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Abstract 
 

Neuromorphic computing systems, which aim to mimic the function and structure of the 

human brain, is a promising approach to overcome the limitations of conventional computing 

systems such as the von-Neumann bottleneck. Recently, memristors and memristor crossbars have 

been extensively studied for neuromorphic system implementations due to the ability of memristor 

devices to emulate biological synapses, thus providing benefits such as co-located memory/logic 

operations and massive parallelism. A memristor is a two-terminal device whose resistance is 

modulated by the history of external stimulation. The principle of the resistance modulation, or 

resistance switching (RS), for a typical oxide-based memristor, is based on oxygen vacancy (VO) 

migration in the oxide layer through ion drift and diffusion. When applied in computing systems, 

the memristor is often formed in a crossbar structure and used to perform vector-matrix 

multiplication (VMM) operations. Since the values in the matrix can be stored as the device 

conductance values of the crossbar array, when an input vector is applied as voltage pulses with 

different pulse amplitudes or different pulse widths to the rows of the crossbar, the currents or 

charges collected at the columns of the crossbar correspond to the resulting VMM outputs, 

following Ohm’s law and Kirchhoff’s current law. This approach makes it possible to use physics 

to execute direct computing of this data-intensive task, both in-memory and in parallel in a single 

step. 

This dissertation presents my studies on the memristor device characteristics, integration, 

optimization, modeling, and directly integrated hybrid memristor/CMOS systems for 

neuromorphic computing applications. 
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First of all, I will present a comprehensive physical model of the TaOx-based memristor 

device where the internal parameters including electric field (E), temperature (T), and VO 

concentration (nD) are self-consistently solved to accurately describe the device operation. Starting 

from the initial Forming process, the model quantitatively captures the dynamic RS behavior, and 

can reliably reproduce Set/Reset cycling in a self-consistent manner. Beyond clarifying the nature 

of the Forming and Set/Reset processes, a bulk-like doping effect was revealed by the model during 

Set and supported by experimental results. This phenomenon can lead to linear analog conductance 

modulation with a large dynamic range, which is very beneficial for low-power neuromorphic 

computing applications. 

Second, an integrated memristor/CMOS system consisting of a 54×108 passive memristor 

crossbar array directly fabricated on a CMOS chip is presented. The system includes all necessary 

analog/digital circuitry (including analog-digital converters (ADCs) and digital-analog converters 

(DACs)), digital buses, and a programmable processor to control the digital and analog 

components to form a complete hardware system for neuromorphic computing applications. With 

the fully-integrated and reprogrammable chip, we experimentally demonstrated three popular 

models – a perceptron network, a sparse coding network, and a bilayer principal component 

analysis system with an unsupervised feature extraction layer and a supervised classification layer 

– all on the same chip. 

Beyond VMM operations, the internal dynamics of memristors allow the system to natively 

process temporal features in the input data. Specifically, a WOx-based memristor with short-term 

memory effect caused by spontaneous oxygen vacancy diffusion was utilized to implement a 

reservoir computing system to process temporal information. The spatial information of a digit 

image can be converted into streaming inputs fed into the memristor reservoir, leading to 100% 
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accuracy for simple 4×5 digit recognition and 88.1% accuracy for the MNIST data set. The system 

was also employed for solving other nonlinear tasks such as emulating a second-order nonlinear 

system. 

Other attempts to improve the device characteristics, such as increasing the dynamic range 

and retention, and to scale up the system for larger model implementations are also investigated. 

Outlooks to future studies that can lead to practical, efficient neuromorphic hardware systems will 

be discussed in the end.  
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Chapter 1  

Introduction 

1.1 The slowing down of Moore’s law and the von-Neumann Bottleneck 

Machine learning (ML) has recently generated strong interest, with performances 

approaching or in limited circumstances exceeding human-level performance for specialized tasks 

such as object recognition1,2, speech recognition3, and complex strategic games4. These 

achievements have been made possible thanks to the advances in computer hardware, the 

availability of large amounts of labeled datasets, and algorithm developments. However, continued 

improvements in hardware performance face several challenges. Although the performance of 

processing units and the storage capacity of memory units have historically improved through 

successive scaling according to the Moore’s Law, such scaling has slowed down significantly as 

the device reaches fundamental physical limitations. Additionally, current hardware 

implementations based on the von-Neumann architecture5 suffers from severe throughput and 

energy penalties due to the frequent data movement between the main memory and the processor, 

especially in data-intensive applications such as machine learning tasks.  

For instance, an ML program, AlphaGo4, developed by DeepMind defeated one of the top-

ranking professional players, Sedol Lee, in the board game Go in 2016. This event is widely 

considered a milestone in the progress of artificial intelligence (AI). However, the AlphaGo system 

used 1202 CPUs and 176 GPUs, corresponding to the power consumption of around 170 kW (1202 

× 100 W + 176 × 300 W), much larger than that of the human brain, 20 W6,7. Examining the system 
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performance showed that for ML systems such as Deep Neural Networks (DNNs), between 80% 

and 90% of the execution time is spent in memory access, compared to the 10% to 20% of the 

execution time spent in computation. It is clear that to continue the progress in AI and other data-

intensive tasks a radical change in the computer architecture that allows a significant reduction in 

memory access time and power is needed. 

 

 

1.2 Neuromorphic computing 

The Inspiration for efficient computing can be obtained by examining biological systems. 

The human brain is more than five orders of magnitude more energy-efficient than all current Deep 

Neural Networks (DNNs)8,9. Unlike DNN systems, it also does not require separate neural network 

structures for different tasks. Part of the efficiency can be attributed to the use of analog physical 

basis functions in the brain system rather than accurate digital logic basis functions in the modern 

computer system where the brain system is already conducting in-memory computing in parallel 

with very low power synaptic operations. 

 
Figure 1-1: von-Neumann bottleneck. 

Comparison of clock cycles spent in computation and in memory access for several Deep Neural Network 

algorithms as run on a Machine Learning accelerator executed in 7nm CMOS technology. Picture Source: 

Defense Advanced Research Projects Agency (DARPA) 
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The concept of neuromorphic computing was first introduced by Carver Mead10. It aims to 

emulate the neuro-biological architecture with analog, digital, mixed-mode analog/digital VLSI, 

and software systems. To implement a neuromorphic system in computing hardware, an 

appropriate electronic device with the capability of performing analog computing and crossbar 

array with the devices are essential where crossbar array performs vector-matrix multiplication 

(VMM) in parallel with very low power, which allows simultaneously storing the synaptic weight 

and modulating the transmitted signal to avoid the von-Neumann bottleneck.  

 

1.3 Memristor device  

Memristors are two-terminal ‘memory resistors’ that retain internal resistance state 

according to the history of external stimulations such as applied voltage and current. They are 

simple passive circuit elements that were theoretically conceived and mathematically formulated11 

in the 1970s, but their function cannot be replicated by any combination of fundamental resistors, 

capacitors, and inductors. 

 

 
Figure 1-2: Memristor as the fourth electrical element. 

The fourth element, the memristor with memristance M, defined as the rate of change of flux with charge. Image 

adapted from Reference [12]. Image credit: Dr. Dmitri B. Strukov. 
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The states of experimentally implemented memristors are described by one or more 

internal state variables and are typically governed by dynamic ionic processes12,13. A key 

characteristic of a memristor device is the pinched hysteresis loop14, as shown in Figure 1-3. It can 

be scaled down to less than 10 nm and offer large on/off ratio and fast, non-volatile, low-energy 

resistive switching, producing a competitive technology candidate for non-volatile memory15–18 

and in-memory logic19,20 applications. 

 

 

 
Figure 1-3: Hysteresis loop characteristic of memristor devices. 

 Image adapted from Reference [22]. Image credit: Dr. Sung Hyun Jo 

 

Figure 1-4: Memristor response to programming pulses.  

The device conductance can be incrementally increased or decreased by consecutive potentiating or depressing 

pulses. Image adapted from Reference [22]. Image credit: Dr. Sung Hyun Jo 
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The analog conductance modulation of memristors, as shown in Figure 1-4, in turn, allows 

such devices to implement online learning and make them attractive candidates for neuromorphic 

systems21–24. 

 

1.3.1 Oxygen-ion based memristor devices (VCM) 

In an oxide-based memristor device, often called valence change memory (VCM) or oxide-

based resistive random access memory (oxide-RRAM or ReRAM), resistive switching (RS) is 

caused by the redistribution of oxygen vacancies (VOs) in the switching layer acting as a solid 

electrolyte25,26. In general, these devices may consist of two oxide layers, a VO-rich layer and a 

VO-poor layer, sandwiched by a pair of inert electrodes. The VO-rich layer can be a deposited non-

stoichiometric suboxide or formed at the interface between a reactive metal layer and the switching 

layer (the VO-poor layer). The VO-rich layer has high conductivity and acts like a VO source during 

RS. The VO-poor layer is usually stoichiometric and usually insulating when deposited. Under a 

high electric field and followed by increased local temperature due to Joule heating, VOs can 

migrate from the VO-rich layer to the VO-poor layer, leading to the formation of local VO-rich 

conduction channels (CFs) and switching the device to the low resistance state (LRS). The reverse 

process breaks the CFs and switches the device back to the high resistance state (HRS) 

Figures 1-5(a) and 1-5(b) show results from high-angle annular dark-field (HAADF) 

scanning transmission electron microscopy (STEM) studies on a Pt/SiO2/Ta2O5-x memristor at 

HRS and LRS, respectively, using an in-situ experimental setup27. The conduction channel appears 

as a brighter region in the image, suggesting it contains more atoms with large atomic numbers 

(Ta in this case) since the intensity in the STEM mode strongly depends on Z (Z: atomic number 
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or proton number) and the atomic density. Horizontal Electron energy loss spectroscopy (EELS) 

line scan analysis also shows that the local oxygen concentration after the Set operation (LRS) is 

significantly reduced compared to the Reset operation (HRS), verifying the role of VO migration 

during the operation of oxide-based memristors, as shown in Figure 1-5(c).   

 

 

1.3.2 Metal-ion based memristor devices (ECM) 

Resistive switching effects have also been widely observed in metal-ion based devices, 

also known as electrochemical metallization (ECM) or conductive bridge random-access memory 

(CBRAM) devices15,28,29. The RS effect originates from the electrochemical growth/dissolution of 

metal (e.g. Ag and Cu) filaments within the insulating layer that acts as the switching layer and 

plays the role of a solid electrolyte for Ag or Cu cation migration. Typical switching layers for 

ECM devices include SiO2
30,31, Al2O3

32,33 or a-Si34.  

During RS, essentially nanoscale metal filaments are formed in the switching layer, 

through electrochemical processes and ion migration processes. For instance, Ag+ ions will be first 

generated from Ag atoms at the anode side through an electrochemical oxidation process under 

 

Figure 1-5: Oxide-based memristor devices.  

HAADF-STEM image of a Pt/SiO2/Ta2O5-x device at (a) HRS state; (Scale bar: 5nm) and (b) LRS state (Scale 

bar: 2nm). (c) Horizontal EELS line scans with the corresponding oxygen profiles taken at LRS (red symbol) 

and HRS (black symbol) moving along the arrow shown in (b). Image adapted from Reference [27].  
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the high electric field. Then, the Ag+ ion will drift along with the electric field and become reduced 

(from Ag+ ion to Ag atom) when it reaches a cathode and captures an electron. The reduced Ag 

atoms form Ag nanoclusters after a nucleation process, eventually leading to a continuous Ag 

filament and increase of the device conductance.  

 

 

A key difference between ECM devices and VCM (oxide-RRAM) devices is that in VCM, 

RS leads to changes in the stoichiometry of the switching material itself, i.e. locally converting a 

stoichiometric oxide into a sub-oxide as the conducting channel. This mechanism, on one hand, 

suggests the devices will have long write/erase endurance since the electrochemical processes are 

reversible and the species involved in the processes are native to the switching material. On the 

other hand, the native defects created (VOs) become very difficult to completely remove during 

the Reset process, leading to a leaky HRS state after Reset. On the contrary, in ECM, the 

 

Figure 1-6: Metal ion-based memristor device switching mechanism. 

(a) TEM image of an Ag/SiO2/Pt device after the forming process, showing conducting filaments. Scale bar: 

200nm. Bottom inset: Corresponding I-t curve during the forming process. (b) TEM image of the same device 

after erasing. Scale bar: 200nm. Bottom inset: corresponding I-t curve during erasing process. Image adapted 

from Reference [30]. 
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electrochemical processes involve only the foreign species (e.g. Ag atoms and Ag+ ions), where 

the switching film (e.g. SiO2) does not directly play an active role and chemical reactions may not 

occur between the filament and the switching layer. As a result, the Reset process of ECM devices 

can be very clean and allows the device to recover the very insulating HRS state. This leads to a 

very high on/off ratio and low switching energy. On the other hand, since extrinsic specifies are 

constantly moving in and out of the switching layer, this process may lead to physical damage to 

the switching film over time, e.g. in the form of plastic deformation, limiting the device’s 

write/erase endurance when compared with VCM devices. 

Ex-situ transmission electron microscopy (TEM) studies were first conducted to observe 

conducting filaments in Ag/SiO2/Pt devices based on active Ag metal electrodes30. To switch the 

device from the initial high resistance state, a constant positive voltage was applied to the Ag 

electrode. The device current level was found to abruptly increase at t~27s, corresponding to the 

formation of a conducting (Figure 1-6(a)). After the forming process, a well-defined conducting 

filament with a typical cone shape is revealed in the switching layer, highlighted by the arrow in 

Figure 1-6(a). Once a single dominant filament is formed, further filament growth will be 

suppressed due to the reduced electric field. The partially formed filaments suggest in this device 

the filament growth starts from the inert electrode (cathode) side. After a Reset process by applying 

a negative voltage to the Ag electrode, it is found that all filaments break at the interface between 

the filament and the inert electrode, and the dissolved parts of the filaments migrated back towards 

the Ag side, as shown in Figure 1-6(b).  
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1.4 Memristor structure: From single device to 3D integration 

A memristor has the simple form of a two-terminal structure that allows device integration 

in a crossbar form with high density and connectivity. For instance, a memristor can be formed at 

each crosspoint between the top (rows) and bottom (columns) electrodes, with an effective cell 

area of 4F2 (F: the smallest feature size), which guarantees the layout with maximum cell area 

efficiency and memory density in any planar design, as schematically shown in Figure 1-7(a). It 

should be noted that to operate a crossbar array properly, selector devices or memristors with 

intrinsic highly-nonlinear I-V behavior is required, in order to control total power dissipation 

through unselected memristors and to minimize parasitic effects caused by line resistance35. 

Recently, several types of two-terminal selector devices with high on/off ratios have been explored 

for large-scale crossbar array implementations36–39. However, adding the selector device to a 

memristor should be carefully analyzed, considering the voltage divider effect between the two 

devices in the presence of device variability. Otherwise, the read voltage window margin can be 

significantly affected and then allowed crossbar array size will be significantly reduced. 

Integration memristors with MOS transistors can be an alternative to achieve a large crossbar array. 

Connection with a transistor to the memristor in series (1T1R) effectively suppresses the sneak 

path current, leading to accurate reading and programming operations by controlling the third 

terminal, gate voltage, even in the very large crossbar array40. However, the use of transistors can 

increase the effective cell size and is also not compatible with 3D stacking which will limit the 

memory density the system can ultimately achieve. 

To further increase the memory density, 3D stackable structures are essential. The 2D 

crossbar array can be stacked on top of each other in which the storage density increases as the 

number of stacked layers increases. For example, Figure 1-7(b) shows 2 stacks of crossbar arrays, 
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increasing the memory density by a factor of 2. Vertical side-wall structures can also be fabricated, 

achieving a similar increase in memory density, depending on how many cells can be fabricated 

along a vertical electrode41–43. The 3D stackable crossbar arrays or vertical arrays should be 

fabricated on the CMOS circuitry which can include decoders and sense amplifiers to form a 

complete memory system44, or mixed-signal interface, SRAM, and logic circuitry for computing 

applications24, as shown in Figure 1-7(c). In general, memristor fabrication can be compatible with 

the low-temperature back-end of line (BEOL) process. As a result, integration of memristor arrays 

can be achieved in the same fab after the front-end CMOS circuitry fabrication was completed, 

leading to high wafer yield and low cost. 

 

 

1.5 Memristor Crossbar Network for Neuromorphic (DNNs & SNNs) 

As discussed above, memristors can be readily fabricated by having the switching layer 

sandwiched between two crossing metal lines, thus forming the cell at the cross-point, as shown 

in Figure 1-8(a). This so-called “crossbar” structure has now been extensively studied in a variety 

 

Figure 1-7: Memristor devices and integrated systems. 

(a) A crossbar array structure, in which a device is formed at each crosspoint with a cell size of 4F2. (b) 

Schematic of a 2 stack crossbar architecture. The 2D crossbar arrays are stacked on top of each other. (c) 

Schematic of 3D integration of a 2 stack crossbar array with CMOS circuitry underneath. 
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of studies, due to its high storage density and its capability to implement certain matrix operations 

in a natural and elegant fashion.  

In deep learning algorithms, the vector-matrix multiplication (VMM) operation (or more 

basic multiply-accumulate (MAC) operation) is the core computing operation for training and 

inference but is very resource-expensive for conventional computing systems to implement. To 

accelerate VMM efficiently, the graphics processing unit (GPU) has been extensively used to 

improve parallelism by using 1000s of computing cores with high-throughput connections to the 

memory. Algorithm studies to more efficiently map the neural networks (NNs) onto the hardware 

have also been conducted45. New hardware “accelerators”, such as the tensor processing unit 

(TPU), were also designed to improve the efficiency of matrix operations and have enjoyed success 

through optimizations of the digital circuit and architecture design for these relatively narrow types 

of operations46.  

 

 

 

 
Figure 1-8: Memristor Crossbar Network. 

(a) Memristor crossbar architecture. (b) Memristors are formed at the cross-points with weights wij. 

Inputs are applied on the rows as xi, while the charges or currents are collected on the columns that produce the 

VMM results.  
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As illustrated in Figure 1-8(b), if a vector x is input with each element xi applied on the top 

electrode (the row metal lines on the left) while keeping the bottom electrode (the column metal 

lines at the bottom) grounded, the current flowing through each memristor at the cross-point (i, j) 

will be 

𝐼𝑖𝑗 = 𝑥𝑖𝑤𝑖𝑗  (1 − 1) 

where xi represents the vector element which could be a pulse with a fixed width but amplitude 

modulated, or a pulse with a fixed amplitude but width modulated, or equivalently a number of 

pulses with fixed amplitude and width according to the input, and wij represents the conductance 

of memristor at each cross-point. Since all memristors on one column share the same bottom 

electrode, the current collection at the bottom electrode is the sum of all the currents flowing 

through all the memristors on this column 

𝐼𝑗 =∑ 𝑥𝑖𝑤𝑖𝑗
𝑛

𝑖=1
= x ∙ Wj (1 − 2) 

where Wj is stored weight vector in column j of the crossbar. 

By collecting currents in all the columns, the vector-matrix multiplication (VMM) output, 

𝐱⋅𝐖, can then be obtained in a single “read” operation where W= [W1, W2, …, Wm] is the stored 

weight matrix of the crossbar. This operation best represents the benefits of computing in 

memristor crossbars – the ability to perform computing in the weight storage devices directly 

(VMM), as well as the high degree of parallelism where all devices in the crossbar operate in 

parallel and perform the multiply and add functions simultaneously, i.e. in-memory computing in 

parallel. Therefore, this compute-intensive operation can be easily implemented in a memristor 

crossbar network. 
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In practice, since memristor devices only store positive conductance values each synaptic 

weight (w) can be implemented with two memristor devices representing a positive and a negative 

weight, 𝐺𝑖𝑗
+  and 𝐺𝑖𝑗

− , respectively47. That is, 𝑤𝑖𝑗 = 𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

− , where 𝑤𝑖𝑗  is the desired synaptic 

weight at row i and column j in the neural network. 

It is generally believed that more bio-realistic implementations could lead to even higher 

energy efficiency. One such example is spiking neural networks (SNNs), which encode 

information in the timing and frequency of spikes. SNNs have been shown to offer extremely high 

energy efficiency47,48. Unlike DNNs in which signals are continuously collected and processed, 

neurons in SNNs fire only when the membrane potential reaches above a threshold value. When a 

neuron fires, the connection strength of the synapses associated with it may also be modulated 

accordingly. With this approach, data can be represented and processed with a small number of 

spikes, with the system consuming very little power in between. 

With the rich internal ionic dynamic processes, memristor devices can natively emulate 

some of the key underlying physical and chemical processes in biological synapses and neurons. 

This allows SNN networks to be efficiently implemented using memristor devices. For example, 

different synaptic plasticity effects22,49,50 can be natively implemented using so-called second-

order memristor effects that can emulate the internal Ca2+ concentration dynamics51,52. Neuron 

functions such as integrate-and-fire function53,54 have also been demonstrated using memristors. 

Despite the great potential, SNNs have not been as widely implemented as DNNs. One of 

the reasons is the lack of efficient SNN algorithms, particularly for complex tasks. For instance, 

Spike-time-dependent plasticity (STDP)55 is an efficient learning rule of synaptic plasticity, but 

the image classification accuracy of networks based on this rule is generally lower than those 

achieved using conventional DNNs56. In particular, efficient training algorithms for large SNN 



 14 

networks are not well established, making it difficult for SNN systems to compete with 

conventional DNN implementations which have enjoyed great commercial success recently. 

Systematic developments of efficient algorithms, along with devices and hardware, are needed to 

bring the training of SNNs from the current academic research level to large scale commercial 

implementations. 

 

1.6 Organization of Dissertation 

In this chapter, we introduced the Neuromorphic computing concept, a fundamental 

background of memristor and its ability. 

Chapter 2 discusses an accurate dynamic memristor switching model that can 

quantitatively explain Forming, sustained Set/Reset cycles, and multi-level storage. Two different 

filament growth processes are captured by the model and verified by experimental DC and pulse 

measurements. Doping-type mode with linear conductance updates and high on/off will be 

discussed. 

Chapter 3 discusses a hybrid integrated system with the memristor crossbar array directly 

fabricated on a custom-designed CMOS chip to implement multiple neuromorphic applications 

on-chip in a functional, standalone system. System architecture, data path, and power and area 

efficiency will be discussed. 

Chapter 4 discusses memristor-based reservoir computing, emphasizing the temporal 

information processing ability of memristors through its internal dynamics.  

Chapter 5 discusses further device optimization and architecture for neuromorphic 

applications, such as high entropy oxide (HEO) and 1T1R structure, as well as tiled architecture. 
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Chapter 2  

A Quantitative, Dynamic Memristor/RRAM Model 

Nanoscale memristor devices have been widely considered as a promising candidate for 

neuromorphic and other memory-centric applications1–3 due to their simple structure and superior 

performance metrics, including endurance, switching speed, and exceptional scalability4–6. 

Moreover, memristors can be used to both store data in their analog conductance states and process 

data at the same physical locations, allowing power-efficient computing both in-memory and in 

parallel7–16. The principle of resistive switching (RS) in oxide-based memristors has been 

explained by VO migration in the oxide layer through ion drift and diffusion, where VOs act as 

dopants and modulate local electrical and thermal conductivity17–21. After the Set process, high VO 

concentration (nD) regions can act as conducting filaments (CFs) and provide high conductance 

channels in the switching layer.  

A number of device models have been proposed to describe the RS dynamics such as the 

formation/rupture of CFs22–28. However, these models typically start from assumptions that a 

filament is already (partly) formed, and cannot in general reliably reproduce multiple RS cycles. 

Additionally, most models do not provide a mechanism to control the programming current during 

filament formation, which is critical during practical device applications. These challenges can be 

largely attributed to the incomplete physics captured in the models. 

In this chapter, we present a comprehensive physical model that can accurately capture 

practical device operations, starting from the initial state, by self-consistently solving18,26 the 
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electric field (E), temperature (T), and VO concentration (nD) dynamic evolutions in realistic device 

structures. The maximum programming current during filament formation, i.e. the compliance 

current (ICC), is also introduced in the model through a current modulation layer. Our model clearly 

revealed the Forming process is a result of the initial non-uniform oxygen vacancy (VO) defect 

distribution and initiated by electric field focusing and localized thermal effects. Additionally, we 

observed different RS mechanisms during the Set process, depending on the programming current 

level. With a low programming current, a bulk-type doping phenomenon was observed. This effect 

can lead to linear analog conductance modulation with a large dynamic range, which is beneficial 

for low-power neuromorphic computing applications. On the other hand, filament width growth 

becomes dominant at high programming current levels, resulting in high conductance values and 

a leaky high-resistance state (HRS) and a small dynamic range. These results were further verified 

by experimental studies using a 1T1R device structure, where the maximum programming current 

was controlled by the gate voltage (VG) to allow systematical tuning of the conductance level and 

the VO configuration. 

 

2.1 COMSOL Multiphysics and finite element method (FEM) 

COMSOL Multiphysics is a general-purpose simulation software to simulate designs, 

devices, and processes in all fields of engineering, manufacturing, and scientific research29. 

Especially, it contains built-in physics interfaces to simulate a wide range of physics phenomena, 

including many common multiphysics systems such as solid mechanics, acoustics, fluid flow, heat 

transfer, chemical species transport, and electromagnetics. In addition, it is able to create uses’ 

own model definitions based on mathematical equations with custom partial differential equations 
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(PDEs) and directly input them into the software’s graphical user interface (GUI). It is also possible 

to combine both the predefined interfaces and custom PDEs. 

PDEs are differential equations that contain unknown multi-variable functions and their 

partial derivatives, and are used to describe the laws of physics for space- and time-dependent 

problems. Unfortunately, for most geometries and problems these PDEs cannot be solved with 

analytical methods. Instead, an approximation of the equations can be used, typically based upon 

different types of discretization. These discretization methods approximate the PDEs with 

numerical model equations, which can be solved using numerical methods. The solution to the 

numerical model equations are, in turn, an approximation of the real solution to the PDEs. The 

finite element method (FEM) is used to compute such approximations. 

As a toy example, we can solve Laplace equation, 𝜕
2𝑢
𝜕𝑥2
⁄ + 𝜕

2𝑢
𝜕𝑦2⁄ = 0, with the 

discretization, for u(x, y) defined on  𝑥 ∈ [0,1], 𝑦 ∈ [0,1] with the boundary conditions 

(𝑥, 0) = 1, 𝑢(𝑥, 1) = 2, 𝑢(0, 𝑦) = 1, 𝑢(1, 𝑦) = 2 (2 − 1) 

The second partial derivatives can be approximated and described by 

(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

≈
𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
 (2 − 2) 

(
𝜕2𝑢

𝜕𝑦2
)
𝑖,𝑗

≈
𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

(∆𝑦)2
 (2 − 3) 

Plugging equations (2-4) and (2-5) into original Laplace equation, then we obtain 

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗
(∆𝑥)2

+
𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

(∆𝑦)2
= 0 (2 − 4) 

at grid point (i,j). For ∆x = ∆y, equation (2-4) can be summarized into 

−4𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1 = 0 (2 − 5) 
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From the Figure 2-1, we can re-write the equation (2-5) for each point of ui,j,  

−4𝑢1,1 + 𝑢1,2 + 𝑢2,1 + 𝑢0,1 + 𝑢1,0 = 0 (2 − 6𝑎) 

𝑢1,1 − 4𝑢1,2 + 𝑢2,2 + 𝑢0,2 + 𝑢1,3 = 0 (2 − 6𝑏) 

𝑢1,2 − 4𝑢2,2 + 𝑢2,1 + 𝑢2,3 + 𝑢3,2 = 0 (2 − 6𝑐) 

𝑢1,1 + 𝑢2,2 − 4𝑢2,1 + 𝑢2,0 + 𝑢3,1 = 0 (2 − 6𝑑) 

and with the boundary conditions, equation (2-1), we obtain, 

(

−4 1
1 −4

0 1
1 0

0 1
1 0

−4 1
1 −4

)(

𝑢1,1
𝑢1,2
𝑢2,2
𝑢2,1

) = (

−2
−3
−4
−3

) (2 − 7) 

which can be readily solved to obtain the final solution, (𝑢1,1, 𝑢1,2, 𝑢2,2, 𝑢2,1) = (1.25, 1.5, 1.75, 

1.5). The solution is illustrated in the following Figure 2-2. 

 
Figure 2-1: Finite element method (FEM). 

(a) Laplace equation with boundary conditions. (b) a few grid points with the discretization to solve Laplace 

equation. 
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One of the benefits of using the finite element method (FEM) is that it offers great freedom 

in the selection of discretization, both in the elements that may be used to discretize space and the 

basis functions. The elements can be uniformly distributed over the axis, and smaller elements in 

a region where the gradient of u is large could also be available. 

In this device simulation, we used coupled systems with the heat transfer module 

(predefined interfaces) and a custom coefficient form PDE module to describe the diffusion and 

drift of oxygen vacancies (VOs). 

 

2.2 Device structure and dynamic model for simulation 

2.2.1  Tantalum-oxide (TaOx) based memristor  

The tantalum-oxide-based memristor has become a leading material for both memory 

applications and neuromorphic applications1–3 due to superior performance metrics in many 

aspects including endurance up to 1012, switching speed of < 1 ns, and exceptional scalability4–6. 

A standard bilayer Ta2O5/TaOx device structure is chosen as the model system. The device consists 

 
Figure 2-2: Solution with Finite element method (FEM). 

The solution of the Laplace equation with a given boundary condition and a few grid points. 
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of a high resistance Ta2O5 layer on top of a more conductive TaOx layer30, sandwiched by a Pd-

based top electrode (TE) and bottom electrode (BE). Resistive switching in the Ta2O5/TaOx device 

has been generally explained by the VO re-distribution and VO exchange between the high 

resistance Ta2O5 layer and the low resistance TaOx layer25,31. Specifically, a negative voltage 

applied to the TE attracts VOs from the TaOx layer, which acts as a VO reservoir, into the Ta2O5 

layer and forms a conduction filament connecting the TE and the conductive TaOx layer. This 

process switches the device to the low resistance state (LRS) and is termed the Set process. When 

a positive voltage is applied to the TE, it repels VOs from the Ta2O5 layer and breaks the filaments, 

thus switching the device back to the high resistance state (HRS) in the so-called Reset process. 

 

2.2.2  Integration of the tantalum-oxide (TaOx) based memristor on-chip 

The TaOx-based memristor used in this work was directly fabricated on top of the CMOS 

circuit. First, SiO2 with 100 nm thickness was deposited on the CMOS chip, followed by a reactive 

ion etching process to open the CMOS landing pads (Gate, Drain, Source, Bulk). Then, Pd bottom 

electrodes with 40 nm thickness were defined on the SiO2 by photo lithography and e-beam 

evaporation of the Pd metal, followed by a lift-off process. A 30 nm TaOx layer was deposited by 

DC reactive sputtering of a Ta metal target in an Ar/O2 environment at room temperature, followed 

by the deposition of the 5 nm Ta2O5 switching layer through sputtering a Ta2O5 ceramic target in 

the same chamber without O2. Afterwards, the top electrode was fabricated, followed by a reactive 

ion etching process in SF6/Ar to expose the contact regions of the bottom electrodes. Finally, 

metallization processes were performed by photolithography to connect the electrodes (BE and 

TE) with the CMOS landing pads, as shown in Figure 2-3(a). The TaOx memristor device is located 

on the Drain side, and the BE becomes the Drain in the 1T1R system to control the transistor 
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saturation current along with VG during Forming/Set. For flexibility, devices can be measured in 

either the 1T1R structure or 1R (without transistor) structure using an additional pad.  

 

 

2.2.3  Device structure and physical model 

Our model aims to achieve quantitative agreements with experimental results, starting from 

the initial state. To start with, we assume a uniform VO concentration of nD = 1×1022 cm-3 in the 

conductive TaOx layer, based on results from density functional theory (DFT) calculations32, and 

 
Figure 2-3: Tantalum oxide memristor during Forming and Set/Reset cycling. 

(a) Top view of the integrated memristor (1R & 1T1R) on the CMOS chip. (b) Schematic of the 

Pd/Ta2O5/TaOx/Pd bilayer device and the 1T1R circuit. (c) Measured and simulated DC I-V characteristics of 

the memristor device with 500 μA ICC, showing the Forming and consecutive Set and Reset switching cycles. 

(d) 2-D maps of nD obtained in the model for Initial, Forming, 1st Reset, and subsequent Set and Reset states. 

After Forming and first Reset, CF formation/rupture can be reliably repeated in subsequent cycles.  
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only a small number of VOs that are randomly distributed in the Ta2O5 layer (Figure 2-3(b) and 

(d)). The size of the VO defects in the Ta2O5 layer is assumed to be 3 Å32, and the VO defect region 

is assumed to have a conductivity of 105 S/m, while the stoichiometric Ta2O5 film is assumed to 

have a very low nD level (1×1016 cm-3) and highly resistive. In the proposed model, the electrical 

conductivity (σ) in the oxide is assumed to depend on the VO concentration (nD), temperature (T), 

and electrical field (E), and is given by  

σ𝑇𝑎2𝑂5−𝑥 = σ0(𝑛𝐷)exp(−𝐸𝐴𝐶(𝑛𝐷) 𝑘𝑇⁄ ) + 𝜎𝑃𝐹(𝐸, 𝑇) (2 − 8) 

where σ0 is a pre-factor, EAC is the activation energy for electron conduction, and 𝜎𝑃𝐹(𝐸, 𝑇) 

represents the Poole-Frenkel conduction term (𝜎𝑃𝐹(𝐸, 𝑇) = exp (293 𝑇⁄ ∙ (𝛼√𝐸 + 𝛽)). 

Considering ion drift/diffusion in the oxide layer, nD can be determined by 

𝜕𝑛𝐷 𝜕𝑡⁄ = ∇ ∙ (𝐷∇𝑛𝐷 − 𝑣𝑛𝐷 +𝐷𝑆𝑛𝐷∇𝑇) (2 − 9) 

where 𝐷∇𝑛𝐷 and 𝑣𝑛𝐷  are Fick diffusion flux and drift flux terms, respectively25. The 𝐷S𝑛𝐷∇𝑇 

term corresponds to Soret diffusion flux, where S is the Soret coefficient (𝑆 = −𝐸𝑎 𝑘𝑇
2⁄ ). The 

diffusion coefficient (D) is given by  

𝐷 = 1 2⁄ ∙ 𝑎2𝑓exp(−𝐸𝑎 𝑘𝑇⁄ ) (2 − 10) 

and the drift velocity (v) is given by  

𝑣 = 𝑎𝑓exp(−𝐸𝑎 𝑘𝑇⁄ )𝑠𝑖𝑛ℎ(𝑞𝑎𝐸 2𝑘𝑇⁄ ) (2 − 11) 

where f is the escape-attempt frequency (1012 Hz)25, a is the effective hopping distance (0.32 nm), 

and Ea is the activation energy for VO migration (0.85 eV). 
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Equation (2-9) can be self-consistently solved along with equation (2-12), the continuity 

equation for electrical conduction, and equation (2-13), the Fourier equation for Joule heating, 

following the approach proposed by Ielmini et al26. 

∇ ∙ σ∇𝛹 = 0 (2 − 12) 

ρ𝐶𝑝
𝜕𝑇

𝜕𝑡
− ∇ ∙ 𝑘𝑡ℎ∇𝑇 = 𝐽 ∙ 𝐸 (2 − 13) 

The equations are solved in a numerical solver (COMSOL) to calculate nD, Ψ, and T. To 

simulate realistic devices, we also introduce a current modulation layer that can control the 

programming current, as shown in Figure 2-4. The definitions of the parameters used in the model 

 
Figure 2-4: Device geometry used in the simulation. 

A uniform doping concentration of nD = 1×1022 cm-3 was assumed within the conducting TaOx layer (VO 

reservoir) at the initial state. w = 40 nm, h = 10 nm, d = 20 nm were used in the simulation. V1 is the voltage 

applied to the current modulation layer top surface and V2 represents the actual voltage applied to the 

memristor TE. 



 30 

are summarized in Table 2-1 and Figure 2-5. The details for the proposed model are also discussed 

in Supporting Information. 

 

2.2.4  physical parameters and modeling compliance effect (Icc and transistor) 

Figure 2-4 shows the structure used in the model. The width (w) and depth (d) of the structure 

is 40 nm and 20 nm, respectively. The thicknesses of the Pd bottom electrode (BE), VO reservoir 

(TaOx) layer, switching (Ta2O5) layer, and the Pd top electrode (TE) layer are 35 nm, 30 nm, 5 

nm, and 50 nm, respectively. The VO density of 5×1021 cm-3 is chosen as a criterion for metallic 

CF formation32, and the maximum VO density is ~ 1×1022 cm-3. A uniform concentration of nD = 

1×1022 cm-3 is assumed in the conductive TaOx layer as an initial state. The current modulation 

layer (CML) height (h) is 10 nm, which is directly connected to TE. 

 

 
Table 2-1: Material parameters and constants used in the proposed model.  
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The following assumptions are used as boundary conditions: the temperature at BE, TE 

and CML surfaces are 300 K, BE is always grounded during simulation, while voltage is applied 

to the top of CML. The definition of the parameters and constant values used in the model are 

summarized in Table 2-1 and Figure 2-5(a). The electrical conductivity is given by the Arrhenius 

equation33 where the pre-exponential factor σ0 is assumed to linearly increase from 1 S/m to 105  

S/m with increasing nD. The electron conduction activation energy EAC used in the model is 0.2 eV 

for the initial state where nD is 1×1016 cm-3, and linearly decreases to 0.1 eV with increasing nD up 

to 1×1020 cm-3, 0 eV with nD up to 5×1021 cm-3, and -0.006 eV with nD up to 1×1022 cm-3. The pre-

factor of thermal conductivity kth0 linearly increases with increasing nD (Figure 2-5(b)). 

To introduce the compliance current (ICC) during Forming and Set, the conductance of the 

CML is defined by Eqs (2-14(a)-(c)). Here, V1 is the voltage applied to the CML top surface and 

V2 represents the actual voltage applied on the memristor TE, as shown in Figure 2-4. If the 

 
Figure 2-5: Parameters used in the proposed model. 

(a) The electrical conductivity pre-factor σ0 and the electron conduction activation energy EAC as function of 

nD. (b) The thermal conductivity pre-factor kth0 as function of nD. 



 32 

electrical field applied to CML is smaller than EMAX, the conductance of CML will be 𝐼𝑐𝑐_𝑆𝑖𝑔𝑚𝑎 , 

105 S/m, while when the electric field becomes larger than EMAX the conductance of the CML is 

determined by Eq. 2-14(a). During Reset, 𝜎𝐶𝑀𝐿  is always 𝐼𝑐𝑐_𝑆𝑖𝑔𝑚𝑎 , 105 S/m.  

𝜎𝐶𝑀𝐿 =
𝐼𝑐𝑐 ∙ ℎ

|𝑉1 − 𝑉2| ∙ 𝑤 ∙ 𝑑
, 𝑖𝑓  𝐸𝐶𝑀𝐿 ≥ 𝐸𝑚𝑎𝑥 (2 − 14𝑎) 

𝜎𝐶𝑀𝐿 = 𝐼𝑐𝑐_𝑆𝑖𝑔𝑚𝑎 ,                       𝑖𝑓  𝐸𝐶𝑀𝐿 < 𝐸𝑚𝑎𝑥 (2 − 14𝑏) 

𝐸𝑚𝑎𝑥 =
𝐼𝑐𝑐

𝐼𝑐𝑐_𝑆𝑖𝑔𝑚𝑎 ∙ 𝑤 ∙ 𝑑
(2 − 14𝑐) 

where h = 10 nm, w = 40 nm, d = 20 nm, ICC = 500 μA. 

To model the transistor I-V, conductance of CML is defined in Eqs (2-15(a)-(d))34. 

𝜎𝐶𝑀𝐿 = (

𝑊
𝐿
𝐶𝑂𝑥𝜇 (𝑉𝑔𝑠 − 𝑉𝑡 −

𝑚(𝑉1 − 𝑉2)
2

)

1 +
𝑉1 − 𝑉2
𝐸𝑠𝑎𝑡𝐿

)
ℎ

𝑑 ∙ 𝑤 ∙ (𝑉1 − 𝑉2)

                                                                                                         𝑖𝑓  𝑉1 − 𝑉2 < 𝑉𝑑𝑠𝑎𝑡 (2 − 15𝑎)

 

𝜎𝐶𝑀𝐿 =

(

 
 
𝑊
𝐿 𝐶𝑂𝑥𝜇 (𝑉𝑔𝑠 − 𝑉𝑡 −

𝑚𝑉𝑑𝑠𝑎𝑡
2 )

1 +
𝑉𝑑𝑠𝑎𝑡
𝐸𝑠𝑎𝑡𝐿

+ 𝑎(𝑉𝑔𝑠 − 𝑉𝑡)(𝑉1 − 𝑉2 − 𝑉𝑑𝑠𝑎𝑡)

)

 
 ℎ

𝑑 ∙ 𝑤 ∙ (𝑉1 − 𝑉2)
  

                                                                                                                     𝑖𝑓  𝑉1 − 𝑉2 ≥ 𝑉𝑑𝑠𝑎𝑡      (2 − 15𝑏)

 

𝑉𝑑𝑠𝑎𝑡 =
2(𝑉𝑔𝑠 − 𝑉𝑡) 𝑚⁄

1 + √1 + 2(𝑉𝑔𝑠 − 𝑉𝑡) 𝑚𝐸𝑠𝑎𝑡𝐿⁄
(2 − 15𝑐) 

𝐸𝑠𝑎𝑡 =
2𝑣𝑠𝑎𝑡
𝜇

(2 − 15𝑑) 

where L = 130 nm, W = 450 nm, m = 1.3, Tox = 4 nm, μ = 50 cm2/(V∙s), VT = 0.3 V, 𝑣𝑠𝑎𝑡 = 8×106 

cm/s, a = 8×10-6, h = 10 nm, w = 40 nm, and d = 20 nm.  
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Figure 2-6 shows the I-V behavior of the CML layer. The CML layer can effectively model 

the effects of ICC and the transistor I-V, and match well with experimental results. 

 

2.3 Forming process 

Figure 2-3(c) shows the measured and the simulated DC I-V characteristics during the 

Forming, Set and Reset processes, with 500 µA of ICC (Figure 2-6(a)). A very good match of the 

simulation results with the measured data can be found. The Forming and Set transitions occur at 

negative voltages, around -2.04 V and -0.9 V, respectively, while the Reset transition starts around 

0.8 V for this model device. Figure 2-3(d) plots 2-D maps of nD for 3 consecutive switching cycles, 

showing the creation and elimination of the VO depletion gap during repeated cycling. Note the 

model can run in a self-contained manner (e.g., no adjustment of parameters) from the initial state 

and through repeated cycling without degradation. 

 
Figure 2-6: Current modulation layer I-V behavior, without memristor devices. 

(a) Simulated DC I-V with ICC of 500 μA. (b) Simulated and measured transistor DC I-V curves with varying 

VG from 1 V to 4 V. The simulation results very well matched with experimental results. 
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Before the Forming transition, the current level is very low due to the highly resistive Ta2O5 

layer, where the current conduction mechanism is dominated by Poole-Frenkel (PF) emission. In 

local regions within the Ta2O5 layer with a few closely spaced Vo defects (Figure 2-3(d)), the PF 

current is larger due to the electric field focusing effect and leads to localized heat generation. The 

higher local electric field and elevated temperature (> 500 K) due to Joule heating eventually cause 

the original VOs in the Ta2O5 layer to migrate towards the TE during the first stage of Forming 

(Figure 2-7). This process leads to a small filament to be formed from these original VOs in the 

oxide film. However, during this stage VO migration from the VO reservoir is negligible, since the 

temperature at the interface between the Ta2O5 layer and the TaOx layer is still too low (< 500 K) 

to trigger strong VO drift/diffusion from the VO reservoir (Figure 2-7(b)). This effect is more clearly 

observed in pulse simulations, by applying a short pulse with a fixed amplitude to the virgin device 

(Figure 2-8(a)). Negligible changes in conductance are observed in stages ①~② (Figures 2-8(b) 

and 2-8(c)) when the temperature at the Ta2O5/TaOx interface is still low, even though the original 

VOs in the Ta2O5 layer have already migrated to the TE (Figure 2-8(d) ①-② ). Once the 

temperature at the Ta2O5/TaOx interface reaches a critical temperature ~ 500 K (stage ③), the 

influx of VOs from the VO reservoir increases exponentially due to strong VO drift/diffusion aided 

by the elevated temperature. Eventually, the extra VOs supplied from the VO reservoir form the 

conducting filament, connecting the TE to the conductive TaOx layer and resulting in the abrupt 

conductance increase (stages ③-③’’, Figures 2-8(c) and 2-8(d)). As a result, the switching speed 

of the Forming process strongly depends on the temperature of the Ta2O5/TaOx interface, which 

in turn is a function of the applied voltage. When a more negative voltage is applied during the 

Forming process, the temperature at the Ta2O5/TaOx interface increases more rapidly and results 
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in faster switching (Figures 2-8(e) and 2-8(f)). Such an exponential dependence of Forming time 

vs. voltage is commonly observed experimentally. 

 

 

It should be noted that this transition is driven by a positive feedback process, where a high 

CF temperature leads to rapid CF growth, which in turn increases the CF temperature due to 

increased Joule heating effects. After the initial CF growth, prolonged positive feedback during 

the CF formation should be avoided to improve device reliability, normally by limiting the 

maximum programming current. Otherwise, permanent damage to the dielectric might occur, and 

the device cannot be Reset again. To model the current compliance effect, we introduced a current 

modulation layer in the model to control the programming current (Figure 2-6) during CF 

formation. Our model clearly shows that once the current level reaches ICC during Forming, i.e. 

500 µA in this example, the CF temperature starts to decrease and the positive feedback stops, 

 
Figure 2-7: Evolution of VO concentration (nD) and temperature (T) during DC Forming. 

(a) DC I-V characteristics during Forming. (b) 1D profile of temperature along the z-direction during Forming 

with different voltages. 2-D maps of (c) nD and (d) T during Forming with different voltages. 



 36 

which suppresses further VO drift/diffusion (Figures 2-8(b) and (c)). This leads to controlled and 

reliable filament formation in the oxide layer (Figures 2-3(d) and 2-8(d)). 

 

 

Importantly, the proposed model also clearly reveals that the device-to-device variation of 

the Forming voltage can be traced to the different initial VO defect profiles in the switching layer 

(Figures 2-9(a)-(c)). By simply changing the initial VO defect locations while keeping the number 

of VOs constant in the switching layer, our simulation produces different Forming voltages for 

 
Figure 2-8: Forming process.  

(a) Schematic of the device during pulse Forming. (b) nD and T evolutions in the bottom and center regions 

marked in (a). (c) Current and nD evolution during the Forming transition. (d) Evolution of the internal VO 

configuration at different stages during Forming. (e) Current and temperature evolutions in the bottom region 

at different Forming voltages.  (f) Forming speed vs. Forming voltage. 
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different devices (Figure 2-9(d)). These results are consistent with experimental results, where 

devices even fabricated on the same chip show different Forming voltages from -1.7 to -2.2 V 

(average: -1.99 V, normal distribution (1σ): 0.11 V), as shown in Figure 2-9(e). These findings 

clearly highlight that even though the relatively uniform film is deposited, precise control of the 

Forming voltage can be challenging due to the stochastic VO distributions. Precise control of the 

defect locations, e.g. through engineered electrode structures or ion blocking barriers35,36, may be 

necessary if the tight distribution of the Forming voltage is required. 

 

 

2.4 Reset and Set cycling (1R with ICC) 

During the 1st Reset after the initial Forming process, our model shows the CF rupture 

occurs near the TE, caused by internal VO redistribution driven by a combination of electric field 

and thermal effects (Figure 2-10(a)). Similar to the Forming process, the Reset process strongly 

 
Figure 2-9: Variation of the Forming voltage originated from different initial states.  

(a)~(c) Different initial states with the same number of VOs in the switching layer. (d) Simulated Forming I-V 

characteristics with different initial states in (a)~(c). (e) Experimentally measured Forming voltage 

distribution from 27 samples fabricated on the same chip. 
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depends on the local temperature. As the CF is usually formed as a cone shape with narrow width 

near the TE (as verified by our simulation shown in Figure 2-3(d)), this region experiences more 

pronounced temperature rise due to Joule heating, as shown in Figure 2-10(a), and the elevated 

temperature activates the Vo drift/diffusion at this location. Once the VOs in this region gain 

enough thermal energy at sufficient Reset voltage (e.g. 0.9 V), they will be repelled from the TE 

region by the applied electric field and create a VO depletion gap between the TE and the CF, 

resulting in a decrease of the device conductance. 

 

 

 

Figure 2-10(b) shows the 1D profile of nD along the vertical (z) direction during the Reset 

with different Reset voltages. These results verify that the gap region can be further increased by 

a larger Reset voltage, resulting in a further increase of the device resistance. Additionally, we 

found that it is important to maintain a sufficiently elevated temperature in the filament region 

during Reset to achieve reliable switching behavior. In our model, the PF conduction allows 

 
Figure 2-10: Simulated Reset process.  

(a) 2-D maps of VO concentration (nD), Electric field (E), and temperature (T) in the device during the Reset 

process at different voltages. (b) 1D profile of nD along the vertical direction during Reset with different Reset 

voltages. (c) Reset with and without the Poole-Frenkel (PF) effect in the depletion gap. A very narrow gap and 

failed cycling are obtained without PF. 
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sufficient current to continue to flow through the VO depletion region during Reset and prevents 

the CF temperature from dropping abruptly soon after the gap is created. Figure 2-10(c) shows 

Reset simulation results with and without the PF conduction term. When the PF conduction term 

is removed from the model (i.e. removing the 𝜎𝑃𝐹(𝐸, 𝑇) term from Eq (2-8)), the temperature 

quickly drops as soon as the depletion gap appears, and subsequent VO drift/diffusion processes 

essentially stop. As a result, this process fails to produce a sufficiently large VO depletion gap and 

leads to cycling failure, as shown in Figure 2-10(c).  

 

 

 
Figure 2-11: Two different filament growth mechanisms during Set with different ICCs.  

(a) Simulated Set and Reset DC I-V characteristics, and (b) 2-D maps of VO concentration (nD) at different 

ICCs. The measurements start after Forming with 500 μA ICC and the 1st Reset. Bulk-type doping effect 

dominates in the low ICC (~260 μA) cases, while lateral filament growth can be observed in the high ICC 

(280~500 μA) cases. (c) Vertical 1D nD profiles after Set, for different ICCs. The z = 0 position is the 

Ta2O5/TaOx interface. (d) Horizontal 1D nD profiles after Set, for different ICCs. The y = 0 position is the 

center of the filament. (e) Filament width as a function of ICC. 
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After the Forming process with 500 μA ICC and the 1st Reset process, the Set process is 

simulated in a self-contained manner, with different levels of Set programming currents (ICCs) 

controlled by the current modulation layer. The Set/Reset cycling can be reliably repeated through 

our simulations. Additionally, as shown in Figures 2-11(a) and (b), both the DC I-V characteristics 

and the CF shapes are governed by ICC during the Set transition. Importantly, we observed two 

different filament growth mechanisms based on the ICC level: a bulk-type doping mechanism and 

a filament width growth mechanism. At low Set ICC (100 ~ 260 µA), nD is gradually increased in 

the gap region, i.e. representing a bulk-type doping effect in the gap region, but the nD level has 

not reached the metallic conduction level (5×1021 cm-3) where EAC becomes ~ 0 (Figure 2-5(a)) so 

this process corresponds to the conductance increase prior to CF completion. With high Set ICC 

(280 ~ 500 µA) the filament is formed in regions with nD > 5×1021 cm-3 and lateral filament growth 

can be observed with continued Set programming. This process corresponds to CF expansion. 

These effects are also clearly observed in the 1D nD profile plots along the vertical (z) and 

horizontal (y) directions for different ICCs, as shown in Figures 2-11(c) and 2-11(d). The VOs are 

first accumulated near TE and migrate to fill the gap region (Figure 2-11(c)), similar to the Forming 

process. After nD reaches the metallic nD level (nD = 5×1021 cm-3), further increase of ICC leads to 

both increase in nD and lateral expansion of the CF (Figure 2-11(d)). In this regime, the width of 

the metallic CF is linearly broadened as ICC is increased (Figure 2-11(e)). The filament width 

modulation mode, however, yields a small dynamic range, since the device conductance is already 

high after the initial CF formation, while a much higher dynamic range is observed in the doping 

region, as we will discuss in more detail in the next Section. 

Our analysis shows that different Forming ICC leads to different filament shapes. For 

instance, decrease of ICC (300 µA) during Forming results in a small filament size, producing a 
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more resistive HRS after Reset, compared with the case with the same Reset voltage but Formed 

with 500 µA ICC (Figures 2-12(a)-(d)); while increasing ICC (800 µA) during Forming leads to a 

large filament size with a more conductive HRS after Reset (Figures 2-12(e)-(h)). The filament 

shapes with different Set ICCs (100 ~ 500 µA) after 300 µA ICC Forming and 1st Reset are also 

analyzed and compared to the cases with 500 µA Forming ICC (Figure 2-13). Interestingly, even 

with the same Set ICC, the filament shapes and conductance levels are not the same for the two 

Forming conditions (ICC = 300 µA and 500 µA), which is another evidence that the conductance 

of a memristor depends on the history of external stimulation17,37. Furthermore, the long-term 

potentiation (LTP) behavior with incremental Set ICCs with different Forming conditions (300 µA 

vs. 500 µA) was investigated. It was found that Forming with a lower ICC provides a larger dynamic 

range (on/off ratio), although the conductance update slope becomes sharper which makes it more 

challenging to fine-tune the conductance/weight (Figure 2-14). 

 

 
Figure 2-12: Simulated RS behavior with different ICCs. 

(a-c): 2-D maps of nD for (a) Forming, (b) Reset, and (c) Set processes with 300 µA of ICC, along with the 

simulated DC I-V characteristics (d). (e-g) 2-D maps of nD for (e) Forming, (f) Reset, and (g) Set process with 

800 µA of ICC, along with the simulated DC I-V characteristics (h). 
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This observation explains the discrepancy of filament shapes between the Forming and Set 

states even with the same ICC (Figure 2-3(d)). Specifically, the Forming transition starts from the 

initial state and requires a larger voltage and a higher temperature to create a filament, while the 

Set process starts on the conditions where the filament is already created and partially ruptured. 

 
Figure 2-13: 2-D maps of nD profile after Set, for different Set ICCs. 

The devices first go through (a) Forming with 300 µA ICC and 1st Reset, or (b) Forming with 500 µA ICC and 

1st Reset, respectively. Different VO configurations are observed during Set, for devices formed at these 

different Forming conditions, even if the same Set ICCs are used. 

 

 
Figure 2-14: Simulated LTP behaviors with incremental ICC, for different Forming conditions. 

Forming with lower ICC provides a larger dynamic range, but a steeper slope which may make it more difficult 

to fine-tune the conductance. 
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The different initial states lead to a different electric field and temperature profiles during Forming 

and Set, and produce different filament shapes in the end, as shown in Figures 2-3(d), 2-12 and 2-

13. On the other hand, during Set/Reset cycling the same filament growth/rupture conditions can 

be maintained, leading to reliable Set/Reset cycles as shown in Figure 2-3(d). 

 

2.5 1T1R simulation 

In 1T1R devices, the transistor, controlled by the gate voltage (VG), can effectively 

modulate the maximum current and suppress the off current level, thus allowing more precise 

control of the memristor conductance. In particular, current overshoot due to discharging current 

from parasitic capacitances can be effectively suppressed38,39, allowing more reliable Forming and 

Set processes. The transistor also serves as an excellent selector that suppresses sneak currents in 

an array. As a result, the 1T1R structure is widely used for the practical implementation of large 

memristor arrays11,12,40,41, especially for inference applications and edge computing42,43 where the 

data processing occurs close to the point of data creation. 

We used n-type enhancement-mode transistors to implement the 1T1R devices (Figure 2-

15(a) and Figure 2-6(b)). The CMOS chip with standalone transistors are fabricated in a 

commercial fab, and TaOx-based memristor devices are integrated on the Drain side of the 

transistor afterward (Figure 2-15(a) and Figure 2-16). The transistor I-V model is successfully 

implemented in the current modulation layer in our model (Figure 2-6(b)). In the integrated 1T1R 

structure, the bottom electrode of the bilayer memristor is connected to the Drain of the transistor 

to apply effective negative Forming and Set voltages to the memristor (Figure 2-16(b)).  
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Figure 2-15: 1T1R characteristics with different gate voltage (VG). 

(a) 1T1R schematic. (b) Measured and simulated 1T1R DC I-V curves with VG = 4 V during Forming and Set. 

(c) Simulated Set and Reset curves with different VG. (d) Measured and simulated LTP behaviors with 

incremental VG with 3 V and 10 µs VD pulses. Different slopes and dynamic ranges can be clearly observed. 

(e) Measured and simulated LTD behavior with different VD with a 1 µs pulse. 
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Similar to the 1R case with ICC, the simulation starts from the initial state where VOs are 

non-uniformly distributed in the switching layer. The model can accurately capture the Forming, 

Reset, and Set switching characteristics. Figure 2-15(b) shows that during Forming and Set 

switching, the maximum current is limited by the transistor saturation current, e.g. ICC ~ 470 µA 

at VG = 4 V and VD = 3 V. During Forming and Set transitions, the strong positive feedback process 

between Joule heating and filament formation is stopped when the memristor current reaches the 

transistor saturation current, leading to reversible and stable CF formation in the switching layer. 

In the Reset process, the transistor is fully turned ON to minimize the series resistance effect. 

Because only positive bias is available for NMOS to switch the memristor in the 1T1R form, we 

applied the positive bias to the Source (0 ~ 1.2 V) of the original transistor structure, leading to a 

negative voltage at the Drain (Figure 2-15(b)). The simulated consecutive DC I-V switching cycles 

 
Figure 2-16: Schematic of the 1T1R structure. 

(a) A cross-sectional view of the 1T1R structure with the Pd/Ta2O5/TaOx/Pd bilayer memristor device. (b) Top 

view. The BE of the memristor is connected to the Drain of the transistor to provide negative Forming and Set 

voltages to the memristor device. 
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match well with the measured results. Here, the Forming, Set and Reset voltages are slightly 

increased compared to those of 1R device due to the series transistor resistance. 

The conductance level of the 1T1R device can be precisely controlled by changing the gate 

voltage VG during Set. Results of different Set conditions after Forming with VG = 4 V and the 1st 

Reset are shown in Figure 2-15(c). Modulation of VG from 2 V to 5 V during Set clearly shows 

the ability to control the conductance levels in the 1T1R device. The model also clearly captures 

the pulsed long-term potentiation (LTP) and long-term depression (LTD) behaviors in the 1T1R 

device, consistent with experimental results. For LTP, 3 V and 10 µs VD pulses were applied to 

the Drain with varying VG. Even in the pulse condition, bulk-type doping and lateral filament 

growth regions (Figure 2-15(d)) are clearly identified, with different slopes and dynamic ranges 

with increasing VG. Similar to the effects of ICC in the 1R structure, a low VG (1.5 V ~ 3 V) leads 

to bulk-type doping effect with a large dynamic range, while a large VG (3 V ~ 5 V) leads to the 

filament width growth effect with a small dynamic range. Here, the read condition was VD = 0.3 

V and VG = 5 V. Note that the conductance of the 1T1R device cannot be modulated by VG lower 

than 1.5 V both in simulation and in the experiment, where the current level is not large enough to 

initiate VO migration, as shown in Figure 2-15(d). 

Analog LTD behaviors can also be achieved by modulating VD (Figure 2-15(e)), with 

excellent agreements of the modeling and experimental results. Note that LTD may be harder to 

control compared to LTP in the 1T1R system due to the changing VGS during Reset transition since 

the device resistance is connected to the effective source side of the transistor and varies during 

Reset. Fortunately, online learning based on LTP behaviors only can be effectively implemented 

by using a pair of memristor devices44. For inference applications that do not require online 

learning, it is also sufficient to achieve precise conductance programming through the program-
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and-verify (PNV) scheme11,40, where the initial HRS state can be achieved by applying a large 

positive voltage to the Source (e.g. -VD in Figure 2-15(e)). This approach allows the weights to be 

precisely reprogrammed during the infrequent model updates.  

 

2.6 Conclusion 

In this chapter, a device model that can self-consistently and quantitatively describe the 

dynamic RS processes including Forming and Set/Reset cycles is successfully developed. 

Excellent agreements with experimental DC and pulse measurements in 1R and 1T1R devices 

were obtained. Forming was observed to originate from the initial non-uniform defect distribution, 

and electric field focusing and localized thermal effects were found to strongly affect the filament 

formation process. By controlling ICC, the VO configuration can be systematically tuned during CF 

growth, resulting in different RS behaviors. Two different filament growth modes were observed, 

leading to different conductance modulation slopes and dynamic ranges. In particular, a low 

programming current induces a bulk-type doping effect, resulting in linear conductance/weight 

updates and a large dynamic range. The modes and the observations will help continued device 

optimizations and applications in memory and low-power neuromorphic computing applications.  
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Chapter 3  

A Fully Integrated Memristor–CMOS System for Neuromorphic Computing 

In this chapter, we discuss a fully functional, hybrid memristor-CMOS computing chip 

including a 54x108 passive memristor crossbar array directly integrated on CMOS circuitry which 

contains a full set of mixed-signal interface blocks and a digital processor. Previous 

implementations have largely relied on external printed-circuit boards (PCBs) or discrete 

components to provide control, signal conversion and data I/O, severely limiting the circuit 

functions1-7. Demonstrating the potential of memristor-based computing hardware requires the 

development of complete, functional systems, where the memristor crossbars are integrated with 

necessary analog interface circuitry (including analog-to-digital converters (ADCs) and digital-to-

analog converters (DACs)), digital buses and ideally a programmable processor to control the 

digital and analog components. Integrating all the necessary functions on a chip will be key to 

enabling the practical implementation of memristor-based computing systems and allowing the 

prototypes to be scaled to larger systems. 

In this work, the system supports charge-domain operation to overcome the non-linear I-V 

characteristics of memristor devices through pulse width modulation and custom analog-digital 

converters (ADC). The integrated chip allows the mapping of different neuromorphic and machine 

learning algorithms on-chip through simple software changes. To verify the hybrid neuromorphic 

chip operation, we demonstrate three widely used models – a perceptron network, a sparse coding 

algorithm, and a bilayer principal component analysis (PCA) system with an unsupervised feature 

extraction layer and a supervised classification layer – experimentally on the same chip8. 



 54 

 

3.1 System architecture and circuit design (designed by Prof. Flynn’s group & Prof. 

Zhang’s group) 

The custom CMOS circuitry includes an OpenRISC processor with 64KB SRAM and a 

mixed-signal interface with 162 configurable channels as shown in Figure 3-1(a) and (b). The 

processor configures the mixed-signal interface via a set of global configuration registers and 

performs write and read operations through digital to analog converters (DACs) and analog to 

digital converters (ADCs). Each channel is set to either have an ADC or 1 of the 3 DACs connected 

to a row or column of the crossbar. For example, at forwarding pass mode, all rows are configured 

as DACs and all columns are configured as ADCs. At write mode, all rows and columns are 

configured as DACs. The ADC or DAC connection is set in the mode register and the type of DAC 

connections is set in the DAC register along with the 6b DAC pulse input. The timing generator 

handles both the ADC start signal and creates the duty-cycled pulse-train for the DACs. 

Since the on-chip processor is mainly used for register manipulations, the reduced 

instruction set Alternate Lightweight OpenRISC processor (AltOR32) is used in the design to 

minimize area and power consumption. The SRAM is divided into 3 parts. The processor 

instruction and data memory are mapped to 32 KB SRAM data memory. The remaining 32KB are 

dual-port SRAMs that support simultaneous input/output and are assigned as two “ping-pong” 

memory banks for potential data buffering, although in this study the ping-pong memory banks 

were not used since all data can be fit in the data memory.  
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During operation, the processor is first used to configure the mixed-signal interface by 

setting the configuration registers. The processor is then paused and the control is handed off to 

the timing generator of the mixed-signal interface. The timing generator operates for 64 cycles 

during which VMM operations and memristor weight updates are performed. The control then 

goes back to the processor.  

The mixed-signal interface was designed by our collaborators, Prof. Mike Flynn’s group 

and Prof. Zhengya Zhang’s group. Specifically, Prof. Flynn’s group developed a hybrid ADC 

architecture comprised of a 5b first stage first-order incremental ΔΣ ADC and a 9b second stage 

SAR ADC, as shown in Figure 3-2, to avoid the use of a large charge integrating capacitor while 

achieving high resolution. With 1b of stage redundancy, the ADC resolves 13b after digital 

correction.  

A regulation loop sets the input voltage (VIN) of the ADC to maintain a constant virtual 

ground voltage (VREG, nominally 1.2V). The ADC uses a current divider to take a small portion 

 
 

Figure 3-1: Chip System Architecture and mixed signal interface design.  

(a) The integrated memristor/CMOS chip consists of the digital controller and bus shown in green, the mixed-

signal interface shown in red, and the memristor crossbar shown in blue. (b) The mixed-signal interface is 

comprised of global configuration registers and timing generation shown in brown, and 162 configurable 

channels (shown in green) to provide input and measure output to and from each row and column of the 

memristor crossbar. 
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(configurable from 1/64 to 8/64) of the input current to handle a large input current without large 

integrating capacitors and power-hungry active integrator. The capacitor banks (Ch. 1, 2 and D) 

that work as passive integrators sequentially integrate the divided input charge and transfer the 

charge to the active integrator when the integrated voltage on a channel hit the hysteresis threshold. 

The dummy channel (Ch. D) continuously integrates the divided input charge during the inner-

product cycle to avoid the loss of the input charge during the non-overlapping control time of the 

Ch. 1 and Ch. 2 and transfers the charge at the end of the inner product cycle.  

The hysteresis generates the control signals of the active and passive integrators 

asynchronously depending on the input current. This reduces the output noise of the ADC when 

the input current is low since the number of active integration is reduced. The active integrator 

uses a three-stage fully-differential ring amplifier with an auxiliary first-stage based auto-zero to 

improve the energy efficiency of the ADC.  

 
 

 

 

Figure 3-2: Schematic of 13b current-integrating ADC. 
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For DAC operation, we introduced the number of pulses to represent the input amplitude 

(effectively modulating the pulse width in the discrete-time domain) to eliminate errors due to 

pulse rise and fall time, instead of directly modulating the pulse width, as shown in Figure 3-3. 

 
 

When performing VMM, the chip is configured at read mode. During the VMM operation, 

we apply a discrete-time pulse-train input and measure the accumulated charge from each column 

(row). The column (row) ADCs present a 1.2 V virtual ground while the row (column) DACs 

apply a 6-bit programmable train of fixed-amplitude 0.6 V “read” pulses (1.8 V-1.2 V). The 

integrating ADCs measure the collected charges over the input period. 

When performing weight update, the chip is configured at write/erase mode (depends on 

the need to increase/decrease the weight). During the write operation, we apply discrete-time 

pulse-trains at both rows and columns. When writing (erasing), the row (column) DACs apply 6-

bit programmable trains of fixed-amplitude “High voltage” pulses (1.9 V-1 V) and the column 

(row) DACs apply 6-bit programmable trains of fixed-amplitude “Low voltage” pulses (0.1 V-1V) 

with the same duration, which effectively generates pulses with 1.8 V (-1.8 V) voltage drop across 

 
 

Figure 3-3: Pulsed-mode DAC scheme. 
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the device. The idle level of both “High voltage” and “Low voltage” are chosen at 1 V, which is 

the halfway of the voltage drop to provide write protection for unselected devices in the array. 

 

3.2 Data path during training and inference on chip 

As shown in Figure 3-4, at the first step, we program all instructions for necessary 

mathematical calculations and data storage in C code and compile the C code into binary machine 

code. This process is performed on a personal computer. Note the programming and compilation 

only need to be performed once for every task. The binary code will be used to run the training 

and inference algorithms, and allocate the memory space for the necessary input & output data and 

all the internal intermediate variables. 
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Afterward, we load the final binary code to the chip. Specifically, the binary code is sent 

through the USB port of the computer, and a Serial-to-UART (Universal Asynchronous Receiver-

Transmitter) board converts the serial data in the USB to the UART protocol and sends the 

compiled code to the memristor chip through the UART interface. The entire compiled binary code 

is loaded into the on-chip SRAM by a bootloader. 

After the binary code is loaded into the on-chip SRAM, the binary program instructions 

are executed, and the entire application will be run on-chip. The instructions set the circuit 

 
 

Figure 3-4: Data path during training and inference.  

(a) All instructions for necessary mathematical calculations and data storage are first programed in C code and 

compiled. The entire compiled code is then loaded into the on-chip 32kB SRAM data memory by a bootloader. 

(b) The binary program instructions are executed through the OpenRISC processor to run the training and 

inference algorithms. The vector-matrix multiplication (VMM) results are read as charge values from the ADCs. 

(c) During training, the required weight updates are calculated through the OpenRISC processor. Afterwards, the 

DACs are configured to supply the desired pulse widths to the update the memristors. (d) The final output can be 

transferred to a personal computer and accessed by the user. 
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configurations and DAC registers (i.e. row/column configurations and the pulse widths for weight 

updates and VMM operations). The VMM results are read as charge values from the ADCs and 

stored in the data memory.  

Third, the VMM outputs are processed by the on-chip OpenRISC processor to calculate 

the required weight updates or for running other operations of the algorithm. The processor 

executes the algorithm as programmed by the C code and sends the results (i.e. batch update 

values) as instructions to the on-chip registers, and the DACs are configured to the new 

configurations for the next operations.  

Finally, after all the instructions have been executed, the output can be supplied to the user 

through the Serial-to-UART interface. 

We note in the networks we run most of the operations are multiplication and summations 

that can be readily implemented in the memristor array and the OpenRISC processor. There are 

two functions that require more complex calculations, namely the Sigmoid (for neurons in the PCA 

classification layer) and Softmax (for neurons in the SLP classification layer) activation functions. 

The Sigmoid is a one-to-one mapping function that can be approximated by a piece-wise linear 

function. As a result, we have successfully implemented the Sigmoid function on-chip using the 

OpenRISC processor, and all experiments for the LCA network and the entire PCA + 

Classification network are implemented on-chip, without communication with the computer 

during the learning and testing process. However, the Softmax function is an n-to-n mapping that 

computes the ratio of an exponential output of the current class over the sum of the exponential 

outputs of all classes, which is challenging to implement without floating-point operations.  

In this prototype integrated chip, the OpenRISC processor we use is a stripped-down 

version called “AltOR32” (Alternative Lightweight OpenRISC 32-bit version) without the 
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floating-point unit, to reduce power, area and design costs since most of the calculations performed 

in our algorithms are multiplication and summations. The decimal values of the parameters were 

approximated with fixed point representation in the integer domain.  

Therefore, in the Greek letter classification experiment that uses the Softmax function 

during the training process, we made the compromise of calculating the Softmax activation off-

chip in software (Python), the activation value was then passed back to the chip for batch-gradient 

descent calculations. We note the current version of the system is developed as a prototype that 

demonstrates the integration of memristor arrays with functional periphery circuitry. Not all 

functions, such as floating-point support, were targeted. Designs that include floating-point unit 

supports, as well as improved training protocols and more efficient processor designs9-11 will be 

incorporated in future studies. 

 

3.3 Integration of memristor array on CMOS chip 

A key challenge of the chip is to integrate the 54×108 WOx-based memristor crossbar array 

directly on top of the CMOS circuits, as shown in Figure 3-5(a).  
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The process flow is the following. First, the bottom electrode (BE) patterns with 500 nm 

width are defined by e-beam lithography on CMOS chip, the 80 nm thick Au BEs are then 

deposited (with Ni/Cr adhesion layer underneath) by e-beam evaporation and lift-off processes. 

Next, 300 nm of SiO2 is deposited by plasma-enhanced chemical vapor deposition (PECVD), 

followed by reactive-ion etch back to form a spacer structure along the sidewalls of the BEs. To 

minimize crosstalk, the switching layer is only deposited at the cross-point regions through 

patterns defined by e-beam lithography. The switching layer is formed by first depositing 20 nm 

thick W through DC sputtering and lift-off processes in the e-beam patterned regions, then through 

 
Figure 3-5: Fully integrated memristor/CMOS chip.  

(a) Optical microscopic images of a memristor crossbar array integrated on the chip, with portions of the CMOS 

circuitry visible underneath the chip surface. (b) Magnified image of the integrated 54×108 memristor array 

region. Inset: scanning electron microscope (SEM) image of the WOx memristor crossbar. (c) A cross-sectional 

SEM image of the integrated chip, showing the memristor crossbar array fabricated on top of the CMOS circuits 

and the different CMOS wiring layers underneath the memristor array. (d) The integrated chip wire-bonded on a 

pin grid array (PGA) package and testing set up used to power and test the integrated memristor/CMOS chip. 
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rapid thermal annealing of the patterned W islands with oxygen gas at 425°C for 60 s to form the 

WOx switching material. Afterward, the TEs (Pd (40 nm)/Au (90 nm)) with 500 nm width are 

patterned and deposited by e-beam lithography, e-beam evaporation, and lift-off processes. 

Finally, metallization processes are performed by photolithography to connect the crossbar 

electrodes with the CMOS landing pads that are left open during the CMOS circuit fabrication 

process. An in-situ etch process is performed to remove the native aluminum oxide on the CMOS 

landing pads, followed by deposition of 800 nm thick Al with DC sputtering and lift-off processes 

to ensure step coverage of the deeply recessed landing pads.  

 

 

Figure 3-5(b) and (c) are top-view and cross-sectional view images of the 

memristor/CMOS chip, respectively, showing the memristor array integrated on top of the chip 

surface. Figure 3-5(d) shows a photo of the integrated chip after packaging, along with the testing 

setup. Figure 3-6 shows a cross-section schematic of the integrated chip, showing connections of 

 

Figure 3-6: Cross-section schematic of the integrated chip.  

This shows connections of the memristor array with the CMOS circuitry through extension lines and internal 

CMOS wiring. Inset, cross-section of the WOx device. 
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the WOx memristor array with the CMOS circuitry through extension lines and internal CMOS 

wiring.  

 

 

 

The memristor devices can be successfully programmed by controlling the number of 

applied write/erase pulses and read out by the integrated interface circuitry and controller with 

4.5% of the device to device variability, even without any current-limiting transistors or external 

current compliance, as shown in Figure 3-7(a). The devices were programmed with 50 write pulse 

 
Figure 3-7: Measurement results of the memristor devices in the array. 

(a) Programming memristor array on chip. Weight update curves from 22 devices measured from the crossbar 

array in the integrated chip are plotted. During the measurement, 50 consecutive programming pulses are applied 

(the LTP test), followed by 50 erase pulses (the LTD test). The current is measured at 0.6V after each pulse, 

using the on-chip processor and the integrated DAC/ADC circuitry. (b) Endurance test, showing HRS and LRS 

currents during the write/erase processes. After each order of the endurance cycle, the device was programmed 

and erased another 1000 times, with write/erase pulses of +1.8V and -1.8V, 200μs, respectively. (c) Distribution 

map of initial current level for a 40×60 subarray of the memristor crossbar. (d) Distribution map for a 20×20 

subarray of the memristor crossbar. The color represents the on-off ratio measured after 50 consecutive 

programming pulses. 
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at 1.8 V and 50 erase pulses at -1.8 V with 82 µs pulse width, using the on-chip processor and the 

integrated DAC/ADC circuitry.  

The WOx memristor device can be reliably programmed over 107 times (Figure 3-7(b)). 

Although this level of endurance can support certain online training algorithms, longer endurance 

may be desirable. Additionally, the cycle to cycle variation during the 107 programming cycles is 

~ 3.4-4.2%. Figure 3-7(c) and (d) show the initial current level and the on/off ratio distributions of 

devices in the integrated array, respectively. The relative uniform distribution of devices within 

the integrated memristor array allows the system to implement a number of computing tasks on-

chip. Note that although the small models we implemented in the current study can tolerate these 

cycle-to-cycle and device-to-device variations, device nonlinearity and variability need to be 

reduced to implement larger networks. Further device optimizations and using a monolithic 

integration technique that reduces the line resistance can lead to a better array and network 

performance.  
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3.4 Task 1: Training and classification using a single-layer perceptron 

 

 

A single-layer perceptron (SLP) network was first implemented to verify the operation of 

the integrated chip. 5×5 binary Greek letter patterns were used in the SLP training and testing. The 

SLP has 26 inputs (corresponding to the 25 pixels in the image and a bias term) and 5 outputs, 

with the input and output neurons fully connected with 26×5 = 130 synaptic weights, where the 

neuron with the highest output is identified as the winner by Softmax calculation and used to 

classify the corresponding class, as schematically shown in Figure 3-8(a). 

In our implementation, the original binary input patterns are converted into input voltage 

pulses (Vread or 0) through the integrated processor and DAC circuitry and are fed to the rows of 

the memristor array. Specifically, when a white pixel is present, a pulse is applied to the 

corresponding row; while black pixels correspond to no pulse. The bias term is fixed at a constant 

value of 1 (treated as a white pixel) and is applied as an extra input. All the input pulses have the 

 
Figure 3-8: Schematic of the single-layer perceptron. 

(a) Schematic of the single-layer perceptron for classification of 5 × 5 images. b, Implementation of the SLP 

using a 26 × 10 memristor subarray through the integrated chip. Input data (for example, the Greek letter ‘Ω’) 

are converted to voltage pulses of Vread or 0 through the on-chip circuitry, depending on the pixel value. 
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same duration and amplitude in this test, as illustrated in Figure 3-8(b). Each synaptic weight 𝑤𝑖𝑗  

is implemented with two memristor devices representing a positive and a negative weight, 𝐺𝑖𝑗
+ and 

𝐺𝑖𝑗
−, respectively, using the positive memristor conductance values: 

𝑄𝑗 =∑𝑤𝑖𝑗𝑥𝑖
𝑖

= 𝑉∑𝐺𝑖𝑗𝑡𝑖
𝑖

= 𝑉∑(𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

−)𝑡𝑖
𝑖

= 𝑄𝑗
+ −𝑄𝑗

− (3 − 1) 

where 𝑥𝑖 is the input at row i and represented by a voltage pulse with amplitude V and width 𝑡𝑖. 

The charges are measured at the output columns and digitized by the ADCs, then converted to the 

neuron output 𝑦𝑗 through the Softmax function: 

𝑦𝑗(𝑄𝑗) =
exp(𝛽𝑄𝑗)

∑ exp(𝛽𝑄𝑘)𝑘
 (3 − 2) 

where 𝛽 is a scaling factor of the ADC output and 𝑘 represents the output neuron index. 

The integrated chip allows us to perform online learning. Specifically, the synaptic weights 

are updated during the training state using the batch gradient descent rule: 

Δ𝑤𝑖𝑗 = 𝜂∑(𝑡𝑗
(𝑛)
− 𝑦𝑗

(𝑛)
)𝑥(𝑛)

𝑁

𝑛=1

 (3 − 3) 

where 𝑥(𝑛) is the nth training sample of the input dataset, 𝑦(𝑛) is the network output and 𝑡(𝑛) is the 

corresponding label. 𝜂 is the learning rate. The update value Δ𝑤𝑖𝑗 for the ith element in the jth class 

is then implemented in the memristors by applying programming pulses through the write DACs 

with a pulse width proportional to the desired weight change (quantized within the range of 0~63 

timesteps, i.e. corresponding to 6-bit precision).  
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The SLP is mapped on the integrated chip using a 26×10 subarray. We trained and tested 

the SLP with noisy 5×5 Greek Letter patterns, for 5 distinct classes: ‘Ω’, ‘Μ’, ‘Π’, ‘Σ’, ‘Φ’. To 

create data set, we flip one of the 25 pixels of the original image and generate 25 noisy images for 

each Greek letter. Together with the original image, they form a set of 26 images for each letter. 

We randomly select 16 images from the set for each class for training (Figure 3-9(a)) and use the 

other 10 images for testing (Figure 3-9(b)). This approach guarantees that the training set and the 

testing set do not overlap, and therefore improves the robustness of our testing results since the 

noisy test images are not used to train the network. 

 
Figure 3-9: Training and test data set. 

(a) Noisy training data set for the SLP. The training data set for each class includes the original image and 15 out 

of the 25 noisy images created by flipping 1 pixel in the original image. (b) Noisy testing data set for the SLP. 

The testing data set includes the 10 noisy images not in the training set, created by flipping 1 pixel in the original 

image for each class. 
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Training and testing results from the experimentally implemented SLP are shown in Figure 

3-10(a-c). After 5 online training epochs, the SLP can already achieve 100% classification 

accuracy for both the training and testing sets. The average activation of the correct neuron during 

training is also clearly separated from the others, and the difference in neuron outputs between the 

winning neuron and the other neurons improves during training, as shown in Figure 3-10(a), 

verifying online learning has been reliably implemented in the experimental setup.  

 

 

3.5 Task 2: Sparse coding algorithm implementation 

The same hardware system was then used to implement a sparse coding algorithm. Sparse 

coding aims at representing the original data with the activity of a small set of neurons and can be 

traced to models of data representation in the visual cortex12,13. Sparse coding is an efficient 

 

Figure 3-10: Classification results with SLP implementation. 

(a) Evolution of the output neuron signals during training. Each data point represents the average output value 

for a specific neuron during a training epoch for a given input class. (b) Classification error of the training and 

(c) testing data set as a function of training epochs. The network can achieve 100% classification for both the 

training set and the testing set after five training epochs. 
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method for feature extraction and information compression and allows pattern recognition and 

classification to be performed in the compressed domain14.  

Following our previous work implemented at the board level15, we mapped the Locally 

Competitive Algorithm (LCA) 16 on our integrated memristor/CMOS chip. In this approach, the 

membrane potential of an output neuron is determined by the input, a leakage term, and an 

inhibition term whose strength is proportional to the similarity of the neurons’ features, i.e. an 

active neuron will try to inhibit neurons with similar features with itself. It can be shown 

mathematically that the lateral neuron inhibition can be achieved in the memristor crossbar by 

removing the reconstructed signal from the input to the network.  

 

3.5.1 Locally competitive algorithm (LCA) 

The locally competitive algorithm (LCA) is a sparse coding algorithm that uses a dictionary 

of feature vectors to encode an input signal with a small number of output coefficients while 

minimizing the reconstruction error.   

The concept of sparse coding is as follows: Given an input signal, x, and a dictionary of 

features, D, sparse coding aims to represent x as a linear combination of features from D using a 

set of sparse coefficients a, with a minimum number of features. Mathematically, the objective of 

sparse coding can be summarized as minimizing an energy function containing both the 

reconstruction error term as well as a sparsity penalty term, defined as: 

min
 𝑎
( |𝑥 − 𝐷𝑎𝑇|2  + 𝜆|𝑎|0 )    (3 − 4) 

where |⋅|2 and |⋅|0 are the L2- and the L0-norm, respectively, and 𝜆 is a sparsity parameter that 

determines the relative weights of the reconstruction error (1st term) and the sparsity penalty (the 

number of neurons used, 2nd term). 
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The mathematical form of the LCA can be expressed as follows: x is an m-element (𝑚 × 1) 

input vector, D is an 𝑚 × 𝑛 matrix, where each column of D represents an m-element feature 

vector (i.e. a dictionary element), a is an n-element (1 × 𝑛) row vector representing the neuron 

activity coefficients, where the ith element of a corresponds to the activity of the ith neuron. After 

feeding input x to the network and allowing the network to stabilize through lateral inhibition, a 

reconstruction of x can be obtained as 𝐷𝑎𝑇, i.e. linear combination of the neuron activities and the 

corresponding neurons’ feature vectors.  In a sparse representation, only a few elements in a are 

nonzero while the other neurons’ activities are suppressed to be precisely zero. 

    The neuron dynamics during LCA analysis can be summarized by the following equation16: 

𝑑𝑢

𝑑𝑡
=
1

𝜏
(−𝑢 + 𝑥𝑇𝐷 − 𝑎(𝐷𝑇𝐷 − 𝐼𝑛))     (3 − 5𝑎) 

𝑎𝑖 = {
 𝑢𝑖 if 𝑢𝑖 > 𝜆    
 0 otherwise

   (3 − 5𝑏) 

where ui is the membrane potential of neuron i, τ is a time constant, and In is the 𝑛 ×  𝑛 identity 

matrix.  

        Implementing the inhibition effect 𝐷𝑇𝐷 can be very computation intensive. To implement the 

algorithm in memristor hardware, the original equation (3-5a) can be re-written as 

𝑑𝑢

𝑑𝑡
=
1

𝜏
(−𝑢 + (𝑥 − 𝑥̂)𝑇𝐷 + 𝑎)      (3 − 6) 

where 𝑥̂ = 𝐷𝑎𝑇 is the reconstructed signal. Equation (3-6) shows that the inhibition term between 

neurons can be interpreted as a neuron removing its feature from the input when it becomes active, 

thus suppressing the activity of other neurons with similar features. The matrix-matrix operation 

𝐷𝑇𝐷 in equation (3-5a) is thus reduced to two sequential matrix-vector operations, one used to 

calculate 𝑥̂ = 𝐷𝑎𝑇  and the other used to calculate the neuron activity from the updated input 𝑟𝑇𝐷, 
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where 𝑟 =  𝑥 − 𝑥̂ is the residue term. This approach allows us to implement LCA in memristor 

crossbars without physical inhibitory synaptic connections between the neurons.  

 

 

The LCA algorithm can be implemented in an iterative process through two VMM 

operations; in a forward direction to obtain the neuron activations, and in backward direction to 

obtain the reconstructed input. The residue term is then obtained by removing the reconstructed 

input from the original input and is then fed to the network, and the process is repeated until the 

network stabilizes. Figure 3-11 illustrates the iterative forward and backward processes employed 

in the LCA implementation. 

 

3.5.2 Implementation of Sparse coding on chip 

The bi-directional operation of the memristor array in the integrated memristor/CMOS chip 

allowed us to experimentally implement the sparse coding algorithm on-chip. Similar to the SLP 

 

 

Figure 3-11: Schematic of the LCA algorithm. 

Experimental implementation of the LCA algorithm using on-chip memristor arrays. In each iteration a forward 

pass is performed to update the membrane potential u of the output neurons based on the inputs x, followed by a 

backward pass to update the residual r based on the neuron activities a. The residual r becomes the input for the 

next iteration. 
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case, we use the crossbar array to perform VMM operations, here in both forward and backward 

directions. Since the chip offers full flexibility to implement different algorithms by re-

programming the integrated processor, the LCA algorithm was implemented in the same chip used 

in the SLP study, through simple software changes.  

 

 

4×4 inputs were used to test the experimental implementation of the LCA algorithm. By 

using linear combinations of horizontal and vertical bar patterns, the input dimension is reduced 

to 7. To satisfy the over-completeness requirement of the LCA algorithm, a dictionary containing 

14 features of horizontal and vertical bar patterns are used, as shown in Figure 3-12. This setup 

produces a 2× over-complete dictionary16 that enables the network to find a sparse, optimal 

solution out of several possible solutions. 

The LCA algorithm was mapped to a 16×14 subarray in the memristor/CMOS chip, using 

the corresponding interface circuitry and the processor that provides the neuron functions. An 

example of the LCA network operation is shown in Figure 3-13. The experimentally implemented 

network correctly reconstructs the input image while minimizing the number of activated neurons. 

For example, it identifies the optimized solution with two neurons 6 and 13, instead of using three 

neurons 2,4 and 6, as shown in Figure 3-13(b) and (c). The dynamics of the LCA network operation 

 
Figure 3-12: Dictionary elements based on horizontal and vertical bars. 
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can also be correctly captured, as shown in Figure 3-13(a), where the effects of lateral neuron 

inhibition that lead to a more sparse solution than the initial solution can be clearly observed.  

 

 

 

To verify the system’s performance for other input patterns, an exhaustive test of all 24 

possible patterns consisting of two horizontal bars and 1 vertical bar was performed using the on-

chip memristor network, resulting in 100% success rate (Figure 3-14) measured by the network’s 

ability to correctly identify the sparse solutions.  

 

Figure 3-13: Sparse coding results. 

(a) Experimentally obtained neuron membrane potentials as a function of iteration number during LCA analysis. 

The horizontal red dashed line marks the threshold parameter λ = 18. (b) Original test image. (c) Experimentally 

reconstructed image based on the neuron activities 

 

Figure 3-14: Additional examples. 

Original input images (O) and reconstructed images (R). The same threshold λ = 18 is used in all experiments. 
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3.6 Task 3: A multi-layer neural network: PCA + Classification 

We demonstrate a bilayer neural network using two subarrays in the same memristor 

crossbar, implementing unsupervised and supervised online learning to achieve feature extraction 

and classification functions, respectively. The bilayer network is used to analyze and classify data 

obtained from breast cancer screening based on principal component analysis (PCA). In this work, 

the first layer performs PCA of the original data, which reduces the 9-dimensional raw input data 

to a 2-dimensional space based on the learned principal components (PCs). The second layer is a 

3×1 SLP layer (with differential weights and a bias term) which performs classification using the 

reduced data in the 2-dimensional space for the two classes, as schematically shown in Figure 3-

15. 

 

 

 

Figure 3-15: Schematic of the bilayer neural network. 

(a) Schematic of the bilayer neural network for PCA analysis and classification. (b) The bilayer network is 

mapped onto the integrated memristor chip, using a 9 × 2 subarray for the PCA layer and a 3 × 2 subarray for the 

classification layer. 
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3.6.1 Principal component analysis (PCA) 

PCA reduces data dimensionality by projecting data onto lower dimensions along with 

principal components (PCs), with the goal of finding the best summary of the data using a limited 

number of PCs17. The conventional approach to PCA is to solve the eigenvectors of the covariance 

matrix of the input data, which can be computationally expensive in hardware. A more hardware-

friendly approach is to find the PCs through unsupervised, online learning. 

Specifically, following our previous study18, Sanger’s rule, also known as the generalized 

Hebbian algorithm, is implemented in the integrated chip to obtain the PCs. The desired weight 

change for the jth
 principal component is determined by:  

𝛿𝑔𝑖𝑗 = 𝜂𝑦𝑗 (𝑥𝑖 −∑𝑔𝑖𝑗𝑦𝑗

𝑗

𝑘=1

)      (3 − 7) 

 

3.6.1.1 Mapping memristor conductance to synaptic weight in PCA 

In the experiment, the weights of the 1st and 2nd PCs, 𝑔𝑖𝑗, are mapped onto the memristor 

conductances through a linear transformation18. The network is trained online, using a subset of 

the original database consisting of 100 data points. During the training process, the 9-dimensional 

breast cancer data19 is converted into input voltage pulses with pulse widths proportional to the 

data values, within the range of 0~63 time units. The output charge collected at column j then 

corresponds to the dot-product of the input vector and the conductance vector stored in column j, 

projecting data from the original 9-dimensional space to a 2-dimensional output space (when only 

two principal components are used). During training, the weights are then updated following 

equation (3-7), using programming voltage pulses generated through the write DACs with pulse 

widths proportional to 𝛿𝑔𝑖𝑗.  
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A linear conversion is used to map the memristor conductance in the array to the synaptic 

weights 𝑔𝑖𝑗 with range ([-1 1]) used in PCA, by using the relationship: 

𝑔 =
𝐴𝐷𝐶 − 𝑎

𝑏
    (3 − 8) 

where ADC is the unconverted ADC output from the circuit, which is converted to the 

current/conductance value through factors a (ADC shift factor, which is about 1900) and 𝑏 (ADC 

scaling factor, which is about 1500) in equation (3-8). The conversion based on equation (3-8) 

maps the maximum average current to weight 1 and minimum average current to weight -1. 

For each input data, the dot-product of the input data and the jth feature, 𝑦𝑗 is directly obtained 

from the ADC output of the jth column in the 9×2 weight matrix. The column’s weights are then 

updated based on Sanger’s rule (equation (3-7)). During training, the desired weight updates are 

linearly converted into write pulse widths and applied to the memristor devices, without using 

nonlinear compensation schemes20.  

 

3.6.1.2 Dataset for PCA: Breast cancer dataset  

A standard breast cancer dataset from the University of Wisconsin Hospital19 was used as 

the input for the PCA network, which is available through the University of Californian, Irvine 

Machine Learning Repository21.  

The dataset consists of breast cell mass properties measured in 9 categories and each 

property is scored from 1 to 10. Each input to the memristor network is thus a nine-dimensional 

vector consisting of scores from the nine measurements. The bilayer network was trained using 

100 training data (containing 50 benign and 50 malignant cases) from the dataset and tested with 

500 data (containing 312 benign and 188 malignant cases), not in the training set. 
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3.6.1.3 Implementation of 1st layer for PCA on chip 

Initially, the weights of the 1st and 2nd components are randomized in the memristor array 

(Figure 3-16(a)). Projection of the input along these vectors leads to severe overlapping of the 

benign and malignant cases in the 2-dimensional space, as shown in Figures 3-16(b) and (c). After 

30 training epochs (an epoch is defined as a training cycle through the 100 training data), the PCs 

are correctly learned (Figure 3-16(d)), and the 2-dimensional projected data can be clearly 

separated into two clusters, as shown in Figure 3-16(e) and (f). Note the ground truth (benign or 

malignant) is not used in the PCA training or clustering process. They are included in the plots 

(represented as blue and red colors in Figure 3-16(e) and (f)) only to highlight the effectiveness of 

the clustering before and after learning the PCs.  

 

 

 

Figure 3-16: The results of 1st layer (PCA) implementation. 

(a) Initial weights for the two PCs in the network. (b), (c) Before training, linear separation is not possible in the 

projected 2D space, for both training (b) and testing (c) data. (d) Weights for the two PCs after unsupervised 

online training obtained from the memristor network, using Sanger’s learning rule and 30 training cycles. (e), (f) 

Clear separation can be observed in the 2D space for both training (e) and testing (f) data after projection along 

the trained PCs.  
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3.6.2 2nd layer for classification (SLP) 

The PCA layer separates the original data into clusters but does not classify them. To 

achieve classification, we implemented a second layer, an SLP, in the same hardware system. The 

SLP processes output from the PCA layer and generates a label (benign or malignant). Since there 

are only two classes to distinguish, the SLP is trained online using logistic regression. A 3×2 

subarray is used in the second layer, to account for the 2 inputs, the bias term, and the differential 

weights, as schematically shown in Figure 3-15. 

 

 

 
Figure 3-17: Classification results in the bilayer network.  

(a) Evolution of the classification error during the online training process, from the experimentally implemented 

bilayer network on chip. (b), (c) Classification results experimentally obtained from the memristor chip, for the 

training (b) and testing (c) data. Blue and red colors represent the predicted benign and malignant data, 

respectively. The incorrectly classified results are marked as open circles. Classification rates of 94% and 94.6% 

are obtained for the training and testing data, respectively. (d), (e) Classification results of the bilayer network 

implemented in software. Blue and red colors represent the predicted benign and malignant data, respectively. 

Incorrectly classified results are marked as open circles. Classification rates of 95% and 96.8% are obtained for 

the training (d) and testing (e) data in software, respectively. 
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A supervised learning algorithm, logistic regression, is used to train the SLP layer of the 

bilayer network to classify benign and malignant cells. Logistic regression is commonly used for 

the classification of two classes. Suppose an N training sample dataset 𝐱 = (𝑥(1), … , 𝑥(𝑁))
𝑇
 with 

label t = (𝑡(1), … , 𝑡(𝑁))𝑇, where the nth training sample can be written as 𝑥(𝑛) and the nth label 

𝑡(𝑛) ∈ {0,1}. A cross-entropy energy function can be defined as: 

𝐸(w) = −∑{𝑡(𝑛) ln 𝑦(𝑛) + (1 − 𝑡(𝑛)) ln(1 − 𝑦(𝑛))}

𝑁

𝑛=1

  (3 − 9) 

where 𝑦(𝑛) = 𝜎(𝑧(𝑛)) and 𝑧(𝑛) = 𝑤𝑇𝑥(𝑛) 

𝜎(𝑧) is the logistic sigmoid function defined by: 

𝜎(𝑧) =
1

1 + exp(−𝑧)
    (3 − 10) 

The likelihood of a training data 𝑥(𝑛) belonging to class 𝑡(𝑛) = 1 is determined by the sigmoid 

function output 𝑦(𝑛), with larger 𝑦(𝑛) meaning 𝑥(𝑛) more likely belong to the class. Taking the 

gradient of the error function leads to: 

∇𝐸(𝑤) = ∑(𝑦(𝑛) − 𝑡(𝑛))𝑥(𝑛)
𝑁

𝑛=1

    (3 − 11) 

To minimize the energy function, the network is trained using the batch gradient descent defined 

as22: 

𝑤 = 𝑤 − 𝜂∑(𝑦(𝑛) − 𝑡(𝑛))𝑥(𝑛)
𝑁

𝑛=1

    (3 − 12) 

After learning the PCs in the PCA layer, the original 9-dimensional data are fed through 

the PCA layer, and the clustered 2-dimensional data are used as inputs for the SLP layer. The same 
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100 training data used for the PCA layer training are used for the SLP layer training (Figure 3-

17(a)), in a supervised fashion using the ground. Training is completed after 30 epochs. 

Afterward, the 500 test data not included in the training set are applied to the network, 

passing first through the PCA layer then as 2-dimensional data into the 2nd SLP layer. After online 

training of the PCA and the SLP layers, the experimentally implemented 2-layer network can 

achieve 94% and 94.6% classification accuracy during training and testing (Figure 3-17(b) and 

(c)). The values are slightly lower than the ones obtained from software implementation (95% 

during training and 96.8% during testing, Figure 3-17(d) and (e)), due to the nonideality in the 

memristor weight update that results in a decision boundary that differs from that obtained from 

software (which assumes ideal linear weight updates) after the online training process.  

 

3.6.3 Evaluation of the PCA + classifier network 

Beyond classification accuracy, the following statistical parameters can be used to further 

evaluate the performance of the network: 

• Condition positive (P): the number of real positive cases in the data 

• Condition negative (N): the number of real negative cases in the data 

• True positive (TP): Sick people correctly identified as sick 

• False positive (FP): Healthy people incorrectly identified as sick 

• True negative (TN): Healthy people correctly identified as healthy 

• False negative (FN): Sick people incorrectly identified as healthy 

• Sensitivity (the true positive rate (TPR) or recall): The proportion of actual positives that 

are correctly identified as such (e.g., the percentage of sick people who are correctly 

identified as having the condition). i.e. TP/(TP+FN) 

• Specificity (true negative rate (TNR)): The proportion of actual negatives that are correctly 

identified as such (e.g., the percentage of healthy people who are correctly identified as not 

having the condition). i.e. TN/(TN+FP) 
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• Precision (Positive Predictive Value (PPV)):  measure of the classifier exactness.  

i.e. TP/(TP+FP) 

 

The receiver operating characteristic (ROC) curve is a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its discrimination threshold is varied. The ROC 

curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR, which 

equals (1 – specificity)) at various threshold settings. The area under the curve (AUC) represents 

the degree or measure of separability. It shows how much the model is capable of distinguishing 

between classes. The higher the AUC, the better the model is at predicting 0s as 0s and 1s as 1s. 

By analogy, the higher the AUC, the better the model is at distinguishing between patients with 

the disease and no disease. Therefore, the AUC - ROC curve is an important performance measure 

for a classification problem at various threshold settings.  

 

 

The F1 score is a measure of a test's accuracy. It considers both the precision (PPV) and 

the recall (TPR) of the test to compute the score: PPV is the number of correct positive results 

 

Figure 3-18: AUC-ROC curve and F1 score of the breast cancer task.  

The experimentally PCA + classifier network show excellent AUC value of 0.996 and high F1 score of 0.960, 

corresponding to sensitivity, specificity and accuracy values of 93.1%, 99.0% and 94.6%, respectively. 

http://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)
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divided by the number of all positive results returned by the classifier, and TPR is the number of 

correct positive results divided by the number of all relevant samples (all samples that should have 

been identified as positive). The F1 score is the harmonic average of the precision and recall, where 

an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. 

The sensitivity, specificity, and accuracy for our experimentally implemented PCA + 

classifier network were calculated to be 93.1%, 99.0%, and 94.6%, respectively. From the AUC-

ROC curve shown in Figure 3-18, the AUC of classification using the learned principal 

components is 0.996, suggesting the network is almost perfect at distinguishing between the 

positive class and the negative class. The F1 score of the network is 0.960, proving the network 

has excellent precision and sensitivity for breast cancer evaluation. 

 

3.7 Performance & area analysis of the integrated memristor/CMOS chip 

3.7.1 Power estimate 

The integrated chip suggests different computing tasks can be efficiently mapped on the 

memristor-based computing platform, by taking advantage of the bidirectional VMM operations 

in the memristor crossbars and the flexibility in the CMOS interface and control circuitry. In our 

prototype, the supporting analog interfaces, as well as digital control and the OpenRISC processor 

are implemented in 180 nm CMOS technology.  

Both the digital processor power and the mixed-signal interface power are directly 

measured experimentally, by measuring the root mean square (RMS) current with a Fluke meter 

while running the chip. At the maximum frequency of 148 MHz, the digital power reads 235.3 

mW and the total analog power reads around 64.4 mW. This corresponds to the energy 

consumption of 6.53 nJ/inner product or 1.12 pJ/op for the mixed-signal interface, where an 

https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Precision_and_recall
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operation is defined as the multiplication and accumulate (MAC) process of a 4-bit input with a 

stored analog weight in the memristor array. The crossbar array power is obtained from the average 

device current at the read voltage, which yields ~7 mW for the 54×108 array. The total power at 

148 MHz clock is thus 306.7 mW for the current chip based on 180 nm CMOS technology. 

The energy efficiency is estimated using the 148 MHz clock speed and an average 4-bit 

input during inference, which gives around 9.87M VMM operations per second. Multiplying this 

number by 54×108 leads to 5.75×1010 operations per second. Therefore, the energy efficiency can 

be derived by dividing the number of ops/second with the total power, which results in 187.62 

GOPS/W for the current memristor/CMOS chip. 

The custom circuitry was designed in 180nm CMOS and features a generic digital 

processor along with a full set of mixed-signal analog to digital converters (ADC) and digital to 

analog converters (DAC). Two different approaches were used to estimate the power dissipation 

at the 40 nm technology node. The digital power was estimated using generalized scaling23 and 

the mixed-signal power was estimated using a figure of merit (FOM) approach. 

In digital circuits, the length scaling factor S, and the supply voltage scaling factor U are 

different during scaling. Specifically, from 180 nm to 40 nm, S = 180 nm/40 nm = 4.5, U = 1.8 

V/1.0 V = 1.8. As a result, the digital power is reduced by a factor of 1/U2 = 0.32, while the circuit 

speed is improved by a factor of S = 4.5. Note the faster processor allows the same process to 

control more channels, so normalizing to the same number of 162 channels, the digital power at 

40 nm is estimated to be  

𝑃40𝑛𝑚 =
𝑃180𝑛𝑚
𝑈2𝑆

    (3 − 13) 

Using the measured digital power at 180nm, the estimated digital power at 40 nm is then 235.3 

mW/((1.8)2×4.5), which is about 16.1 mW. 
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The analog to digital converter performance is evaluated using a figure of merit (FOM) 

approach. An ADC FOM combines several converter performance metrics into one number for 

comparison across ADC architectures. The Schreier FOM is typically used for high-resolution 

converters and is given by the following equation: 

𝐹𝑂𝑀𝑠 = 𝑆𝑁𝐷𝑅 + 10 log(
𝐵𝑊

𝑃
) (3 − 14) 

where SNDR is the signal to noise ratio and distortion, BW is one-half of the sampling frequency, 

and P is the power dissipation. To estimate the power scaling from 180nm to 40nm, the ADC 

Performance Survey24 was used which aggregates all ADCs published in the ISSCC and VLSI 

circuits conferences from 1997 - 2018. A subset of data for 180 nm and 40 nm ADCs is shown in 

Figure 3-19.  

The mean FOM between sampling frequencies from 100 kHz to 10 MHz for each 

technology was determined and compared. The mean FOM for 40 nm was determined at 172 dB 

 

Figure 3-19: Schreier FOM for 180nm and 40nm ADCs.  

The Schreier FOM is used for comparing high-resolution ADC performance across architectures. The data are 

collected from all ADCs published in ISSCC and VLSI conferences from 1997-2018. 
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and a conservative estimate of 165 dB was used for power estimation. Using an estimated 165 dB, 

which corresponds to 176 μW per ADC, we can estimate the new total analog power at 40 nm to 

be 19 mW, leading to a total system power of 42.1 mW, assuming the 54×108 crossbar power 

remains at 7 mW. Therefore, by simply scaling the system to 40nm technology node, the estimated 

OPS/W at 148 MHz is 1.37 TOPS/W.  

 

3.7.2 Area efficiency 

As the first prototype, we intentionally made the circuit design flexible to serve as an 

evaluation platform, and we were limited to a relatively old CMOS technology (due to cost and 

tool compatibility limitations in a university cleanroom). As a result, the area efficiency is not 

ideal. The total chip area is 6.7 mm × 9.2 mm = 61.64 mm2. The area of the memristor array is 475 

μm × 292 μm ~ 0.14 mm2. Therefore, the memristor array’s area efficiency (the percentage of the 

array over the entire chip) is about 0.23%. 

A large reason for the low area efficiency can be traced to the conservative design choice. 

To make the chip flexible, we designed 2 write DACs (for positive and negative writes), 1 read 

DAC and a 13bit ADC at each row and each column, so input data can be applied at every row 

and the output can be collected at every column and processed in parallel. The reverse operation 

is also supported for algorithms such as the LCA. The size of the three DACs and the ADC is 

around 74 μm × 1800 μm ~ 0.1332 mm2 for each such reconfigurable channel. The total area of 

these components for the 162 channels (54 rows and 108 columns) occupies 21.57 mm2, which is 

around 35% of the entire chip area. The rest of the chip areas includes the 64 kB SRAM (32 kB 

data memory and 32 kB ping pong memory) and the OpenRISC core, which are 3.79 mm2 and 

10.04 mm2, respectively. 
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3.7.3 Optimization of Power and Area 

Further optimizations of the system design, e.g. by replacing the generic processor with a 

custom-designed controller or Field-Programmable Gate Array (FPGA), and by replacing the fast 

and high-precision 13-bit ADC with simpler interface circuits and more optimized ADC designs, 

along with memristor device optimizations that reduce power consumption in the memristor 

crossbar, can further improve the system’s performance and power efficiency. 

 

 

 

 

Figure 3-20: Error rates from different models as a function of weight and activation quantization effects.  

(a) Error rates obtained using quantized weight and activation, for 32-bit, 16-bit, 8-bit, 4-bit fixed-point for the 

MNIST data set [25]. (b) Error rates as a function of activation quantization effect, for weights quantized at 32-

bit, 16-bit, 8-bit, 4-bit, for CIFAR-10 [26]. (c) Floating-point vs 8-bit quantized network error rates for various 

network depths of the ResNet model, tested on ImageNet [27]. 

 

Figure 3-21: Quantization effect for common CNN models. 

 The models are implemented using 8-bit weight and 8-bit activation. All latency numbers are measured on 

Pixel 2 cell phones using a single core, adapted from tensorflow.org 

(https://www.tensorflow.org/lite/performance/model_optimization) 
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For many applications, we can replace the 13-bit ADC used in this evaluation chip with 8-

bit ADCs without loss of accuracy. For example, Figures 3-20 and 3-21 show simulation results 

comparing floating-point activations (corresponding to the ADC outputs) vs. 8-bit activations for 

commonly used algorithms, as well as weight quantization effects for some models25-27. Reducing 

the required ADC precision to 8-bit will significantly decrease the ADC area, as shown in Figure 

3-22(b). The chip area will also be naturally reduced with more advanced technology nodes28,29. 

For instance, state-of-the-art 40 nm 8-bit ADCs occupy ~1650 μm2, which will reduce the ADC 

area by a factor of 20 compared with the current chip29. The DAC area is relatively much smaller. 

For example, the total DAC area for a 128 ×128 memristor crossbar array would be 173 μm2 with 

the 40 nm technology node. 

The ADC area can be further reduced through optimization of the array interface structure. 

Instead of using a dedicated ADC at each crossbar column and row, multiple columns can share a 

single ADC by sequentially sampling one column at a time, e.g. via time-multiplexing, as shown 

in Figure 3-23. This approach is feasible since ADCs can operate at speeds of several GHz while 

the read operation through the memristor takes a longer time (e.g. 10 ns). Using this shared ADC 

approach, the physical ADC area can be significantly reduced. Note here we are trading the system 

speed for the peripheral circuitry area. However, due to the in-memory operations and high level 

of parallelism, the memristor-based systems do not need to operate at very high frequency to 

achieve the desired outputs. For example, our previous analysis has shown that even at a system 

speed of 10 Mhz, the very high energy efficiency of 60.1 TOPS/W can still be achieved30. 
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Another potentially promising approach for area efficiency is to exploit a concept we 

termed “array ADCs”, where the core component of the ADC is shared among different columns 

but each column maintains a dedicated latch to accumulate data locally so the column outputs can 

still be processed in parallel. This approach can potentially reduce the overall ADC area without 

having to reduce the system clock. Similar approaches have been used in column-parallel CMOS 

sensor arrays31-34 or multi-channel biomedical and physical detectors35-41. These ADCs are 

 

Figure 3-22: ADC design choices.  

(a) Speed and power tradeoffs, and (b) resolution and area tradeoffs for reported ADC designs. The data are 

collected from publications at key technology conferences, and scaled to the 40nm technology node. 

 
Figure 3-23: Shared ADC options.  

Schematics showing dedicated ADC (a) and shared ADC (b) designs. 
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designed for parallel multi-node sampling applications, which is an excellent match for the tasks 

discussed here, although circuit optimizations have not been extensively studied since these prior 

applications do not require high-speed operations. Optimizing the ADC design using the array 

ADC concept will be a key direction in our future studies. 

 

 

With technology scaling, proper ADC resolution selection, and optimized design through 

shared ADC or array ADC approaches, we expect the area efficiency of the integrated chip to be 

significantly improved, and can potentially reach 100%, as shown in Figure 3-24.  

 

 

Figure 3-24: ADC area efficiency.  

Expected area efficiency for different memristor half-pitch sizes. The ADC is based on conventional 40nm SAR 

ADC design, for 6 bit [28] and 8 bit ADCs [29]. 
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3.8 Non-ideal effect of memristor/CMOS chip and future implementations 

3.8.1 Device variability on integrated chip 

Although this prototype achieved most of the goals we originally set, the limitation of 

having to perform the integration after all CMOS processes are completed, including the final 

passivation steps, leads to significant challenges and non-ideal device behaviors. For example, 

Figure 3-7(d) shows the on/off ratio distribution of devices in the integrated array after a weight 

update operation. The relative uniform distribution of devices within the integrated memristor 

array allows the system to implement a number of computing tasks on-chip. However, device 

variations can still be clearly observed. This effect is exacerbated by the line resistance effects, as 

shown in Figure 3-25. 
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As discussed earlier, a major challenge we encountered for the memristor/CMOS 

integration is that we do not have whole wafers to work with. The CMOS chip we obtained is from 

a Multi-project Wafer (MPW) process due to budget constraints. In these cases, all back-end-of-

line (BEOL) processes are completed at the foundry, including the final passivation (with a very 

thick polymer passivation layer) and pad-open processes. The chips are then diced and sent to us. 

 
Figure 3-25: Line resistance effects. 

(a) Zoomed-in SEM image of the memristor array integrated on top of the CMOS chip. The 54×108 array used 

in this study is composed of 126 8×6 subarrays to work around the periodic deep trenched areas (~2000Å deep) 

created from the design rule. (b) Measured BE and TE line resistance values from the integrated array (labeled 

as ex-situ integration). The line resistances can be significantly reduced if the memristor array can be integrated 

at the local or intermediate interconnect levels (labeled as monolithic integration). (c) Schematic of the wiring 

patterns. The total line resistance seen by the device can change significantly even among neighboring devices 

due to the even/odd arrangement of the pad patterns. (d) Simulated results using the memristor model, showing 

the measured on/off ratio can be strongly affected by the voltage loss due to the line resistance. The on/off is 

calculated after 50 consecutive programming pulses. 
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This process leads to very rough surfaces for us to integrate memristor arrays with. An ideal 

process will be to integrate the memristor arrays at the local or intermediate interconnect level (e.g. 

metal 4 level) before the rest of the BEOL processes. However, this will require stopping the whole 

wafer at this intermediate step which is not possible with MPW processes.  

To enable successful integration on these very rough and small-size chips, we have 

performed extensive optimizations in our fabrication process. During the CMOS chip design, we 

intentionally designed a flat area that is around 1mm × 1mm in the center of the chip. However, 

even this area contains periodic trenches (~2000 Å deep) to comply with the design rules. 

Therefore, to avoid having active devices in the trench region we divide the 54x108 memristor 

array into 8x6 small subarrays. The small subarrays are then connected with thicker and wider 

wires to form the larger array, as shown in Figure 3-25(a). This approach allowed us to successfully 

fabricate the memristor arrays and achieve a high fabrication yield. However, the additional wiring 

increases the metal line resistance. In addition, to maintain device yield and device uniformity, the 

bottom electrode cannot be made very thick which also leads to larger line resistance. 

The line resistance affects the larger array operation. Specifically, although this effect is 

relatively small during the VMM operation due to the high memristor resistance (~ 120-580 kΩ) 

at 0.6 V used for the inference stage, the device exhibits non-linear I-V characteristics such that 

the device resistance at the write voltage (1.8 V) is much lower (~ 1.7-8.2 kΩ). As a result, 

programming devices in the larger array becomes challenging due to the line resistance. More 

importantly, non-uniform programming occurs as a result of the differences in the BE and TE wire 

length seen by different devices.  

To analyze the effect of the series line resistance on the array operation, we performed 

detailed SPICE (Simulation Program with Integrated Circuit Emphasis) simulations using the 
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measured line resistance values and a dynamic memristor model (Equation (3-15) and (3-16)) to 

estimate the voltage loss effect.  

𝐼 = (1 − 𝑤)𝛼[1 − exp(−𝛽𝑉)] + 𝑤𝛾 sinh(𝛿𝑉) (3 − 15) 

𝑑𝑤

𝑑𝑡
= 𝜆 sinh(𝜂𝑉) −

𝑤

𝜏
 (3 − 16) 

where Equation (3-15) is the I-V equation which includes a Schottky term (the 1st term) 

corresponding to conduction in the VO-poor region and a tunneling-like term (the 2nd term) 

corresponding to conduction in the VO-rich region42.  

The two conduction channels are in parallel and the internal state variable w represents the 

relative contribution from the two channels. Equation (3-16) is the dynamics equation which 

describes the change rate of the state variable w with respect to the applied voltage, including the 

drift effect under an applied electric field (the 1st term) and the spontaneous diffusion (the 2nd 

term). 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝜂 are all positive-valued parameters determined by material properties. τ is the 

diffusion time constant. In our array-level simulation, a series resistance R is also added to the 

device model. The parameters used in the SPICE simulation are listed below.  

 

 

Our SPICE simulations show that in the worst case (i.e. the target cell is furthest from the 

voltage supply), the voltage loss due to the line resistance is around 0.33 V, corresponding to an 

 

Table 3-1: The parameters used in the SPICE simulation 
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18.5% drop of the write voltage. The reduction of the applied voltage leads to significantly reduced 

device response, as shown in Figure 3-25(d). 

 

 

Analysis of the integrated array shows large device variations can be observed when trying 

to program the device, due to the different line resistances the devices see, as shown in Figure 3-

26. Near the edges, the effect is significant due to the even/odd wiring patterns, as seen in Figure 

3-25(b) and 3-26(c). To achieve a more uniform device response, we chose the center area of the 

array in our studies, where the voltage drop due to line resistance is roughly similar (Figure 3-

26(c)) that allows us to reliably program the devices using the open-loop method.  

 
Figure 3-26: Voltage loss effects in the memristor array. 

(a) The effect of voltage loss in the integrated 54×108 array, and (b) the resulting on/off ratio affected by the 

voltage loss effect, obtained from SPICE simulations. The voltage loss and on/off ratio values are represented by 

the color labels shown on the right. (c) The voltage loss effect at different regions in the array. The large line 

resistance effect, combined with the even/odd electrode design, leads to large variations among neighboring 

cells for cells near the edge. Better uniformity can be obtained for cells in the center of the array, with a reduced 

on/off ratio. 
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Future studies that can allow more direct integration at the local or intermediate 

interconnect levels (which we termed monolithic integration) will effectively address this issue. 

For example, our detailed SPICE simulations show that monolithic integration will greatly reduce 

the line resistance and minimize measured device variability, and allow larger arrays to be 

successfully operated, as shown in Figure 3-27.  

 

 

3.8.2 Expected other issues for complex model and large datasets 

During batch training, the memory needed to store the batch information may become a 

bottleneck as the task becomes complex and the pattern size increases. Batch gradient descent has 

also been associated with overfitting due to the low stochasticity of the process. For complicated 

tasks and large datasets, mini-batch training43,44 may be an attractive option by splitting the training 

dataset into small batches, with typical batch sizes between 2 to 32. Additionally, recently 

proposed hybrid techniques that utilize CMOS capacitors to perform the lower-significance weight 

updates could also provide a realistic solution to the batch information storage challenge11. 

 

Figure 3-27: Improvements with monolithic integration.  

SPICE simulations showing (a) the effect of voltage loss and (b) the expected on/off ratio from a 54×108 array 

integrated at the local interconnect level, showing much reduced line resistance effect and improved device 

uniformity. 
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To achieve high accuracy with more complex and larger datasets, device properties should 

also be improved. The WOx memristor device can be reliably programmed over 107 times. 

Although this level of endurance can support certain online training algorithms, longer endurance 

may be desirable. The small models we implemented in the current study can tolerate these cycle-

to-cycle and device-to-device variations, however, device nonlinearity and variability need to be 

reduced to implement larger networks45. To this end, future device optimizations that can improve 

device uniformity and weight update linearity4,46, along with architecture innovations, such as 

hybrid non-volatile memory (NVM)-CMOS neural-network implementations11, mixed-precision9, 

multi-memristive architectures10, and other precision extension techniques30 can be employed to 

address these requirements and allow larger models to be implemented in memristor-based 

systems.  

 

3.8.3 Tiled architecture 

To scale up the system for larger networks, rather than simply increasing the crossbar size, 

a promising approach may be to tile small crossbars together in a modular fashion30,47,48, as 

schematically shown in Figures 3-28 and 3-29. In this approach, each tile is a self-contained, 

integrated memristor - CMOS unit (macro), which is then tiled together using digital interfaces to 

construct larger systems49. In Chapter 5, we will discuss it in more detail. 
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Figure 3-28: Tiled architecture based on small crossbar arrays. 

Every tile consists of a memristor array (e.g. 128 × 128) integrated on top of CMOS circuitry forming a self-

contained unit (macro). The tile-to-tile communication is performed in digital domain. 

 

Figure 3-29: Tiled architecture with high area efficiency.  

Each macro consists of a small memristor array (128 × 128) integrated with underlying CMOS circuitry (DACs, 

ADCs, MUXs, register buffer, etc.). Larger systems are built by tiling the macros through digital interfaces. 



 99 

3.9 Conclusion 

In this study, we successfully designed and fabricated a fully-functional, programmable 

neuromorphic computing chip with a passive memristor crossbar array integrated with a complete 

set of analog and digital components and an on-chip processor. The integrated chip allows the 

mapping of different neuromorphic and machine learning algorithms on-chip through simple 

software changes. Three different and commonly-used models, perceptron, sparse coding and 

principal component analysis with an integrated classification layer, were demonstrated. 100% 

classification accuracy was achieved for 5×5 noisy Greek Letters in the SLP implementation, the 

reliable sparse coding analysis was obtained from an exhaustive test set using 4×4 bar patterns, 

and 94.6% classification rate was experimentally obtained from the breast cancer screening dataset 

using the same integrated chip.  

The integrated memristor – CMOS systems potentially offer efficient hardware solutions 

for different network sizes and applications4,5,7,9,11,50-57. An initial application of such systems may 

be edge computing such as those used in the Internet of Things (IoT) to process data near its source, 

allowing real-time data processing with high speed and low energy consumption58,59. We expect 

continued device, circuit and architecture innovations as discussed above, along with algorithm 

advances such as quantized neural networks60,61 can allow the system to be scaled up for more 

complex and demanding tasks. 
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Chapter 4  

Short Term Memory and Reservoir Computing System 

4.1 Short term memory effect on WOx memristor 

For non-volatile memory (NVM) applications1–5 and in-memory computing6–10 with 

memristor devices, the conductance of the memristors should remain unchanged during the 

network operations. Otherwise, the stored information in memristors is no longer valid, resulting 

in critical errors on the computation of VMM and very low accuracy for deep learning models. 

However, the short-term memory (i.e. volatile) effect11–13, which refers to the fact that the device 

can only hold its conductance value for a short period of time, can potentially be used to natively 

perform other computing tasks, particularly in the temporal domain. For instance, these dynamic 

effects allow the devices to map temporal input patterns into different device states, which can be 

used to build a “reservoir” in reservoir computing schemes. In this Chapter, I will discuss a study 

in which WOx memristors with short-term memory effects are used in reservoir computing 

systems for image classification and non-linear system mapping. 

4.1.1 Short term dynamics on WOx memristor 

In a typical WOx memristor, the energy barrier for oxygen vacancy migration is low and 

oxygen vacancy drift by an electric field and spontaneous diffusion can co-exist in the device12. 

Depending on the purpose of the applications, the oxidation condition, and device structure can be 

tailored to achieve either short-term memory or long retention properties, which in turn allow the 

devices to be used in different applications. 
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Specifically, the memristor dynamics, considering spontaneous oxygen vacancy diffusion, 

can be described by the following equations: 

𝐼 = (1 − 𝑤)𝛼[1 − exp(−𝛽𝑉)] + 𝑤𝛾 sinh(𝛿𝑉) (4 − 1) 

𝑑𝑤

𝑑𝑡
= 𝜆 sinh(𝜂𝑉) −

𝑤

𝜏
 (4 − 2) 

where equation (4-1) is the I-V equation which includes a Schottky term (the 1st term) 

corresponding to conduction in the VO-poor region and a tunneling-like term (the 2nd term) 

corresponding to conduction in the VO-rich region14. Equation (4-2) is the dynamics equation 

which describes the change rate of the state variable w with respect to the applied voltage, 

including the drift effect under an applied electric field (the 1st term) and the spontaneous diffusion 

(the 2nd term). 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝜂 are all positive-valued parameters determined by material properties. 

𝜏 is the diffusion time constant, which corresponds to the retention or the decay speed of the 

memristor device. 

 

 

 

Figure 4-1: Conductance decay in a WOx memristor.  

The device was first programmed by 5 write pulses (1.4 V, 1 ms) then its conductance was monitored by 

periodic read pulses (0.4 V, 500 μs). τ = 50ms. 
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With oxidation at a low temperature such as 350~375 °C for 45s and tungsten bottom 

electrode, we can achieve a pronounced short-term memory effect in WOx memristor devices. The 

time constant τ in the short-term memory devices is typically around 50ms, as shown in Figure 4-

1. If we use stronger oxidation condition, e.g. 400~425°C for 60s, with inert, e.g. gold (Au), a 

bottom electrode, the device can obtain much longer retention. In this case, we can use the 

memristor devices to store synaptic weights and to perform matrix operation directly in the 

memristor arrays.  

To demonstrate the temporal dynamics of the WOx device15, a pulse stream composed of 

write pulses having the same amplitude (1.4 V, 500 μs) but at different timeframes are applied to 

the device and the response of the memristor, which is represented by the read current through a 

small read pulse (0.6 V, 500 μs) following each write pulse, is recorded. The results are shown in 

Figure 4-2. It can be clearly observed that with consecutive short pulses, the conductance of a 

memristor with short-term memory effect is gradually increased, while the conductance state will 

decay without any stimulation. As a result, the final device state depends on the temporal pattern 

of the input, with different patterns leading to different device states. This native short-term 

memory effect allows a reservoir to be built with a small number of memristor devices (including 

using just one device), significantly reducing the hardware implementation complexity of reservoir 

computing systems. 
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4.1.2 Integration of WOx device for short term memory 

A 32×32 WOx array with short-term memory effects is used in reservoir computing studies. 

The array fabrication is as follows. 60 nm of W was first sputter deposited on a Si carrier wafer 

with a 100 nm thermally grown oxide. The bottom electrodes (BEs) with 500 nm width were 

patterned by e-beam lithography and reactive ion etching (RIE) using Ni as a hard mask. Afterward, 

the Ni hard mask was removed by wet etching. 300 nm of SiO2 was then deposited by plasma-

enhanced chemical vapor deposition, followed by RIE etch back to form a spacer structure along 

the sidewalls of the BEs. The spacer structure allows better step coverage of the top electrodes 

(TEs) at the cross-points and also restricts the resistive switching regions to a flat surface. The 

resistive switching WOx layer was formed through rapid thermal annealing of the exposed W 

electrode surface with oxygen gas at 375 °C for 45 seconds. Afterward, the TEs (Pd (70 nm)/Au 

(90 nm)) were patterned by e-beam lithography, e-beam evaporation, and liftoff processes. 

Another RIE process was used to remove the WOx between the TEs to isolate the devices and to 

 

Figure 4-2: Memristor's temporal response to a pulse train.  

Write pulses (1.4 V, 500 μs) with different timing (blue lines) were applied and the response, represented by 

current measured by a small read pulse (0.6 V, 500 μs) after each write pulse is recorded. The memristor shows 

distinctive response to specific temporal patterns applied to it. 
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expose the BEs for electrical contacts. Finally, photolithography, e-beam evaporation, and liftoff 

process were performed to form wire bonding pads of 150 nm thick Au. Figure 4-3 shows SEM 

image of the 32 × 32 WOx memristor array for temporal data processing. 

 

 

4.2 Reservoir computing (RC) with memristor devices 

Temporal data, including videos, speech, and other signals that evolve with a time that can 

across many different time scales, are of high technological and societal importance but are 

difficult to process with conventional DNNs. To process temporal data, networks with internal 

dynamics such as recurrent networks (RNNs) have been developed. However, generic RNNs are 

expensive to train. To address these challenges, reservoir computing (RC) systems16,17 were 

proposed, where the original inputs can be non-linearly projected into a high-dimensional feature 

space through a dynamic reservoir. With this approach, the original features that may not be 

linearly separable can become linearly separable in the new feature space, and can then be further 

processed with a simple linear network. RC systems have been shown to outperform classical fully 

trained RNNs in many tasks18–20. To perform the nonlinear transformation of temporal data, a key 

 

Figure 4-3: SEM image of the 32×32 WOx memristor array.  

Image Credit: Dr. Chao Du 
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requirement of the reservoir is to have a “fading memory”, or “short-term memory” effect, so that 

the system can respond to inputs at the near past but not far past. With this approach, the reservoir 

only needs to be excited (mapping input features to different excited reservoir states) whereas the 

connectivity structure inside the reservoir remains fixed at all times, and thus does not require 

training. To further process the transformed data, a second network, called a readout function, is 

trained and generates the final output. Since the most difficult task of separating the features is 

implemented in the reservoir, a simple and small readout network is typically sufficient, thus 

dramatically reducing the training cost of the overall system.  

 

 

 

Implementing the reservoirs using conventional systems can however be expensive. In this 

study, we attempt to utilize the internal short-term ionic dynamics of the memristor devices to 

build RC systems15. The internal ionic dynamic processes allow the memristors to map temporal 

input patterns into different reservoir states (represented as memristor resistance, as shown in 

Figure 4-2), which can be further processed via a simple readout function, as shown in Figure 4-

4. 

 
Figure 4-4: Schematic of an RC system. 

This shows the reservoir with internal dynamics and a readout function. 
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4.2.1 Classification task with the RC system 

In our study, WOx memristors with short-term memory properties are used to effectively 

implement RC systems. The first task we demonstrated is image classification. Take digit “2”, a 

4×5 input image, as an example. The image has and 20 pixels, with values of either black (“0”) or 

white (“1”), as shown in Figure 4-5. It is then divided into 5 rows, each row containing 4 

consecutive pixels and is fed into a memristor as a node the reservoir, using a 4-timeframe input 

stream. A timeframe (3 ms in width) will contain a write pulse (1.5 V, 1 ms) if the corresponding 

pixel is a white pixel, or no pulse (equivalently a pulse with an amplitude of 0 V) if the 

corresponding pixel is a black pixel21. Therefore, information of the image for the digit “2”, which 

is represented by the spatial locations of the white pixels in each row, is represented by temporal 

features streamed into the reservoir, i.e., a pulse stream with pulses applied at different timeframes.  

 

 

The goal is to extract information of the image, i.e. the digit number “2” here, by 

collectively processing the temporal features in the 5 input pulse streams. Here only 5 memristors 

 

Figure 4-5: Reservoir for simple digit recognition.  

Left: 4×5 pattern image, digit “2” as an example. Right: the reservoir containing the inputs (pulse transformed 

from the image), the liquid (consisting of 5 memristors) and the readout function (a network with 10 output 

neurons). 
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were used to process the image, with each memristor processing the input pulse stream from a 

specific row in the image. The reservoir state is represented by the collective resistance states of 

the 5 memristors. After the application of the input streams, the reservoir state is thus dependent 

on the input temporal patterns and can be used to analyze the input, as shown in Figure 4-5 

Specifically, when a pulse is applied, the state of the memristor will be changed (reflected 

as a conductance increase) and if multiple pulses are applied with short interval a larger increase 

in conductance will be achieved, while long intervals without stimulation will result in the 

memristor state (conductance) decaying towards its resting state, i.e., the initial state before any 

pulse is applied. Therefore, different temporal inputs will lead to different states of the device and 

consequently the overall reservoir state. In this specific setup, each memristor’s state after 

stimulation will thus represent a specific feature for the given row in the original image, and the 

collective device states, representing the reservoir state, can be used to perform pattern recognition 

through the (trained) readout function, i.e. identifying the digit as “2” of the original input (Figure 

4-5). 

 

 

The readout function here is a 5×10 network, with the reservoir state, measured by the read 

currents from the 5 memristors in the reservoir, as the input, and 10 output neurons (labeled 0-9) 

 
Figure 4-6: Test set and measured reservoir states. 

(a) Images of the 10 digits used in this test. (b) Experimentally measured reservoir states after the memristors are 

subjected to the 10 inputs. The reservoir state is reflected as the read currents of the 5 memristors forming the 

reservoir. 



 115 

representing the predicted digit value of the input image, schematically illustrated in Figure 4-5. 

During classification, the output from the 10 output neurons is calculated from the dot product of 

the 5 inputs and the weights associated with each output neuron, and the output with the maximum 

dot product is selected and its label number is used as the predicted digit value. The readout 

function is trained in a supervised fashion based on Softmax regression (explained with details in 

Chapter 3) where the weights are adjusted to minimize output error during training. 

With the 10 images (from 0 to 9) and 200 training iterations, the RC system can correctly 

recognize all inputs from the 10 original images, as shown in Figure 4-6. To test the effects of 

cycle-to-cycle variations of the device, the 10 images were repeatedly tested ten times without 

retraining the readout function, and 100% accuracy was verified experimentally in the memristor-

based RC system for this simple task. 

 

4.2.2 Other complex temporal data processing with the RC system 

In addition, the memristor-based RC system also can be used to process real-world 

problems such as handwritten digit recognition with performance comparable to those achieved in 

much larger networks. With the MNIST data set, an 88.1% recognition accuracy was obtained 

from the RC system experimentally with only 88 memristor devices (22 rows, 4 sections, 2 rates) 

where the unused boarder area was removed to reduce the original 28×28 image into a 22×20 

image with 22 rows and 20 pixels per row. Increasing the reservoir to 112 memristors (28 rows, 4 

sections, 3 rates) improves the performance to 91.5% accuracy15. 
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It should be noted that in the RC system, the performance strongly depends on the 

dimension of the reservoir space. However, instead of increasing the number of physical nodes in 

the reservoir which can increase hardware implementation cost as well as the training cost of the 

readout layer, the concept of virtual nodes developed in delay systems can be an attractive 

alternative22. The state of virtual nodes depends on the node’s own previous state, the current state 

of adjacent nodes, and the masked input signal, allowing them to be nonlinearly coupled. By using 

randomly generated masks for input signals, diverse responses can be obtained from the virtual 

nodes, and these systems have been shown to be able to achieve performance comparable to that 

of conventional and well-designed reservoirs. In another implementation of the memristor-based 

RC system by our group, the reservoir size was increased by using the virtual node concept, and 

spoken-digit was successfully recognized with the accuracy of 99.2%. More interestingly, since 

the network can capture the temporal features of the input, it was successfully used to perform 

prediction/forecasting functions. For example, in speech recognition, the speaker’s intended word 

was correctly predicted before the speaker finished it. In another example, the network was able 

to capture the complex features and make predictions of a chaotic system such as the Mackey–

Glass series, a deterministic system but very difficult to predict. Periodic updates can be used to 

 

Figure 4-7: Long-term forecasting of Mackey–Glass time series using a reservoir system 

The predicted output from the network is fed back to the network as input for the next time step. 
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bring the reservoir state back to the original dynamics and make it possible to maintain even long-

term prediction of the chaotic system23, as shown in Figure 4-7. This project has been successfully 

transferred to other group members. 

 

4.3 Conclusion 

In this chapter, we show the internal short-term dynamics of memristor devices that can 

be used to implement RC systems to analyze and predict temporal data such as handwritten digit 

recognition, spoken digit recognition, and long-term forecasting of chaotic systems with very high 

accuracy. Unlike conventional machine-learning algorithms such as multilayer perceptrons (MLPs) 

and convolutional neural networks (CNNs) which expect data with fixed dimensions and typically 

work best with static inputs such as images, memristor-based RC systems are well suited for 

processing temporal data with very low power. By transforming the original time-dependent input 

into the excited memristor state space, temporal patterns in the inputs can be efficiently analyzed 

through a simple read-out function after the memristor reservoir. Continued material and device 

optimizations will help further broaden the appeal of the memristor-based RC systems for practical 

applications. 

  



 118 

References 

1. Hilson, G. IMEC, Panasonic push progress on ReRAM. 

https://www.eetimes.com/document.asp?doc_id= 13273 (2015). 

2. Clarke, P. Crossbar ReRAM in Production at SMIC. 

https://www.eetimes.com/document.asp?doc_id= 13311 (2017). 

3. Shen, W. C. et al. High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS 

logic process. IEEE Int. Electron Devices Meet. 31.6.1-31.6.4 (2012). 

doi:10.1109/IEDM.2012.6479146 

4. Fackenthal, R. et al. A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm 

technology. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. 57, 338–339 (2014). 

5. Yu, S. & Chen, P. Y. Emerging Memory Technologies: Recent Trends and Prospects. 

IEEE Solid-State Circuits Mag. 8, 43–56 (2016). 

6. Zidan, M. A. et al. Field-Programmable Crossbar Array (FPCA) for Reconfigurable 

Computing. IEEE Trans. Multi-Scale Comput. Syst. 4, 698–710 (2018). 

7. Borghetti, J. et al. Memristive switches enable stateful logic operations via material 

implication. Nature 464, 873–876 (2010). 

8. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based 

on metal-oxide memristors. Nature 521, 61–64 (2015). 

9. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 

(2017). 

10. Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient 

multiply–accumulate operations. Nat. Electron. 2, 290–299 (2019). 



 119 

11. Chang, T., Jo, S. H. & Lu, W. Short-term memory to long-term memory transition in a 

nanoscale memristor. ACS Nano 5, 7669–7676 (2011). 

12. Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic Implementation of 

Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics. Adv. Funct. 

Mater. 25, 4290–4299 (2015). 

13. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single 

inorganic synapses. Nat. Mater. 10, 591–595 (2011). 

14. Chang, T. et al. Synaptic behaviors and modeling of a metal oxide memristive device. 

Appl. Phys. A Mater. Sci. Process. 102, 857–863 (2011). 

15. Du, C. et al. Reservoir computing using dynamic memristors for temporal information 

processing. Nat. Commun. 8, 2204 (2017). 

16. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural 

network training. Comput. Sci. Rev. 3, 127–149 (2009). 

17. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 

547, 428–431 (2017). 

18. Jaeger, H. & Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving 

Energy in Wireless Communication. Science 304, 78–80 (2004). 

19. Jaeger, H., Lukoševičius, M., Popovici, D. & Siewert, U. Optimization and applications of 

echo state networks with leaky- integrator neurons. Neural Networks 20, 335–352 (2007). 

20. Verstraeten, D., Schrauwen, B. & Stroobandt, D. Reservoir-based techniques for speech 

recognition. IEEE Int. Conf. Neural Networks - Conf. Proc. 1050–1053 (2006). 

doi:10.1109/IJCNN.2006.246804 



 120 

21. Burger, J. & Teuscher, C. Variation-tolerant computing with memristive reservoirs. Proc. 

2013 IEEE/ACM Int. Symp. Nanoscale Archit. NANOARCH 2013 1–6 (2013). 

doi:10.1109/NanoArch.2013.6623028 

22. Appeltant, L. et al. Information processing using a single dynamical node as complex 

system. Nat. Commun. 2, 1–6 (2011). 

23. Moon, J. et al. Temporal data classification and forecasting using a memristor-based 

reservoir computing system. Nat. Electron. 2, 480–487 (2019). 

 

  



 121 

Chapter 5  

Optimization of Memristor Devices and Systems, and Future Works 

5.1 Device non-ideality issues for neuromorphic computing 

Memristors have made remarkable progress over the last ~ 15 years. Beyond already being 

offered as commercial products for memory applications, memristors have been extensively 

studied for neuromorphic computing applications, providing significant benefits for real-time data 

processing with high throughput and low energy consumption. However, current memristor 

devices are still far from being ideal. First, due to its stochastic switching behavior based on 

individual ion/cation migration, significant device-to-device and cycle-to-cycle variations exist1,2. 

Unlike binary memory applications which just need to achieve enough read window margin to 

distinguish between ‘ON’ (LRS) from ‘OFF’ (HRS), these variations can be a major factor 

affecting the accuracy of memristor-based computing systems, leading to undesirable computation 

error. 

Additionally, the impact of conductance update linearity and symmetry can be critical on 

the neural network training accuracy3. Ideally, during training, the calculated weight update (Δw) 

should be directly transformed to the number of programming pulses applied to the memristor, 

without having to read out the current weight and adjusting programming conditions accordingly. 

In other words, a single programming pulse (LTP or LTD pulse) should change the weight by a 

constant value, independent of the conductance state. However, due to the non-linear dependence 

of conductance on filament shape in filament-based memristors, typical memristors suffer from 
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nonlinear and asymmetric weight update characteristics. This leads to conductance changes that 

depend on the present conductance state, making it much more challenging to implement online 

training. Closed-loop weight update (program-and-verify) might not be a good alternative either 

due to very slow and complex operations that will significantly slow down online training, and the 

need of additional memory space to store current weight values. The non-linear weight changes 

can be attributed to the non-linear dependencies of ion migration on the local electric field, which 

is, in turn, a function of the filament shape, and the non-linear dependency of the device 

conductance on the effective filament length change. Particularly, in common oxide-based 

memristors, the VO migration energy barrier is high. This leads to stable VO filaments but also 

introduces a large degree of stochasticity during filament formation. Additionally, once a filament 

starts to grow it will quickly become the dominant one due to the field-enhancing effect at the 

growth front, leading to non-linear weight updates as the filament length is changed. More uniform 

VO migration can be achieved with lower activation barriers but at a cost of shorter retention. In 

addition, a large dynamic range and good resistance stability are also crucial to reduce the error in 

VMM operations and to maintain high classification accuracy4. There is still no perfect device that 

can meet all these requirements. Continued improvements on the ionic process control and device 

optimization are essential. 

In the next three sections, I will discuss three ongoing projects that aim to improve the 

memristor device through new, engineered materials (Section 5.2), and to improve the system 

performance through a modular, tiled architecture (Sections 5.3, 5.4), respectively. 
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5.2 Device optimization for online training 

5.2.1 High entropy oxide (HEO) memristor 

One research direction to improve memristor devices is to design new materials that can 

provide uniform VO migration but without suffering from retention loss. One such material we 

started working on is based on the concept of high-entropy oxides (HEOs)5. It has been shown 

recently that entropy5 can be used to stabilize new oxide phases, similar to the case in high entropy 

alloys, and thus it allows the creation of new oxides that cannot otherwise natively exist. For 

instance, unusual dielectric properties with a colossal dielectric constant and unusually high Li-

ion mobility has been achieved in entropy-stabilized materials6,7. We hypothesize that HEOs allow 

the tuning of the material-dependent parameters such as the VO activation energy and the hopping 

distance by varying their composition over a large range beyond the binary constituents. 

Additionally, the high entropy of mixing increases the thermodynamic stability of the 

homogeneous amorphous structures, by reliably accommodating a large amount of mobile species 

and allowing for tuning the composition over a broad range without phase segregation. The 

formation of the crystalline phase by Joule heating during device operation, another device failure 

mechanism8,9, can also be suppressed in HEOs. HEOs also provide an intrinsic charge 

compensation mechanism between the substituents10 that can lead to desired VO generation. For 

example, when oxides with cations having lower oxidation state are added (e.g., the substitution 

of ZrO2/HfO2 into MoO3/WO3), oxygen vacancies can be spontaneously created to maintain 

charge neutrality. This capability can ensure the more uniform distribution of VOs in the switching 

film and overcome the challenges faced by filament type devices, as discussed earlier. 
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5.2.2 High entropy oxide (HEO) materials 

In this work, HEO materials consisting of six binary transition-metal oxides (ZrO2, HfO2, 

Nb2O5, Ta2O5, MoO3, and WO3) with similar ionic radii are studied, as shown in Figure 5-1. HfO2, 

Ta2O5, and WO3 have already been extensively studied and exhibit good RS behaviors11–14. Even 

though the three transition metals are adjacent to each other in the periodic table, each binary oxide 

exhibits different RS characteristics.  

 

 

For example, WO3 has demonstrated good incremental (analog-type) conductance 

modulation with an interface-type switching mechanism11, although retention of the resistance 

states is not ideal due to the high mobility (low activation energy) of the VOs11,15, while HfO2-

based devices show excellent retention but mostly abrupt (digital-type) conductance switching 

between two states. Both digital- and analog-type switching can be achieved in the same device 

with Ta2O5-based devices16–18 but with limited on/off ratio. Directly mixing the three oxides to 

develop a material that may offer the desired switching characteristics from each, however, is not 

possible due to the mixing enthalpy costs. On the other hand, with the addition of similar oxides, 

e.g. ZrO2, Nb2O5, MoO3, from transition metals one row above to increase the entropy, stable 

 
Figure 5-1: The periodic table and adjacent 6 transition metals for high entropy oxide (HEO) memristor. 
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HEOs can theoretically be obtained that can potentially provide the parameter tenability not 

offered by individual oxides. 

 

5.2.3 Characterization of HEO device and Investigation of systematic trend 

Thin films were deposited by our collaborators of Prof. Jamie Phillips’ group through 

pulsed laser deposition (PLD) based on targets synthesized from powders of the six binary oxides, 

as shown in Figure 5-2 (a). Powders from the six binary oxides were mixed with equimolar 

amounts of cations and milled. Then, the target was annealed at 1200 °C in a furnace for more than 

48 hours to complete the mixing of the cations in the powders and pressed into 1-inch pellets. Thin 

films were deposited by PLD using the custom-made target, utilizing an excimer laser at a 

wavelength of 248 nm. Figure 5-2 (c) shows results from Energy-dispersive X-ray spectroscopy 

(EDS) of the deposited film, confirming the existence of six metal elements, Zr, Nb, Mo, Hf, Ta, 

and W in the film. Thin films were deposited with laser energy of 80 mJ, a substrate temperature 

of 200°C, a target-substrate distance of 6 cm and an oxygen partial pressure of 0-100mTorr, 

resulting in a controlled film growth. Still, the conditions of target synthesis and film deposition 

need further optimization to improve the film quality, e.g. reducing particle deposition and 

minimize the spatial variation of deposition rate. 
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HEO-based devices with an Au/Pd/Ta/HEO/Pd stack were subsequently fabricated in a 

crossbar structure, shown in Figures 5-3 (a) and (b), on a SiO2/Si substrate. Figure 5-4 (a) shows 

the resistive switching (RS) of the HEO memristor device. In this structure, the reactive Ta top 

electrode acts as an VO supply layer, resulting in controlled bi-polar switching characteristics. The 

device also exhibits reliable incremental conductance updates with pulse trains. Although further 

optimization is needed, for instance, to systematically tune the film composition and stoichiometry, 

the first batches of HEO memristors already exhibit good RS characteristics comparable to the 

best Ta2O5 devices in terms of analog switching characteristics (LTP & LTD).  

 

Figure 5-2: HEO target synthesis and deposition results. 

(a) HEO target synthesis process. (b) Deposited film with PLD. (c) EDS mapping of the 6 elements in the film. 
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5.2.4 Future Plans: 

Our collaborators, Prof. Emmanouil Kioupakis’ group, will perform state-of-the-art first-

principles calculations based on hybrid density functional theory to obtain the fundamental 

 
Figure 5-3: Structure of HEO devices. 

(a) Schematic of the Au/Pd/Ta/HEO/Pd device stack. (b) Optical microscopy image of devices fabricated in a 

crossbar structure. 

 
Figure 5-4: DC and pulse characteristics of HEO and Ta2O5 devices. 
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material properties of the targeted amorphous HEO phases, such as (1) the structural parameters 

(atomic positions and bonding), (2) thermodynamics and phase stability (enthalpy of formation for 

crystalline and amorphous HEO phases), and (3) electronic structure (bandgap and orbital 

character of band extrema), as a function of composition and stoichiometry. First-principles 

calculations will then be performed to study the atomic-level microstructure of the amorphous 

structures with different composition ratios, and conduct nudged elastic band calculations with 

first-principles to determine the important kinetic parameters such as the energy barrier for ionic 

migration. The correlation between the barrier height and the local environment will be employed 

to help design the composition ratio for experimental HEO film growth and device fabrication and 

characterization. The initial focus will be on the ternary alloy (Zr-Hf-Nb-Ta-Mo-W oxide), and 

will subsequently expand to encompass other transition-metal oxides, such as TiO2, CuO, etc. that 

also exhibit interesting RS characteristics19 and can lead to new oxygen bonding configurations 

and parameter tuning. 

On the experimental side, after reliably obtaining initial RS characteristics based on the 

HEO film, programming conditions and device structures (TE/BE material, film thickness, etc.) 

will be performed to improve analog behavior (nonlinearity weight update). We will verify how 

the device properties change as the composition of HEO is changed. Device simulation will be 

performed with the calculated activation energy for VO migration and hopping distance to explain 

device characteristics as a function of the HEO film properties. 

Systematic measurements will be performed to extensively characterize the thin films. 

Rutherford Backscattering Spectrometry (RBS) can effectively quantify the stoichiometry of 

cations in deposited materials. In addition, to verify the homogenous distribution of multiple 

cations at the atomic scale, high-resolution scanning tunneling microscopy (STEM) with built-in 
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spectroscopy including EELS will be conducted in thin film samples. Individual elemental 

mapping and the comparison of composition ratio from multiple points obtained by EDS in STEM 

mode will provide the spatial distribution for each element at the atomic scale. 

 

5.3 1T1R Array for DNN Inference Implementation 

In Deep Neural Network (DNNs), the inference is the stage in which a pre-trained model 

is used to infer/predict the unseen test data and comprises a similar forward pass as training to 

predict the values20. Unlike training, it does not include a backward pass to compute the error and 

update weights, allowing a neural network to stay unchanged during inference. For inference 

applications, weight update will be performed very infrequently in the neural network, when one 

needs to change the model and weights. As a result, the speed of weight update is no longer critical 

so approaches such as write-verify can be used to fine-tune weight storage, and nonlinearity of 

weight update is no longer be a big issue as long as one can program weight value precisely to the 

neural network. This makes DNN inference a very attractive application for memristor-based 

computing systems. 

 

5.3.1 Issue of online training with 1T1R system 

Another argument for targeting the inference application, instead of training application, is 

the likely use of 1T1R arrays in the initial implementations due to the challenges of integrating 

reliable selectors in passive 1R arrays. As discussed in chapter 2.4, bulk-type doping effect was 

revealed by our simulation model during Set through ICC modulation with Tr, enabling larger 

dynamic range and linear conductance modulations, which is valuable for low power 

neuromorphic applications. However, the 1T1R structure might not be suitable for neural network 
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online training, because error backpropagation to update the weight (∆wij) using gradient descent 

is calculated by the partial derivative of the errors from the output layer and does not require 

previous weight values in the weight matrix. To map the deep neural network (DNN) with a 

memristor/CMOS system, ∆wij is converted into the number of pulses or corresponding pulse 

width to modulate the conductance of each memristor in the network, where nonlinearity of weight 

update should be very small. In the 1T1R neural network, however, the memristor conductance 

after programming does not depend on the pulse width since the positive feedback during the CF 

formation (Set) stops at the transistor maximum current level. As a result, the programmed 

memristor conductance solely depends on the gate voltage (VG), i.e. saturation current, which 

makes it difficult to use conventional update rule during network online training. To update the 

network, the wij + ∆wij value has to be converted into VG in the 1T1R system, resulting in additional 

memory blocks to store previous weight value (wij) of each memristor in the array. 
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5.3.2 1T1R array implementation for inference applications 

 

 

The 1T1R system might be very useful for inference applications instead, especially at the 

edge, since it allows precise tuning of the memristor conductance (weight) with a large dynamic 

range that leads to low power operations compared to 1R system21, as shown in Figure 5-5. Edge 

computing needs to processes large amounts of data near its source and only the data that needs to 

be stored is sent to the cloud, leading to the dramatic decrease of bandwidth and energy 

consumption compared to sending all data to the cloud for processing. This makes edge computing 

highly attractive, particularly since data are being exponentially generated at devices near the edge 

and certain applications demand latency, reliability (e.g. network congestion/outage) and privacy 

that will be challenging to meet with cloud-based computing.  

 
Figure 5-5: Analog behavior of typical 1R and 1T1R. 

(a) Analog conductance update characteristics obtained from the1R structure. 30 devices were programmed by 

300 consecutive write pulses (1.15 ± 0.1 V, 1 μs), followed by 300 erase pulses (−1.4 ± 0.1 V, 1 μs). Reference 

[41] (b) Analog conductance update characteristics obtained from the 1T1R structure. 9 devices were programed 

by write pulse (VD:3V, PW:100ns, VG:1V to 4.5V, 0.05V step). 
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We build prototype inference systems using 1T1R arrays and custom-built test board. The 

array is wire-bonded and mounted on the test board, as shown in Figure 5-6(a) and (b). The test 

board allows arbitrary pulse signals to be sent to and electronic current collected from either 

individual devices or multiple devices in multiple rows and columns, simultaneously and in 

parallel (Figure 5-6(c)).  

  

5.3.3 Future Plans: 

We plan to implement principal component analysis (PCA) and more complex tasks with 

this 1T1R system using pre-trained neural networks. In view of device-to-device and cycle-to-

 

Figure 5-6: Test set-up for 1T1R array. 

(a) Photo of the test board with 1T1R array. (b) The 1T1R array is wire-bonded and mounted on the board. (c) 

Verification of pulse inputs (VD and VG) for read and write of 1T1R array with oscilloscope.  
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cycle variability and Vth mismatch of the transistor, we will develop an optimized program-and-

verify (PNV) scheme for 1T1R system. System performance will be precisely analyzed in terms 

of area and power if it is well scaled to state-of-the-art technology. 

 

5.4 Deep neural network (DNN) accelerator based on tiled architecture 

As discussed in the previous chapter, DNN accelerators, especially for inference 

operations, based on analog in-memory computing with memristor arrays can perform vector-

matrix multiplication (VMM) in analog domain efficiently by accumulating total current or charge 

at each column22,23. At the same time, the high density and non-volatile properties of the memristor 

array make it possible to store entire DNN models on-chip, thus eliminates the inefficient off-chip 

memory access and promises much higher energy efficacy. 

 

 

 

Although studies on memristor-based accelerators have extensively conducted, most of the 

studies have focused on small networks and simple databases such as MNIST24, which may not 

 

Figure 5-7: Different types of layers in DNN. 

(a) Fully connected layers, (b) convolution layers, and (c) depth-wise convolution layers. 
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capture the challenges faced when implementing advanced models and complex tasks. We expect 

larger, practical models that can be implemented in memristor-based hardware in a reconfigurable 

tiled architecture, where weights in a single layer are mapped onto multiple crossbar arrays tiled 

through digital interfaces25. Efforts have been started to build this tiled hardware system using 

memristors fabricated in a commercial fab.  

 

5.4.1 Tiled architecture implementation 

We plan to use the 65nm technology node for CMOS integration and the 1T1R structure 

for memristor array implementation to decrease the off current and sneak current, and improve 

conductance level tuning, as discussed earlier. Weights to be stored in the memristor array will be 

calculated based on 8-bit quantization-aware-training and written by the program-and-verify (PNV) 

scheme through VG modulation. Figures 5-8 and 5-9 show the full system overview and system 

architecture for the VMM operation. The RISC-V processor can execute program instructions to 

run the algorithm. Instruction and data memory (SRAM) will be used to store instructions and 

intermediate data and input data. The first chip will have 4 tiles of 1T1R array, with an array size 

of 256 × 64. Since the memristor has only positive conductance values, two memristors will be 

used to represent a single weight. For instance, odd columns will represent positive weight values 

and even columns will represent negative weight values.  

The input can be applied in a bit-serial fashion, where 8 cycles are required for each 8-bit 

input (Clock Frequency: 100MHz). Total 160ns is needed to complete an 8-bit MAC operation.  
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 We plan to first build a simple CNN model for the MNIST classification task, using the 4 

tiles of memristor arrays, as shown in Figure 5-8. For this model, there are 4 layers, including 3 

convolutional layers and 1 fully connected layer. In the first layer, there are 22 filters and each 

 
Figure 5-8: Full system overview. 

Image credit: prof. Flynn 
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Figure 5-9: Optimized tiled architecture. 

(a) System level design for DNN accelerator based on 1T1R memristor arrays. (b) Schematic of a 

memristor/CMOS block.  

Image credit: prof. Flynn 
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filter size is 3×3×1. After convolution, nonlinear activation function (i.e. ReLu) and 2×2 max 

pooling will be performed. The 2nd layer includes 27 3×3×22 filters, followed by ReLu and 2×2 

max pooling. The 3rd layer includes 64 3×3×27 convolution filters, ReLu and 4x4 max pooling, 

resulting in 1×1×64 outputs. The results are flattened and turned into a single vector (64×1) that 

can be applied to the next stage. Finally, the last fully connected layer produces the final output 

probabilities for each label. Basically, the convolutional and pooling breaks up the image into 

features and analyzes them, while a fully connected layer takes the output of the convolutional 

layer and predicts the best label to describe the images. With an 8-bit quantization, the model 

achieves 97.21%. accuracy. 

 

 

 

 The weight values of each filter will be stored in the memristor array, where the required 

array size is 9×44, 198×54, 243×128, and 64×20 for each layer, including even/odd weights, as 

shown in Figure 5-10. Almost all weight values in the model are close to 0 or very small, which 

 

Figure 5-10: Schematic of the CNN model for MNIST. 

The proposed CNN model consists of 3 convolutional layers and 1 fully connected layer. 
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corresponds to 1MΩ in our memristor device, resulting in low output current, e.g. less than 45μA, 

that will be collected by the ADC. This corresponds to ~1/16 of the theoretical maximum current 

value, which helps to improve the ADC design with fixed bits. 

 

 

 Based on this analysis, ADC accuracy with fixed errors and random noises was evaluated. 

We assume 10-bit ADC will be designed for the output quantization, although we only take 8-bit 

value during operation. However, due to Vt mismatch and nonlinearity, the designed 10-bit ADC 

accuracy will be lower, for example, it can be even 9.5bit, 9bit, 8bit, and 7bit. This corresponds to 

different LSB (least significant bit) current and weight resolution if we use a single fixed ADC 

range. Even worse, if we include random noise, the ADC resolution will be further dropped 

depending on the noise level. For instance, if the random current noise is 200nA, then the 

maximum ADC resolution will be 7bit, as shown in Figure 5-12. 

 

Figure 5-11: Weight mapping of the CNN to the 4 tiles. 
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Based on the different LSB current levels, we can simulate the MNIST model operation 

with different weight- and ADC-precisions. We found that the MNIST task is quite tolerable, 

resulting in over 90% accuracy, even for low weight and ADC precisions. In addition, during 

single cell programming a higher (e.g. 2x read voltage) can be used, effectively expanding the 

current resolution by 1 bit, which can further improve the classification accuracy, as shown in 

Figure 5-13. 

 

 

 

These results are summarized by plotting the model accuracy vs. ADC and weight 

precision, as shown in Figure 5-14. With 4-bit weight and 8-bit output, ~95% accuracy can be 

achieved. Note this simulation is a post-training quantization model from the original 8-bit 

 
Figure 5-12: Weight mapping. 

ADC resolution drop can be critical due to fixed error and random noise term. 

 
Figure 5-13: Model accuracy with lower precision ADC.  
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quantization model. With quantization aware training, the accuracy is expected to be further 

improved.  

 

 

5.4.2 Future Plans: 

We plan to build the 4 tile system with 256×64 arrays. The 1T1R chip will be fabricated in 

a commercial fab, and TaOx-based memristor devices will be integrated between metal 4 and metal 

5. There will be 6 operation modes in the array: Idle, Forming, Set (potentiation), Reset 

(depression), Single read (after programming), and MAC read (even/odd).  

First, in order to verify the 1T1R array operation and the Convolutional neural network 

(CNN) model we build, stand-alone 1T1R array (without CMOS circuit) will be tested. Program 

and read operation will be performed through external discrete components (DACs, ADCs, MUX, 

matrix switch, and FPGA) on a test board for this purpose. We first target 16 conductance states 

(4bit) for each memristor using the program-and-verify (PNV) scheme, where the 16 levels should 

tolerate device-to-device and cycle-to-cycle variations. 

 
Figure 5-14: Model accuracy vs. ADC and weight precision. 
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Afterwards, combined with integrated CMOS circuitry such as the RISC-V processor, 

mixed-signal interface, SRAM, and bus (designed by Prof. Flynn’s group and Prof. Zhang’s group), 

we will map the CNN model on the memristor arrays to perform power efficient MAC operations 

and run the CNN model for MNIST. The accuracy of the experimentally implemented system will 

be measured, along with power and throughput measurements, and compared with simulation 

results.  

We will then expand the tiled system to practical applications such as ImageNet 

classification where the network size and the number of parameters will be significantly increased. 

Data flow and the system architecture will be further optimized to minimize stalls and bus 

bottlenecks. Improved model mapping that balances the workload of different layers to maximize 

parallelism and throughput will also be performed. 

 

5.5 Summary 

With the high density, speed, nonvolatility, and the ability to store and process information 

at the same physical locations, memristors can efficiently implement neural networks (NNs) and 

other in-memory computing architectures for data intensive applications such as machine learning. 

Further optimization of memristor devices and systems will be essential to improve the reliability, 

dynamic range, and update linearity to make such architectures practical. From the device point of 

view, the concept of high entropy oxide (HEO) may offer opportunities to custom-design the 

switching material due to the potential to combine different transition metal oxide to achieve good 

linearity and symmetry for weight update (WOx) and good retention (TaOx and HfOx). In the short 

term, 1T1R arrays are likely employed first due to its maturity. These systems might be best used 

for inference applications due to the large dynamic range and precise conductance controllability.  
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For practical applications, scaling up the system with larger networks is highly desirable. 

Instead of increasing network size, tiling crossbars together in a modular fashion can be a 

promising approach that offers better scalability and minimizes parasitic effects. With further 

optimizations of the ADC design and system architecture, the system’s power efficiency and 

throughput will be further improved. These systems thus offer great promise for a broad range of 

data-intensive applications ranging from IoT devices, autonomous systems, to large scale 

enterprise use scenarios.  
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