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ABSTRACT

This thesis focuses on the problem of pricing reusable products in the network revenue man-
agement setting. In a nutshell, dynamic pricing problem concerns pricing and selling a finite
inventory of products within a given time horizon so as to maximize the total revenue. Most of
the existing literature studies the setting with perishable products in which the products sold are
permanently removed from inventory. In this thesis, we tackle a different and arguably more chal-
lenging problem with reusable products wherein the products are returned back to the seller upon
serving a customer and can be used to serve another customer. This class of problems finds a broad
range of applications including hotel management, cloud computing, workforce management, call
center service, and car rental management.

In the first chapter of the thesis, we address the pricing of reusable resources with advance
reservation when the demand function is known as a function of price and the demand follows a
Poisson point process. We demonstrate that a simple static pricing policy is asymptotically optimal
when demand and capacity are scaled without bound. The performance of the policy is measured
as a ratio with respect to the policy that does not exhibit any blocking. We also show that the static
policy becomes optimal at a rate close to 1/

√
n, where n is a scaling factor. Simulation results show

the asymptotic behavior but additionally, it shows that for small-scaled systems, the static pricing
policy performs very well relative to the no-blocking policy.

In the second chapter of the thesis, we consider the learning variant of the same problem in
which the customer’s response to selling price and the demand distribution are not known a priori.
Connecting this problem to multi-armed bandits (MAB), we propose a variant of the upper confi-
dence bounds (UCB) algorithm. The setting is different from literature in that capacity constraints
exist and booking profile is dynamically updated. We solve an LP in every period where the UCB
estimates guides the right-hand side parameter and outputs a distribution over the finite pricing
actions. We demonstrate that for some large scaling factor n, with high probability, the seller will
always choose the optimum after the testing phase and will not exhibit any blocking.

In the third and final chapter of the thesis, we employ unsupervised learning methods to
tackle the pricing policy from a practical point-of-view. In particular, model-free reinforcement

vi



learning method is used to implicitly learn the transition dynamics that governs the reward process
to maximize revenue. Deep neural networks are used to parametrize the action policy and value
function and through a simulated environment. We show that the generated pricing policy, using
purely data, achieved good performance with respect to traffic, revenue, and blocking.
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CHAPTER 1

Introduction

Many problems in revenue management can be characterized as the difficulties in resource al-
location under stochastic environments in which the operator seeks to allocate limited resources
efficiently as possible. This problem can be seen in all aspects of life. In industries that have in-
ventory, optimal allocation of products is needed to balance costs that can be incurred from prod-
ucts not selling, from holding costs to cost associated space that could have been used for other
higher-generating revenue products. In whichever setting, the operator faces these challenges due
to the limited quantity of resources available and the uncertainty inherent in the dynamics of the
underlying system that might be complex to model. In this thesis we consider a few sources of
randomness: (1) randomness in the demand process, (2) randomness in the customers’ advance
reservation period of products, i.e., how long in advance purchasing customers will reserve, (3)
randomness in customers’ length of product usage. The former owes to the various factors such as
competition, product substitutability, operator market size, customers’ selection process, which is
unobservable. The first two chapters of this thesis develops theoretical tools to manage the afore-
mentioned difficulties when the operator has limited resources and the resources in question are
reusable.

One common tool used by businesses to allocate limited quantity of resources is via pricing.
The simplest pricing mechanism is to set a price based on future expected demand made in the
present state. A more complex tool is via dynamic pricing where prices are adjusted to reflect
the state, which is continuously evolving. Dynamic pricing in the revenue management literature
has seen a tremendous increase due to the massive amounts of data that companies are collecting
thru various technologies that are able to capture data at a very granular level to understand their
customer base and target them according to their likes. We do not develop models that take con-
textual features as inputs but this area of research is becoming more relevant as technologies are
continuously improving to develop better predictive models. Chapter 2 of this thesis only takes
sequential arrival and made purchases information into account to update the model parameters
and the pricing policy.
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In the traditional pricing setting, the operator has a predefined quantity of limited resources
at her disposal to sell to customers and has to make pricing decisions in the face of unknown
incoming demand. The goal of the operator is to employ a strategy to meet business objectives
and maximize overall revenue. In much of the literature in revenue management, the prevailing
assumption is that the resources are perishable, in other words, the resources are consumable such
as clothing, foods, electronics. Every time a purchase of a perishable product is made, the product
is consumed by the customer and results in the loss of the underlying resource.

However, in other settings, this is not the case. In these settings, the resources are “renewable”,
or reusable. This is the case for example, the lodging industry, car-rental industry, cloud computing
resources, work staffing. In such settings, the customer makes a purchase to use the resource
for a customer-specified service duration, and then the resource is returned to the operator upon
completion for reuse. The uncertainties in this setting are the length of time the resource is to be
utilized by each customer and the future point in time the customer will begin resource utilization.
This is in contrast to the perishable setting where the resource is assumed to be lost at the point of
purchase. In the reusable setting, the purchase might be made at a point in time that differs to the
time at which the customer begins utilizing the resource. This introduces additional complexity to
the traditional perishable model since, in addition to the risk of future demand, the random future
state of the available resources must be accounted for when making pricing decisions.

1.1 Overview of Thesis

This thesis is divided into three sections with each addressing a distinct aspect of the network
revenue management pricing problem with reusable resources.

In Chapter 2, we address the problem of pricing of a monopolist firm who has at its disposal
the time-homogeneous demand function which only depends on price under continuous advance
reservation and service time distributions with finite support. We demonstrate that a static fixed-
pricing policy derived from a linear program achieves great results with respect to a policy that has
infinite resources, and thus will never deny any purchasing customer service. The static pricing
policy achieves optimal revenue as the demand and initial capacity get scaled without bound at
a rate arbitrarily close to O(1/

√
n). Our computational results displays the O(1/

√
n) behavior.

Additionally, even though nothing rigorous can be said about the behavior for finite instances of
the problem, the fixed-pricing policy achieves at least 75% of the optimal revenue. The data we
used is simulated with different distributions and load factors to showcase its robustness to varying
uncertain environments.

Motivated by the fact that in practice the seller does not have demand information and has
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to learn it over time by exploring pricing policies, in Chapter 3 we include more dynamics into
the pricing problem. Fixed prices are indeed preferred by companies in practice even though the
optimal pricing path might not be a fixed-price policy. But owing to the nature of how the world
is evolving today with massive amounts of data in the hands of the retailers, we want to make
pricing decisions as new data streams are collected over time to make improved pricing decisions
that lead to better overall regret. The performance of the pricing policy is measured using regret
with respect to the firm who has an unlimited quantity of resources. In the setting with no advance
reservation and deterministic service time with a fixed finite set of prices to choose from, we show
that after a sufficiently large n, with high probability, the firm’s only regret comes initially from
testing each price and will choose the optimal price. The computational results show this behavior
and does not exhibit any blocking events.

In Chapter 4, motivated in a broad sense to relax the strong assumption of the monopolist
firm and use unsupervised machine learning methods to develop good performing dynamic pricing
policies without the use of a model. This chapter diverges from the previous theoretical nature
of the previous chapters and is a simulation study to show that we can leverage a model-free rein-
forcement learning to tackle the pricing problem of reusable resources. We show using deep neural
networks on conjunction with reinforcement learning algorithms, that we can develop good pric-
ing policies that perform well with respect to a combination of relevant measures, such as revenue,
traffic, and blocking. The framework is extremely modular to accommodate different performance
measures by playing with the reward structure to reward (penalize) the agent in certain ways to
achieve a desired goal. Similarly as before, the data was simulated and the performance was mea-
sured with respect to the fluid policy derived from a linear program and the parameters are the
means. In contrast to before, the learning algorithm does not know any information about the sys-
tem in advance other than the generated data. The fluid model was derived using information that
the seller does not possess, or at best, have an approximation to the statistics to the environment.
The simulated results show that the dynamic pricing policy from the learning algorithm did well
compared to many other static policies in term of revenue, traffic, and blocking.

Finally, we conclude with chapter 5 by providing summary remarks and proposing interest-
ing directions for future work. The more technical proofs for each chapter are provided in the
associated appendices.

In the following section, we introduce ideas and references that are broadly applicable through-
out this thesis.
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1.2 Literature Review

We will introduce references related to the general problems of pricing and dynamic pricing vari-
ations thereof. Subsequently, we introduce references related to reusable resources in revenue
management. Lastly, we will provide references related to model-free reinforcement learning in
the revenue management realm. First, we will introduce literature that is relevant for analyzing the
blocking probabilities in the network revenue management with reusable resources, this stream of
literature is regarding loss network systems.

1.2.1 Loss Network Systems

Loss network systems without advance reservation have been extensively studied, primarily in
the context of communication networks (e.g., the survey paper by Kelly (1991)). In this setting,
signals/calls arrive to the communication network as a Poisson process, and the call is satisfied
immediately if there are sufficient channels to connect the call, otherwise, the call is lost. Virtually,
no attempt was made to consider blocking probabilities in communication networks with advance
reservation. The major problems in the literature on loss network systems have been the design
of heuristics for admission control (e.g., Miller (1969), Ross and Tsang (1989), Key (1990), Kelly
(1991), Hunt and Laws (1997), Puhalskii and Reiman (1998), Fan-Orzechowski and Feinberg
(2006)), and the development of approximations and bounds as well as sensitivity analysis of
blocking probabilities with respect to input parameters and resource capacities (e.g., Erlang (1917),
Sevastyanov (1957), Kaufman (1981), Burman et al. (1984), Whitt (1985), Kelly (1991), Ross and
Yao (1990), Zachary (1991), Louth et al. (1994), Kumar et al. (1998), and Adelman (2006)).

From an admission control stand-point, there have been few successful endeavors to analyze
loss network systems with advance reservation. Virtamo and Aalto (1991) analyzed slotted systems
in which the start time is uniformly distributed over the horizon and Luss (1977) derived a model
and analyzed performance metrics of certain admission policy. Our work departs from the above
literature in that we don’t allow service interruptions, which can be seen as a drawback, but in our
intended applications, interruptions are not allowed (e.g., hospitality industry, car rental industry,
etc.). Additionally, their algorithms require certain blocking probabilities which they don’t deter-
mine, but do estimate via simulation, whereas we derive explicit upper bounds on the blocking
probabilities and study their asymptotic behavior to deduce optimality of our ε-PS P policy.

Another stream of literature studies the property of the optimal admission control of loss
system, including Miller (1969), Kelly (1991), Altman et al. (2001), Örmeci et al. (2001), Savin
et al. (2005), Gans and Savin (2007), Papier and Thonemannm (2010), and Jain et al. (2015).
However, none of them devise heuristics that are practical and provably-good. The most relevant
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prior work in loss network systems with advance reservation are Levi and Radovanovic (2010) and
Chen et al. (2017), where both used a simple knapsack-type linear program (LP) to devise a simple
admission control policy called class selection policy for models without advance reservation Levi
and Radovanovic (2010), and generalized to the advanced booking setting Chen et al. (2017).

Systems with advance reservation and deterministic sequence of arrivals have been studied
extensively in the appointment scheduling literature (for an excellent survey see Gupta and Denton
(2008)). The objective is mainly the minimization of costs due to idling resources and waiting
times (see Kaandorp and Koole (2007), Begen and Queyranne (2011), Ge et al. (2013), Begen
et al. (2012), Kong et al. (2013), Mak et al. (2014)), where resources can be an individual such as
a physician and an idling physician is not generating revenue. The methods that are typically used
are stochastic optimization and/or dynamic programming and usually have to make impractical
assumptions on the arrival process, discreteness of the service times to allow for an intractable
model, whereas our method incorporates the stochasticity of the arrival, reservation, and service
time process.

Our setting relaxes many of the drawback of the previous works where we allow continuity
in the sequence of arrivals instead of a deterministic sequence of arrivals, we allow continuity in
advance reservation times. In practice, advance reservations are almost always discrete, i.e., in the
car rental industry pick-up times are in increments of 30 minutes from open to closing times and in
the hotel industry there is only one check-in time per day. Regardless, we wanted to extend Chen
et al. (2017) to continuous time distributions instead of bounded support finite distributions. We
wanted to see if the policy robustness still holds for varying degrees of distribution skewness and
means since in practice one rarely has a hold of the true distributions and errors in the estimations at
best. Continuity in the service time and advance reservation distribution adds a layer of complexity
since now we have to make sure interchange of integrals holds to estimate the true arrival process
and departure process but also how to bound the true blocking probability.

1.2.2 Pricing in Revenue Management

Revenue management has been a robust area of research as it has seen widespread applications in-
cluding, but definitely not exhaustive, lodging and car rental industry, cloud computing, and work-
force management industry. There is a significant amount of literature that provides an overview
of the theory and practice of revenue management (e.g., extensive surveys by Bitran and Caldentey
(2003a), Talluri and van Ryzin (2005), Özer and Phillips (2012), den Boer (2015)).

Levi and Radovanovic (2010) consider a class selection model without advance reservation,
but instead the seller is exogenously given the prices each customer class pays for the resources
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and so the seller’s problem is to choose which classes it sells to so as to maximize the long-run
average revenue. They use a knapsack-type LP which is used to derive their policy, called class

selection policy (CS P). They show that the CSP policy is asymptotically optimal regardless if the
customers either all take-up exactly one resource or differs between customer classes as long as
the ratio C/A7→∞, where C is the capacity and A is the maximum resource required by a class.

From a pricing point-of-view, the seminal work by Gallego and van Ryzin (1994) is a pricing
problem where the seller is faced with pricing a fixed inventory of a single perishable product
over a finite time horizon, at which point selling stops and the leftover products are sold for a
salvage value. They derive sufficient conditions for which the optimal value function satisfies,
which is the Hamilton-Jacobi differential equation. They derive the optimal policy for a simple
case, which turns out to be non-implementable in practice because the optimal pricing trajectory
has to be dynamically updated at every point in time. But they show that a single fixed-price policy
is asymptotically optimal and the performance of the fixed-price policy relative to the seller’s
optimal revenue decays as 1/

√
n. Our work differs in that we are tasked with finding a pricing

policy for re-usable, instead of perishable, resources in an uncertain environment, where the seller
is additionally burdened with not knowing how long nor what time in the future customers will use
the resource.

Talluri and van G. Ryzin (1998) study a network revenue management model where the seller
sells multiple products produced from multiple resources and has no assumptions on the network
structure and demand arrival process. The seller’s aim is to maximize their expected revenue by
deciding to sell or not sell a product to a customer. They propose a bid-price control policy derived
from an LP model,. They show that as the capacity and time-horizon grow linearly, the bid-price
policy is asymptotically optimal with rate O(1/

√
n). In their work, they study products that can be

used once by a customer, where as in this thesis, we study products that are re-usable. Another
difference is that in our work, we allow customers to reserve in advance, where as in Talluri and
van G. Ryzin (1998) assume customers demand is satisfied immediately.

Gallego and van Ryzin (1997) study a revenue management in which the seller has fixed
inventory of multiple resources to produce different products and a fixed time horizon, and the goal
is to price the products to maximize expected revenue when the arrival process for each product is
a Poisson process. They show that a make-to-order policy, which is a policy of producing products
as they arrive, thus the policy name, until any of the resources required to make the products is
not sufficient. The policy then prices the products according to a pricing function derived from
a simple functional optimization, is asymptotically optimal as the resource capacities and arrival
rates of each product are scaled. But this policy is for the finite time horizon, not infinite horizon,
as in Talluri and van G. Ryzin (1998). Our work in the second chapter departs from their results
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by allowing advance reservation with reusable resources. Similar to the revenue management
literature mentioned above, we theoretically analyze the performance loss of our policy and prove
asymptotic optimality.

Literature closely related to this thesis are Chen et al. (2017) and Lei and Jasin (2016a).
Chen et al. (2017) considers a revenue management model in the admission control setting where
customers arrive to the system as a Poisson process and inform the seller the service time and future
time they intend to use the resource, where the service time and advance bookings are discrete and
bounded, i.e. s ∈ {1, . . . ,u} and d ∈ {0, . . . ,v}. The seller has to maximize the long-run average
revenue when there are M classes, where each class pays a certain amount and is given to the
seller ahead of time. They proposed the ε-class selection policy (ε-CSP), in which they showed
asymptotic optimality in applying this policy.

Lei and Jasin (2016a) also considers a revenue management model from a pricing control
standpoint. Their model assumes that customers arrive randomly over finite time according to a
specified non-stationary rate, and can reserve t nonrandom time units in advance for a fixed service
time known a priori. The seller’s objective is to set the price dynamically to maximize its expected
total revenues over the finite selling horizon, T. They propose two policies. First, they propose a
static policy called deterministic price control-Batch (DPC-Batch) which they prove has an average
regret in the order of O

(
n−2/3

√
log(n)

)
, where n is the service time, or the number of periods the

resource will be in use, and is the same for all customers, JD
A is the optimal revenue from the

deterministic optimization problem, and E[Rπ] is the revenue received from applying DPC-Batch.
The second policy updates the price dynamically based on past prices and demand observations
and has a similar average regret order.

Our setting throughout the thesis, except chapter 3, departs from analyzing one product, or
resource, because we analyze a network revenue management system where multiple reusable
resources makes multiple products. This model contains the special case where only products
are being sold, in other words, the resource is the product. The blocking probability analysis is
complex for systems with multiple products since multiple products can use the same resource and
so the blocking probabilities are not independent. Chapter 2 breaks down the blocking probabilities
per resource and chapter 4 doesn’t explicitly handle blocking probabilities, but learns how to price
the products so that a good pricing policy generates close to optimal revenue. Pricing via model-
free learning affords us the ability to tweak the reward terms so the agent can control how much
blocking he/she tolerates so that revenue and traffic increases.
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1.2.3 Reinforcement Learning

To the best of the author’s knowledge, there exists no literature in the network revenue manage-
ment with reusable resources using machine learning, in particular, reinforcement learning. There
is limited literature in the area of revenue management using reinforcement learning to find an opti-
mal pricing policy in the perishable case. Gosavi and Bandla (2002) used reinforcement learning to
develop a strategy for seating allocation and overbooking in order to maximize the average revenue
gained by an airline. In particular, Raju et al. (2006) used a reinforcement learning (Q-learning)
algorithm to price products dynamically with customer segmentation.

Model-free reinforcement learning has been successfully applied in robotics Peters and Schaal
(2006), machine scheduling Ye et al. (2018), playing Atari games Mnih et al. (2013), cybernetics,
psychology, and computer science disciplines Sutton and Barto (1998). There has been a surge
of interest in model-free reinforcement learning after it was successfully applied to learn to play
many old Atari video games Mnih et al. (2013), using one generic structure with deep neural
networks and Q-learning. Model-based reinforcement learning solves for the optimal policy using
past experience. An advantage in using reinforcement learning is that it can adapt to a changing
environment through experience.

In chapter 3, we add to the growing applications of model-free reinforcement learning. Chap-
ter 3 proposes using model-free reinforcement learning to find a good dynamic pricing policy using
available resources left as state information, without having to define the transition probabilities
that govern this stochastic process. We will be optimizing over the policy space directly instead of
optimizing over the action-value space as it has been shown in practice to have better convergence
properties at the expense of taking longer to train. We used DDPG instead of any other policy
gradient algorithms because they are stochastic, in other words, the output is a stochastic policy.
A stochastic policy does not make sense in practice as it will produce different prices for the same
state since we are sampling a distribution.
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CHAPTER 2

Network Revenue Management with Reusable
Resources and Advance Reservations

2.1 Introduction

In this chapter, we consider revenue management problems with reusable resources that make
reusable products and the ability for customers to reserve the resources in advance to be used for a
fixed period of time, both unknown to the seller. Revenue management has received considerable
attention in wide-ranging domains such as hospitality industry, car rental industry, hospital room
management, workforce management, cloud computing, etc. Many of the aforementioned appli-
cations have many commonalities we consider from a practical point-of-view. One is the starting
finite capacity that the seller has at any point time, for example, the finite computing capabili-
ties that Google has to offer to clients, finite number of channels in a communications network,
the finite number of rooms that a hotel manages, and the number of cars that a car renting com-
pany manages. Second, it’s the re-usability of these resources, in other words, the resources are
“consumed” temporarily for a random amount time at some random future date, but then becomes
available to be used again for future requests. Third, the resources can be booked in advance for
later use, e.g. hotel rooms can be booked months in advanced. Lastly, the seller has to decide the
prices of these resources before customer arrivals.

The above characteristics are seller-related. In these settings, the resources serve multiple
customer classes, each class having their unique characteristics. One of those characteristics is the
valuation, reservation price, that a customer has a priori, not known to the seller, of the resource.
The customer resource valuation is the fair-value price the customer thinks the resource is worth; it
is different for each customer, and therefore, random. Other characteristic are the arrival process of
customers and the service time and advance reservation requirements, which are also random. The
last characteristic is that customers might leave the system if the seller-imposed price is not in par
with the customers’ resource valuation, i.e. the resource is overpriced that some customers won’t
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bother making a reservation. The seller’s aim is to devise a pricing control policy to maximize
his/her long-run average revenue. The seller has minimal information to accomplish this goal,
i.e. complete distribution information of the advance reservation and service times and correlation
between them and the reservation price distribution. Even if we did have complete information,
in which case a dynamic programming model can be used to solve the problem, the curse of

dimensionality would make it computationally intractable to solve because of the exponential blow-
up of the state-space. But as we show in this chapter, in the fluid regime, much of the randomness
becomes negligible, that is to say that the problem becomes deterministic, and a simple pricing
policy derived from a convex optimization problem becomes nearly optimal as the capacity and
arrival rates grow proportionally.

2.1.1 Main Contributions

We propose a static pricing policy called ε-perturbation pricing selection policy (ε-PS P), wherein
the fluid regime, the ε-PS P policy defined later in the optimization problem, is nearly optimal.
This policy has a very simple pricing structure that charges a single price for each resource over
the infinite horizon, making the implementability feasible and easy, i.e. no dynamic updating, or
extra computation is required after solving a single optimization problem nor is any additional
distributional information or correlation information required to devise the policy, thus, the seller
avoids the risk of miscalculating customer information.

Our main contributions about the performance of the ε-PS P are the following:

1. The heuristic applies a single price for each resource over the infinite horizon, where the price
is chosen according to an optimization problem that constrains the seller to price in such a
way that leaves a buffer that depends on ε, for the purpose of hedging against uncertainty.
The policy is asymptotically optimal with rate arbitrarily close to 1/

√
n.

2. The performance loss of the ε-PS P relative to the seller’s optimal revenue is upper bounded
by a function that does not require the seller to have perfect information of the distributions
and correlations of the advance reservation and service times but does depend on the initial
capacity, the price at which no customers arrive, and the optimal objective value of an convex
optimization problem to be defined later.

3. Our numerical experiments show that the performance and robustness of ε-PS P. The policy
performs nearly optimal when the capacity and arrival rates are sufficiently large but also
performs relatively well even when the parameters are of modest size, both in the cases
when the advance reservation and service times are dependent and independent.
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We analyze the performance of the ε-PS P policy by first showing that the policy induces a
well-studied stochastic process, the loss network system, namely an M/G/C/C loss system with
advance reservation. Loss network system are concerned with the setting in which customers are
served when there is sufficient inventory in stock to fulfill the demand, otherwise, the customer
leaves the system entirely if he/she finds the system at capacity. To get a hold on the steady-state
blocking probabilities of the M/G/C/C loss system, we analyze an infinite capacity system, or
M/G/∞ system, that upper bounds the steady-state blocking probability of the original system.
Since we consider infinite support distributions, i.e. the advance reservation and service times, we
have to upper bound the steady-state blocking probability of an infinite capacity system after a
certain point in time, say t∗, in which we can then focus on the steady-state blocking probability
on the finite interval [0, t∗]. There has been little work in attempting to understand the steady-
state blocking probability in loss networks systems with advance reservation. As seen from the
literature review below, Coffman-Jr et al. (1999), Lu and Radovanovic (2007), and Chen et al.
(2017) are recent works who have characterized the steady-state blocking probabilities of special
cases. The assumptions in our model that are pertinent for the analysis on the steady-state blocking
probability are fairly general: a time-homogeneous arrival process, a general continuous service
time density function with finite mean, and general continuous reservation density function with
finite mean. The assumptions that are pertinent to devising a pricing policy is the concavity of the
revenue rate function from the optimization problem. The main results (formally stated in Theorem
2.2.2 and Theorem 2.2.3) stem from the analysis of the steady-state blocking probabilities. One
of the major reasons why it is difficult to analyze in the advance reservation setting, is the fact
that an arriving customer effectively observes a non-homogeneous Poisson process induced by the
pre-arrivals, i.e. the customers who have already reserved resources made prior to the customer
arrival. We have contributed to the analysis of the virtual blocking probability in the case when
one has continuous densities on unbounded support in M/G/∞ systems with advance reservation.
Our approach is similar in nature to Chen et al. (2017), but departs from their work by not only
extending the results from discrete to the continuous setting, but we also extend from bounded to
unbounded support on the service and reservation density functions. One of the drawbacks of our
model is that we only consider single-class instead of multiple class.

This chapter is organized as follows: The beginning of Chapter 2.2 presents the model. Sec-
tion 2.2.2 analyzes the performance of the ε-PS P policy. Section 2.2.1 analyzes the general net-
work model’s performance with multiple resources and multiple products. Section 2.2.3 presents
empirical results of the ε-PS P policy.
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2.2 Problem Formulations

We consider a seller who provides a set of finite reusable resources I = {1,2, . . . ,m} used to produce
a set of products J = {1,2, . . . ,n} to serve customers over an infinite horizon. Demand for products
at time t is a multivariate, stochastic point process with Markovian intensities. At any time t, the
vector of intensities λt = (λ1

t , . . . ,λ
n
t ) is determined by t and the current price vector pt = (p1

t , . . . , p
n
t )

through a demand function λt(pt). Thus, demand is a controlled Poisson process. Following
Gallego and van Ryzin (1997), we assume that the demand function λt(pt) is regular as follows.

Assumption 1 We assume the demand function λt(pt) is known, and further, that it satisfies the
following regularity conditions.

a) λt(pt) is bounded, twice differentiable, and invertible.

b) For each j, there exists a “turn-off” price p̄ j <∞ such that λ j
t ( p̄ j) = 0.

c) λ j
t → 0 implies that λ j

t · p
j
t (λ j

t )→ 0.

d) The revenue rate rt(λt) = λ>t pt(λt) is continuous, bounded, and strictly concave in λt, and has
an interior maximizer.

e) The function pt(λ) is non-increasing in λ for each t.

We make additional assumptions on the service time and delay marginal distributions.

Assumption 2

a) The marginal distributions FS (s) and FL(d) are differentiable.

b) There exists a point u∗ ∈ [0,∞) for which fL(d) decays monotonically for d ≥ u∗.

c) There exists a linear function s∗(d) = c + ad where ∀d ∈ [0,∞) implies fS |L=d(s) decays
monotonically for s ≥ s∗(d).

d) M = max
d∈L

fL(d) <∞ and N = max
(s,d)∈S×D

fS |L=d(s) <∞.

Assumptions 1(a)-1(d) are well-known assumptions in the literature. The last assumption, though
a theoretical drawback, in practice it is not an issue since if prices are high, less customers purchase
and vice versa. In other words, a bigger arrival rate implies a lower price by invertibility assumption
2.2(a).

Assumption 2 is to ensure the interchange of differentiation and integration in the case the
support of the distributions are unbounded. The case when both are finite, assumptions 2(b) and
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2(c) are automatically satisfied. The first assumption is not restrictive since many distributions sat-
isfy it. For example, all distributions that belong in the exponential family, beta prime distribution,
F-distribution, and many more. In words, the third assumption states that the service time chosen
by a customer who will delay service by d time units will likely choose a service time that is at
most linear in the delay. In practice we won’t expect that the longer the delay the bigger the service
time. For example, a hotel manager wouldn’t likely expect that a customer who reserves a room
far out into the future would also choose a proportional service time. We would most likely have
the service time not growing, i.e. concentrated, for any delay. The bivariate normal distribution
with positive correlation coefficient fits this assumption, where we can take the linear function

s∗(d) = E(S |D = d).

which is a linear function of d. A class of bivariate lognormal densities and bivariate F-distributions
can be shown to satisfy assumption 2(c) and 2(d). The pre-arrival process will be described next.

We shall view the vector of intensities λt = (λ1
t , . . . ,λ

n
t ) as the firm’s decision variables. In

this case, one can imagine the firm setting the output intensities λ and the market determining
the prices pt based on these output intensities. As price-sensitive customers call to the system,
the seller offers a price pt determined by the intensity λt. Depending on the product price, the
arriving customer either requests the product for future use or if price is high enough, the customer
leaves the system entirely. If the customer requests the product upon arrival, then seller reserves
the product’s resources for a fixed amount of service time at a future time, both of which are
random quantities given by the customer from the outset. When a scheduled customer arrives in
the future to use the product, the seller collects pt, which is the price imposed at time t when the
customer called for reservation and not the time at which the customer begins to use the product.
Simultaneously, the resource(s) used to make the product will be occupied for a certain amount
of time at which no one else can use the same resource(s). When the customer finishes with the
product, the resource(s) will be available to be used again for future requests. We assume that the
customer arrives on time and does not alter its request at any point between the time the customer’s
call to the system and its scheduled service

The n final products are made up by m types of reusable resources. We use c = (c1, . . . ,cm) ≥ e
to denote the capacity vector where ci is the capacity of reusable resource i ∈ I. Let A = [ai j]
represent the bill-of-materials matrix, where ai j ∈ {0,1} represents whether resource i ∈ I is required
to make product j ∈ P. Also, let ai be the ith row of A. We assume A is binary-valued and has no zero
columns; that is, each product uses at least one of the m resource types. Each arriving customer
requests a service of product j ∈ I in advance. The time between her request and the start of her
service is called lag time, drawn from a continuous distribution L j, and the time between the start
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and the end of her requested service is called service time, drawn from a continuous distribution
S j. Note that L j and S j are a priori random to the system and only become realized at the moment
when the request is made. We allow for an arbitrary correlation between L j and S j. If all the
required resources of product j are available at the time of request, her reservation is successfully
made at the current price; otherwise, she will leave the system. The resources of product j are
released upon completion of her service and can be used to serve other customers (i.e., resources
are reusable). The firm’s objective is to maximize the long-run average expected total revenues by
setting prices dynamically.

Let Π denote the set of all non-anticipating and state-dependent controls and let pπt denote the
price to be applied at time t under control π ∈Π. The optimal stochastic control formulation of our
dynamic pricing problem is given by

J∗ = max
π∈Π

liminf
T→∞

1
T
Eπ

[∫ T

0
p>t dNs

]
s.t. A(N(t)−D(t)) ≤ c, ∀t ≥ 0 a.s.

pt ∈ P(t).

(2.1)

where N(t) is the arrival point process when applying the control π, and D(t) is the departure
process when applying the control π. The seller’s objective is to find the policy π ∈ Π which
maximizes (2.1). Note that we maximize the limit infimum since the limit of the expected long-run
average revenue might not exist, but the limit infimum always exists. Denote the optimal value of
(2.1) as R(OPT ). Following similar arguments as in Levi and Shi (2015), Lu and Radovanovic
(2007), and Sevastyanov (1957), one can show that the induced Markov process has a unique
stationary distribution which is ergodic. Invoking Little’s Law and the existence of a long-run
stationary distribution, whatever the state-dependent policy π ∈ Π the seller uses, the arrival rate
averages out to a single number for each product. Therefore, the fluid approximation/model is

JD = max λ>p(λ)
s.t. Aλ ≤ c,

λ ∈ Λ.

(2.2)

The constraint Aλ ≤ c was attained from Little’s Law. Specifically, since

A(L(t)−D(t)) ≤ c, ∀t ≥ 0 a.s. ⇒ t−1

t∫
0

A(L(t)−D(t)) ≤ c ∀t ≥ 0.

Observe that the capacity vector c has different meanings in (2.1) and (2.2). c in (2.1) signifies
that the number of each resources in use at time t is not greater than c for all times t. c in (2.2)
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is interpreted on a per time basis, i.e. each resource’s rate of usage is less than c per unit time.
Additionally, note that (2.2) is a convex optimization problem since we are maximizing a concave
function over a polytope.

Now we will show that a static pricing policy determined by (2.2) and inverting the function
λ(p) to find the prices that will be offered, is asymptotically optimal with rate arbitrarily close to
O(1/

√
n).

2.2.1 Multi-Product Multiple-Resources with Advance Reservation

Before we delve into the analysis, we will define the necessary quantities that will be used through-
out. If y is a vector in Rm and W ⊂ I, then yW is the vector of length |W | whose components are yi

for i ∈W, and |W | is the cardinality of the set W. If λ j is the arrival rates for each product j ∈ J,
then the arrival rate, αi, for ingredient i ∈ I is

αi =
∑
j∈S i

λ j,

where S i := { j ∈ J|ai j > 0}, i.e., S i are the products which use ingredient i ∈ I. Additionally, define
M j to be the ingredients that make-up product j.

We will solve the following perturbed version of (2.2)

JD
ε = max λ>p(λ)

s.t. Aλ ≤ (1− ε)c,
λ ∈ Λ.

(2.3)

Let λ∗ε be the optimal value of (2.3). Having defined the perturbed optimization problem, we have
the following lemma whose proof is provided in the appendix:

Lemma 2.2.1. Let λ∗ε be the optimal solution to (2.3). Then the optimal objective value of (2.3) is

at least (1− ε) times the optimal expected revenue, i.e.,

JD
ε ≥ (1− ε)J∗.

The solution from solving the LP gives rise to the ε-PS P policy:

1) For each arriving customer, accept product request if there is sufficient unreserved resources
available to make the product over the requested service interval. Otherwise customer is
blocked.
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2) Collect p(λ∗j) for product j purchases.

Assume now that a random customer in the capacitated system arrives to the system re-
questing product j ∈ P, then the probability of being blocked when the requested interval is
[t + d, t + d + s], denoted by P(B(d,s)

j ), is upper bounded by

P(B(d,s)
j ) =

∑
π∈Π(M j)

P(B(d,s)
j |π)P(π)

≤
∑

π∈Π(M j)

P(π)

≤ N
∑
i∈I

P(πi),

(2.4)

where πi = {resource i is insufficient over [t+d,t+d+s]} and Π(M j) is the set of all combinations
of ingredients that can run out at the time of reservation. For example if product 1 is made up
of ingredients {1,2,3}, then Π(M1) = {{1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3}} are the possible ways
that a customer can get blocked at the time of reservation since at the time of arrival and requested
interval, if some combination of resource in Π(M1) are exhausted, then customer is blocked. The
last inequality is due to summing over all ingredients i ∈ I. Going from the first to second inequality
is due to the number of different ways that resources can run out for a single product. Using the
same example as before, product 1 cannot be made if, say resource 2 and 3 are exhausted, so the
overall blocking probability will include P(π2∩π3) and other terms as well. But note that trivially,

P(π2∩π3) ≤ P(π1) +P(π2)

Therefore, N is a finite constant and it is the maximum number of times that any of the P(πi)’s
appear in Π(M j) for any j ∈ J. For example, using Π(M1) again, resources 1,2, and 3 appear four
times in Π(M1). We check for all Π(M j) for all products and take the maximum over all products.
It can easily be seen that

N = max
i

 ni∑
i=0

(
ni

i

)
where ni =

∑
j

Ai j.

Observe that for each product j ∈ J the last inequality holds since this was for arbitrary prod-
uct. Looked thru a “queueing” lense, we can look at m M/G/∞ queues for each resource separately

and analyze the conditional blocking probability for each single resource. In this counterpart sys-
tem, all customers are admitted since there are an infinite capacity for each resource. It is not
hard to see that if a customer gets blocked in the capacitated queue, then there exists at least one
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ingredient i ∈ I that was insufficient. Then it must be that in the |I| running M/G/∞ queues, the
customer would have been virtually blocked due to at least one of the queues. We will define the
concept of virtual blocking probability for the analysis of the conditional blocking probability in
the capacitated system. Therefore, we can look at the blocking probability of a product request as
the sum of blocking probabilities of single ingredient requests, where the arrival rate of ingredient
i ∈ I is

αi =
∑
j∈S i

λ∗j,

where λ∗ is the solution to (2.3).

If we implement the constant pricing policy determined from (2.3), the revenue we obtain is
not fully JD

ε since there is the possibility of rejecting customers because the capacity is not enough.
From Little’s Law, the revenue from implementing the constant rate , i.e. fixed pricing policy, is

R(ε-PS P) =

n∑
i=1

λi p∗i

∫
(S i,Li)

(1−P(Bs,d))si fS i,Li(si,di),

where Bs,d is the conditional blocking probability given that the customer chose to delay his service
d time units into the future and use the product for s time units. If we obtain a uniform bound on
P(Bs,d), say P(Bs,d) ≤ γ, then we have

R(ε-PS P) ≥ (1−γ)
n∑

i=1

λi p∗i µS i .

Then observe that the term λiµS i is the optimal rate determined from (2.3), i.e. (λD
ε )i. Lemma 2.2.1

then implies
R(ε-PS P) ≥ (1−γ)(1− ε)J∗.

Therefore, it is sufficient to find a uniform upper bound γ that vanishes to zero as ε → 0 to show
that the ε-PS P policy is asymptotically optimal.

Theorem 2.2.2. Consider a revenue management model (2.3) with I = {1, . . . ,m} reusable resources

and J = {1, . . . ,n} products with advance reservation. The expected long-run average revenue loss

of the ε-PS P relative to the optimal expected long-run average revenue has the following finite

lower bound

R(ε-PS P)
J∗

≥

1− m∑
r=1

 t∗r −1
αr
−

t∗r∑
i=0

(
eδi,r

(1 +δi,r)(1+δi,r)

)αr

−
2cr

e2αr
−

e−νcr

√
2πcr

l


 (1− ε) ,
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where l =

∞∑
j=0

(eν) j for some arbitrary ν <
1
e

, α̃r = min{(1−ε)cr,a>r λ
∗}, δi,r =

 ε

1− ε
−

log(1 + α̃i)
α̃i logθ−1

i,r

+

,

and t∗r ∈ N and θi,r ∈ R>0’s are finite well-defined constants.

Consider a sequence of problems indexed by k ∈ N, defined by an initial capacity vector ck = kc,
λk = kλ, and εk =

ε
√

n1−β
for β ∈ (0,1). This generates a sequence of problems with proportionately

larger sales volumes and initial stocks. It is not hard to see that if λ∗ is the optimal value of (2.3)
with initial stock c, then λ∗k = kλ∗ for the kth problems with inital stock kc. Denote the true optimal
objective value of the scaled problem as J∗n.

Theorem 2.2.3. Consider a revenue management model (2.3) with I = {1, . . . ,m} reusable resources

and J = {1, . . . ,n} products with advance reservation. For a sequence of problems where the nth

problem has parameters λ(n)
j = nλ j for each product j ∈ J, c(n) = nc, and ε(n) =

ε
√

n1−β
, with β ∈

(0,1), ν <
1
e

, we have

R(ε(n)-PS P)
J∗n

≥ 1−
εmN
√

n1−β
+ o

(
1

√
n1−β

)
.

2.2.2 Analysis of Blocking Probabilities

From the previous section’s discussion, we will look at the conditional blocking probability of
a capacitated system of a single customer class with a single product who arrives to the system
as a Poisson process with rate λ, with joint distribution FS ,L(s,d), marginal delay distribution
FL(d) with marginal service time mean µS = E[S ], and marginal service time distribution FS (s)
with marginal delay mean µL = E[L]. Additionally, assume that the initial capacity of the single
resource is c and the traffic intensity

ρ = min{(1− ε)c,λµS }. (2.5)

The steady-state blocking probability in the case when there is no advance reservation has a
closed form (e.g. Levi and Radovanovic (2010)). This is due to the fact that the stochastic process
in question, which can be equivalently described as a loss network queue, can be constructed from
an infinite server queue system with a truncated state-space that includes only those states in which
no more then C customers are in service Kelly (1991). The equilibrium distribution for the M/G/∞

queue satisfies the detailed balance equations and the equilibrium distribution for the truncated
stochastic process also satisfies the detailed balance equations. In the case when customers can
reserve in advance, the number of customers who arrive by time t is no longer a Poisson process,
but a non-homogeneous Poisson process (NHPP) Chen et al. (2017). “Arrive” is italicized because
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the time the customer called to request a reservation is not the same time at which the customers
begins to use the resource.

To analyze the blocking probability for the capacitated system, we consider the uncapacitated
system, or the infinite server queue M/G/∞, where all customers get to use a resource upon arrival.
Note that the blocking probability in the uncapacitated system is at least as big as the blocking
probability in the capacitated system. Indeed, suppose that a customer who arrives in steady-state at
time t reserves d time units in advance for use of s time units, in other words, customer is requesting
service in the time interval [t + d, t + d + s], is blocked in the capacitated system, i.e. there are c

resources that will be in use/reserved. Since this customer “sees” the capacity full, this customer
in the M/G/∞ would also “see” the system with at least c resources in use/reserved. Since the
set of accepted customers in the M/G/∞ system is a superset of the accepted customers in the
capacitated system, for any sample path ω ∈ Ω, this customer would have been virtually blocked.
Let B be the event B = {max reserved capacity over [t +d, t +d + s] in the capacitated system ≥ c}.
Now, we define the virtual blocking probability, P(Bv), as

P(Bv) = P
(
max reserved capacity over [t + d, t + d + s] in the M/G/∞ system ≥ c

)
.

From the above, we have

P(Bv) ≥ P(B).

Therefore, we will analyze upper bounds on the virtual blocking probability, P(Bv), to upper bound
the true blocking probabilities. To that end, we need knowledge of the booking profile, i.e. the
number of customers who are in service and the pre-arrivals who would be coming in later, at any
point in time. We start by understanding the pre-arrival and departure process.

Upon a customer arrival to the system at some time t, all the starting service times of the
customers who had arrived prior to time t are already known. We call these starting service times
pre-arrivals. We define this process to analyze the virtual blocking probabilities. We derive the rate
of the pre-arrival process, denoted by Y(t), starting from steady-state by differentiating the mean
E(Y(t)) with respect to time t.

ΛY(t) =
d
dt

ρ
∞∫

u=0

P(u ≤ L ≤ u + t, S <∞)


=

d
dt

ρ
∞∫

u=0

FL(u + t)−FL(u)


= ρF̄L(t).
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ΛY(t) signifies the mean number of reserved customers t time units after a random customer arrival.
Similar to the discrete case in Chen et al. (2017), the pre-arrival rate is ρF̄L(d), where ρ is the traffic
intensity. The interchange above is allowed due to the following lemma

Lemma 2.2.4.
d
dt


∞∫

u=0

FL(u + t)−FL(u)

 =

∞∫
u=0

d
dt

(FL(u + t)−FL(u)) =

∞∫
u=0

fL(u + t).

Proof. By Billingsley (1995), we only need to find an integrable function g(u) such that fL(u+ t) ≤
g(u) for all t,u ∈ R+. Let M = max

x∈[0,∞)
fL(x). Using assumption 3(i), the function

g(u) =

M for u < u∗

fL(d) o/w,

is obviously integrable and upper bounds fL(u + t) for all u, t ∈ [0,∞] since for u ≥ u∗ and t ≥ 0 by
assumption implies fL(u + t) ≤ fL(u).

If we are dealing with continuous bounded support random variables, then the assumption is not re-
quired as we can bound the distribution functions by some large enough constant over the bounded
support, which is obviously integrable.

We assume the support of the service time is R+. The departure process, which we denote
Z(t), is a NHPP with rate ΛZ(t) = ρ(1−P(S ≤ t,L ≤ t− S )). Indeed, let us denote time 0 as the
time the system reaches steady-state. Then the # of customers who will finish service in the time
interval [0, 0+t] is a Poisson RV with mean

E(Z(t)) = ρ

∞∫
u=0

P(L ≤ u, u−L ≤ S ≤ u + t−L)

+ρ

∞∫
u=0

P(u ≤ L ≤ u + t, S ≤ u + t−L).

Taking the derivative of E(Z(t)) and assuming that the interchanging of differentiation and
integration holds, we get that the departure rate ΛZ(t) is
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ΛZ(t) =
d
dt


ρ

∞∫
u=0

P(L ≤ u, u−L ≤ S ≤ u + t−L)

︸ ︷︷ ︸
A

+ρ

∞∫
u=0

P(u ≤ L ≤ u + t, S ≤ u + t−L)

︸ ︷︷ ︸
B


= ρ

d
dt


∞∫

u=0

u∫
d=0

P(u−d ≤ S ≤ u + t−d|L = d) fL(d) +

∞∫
u=0

u+t∫
d=u

P(S ≤ u + t−d|L = d) fL(d)


= ρ

d
dt


∞∫

u=0

u∫
d=0

(
FS |L=d(u−d + t)−FS |L=d(u−d)

)
fL(d) +

∞∫
u=0

u+t∫
d=u

FS |L=d(u + t−d) fL(d)


= ρ


∞∫

u=0

u∫
d=0

d
dt

(FS |L=d(u−d + t)−FS |L=d(u−d)) fL(d) +

∞∫
u=0

u+t∫
d=u

d
dt

FS |L=d(u + t−d) fL(d)


= ρ


∞∫

u=0

u∫
d=0

fS |L=d(u + t−d) fL(d) +

∞∫
u=0

u+t∫
d=u

fS |L=d(u + t−d) fL(d)


= ρ


∞∫

u=0

u∫
d=0

fS ,L(u + t−d,d) +

∞∫
u=0

u+t∫
d=u

fS ,L(u + t−d,d)


= ρ


∞∫

x=0

∞∫
y=0

fS ,L(x + t,y) +

0∫
x=−t

∞∫
y=−x

fS ,L(x + t,y)


= ρ (P(S ≥ t) +P(S ≤ t)−P(S ≤ t,L ≤ t−S ))

= ρ(1−P(S ≤ t,L ≤ t−S )) −→ 0 as t→∞,

where A are the customers who call and arrive, i.e. request resource and start service, before time
0 but leave in the interval [0,t], and B are the customers who call before time 0 but start and end
service in the time interval [0,t]. The third-to-last equality is by change of variables and Leibniz
integral rule. The change of differentiation and integration can be justified by using dominated
convergence theorem as proved in the next lemma:
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Lemma 2.2.5.

d
dt


∞∫

u=0

u∫
d=0

(
FS |L=d(u−d + t)−FS |L=d(u−d)

)
fL(d) +

∞∫
u=0

u+t∫
d=u

FS |L=d(u + t−d) fL(d)


=

∞∫
u=0

u∫
d=0

d
dt

(FS |L=d(u−d + t)−FS |L=d(u−d)) fL(d) +

∞∫
u=0

u+t∫
d=u

d
dt

FS |L=d(u + t−d) fL(d).

Proof. We will prove the interchange for the first term as the second term is similar. Let M =

sup
s,d

fS |L=d(s) which is finite by assumption 3(iii). Note that the first term can be written as

d
dt

∞∫
u=0

∞∫
d=0

(
FS |L=d(u−d + t)−FS |L=d(u−d)

)
fL(d)1d∈[0,u].

Similar to Lemma 2.2.4, we have to find an integrable function g(u,d) which upper bounds the
derivative of the integrand for all u,d, t ∈ R+. By the aforementioned assumption, there exists a
function s∗(d) = c + ad that satisfies assumption 3(ii). Without loss of generality, we can assume
that a ≥ 1 and c < 0. One can easily show the following:

d
dt

(FS |L=d(u−d + t)−FS |L=d(u−d)) fL(d)1d∈[0,u]

= fS |L=d(u−d + t) fL(d)1d∈[0,u]

≤ fL(d)1d∈[0,u] ∗

M for u−d ≤ s∗(d)

fS |L=d(u−d) for u−d > s∗(d)
= g(u,d).

Then g(u,d) is measurable since it is the product of two measurable functions and

∞∫
d=0

∞∫
u=0

g(u,d) =

∞∫
d=0

d+c+ad∫
u=d

M fL(d) +

∞∫
d=0

∞∫
u=d+c+ad

fL(d) fS |L=d(u−d)

= M

∞∫
d=0

(c + ad) fL(d) +

∞∫
d=0

fL(d)F̄S |L=d(c + ad)

≤ M (c + aE(L)) +

∞∫
d=0

fL(d) <∞,

i.e. g(u,d) is integrable. By Billingsley (1995), the interchange holds.
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Note that ΛZ(t) approaches zero as t→∞. This supports intuition since at any random point
in time t, the expected number of customers who are in service at time t is finite and the expected
number of customers whom already reserved service after time t is finite. Indeed, observe that

1−P(S ≤ t,L ≤ t−S ) ≤ F̄L(
t
2

) + F̄S (
t
2

),

since
{S ≤

t
2
,L ≤

t
2
} ⊂ {S ≤ t,L ≤ t−S },

which implies
{S ≤ t,L ≤ t−S }C ⊂ {S ≤

t
2
,L ≤

t
2
}C ⊂ {S ≥

t
2
}∪ {L ≥

t
2
}.

Therefore,

∞∫
t=0

(1−P(S ≤ t,L ≤ t−S )) converges. This implies that ΛZ(t)→ 0 as t→∞.

The following lemma shows that the rate at which customers depart is at least as great as the
number pre-arrivals, i.e. ΛZ(t) ≥ΛY(t). This is used to prove that the blocking probabilities vanish
as the arrival rate and capacity grow without bound.

Lemma 2.2.6. The rate function of the departure process is at least as big as the rate function of

the pre-arrival process, i.e. ΛZ(t) ≥ ΛY(t) for all t ≥ 0.

Demanding that the service distribution be at least greater than some value α > 0, then the
only thing that changes for the rate of the new departure process, Znew(t), is a shifted PZ(t) by α,
i.e.

PZnew(t) =

1, 0 ≤ t ≤ α

PZold (t−α), t > α,

where PZold (t) = 1−P(S ≤ t,L ≤ t−S ). The next lemma demonstrates the above property.

Lemma 2.2.7. Assume the support of the customers’ service time is [1,∞). Then the departure

rate is

ΛZ(t) =

ρ, for 0 ≤ t ≤ α

ρ(1−P(S ≤ t−α,L ≤ t−α−S )), o.w.,

i.e., a shifted version of the case when the service time support is the non-negative real line.

Observe that for any α > 0, Lemma 2.2.6 combined with Lemma 2.2.7 imply that ΛZ(t) >
ΛY(t). Therefore, WLOG, we can let α = 1. Note that in Chen et al. (2017), for the finite support
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and discrete case, the departure rate on the interval [d,d+1] is

ΛZ(d) =

v∑
s=1

ρP(S = s)

1− d−s∑
i=0

P(L = i|S = s)


= ρ

1− v∑
s=1

d−s∑
i=0

P(L = i,S = s)


= ρ

1− d−1∑
i=0

d−i∑
s=1

P(L = i,S = s)


= ρ (1−P(S ≤ d,L ≤ d−S )) .

The departure process has a rate function of similar form to the continuous case of Lemma 2.2.7,
similarly, the pre-arrival process they derived has the same form as ΛY(t) derived above.

Continuing on our quest to determine asymptotic optimality of ε-PS P, we need to compute
the virtual blocking probability for the M/G/∞ queue, or equivalently, the conditional blocking
probability,

Pd
s (Bv) = P(B|S = s,L = d)

= P( max
t∈[d,d+s]

N(t) ≥ c),

where B ={Customer is Blocked} and N(t) is the steady-state number of customers in the system
at time t. But the event

{ max
t∈[d,d+s]

N(t) ≥ c}) ⊂ {max
t∈I

N(t) ≥ c}),

where I is any interval containing [d,d + s]. Therefore, for any interval I such that [d,d + s] ⊂ I,

P( max
t∈[d,d+s]

N(t) ≥ c) ≤ P(max
t∈I

N(t) ≥ c)

= P
(

max
i=1,...,n

{max
t∈Ii

N(t) ≥ c}
)

≤

n∑
i=1

P(max
t∈Ii

N(t) ≥ c),

where Ii are intervals such that
n⋃

i=1

Ii = I. The above implies we can focus on the blocking proba-

bilities on disjoint intervals instead of one interval.

Lemma 2.2.8. Let c be the system capacity, λ and µ be the arrival rate and mean service time of

the customer class, respectively, p∗ the optimal value of (2.3), and ν ∈ (0,1). Then, there exist a
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sufficiently large, but finite, t∗ such that the conditional blocking probability is

Pd
s (B) ≤

t∗−1∑
i=0

P({Xi + max
t∈[0,1]

{Y′i (t) + Z′i (1)−Z′i (t)}} ≥ c) +

∞∑
i=c

e−νc(νc)i

i!
, (2.6)

where the Z′i (t) and Y′i (t) are the NHPP that represent the number of customers who depart and

arrive, respectively, in the interval [i, i + t], t ∈ [0,1], and X′i be the number of customers who

have started service before time i and depart after time (i + 1). The rate of Z′i (t) and Y′i (t) for

i ∈ {0, . . . , t∗−1} are λZ′i
= ΛZ(i + t) and λY′i

= ΛY(i + t), respectively.

The importance of Lemma 2.2.8 is in the proof. It is in the proof that one can show that
the t∗ from Lemma 2.2.8 can be chosen to be constant when the capacity and arrival rate increase
proportionally. The next lemmas are concerned with upper bounding the terms involved in Lemma
2.2.8.

Lemma 2.2.9. Let Xi,Y′i (t), and Z′i (t) for all i ∈ {0, . . . , t∗ −1} be defined as in Lemma 2.2.8, c the

capacity, and λ the arrival rate of the class. Then,

t∗−1∑
i=1

P({Xi + max
t∈[0,1]

{Y′i (t) + Z′i (1)−Z′i (t)}} ≥ c) ≤
t∗−1
ρ

+

t∗−1∑
i=1

(
eδi

(1 +δi)(1+δi)

)ρ
,

where δi =

 ε

1− ε
−

log(1 +ρ)
ρ logθ−1

i

 and θi =
ΛY(i)
ΛZ(i)

∈ (0,1) for all i.

The above lemma makes use of various results from, Chen et al. (2017) but we will prove it
for completeness. The next lemma is based from Chen et al. (2017)

Lemma 2.2.10. Let t∗, Xi, Ȳi, and Z̄i(1)− Z̄(t) be as in the proof of Lemma 2.2.9 for i ∈ {1, . . . , t∗−1}.

Also, let ρ = min{(1− ε)c,
n∑

i=1

λµ} and δi =

 ε

1− ε
−

log(1 +ρ)
ρ logθ−1

i

. Then,

P(Xi + max
t∈[0,1]

{Ȳi(t) + Z̄i(1)− Z̄i(t)} ≥ c) ≤
1
ρ

+

(
eδi

(1 +δi)(1+δi)

)ρ
.

Lemma 2.2.11. Consider a sequence of problems where the nth problem has parameters λ = nλ,

c(n) = nc. Choose ν < min
{

1
c
,
1
e

}
. Then

∞∑
i=c(n)

e−νc
(n)

(νc(n))i

i!
→ 0 as n→∞,
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and the rate of convergence is o(e−n).

Lemma 2.2.12. Consider a sequence of problems where the nth problem has parameters λ(n) = nλ,

c(n) = nc and ε(n) =
ε

√
n1−β

, with β ∈ (0,1). Let t∗, Xi, Y′i , and Z′i (1)−Z′i (t) be as in Lemma 2.2.9 for

i ∈ {1, . . . , t∗−1}. Also, let ρ(n) = min{(1− ε(n))c(n),λ(n)µS } and δ(n)
i =

 ε(n)

1− ε(n) −
log(1 +ρ(n))
ρ(n) logθ−1

i

.Then

t∗−1∑
i=1

P({Xi + max
t∈[0,1]

{Y′i (t) + Z′i (1)−Z′i (t)}} ≥ c(n)) ≤
t∗−1

nρ
+ o

(
1
n

)
.

We have upper bounded all RHS terms of (2.6) by expressions that converge to zero as n→∞

except for the term P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n)). The reason why the same approach

cannot be used to prove that the aforementioned term converges to zero as compared to the other
t∗−1 terms is that we upper bounded the other similar t∗−1 terms with probabilitities that contained
homogeneous Poisson process whose rates were determined by the values that ΛY(i) and ΛZ(i)
took, where we knew that ΛZ(i) > ΛY(i) for all i ∈ {1, . . . , t∗−1}. If we used the same approach for
i = 0, the rates of the homogeneous Poisson processes will be equal since ΛZ(0) = ΛY(0). Because
of this, we cannot apply the results of Chen et al. (2017). Regardless, we have the following:

Lemma 2.2.13. Consider a sequence of problems where the nth problem has parameters λ(n) = nλ,

c(n) = nc and ε(n) =
ε

√
n1−β

, with β ∈ (0,1). Then

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n)) ≤
2c(n)

e2ρ(n) +

 eδ
(n)

(1 +δ(n))(1+δ(n))

ρ
(n)

. (2.7)

Therefore,

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n))→ 0 as n→∞. (2.8)

Lemmas 2.2.8-2.2.13 imply that for any customer who requests to use the resource L = d time
units in the future for S = s time units, the probability of being blocked becomes highly unlikely
as n→∞:

Proof. Theorem 2.2.2.
The expected long-run average revenue for the ε-PS P policy is

n∑
j=1

λ j p j(λ)
∫

(S j,D j)
(1−P(B j

s,d))s j fS j,D j(s j,d j),
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where P(B j
s,d) is the blocking probability of a customer who submits a request to use product

j ∈ J from L = d time units from today for S = s time units. From 2.4, we can upper bound each
P(B j

s,d) by the blocking probabilities of each resource. From constraints in 2.3, each resource
will have an arrival rate ρr, capacity cr, joint service and delay time distributions Fr

S ,L(s,d), along
with their marginal distributions Fr

S (s),Fr
L(d). Now, we can apply Lemmas 2.2.8-2.2.12 to bound

the blocking probability of each resource and getting a uniform bound, say γ, on the blocking
probability of each product. Therefore,

R(ε-PS P) =

n∑
i=1

λi pi(λ)
∫

(S i,Di)
(1−P(Bs,d))si fS i,Di(si,di)

≥

n∑
i=1

λi pi(λ)
∫

(S i,Di)
(1−γ)si fS i,Di(si,di)

=

n∑
i=1

λi pi(λ)(1−γ)
∫

(S i,Di)
si fS i,Di(si,di)

=

n∑
i=1

λi pi(λ)(1−γ)
∫

S i

si fS i(si)

= (1−γ)
n∑

i=1

λi pi(λ)µsi

≥ (1−γ) (1− ε) J∗

=

1− m∑
r=1

 t∗r −1
ρr
−

t∗r−1∑
i=0

(
eδi,r

(1 +δi,r)(1+δi,r)

)ρr

−
2cr

e2ρr
−

e−νcr

√
2πcr

l


 (1− ε) J∗.

The conclusion follows.

Proof. Theorem 2.2.3:
By Theorem 2.2.2, we have that

R(ε(n)-PS P)
J∗n

≥

1−
m∑

r=1

 t∗r −1

ρ(n)
r

−

t∗r−1∑
i=0

 eδ
(n)
i,r

(1 +δ(n)
i,r )(1+δ

(n)
i,r )


ρ

(n)
r

−
2c(n)

r

e2ρ(n)
r
−

e−νc
(n)
r√

2πc(n)
r

l



(
1− ε(n)

)

=

1−
m∑

r=1

 t∗r −1

ρ(n)
r

−

t∗r−1∑
i=0

 eδ
(n)
i,r

(1 +δ(n)
i,r )(1+δ

(n)
i,r )


ρ

(n)
r

−
2ncr

e2ρ(n)
r
−

e−νncr

√
2πncr

l



(
1− ε(n)

)

≥

1− m∑
r=1

 t∗r −1
nρr

−

t∗r−1∑
i=0

 eδ
(n)
i,r

(1 +δ(n)
i,r )(1+δ

(n)
i,r )


nρr

−
2ncr

e2nρr
−

e−νncr

√
2πncr

l


(1− ε(n)

)
.
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Equality comes from direct substitution and the last expression comes from ρ(n)
r ≥ nρr for any

resource. We also have that
2ncr

e2nρr
−

e−νncr

√
2πncr

∈ o
(
1
n

)
for any resource and from Chen et al. (2017)

we have that

 eδ
(n)
i,r

(1 +δ(n)
i,r )(1+δ

(n)
i,r )


nρr

∈ o
(
1
n

)
. Therefore,

R(ε(n)-PS P)
R(n)(OPT )

≥

1− m∑
r=1

t∗r −1

ρ(n)
r

+ o
(
1
n

)(1− ε(n)
)

=

1− m∑
r=1

t∗r −1

ρ(n)
r

+ o
(
1
n

)(1− ε
√

n1−β

)
= 1−

ε
√

n1−β
+ o

(
1

√
n1−β

)
.

The equality follows from the property that for β ∈ (0,1)

lim
n→∞

1/n

1/
√

n1−β
.

The analysis follows very close that of Chen et al. (2017) but we had to bound the probability
of being blocked on an unbounded interval to then focus on bounding the blocking probability on
a finite interval. The analysis implies that results from Chen et al. (2017) extend for continuous
and unbounded supported service time and advance reservation distributions.

2.2.3 Numerical Experiments

We will test the performance of the ε-PS P policy in the special case when we have multiple prod-
ucts and resources and each customer for a particular product j ∈ J has a reservation distribution,
F̄ j(p) that is known to the seller. The price reservation distributions and arrival rates of each prod-
uct, capacities of each resource, will not change throughout the different experiments, other than
being scaled. The optimization problem we are solving is

maximize
n∑

j=1

λ j p jF̄ j(p j)µs j

subject to
n∑

j=1

ai jλ jF̄ j(p j)µs j ≤ (1− ε)c j

p j ∈ [p( j)
0 , p( j)

∞ ].

(2.9)
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If we let q j = F̄ j(p), the reformulation is

maximize
n∑

j=1

λ jq jF̄ j
−1(q j)µs j

subject to
n∑

j=1

ai jλ jq jµs j ≤ (1− ε)c j

q j ∈ [0,1].

(2.10)

To put it in terms of Problem 2.3, define βi = λµS iqi. Then,

maximize
n∑

j=1

β jg j(β)

subject to Aβ ≤ (1− ε)c
β j ∈ [0,λ jµS j],

(2.11)

where gi(βi) = F̄i
−1(

βi

λiµS i

).

Our experiments will vary the service and delay times distributions to test the robustness of
the policy. Therefore, consider 3 products and 5 resources. The reservation price distribution
follows a truncated Gumbel distribution, F̄(p;µ,ν), over the price range [0,10] with the following
parameters for each product j ∈ {1,2,3}:

1) Product 1: µ = 1 and ν = 2 with arrival rate λ1 = 1

2) Product 2: µ = 3 and ν = 4 with arrival rate λ2 = 2

3) Product 3: µ = 2 and ν = 2 with arrival rate λ3 = 1.5

with capacity vector c = (5,4,3,6,7). The bill-of-materials matrix is

A =



0 0 1
1 1 0
0 1 0
1 0 1
0 1 1


.

The distributions for each of the 4 scenarios are:

• U: uniform random variable
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Scenario 1 Scenario 2

Product 1
L∼Gamma(d f = 2) L∼Gamma(d f = 2)

S|L=d∼ Exp((1 + d)−1) S|L=d∼ Exp((1 + d)−1)

Product 2
logN (0,

(
1 0.8

0.8 1

)
) logN (0,

(
1 −0.8
−0.8 1

)
)

Product 3
L∼ X2(d f = 4) L∼ X2(d f = 4)

S∼ U[1,10] S∼ U[1,10]

Table 2.1: Distributions for scenario 1 and 2.

Scenario 3 Scenario 4

Product 1
L∼ TrExp(10) L∼ U[0,15]

S|L=d∼ TrExp(10,1.7(1 + d)−1) S∼ U[1,3]

Product 2
L∼ U[1,11] L∼ U[0,20]

S|L=d∼ TrS tdN S∼ U[1,5]

Product 3
L∼ U[1,15] L∼ U[0,6]
S∼ U[1,10] S∼ U[1,10]

Table 2.2: Distributions for scenario 3 and 4.

• X2(d f = 2): chi-square random variable with 2 degrees of freedom

• Gamma(d f = 2): gamma random variable with 2 degrees of freedom

• TrExp(a,b): truncated exponential random variable with range [1,a] and scale=b, i.e. the
coefficient of x in the exponent

• Exp(a): exponential random variable with rate equal to a

• TrN (µ,Σ): normal random variable with mean µ and covariance Σ

If the conditional distribution of the service time does not depend on the delay, then they are
independent. In all cases, the service time was additionally truncated so that the minimal service
time is 1.

All scenarios, regardless of the dependence, or lack thereof, of the service and delay, the per-
formance of the ε-PS P policy gets better. The difference between the first and second scenario is
the negative service and delay correlation of product 2. Positive correlation in log-normal distribu-
tions induces conditional means that grow faster than the linear behavior of the conditional mean
of a bivariate normal distribution. A negative correlation has the opposite effect as the conditional
mean decays rapidly. We wanted to test if the policy performed better in the negative correlation
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case relative to the positive correlated case. The top two graphs in Figure 2.1 shows that this is
indeed the case as it performs better for each n. When n = 50, the performance of the policy was
at most 6% away from optimal whereas it was at most 3.5% away from optimality. Scenarios
3 and 4 tests the cases that would most likely be encountered in practice, i.e. bounded support
distributions.

Figure 2.1: Performance ratio of the ε-PS P policy under different distributional settings.

Additionally, we tested the performance of the policy by varying the load factor, defined by

LF = λ
E[S ]

C
.

The base model uses the same parameters defined above and uses the distributions described in
scenario 3 described above. Table 2.3 and Table 2.4 shows when the overall total mean demand
is increased and when the service time mean is increased, respectively. Each data point averaged
over 20 simulations and the simulations were run long enough that the standard deviation is in-
significant.
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In summary, our results demonstrate that the pricing policy performs near-optimally in the
heavy traffic regime, which is consistent with our theoretical results. Moreover, the policy per-
forms reasonably well in the light and medium traffic regimes as well, in particular, the policy
performance is at least 50% optimal. Even though this was not proven in our setting, this result has
been theoretically proven in various other settings such as Levi and Radovanovic (2010), Owens
(2018). It is also worth noting that the performance of the policy is robust with respect to input
distributions and parameters, which could be widely adopted in many practical scenarios since
these parameters are rarely known exactly.
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CHAPTER 3

Revenue Management with Reusable Resources
using Upper Confidence Bounds (UCB)

3.1 Introduction

Much of the revenue management literature out today has analyzed the revenue management with
perishable resources model, wherein the resources are bought by customers, they are consumed
and cannot be resold, for example, food, electronics, etc. This area has been extensively researched
and there exists a multitude of variations of the model. This chapter focuses on the non-perishable
resources case, thus the word reusable in the title. This setting has many natural applications
such as the hotel industry, where the reusable products are the hotel rooms, car rental industry,
where the car is the reusable resource, cloud computing, and many more. The literature on revenue
management models with reusable resources in existence are static, in the sense that it uses data
gathered in the exploration phase to create statistical point estimate(s) and exploits this information
for the rest of the time horizon. It does not use information sequentially, as data arrives. In this
chapter, we will be analyzing the revenue management model with a single reusable resource,
with finite capacity that does not change over time and post prices, from a finite set of prices,
dynamically according to data that arrives in an online fashion. A possible reason for the lack
of literature in this setting is the complexity of the blocking probability, i.e. the event where
customers want to make a purchase but are unable to due to the seller running out goods, and thus
the customer is lost, or blocked, and no sale occurs.

Almost all literature in revenue management in this setting assume that customers arrive ac-
cording to a Poisson process or similar processes in order to get a handle on the blocking probabil-
ity to prove sub-linear regret bounds. In our case we assume that a fixed, and same, number arrive
in each time period. A major difference of our work is how our dynamic policy is being judged.
Regret is usually measured with respect to some clairvoyant model which is aware of the param-
eters of the problem and is able to find the optimal policy that would maximize its revenue. We
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will judge our policy to a fixed-price policy which not only knows the relevant parameters, but will
not face any lost customers, i.e. we are comparing our resulting revenue to the revenue garnered
by a fictitious seller with infinite capacity, which is the best one can do. In other words, the policy
is not being compared to the optimal clairvoyant policy, but with the optimal clairvoyant policy
with infinite capacity. The best clairvoyant policy might have blocking events associated with it
wherein it might be beneficial for some customers to get blocked, but this obviously assumes that
there is no cost associated with such events. That might not be the case as loss of customers can
occur, customer satisfaction degrades, etc. The reason for this is to get a hold of the algorithm’s
convergence rate as time, capacity, and starting inventory are scaled linearly. If the clairvoyant
policy contains blocking events, the analysis will be much more complex and will not be able to
compare policies. In other words, we are concerned with how our performance measure scales as
the scaling factor, n, gets large; this regime is known as the fluid regime. Another difference is the
regret measure. Usually regret is the difference between absolute quantities, but our application
will measure performance as the difference between terms that are quantities-per-unit-time. For
example, our regret measure will be

Regret(T ) = E[
Revenueπ

∗

T
]−E[

Revenueπ

T
],

where π∗ is the clairvoyant policy, π is the policy followed by our algorithm. For the nth problem
the regret is

Regretn(T ) = E[
Revenueπ

∗

n

Tn
]−E[

Revenueπn
Tn

],

where n is the scaling of the system, the problem parameters T, capacity, and arrivals are scaled
by n, and Revenueπn is the revenue generated by applying the pricing policy π throughout the time
horizon nT . As we will discuss in the coming section, the true blocking probability is intractable.
Therefore, we consider the relaxed regret instead

Regretn(T ) = E[
Revenueπ

∗

n

Tn
]−E[

Revenueπn
Tn

]

where Revenueπ
∗

n is the optimal revenue that is incurred had the seller had unlimited resources.

3.1.1 Main Results and Contribution

We summarize our high-level approach as follows.

We use upper confidence bound (UCB) estimates in an optimization framework to derive the
randomized policy to use. The policy depends on the observations we see, i.e. purchase or no
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purchase, which changes the UCB estimates. The high-level idea is that we solve a fractional 2-D
Knapsack at every time period with capacity constraint that is buffered by the right order. An inter-
pretation of this buffer is to post prices according to the constraint that we have less capacity than
we actually have in stock. The order of this buffer, which is automatically supplied by the UCB
estimates, turns out to surprisingly provide constant regret. As n is large enough, and computable,
our policy selects the optimal price to set throughout most of the time horizon and generates the
optimal revenue rate garnered by the clairvoyant model.

3.1.2 Organization and General Notation

This chapter is organized as follows. We formulate our problem in 2 and describe the learning
algorithm. We carry out the regret analysis in 3. We show some computational performance in 5.
Finally, we conclude and point out several future directions in 6.

For any x ∈ R, x+ = max{0, x}. The indicator function 1(A) takes value 1 if A is true and 0
otherwise. We use LHS and RHS as abbreviations for the “left-hand side” and the “right-hand
side” of an equation, respectively. [N] = {1, . . . ,N}. The following notation will be useful: for real
valued positive sequences an and bn we write an = O(bn) if an/bn is bounded from above for large
enough values of n (i.e., limsupan/bn <∞).

3.2 Literature Review

There is a plethora of literature in the perishable revenue management model and a multitude of
variations arising from what information is known to the seller such as the (un)-censored demand
process, demand curve structure, etc. Most, if not all, results are results in the fluid regime, wherein,
the system parameters are scaled proportionally such that the randomness is washed away, roughly
speaking. The seminal papers Gallego and van Ryzin (1994) and Gallego and van Ryzin (1997)
derived the Hamilton-Jacobi sufficient conditions, a first-order differential equation, for the optimal
value function of the model. The authors developed various pricing heuristics that approach the
optimal revenue as the resource capacities and demand rate get scaled linearly, with both heuristics
displaying a O(1/

√
n) convergence rate, where n is the scaling parameter. These papers provided

the impetus for the literature that followed. The text and surveys by Talluri and van Ryzin (2005),
Özer and Phillips (2012), den Boer (2015), and Bitran and Caldentey (2003b) provides excellent
overviews of this area of research.

Most of the relevant literature that revolves around the revenue management models with
reusable resources assumes that the arrival process is governed by a Poisson process Levi and
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Radovanovic (2010), Chen et al. (2017), Bernal and Shi (2019). The assumption reflects the real-
life scenarios that customers do not arrive in batches and the probability of multiple arrivals in
an infinitesimal interval is infinitesimal. The assumption is made to make the model tractable to
compute bounds on the blocking probabilities. The assumption we make regarding the arrival
process is that customers do arrive in batches, and they will buy a resource with probability that
depends on that price. Levi and Radovanovic (2010) allows for any service time distribution but
no advance reservation, Chen et al. (2017) allows for any finite discrete service time and advance
reservation distributions, and Bernal and Shi (2019) extends Chen et al. (2017) to allow for any
continuous service time and advance reservation distributions. One of the drawbacks of our model
is that we assume the service time is constant and no advance reservation is allowed. We hope
that future research will extend this model to allow for these relaxations to occur. All three papers
developed a static model which determined their static policy and proved asymptotic optimality of
said policy in the fluid regime.

The literature that focuses on the setting where the seller uses a finite set of resources to serve
customers repeatedly. Maglaras (2006) studies a setting wherein the seller is endowed with a single
unit of resource that can be repeatedly used to serve multiple classes of customers, but our case
serves just one class. Customers arrive according to a Poisson process and service times that are
exponentially distributed. The seller’s goal is to find a joint pricing and priority sequencing policy
that maximizes the long-run expected profit. The author proposes a policy that is the optimal
solution in the corresponding fluid model, and shows that this heuristic policy performs well. No
information is used in the future to make decisions. Our work in this chapter concerns in using
available streaming data to make pricing decisions from the perspective of a monopolist seller
where the customers do not strategize ahead of time. Various other papers focuses on forward-
looking customers where the customers can develop their own strategies to know when to buy and
not buy, e.g., Chen and Shi (2016), Borgs et al. (2014).

Lei and Jasin (2016a) is one of the works that resemble the closest to our work but their model
computes an LP that can have as many constraints as the length of the time horizon. They solve one
LP in the beginning but don’t use future information to make decisions. The buffer they computed
when solving the LP is of order O(n log(n)), whereas we will see later, is the same buffer order we
determine in our LP. Their result is an average regret that is sublinear as n, the service time, gets
large. Our result is an average regret result when the system as a whole is proportionally scaled,
but we do not scale the service time.

Other work that revolves around the idea of estimation and control is Besbes and Zeevi (2011).
They partition the time horizon into exploration and exploitation phases. After a set amount of
exploration time, which was carefully determined and decreases as the system scales, they devise
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an LP to determine the prices to set afterwards. Our work does indeed explore the prices to set and
we do this in every period by solving an LP that uses UCB estimates to output a distribution over
arms. This approach causes the seller to choose prices in such a way that does not create so much
demand as to run out of supply but at the same time does not under price so much so as to not
have low demand and little revenue. Some differences are that Besbes and Zeevi (2011) assumes a
Poisson arrival process and the model is a perishable, not reusable, resource model.

3.2.1 Related Literature in Other Disciplines

The general problem of making sequential decisions with limited to no information has a vast his-
tory with the work of Robbins (1952). Lai and Robbins (1985) capture the exploration-exploitation
dilemma. This model was introduced in the clinical trials statistics literature. This seminal paper
proved the existence of policies that have sublinear regret. This work sparked a vast amount of
research in multi-armed bandits (MAB) with different variations on the arms (e.g. continuous or
discrete arms) by Auer et al. (2002a), Mandelbaum (1987), different approaches to the MAB prob-
lem (e.g. UCB or thompson sampling) by Agrawal and Goyal (2012), and the stochasticity of the
reward process (e.g. stochastic or adversarial) by Auer et al. (2002b), Bubeck and Cesa-Bianchi
(2012). Many more variations have spawned from the work of Lai and Robbins (1985). Our work,
to the best of our knowledge, combines the UCB estimation procedure in the revenue management
model with reusable resources into the optimization to help the seller in choosing the prices in such
a way to maximize his/her revenue.

3.3 Problem Formulation

In this model we consider a revenue management problem where a firm sells one reusable product.
Moving forward, selling is synonymous with renting. For example, DoubleTree by Hilton hotel
selling a hotel room, Hertz selling a car, Amazon selling computational resources, etc. The seller
has a reusable product to sell over a time horizon of T periods. Each period sees a single customer
arrival in the base model, no scaling. The seller’s initial inventory is x0. Before each time period
t ∈ {1,2, . . . ,T }, the seller has to make a decision as to which of the K prices he/she will post to the
public among the set {p1, . . . , pK}, which affects the buying probability θk, k = 1, . . . ,K. We assume
that the prices are normalized so that pk ≤ 1 for all k ∈ [K]. If a customer purchases the reusable
product, then the customer utilizes the product for s time units. When the customer is done with the
product, the product is released to be used again for consumption. The seller’s goal is to maximize
the time-average revenue over the time horizon. The time-average revenue will be used because of
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the regret measure we will concern ourselves in this paper.

We assume that the true demand function is unknown to the seller. While the seller possesses
only limited information on the demand function, s/he is able to continuously observe realized
demand at all discrete time increments starting at time 0 and up until the end of the selling horizon
T. We shall use π to denote a pricing policy. We impose additional assumptions to avoid trivialities
and gain tractability:

Assumptions

(i) Service time is strictly greater than the initial inventory for the base case, i.e. s > x0.

(ii) The optimal solution(s) have corresponding θ’s strictly less than
x0

s
.

The first assumption is due to the fact that blocking will never occur since in the worst and unlike
case that each arriving customer decides to purchase, the seller will always satisfy demand. This
case can be solved via multi-armed bandits (MAB) since we have K unknown mean revenues , or
rewards in MAB terminology, and all the seller has to do is find the best strategy over the time
horizon T. From [Auer] this has regret O(lnT ). [Lai and Robbins] provided an asymptotic lower
bound on the expected regret of any bandit algorithm to be Ω(lnT ). In other words, this is the
best that one can do with the given information. The second assumption has to do with blocking
probability as the system scales for the full information system. As will be shown, if (ii) is not
satisfied, the blocking probability will be non-zero and will not dissipate as the system scales
largely and this will also occur for the randomized policy. This result can be seen in the numerical
illustrations of this chapter. Tractability is due to the ability to compute an upper bound on the
blocking probability using our randomized policy.

Demand for products at any time t ∈ [0,T ] is given by a bernoulli process with intensity θt =

θkt
t , where θkt

t is the is the buying probability given that the price was set at pkt at time t. We assume
without loss of generality that ci ≥ 0, for all 1 ≤ i ≤ T . A policy π is said to be admissible if the in-
duced price process is non-anticipating, in other words, π(t) is measurable with respect to the sigma
algebra generated by the past decisions and arrivals, σ

(
π(1),Bern(θπ(1)

1 ), . . . ,π(t−1),Bern(θπ(t−1)
t−1 )

)
.

The policy satisfies
t∑

i=[t−s+1]+

Bern(θπ(i)
i ) ≤ x0, ∀1 ≤ t ≤ T.

This constraint is different than in the perishable case where instead the constraint would have been
the following:

T∑
i=1

Bern(θπ(i)
i ) ≤ x0,
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where π(i) is the chosen arm, or price, set for the next time period. The former translates to having
at most x0 products being used at any time period. Whereas the latter means that you can only sell
x0 over the entire horizon.

When the seller uses an admissible policy π to price the single reusable resource, the perfor-
mance of the policy is measured in terms of the average revenue rate

Jπ(T ) :=
1
T
E[

T∑
t=1

pπ(t)Bern(θπ(t)
t )]. (3.1)

The seller is unaware of the true buying probabilities, θ’s, but the seller’s goal is to optimize
(3.1). Optimizing (3.1) is difficult so the seller will focus on minimizing the difference between the
average revenue given that the capacity is infinite, i.e. no capacity constraint, and the average rev-
enue with constraints. Let J∗(T ) be the optimal average revenue rate without capacity constraints.
Then the seller’s goal is to minimize regret, i.e.

Rπ(T ) := J∗(T )− Jπ(T ). (3.2)

3.3.1 The Benchmark

The traditional revenue management setting which analyzes perishable resources, the clairvoyant

model in Gallego and van Ryzin (1994) is available to use to compare any proposed policy which
characterize the optimal state-dependent pricing policy using dynamic programming. Given as-
sumption (ii), the clairvoyant policy is by assumption those instances where the optimal solution(s)
from the linear program model proposed by Gallego and van Ryzin (1994) have corresponding θ’s
strictly less than

x0

s
and no capacity constraint.

3.4 Main Result

A relevant instance of the reusable revenue management problem occurs when the set of feasible
prices is discrete and finite, say D = {p1, . . . , pK , p∞}, where p∞ = 1 is the price at which there
exists no demand, i.e. the buying probability is zero. We need this price so that if the system is at
capacity, then the seller will want to price the resource such that no demand arises since it will not
be able to meet the demand.
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3.4.1 Algorithm

Let A(t) be the number of arrivals at the beginning of time period t and D(t) be the number of
departures at the end of time period t with D(0) = 0. Let Tk(t) be the number of times price pk has
been posted up to time t. Let L(t) be the number of customers in the system at time t, then

L(t) =

t∑
i=[t−s+1]+

[A(i)−D(i−1)].

A seller who knows the true buying probabilities for each price, θk, a priori can upper bound
their steady-state time-average revenue by solving

max
K∑

k=1

θk pkqk

s.t.
K∑

k=1

θkqks ≤ x0,

K∑
k=1

qk ≤ 1,

qk ≥ 0,∀k ∈ [K],

(3.3)

where qk is the vector of probabilities conveying the distribution over arms for all time periods.
The first constraint is the stationary number of customers’ average rate in the system being at most
x0. The second constraint is the summation of the distribution vector.

The intuition behind (3.3) is that the seller is trying to maximize the revenue rate with respect
to the constraint that at most x0 customers per unit time can be in the system. The distribution
vector is what the seller will use to implement his/her policy, e.g. if q2 = 0.25, then the seller will
set the price at p2 = 25% of the time. If the total sum of the distribution vector is less than unity,
then the rest of the leftover probability mass goes towards p∞.

The above optimization problem, (3.3), assumes the seller knows the true buying probabili-
ties. But that is not the case and the seller will need to make decisions on which price to set as
he/she observes samples of the buying probabilities. Consider the following upper confidence op-
timization scaled problem at time t∈ [T (n)] (note that we got rid off the service time constant since
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it does not change the optimal solution):

max n
K∑

k=1

θ̄(n)
k (t)pkq(n)

k (t)

s.t.
K∑

k=1

θ̄(n)
k (t)q(n)

k (t)s ≤ x0,

K∑
k=1

qk(t) ≤ 1,

qk(t) ≥ 0,∀k ∈ [K],

(3.4)

where

θ̄k(t) = min

θ̂k(t) +

√
β ln(T )

Tk(t−1)
,1

 ,

and θ̂k(t) =

t−1∑
i=1

1Ai(i)

Tk(t−1)
, where Ai := {Customer purchased on the i-th pull}. For the scaled problem,

note that n customers will be arriving each period; equivalent to pulling n times each period and
observing the number of customers who purchased out of the multiple pulls. Therefore, for the
scaled system indexed by n:

θ̄(n)
k (t) = min

θ̂(n)
k (t) +

√
β ln(nT )

nTk(t−1)
,1

 ,
where

θ̂(n)
k (t) =

t−1∑
i=1

n∑
j=1

1Ai, j(i)

nTk(t−1)
,

Ai, j := {Customer purchased on the j-th pull of the i-th period}. The difference between (3.3 and
(3.4) is that the latter uses the UCB estimates of the buying probabilities, θ’s.

The intuition into using UCB estimates in the constraint is due to the buffer that is automati-
cally embedded in the capacity constraint. In other words, if the capacity constraint is expanded,
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we get the following:
K∑

k=1

θ̂(n)
k (t)q(n)

k (t) ≤
x0

s
−

K∑
k=1

√
β ln(nT )

nTk(t−1)
q(n)

k (t)

K∑
k=1

θ̂(n)
k (t)q(n)

k (t) ≤
x0

s
−

K∑
k=1

√
β ln(nT )

n
q(n)

k (t)

K∑
k=1

θ̂(n)
k (t)q(n)

k (t) ≤
x0

s
−

K∑
k=1

√
β ln(nT )

n
q(n)

k (t)

K∑
k=1

θ̂(n)
k (t)q(n)

k (t) ≤
x0

s

1−
√
β ln(nT )

n

 .
This means that at each step, the algorithm is using the current empirical mean estimates of the
buying probabilities to output a distribution vector such that the expected capacity rate is below the

x0/s threshold. The buffer decreases at the rate of O


√
β ln(n)

n

, which is a rate that many authors

have used in the network/non-network revenue management capacity constraint for perishable re-
sources.

Algorithm

• Pull a single arm once until all arms have been pulled and the system is empty, call this time
t∗. (Note that t∗ ≤ sK for any scaled problem, i.e. it does not change with scaled parameter
n)

• For t > t∗, seller posts price pk with probability q(n)
t,k . Post price p∞ = 1 if x0 are in use at the

end of the previous period.

3.4.2 Blocking Probability Analysis

In the base case and any scaled system, the blocking probability depends on the past s− 1 time
units, since if any customer decided to purchase the product at least s days ago from today, then
that same customer will not be in the system today. Only those customers who purchased s−1 days
ago until the day before affect the blocking probability of the purchasing customers today. In the
base case, only one customer arrives each period, and n customers arrive in the scaled system. With
probability which depends on the price, only a fraction actually end up purchasing. Therefore, the
blocking probability is:

P(Blocked(t)) = P

 t∑
i=[t−s+1]+

K∑
k=1

Bin(n, θk1{k}(i)) ≥ nx0

 . (3.5)
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Assume for now that the optimal distribution for (3.3) is q∗, i.e., at each period an arm is chosen
according to q∗. Then, if q∗ plays arms k, i.e. for which q∗ had strictly positive entries, where the
corresponding θk is less than or equal to

x0

s
, then (3.4.2) would go to zero as n→∞:

P
(
∩nT

t=1{No one gets blocked at time t}
)

= 1−P
(
∪nT

t=1{Some one gets blocked at time t}
)

≥ 1−
nT∑
t=1

P(Some one gets blocked at time t)

= 1−nTP({Some one gets blocked at time t)

= 1−nTP

 t∑
i=[t−s+1]+

K∑
k=1

Bin(n, θk1{k}(i)) ≥ nx0


= 1−nTP

 n∑
j=1

t∑
i=[t−s+1]+

Bern j(θk(i)1{k(i)}(i)) ≥ nx0


= 1−

nTP

 n∑
j=1

t∑
i=[t−s+1]+

Bern j(θk(i)1{k(i)}(i))−nsθk ≥ n(x0− sθk)


= 1−

nTP


n∑

j=1

t∑
i=[t−s+1]+

Bern j(θk(i)1{k(i)}(i))

ns
− θk ≥

x0

s
− θ∗


≥ 1−nTe−2nδ2

(δ =
x0

s
− θk)

(as n→∞)→ 1,

where the second equality is due to the fact that q∗ is applied throughout the time horizon and
the last inequality is due to Hoeffding’s inequality. This means that as n increases, the blocking
probability goes to zero exponentially fast. This is the reason why assumption (ii) was made. If
“bad” arms were being selected with some non-negative probability, then the seller will definitely
have customers being blocked in the long-run since if q∗ is strictly positive in entry k for which
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θk >
x0

s
, then ∀ t ≤ nT

P(Some one gets blocked at time t) = P

 n∑
j=1

t∑
i=[t−s+1]+

Bern j(θk(i)1{k(i)}(i)) ≥ nx0


≥ P

 n∑
j=1

t∑
i=[t−s+1]+

Bern j(θk) ≥ nx0

(q∗k)s

= P


ns∑
i=1

Berni(θk)

ns
− θk ≥

x0

s
− θk

 (q∗k)s

→ (q∗k)s. (Due to Hoeffding’s inequality)

If there are customers being blocked in the long-run, the revenue will not be amenable to compu-
tation because the blocking probabilities are not tractable. Therefore, from the above analysis, the
revenue the seller gets to keep by applying this policy is everything in the long-run. The issue is
that this is a constant policy and the seller does not know ahead of time, which price to set since the
seller is unaware of the true buying probabilities and needs to estimate these quantities by setting
different prices, i.e. exploring, but at the same time the seller cannot afford to spend much time
exploring and needs to exploit the current information he/she has acquired throughout the applica-
tion of the policy. The result, while surprising at first, made sense intuitively because of the fact
that the LP is a 2D-knapsack LP. The main result is the following:

Theorem 3.4.1. Let δ =
x0

s
− θ∗, ∆ = min

b∈S
{θ∗p∗ − θb pb}, β = max

{
1,

∆2

2δ2

}
,

n
ln(nT )

≥
4β
∆2 and H(n)

be given as (3.6). Then with probability at least

1−
K −1

(nT )2β −
1

(nT )2β−1 −nTe−2nδ2
,

we get

Regretn(T ) = O
(Ks

T

)
.

Theorem (3.5.1) coupled with the fact that the probability that any one gets blocked through-
out the time horizon decays to zero exponentially fast implies that the regret converges to zero
exponentially fast.
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3.5 Theoretical Analysis

Define the event H(n) by the following:

H(n) =

ω ∈Ω|θ̂n
b pb +

√
β ln(nT )

n
≤ θ∗p∗ ∀b ∈ S , θ∗ ≤ θ̂n

∗(t) +

√
β

ln(nT )
nT∗(t)

t∗ ≤ t ≤ nT

 , (3.6)

where S is the set of suboptimal arms and t∗ is defined by the algorithm. We have the following
result.

Theorem 3.5.1. Let n be the scaling factor and define H(n) as above. Then if

n
ln(nT )

≥
4β
∆2 ,

H(n) holds with probability at least

1−
K −1

(nT )2β −
1

(nT )2β−1 .

Proof.

P(H(n)) = 1−P(H̄(n))

= 1−P

⋃
b∈S

θ̂n
b pb +

√
β ln(nT )

n
> θ∗p∗

⋃ nT⋃
t=t∗

θ∗ > θ̂
n
∗(t) +

√
β ln(nT )
nT∗(t)


≥ 1−P

⋃
b∈S

θ̂n
b pb +

√
β ln(nT )

n
> θ∗p∗


−P

 Tn⋃
t=1

θ∗ > θ̂n
∗(t) +

√
β ln(nT )
nT∗(t)




≥ 1−
∑
b∈S

P
θ̂n

b pb +

√
β ln(nT )

n
> θ∗p∗

− Tn∑
t=1

P

θ∗ > θ̂n
∗(t) +

√
β ln(nT )
nT∗(t)


≥ 1−

∑
b∈S

P
θ̂n

b pb +

√
β ln(nT )

n
> θ∗p∗

︸ ︷︷ ︸
A

−
1

(nT )2β−1︸ ︷︷ ︸
B

.

Expression B follows from Hoeffding’s inequality. For expression A, take a suboptimal arm b ∈ S .
By assumption √

β ln(nT )
n

≤
∆

2
. (3.7)
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Then

P
θ̂n

b pb +

√
β ln(nT )

n
> θ∗p∗

 = P
θ̂n

b pb− θb pb > θ∗p∗− θb pb−

√
β ln(nT )

n


≤ P

θ̂n
b pb− θb pb > ∆−

√
β ln(nT )

n


≤ P

θ̂n
b pb− θb pb >

√
β ln(nT )

n


≤

1
(nT )2β .

(3.8)

The last inequality follows from Hoeffding’s inequality. Since |S | ≤ K −1, we have

A ≤
K −1

(nT )2β .

Therefore,
P(H(n)) ≥ 1−

K −1
(nT )2β −

1
(nT )2β−1 .

The above says that when n is large enough, the event H(n) are the instances where the UCB
estimate of the optimal arm are better than the UCB estimates for the suboptimal arms throughout.
This implies, via our algorithm and proved below, that the seller will choose the optimal solution
throughout the time horizon. Therefore, other than the initial phase where all prices are tried
once, the seller will choose the optimal solution with 100% certainty afterwards. The difference in
regret will be due because of this initial testing phase. Since the blocking probability goes to zero
exponentially fast, the revenue the seller would receive is essentially the same as the revenue had
he/she had no capacity constraints and accepted everyone.

The optimization problem (3.4) at time t outputs a distribution over the arms q(n)(t), i.e. with
probability q(n)

k (t) the seller sets the price at $pk. Each time period the seller sets price and observes
the number of customers who make purchases, updates the UCB estimates θ̄(n)(t) and optimizes
(3.4) again and repeats the same process until the end of the time horizon. Next we will show
that for n large enough, with high probability the seller always chooses the optimal solution after
the initial testing phase. Without loss of generality, we can assume exactly one arm is the optimal
once. This is since the regret can only improve by having more optimal arms.

Theorem 3.5.2. On H(n), the algorithm will always choose the optimal solution over the time

horizon, except for the initial testing phase period.

Proof. By assumption (ii), the optimal basis for (3.3) will include only the column corresponding
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to the optimal solution θ∗ and the slack variable. This implies that the optimal basis is of the form

B∗ =

θ∗p∗ 1
1 0

 . (3.9)

The inverse of B∗ is

B∗−1 =

0 1
1 −θ∗p∗

 .
No other basis is optimal since it would either contradict the assumption or contradict non-negativity
of the constraints. LP optimality is looking at the reduced costs of the non-basic variables. In this
case for our maximization problem, the reduced costs take the following form:

θb pb−
[
θ∗p∗ 0

]
B∗−1

θb

1

 ≤ 0

θb pb−
[
θ∗p∗ 0

] 0 1
1 −θ∗p∗

 θb

1

 ≤ 0

θb pb ≤ θ∗p∗.

(3.10)

From Theorem (3.5.1), H(n) occurs with high probability for a large enough n. H(n) implies
that after large enough n,

θ̄b pb ≤ θ̄∗p∗. (∗)

Therefore, for n large enough, (*) occurs with high probability. This means that the seller im-
plementing the algorithm, the seller will choose the optimal solution throughout the time horizon,
except for the initial testing phase. The regret will be attributed almost entirely to the initial testing
phase and any blocking that might occur, which happens with probability that approaches zero
exponentially.

Theorem (3.4.1) follows from the above.

Proof. Theorem (3.4.1)

Define a new event Φ(n) = {H(n) & ∩nT
t=1 {No one gets blocked at time t}}. If n satisfies the inequal-

ity above, then from Theorem (3.5.1) and the blocking probability analysis done in section (3.4.2),
the probability of event Φ(n) is at least

1−
K −1

(nT )2β −
1

(nT )2β−1 −nTe−2nδ2
.
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Theorem (3.5.2) implies that on Φ(n), the seller will choose the optimal price $p∗ after the initial
testing phase. The initial testing phase is at most sK time periods so the seller will miss out on at
most nθ∗p∗Ks of revenue. This implies that on Φ(n), the regret is

Regretn(T ) ≤ nθ∗p∗−
nθ∗p∗(nT −Ks)

nT

≤
Ks
T

= O(1).

(3.11)

If the algorithm chooses bad arms in the long-run with positive probability, then blocking
will occur and will never reach the long-run average revenue rate that one can achieve without
capacity constraints. In this case, we will not be able to compare the long-run average revenue rates
of the seller with capacity constraints and seller without capacity constraints since the blocking
probability is complex to handle. Due to assumption (ii), we can compare the long-run results
since the blocking probability for both will approach zero at an exponential rate.

3.6 Experimental Results

3.6.1 Blocking Probability Scenarios

Before examining the policy from Section 3.4.1, we will examine the system state as the time
horizon and initial inventory are scaled proportionally under the assumption that the optimal θ∗

is strictly less than x0/s and when it is violated. As mentioned before, if we did not include as-
sumption (ii), then in the long-run, customers will be blocked with some non-negative probability.
The figures below are two scenarios when the assumption is barely satisfied versus when it is not
satisfied for different scaling factors.
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Figure 3.1: Top Left: Scaling factor n=10. Top Right: Scaling Factor n=100. Bottom Left: Scaling Factor
n=1000. Bottom Right: Scaling Factor n=8000

The parameters of the artificial data are s = 5, x0 = 2, T = 50, true buying probabilities θ =

(0.6,0.25,0.4,0.2,0.39), and the prices for each corresponding θ, p = (0.3,0.7,0.2,0.4,0.5). The
optimal price corresponds to the buying probability θ∗ = .39, which satisfies assumption (ii). For
the top left figure, the scaling factor is n = 10, which means that the initial inventory for the scaled
problem is 20 (shown as the red line), and the same goes for the rest of the other figures. Averag-
ing over 100 simulations, the table below demonstrates the number of periods over the 400 time
periods, the number of periods where blocking would have occurred.

Total # of Blocks
n = 10 154
n = 100 102

n = 1000 25
n = 8000 0

Table 3.1: # of blocking occurrences out of the 400 time periods.

The next set of figures is the scenario where the assumption is violated, according to Section
3.4.2, there should be some non-negative blocking probability, however small. The parameters are
such the same as before but now we assume that the seller chooses θ∗ = 0.4, which is equal to the
ratio x0/s. The graphs show that blocking occurs even as n grows unboundedly.
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Total # of Blocks
n = 10 185
n = 100 186

n = 1000 206
n = 8000 200

Table 3.2: # of blocking occurrences out of the 400 time periods.

Figure 3.2: Top Left: Scaling factor n=10. Top Right: Scaling Factor n=100. Bottom Left: Scaling Factor
n=1000. Bottom Right: Scaling Factor n=8000

Table 3.2 below shows the number of time periods where blocking occurred. It can be clearly seen
that the number of blocking periods does not subside as the system scales compared to Table 1.

We also tested out the scenario when the fraction of time is spent on two prices, one where it
chooses θ1 = 0.25 90% of the time and θ2 = 0.6 is chosen 10% of the time. Though the time periods
where blocking occurs is small, the blocking probability does not subside even as the system scales
as Figure 3.2 shows. This implies that the seller will lose out on a portion of the revenue regardless
of how big the system gets.
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Figure 3.3: Left: Scaling factor n=200K. Right: Scaling Factor n=200K.

Figure 3.3 shows the same scaling but the right figure is run for a longer period of time to demon-
strate that blocking still occurs. All scenarios have an average capacity rate that is strictly less than
x0, which is enforced via the optimization. The differences is whether blocking subsides or not,
which depends on which buying probability the seller focuses on.

3.6.2 Algorithm Experiments

This section applies the algorithm on the same set of parameters as Section 3.6.1. In this case the
assumptions are satisfied and the seller initially experiments with each price and and then applies
prices according to the probability distribution q(n)∗(t) provided by the output of the optimization
problem (3.4), using the UCB estimates, θ̄(n)(t), of the buying probabilities. Figure 3.4 shows
the number of customers in the system when n is small. Blocking events are evident. The seller
can either decide to fulfill the demand until it runs out, and some customers will not get service.
Another option is to choose the highest price when seller’s capacity is less than or equal to n. In
that case, all purchasing customers will get service. We chose the former. But as Figure 3.5 shows,
as the system scales largely, the blocking events are rare.
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Figure 3.4: Top Left: Scaling factor n=1. Top Right: Scaling Factor n=100. Bottom Left: Scaling Factor
n=200. Bottom Right: Scaling Factor n=500

Figure 3.5: Top Left: Scaling factor n=1K. Top Right: Scaling Factor n=5K. Bottom Left: Scaling Factor
n=8K. Bottom Right: Scaling Factor n=12K

The n that satisfies Theorem 3.4.1 is rather large and the simulation for just one run would
have taken a really long time. From Figures 3.4 and 3.5 above and Table 3.3 below empirically
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Fraction of Time Periods
n = 1 4%

n = 100 17%
n = 200 15%
n = 500 9%
n = 1000 5%
n = 5000 0.06%
n = 8000 0%

n = 12000 0%

Table 3.3: Percentage of blocking occurrences out of the 400 time periods.

Rπ/R∗
n = 1 24%

n = 100 95.5%
n = 200 98.5%
n = 500 99.0%

n = 1000 99.5%
n = 5000 99.8%
n = 8000 100.0%

n = 12000 100.0%

Table 3.4: Ratio of seller’s policy to the clairvoyant policy.

shows that the high probability event seems to happen way sooner. For n ≤ 500, we averaged over
15 simulations and was chosen arbitrarily. But for larger n, the result is due to a single run, but
blocking does not occur over the time horizon. Recall that as n increases, so does the time horizon.

The ratio of the best policy, R∗, to the seller’s policy, Rπ, is provided in Table 3.4. Recall that
our results hold for large n given as in Theorem 3.4.1. It does not take a big system to reach a good
performance.
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CHAPTER 4

Reinforcement Learning in Network Revenue
Management with Reusable Resources

4.1 Introduction

We consider the pricing problem that a firm that sells reusable resources faces when the objective
is to maximize revenue through careful allocation of resources. Dynamic pricing is a fundamental
problem faced by many firms, whether selling reusable and non-reusable resources. They have
to adjust product prices accordingly to the right customer at the right time Lin (2006) based on
their inventory, demand, competition, in an attempt to maximize their revenue without incurring
many unhappy customers, as that is a cost in itself which is very hard to properly define and
measure. The common characteristics of the industries that sell reusable resources are that the
initial inventory are known and fixed at the beginning of the time horizon and no re-ordering of
resources is allowed. This chapter is concerned with tackling the dynamic pricing problem using
reinforcement learning to price the resources dynamically to maximize revenue over a finite time
horizon in the face of uncertainties such as the demand arrival process, service time, and advance
reservation times. Service time and advance reservation times are unknown to the seller until a
customer makes a “purchase”, at which point the customer reveals the future point in time when
he/she would like to commence service and for how long the resource will be used for.

Industries that apply dynamic pricing strategies are manufactured goods Tsaia and Hung
(2009), such as perishable food items and electronics. But our work focuses on the other end
of the spectrum of industries that sell reusable resources. These industries includes the lodging
industry, car rental, cloud computing and temporary work staffing, e.g., Levi and Radovanovic
(2010), Lei and Jasin (2016b), Chen et al. (2017), Chen and Shi (2016), Bernal and Shi (2019).

The literature on network revenue management with reusable resources is dwarfed by the
literature in the perishable case, with many variations of the problem. The results in the revenue
management with reusable resources literature are asymptotic results, where policy performance
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becomes optimal in the limit as quantities such as initial resource capacity and demand are scaled
largely (see Levi and Radovanovic (2010), Lei and Jasin (2016b), Chen et al. (2017), Chen and Shi
(2016), Bernal and Shi (2019)), and even for non-reusable/perishable cases (see Gallego and van
Ryzin (1994, 1997), Besbes and Maglaras (2009), Besbes and Zeevi (2011)). In practice, initial
capacity of reusable resources can range from a few hundreds to a few tens of thousands. From
the American Hotel & Lodging Association, there are about 54,200+ hotels servicing about five
million rooms. That equates to a little less than 100 rooms per hotel. For well-known hotels,
with hotels around the US, an overestimate can range to a total of a few hundred thousand. It
is still possible to use the pricing heuristics from the literature, but the scale at which the firm is
operating might not be large enough to produce satisfactory results. Academic papers in revenue
management assume a functional relationship between the price and arrival rate is known to the
decision-maker Chen and Shi (2019) which makes the problem tractable and conveys great insight,
but would prove ineffective in practice due to these strong assumptions. Another issue when im-
posing a structural form on the demand function is that it leads to model misspecification, which
can provide provide suboptimal results Wang (2019).

The main objective of this chapter is to propose a model-free approach to the dynamic pricing
problem, where the transition probabilities between states, in other words, demand behavior, are
not specified, thus the model-free approach. The reinforcement learning control problem is a
method to solve problems of optimal strategies under stochastic environments, and this can be
done in a model-free way but also a model-based as well using a “model”, where the “model”
transition probabilities are estimated and taken to be the true model and updated. The contribution
of this chapter is to propose a computational method to determine a good dynamic pricing policy
to the network revenue management with reusable resources when information is incomplete and
demand is stationary. In this article we use deep deterministic policy gradients (DDPG) originally
proposed by de Bruin et al. (2015).

The chapter is organized as follows. Section 2 presents a literature review. Section 3 de-
scribes the model formulation and describes how reinforcement learning can solve the dynamic
pricing problem. Section 4 presents numerical results of DDPG applied to the pricing problem
and compare to the fluid model, which is the used model when the scale of the problem is large
enough, i.e. large demand, large capacity, that the randomness of the environment does not really
affect how a decision-maker should price. Essentially, the fluid regime, is the regime where the
stochasticity is washed away and we basically have a deterministic problem.
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4.2 Model Formulation

4.2.1 Markov Decision Process

In this chapter, we model the dynamic pricing problem of a reusable resource as a finite horizon,
discrete state Markov decision process (MDP). We aim to use reinforcement learning to approxi-
mate the optimal pricing strategy that maximizes the revenue given a fixed time period and initial
capacity.

We consider the time horizon to be one year, analogous to firms fiscal year reporting on their
annual performance. Prices are allowed to change daily. They depend on the current inventory and
time left until the end of the horizon. Our setup is as follows. There are m products that the firm
sells and each product is made up of n resources. There is a bill-of-materials matrix A where Ai, j is
the number of resources i required to make product j. We assume that A has all integer entries. The
firm additionally have an initial capacity of ci for each resource i. We assume that the arrival, or
demand, process is a Poisson process with rates λ1, . . . ,λm. The prices for each product belong in
an m-dimensional box, i.e. p ∈ P = [a1,b1]× . . .× [am,bm], where if any of the products are priced
at the upper limit, then there is no demand. The relevant elements of the MDP are:

• State space S = {s ∈ Zn
+|s = c− Ax, x ∈ Zm

+ } represents the remaining capacity at the end of
the day.

• T = {1,2, . . . ,365} represents the set of time steps at which pricing decision will be applied.
The time horizon is 365 days, representing one year, or what is called an episode in the
reinforcement learning vernacular.

• a(st) ∈ P denotes the set of available actions at the beginning of time period t.

• Transition probabilities Pt(st+1|st,at) which denotes the probability of going to state st+1 at
time period t + 1 given that action at was taken in state st in time period t.

• Revenue function r(st,at, st+1).

The optimal pricing policy can be computed via the the Bellman optimality equations

V(st) = max
a(st)∈P

Est+1∼T (st,at)[r(st,a(st), st+1) + V(st+1)]. (4.1)

The issue is getting a hold on the transition probabilities since many arrivals can occur between
decision periods. Even if the transition probabilities were available, the state space can explode
when either more resources are considered and/or initial resource capacity is large. This is where
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model-free reinforcement learning comes in to bypass the need for these transition probabilities.
In other words, and a popular form in the reinforcement learning literature, we want to maximize
the total expected revenue collected throughout the episode, i.e., we want to find a policy π that
maximizes

Vπ(s0) = Eπ[γ0r(s0,a0) +γ(s1,a1) + . . .+γ365r(s365,a365)|s0], (4.2)

where γ is the discount factor, usually 0.99, s0 is the initial number of resources for each product.
The policy π is a function that maps an element of the product space S ×T to an element in the
action space P., i.e. π : S ×T → P.

4.2.2 Background on Reinforcement Learning

In reinforcement learning, the goal is to learn a policy to control a system with states s ∈ S and
actions a ∈ P in an stochastic environment, so as to maximize the expected sum of returns according
to the reward function r(s,a). The dynamical system is defined by an initial state distribution p(s1)
and transition distribution P(st+1|st,at). At each time step t ∈ [1, |T |], the agent chooses an action at

according to its current policy π(at|st), and observes a reward r(st,at). The agent then experiences
transitions to a new state sampled from the transition distribution, and we can express the resulting

state visitation frequency of the policy π as ρπ(st). Let Rt =

|T |∑
i=t

γi−tr(st,at). The goal is to maximize

the expected sum of returns. We use a finite horizon for all of the tasks in our experiments. The
expected return R1 can be optimized using a variety of model-free and model-based algorithms. In
this section, we review the model-free framework used in our work.

4.2.3 Model-Free Reinforcement Learning

When the system transition dynamics P(st+1|st,at) are not known, as is often the case with physical
systems such as robots, policy gradient methods Peters and Schaal (2006) and value function, or
Q-function, learning with function approximation Sutton et al. (1999) are often preferred. Policy
gradient methods provide a simple, direct approach to RL, which can succeed on high-dimensional
problems, but potentially requires a large number of samples. Off-policy algorithms that use value
or Q-function approximation can in principle achieve better data efficiency Lillicrap et al. (2016).
Although, Q-learning is usually adapted in the finite state and action space, there are extensions of
the Q-learning algorithm for continuous action space, our work implements actor-critic learning
known DDPG. For continuous action problems, Q-learning becomes difficult, because it requires
maximizing a complex, nonlinear function at each update. For this reason, continuous domains are
often tackled using actor-critic methods, e.g., Lillicrap et al. (2016), Silver et al. (2014), Hafner
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and Riedmiller (2011). Actor-critic learning has a major advantage over current implementations
of Q-learning; the ability to respond to smoothly varying states with smoothly varying actions.
Actor-critic systems can form a continuous mapping from state to action and update this policy
based on the local reward signal from the critic. However, adapting such methods to continuous
tasks typically requires optimizing two function approximators on different objectives as compared
to one objective for Q-learning.

4.2.4 DDPG for Dynamic Pricing in Network Revenue Management with
Reusable Resources

Model-free reinforcement learning has been successfully applied in robotics Peters and Schaal
(2006), machine scheduling Ye et al. (2018), playing Atari games Mnih et al. (2013), cybernetics,
psychology, and computer science disciplines Sutton and Barto (1998). There has been a surge
of interest in model-free reinforcement learning after it was successfully applied to learn to play
many old Atari video games Mnih et al. (2013), using one generic structure with deep neural net-
works and Q-learning. Model-based reinforcement learning solves for the optimal policy using
past experience. An advantage in using reinforcement learning is that it can adapt to a chang-
ing environment through experience. Here we propose optimizing over the policy space directly
instead of optimizing over the action-value space as it has been shown in practice to have better
convergence properties at the expense of taking longer to train. We used DDPG instead of any other
policy gradient algorithms because they are stochastic, in other words, the output is a stochastic
policy. A stochastic policy does not make sense in practice as it will produce different prices for
the same state since we are sampling a distribution.

During the learning process, the agent is exposed to the environment gaining experience and
collecting rewards. Since we will be optimizing over the policy space, we need a performance
objective with respect to the actions, which itself will be parameterized by a neural network. The
performance we define is

J(µθ) = E[R0|µ] = E[γ0r(s0,a0) +γ(s1,a1) + . . .+γ365r(s365,a365)|µ]. (4.3)

The above does not work because the target policy we are trying to learn is changing every time
we update the parameters θ. The beauty of DDPG is that we can learn a good pricing policy
when the agent follows a different policy, called the behavior policy, which it uses to navigate
the environment. This is known as off-policy method. By updating the performance objective to
average over the behavior policy, denoted as β from here on out, instead of the target policy we are

61



trying to learn, we get

Jβ(µθ) = Es∼β[R0|µ] = Es∼β[Qµ(s,µθ(s))]. (4.4)

Silver et al. (2014) proved that the gradient of (4.4) exists and approximately equals

∇θJβ(µθ) = Es∼β[∇θµθ(s)∇aQµ(s,a)|a=µθ(s)]. (4.5)

This means we can use experience through simulation to approximate the expected policy gradient
using the behavior policy. The behavior policy is where stochasticity is injected to induce action
exploration in the environment while approximating our target pricing policy. Now that we have
the policy gradient, the algorithm is the following, taken from Lillicrap et al. (2016):

Algorithm 4.1 DDPG Algorithm

1: Randomly initialize critic network Q(s,a|θQ) and actor µ(s|θµ) with weights θQ and θµ.
2: Initialize target network Q′ and µ′ with weights θQ′ ← θQ and θµ

′

← θµ.
3: Initialize replay buffer R
4: for episode = 1 : M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1 : T do
8: Select action at = µ(st|θ

µ) +Nt according to current policy and exploration noise
9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st,at,rt, st+1) in R
11: Sample a random minibatch of N transitions (si,ai,ri, si+1) from R
12: Set yi = ri +γQ′(si+1,µ

′(si+1|θ
µ′)|θQ′)

13: Update critic by minimizing the loss L =
1
N

∑
i

(yi−Q(si,ai|θ
Q))2

14: Update the actor policy using the sampled policy gradient:

∇θµ J ≈
1
N

∑
i

∇aQ(si,ai|θ
Q)|s=si,a=µ(si)∇θµµ(s|θµ)|si

15: Update the target networks:

θQ′ ← τθQ + (1−τ)θQ′

θµ
′

← τθµ(1−τ)θµ
′

16: end for
17: end for
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4.3 Experimental Results

4.3.1 Data

The data structure defined in Section 4.2.1 is, to our knowledge, nonexistent. Therefore, we created
a simulator that takes the following as inputs to get initialized to simulate:

• Number of resources, m, and number of products, n

• Initial resource capacity, c∈ Rm

• Max demand rate, λ ∈ Rn

• Min and max price intervals for all products, i.e. [pi
min, p

i
max] for all products i

• Bill-of-materials integer matrix A ∈ Rm×n, where Ai j denotes the number of resources i re-
quired to make one j product.

• Service time distribution for each product

• Advance reservation distribution for each product

When the simulator is initialized, it acts as a function. It will take as input an action, in this
case, feasible prices for each of the products, then it will simulate the arrivals, departures, advance
reservation, service. The specific quantities for the above parameters are the following:

• m=4, n=3, with bill-of-materials matrix A =


1 1 1
3 2 3
1 3 1
3 1 1


• Initial resource capacity c = (12,36,30,20)

• Minimum and maximum product prices pmin = (1,2,1) and pmax = (4,7,5), respectively.

• Max demand rate for each product: λ∗ = (4,8,4) customers per day

• Service time distribution with support {1, . . . ,5} with distribution (.3, .25, .35, .05, .05)

• Advance reservation distribution with support {0,1 . . . ,10} with distribution
(.25, .20, .2, .1, .08, .06, .05, .03, .01, .01, .01)
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Note that Aλ∗ = (16,40,32,24)T , which is greater than the initial resource capacity. Additionally,
the maximum demand rate occurs when the prices are at its lowest. The demand rate varies with
pricing, implying that the Poisson process mean demand rate will vary with pricing. In particular,
the demand rate for each product varies inversely proportional to the exponential function, i.e.
λi ∝ kie−pi . The constant parameters were set such that at the minimum price, the mean demand
rate is λ∗i , and at the maximum price, the mean demand rate is zero.

From Algorithm 4.1, both the critic network and actor network will be deep neural networks
with the following parameters:

Critic Network

• 2 hidden layers with 300 hidden nodes each.

• ReLu activation function and no activation at the final layer

• Learning rate = 1E-3

Actor Network

• 2 hidden layers with 250 hidden nodes each.

• ReLu activation function

• Sigmoid final layer activation

• Learning rate = 1E-4

These parameters were arrived at using grid search on H × A where H= {150,250,300} are the
number of hidden nodes and A = {ReLu,S igmoid} are the activation functions. The learning rates
used are standard learning rates for the critic and actor networks. No batch normalization was used
for the actor network since the states (i.e. remaining capacity) are on the same scale. One note
of importance is due to the training phase. Unlike supervised learning where training is stopped
when the validation error is small and either stops decreasing further or starts to increase. In our
case, DDPG has two deep neural networks, one for the actor policy and one for the action-value
function, Q. The actor policy network has no stopping criteria and the critic network does minimize
a loss function, but the stopping criteria we used was when the number of blocks stabilized in the
validation data. We stopped as soon as number of blocks stabilized over five episodes. Figure 4.1
shows the number of blocks during the training phase. It took approximately 24 hours for training
over 40 episodes. From Figure 4.2, the reward reaches a steady state early on, and had we stopped
early, our validation data would have incurred blocking. But training kept on until the number of
blocks stabilized over 5 episodes, leading to virtually no blocking in the validation set.
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Figure 4.1: Tensorboard’s record of total number of blocks in the training phase.

Figure 4.2: Tensorboard’s record of number of total reward in the training phase.
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Figure 4.3: Performance of fluid pricing policy.

4.3.2 Simulation Results

We compare the results to the fluid model, where it looks to naively optimize the revenue rate
subject to using less than the available initial capacity in expectation. Since the constraints are
in expectation, we expect that there will be a large amount of blocking. Figure 4.3 confirms that
indeed there will be a significant, and unacceptable, amount of blocking. When running the DDPG
algorithm, we penalize the agent by 5max

i
{pi} where i ranges over the products. If from one state

to the other, i.e., from one day to the next, profit generated from purchasing customers outweighed
aggregate penalties, then the reward is 1. Otherwise, if the aggregate penalties outweighed gener-
ated profit, the reward to the agent is -1. Given this reward structure, the DDPG pricing policy is
shown in Figure 4.4. On average, rounding to the nearest integer, the DDPG pricing policy rarely
generated any blocking events per episode, i.e. annually. Analyzing the pricing policy further, it
is seen that the prices are not static, i.e. fixed, but it is not erratic as well. The policy’s pricing
varied to only a few prices. The pricing policy seemed to be pricing in such a way as to always
have sufficient resources at hand for the next period. But one can see from Figure 4.3 to 4.4, the
average number of calls into the system decreased drastically, from 2744 calls to 472 calls.

Intuitively, it makes sense that if we penalize the agent less, then there would be an increase
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Figure 4.4: Performance of DDPG pricing policy with penalization 5max
i
{pi}.

Figure 4.5: Performance of DDPG pricing policy with penalization max
i
{pi}.
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in calls, and subsequently an increase in blocks and total reward. To confirm this hypothesis, we
penalized the agent by max

i
{pi} for every blocking occurrence. The DDPG algorithm outputted

results that confirmed our intuition. Figure 4.5 confirms this. The DDPG algorithm, if configured
well, finds a good but suboptimal policy. We uniformly sampled the pricing feasible set P, and
took that as a fixed pricing policy to test out the statistics of these policies to compare to the DDPG
policy. The results are recorded in Table 4.1. We only took those samples that generated positive
rewards and for each we averaged over 100 episodes. One observation is that there are there are
fixed pricing policies that perform better in terms of rewards and blocks, but the total number of
generated calls is small. This would be an issue if the seller wants traffic.

Price($) Reward # of Blocks # of Calls
[3.26, 2.98, 4.58] 2414 10 835
[3.74, 3.73, 2.16] 1997 0 670
[2.31, 4.38, 1.32] 2081 49 1287
[2.46, 2.75, 1.77] 1644 341 2009
[2.91, 4.24, 2.78] 1679 0 494
[2.82, 4.54, 2.49] 1458 0 456
[1.96, 4.54, 1.75] 2303 27 1108

Table 4.1: Performance of uniformly generated static policies to compare to DDPG.

The pricing strategy varied drastically in their determinism. In other words, the pricing strat-
egy derived from the base model is almost like a fixed policy since the price does not deviate within
five cents for one product, and in particular, does not deviate more than two cents for two prod-
ucts. This is seen in Figure 4.6. Two price trajectories, i.e. samples, are shown for the base model
where the agent is penalized 5max

i
{pi} when blocking incurs more costs than it brought in revenue.

When the agent is penalized less for blocking events, the pricing policy essentially alternates be-
tween two distinct upper and lower bounds for two products and the last product is essentially at
its upper limit. This is shown in Figure 4.7. One price trajectory was plotted; more trajectories
would make the outputted graphs very unclear. This pricing policy generated significant revenue
above the base model with more traffic and a very slight increase in blocking events.

4.4 Conclusion and Future Research

This chapter was concerned with using model-free reinforcement learning to solve the dynamic
pricing policy of a firm who has a fixed finite number of reusable resources with which he/she uses
to make products. We have shown through simulation results that DDPG converge to a suboptimal
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Figure 4.6: Two price trajectories for all 3 products for base model.

$2.00

$4.00

$7.00

$7.00

0 50 100 150 200 250 300 350
$1.00

$1.50

$2.00

Pricing Samples for All Products

Figure 4.7: Two price trajectories for all 3 products when penalization is max
i
{pi}.

69



but good pricing policy. DDPG, and model-free reinforcement learning in general, offer many ad-
vantages. One being that a model does not need to be specified; in the case of MDP, this translates
to not needing the transition probabilities. The second one being that it learns the pricing policy
through experience, in other words, interacting with customers, optimizing each time a transition
occurs instead of waiting to the end of the episode to update parameters.

A possible future direction could look into incorporating price ladders since companies do
not price products at any price that is deemed optimal. Indeed, looking at either perishable or non-
perishable/reusable products, prices of big ticket items are in the form of either whole numbers,
this is seen when searching for hotels or car rentals, and for other small ticket items the prices are
usually in the form $xx.99. Another future direction of research is the impact of the learning agents
using many engineered features as inputs instead just simply the available stock at any given point
time. Features such as competitor’s resource price, economic states such as interest rates, and even
more granular data. This is possible since data collection technologies are becoming more so-
phisticated in their data gathering process that enable them to capture more pin-pointed data about
consumers. Taking advantage of these technologies will enable to engineer more sophisticated
features to feed into the machine learning algorithms. It would be interesting to find the impact of
the pricing algorithms taking more information into account.
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CHAPTER 5

Concluding Remarks

In the previous chapters we proposed a few tools for the problem of pricing reusable resources
to maximize revenue in the face of uncertainty, both theoretical and practical. In this chapter, we
summarize our results and propose interesting directions for future work.

5.1 Summary

In Chapter 2 we looked at the setting where the monopolist firm has at its disposal the monotone
demand function as a function of price and the uncertainties of the environment are due to the
unknown advance reservation and service time distributions. We develop a static pricing policy
derived from a convex optimization problem. This policy was shown to generate the optimal
revenue rate in the limit as the mean demand rate and initial capacity are scaled without bound. The
policy was proven to converge at a rate arbitrarily close to o(1/

√
n). Simulation studies showed the

robustness of the derived policy thru subjecting it to different correlation strength and correlation
direction between the service time and advance reservation distributions and with different means.
The policy was also shown to display the 1/

√
n convergence behavior to the optimal revenue rate.

Lastly, even though theoretically we cannot state anything rigorously about the performance of our
policy for fixed regimes, our simulation results seem to indicate that the policy started to perform
really well really quickly, i.e. it reached performance of at least 80% from optimal revenue for
small values of n.

Motivated to develop a dynamic pricing policy instead of a static policy, we incorporated
UCB bounds from the MAB literature to guide the development of the pricing policy. The setting
is simpler, without advance reservation and a single deterministic service time. We developed a
dynamic pricing policy from a linear program that uses the updated UCB demand estimates. These
results reaffirm what many previous authors have concluded, which is: In the fluid regime when
the system scale is large, a simple heuristic policy becomes optimal. In this particular problem,
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with high probability, the seller always selects the best price option as a seller who has no capacity
constraints would price, and the regret is due only to the initial testing phase where the seller
experiments with all arms. This gives rise to O(1) regret with high probability for a large enough
n, that we compute.

Lastly, Chapter 3 we used model-free reinforcement learning to tackle the problem of pricing
of reusable resources. Model-free reinforcement learning was necessitated since the transition
probabilities are difficult to get traction of and this approach afforded us the ability to bypass the
need of specifying a model and learning exclusively through data, in our case, simulated data.
We showed that the reinforcement learning algorithm achieved good performance compared to
the fluid model pricing policy, all without specifying any model. Another convenience that the
reinforcement learning approach afford us is that one can tweak the reward function, or how the
agent is rewarded and/or penalized. By changing the extent of the rewards and penalties we were
able to derive a better pricing policy that not only generated more revenue, but also increase traffic
without significantly increasing blocking. One observation about the pricing policy was that it was
not erratic and exhibited some constant behavior with price changes occurring casually. This is
something preferred by companies. But it also seemed learned to anticipate how much to keep in
reserve for incoming expected arrivals.

5.2 Future Research Directions

The work in this thesis adds to the small growing literature in revenue management with reusable
resources. Our work still leaves open many interesting avenues for further research in revenue
management systems with reusable resources. One avenue that can be explored in the future is
learning while optimizing in the realm of reusable resources. There has been recent work but
in the domain of perishable resources. Another possible direction of research is relaxing the as-
sumption of the demand process stationarity. In practice, we observe seasonality and trends and
these factors would definitely seem to impact how to price resources accordingly based on the
companies’ objectives.

Another, but different, stream of research that can be explored is the notion of fairness. There
has been displeasure of customers of being charged a higher price for the same product(s). The
issue at hand is that of price discrimination. It would be interesting to determine the performance of
pricing policies that exhibit some pre-defined measure of fairness in relation to policies that don’t
exhibit fairness. Finally, on the theoretical front, it would be interesting to explore the performance
of these policies when viewed through a different measure, in particular, measuring performance
using competitive ratio. Competitive ratio is often used to bound the performance gap between the
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proposed policy and the optimal policy under all possible demand realizations.

With the advent of new, fast, and robust artificial intelligent systems, another interesting re-
search direction is how to incorporate contextual information, or learn the important features that
affects the companies’ bottom-line to make better improved pricing decisions. Our work using
model-free reinforcement learning only used the remaining inventory as stateful information. It
would be interesting to determine the gain in performance by taking into account much more con-
text than what was considered in this work.
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Örmeci EL, Burnetas A, Wal Jvd (2001) Admission policies for a two class loss system. Stoch. Models
17(4):513–540.

Owens Z (2018) Revenue Management and Learning in Systems with Reusable Resources. Ph.D. thesis,
Massachusetts Institute of Technology.
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Appendix A

Technical Proofs for Chapter 2

A.1 Proof of Lemma 2.2.1

Proof. Consider the original unperturbed fluid model (2.2) and the perturbed problem (2.3).

JD = max λ>p(λ)
s.t. Aλ ≤ c,

λ ∈ Λ.

(A.1)

The only difference between (2.2) and (2.3) is the RHS of the constraint. Suppose the optimal
solution to (2.2) is {λ̂i} and consider the point {λ̃i} = {(1− ε)λ̂i}. Since the constraint is linear and
by assumption 2.2(d) the function r(λ) = λp(λ) has an interior maximizer, {λ̃i} is a feasible solution
to (2.3) for a small enough ε. Then we have

λ∗>p(λ∗) ≥ λ̃>p(λ̃) = (1− ε)λ̂>p((1− ε)λ̂). (A.2)

Assumption 1(e) implies
p((1− ε)λ̂) ≥ p(λ̂).

Therefore, (A.2) implies

JD
ε = λ∗>p(λ∗) ≥ (1− ε)λ̂>p(λ̂) ≥ (1− ε)J∗.

The last inequality holds since the optimal objective value of (A.1) provides an upper bound on the
optimal expected revenue rate since the capacity constraint is enforced on expectation rather than
holding on every sample path.

A.2 Proof of Lemma 2.2.6
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Proof.
ΛZ(t) = ρ(1−P(S ≤ t,L ≤ t−S ))

= ρ

1−
t∫

s=0

FL|S =s(t− s) fS (s)


≥ ρ

1−
t∫

s=0

FL|S =s(t− s) fS (s)−

∞∫
s=t

FL|S =s(t) fS (s)


≥ ρ

1−
t∫

s=0

FL|S =s(t) fS (s)−

∞∫
s=t

FL|S =s(t) fS (s)


= ρ

1−
∞∫

s=0

FL|S =s(t) fS (s)


= ρ


∞∫

s=0

fS (s)−

∞∫
s=0

FL|S =s(t) fS (s)


= ρ


∞∫

s=0

F̄L|S =s(t) fS (s)


= ρ

∞∫
s=0

P(L ≥ t|S = s) fS (s)

= ρF̄L(t)
= ΛY(t).

A.3 Proof of Lemma 2.2.7

Proof. We break up the time interval to analyze two cases.

Case t ≤ α: We have to take the derivative of the mean arrival function. Since the departure process,
Z(t), is a NHPP, the mean at t is

E(Z(t)) = ρ

∞∫
u=α−t

P(u−α ≤ L ≤ u + t−α, S ≤ u + t−L)

+

∞∫
u=α

P(L ≤ u−α, u−L ≤ S ≤ u + t−L),
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where the first term are the customers who start service between [−α,−(α− t)] and end service in
the interval [0, t] and the second term are the customers who start service between (−∞,−α] and
end service in the interval [0, t]. Note that we cannot take into account the customers who start
service between [−(α− t),0] since the service time is at least α, i.e., they will not end service in
[0, t].

Therefore, taking the derivative of E(Z(t)) will provide the rate function of Z(t).

ΛZ(t) =
d
dt
E(Z(t))

= ρ
d
dt


∞∫

u=α

P(L ≤ u−α, u−L ≤ S ≤ u + t−L)

+

∞∫
u=α−t

P(u−α ≤ L ≤ u + t−α, S ≤ u + t−L)


= ρ

d
dt


∞∫

u=α

u−α∫
d=0

P(u−d ≤ S ≤ u + t−d|L = d) fL(d)

+

∞∫
u=α−t

u+t−α∫
d=u−α

P(S ≤ u + t−d|L = d) fL(d)


= ρ

d
dt


∞∫

u=α

u−α∫
d=0

(
FS |L=d(u + t−d)−FS |L=d(u−d)

)
fL(d)

+

∞∫
u=α−t

u+t−α∫
d=u−α

FS |L=d(u + t−d) fL(d)


= ρ


∞∫

u=α

u−α∫
d=0

d
dt

(FS |L=d(u + t−d)−FS |L=d(u−d)) fL(d)

+

∞∫
u=α−t

u+t−α∫
d=u−α

d
dt

FS |L=d(u + t−d) fL(d)


= ρ


∞∫

u=α

u−α∫
d=0

fS |L=d(u + t−d) fL(d) +

∞∫
u=α−t

u+t−α∫
d=u−α

fS |L=d(u + t−d) fL(d)


= ρ


∞∫

u=α

u−α∫
d=0

fS ,L(u + t−d,d) +

∞∫
u=α−t

u+t−α∫
d=u−α

fS ,L(u + t−d,d)

 .
Now, let x = u− d and y = d. Then, the set α ≤ u ≤ ∞, 0 ≤ d ≤ u−α in the (u,d)-plane maps to
α≤ x≤∞, 0≤ y≤∞ in the (x,y)-plane. The set α− t ≤ u≤∞, u−α≤ d ≤ u+ t−α in the (u,d)-plane
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maps to α− t ≤ x ≤ α, 0 ≤ y ≤∞ in the (x,y)-plane. Therefore,

ΛZ(t) = ρ


∞∫

x=α

∞∫
y=0

fS ,L(x + t,y) +

α∫
x=α−t

∞∫
y=0

fS ,L(x + t,y)

 , (Change of variables)

= ρ (P(S ≥ α+ t) +P(S ≤ α+ t))
= ρ

Case t > α:

ΛZ(t) =
d
dt
E(Z(t))

= ρ
d
dt


∞∫

u=0

P(L ≤ u−α, u−L ≤ S ≤ u + t−L) +

∞∫
u=0

P(u ≤ L ≤ u + t−α, S ≤ u + t−L)

,
where the first term are the customers who start service in the interval [−∞,0] and the second term
are the customers who start service in the interval [0, t−α]. Therefore, using Leibniz integral rule
and change of variables as above, then

ΛZ(t) = ρ(1−P(S ≤ t,L ≤ t−S )).

But observe that S = S old +α, S old is the previous service time random variable with support R+.
Therefore,

ΛZ(t) = ρ(1−P(S old ≤ t−α,L ≤ t−α−S old)).

In other words, we get an α-shifted version of the rate function where the support is the non-
negative real line. The change in differentiation is justified by Lemma 2.2.5.

Observe that by Lemma 2.2.7, the new ΛZ(t) is a shifted version of ΛZold (t), where ΛZold (t) is
derived using the service distribution S old with support R+. Then by Lemma 2.2.6, ΛZ(t) > ΛY(t)
for all t > 0. Finally, observe that the event {S ≤ t,L ≤ t−S }C = {L ≥ t,S <∞}∪{L ≤ t,S ≥ t−L},
where AC is the complement of the event A. The event {S ≤ t,L ≤ t−S }C can also be written as,
but will not use here, {S ≥ t,L <∞}∪{S ≤ t,L ≥ t−S } Therefore,

ΛZ(t) = ρ(1−P(S ≤ t,L ≤ t−S ))

= ρP({S ≤ t,L ≤ t−S }C)
= ρP(L ≥ t,S <∞) +ρP(L ≤ t,S ≥ t−L)
= ρF̄L(t) +ρP(L ≤ t,S ≥ t−L).

This is yet another way of showing that the departure rate ΛZ(t) is at least as great as the pre-arrival
rate, ΛY(t). Additionally, this shows that ΛZ(t) will be at least as big as ΛY(t) even if the the support
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of the advance reservation is [ψ,∞] for any ψ > 0. Integrating ΛZ(t) over [0,∞)] provides

∞∫
t=0

ΛZ(t) =

∞∫
t=0

ρF̄L(t) +

∞∫
t=0

ρP(L ≤ t,S ≥ t−L)

= ρE(L) +ρ

∞∫
t=0

t∫
d=0

P(S ≥ t−L|L = d) fL(d)

= ρE(L) +ρ

∞∫
d=0

∞∫
t=d

P(S ≥ t−d|L = d) fL(d)

= ρE(L) +ρ

∞∫
d=0

fL(d)

∞∫
t=d

P(S ≥ t−d|L = d)

= ρE(L) +ρ

∞∫
d=0

fL(d)E(S |L = d)

= ρE(L) +ρE(S ).

In other words, if a customer was to “call”, not arrive, in the steady-state and counted all customers
who were already using the resource and counted all pre-arrivals, i.e. customers who have reserved
their spot for future use, on average the customer would count ρ(E(L) +E(S )) on average.

A.4 Proof of Lemma 2.2.8

Proof. Recall that ΛZ(t) approaches zero as t → ∞ and
∫ ∞

t=0
ΛZ(t) = ρ(E(S ) +E(L)) by Lemma

2.2.7. Therefore, there exists a time t1 really large, such that the total number of departures and pre-

arrivals after t1 is small, i.e.,
∫ ∞

t=t1
ΛZ(t) is small. Intuitively this makes sense because with respect

to the time of the customer arrival, we wouldn’t expect a large number of customers reserving
too far into the future nor many customers prior to the customer arrival to have very large service

times. Let us choose a sufficiently large time t1 ∈N+ such that
∫ ∞

t=t1
ΛZ(t) = ρ

∫ ∞

t=t∗
(1−P(S ≤ t,L ≤

t− S )) ≤
νc
2

. Note that t1 will remain unchanged when the capacity and arrival rates are scaled
by n. This will become important later on when we consider a sequence of problems when the
capacity and arrival rates are scaled. Additionally, we can also find a t2 such that

β =

∫ ∞

t=t2
ΛY(t) = ρ

∫ ∞

t=t2
F̄L(t) ≤

νc
2
,

which again will remain unchanged when the capacity and arrival rates are scaled by n. Choose

83



t∗ = max{t1, t2}. Therefore,

P(Customer blocked in [t∗,∞)) = P( max
t∈[t∗,∞)

{Y(t)−Z(t)} ≥ c)

≤ P(Y∗+ W∗ ≥ c)

≤

∞∑
i=c

e−νc(νc)i

i!
,

(A.3)

The processes Y(t) and Z(t) are dependent on [t∗,∞] as the number of customers who depart in this
interval depends on how many arrived for service in this interval. Note that the maximum number
of customers a person would ”see” in the steady-state system cannot exceed W∗ + Y∗, where W∗

is the number of customers who reserve service before time t∗ but depart after t∗, which has mean
less than or equal to the mean of total departures in the interval [t∗,∞), i.e. E[W∗] = E[Z∞]. Y∗ are
the customers who pre-arrive after time t∗ and will obviously depart after time t∗. Additionally, W∗

and Y∗ are independent. Since ΛZ(t) > ΛY(t), Y∗ is a poisson random variable with mean less than
νc/2 and and W∗ is also a poisson random variable with mean less than νc/2, this implies that

W∗+ Y∗ ∼ Poisson(νc).

Now, let us define Zd
s (t) and Yd

s (t) to be the number of customers who will depart in the interval
[d,d + t] and the number of customers who will start service in the interval [d,d + t], t ∈ [0, s],
respectively. Now, Xd

s is a RV which represents the number of customers who start service before
time d and depart after time d + s, which is a poisson RV. Then since Pd

s (B) ≤ PI(B) for any interval
I that contains [d,d + s], we will choose the contiguous intervals {[i, i + 1]} for i ∈ {bdc, . . . , t∗ − 1}
and the interval [t∗,∞) that cover the interval [d,d + s]. Therefore, for i ∈ {0, . . . , t∗−1}, let us define
Z′i (t) to be the number of customers who depart in the interval [i, i+ t], t ∈ [0,1], Y′i (t) be the number
of customers who arrive in the interval [i, i + t], t ∈ [0,1], and X′i to be the number of customers
who have started service before time i and depart after (i + 1).

Pd
s (B) = P(Xd

s + Zd
s (s) + max

t∈[0,s]
{Yd

s (t)−Zd
s (t)} ≥ c)

≤ P
(
max

{
max

i=bdc,...,t∗−1
{Xi + Z′i (1) + max

t∈[0,1]
{Y′i (t)−Z′i (t)}}, Z∗+ max

t∈[t∗,∞)
{Y(t)−Z(t)}

}
≥ c

)
≤

t∗−1∑
i=bdc

P({Xi + Z′i (1) + max
t∈[0,1]

{Y′i (t)−Z′i (t)}} ≥ c) +P(Z∗+ max
t∈[t∗,∞)

{Y(t)−Z(t)} ≥ c)

≤

t∗−1∑
i=0

P({Xi + Z′i (1) + max
t∈[0,1]

{Y′i (t)−Z′i (t)}} ≥ c) +

∞∑
i=c

e−νc(νc)i

i!
.

Note that for any i ∈ {0,1, . . . , t∗ − 1}, the processes Y′i (t) and Z′i (t) are independent NHPP in the
interval [i, i + 1] with rates ΛY′i

(t) = ΛY(i + t) and ΛZ′i
(t) = ΛZ(i + t), respectively, and independent

of Xi Ross (2010). Note that Lemma 2.2.6 and Lemma 2.2.7 imply ΛY′i
(t) <ΛZ′i

(t) for t ∈ [0,1] and
i ∈ {1, . . . , t∗−1} and ΛY′i

(t) < ΛZ′i
(t) for t ∈ (0,1], but ΛY′0

(t) = ΛZ′0
(t) at t = 0.
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A.5 Proof of Lemma 2.2.9

Proof. Recall that Xi represents the number of customers who are in service by time i and are still
in service by time i + 1. Also, recall that Z′i (1) represent the number of customers who depart the
system in the interval [i, i + 1]. Then, since Xi and Z′i (1) are independent Poisson random variables
Ross (2010), Xi + Z′i (1) is also a Poisson random variable that represents the number of customers
who depart the system after time i. Note, that any pre-arrival in the interval [i, i + 1] will not leave
the system in the same interval since α = 1, i.e. customers will use the resource for at least one
time unit. By Ross (2010)

E(Xi + Z′i (1)) = ρ

∞∫
u=0

P(L ≤ i + u,S ≥ i + u−L)

= ρ

∞∫
u=0

i+u∫
d=0

P(L ≤ i + u,S ≥ i + u−L)

= ρ

∞∫
u=0

i+u∫
d=0

F̄S |L=d(i + u−d) fL(d)

= ρ

i∫
d=0

∞∫
u=0

F̄S |L=d(i + u−d) fL(d) +ρ

∞∫
d=i

∞∫
u=d−i

F̄S |L=d(i + u−d) fL(d)

= ρ

i∫
d=0

∞∫
u=0

F̄S |L=d(i + u−d) fL(d) +ρ

∞∫
d=i

fL(d)E(S |L = d).

Therefore, if i = 0, then the expected number of customers who are in service by time 0 is ρE(S ).
Also, one can easily see that E(Xi +Z′i (1))≥E(Xi+1 +Z′i+1(1)), which implies E(Xi +Z′i (1))≤ ρE(S )
for all i ∈ {0, . . . , t∗ − 1}. Therefore, let Z̄(t) be a homogeneous Poisson process with rate ρE(S )
independent of Y′i (t) for all i. For any i ∈ {1, . . . , t∗−1}

P(Xi + max
t∈[0,1]

{Ȳi(t) + Z̄i(1)− Z̄i(t)} ≥ c) ≥ P(Xi + max
t∈[0,1]

{Y′i (t) + Z′i (1)−Z′i (t)} ≥ c),

where Ȳi(t) is a homogeneous Poisson process with rate of ΛY′i
(0) = ΛY(i) and is always at least

as big as the rate of Y′i (t) over the interval [0,1] and Z̄i(1)− Z̄i(t), defined as in Chen et al. (2017),
is a mirrored Poisson process with rate ΛZ′i

(0) = ΛZ(i) which is always at least as big as the rate
of Z′i (1)−Z′i (t). Recall, that Lemma 2.2.6 and 2.2.7 imply ΛZ̄i

(i) > ΛȲi
(i). Therefore, there exists

θi ∈ (0,1) such that
θiΛZ̄i

(i) = ΛȲi
(i),

θi =
ΛY(i)
ΛZ(i)

.

As will be shown in Lemma 2.2.10, Lemmas 4 and 5, and Proposition 2 of Chen et al. (2017)
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implies the following

P(Xi + max
t∈[0,1]

{Ȳi(t) + Z̄i(1)− Z̄i(t)} ≥ c) ≤
1
ρ

+

(
eδi

(1 +δi)(1+δi)

)ρ
,

where δi =

 ε

1− ε
−

log(1 +ρ)
ρ logθ−1

i

 and ρ = min{(1− ε)c,λF̄(p∗)µs}. The conclusion follows.

A.6 Proof of Lemma 2.2.10

Proof. Let i ∈ {1, . . . , t∗−1}. By Lemma 2.2.9, there exists θi ∈ (0,1) such that

θiΛZ̄i
(i) = ΛȲi

(i).

Define T = max
t∈[0,1]

{Ȳi(t) + Z̄i(1)− Z̄i(t)}. Consider the merged Poisson process of two independent

Poisson processes Ȳi(t) and Z̄i(1)− Z̄i(t). Let N = Ȳi(1) + Z̄i(1) denote the total number of occur-
rences (pre-arrivals and departures) over [0,1] of the two independent Poisson counting processes.
Additionally, let Xi be a poisson random variable independent of T . Let us associate a +1 when the
jump occurs from Ȳi and a -1 when a jump occurs from Z̄i. Conditioning on N = n, we induce a
random walk with the probability of a downward jump being strictly greater than an upward jump.

In particular, each of these points has independent probability p =
θi

1 + θi
<

1
2

to be from the Ȳi

process and probability 1− pi from process Z̄i. Then (see Lemma 4 in Chen et al. (2017))

Tn = (T |N = n) = Gn + Mn almost surely,

where Mn denote the maximum level attained by the random walk of length n, and Gn denote the
overall number of down-steps taken by the random walk. Observe that Xi is independent of Tn for
all n. Then,

P(Xi + Tn ≥ c) = P(Xi +Gn + Mn ≥ c)

= P(Xi +Gn + Mn ≥ c∩Mn ≥ −
logρ
logθi

) +P(Xi +Gn + Mn ≥ c∩Mn < −
logρ
logθi

)

≤ P(Mn ≥ −
logρ
logθi

) +P(Xi +Gn ≥ c +
logρ
logθi

)

≤ P(M∞ ≥ −
logρ
logθi

) +P(Xi +Gn ≥ c +
logρ
logθi

)

≤
1
ρ

+P(Xi +Gn ≥ c +
logρ
logθi

),

where M∞ is the maximum number of the random walk when the random walk has taken an infinite
number of steps. The last and second-to-last inequality is from Lemma 5 of Chen et al. (2017).
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Therefore,

P(Xi + max
t∈[0,1]

{Ȳi(t) + Z̄i(1)− Z̄i(t)} ≥ c) = P(Xi + T ≥ c)

=

∞∑
n=0

P(Xi + Tn ≥ c)P(N = n)

≤
1
ρ

+

∞∑
n=0

P
(
Xi +Gn ≥ c +

logρ
logθi

)
P(N = n)

(Xi is independent of Gn for all n) =
1
ρ

+P
(
Xi + Poi(ΛZ̄i

) ≥ c +
logρ
logθi

)
≤

1
ρ

+P
(
Poi(ρ) ≥ c +

logρ
logθi

)
=

1
ρ

+P
Poi(ρ) ≥ c−

logρ
logθ−1

i


≤

1
ρ

+P
Poi(ρ) ≥

ρ

1− ε
−

logρ
logθ−1

i


≤

1
ρ

+P
Poi(ρ) ≥

ρ

1− ε
−

log(1 +ρ)
logθ−1

i

 .
The second inequality follows since Gn is the total number of down steps when we conditioned on
N = n, therefore, it is equal to the total number of down steps in [0,1] when unconditioned, which
is a Poisson random variable with rate ΛZ̄i

and independent of Xi. From Lemma 2.2.9, Xi +Poi(ΛZ̄i
)

is a Poisson random variable with rate E(Xi + Poi(ΛZ̄i
)) ≤ λE(S ) = ρ. The third inequality is from

the capacity constraint in (2.10) that ρ ≤ (1− ε)c. Chen et al. (2017) showed that

P
Poi(ρ) ≥

ρ

1− ε
−

log(1 +ρ)
logθ−1

i

 ≤ (
eδi

(1 +δi)(1+δi)

)ρ
.

The conclusion follows.

A.7 Proof of Lemma 2.2.11

Proof. Since ν < min
{

1
c
,
1
e

}
< 1, by (see 6.5.34 of Abramowitz and Stegun (1974)),

lim
c→∞

∞∑
j=c

e−νc(νc) j

j!
→ 0. (A.4)
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This implies

lim
n→∞

∞∑
j=c(n)

e−νc
(n)

(νc(n)) j

j!
→ 0. (A.5)

Next, we characterize the convergence rate. As n is sufficiently large, we make use of Stir-
ling’s approximation for the denominator, i.e.,

∞∑
j=c(n)

e−νc
(n)

(νc(n)) j

j!
≈

∞∑
j=nc

e−νnc(νnc) j√
2π j

( j
e

) j

=
e−νnc
√

2π

∞∑
j=nc

(νnc) j

√
j
( j

e

) j

≤
e−νnc
√

2πnc

∞∑
j=nc

e j(νnc) j

j j

≤
e−νnc
√

2πnc

∞∑
j=nc

e j(νnc) j

(nc) j

≤
e−νnc
√

2πnc

∞∑
j=nc

(eν) j

=
e−νnc
√

2πnc
l,

where l =

∞∑
j=0

(eν) j is finite since νe< 1, so the summation in the last inequality is a geometric series

and does not depend on n. Therefore, convergence rate is o(e−n) as n→∞.

A.8 Proof of Lemma 2.2.12

Proof. By Lemma 2.2.9

t∗−1∑
i=1

P({Xi + max
t∈[0,1]

{Y′i (t) + Z′i (1)−Z′i (t)}} ≥ c(n)) ≤
t∗−1
ρ(n) +

t∗−1∑
i=1

 eδ
(n)
i

(1 +δ(n)
i )(1+δ

(n)
i )


ρ(n)

.

Following Equation 2.5, we have

ρ(n) = min
{
(1− ε(n))c(n),λ(n)µ

}
≥min

{
(1− ε)c(n),λ(n)µ

}
≥ nρ.
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Now, we can apply the results of Chen et al. (2017), which showed eδ
(n)
i

(1 +δ(n)
i )(1+δ

(n)
i )


ρ(n)

= o
(
1
n

)
.

Therefore,

t∗−1∑
i=1

P({Xi + max
t∈[0,1]

{Y′i (t) + Z′i (1)−Z′i (t)}} ≥ c(n)) ≤
t∗−1
ρ(n) +

t∗−1∑
i=1

 eδ
(n)
i

(1 +δ(n)
i )(1+δ

(n)
i )


ρ(n)

≤
t∗−1

nρ
+ o

(
1
n

)
.

A.9 Proof of Lemma 2.2.13

Proof. Conditioning on the occurrence time of the first event, W1, i.e. an arrival or departure, for
any given n ≥ 1

P(X0 + Z′0(1)+ max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n))

=

∞∫
t=0

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c|W1 = t) fW1(t)

=

1∫
t=0

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n)|W1 = t) fW1(t)

+

∞∫
t=1

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n)|W1 = t) fW1(t)

≤

1∫
t=0

fW1(t) +P(X0 + Z′0(1) ≥ c(n)).

To find the density of W1, we compute the infinitesimal probability of the event {First arrival
∈ [t, t + h)}. Since the NHPP Y(t) and Z(t) are independent on [0,1], N(t) is a NHPP with rate
Λ(t) = ΛY(t) +ΛZ(t). Note that Λ(0) = 2ρ(n). The next lemma will show that the density of W1 is

fW1(t) = e
−

t∫
x=0

Λ(x)
Λ(t).
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Therefore,

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n)) ≤

1∫
t=0

fW1(t) +P(X0 + Z′0(1) ≥ c(n))

=

1∫
t=0

Λ(t)e
−

t∫
x=0

Λ(x)
+P(X0 + Z′0(1) ≥ c(n))

≤ Λ(0)

1∫
t=0

e
−

t∫
x=0

Λ(x)
+P(X0 + Z′0(1) ≥ c(n))

≤ Λ(0)e−Λ(0) +P(X0 + Z′0(1) ≥ c(n))

=
2ρ(n)

e2ρ(n) +P(X0 + Z′0(1) ≥ c(n))

≤
2(1− ε(n))c(n)

e2nρ +P(Poi(ρ(n)) ≥ c(n))

≤
2nc
e2nρ +P(Poi(ρ(n)) ≥ c(n))

= P(Poi(ρ(n)) ≥ c(n)) +
2nc
e2nρ

≤ P
(
Poi(ρ(n)) ≥

ρ(n)

1− ε(n)

)
+

2nc
e2nρ

≤ P
(
Poi(ρ(n)) ≥

ρ(n)

1− ε(n) −
log(1 +ρ(n))

logθ−1

)
+

2nc
e2nρ .

The second and third inequality is since Λ(t) is a decreasing function with Λ(0) being its maximum
value. The fourth inequality is from (2.2.9) since E(Poi(ρ(n))) ≥ E(X0 + Z′0(1)), ρ(n) ≤ (1− ε(n))c(n)

due to the optimization constraint, and ρ(n) ≥ nρ. The last inequality is because
log(1 +ρ(n))

logθ−1 ≥ 0,

for any θ ∈ (0,1), and therefore,{
Poi(ρ(n)) ≥

ρ(n)

1− ε(n)

}
⊂

{
Poi(ρ(n)) ≥

ρ(n)

1− ε(n) −
log(1 +ρ(n))

logθ−1

}
.

We have from Chen et al. (2017) that

P
(
Poi(ρ(n)) ≥

ρ(n)

1− ε(n) −
log(1 +ρ(n))

logθ−1

)
≤

 eδ
(n)

(1 +δ(n))(1+δ(n))

ρ
(n)

,
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and

 eδ
(n)

(1 +δ(n))(1+δ(n))

ρ
(n)

∈ o
(
1
n

)
. Therefore, we have

P(X0 + Z′0(1) + max
t∈[0,1]

{Y′0(t)−Z′0(t)} ≥ c(n)) ≤

 eδ
(n)

(1 +δ(n))(1+δ(n))

ρ
(n)

+
2nc
e2nρ

= o
(
1
n

)
.

The last equality is since the second term also belongs to o
(
1
n

)
.

Lemma A.9.1. Let N(t) be a NHPP with intensity Λ(t) and W1(t) be the time of the first arrival.
Then

fW1(t) = e
−

t∫
x=0

Λ(x)
Λ(t).

Proof.

P(First arrival ∈ [t, t + h)) = P(N(t) = 0,N(t + h)−N(t) = 1)
= P(N(t) = 0)P(N(t + h)−N(t) = 1) (by independent increments)

= e
−

t+h∫
x=t

Λ(x)
e
−

t∫
x=0

Λ(x)


t+h∫
x=t

Λ(x)


= e
−

t+h∫
x=0

Λ(x)
Λ(t)h + o(h).

Therefore, the density of W1 is

fW1(t) = lim
h→0

P(First arrival ∈ [t, t + h))
h

= lim
h→0

e
−

t+h∫
x=0

Λ(x)
Λ(t)h + o(h)
h

= e
−

t∫
x=0

Λ(x)
Λ(t).
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