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ABSTRACT

Correct-by-construction control synthesis methods refer to a collection of model-

based techniques to algorithmically generate controllers/strategies that make the

systems satisfy some formal specifications. Such techniques attract much atten-

tion as they provide formal guarantees on the correctness of cyber-physical systems,

where corner cases may arise due to the interaction among different modules. The

controllers synthesized through such methods, however, may still malfunction due

to faults, such as physical component failures and unexpected operating conditions,

which lead to a sudden change of the system model. In these cases, we want to

guarantee that the performance of the faulty system degrades gracefully, and hence

achieve fault tolerance.

This thesis is about 1) incorporating fault detection and detectability analysis

algorithms in correct-by-construction control synthesis, 2) formalizing the graceful

degradation specification for fault tolerant systems with temporal logic, and 3) devel-

oping algorithms to synthesize correct-by-construction controllers that achieve such

graceful degradation, with possible delay in the fault detection. In particular, two

sets of approaches from the temporal logic planning domain, i.e., abstraction-based

synthesis and optimization-based path planning, are considered.

First, for abstraction-based approaches, we propose a recursive algorithm to re-

duce the fault tolerant controller synthesis problem into multiple small synthesis

x



problems with simpler specifications. Such recursive reduction leverages the struc-

ture of the fault propagation and hence avoids the high complexity of solving the

problem monolithically as one general temporal logic game. Furthermore, by explor-

ing the structural properties in the specifications, we show that, even when the fault

is detected with delay, the problem can be solved by a similar recursive algorithm

without constructing the belief space.

Secondly, optimization-based path planning is considered. The proposed approach

leverages the recently developed temporal logic encodings and state-of-art mixed

integer programming (MIP) solvers. The novelty of this work is to enhance the open-

loop strategy obtained through solving the MIP so that it can react contingently to

faults and disturbance.

Finally, the control synthesis techniques developed for discrete state systems is

shown to be applicable to continuous states systems. This is demonstrated by fuel

cell thermal management application. Particularly, to apply the abstraction-based

synthesis methods to complex systems such as the fuel cell thermal management

system, structural properties (e.g., mixed monotonicity) of the system are explored

and leveraged to ease abstraction computation, and techniques are developed to

improve the scalability of synthesis process whenever the system has a large number

of control actions.
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CHAPTER I

Introduction

1.1 Background and Motivation

Control system design uses a mathematical model of a physical process, usually given

by a differential equation ẋ = f(x, u, d) (or by difference equations for the discrete-

time systems), that describes how the system state x is affected by the control input

u and the disturbance d. The term control design refers to searching for control input

u under which the dynamical system achieves the desired behavior, e.g., stability,

trajectory following, optimizing certain performance metric, etc., regardless of the

disturbance d.

Fault-tolerant control is a branch of control theory that consists of a set of tech-

niques to detect and identify possible faults in the control system, and to design

controllers to still achieve a desired (possibly degraded) closed-loop behavior with

the knowledge of the fault occurrence [87]. Often times, the degradation of the sys-

tem is captured by a change of a performance metric [14]. Designing such resilient

systems that can operate in the presence of failures is crucial in many application do-

mains, especially for safety critical systems like aircraft flight control systems [21, 35],

manufacturing systems [68], and automobile systems [5]. The typical control design

paradigm used for fault-tolerant control systems design, similar to that used in many
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other system design problems, is the “design V” process [37], where the designers

iterate between testing and tuning/redesigning the control systems until all the test

cases are passed by the designed controller. As the systems being tested for fault

tolerance and the tasks these systems should fulfill get more complicated, however,

the design-testing procedure becomes harder and more time-consuming. First, the

fault-tolerant controller designed against a single performance metric may not be

sufficient to lead to a complicated system behavior that is necessary for its safe op-

eration. Moreover, the testing procedure is not complete in the sense that undesired

behaviors may still exist under some untested corner cases created by the interac-

tions between different modules in the system. Hence more expressible specification

formalisms and more reliable design paradigms are needed.

Correct-by-construction control synthesis methods, on the other hand, can algo-

rithmically generate a controller under which the closed-loop system is guaranteed

to satisfy a formally defined specification. Such techniques are helpful to remove bad

designs at an early state and avoid the time-consuming “design V” iterations. The

term “correct-by-construction” was originally invented by the computer science com-

munity and used to generate software with correct logical behavior. In recent years,

there has been significant amount of research on using similar ideas to synthesize

controllers for cyber physical systems, where both digital software and continuous-

state dynamics exist, to accomplish more complicated tasks. Applications include

robotic motion planning [32, 62], autonomous driving and cruise control [29, 81, 121],

control of aircraft subsystems [74], and building thermal management [41, 82], just

to mention a few. Figure 1.1 shows a simple flow diagram of correct-by-construction

synthesis methods, where a formally defined system model and a formally defined

specification are required. In practice, however, the system dynamics may experi-

2



ence a sudden change due to component failures, in which case achieving the original

specification may not be feasible and the system is expected to satisfy certain relaxed

requirements, and hence degrades gracefully. This suggests that more complicated

(yet formal) models and specifications are necessary to take the effect of faults into

account. To achieve graceful degradation, the controller needs to be reasonably more

conservative compared to the one designed for the unfaulty system even when the

system is operating healthily, so that the system will not enter a situation where

achieving the relaxed specification is not feasible after fault occurrence. Moreover,

in practice, the fault can be only detected with a certain amount of delay after its oc-

currence. Control synthesis problems with such delayed fault detection can be viewed

as a special class of partial information games, which are usually solved with belief

space construction. This dramatically increases the computational effort required to

solve the problem.

Figure 1.1: Illustration: correct-by-construction control synthesis

Motivated by the issues mentioned above, the correct-by-construction fault-tolerant

control problem is studied in this work. In particular, we concern three aspects of the

problem. First, we consider model-based detectability analysis that provides a guar-

antee on finite time fault detection. Such finite time detectability not only enables

online fault detection with a receding horizon scheme, but can be also incorporated

3



in correct-by-construction control synthesis. Second, we consider synthesizing fault-

tolerant controllers/strategies that achieve a graceful degradation whenever fault

occurs. In particular, the obtained fault-tolerant controllers/strategies should be

robust to the detection delay. Last but not least, we concern the computational effi-

ciency of the fault-tolerant control synthesis algorithms. To this end, the structural

properties in the continuous system dynamics and the specification are explored for

a more tailored synthesis algorithms.

1.2 Literature Review

Fault detection is a key step towards fault tolerant systems and is studied by different

communities. For discrete (e.g., software-based) systems, monitoring and run-time

verification techniques have been proposed [6, 10, 49, 97, 102]. Similarly, fault de-

tection algorithms have also been studied for continuous-state dynamical systems

using ideas from learning, filtering or optimization [38, 53]. In particular, model

invalidation [47, 92, 108], a robust system identification technique that is closely re-

lated to set membership fault detection [52, 59, 116], can be used for this purpose.

Such model invalidation based detection is more suitable for providing a finite de-

tection guarantee rather than an asymptotical one given by, for example, classical

residual generation approaches [38]. Recently, a topic called detectability analysis

[40, 46, 45, 47, 48] are studied, concerning finding the worst case detection delay via

offline analysis. Such worst case detection delay, once found, can be incorporated in

correct-by-construction control synthesis. However, due to its worst case nature, the

computed detection delay can be overly conservative and needs to be improved.

The concept of correct-by-construction systems was first introduced by computer

scientists to algorithmically construct a software that fulfills certain requirements

4



specified by, e.g., temporal logic [67, 120]. In the past two decades, the idea of correct-

by-construction synthesis attracts great attention in the control theory domain. One

major difference between the problems considered by the two communities is that,

there is a dynamical model that must be respected in the controller synthesis problem.

Under this setting, the correct-by-construction design methodology gets significantly

extended using the ideas from control theory, especially from model based constraint

control. For simple specification like invariance, control barrier functions [4, 55],

Hamilton Jacobi (HJ) methods [75, 122] and controlled invariant sets are proposed

[13, 98]. For more general linear temporal logic (LTL) specifications, the two most

commonly used approaches are abstraction-based synthesis and mixed-integer-linear-

programming (MILP) based temporal logic path planning.

In abstraction-based synthesis, a discrete graph structure is constructed to over-

approximate the behavior of the underlying continuous-state system (or concrete sys-

tem). Then two-player game solving techniques developed for such discrete systems

are leveraged to synthesize controllers that guarantee the correctness of the contin-

uous state system by the behavior overapproximation relation [110]. Such methods

are usually conservative due to the behavior overapproximation relation, and compu-

tationally expensive due to the abstraction computation and the high complexity of

game solving [11]. While a line of research focuses on reducing the conservatism via

refining [41, 51, 63, 82, 85, 103] and post processing [26, 89, 109, 136] the abstraction,

other work concentrates on improving the scalability, by i) exploring and exploiting

structural properties of the underlying continuous system and of certain LTL frag-

ments, and ii) decomposing the synthesis problem into smaller ones. For example,

system structural properties like linearity [60], multiaffine property [61], monotonic-

ity [69], mixed monotonicity [26], incremental stability [42], polynomial dynamics

5



[89] and symmetry [83] are explored. For structural properties of the LTL specifi-

cation, mode target game [9], reach-stay-avoid game [82], general reactivity of rank

1 (GR(1)) [86] and other fragments in [80] are considered, and tailored polynomial-

time algorithms are developed for these gfragments. For decompositional methods

for control synthesis [66, 73, 135], contract design is usually used and similar ideas

are also used for controlled invariant set computation of high dimensional systems

whenever only safety is of our concern [23, 34, 84]. Finally, a relevant topic is games

under partial information, see, for example, [22, 76, 101, 134]. Synthesis with partial

information is in general quite harder as it requires an exponential power set con-

struction to keep track of belief states, which exponentially increases the complexity

of the controller synthesis.

For MILP-based approaches, unlike the problems solved with the abstraction-

based approach, where a winning set (i.e., a set of initial conditions starting from

where the specification is achievable) is to be searched, an initial condition is given

as part of the problem setup. This allows one to encode LTL/STL with mixed in-

teger linear constraints and search for an open-loop strategy associated with the

given initial condition, which achieves the specification [58, 95, 119]. Comparing

to abstraction-based synthesis, the MILP-based approaches are less conservative and

scale more favorably, but the resulting open-loop controllers tend not to be robust/re-

active due to lack of feedback. Recent work aimed at addressing this latter issue

includes counter-example-guided methods [96], considering the robust [100] or proba-

bilistic [99] satisfaction of LTL/STL, searching for feedback controllers parametrized

by disturbance [39, 104] together with MILP-based trajectory planning. Though,

the type of environment uncertainties against which robustness/reactiveness can be

achieved by these methods is still limited. Therefore, there is a need for research

6



that provides reactiveness for different classes of uncertainties, e.g., the potential

fault occurrence in the system.

1.3 Main Contribution

The contributions of this thesis are threefold.

In the first part, the detectability analysis is considered together with extra LTL

constraints that the correct system must satisfy. In this setting, we combine the idea

of LTL monitoring and model invalidation based detection for a less conservative

fault detectability analysis. It is shown via a unmanned aerial vehicle consensus

problem that the worst case detection delay can be reduced from infinite to finite.

In the second part, the fault-tolerant control problem is defined by introducing a

hierarchical control system that captures the changes in the system dynamics caused

by unrecoverable faults, and by clarifying the meaning of graceful degradation with

LTL. To solve the problem, we look into both abstraction-based synthesis by game

solving and MILP based LTL path planning.

For the abstraction-based approach, we consider the fault-tolerant control problem

on finite transition systems. By exploiting the fact that the occurrences of faults can

be represented by a directed acyclic graph leading to a partial order, we show that

the synthesis problem can be decomposed, which leads to an algorithm that avoids

solving the problem as a general LTL game and hence a more efficient solution.

The proposed approach can be seen as a special case of decompositional synthesis,

where the decomposition naturally comes from the structure of the faults. The

other half of the work regarding this topic tries to incorporate the detection delay.

Such detection delay results in controller not having full information of the state at

decision time, and is a special case of partial information. We show how the proposed

7



algorithm can be modified to handle detection delays, without constructing the belief

space. The soundness and completeness of the proposed algorithm is proved for a

special fragment of LTL. This work follows the line of research that develops efficient

algorithms for specification with special structural properties.

To show that the approach developed for finite transition systems also applies

to continuous state systems, we synthesize a correct-by-construction controller for a

fuel cell thermal management system with complicated dynamics and requirements.

We first develop a control-oriented model for the thermal management system of

a fuel cell stack, list the requirements associated with thermal management and

formalize them using LTL. Then the existing synthesis tools are extended in two

ways to solve the control problem. First, we leverage a structural property of the

fuel cell thermal dynamics called weak sign-stability to compute the abstraction more

efficiently. Second, we extend the notion of progress group [89] to further reduce the

spurious behavior of the obtained abstraction. This work contributes to achieving

less conservative and computational more scalable abstractions.

The last part of the thesis presents an optimization-based approach to solve the

fault tolerant path planning problem for linear systems to achieve graceful degrada-

tion. We propose a hierarchical fault-tolerant controller with a MILP-based trajec-

tory generation at the higher-level and an output-feedback regulator at the lower-

level. It is further shown that when the system dynamics are linear, the lower-level

regulator design problem reduces to a quasi-convex optimization problem. Our MILP

formulation encodes complicated tasks specified with LTL and incorporates reactive-

ness to faults while being robust to finite detection delays, and hence can be viewed

as a move towards obtaining reactive/robust LTL path planning.
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Thesis Organization. The rest of the thesis is organized as follows. Chapter II

presents preliminary results on system and specification structural properties, which

will be used in later chapters. In Chapter III, an improved fault detectability anal-

ysis with LTL constraints is presented. Then the fault-tolerant control problems is

formally defined in Chapter IV. Chapter V presents an abstraction-based approach

to solve the fault-tolerant control problem. The specification properties introduced

previously are used to verify the correctness and completeness of the proposed algo-

rithms. In Chapter VI, we define and solve a fuel cell thermal management problem

with abstraction-based approach. The system structural properties introduced in

Chapter II are used to ease the abstraction computation for this fuel cell system.

Chapter VII presents an optimization-based approach to solve the fault-tolerant path

planning problem. Finally, the thesis is concluded by Chapter VIII.

Acknowledgment of previous publications. Most of the results in this thesis

have previously appeared as published works or technical reports. For Chapter II,

the relevant publications are [126, 127, 131, 128]; for Chapter III [130]; for Chapter

V [128, 133]; for Chapter VI, [124, 125]; and for Chapter VII, [132]. Other publica-

tions [24, 123, 129] developed during the PhD study are also related to correct-by-

construction control synthesis but are not included in this thesis.

9



CHAPTER II

Preliminaries and Structural Properties

To achieve more scalable control synthesis, it is important to understand and ex-

ploit the structural properties of the system dynamics and the desired closed-loop

system specifications. By structural properties of the system dynamics, we mean

the properties of the vector field f of the system described by the differential equa-

tion ẋ = f(x, u, d); while the structural properties of the specifications refer to some

properties of the LTL formula ϕ that is used to specify the system’s desired behavior.

Such structure properties, if exist, can be leveraged by the synthesis algorithms and

improve the algorithms’ scalability.

In this chapter, we present preliminary results on the structural properties of the

systems and the specifications considered in this work. A system property called

mixed monotonicity is explored, and is shown to be a fairly general property rather

than a useful structural property. However, mixed monotonicity provides a nice way

to view certain structural properties that can be leveraged by synthesis algorithms.

In particular, we introduce a system structural property called weak sign-stability

and analyze its usefulness by viewing it as a special case of mixed monotonicity. It is

shown that the efficient abstraction computation methods developed for sign-stable

systems can be extended to weakly sign-stable systems, e.g., the fuel cell thermal

10



management system considered in Chapter VI. We then introduce one novel specifi-

cation structural property called absolutely decomposable property, which leads to a

simplified controller synthesis process for the fault tolerant problem, as will be shown

in Chapter V. An existing concept called suffix-closed property is also introduced

for the same purpose.

Chapter overview. In Section 2.1.1, mixed monotonicity is introduced and it

is proved that every function in Rn is mixed monotone under element-wise order.

In Section 2.1.2, we then introduce a structural property called weak sign-stability

and show its usefulness in terms of function image approximation. In Section 2.2.1,

LTL is introduced as a preliminary, and then in Section 2.2.2 and Section 2.2.3 a

novel specification structural property called absolutely decomposable property and

an existing specification property called suffix-closedness are introduced respectively.

Related work. Mixed Monotonicity is previously studied in [25, 107] to ana-

lyze global stability of nonlinear systems, and recently attracts certain attention in

correct-by-construction control community [26, 28, 33]. Although the concept of

mixed monotonicity is general, the works mentioned above only focus on a special

class of systems called sign-stable systems, whose vector field can be easily veri-

fied mixed monotone. The weak sign-stability is a generalization of sign-stability,

and extends the computational approaches developed for sign-stable systems to a

broader class of systems. See, for example, [70, 71, 72] where the weak sign-stability

extension is used. In particular, the abstraction computation technique induced by

weak sign-stability can be also seen as a way to bound the Lipschiz constants of the

vector field f , and similar ideas appeared in [136] where they are used to compute

11



abstraction for systems without any stability assumptions.

The concepts of absolute liveness [106] and suffix-closedness [18] are not new, but

they are not leveraged in the context of control synthesis to the best knowledge of

the author. In the literature, there are also many works studying efficient synthesis

algorithms for specific fragements of LTL formulas, such as reach-stay-avoid game

[82], mode-target game [8] and GR(1) [86]. The properties presented here are at a

more abstract level but the purpose is also efficiency. That is, by studying these

properties, we wish to understand when the later proposed efficient fault-tolerant

control synthesis algorithms provide sound and complete solutions, especially in the

existence of detection delays.

2.1 Structural Properties of Systems

In this part, a system structural property called weak sign-stability is introduced.

We analyze the usefulness of this property by viewing it as a special case of mixed

monotonicity.

2.1.1 Mixed Monotonicity

We start with introducing the concept of mixed monotonicity. Intuitively, a function

is mixed monotone if it can be decomposed into a monotonically increasing part and

a monotonically decreasing part. From the definition, it is not immediately clear if

this is a general property or a very restrictive structural property. The main result

is to show that every function in Rn is mixed monotone by implicitly constructing

its decomposition as a solution to some optimization problems. In particular, this

decomposition is tight in the sense that it provides a potential way to tightly approx-

imate the function images with a hyper box. However, this decomposition cannot be
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evaluated efficiently unless the function is sign-stable. Therefore mixed monotonicity

is not structural property, but it provide a way of viewing functions nonetheless.

Notations: Let Rn be n-dimensional Euclidean space. We use lower case letter

x ∈ Rn to denote a n-dimensional vector, and use xi to denote the ith component

of a vector x. When necessary, we will use superscript, e.g., x[i], x[j] to distinguish

different vectors (bracket is used to distinguish from the power and the higher order

derivatives). We use ≥ to denote the element wise order on Rn, i.e., for x, y ∈ Rn,

x ≥ y if and only if (iff) xi ≥ yi for all i = 1, 2, . . . , n. For x, x ∈ Rn such that x ≤ x,

we denote the hyperinterval {x ∈ Rn | x ≤ x ≤ x} by [x, x].

Definition 1. (Mixed Monotone Function) A function f : Rn → Rm is mixed mono-

tone if there exists g : R2n → Rm satisfying the following:

1. g(x, x) = f(x);

2. x ≥ x′ ⇒ g(x, y) ≥ g(x′, y);

3. y ≥ y′ ⇒ g(x, y) ≤ g(x, y′).

A function g satisfying the above conditions is called a decomposition function of f .

The following theorem allows us to approximate the values of a mixed monotone

function in some region, using its decomposition function.

Propoition 1. (Theorem 1 in [26]) Let f : Rn → Rm be a mixed monotone function

and let g be one of its decomposition functions, then

{f(x) | x ∈ [x, x]} ⊆ [g(x, x), g(x, x)].(2.1)

It should also be noticed that decomposition function may not be unique. To

see this, consider a simple example where f(x) = 1. Clearly both g(x, y) = 1 and

g(x, y) = x/y are decomposition functions of f . As discussed above in Proposition

1, a decomposition function g can be used to approximate the function value of
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f . Motivated by the use of decomposition functions to tightly over approximate

{f(x) | x ∈ [x, x]} with a hyperinterval, we introduce the following definition of

tightness of a decomposition function.

Definition 2. (Tight Decomposition) Let f be a mixed monotone function and g be

a decomposition of f . Decomposition function g is called tight if for all x, x ∈ Rn

s.t. x ≤ x, [g(x, x), g(x, x)] is the smallest (in set inclusion sense) hyperinterval that

contains {f(x) | x ∈ [x, x]}. That is [g(x, x), g(x, x)] = [infξ∈[x,x] f(ξ), supξ∈[x,x] f(ξ)].

The key result in this part is that every function whose extreme values are well

defined has a tight decomposition. To prove this, we introduce the following notation:

for x, y ∈ R and h : R→ R, define

opt
(x,y)
ξ h(ξ) =


infξ∈[x,y] h(ξ) if x ≤ y

supξ∈[y,x] h(ξ) if x > y

.(2.2)

The following simple facts regarding the opt operator are useful in later proofs.

Lemma 1. opt
(x,y)
ξ h(ξ) is monotonically increasing in x and monotonically decreas-

ing in y, that is, x ≥ x′ ⇒ opt
(x,y)
ξ h(ξ) ≥ opt

(x′,y)
ξ h(ξ) and y ≥ y′ ⇒ opt

(x,y)
ξ h(ξ) ≤

opt
(x,y′)
ξ h(ξ).

Proof. We prove x ≥ x′ ⇒ opt
(x,y)
ξ h(ξ) ≥ opt

(x′,y)
ξ h(ξ) in the following three cases

respectively:

(i) y ≥ x ≥ x′: opt
(x,y)
ξ h(ξ) = infξ∈[x,y] h(ξ) ≥ infξ∈[x′,y] h(ξ) = opt

(x′,y)
ξ h(ξ);

(ii) x ≥ y ≥ x′: opt
(x,y)
ξ h(ξ) = supξ∈[y,x] h(ξ) ≥ h(y) ≥ infξ∈[x′,y] h(ξ) =

opt
(x′,y)
ξ h(ξ);

(iii) x ≥ x′ ≥ y: opt
(x,y)
ξ h(ξ) = supξ∈[y,x] h(ξ) ≥ supξ∈[y,x′] h(ξ) = opt

(x′,y)
ξ h(ξ).

The proof for y ≥ y′ ⇒ opt
(x,y)
ξ h(ξ) ≤ opt

(x,y′)
ξ h(ξ) is similar.
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Lemma 2. Let h : R → R and h : R → R be such that h ≥ h for all ξ ∈ R, then

opt
(x,y)
ξ h(ξ) ≥ opt

(x,y)
ξ h(ξ) for all x, y ∈ R.

Proof. This should be clear by the definition of opt.

With above lemmas, we can prove the following result.

Theorem 1. Let f : Rn → Rm be such that opt
(xi,yi)
ξi

f(ξi) is well defined1, then the

following g : R2n → Rm defined element-wise by

gj(x, y) = opt
(x1,y1)
ξ1

opt
(x2,y2)
ξ2

. . . opt
(xn,yn)
ξn

fj(ξ),

j = 1, 2, . . . ,m(2.3)

is a tight decomposition function of f .

Proof. We first prove that g is indeed a decomposition function of f .

1. Clearly, g(x, x) = f(x) by definition.

2. To show that x ≥ x′ ⇒ g(x, y) ≥ g(x′, y), it is sufficient to show that this is

true for a simple case where x and x′ differs by only one element, i.e., xi ≥ x′i

and xj = x′j for j 6= i. For general case, let x = x0 ≥ x1 ≥ x2 ≥ · · · ≥ xn = x′,

where xi and xi−1 has exactly the same coordinates except for the ith position.

Then applying the result for the simple case for n times yields the desired result

for the general case.

Let x and x′ be such that xi ≥ x′i and xj = x′j for j 6= i, and define h(x,y)(ξ1, ξ2, . . . , ξi) :=

opt
(xi+1,yi+1)
ξi+1

. . . opt
(xn,yn)
ξn

f(ξ). Since xj = x′j for j 6= i, h(x,y)(ξ1, ξ2, . . . , ξi) =

h(x′,y)(ξ1, ξ2, . . . , ξi) and we will use h to denote the function in what follows for

1For reachable set computation, it makes sense to assume that f is bounded on any bounded set so that the

system xk+1 = f(xk) is forward complete. With such assumption, opt
(xi,yi)
ξi

f(ξi) is always well defined. However,

if we only want to talk about mixed monotonicity of the function f , it is enough to assume that the domain of f is
Rn.
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simplicity. With this notation, g(x, y) and g(x′, y) can be rewritten as

g(x, y) =

opt
(x1,y1)
ξ1

opt
(x2,y2)
ξ2

. . . opt
(xi,yi)
ξi

h(ξ1, ξ2, . . . , ξi)︸ ︷︷ ︸
=:h(ξ1,ξ2,...,ξi−1)

,(2.4)

g(x′, y) =

opt
(x1,y1)
ξ1

opt
(x2,y2)
ξ2

. . . opt
(x′i,yi)
ξi

h(ξ1, ξ2, . . . , ξi)︸ ︷︷ ︸
=:h(ξ1,ξ2,...,ξi−1)

.(2.5)

Since xi ≥ x′i, by Lemma 1, we know that for all ξ1, ξ2, . . . ξi−1:

h(ξ1, ξ2, . . . , ξi−1) ≥ h(ξ1, ξ2, . . . , ξi−1).(2.6)

Applying Lemma 2 for i− 1 times leads to g(x, y) ≥ g(x′, y).

3. Proving that y ≥ y′ ⇒ g(x, y) ≤ g(x, y′) is similar as bullet 2.

This hence proves that g is a decomposition function of f . Next, we show that g is a

tight decomposition. To see this, let x, x ∈ Rn to be such that x ≤ x. Since xi ≤ xi

for all i, by definition of g in Eq. (2.3) and Eq. (2.2), we have

g(x, x) = inf
ξ1∈[x1,x1]

inf
ξ2∈[x2,x2]

. . . inf
ξn∈[xn,xn]

f(ξ1, ξ2, . . . , ξn)

= inf
ξ∈[x,x]

f(ξ),(2.7)

g(x, x) = sup
ξ1∈[x1,x1]

sup
ξ2∈[x2,x2]

. . . sup
ξn∈[xn,xn]

f(ξ1, ξ2, . . . , ξn)

= sup
ξ∈[x,x]

f(ξ),(2.8)

and this shows that g is a tight decomposition function.

Corollary 1. In general, a mixed monotone function f may not have a unique tight

decomposition function.

Proof. Note that the proof of Theorem 1 does not depend on the fact that g is

constructed with opt
(xi,yi)
ξi

being arranged in an ascending order of i. Therefore one
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can rearrange the opt
(xi,yi)
ξi

operators and this does not change the fact the resulting

g is still a tight decomposition, yet it is well know that g may be different in general

after such a rearrangement. For example, let f : [0, 2]× [0, 2]→ R2 be such that

f1(x) =


0 if x ∈ [0, 1)× [0, 1] ∪ [1, 2]× (1, 2]

1 otherwise

f2(x) = 0 ∀x ∈ [0, 2]× [0, 2].(2.9)

Consider candidate decomposition function g and g′ where

g1(x, y) = opt
(x1,y1)
ξ1

opt
(x2,y2)
ξ2

f1(ξ1, ξ2),(2.10)

g′1(x, y) = opt
(x2,y2)
ξ2

opt
(x1,y1)
ξ1

f1(ξ1, ξ2),(2.11)

and g2(x, y) = g′2(x, y) = 0. By Theorem 1, both g and g′ are tight decomposition

functions of f . However, at point x = [2, 0]T and y = [0, 2]T , it can be verified

that g1(x, y) = 1 while g′1(x, y) = 0. Hence g 6= g′ and we have two different tight

decomposition functions of f .

Remark 1. Note that Corollary 1 is not surprising because decomposition functions

are defined on the space of (x, y), while the tightness of a decomposition function

g only depends on its value g(x, y) on the set S := {(x, y) | x, y are comparable}.

Therefore, tight decomposition functions are not unique on the entire space of (x, y),

although they do coincide with each other on set S.

The main purpose of Theorem 1 is to show that for any function on Rn whose

supremum and infimum are well-defined, there exists a tight decomposition function,

so all these functions are mixed monotone. However, this is an existential result

rather than a computational one. Indeed, the tight decomposition function defined
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above is not directly useful in the image set approximation as its construction involves

computing the infimum and supremum of the function f , which is already equivalent

to solving for the extreme coordinates of the image set, and this defeats the purpose

of constructing the decomposition function (i.e., approximating the image of function

f using Porposition 1.

2.1.2 Weak Sign-stability from the View of Mixed Monotonicity

Although mixed monotonicity is A structural property called weak sign-stability is

introduced. We analyze the usefulness of weak sign-stability by viewing it as a special

case of mixed monotonicity.

Definition 3. A continuously differentiable function f : Rn → Rm is called sign-

stable on set X ⊆ Rn if either
∂fj
∂xi
≥ 0 for all x or

∂fj
∂xi
≤ 0 for all x.

Propoition 2. (Proposition 1 in [26]) A sign-stable functions f has a tight decom-

position function in the following form:

gj(x, y) = fj(z), j = 1, 2, . . . ,m,(2.12)

where

zi =


xi if

∂fj
∂xi
≥ 0 ∀x

yi if
∂fj
∂xi
≤ 0 ∀x

.(2.13)

A notable feature of the decomposition function g defined by Eq. (2.13) is that

it can be constructed directly from the expression of function f . We call such de-

composition function evaluable. By Proposition 1, if g is evaluable, one can easily

approximation the image of sign-stable function f when x takes value from a hyper

box, by evaluating its decomposition function g. On the contrary, the decomposition
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function g in Theorem 1, which is implicitly defined as the solution of an optimiza-

tion problem, cannot be constructed directly from the expression of f and hence is

not evaluable2.

Definition 4. A differentiable function f : Rn → Rm is called weakly sign-stable on

a set X ⊆ Rn if

∂fi
∂xj

(x) ∈ (aij, bij),∀x ∈ X,(2.14)

where aij, bij ∈ R, satisfying aij < bij but (aij, bij) 6= (−∞,∞).

Theorem 2. Let f : Rn → Rm be a weakly sign-stable function on X, f has an

evaluable decomposition function.

Proof. We prove Theorem 2 by constructing a decomposition function for f , then f

is mixed monotone by definition.

By assumption ∂fi
∂xj

(x) ∈ (aij, bij) for all x ∈ X, the interval (aij, bij) must satisfy

at least one of the following four cases:

case 1: sign-stable positive aij ≥ 0

case 2: sign-unstable “positive” aij ≤ 0, bij ≥ 0,

|aij| ≤ |bij|

case 3: sign-unstable “negative” aij ≤ 0, bij ≥ 0,

|aij| ≥ |bij|

case 4: sign-stable negative bij ≤ 0.

According to the above cases, define g : Rn × Rn → Rm as

∀i ∈ 1 . . . ,m :

gi(x, y) = fi(z) + (αi − βi)
T (x− y),(2.15)

2Mathematically, it is hard to define evaluability because it is a property characterized by the computational
effort rather than a qualitative criteria.
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where z = [z1, . . . , zn]T , αi = [αi1, . . . , αin]T , βi = [βi1, . . . , βin]T are n-vectors defined

as follows

zj =


xj case 1, 2

yj case 3, 4

,(2.16)

αij =


0 case 1, 3, 4

|aij|+ ε case 2

,(2.17)

βij =


0 case 1, 2, 4

−|bij| − ε case 3

,(2.18)

where ε is a small positive number.

Next we show that g is a decomposition function of f .

1. Obviously g(x, x) = f(x) by equations (2.15) and (2.16).

2. x1 ≥ x2 ⇒ g(x1, y) ≥ g(x2, y) because

∀i :
∂gi
∂xj

=
n∑
k=1

∂fi
∂zk

∂zk
∂xj

+ (αij − βij)

=
∂fi
∂zj

∂zj
∂xj

+ (αij − βij)

=



∂fi
∂xj

case 1

∂fi
∂xj

+ |aij|+ ε case 2

|bij|+ ε case 3

0 case 4

≥0.(2.19)
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3. y1 ≥ y2 ⇒ g(x, y1) ≤ g(x, y2) because

∀i :
∂gi
∂yj

=
n∑
k=1

∂fi
∂zk

∂zk
∂yj
− (αij − βij)

=
∂fi
∂zj

∂zj
∂yj
− (αij − βij)

=



0 case 1

−|aij| − ε case 2

∂fi
∂yj
− |bij| − ε case 3

∂fi
∂yj

case 4

≤0.(2.20)

It follows from definition 1 that g is a decomposition function of f and hence Theorem

2 is proved.

We now discuss some implications of this result. By Theorem 2, all differentiable

functions with continuous partial derivatives are mixed monotone on a compact set,

because the partial derivatives are bounded on the compact set, and hence satisfy

the hypothesis of Theorem 2.

Theorem 2 is a natural extension of the result in [26], which only handles the case

with sign-stable partial derivatives. The idea here is to use linear terms to create

additional offset to overcome the sign-unstable partial derivatives, which leads to

a decomposition. These linear terms are chosen to be as small as possible so that

the decomposition function constructed by Theorem 2 gives a tighter approximation

when applying Proposition 13. In the case where all the partial derivatives ∂fi
∂xj

are

sign-stable, the decomposition function constructed here gives a tight approxima-

tion in Proposition 1, that is, the inequality in equation (2.1) reduces to equality
3The proof of Theorem 2 would still go through if we combine case 2 and case 3, but we can get smaller coefficients

in front of the linear term by treating these two cases separately.
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at some x ∈ X [26]. However this is not true when there are sign-unstable partial

derivatives. Thus in general the approximation given by Proposition 1 might be con-

servative when using the decomposition function constructed in Theorem 2. However,

one can reduce such conservatism by dividing region X into smaller subregions and

applying the same approximation on each subregion. Then the extremum function

value over region X can be obtained by combining the extremum function values

on those subregions. This divide-and-conquer approach, of course, requires more

computational effort because one needs to approximate the ranges of sign-unstable

partial derivatives on each subregion.

Note that the construction of the decomposition function requires to approximate

the ranges of the sign-unstable partial derivatives. Therefore, Theorem 2 together

with Proposition 1 “shift” the difficulty of approximating the function value of f

into approximating its partial derivatives ∂fi
∂xj

. By doing such, the difficulty may

not be reduced in general. However, in many control applications, the considered

systems including thermal systems [124] and traffic networks [28], are naturally mixed

monotone. If one can approximate the partial derivatives of system flow once and

for all and prove its mixed monotonicity, such properties can be used to simplify the

system analysis and design techniques.

2.2 Structural Properties of Specifications

In this part, we introduce LTL as the specification formalism and two structural

properties of specifications, one called absolutely decomposable property and one

called suffix-closed property, that will be useful to analyze the fault-tolerant control

synthesis algorithms proposed in the following sections. The concept of absolute

safety is novel and some useful esults are established.
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Notations: Let S be any set, lowercase letters (e.g., x) are used for denoting a point

from set S, bold font lowercase letters are used for finite sequences of points (e.g., x),

and blackboard bold font lowercase letters are used for infinite sequences (also called

ω-words) of points (e.g., x). We use S∗ to denote the set of all finite sequence over

set S, and Sω to denote the set of all ω-words over S. By convention, let x(i) (or

x(i), respectively) be the ith element in the sequence x (or x, respectively), and let

xi = x(i)x(i+ 1)x(i+ 2) . . . be the sub-sequence starting from the ith position. We

call xi a suffix of x, and call x(1) · · ·x(n) a prefix of x (or a prefix of finite sequence

x if applicable). For a set P ⊆ (Sω), we use pref(P ) (resp. suff(P )) to denote the

set of prefixes (resp. suffixes) of ω-words from P .

2.2.1 Formal Specifications in LTL

We use LTL to specify the desired closed-loop system behavior. In what follows we

briefly introduce the syntax and the semantics of LTL, and refer the reader to [7] for

more details.

1) Syntax: Let AP be a set of atomic propositions, i.e., a set of statements on

system and environment variables whose truth values can be determined by checking

whether the associated variables are within given sets, the syntax of LTL formulas

over AP is given by

ϕ ::= π | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2(2.21)

where π ∈ AP . Logical operators ¬ and ∨ correspond to negation and disjunction

in boolean logic, while temporal operators © and U are called “next” and “until”

operators respectively. With the grammar given in Eq. (2.21), we define the other

propositional and temporal logic operators as follows:

• conjunction: ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2),
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• implication: ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2,

• eventual: ♦ϕ := True U ϕ,

• always: �ϕ := ¬♦¬ϕ,

• release: ϕ1 R ϕ2 := ¬(¬ϕ1 U ¬ϕ2).

These extra logical operators do not extend the expressive power of LTL but with

them an LTL formula ϕ can be written into a formula ϕ′ in positive normal form,

that is, all the negations in ϕ′ only appear in front of the atomic propositions [7]. As

will be presented in the later sessions, such formula manipulation comes in handy

when the robust satisfaction of an LTL formula is considered.

2) Semantics: Let x = x(1)x(2)x(3) . . . be a infinite sequence of points in Rn

and let AP be a set of atomic propositions. We define a labeling map L : Rn → 2AP

and interpret an LTL formula over the labeling sequence L
(
x(1)

)
L
(
x(2)

)
L
(
x(3)

)
. . .

as follows:

• x |= π iff π ∈ L
(
x(1)

)
,

• x |= ¬ϕ iff x 2 ϕ,

• x |= ϕ1 ∨ ϕ2 iff x |= ϕ1 or x |= ϕ2,

• x |=©ϕ iff x2 |= ϕ,

• x |= ϕ1 U ϕ2 iff ∃s ≥ 1 : xs |= ϕ2 and ∀t < s : xt |= ϕ1.

Given an infinite word x and an LTL formula ϕ, we say ϕ holds for x (or x satisfies

ϕ) iff x |= ϕ.

For a continuous-time signal ξ : [0,+∞)→ Rn one can consider the LTL fragment

without next operator ©, denoted by LTL\©. The ω-word x = x(1)x(2)x(3) . . .

that is consistent with continuous signal ξ can be generated by breaking signal ξ

at a collection of time instants {tk}∞k=1, such that tk+1 > tk and limk→∞ = ∞, and

L
(
ξ(t)

)
= x(k) for all t ∈ [tk, tk+1]. Such an consistent ω-word x is stutter equivalent
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with the continuous-time signal ξ [7]. In the rest of this work, we will consider LTL\©

formulas when dealing with a continuous-time system.

2.2.2 Absolutely Decomposable Property

A linear time property called absolutely decomposable property is defined. Intu-

itively, it specifies a property whose satisfaction can be “reset” at anytime, as long

as it has not been violated yet. This is the key property that assures the later pro-

posed control synthesis algorithms to be robust to detection delay. In what follows

we first introduce some preliminaries on linear time properties and its decomposition.

A linear time (LT) property P over atomic propositions AP is a subset of (2AP )ω.

An LT property P is called a safety property if a word w belonging to P is equivalent

to the following: for all p ∈ pref(w) there exists s ∈ (2AP )ω such that ps ∈ P ,

where ps is an ω-word obtained by appending s behind p. An LT property P is

called a liveness property if for all p ∈ (2AP )∗ there exists s ∈ (2AP )ω such that

ps ∈ P . It is well known that any LT property can be written as the conjunction

of a safety property and a liveness property [7]. In particular, such decomposition is

not unique but a canonical sharp one exists [7]. That is, there exists a decomposition

P = P ?
safety∩P ?

liveness, such that for any other decomposition P = Psafety∩Pliveness, one

has P ?
safety ⊆ Psafety and Pliveness ⊆ P ?

liveness. Here P ?
safety is called the safety closure of

P and P ?
liveness is called the liveness closure of P .

Whenever an LT property P is defined by an LTL formula ϕ, i.e., P = Word(ϕ) :=

{w ∈ (2AP )ω | w |= ϕ}, one can find LTL formulas ϕsafe, ϕliveness such that ϕ =

ϕsafe ∧ ϕliveness and Word(ϕsafety), Word(ϕliveness) are safety and liveness properties,

respectively. This can be done systematically by i) constructing two nondeterministic

Buchi automaton (NBA), one generating the safety closure of Word(ϕ) and the other
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generating the liveness closure of Word(ϕ) [3], and ii) converting the two NBA’s into

ϕsafe and ϕliveness respectively4.

Next, we introduce a special type of LTL formula that specifies an absolutely

decomposable property [128], which is defined as follows.

Definition 5. Let P ⊆ (2AP )ω be a property over set AP . Property P is called

absolutely decomposable if there exists a decomposition P = Psafety ∩ Pliveness, such

that

• Psafety is an absolute safety property, i.e., it is a safety property, and p ∈

pref(Psafety), w ∈ Psafety implies that pw ∈ Psafety;

• Pliveness is an absolute liveness property, i.e., it is a liveness property, and p ∈

pref(Pliveness), w ∈ Pliveness implies that pw ∈ Pliveness.

Note that pref(Pliveness) = (2AP )∗, thus the definition of absolute liveness coincides

with the one given by [2]. In what follows, some useful results regarding absolutely

decomposable properties are presented. To this point, we first give a lemma about

general safety properties that is used in the later proofs.

Lemma 3. Let P1 and P2 be two safety property over AP , pref(P1) = pref(P2)

implies that P1 = P2.

Proof. Assume for a contradiction that pref(P1) = pref(P2) but P1 6= P2. Without

loss of generality, this means there exists w = w(1)w(2) · · · ∈ P1 such that w /∈ P2.

Since w /∈ P2 and P2 is a safety property, we immediately know that w has a bad

prefix p := w(1)w(2) · · ·w(t) /∈ pref(P2). But on the other hand, w ∈ P1 and this

implies that p ∈ pref(P1) = pref(P2), which is a contradiction.

Propoition 3. Let P be an absolutely decomposable property, for all p ∈ pref(P ),

4In general, it is possible that an NBA cannot be described by an LTL formula, but there exist algorithms doing
the conversion whenever it is possible [31].
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w ∈ P , pw ∈ P .

Proof. Let p ∈ pref(P ) and w ∈ P . First, notice the fact that P = Psafety ∩Pliveness.

This implies that (i) p ∈ pref(P ) ⊆ pref(Psafety), (ii) p ⊆ pref(Pliveness), (iii)

w ∈ Psafety and w ∈ Pliveness. By bullet 1 in Definition 5, we have pw ∈ Psafety, and

by bullet 2, pw ∈ Pliveness. Thus pw ∈ P = Psafety ∩ Pliveness.

With the following proposition, we show that GR(1) formulas, an LTL fragment

of vast interest in reactive synthesis, is absolutely live.

Propoition 4. GR(1) formulas specify absolute liveness properties. That is, suppose

ϕ =
∧
i∈I

�♦ϕi →
∧
j∈J

�♦ϕj,(2.22)

where I and J be finite index sets, and ϕi, ϕj are propositional formulas, then

Word(ϕ) is an absolute liveness property.

Proof. By definition, it should be clear that

1) absolute liveness properties are closed under union and intersection, and hence

LTL formulas specifies such properties must be closed under disjunction and

conjunction;

2) �♦ψ and ♦�ψ specifies absolute liveness properties for any propositional for-

mula ψ.
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Note that ϕ can be rewritten as

ϕ =
∧
i∈I

�♦ϕi →
∧
j∈J

�♦ϕj

=

(
¬
∧
i∈I

�♦ϕi

)
∨

(∧
j∈J

�♦ϕj

)

=

(∨
i∈I

¬
(
�♦ϕi

))
∨

(∧
j∈J

�♦ϕj

)

=

(∨
i∈I

♦�¬ϕi

)
∨

(∧
j∈J

�♦ϕj

)
.(2.23)

Applying bullet 1) and 2) to Eq. (2.23) proves that ϕ is absolute live.

Propoition 5. Let P1, P2 be two absolute safety properties, P = P1 ∩ P2 is also

absolute safety property.

Proof. Proposition 5 easily follow from the definition of absolute safety properties.

Propoition 6. Let P be an absolutely decomposable property with the specific

decomposition P = Psafety ∩ Pliveness, then pref(P ) = pref(Psafety).

Proof. From the proof of Proposition 3, we already know that pref(P ) ⊆ pref(Psafety).

Next we show the other direction. For this purpose, let p ∈ pref(Psafety) and w ∈ P

be arbitrary. Next we show pw ∈ P and conclude p ∈ pref(P ).

(a) First, note that p ∈ pref(Psafe) and that w ∈ P ⊆ Psafe. By bullet 1 in

Definition 5, we have pw ∈ Psafety.

(b) Secondly, also note that p ∈ pref(Pliveness) = (2AP )∗, and w ∈ P ⊆ Pliveness. By

bullet 2 in Definition 5, we have pw ∈ Pliveness.

Combining (a) and (b), we have pw ∈ Psafety ∩ Pliveness = P . Therefore p ∈ pref(P )

and this finishes the proof.
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Propoition 7. Let P be an absolutely decomposable property with a specific de-

composition P = Psafety ∩ Pliveness, and let P = P ?
safety ∩ P ?

liveness be the sharpest

decomposition, then Psafety = P ?
safety.

Proof. By P = P ?
safety ∩ P ?

liveness, we have P ⊆ P ?
safety. This hence gives

pref(P ) ⊆ pref(P ?
safety).(2.24)

On the other hand, since P ?
safety comes from the sharpest decomposition, P ?

safety ⊆

Psafety. This implies that

pref(P ∗safety) ⊆ pref(Psafety).(2.25)

Combine (2.24), (2.25), we have

pref(P ) ⊆ pref(P ?
safety) ⊆ pref(Psafety).(2.26)

But by Proposition 6, we know that pref(P ) = pref(Psafety), which forces all

“⊆” in Eq. (2.26) to be “=”. Thus we have pref(P ?
safety) = pref(Psafety). Applying

Lemma 3, we have P ?
safety = Psafety.

Propoition 8. Let P1 be an absolutely decomposable property under decomposition

P1 = P1,safety ∩ P1,liveness, and let P2,safety be an absolute safety property, then P =

P1 ∩ P2,safety is absolutely decomposable under P = Psafety ∩ Pliveness, where Psafety =

P1,safety ∩ P2,safety and Pliveness = P1,liveness.

Proof. First note that Psafety is indeed a safety property and Psafety ∩ Pliveness =

(P1,safety∩P2,safety)∩Pliveness = P2,safety∩ (P1,safety∩P1,liveness) = P is a valid decompo-

sition. Moreover, by Proposition 5, Psafety is a absolute safety property. By definition

P is absolutely decomposable, and Psafety = P1,safety ∩ P2,safety is the unique absolute

safety property involved in the decomposition by Proposition 7.
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2.2.3 Suffix-closed Property

A linear time property called suffix-closed property is introduced.

Definition 6. (Suffix-closed Property) Let P ⊆ (2AP )ω be an LT property over set

AP . Property P is called suffix-closed if suff(P ) ⊆ P . We call an LTL formula ϕ

suffix-closed if Word(ϕ) is suffix-closed.

It can be shown that GR(1) formulas is suffix-closed.

Propoition 9. GR(1) formulas are suffixed closed.

Proof. By definition, it should be clear that

1) suffix-closed properties are closed under union and intersection, and hence suffix-

closed LTL formulas are closed under disjunction and conjunction;

2) �♦ψ and ♦�ψ are suffix-closed for any propositional formula ψ.

Similar to the proof of Proposition 4, applying bullet 1) and 2) to Eq. (2.23) proves

that ϕ is suffix-closed.

We next discuss the connection between suffix-closedness properties and abso-

lutely decomposable properties. An important LT property that bridges the two

aforementioned properties is invariance.

Definition 7. (Invariance) An LT property P ⊆ (2AP )ω is an invariance property if

there exists a propositional formula ψ such that for any w = w(1)w(2) · · · ∈ P and

any j, we have w(j) |= ψ.

Propoition 10. An LT property P ⊆ (2AP )ω is both suffix-closed and absolutely

safe iff P is an invariance property.

Proof. Clearly, invariance property is both absolutely safe and suffix-closed. To

show the “only if” part, define Wi(P ) := {w ∈ 2AP | w = w(i) for some w =
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w(1)w(2)w(3) · · · ∈ P}. We can find a propositional formula ψ in disjunction nor-

mal form such that w |= ψ iff w ∈ W1(P ). Since P is suffix-closed, we have

Wi+1(P ) ⊆ Wi(P ),(2.27)

whereas by P being absolute safety, we have

Wi+1(P ) ⊇ Wi(P ).(2.28)

Hence Wi+1(P ) = Wi(P ). This implies that Wi(P ) = W1(P ) for all i. Hence for any

i and w ∈ Wi(P ), w |= ψ holds, i.e., P is an invariance property.

Moreover, it can be shown that if an LT property is both absolutely decomposable

and suffix-closed, its safety closure must be an invariance property.

Propoition 11. If P ⊆ (2AP )ω is both absolutely decomposable and suffix-closed,

then its safety closure P ?
safety is an invariance property.

Proof. Since P is absolutely decomposable, we know that P ?
safety is absolute safety

by Proposition 7. It is then enough to show that P ?
safety is also suffix-closed, and the

desired result will follow from Proposition 10.

To show P ?
safety is indeed suffix-closed, let w = w(1)w(2) · · · ∈ P ?

safety be arbitrary,

and let s = w(r)w(r+1) . . . be arbitrary suffix of w starting from rth position. Since

P ?
safety is the safety closure of P , we have

∀t : ∃w ∈ P : ∀τ ≤ t : w(τ) = w(τ).(2.29)

Let s = w(r)w(r + 1) . . . , we know s ∈ P as P is assumed to be suffix-closed.

Together with Eq. (2.29), this implies

∀t : ∃s ∈ P : ∀τ ≤ t : s(τ) = s(τ).(2.30)

That is s ∈ P ?
safety. Recall that s is arbitrary suffix of arbitrary w ∈ P ?

safety, P ?
safety is

hence suffix-closed by definition and the proof is completed.
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CHAPTER III

Fault Detectability Analysis with LTL Constraints

Fault detection is one of the key component of fault tolerant control as contingent

actions cannot be taken without knowing if the fault has already occurred or not.

Since the correct-by-construction control synthesis techniques are all model-based

approaches in essence, they naturally incorporate better with model-based fault de-

tection, which are more promising in terms of providing a formal guarantee. At high

level, such model-based fault detection algorithms, regardless of being developed for

discrete or continuous state systems, are all trying to solve the same problem at run-

time, i.e., checking if the observed data is consistent with the healthy system model

or not. Due to the nondeterminisitc nature of these system models, a fault may

not be detected immediately after their occurrence because the uncertainties (e.g.,

disturbance, noise) in the model may hide the fault. For finite discrete systems, a

determinization of the system can be done via power set construction. However, this

method is intractable for continuous state systems because the memory it requires

grows with time. This is one of the key challenge in developing model-based detection

for complex systems where both discrete and continuous states are present.

One way to address the aforementioned issue is to consider a detector with finite

memory of length T , but also provide a proof that, even in the worst-case, the faulty
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system can be distinguished from the healthy system in finite time T as well. This

constant T can be also interpreted as the worst case detection delay, and a smaller

T is clearly favorable. Whenever the model of the healthy and the faulty system

are both available, it is also possible to determine the minimum T . This is called

detectability analysis, and it essentially amounts to checking whether the reachable

sets of the healthy and faulty models become disjoint within time T . However,

such worst case analysis may sometimes conclude conservatively that a fault is not

detectable in finite time, while this may not be true in practice because some extra

side information (e.g., the LTL specification that the system should satisfy) are not

incorporated in the detectability analysis.

In this chapter, we consider switched affine systems, whose detectability analysis

can be accomplished by solving a MILP. We further assume that when the system

operation is normal (i.e., the system is healthy), the switching mode signal satisfies

a certain LTL formula; and in case of faults, it satisfies a different (possibly trivial)

formula, capturing the potential switching patterns during normal operation and

anomalies, respectively. The main contribution is to show that by combining dy-

namical models (given as switched affine systems) and behavioral models (given as

LTL formula), one can reduce the worst-case fault detection time a receding horizon

algorithm guarantees. We express the LTL constraints (restricted in a finite horizon)

with a nondeterministic finite state machine called a monitor, which is then trans-

formed into a set of mixed integer linear constraints that can be easily integrated in

the MILP used for the detectability analysis.

Chapter overview. In Section 3.1, we formally introduce the concept of switched

affine systems, model invalidation based fault detection, MILP based fault detectabil-
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ity analysis and LTL monitoring. The connection between model invalidation and

monitoring is also discussed. In Section 3.2, the detectability analysis problem with

LTL constraints is defined. In Section 3.3, we present the proposed approach. It

is shown that detectability analysis in the setting can be conducted by creating a

monitor finite state machine for the LTL formula and encoding the restriction the

formula imposes on the system behavior as mixed integer linear constraints, which

is then incorporated into the MILP for the offline worst-case detectability analysis.

Finally, these ideas are illustrated with an example in Section 3.4, where a collection

of unmanned aerial vehicles are implementing a consensus protocol over a commu-

nication network with time-varying connectivity. We show how detectability can be

guaranteed when network connectivity patterns change using the proposed approach.

Related work. The work presented in this chapter is related to several fault de-

tection approaches developed by different communities. For discrete (e.g., software-

based) systems, monitoring and run-time verification techniques have been proposed

[6, 49, 10, 97, 102]. Similarly, fault detection algorithms have also been studied for

continuous-state dynamical systems using ideas from filtering or optimization [53, 38].

This work tries to bring together the ideas from the two communities to obtain a

less conservative fault detection method for a class of hybrid systems, governed by

both discrete and continuous variables.

In particular, we approach the continuous aspects of this problem from the per-

spective of model invalidation [47, 92, 108]. Model invalidation is a robust system

identification process that checks whether some given input output data can be ex-

plained by a given model, and is tightly related to fault detection as pointed out

in [90, 91]. Comparing to other widely used model-based fault-detection methods
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such as residual generation [38], the model invalidation based approach is more suit-

able for providing a finite detection guarantee rather than an asymptotical one. The

idea of model invalidation is also very similar to the model conformance problem

studied in computer science community [17, 113], in particular to the input/output

conformance for discrete-time systems [113, 114].

The discrete aspect of the fault detection problem is handled with LTL monitoring

[10]. At high level, model invalidation and the LTL monitoring can be both viewed

from the standpoint of set membership fault detection [116, 59, 52], because they

essentially amount to computing the reachable set of some uncertain model under

a given input sequence and checking if the observed output sequence (trajectories)

lies in this reachable set or not. This connection provides the key intuition to bring

together these two techniques.

The work on the fault detectability presented here tightly follows [47] and its con-

ference versions [46, 45, 48], and is also related to their follow-up work for structured

systems [40]. In [47], the detectability analysis with LTL constraints is discussed,

but those LTL constraints are only imposed on the switching sequence for the faulty

system, which is easy to incorporate in the MILP encoding [58, 117]. The key novelty

of this work is to handle the case where another LTL formula ϕ is used to describe

the healthy mode switching sequence. Since this LTL formula ϕ a is not necessarily

evaluated at the beginning of the receding horizon of the detector, its MILP encoding

is not trivial without using a monitor finite transition system.

3.1 Preliminaries

3.1.1 Fault Detection for Switched Affine Systems via Model Invalidation

Switched Affine Systems
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A discrete-time switched affine system S is described by the following difference

equations:

xt+1 = Astxt +Bstut + Estwt +Kst ,

yt = Cstxt +Dstut + Fstvt,(3.1)

where

• x ∈ X ⊆ Rn is the unobserved internal state,

• u ∈ U ⊆ Rm is the observed input,

• w ∈ W ⊆ Rl is the unobserved input,

• y ∈ Y ⊆ Rp is the observed output,

• v ∈ V ⊆ Rq is the unobserved measurement noise (can be viewed as input),

• s is the observed switching mode from a finite set Σ = {σ1, σ2, . . . , σK}.

We also assume that sets U, V,W,X, Y are polytopes in their spaces, and that As ,

Bs , Cs , Ds , Es , Fs , Ks are matrices with proper sizes.

Such models can be used to describe, for instance, physical systems with discrete

actuation or closed-loop systems with continuous plants and logic-based controllers.

Switching mode captures the discrete, logic-based variables.

Guaranteed Fault Detection via Model Invalidation

In this chapter, we consider fault detection of switched affine systems. By a fault,

we mean a sudden and permanent change of the system dynamics in Eq. (3.1),

due to physical component failures or extreme operating conditions. Such changes

can be reflected by dynamics being governed by different system matrices, and by

having larger admissible uncertainty set V and W . Since the uncertainty w and v

may “hide” a fault in the worst case, the behavior of the faulty system may not be

distinguishable from the healthy one immediately after the fault occurs. Our goal

is to detect the fault occurrence as soon as possible. In particular, the correctness
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of the detection needs to be guaranteed, meaning that the fault must have already

happened, once detected.

It is shown in [47] that such guaranteed fault detection can be done using a

model invalidation approach. The model invalidation problem addresses the following

question: at time instant t0, given a sequence {ut, st, yt}t0t=t0−N+1 of past inputs and

outputs over a finite window of length N , can we find an admissible unobserved

sequence {xt, wt, vt}t0t=t0−N+1 such that the output {yt}t0t=t0−N+1 is indeed generated

by the system in Eq. (3.1) under input {ut, st, wt, vt}t0t=t0−N+1? If no such unobserved

sequences can be found, the actual observation cannot possibly be generated by the

healthy system model (i.e., the model is invalidated). We can hence claim that a

fault that changes the system dynamics must have occurred within the examined

time window.

For switched affine systems, the model invalidation problem can be formulated as

a linear program (LP)

(3.2)

find {xt, wt, vt}t0t=t0−N+1

s.t. xt+1 =
∑|Σ|

k=1 a
t
k

(
Aσkxt +Bσkut + Eσkwt +Kσk

)
,

∀t ∈ [[t0 −N + 1, t0 − 1]],

yt =
∑|Σ|

k=1 a
t
k

(
Cσkxt +Dσkut + Fσkvt

)
,

∀t ∈ [[t0 −N + 1, t0]],

xt ∈ X,wt ∈ W, vt ∈ V, ∀t ∈ [[t0 −N + 1, t0]],

where [[a, b]] := {c ∈ N | a ≤ c ≤ b} for two integers a < b, and atk is a binary

indicator that takes value 1 if and only if (iff) st = σk. Note that {ut, yt}t0t=t0−N+1

and atk (which is known from {st}t0t=t0−N+1) are all parameters rather than variables

in the above feasibility problem, as {ut, st, yt}t0t=t0−N+1 are observed at each time.

This means the feasibility problem in Eq. (3.2) does not contain integer variables
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Figure 3.1: Growing horizon scheme (left) versus receding horizon scheme (right). The red boxes
mark the growing/shifted time window.

and is hence an LP.

To perform model invalidation based fault detection at run-time, one needs to

update the time window (i.e., horizon) to incorporate newly collected data. As

pointed out in [47], there are two ways of changing the horizon at run-time: one is

called the growing horizon scheme (Fig. 3.1, left) and the other is known as a receding

horizon scheme (Fig. 3.1, right). With the growing horizon scheme, we start at time

t = 0 with a horizon of length N = 0, and increase N by one at each time step. In this

case, N → ∞ as time grows. Under the receding horizon scheme, we stop growing

the horizon length whenever it reaches a certain value, and we start to shift the

time window after that. That is, at every time instant t0, we collect the most recent

history of the observed variables from time window [[t0 −N + 1, t0]] and perform the

above model invalidation procedure. If the system is invalidated, we claim a fault;

otherwise we shift the time window to [[t0 −N + 2, t0 + 1]] and repeat the procedure

with the updated data in the shifted window. Theoretically, the growing horizon

scheme may lead to an earlier detection than the receding horizon scheme because

the latter one drops older observations. We say the receding horizon detector is more

conservative compared to the growing horizon detector in the sense the former may

miss a fault that is detectable by the latter. However, the growing horizon scheme

is not practical because it requires the memory to grow to infinity. We hence always

implement the receding horizon scheme in practice to keep the memory finite.
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Detectability Analysis

Note that the fault detection technique via model invalidation may not be complete,

in the sense that a fault may remain undetected indefinitely. There are two sources

of this: (i) the fault dynamics can be inherently indistinguishable from the nominal

dynamics, (ii) the invalidation process is conservative, e.g., due to using a fixed

horizon. For the latter issue, a longer window tends to make the detector “closer” to

being complete. On the other hand, if the models of both the healthy system S and

the faulty system S f are known, it is possible to verify if the detection is complete

with a given window length N . That is, if a fault occurs whether it will be detected

within N time steps by the receding horizon detector. We call a healthy-faulty system

pair (S,S f) to be “N -detectable” if this is the case.

For a given healthy-faulty system pair (S,S f) and a positive integer N , the de-

tectability analysis answer the following question: is system pair (S,S f)N -detectable?

If yes, what is the minimal N such that the pair is N -detectable? From a theoretical

point of view, it is important if we can prove N -detectability of a system pair be-

cause it allows us to use a receding horizon detector without missing any faults due

to its conservativeness compared to the growing horizon detector. From a practical

point of view, it is also important to find the minimal N so that the receding horizon

detector does not need to keep an unnecessarily long memory.

To analyze the detectability of system pair (S,S f), we construct the so called

N -behavior set BN(S) (and BN(S f), respectively), i.e., the set of all observed input-

output sequences of length N that can be possibly generated by the healthy system

S (or the faulty system S f , respectively), and check if the two sets intersect. If

BN(S) ∩BN(S f) = ∅, then the healthy and the faulty behavior must differ within

N time steps. In this case, the minimal horizon length T that is necessary for
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the detection to be complete (i.e., T := min
{
N | BN(S) ∩ BN(S f) = ∅

}
) can be

computed by a line search over ascending N , starting from N = 1.

If the dynamics of system S satisfies Eq. (3.1), the N -behavior set of system S can

be described by mixed integer linear constraints. In this case, BN(S) ∩BN(S f) = ∅

is equivalent to a MILP being infeasible. Formally, BN(S) is defined by Eq. (3.3).

(3.3)

BN(S) =

 {ut, st, yt}
N
t=1 ∈

(U × Σ× Y )N

∣∣∣∣∣ ∃{xt, wt, vt}Nt=1 ∈ (X ×W × V )N :

{ut, vt, wt, xt, yt, st}Nt=1 satisfy S’s dynamics

 ,

where the constraints in Eq. (3.3) can be expressed with exactly the same set of the

formulas in Eq. (3.2) (after shifting the time window to [[1, N ]]), except that now the

observed sequences {ut, yt}Nt=1 and the auxiliary binary variables atk are also variables

rather than parameters of the constraints, and that ut, a
t
k, yt must satisfy

ut ∈ U, yt ∈ Y, ∀t ∈ [[1, N ]],(3.4)

atk ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]],(3.5)

and atk must also satisfy ∑
σk∈Σ

atk = 1, ∀t ∈ [[1, N ]].(3.6)

Note that with atk being variables, the constraints describing BN(S) now contain

bilinear terms atkut, a
t
kxt, a

t
kwt, a

t
kvt (see Eq. (3.2)). These bilinear constraints can

be transformed into linear ones by introducing some continuous-valued auxiliary

variables, which leads to a set of (mixed integer) linear constraints. The detailed

transformation procedure can be found in [46]. To simplify the notations, we will

denote the obtained overall mixed integer linear constraints by

HSN

({
ut, {atk}

|Σ|
k=1, yt, xt, wt, vt,

}N
t=1

, ξob, ξun

)
≤ 0,

atk ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]],(3.7)
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where ξob is the continuous-valued auxiliary variable that comes from atkut, and ξun is

the auxiliary variable that comes from atkxt, a
t
kwt, a

t
kvt, and HSN is an affine function

that depends on the system matrices of S and horizon length N . With this notation,

BN(S) ∩BN(S f) = ∅ is equivalent to the following MILP being infeasible

find
{
ut, {atk}

|Σ|
k=1, yt, xt, x

f
t, wt, w

f
t , vt, v

f
t

}N
t=1

, ξob, ξun, ξ
f
un,

s.t. HSN

({
ut, {atk}

|Σ|
k=1, yt, xt, wt, vt,

}N
t=1

, ξob, ξun

)
≤ 0,

HS
f

N

({
ut, {atk}

|Σ|
k=1, yt, x

f
t, w

f
t , v

f
t ,
}N
t=1

, ξob, ξ
f
un

)
≤ 0,

atk ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]] ≤ 0.

(3.8)

3.1.2 LTL Monitoring

In this work we consider fault detectability analysis of switched affine systems whose

mode sequences x = s1s2s3 . . . must satisfy certain LTL formulas. In particular,

our goal is to show how such side information can improve detectability analysis. In

what follows, we briefly recall LTL and some related concepts from automata theory

that will be useful to encode the LTL constraints on x.

Monitor

We introduce several concepts related to LTL monitoring that will be used to encode

the LTL constraints in the fault detectability analysis.

Definition 8. Let ϕ be an LTL formula. A finite word p ∈ Σ∗ is called a bad prefix

of ϕ if1 for all s ∈ Σω, ps 2 ϕ, where ps is the ω-word obtained by concatenating s

to p. Otherwise we call p a (valid) prefix of ϕ.

Definition 9. Given and LTL formula ϕ, a monitor Mϕ is a tuple (Σ, Q,Qinit, δ),

where Σ is a finite set of letters, Q is a finite set of states, Qinit ⊆ Q is a set of

1Note that ϕ has no bad prefixes if it specifies a liveness property, hence a finite word being a bad prefix of ϕ is
equivalent to the word being a bad prefix of the safety closure of the language accepted by ϕ.
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initial states, and partial function δ : Q×Σ→ 2Q is the nondeterministic2 transition

map. Moreover, Mϕ satisfies the following condition: a finite word p = p1p2 . . . pN

is a valid prefix of ϕ if and only if there exists q = q1q2 . . . qN+1 ∈ QN+1 such that

q1 ∈ Qinit and qi+1 ∈ δ
(
qi, pi

)
for i ∈ [[1, N ]].

The monitor finite state machine Mϕ can be viewed as a model that generates

sequences exactly from {p ∈ Σ∗ | p is a valid prefix of ϕ}. It is well known that a

monitor Mϕ can be constructed for every LTL formula ϕ [30].

3.1.3 Fault Detection versus Run-time Verification

We would like to point out the connection between the model invalidation based

fault detection and run-time verification.

In run-time verification, we are given an LTL formula and desire to verify if a

sequence s = s1s2 . . . sM ∈ Σ∗ is a bad prefix of ϕ. To this end, we construct monitor

Mϕ = (Σ, Q,Qinit, δ) and check if s leads to a valid run on Mϕ. The monitor Mϕ

can be viewed as a model with internal state set q ∈ Q, and the sequence s can

be viewed as an N -behavior that may be generated by the model Mϕ, under some

admissible nondeterministic transitions. The run-time verification procedure reduces

to computing a set QN of the reachable states of Mϕ after reading s1s2 . . . sN and

checking if QN = ∅ for some N ≤ M . If yes, the anomaly (i.e., violation of ϕ) is

claimed.

In the model invalidation based fault detection, we check if a sequence of observa-

tion {ut, st, yt}Nt=1 is generated by a model described by Eq. (3.1), with internal state

x that is analogue to q of a monitor, and with bounded uncertainty w, v that are

analogue to the nondeterministic transition of the monitor. Very similar to the idea
2Often times in the literature, the term “monitor” are used to refer to the deterministic finite transition system

that are determinzed from M via standard power set construction. Here we follow [30] and use the term “monitor”
to refer to the nondeterministic finite transition system.
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of run-time verification, the model invalidation reduces to checking the emptiness

of a set XN , which consists of the healthy system’s reachable states that are con-

sistent with observation {ut, st, yt}Nt=1 under some admissible uncertainty sequence

{wt, vt}Nt=1. In fact, set XN can be viewed as the projection (onto the internal state

space) of a high dimensional polytope that is described exactly by the linear con-

straints in Eq. (3.2). However, unlike the case in the run-time verification where

the internal state set QN is finite no matter what N is, XN consists of infinite states

and its representation complexity (i.e., the number of linear constraints required to

describe XN) may blow up as N →∞. This can be viewed as another interpretation

of the issue that a growing horizon detector requires infinite memory. Hence we have

to use the receding horizon scheme to compute an over approximation of XN , whose

description complexity is bounded. Detectability analysis tells us how tight this over

approximation should be so that no fault is missed by the detector.

3.2 Problem Description

In this work we consider fault detectability analysis for switched affine systems whose

mode sequences satisfy certain LTL constraints. To define the problem, we first define

how the LTL-based side-information can be incorporated in the behavior description

of the system. Let S be the healthy system and S f be the faulty system, and ϕ and

ϕf be the corresponding LTL formulas. We assume the side-information to be of

following form:

(i) if the fault never occurs, x, 1 |= ϕ;

(ii) if the fault occurs at time to, then s1s2 . . . sto−1 is a valid prefix of ϕ, and

x, to |= ϕf .

43



As mentioned previously, we collect the input-output pairs of length N in the

receding horizon fault detection process. The above extra LTL constraints further

restrict the sets of N -behaviors of the healthy and faulty systems, which now take

the form in Eq. (3.9) and (3.10)

(3.9)

BN(S, ϕ) =


{ut, st, yt}Nt=1

∣∣∣∣∣
∃{xt, wt, vt}Nt=1 ∈ (X ×W × V )N :

{ut, vt, wt, xt, yt, st}Nt=1 satisfy S’s dynamics

∃p ∈ Σ∗,w ∈ Σω : ps1s2 . . . sNw |= ϕ


,

(3.10)

BN(S f , ϕf) =


{ut, st, yt}Nt=1

∣∣∣∣∣
∃{xt, wt, vt}Nt=1 ∈ (X f ×W f × V f)N :

{ut, vt, wt, xt, yt, st}Nt=1 satisfy S f ’s dynamics

∃w ∈ Σω : s1s2 . . . sNw |= ϕf


.

The key difference between the definitions of BN(S, ϕ) and BN(S f , ϕf) is regard-

ing the constraints on the N -sequence of modes, which are highlighted with the

boxes. Fig. 3.2 shows an illustration that may help understanding this difference.

The blue line represents the switching sequence when the system is always healthy,

whereas the dashed red line represents the switching sequence assuming the fault

occurs at time to. The shaded region highlights the switching mode sequence within

time window [[to, to + N − 1]], and our goal is to check if the behavior generated by

the healthy system under the blue shaded mode sequence differs from the behavior

generated by the red faulty system under the red shaded mode sequence. Since we re-

quire x, to |= ϕf , this suggests that the most recent N -segment of the mode sequence

(the red shaded area) must be a valid prefix of ϕf . This hence leads to the boxed

condition in Eq. (3.10). On the other hand, we require x, 1 |= ϕ, the N-segment

represented by the blue shaded region can be completed into a valid prefix of ϕ by

44



Figure 3.2: Illustration of the timeline in the healthy and faulty case.

adding p ∈ Σ∗ in the front, which leads to the condition marked by the box in Eq.

(3.9).

We now formally state the detectability analysis problem.

Problem 1. Assume the following are given:

(i) a healthy system S and a faulty system S f , both of which have switched affine

dynamics in form of Eq. (3.1),

(ii) LTL formulas ϕ and ϕf that govern the switching mode sequences of the healthy

and the faulty system,

(iii) a positive integer N ,

determine whether BN(S, ϕ) ∩BN(S f , ϕf) = ∅.

As discussed in Section 3.1.1, the minimal horizon length T := min
{
N | BN(S, ϕ)∩

BN(S f , ϕf) = ∅
}

can be found through a line search over N , starting from N = 1.

The usefulness of studying Problem 1 is that the extra LTL constraints may lead to

a smaller T compared to the detectability analysis without such constraints. This is

because these LTL constraints further restrict the behavior set so that the healthy

and faulty behaviors differ earlier. We state this result with the following proposition.

Propoition 12. Let T1 := min
{
N | BN(S, ϕ) ∩ BN(S f , ϕf) = ∅

}
and T2 :=

min
{
N | BN(S) ∩BN(S f) = ∅

}
, we have T1 ≤ T2.
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Proof. By definition (see Eq. (3.3), (3.9), (3.10)), we have BN(S, ϕ) ⊆ BN(S)

and BN(S f , ϕf) ⊆ BN(S f). This means BN(S) ∩ BN(S f) = ∅ ⇒ BN(S, ϕ) ∩

BN(S f , ϕf) = ∅. Hence
{
N | BN(S)∩BN(S f) = ∅

}
⊆
{
N | BN(S, ϕ)∩BN(S f , ϕf) =

∅
}

, which implies T1 ≤ T2.

3.3 Solution Approach

In this section, we present a solution to Problem 1. The main challenge is to express

the condition in the boxes in Eq. (3.9), (3.10) in a way that can be easily integrated

in the MILP in Eq. (3.8). Note that MILP encoding of bounded LTL [58] is not

applicable to impose the boxed constraints in Eq. (3.9). Our solution is to first

transfer the LTL formula into a monitor that captures the boxed conditions in Eq.

(3.9), (3.10) induced from the given LTL formula. We then convert the monitor

into its boolean representation that can be easily expressed as mixed integer linear

constraints.

3.3.1 Monitor and System Behavior Constraints

We first connect the constraints marked by the boxes in Eq. (3.9), (3.10) with a

monitor.

Let ϕ, ϕf be the LTL formulas from Eq. (3.9), (3.10), and let Mϕ, Mϕf
be

the associated monitors. The condition marked by the box in Eq. (3.10) says that

s1s2 . . . sN is not a bad prefix of ϕf , i.e., s1s2 . . . sN can be generated byMϕf
. On the

other hand, the boxed condition in Eq. (3.9) says that s1s2 . . . sN can be “completed”

by adding a finite prefix p ∈ Σ∗ in the front so that ps1s2 . . . sN can be generated

by Mϕ. This suggests that s1s2 . . . sN can be generated by another monitor Mϕ′,

which is exactly the same asMϕ except for the initial conditions. We formally state
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this fact with the following proposition.

Propoition 13. Given an LTL formula ϕ and Mϕ = (Σ, Q,Qinit, δ), the monitor

that recognizes the valid prefixes of ϕ, assume that all states in Q are reachable from

Qinit
3, the following are equivalent:

(i) there exist p ∈ Σ∗, w ∈ Σω such that ps1s2 . . . sNw |= ϕ;

(ii) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Q, qt+1 = δ(qt, st) for all

t ∈ [[1, N + 1]].

and the following are equivalent:

(iii) there exist w ∈ Σω such that s1s2 . . . sNw |= ϕ;

(vi) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Qinit, qt+1 = δ(qt, st) for all

t ∈ [[1, N + 1]].

3.3.2 MILP Encoding of Monitor

We present a technique to encode a monitor with mixed integer linear constraints.

The idea is to use Proposition 13 to convert the two boxed constraints w.r.t ϕ and

ϕf from Eq. (3.9), (3.10) into two monitors, and then write the monitors in their

boolean representations and convert the boolean representations into two sets of

MILP constraints. Since the encoding is for the nondeterministic monitor directly,

it does not require determinizing the monitor with the power set construction and

hence avoids an unnecessarily large MILP.

Let Mϕ = (Σ, Q,Qinit, δ) be a monitor of LTL formula ϕ. At each time instant

t, we associate each state qi ∈ Q with a binary variable bti, which takes value 1 if

the state of Mϕ is equal to qi at time t and takes value 0 otherwise. Similarly,
3This assumption can be made without loss of generality because states in Q that are not reachable from Qinit

can be removed without changing the sequences generated by M.
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we associate each letter σk ∈ Σ with a binary variable atk that takes value 1 iff the

monitor reads letter σk at time t. To guarantee that the monitor’s state (or the read

letter) exists and is unique at any time, we impose the following constraint:

∀t ∈ [[1, N + 1]] :
∑|Q|

i=1
bti = 1,(3.11)

∀t ∈ [[1, N ]] :
∑|Σ|

k=1
atk = 1.(3.12)

Moreover, the state indicator bt+1
i must update according to the transition relation

δ of the monitor. To this end, we require the following constraints to hold:

∀t ∈ [[1, N ]], i ∈ [[1, |Q|]] : bt+1
i ≤

∑
j,k:qi∈δ(qj ,σk)

ptijk,(3.13)

where ptijk is a binary variable satisfying:

∀t ∈ [[1, N ]], i, j ∈ [[1, |Q|]], k ∈ [[1, |Σ|]]

such that qi ∈ δ(qj, σk) :

1 + ptijk ≥ btj + atk, ptijk ≤ btj, ptijk ≤ atk.(3.14)

It might be useful to point out that Eq. (3.14) forces ptijk = btj ∧ atk. In fact, variable

ptijk can be viewed as an indicator that takes value 1 iff there is a chance that the

monitor’s state is taken to qi (at time t + 1) from qj, by reading letter σk at time

t. Then Eq. (3.13) guarantees that bt+1
i is set to 1 only if there is such a chance

for the state to be equal to qi at time t + 1. Note that bt+1
i can still be zero if

some ptijk = 1, but Eq. (3.12) and (3.13) together guarantee that there must be one

i′ ∈ {i | ∃j, k : qi ∈ δ(qj, σk), ptijk = 1} such that bt+1
i′ = 1. This hence captures the

nondeterministic transition relation of the nondeterministic monitor Mϕ.

Note that if a transition of Mϕ is labeled as “True”, i.e., for all σk ∈ Σ, qi ∈

δ(qj, σk), then the constraint in Eq. (3.14) can be simply replaced by ptijk = bti.
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Finally, we constrain that the initial states are from Qinit:

∑
i:qi∈Qinit

b1
i = 1.(3.15)

The correctness of the construction so far is summarized with the following propo-

sition, which can be easily verified using Proposition 13.

Propoition 14. Let ϕ be an LTL formula over mode set Σ andMϕ = (Σ, Q,Qinit, δ)

be its monitor. For a finite word s1s2 . . . sN ∈ Σ∗, assume that binary variable atk is

such that atk = 1 iff st = σk, then the following are equivalent:

(i) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Q, qt+1 = δ(qt, st) for all

t ∈ [[1, N + 1]];

(ii) there exist binary variables bti, p
t
ijk such that together with atk, Eq. (3.11)-(3.14)

hold,

and the following are equivalent:

(iii) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Qinit, qt+1 = δ(qt, st) for all

t ∈ [[1, N + 1]].

(vi) there exist binary variables bti, p
t
ijk such that together with atk, Eq. (3.11)-(3.15)

hold.

Remark 2. Note that if ϕ is in the form of conjunction of several shorter formulas

ϕi, i.e., ϕ =
∧
i ϕ, the overall encoding can be done by stacking the mixed integer

linear constraints derived from each Mϕi . This may not reduce the size of MILP

formulation, but is useful when the size of the monitor for the overall ϕ is too large

and generating the monitor becomes the bottleneck.
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3.3.3 Detectability Analysis Augmented with LTL Constraints

Let ϕ and ϕf be the LTL formulas that constrain the mode sequences of the healthy

and faulty system respectively. Denote the constraints in Eq. (3.12)-(3.14) that is

derived from ϕ by

Gϕ
N

(
{atk}

|Σ|,N
k=1,t=1,η

)
≤ 0,(3.16)

where η is a vector obtained by stacking auxiliary binary variable bti and ptijk together,

and Gϕ
N is an affine function that depends on ϕ and N . Similarly, we denote the

constraints in Eq. (3.12)-(3.15) that are derived from ϕf by

Gϕf

N

(
{atk}

|Σ|,N
k=1,t=1,η

f
)
≤ 0.(3.17)

The MILP used for detectability analysis with LTL constraints can be then formu-

lated. That is, BN(S, ϕ)∩BN(S f , ϕf) = ∅ is equivalent to the following MILP being

infeasible:

find
{
ut, {atk}

|Σ|
k=1, yt, xt, x

f
t, wt, w

f
t , vt, v

f
t

}N
t=1

,

ξob, ξun, ξ
f
un,η,η

f

s.t. HSN

({
ut, {atk}

|Σ|
k=1, yt, xt, wt, vt,

}N
t=1

, ξob, ξun

)
≤ 0,

HS
f

N

({
ut, {atk}

|Σ|
k=1, yt, x

f
t, w

f
t , v

f
t ,
}N
t=1

, ξob, ξ
f
un

)
≤ 0,

Gϕ
N

(
{atk}

|Σ|,N
k=1,t=1,η

)
≤ 0,

Gϕf

N

(
{atk}

|Σ|,N
k=1,t=1,η

f
)
≤ 0,

atk ∈ {0, 1},∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]],

η ∈ {0, 1}|η|,ηf ∈ {0, 1}|ηf |,

(3.18)

where |η| and |ηf | are the length of vectors η and ηf respectively.
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3.3.4 Run-time Fault Detection

With the detectability analysis technique presented above, we can determine the

minimal N so that BN(S, ϕ)∩BN(S f , ϕf) = ∅. As a result of such analysis, we only

need to check whether the latest collected {ut, st, yt}t0t=t0−N+1 ∈ BN(S, ϕ) at the

current time t0 and claim anomaly iff this does not hold. To this end, it is sufficient

to run the monitorMϕ (as described in Section 3.1.3) and the model invalidation LP

(Eq. (3.2)) with horizon N in parallel. If no fault occurs, the monitor keeps running

with current state set Qt0 6= ∅ and the model invalidation keeps being feasible, and

no anomaly is claimed in this case. If a fault occurs at time to, either the switching

sequence turns into a bad prefix of ϕ before time instant to +N − 1 and the monitor

detects violation of ϕ immediately, or the switching sequence is still a valid prefix of

ϕ up until time instant to +N − 1, which validates the boxed condition in Eq. (3.9)

and hence the model invalidation LP must turn infeasible at time t0 = to + N − 1

by the N -behavior isolation of the faulty and healthy systems. In other words, any

fault is detected with at most N -delay without any false alarm.

3.4 Case Study: UAV Altitude Consensus

We use an unmanned aerial vehicle (UAV) altitude consensus protocol to demonstrate

the proposed detectability analysis technique. We say that a set of UAVs reaches

altitude consensus if their altitude eventually converge to the same value. There are

several consensus protocols based on local communication. In particular, we assume

the UAVs implement the nearest neighbor rules from [54]. Under this protocol and

assuming single integrator dynamics for vertical motion, the altitude dynamics of

the UAVs can be modeled as follows. We let x = [x1, x2, . . . , x8]T ∈ R8 be the state

where xi is the altitude of the ith UAV. We assume that a leader UAV, indexed by
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1, reaches a set point while the other UAVs adjust their own altitude according the

nearest neighbor protocol [54], induced from the UAVs’ communication topologies

shown in Fig. 3.4 (Left). Let Aσk , Kσk be the system matrices representing the UAVs

dynamics while implementing this protocol. The ith rows of matrices Aσ1 , Kσ1 take

the following form:

1) i = 1, (Aσ1)11 = 0.9 and (Aσ1)1j = 0 for j ∈ [[2, 8]], (Kσ1)1 = 0.3 this leads to a

dynamics that guarantees the leader altitude to converge a set point at x1 = 3

(i.e., x1
t+1 = 0.9x1

t + 0.3);

2) i 6= 1, the ith UAV update xi by averaging its own height and those of its

neighbors, i.e., (Kσ1)i = 0 and

(3.19) (Aσ1)ij =


1

1+d(i)
if i connects j in topology 1

0 otherwise

,

where d(i) is the number of edges incident to node i.

Similarly, we define Aσ2 , Kσ2 for topology 2 with the same leader UAV set point

(i.e., x1 = 3); and define Aσ3 , Kσ3 (and Aσ4 , Kσ4 , respectively) for topology 1 (and

topology 2, respectively) with the same leader UAV dynamics but a different set

point at x1 = 6.

We assume the changes in the communication topology and fault detection scheme

(high-level decisions) run at a slower timescale than the consensus dynamics (low-

level control) – i.e., 15 times slower. Then the dynamics relevant for fault detection

can be written as the following switched affine system (denoted by SUAV in the rest

of the paper):

xt+1 = Aσixt +Kσi + Eσiwt(3.20)
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where st ∈ Σ := {σ1, σ2, σ3, σ4}, and

Aσi = A15
σi
, Kσi =

∑15

t=1
At−1
σi
Kσi

Eσi = [A14
σi
, A13

σi
, . . . , Aσi , I].(3.21)

Note that in this setting there is no continuous control input ut, and for simplicity

we assume that the output yt = xt with no measurement noise vt. Finally, we

assume that xt ∈ X := {x ∈ R8 | 0 ≤ xi ≤ 7, ∀i ∈ [[1, 8]]} and disturbance

wt ∈ W := {w ∈ R120 | −0.1 ≤ wi ≤ 0.1, ∀i ∈ [[1, 120]]}.

The faulty system model S f
UAV we analyze results from a failure in the communi-

cation links between nodes 3-5 and 4-6 in topology 2, changing the system matrices

Aσ2 and Aσ4 (both induced by topology 2) and the corresponding Aσ2 , Kσ2 , Aσ4 ,

Kσ4 in Eq. (3.21). Note that the healthy-faulty system pair (SUAV,S f
UAV) is not

N -detectable for any finite N because the fault will never be detected unless the

system switch to mode σ2 or σ4. However, we know that switching to mode σ2 or

σ4 infinitely often is required to achieve consensus because communication topol-

ogy 1 is not a connected graph. We can hence incorporate this information in the

detectability analysis to compute worst-case detection delay.

We assume that the mode sequence satisfies the LTL formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3

under the healthy configuration, where

ϕ1 =
∧

(k,l)∈{(1,2),(3,4)}

�

(( 19∧
t=0

©t(σk ∨ σl)
)
→©20¬(σk ∨ σl)

)
,(3.22)

ϕ2 =
∧

(k,l)∈{(1,2),(3,4)}

�

((
¬(σk ∨ σl) ∧©(σk ∨ σl)

)
→

7∧
t=2

©t(σk ∨ σl))

)
,(3.23)

ϕ3 =
∧

(k,l)∈{(1,3),(2,4)}

�
(

(σk ∨ σl) ∨©(σk ∨ σl) ∨©2(σk ∨ σl)
)
.(3.24)

Formula ϕ1 and ϕ2 together restrict the dwell time for set point changes by the

leader UAVs to be within [[7, 20]], while formula ϕ3 assures that each of the two
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Figure 3.3: Communication topologies of the UAVs, where circles represent UAVs with their indices.
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Figure 3.4: Fault detection of the UAV consensus system at run time.

communication topologies are used within every three time steps. They together

guarantee enough time and communication for convergence to a consensus. We also

assume that the mode sequence does not need to satisfy any LTL formula after the

fault occurs, however in the example we choose the mode sequence after the fault to

be consistent with ϕ, therefore a pure discrete monitor will not be able to detect this

fault without taking continuous dynamics into account. Gurobi [88] is used to solve

the obtained MILP. The obtained minimal length of horizon T = 30, which is finite

and this result agrees with Proposition 12.

Fig. 3.4 (Right) shows the fault detection results. The upper plot shows the

altitude of the eight UAVs (solid lines) and the set point profile (dashed black line)

when no fault occurs. The middle plot shows the same set of trajectories of the faulty

system. The lower plot shows the alternating of the two communication topologies.
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One can check that the given LTL formula ϕ is satisfied (even after fault). In this

illustration, the fault occurs at time t = 8, at which time the consensus is already

achieved (with set point at 3). Hence the fault does not lead to behavior isolation

immediately. However, the fault is detected later at time t = 23 after the set point

of the leader changes. The detection delay is 15, which is shorter than the delay

bound T = 30. This experiment hence agrees with the theory. We also run the

model invalidation at a higher frequency, using the timescale of the dynamics, for

faster detection though this comes at the expense of solving LPs of larger size (15

times larger) and more often.
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CHAPTER IV

Graceful Degradation of Faulty Systems

This is a short chapter that formally describes the problem studied in this work.

The problem is defined by two ingredients: a system model and a specification. We

first introduce a special type of hierarchical hybrid system, called control systems

with fault configurations, to model the system whose dynamics experiences a sudden

change due to faults. We then introduce two slightly different LTL formula that

specify the so called graceful degradation of such systems’ desired behavior. The

difference between the two LTL specification are briefly discussed.

4.1 Control System with Fault Configurations

A control system Σ is a six tuple (X,U,D, f, AP, LX). The continuous-time dy-

namics is define by

ẋ = f(x, u, d),(4.1)

where x ∈ X ⊆ Rn is the state, u ∈ U is the control, and d ∈ D ⊆ Rp is the distur-

bance. Note that control u can be a combination of discrete actions and continuous

control input, which leads to a hybrid system. Similarly, a discrete-time system can

be defined by replacing Eq. (4.1) with x+ = f(x, u, d) where x+ is the updated state
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at the next time instant. Set AP consists of the atomic propositions of interest, and

LX : X → 2AP is the labeling map. We use AP and LX to describe the behaviors of

system Σ (see Section 2.2.1).

Let F = {φ[1], . . . , φ[M ]} be a finite set, each element φ[i] is called of a faulty mode

(or a fault for short). A partial order � is defined on set F to capture the severity

of different faults in F . That is, φ[i] � φ[j] means that fault φ[j] is more severe than

or equal to fault φ[i], and φ[i] ≺ φ[j] means that fault φ[j] is strictly more severe.

The tuple (F,�) is called the a fault configuration. We define the set of minimum

elements of E ⊆ F to be

min(E) := {φ[j] ∈ E | @φ[i] ∈ E s.t. φ[i] ≺ φ[j]},(4.2)

and max(E) can be defined in a similar way. We will assume F always has a unique

minimum element that represents the healthy configuration. By convention we al-

ways denote this healthy configuration by φ[1]. Finally we define the successors of a

fault φ[i] ∈ F to be

succ(φ[i]) := min
(
{φ[j] ∈ F | φ[i] ≺ φ[j]}

)
.(4.3)

By definition, fault φ[j] is a successor of fault φ[i] if φ[j] is more sever than φ[i] and

there are no other faults in between.

A control system with fault configurations, denoted by ΣF = (F,�,S, APF, LF
X),

is a hierarchical system where

• (F,�) is a fault configuration.

• S is a set of sub systems Σ[i] = (X,U [i], D[i], f [i], AP, LX), each associated with

a fault φ[i] ∈ F . In particular, we assume that all the subsystems share a

common state domain X, atomic proposition set AP and labeling function LX ,
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but different subsystems can have different control input set U [i] and disturbance

set D[i] to capture the loss of control authority and extreme operating condition

under different faulty modes.

• APF = AP ∪ {π[1], . . . , π[M ]}, where π[i] is an auxiliary atomic proposition as-

sociated with fault φ[i].

• LF
X : X × F → 2AP∪{π

[1],...,π[M ]} is a labeling map such that

LF
X(x, φ[i]) = π[i] ∪ LX(x),(4.4)

which is consistent with LX and allows one to associate atomic proposition π[i]

with fault φ[i].

The state of ΣF is a pair (x, φ), where φ ∈ F indicates the faulty status and x updates

according to the subsystem associated with fault φ, i.e.,

ẋ = f [i](x, u, d) if φ = φ[i].(4.5)

The evolution of the fault status φ is governed by order �, i.e., φ may change from

φ[i] to φ[j] if and only if φ[j] ∈ {φ[i]}∪ succ(φ[i]). A change is called nontrivial if φ[j] ∈

succ(φ[i]). Note that the fault status φ either maintains to be the current governing

system or transits into its successors. This means two things: first, the faults are

permanent, i.e., the system will never recover once the faults occur; secondly, the

system never “goes down” more than two levels at once.

Example 1. We illustrate the concepts by an engine thermal management system,

whose dynamics is defined by
Ṫe = c1(Te − Ta) + c2vw(Te − Tr) + c3h

Ṫr = (c4 + c5sg)(Tr − Ta) + c6vw(Tr − Te),

(4.6)
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where the coefficients c1, . . . , c6 are known constants and the variables are defined in

Table 4.1

Table 4.1: Definition of Variables

Symbol Physical Meaning Unit Range Used
Te Engine temperature K [290, 410]
Tr Radiator temperature K [290, 410]
v Flow valve position - {0.25,1}
g Radiator grill shutter opening - {0.25,1}
h Heat from engine combustion W [15000, 19000]
s Vehicle speed m/s [10,20]
w Coolant pump flow rate kg/s [0.03,0.045]
Ta Ambient temperature K [282, 288]

The fault configuration considered in this example contains four faults, i.e., F =

{φ[1], φ[2], φ[3], φ[4]}. Each fault φ[1] is associated with a subsystem Σ[i] = (X,U [i], D[i], f [i]).

For simplicity, we omit AP , APF, LX and LF
X . In this example, state x = [Te, Tr]

T

and X = [290, 410] × [290, 410]. The vector field f [i] is given by Eq. (4.1), but the

role of the variables could change, i.e., some variables can be control input in one

faulty mode but becomes a disturbance in some other faulty modes. The description

for each fault and associated subsystem is defined as follows:

(1) φ[1]: the system is healthy,

u = [v, g]T , U [1] = {0.25, 1} × {0.25, 1},

d = [h, s, w, Ta]T , D[1] = [15000, 19000]× [10, 20]× [0.03, 0.045]× [282, 288].

(2) φ[2]: the coolant flow valve is stuck at an unknown position from 0.25 to 1.

u = g, U [2] = {0.25, 1},

d = [h, s, w, Ta, v]T , D[2] = [15000, 19000]× [10, 20]× [0.03, 0.045]× [282, 288]×

[0.25, 1].

(3) φ[3]: the radiator grill is stuck at an unknown position from 0.25 to 1.

u = v, U [3] = {0.25, 1},

d = [h, s, w, Ta, g]T , D[3] = [15000, 19000]× [10, 20]× [0.03, 0.045]× [282, 288]×
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[0.25, 1].

(4) φ[4]: both the coolant flow valve and the radiator grill are stuck at an unknown

positions from 0.25 to 1.

U [4] = ∅,

d = [h, s, w, Ta, v, g]T , D[4] = [15000, 19000]× [10, 20]× [0.03, 0.045]× [282, 288]×

[0.25, 1]× [0.25, 1].

Finally, the partial order defined on F is visualized by the lattice diagram in

Figure (4.1). The arrow in the diagram marks to the possible nontrivial transition

between the fault status, i.e., there is an arrow from φ[i] to φ[j] iff φ[j] ∈ succ(φ[i]). In

this example, It is a natural choice to define φ[1] ≺ φ[2] ≺ φ[4] and φ[1] ≺ φ[3] ≺ φ[4],

while φ[2] and φ[3] are not comparable.

Figure 4.1: Visualization of the partial order defined on F in Example 1.

4.2 Graceful Degradation of Faulty System

In this part we give two LTL formula that defines slightly different graceful degra-

dation of a control system with fault configurations.

Let F = {φ[1], . . . , φ[M ]} be the collection of the faults under consideration, and

let AP ∪ {π[1], . . . , π[M ]} be the overall set of atomic propositions. The two LTL
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formulas that specify the graceful degradation are given by

Φ =
∧

i:φ[i]∈F

(
♦�π[i] → ϕ[i]

)
,(4.7)

Ψ =
∨

i:φ[i]∈F

(
¬π[i] U

(
�π[i] ∧ ϕ[i]

))
,(4.8)

where ϕ[i] is an LTL formula over AP , specifying the system’s desired behavior when

the final fault configuration is φ[i] ∈ F .

• Eq. (4.7) says: if the fault status eventually stays at φ[i], the specification ϕ[i]

associated with this fault is achieved starting from the very beginning. Note that

the fault status of a faulty system is guaranteed to reach a specific configuration

φ[i] ∈ F and stays there forever. This is because fault set F is finite and a fault

only transits into its successors in F , hence there can be only finitely many

transitions.

• Eq. (4.8) says: if the fault status eventually stays at φ[i], specification ϕ[i] should

be satisfied immediately after the occurrence of fault φ[i].

Typically ϕ[j] is chosen to be less stringent than ϕ[j] if φ[i] ≺ φ[j] (i.e., w |= ϕ[j] →

w |= ϕ[i]), in which case the LTL formula Φ and Ψ capture a graceful degradation in

the system performance.

The difference between Φ and Ψ are resulted from the fact that a word w satisfying

an LTL formula is different from its suffix wt satisfying the formula (see the syntax

of LTL in Section 2.2.1). Depending on the application, we can either require the

entire word w to satisfy ϕ[i] associated with the final fault (captured by Φ), or only

require the suffix wt to satisfy ϕ[i] where t is the time instant when the final fault

φ[i] occurs (captured by Ψ).
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CHAPTER V

Abstraction-based Fault-tolerant Control Synthesis

In this chapter, we present an abstraction-based approach to solve the fault-tolerant

control problem, with immediate and delayed fault detection. A class of hierarchical

nondeterministic finite (state) transitions systems are used as the abstractions of

the continuous-state control system with fault configurations. By construction, the

abstraction overapproximates the behavior of the underlying continuous-time system

(i.e., the concrete system). We then leverage the control synthesis algorithms devel-

oped for finite transition systems as basic building blocks to construct a bottom-up

recursive algorithm that solves the fault-tolerant control synthesis problem on the

abstraction. The soundness of the proposed algorithm is verified. In particular, the

proposed algorithm achieves LTL specification Ψ (Eq. (4.8), Section 4.2) without any

further assumptions, and achieves Φ (Eq. (4.7), Section 4.2) assuming the LTL speci-

fication for each subsystem (i.e., ϕ[i] in Eq. (4.7)) specifies an absolute decomposable

property. The obtained controller is guaranteed to achieve the graceful degradation

specification when applied to the concrete system by the behavior overapproximation

relation. Since the focus of this chapter is solving the problem on abstractions (i.e.,

on finite transition systems), we only provide theoretical analysis of the proposed al-

gorithms and to highlight the type of specifications that enable efficient synthesis in
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both full information and delayed information settings. We will omit in this chapter

the abstraction construction that leads to such behavior overapprximation. Later,

we will illustrate detailed abstraction computation process in the next chapter where

we aim at applying the developed methodologies to a fuel cell thermal management

problem.

Chapter overview. In Section 5.1, we first introduce the LTL game on a finite

transition system with fault configurations and define four variants of the fault-

tolerant control synthesis problems, depending on the type of graceful degradation

considered and whether detection delay exists. In Section 5.2, we present a set of

recursive algorithms to solve these problems. The soundness and the completeness

of the proposed algorithm are stated and proved under certain conditions on the

specification ϕ[i] for each faulty mode. Finally a simple example is used to illustrate

the impact of the detection delay.

Related work. The work presented in this chapter is initiated from and sig-

nificantly extends [133], which only considers simple faulty mode specifications of

invariance and persistence with no detection delay. Essentially, the problem consid-

ered in [133] can be viewed as a mode target game [8] but with an extra structure

that governs the mode changing. The problem solved in this chapter has the same

structure but involves a larger fragment of LTL, and is hence not comparable to

mode target game in general. However, the solutions of the two problems are similar

because in both cases, it is essential to keep the capability to respond to a mode that

may dominate later. In that sense, it is also related to [65] where the system may

enters different modes with extra preview information of mode changing.
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The fault-tolerant control synthesis problem with detection delay can be viewed as

a partial information game, whose solution usually involves belief space construction

[22, 29, 101], which allows one to estimate the missing information (to detect the

fault in our case). The key difference of this work is, by exploring the structure of the

fault configurations and by restricting ourselves to certain fragment of LTL, we can

avoid constructing the belief space and this significantly reduces the computational

burden.

5.1 Finite Transition Systems with Fault Configurations

We first define finite transition systems with fault configurations, the discrete

analogue of continuous-state control systems with fault configurations. The former

one can be viewed as the abstraction that overapproximates the behavior of the latter

one. To this point, we first define regular finite transition systems.

Definition 10. A finite transition system, denoted by TS, is a tuple (Q,A,→

, AP, LQ), where

• Q is a finite set of states,

• A is a finite set of actions,

• →⊆ Q× A×Q is a transition relation,

• AP is a finite set of atomic propositions,

• LQ : Q→ 2AP is a labeling function.

Particularly, we assume that a finite transition system TS can start from any state

in Q, and the transitions happen only at time instant t ∈ N.

The LTL game defined on a regular finite transition system defined above proceeds

as follows:

1) at time t, the system’s state is at q(t),
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2) a strategy K : Q∗ → 2A determines a control action a(t) ∈ K
(
q(1)q(2) · · · q(t)

)
,

3) the environment picks the next state q(t+1) such that
(
q(t), a(t), q(t+1)

)
∈→,

4) step 1) to step 3) are repeated.

Let q = q(1)q(2) · · · be an infinite sequence generated by system TS under strategy

K with the above procedure. The associated ω-word is defined as w = LQ
(
q(1)

)
LQ
(
q(2)

)
· · · .

Clearly, the set of possible ω-words is uniquely determined by the system TS, the

strategy K and the initial state q(1). We denote this set by W
(
TS,K, q(1)

)
. Let

ϕ be an LTL formula, strategy K is called winning at q(1) if any w |= ϕ for any

w ∈ W
(
TS,K, q(1)

)
. A set of such initial conditions at which a winning strategy

exists is called a winning set. Clearly a maximal winning set exists and it can be

determined by solving a Rabin game [11].

In this work, we are interested in finite transition system with fault configurations

(faulty systems for short), which is the discrete analogue of the systems defined in

Section 4.1. Such a system consists of a collection of different regular finite transition

systems (regular systems for short), each governing the system transitions under a

specific faulty situation, and these different regular systems may degrade from one

to another in the order of their corresponding fault severity. The formal definition is

given below.

Definition 11. A finite transition systems with fault configurations, denoted by TSF,

is a tuple = (Q,F,A,→TS,→F , AP
F, LF

Q) where

• Q, A have the same meanings as the ones in a regular finite transition systems,

F = {φ[1], . . . , φ[M ]} is the given fault configuration, and there is an atomic

proposition π[i] ∈ APF associated with each fault φ[i] ∈ F ;

• →TS⊆ Q×F×A×Q is a transition relation that describes the system’s evolution

under some specific fault;
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• →F⊆ F×F is the transition relation of the faults, and we assume that the transi-

tions of faults always start from healthy configuration φ[1], and that (φ[i], φ[j]) ∈→F

iff φ[j] ∈ {φ[i]} ∪ succ(φ[i]), a fault transition (φ[i], φ[j]) is called nontrivial if

φ[i] 6= φ[j];

• LF
Q : Q× F → AP is the labeling function, such that π[i] ∈ LF

Q(q, φ) iff φ = φ[i].

Similarly to regular systems, we define an execution of system TSF to be an infinite

sequence of 3-tuples
(
q(1), φ(1), a(1)

)(
q(2), φ(2), a(2)

)
· · · , where

(
q(t), φ(t), a(t), q(t+

1)
)
∈→TS, and

(
φ(t), φ(t + 1)

)
∈→F for all t ∈ N. The ω-word generated by this

execution is LF
Q

(
q(1), φ(1)

)
L
(
q(2), φ(2)

)
, · · · .

A few remarks regarding to the definition above are in order. First, It might be

helpful to think TSF as a hierarchical transition system with M different regular

finite transition systems as subsystems. Each subsystem TS[i] is associated with

the fault configuration φ[i] ∈ F of the same subscript. Every TS[i] has a distinct

transition relations →[i]:= {(q, a, q′) | (q, φ[i], a, q′) ∈→TS}F and different labeling

functions L
[i]
Q := LF

Q(·, φ[i]). The transition of the overall system TSF can be seen as

being governed by →[i] that corresponds to the current fault status, while transition

relation→F describes the degradation of governing subsystem TS[i] in case the fault

status changes.

Secondly, by definition, TSF has a common state set Q, atomic proposition set

APF and action set A that is shared by all of its subsystems TS[i]. Note that we may

have different control authority and atomic proposition of interest under different

fault configurations. However, the assumption for common atomic proposition set

and common action set can be made without loss of generality. In case we have

different propositions AP [i] of interest in different fault configurations, a common

atomic proposition set AP can be simply chosen to be
⋃M
i=1AP

[i], and the difference
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can be handled by defining non-surjective labeling function L
[i]
Q . Moreover, the lack

of control authority under more severe fault configurations can be captured by a

transition relation →[i] that is not affected by some inactive control action a ∈ A.

State dependent control authority can be also easily incorporated.

Finally, note that the fault transition relation →F is beyond our control, hence

it introduces additional nondeterminism into the system, and such nondeterminism

can be combined with that of a regular system—whose state set is Q×F—to obtain

the faulty system TSF. This means a faulty system is nothing but a special type

of regular finite transition system. However, as will be presented later, the special

structure of fault configurations can be leveraged to develop a recursive synthesis

process when the considered specification is in certain from. We hence distinguish it

from regular systems.

5.1.1 Fault Detection on Finite Transition Systems with Faulty Modes

In practice, if the faulty mode of the system changes, we may not know this

immediately. For systems that evolve on discrete time, it will take at least one time

step for the faulty behavior to distinguish from the healthy behavior and therefore

the fault is detected with at least one step delay. Moreover, as shown in Chapter III,

the fault detection performed on the continuous state system that a faulty transition

system abstracts may be delayed by a time period, and this period can be upper

bounded by a constant T . Therefore a true faulty mode sequence f = φ(1)φ(2) · · ·

may not be the same as the status sequence f̂ = φ̂(1)φ̂(2) · · · .

Definition 12. Let f = φ(1)φ(2) · · ·φ(t + 1) ∈ F t+1 and f̂ = φ̂(1)φ̂(2) · · · φ̂(t + 1) ∈

F t+1, we say (̂f, f) is valid if

• further faults do not occur before the latest fault is detected: φ̂(t) 6= φ(t−1) ⇒
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φ(t+ 1) = φ(t);

• the detection is delayed by at least one step: φ(t+1) 6= φ(t) ⇒ φ̂(t+1) = φ(t);

• the detection of φ[i] is delayed by at most T [i] ≥ 1: φ(t) = · · · = φ(t−T [i] +1) =

φ[i] ⇒ φ̂(t+ 1) = φ[i].

Let f, f̂ ∈ F ω, the pair (f̂, f) is valid if (̂ft+1, ft+1) is valid for all t, where ft+1 (and

f̂t+1 respectively) is the prefix of f (and f̂ respectively) until time t+ 1.

Clearly, the notion of validity only depends on the fault configuration F and the

set T := {T [i]}i:φ[i]∈F that specifies the bounds of the detection delay. We will denote

the set of all valid pairs by Vdelay(F, T ).

Also note that any valid pair (̂f, f) is extendable, i.e., if (̂f, f) is valid, where f =

φ(1)φ(2) · · ·φ(t+1) and f̂ = φ̂(1)φ̂(2) · · · φ̂(t+1), then there always exists valid (ĝ,g)

such that g = φ(1)φ(2) · · ·φ(t+1)φ(t+2) and ĝ = φ̂(1)φ̂(2) · · · φ̂(t+1)φ̂(t+2), where

φ(t+ 2), φ̂(t+ 2) ∈ {φ(t)} ∪ succ
(
φ(t)

)
.

In this work, we will assume one of the following is true.

Assumption 1. (Immediate Detection) Let f be the sequence of true faulty modes

and f̂ be the fault status sequence returned by the detector, we assume that f = f̂

and the only rule they need to follow is
(
φ(t), φ(t + 1)

)
∈→F . We denote the set

of the pairs of such identical faulty mode sequences by Vno−delay(F ), where F is the

fault configuration set.

Assumption 2. (Delayed Detection) Let f be the sequence of true faulty modes

and f̂ be the fault status sequence returned by the detector, we assume that (f̂, f)

is valid, i.e., (f̂, f) = Vdelay(F, T ), where T = {T [i]}i∈F specifies the detection delay

bounds.
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5.1.2 LTL Games on Finite Transition Systems with Faulty Modes

Given LTL formula Ψ and Φ defined in Chapter IV, we define in what follows the

LTL game between the controller and the environment w.r.t the given specification.

At any time t,

1) the system state is at q(t), the faulty mode is φ(t),

2) the controller µ : (Q× F )∗ → 2A determines an action

a(t) ∈ µ
((
q(1), φ̂(1)

)(
q(t), φ̂(t)

)
, . . . ,

(
q(t), φ̂(t)

))
,

3) the environment picks the next state q(t+1) s.t.
(
q(t), φ(t), a(t), q(t+1)

)
→TS,

4) at time t+ 1, the environment pick φ(t+ 1) and φ̂(t+ 1) s.t. (̂ft+1, ft+1) is valid,

5) step 1) to step 4) are repeated.

Let q(1) be the initial state, and f, f̂ be the (valid) true and estimated faulty mode

sequence, the set of words generated by the system TSF is uniquely defined by f, f̂,

control strategy µ and q(1). We denote the set of such a word by W
(
f, f̂, µ, q(1)

)
.

Definition 13. (Winning Strategy/Set) Strategy µ is winning at q(1) against LTL

formula ϕ if

∀(f, f̂) ∈ V,w ∈W
(
f, f̂, µ, q(1)

)
: w |= ϕ,(5.1)

where V can be either Vno−delay(F ) or Vdelay(F, T ), depending on if immediate de-

tection is assumed or not. A set of initial states q(1) at which µ is winning is called

a winning set, and clearly a maximal winning set exists.

Problem 2. (Fault-tolerant Control Synthesis) In the rest of the chapter, we consider

the problem of finding a winning set (preferably the maximal one) and the associated

winning strategy µ. Depending if immediate detection is assume or not, and also if

Ψ or Φ is considered, we have the following four sub-problems:

Porblem(Ψ, no-delay),
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Porblem(Φ, no-delay),

Porblem(Ψ, delay),

Porblem(Φ, delay).

Remark 3. When there is a detection delay, a notable feature of the above LTL

game is that it might be undetermined [22]. That is, there might be certain states at

which neither the environment nor the controller wins for sure. To achieve correct-

by-construction, we shall avoid such undetermined states, and this is exactly how

the winning set is defined (see Definition 13), i.e., we only search for the initial states

from where the controller is guaranteed to win.

5.2 Bottom-up Fault-tolerant Control Synthesis

In this section, a set of bottom up recursive algorithms are proposed to solve

Problem 2. The soundness and completeness of the proposed algorithms can be

proved under certain assumptions on ϕ[i], and are summarized with Table 5.1.

Table 5.1: Summary of soundness and completeness of the algorithms

Specification Assumption on ϕ[i] No delay Delay

Ψ

any LTL

Algorithm 1
Sound & Complete

-

absolute decomposable
Algorithm 3

Sound & Complete
absolute decomposable Algorithm 3
+ suffix-closed Sound & Complete

Φ
absolute decomposable

Algorithm 2
Sound

-
absolute decomposable Algorithm 3
+ suffix-closed Sound & Complete

5.2.1 Synthesis against Specification Ψ with Immediate Detection

In this part, we present Algorithm 1 that solves Problem(Ψ, no-delay).
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Algorithm 1 [W [i],K[i]] = WinF
Ψ,no-delay(Ψ, TSF, φ[i])

1: Initialize W [i] = ∅, K[i] = ∅
2: if φ[i] ∈ max(F ) then
3: [W [i],K [i]] = Win(ϕ[i], TS[i])
4: K[i] = {K [i]}
5: else
6: for φ[j] ∈ succ(φ[i]) do
7: [W [j],K[j]] = WinF

Ψ,no-delay(Ψ, TSF, φ[j])

8: ψ[i] = ϕ[i] ∧ (�W [j])
9: end for

10: [W [i],K [i]] = Win(ψ[i], TS[i])
11: K[i] = K[j] ∪ {K [i]}
12: end if
13: return W [i], K[i]

1) Inputs: Algorithm 1 takes a system TSF, an LTL formula Ψ in form of

Eq, (4.8), and a fault configuration φ[i] as inputs. Fault φ[i] can be seen as the

initial configuration. Note that a faulty system always starts from being healthy by

definition, here φ[i] is used to track the recursion.

2) Outputs: Algorithm 1 returns set W [i] as a winning set w.r.t. specification

Φ when system TSF starts from fault configuration φ[i]. K[i] := {K [j]}φ[j]�φ[i] is a

collection of maps K [j], each map K [j] : Q∗ → 2A is a sub-strategy that achieves

specification ψ[j] if the system starts from state q ∈ W [j] and stays at fault configu-

ration φ[j] forever. The fault-tolerant strategy, with initial fault φ[i] and initial state

q(1), can be then extracted from K[i] by appending strategy fragments of K [j](q)’s

according to the latest fault status and the recent states after that fault occurring.

Formally, this fault-tolerant strategy at time t is defined as:

µ
((
q(1), φ(1)

)
· · ·
(
q(t), φ(t)

))
=K [n]

(
q(s)q(s+ 1) · · · q(t− 1)q(t)

)
,(5.2)

where n in “K [n]” is the superscript of latest fault φ(t) = φ[n], and

s = min
0 ≤ τ ≤ t
φ(τ) = φ(t)

τ.(5.3)
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Let qt = q(1)q(2) . . . q(t) where q(1) = q1 and ft = φ(1)φ(2) . . . φ(t), we denote the

set of admissible actions at time t suggested by strategy µ by µ(qt, ft).

3) Recursion: Algorithm 1 repetitively calls itself until the worst faults are

achieved as base cases. In each round of recursion, we need the following oracle

[W [i], K [i]] = Win(ψ[i], TS[i]), which returns the maximum winning set W [i], and a

map K [i] associating a state from W [i] with a winning strategy, so that all executions

of TS[i] under such strategy satisfy LTL formula ψ[i]. If a worst fault is reached,

function WinF simply returns the normal winning set and strategies, because the

system will not further degrade from there. Otherwise a further degradation is

possible. To avoid generating prefixes that violate the specification for the final

fault, we strengthen the current specification by �W [j] where W [j] is the winning set

returned by deeper recursions. Finally oracle Win is called to synthesize the winning

set w.r.t. specification ψ[i] and this finishes the round of the recursion. Figure 5.1

shows an illustrative example of the recursion.

Figure 5.1: Illustration of Algorithm 1.

The correctness and completeness of Algorithm 1 is stated with the following

theorem.
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Theorem 3. Algorithm 1 solves Problem(Ψ, no-delay) soundly and completely.

Proof. Algorithm 1 is sound and complete essentially because W [i] ⊆ W [j] for all

φ[j] ∈ succ(φ[i]) is sufficient and necessary to guarantee correctness. For detailed

proof, please see Appendix 1.1

5.2.2 Synthesis against Specification Φ with Immediate Detection

In this part, we modify Algorithm 1 to solve Problem(Φ, no-delay). We start with

introducing the idea of the modification in an intuitive way, and then explain the

algorithms by highlighting its difference from Algorithm 1. Finally, the correctness

of the modified algorithm is stated and proved under certain assumptions.

First, we would like to point out the key difference between Φ and Ψ. Suppose

φ[i] is the final fault that occurs at time t, Φ requires the corresponding LTL formula

ϕ[i] to be satisfied from the very beginning, while Ψ only requires ϕ[i] to be satisfied

from time instant t. To achieve specification, we hence need to be more careful with

the system’s behavior before φ[i] occurs. This leads to the following challenge:

(I1) (bad prefix issue) the finite word generated by the old strategy may violate

the new specification ϕ[j],

The other major challenge in solving Problem(Φ, no-delay) is: the final fault con-

figuration is not known in advance, nor is the time this fault occurs. Therefore,

the controller has to assume the current fault configuration φ[i] is the final one, and

give a strategy that achieves the specification associated with the current configura-

tion. However, unless no other faults are strictly more severe than the current one,

there is always a chance for the system to further degrade. Therefore, the controller

must also maintain the capability to achieve the specifications for possible succeeding

faults φ[j]. This leads to another challenge
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(I2) (succeeding strategy issue) there may not be a new strategy to achieve

specification ϕ[j] starting from the current state.

Finally note that the argument also applies to the new fault φ[j] and its succeeding

configurations, if any. This hence suggests the following recursive algorithm similar

to Algorithm 1.

Algorithm 2 [W [i],K[i], ψ[i]] = WinF
Φ,no-delay(Φ, TSF, φ[i])

1: Initialize W [i] = ∅, K[i] = ∅, ψ[i] = ϕ[i]

2: if φ[i] ∈ max(F ) then
3: [W [i],K [i]] = Win(ϕ[i], TS[i])
4: K[i] = {K [i]}
5: else
6: for φ[j] ∈ succ(φ[i]) do
7: [W [j],K[j], ψ[j]] = WinF

Φ,no−delay(Φ, TSF, φ[j])

8: [ψ
[j]
safety, ψ

[j]
liveness] = Decomp(ψ[j])

9: ψ[i] = ϕ[i] ∧ (�W [j]) ∧ ψ[j]
safety

10: end for
11: [W [i],K [i]] = Win(ψ[i], TS[i])
12: K[i] = K[j] ∪ {K [i]}
13: end if
14: return W [i], K[i], ψ[i]

One key difference from Algorithm 1 is that Algorithm 2 also returns an LTL for-

mula ψ[i] called the strengthened formula, which is obtained by strengthening ϕ[i]

by additional safety specifications. ψ[i] can be seen as the specification of an over-

all system that captures all possible degradations from current fault φ[i]. With this

strengthened formula, ϕ
[j]
safety propagates in the recursion and is added on top of the

requirements for all proceeding modes of φ[j], i.e., the faulty modes that may degrade

to φ[j] in the future. Such construction will guarantee φ[j] to be satisfied from the

very beginning.

The correctness of Algorithm 2 is stated and proved.

Theorem 4. Assume that each ϕ[i] specifies an absolutely decomposable property,

then Algorithm 2 solves Problem(Φ, no-delay) soundly.
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Proof. See Appendix 1.2

Computational Complexity

Even with immediate fault detection, the proposed algorithms are computationally

advantageous as it breaks the synthesis problem in to a collection of smaller synthe-

sis problems using the structure of the fault configuration. We briefly discuss this

benefits in what follows.

As mentioned earlier at the end of section 5.1, faulty system TSF can be modeled

by a regular transition system with state space Q × F . Problem(Ψ, no-delay) and

Problem(Φ, no-delay) hence can be solved theoretically by solving a Rabin game

[11], whose complexity is given by

O
((
|A| |Q| |F | 2(2|Φ||Φ)|

)2k
)
,(5.4)

where |A| is the size of action set, |Q| is size of state space of a regular system for

each fault configuration, |F | is number of faults, |Φ| is the length of LTL formula in

Eq. (4.7), and k is the number of accepting pairs in associated Rabin automaton,

which is a small number that is usually equal to 1 [27].

The complexity of Algorithm 2, ignoring the complexity for LTL formula decom-

position, is given by

O
(
|F |
(
|A| |Q| 2(2|ϕ||ϕ)|

)2k
)
,(5.5)

where |ϕ| = maxi:φ[i]∈F |ϕ[i]|. The complexity of our approach is linear in |F |, the

number of faults, while the complexity in Eq. (5.4) contains term O(|F | 2(2|Φ||Φ)|)2k)

where |Φ| is linear in |F |.
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5.2.3 Synthesis against Specification Ψ with Delayed Detection

In this part, we modify Algorithm 1 to solve Problem(Ψ, delay). In what follows,

we will first briefly discuss the challenges when the fault detection is delayed. Then

the modified algorithm is presented. The correctness of the modification is proved

with additional assumptions on ϕ[i] that specifies the desired behavior under faulty

mode φ[i].

Challenges under Detection Delay

We first address the challenges caused by detection delay. Assume that the system

degrades from configuration φ[i] to φ[j], there will be a time period, called unin-

formed execution horizon, within which the latest degradation is not known to the

controller. This time horizon starts from the instant when transition (φ[i], φ[j]) hap-

pens, and lasts for at most time T [j] by our detectability assumption. Within the

uninformed execution horizon, the controller will assume that the evolution is gov-

erned by original system TS[i] and apply the old strategy, while the system dynamics

evolves according to the transitions of the new system TS[j]. As a result, two things

may go wrong during the uninformed execution horizon, i.e.,

(I3) (bad prefix issue) the wrongly-controlled partial execution may violate spec-

ification ϕ[j] for some possible succeeding fault configuration φ[j] � φ[i];

(I4) (succeeding strategy issue) the execution may be led to parts of the state

space where no strategies are available to achieve specification ϕ[j] for some

succeeding faults.

Note that the bad prefix issue (I3) is related to issue (I1), but different. Essentially,

issue (I1) is a result of specification Φ requiring ϕ[i] to be satisfied starting from the

very beginning instead of the time instant of fault occurrence, while (I3) is simply

resulted from possible improper operation between fault occurrence and its delayed
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detection. Issue (I3) cannot be solved by simply applying Algorithm 2. In Algorithm

2 (line 9), the specifications under succeeding faults are taken into consideration

when synthesizing controller for current fault φ[i]. However, the synthesis is done

for system TS[i] rather than TS[j]. Within the uninformed execution horizon, the

controller applies strategy designed for system TS[i] while the system evolves as TS[j].

Therefore the outcome prefix may still violate strengthened formula ψ[i], hence violate

ψ
[j]
safety and the specifications for the succeeding faults. For a similar reason, issue (I4)

cannot be solved by simply enforcing �W [j]. Because �W [j] may still be violated if

the controller applies strategy designed for TS[i] while the system evolves as TS[j].

Synthesis with Invariance Restrictions

We now present the modification of Algorithm 1 to solve Problem(Ψ, delay). The key

idea is to synthesize controllers for each faulty mode with extra invariance constraints.

Algorithm 3 [W [i],K[i]] = WinF
Ψ,delay(Ψ, TSF, φ[i])

1: Initialize W [i] = ∅, K[i] = ∅
2: if φ[i] ∈ max(F ) then
3: [W [i],K [i]] = Win(ϕ[i], TS[i])
4: K[i] = {K [i]}
5: else
6: define I : Q→ 2U to be s.t. I(q) = U, ∀q ∈ Q
7: for φ[j] ∈ succ(φ[i]) do
8: [W [j],K[j]] = WinF

Ψ,delay(Ψ, TSF, φ[j])

9: [C [j], I [j]] = CInv(W [j], TS[j])
10: ψ[i] = ϕ[i] ∧ (�C [j])
11: I(q) = I(q) ∩ I [j](q), ∀q ∈ Q
12: end for
13: TS[i] � I := TS[i] with u /∈ I(q) disabled at state q ∈ Q
14: [W [i],K [i]] = Win(ψ[i], TS[i] � I)
15: K[i] = K[j] ∪ {K [i]}
16: end if
17: return W [i], K[i]

The key modification on top of Algorithm 1 is that, in line 9, we search for the

maximum controlled invariant set C [j] ⊆ W [j], under the dynamics of TS[j]. A map

I [j] : C [j] → 2A is also found, so that C [j] is invariant as long as we keep applying
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any action from I [j](q) at any state q ∈ C [j]. Such set C [j] and map I [j] can be

found by fixed-point type algorithms given in [82]. In particular, I [j] can be made

maximally permissive [20] in the sense that I [j]′(q) ⊆ I [j](q) for any mapping I [j]′

that also guarantees invariance of C [j] under TS[j] dynamics. Then oracle Win is

called as before, except that the synthesis is restricted within state set C [j], while

the actions available at each state q ∈ C [j] are restricted within I [j](q). When there

are multiple possible faults φ[j] succeeding current fault φ[i], an intersection set C

can be computed as
⋂
j:φ[j]∈succ(φ[i]) C

[j], and a map I can be defined to be such that

I(q) =
⋂
j:φ[j]∈succ(φ[i]) I

[j](q). Then winning set W [i] is then synthesized by Win

restricted to state set C and control actions in I(q). By the above modification,

the states will always stay within C [j] ⊆ W [j] even after the system degrades from

fault configuration φ[i] to φ[j]. This hence guarantees a succeeding strategy after an

uninformed execution horizon of any length.

Note that, due to the detection delay, the fault tolerant strategy is defined slightly

differently from Eq. (5.2). Let φ̂(t) be the estimated faulty mode outputted by the

detector at time t, define the fault-tolerant strategy at state q1 as

µ̂
((
q(1), φ̂(1)

)
· · ·
(
q(t), φ̂(t)

))
=K [n]

(
q(s)q(s+ 1) · · · q(t− 1)q(t)

)
,(5.6)

where n in “K [n]” is the superscript of latest fault φ̂(t) = φ[n], and

s = min
0 ≤ τ ≤ t
φ̂(τ) = φ̂(t)

τ.(5.7)

Here, we denote the above strategy by µ̂ to conceptually distinguish it from the

strategy associated with the maximal winning set, because it is not yet clear if the

two are equal at this point. Similar as before, let f̂t = φ̂(1)φ̂(2) . . . φ̂(t), we use

µ̂(qt, f̂t) to denote the action set suggested by µ̂.
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We summarize the properties of the above modified algorithm by the following

theorem.

Theorem 5. Under Assumption 2, Algorithm 3 is sound and complete for Problem(Ψ,

delay) if ϕ[i] is both absolutely decomposable and suffix-closed for all i.

Proof. See Appendix 1.3

The assumption that ϕ[i] is both absolutely decomposable and suffix-closed may

look strong at the first sight, but it indeed covers an important class of LTL fragments

that are widely considered in the literature of reactive synthesis, i.e. invariance and

GR(1) formulas that can be solved relatively efficiently.

Corollary 2. Under Assumption 2, Algorithm 3 is sound and complete for Problem(Ψ,

delay) if ϕ[i] = ϕ
[i]
safety ∧ ϕ

[i]
liveness where ϕ

[i]
safety specifies an invariance property and

ϕ
[i]
liveness is a GR(1) formula.

Proof. By Proposition 10 in Chapter II, invariance property is the only property

that is both absolute safe and suffix-closed. By Proposition 9 and Proposition 4 in

Chapter II, a GR(1) formula specifies a property that is both absolute liveness and

suffix-closed. Applying Theorem 5 immediately proves Corollary 2.

Discussion

The key insight from the proof of Theorem 5, especially the proof of the completeness

part, is that tolerating one-step detection delay is equivalent to tolerating any finite

detection delay under the assumption on ϕ[i]. First, with the soundness proved,

we have W [i] ⊆ W (Ψ, TSF, T ) where W (Ψ, TSF, T ) is the maximal winning set.

With the completeness proved with Lemma 5 in the Appendix, we have W [i] ⊇

W (Ψ, TSF, T1) ⊇ W (Ψ, TSF, T ) where W (Ψ, TSF, T1) is the winning set assuming

one-step detection delay. Hence we have W [i] = W (Ψ, TSF, T1) = W (Ψ, TSF, T ).

79



This means that, to solve Problem(Ψ, delay), it is necessary and sufficient to tolerant

one-step delay. This is resulted from the presumed suffix-closedness of ϕ[i], which

leads to Lemma 4 in the Appendix. By Lemma 4 the winning set W [j] assuring a

suffix-closed property must be controlled invariant, and hence the control actions

that keep the states in W [j] for one step (i.e., tolerating one-step delay) must lead to

invariance (i.e., tolerating any finite delay).

The equivalence between tolerating any finite delay and tolerating one-step delay

in this settings is the key to avoid belief state space construction. This is because

the belief of the faulty mode φ(t) can only be established after at least one step of

evolution so that the fault makes an impact, while at that point the true φ(t) is

known to the controller by one-step delay assumption anyways.

This impact of the feature mentioned above can be also interpreted from the point

of view of separating control design and detection. The setting considered here is

slightly different from the general partial information game because the fault detec-

tion in this work is assumed to be done for the continuous state system directly as

described in Chapter III, whereas only the worst case detection delay is incorpo-

rated in the control synthesis on the discrete abstraction. Since the detection for the

continuous system is less conservative but the detection on the discrete abstraction

is not considered, our approach is in general not comparable to those approaches

involving belief space construction. However, if we restrict ourselves to a certain

fragment of LTL, i.e., if ϕ[i] is both absolutely decomposable and suffix-closed, we

do not gain anything from the detection on the discrete system. Hence the fault

detection and the fault-tolerant control synthesis that respects the detection delay

can be done separately for such LTL fragment.
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5.2.4 Synthesis against Specification Φ with Delayed Detection

The key result in this part is that, under the assumption that LTL specification

ϕ[i] for each faulty mode is both suffix-closed and absolutely decomposable, solving

Problem(Φ, delay) and Problem(Ψ, delay) are equivalent in the following sense.

Theorem 6. Assume ϕ[i] in Φ is both suffix-closed and absolutely decomposable for

all i, then Algorithm 3 solves Problem(Φ, delay) soundly and completely.

Proof. We first prove the soundness. Let W [i] be returned by Algorithm 3, we know

any generated word w = LF
Q

(
q(1), φ(1)

)
LF
Q

(
q(2)φ(2)

)
. . . |= Ψ by Theorem 5, where

q(1)q(2) . . . is the state sequence and φ(1)φ(2) · · · is the faulty mode sequence. Sup-

pose that the final faulty mode is φ[i] and let t be the first time instant such that

φ(t) = φ[i]. We have:

(i) L
[i]
Q

(
q(t)

)
L

[i]
Q

(
q(t+ 1)

)
. . . |= ϕliveness, and this implies w |= ϕliveness as ϕliveness is

absolute live by assumption.

(ii) L
[i]
Q

(
q(t)

)
L

[i]
Q

(
q(t + 1)

)
. . . |= ϕsafety, and this implies q(s) ∈ W [i] for all s ≥ t

because is ϕsafety specifies an invariance by Proposition 11. Also note that

q(s) ∈ W [`] for any s < t where ` : φ[`] = φ(s), but W [`] ⊆ W [j] by construction.

Hence q(s) ∈ W [i] for all s < t as well and this implies w |= ϕsafety

Therefore w |= ϕ[i] and Φ is achieved as φ[i] is the final faulty mode.

To show the completeness, it is enough to prove that

w |= Φ ⇒ w |= Ψ,(5.8)

and this immediately gives W (Φ, TSF) ⊆ W (Ψ, TSF), which verifies the complete-

ness. To see Eq. (5.8), denote the final fault by φ[i] and let t be the first time instant

s.t. φ(t) = φ[i]. w |= Φ implies that w |= ϕ[i] as φ[i] is the final mode, and this

81



Figure 5.2: Faulty system TSF. Left: regular system TS[1] associated with fault φ[1], right: TS[2]

associated with fault φ[2]. Different colors marked different propositions predicate: w (purple), x
(green box), y (orange), z (grey).

further gives wt = w(t)w(t+ 1) · · · |= ϕ[i] because ϕ[i] is suffix-closed. Hence we have

w |= ¬π[i] U
(
�π[i] ∧ ϕ[i]) and hence Ψ.

An the end of this chapter, a toy example is presented to illustrates the proposed

solution approach.

Example 2. Consider a faulty system TSF = (Q,F,A,→TS,→F , AP, L), where

Q = {q1, q2, q3, q4, q5}, F = {φ[1], φ[2]}, A = {a, b}, AP = {w, x, y, z}. The only fault

transition in→F is (φ[1], φ[2]). The system transitions→TS and the labeling function

are defined in Fig. 5.2. The graceful degradation of system TSF is specified by an

LTL formula in form of Eq. 4.7, where

ϕ[1] =(�¬z) ∧ (♦�x) ∧ (�♦w) ∧ (�♦y),(5.9)

ϕ[2] =(�¬z) ∧ (♦�x)(5.10)

It an be verified that ϕ[1], ϕ[2] are both absolutely decomposable and suffix-closed.

In this case, the graceful degradation Ψ and Φ are equivalent. In what follows we

compute the fault tolerant winning set W (Ψ, TSF) = W (Φ, TSF) for both cases with

and without detection delay, to demonstrate the difference introduced by the delay.
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Winning Set without Detection Delay

To find the fault tolerant winning set, Algorithm 2 starts from fault φ[2] as base case.

Winning set W2 can be found as {q2, q3, q4}. We then go to fault φ[1], and strengthen

ϕ[i] as ψ[1] = ϕ[1] ∧ (�W [2]) ∧ (�¬x), where the last term (�¬x) is the safety part

of ϕ[2]. Finally we compute W [1] = Win(ψ, TS[1]) = {q2, q3, q4}, and we claim that

W [1] is a fault tolerant winning set W .

Note that q1 /∈ W , even though a strategy can achieve ϕ[1] starting from q1 on

system TS[1]. This is because the fault may occur when we are at q1. In that case

the system degrades to TS[2] and no succeeding strategy exists to avoid state q5, and

hence to achieve ϕ[2].

Winning Set with Detection Delay

Assume a finite delay is required to detect the fault, we compute the fault tolerant

winning set and show it is different from the above result. Then, similar as before,

Algorithm 1 starts from fault φ[1] and computes winning set W [1] = {q2, q3, q4}. We

then compute C [j] as the largest controlled invariant set in W [2]. In this example,

C [2] = W [2]. Map I2 is also found such that I2(q) contains the actions at state q

that make C [2] invariant. In this example, I [2](q2) = {b}, I [2](q3) = I [2](q4) = {a, b}.

Finally the recursion goes back to fault φ[1], and the fault tolerant winning set is

synthesized, with the states restricted to set C [2], and with the actions at state q

restricted to I [2](q). In the example W [1] = {q3, q4}, and we claim the fault tolerant

winning set W = W [1].

Unlike the fault tolerant winning set without detection delays, state q2 is not

inside the winning set W . This is because action a /∈ I2(q2), and is hence forbidden

at state q2 in the synthesis. To see why this it is necessary to exclude state q2 from

W , we consider the following scenario. If fault occurs at state q2, the controller will
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not be informed at once. Instead, the controller assumes that the system evolves as

TS[1] and tries to achieve ϕ1. Note that to achieve ϕ1 on TS[1], the controller has to

take action a whenever the state is at q2. As a result the actual system evolves as

TS[2] and may bring the state to s1, from where the real specification ϕ[2] can not

be achieved.
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CHAPTER VI

Abstration-based Synthesis of Fuel Cell Thermal
Management

In order to apply the fault-tolerant control synthesis algorithms developed in Chapter

V to a continuous state system, we still need to find a winning set of the continuous

system. This can be done by abstraction-based synthesis. Although the fixed point

algorithms developed for finite transition system are quite mature, the computation

of abstraction is not a trivial task. The main challenge is to reduce the level of

conservatism and to improve efficiency.

In this chapter we show that such abstraction-based synthesis can be done for

a fuel cell thermal management system with complicated nonlinear dynamics and

complicated specifications. We begin by developing a control-oriented model for

the thermal management system of a fuel cell stack. Then, we list the require-

ments associated with thermal management and formalize them using linear tempo-

ral logic. The model and the requirements are then used for controller synthesis with

an abstraction-based technique. To make the abstraction-based synthesis algorithm

computationally efficient, mixed monotonicity of the fuel cell system dynamics are

identified and leveraged. Finally, the closed-loop system behavior with the synthe-

sized controller is demonstrated via simulations.
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Chapter overview. This chapter is organized as follows. Section 6.1 intro-

duces the fuel cell thermal management problem. Section 6.2 defines the model and

Section 6.3 lists the considered specification in LTL. Seciton 6.4 then describes the

abstraction-based synthesis of the system, and Section 6.5 presents the results and

some discussion.

Related work. The main technical challenges solved in this Chapter are related

to improving the abstraction computation efficiency by leveraging system (mixed)

monotonicity [69, 26], and reducing conservatism of a abstraction [63, 103, 82, 85, 41,

51, 26, 136, 89, 109]. In particular, it closely follows the line of research studying so

called augmented finite transition systems [89, 109, 82, 85], which are equipped with

a progress group mapping that encodes extra transience property of the underlying

continuous dynamics.

6.1 Fuel Cell Thermal Management Problem

Fuel cells are electrochemical devices that convert chemical energy of gaseous fuel

(i.e., hydrogen) into electricity [94]. In a fuel cell stack, the electrochemical reaction of

oxygen and hydrogen generates electrical power, while heat and water are produced

as by-products. In this work, we focus on developing the thermal management

portion of the controller, which guarantees that the fuel cell operates in a proper

temperature range (340K to 350K), for safety and efficiency considerations [57].

A simplified schematic of the fuel cell thermal management system is shown in

Fig. 6.1. The two main factors that affect the heat supplied or removed from the fuel

cell stack, and hence the stack temperature, are the stack coolant inlet temperature
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and the coolant flow-rate. The coolant flow rate is controlled by an electric pump,

while the coolant inlet temperature is regulated by appropriately flowing the coolant

through a radiator or a heater, where the flow path is selected by a 2-position 3-way

valve, thus making the system dynamics hybrid in nature.

Figure 6.1: Layout of the fuel cell thermal management system. The arrows in the circuit represent
the direction of coolant flows.

The electrical power requirements have a direct influence on thermal manage-

ment, some aspects of which are studied in [50], [79]. First, the power requirements

by the motor and the fuel cell temperature constraint need to be met simultaneously

through system hybridization, that is, through appropriate power management be-

tween the fuel cell stack and an energy storage device. Since the heat generated

in the stack increases with increasing fuel cell output power, the stack temperature

may exceed the desired range while the fuel cell tries to match its output power with

the instantaneous power request from the motor. Hence, a battery is introduced to

“moderate” the power generated by the fuel cell. In addition, power requirements

from the heater when used for warm-up under cold conditions also affect power

management. In this paper, we provide some of the key requirements for fuel cell
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thermal management in the presence of battery state of charge energy constraints.

These requirements are evaluated in the situation where the ambient temperature is

near 283K, where the fuel cell stack loses significant heat to the ambient due to the

large temperature gradient.

In works such as [50], [79], requirements due to both power management and

thermal management are considered in the controller design. The design approaches

in these works are based on optimal control, where the requirements are combined

into one objective function and the controller is developed by solving an optimal con-

trol problem with the combined objective function. The correctness of the designed

controllers need to be verified by running a large number of tests.

6.2 Fuel Cell Model

A block diagram of the fuel cell thermal management system is shown in Fig. 6.2.

The solid lines (red) are temperature signals, the dotted lines (purple) are power

signals, the dashed lines (blue) are battery SOC signals, and the thinner solid lines

(black) are control/reference input signals. The physical meanings of the variables in

Fig. 6.2 can be found in the Appendix. Other operating conditions (such as hydrogen

and oxygen partial pressure, ambient temperature, vehicle speed) that affect system

dynamics are not included in the block diagram for simplicity.

In what follows, we give the formulas describing each block in Fig. 6.2.
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Figure 6.2: Block diagram of the fuel cell thermal management system.

6.2.1 Fuel Cell Power Generation

The fuel cell stack output power and generated heat are computed using the formulas

developed in [93],

PFC,output = iAGEFC,stack,(6.1)

PFC,self-heat-up = iAG
∆hrxn

2F
nFC,cell − PFC,output,(6.2)

and

EFC,stack = nFC,cell

(
∆hrxn

2F
− Tavg

∆srxn

2F

+
RTavg

2F
ln

(
pH2

Pref

( pO2

Pref

) 1
2

)
− RTavg

αF
ln

( i+ ix
i0

)
−iRΩ − aMT(

i

iMT
)bMT

)
,(6.3)

where ∆hrxn

2F
and Tavg

∆srxn

2F
correspond to the effect of enthalpies and entropies, iRΩ

describes Ohmic loss due to cell resistivity, and aMT( i
iMT

)bMT describes potential loss

caused by mass transport limitations. The variables hrxn, srxn, i0, RΩ depend on fuel

cell average temperature Tavg and operating conditions [93].
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6.2.2 Fuel Cell Temperature Dynamics

The fuel cell stack is divided into two control volumes to capture its temperature

gradient. One control volume is at the coolant inlet side and the other is at the

coolant outlet side. The fuel cell temperature dynamics is described in terms of the

temperature of the two control volumes, i.e., T1, T2. The temperature dynamics are

governed by the following differential equation [93]:

dT1

dt
=

1

cFCρFC

(
ccoolwcool(TFC,in,cool − T1)

nFC,cellAFCδFC/2

+
κT(T2 − T1)

(δFC/2)2
+ kamb→FC(Tamb − T1)

+
PFC,self-heat-up

VFCnFC,cell

− rv∆hv

)
,(6.4)

dT2

dt
=

1

cFCρFC

(
ccoolwcool(T1 − T2)

nFC,cellAFCδFC/2

+
κT(T1 − T2)

(δFC/2)2
+ kamb→FC(Tamb − T2)

+
PFC,self-heat-up

VFCnFC,cell

− rv∆hv

)
,(6.5)

where the inlet coolant temperature TFC,in,cool in Eq. (6.4) is defined as

TFC,in,cool = uHRTH + (1− uHR)TR,(6.6)

where uHR is the binary variable controlling the 2-position 3-way valve. The average

fuel cell temperature used in Eq. (6.3) is defined as Tavg = (T1 + T2)/2, while

TFC,out,cool, the outlet coolant temperature from fuel cell stack, is assumed to be

equal to T2.
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6.2.3 Radiator and Heater Temperature Dynamics

The radiator and heater dynamics are given by

dTR

dt
=

1

CR

(
(1− uHR)ccoolwcool(TFC,out,cool − TR)

+ cairε(v)v(Tamb − TR)
)
,(6.7)

dTH

dt
=

1

CH

(
uHRccoolwcool(TFC,out,cool − TH) + PH

)
.(6.8)

Note that when binary control uHR = 1 (or 0), the coolant is fed to the heater (or

the radiator). The term ε(v) in radiator dynamics is the vehicle-speed-dependent

effectiveness of the radiator, which is modeled as an affine function of vehicle speed

v. The outlet coolant temperature from the radiator (the heater, respectively) is

assumed to be TR (TH, respectively).

6.2.4 Battery SOC Dynamics

The battery SOC dynamics is adopted from that given in [78],

dSOCB

dt
= −nsnpEB,cell

EB,cell −
√
E2

B,cell −
4PB,outputrB,cell

nsnp

2rB,cellGB,stack,total

.(6.9)

Note that in Eq. (6.9), PB,output can be negative, meaning charging the battery.

6.2.5 Power Split Module

The power split module combines the output power from the fuel cell and the battery,

and passes part of the combined power to the heater, and the remaining portion to

the motor. To deliver the required power to the motor, we assume the battery always

provides the right amount of power to compensate for what is generated by the fuel

cell, that is,

PB,output = PM + PH − PFC,output.(6.10)
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6.3 Specifications

In this section, we give the specifications (or requirements) of fuel cell thermal man-

agement. The listed specifications are classified into the following three types:

(i) “reach-stay” type specifications require that the system variables (e.g., state or

control input) reach a target region in finite time and stay in that region once

they arrive;

ϕreach−stay = ♦�πtarget, where πtarget is a proposition saying that the variable

belongs to a designated target set. The formula ♦�πtarget says that a time

instant exists starting from which πtarget is always true.

(ii) “avoid” type specifications require that the variables avoid some undesired re-

gions forever (or equivalently, the variables always stay in the complement of

the undesired region);

ϕavoid = �πsafe, where proposition πsafe says that the variable is not in the

undesired set, or the variable is in the desired set.

(iii) “recurrence” type specifications require that the variables visit a region repeti-

tively;

ϕrecurrence = �♦πrecurrence, where πrecurrence says the variable belongs to a re-

currence target set. The formula �♦πrecurrence is interpreted as: for all time

instants, a time exists in the future at which πrecurrence holds, therefore guaran-

teeing repetition.

For the remainder of this section, we give the fuel cell thermal management specifi-

cations in plain English and express them in LTL. The resulting LTL formulas are

listed in TABLE 6.1.
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6.3.1 Limitations of Fuel Cell Output Power

Some requirements regarding fuel cell output power are imposed in this part.

Spec1: (avoid) The fuel cell output power PFC,output should not drop below zero.

Fig. 6.3 gives the fuel cell output power predicted by the model in Section 6.2.1.

As show in Fig. 6.3, the model-predicted fuel cell output power becomes negative

when the current density is too high, which makes the model invalid at that value of

current density. This requirement is essential to avoid operating in the region where

the model is invalid.

Spec2: (avoid) Let i∗ be the fuel cell current density that gives the maximum fuel

cell output power, graphically illustrated by Fig. 6.3. The current density should

not exceed the one that gives the maximum output power PFC,max because operating

above PFC,max is inefficient and could lead to irreversible degradation [56]. Note that

i∗ is a function of state and operating conditions.
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Figure 6.3: Fuel cell power versus current density, fuel cell average temperature varies in [273, 360]K,
membrane water content λ = 6.

Based on Fig. 6.3, it is obvious that Spec2 actually implies Spec1. In this work,

we exclude Spec2 from the correct-by-construction synthesis because of the difficulty

in computing i∗. Instead, we handle Spec2 by restricting the current density i to be

smaller than a fixed upper bound ĩ∗, which is found experimentally. In addition, some
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control action selecting heuristics are developed to incorporate Spec2 (see section

6.5). However, since no formal guarantee can be made for achieving Spec2, we still

consider Spec1 in the correct-by-construction synthesis as a hard constraint.

6.3.2 Battery Energy & Power Limitations

In this part, we give some requirements regarding the battery SOC and power. These

requirements are important for guaranteeing the health of the battery and its incor-

poration with energy management.

Spec3: (avoid) The battery stack energy should not drop below 10% or exceed

90%.

Spec4: (recurrence) Battery energy should always recover to SOCB,target (with at

most an error δ) in finite time, where SOCB,target is a set point given by the energy

management module.

This specification can be viewed as a relaxation of the charge sustaining require-

ment of the battery. Since we do not assume any knowledge of the driving cycle in

advance, it is impossible for the battery SOC to recover to the starting level exactly

at the end of the driving period (unless one restricts the battery SOC to always stay

close to the target level, which is a conservative strategy). Hence, we require only

that the battery SOC have the capability of recovering to the target level.

Spec5: (avoid) The battery power should not exceed peak power requirements.

Spec6: (avoid) Power for the battery charge should not exceed maximum allow-

able charging power. Note that by our convention, charging powers (both PB,output

and PB,charge,max) are negative.
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6.3.3 Regular Operation Requirements

The following requirements are related to fuel cell temperature regulation.

Spec7: (reach-stay) Fuel cell block temperatures should reach and then stay in

the target temperature range [340, 350]K.

By this requirement, when the fuel cell is temporarily shut down and motor power

is completely delivered by the battery, we still want the fuel cell temperature to stay

in the range.

Spec8: (avoid) Fuel cell block temperatures should never exceed the maximum

allowable temperature of 353K.

Table 6.1: Specifications in LTL

Specification LTL formula type
Spec1 ϕ1 = �(PFC,output ≥ 0) avoid X
Spec2 ϕ2 = �(i ≤ i∗) avoid ∼
Spec3 ϕ3 = �(0.1 ≤ SOCB ≤ 0.9) avoid X
Spec4 ϕ4 = �♦

(
SOCB,target − δ ≤ SOCB

≤ SOCB,target + δ
)

recurrence X
Spec5 ϕ5 = �(PB,output ≤ PB,output,max) avoid X
Spec6 ϕ6 = �(PB,output ≥ PB,charge,max) avoid X
Spec7 ϕ7 = ♦�

(
∧j=1,2 (Tj ∈ [340, 350])

)
reach-stay1 X

Spec8 ϕ8 = �
(
∧j=1,2 (Tj ≤ 353)

)
avoid X

“X”: the specification is considered in the synthesis.
“∼”: the specification is handled by heuristics.

6.4 Solution Approach

We formulate the control problem as a temporal logic game [86] on a hybrid system

and solve the game using abstraction-based synthesis technique. This section is

divided into three parts. First, we describe the basic steps involved in computing an

abstraction, and show how to leverage the system’s properties introduced in Section

2.1 at each step to simplify computation. Second, we briefly describe the synthesis

1We refer to this LTL specification as “reach-stay” type with a slight abuse of terminology. In fact, ♦�(x ∈
target set) does not require that x stays in the target set after its first arrival.
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process on the abstraction. Finally, we motivate and propose multi-action state-

dependent progress groups, and show how they remove spurious behavior from the

abstraction.

6.4.1 Abstraction

The abstraction process returns a finite transition system for a given plant model and

specifications. The transitions capture the flow of the continuous plant dynamics,

and the (discrete) states of the finite transition system are properly labeled according

to the given specifications. In this work, the finite transition systems serving as

abstractions are nondeterministic. That is, given the current state and the control

action applied at that state, there might be multiple succeeding states. Specifically,

we also reinforce such transition systems with so called progress groups, which encode

additional transience properties of the underlying concrete system. Such transition

systems are already well-established in the literature. We refer the reader to [85] for

a formal definition of such abstractions and detailed algorithms generating them.

The abstraction process is decomposed into three steps, that is, discretization,

labeling and transition computation. We now describe each step, incorporated with

the fuel cell system properties for computational efficiency.

Discretization

We first partition the state space of a given concrete system into finitely many regions.

Each region is mapped to a discrete state in the finite transition system. In the rest

of this paper we will call a “discrete state” as “state” for short, when the context is

unambiguous. We use a manually constructed non-uniform rectangular grid partition

in the state space. A rectangular partition reduces the abstraction computation effort

significantly when the system flow/vector field are (mixed) monotone [26] or multi-
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affine [133].

Notice that both continuous-valued control inputs (i, wcool, PH) and boolean con-

trol input (uHR) are present in the system. We discretize control space U by creating

a grid on the continuous-valued control space, which leads to a finite set of control

actions. It should be noted that the discretization of the continuous control variables

leads to more than 70 control actions in total in this application.

Labeling

After the state space partition, each region in the partition needs to be labeled as

“target”, “recurrence target”, “safe” and “unsafe” according to the specifications.

Consider “reach-stay” specification Spec7. The regions contained by set {x ∈ X |

T1 and T2 ∈ [340, 350]} are labeled as “target”. For “recurrence” specification Spec4,

the regions contained by set {x ∈ X | SOCB ∈ [SOCB,target− δ, SOCB,target + δ]} are

labeled as “recurrence target”. The remainder of the specifications are of the “avoid”

type. A region is labeled “safe” if the “avoid” specification is satisfied everywhere in

that region for all operating conditions; it is labeled “unsafe” if the specification is

violated somewhere in the region for some operating conditions.

The challenge is that some “avoid” specifications are implicitly related to states

and operating conditions. For example, requirement Spec1 requires fuel cell output

power PFC,output ≥ 0 (or equivalently EFC,stack ≥ 0 by Eq. (6.1)), PFC,output is a

function of both system state (fuel cell temperature Tavg) and operating condition

(membrane water content λ, hydrogen-oxygen partial pressure pH2 , pO2). Therefore,

to label a region safe or unsafe in terms of Spec1, we need to check the worst case in

that region. That is, if the minimum fuel cell output power PFC,output (or equivalently

EFC,stack) in the region is negative under some operating conditions (which violate

specification Spec1 ), the region is labeled unsafe.
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As described in Section 6.2.1, EFC,stack is a nonlinear function in state x and op-

erating condition d. Therefore, determining the exact minimum value of EFC,stack

requires solving a nonlinear optimization problem over x and d, which might be

intractable. However, function EFC,stack(x, d) allows an efficient and reasonable ap-

proximation by Theorem 2 in Section 2.1 if the considered regions are rectangles.

Theorem 2 applies to function EFC,stack(x, d) because EFC,stack(x, d) is continuously

differentiable w.r.t. x and d on compact set X×D. This means that all the continu-

ous partial derivatives
∂EFC,stack

∂x

∂EFC,stack

∂d
are bounded on X ×D; thus, EFC,stack(x, d)

satisfies the hypothesis of Theorem 2.

By Theorem 2, under-(over-)approximating the minimum (or maximum) value of

EFC,stack reduces to evaluating EFC,stack at the two extreme points of the considered

rectangular region. The result of the approximation is illustrated using Fig. 6.4:

the dashed line is the maximum and minimum value when x1, x2, or T1, T2 varies

in [273, 360]K. Fig. 6.4 shows a gap between the approximated minimum value of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Current density i (A/cm )

-50

0

50

100

150

200

250

300

350

400

S
ta

ck
 v

ol
ta

ge
 E

F
C

,s
ta

ck
 (

V
)

upper bound given 
by approximation

lower bound given 
by approximation

temperature 
increases 

2

Figure 6.4: Approximation of polarization, fuel cell average temperature varies in [273, 360]K.

EFC,cell and the true values. This gap indicates that the approximation is conserva-

tive. However, when the size of the region to be labeled is smaller, the approximation

gets tighter.

Computing Transitions
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We compute transitions in the abstraction by arguing about the vector field directions

of the concrete system, over a region in state space, and also over all operating

conditions. In this part we provide an efficient way to compute these transitions

using Theorems 2 from Section 2.1.

X    1 X   2

Vector field 𝑓(𝑥, 𝑢, 𝑑)

𝐹 = X    1 ∩ X   2

Concrete system Abstraction

𝑢

𝑛𝐹
𝑞1 𝑞2

Figure 6.5: Computing transitions by arguing direction of vector field.

As shown in the left half of Fig. 6.5, X1 and X2 are two adjacent regions in

the state space of concrete system, F = X1 ∩X2 is the adjacent facet between two

regions, dashed arrow nF is the normal vector of facet F (pointing from X1 to X2),

and the solid arrows on F are the vector field f(x, u, d) under some given u and

operating conditions d. The right half of the figure shows the discrete states in the

abstraction, in particular, discrete state q1 (q2) corresponds to region X1 (X2), and

the transitions between q1 and q2 are defined as follows

q1
u−→ q2 if max

x ∈ F,
d ∈ D

nTFf(x, u, d) > 0.(6.11)

Finally, since any trajectory starting from region Xi will stay in that region after a

small amount of time, we need to add a self-transition on the corresponding discrete

state qi.

Assume a rectangular partition of the state space, the adjacent facets are all

rectangular facets, i.e., F = {x ∈ X | xj ∈ [xj, xj]}, and their normal vectors are

natural basis vectors ei (a vector whose ith entry is one, and the other entries are

zeros). Also note that allowable operating condition set D is a rectangular set by
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definition, i.e., D = {d | dk ∈ [dk, dk]}. Eq. (6.11) is thus equivalent to

q1
u−→ q2 if max

xj ∈ [xj, xj ]

d ∈ [dk, dk]

fi(x, u, d) > 0.(6.12)

The optimum values in (6.12) can be over approximated using Theorem 2. Fixing

control u, and letting φu be the decomposition function of f(·, u, ·) defined by Eq.

(2.15), we have

max
xj ∈ [xj, xj ]

d ∈ [dk, dk]

fi(x, u, d) ≤ φui ([x, d], [x, d]),(6.13)

where x = [x1, . . . , xn]T and x = [x1, . . . , xn]T (similar for d, d). We hence replace

Eq. (6.13) by the following to compute the transitions:

q1
u−→ q2 if φui ([x, d], [x, d]) > 0.(6.14)

Recall the discussion following Theorem 2, if the partial derivative ∂fi
∂xj

is not sign-

stable, the approximations in Eq. (6.13) are not tight. In other words we may have

φui ([x, d], [x, d]) > 0 but max fi(x, u, d) ≤ 0. In that case, Eq. (6.13) and Eq. 6.14

are not equivalent. In fact, we create more transitions when using Eq. (6.14), and

hence introduce more spurious behavior in the abstraction, thus leading to a more

conservative solution but conserving the correctness.

Note that the partial derivative ∂f3

∂v
is not sign-stable, where f3 = dTR

dt
is defined by

Eq. (6.7). The sign of ∂f3

∂v
depends on which one of TR and Tamb is larger. In this case,

the conservatism can be reduced. We show f3 is affine in state x and multi-affine in

[Tamb, w] where w := ε(v)v. Hence to maximize (minimize, respectively) vector field

component f3, one need only evaluate f3 at both upper and lower bounds of w, and

pick the maximum (minimum, respectively) f3 value. This practice is equivalent to

evaluating f3 at the upper and lower bounds of vehicle speed v, because w = ε(v)v
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is monotone increasing in v. With this modification, Eq. (6.13) becomes

max
xj ∈ [xj, xj ]

d ∈ [dk, dk]

fi(x, u, d) ≤

max
{
φui ([x, d], [x, d]), φui ([x, d], [x, d])

}
,(6.15)

where d is the same as d except that its fifth entry (representing vehicle speed v)

takes upper bound value; and d is the same as d except that its fifth entry takes

lower bound value.

Note that to compute the transition from q2 to q1, the only change is to choose the

normal vector in Eq. (6.11) to be nF = −ei, and the above approximation process

still applies to this case.

6.4.2 Synthesis

To synthesize a controller, we solve a temporal logic game on the obtained abstraction

using graph search algorithms. As mentioned at the beginning of Section 6.4.1, the

abstraction used in this work is nondeterministic. The actual evolution of such an

abstraction can be viewed as the outcome of a two player game between the controller

and the environment [112]. In each round of the game, the controller selects an action

first, and then the environment selects a transition that is available under the current

state and action. The goal of the controller is to win the game, that is, to satisfy the

specification regardless of the moves of the environment. The algorithms for solving

such games are fairly standard [112, 15, 82, 118, 85, 11], and refer the readers to

these references for details. Fig. 6.6 shows an illustration of the synthesis process,

and we only briefly describe the process with the following three steps:

1. We first solve the “stay” part of the game, by searching for the maximal con-

trolled invariant set C1 within the discrete states labeled as both “target” and
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“safe”. Each discrete state in C1 will be assigned a set of control actions. Un-

der the assigned actions, the closed-loop path starting from C1 will stay in C1

forever. Such a maximal controlled invariant set can be found by a fixed-point

algorithm given in [82].

2. Next we solve the “recurrence” part of the game, restricted within set C1. In

particular, at each state in C1, we can use only the actions assigned to that

state in step 1 that render C1 to be invariant. The recurrence game can be

solved with the algorithm given in [118]. This gives a set of states contained

by C1, starting from where the “recurrence target” states (again, in C1) can be

reached infinitely often. This set of states is denoted as C2. As shown in Fig.

6.6, C2 ⊆ C1. It should be noted that C2 is also a controlled invariant set when

the recurrence specification is achieved.

3. Then we solve the “reach-avoid” part of the game, using the algorithm given

in [82]. The solution contains a set of states B, called the backwards reachable

set of C2, together with a set of actions assigned to each state in B. If these

actions are applied accordingly, a path starting from B will reach C2 in finite

time, while avoiding “unsafe” states2. The obtained backwards reachable set B

together with set C2 form a winning set of the overall game.

Finally, once the winning set and the associated control actions are determined on

the abstraction, we can extract a switching controller for the concrete system, that

is, we map the actions assigned to each “winning” state to its corresponding region

in the concrete system’s state space. This leads to a look-up table controller defined

in the concrete system state space.

To solve the reachability part, both in the reach-avoid-stay game and the recur-

2As noted in Footnote 1, there is a difference between specification ♦�(x ∈ target set) and “reaching the target
set in finite time and staying there once arrived”. Here we are achieving the latter one, which implies the satisfaction
of the former one.
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Figure 6.6: Illustration of synthesis procedure.

rence game, the existence of spurious loops in abstraction may prevent the target

from being reached, therefore reducing the winning set. Hence, it is crucial to elim-

inate the spurious behavior in the abstraction as much as possible. To this end we

encode in abstraction some transient properties of the underlining continuous sys-

tem by progress groups. A set of states (each state assigned a set of control actions)

forms a progress group if these discrete states correspond to a transient region in

the original concrete system, under the assigned actions. A region is transient under

some control actions if all trajectories starting from that region eventually leave the

region in finite time under assigned control actions. Fig. 6.7 illustrates different no-

tions of progress groups. In all three illustrations, the vector field in region X1 ∪X2

is pointing upwards under the assigned actions. Thus, all trajectories starting from

region X1 ∪ X2 will eventually leave the region. We hence group the correspond-

ing states {q1, q2} as a progress group, and forbid any infinite path from staying

within states {q1, q2}. Notice that infinite paths within {q1, q2} exist otherwise due

to the self-loops and cycling between two states. The novel concept introduced here

of multi-action state-dependent progress group will be motivated and explained in

more details in the following section.
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𝑋𝑋1 𝑋𝑋2

𝑞𝑞1 𝑞𝑞2 Single action 
progress group

under 𝑢𝑢1

𝑋𝑋1 𝑋𝑋2

𝑞𝑞1 𝑞𝑞2 Multi-action 
progress group

under 𝑢𝑢1,𝑢𝑢2

𝑋𝑋1 𝑋𝑋2

𝑞𝑞1 𝑞𝑞2
Multi-action 

state-dependent 
progress group
𝑢𝑢1at 𝑞𝑞1, 𝑢𝑢2at 𝑞𝑞2, 

𝑢𝑢1,𝑢𝑢2 𝑢𝑢1,𝑢𝑢2

𝑢𝑢1 𝑢𝑢2

𝑢𝑢1 𝑢𝑢1

Figure 6.7: Different notions of progress groups.

6.4.3 Multi-action State-dependent Progress Group

In previous works [89], [109], progress groups were defined only for a single action. In

a more recent paper [85], the notion of multi-action progress groups was introduced to

encode richer transience properties of the underlying concrete system. In all of these

works, progress groups were pre-computed before synthesis and are stored as part of

the abstraction. These notions of progress groups, however, are not sufficient for the

specific application considered in this paper. First, we find that single-action progress

groups cannot accommodate the battery SOC requirement and some reachability

requirements at the same time. Moreover, pre-computing and storing multi-action

progress groups requires an unacceptable computation load because the number of

actions in our application is relatively large. Hence, we develop a procedure here to

construct multi-action progress groups on-the-fly during synthesis. This procedure

leads to a more general notion called multi-action state-dependent progress groups.

We use Fig. 6.8 to illustrate why single-action progress groups are not sufficient for

this application, that is, why the battery SOC requirement Spec3 and the reachabil-

ity part of requirement Spec7 cannot be satisfied at the same time with single-action

progress groups. On the left side of the figure, we plot the rectangular partition

and the system’s vector field projected onto SOCB-T1 space. By requirement Spec3,
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Figure 6.8: Illustration of system flow projected onto SOCB-T1 subspace (left), abstraction with
single-action progress group (right (a), (b)) and abstraction with multi-action state-dependent
progress group (right (c)). The self-loops on the discrete states are removed because they are part
of some progress groups and hence correspond to transient regions.

the regions where battery SOC falls below 0.1 or exceeding 0.9 are labeled as unsafe

(gray). By requirement Spec7, the fuel cell temperature should reach and stay be-

tween 340K to 350K, and the corresponding regions are labeled as target (green). To

reach the target region, we can either (i) let the fuel cell do self-heat-up, meanwhile

using the excess power generated to charge the battery (corresponding to action u1),

or (ii) use the heater to warm up the fuel cell, by drawing power from the battery

(corresponding to action u2)3. Note that no action can keep battery SOC constant

while steering the fuel cell temperature towards the target. This is true due to the

variation in motor requested power PM, which is an operating condition (uncontrolled

variable).

The right section of the Fig. 6.8 shows the abstraction, where the colored ellipses

mark some progress groups and the arrows show the paths when the corresponding

actions are applied. By choosing a single action (i.e., case (a) or (b)), the paths either

3In practice there are more than 70 actions in total, but we only plot the system’s flow under two typical actions
u1 and u2 to simplify the illustration.
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go all the way up (case (a)) or down (case(b)) and lead to unsafe discrete states.

Therefore battery SOC requirement Spec3 is violated on the abstraction. Note that

such paths are spurious because they do not represent any real trajectories of the

concrete system (e.g., choosing u1 at low battery SOC actually leads the trajectory

into the target region before saturating the battery). Such spurious behaviors exist

in abstraction due to the conservatism introduced by partitioning. On the other

hand, the battery SOC requirement can be satisfied by applying multiple actions. As

shown in Fig. 6.8 (c), all the paths stay safe when u1 is applied at the bottom discrete

state and u2 is applied at the upper two discrete states. However, the reachability

requirement is violated by an infinite loop caused by alternatively choosing u1 and

u2. Again, this loop is spurious, as there is a constant flow towards the left no matter

what action is chosen. We thus need multi-action (not necessarily state-dependent)

progress groups to eliminate such loops when they are spurious.

Since the total number of multi-action progress groups grows exponentially in the

number of available control actions (70 for this application), it easily exhausts time

and memory to pre-compute these progress groups and encode them in the abstrac-

tion before synthesis. Therefore, instead of doing computation and storage before

synthesis, we compute progress groups with multiple actions during the synthesis

process, and we restrict the control actions on-the-fly based on the synthesis. As

will be shown later, under such restrictions, the control actions assigned to different

discrete states in the progress group may vary from one to the other, that is, the

action is state-dependent. Algorithm 4 shows how to construct such progress groups

and how to use them to compute a backwards reachable set of the target set.

Algorithm 4 is summarized with the following steps:

1. We start from an initial set B and compute its one-step-predecessors P =
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Algorithm 4 [B] = BackwardsReach(C, S, α). Compute the safe backwards reachable set of C,
with multi-action state dependent progress groups constructed on-the-fly during the computation.

Input: the set C of discrete states to reach, the set S of all discrete states labeled as safe, abstraction
α that maps a region in concrete system’s state space to a discrete state.

Output: Set B, a backwards reachable set of set C.
1: B = C
2: P = Pre1(B)
3: i = 0
4: while B is not satisfactory and i ≤max iter do
5: (B′,K) = CInv

(
B ∪ (P ∩ S)

)
6: if ∃v : ∀b ∈ B′ \B : ∃ub ∈ K(b) : ∀x ∈ α−1(b), d ∈ D : vT f(x, u, d) > 0 then
7: B′\B is a multi-action state-dependent progress group whenever ub is applied at b ∈ B′\B
8: B = B′

9: P = Pre1(B)
10: else
11: Replace P by a proper subset of P that has not been used before
12: end if
13: i = i+ 1
14: end while
15: return B

Pre1(B). A discrete state p is called a one-step-predecessor of a set B, if there

is a transition (under some actions assigned to p) leading p to some discrete

state b ∈ B. Here, since we want to remain in the target set after arriving at it,

set B is initialized as a controlled invariant set contained by the target.

2. Next, sub-procedure (B′, K) = CInv
(
B ∪ (P ∩ S)

)
computes the largest con-

trolled invariant set B′ that is contained by set B ∪ (P ∩ S), together with an

invariance controller K : B′ → 2U that maps every discrete state in B′ to a set

of control actions that renders B′ invariant.

3. If the discrete states inB′\B correspond to a transient region under some actions

restricted by invariance controller K (this is checked by a sufficient condition

in line 6), set B′ \ B form a multi-action state-dependent progress group, and

is added to the backwards reachable set.

4. We repeat steps 1, 2, 3 until the winning set reaches a satisfactory size or a

maximum number of iterations has been reached.

We explain the intuition behind Algorithm 4 as follows. For simplicity, we will
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temporarily omit the “avoid” requirements. Suppose that B is indeed a backward

reachable set of some controlled invariant set C, the following facts must hold:

• Set B is computed in a backwards expanding manner starting from and con-

taining set C; hence, the paths satisfying the reach-stay requirement will always

stay within set B. Thus, set B is controlled invariant under the actions that

achieve the reach-stay requirement.

• For C to be reachable in finite time, no path stays in B \C forever. That is, set

B \ C will form a progress group under the actions that achieve the reach-stay

requirement.

Therefore, in order to find a progress group that helps expanding the backwards

reachable set of C, one need only explore the controlled invariant sets B′ that contain

C, and restrict to the action assignments that render B′ invariant. These restrictions

avoid exploring all subsets of discrete states with all possible action combination when

computing multi-action state-dependent progress groups.

The remainder of this part explains the condition in line 6, Algorithm 4 and

shows how to check this condition. Take Fig. 6.8 as an example. Shaded discrete

states form a multi-action state-dependent progress group when u2 is assigned to

the two discrete states on the top and u1 is assigned to the bottom discrete state.

This is because the region represented by these discrete states is transient under

corresponding actions. The transience can be checked efficiently by arguing the

direction of the vector field of the underlying concrete system. As shown on left

side of Fig. 6.8, the union of three regions X1 ∪ X2 ∪ X3 is transient because the

horizontal component of the vector field is always positive (i.e., pointing rightwards)

when control u2 is applied in X1 X2, and u1 is applied in X3. More generally, given

a set of regions {Xk}mk=1 in n dimensional state space, each region equipped with one
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control action uk, X =
⋃m
k=1Xk is transient under assigned actions if there exists

v ∈ Rn,

∀k = 1 . . .m : min
x∈Xk,d∈D

vTf(x, uk, d) > 0.(6.16)

If vector v = ±ei (the vector with the ith entry being 1 and the rest being 0),

and if Xk’s are rectangles, the optimization problem in (6.16) can be approximated

efficiently by the approach developed in section 6.4.1.

6.5 Results and Discussion

Using the solution approach described in Section 6.4, a switching controller is syn-

thesized. The controller is in the form of a look-up table (see Step 3 in Section 6.4.2).

At each time instant, the current state locates in one of the regions of the look-up

table and the control action in that region is applied accordingly. Although multi-

ple actions might be available in the region, selecting an arbitrary one is sufficient

to guarantee the correctness. We implement a “lazy switching” heuristic for action

selection to reduce the change in the control inputs, allowing us to always maintain

the previously used control action, where possible. Whenever we enter a new region

in the look-up table and the previous action is no longer available there, we change

the action but try to maintain the position of as many actuators as possible. In

particular, we can assign different priority to different actuators in terms of main-

taining their current positions. If there is no such priority, we always tend to fix the

actuator whose position has changed most recently. This practice helps to balance

the position change of different actuators, avoiding frequent switches. The action se-

lecting heuristics can be also designed to incorporate with specification Spec2, which

is excluded from the correct-by-construction synthesis. Since Spec2 requires that the
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fuel cell current density i is smaller than i∗, we can always select the control actions

with the smallest current density i to avoid violating Spec2.

The controller is shown to be able to achieve the specifications on the entire state

domain X. That is, the computed winning set is equal to the domain X. We il-

lustrate the closed-loop behaviors by simulating the system at 285K. We modify

FTP-72 vehicle speed data [115] to obtain motor power PM and vehicle speed v pro-

file in a driving cycle. First, since the controller allows the vehicle speed v to vary

only in [5,25]m/s, we saturate the v whenever its value falls below 5m/s. Second,

PM, the power requested by the motor, is assumed to be proportional to acceleration

dv
dt

whenever the acceleration is positive, and is assumed to be 0 whenever the accel-

eration is negative. PM is also scaled so that the value lies in the allowable range,

that is, [0, 17]kW.

0 350 700 1050 1369

t (s)

0

10

20

30

v 
(m

/s
)

Figure 6.9: FTP-72 vehicle speed data, saturated to fit the operating condition constraints of the
synthesized controller.

The simulation results are plotted in Figure 6.10, from which we make the follow-

ing observations:

1. By plots (1-1) (1-2) (5-2), all states stay in the domain, and the battery SOC

never exceeds upper or lower bounds.

2. By plot (1-1) fuel cell temperature reaches and stays in the target range (marked

by a dashed green line).

3. By plot (5-2), the battery SOC recurrently visits the reference interval marked

by the dashed blue lines. Here we assume the reference can vary over time, and is
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determined by a higher level power management module. Note that the battery

SOC need not stay in the interval after arriving, even if the reference has not yet

changed: it simply maintains the capability to recover to the desired level. This

can be seen from the simulation before 300s. Such behavior is desired because

it gives more freedom to the controller, while guaranteeing that the battery

SOC is able to recover. For example, while the fuel cell stack does self-heat-up

at the warm-up stage, it generates more power than requested with the extra

power stored in the battery. This explains why the battery SOC increases and

exceeds the reference interval at the beginning of the simulation. However, once

the target temperature is reached, the battery SOC begins to drop towards the

reference interval.

4. By plot (2-2), it can be seen that the heater is not turned on at the warm-up

stage. The fuel cell does self-heat-up instead, indicating that while the controller

is not optimal in terms of warm-up speed, it does not harm the correctness of

the controller.
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Figure 6.10: Simulations results: states, powers and selected controls. Temperature states start from
285K and battery SOC starts from 0.105.
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CHAPTER VII

Fault-tolerant Path Planning

In this chapter, we consider the fault tolerant path planning problem for linear sys-

tems to satisfy some high level requirements specified by LTL. Unlike the problems

solved in Chapter V where a winning set (i.e., a set of initial conditions starting

from where the specification is achievable) is to be searched, an initial condition

is given as part of the problem setup. This allows one to leverage Mixed Integer

Linear Programming (MILP) based LTL encoding to search for an open-loop strat-

egy that achieves the specification, and the fault-tolerant path planning problem is

solved under this framework. We first show how open-loop fault tolerant strategies

(associated with each initial state) can be synthesized by solving an MILP. These

open-loop strategies, however, are not robust to the disturbances because of two

reasons. First, since the disturbed system cannot be predicted precisely, the fault

will be detected with a delay. Secondly, even if the faulty status is known, the true

system trajectory may still deviate from the planned trajectory as the impact of the

disturbance accumulates. To solve the two problems, we present a MILP formula-

tion of the problem that incorporates finite detection delays, the open-loop strategy

defined by the MILP’s solution is then robustified with additional linear regulation.
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Chapter overview. This chapter is organized as follows. Section 7.1 defines

the fault-tolerant path planning problem. Section 7.2 introduces preliminaries on

MILP encoding of LTL. Section 7.3 presents the proposed MILP based approach for

fault-tolerant path planning problem. Section 7.4 presents the low level regulator

design approach via optimization. Finally the proposed algorithm is illustrated with

a motion planning on 2D plane.

Related work. The MILP-based approach considered in this chapter follows

[58, 95, 119] and is also closely related to the constraint control of mixed-logical sys-

tems [12]. As mentioned in Chapter I, it aligns with [96, 100, 39, 104, 99] that try

to make the obtained strategy more robust and reactive to environment changing.

The use of similar hierarchical control architectures has become a common practice

in many application domains [19]. For simple tasks like reaching a goal while avoid-

ing obstacles that may appear on the fly, approaches based on LQR trees [111] or

contraction theory [105] have been proposed along these lines.

7.1 Simplified Problem Setup

In this section, we define the fault tolerant path planning problem. The problem has

two ingredients: (i) a system whose dynamics can degrade suddenly due to a fault,

and (ii) an LTL formula that specifies the system’s “graceful degradation”.

System Model
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The system model considered in this paper is defined by

Σ : xt+1 = Aσtxt +Bσtut + F σt + wt,(7.1)

σt+1


∈ {h, f} if σt = h

= f if σt = f

.(7.2)

where xt ∈ X ⊆ Rn is the state, ut ∈ U ⊆ Rm is the control input, wt ∈ W ⊆ Rn

is the disturbance, and σt ∈ {h, f} is the fault status of the system. If σt = h, the

system is healthy and evolves with the dynamics defined by (Ah, Bh, F h); if σt = f,

this indicates that the fault has occurred and the system evolves with the dynamics

defined by (Af , Bf , F f). By Eq. (7.2), the fault is permanent because σt never

recovers to h after it becomes f. In addition, we make the following assumption on

the faults.

Assumption 3. We assume that the fault is T -detectable ([47]), that is, if the fault

occurs at time step to, it will be detected at td where to + 1 ≤ td ≤ to + T .

For Assumption 3, it should be noticed that T is only an upper bound on the

detection delay, and the actual online detection can be earlier than to +T . However,

this fact cannot be incorporated in the offline path planning phase because the actual

detection depends on the realization of wt.

7.2 Mixed Integer Encoding of LTL

Given an LTL formula ϕ, it is well-known from the literature [119] that x |= ϕ can

be encoded with mixed integer linear constraints in the following sense. Instead

of imposing constraints on the infinite sequence x, we search for a finite sequence

x = x1x2 . . . xk, xk+1...xN that satisfies the following linear inequality constraint:

Hϕ,k,N(x,b) ≤ 0,(7.3)
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where b is an N -sequence of auxiliary binary (hence integer) vectors1, and Hϕ,k,N

is an affine function in (x,b). In particular, Hϕ,k,N is constructed in such a way

that the infinite sequence x := (x1x2 . . . xk)(xk+1 . . . xN)ω, obtained by unfolding

x = x1x2 . . . xN at point k, is guaranteed to satisfy ϕ. In this case, we say that finite

sequence x satisfy ϕ with a slight abuse of terminology.

With such mixed integer encoding technique, the path planning problem of linear

systems can be formulated as a MILP. Let the system model be xt+1 = Axt+But+F

with state x ∈ X and control u ∈ U , where X ⊆ Rn and U ⊆ Rm are polytopes, also

let xinit be the initial state, the MILP formulation is given by

find x,u,b

s.t. ∃1 ≤ k ≤ N − 1 : Hϕ,k,N(x,b) ≤ 0 and

Ax(N) +Bu(N) + F = x(k + 1),

x(t+ 1) = Ax(t) +Bu(t) + F, t = 1, . . . , N − 1,

u(t) ∈ U, b(t) ∈ {0, 1}, t = 1, . . . , N,

x(t) ∈ X, t = 1, . . . , N,

x(1) = xinit.

(7.4)

Suppose that the above optimization problem is feasible and let (x,u,b) be one of

its solutions, an infinite control sequence u can be extracted from the finite sequence

u, by unfolding u at some point 1 ≤ k ≤ N − 1. This control sequence leads to an

infinite state sequence x that satisfies the linear dynamics and LTL specification ϕ.

While formulating the MILP in Eq. (7.4), it is a common practice to modify

the state space labeling with an extra ∆-margin so that the specification is satisfied

robustly [36, 74, 64]. Such modification provides robustness against uncertainties like

disturbances or errors due to the sampling of a continuous-time system. For example,

1In practice, some variables in b need not be restricted as binary in the formulation. Instead, they can be specified
as real and will be binary automatically as a result of the encoding.
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if an unsafe region is required to be avoided (i.e., ϕ = �¬πunsafe) under uncertainties,

one can expand the unsafe set Xunsafe := {x ∈ Rn : πunsafe ∈ L(x)} by ∆, i.e., define

Xunsafe := Xunsafe⊕{x : ‖x‖ ≤ ∆}, where We X⊕Y := {x+y : x ∈ X, y ∈ Y } is the

Minkowski sum of setX, Y ⊆ Rn. Then avoidingXunsafe means thatXunsafe is avoided

with ∆-margin. Similarly, if some target region is required to be reached (i.e, ϕ =

♦πtarget) robustly, one can shrink the target set Xtarget := {x ∈ Rn : πtarget ∈ L(x)}

into Xtarget := Xtarget 	 ∆, where ,X 	 Y := {x : {x} ⊕ Y ⊆ X} is the Minkowski

difference of set X and Y . Reaching the shrunk set Xtarget guarantees that set Xtarget

is reached with ∆-margin. To do such expansion and shrinking systematically for

arbitrary LTL formulas, one needs to rewrite the specification ϕ in positive normal

form [36]. If atomic proposition π has no negation in the front, we shrink the set

Xπ := {x ∈ Rn : π ∈ L(x)} by ∆; and if π has a negation in the front, we expand

the set Xπ by ∆.

7.3 MILP Formulation of Fault Tolerant Path Planning

In this section, we formulate the fault tolerant path planning problem as a MILP.

The system is assumed to be undisturbed (an assumption to be relaxed in the next

subsection) and have a fault that is T -detectable. In addition, the labeling of the

state space is robustified with a ∆-margin. We will also assume that there is a

way (to be presented in the next subsection) to keep the true, disturbed trajectories

∆-close to a nominal trajectory as long as the system’s fault status does not change.

We begin by sketching the strategy that achieves specification Φ in Eq. (4.8). To

satisfy Φ, the system can either stay in the healthy mode forever and satisfy ϕh, or

enter faulty mode at some time to and start to satisfy ϕf from then on. However,

since the fault is beyond our control, we can only respond to the fault occurrence
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passively. In particular, as long as the fault has not been detected yet, there is a

chance that the the system is healthy and will be healthy forever. Hence we need to

achieve specification ϕh for the healthy mode in this case. On the other hand, once

the fault is detected, the first half of Φ (i.e., (�¬πf) ∧ ϕh) can no more be satisfied.

Hence the strategy needs to respond to the fault by rendering the system to satisfy

ϕf .

The above analysis leads to a strategy visualized in Fig. 7.1 (upper part). Roughly

speaking, strategy u should contain two pieces: a sequence uh (black) that achieves

ϕh under the healthy dynamics, and a sequence uf (gray) that achieves ϕf under the

faulty dynamics. The two sequences uh and uf can have different length (Nh, N f

respectively), and both of them can be unfolded to obtain infinite sequences (the

loops that are to be unfolded are marked with dashed line arrows in Fig. 7.1). In

addition, there should be different control sequences uf associated with different time

instants of detection because our strategy should respond to the fault detected at

anytime. We denote each control sequence associated with detection time td by

uf [td].(7.5)

Several important remarks on uf [td] are made in what follows.

First, it should be noticed that sequence uf [td] starts from time td, but it may

correspond to any fault that occurs at min{1, td−T} ≤ to ≤ td−1, where min{1, td−

T} is the earliest possible fault occurrence time that associates with td given T -

detectability assumption. All of these fault occurrences associated with the same td

cannot be treated separately because the exact fault occurrence time to is not known

in general. Instead, these different fault occurrences are all controlled with uh and

uf [td] in the following way:

• Within the so called “uninformed execution horizon” (i.e., min{1, td−T} ≤ t ≤

118



td− 1), we do not know the system is already faulty and have to apply uh until

time td − 1.

• Starting from time td, the fault is known and uf [td] is applied.

With the above control strategy, each occurrence time to corresponds to a different

trajectory generated under the faulty dynamics, denote by

xf [to, td],(7.6)

and our goal is to ensure that xf [to, td] can be unfolded into an infinite sequence that

satisfies ϕf for all td and min{1, td − T} ≤ to ≤ td − 1.

The family of sequence xf [to, td] associated with a fixed td has a notable property,

that is, they all behave approximately the same as one sequence xh within the unin-

formed execution horizon, where xh denotes the sequence generated by uh under the

healthy dynamics. In particular, xf [to, td] will be ∆-close to xh at least until td − 1.

This has to be true given the assumption that the disturbed healthy trajectories is

always ∆-close to the nominal trajectory xh as long as the system is healthy. Con-

sequently, the fault should be detected as long as the real trajectory is outside the

∆-tube of xh. The fact that xf [to, td] is close to xh within the uninformed execution

horizon is highlighted with the blue box in the lower part of Fig. 7.1.

The second remark is about the faults that are detected on the loop. These

situation needs to be handled with extra care because it may correspond to multiple

fault detections after unfolding the loop. In Fig. 7.1, for example, if the fault is

detected at the black node denoting xh(6), the detection time td = 6 + ml where

l is the length of the loop and m = 0, 1, 2, . . . . These cases need to be handled

separately. In particular, all the cases with ml ≥ T can be treated as one. The

number of cases is hence reduced to finitely many and we only need to find uf [td] for

1 ≤ td ≤ Nh + T .
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Figure 7.1: An Illustration of the fault tolerant path planning strategy (upper) and associated
trajectories (lower).

In what follows, we transform the above descriptions of the strategy into MILP

formulations.

Healthy Mode Path Planning

For the healthy mode control sequence uh to achieve healthy specification ϕh under
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the healthy dynamics defined by (Ah, Bh, F h), one needs the following constraints:

∃1 ≤ kh ≤ Nh − 1 :

Hϕh,kh,Nh

(
xh,bh) ≤ 0 and

Ahxh(Nh) +Bhuh(Nh) + F h = xh(k + 1),

xh(t) = xh(t−Nh + k),uh(t) = uh(t−Nh + k),

t = Nh, . . . , Nh + T,(7.7)

xh(t+ 1) = Ahxh(t) +Bhuh(t) + F h,

t = 1, . . . , Nh − 1,(7.8)

xh(1) = xint,(7.9)

where xh is the trajectory generated by the healthy dynamics under uh, Hϕh,kh,Nh

is a function, encoding the specification ϕh within a horizon of length Nh, that is

affine in both xh and auxiliary variables bh, and xinit is the initial state. Note that

we extend xh and uh by T in Eq. (7.7) to handle the detection on the loop.

Faulty Mode Path Planning

We also require all the possible faulty trajectories xf [to, td] to satisfy ϕf when they are

controlled by the faulty mode control uf [td], which leads to the following constraints
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for 1 ≤ td ≤ Nh + T and min{1, td − T} ≤ to ≤ td − 1:

∃1 ≤ kf [to, td] ≤ N f :

Hϕf ,kf ,N f

(
xf [to, td],bf [to, td]

)
≤ 0 and

Afxf [to, td](N f) +Bfuf [td](N f) + F f = xf [to, td](kf + 1),(7.10)

xf [to, td](t+ 1) = Afxf [to, td](t) +Bfuf [td](t) + F f ,

t = T, . . . , N f − 1,(7.11)

xf [to, td](t) = xh(t+ to − 1),

t = 1, . . . , T, .(7.12)

where Hϕf ,kf ,N f encodes specification ϕf within horizon of length N f . In particular,

Eq. (7.12) requires the first T points in sequence xf [to, td] overlaps with the cor-

responding points in healthy sequence xh. This constraint captures the fact that

xh[to, td] stays close to xh within the uninformed execution horizon. This constraint

hence couples constraints (7.7)-(7.9) with constraints (7.10)-(7.11).

In summary, let uf (xf , respectively) be the vector obtained by stacking uf [td]

(xf [to, td], respectively) for all td (to, td, respectively), the fault tolerant path planning

for nominal system with detection delay can be formulated as the following MILP:

find xh,xf ,uh,uf ,bh,bf

s.t. Eq. (7.7)-(7.12),

xh(t),xf(t) ∈ X, ∀t,

uh(t),uf(t) ∈ U, ∀t,

bh(t),bf(t) ∈ {0, 1}, ∀t.

(7.13)

Comparing to regular path planning MILP formulation, the fault-tolerant path plan-

ning MILP has more constraints and variables. Let nf
C, nf

B and mf be the number

of continuous and binary variables and constraints respectively, which are required
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to encode the faulty mode LTL specification of a path of length N f , the extra num-

ber of continuous and binary variables, and the number of constraints added on top

of regular path planning MILP is O(Nhnf
C), O(Nhnf

B) and O(Nhmf) respectively.

Particularly, these three quantities do not depend on the detection delay T .

7.4 Robustification of MILP Solution via Regulation

From the previous section, we formulate an MILP whose solution leads to a nominal

trajectory x that satisfies the specification Φ. In particular, we allow the real tra-

jectory x to deviate at most ∆ from the nominal (i.e., ‖x(t)− x(t)‖ ≤ ∆) while still

satisfying Φ. In this section, we show how to find the minimum margin ∆ that can

be achieved by a linear regulator and the corresponding regulation gain by solving a

quasi-convex optimization problem.

In what follows we consider system

xt+1 = Axt +But + wt,(7.14)

where wt is disturbance satisfying ‖wt‖ ≤ d for all t, and A, B can refer to the

system matrices for the healthy system or the faulty system. Note that the constant

offset term F in Eq. (7.1) is dropped because it only shifts the equilibrium of the

system and makes no difference when the regulation is of our concern. We call a

system to be nominal if wt = 0 for all t. Given an initial state xinit and an open-

loop strategy u = u1u2 . . . uN , the trajectory x = x1x2 . . . xN generated by nominal

system is governed by

xt+1 = Axt +But,(7.15)

x1 = xinit.(7.16)
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Under the given open-loop strategy, the actual trajectory may deviate from the

planned nominal trajectory in the presence of nonzero disturbance wt. Moreover,

such deviation may accumulate with time because there is no feedback. In this work,

we introduce feedback to keep the actual trajectory close to the planned nominal

trajectory x as time evolves. The block-diagram of the overall hierarchical closed-

loop system is shown in Fig. 7.2. Instead of applying nominal control ut directly to

the system, we use

ut = ut +K(x̂t − xt)(7.17)

where K is the state feedback gain, x̂t is the estimated state that is assumed to

satisfy

‖x̂t − xt‖ ≤ E.(7.18)

Our goal is to design feedback gain K, so that the difference between the actual

trajectory x and the planned nominal trajectory x is bounded by a constant ∆ over

time.

Plant:
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝑣𝑡

Observer:
ො𝑥𝑡+1 = 𝐴ො𝑥𝑡 + 𝐵𝑢𝑡 + 𝐿(ො𝑦𝑡 − 𝑦𝑡)

ො𝑦𝑡 = 𝐶 ො𝑥𝑡 + 𝐷𝑢𝑡

Feedback control:
𝑢𝑡 = 𝑢𝑡 + 𝐾(ො𝑥𝑡 − 𝑥𝑡)

Open-loop planner:
MILP: 𝑢𝑡 , 𝑥𝑡

𝑦𝑡

ො𝑥𝑡

𝑢𝑡

Controller

Figure 7.2: Block-diagram of the closed-loop system (the extension with output feedback can be
found in the Appendix).

The rest of this section focuses on designing K such that the uniform bound on
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‖xt − xt‖ is minimized. Combining Eq. (7.14), (7.15), (7.17), we have

xt+1 − xt+1 = (A+BK)(xt − xt) +BK(x̂t − xt) + wt,(7.19)

which implies

‖xt+1 − xt+1‖ ≤‖(A+BK)(xt − xt)‖

+ ‖BK(x̂t − xt)‖+ ‖wt‖

≤‖A+BK‖∗‖xt − xt‖

+ ‖BK‖∗‖x̂t − xt‖+ ‖wt‖

≤‖A+BK‖∗‖xt − xt‖

+ ‖BK‖∗E + d,(7.20)

where d is the bound of ‖wt‖ and E is the error bound on the state estimation

from Eq. (7.18). Let ∆ be the desired bound on ‖xt − xt‖, we require the following

recurrence relation:

‖xt − xt‖ ≤ ∆⇒ ‖xt+1 − xt+1‖ ≤ ∆.(7.21)

Eq. (7.20), (7.21) hence suggests that

‖A+BK‖∗ ≤
∆− d− ‖BK‖∗E

∆
.(7.22)

To minimize ∆, we formulate an optimization problem,

minimizeδ,K δ

s.t. ‖A+BK‖∗ ≤ δ−d−‖BK‖∗E
δ

δ ≥ 0

.(P1)

Propoition 15. The optimization problem (P1) is equivalent to the following quasi-

convex optimization problem:

minimizeK
d+‖BK‖∗E

1−‖A+BK‖∗

s.t. ‖A+BK‖∗ ≤ 1

.(P2)
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Proof. We first prove the equivalence between the optimization problems (P1) and

(P2). Then, we prove that the objective function of the second problem is quasi-

convex.

First note that d and E are nonnegative, we hence have

‖A+BK‖∗ ≤ δ−d−‖BK‖∗E
δ

δ ≥ 0

⇔
δ ≥ d+‖BK‖∗E

1−‖A+BK‖∗

‖A+BK‖∗ ≤ 1.

(7.23)

Now let K?, δ? be an optimal solution of (P1). By Eq. (7.23), we know that K◦◦ =

K? is feasible for Problem (P2) and leads to an objective value d+‖BK◦◦‖∗E
1−‖A+BK◦◦‖∗ ≤ δ?.

Similarly, let K?? be an optimal to Problem (P2), we know that K◦ = K?? and

δ◦ = d+‖BK?‖∗E
1−‖A+BK?‖∗ are feasible for (P1) and they lead to the same objective value.

This hence proves the equivalence between the two problems.

Next, we show that d+‖BK‖∗E
1−‖A+BK‖∗ is quasi-convex in K when ‖A + BK‖∗ ≤ 1, i.e.,

Ss :=
{
K
∣∣∣ d+‖BK‖∗E

1−‖A+BK‖∗ ≤ s, ‖A+BK‖∗ ≤ 1
}

is a convex set for any s. Without loss

of generality, we only need to consider s ≥ 0 as otherwise Ss = ∅. In that case,

Ss =

K
∣∣∣∣∣ ‖BK‖∗E + s‖A+BK‖∗ ≤ s− d,

‖A+BK‖∗ ≤ 1

 .(7.24)

Since constants s, E ≥ 0, and ‖BK‖∗, ‖A + BK‖∗ are convex functions in K, it

follows that Ss is a convex set, and this finishes the proof.

We highlight the following three points regarding the above optimization problem.

First, a quasi-convex optimization problem can be solved by solving a sequence of

convex feasibility problems. The idea is to do a line search on the objective value f(x)

and check if Ss := {x feasible | f(x) = s} is empty or not. Since Ss is a convex set by

quasi-convexity of f , this can be done relatively efficiently. The detailed algorithm

can be found in [16]. Secondly, for the optimization problem (P2) to be feasible, it
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is necessary (but not sufficient) that pair (A,K) is stabilizable. To see this, consider

the equivalent problem in (P1), in which we require ‖A+ BK‖∗ ≤ δ−d−‖BK‖∗E
δ

< 1.

If (A,B) is not controllable, this constraint can not be satisfied with any gain K.

Finally, if the system in Eq. (7.14) has an output function and the estimated state x̂t

is given by an observer, a similar quasi-convex problem can be derived to minimize

the estimation error bound E in Eq. (7.18).

Several remarks are provided below, regarding the issues when combining the path

planning with the regulation.

(i) First, note that we need to design Kh for regulating the health dynamics and

K f for the faulty dynamics, which leads to ∆h and ∆f margin respectively.

The state labeling in the MILP formulation is hence modified with ∆h or ∆f

correspondingly.

(ii) The second remark is on splitting the control authority. Let Kh (K f , respec-

tively) be the solution of the problem in Eq. (P2) formulated with the healthy

(faulty, respectively) dynamics. The control authority required by linear regula-

tion is Uh
reg = {u ∈ Rm : ‖u‖ ≤ ‖Kh‖∗∆}. Therefore Uh

plan, the control authority

reserved for path planning, need to be shrunk by ‖Kh‖∗∆h, i.e., Uh
plan = U	Uh

reg.

The procedure of splitting U for the faulty mode follows similarly.

(iii) The third remark is about determining the faulty nominal trajectory xf used in

the regulation. Recall that the regulator is in the form of ut = uf(t)+K f(x(t)−

xf(r)) where xt is define by xf [to, td] under the faulty mode, but to is not known.

However, we will only switch the regulator gain from Kh to K f at time td, after

which xf [to, td] are the same for all to.

(iv) Finally, note that the true trajectory x may not be ∆h-close to the healthy

nominal trajectory xh at detection time td, although this is true for all t ≤ td−1.
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Hence extra error is introduced in this last step and need to be added on top of

∆h. This extra error is bounded by

∆h + ‖Ah − Af‖∗‖x‖+ ‖Bh −Bf‖∗‖u‖

+ ‖F h − F f‖.(7.25)

However, depending on the criticality of the application, this extra error can

be neglected if the real-time detection has high enough sampling rate, and thus

can report the fault as soon as the ∆ margin is violated by a tiny amount.

We now summarize the above construction in Section IV-A and Section IV-B with

the following proposition:

Propoition 16. Suppose that the healthy system (and the faulty system, respec-

tively) are regulated by Kh (K f , respectively) found by solving problem (P2), around

the trajectory obtained by solving the MILP in Eq. (7.13), then the true trajectory

robustly satisfies specification Φ in Eq. (4.8). This hence solves Problem 1.

Example 3. We present an example on robot path planning in this section. For

simplicity, we assume state feedback in this example.

The considered system is modeled with a double integrator on the plane. The

healthy discrete-time system matrices Ah, Bh, F h in Eq. (7.2) are obtained by sam-

pling the following continuous-time system with a sampling rate τ = 2s.

Ah
c =



0 1 0 0

0 −20 0 0

0 0 0 1

0 0 0 −20


, Bh

c =



0 0

1 0

0 0

0 1


, F h

c =



0

0

0

0


,(7.26)

For the faulty system dynamics, we assume that Af = Ah, Bf = Bh, but there is

a non-zero constant offset term F h = [0, 1.5, 0, 0]T , resulting in an undesirable
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drift. Let x = [x1, x2, x3, x4]T be the state and u = [u1, u2] be the control input, we

restrict that x ∈ X = [−10, 10] × [−2, 8] × [−15, 15] × [−15, 15], and that u ∈ U =

[−15, 15] × [−15, 15]. We also assume that there is an additive disturbance w ∈ R4

as in Eq. (7.14). In particular, disturbance w satisfy ‖w‖ ≤ 0.25. We assume that

the fault detection delay is bounded by 3 samples (i.e., T = 3).

The specification is defined by the LTL formula in Eq. (4.8) with

ϕh =(�¬πr) ∧ (♦�πg) ∧ (�♦πb1) ∧ (�♦πb2),(7.27)

ϕf =(�¬πr) ∧ (♦�πg).(7.28)

The regions (in x1–x3 space) in which each atomic proposition holds are marked

in Fig. 7.3. In particular, the regions for πr and πg are the rectangles with solid

boundaries, and the regions associated with πb1 (πb2, respectively) are to the left

(right, respectively) of the bold blue dashed line.

We first design a linear regulator by solving the quasi-convex optimization problem

in (P2). The quasi-convex problem is solved with a standard line-search algorithm

[16] that reduces to solving a sequence of convex optimization problems. These

convex problems are then solved using CVX [43]. In this example, since Af = Ah,

Bf = Bh, we only need one regulator gain K, and the extra error introduced by

detection delay in Eq. (7.25) can be bounded by ‖F h − F f‖ (here we assume that

the real-time detection has high enough sampling rate so that this extra error can

be neglected). The obtained optimal regulator gain leads to a margin ∆h = ∆f =:

∆ = 0.4604. We hence modify the labeling by ∆. In Fig. 7.3, this modification

corresponds to the transparent margin surrounding the rectangles and the thinner

dashed lines close to the bold ones. Finally, we shrink the control set U by ‖K‖∗∆,

as discussed at the end of Section IV-B in remark (ii).
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The fault tolerant path planning is then solved with the MILP formulated in

Section IV-A. We solve the MILP with Gurobi [44]. Fig. 7.3 shows (i) the scenario

when the system is always healthy, and (ii) a faulty scenario where the fault happens

at time instant to = 1 and is detected at td = 3. The black dotted line represents the

nominal healthy trajectory xh and the red dotted line represents the nominal faulty

trajectory xf [to, td]. The dark gray solid curve is the disturbed trajectory assuming

that the system remains healthy forever, and the purple solid curve is the disturbed

trajectory under the considered faulty scenario. The following observations can be

made based on these simulations:

(i) It can be seen that both the disturbed trajectories satisfy the specification

corresponding to their mode.

(ii) The two curves stay close until the fault detection, where the nominal trajectory

starts to deviate from the healthy trajectory.

(iii) The healthy trajectory (gray) detours to the left more than it requires to satisfy

ϕh, as it needs to preserve extra “room” for the faulty trajectory (purple) to

avoid the red obstacle.

b1b2
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x 3

Figure 7.3: The planned trajectories (dotted) and the disturbed trajectories (solid) for health mode
(black, gray) and faulty mode (red, purple).
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CHAPTER VIII

Conclusion and Outlook

8.1 Conclusion

In this thesis, the problem of correct-by-construction fault-tolerant control was stud-

ied. As the first step towards correct-by-construction fault-tolerance, we studied

model-based fault detection and the associated detectability analysis problems to

provide a guarantee on finite fault detection. By combing LTL monitoring and

model invalidation, an MILP-based detectability analysis was proposed to incorpo-

rate both the knowledge of the dynamical model and certain correct behavior the

healthy system must fulfill. It was shown that the proposed detectability analysis

method is less conservative.

We formalized the fault-tolerant control synthesis problem by defining a hierarchi-

cal system with fault configurations and capturing its graceful degradation require-

ment by two slightly different LTL formulas. The fault-tolerant control synthesis

problem was then solved with two approaches, namely abstraction-based control

synthesis via game solving and MILP-based path planning.

For abstraction-based synthesis, we approached the problem by first considering

it on finite transition systems. A bottom up recursive algorithm was proposed to
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decompose the overall synthesis problem into multiple smaller ones using the partial

order induced by the fault configuration. This led to more scalable algorithms. A

notable feature of the considered synthesis problem is that the worst case detection

delay, if finite, is also incorporated in the synthesis. The problem with detection delay

falls into the category of partial information game, and is hard to solve in general.

However, we showed that, for a class of specifications with suffix-closeness and a

novel property called absolute decomposability, the problem can be solved without

constructing the belief space, and hence the exponential state space explosion can

be avoided. A widely studied LTL fragment specified by GR(1) formula was shown

to satisfy those structural properties.

To demonstrate that the methods developed for discrete systems can be used for

continuous state systems as well, a fuel cell thermal management problem was solved

via abstraction-based approach. To achieve compute a less conservative abstraction

more efficiently, we i) studied the structural property of the fuel cell thermal dynam-

ics and ii) extended the existing synthesis tool. In particular, a structural property

called weak sign-stability was introduced and analyzed from the view of mixed mono-

tonicity.

For the MILP-based path planning, we proposed a control hierarchy that com-

bines high level path planning and low level regulation. The bounded error property

of the low level regulation provided a way to handle detection delay in the fault tol-

erant path planning. Comparing to the regular MILP-based LTL path planning,The

obtained control strategy was shown to be able to react to environment change and

to be robust agianst disturbance.
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8.2 Future Work

First, a potential extension of the fault-tolerant control synthesis problem definition

itself is that we wish to specify graceful degradation with priority. That is, at a faulty

mode, we desire to achieve the associated faulty specification only when achieving

the healthy specification is not possible. Our conjecture is that LTL is not sufficient

to express such priority and we plan to explore lattice-LTL [1] for the extension.

For the abstraction-based fault-tolerant control synthesis techniques presented in

Chapter V, we wish to find a way to algorithmically verify if an LTL formula specifies

an absolutely decomposable property, which is required to guarantee the proposed

algorithm’s soundness if achieving Φ is of our concern (see Section 4.2).

Regarding the abstraction-based synthesis for continuous state systems, one chal-

lenge is that the winning set for each faulty mode may be far from being maximal,

due to the conservativeness of the abstraction. Sometimes in practice, with a small

perturbation in some of the problem setup parameters (e.g., the bounds on distur-

bance), the winning set may change from the entire domain to empty set. This

phenomenon may reduce the value of the proposed approach which requires the

winning sets of different faulty modes to be nested according to the faults severity.

To tackle this problem, one possible solution is to explore another type of abstrac-

tion known as the l-complete approximations [77], which are less conservative as it

precisely encodes the long-term behavior of the underlying continuous-state system.

Such abstractions may be obtained through long-term reachability analysis of the

continuous-state system.

The work regarding fault-tolerant path planning currently presented in Chapter

VII assumes a simplified fault configuration, which consists only one faulty mode

other than the healthy mode. The extension to the system with any fault configura-
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tions can be done naively by applying the same formulation techniques, but unlike

the abstraction-based approach developed in Chapter 4 where the synthesis can be

done in a decomposed manner, this leads to a MILP that can only be solved mono-

lithically. Future work may address this issue, if possible. To extend the proposed

approach to a broader class of systems other than linear ones, we plan to combine

the MILP-based path planner with existing path planners that are more suitable for

general nonlinear dynamics. While the MILP-based planner can work on a simplified

linear model and focus on the high level logic constraints, the existing path planners

will be used to handle the complicated dynamic constraints. Finally, to support the

developed approach with some experiments, we plan to implement the MILP-based

path planning on small drones.

134



Appendix A

Long Proofs

1.1 Proof of Theorem 3

Soundness

We prove the soundness of Algorithm 1 by a bottom up induction. To this end, define

the level of a fault φ[i] to be the longest distance from φ[i] to a leaf mode of F . Clearly,

the level of a fault φ[i] is strictly larger than that of its successor φ[j] ∈ succ(φ[i]). Let

k be the level of certain faulty modes in F , consider the following statement of k:

• Statement(k): Suppose at some time t, we have

φ(t) = φ[i],(A.1)

q(t) ∈ W [i],(A.2)

φ(t+ 1) = φ[j] ∈ succ(φ[i]) where φ[j] is of level k,(A.3)

then Ψ is satisfied under strategy µ defined by Eq. (5.2).

If we can prove Statement(k) is true for all k, then the soundness of Algorithm 1 is

immediately proved by picking k to be the level of mode φ[j] ∈ succ(φ[1]). This covers

the case where the system will degrade from healthy mode at time t + 1, and the

soundness of Algorithm 1 under the always-healthy case is trivial. In what follows,

we prove Statement(k) is true for all k by induction over k.
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1◦ Base case: k = 0, i.e., φ[j] is a leaf mode of F .

First, assuming Eq. (A.1)-(A.3), we have q(t) ∈ W [i], φ(t) = φ[i] and hence the

dynamics is governed by TS[i]. By definition of the overall strategy µ in Eq.

(5.2), we know that sub-strategy K [i] is applied at time t, which guarantees ψ[i]

(and hence �W [j] by line 8) under TS[i] dynamics (line 10). Hence q(t + 1) ∈

W [j].

Moreover, Eq. (A.3) tells us that, at time t + 1, the dynamics is governed by

TS[j]. Hence µ will start using sub-strategy K [j]
(
q(t+ 1)

)
, which is well defined

as q(t + 1) ∈ W [j]. Since φ[j] is a leaf faulty mode, there will be no further

degradation from there and thus

(i) φ(s) = φ[j], ∀s ≥ t+ 1 ⇔ π[j] ∈ LF
Q

(
q(s), φ(s)

)
, ∀s ≥ t+ 1,

(ii) φ(s) 6= φ[j], ∀s ≤ t ⇔ π[j] /∈ LF
Q

(
q(s), φ(s)

)
, ∀s ≤ t,

(iii) LQ
(
q(t + 1)

)
LQ
(
q(t + 2)

)
. . . |= ϕ[j] ⇒ LF

Q

(
q(t + 1), φ(t + 1)

)
LF
Q

(
q(t +

2), φ(t+ 2)
)
. . . |= ϕ[j].

Combining bullets (i)-(iii) yields LF
Q

(
q(1), φ(1)

)
LF
Q

(
q(2), φ(2)

)
. . . |= ¬π[j] U

(
�π[j] ∧ ϕ[j]

)
and hence Ψ. That is, Statement(0) is proved.

2◦ Induction step: Assume that Statement(0), Statement(1), . . . , Statement(k) are

true, we prove Statement(k + 1) also holds in the sequel. There are two cases.

(i) Either φ(s) = φ[j] for all s ≥ t+ 1 and the proof of Statement(k+ 1) follows

exactly the same as in the base case.

(ii) Or there exists s > t + 1 such that φ(s) = φ[`] ∈ succ(φ[j]). In this case,

the level of φ[`] ∈ succ(φ[j]) is known to be strictly smaller than k + 1 (the

level of φ[j]). Then Statement(level of φ[`]), which holds by the hypothesis,

verifies the satisfaction of Ψ.
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Since specification Ψ is satisfied in both cases, the induction step is completed.

Completeness

Similar to the proof of the soundness, the completeness of Algorithm 1 can also be

proved by a bottom up induction on k, the level of faulty modes in F . Consider the

following statement of k:

• Statement(k): Suppose at some time t, we have

φ(t) = φ[i],(A.4)

φ(t+ 1) = φ[j] ∈ succ(φ[i]) where φ[j] is of level k,(A.5)

q(t+ 1) /∈ W [j],(A.6)

then there is an environment strategy that leads to the violation of Ψ.

Next we prove Statement(k) holds for all k by induction.

1◦ Base case: k = 0, i.e., φ[j] is a leaf mode of F .

Since φ[j] is a leaf, we know

(i) φ(s) = φ[j], ∀s ≥ t+ 1 ⇔ π[j] ∈ LF
Q

(
q(s), φ(s)

)
, ∀s ≥ t+ 1,

(ii) φ(s) 6= φ[j], ∀s ≤ t ⇔ π[j] /∈ LF
Q

(
q(s), φ(s)

)
, ∀s ≤ t,

(iii) φ(s) 6= φ[`], ∀s ≥ t+ 1 ⇔ π[`] /∈ LF
Q

(
q(s), φ(s)

)
, ∀s ≥ t+ 1, ` 6= j

⇒ LF
Q

(
q(1), φ(1)

)
LF
Q

(
q(2), φ(2)

)
· · · 6|= ¬π[`] U

(
�π[`] ∧ ϕ[`]

)
, ∀` 6= j.

Also, since it is assumed by Eq. (A.6) that q(t+ 1) /∈ W [j], we know that

(iv) there exists an environment strategy under which any word LQ
(
q(t+1)

)
LQ
(
q(t+

2)
)
· · · 6|= ϕ[j] ⇒ LF

Q

(
q(t+ 1), φ(t+ 1)

)
LF
Q

(
q(t+ 2), φ(t+ 2)

)
· · · 6|= ϕ[j].

Combining (i)(ii)(iv) yields LF
Q

(
q(1), φ(1)

)
LF
Q

(
q(2), φ(2)

)
· · · 6|= ¬π[j] U

(
�π[j] ∧ ϕ[j]

)
,

together with (iii) this establishes the violation of Ψ.
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2◦ Induction step: Assume Statement(0), Statement(1), . . . , Statement(k), we

show that Statement(k + 1) also holds.

Assume the hypothesis of Statement(k + 1), we have φ(t + 1) = φ[j] of level

k + 1 and q(t + 1) /∈ W [j]. Consider the following environment strategy that

determines the fault mode transition:

• If �W [`] is not yet violated for all φ[`] ∈ succ(φ[j]), the stay at the current

mode φ[j];

• otherwise �W [`] is violated for some φ[`] ∈ succ(φ[j]) at time s (i.e., q(s) /∈

W [`]), go to faulty mode φ[`] at time s.

If the above environment strategy is adopted, we may have the following two

possible cases:

(i) �W [`] is never violated for all φ[`] ∈ succ(φ[j]) and all time, but ϕ[j] cannot

be achieved in the worst case. Suppose otherwise ϕ[j] is also satisfied, then

LQ
(
q(t + 1)

)
LQ
(
q(t + 2)

)
. . . |= ψ[j] = ϕ[j] ∧ (

∧
φ[`]∈succ(φ[j])�W

[`]) and this

implies q(t + 1) should be contained by the the maximal winning set W [j]

synthesized against ψ[j] and dynamics TS[j], which contradicts with the

assumption q(t + 1) /∈ W [j]. Hence Ψ is violated in this case because the

faulty mode stays at φ[j] but ϕ[j] is violated.

(ii) q(s) /∈ W [`] for some φ[`] ∈ succ(φ[j]) at time s > t+1. In this case, according

to the faulty mode transition strategy described above, φ(s− 1) = φ[j] and

φ(s) = φ[`] with level ≤ k. By Statement(level of φ[`]) we know that Ψ must

be violated.

Since Ψ is violated in both cases if the above faulty mode selection strategy is

adopted by the environment, Statement(k + 1) is verified, and this finishes the
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induction step.

1.2 Proof of Theorem 4

Assume the actual transitions of faults are given by (φ[i1], φ[i2]), (φ[i2], φ[i3]), · · · , (φ[in−1], φ[in]),

where φ[i1] is the initial fault and φ[in] is the final fault, and (φ[ik−1], φ[ik]) ∈→F are

the nontrivial degradations.

Let W [ik]’s be the winning sets and ψ[ik]’s be the strengthened formulas returned

in each round of recursion. Regarding these sets and formulas, we can make the

following observations.

(a) W [i1] ⊆ W [i2] ⊆ · · ·W [in]. By soundness of oracle Win, W [ik−1] is the winning set

w.r.t. specification ψ[ik−1]. But note that ψ[ik−1] is a conjunction of �W [ik] with

other formulas (see line 9, Algorithm 2), thus W [ik−1] ⊆ W [ik]. This hence proves

the nested relation of W [ik]’s because k is arbitrary in the above argument.

(b) pref
(
Word(ψ[i1])

)
⊆ pref

(
Word(ψ[i2])

)
⊆ · · · ⊆ pref

(
Word(ψ[in])

)
⊆ pref

(
Word(ϕ[in])

)
.

To see this, recall line 9 of Algorithm 2, we have

Word(ψ[ik−1]) = Word(ϕ[ik−1]) ∩Word(�W [ik]) ∩Word(ψ
[ik]
safety),

where Word(ϕ[ik−1]) is absolutely decomposable by assumption, Word(�W [ik])

is an absolute safety property by Proposition 10, and Word(ψ
[ik]
safety) is abso-

lute safety property presuming that ψ[ik] is absolutely decomposable. One can

easily verify by induction that Word(ψ[ik]) is absolutely decomposable, using

Proposition 10, 5, 8.

Next applying Proposition 6, this implies

pref
(
Word(ψ[ik])

)
= pref

(
Word(ψ

[ik]
safety)

)
(A.7)
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Also note that ψ[ik−1] is obtained by conjunction of ψ
[ik]
safety and other formulas

(line 9, Algorithm 2), hence

pref
(
Word(ψ[ik−1])

)
⊆ pref

(
Word(ψ

[ik]
safety)

)
.(A.8)

Combining Eq. (A.7) (A.8), we have

pref
(
Word(ψ[ik−1])

)
⊆ pref

(
Word(ψ[ik])

)
.(A.9)

With the same argument used to obtain Eq. (A.8),

pref
(
Word(ψ[in])

)
⊆ pref

(
Word(ϕ[in])

)
.(A.10)

Now to prove the soundness, consider an execution starting from q0 ∈ W [i1] under

control strategy µ constructed by Eq. (5.2) and arbitrary environment strategy η

ρµ-η(q0) =
(
q(0) = q0, φ(0), a(0)

)(
q(1), φ(1), a(1)

)
· · · ,(A.11)

and the word generated by this execution

wρµ-η(q0) = w(0)w(1)w(2), · · · .(A.12)

First, let t[ik] denote the time instant when fault transition (φ[ik−1], φ[ik]) happens.

By observation (a), it is not hard to show by induction that q(t) ∈ W [ik] for t ≤ t[ik].

1◦ Base case: k = 2. The execution starts from q(0) = q0 ∈ W [i1], and the strategy

enforces ψ[i1]. Hence �W [i2], which is part of ψ[i1] by construction, is true before

the system degrades at time instant t[i2].

2◦ As induction hypothesis, assume that for all k ≤ m, we have q(t) ∈ W [ik] for

t ≤ t[ik] Now we move to k = m+1. First, by observation (a), W [ik] ⊆ W [im+1] for

all k ≤ m. The hypothesis immediately becomes q(t) ∈ W [im+1] for t ≤ t[im], and

what remains to be verify is when t[im] ≤ t ≤ t[im+1]. Again by hypothesis, we
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know q(t[im]) ∈ W [im+1]. But by construction, strategy µ enforces the succeeding

execution, which starts from q(t[im]), to satisfy �W [im+1]. In other words, for

t[im] ≤ t ≤ t[im+1], we have q(t) ∈ W [im+1]. This hence finishes the induction

step.

This immediately implies that q(t[in]) ∈ W [in].

Next we show that the finite word generated until time t[in] belongs to pref
(
Word(ϕ[in])

)
using observation (b). Let w[ik] := w(t[ik]) · · ·w(t[ik+1]− 1) be the word segment that

is generated under fault φ[ik]. Note that this segment is generated starting from

q(t[ik]) ∈ W [ik] (by the result from the last paragraph), under the winning strategy

designed to achieve ψ[ik]. Therefore w[ik] ∈ pref
(
Word(ψ[ik])

)
. By observation (b),

this means w := w[i1]w[i2] · · ·w[in] ∈ pref
(
Word(ϕ[in])

)
.

To this point, we have shown that when the final fault occurs at time t[in], the

state q(t[in]) is in the winning set W [in] for this final fault. We also know that finite

word w = w(0) · · ·w(t[in] − 1) generated so far belongs to pref
(
Word(ϕ[in])

)
. Note

that the succeeding strategy will focus on achieving ϕ[in] starting from state q(t[in]),

where the strategy is well defined because q(t[in]) ∈ W [in]. Moreover, this strategy

generates an execution v = v(t[in])v(t[in] + 1) · · · ∈ Word(ϕ[in]). Recall that ϕ[in]

is absolutely decomposable. By Proposition 3, the overall word wv |= ϕ[in]. This

proves the soundness of Algorithm 2 under the given assumptions.

1.3 Proof of Theorem 5

Soundness

The soundness of Algorithm 3 can be proved using a bottom up induction exactly

the same as that in Appendix 1.1. Consider the following statement of faulty mode

level k.
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• Statement(k): Suppose at some time t, we have

φ(t) = φ[i],(A.13)

q(t) ∈ W [i],(A.14)

φ(t+ 1) = φ[j] ∈ succ(φ[i]) where φ[j] is of level k,(A.15)

then Ψ is satisfied under strategy µ̂ defined by Eq. (5.6).

1◦ Base case: k = 0, i.e., φ[j] is a leaf mode of F .

First, by Assumption 2, no fault is allowed to happen within the uninformed

horizon. Hence φ(t+ 1) = φ[j] 6= φ[i] = φ(t) implies that

φ̂(t+ 1) = φ[i].(A.16)

Moreover, since the detection delay is assumed to be finite, there is r > t + 1

such that

φ̂(s) = φ[i] and φ(s) = φ[j], ∀s ∈ [[t+ 1, r]],(A.17)

φ̂(r + 1) = φ[j].(A.18)

That is, r + 1 is the time instant fault φ[j] is detected.

By Eq. (A.16) and the definition of µ̂ (see Eq. (5.2)), we know that sub-

strategy K [i] is used with in time interval [[t + 1, r]], Since K [i] is synthesized

against TS[i] � I, where the actions in I guarantee invariance in C [j] when the

dynamics is governed by TS[j], hence we have

q(s) ∈ C [j] ⊆ W [j], ∀s ∈ [[t+ 1, r + 1]],(A.19)

By Eq. (A.18) and the definition of µ̂, sub-strategy K [j] is used starting from

time r + 1, which is valid because q(r + 1) ∈ W [j] by Eq. (A.19). Since φ[j] is a
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leaf mode, the suffix word starting from time r + 1 satisfied ϕ[j], i.e.,

L
[j]
Q

(
q(r + 1)

)
L

[j]
Q

(
q(r + 2)

)
. . . |= ϕ[j](A.20)

which implies that

(i) L
[j]
Q

(
q(r + 1)

)
L

[j]
Q

(
q(r + 2)

)
. . . |= ϕ

[j]
liveness

⇒ L
[j]
Q

(
q(t + 1)

)
L

[j]
Q

(
q(t + 2)

)
. . . |= ϕ

[j]
liveness because ϕ

[j]
liveness specifies an

absolute liveness property.

(ii) L
[j]
Q

(
q(r + 1)

)
L

[j]
Q

(
q(r + 2)

)
. . . |= ϕ

[j]
safety.

Note that ϕ[j] is both absolutely decomposable and suffix-closed, hence ϕ
[i]
safety is

invariance by Proposition 11. This means ϕ
[j]
safety = �ψ for some propositional

formula ψ, and L
[j]
Q (q) |= ψ for any state q ∈ W [j] as W [j] is the winning set

synthesized against ϕ[j] = ϕ
[j]
safety ∧ ϕ

[j]
liveness = (�ψ) ∧ ϕ[j]

liveness. Hence Eq. (A.19)

implies that

(iii) L
[j]
Q

(
q(t+ 1)

)
. . . L

[j]
Q

(
q(r)

)
∈ pref

(
Word(ϕ

[j]
safety)

)
.

Also since ϕ
[j]
safety is absolute safety, bullets (ii) (iii) implies that

(iv) L
[j]
Q

(
q(t+ 1)

)
L

[j]
Q

(
q(t+ 2)

)
. . . |= ϕ

[j]
safety.

Combining bullets (i) and (iv) hence yields L
[j]
Q

(
q(t+1)

)
L

[j]
Q

(
q(t+2)

)
. . . |= ϕ[j].

But also note that φ(t) changes from φ[i] to φ[j] at time t + 1 and will stay

at leaf mode φ[j] ever since, therefore we have LF
Q

(
q(t + 1), φ(t + 1)

)
LF
Q

(
q(t +

2), φ(t+ 2)
)
. . . |= ¬π[j] U

(
�π[j] ∧ ϕ[j]

)
. Hence Ψ is achieved and Statement(0)

is proved.

2◦ Induction step: assume that Statement(0), Statement(1), . . . , Statement(k) are

true, we prove Statement(k + 1) also holds in the sequel. There are two cases.

(i) Either φ(s) = φ[j] for all s ≥ t + 1 and the proof of Statement(k) fol-
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lows almost the same as in the base case, except that ϕ[j], ϕ
[j]
safety, ϕ

[j]
liveness

should be replaced by ψ[j], ψ
[j]
safety, ψ

[j]
liveness respectively. Since ψ

[j]
safety =

ϕ
[j]
safety∧(

∧
j:φ[j]∈succ(φ[i]))(�W

[j]) is still an invariance property and ϕ
[j]
liveness =

ψ
[j]
liveness, we know that ψ[j] is also both absolute decomposable and suffix-

closed, and the satisfaction of Ψ can be established in the same way.

(ii) Or there exists s > t+ 1 such that φ(s) = φ[`] ∈ succ(φ[j]), in which case Ψ

must be also satisfied by Statement(level of φ[`]), which holds because the

level of φ[`] ∈ succ(φ[j]) is known to be strictly smaller than k + 1 (i.e., the

level of φ[j]).

Since specification Ψ is satisfied in both cases, the induction step is completed.

With Statement(k) proved for all k, we immediately obtain the soundness of Algo-

rithm 3. This is because either the faulty mode always stays at healthy and ψ[1]

(hence ϕ[1] and Ψ) is satisfied, or a degradation occurs at time t + 1, in which case

Ψ is satisfied by Statement(level of φ[1]).

Completeness

To establish the completeness of Algorithm 3, we need the following Lemmas.

Lemma 4. In Algorithm 3, C [j] = W [j] if ϕ[j] is suffix-closed.

Proof. By construction, we have C [j] ⊆ W [j]. Whenever ϕ[j] is suffix-closed, we also

have W [j] ⊆ C [j] because 1) C [j] is the largest controlled invariant set contained by

W [j] under TS[j] and 2) W [j] is invariant (i.e., q(t) ∈ W [j] for all t) under strategy

K [j] whenever the dynamics is governed by TS[j].

To prove that q(t) ∈ W [j] for all t under dynamics TS[j] and strategy K [j], assume

for a contradiction that q(1) ∈ W [j] but q(t) /∈ W [j] for some t under strategy

K [j], and let w := w(1)w(2) . . . , where w(s) = L
[j]
Q

(
q(s)

)
for all s, be a generated
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word. We have w |= ψ[j] by construction. Since ϕ[j] is suffix-closed, so is ψ[j] =

ϕ[j] ∧ (
∧
`:φ[`]∈succ(φ[j])�C

[`]). Therefore wt = w(t)w(t+ 1) . . . |= ψ[j]. But this means

it is possible to achieve ψ[j] starting from state q(t) under some strategy, which

contradicts with W [j] being maximal.

Lemma 5. Let W (Ψ, TSF, T ) be the maximal winning set of Ψ on faulty system

TSF under Assumption 2, and let W (Ψ, TSF, T1) be the winning set under the same

settings and an extra assumption that detection delay T [i] = 1 for all fault φ[i]. We

have W (Ψ, TSF, T ) ⊆ W (Ψ, TSF, T1).

Proof. This should be clear because when T [i] = 1, the environment has more re-

striction in terms of hiding the true faulty mode from the controller, comparing to

the case where T [1] ≥ 1. Formally, this means Vdelay(F, T1) ⊆ Vdelay(F, T ). Let

q(1) ∈ W (Ψ, TSF, T ) and let µ be the associated winning strategy. By Definition

13, this means

∀(f, f̂) ∈ Vdelay(F, T1) ⊆ Vdelay(F, T ) : w ∈W
(
f, f̂, µ, q(1)

)
|= Ψ,(A.21)

that is, q(1) ∈ W (Ψ, TSF, T1).

Figure A.1: Illustration of the completeness proof of Algorithm 3.
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We now prove the completeness of Algorithm 3 under the assumption that ϕ[j]

is both absolutely decomposable and suffix-closed. To this end, we will show by

a bottom up induction that W (Ψ, TSF, T1) ⊆ W [1], where W [1] is the winning set

returned by Algorithm 3. Then we have W (Ψ, TSF, T ) ⊆ W (Ψ, TSF, T1) ⊆ W [1] by

Lemma 5, and this verifies the completeness.

To prove the above statement, let q(1) ∈ W (Ψ, TSF, T1), and let µ1 be the asso-

ciated winning strategy. Note that µ1 is not necessarily the same as µ̂ defined in Eq.

(5.6). Consider the following statement of faulty mode level k:

• Statement(k): Let k be the level of faulty mode φ[i] and t be any time instant,

under strategy µ1, we have φ(t) = φ[i] ⇒ q(t) ∈ W [i], where q(t) is any possible

state at time t of system TSF initiated from q(1) ∈ W (Ψ, TSF, T1), and W [i] is

defined in Algorithm 3.

Clearly, if Statement(k) can be verified for all k, then applying Statement(level of φ[1])

at time t = 1 immediately yields q(1) ∈ W [1] where W [1] is returned by Algorithm 3,

and this proves the completeness as argued above.

In the sequel we show that Statement(k) is true for all k by induction.

1◦ Base case, k = 0, i.e., φ[i] is a leaf mode of F .

First, since φ[i] is already a leaf mode, this means f = φ(1)φ(2) · · ·
(
φ(r) = φ[i]

)ω
for some r ≤ t. Also since µ1 achieves Ψ, this implies that the word wr :=

w(r)w(r+ 1) · · · generated starting from time r must satisfy ϕ[i]. Note that ϕ[i]

is assumed to be suffix-closed, applying Lemma 4 hence gives q(s) ∈ W [i] for all

s ≥ r. Therefore q(t) ∈ W [i] as t ≥ r.

2◦ Induction step: assume that Statement(0), Statement(1), . . . , Statement(k) are

true, we will prove Statement(k + 1) also holds, i.e. q(t) ∈ W [i] if φ(t) = φ[i].

To this end, first define
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qt = q(1)q(2) · · · q(t),

f̂t = φ̂(1)φ̂(2) · · · φ̂(t),

ft = φ(1)φ(2) · · ·φ(t).

Since µ1 is the winning strategy assoicated with W (Ψ, TSF, T1), we know the

following facts under φ(t) = φ[i]:

(i) q(t) ∈ ∩j:φ[j]∈succ(φ[i])W
[j].

To prove bullet (i), assume for a contradiction that q(t) /∈ W [j] for some

j : φ[j] ∈ succ(φ[i]). Then we can construct gt = φ(1)φ(2) · · ·φ(t − 1)φ[j],

which is exactly the same as ft except the last element is replaced by φ[j].

Note that gt has exactly the same estimation sequence ĝt = f̂t due to the

one step detection delay, hence the decision of µ is not affected. But in

that case, we have φ(t) = φ[j] but q(t) /∈ W [j], which contradicts with

Statement(`) where ` ≤ k is the level of mode φ[j].

(ii) ∀a(t) ∈ µ1(qt, f̂t),∀φ[j] ∈ succ(φ[i]),∀
(
q(t), φ[j], a(t), q(t + 1)

)
∈→TS: q(t +

1) ∈ W [j].

To prove bullet (ii), assume for a contradiction that, funder some φ[j] ∈

succ(φ[i]) and the associated dynamics TS[j], we have q(t+ 1) /∈ W [j] under

some a(t) ∈ µ1(qt, f̂t). The the environment can pick φ(t + 1) = φ[j] and

this contradicts with Statement(level of φ[j], which is ≤ k) that is already

established.

(iii) µ1(qt, f̂t) ⊆ ∩j:φ[j]∈succ(φ[i])I
[j]
(
q(t)

)
.

Note that by Lemma 4, W [j] is invariant under TS[j], whereas I [j](q) is

defined to be the set of all actions that assures the invariance of W [j]. By

bullet (i) and (ii), we know that q(t) ∈ W [j] and q(t+ 1) ∈ W [j] under any

a(t) ∈ µ1(qt, f̂t), hence µ1(qt, f̂t) ⊆ I [j]
(
q(t)

)
for all j : φ[j] ∈ succ(φ[i]) and
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this proves bullet (iii).

(iv) ∀a(t) ∈ µ1(qt, f̂t),∀φ[j] ∈ succ(φ[i]),∀
(
q(t), φ(t) = φ[i], a(t), q(t + 1)

)
∈→TS:

q(t+ 1) ∈ W [j].

The difference from bullet (ii) is that the evolution is under TS[i] rather

than TS[j]. To prove bullet (iv), assume otherwise q(t + 1) /∈ W [j] for

some a(t), φ[j] and transition under TS[i], then the environment can pick

φ(t + 1) = φ[j] and this contradicts with Statement(level of φ[j], which is

≤ k) that is already established.

(v) Suppose φ(t) = φ[i], then q(t+ 1) ∈ ∩j:φ[j]∈succ(φ[i])W
[j].

Applying bullet (iv) gives the desired statement.

Figure A.2: Illustration of facts (i)-(v), induction step in the completeness proof of Algorithm 3

Let us consider the system’s state sequence p = qtpt+1, generated under µ1 and

a specific faulty sequence ft(φ
[i])ω. Define

s = min
τ :φ(τ)=φ[i]

τ(A.22)

Note that φ(t) = φ[i] by the hypothesis of Statement(k+1), we have s ≤ t. Also

note that, since φ(s) = φ[i], bullets (i)-(v) developed above hold for q(s) as well.

Consider ps = q(s)q(s + 1) · · · q(t)p(t + 1)p(t + 2) · · · . Since µ is the winning

strategy that achieves Ψ while the faulty mode stays at φ[i] eventually, the word
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generated by ps satisfies ϕ[i]. Moreover, by applying bullets (i) and (v) induc-

tively on time, we can establish that p(r) ∈ ∩j:φ[j]∈succ(φ[i])W
[j] for all r ≥ s.

Hence the word generated by ps models ψ[i] := ϕ[i] ∧ (
∧
j:φ[j]∈succ(φ[i])�C

[j])

because C [j] = W [j] by Lemma 4. Also note that this is achieved under dynam-

ics TS[i] with actions restricted in I := ∩j:φ[j]∈succ(φ[i])I
[j]
(
q(t)

)
by bullet (ii).

Hence we have q(s) ∈ Win(ψ[i], TS[i] � I) =: W [i]. Finally, by Lemma 4, the

suffix-closedness of ψ[i] suggests that a winning execution should never leave the

winning set W [i], hence q(t) ∈ W [i].

Hence the induction step is completed.
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Appendix B

Variables and Constants in the Fuel Cell Thermal Model

Control u
uHR uHR = 1 indicating that the coolant flow goes through

the heater
uHR = 0 indicating that the coolant flow goes through

the radiator
i [0,1.5] (A cm−2) Cell current density
PH [0, 35000] (W) Power requested by heater
wcool [0,800] (g s−1) Coolant mass flow rate

State x
SOCB [0,1] (-) Battery energy
T1 [273, 360] (K) Temperature of first control volumes
T2 [273, 360] (K) Temperature of second control volumes
TH [250, 400] (K) Heater temperature
TR [250, 340] (K) Radiator temperature

Operating Condition d
PM [2, 17] (kW) Power requested by motor
pO2

5× 104 (Pa) Oxygen partial pressure
pH2

1.5× 105 (Pa) Hydrogen partial pressure
rv [0, 10−7] (mol cm−3 s−1) Volumetric evaporating rate
v [10,20] (ms−1) Vehicle speed
Tamb [273,290] (K) Ambient temperature
λ [4,22] (-) Membrane water content
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Other Variables
EFC,stack (V) Fuel cell stack electrical potential
i0 (A cm−2) Exchange current density
PB,output (W) Battery output power
PFC,output (W) Fuel cell output power
PFC,self-heat-up (W) Power for fuel cell self-heat-up
RΩ (Ω cm2) Cell resistivity
Tavg (J mol−1 K−1) Average fuel cell temperature
TFC,in,cool (K) Inlet coolant temperature (into fuel cell)
TFC,out,cool (K) Outlet coolant temperature (from fuel cell)
∆hrxn (J mol−1) Reaction enthalpy
∆hv (J mol−1) Evaporation enthalpy
∆srxn (J mol−1 K−1) Reaction entropy

Constants
cair (1.0 J g−1K−1) Air specific heat capacity
F (96485 C mol−1) Faraday constant
Pref (101325 Pa) Reference pressure
R (8.314 J mol−1 K−1) Universal gas constant

Parameters
aMT (V) Mass transfer potential loss coefficient
AFC (cm2) Fuel cell cross section area
AG (cm2) Fuel cell geometric area
bMT (-) Mass transfer potential loss exponent
ccool (J g−1K−1) Coolant specific heat capacity
cFC (J g−1K−1) Fuel cell specific heat capacity
CH (J K−1) Heater heat capacity
CR (J K−1) Radiator heat capacity
EB,cell (V) Battery cell open-circuit potential
GB,stack,total (Ws) Battery stack energy capacity
i0,ref (A cm−2) Reference exchange current density
iMT (A cm−2) Mass transfer current density
ix (A cm−1) Crossover current density
kamb→FC (W cm−3 K−1) Heat transfer coefficient: ambient to stack
kamb→H (W cm−3 K−1) Heat transfer coefficient: ambient to heater
np (-) Number of battery cells in parallel
ns (-) Number of battery cells in series
nFC,cell (-) Number of fuel cells in stack
rB,cell (Ω) Battery cell internal resistance
VFC (cm3) Fuel cell volume
α (-) Charge transfer coefficient
δFC (cm) Channel or cell length
κT (W cm−1 K−1) thermal conductivity
ρFC (g cm−3) Fuel cell density
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