is the

complementary cumulative distribution function of Erlang(· ; k, 1). It is easy to see

that

P

(
N∑
i=1

Xi > y

)
=
∞∑
k=1

P (k)F̄k(y), (B.7)

since Erlang(· ; k, 1) is the distribution of a sum of k independent exponential variables

with mean 1. On the other hand,

E
[
et

∑N
i=1Xi

]
= E

[
E
[
et

∑N
i=1Xi |N

]]
= E

[(
1

1− t

)N]
=

p

p− t

which is the moment generating function of an exponentially distributed random vari-

able with rate parameter p. Hence,

∞∑
k=1

P (k)F̄k(y) = P

(
N∑
i=1

Xi > y

)
= e−py

We treat the case d ≥ 1 and d = 0 separately. Assume d ≥ 1. Using Theorem III.2,

we have

P(Dø = d) =
∞∑
m=1

P (m)

∫ ∞
0

e−xxm

m!
Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
dx

=
∞∑
m=1

p(1− p)m−1

∫ ∞
0

e−xxm

m!
Bi

(
d;m,

1− e−px

px

)
dx
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=

∫ ∞
0

∞∑
m=d

p(1− p)m−1 e−x

d! (m− d)!

(1− e−px)
d

(px− 1 + e−px)
m−d

pm
dx

=

∫ ∞
0

e−x

d!

(
1− p
p

)d−1 (
1− e−px

)d ∞∑
m=d

(
1− p
p

)m−d
(px− 1 + e−px)

m−d

(m− d)!
dx

=

∫ ∞
0

e−px

d!

(
1− p
p

)d−1 (
1− e−px

)d
exp

(
−1− p

p

(
1− e−px

))
dx

=
p

(1− p)2

∫ 1

0

(
1−p
p

)d+1

zd exp
(
−1−p

p
z
)

d!
dz

=
p

(1− p)2

1−
d∑

m=0

(
1−p
p

)m
e−

1−p
p

m!

 ,

where the penultimate equality follows by a change of variable, and the last equality

follows by the fact that the integrand is the probability density function of Erlang

distribution with parameters d+ 1 ∈ N and 1−p
p
> 0. Note that the third equality does

not hold for the case d = 0.

Next, consider the case d = 0. Using Theorem III.2 and similar to above, we have

P(Dø = 0) =
∞∑
m=1

P (m)

∫ ∞
0

e−xxm

m!
Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y) dy

)
dx

=

∫ ∞
0

∞∑
m=1

p(1− p)m−1 e−x (px− 1 + e−px)
m

pmm!
dx

=
p

1− p

∫ ∞
0

e−x
(

exp

(
1− p
p

(
px− 1 + e−px

))
− 1

)
dx

=
p

(1− p)2

(
1− e−

1−p
p

)
− p

1− p
.

(ii) Let us consider the case x > 0. We have,

T (f)(x) =
1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz +

∫ ∞
z=y

e−zzk−1

(k − 1)!
f(z)k−1 dz

)
dy

=
p

x

∫ x

y=0

(∫ y

z=0

e−z
∞∑
k=1

(1− p)k−1zk−1

(k − 1)!
dz+

∫ ∞
z=y

e−z
∞∑
k=1

(1− p)k−1zk−1

(k − 1)!
f(z)k−1 dz

)
dy
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=
px− 1 + e−px

px
+
p

x

∫ ∞
z=0

min(x, z) exp (−z (1− (1− p)f(z))) dz

The derivation for x = 0 is similar and is omitted.
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APPENDIX C

Appendix of Chapter IV

C.1 Proof of Lemma IV.2

The moment generating function for an exponential random variable Y with rate λ is

E[eµY ] =
λ

λ− µ
.

Since X1 and X2 are independent, the exponential generating function for X1 −X2 is

E[eµ(X1−X2)] = E[eµX1 ]E[e−µX2)] =

(
λ1λ2

(λ1 − µ)(λ2 + µ)

)t
, (C.1)

By Markov’s inequality

P[X1 > X2] = P[eµ(X1−X2) > 1] ≤ E[eµ(X1−X2)]

for any µ > 0. The right-hand side of (C.1) is minimized when µ = (λ1 − λ2)/2, giving the

desired result.

C.2 Analysis of System of ODEs

In this section, we state and prove Theorem C.1.

Theorem C.1. When λ < 4, the system of ODEs (4.11)–(4.14) has a unique solution (F,

G, V,W ) satisfying conditions (4.15)–(4.16).
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When V (x) 6= 0, recall that

U(x) =
F (x)

V (x)
;

Thus, when V (x) 6= 0 and W (x) 6= 0, the conservation law FW+GV −VW = 0 is equivalent

to
G(x)

W (x)
= 1− U(x).

Also, recall that from the conservation law we have V (0) = W (0) = 2F (0) = 2G(0). Hence,

the previous 4-dimensional system of ODEs (4.11)–(4.14) with conditions (4.15)–(4.16) re-

duces to the following 3-dimensional system of ODEs:

dU

dx
= −λU(1− U) + (1− UV ) (1− (1− U)W )

dV

dx
= λV (1− U)

dW

dx
= −λWU

(C.2)

with initial condition

U(0) =
1

2
, V (0) = W (0) = ε, ε ∈ [0, 1]. (C.3)

Note that the partial derivatives of the right hand side of (C.2) with respect to (U, V,W )

are continuous. Therefore, by the standard existence and uniqueness theorem for solutions of

systems of ODEs (see e.g. [107, Theorem 2]) it follows that the system (C.2) with the initial

condition (C.3) has a unique solution for a fixed ε ∈ [0, 1]. We write this unique solution

as U(x, ε), V (x, ε), and W (x, ε), which we abbreviate as (U, V,W ) whenever the context is

clear.

Therefore, to prove Theorem C.1, it suffices to show that the system of ODEs (C.2)

with the initial condition (C.3) has a solution (U(x, ε0), V (x, ε0),W (x, ε0)) for x ∈ [0,+∞)

satisfying the boundary condition U(+∞, ε0) = V (+∞, ε0) = 1 and W (+∞, ε0) = 0 for a

unique ε0 ∈ [0, 1]. Geometrically speaking, this is due to the fact that (U = 1, V = 1,W = 0)

is a saddle point , and there is a unique choice of ε0 so that the trajectory (U(x, ε0), V (x, ε0),

W (x, ε0)) falls into the stable manifold i.e., set of initial conditions (U(0, ε0), V (0, ε0),W (0,

ε0)) such that (U(x, ε0), V (x, ε0),W (x, ε0)) → (1, 1, 0) as x → +∞. For any other choice of

ε 6= ε0, the trajectory (U(x, ε), V (x, ε),W (x, ε)) veers away from (1, 1, 0) to infinity.

The outline of the proof is as follows. We first prove some basic properties satisfied by

the solution (U, V,W ) in Appendix C.2.1. Then based on these properties, in Appendix

C.2.2 we prove that the solution satisfies some monotonicity properties with respect to ε by
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studying the sensitivity of the solution to the initial condition. Next, in Appendix C.2.3 we

characterize the limiting behavior of the solution depending on whether it hits 1 or not. The

monotonicity properties and the limiting behavior enable us to completely characterize the

basins of attraction in Appendix C.2.4. In particular, we show that the basin of attraction

for (U = 1, V = 1,W = 0) is a singleton, i.e., there is a unique choice of ε0 ∈ [0, 1] such that

(U(x, ε0), V (x, ε0),W (x, ε0) → (1, 1, 0) as x → +∞. Finally, we connect the 3-dimensional

system of ODEs (C.2) back to the 4-dimensional system of ODEs (4.11)–(4.14) and finish

the proof of Theorem C.1 in Appendix C.2.5.

C.2.1 Basic Properties of the Solution

In the following two lemmas, we prove some basic properties of the solution.

Lemma C.2. Fix any ε ∈ [0, 1]. Then for any x ∈ [0,+∞) such that the unique solution

(U, V,W ) is well-defined (not equal to ±∞), it holds that

V (x) = W (x) eλx, UV < 1, (1− U)W < 1, U > 0.

Proof. It follows from (C.2) that

V (x) = ε exp

(
λ

∫ x

0

(1− U(y)) dy

)
, (C.4)

W (x) = ε exp

(
−λ
∫ x

0

U(y)dy

)
. (C.5)

Hence V (x) = W (x) eλx. Thus the conservation law FW +GV − VW = 0 implies that

V = F +Geλx, W = F e−λx +G.

Recall that F = UV and G = (1− U)W . Then

dF

dx
= (1− F ) (1−G)V = (1− F ) (1−G)

(
F +Geλx

)
dG

dx
= − (1− F ) (1−G)W = − (1− F ) (1−G)

(
F e−λx +G

)
.

(C.6)

For the sake of contradiction, suppose max{F (x), G(x)} ≥ 1 for some finite x > 0. Since

F (x) and G(x) are continuous in x and F (0) = G(0) < 1, there is an x0 > 0 such that

max{F (x0), G(x0)} = 1. Define F̃ (x) ≡ F (x0) and G̃(x) ≡ G(x0). Then (F̃ (x), G̃(x)) is

a solution to ODE (C.6) in x ∈ [0, x0] running backward with its initial value at x = x0

given by (F (x0), G(x0)). Note that (F (x), G(x)) is also a solution to ODE (C.6) in the
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backward time x ∈ [0, x0] with its initial value at x = x0 given by (F (x0), G(x0)). Also note

that the right hand side of ODE (C.6) is continuous in x and the partial derivatives with

respect to F and G are continuous. By existence and uniqueness [107, Theorem 2] it follows

that F (x) ≡ F (x0) and G(x) ≡ G(x0) for x ∈ [0, x0]. Hence, max{F (0), G(0)} = 1, which

contradicts that F (0) = G(0) = ε/2 < 1. Thus, F = UV < 1 and G = (1− U)W < 1.

Next, we argue that U > 0. Suppose not, since U(0) = 1/2, by the differentiability of U

in x, there exists a finite x0 > 0 such that U(x0) = 0 and U ′(x0) ≤ 0. However,

dU

dx

∣∣∣∣
x=x0

= [1− U(x0)V (x0)] [1− (1− U(x0))W (x0)] = [1− F (x0)] [1−G(x0)] > 0,

which leads to a contradiction.

The following lemma shows that V and W are positive when U(x, ε) < +∞.

Lemma C.3. Fix ε ∈ (0, 1) and λ < 4. Suppose U(x, ε) < +∞ for x ∈ [0, c] for a finite

constant c > 0. Then for all x ∈ [0, c], V (x, ε) > 0 and W (x, ε) > 0.

Proof. Suppose not. Since V (0) = ε > 0 and V (x) = W (x) eλx, by the continuity of V in x,

there exists a finite x0 ∈ (0, c] such that V (x0) = 0 and W (x0) = 0. Note that by assumption

U(x0) < +∞.

Consider the following ODE backward in time x ∈ [0, x0] with the initial value U(x0):

dU

dx
= −λU(1− U) + 1. (C.7)

Since the derivative of the right hand side of the above ODE with respect to U is continuous,

by existence and uniqueness [107, Theorem 2] there exists a unique solution of the above

ODE with the initial value U(x0), denoted by Ũ(x). Since λ < 4, it follows that dU/dx > 0

and thus Ũ(x) is monotonically increasing. As a consequence, either Ũ(x) is well defined

over the entire interval [0, x0] or there exists x1 ∈ (0, x0) such that Ũ(x) is well defined over

(x1, x0] and Ũ(x) → −∞ as x approaches x1 from the above. Let I denote the interval

where Ũ(x) is well defined.

Let Ṽ (x) ≡ V (x0) and W̃ (x) ≡ W (x0). Then (Ũ(x), Ṽ (x), W̃ (x)) is a solution to ODE

(C.2) with initial values (U(x0), V (x0),W (x0)) in the backward time x ∈ I. Note that

(U(x), V (x),W (x)) is also a solution to ODE (C.2) with the same initial values (U(x0),

V (x0),W (x0)) in the backward time x ∈ [0, x0] . Also note that the partial derivatives of the

right hand side of ODE (C.2) with respect to (U, V,W ) are continuous. By the existence and

uniqueness [107, Theorem 2], it follows that V (x) ≡ V (x0) = 0 and U(x) = Ũ(x) for x ∈ I.

When I = [0, x0], then we get V (0) = 0, contradicting V (0) = ε > 0. When I = (x1, x0], we
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get U(x)→ −∞ as x approaches x1 from the above, contradicting U(x) > 0 for x ∈ [0,+∞)

in view of Lemma C.2.

C.2.2 Monotonicity to the Initial Condition

The key to our proof is to study how the solution of the system of ODEs (C.2) changes

with respect to the initial condition (C.3).

Standard ODE theory (see [107, Theorem 15]) shows that U(x, ε) is differentiable in ε

and the mixed partial derivatives satisfy

∂2U(x, ε)

∂x∂ε
=
∂2U(x, ε)

∂ε∂x
;

similarly for V and W . Moreover, the partial derivatives (∂U/∂ε, ∂V/∂ε, ∂W/∂ε) satisfy the

following system of equations:

∂

∂x

∂U

∂ε
= [−λ(1− 2U)− V (1− (1− U)W ) + (1− UV )W ]

∂U

∂ε

− U (1− (1− U)W )
∂V

∂ε
− (1− UV )(1− U)

∂W

∂ε
∂

∂x

∂V

∂ε
= −λV ∂U

∂ε
+ λ(1− U)

∂V

∂ε
∂

∂x

∂W

∂ε
= −λW ∂U

∂ε
− λU ∂W

∂ε
,

(C.8)

with initial condition

∂U(0, ε)

∂ε
= 0,

∂V (0, ε)

∂ε
= 1,

∂W (0, ε)

∂ε
= 1. (C.9)

The system of equations (C.8) is known as the system of variational equations and can be

derived by differentiating (C.2) with respect to ε and interchange ∂x and ∂ε. The initial

condition (C.9) can be derived by differentiating (C.3) with respect to ε.

The following key lemma shows that whenever U(x, ε) ≤ 1, U(x, ε) is decreasing in ε,

while V (x, ε) and W (x, ε) are increasing in ε.

Lemma C.4. Fix ε ∈ (0, 1). Suppose U(x, ε) ≤ 1 for x ∈ (0, c] for a finite constant c > 0.

Then for all x ∈ (0, c],

∂U(x, ε)

∂ε
< 0, and

∂W (x, ε)

∂ε
> 0. (C.10)
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Moreover, it follows that all x ∈ (0, c],

∂V (x, ε)

∂ε
≥ exp

(
λ

∫ x

0

(1− U(t, ε)) dt

)
=
V (ε)

ε
≥ 1. (C.11)

Proof. We first show that (C.11) holds whenever ∂U(x, ε)/∂ε < 0 for x ∈ (0, c]. Recall that

in Lemma C.3 we have shown that V > 0. It follows from (C.8) that for all x ∈ (0, c]

∂

∂x

∂V

∂ε
≥ λ(1− U)

∂V

∂ε
.

Thus for all x ∈ (0, c]

∂V (x, ε)

∂ε
≥ exp

(
λ

∫ x

0

(1− U(s)) ds

)
=
V (x, ε)

ε
≥ 1,

where the equality holds due to (C.4).

Next we show (C.10). For the sake of contradiction, suppose not, i.e., there exists a

x0 ∈ (0, c] such that either ∂U(x0,ε)
∂ε

≥ 0 or ∂W (x0,ε)
∂ε

≤ 0.

Define

a = inf

{
x ∈ (0, c] :

∂U(x, ε)

∂ε
≥ 0

}
and

b = inf

{
x ∈ (0, c] :

∂W (x, ε)

∂ε
≤ 0

}
,

with the convention that the infimum of an empty set is +∞. Then min{a, b} ≤ x0 ≤ c.

Case 1: Suppose a ≤ b. Due to the initial condition (C.9) and the initial condition

(C.3), we have that

∂U(0, ε)

∂ε
= 0,

∂

∂x

∂U(0, ε)

∂ε
= −

(
1− ε

2

)
< 0.

Then we have a > 0. Moreover, by the differentiability of ∂U(x,ε)
∂ε

in x and the definition of

a, we have

∂U(x, ε)

∂ε
< 0, ∀x ∈ (0, a),

∂U(a, ε)

∂ε
= 0, and

∂

∂x

∂U(a, ε)

∂ε
≥ 0.

It follows from our previous argument for proving (C.11) that ∂V (x, ε)/∂ε ≥ 1 for all x ∈ (0,

a]. Since a ≤ b, we also have that
∂W (a, ε)

∂ε
≥ 0.
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Recall that in Lemma C.3 we have shown that UV < 1, (1 − U)W < 1 and U > 0.

Moreover, by assumption we have U ≤ 1. Thus we get from ODE (C.8) that

∂

∂x

∂U(a, ε)

∂ε
= −U (1− (1− U)W )

∂V (a, ε)

∂ε
− (1− UV )(1− U)

∂W (a, ε)

∂ε
< 0,

which contradicts ∂
∂x

∂U(a,ε)
∂ε
≥ 0.

Case 2: Suppose a > b. Due to the initial condition (C.8), we have that

∂W (0, ε)

∂ε
= 1.

Thus b > 0. By the differentiability of ∂W (x,ε)
∂ε

in x, we have that

∂W (b, ε)

∂ε
= 0, and

∂

∂x

∂W (b, ε)

∂ε
≤ 0, and

∂U(b, ε)

∂ε
< 0.

Recall that in Lemma C.3 we have shown that W > 0. It follows from ODE (C.8) that

∂

∂x

∂W (b, ε)

∂ε
= −λW ∂U(b, ε)

∂ε
> 0,

which contradicts ∂
∂x

∂W (b,ε)
∂ε
≤ 0.

Based on Lemma C.4, we prove another “monotonicity” lemma, showing that if U(x,

ε0) < 1 for all x ≥ 0 and some ε0 ∈ (0, 1), then U(x, ε) < 1 for all x ≥ 0 and all ε ∈ (ε0, 1).

Lemma C.5. Suppose U(x, ε0) < 1 for all x ≥ 0 and some ε0 ∈ (0, 1). Then U(x, ε) < 1 for

all ε ∈ (ε0, 1) and all x ≥ 0.

Proof. Fix an arbitrary but finite x0 > 0. We claim that U(x0, ε) < 1 for all ε ∈ (ε0, 1).

Suppose not. Then define

ε1 , inf {ε ∈ (ε0, 1) : 1 ≤ U(x0, ε) < +∞}

Note that by assumption, U(x0, ε0) < 1. By the definition of ε1 and the differentiability of

U(x0, ε) in ε, we have

U(x0, ε1) = 1,
∂U(x0, ε1)

∂ε
≥ 0.

We claim that U(x, ε1) < 1 for all x ∈ (0, x0). If not, then there exists an x1 ∈ (0, x0) such

that U(x1, ε1) = 1. Note that dU(x,ε1)
dx

> 0 if U(x) ≥ 1. Thus U(x, ε1) > 1 for all x > x1,

which contradicts the fact that U(x0, ε1) = 1. Therefore, we can apply Lemma C.4 with
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c = x0 and get that
∂U(x0, ε1)

∂ε
< 0,

which contradicts the fact that ∂U(x0,ε1)
∂ε

≥ 0. Since x0 is arbitrarily chosen, we conclude that

U(x, ε) < 1 for all ε ∈ (ε0, 1) and all x > 0.

C.2.3 Limiting Behavior of (U, V,W )

In this section, we characterize the limiting behavior of (U, V,W ), depending on whether

U or V hit 1.

First, we state a simple lemma, showing that if both U and V do not hit 1 in finite time,

then they converge to 1 as x→∞.

Lemma C.6. If U(x, ε0) < 1 and V (x, ε0) < 1 for all x ≥ 0 and some ε0 ∈ (0, 1), then

U(x, ε0)→ 1, V (x, ε0)→ 1, and W (x, ε0)→ 0 as x→∞.

Proof. By Lemma C.2, we have W (x) = V (x) e−λx → 0 as x → ∞. Recall that according

to (C.2),
dV

dx
= λV (1− U) > 0 .

Since V (x) < 1 for all x ≥ 0, it follows that dV
dx
→ 0 and hence U(x)→ 1 as x→ +∞. Thus,

as x→ +∞,
dU

dx
= −λU(1− U) + (1− UV ) (1− (1− U)W )→ 0 ,

which implies that V (x)→ 1 as x→ +∞.

The next lemma shows the behavior of U and V if they hit 1 for finite x.

Lemma C.7. Let x0 > 0 be finite.

� If V (x0) = 1, then V (x) monotonically increases to +∞ and U(x)→ 0 for x ≥ x0.

� If U(x0) = 1, then U(x) monotonically increases to +∞ and V (x)→ 0 for x ≥ x0.

Proof. Suppose V (x0) = 1. Recall that in Lemma C.2, we have shown that UV < 1. Accord-

ing to ODE (C.2), we get that dV/dx > 0 if V ≥ 1 as UV < 1. Thus V (x) monotonically

increases to +∞ for x ≥ x0. Moreover U(x)→ 0 for x ≥ x0.

Suppose U(x0) = 1. Recall that in Lemma C.2, we have shown that (1 − U)WV < 1.

According to ODE (C.2), we get that dU/dx > 0 if U ≥ 1. Hence, U(x) monotonically

increases to +∞ for x ≥ x0. As UV < 1, it further follows that V (x)→ 0 for x ≥ x0.
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C.2.4 Basins of Attraction

In view of Lemma C.6 and Lemma C.7, define the basin of attraction for (U = 0,

V = +∞) as

S1 = {ε ∈ [0, 1] : V (x, ε) ≥ 1 for some finite x > 0 } ;

the basin of attraction for (U = +∞, V = 0) as

S2 = {ε ∈ [0, 1] : U(x, ε) ≥ 1 for some finite x > 0 } ;

and the basin of attraction for (U = 1, V = 1) as

S0 = {ε ∈ [0, 1] : U(x, ε) < 1 and V (x, ε) < 1 for all finite x > 0 } .

When ε is either 0 or 1, we have the following simple characterizations of the solution.

Lemma C.8. Suppose λ < 4.

� If ε = 0, then V (x) ≡ 0, W (X) ≡ 0 and U(x) monotonically increases to +∞.

� If ε = 1, then V (x) monotonically increases to +∞ and U(x)→ 0.

Proof. First, consider the case ε = 0. Then according to the system of ODEs (C.2), we

immediately get that V (x) ≡ 0, W (X) ≡ 0. Thus

dU

dx
= −λU(1− U) + 1 > 0,

where the last inequality holds due to λ < 4. Hence, U(x) monotonically increases to +∞.

The conclusion in the case ε = 1 simply follows from Lemma C.7.

Now, we are ready to prove a lemma, which completely characterizes the basins of at-

traction S0, S1, and S2.

Lemma C.9. Suppose λ < 4. Then there exists a unique ε0 ∈ (0, 1) such that

S0 = {ε0}, S1 = (ε0, 1], S2 = [0, ε0). (C.12)

Proof. Lemma C.8 implies that 1 ∈ S1 and 0 ∈ S2. Note that UV < 1 by Lemma C.2. Thus

it follows from Lemma C.7 that S1 and S2 are disjoint.

We first prove that S1 is left open. Fix any ε ∈ S1. Since V (x, ε) ≥ 1 for some finite x,

it follows from Lemma C.7 that there exists an x0 such that V (x0, ε) > 1. By the continuity
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of V (x0, ε) in ε, there exists a δ > 0 such that for all ε′ ∈ [ε − δ, ε], V (x0, ε
′) > 1, and thus

V (x, ε′)→ +∞ and U(x, ε′)→ 0 as x→ +∞. Hence, [ε− δ, ε] ⊂ S1. Thus S1 is left open.

Analogously, we can prove that S2 is right open. Note that S0 = [0, 1] \ (S1 ∪ S2), and

S1 and S2 are disjoint. It follows that S0 is non-empty. Let ε0 be any point in S0. Next we

prove (C.12).

We first fix any ε ∈ (ε0, 1). Since ε0 ∈ S0, it follows that U(x, ε0) < 1 and V (x, ε0) < 1 for

all x ≥ 0. In view of Lemma C.5, we have that U(x, ε) < 1 for all ε ∈ (ε0, 1) and all x > 0.

It follows from Lemma C.4 that ∂V (x, ε)/∂ε ≥ 1 for all x > 0 and all ε ∈ (ε0, 1). Thus for

all x ≥ 0,

V (x, ε) = V (x, ε0) +

∫ ε

ε0

∂V (x, η)

∂η
dη ≥ V (x, ε0) + (ε− ε0).

Since V (x, ε0)→ 1 as x→ +∞, there exists an x0 such that for all x ≥ x0,

V (x, ε0) ≥ 1− (ε− ε0)/2.

Combining the last two displayed equation gives that for all x ≥ x0,

V (x, ε) ≥ 1 + (ε− ε0)/2 > 1.

We conclude that ε ∈ S1 and thus (ε0, 1] ⊂ S1.

Next we fix any ε ∈ (0, ε0) and show that ε ∈ S2. Suppose not. Then there exists an

ε1 ∈ (0, ε0) such that U(x, ε1) < 1 for all x ≥ 0. By Lemma C.5, we have that U(x, ε) < 1

for all ε ∈ (ε1, 1) and all x > 0. In view of Lemma C.4, it immediately follows that (C.11)

holds for all x > 0 and all ε ∈ (ε1, 1). Thus,

V (x, ε0) = V (x, ε1) +

∫ ε0

ε1

∂V (x, ε)

∂ε
dε ≥ V (x, ε1) + (ε0 − ε1).

Note that since ε0 ∈ S0, V (x, ε0) < 1 for all x ≥ 0, it follows that for all x ≥ 0,

V (x, ε1) < 1− (ε0 − ε1),

which contradicts the conclusion of Lemma C.6. Thus we conclude that ε ∈ S2 and thus

[0, ε0) ⊂ S2.

Since S0, S1, and S2 are all disjoint, the desired (C.12) readily follows.
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C.2.5 Proof of Theorem C.1

We are now ready to prove Theorem C.1. Let S0 = {ε0}, and let (U(x, ε0), V (x, ε0),W (x,

ε0)) be the unique solution to the system of ODEs (C.2) with the initial condition (C.3). For

x ∈ [0,+∞), define

F (x) = U(x, ε0)V (x, ε0), F (−x) = (1− U(x, ε0))W (x, ε0),

V (x) = V (x, ε0), V (−x) = W (x, ε0),

G(x) = F (−x), W (x) = V (−x).

We show that (F,G, V,W ) is a solution to the system of ODEs (4.11)–(4.14) with condi-

tions (4.15)–(4.16). First, by construction (F,G, V,W ) satisfy the system of ODEs (4.11)–

(4.14). Second, since ε0 ∈ S0, by definition U(x, ε0) < 1 and V (x, ε0) < 1 for all x ≥ 0. Thus

it follows from Lemma C.6 that as x→ +∞, U(x, ε0)→ 1, V (x, ε0)→ 1, and W (x, ε0)→ 0.

Hence, (F,G, V,W ) satisfy condition (4.15). Thirdly, in view of Lemma C.2 and Lemma

C.3, we have that U(x, ε0), V (x, ε0),W (x, ε0) > 0, W (x, ε0) < 1, U(x, ε0)V (x, ε0) < 1, and

(1− U(x, ε0))W (x, ε0) < 1. Therefore, 0 < V,W < 1 and 0 < F,G < 1, satisfying condition

(4.16).

Next, we show that the solution (F,G, V,W ) is unique. Let (F̃ , G̃, Ṽ , W̃ ) denote another

solution to system of ODEs (4.11)–(4.14) with conditions (4.15)–(4.16). Let Ũ = F̃ /Ṽ . Then

(Ũ , Ṽ , W̃ ) is a solution to the system of ODEs (C.2), satisfying the initial condition (C.3)

with ε = Ṽ (0) = W̃ (0). Moreover, Ũ(x) < 1 and Ṽ (x) < 1 for all x ≥ 0, because otherwise

by Lemma C.7, either Ũ(x) → +∞ or Ṽ (x) → +∞, violating that F̃ (x), Ṽ (x) → 1. As a

consequence, Ṽ (0) ∈ S0. It follows from Lemma C.9 that ε0 = Ṽ (0). By the uniqueness of the

solution to system of ODEs (C.2) with the initial condition (C.3), we have Ũ(x) ≡ U(x, ε0),

Ṽ (x) ≡ V (x, ε0), W̃ (x) ≡ V (x, ε0). Thus, (F̃ , G̃, Ṽ , W̃ ) = (F,G, V,W ).

C.3 Proof of Theorem IV.1

Step 1: The Exploration Process

As we pointed out in the sketch of the proof, the first step is to define an exploration

process that explores vertices of Nn,◦(1) in a series of stages. The stage m of the exploration

process reveals a rooted subtree of (Kn,n, `n), denoted by Nn,◦[m]. The root of Nn,◦[m] is

vertex 1, the number of un-planted children of every vertex is m, and the set of planted edges

restricted to Nn,◦[m] is a matching. Next, we provide a formal construction of Nn,◦[m].

The construction begins with vertex 1. Include the edge {1,M∗
n(1) = 1′} in Nn,◦[m]. Let

{v1, v2, · · · , vm} denote the m closest un-planted neighbors of vertex 1. Add all the edges
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Figure C.1: Stage 2 of the exploration process on (K4,4, `4) given by Figure 4.4.

{1, vk} and then {vk,M∗
n(vk)} to Nn,◦[m]. Next, continue with the vertex 1′. Let {w1, w2,

· · · , wm} denote the m closest un-planted neighbors of vertex 1′, among all the vertices that

has not been added to Nn,◦[m]. Include all the edges {1′, wk} and then {wk,M∗
n(wk)} to

Nn,◦[m]. At each step of the construction, we follow two simple rules: 1) the next vertex to

pick is the oldest one in Nn,◦[m]; 2) when we add m closest un-planted children of this vertex

and their planted pairs, we avoid all the vertices that has already been added to Nn,◦[m].

The construction continues until we are about to pick a vertex at depth m, at which point

it stops. Note that the only vertices at depth m+ 1 are the planted partners of the vertices

at depth m. Let V
(m)
n and E

(m)
n denote the set of the vertices and the edges of Nn,◦[m]

respectively. Note that for all sufficiently large n, |V (m)
n | and |E(m)

n | are independent of n.

Let µ
(m)
n ∈ P(G∗) denote the law of [Nn,◦[m]]. Figure C.1 demonstrates the construction of

Nn,◦[2] for the graph given by Figure 4.4.

Step 2: A Total Variation Convergence

The rooted planted tree Nn,◦[m] has the same graph structure as a truncated version of

the planted PWIT: remove all vertices i = (i1, i2, · · · il) such that either (1) is > m for some

s ∈ {1, 2, · · · , l}, or (2) l > m+ 1, or (3) l = m+ 1 and il 6= 0. In particular, the number of

un-planted children of every vertex in the truncated version is m, the depth of vertices are

bounded by m+ 1, and the only vertices at depth m+ 1 are the planted pairs of the vertices

at depth m. Let N∞[m] denote the truncated planted PWIT, and let µ
(m)
∞ denote the law of

[N∞[m]]. Now, using the same approach as in [20, Lemma 10], we show that µ
(m)
n converges

to µ
(m)
∞ in total variation norm.

Lemma C.1. For any fixed m, µ
(m)
n

TV−−→ µ
(m)
∞ where the total variation convergence of
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positive measures is defined as follows:

µn
TV−−→ µ iff sup

A
|µn(A)− µ(A)| → 0

Proof. It is easy to see that µ
(m)
n is absolutely continuous with respect to µ

(m)
∞ . Moreover,

the Radon-Nikodym derivative of µ
(m)
n with respect to µ

(m)
∞ equals the likelihood ratio.

Consider similar steps on the planted PWIT to construct N∞[m]. Conditioned on the

first t − 1 steps of the construction of N∞[m] and Nn,◦[m], we will calculate the ratio of

the conditional densities for the next step of the construction. Since planted edges have the

same Exp(λ) distribution in both cases, we are only interested in the corresponding ratio of

un-planted edges.

At tth step of the construction of N∞[m], the conditional density of (x1, x1 + x2, · · · ,
x1 + · · · + xm) is exp (−(x1 + x2 + · · ·+ xm)). At tth step of the construction of Nn,◦[m],

using the memoryless property of exponential random variables, the conditional density of

(x1, x1 + x2, · · · , x1 + · · ·+ xm) is

m−1∏
i=0

|It−1| − i
n

exp

(
−xi+1(|Ik−1| − i)

n

)
.

where It−1 is the set of vertices that has not been added to N∞[m] yet up to the t-th step.

Hence, the ratio of conditional densities is at least

m−1∏
i=0

|Ik−1| − i
n

≥

(
n−

∣∣V (m)
∣∣

n

)m

,

and we have

dµ
(m)
n

dµ
(m)
∞
≥

(
1−

∣∣V (m)
∣∣

n

)|E(m)|−|V (m)|/2
,

where the exponent
∣∣E(m)

∣∣− ∣∣V (m)
∣∣ /2 is the number of un-planted edges explored.

Note that
∣∣V (m)

∣∣ and
∣∣E(m)

∣∣ do not depend on n, for all sufficiently large n. Hence, as

n→∞ the right-hand side of the above inequality goes to 1. Now, the result follows by the

fact that µ
(m)
n and µ

(m)
∞ are probability measures.

Step 3: Locally Tree-Like Property

Fix some ρ > 0. Recall that (Gn,◦(1))ρ denotes the ρ-neighborhood of vertex 1 in Nn,◦(1)

as is defined in Appendix 4.4. Similarly, (Gn,◦[m])ρ denotes the neighborhood ρ of node
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1 in Nn,◦[m]. The question is, whether these two neighborhoods are the same. Note that

(Gn,◦[m])ρ is a tree but (Gn,◦(1))ρ is not necessary. However, it becomes a tree with high

probability.

Lemma C.2. Fix ε > 0 and ρ > 0. Then there exists large enough m0(ε, ρ) such that for all

fixed m > m0(ε, ρ),

P[(Gn,◦(1))ρ 6= (Gn,◦[m])ρ] ≤ ε, as n→∞.

Proof. Let m0 to be large enough such that

P[number of vertices in (Gn,◦(1))ρ > m0] < ε/2.

Fix m > m0. Consider the event {(Gn,◦(1))ρ 6= (Gn,◦[m])ρ}. This event may happens if

either the number of vertices in (Gn,◦(1))ρ is greater than m or there are two vertices v,

w ∈ V
(m)
n such that {v, w} /∈ E

(m)
n but `n(v, w) ≤ ρ. The probability of the first event is

bounded by ε/2. For the other event, note that if v, w ∈ V
(m)
n and {v, w} ∈ En \ E(m)

n ,

then `n(v, w) is dominated by an exponentially distributed random variable with mean n.

(To see this, assume that v was revealed earlier than w. Then we know that the cost of

the edge {v, w} is larger than the cost cm of the edge {v, vm}, where vm is the mth closest

un-planted neighbor of v. Hence, the probability distribution of the weight of {v, w}, using

the memoryless property, is 1/nExp((x−cm)/n) which is stochastically larger than a random

variable distributed as Exp(1/n). Hence,

P[∃v, w ∈ V (m)
n such that {v, w} /∈ E(m)

n and `n(v, w) ≤ ρ]

≤
(
|V (m)
n |
2

)
(1− exp(−t/n))→ 0 as n→∞.

As we mentioned before, |V (m)
n | is independent of n for all sufficiently large n. Now, the

result follows by combining the last two displayed inequalities.

Now, combining Lemma C.1 and Lemma C.2, we get the following corollary.

Corollary C.3. Fix ρ > 0. Let µn,ρ denote the law of [((Gn,◦(1))ρ, `n)], and let µ∞,ρ denote

the law of [((G∞)ρ, `∞)]. Then µn,ρ
TV−−→ µ∞,ρ.

Step 4: Portmanteau Theorem

For a fixed R > 0, since the condition d([N◦], [T◦]) < (R+1)−1 is equivalent to d([((G◦)R,

`)], [T◦]) < (R+ 1)−1, Corollary C.3 implies that, for all finite rooted planted trees [T◦] ∈ G∗,
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we have

|µn(AT◦)− µ∞(AT◦)| → 0 as n→∞ , (C.13)

where AT◦ is defined as

AT◦ := {[N◦] ∈ G∗ : d([N◦], [T◦]) < (R + 1)−1}.

Note that the support of µ∞ is rooted planted trees. Moreover, recall that G∗ is separable,

hence, the restriction of G∗ to the rooted planted trees is also separable. Since µ∞ is a

probability measure, for any R > 0 and any ε > 0, there exists a finite set S(R, ε) consisting

of rooted planted trees T◦ = (G◦, `) with (G◦)R = G◦ such that

µ∞

 ⋃
T◦∈S(R,ε)

AT◦

 > 1− ε.

Using Corollary C.3, there exists n0(ε) ∈ N+ such that for all n > n0(ε),

µn

 ⋃
T◦∈S(R,ε)

AT◦

 > 1− 2ε.

Now, we are going to prove that µn
w−→ µ∞. By definition µn

w−→ µ∞, if for any continuous

bounded function f : G∗ → R, ∫
G∗
f dµn →

∫
G∗
f dµ∞.

Using the Portmanteau Theorem, we can restrict our attention to the uniformly continuous

bounded functions. Let f : G∗ → R be a uniformly continuous bounded function. Now, for

any ε > 0, there is a δ > 0 such that if d([N◦], [N
′
◦]) < δ then |f([N◦]) − f([N ′◦])| ≤ ε. Fix

the value of ε and let R to be large enough such that (R + 1)−1 < δ. We have,∣∣∣∣∫
G∗
fdµn −

∫
G∗
fdµ∞

∣∣∣∣ ≤ 3ε|f |∞ +
∑

T◦∈S(R,ε)

f(T◦) |µn(AT◦)− µ∞(AT◦)|+ 2ε.

where |f |∞ := supN∈G∗ |f(N)|. The result follows by arbitrary choice of ε, the fact that

|S(R, ε)| <∞, and (C.13).
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C.4 Proof of Proposition IV.4

By Lemma IV.3, ℳ∞,opt is a deterministic function of the collection of random variables

C∞ = {`∞(e), X(←→e ); e ∈ E∞, and ←→e is directed} .

Also note that X(←→e ) satisfies (4.31), which does not depend on the relabeling of the vertices.

Now, by construction, we only need to show that the distribution of (X(−→e ); e ∈
−→
E∞(h)) for

h ≥ 1 is invariant with respect to the involution map ι.

Abusing the notation, let µ̂∞,opt denote the law of C∞ and define µ̃∞,opt to be µ̂∞,opt ×
count on N+, similar to (4.24). Fix the second root k ≥ 0 and let

B =
{

(X(−→e ),−→e ∈
−→
E∞(h)) ∈ · , k is distinguished

}
(C.14)

denote a measurable subset on Ĝ∗∗, where Ĝ∗∗ is defined similar to G∗∗ (the set all isomorphism

classes of connected locally finite doubly-rooted planted networks) with an additional mark

on the edges←→e representing X(←→e ). Let (X0, Y0) denote a solution of the system of recursive

distributional equations (4.29)–(4.30) as in Lemma IV.3. Recall that if −→e is a planted

edge then X(−→e ) and X0 have the same distribution; otherwise, X(−→e ) and Y0 have the

same distribution. Note that the collection of random variables (X(−→e ),−→e ∈
−→
E∞(h)) are

independent since they depend on messages received from disjoint subtrees.

We need to show that

µ̃∞,opt(ι
−1(B)) = µ̃∞,opt(B).

We treat the cases k = 0 or k > 0 separately.

(i) If k = 0, then we have

ι−1(B) =
{

the double root is (ø, 0)
}
∩
{

(X(−→e ),−→e ∈
−→
E∞(h, 0)) ∈ ·

}
,

where
−→
E∞(h, 0) := {(v, vj) : {v, vj} ∈ E∞ s.t. v = i1i2i3 · · · ih−2 with i1 6= 0 or v =

0i2i3 · · · ih}. Now to complete the proof, it suffices to show that (X(−→e ),−→e ∈
−→
E∞(h,

0)) has the same distribution as (X(−→e ),−→e ∈
−→
E∞(h)). Clearly, the collection of

random variables (X(−→e ),−→e ∈
−→
E∞(h, 0)) are independent, and X(−→e ) has the same

distribution as X0 or Y0 depending on whether −→e is planted or un-planted. Thus it

remains to prove that there is a one-to-one map from
−→
E∞(h, 0) to

−→
E∞(h) that maps

(un)planted edges to (un)planted ones. Consider the relabeling function φ defined as
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follows

φ(0i2i3 · · · ih) = i2i3 · · · ih ∀ 0i2i3 · · · ih ∈ V∞,

φ(i1i2 · · · ih−2) = 0i1i2 · · · ih−2 ∀ i1i2 · · · ih−2 with i1 6= 0,

and define γ :
−→
E∞(h, 0)→

−→
E∞(h) by γ({v, vj}) := {φ(v), φ(v)j}.

(ii) If k > 0, then we have

ι−1(B) =
⋃
l>0

{{
the double root is (ø, l)

}
∩ Al ∩

{
(X(−→e ),−→e ∈

−→
E∞(h, l)) ∈ ·

}}
,

where

Al :=
{
`∞(l, l(k − 1)) < `∞(ø, l) < `∞(l, lk)

}
,

and
−→
E∞(h, l) is defined similar to

−→
E∞(h, 0). Note that the events {(X(−→e ),−→e ∈

−→
E∞(h, l)) ∈ · } and Al are independent, and the distribution of (X(−→e ),−→e ∈

−→
E∞(h,

l)) does not depend on l. Also, note that by (4.48), we have

∑
l>0

P[Al] =

∫ ∞
0

P[exactly k − 1 arrivals before x] dx = 1.

The result then follows using the same argument as in the previous case.

C.5 Proof of Lemma IV.8

There are two branches that we are interested in: the alternating path from ø through

v−1, and the alternating path from ø through v1. It is more convenient to study these two

branches on the doubly rooted planted PWIT, rooted at (ø, v1). The proof uses the discussion

of bi-infinite planted PWITs T↔u and T↔p in Appendix 4.7.2.1. We follow the same notation

and simplification (Remark IV.2 in Appendix 4.7.2.1) here.

Using the relabeling maps ψ
∣∣
p

and ψ
∣∣
u
, we already know that µ∞ × δ0 is equivalent to

µ↔p and µ∞× count on {1, 2, 3, · · · } is equivalent to µ↔u . We can use the relabeling map ψ
∣∣
·

to define {X·(−→e ),−→e is a directed edge in E↔· } jointly with {`↔· (e), e ∈ E↔· }. Note that the

joint distribution of {`↔· (e), X·(
−→e ); e ∈ E↔· and −→e is directed} is exactly the same as if we
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use the construction of Lemma IV.1 by redefining
−→
E (h) as

−→
bE↔· (h) := {−→e = (−v,−vj) : gen(v) = h− 1} ∪ {−→e = (+v,+vj) : gen(v) = h− 1}.

(C.15)

Now, given {X·(−→e ),−→e is a directed edge in E↔· } we can define a minimum matching ℳ↔
·,opt

on T↔· , same as in Lemma IV.3, i.e.,

∀v ∈ V ↔· : ℳ↔
·,opt(v) = arg min

w:{v,w}∈E↔·
(`↔· (v, w)−X·(v, w)) (C.16)

∀e ∈ E↔· : ℳ↔
·,opt(e) = 1 if and only if `↔· (e) < X·(

−→e ) +X·(
←−e ). (C.17)

Next, we are going to show that the bi-infinite tree T↔u (T↔p ) restricted to ℳ↔
u,opt(−ø,+ø) =

1 (ℳ↔
p,opt(−ø,+ø) = 1) is equivalent to the doubly rooted planted PWIT, rooted at {ø,

ℳopt(ø)}, restricted to ℳopt(ø) 6= 0 (ℳopt(ø) = 0).

On the planted PWIT Tu (recall that Tu = T (ø) as defined in Appendix 4.7.2.1), define

X↓u = mini≥0(`(ø, i)−X(ø, i)). Let νu(x) denote the conditional distribution of the set

{`(e), X(−→e ); e ∈ Eh and −→e is directed away from ø}

given X↓u = x. Similarly, on the subtree Tp (recall that Tp is a relabeling of T (0) as defined

in Appendix 4.7.2.1), define X↓p = mini≥1(`(ø, i)−X(ø, i)). Let νp(x) denote the conditional

distribution of the set

{`(e), X(−→e ); e ∈ Ep and −→e is directed away from ø}

given X↓p = x. On the bi-infinite tree T↔· , define µ1
· to be the measure obtained by restricting

µ↔· to the set {`↔· (−ø,+ø) < X·(−ø,+ø) +X·(+ø,−ø)}, i.e., ℳ↔
·,opt(−ø,+ø) = 1. Let E↔+

·

and E↔−· denote all edges of form {+v,+vj} and {−v,−vj} respectively. Clearly, E↔· =

E↔+
· ∪E↔−· ∪ {−ø,+ø}. Let (X0, Y0) be a solution of the system of recursive distributional

equations (4.29)–(4.30).

Lemma C.1. The measures µ1
u and µ1

p are finite positive measures. The total mass of µ1
u

equals P[ℳopt(ø) 6= 0] and the total mass of µ1
p is P[ℳopt(ø) = 0]. Under µ1

· we have:

(i) The joint density of (`↔u (−ø,+ø), Xu(+ø,−ø), Xu(−ø,+ø)) at point (l, x1, x2) is

fu(x1)fu(x2)1(0<l<x1+x2), where fu(·) is the density of Y0 and 1(0<l<x1+x2) is the in-

dicator function; the joint density of
(
`↔p (−ø,+ø), Xp(+ø,−ø), Xp(−ø,+ø)

)
at point

(l, x1, x2) is fp(x1)fp(x2)λExp(−λl), where fp(·) is the density of X0.
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(ii) Conditioned on (`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø)) = (l, x1, x2) with x1 + x2 > l,

the distribution of the family

{`↔· (e), X·(
−→e ); e ∈ E↔−· and −→e is directed away from − ø}

is the image of ν·(x1) under the natural embedding T· → T−· ⊂ T↔· ; the distribution of

the family

{`↔· (e), X·(
−→e ); e ∈ E↔+

· and −→e is directed away from + ø}

is the image of ν·(x2) under the natural embedding T· → T+
· ⊂ T↔· and these two

families are conditionally independent.

Remark C.2. Conditioned on (`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø)) = (l, x1, x2) with x1 +

x2 > l, we have ℳ↔
·,opt(−ø,+ø) = 1. Now, by (C.16) and the construction of X· on T↔· ,

we have X·(−i,−ø) = `↔· (−ø,+ø) − X·(−ø,+ø) for all i. Similarly, X·(+i,+ø) = `↔· (+ø,

−ø) − X·(+ø,−ø) for all i. This combined with the families in part (ii) of Lemma C.1,

specifies X· on T↔· under µ1
· .

Proof. By construction of X· on T↔· , we already know that X·(+ø,−ø) and X·(−ø,+ø) are

independent with density f·(·). Moreover, `↔u (−ø,+ø) has uniform “distribution” on [0,∞),

and `↔p (−ø,+ø) is an exponentially distributed random variable with parameter λ. Hence,

the joint density has the form mentioned in (i). Moreover, the total mass of µ1
u is∫ ∞

x1=−∞

∫ ∞
x2=−∞

(x1 + x2)+fu(x1)fu(x2) dx2 dx1, (C.18)

and the total mass of µ1
p is∫ ∞

x1=−∞

∫ ∞
x2=−∞

(1− exp
(
−λ(x1 + x2)+

)
)fp(x1)fp(x2) dx2 dx1, (C.19)

where (x1 + x2)+ = max(x1 + x2, 0). Now, using the joint density above, we can calculate

the total mass of µ1
u and µ1

p as shown by the following lemma.

Lemma C.3. The equation (C.18) equals P[ℳopt(ø) 6= 0], and the equation (C.19) equals

P[ℳopt(ø) = 0].

proof of Lemma C.3. Let X1 and X2 denote two independent copies of X0, and Y1 and Y2

denote two independent copies of Y0. Let η denote an exponentially distributed random

variable with parameter λ.
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Using Corollary IV.2, we have

Equation (C.18) = E[(Y1 + Y2)+]

=

∫ ∞
x=0

P[Y1 + Y2 > x] dx

=

∫ ∞
ζ=0

P[X(−→e ) +X(←−e ) > `(e) | ∃e = {ø, i ≥ 1}, `(e) = ζ] dζ

= P[ℳopt(ø) 6= 0],

Equation (C.19) = P[X1 +X2 > η] = P[X(ø, 0) +X(0, ø) > `(ø, 0)] = P[ℳopt(ø) = 0].

Next, by construction based on (X·(
−→e ),−→e ∈

−→
bE↔· (h)) as in Lemma IV.1, under µ↔· the

families

{`↔· (e), X·(
−→e ); e ∈ E↔−· and −→e is directed away from − ø} ∪X·(+ø,−ø),

and

{`↔· (e), X·(
−→e ); e ∈ E↔+

· and −→e is directed away from + ø} ∪X·(−ø,+ø),

are independent of each other and `↔· (−ø,+ø). Therefore, the desired conditional indepen-

dence in part (ii) follows, when conditioned on (`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø)) = (l,

x1, x2).

Finally, note that each families under µ↔· is distributed as the image of corresponding

family on T·, where X·(+ø,−ø) (or X·(−ø,+ø)) corresponds to X↓· . Now, the independence

of these two families under µ↔· implies that the conditional distribution of families under µ1
·

depends only on the corresponding value of X↓· , i.e., x1 for the first family and x2 for the

second one.

Recall that ψ
∣∣
p

: [0,∞)E × {0} → [0,∞)E
↔
p maps µ× δ0 to µ↔p , and ψ

∣∣
u

: [0,∞)E × {1,
2, 3, · · · } → [0,∞)E

↔
u maps µ × count on {1, 2, 3, · · · } to µ↔u . Note that the inverse image

of the event {`↔· (−ø,+ø) < X·(+ø,−ø) +X·(−ø,+ø)} under ψ
∣∣
· is the event

{(ø,ℳopt(ø)) is the double root}.

Hence, ψ
∣∣−1

p
maps the measure µ1

p to µ× δ0 restricted to {the second root is ℳopt(ø) = 0},
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and ψ
∣∣−1

u
maps the measure µ1

u to µ× count on {1, 2, 3, · · · } restricted to

{the second root is ℳopt(ø) and ℳopt(ø) 6= 0}.

Hence, to study the eventsB∞ and B−1 on the planted PWIT, we can relabel the vertices

by setting ø to be −ø, ℳopt(ø) to be +ø, map the doubly rooted PWIT, rooted at (ø,

ℳopt(ø)), to the corresponding bi-infinite tree (T↔u or T↔p depending on whether ℳopt(ø) = 0

or not), and study the image of these events under µ1
p and µ1

u.

C.5.1 A Lemma on Tu and Tp

Before analyzing the image of B−1 on T↔u (or T↔p depending on whether ℳopt(ø) = 0

or not), let us present a technical lemma which generalizes Lemma 23 in [20] to the planted

case.

Lemma C.4. On the planted PWIT, define

X↓u = min
i≥0

(`(ø, i)−X(ø, i)),

X↓p = min
i≥1

(`(ø, i)−X(ø, i)),

Iu = arg min
i≥0

(`(ø, i)−X(ø, i)),

Ip = arg min
i≥1

(`(ø, i)−X(ø, i)).

For −∞ < b < a <∞ define

gu(a, b) := P[`(ø, Iu)− b > min[2]

j:{Iu,Iuj}∈E
(`(Iu, Iuj)−X(Iu, Iuj)) |X↓u = a],

gp(a, b) := P[`(ø, Ip)− b > min[2]

j:{Ip,Ipj}∈E
(`(Ip, Ipj)−X(Ip, Ipj)) |X↓p = a].

Then gu(a, b), gp(a, b) > 0.

Proof. Let us begin with an observation, which is the continuous analogous of the splitting

property of a Poisson process.

Observation. Let {Xi}∞i=1 be independent real-valued continuous random variables with com-

mon distribution αX . Let {ζi}∞i=1 denote the arrivals of a Poisson process with parameter 1.

Then {(ζi, Xi)}∞i=1 forms a Poisson point process on [0,∞)× (−∞,+∞) with mean intensity

β(z, x)dzdx = dzαX(dx).

Now, let Yi = ζi −Xi. The set of points {Yi}∞i=1 forms a certain inhomogeneous Poisson

process on (−∞,∞) with mean intensity γ(y)dy = αX([−y,∞))dy. Finally, it is easy to see
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that conditioned on the time of the first arrival to be y0, the other points in {Yi}∞i=1 are the

points of a certain inhomogeneous Poisson process on (y0,∞). Similar statement holds if we

condition on no arrival before y0.

Note that by (4.31), we have

X(ø, I·) = min
j:{I·,I·j}∈E

(`(I·, I·j)−X(I·, I·j)).

Now, by the above observation, the set of points {`(I·, I·j) − X(I·, I·j), j ≥ 1} conditioned

on X(ø, I·) = x, are the points of a certain inhomogeneous Poisson process on (x,∞) (note

that the claim is true regardless of whether arg minj:{I·,I·j}∈E(`(I·, I·j) − X(I·, I·j)) = 0 or

not). Hence,

P[ min[2]

j:{I·,I·j}∈E
(`(I·, I·j)−X(I·, I·j)) ∈ [y, y + dy] |X(ø, I·) = x] ≥ β̃x(y)dy,

where β̃x(y) > 0 for all y > x. Since the above term does not depend on the value of `(ø, I·),

we have

g̃·(a, b, x) :=

P[`(ø, I·)− b > min[2]

j:{I·,I·j}∈E
(`(I·, I·j)−X(I·, I·j)) |X(ø, I·) = x, `(ø, I·) = a+ x] > 0,

for all −∞ < b < a <∞, and −∞ < x <∞. Now, the result follows by

g·(a, b) = E[g̃·(a, b,X(ø, I·)) |X↓· = a],

since X↓· = `(ø, I·)−X(ø, I·).

C.5.2 Calculating with the Bi-infinite Tree

On the bi-infinite tree T↔· , define the event C·,−1 as

C·,−1 :=

{
−ø = arg min[2]

y:{y,−I·}∈E↔·
(`↔· (−I·, y)−X·(−I·, y))

}
,

where

−I· = arg min
−i:{−ø,−i}∈E↔·

(`↔· (−ø,−i)−X·(−ø,−i)).
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The event C·,−1 under µ1
· corresponds to the event B−1 on the doubly rooted PWIT, rooted

at (ø, v1), where v1 = ℳopt(ø). Define the following σ-algebras:

F−· = σ
(
X·(
−→e ), `↔· (e) : e ∈ E↔−· and −→e is directed

)
,

F+
· = σ

(
X·(
−→e ), `↔· (e) : e ∈ E↔+

· and −→e is directed
)
,

Fø
· = σ (`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø)) .

Lemma C.5. µ1
· (C

c
·,−1

∣∣F+
· ,Fø

· ) = g· (X·(+ø,−ø), `↔· (−ø,+ø)−X·(−ø,+ø)), where Cc
·,−1 is

the complement of the event C·,−1.

Proof. By Remark C.2 right after Lemma C.1,

F−· ∩ Fø
· = Fø

· ∩ σ
(
X·(
−→e ), `↔· (e) : e ∈ E↔−· and −→e is directed away from − ø

)
,

F+
· ∩ Fø

· = Fø
· ∩ σ

(
X·(
−→e ), `↔· (e) : e ∈ E↔+

· and −→e is directed away from + ø
)
.

Now, since C·,−1 is F−· measurable, by conditional independence of Lemma C.1 part (ii) we

have

µ1
· (C

c
·,−1

∣∣F+
· ,Fø

· ) = µ1
· (C

c
·,−1

∣∣Fø
· ).

Hence, we need to show that for all (l, x1, x2),

µ1
·
{
Cc
·,−1

∣∣(`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø)) = (l, x1, x2)
}

= g· (x1, l − x2) .

By Lemma C.1, conditioned on the event (`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø))=(l, x1, x2),

the distribution of the family

{`↔· (e), X·(
−→e ); e ∈ E↔−· and −→e is directed away from − ø},

is the image of ν·(x1) under the natural embedding T· → T−· ⊂ T↔· . Recall that ν·(x1) is the

distribution of {`(e), X(−→e ); e ∈ E· and −→e is directed away from ø} on T·, given X↓· = x1.

Hence,

g· (x1, l − x2) = µ1
·

{
`↔· (−ø,−I·)− (l − x2) >

min[2]

j:{−I·,−I·j}∈E↔−·
(`↔· (−I·,−I·j)−X·(−I·,−I·j))∣∣ (`↔· (−ø,+ø), X·(+ø,−ø), X·(−ø,+ø)) = (l, x1, x2)

}
.
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However, under this conditioning

`↔· (−ø,−I·)− (l − x2) = `↔· (−ø,−I·)− (`↔· (−ø,+ø)−X·(−ø,+ø))

= `↔· (−I·,−ø)−X·(−I·,−ø),

where the last equality follows by (4.31) and the fact that under µ1
· , ℳ

↔
·,opt(−ø, ø) = 1 (see

Remark C.2). Finally, note that under µ1
· ,

Cc
·,−1 =

{
`↔· (−I·,−ø)−X·(−I·,−ø) > min[2]

j:{−I·,−I·j}∈E↔−·
(`↔· (−I·,−I·j)−X·(−I·,−I·j))

}
.

Now, we have all the machinery to finish the proof of Lemma IV.8. By using the relabeling

bijections, P[B−1 |B∞, {ℳopt(ø) = 0}] equals µ1
p (Cp,−1 |Cp) where Cp is a certain event which

is measurable with respect to F+
p ∩Fø

p such that µ1
p(Cp) = P[B∞∩{ℳopt(ø) = 0}]. Similarly,

P[B−1 |B∞, {ℳopt(ø) 6= 0}] equals µ1
u (Cu,−1 |Cu) for a certain event Cu that is defined similar

to Cp. Now, by Lemma C.4 and Lemma C.5, if µ1
· (C·) > 0, then we have

µ1
·
(
Cc
·,−1 ∩ C·

)
= Eµ1

·

[
1C· µ

1
· (C

c
·,−1

∣∣F+
· ,Fø

· )
]

= Eµ1
· [1C· g· (X·(+ø,−ø), `↔· (−ø,+ø)−X·(−ø,+ø))] > 0.

244



BIBLIOGRAPHY

245



BIBLIOGRAPHY

[1] M. Chertkov, L. Kroc, F. Krzakala, M. Vergassola, and L. Zdeborová, “Inference in
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