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Dedication
The mystery of life is not a problem to be solved; it is a reality to be experienced
[126].

For those who have helped me experience life.
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Abstract
In this thesis, we study two methods that can be used to learn, infer, and unmix weak,
structured signals in noise: the Dynamic Mode Decomposition algorithm and the sparse
Principal Component Analysis problem. Both problems take as input samples of a mul-
tivariate signal that is corrupted by noise, and produce a set of structured signals. We
present performance guarantees for each algorithm and validate our findings with numeri-
cal simulations.

First, we study the Dynamic Mode Decomposition (DMD) algorithm. We demonstrate
that DMD can be used to solve the source separation problem. That is, we apply DMD to
a data matrix whose rows are linearly independent, additive mixtures of latent time series.
We show that when the latent time series are uncorrelated at a lag of one time-step then
the recovered dynamic modes will approximate the columns of the mixing matrix. That is,
DMD unmixes linearly mixed sources that have a particular correlation structure.

We next broaden our analysis beyond the noise-free, fully observed data setting. We
study the DMD algorithm with a truncated-SVD denoising step, and present recovery
guarantees for both the noisy data and missing data settings. We also present some pre-
liminary characterizations of DMD performed directly on noisy data. We end with some
complementary perspectives on DMD, including an optimization-based formulation.

Second, we study the sparse Principal Component Analysis (PCA) problem. We demon-
strate that the sparse inference problem can be viewed in a variable selection framework
and analyze the performance of various decision statistics. A major contribution of this
work is the introduction of False Discovery Rate (FDR) control for the principal compo-
nent estimation problem, made possible by the sparse structure. We derive lower bounds
on the size of detectable coordinates of the principal component vectors, and utilize these
lower bounds to derive lower bounds on the worst-case risk.
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Chapter 1

Introduction

This thesis studies methods for learning, inferring, and unmixing weak, structured signals
in the presence of noise. To illustrate what this sentence and the title of this work mean,
we will work with a concrete example: the cocktail party problem [29]. Imagine that we
are in a restaurant, and at most of the tables, people are talking; there is also music in the
background, maybe noises from the kitchen or cutlery or the street. Now, in this restaurant,
there are microphones scattered throughout. Each microphone will pick up a mixture of all
of these sounds. For simplicity, we may take the microphone recordings to be synchronized
in time and assume that there are several, scattered microphones throughout the venue.
These recordings form a dataset that is then given to an analyst, who is given the task of
isolating and extracting the individual conversations and voices from the recordings. That
is, the goal is to unmix the voices from the recordings. Alternatively, we may say that we
wish to learn or infer the individual conversations, and discover, learn, or separate what is
content from what is irrelevant. However, perhaps the noise level in the restaurant is high,
or the microphones are low quality, or the individual voices are soft (i.e., the signals that
we wish to unmix are weak). It may be difficult to proceed without assuming something
about the structure of the voices to be extracted. That is, to get anywhere, we need to
make some assumptions, or, it may be the case that unless certain assumptions hold, we
cannot get anywhere.

We might imagine other datasets or situations in which we need to learn, infer, or unmix
weak signals in the presence of noise. For example, given human biomarker data for both
healthy and sick subjects, we may want to locate the biomarkers that correspond to the
sickness. Here, one common structural assumption is that only a few biomarkers (out of
many) are relevant. For another example, if we are given seismic sensor measurements for a
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region, we might want to separate what signals are potentially dangerous tremors and what
are human activities or sensor noise. Here, we would have several physical assumptions
about the structure of real tremors.

In the following section, we formalize this discussion, describe two threads of continuity
through this thesis, and introduce the two algorithms that we study: the Dynamic Mode
Decomposition (DMD) algorithm and the sparse Principal Component Analysis (PCA)
problem.

1.1 Two Threads of Continuity
The first thread of continuity throughout this thesis is the analysis of high dimensional
eigenvalue problems. We study two problems that in a very general sense, start with the
same setup. In particular, we are in the setting where we receive p-dimensional samples
x1,x2, . . . ,xn as columns of the p× n matrix X; i.e.,

X =
[
x1 x2 · · · xn

]
.

Given X, we form a second matrix. In the case of the first problem that we study, the
Dynamic Mode Decomposition (DMD) algorithm [110], we form

Â = X(1)X
+
(0),

where
X(0) =

[
x1 x2 · · · xn−1

]
and X(1) =

[
x2 x3 · · · xn

]
,

and + denotes the Moore-Penrose pseudoinverse. Note that the ordering of the samples is
important in DMD. In the second problem, sparse Principal Component Analysis (PCA)
[61], we form the sample covariance matrix,

Σ̂ =
1

n
XXH ,

where H denotes the conjugate transpose (we use T for the transpose). For this problem,
the sample ordering is not important. After forming these matrices, we take an eigende-
composition, and the resulting eigenvectors are one of the quantities of interest. If Q is
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the matrix of normalized eigenvectors, in both problems, the columns of

(
Q+X

)H
are the other quantities of interest.

Both of the problems that we study seek to learn or infer latent signals from observations
of a linear mixture, i.e., they are unmixing algorithms. However, there are often limitations
that preclude perfect recovery or inference, and a second thread of continuity through this
thesis comes in the form of the data that is used to solve these eigenvalue problems. When
the data are not noisy, are fully observed, fit whatever model we are using, and the number
of samples is large relative to the dimension, there are no problems: we expect good results.
However, if each sample xi is corrupted by additive noise, e.g.,

xi = yi+gi,

where yi is the true, latent signal and gi is the part of xi that is entirely noise, then
the eigendecompositions of Â and Σ̂ will change [12, 13]. The estimated eigenvectors will
be perturbed relative to the truth, where the truth is defined as the output in the noise
free setting. A similar issue will occur if the samples are only partially observed, e.g., if
instead of observing all entries of X, we instead observe a subset. Finally, both with and
without noise, if the number of variables p is very large, forming, storing, and decomposing
Â and Σ̂ may be computationally demanding. Additionally, if the number of variables p
is large relative to the number of samples and the data are noisy or partially observed,
the problems are compounded and it may be impossible to consistently estimate the true
signals or eigenvectors without additional structure [17, 61, 12].

In this thesis, we will provide specific solutions for each algorithm/problem. For both
problems, we will first use a low rank plus noise data structure. That is, while we may
observe many variables, there are relatively few (latent) variables that actually matter or
explain whatever behavior is going on. For DMD, we will show that if the eigenvectors have
corresponding temporal variations that are uncorrelated at a lag of one time step while
having non-vanishing autocorrelations at the same lag, we have good recovery performance.
That is, if the data have a specific temporal structure, DMD works well. For the PCA
problem, we impose sparsity: i.e., the principal components are sparse, or, only have a
few non-zero coordinates. We will characterize the performance of sparse PCA methods in
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terms of the size of these non-zero coordinates.

1.2 Organization
In Chapter 2. we study the DMD algorithm. We first present a novel analysis of the
algorithm in the noise free setting. In particular, our analysis reveals that DMD solves
the blind source separation problem [29]. We present performance bounds for DMD in
the noise free setting, and validate them with numerical simulations. As a precursor to
Chapter 3, we study the performance of DMD with missing data. In particular, we present
performance bounds for DMD performed after a denoising or imputation step, i.e., the
truncated singular value decomposition (SVD) [88].

In Chapter 3, we study the DMD algorithm in the presence of additive white noise.
We once again present performance bounds for DMD performed after the truncated SVD
denoising step. We revisit the missing data setting, and derive some characterizations of
DMD on missing and noisy data. We also derive some preliminary characterizations of
DMD directly performed on a noisy data matrix, and present some conjectures about the
behavior of DMD on pure noise.

In Chapter 4, we discuss some complementary viewpoints of DMD. We begin with an
optimization-based formulation. That is, in Chapter 2, we found that DMD unmixes
signals that are uncorrelated at a lag of one time-step, and we translate this result into
the language of convex optimization. We demonstrate how we may use this formulation
to introduce sparsity, and present some preliminary results for the convergence of our
problem. We next present what we will call Hilbert DMD, that is. DMD performed on
Hilbert-transformed signals. We end with an application of DMD on a real dataset.

In Chapter 5, we discuss the sparse PCA problem. We present a novel perspective, and
frame the variable selection problem in the language of multiple hypothesis testing. In the
rank-1 setting where the coordinates/loadings are non-negative, we analyze various test
statistics (based off a summation, ℓ2 norm, and ℓ1 norm) and derive performance bounds
and detection limits. Moreover, we relate the problem to the sparse normal means problem,
and introduce the idea of False Discovery Rate (FDR) control for the sparse PCA problem
[36].

Finally, in Chapter 6, we offer some concluding remarks.
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Chapter 2

The Dynamic Mode Decomposition

The Dynamic Mode Decomposition (DMD) extracted dynamic modes are the
non-orthogonal eigenvectors of the matrix that best approximates the one-step
temporal evolution of the multivariate samples. In the context of dynamical
system analysis, the extracted dynamic modes are a generalization of global
stability modes. We apply DMD to a data matrix whose rows are linearly
independent, additive mixtures of latent time series. We show that when the
latent time series are uncorrelated at a lag of one time-step then, in the large
sample limit, the recovered dynamic modes will approximate, up to a column-
wise normalization, the columns of the mixing matrix. Thus, DMD is a time
series blind source separation algorithm in disguise, but is different from closely
related second order algorithms such as the Second-Order Blind Identification
(SOBI) method and the Algorithm for Multiple Unknown Signals Extraction
(AMUSE). All can unmix mixed stationary, ergodic Gaussian time series in a
way that kurtosis-based Independent Components Analysis (ICA) fundamen-
tally cannot. We use our insights on single lag DMD to develop a higher-lag
extension, analyze the finite sample performance with and without randomly
missing data, and identify settings where the higher lag variant can outperform
the conventional single lag variant. We validate our results with numerical
simulations, and highlight how DMD can be used in change point detection.1

1This is joint work with Raj Nadakuditi, and has appeared in [102, 101].
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2.1 Introduction
The Dynamic Mode Decomposition (DMD) algorithm was invented by P. Schmid as a
method for extracting dynamic information from temporal measurements of a multivariate
fluid flow vector [110]. The dynamic modes extracted are the non-orthogonal eigenvectors
of a non-normal matrix that best linearizes the one-step evolution of the measured vector
(to be quantified in what follows).

Schmid showed that the dynamic modes recovered by DMD correspond to the globally
stable modes in the flow [110]. The non-orthogonality of the recovered dynamic modes
reveals spatial structure in the temporal evolution of the measured fluid flows in a way
that other second order spatial correlation based methods, such as the Proper Orthogonal
Decomposition (POD), do not [66]. This spurred follow-on work on other applications and
extensions of DMD to understanding dynamical systems from measurements.

2.1.1 Previous work on DMD and the analysis of dynamical
systems

Early analyses of the DMD algorithm drew connections between the DMD modes and
the eigenfunctions of the Koopman operator from dynamical system theory. Rowley et al.
and Mezić et al. showed that under certain conditions, the DMD modes approximate the
eigenfunctions of the Koopman operator for a given system [109, 81]. Related work in [8]
studied the Koopman operator directly, analyzed its spectrum, and compared it against
the spectrum of the matrix decomposed in DMD. The work in [109] also explained how the
linear DMD modes can elucidate the structure in the temporal evolution in nonlinear fluid
flows. The work in [30] provided a further analysis of the Koopman operator and more
connections to DMD. More recently, Lusch et al. have shown how deep learning can be
combined with DMD to extract modes for a non-linearly evolving dynamical system [74].

There have been several extensions of DMD. The authors in [28] developed a method to
improve the robustness of DMD to noise. Jovanovic et al. proposed a sparsity-inducing
formulation of DMD that allowed fewer dynamic modes to better capture the dynamical
system [64]. Tu et al. developed a DMD variant that takes into account systematic
measurement errors and measurement noise [124]; this framework was extended in [51]. A
Bayesian, probabilistic variant of DMD was developed in [115], where a Gibbs sampler for
the modes and a sparsity-inducing prior were proposed. Another recent extension of DMD
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includes an online (or streaming) version of DMD [136].
Additionally, there have been applications of DMD to other domains besides computa-

tional fluid mechanics. The work in [9] applied DMD to compressed sensing settings. A
related work applied DMD to model the background in a streaming video [97]. The authors
in [76] applied DMD to finance, by using the predicted modes and temporal variations to
forecast future market trends. The authors in [14] brought DMD to the field of robotics,
and used DMD to estimate perturbations in the motion of a robot. DMD has also been
applied to power systems analysis, where it has been used to analyze transients in large
power grids [10]. There are many more applications and extensions, and we point the
interested reader to the recent book by Kutz et al. [67].

2.1.2 Our main finding: DMD unmixes lag-1 (or higher lag)
uncorrelated time series

We will introduce the general problem and model in Section 2.2, but before proceeding,
we will consider a simple, illustrative example. Suppose that we are given multivariate
observations xt ∈ Rp modeled as

xt = H st = QD st, (2.1)

where t is an integer, H = QD ∈ Rp×p is a non-singular mixing matrix, and st ∈ Rp is the
latent vector of random signals (or sources). The matrix Q ∈ Rp×p has unit-norm columns
and is related to H by

Q =
[
q1 . . . qp

]
=

[ h1

∥h1∥2
. . .

hp
∥hp∥2

]
. (2.2)

Setting entries of the diagonal matrix D = diag(d1, . . . , dp) as di = ∥hi∥2 ensures that
H = QD as in (2.1). Note that by the phrase ‘mixing matrix’, we mean that H st produces
a linear combination of the coordinates of st, i.e., a mixing of the coordinates.

In what follows, we will adopt the following notational convention: we shall use boldface
to denote vectors such as st. Matrices, such as H, will be denoted by non-boldface upper-
case letters; and scalars, such as st1, will be denoted by lower-case symbols.
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We assume, without loss of generality, that

E [st] = 0p and E
[
st sTt

]
= Ip . (2.3)

The lag-τ covariance matrix of st is defined as

E[Lτ ] = E
[
st sTt+τ

]
= E

[
st+τ sTt

]
, (2.4)

where τ is a non-negative integer.
If we are able to form a reliable estimate Ĥ of the mixing matrix H from the n multi-

variate observations x1, . . . ,xn then, via Eq. (2.1), we can unmix the latent signals st by
computing Ĥ−1 xt. Inferring Q and computing Q̂−1 xt will also similarly unmix the signals.
Inferring the mixing matrix and unmixing the signals (or sources) is referred to as blind
source separation [29].

Our key finding is that when the lag-1 covariance matrix E[L1] in (2.4) is diagonal, cor-
responding to the setting where the latent signals are lag-1 uncorrelated weakly stationary
time series, and there are sufficiently many samples of xt, then the DMD algorithm in
(2.22) produces a non-normal matrix whose non-orthogonal eigenvectors are reliably good
(to be quantified in what follows) estimates of Q in (2.1). In other words, DMD unmixes
lag-1 uncorrelated signals and weakly stationary time series.

Our findings reveal that a straightforward extension of DMD, described in Section 2.3
and (2.26), allows τ -DMD to unmix lag τ uncorrelated signals and time series. This brings
up the possibility of using a higher lag τ to unmix signals that might exhibit a more
favorable correlation at larger lag τ than at a lag of one. Indeed, Figure 2.5 provides one
such example where 2-DMD provides a better estimate of Q than does 1-DMD.

Our main contribution, which builds on our previous work in [101], is the analysis of the
unmixing performance of DMD and τ -DMD (introduced in Section 2.3), when unmixing
deterministic signals and random, weakly stationary time series in the finite sample regime
and in the setting where there is randomly missing data in the observations xt.
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2.1.3 New insight: DMD can unmix ergodic time series that
kurtosis-based ICA cannot

Independent Component Analysis (ICA) is a classical algorithm for blind source separation
[70, 84] that is often used for the cocktail party problem of unmixing mixed audio signals.
Our analysis reveals that DMD can be succesfully applied to this problem as well because
independent audio sources are well modeled as one-lag (or higher lag) uncorrelated (see
Figure 2.9).

It is known that kurtosis- or cumulant-based ICA (hereafter refered to as ICA) fails
when more then one of the independent, latent signals is normally distributed [56, Ch. 7].
A consequence of this is that ICA will fail to unmix mixed independent, ergodic time
series with Gaussian marginal distributions: each latent signal will have a kurtosis of zero.
Our analysis, culminating in Theorem 2.2, reveals that DMD will succeed in this setting,
even as ICA fails; see Figure 2.1 for an illustration where ICA fails to unmix two mixed,
independent Gaussian AR(1) processes while DMD succeeds. Note that these are two
independent realizations of AR(1) processes, and that there is no averaging over several
realizations. Thus, DMD can and should be used by practitioners to re-analyze multivariate
time series data for which the use of ICA has not revealed any insights.

(a) AR(1), 0.7

(b) AR(1), 0.2

(c) Mixed 1

(d) Mixed 2

(e) DMD 1

(f) DMD 2

(g) ICA 1

(h) ICA 2
Figure 2.1: We generate two AR(1) signals of length n = 1000, with coefficients 0.2

and 0.7 respectively. We mix them orthogonally, and compare the per-
formance of ICA and DMD at unmixing them. We observe that the
squared error, defined in (2.39), of ICA is 0.41, whereas that from DMD
is 0.0055. Indeed, ICA fails because the marginal distribution of each
AR(1) process is Gaussian. In these plots, for ease of visualization we
plot the first 100 samples.
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2.1.4 New insight: DMD can unmix mixed Fourier series that
PCA cannot

Principal Component Analysis (PCA) is a standard, linear dimensionality reduction method
[61] that can be expressed in terms of the singular value decomposition (SVD) of a data
matrix. The eigenwalker model, described in [123], is a linear model for human motion.
The model is a linear combination of vectors, via

xt =
k∑
i=1

qi cos (ωit+ ϕi) . (2.5)

The vectors qi are the modes of the motion, and each has a sinusoidal temporal variation.
We generate our model as follows:

xt = q1 cos (2t) + q2 cos (t/4) ,

for t = 1 to 1000, where

Q =
[
q1 q2

]
=

1/3 2/
√
5

2/3 1/
√
5

2/3 0

 .
This model has been decomposed with ICA, and used for video motion editing and analysis
[111]. Here, we apply PCA and compare it to DMD. In Figure 2.2, we display the results
of unmixing with PCA and with DMD. We observe that DMD successfully unmixes the
cosines, while PCA fails: note that unless the qi are orthogonal, there is no hope of a
successful unmixing. Moreover, the estimation of of Q from PCA fails, as we find that

Q̂PCA =

−0.686895 0.624695

−0.623497 −0.243983

−0.373399 −0.741774

 ,
which has a squared error of 0.81, while the estimate from DMD has a squared error of
2.9× 10−7, where the error is computed according to (2.33a).
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(a) cos (2t)

(b) cos (t/4)

(c) Mixed 1

(d) DMD 1

(e) DMD 2

(f) Mixed 2

(g) PCA 1

(h) PCA 2

(i) Mixed 3
Figure 2.2: We generate data according to the eigenwalker model (2.5), and use

DMD and PCA to recover the cosine signals. We observe that DMD
recovers the signals, while PCA does not. Indeed, we observe that the
squared error for the recovered cosines, defined in (2.39), from PCA is
1.97, whereas that from DMD is 4.57× 10−7. For ease of visualization, we
zoom in on the first 100 samples.

2.1.5 Connection with other algorithms for time series blind
source separation

Let H = UΣV T be the singular value decomposition (SVD) of H. Then, we have that
E[xt] = 0p and

Σx x = E[xt xTt ] = HHT = UΣ2UT . (2.6)

Given Σxx and xt, we can compute the whitened vector

wt = Σ−1/2
x x xt, (2.7)
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whose covariance matrix is given by E[wt wT
t ] = Ip. Then from (2.1) and (2.6) we have

that
wt = (UV T ) st, (2.8)

where the mixing matrix UV T is an orthogonal matrix because the U and V matrices, which
correspond to the left and right singular vector matrices of H in (2.1) are orthogonal.

Equation (2.8) reveals that we can solve the blind source separation problem and unmix
st from observations of wt if we can infer the orthogonal mixing matrix UV T from data.
To that end, we note that

E
[
wt wT

t+τ

]
= (UV T )E

[
st sTt+τ

]
(UV T )T = (UV T )E[Lτ ](UV T )T . (2.9)

Equation (2.9) reveals that when the latent signals st are lag-1 uncorrelated, i.e., E[L1]

is a diagonal matrix, then the lag-1 covariance matrix of the whitened vector wt will be
diagonalized by the orthogonal matrix UV T . The sample lag-1 covariance matrix computed
from finite data will, in general, not be symmetric and so we might infer UV T from the
eigenvectors of the symmetric part: this leads to the AMUSE (Algorithm for Multiple
Unknown Signals Extraction) method [121].

A deeper inspection of (2.9) reveals that if st are second order, weakly stationary time se-
ries that are uncorrelated for multiple values of τ (corresponding to multiple lags), then we
can infer (UV T ) (which, incidentally corresponds to the polar part of the polar decomposi-
tion of the mixing matrix H in (2.1)) by posing it as joint-diagonalization of E

[
wt wT

t+τi

]
for l lags corresponding to τ1, . . . , τl. This is the basis of the Second-Order Blind Identifi-
cation (SOBI) method [11] where the joint diagonalization problem is addressed by finding
the orthogonal matrix Γ that minimizes the sums-of-squares of the off-diagonal entries of
ΓT E

[
wt wT

t+τi

]
Γ. Numerically, this problem is solvable via the JADE method [26, 82, 83].

Miettinen et al analyze the performance of a symmetric variant of the SOBI method in
[83] and the problem of determining the number of latent signals that are distinct from
white noise in [77]. Their results for the performance are asymptotic and distributional.
That is, the limiting distribution of the estimated matrix Γ is computed, when the input
signals are realizations of some time series, with zero mean and diagonal autocorrelations
at every lag τ ∈ {0, 1, 2, . . .}. As will be seen in what follows, these assumptions are very
similar to those that we impose on DMD. Our analysis for the missing data setting is new
and has no counter-part in the SOBI or AMUSE performance analysis literature.
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In Table 2.1, we summarize the various algorithms for unmixing of stationary time series.
Table 2.1 brings into sharp focus the manner in which DMD and τ -DMD are similar
to and different from the AMUSE and SOBI algorithms. All algorithms diagonalize a
matrix; SOBI and AMUSE estimate orthogonal matrices while DMD and τ -DMD estimate
non-orthogonal matrices. The SOBI and AMUSE algorithms diagonalize cross-covariance
matrices formed from whitened time series data while DMD and τ -DMD works on the
time series data directly. Thus SOBI and AMUSE explicitly whiten the data while DMD
implicitly whitens the data. SOBI and DMD exhibit similar performance (see Figure. 2.8)
– a more detailed theoretical study comparing their performance in the noisy setting is
warranted.

Algorithm Key Matrix Fit for Key Matrix Numerical Method

DMD Â = X(1)

[
X(0)

]+
QL1Q

+, Q non-orthogonal Non-Symmetric Eig.

τ -DMD Âτ = Xτ
(1)

[
Xτ

(0)

]+
QLτQ

+, Q non-orthogonal Non-symmetric Eig.

AMUSE Âτ = Y τ
(1)

[
Y τ
(0)

]T
ΓLτΓ

T , Γ orthogonal Eig. of Symmetric part

SOBI
Âτi = Y τi

(1)

[
Y τi
(0)

]T
,

i ∈ {1, 2, . . . l} ΓLτiΓ
T , Γ orthogonal Joint Diagonalization

Table 2.1: Comparison of the various second order algorithms for time series blind
source separation. Here Y =

[
XXT

]−1/2
X, is the whitened data matrix

and Y τ
(0) and Y τ

(1) are defined analogous to Xτ
(0) and Xτ

(1), as in (2.21), (2.25),
and (2.29), respectively.

2.1.6 Organization

The remainder of this chapter is organized as follows. In Section 2.2, we introduce the time
series data matrix model and describe the DMD algorithm in Section 2.2.1. We describe
a higher lag extension of DMD, which we call τ -DMD, in Section 2.3. We provide a DMD
performance guarantee for unmixing deterministic signals in Section 2.4; a corollary of that
result in Section 2.4.3 explains why DMD is particularly apt for unmixing multivariate
mixtures of Fourier series such as the “eigen-walker” model. We extend our analysis to
stationary, ergodic time series data in Section 2.4.4. In Section 2.5, we provide results for
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the estimation error of the latent signals. We analyze the setting where the time series data
matrix has randomly missing data in Section 2.6. We validate our theoretical results with
numerical simulations in Section 2.7. In Section 2.8, we describe how a time series matrix
can be factorized using DMD to obtain a Dynamic Mode Factorization (DMF) involving
the product of the DMD estimate of the (column-wise normalized) mixing matrix and
the coordinates, which represent the unmixed latent signals. We show how DMF can be
applied to the cocktail party problem in [29] in Section 2.8 and how unmixing the latent
series via DMF can help improve time series change point detection in Section 2.8.2. We
offer some concluding remarks in Section 2.9. The proofs of our results are deferred to the
appendices.

Summary of Theorems

A contribution of this work is a non-asymptotic finite sample performance analysis for the
DMD and τ -DMD algorithm in the setting where the mixed deterministic signals or sta-
tionary, ergodic time series are approximately (or exactly) one- or higher lag uncorrelated.
Our main results will concern the estimation errors of the mixing matrices. Theorem 2.1
presents a general result with bounds for deterministic signals and all lags τ ≥ 1. Corol-
lary 2.1 presents bounds for the lag-one, deterministic case where the latent signals are
cosines. Theorem 2.2 generalizes Theorem 2.1 to the setting where the latent signals are
realizations of a stationary, ergodic time series. We present results for the estimation of
the latent signals in Theorem 2.3, and extend the results to missing data in 2.4.

2.2 Model and Setup
Suppose that, at time t, we are given a p dimensional time series vector

xt =
[
x1t x2t . . . xpt

]T
,

where an individual entry xjt, for j = 1, 2, . . . , p, of xt is modeled as

xjt =
k∑
i=1

bijcit, (2.10)
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and bij is the jth entry of a p dimensional vector bi. Each cit is the tth entry of an n

dimensional vector ci, and the cit are samples of a time series. Equation (2.10) can be
succinctly written in vector form as

xt =
k∑
i=1

bi cit = B


c1t
...

ckt

 , (2.11)

where the p×k matrix B is defined as B =
[
b1 · · · bk

]
. We are given samples x1, . . . ,xn

corresponding to uniformly spaced time instances t1, . . . tn. In what follows, without loss
of generality, we assume that ti = i. Let X be the p× n matrix defined as

X =
[
x1 · · · xn

]
. (2.12)

We define the n× k matrix C with columns c1, . . . , ck as

CT =




c1t

· · ·
... · · ·
ckt



n

t=1

. (2.13)

Consequently, we have that
X = B CT , (2.14)

where CT is the “latent time series” matrix given by (2.13). Equation (2.14) reveals that
the multivariate time series matrix X is a linear combination of rows of the latent time
series matrix.

Suppose that for i = 1, . . . , k,

qi =
bi

∥bi ∥2
and si =

ci
∥ ci ∥2

, (2.15)

and the matrices
Q =

[
q1 · · · qk

]
and S =

[
s1 · · · sk

]
. (2.16)

Then, from (2.14), and from the definition of Q and S, it can be shown that

X = QDST (2.17)
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where, for i = 1, . . . , k,
D = diag (. . . , ∥bi ∥2 · ∥ ci ∥2, . . .) . (2.18)

We will define
di = ∥bi ∥2 · ∥ ci ∥2, (2.19)

and assume that, without loss of generality, the di and hence the bi, ci, qi, and si are
ordered so that

d1 ≥ d2 ≥ . . . ≥ dk > 0. (2.20)

Note that by construction, in (2.17), the k columns of the matrices Q and S have unit
norm. In what follows, we assume that Q and S have linearly independent columns, that
k ≤ p ≤ n − 1, that the columns of S have zero mean, and that the columns of Q are
canonically non-random and non-orthogonal. Our goal in what follows is to estimate the
columns of the matrices Q and S.

2.2.1 Dynamic Mode Decomposition (DMD)

From (2.11), we see that the columns of X represent a multivariate time series. We first
partition the matrix X into two p× n− 1 matrices

X(0) =
[
x1 x2 · · · xn−1

]
and X(1) =

[
x2 x3 · · · xn

]
. (2.21)

We then compute the p× p matrix Â via the solution of the optimization problem

Â = argmin
A∈Rp×p

∥∥X(1) − AX(0)

∥∥
F
. (2.22)

The minimum norm solution to (2.22) is given by

Â = X(1)X
+
(0), (2.23)

where the superscript + denotes the Moore-Penrose pseudoinverse. Note that Â will be a
non-symmetric matrix with a rank of at most k because X, from which X(1) and X(0) are
derived, has rank k from the construction in (2.17). Let

Â = Q̂Λ̂Q̂+, (2.24)
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be its eigenvalue decomposition. In (2.24), Λ̂ = diag(λ1, . . . , λk) is a k×k diagonal matrix,
where the λi, ordered as |λ1| ≥ |λ2| ≥ . . . ≥ |λk| > 0, are the, possibly complex, eigenvalues
of Â and Q̂ is a p×k matrix of, generically non-orthogonal, unit-norm eigenvectors, denoted
by q̂i.

In what follows, we will refer to the computation of (2.23) and the subsequent decompo-
sition (2.24) as the DMD algorithm and we will show that under certain conditions, q̂i is
close to qi.

2.3 A Natural Generalization: τ−DMD
We have just described the DMD algorithm at a lag of 1. That is, we let X(0) and X(1)

differ by one time-step. However, we might easily allow X(0) and X(1) to differ by τ time
steps, and in certain settings, it may be advantageous to use τ > 1.

From (2.11), we recall that the columns of X represent a multivariate time series. We
first partition the matrix X into two p× n− τ matrices:

Xτ
(0) =

[
x1 x2 · · · xn−τ

]
and Xτ

(1) =
[
x1+τ x2+τ · · · xn

]
. (2.25)

At this point, the procedure is identical to the DMD algorithm: we compute the p × p

matrix Â(τ) via the solution of the optimization problem

Âτ = argmin
A∈Rp×p

∥∥Xτ
(1) − AXτ

(0)

∥∥
F
, (2.26)

and the minimum norm solution to (2.26) is given by

Âτ = Xτ
(1)

(
Xτ

(0)

)+
. (2.27)

Once again, let
Âτ = Q̂Λ̂Q̂+, (2.28)

be its eigenvalue decomposition. In (2.28), Λ̂ = diag(λ1, . . . , λk) is a k×k diagonal matrix,
where |λ1| ≥ |λ2| ≥ . . . ≥ |λk| ≥ 0 are the (possibly complex) eigenvalues of Âτ and Q̂ is
a p× k matrix of, generically non-orthogonal, unit-norm eigenvectors that are denoted by
q̂i.

In what follows, we will refer to the computation of (2.27) and the subsequent decompo-
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sition (2.28) as the τ -DMD algorithm. Note that the DMD algorithm is a special case of
the τ -DMD algorithm, and when we say ‘DMD’ we mean the τ = 1 setting.

2.4 Performance Guarantee
The central object governing the performance of the τ -DMD algorithm is the lag-τ cross
covariance matrix. Let the k × k lag-τ covariance matrix Lτ defined as

[Lτ ]ij =
n∑
l=1

Si,lSj,[l+τ ] mod n. (2.29)

Note that we can succinctly express Lτ as Lτ = ST (P τS) where P is the matrix formed
by taking the n× n identity matrix and circularly right shifting the columns by one.

2.4.1 Technical Assumptions

We will require the following set of technical assumptions on the data.

1. Assume that k is fixed, with

k ≤ min {p, n− τ} (2.30a)

2. Assume that the qi are linearly independent, so that σ1(Q)/σk(Q) is a finite quantity:

1 ≤ σ1(Q)

σk(Q)
<∞. (2.30b)

Here, σi(Q) denotes the ith singular value of Q. Essentially, the conditioning of the
qi is independent of n and p. Moreover, the qi are canonically non-random and not
necessarily orthogonal.

3. Assume that
lim
n→∞

d1
dk

↛ ∞, (2.30c)

i.e., that the limit of the ratio is finite.

4. Assume that columns of S (the si) each have zero mean (the sum of each column is
zero), and that they are linearly independent. Moreover, assume that there exists an
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α > 0 such that
max
i,j

|Sij| ≤ O

(
1

nα

)
. (2.30d)

I.e., the si are not too sparse.

5. Assume that τ is small relative to n; i.e., that

τn−2α ↛ ∞ and n− τ ≈ n for large n. (2.30e)

Remark 2.1. Conditions 1, 2, and the first part of 4 are required for the data matrix to
actually have rank k. I.e., if there are k latent signals, we need the columns of Q to be
linearly independent and we need the signals to be linearly independent to recover all k
signals and the k columns of Q and not linear combinations thereof. We need at least as
many linear combinations and samples as there are signals to recover the signals. Moreover,
the linear independence and full column rank conditions yield that Q and S are unique, and
hence can (in principle) be estimated uniquely up to a sign or phase shift. Note that for
a rank k matrix, there are many different possible factorizations, but our results here will
identify when the specific Q and S matrices can be recovered. Condition 3 ensures that, in
the limit, we can recover all k signals. Intuitively, if the ratio (2.30c) diverged, the data
matrix would eventually have a numerical rank smaller than k, and the smallest signal
would look like noise relative to the largest. Finally, the second part of condition 4 ensures
that the latent signals are sufficiently dense, or that they are not very transient. That is,
the signals are not something like a spike. Condition 4 is purely technical and is needed for
the proofs of the performance bounds. Finally, condition 5 is technical, and ensures that
each of Xτ

(0) and Xτ
(1) contain enough information.

To avoid an alphabet soup of constants, we use the notational shorthand x ≤ O (f(n))

to mean that there exists a universal constant C independent of n such that x is bounded
by Cf(n), and we will write O (f(n)) instead of Cf(n).

2.4.2 Deterministic Signals

We now establish a recovery condition for the setting where ci in (2.13) are deterministic.

Remark 2.2. In the following result and in all subsequent results, there is an ambiguity
or mismatch between the ordering of the qi, si, di, and [Lτ ]ii with that of the q̂j and

20



λj. Formally, there exists a permutation σ(i) that reorders the q̂j and λj to correspond
to the qi and other quantities, such that the error is minimal. In the statement of our
results, without loss of generality, we will assume that σ(i) = i, i.e., that it is the identity
permutation.

Theorem 2.1 (τ -lag DMD). For X as in (2.17) and Lτ defined as in (2.29), suppose that
the conditions in (2.30) hold. Further suppose that

lim
n→∞

|[Lτ ]ii| ↛ 0. (2.31a)

Moreover, assume that for i ̸= j we have that∣∣∣[Lτ ]ij∣∣∣ ≤ O(f(n)) and
∣∣sTi sj

∣∣ ≤ O(f(n)) (2.31b)

for some f(n) such that limn→∞ f(n) = 0.
a) Then, assuming that pi is given by

pi = sign
(

q̂Ti qi
)
, (2.32)

we have that

k∑
i=1

∥q̂i − pi qi∥
2
2 ≤O

([
d1
dk

]2
· k

7

δ2L
·
[
f 2(n) + τn−2α

])
, (2.33a)

where δL is given by
δL = min

i ̸=j

∣∣∣[Lτ ]ii − [Lτ ]jj

∣∣∣ . (2.33b)

b) Moreover, for each [Lτ ]ii, we have that

|[Lτ ]ii − λi|2 ≤ O

([
d1
dk

]2
· k6 ·

[
f 2(n) + τn−2α

])
. (2.33c)

Note that the bound (2.33a) depends on δL: if two of the signals have identical lag-τ
autocorrelations, the bound becomes trivial and the signals may not be able to be unmixed.

Moreover, this result is entirely in terms of the latent signals, si: f(n) is the lag-1
cross correlation decay rate, α governs the sparsity/density of the signals, and di is the
magnitude of each signal. We have specified conditions on the latent signals such that

21



they may be unmixed. Of course, without knowledge of the latent signals, these bounds
are not computable. Noting that δL is a function of τ , we anticipate that some values of τ
would lead to better results than others: we will demonstrate this behavior numerically in
Section 2.7.

2.4.3 Application of Theorem 2.1: DMD Unmixes Multivariate
Mixed Fourier Series

Consider the setting where cit in (2.10) is modeled as

cit = cos (ωit+ ϕi) . (2.34)

The xit is thus a linear mixture of Fourier series. This model frequently comes up in many
applications such as the eigenwalker model for human motion: [122, Equations (1) and
(2)], [123] and [125, Equations (1) and (2)].

This model fits into the framework of Theorem 2.1 via an application of Corollary 2.1
below. This implies the DMD modes will correctly correspond to the non-orthogonal
mixing modes. Using PCA on the data matrix in this setting would recover orthogonal
modes that would be linear combinations of the latent non-orthogonal dynamic modes.

Corollary 2.1 (Mixtures of Cosines). Assume that the ci are given by (2.34) and that we
apply DMD with τ = 1. Then we have that

k∑
i=1

∥q̂i − pi qi∥
2
2 ≤ O

([
d1
dk

]2
· k

7

δ4L
· 1
n

)
, (2.35a)

where
δL = min

i ̸=j
|cosωi − cosωj| , (2.35b)

and that for each ωi, we have that

|cosωi − λi|2 ≤ O

([
d1
dk

]2
· k

6

n

)
. (2.35c)

Corollary 2.1 explains why DMD successfully unmixes the eigenwalker data in Figure
2.2. In that setting, PCA does not succeed because it returns an orthogonal matrix as
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an estimate of the non-orthogonal mixing matrix. The ability of DMD to reliably unmix
non-orthogonally mixed multivariate Fourier series, and the fact that the eigenvalues are
cosines of the frequencies, provides some context for the statement that DMD is a spectral
algorithm where the eigen-spectra reveal information on Fourier spectra [109].

Note that by Theorem 2.1, we require that the lag-1 autocorrelations are distinct. In
this case, it is equivalent to requiring that the cosines have distinct frequencies. In the
notation of Theorem 2.1, we have that α = 1/2 and f(n) = 1/

√
n.

2.4.4 Extensions of Theorem 2.1: Stationary, Ergodic Time
Series

We now consider the setting where cit are elements of a stationary, ergodic time series and
the ci, thus formed; we say that a process is stationary and ergodic when its statistical
properties do not change over time, and when they can be estimated from a sufficiently
long realization. We point the reader to [63, Ch. 2.3, 15.4] for formal definitions of these
terms. Consider the matrix

E [Lτ ]ij = E
[
Si,lSj,[l+τ ] mod n

]
. (2.36)

When ELτ is diagonal, then τ -DMD asymptotically unmixes the time series, as expressed
in the Theorem below. We will require the assumptions from (2.30), with the following
updates:

1. Assume that the bi, ci, qi, and si are ordered so that

E d1 ≥ E d2 ≥ . . . ≥ E dk > 0, (2.37a)

where E di = ∥bi ∥2 · E ∥ ci ∥2.

2. Assume that
lim
n→∞

E d1
E dk

↛ ∞, (2.37b)

i.e., that the limit of the ratio is finite.

Theorem 2.2 (Stationary, Ergodic Time Series at Lag τ). Suppose that the conditions in
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(2.37) hold, in addition to conditions (1, 2, 4, 5) from (2.30).

1 ≤ τ ≤ n
r

2(r−2) , (2.38a)

for some value of r ≥ 4.
Let the ci be as described above, and let EL(τ) be as defined in (2.36). Assume that

E [Lτ ]ii ̸= 0, E [Lτ ]ij = 0, and E sTi sj = 0. Then, we have that
a) For some ϵ > 0 and r ≥ 4, we have that

f(n) ≤ o
(
(logn)2/r (log logn)(1+ϵ)2/r n−1/2

)
. (2.38b)

Then, ∣∣∣[Lτ ]ij∣∣∣ ≤ O(f(n)) and
∣∣sTi sj

∣∣ ≤ O(f(n)) (2.38c)

with probability at least
1−O

([
logn (log logn)1+ϵ

]−1
)
. (2.38d)

b) Then we have that |di − E di| ≤ f(n)[1 + o(1)] for i = 1, . . . , k, with probability (2.38d).
c) For pi given by (2.32), we have that

k∑
i=1

∥q̂i − pi qi∥
2
2 ≤O

([
E d1
E dk

]2
· k

7

δ2L
·
[
f 2(n) + τn−2α

])
, (2.38e)

where δL is given by
δL = min

i ̸=j

∣∣∣E [Lτ ]ii − [Lτ ]jj

∣∣∣ , (2.38f)

with probability (2.38d).
d) Moreover, for each ELii(τ), we have that

|E [Lτ ]ii − λi|2 ≤ O

([
E d1
E dk

]2
· k6 ·

[
f 2(n) + τn−2α

])
, (2.38g)

with probability (2.38d).

If the ci are samples from a stationary, ergodic ARMA process, we may simplify the
results of Theorem 2.2 slightly.

Corollary 2.2 (ARMA Processes at Lag τ). Assume that the ci are samples from an
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ARMA process. Then (2.38a) may be replaced with 1 ≤ τ ≤ [logn]a, for some a > 0, and
(2.38b) may be replaced with f(n) ≤ o

(
(log logn/n)1/2

)
.

The iterated logarithmic rate in our error bounds and accompanying probability, are
consequences of the classical time series results in [52]. Here, we have stated a result
that is similar in spirit to that for SOBI, given in [83]. Our result says that time series
si that are uncorrelated at lags 1 and 0 can be unmixed, provided that they are not
sparse. The result for SOBI requires uncorrelatedness at all integral lags, and states an
asymptotic distributional result; our result relies on looser assumptions, and is a finite
sample guarantee. It should be noted that at the expense of using a single lag, our result
is slightly weaker than the 1/

√
n convergence described in [83, Theorem 1].

2.5 Estimating the temporal behavior: S
We now establish a recovery condition for deterministic si.

Theorem 2.3 (Extending the bounds to S). Assume that the conditions of Theorem 2.1
hold for a lag τ with a bound ϵ2d,v for the squared estimation error of the qj. Moreover,
assume that kd21ϵ2d,v < d2k. Then, given an estimate of the top k left eigenvectors of Â,
denoted by the rows of the matrix Q̂+, let Ŝ be formed by normalizing the columns of(
Q̂+X

)T
. The columns of Ŝ are denoted by ŝi, and let pi = sign

(
sTi ŝi

)
. Then, we have

that
k∑
i=1

∥ŝi − pi si∥22 ≤ O

(
k

[
d1
dk

]2
ϵ2d,v

)
. (2.39)

This result translates the results for the mixing matrix Q to the estimation of the signals
S. For the practitioner intending to estimate the latent signals instead of the mixing matrix,
this final result has a greater utility.

2.5.1 Applications of Theorem 2.3: Cosines

As we did for Theorem 2.1, we may restate Theorem 2.3 for the cosine model.

Corollary 2.3 (Cosines). Assume that the ci are given by (2.34) and that we apply DMD
with τ = 1. Then we have that

k∑
i=1

∥ŝi − pi si∥22 ≤ O

([
d1
dk

]4
· k

8

δ4L
· 1
n

)
, (2.40)
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where δL = mini ̸=j |cosωi − cosωj|.

2.6 Missing Data Analysis
We now consider the randomly missing data setting. We assume that the data is modeled
as

X̃ = X ⊙M =
(
QDST

)
⊙M, (2.41)

where M is a masking matrix, whose entries are drawn uniformly at random:

Mi,j =

{
1 with probability q,
0 with probability 1− q.

(2.42)

The notation ⊙ represents the Hadamard or element-wise matrix product. Essentially, we
replace unknown entries with zeros, as is done in the compressed sensing literature [25,
104, 88].

2.6.1 The tSVD-DMD algorithm

A natural, and perhaps the simplest, choice to ‘fill-in’ the missing entries in X̃ is to use
a low-rank approximation, also known as a truncated SVD [32, 38]. That is, given X̃, we
compute the SVD X̃ = ÛΣ̂V̂ T , and then the rank-k truncation

X̂k =
k∑
i=1

σ̂iûiv̂Tk , (2.43)

where the columns of Û and V̂ are the ûi and v̂i, respectively, and the σ̂i are the non-zero
entries of Σ̂. In what follows, ui, vi, and σi will denote the singular vectors and values of
X. We assume that the number of sources k is known apriori.

After ‘filling-in’ the missing entries of X̃ and computing X̂k, we may apply the τ -DMD
algorithm to X̂k. If X̂k has columns X̂k =

[
x̂1 x̂2 · · · x̂n

]
, we may define

X̂τ
(0) =

[
x̂1 x̂2 · · · x̂n−τ

]
and X̂τ

(1) =
[
x̂1+τ x̂2+τ · · · x̂n

]
. (2.44)
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We have dropped the k-dependence for clarity. Then, we may define

Ãτ = X̂τ
(1)

(
X̂τ

(0)

)+
, (2.45)

and take an eigenvalue decomposition:

Ãτ = Q̂Λ̂Q̂+. (2.46)

For the sake of naming consistency, we will refer to this procedure as the tSVD-DMD
algorithm.

2.6.2 Assumptions

We now provide a DMD recovery performance guarantee. Before stating the result, we
require some definitions and further conditions. In addition to the previous assumptions
about S, the di, the relative values of k, n, p, and τ , and the linear independence of the
qi, we require the following conditions that augment (2.30). For clarity and conciseness in
what follows, we define the constant

γ =
n2αp2β

d21k
2
, (2.47a)

and the quantities

g(n, p, k, q) = O

(
4
√
q(1− q)d1k × max

{
n1/4−αp1/4−β, n−α, p−β

})
, (2.47b)

δσ,q = min
i=1,2,...,k−1

{
qσk, q

2σ2
k, q

2σi(σi − σi+1), q (σi − σi+1)
}
, (2.47c)

and
δσ = min

i=1,2,...,k−1

{
σk, σ

2
k, σi(σi − σi+1), σi − σi+1

}
. (2.47d)

The quantity g(n, p, k, q) comes from bounding the size of
(
X̃ − E X̃

)
, motivated by the

approach taken in [88] for handling missing data. The quantities δσ and δσ,q come from
applications of the results in [92, Corollary 20, Theorem 23]. The details of how these
quantities arise and are used are deferred to the proof of Theorem 2.4, given in Appendix
2.F.
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Then, we require:

1. Assume that there is a β > 0 such that

max
1≤i≤p,1≤j≤k

|Qi,j| = O
(
p−β
)
. (2.48a)

I.e., the qi are not too sparse; this condition is exactly analogous to that for the si,
where we used the parameter α.

2. Assume that as p and n grow,

1

δσ,q
,
qσ1
δσ,q

,
1

γδσ,q
↛ ∞. (2.48b)

3. Assume that
lim

p,n→∞
d1 · max

{
n1/4−αp1/4−β, n−α, p−β

}
= 0, (2.48c)

but that
lim

p,n→∞
g(n, p, k, q)2γ ̸= 0. (2.48d)

Condition (2.48a), along with the analogous condition for the si given in (2.30d), corre-
sponds to the low coherence condition in the matrix completion literature [32, Section 5.2].
I.e., we require that the data matrix is sufficiently dense. Moreover, (2.48c) and (2.48d)
imply that the si and qi have values of α and β that are at least 1/4 (and less than 1/2, by
definition). For example, if we generate a matrix Q by uniformly drawing k vectors from
the sphere in Rp and setting these as the columns, and let S be comprised of cosines as
in (2.34), we would anticipate that α = β = 1/2. In this case, if d1 is not increasing, we
would have that g(n, p, k, q) = O

(√
qk/ 4

√
pn
)
.

Given these assumptions, if we apply the tSVD-DMD algorithm to X̃, we have the
following result for the estimation of the eigenvectors qj and eigenvalues λi.

2.6.3 Main result

Theorem 2.4 (Missing Data Recovery Guarantee). Let the assumptions of Theorem 2.2
hold, with a bound ϵ2d,v for the squared estimation error of the qi and a bound ϵ2d,e for the
squared error for the individual eigenvalues. Let the conditions in (2.48) hold, let a > 1,
and let c0 > 0 be some universal constant.
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a) Then, if Lτ is defined in (2.29), δL is defined in (2.33b), and pi is defined in (2.32),

k∑
i=1

∥q̂i − pi qi∥
2
2 ≤ O

(
τ

q2
a2 (g(n, p, k, q))2

σ2
1

δ2σ

k8

δ2L
+ ϵ2d,v

)
, (2.49)

with probability at least

1−O

(
k2 · 81k exp

(
−
(
1− 1

a

)2

c0γ
τ (g(n, p, k, q))2

16

))
−O

(
k2 · 9k exp

(
−c0γ

δσ,q
64

))
.

(2.50)

b) For each [Lτ ]ii, we have that

|[Lτ ]ii − λi|2 ≤ O

(
τ

q2
a2 (g(n, p, k, q))2

σ2
1

δ2σ
k7 + ϵ2d,e

)
, (2.51)

with probability at least (2.50).

Note that Theorem 2.4 indicates that the dependence of the squared estimation error on
q is O(q−3/2) for q close to 0. Moreover, for data such that d1, σ1, δσ and δL are not changing
with n; Q has dense, linearly independent columns; and such that k and p are fixed, the
right-hand sides of (2.49) and (2.51) behave like O

(
q−3/2n1/2−2α

)
with probability at least

1−O (exp (−c1
√
n))−O (exp (−c2nq)) , for some constants c1 and c2. Indeed, if the ci are

cosines, given by (2.34), we have that α = 1/2, so that we have a rate of O
(
q−3/2n−1/2

)
.

2.7 Numerical simulations
In this section, we provide numerical verifications of the theorems we have presented. We
recall that one of the contributions of this work and the intention of this work is to
demonstrate that DMD is a source separation algorithm in disguise. Our goals are not to
compete with the state-of-the art in source separation, rather, this work seeks to provide
a new analysis and understanding of the DMD algorithm.

There are two main objects of interest: the error in estimating the eigenvectors qi, and
the error in estimating the eigenvalues λi. In the deterministic, fully observed setting, the
error in estimating si is also of interest. In what follows, unless otherwise noted, we fix
p = 100 and k = 2, and vary n. We fix the mode magnitudes at d1 = d2 = 1. We also
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generate dense, non-orthogonal qi by sampling from the sphere in Rp. Equivalently, we
sample from the multivariate normal distribution N (0p, Ip) and normalize the resulting
vector to have unit ℓ2 norm.

We first verify the deterministic error bounds for the cosine model with the DMD al-
gorithm: i.e., Theorem 2.1 and Corollary 2.1, as well as Theorem 2.3 and Corollary 2.3.
These verifications are presented in Figure (2.3). We let the columns of C be equal to
ci,t = cos (ωit). We consider two sets of frequencies: ω1 = 0.25 and ω2 = 0.5, as well as
ω1 = 0.25 and ω2 = 2. We see that as expected, the squared estimation errors for the
eigenvalues λi, eigenvectors qi, and the si are bounded by O(1/n). Moreover, the role of
δL (defined in (2.35b)) is visible, as ω2 = 2 leads to a lower error relative to ω2 = 0.5 when
estimating the qi and si. As expected, the non-zero eigenvalues are equal to cosωi.

We also look at the dependence on the rank k in Corollary 2.3. We fix p = 100 and
n = 2000, and vary the rank k; we space the frequencies such that cosωi is uniform on
[−1, 1], and the magnitudes di so that d1/dk = 10. We recall that the predicted rate for the
squared estimation errors is O(k7), and suspect that this may not be tight. In Figure 2.4,
we see that the empirical rate is O(k5). Additionally, there is a ‘saturation’ as k approaches
p, and the growth rate slows down. One important fact to note is that the rate depends
on the separation of the autocorrelations, which are bounded in the range [−1, 1]; if there
are k signals, the minimum spacing between two autocorrelations decays like O(1/k), so
that there is yet another implicit factor of k. Importantly, we see that more signals lead
to a higher error that grows faster than linear in the number of signals.

We next consider the τ -DMD algorithm, and verify Theorems 2.1 and 2.2, as well as
Corollary 2.2. We generate the columns of C as independent, length n realizations of
AR(2) processes. That is, c1 is a realization of an AR(2) process with parameters (0.2, 0.7),
and c2 is also a realization of an AR(2) process with parameters (0.3, 0.5). We compare
operating at lags τ = 1 and τ = 2, and average over 200 realizations. Our results appear
in Figure (2.5). Note that for a given lag, the non-zero eigenvalues are expected to equal
the autocorrelation of the ci at that lag; invoking the role of δL once again, we observe
that the qi are better estimated at a lag of τ = 2, as the lag-2 autocorrelations are higher
and more separated than the lag-1 values. As expected, the squared estimation errors are
bounded by O(log logn/n).

Finally, we consider the tSVD-DMD algorithm in the presence of missing data, and
verify Theorem 2.4. Here, we fix p = 500 and let d1 = 2 and d2 = 1. We let the columns
of C be equal to ci,t = cos (ωit), for ω1 = 0.25 and ω2 = 2.0. Our results are averaged
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over 200 trials. We consider the effects of varying the entry-wise observation probability
q (for n = 104) in Figure (2.6), and the effects of varying n (for q = 0.1) in Figure (2.7).
As expected, we see that the squared estimation error decays like O(1/

√
n) for fixed q and

like O(q−3/2) for fixed n when using the truncated SVD as a preprocessing step. Note that
the error of DMD without the SVD is orders of magnitude larger than it is with the SVD,
and does not exhibit significant decay with increasing n or q.

(a) The squared estimation
error of Q̂ as in (2.35a).

(b) The squared estima-
tion error of the eigen-
values λ̂i as in (2.28).

(c) The squared estimation
error of Ŝ as in (2.39).

Figure 2.3: Here, we verify Theorem 2.1 and Corollary 2.1, as well as Theorem 2.3
and Corollary 2.3. We simulate from model (2.11) with a rank 2 cosine
signal, first using ω1 = 0.25 and ω2 = 0.5, and second using ω2 = 2. We fix
p = 100 and use a non-orthogonal Q, and apply DMD with τ = 1. Note
that as ω1 is fixed, ω2 = 2 leads to a lower error relative to ω2 = 0.5, due
to the greater separation of the frequencies: the error is proportional to

1
|ω1−ω2| . We also plot lines above the samples indicating that the error is
bounded by O(1/n).

2.7.1 Comparison with AMUSE/SOBI

We end this section with a comparison of DMD with the AMUSE/SOBI method for source
separation [83]. Once again we simulate from model (2.11) with a rank k = 2 cosine signal,
using ω1 = 0.25 and ω2 = 2. We fix p = 500, use a Q with non-orthogonal columns,
and d1 = 2 and d2 = 1. We use a lag of 1 for the SOBI algorithm (in this case, it is
the AMUSE algorithm as we use a single lag). We present these results in Figure 2.8,
where we observe that DMD outperforms AMUSE. We note that with some tuning/lag
selection, it is possible that SOBI may do better than DMD, but as DMD uses a single lag,
SOBI/AMUSE with a single lag is perhaps a fairer comparison. Note that we perform the
comparison on a deterministic signal.
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(a) The squared estimation error of Q̂ and
Ŝ as in (2.49).

(b) The Figure in (a) zoomed in to k ≥ 10.

Figure 2.4: Here, we study the dependence on the rank k in Corollary 2.1. We fix
p = 100 and n = 2000, d1/dk = 10, space the frequencies such that cosωi
is uniform on [−1, 1]. We suspect that the factor of k7 is not tight, and
see that empirically, k5 is a tight rate. We plot lines above the samples
indicating the k5 rate for the squared estimation errors for both Q̂ and
Ŝ.

The theoretical results for SOBI and AMUSE are asymptotic consistency statements,
i.e., in the large sample limit, if the latent signals are statistically independent, we may
consistently (in a statistical sense) recover them [83, 121]. Other Independent Component
Analysis (ICA) methods for this problem have similar statements [27]. It is important
to note that here, we have a much weaker assumption (uncorrelatedness at two lags as
opposed to independence) and that our results are finite sample bounds.

2.8 Dynamic Mode Factorization of a Time Series
Data Matrix

We present the Dynamic Mode Factorization (DMF) algorithm for real data in Algorithm
1. We take the data matrix X and a lag τ as inputs, and return a factorization of X. Our
goal is to write X = QCT , where the columns of Q have unit norm. If the matrix has
missing entries then we fill in the missing entries with zeroes and then compute the rank k
(assumed known) truncated SVD approximation of the matrix as suggested by the analysis
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(a) The squared estimation
error of Q̂ as in (2.38e).

(b) The squared estima-
tion error of the eigen-
values λ̂i as in (2.38g).

(c) The autocorrelation
function of the pro-
cesses in C. Note that
the autocorrelation at
lag-2 is higher than
that at lag-1 for both
signals.

Figure 2.5: Here, we verify Theorems 2.1 and 2.2, as well as Corollary 2.2. We
simulate from model (2.11) with a rank 2 signal. The signals in C are
drawn as realizations from AR(2) processes, the first with parameters
[0.3, 0.5] and the second with parameters [0.2, 0.7]. We fix p = 100 and use a
non-orthogonal Q. The lag-2 DMD algorithm leads to a lower eigenvector
loss, as expected, since the autocorrelations at lag-2 are higher than that
at lag-1 for both signals, and the difference is also higher at a lag of 2
than at a lag of 1. We also plot lines above the samples indicating that
the error is bounded by O(log logn/n).

in Section 2.6. We assume henceforth that we are working with this filled-in matrix. If
the data matrix has zero mean columns, then we estimate the column-wise mean of X and
subtract it to form X:

µ̂ =
1

n

n∑
i=1

xi so that X = X − µ̂1Tn . (2.52)

Next, we define Xτ

(0) and X
τ

(1) analogously to (2.25), and form Âτ = X
τ

(1)

[
X
τ

(0)

]+. The
eigenvectors of Âτ are the columns of Q̂, so that ĈT = Q̂−1µ̂1Tn +Q̂−1X. Note that for a
real dataset, we care about C rather than S: the scale of our data matters, as does the
mean.
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(a) The squared estimation error of Q̂ as
in (2.49).

(b) The squared estimation error of the
eigenvalues λ̂i as in (2.51).

Figure 2.6: Here, we verify Theorem 2.4. We fix the sample size n = 104, and vary
the observation probability. We simulate from model (2.11) with a rank
2 cosine signal, using ω1 = 0.25 and ω2 = 2. We fix p = 500 and use a non-
orthogonal Q. We fix d1 = 2 and d2 = 1. We plot the error for the rank-2
truncated SVD (tSVD) followed by DMD, and for just DMD (both with
a lag of 1). The results show that the truncated SVD offers a tangible
benefit over vanilla DMD. We also plot lines above the samples indicating
that the error from the rank-2 tSVD + DMD algorithm is bounded by
O(1/q3/2).

2.8.1 Application: Source Separation

Next we illustrate that Algorithm 1 can unmix mixed audio signals. The first signal
contains the sound of a police siren, and the second contains a music segment. The two
signals have n = 50000 samples taken at 8 kHz, for a duration of 6.25 seconds each. We
de-mean and scale the signals to the range [−1, 1], and form an n× 2 matrix C with these

scaled signals as columns. We mix the signals with Q = 1√
5

[
1 2

2 1

]
, and generate a 2 × n

data matrix X = Q̂CT of the mixed signals, as in (2.17). Note that the Q matrix does
not have orthogonal columns. Figures (2.9-e) and (f) show the estimates Ĉ = (Q+X)

T

produced by the DMF algorithm with a lag of τ = 1, when X is the input as in Figures
(2.9-c) and (d). Employing PCA on X does not work well here because the mixing matrix
Q is not orthogonal. Figures (2.9-g) and (h) show that PCA fails where the DMD algorithm
succeeds. For completeness, in Figures (2.9-i) and (j) we also display the results from using
kurtosis-based ICA to unmix the signals. We observe that ICA performs well, but not as
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(a) The squared estimation error of Q̂ as
in (2.49).

(b) The squared estimation error of the
eigenvalues λ̂i as in (2.51).

Figure 2.7: Here, we verify Theorem 2.4. We fix the observation probability q = 0.1,
and vary the sample size n. We simulate from model (2.11) with a rank
2 cosine signal, using ω1 = 0.25 and ω2 = 2. We fix p = 500 and use a non-
orthogonal Q. We fix d1 = 2 and d2 = 1. We plot the error for the rank-2
truncated SVD (tSVD) followed by DMD, and for just DMD (both with
a lag of 1). The results show that the truncated SVD offers a tangible
benefit over vanilla DMD. We also plot lines above the samples indicating
that the error from the rank-2 tSVD + DMD algorithm is bounded by
O(1/

√
n).

well as DMF (or as quickly).

2.8.2 Application: Changepoint Detection

Often, real time series contain one or more changepoints. That is, there are points in
time at which the distribution or characteristics of the signal changes. In the context
that we are working in, perhaps the data may exhibit a transition between modes; we
consider such an example in Figure 2.10. In this setting, we fix p = 4, k = 4, and use

Q = 1√
5


1 0 0 2

2 1 0 0

0 2 1 0

0 0 2 1

. We fix n = 1000, and generate C as follows. The first 500 samples

of c1 are a realization of an AR(2) process with parameters (0.2, 0.7), and the remaining
500 samples are identically zero. The first 500 samples of c2 are identically zero, and the
remaining 500 are a realization of an AR(2) process with parameters (0.3, 0.5). The first
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(a) The squared estimation error of Q̂ as
in (2.35a).

(b) The squared estimation error of Ŝ as
in (2.39).

Figure 2.8: Here, we present results for DMD and AMUSE/SOBI. We simulate from
model (2.11) with a rank 2 cosine signal, using ω1 = 0.25 and ω2 = 2. We
fix p = 500 and use a Q with non-orthogonal columns. We fix d1 = 2
and d1 = 1. We plot the estimation error of Q̂ and Ŝ and compare the
performance of DMD with AMUSE/SOBI for a lag of 1. With a lag of
1, DMD outperforms AMUSE/SOBI.

(a) Audio 1

(b) Audio 2

(c) Mixed 1

(d) Mixed 2

(e) DMD 1

(f) DMD 2

(g) PCA 1

(h) PCA 2

(i) ICA 1

(j) ICA 2

(k) SOBI 1

(l) SOBI 2
Figure 2.9: We mix two audio signals (a police siren and a music segment), and

observe that DMD successfully unmixes the signals. The squared estima-
tion error for the unmixed signals is 2.978 × 10−5. However, we observe
that the SVD cannot unmix the signals: the squared estimation errors for
the unmixed signals is 1.000. We also display the results of ICA, which
has a squared estimation errors for the unmixed signals of 0.0015, and
SOBI, which has an error of 0.00125.

500 samples of c3 are generated as cos 2t, and the remaining 500 are identically zero. The
first 500 samples of c4 are identically zero, and the remaining 500 are generated as cos t/2.

We hope that our algorithm estimates Q and S with low error, and that our estimated
S correctly captures the changepoints. That is, we hope to visually be able to pick out

36



Algorithm 1 Dynamic Mode Factorization
Input: Data X =

[
x1 x2 . . . xn

]
, Integer lag 0 < τ < n.

Goal: X = Q̂ĈT .
1: Compute µ̂ and X =

[
x̄1 x̄2 . . . x̄n

]
as in (2.52).

2: Form X
τ
(0) =

[
x̄1 x̄2 . . . x̄n−τ

]
and X

τ
(1) =

[
x̄1+τ x̄2+τ . . . x̄n

]
.

3: Compute Âτ = X
τ
(1)

[
X
τ
(0)

]+
.

4: Compute Âτ = Q̂Λ̂Q̂−1 with eigenvalues sorted by decreasing order of magnitude.
5: Compute C̃T = Q̂−1X.
6: Compute ĈT = Q̂−1µ̂1Tn +C̃T .

Return: Q̂, Ĉ.

when a changepoint occurs. Indeed, we find that the squared error for both Q is approxi-
mately 0.069 and that for S is 0.035, and that the estimated signals are correctly identified.
Moreover, the changepoints are clearly visible. Note that PCA fails to pick out the in-
dividual signals, while preserving the changepoints; this is expected behavior, due to the
non-orthogonality of the mixing. Kurtosis-based ICA also fails, as the two AR processes
have Gaussian marginals.

2.9 Conclusions
Our analysis has revealed that DMD unmixes deterministic signals and stationary, ergodic
time series that are uncorrelated at a lag of 1 time-step. We have analyzed the unmix-
ing performance of DMD in the finite sample setting with and without randomly missing
data, and have introduced and analyzed a natural higher-lag extension of DMD. We have
provided numerical simulations to verify our theoretical results. We have shown (empiri-
cally) how the higher lag DMD can outperform conventional (lag-1) DMD for time series
for which there is a higher autocorrelation at higher lags than at lag 1: this is a natu-
ral extension of DMD that practitioners should adopt and experiment with. Moreover,
we showed how DMD (like ICA-family methods) can successfully solve the cocktail party
problem. Our results reveal why DMD will succeed in unmixing Gaussian time series while
kurtois-based ICA fails, and also why applying DMD to a multivariate mixture of Fourier
series type data, like in the eigen-walker model, can better reveal non-orthogonal mixing
matrices in a way that PCA fundamentally cannot.

There many directions for extending this research. Analyzing and improving the perfor-
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(a) c1

(b) ĉ1, DMD

(c) ĉ1, PCA

(d) ĉ1, ICA

(e) c2

(f) ĉ2, DMD

(g) ĉ2, PCA

(h) ĉ2, ICA

(i) c3

(j) ĉ3, DMD

(k) ĉ3, PCA

(l) ĉ3, ICA

(m) c4

(n) ĉ4, DMD

(o) ĉ4, PCA

(p) ĉ4, ICA
Figure 2.10: We generate k = 4 signals of length n = 1000, and mix them. Each signal

has a changepoint, in that it switches from all zeros to a definite, non-
zero signal. We find that the DMF algorithm perfectly captures the
underlying signals, in addition to estimating Q and S (squared errors
of 0.0098 and 0.0096, respectively) very well. We plot the estimated ci
beside the true signals, and observe perfect overlap. As a comparison,
we plot the results from using PCA and ICA below those from DMD.
We observe that PCA fails dramatically, due to the non-orthogonality
of the mixing, and that ICA does as well, due to the Gaussianity of the
marginal distributions of the AR(2) processes.

mance of DMD and the tSVD-DMD algorithm and comparing it to that of SOBI in the
noisy, finite sample setting is a natural next step. We have taken some preliminary steps
in this direction in [100], where we have given performance bounds for the tSVD-DMD al-
gorithm. Additionally, selecting a lag at which to perform DMD is an open problem. Note
that the performance of SOBI is known to be sensitive to the choice of the lag parameter
[116], and that in Figure 2.5, we presented an example of a mixed time series for which
τ -DMD with τ = 2 outperforms conventional (τ = 1) DMD. One might recast the lag se-
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lection problem into a problem of optimal weight selection for a weighted multi-lag DMD
setup where we consider the eigenvectors of the matrix Âagg =

∑l
i=1wiÂτi , where Âτi is the

matrix in (2.27) and we optimize for the weights wi which yield the best estimate for the
mixing matrix Q in (2.16). There are intriguing connections between this formulation and
spectral density estimation in time series analysis [93] and multi-taper spectral estimation
[7, 49, 5] that suggest ways of improving the performance of DMD, and also SOBI (as the
work in [120] does), in the presence of finite, noisy data in a manner that makes it robust
to the lag selection misspecification.

Finally, non-linear extensions of this work, particularly in the design and analysis of
provably convergent DMD-based unmixing on non-linearly mixed ergodic time series are
of interest and would complement related works on non-linear ICA [3, 39, 57, 78, 55, 22,
58, 46, 4, 133] and non-linear DMD [130, 124].
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2.A Proof of Theorem 2.1 for τ = 1

Recall the definitions of X(0) and X(1) from (2.21). Noting that X = QDST , we may define
S(0) and S(1), where

S(0) =


s1,1 s2,1 · · · sk,1

s1,2 s2,2 · · · sk,2
...

... · · ·
...

s1,n−1 s2,n−1 · · · sk,n−1

 and S(1) =


s1,2 s2,2 · · · sk,2

s1,3 s2,3 · · · sk,3
...

... · · ·
...

s1,n s2,n · · · sk,n

 . (2.53)

Then, we have that
X(0) = QDST(0) and X(1) = QDST(1). (2.54)

We make the key observation that

ST(1) =


s1,2 s1,3 · · · s1,n−1 s1,1
...

... · · ·
...

...

sk,2 sk,3 · · · sk,n−1 sk,1

+


0 · · · 0 s1,n− s1,1
... · · ·

...
...

0 · · · 0 sk,n− sk,1

 . (2.55)

Let P be the (n−1)× (n−1) lag-1 circular shift matrix as described in the construction of
the lag-1 inner-product matrix L = L1 in (2.29). A comparison of the first term on the right-
hand side in the decomposition of ST(1) in (2.55) with the column partition decomposition
of ST(0) in (2.53) reveals that this first term is a lag-1 circular shift of the matrix ST(0).
Consequently, we may express ST(1) as

ST(1) = ST(0)P +∆1, (2.56)

where ST(0)P is the lag-1 circular shift of ST(0) and ∆1 is the rank 1 error matrix given by
the second term in the right-hand side of (2.55). Thus, from (2.54) we have that

X(1) = QD(ST(0)P +∆1) = QDST(0)P +∆X , (2.57)

where ∆X = QD∆1. Consequently, by substituting the expression of X(1) from (2.57) and
X(0) from (2.54), we can express Â as

Â = X(1)X
+
(0) = QLDQ

+ + ∆̂X (2.58)
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where
∆̂X = ∆X

(
ST(0)
)+
D+Q+ and LD = DST(0)P

(
ST(0)
)+
D+. (2.59)

Let diag(·) denote the diagonal matrix determined by the main diagonal of its argument.
Then, the matrix LD can be decomposed as

LD = diag(LD)︸ ︷︷ ︸
=:Λ

+∆L. (2.60)

Substituting the expression of LD in (2.60) into the first term on the right hand side of
(2.58) gives us the expression

Â = QΛQ+ + ∆̂A, where ∆̂A = Q∆LQ
+∆̂X . (2.61)

The essence of our proof lies in bounding the size of ∆̂A. To this end, we first unpack ∆̂A.
A key observation, to be substantiated in what follows, is that we may write S+

0 = ST0 +∆Sp,
where ∥∆Sp∥2 is small (to be quantified in what follows). When we substitute this quantity
into the definition of ∆̂X in (2.59) and expand the terms in ∆̂A, we obtain:

∆̂A = QD∆LD
−1Q+ +QDST0 P1∆

T
SpD

−1Q+ +QD∆1S0D
−1Q+ +QD∆1∆

T
SpD

−1Q+.

(2.62)

It is now relatively straightforward to bound the size of ∆̂A: we bound each term individu-
ally by bounding the factors therein. The most involved part of this argument comes from
bounding the size of ∆Sp, as we will do next. Then, we will state a bound on the size of
∆̂A. Given the bound on ∆̂A, we will appeal to results from perturbation theory to bound
the deviation of the eigenvectors q̂i of Â from qi.

2.A.1 Bounding ∆Sp

We now bound the size of ∆Sp. We proceed in three steps, separated into lemmas. Through
our lemmas, we characterize the singular vectors and values of S0, so that we may under-
stand the pseudoinverse S+

0 .

Lemma 2.1 (The right singular vectors of S0). The right singular vectors of S0 are, up to
a bounded perturbation, the columns of the k × k identity matrix, Ik, with the jth column
denoted by ej,k.
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Proof. ST0 S0 is a k × k matrix with diagonal entries between 1 − O(n−α) and 1, and
off-diagonal entries bounded in size by O(f(n)) (recall (2.30d)). I.e., ST0 S0 = Ik+∆V ,
∥∆V ∥2F = O (k2f(n)2 + kn−2α). Then, the eigenvectors of ST0 S0 are the columns of the
identity matrix, up to a perturbation ∆V : Ik+∆V .

To see that ej,k is almost an eigenvector of SH0 S0:
∥∥ej,k−ST0 S0ej,k

∥∥2
2
= O (kf(n)2 + n−2α).

Hence, ∥∆V ∥2F = O (k2f(n)2 + kn−2α).

Before considering the left singular vectors and singular values, we need the following
fact.

Lemma 2.2. For a > 0 and a ̸= 1, there exists a constant b(a) such that 1
1−a ≤ 1+b(a)×a.

Choosing b(a) ≥ 1
1−a is sufficient.

Lemma 2.3 (The left singular vectors and the singular values of S0). The left singular
vectors of S0 are approximately the columns of S0, and the non-zero singular values are
approximately 1.

Proof. The left singular vectors of S0 are found by normalizing the columns of S0 times the
right singular vectors. I.e., S0 [I+∆V ] , but normalized. The size of S0∆V can be bounded
by ∥S0∆V ∥2F = O (k3f(n)2 + k2n−2α), since ∥S0∥2F ≤ ∥S∥2F = k. Moreover, the norms of
individual columns are bounded above by 1 and below by√

1−O(kf(n)2 + n−2α) ≥ 1−O
(
k1/2f(n) + n−α) .

Using Lemma (2.2) and assuming that O(k1/2f(n)+n−α) is bounded away from 1, e.g., by
9/10, a normalized column of S0 + S0∆V has norm 1 +O(k1/2f(n) + n−α). Then, writing
the normalization as multiplication by a diagonal matrix, we have (S0 + S0∆V )(I+∆N) =

S0 + S0∆V + S0∆V∆N . The norm of ∆N is bounded by ∥∆N∥2F = O(k2f(n)2 + kn−2α).
Then, the norm of S0 minus the error terms is:

∥S0 − S0∆V − S0∆V∆N∥2F = O
(
k3f(n)2 + k2n−2α

)
.

Now, we may combine the previous results to bound ∆Sp.

Lemma 2.4 (The Pseudoinverse of S0). The pseudoinverse of S0 is S+
0 = ST0 +∆Sp, where

∥∆Sp∥F is small.
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Proof. Writing the SVD of S0 as (S0 + ∆U)(I+∆N)(I+∆V )
T , applying Lemma 2.2 to

the individual elements of I+∆N and noting that ∥∆′
N∥F = Θ(∥∆N∥F ) yields that the

pseudoinverse is (I+∆V )(I+∆′
N)(S0 + ∆U)

T . Once again assuming that f(n) → 0 and
noting that f(n) ≤ 1,

∥∆Sp∥2F = O
(
k3f(n)2 + k2n−2α

)
. (2.63)

2.A.2 Bounding the size of ∆̂A

Now that we have computed the pseudoinverse of S0, we may return to the main compu-
tation. Recall that we wrote

∆̂A = QD∆LD
−1Q+ +QDST0 P1∆

T
SpD

−1Q+ +QD∆1S0D
−1Q+ +QD∆1∆

T
SpD

−1Q+.

(2.64)

First, note that each factor of Q and Q† adds a factor of k to the squared Frobenius norm.
The pre- and post-multiplication by D and D−1 respectively adds a factor of (d1/dk)2. By
assumption, L =

[
ST0 P1S0

]
is a k × k matrix with diagonal entries that are Θ(1) and off-

diagonal entries that are bounded as O(f(n)), so that ∥∆L∥2F ≤ O(kf 2(n)). Once again
by assumption,

∥∆1∥2F ≤ O(kn−2α), (2.65)

and S0 and SH0 P1 each contribute factors of k to the squared Frobenius norm. Then, we
have

∥∆̂A∥2F = O
(
(d1/dk)

2k6 × [f(n)2 + n−2α]
)
. (2.66)

2.A.3 Eigenvectors and Eigenvalues

We have written Â as QΛQ† + ∆̂A, and we know the size of ∆̂A. The next step is to
compute the eigenvectors of Â. Ideally, these are the columns of Q, notated by qj and
estimated by q̂j, which are stacked into Q̂.

There are two basic propositions from the perturbation theory of eigenvalues and eigen-
vectors that we need to complete our analysis. First, we have the following proposition
bounding the error in the eigenvalues as a consequence of [33, Theorem 4.4]:

Proposition 2.1. Let λi be a simple eigenvalue of A = QΛQ+, where the columns of Q,
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denoted by qi, are unit-norm, fixed, and linearly independent. Then, there is a eigenvalue

λ̂i of the perturbed matrix Â = A+ ∆̂A such that
∣∣∣λi − λ̂j

∣∣∣2 ≤ O

(∥∥∥∆̂A

∥∥∥2
2

)
.

Proof. From [33, Theorem 4.4], we have that

λ̂i = λi +
yHi ∆̂A qi

yHi qi
+O

(∥∥∥∆̂A

∥∥∥2
2

)
,

where qi is the corresponding unit-norm right eigenvector to λi, and yi is the corresponding
unit-norm left eigenvector. Hence,

∣∣∣λ̂i − λi

∣∣∣ = O

(
yHi ∆̂A qi

yHi qi

)
.

Noting that λi is simple and that the qi are linearly independent, we have that yHi qi is
fixed and non-zero (see [129, Chapter 2] for a discussion of this quantity), and we obtain
the desired result.

Then, we have the following proposition as a consequence of [79, Theorem 2]:

Proposition 2.2. Let λi be a simple eigenvalue of A = QΛQ+ where the columns of Q,
denoted by qi, are unit-norm, fixed, and linearly independent. Let qi be the corresponding
unit-norm right eigenvector qi to λi, and q̂i is the estimated eigenvector from Â = A+∆̂A.
Then, we have that

∥qi−piq̂i∥22 ≤ O


∥∥∥∆̂A

∥∥∥2
2

δ2L

 ,

where pi = sign
(

q̂Ti qi
)

and δL = minj ̸=l |λl − λj|.

Proof. As a consequence of [79, Theorem 2], we may write

q̂i = qi+
(λi Ip−A)D ∆̂A qi

yHi qi
+O

(∥∥∥∆̂A

∥∥∥2
2

)
,

where yi is the corresponding unit-norm left eigenvector for λi, and AD denotes the
Drazin Inverse (also called the Group Inverse) of A = QΛQ+. The discussion in the
proof of [79, Corollary 4] indicates that we may bound (λi Ip−A)D in Proposition 2.2 by
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∥∥∥(λi Ip−A)D∥∥∥
2
≤ 1/δL. Noting that λi is simple and that the qi are linearly independent,

we have that yHi qi is fixed and non-zero; see [129, Chapter 2] for a discussion of this
quantity. Hence, we may bound

∥∥∥∥∥(λi Ip−A)D ∆̂A qi
yHi qi

+O

(∥∥∥∆̂A

∥∥∥2
2

)∥∥∥∥∥
2

2

≤ O


∥∥∥∆̂A

∥∥∥2
2

δ2L

 . (2.67)

Proposition 2.2 provides a bound on the individual eigenvector errors. Summing over
the eigenvector errors, we have that

k∑
i=1

∥qi−piq̂i∥22 ≤ O

k
∥∥∥∆̂A

∥∥∥2
2

δ2L

 .

Noting that
∥∥∥∆̂A

∥∥∥2
2
≤
∥∥∥∆̂A

∥∥∥2
F

, we may substitute our bound from (2.66) to complete the
proof.

2.B Bridging Corollary 2.1 and Theorem 2.1 with
τ = 1

When C is a matrix of cosines, we may bridge the gap as follows. To apply Theorem 2.1
to a matrix C with columns ci of the form

cit = cos (ωit+ ϕi) , (2.68)

we need to show that Lii does not tend to zero, that Lij does tend to zero for i ̸= j, and
that size of the elements of S is bounded. Moreover, we need bounds on the convergence
of the Lij and the elements of S. Recall that L was defined in (2.29), and is the matrix of
circular inner products of the si, where the si, defined in (2.15), are the normalized ci and
form the columns of the matrix S.

To tackle these three tasks, we require the following two identities governing sums of
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products of cosines:

n∑
t=1

cos (ω1t+ ϕ1)× cos (ω2t+ ϕ2)

=
1

2 (cosω1 − cosω2)

(
cos (ω1[n+ 1] + ϕ1) cos (ω2n+ ϕ2)

− cos (ω2[n+ 1] + ϕ2) cos (ω1n+ ϕ1)

− cosϕ2 cos (ω1 + ϕ1) + cosϕ1 cos (ω2 + ϕ2)

)
,

(2.69)

when ω1 ̸= ω2, and

n∑
t=1

cos2 (ω1t+ ϕ1) =
n

2
+

1

2

sin (ω1n)

sinω1

cos (ω1[n+ 1] + 2ϕ1) . (2.70)

We first consider the simplest of the three tasks: the bound on the size of Sij. Since the
ci have entries of the form (2.68), applying (2.70), we have that

∥ci∥22 =
n

2
+

1

2

sin (ωin)

sinωi
cos (ωi[n+ 1] + 2ϕi) . (2.71)

Note that if ωi is not 0 or π, (2.71) behaves like Θ(n). If ωi is 0 or π, (2.71) is equal to
n cos2 ϕ1, which is also Θ(n): if cos2 ϕi = 0 and ωi = 0 or π, ci is identically zero, and not
part of a linearly independent set of vectors. Hence, the square of the norm of each ci is
Θ(n), and the elements of ci are bounded in size by 1. It follows that the elements of S
cannot be larger than O(1/

√
n), or that α = 1/2.

Next, we consider the bound for Lij for i ̸= j. Assuming that ωi ̸= ωj, we may bound
the right-hand size of (2.69) by

2

|cosωi − cosωj|
. (2.72)

But (2.69) is exactly the inner product of ci and cj, for i ̸= j. Since the elements of Lij are
the inner products of the si with sj, dividing (2.72) by the norm of each ci yields a bound
on the size of Lij. Since the norm of each ci is Θ(

√
n), the size of Lij is bounded by

|Lij| = O

(
1√
n
· 1

|cosωi − cosωj|

)
.
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Taking the maximum over i and j yields that |Lij| ≤ O
(

1√
n
· 1
δL

)
, where

δL = min
i ̸=j

|cosωi − cosωj| .

Hence, we have that f(n) = 1√
n

1
δL

. Note that f(n) in the corollary contains a factor of δL:
this is the origin of the δ4L dependence, relative to Theorem 2.1, which has a δ2L dependence.

Finally, we characterize the elements Lii. The third and final identity we need is a
version of (2.69) with ω1 = ω2 and ϕ2 = ϕ1 + ω1:

n∑
t=1

cos (ω1t+ ϕ1)× cos (ω1[t+ 1] + ϕ1) =
n

2
cosω1 +

1

2

sin (ω1n)

sinω1

cos (ω1[n+ 1] + 2ϕ1) .

(2.73)

Unless ω1 is π/2, Lii will not have limit 0. For ω1 ̸= π/2, (2.73) is Θ(n). Dividing by (2.70)
yields that Lii is the ratio of two Θ(n) quantities: for large n, the mixed sine-cosine terms
in both equations are negligible, so that Lii has limit cosωi.

Combining these steps, we obtain the result of Corollary (2.1) from Theorem (2.1).
Note that more generally, we may write a version of (2.73) for larger lags τ . That is, let

ω1 = ω2, and ϕ2 = ϕ1 + τω1, so that

n∑
t=1

cos (ω1t+ ϕ1)× cos (ω1[t+ τ ] + ϕ1)

=
n

2
cos (τω1) +

sin (ω1n)

2 sinω1

cos (ω1[n+ τ + 1] + 2ϕ1) .

(2.74)

That is, looking ahead to Theorem 2.1, unless ω1τ is an odd multiple of π/2, Lii(τ) will
not have limit 0. Moreover, in the large n limit, we would have Lii(τ) = cos (τω1).
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2.C The proof of Theorem 2.1 for τ > 1

We may define

Sτ(0) =


s1,1 s2,1 · · · sk,1

s1,2 s2,2 · · · sk,2
...

... · · ·
...

s1,n−τ s2,n−τ · · · sk,n−τ

 and Sτ(1) =


s1,1+τ s2,1+τ · · · sk,1+τ

s1,2+τ s2,2+τ · · · sk,2+τ
...

... · · ·
...

s1,n s2,n · · · sk,n

 . (2.75a)

Then, we have that

Xτ
(0) = QW

(
Sτ(0)
)T and X(1) = QW

(
Sτ(1)
)T
. (2.76)

We make the key observation that

(
Sτ(1)

)T
=


s1,1+τ · · · s1,n−τ s1,1 · · · s1,τ
... · · ·

...
... · · ·

...

sk,1+τ · · · sk,n−τ sk,1 · · · sk,τ

+


0 · · · 0 s1,n−τ+1 − s1,1 · · · s1,n − s1,τ
... · · ·

...
... · · ·

...

0 · · · 0 sk,n−τ+1 − sk,1 · · · sk,n − sk,τ

,

(2.77)
so that

(
Sτ(1)

)T
can be written as a τ -times shift of

(
Sτ(0)

)T
, plus an error term, ∆τ , where

∆τ is the second term in (2.77). Mimicking the proof of Theorem 2.1 for the τ = 1 case
and assuming that τ is sufficiently small reveals that the only change is that ∆1 is replaced
with ∆τ in (2.64) and (2.65). Hence, we replace n−2α with τn−2α in the final result.

2.D The Proof of Theorem 2.2
In this section, we provide the details behind the results of Theorem 2.2. Relative to the
deterministic Theorems 2.1, Theorem 2.2 differs only in that the quantities L(τ) and di

are random variables, where these quantities are defined in (2.29) and (2.18) respectively.
Hence, it is sufficient to demonstrate that Lτ and the di are close to their expected values
with high probability. In what follows, we suppress the τ dependence of L and other related
quantities.
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2.D.1 Conditions for the convergence of L to EL

We first consider the convergence of L. For convergence of L to its expectation, we need a
series of technical assumptions on the ci. In stating these, we mimic the notation and state
the conditions for Theorem 2 (equations (1) through (4)) in [52]. Essentially, at each time t,
we have p values: we have a p-dimensional time series. We will denote this series as c̃t, with
c̃t =

[
c1,t c2,t . . . cp,t

]T
. We require that each coordinate of c̃t is individually an ergodic,

wide-sense (covariance) stationary process with zero mean and finite variance. Formally, if
ϵt ∈ Rp is the sequence of linear innovations, we are able to write c̃t =

∑∞
j=0 κj ϵt−j, where

the κj are p × p matrices. We require
∑∞

j=0 ∥κj∥2F < ∞ and (κ0)il = 1. Moreover, if we
define K(z) =

∑∞
j=0 κjz

j, for |z| < 1, we require that the determinant of K(z) is non-zero.
We further require that if Ft−1 is the σ-algebra generated by ϵs for s ≤ t,

E [ϵt | Ft−1] = 0p,E
[
ϵt ϵ

T
t | Ft−1

]
= Σϵ, and E [|(ϵt)i|r | Ft−1] ≤ ∞, (2.78a)

for r ≥ 4. Moreover, Σϵ is a fixed, deterministic p× p matrix.

2.D.2 The convergence of L to EL

Given these many conditions, what can we say? We first consider all of the entries of L,
diagonal and off-diagonal. Recall that the elements of L are (up to a scaling of 1/n and
some neglected terms from the circularity) the auto- and cross-correlations of the ci at the
lag τ . Let ELij be the expected value of Lij, for all i and j. Applying Theorem 2 of [52]
(a strengthening of Theorems 1 and 2 from [48]), we have that

max
i,j

max
0≤τ≤n

r
2(r−2)

|Lij − ELij| = o
(
(τ logn)2/r (log logn)(1+δ)2/r n−1/2

)
, (2.79)

almost surely, for some r ≥ 4 and δ > 0. I.e., for any reasonably small lag, as n grows (and
p is fixed), we expect the auto- and cross-correlations to converge to their expected values,
with strongly bounded deviations. Indeed, for a threshold

ψ = (τ logn)2/r (log logn)(1+δ)2/r n−1/2,
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we have that

P

[
max
i,j

max
0≤τ≤n

r
2(r−2)

|Lij − ELij| ≥ ψ

]
≤ O

([
logn (log logn)1+δ

]−1
)
. (2.80)

Hence, as n increases, the L matrix is close to its expected value with high probability.
There are two more quantities of interest. First, the separation δL: from the dis-

cussion above, it follows that the empirical value of mini ̸=j |Lii − Ljj| is close to δL =

mini ̸=j |ELii − ELjj| with high probability. Moreover, the lag-0 auto-covariance provides
values of E d21 and E d2k. It follows that the di are within f(n)[1 + o(1)] of the E di.

2.D.3 The desired properties of EL

We have established that L and the other quantities has the desired convergence properties.
Next, we discuss what properties we want EL to have. Assume that we are operating at a
reasonable lag τ (per the conditions above). Then, we consider the lag τ autocorrelations
and cross-correlations of the ci. We want the cross-correlations to be 0 in expectation,
and the autocorrelations to be non-zero. Note that we do not demand that the ci be
independent or uncorrelated at every lag: just at the desired lag τ . In this setup, the right-
hand side of (2.79) provides the bounding function f(n) for the Theorem, as ELij = 0 for
the off-diagonal elements.

2.D.4 Special Case: ARMA

From Theorem 3 in [52], in the special case of a stationary ARMA process, we may
strengthen these bounds. That is, if the ci are drawn as contiguous realizations of an
ARMA process, we may replace the right-hand side of (2.79) with o

(
(log logn/n)1/2

)
, for

lags τ such that 0 ≤ τ ≤ O ([logn]a) for some a > 0, and with no further work reuse the
same probability bound as in (2.80), with δ = 0.

2.D.5 Obtaining the Theorem Statements

We have computed f(n) and shown that with high probability L is close to EL. We have
further discussed the desired properties of EL, and shown that the di are close to E di and
that mini ̸=j |Lii − Ljj| is close to mini ̸=j |ELii − ELjj|. Essentially, we have computed all

50



of the quantities that appear in Theorem 2.1 with relevant probabilities. In Theorem 2.1,
we replace these quantities with their expectations, and obtain the desired result.

2.E Proof of Theorem 2.3
Proof. Recall that the proof of Theorem 2.1 begins by bounding the perturbation of Â
from QΛQ+, as in written in (2.61). Hence, we may note that ÂT = (Q+)

T
ΛQT +∆̂T

A, and
note that ∆̂T

A has the same norm as ∆̂A. Following the rest of the proof to its conclusion
reveals that we may estimate the left eigenvectors of Â with the same error bound as for
the right.

Assume that our estimate of the left eigenvectors
(
Q̂+
)T

has normalized columns. Then,

writing (Q+)
T
=
(
Q̂+
)T

+∆T
Q+ , we may write

(
Q̂+X

)T
= SD +XT∆T

Q+ . Let ϵi denote
the ith column of XT∆T

Q+ , so that ŝi = di si + ϵi
∥di si + ϵi∥2

. We may write

∥si−ŝi∥2 =
∥∥∥∥si
(
1− di

∥di si+ ϵi∥2

)
+ ϵi

1

∥di si+ ϵi∥2

∥∥∥∥ ,
where we have implicitly assumed (without loss of generality) that sTi ŝi is positive. By the
triangle inequality, we may write di − ∥ ϵi ∥2 ≤ ∥di si+ ϵi∥2 ≤ di + ∥ ϵi ∥2. Then, we have
that

∥si−ŝi∥2 ≤ max
±

{∣∣∣∣1− di
di ± ∥ ϵi ∥2

∣∣∣∣+ ∥ ϵi ∥2
|di ± ∥ ϵi ∥2|

}
, (2.81)

where the maximum is taken over combinations of the ± signs in both terms.
Before proceeding, we need the following lemma:

Lemma 2.5. Let 0 < y < x, and assume that there is a constant c > 0 such that x > 1/c.
Then, ∣∣∣∣1− x

x± y

∣∣∣∣ < cy and
∣∣∣∣ y

x± y

∣∣∣∣ < cy.

Continuing, if ∥ ϵi ∥2 < di for all i = 1, 2, . . . , k, then by applying the lemma to each
term in the right-hand side of (2.81) with c = 2/dk, we have that ∥si−ŝi∥2 ≤ (4/dk)∥ ϵi ∥2.
Hence, summing over all i yields that

k∑
i=1

∥si−ŝi∥22 ≤
4

d2k

k∑
i=1

∥ ϵi ∥22 =
16

d2k
∥XT∆T

Q+∥2F .
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Recall that we have bounded ∥∆T
Q+∥2F by ϵ2d,v, and ∥XT∥2F by kd21. It follows that

k∑
i=1

∥si−ŝi∥22 ≤
16d21
d2k

kϵ2d,v. (2.82)

We have assumed that ∥ ϵi ∥2 < di for all i = 1, 2, . . . , k; a sufficient condition is that

∥XT∆T
Q+∥22 ≤ ∥XT∆T

Q+∥2F < d2k,

or that kd21ϵ2d,v < d2k.

2.F Proof of Theorem 2.4
Before proceeding, we remind the reader that the relevant notation and setup were pre-
sented in Section 2.6, and that (2.47) and (2.48) contain the required definitions and
assumptions for the proof of the theorem.

Following the approach taken in the proof of Theorem 2.4 in [88], we write

X̃ = EM X̃ +
(
X̃ − E X̃

)
= qX +

(
X̃ − E X̃

)
= qX +∆S, (2.83)

where we define ∆S =
(
X̃ − E X̃

)
. We will first control the size of E ∥∆S∥2. Then, noting

that the tSVD-DMD algorithm performs DMD on a truncated SVD X̂k of X̃, we will bound
the error in estimating X and X+ from the low rank approximation of X̃. That is, we will
bound the deviation of the estimated singular vectors ûi and v̂i and values σ̂i from the true
values ui, vi, and σi, respectively, using the results from [92]. We will then compute the
estimation error in

(
X̂τ

(0)

)+
and X̂τ

(1), and hence write Ã = X̂τ
(1)

[
X̂τ

(0)

]+
= Â + ∆A. We

will bound the size of ∆A, and then bound the error in the eigenvectors of Ã from those of
Â. The final result will follow by an application of the triangle inequality.

2.F.1 Bounding E ∥∆S∥2
The first tool is a result of Latała [69]:

Eσ1(∆S) ≤ C

[
max
i

√∑
j

E(∆S)2i,j + max
j

√∑
i

E(∆S)2i,j + 4

√∑
i,j

E(∆S)4i,j

]
, (2.84)
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for some constant C > 0. We find that Eσ1(∆S) ≤ g(n, p, k, q), where

g(n, p, k, q) = O

(
4
√
q(1− q)d1k × max

{
n1/4−αp1/4−β, n−α, p−β

})
, (2.85)

Next, we need a bound on the probability that E ∥∆S∥2 is close to ∥∆S∥2. Noting that the
first singular value is a 1-Lipschitz, convex function, and that |(∆S)i,j| ≤ O

(
d1n

−αp−βk
)
,

we may apply Talagrand’s concentration inequality [117, Theorem 2.1.13, pp. 73]:

P [|σ1(∆S)− Eσ1(∆S)| > t] ≤ 2 exp
(
−ct2n

2αp2β

d21k
2

)
= 2 exp

(
−cγt2

)
, (2.86)

for some constant c > 0.

2.F.2 The Low Rank Approximation

We apply the results from [92] to characterize the finite-sample performance of the low-
rank approximation. Given the low-rank approximation that fills in the missing entries,
we have an estimate X̂ of qX. Then, we have X̂+

0 and X̂1 that are passed into the DMD
algorithm. Given X̃, we will characterize how far X̂ is from qX. Then, (by assumptions
on the density of qX) these bounds are close to those for X(1) and X(0), and we can apply
them to write X̂+

(0) as 1
q
X+

(0) +∆S0 and X̂(1) as qX(1) +∆S1 . Furthermore, we assume that
we have oracular knowledge of the rank k.

Before proceeding, note that we have controlled the size of the entries of ∆S, shown
that its norm concentrates and is bounded, and bounded the expectation of the norm.
Moreover, ∆S is trivially zero mean and and random (from the randomness in masking the
entries of X). Hence, we are able to apply the results from [92].

The Singular Vectors of X̃

We have previously found that

P
(
|σ1(∆S)| > t̃

)
≤ 2 exp

(
−c0γ(t̃− g(n, p, k, q))2

)
.

Let t = t̃− g(n, p, k, q) for some t̃.
Recall that for two unit norm vectors x and y, sin2∠(x,y) = 1 − (xT y)2 ≤ ϵ2 means
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that if xT y ≥ 0,

∥x−y ∥22 = 2
(
1− xT y

)
≤ 2

(
1−

√
1− ϵ2

)
≤ 2ϵ2.

Applying Corollary 20 from [92] and noting that ∥∆S∥2 ≤ t with high probability, we have
that

sin∠(vi, v̂i) ≤ 8
√
2

√
k

δσ,q

[
t(
√
k + 1) + t2

]
, (2.87)

with probability at least[
1− 24 · 9k exp

(
−γ

δ2σ,q
64

)
− 8 · 81k exp

(
−γk t

2

16

)]
·
[
1− 2 exp

(
−c0γt2

)]
. (2.88)

Then, if V contains the first k right singular vectors of X, and assuming that t→ 0 and
that δσ,q ↛ 0, we have that ∥∥∥V − V̂

∥∥∥
F
≤ O

(
k2t

δσ,q

)
, (2.89)

with probability at least

1−O

(
9k exp

(
−γ

δ2σ,q
64

))
−O

(
81k exp

(
−γk t

2

16

))
−O

(
exp

(
−c0γt2

))
. (2.90)

We have an identical result for U and Û .

The Singular Values of X̃

Applying Theorem 23 from [92], we next have that σ̂j(X̃) ≥ σj(qX) − t with probability
at least

1− 4 · 9j exp
(
−c0γ

t2

16

)
, (2.91)

and that

σ̂j(X̃) ≤ σj(qX) +
√
kt+ 2

√
j

t2

σj(qX)
+ j

t3

(σj(qX))2
, (2.92)

with probability at least

1− 4 · 81k exp
(
−c0γ

t

16

)
− 2 exp

(
−c0γt2

)
. (2.93)
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It follows that
|σ̂i − σi| ≤ t(

√
k + 1) + 2

√
j

t2

σj(qX)
+ j

t3

(σj(qX))2
(2.94)

with probability at least

1− 4 · 81k exp
(
−c0γ

t

16

)
− 2 exp

(
−c0γt2

)
− 4 · 9j exp

(
−c0γ

t2

16

)
. (2.95)

Lemma 2.6. For positive scalars a, x, and y, 1
x−y ≤ 1

x
+ay if y > x or if x ≥

√
1
a

and y ≤

x− 1
ax

. Moreover, 1
x+y

≥ 1
x
− ay if x ≥

√
1
a
, or if 0 < x ≤

√
1
a

and y > 1
ax

− x.

Applying the lemma, we find that if t ≤ 3
4
σk(qX) (true for sufficiently large n and p, by

assumption), we may write∣∣∣∣ 1σ̂j − 1

σj(qX)

∣∣∣∣ ≤ 4

σ2
k

[
(
√
k + 1)t+ 2

√
j
t2

σj
+ j

t3

σ2
j

]
with probability at least (2.95).

Then, it follows that∥∥∥Σ− Σ̂
∥∥∥
F
≤ O (kt) and

∥∥∥Σ+ − Σ̂+

∥∥∥
F
≤ O

(
kt

σ2
k

)
, (2.96a)

with probability at least

1−O

(
81k · k · exp

(
−cγt

2

16

))
. (2.96b)

We have assumed that σk ↛ 0 and that t2γ ↛ 0.

The Error in X̂

Finally, we may combine all of the above results and write the following where if qX =

UΣV T is the (thin) SVD of qX, X̂ = (U +∆U) (Σ + ∆Σ,q) (V +∆V )
T . We may then write

X̂ = qX +∆X , where

∆X = UΣ∆T
V + U∆Σ,qV

T + U∆Σ,q∆
T
V +∆UΣV

T +∆UΣ∆
T
V +∆U∆Σ,qV

T +∆U∆Σ,q∆
T
V .

(2.97)
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Then we may write X̂ = qX +∆X , where ∆X is defined as all but the first term in (2.97).
We now plug in our bounds for the sizes of the ∆ terms, note that each U and V add factors
of

√
k to the Frobenius norm, and note that Σ adds a factor bounded by

√
kσ1(qX). Then,

when g is sufficiently small, we have that

∥∆X∥F ≤ O

(
k3t

σ1(qX)

δσ,q

)
, (2.98)

with probability at least

1−O
(
k · 81k exp

(
−c0γkt2/16

))
−O

(
k · 9k exp (−c0γkδσ,q/64)

)
. (2.99)

The result for X̂+ is similar: we may expand X̂+ as we did for X̂ in (2.97), and obtain
that with the same probability, we have X̂+ = X+ +∆X+ , where

∥∆X+∥F ≤ O

(
k3t

1

δσ,q

)
. (2.100)

2.F.3 Using X̂k to estimate Â

Next, we consider the estimation of Â with Ã = X̂τ
(1)

[
X̂τ

(0)

]+
. That is, we estimate X̂,

and take the sub-matrices X̂τ
(1) and X̂τ

(0) as inputs to DMD. Our previous bounds may be
applied with g(n, p, k, q) replaced with

√
τg(n, p, k, q): note that the sum of squares of the

norms of τ columns of X is bounded by kd21τn−2α, and all of these factors except τ appear
in g(n, p, k, q)2. Writing X̂τ

(1) = X(1) + ∆X1 and
(
X̂τ

(0)

)+
= X+

(0) + ∆X+
0

, we may write
Ã = Â+∆A, where ∆A is the sum of all but the first term in

Ã = X(1)X
+
(0) +∆X1X

+
(0) +X(1)∆X+

0
+∆X1∆X+

0
. (2.101)

Note that we have dropped the τ dependence for ease of reading. Each factor of X(1) adds√
k× σ1(qX(1)) to the Frobenius norm, and each factor of X+

(0) adds
√
k/σk(qX(0)). Hence,

we may write

∥∆A∥F ≤ O

( √
k

σk(qX0)
∥∆X1∥F +

√
kσ1(qX1)

∥∥∥∆X+
0

∥∥∥
F

)
. (2.102)
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Ideally, we would have (2.102) in terms of X. First, note that by the Cauchy Interlacing
Theorem [40], σ1(qX(1)) ≤ σ1(qX). It follows that we may replace X(1) with X without
any further work.

Since X(0) has the same singular values as a version of X with the last τ columns set to
0, we may replace X(0) with a perturbation of X, denoted by X̃(0): X̃(0) = X+∆̃X0 , where

∥∥∥∆̃X0

∥∥∥
F
≤

√
kτd1n

−α ≤
√

τ√
q(1− q)

× g(n, p, k, q).

An application of the Weyl Inequality [59, Theorem 4.3.1] yields that

1

σk(qX(0))
=

1

σk(qX̃(0))
≤ 1

σk(qX)− q∆̃X0

.

By assumption, σk(X) does not have limit 0. Moreover, by assumption, the norm of ∆̃X0

does have limit zero. Hence, for sufficiently large n, we may write

1

σk(qX(0))
≤ 1

σk(qX)
+

1

q
O
(∥∥∥∆̃X0

∥∥∥
F

)
≤ 1

σk(qX)
+

√
τ

q
O(g(n, p, k, q)).

Now, let t = ag(n, p, k, q) for some a > 1. Putting the previous work together, we find
that

∥∆A∥F ≤ O

(
k7/2a

√
τg(n, p, k, q)

σ1(qX)

δσ,q

)
. (2.103)

This bound holds with probability at least

1−O

(
k · 81k exp

(
−
(
1− 1

a

)2

c0γ
(
√
τg(n, p, k, q))

2

16

))
−O

(
k · 9k exp

(
−c0γ

δσ,q
64

))
.

(2.104)

2.F.4 The DMD Eigenvectors

Finally, we have previously bounded the deviation of Â = X(1)X
+
(0) from QΛQ+. We have

just bounded the deviation of Ã from Â due to missing data. We may combine the effects
of missing data and the deterministic noiseless deviation bound via the triangle inequality.
Then, we apply the the union bound over the k eigenvectors. Let ϵ2d,v be the deterministic
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deviation of the qk, i.e., the right-hand side of (2.33a). Then, with probability at least

1−O

(
k2 · 81k exp

(
−
(
1− 1

a

)2

c0γ
τ (g(n, p, k, q))2

16

))
−O

(
k2 · 9k exp

(
−c0γ

δσ,q
64

))
,

(2.105)

k∑
i=1

∥q̂i − pi qi∥
2
2 ≤ O

(
τ

q2
a2 (g(n, p, k, q))2

σ2
1(X)

δ2σ

k8

δ2L
+ ϵ2d,v

)
, (2.106)

where we have adapted the final step in the proof of Theorem 2.1.
Finally, let ϵ2d,e be the deterministic deviation of the Lii, i.e., the right-hand side of

(2.33c). Once again adapting the final step in the proof of Theorem 2.1, we have that for
each Lii, there is an eigenvalue of Ã such that

|Lii − λi|2 ≤ O

(
τ

q2
a2 (g(n, p, k, q))2

σ2
1(X)

δ2σ
k7 + ϵ2d,e

)
, (2.107)

with probability at least (2.105).
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Chapter 3

The Performance of the DMD
Algorithm with a Denoising Step

We have previously analyzed the DMD algorithm in the noiseless data setting;
now, we analyze the tSVD-DMD algorithm in the presence of noisy and missing
data. In the noisy data or missing data settings, it is advantageous to ‘clean’
or denoise the data before applying DMD. We use a truncated SVD (tSVD)
as a denoising step and find that the tSVD-DMD algorithm inherits the phase
transition from the trucnated SVD. Moreover, we derive an shrinkage-like es-
timator in the same spirit as the OptShrink algorithm [88]. We also provide
some preliminary characterizations of and conjectures about DMD performed
directly on noisy data. 2

3.1 Introduction
This chapter is a direct continuation of Chapter 2. In Chapter 2, we studied the Dynamic
Mode Decomposition (DMD) algorithm in the noise-free setting and derived performance
bounds for DMD applied to the Blind Source Separation (BSS) problem [27]. We also de-
rived results for the performance of DMD on missing data pre-processed with a truncated
SVD. We move on in this chapter to DMD applied to data that is corrupted by both noise
and missing values: this setting is the most physically realistic and the most interesting
to practitioners. In the field of fluid mechanics, DMD is generally applied to real measure-

2This chapter describes joint work with Asad Lodhia and Raj Rao Nadakuditi. Preliminary work on this
topic has appeared in [100].
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ments of fluid flowing. Of course, no set of sensors or cameras is perfect, and there will
necessarily be some noise in the collected data. Additionally, it is very possible that some
measurements may be so corrupted that they should be dropped (treated like they were
missing to begin with), or that some measurements are lost due to sensor failure or the
like. Moving beyond fluid mechanics, e.g., to blind source separation of real audio signals,
it is extremely easy to imagine noise or missingness in the collected audio streams.

As we will see, DMD applied to noisy data leads to poor results. Nonetheless, there is
hope: if the latent signal is low rank, i.e., there are only a few latent signals to estimate
relative to the dimensionality of the problem, the low-rank structure of the signal means
that a truncated SVD (tSVD) is a natural denoising choice [88]. In this chapter, we
analyze the performance of DMD with a tSVD denoising step. Additionally, we take some
preliminary steps toward analyzing DMD applied directly to noisy data, as well as DMD
applied to data that is entirely composed of noise.

3.2 Model
Consider a collection of latent signals {si}ri=1 where si ∈ Cn and r < n. Define

θi = ∥si∥2 and vi =
1

θi
si . (3.1)

Assume that the θi and vi are ordered so that θ1 > θ2 > . . . > θr > 0, and that the signal
strengths θi and rank r are not growing with n. Moreover, assume that the vi are mutually
orthogonal (or orthogonal in expectation, if stochastic), so that vHi vj is zero (or is zero
in expectation) for i ̸= j. Moreover, assume that the vi have a non-trivial autocorrelation
structure, i.e., if P is the circular left-shift matrix, vHi P vi = γi, and vHi P vj = 0 for i ̸= j

(these statements once again hold in expectation for a stochastic vi). Finally, let V ∈ Cn×r

be the matrix with the vi as columns and Θ ∈ Rr×r be a diagonal matrix with the θi on
the diagonal.

Assume that we observe a mixture of the signals: let U ∈ Cp×r be a mixing matrix with
orthonormal columns ui (p = p(n) ≥ r) and consider a signal matrix

Y =
r∑
i=1

θi ui vHi = UΘV H . (3.2)
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Here, Y is latent and we instead observe the noisy matrix

X = Y +G, (3.3)

where the entries of G are i.i.d. N (0, 1/n) (Gaussian) random variables.

Remark 3.1. At first glance the orthogonality of the signals vi may appear restrictive;
however, the results in [102, Thm. 3.2] require the asymptotic decay of the inner products
vHi P vj and vHi vj. Moreover, to prevent recovery of linear combinations of the signals given
the orthogonality of the ui, we require the θi to be distinct. Hence, the only constraining
part of this setup is the orthogonality of the ui.

3.2.1 Denoising X

To denoise X and estimate Y , we perform the truncated SVD. We assume that we have
oracle knowledge of the rank r, and hence obtain

X̂ = ÛΘ̂V̂ H (3.4)

where Û ∈ Cp×r is an estimator of U , and so on.

3.3 Circular tSVD-DMD
The DMD algorithm applied to X, which has columns {xi}ni=1, would proceed by forming

X(1) =
[
x2 x3 · · · xn

]
and X(0) =

[
x1 x2 · · · xn−1

]
, (3.5a)

and then taking an eigendecomposition of the matrix

Â = X(1)X
+
(0), (3.5b)

where the + denotes the Moore-Penrose pseudoinverse. The eigenvectors of Â, denoted by
q̂i, would be estimators of the ui.

However, we may observe that X(1) ≈ X(0)P up to a small rank-1 perturbation. Hence,
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we will consider the object

Â = X̂PX̂+ = ÛΘ̂
[
V̂ HPV̂

]
Θ̂+ÛH . (3.6)

3.3.1 Performance

Note that in the noise-free setting, we would have

Â = Y PY + = UΘ
[
V HPV

]
Θ+UH , (3.7)

and by assumption
[
V HPV

]
is a diagonal matrix. Thus, our goal will be to show that[

V̂ HPV̂
]

is asymptotically diagonal. Then, it is immediate that Â has eigenvectors ûi with
eigenvalues v̂Hi P v̂i. Moreover, we also have estimates of the latent signals vi. Theorem
3.1, taken from [12, Sec. 3.1], quantifies the performance of the estimators ûi and v̂i.

Theorem 3.1 (Performance of the tSVD). Let the data X be formed according to the
model described in Section 5.2 and let ûi, θ̂i, and v̂i be as defined in (3.4). Let c = p/n.
Then, we have that almost surely, [12, Sec. 3.1]

1.
∣∣uHi ûi

∣∣2 → α2
ui
=

 1− c(1+θ2i )
θ2i (θ2i+c)

if θi ≥ c1/4,

0 otherwise.

2.
∣∣vHi v̂i

∣∣2 → α2
vi
=

 1− (c+θ2i )
θ2i (θ2i+1)

if θi ≥ c1/4,

0 otherwise.

Theorem 3.2 and Corollary 3.1 describe the performance of the tSVD-DMD algorithm.
We see that regardless of signal strength, V̂ HPV̂ is asymptotically diagonal. Moreover, we
may write Â as a symmetric matrix plus a noise term whose magnitude converges to 0.

Theorem 3.2. Let Â be formed according to (3.6), the data X and Y formed according
to the model described in Section 5.2, and the results of Theorem 3.1 hold. Then, we have
that

1. V̂ HPV̂ is asymptotically almost surely diagonal.

2. The diagonal entries of V̂ HPV̂ , v̂Hi P v̂i, have an almost sure limit of α2
vi
γi.

62



3. In the almost sure limit, the eigenvalues of Â are α2
vi
γi with corresponding eigenvectors

ûi.

Corollary 3.1. We may write Â, defined in (3.6), as

Â = Û Λ̂ÛH +∆A, (3.8)

where Λ̂ is diagonal with entries α2
vi
γi and

∥∆A∥F → 0

almost surely.

3.4 Some Intuitions behind Theorem 3.2
Before formally proving Theorem 3.2, we will walk through a rough heuristic derivation
that motivates why we expect it to be true.

Note that we may write
v̂i = αi vi+

√
1− α2

i vi,⊥, (3.9)

where (abusing notation), vi,⊥ is some unit vector that is orthogonal to vi and

αi = v̂Hi vi .

Note that vi,⊥ is random.
The entries of V̂ HPV̂ are v̂Hi P v̂j. Using (3.9), we may write

v̂Hi P v̂j = αiαj vHi P vj +αi
√
1− α2

j vHi P vj,⊥

+
√
1− α2

iαj vHi,⊥ P vj +
√

1− α2
i

√
1− α2

j vHi,⊥ P vj,⊥ .
(3.10)

We now use the randomness of vi,⊥: all inner products involving these vectors have expected
limit zero. Then, we note that since the θi are distinct, we expect the inner product

∣∣∣v̂Hi vi
∣∣∣2

to have limit α2
i (given by Theorem 3.1) and v̂Hi v0 to have limit zero. Finally, we recall
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that vHi P vj has limit γi ̸= 0 and that vHi P vj has limit zero, so that

v̂Hi P v̂j →
{
α2
i γi if i = j,

0 otherwise.

It follows that
Â = X̂PX̂+ = ÛΘ̂

[
V̂ HPV̂

]
Θ̂+ÛH

has limit
Â→ Ûdiag

(
α2
i γi
)
ÛH ,

which is a Hermitian matrix. Hence, the eigenvectors of Â, denoted by q̂i, will be exactly
the ûi. Then, if Q̂ =

[
q1 q2 · · · qr

]
, estimating the latent signals by

(
Q̂+X̂

)H
yields

vectors that are proportional to the v̂i. Hence, the truncated SVD denoising procedure
has the side effect of symmetrizing or Hermitianizing the DMD eigenvalue problem.

3.5 Missing Data
We modify our data model to include missing data. That is, instead of observing the
matrix X, we observe

X ⊙M,

where the entries of M are i.i.d. random variables with

Mij =

{
1 with probability q,
0 with probability 1− q,

(3.11)

where ⊙ denotes the element-wise or Hadamard product. Additionally, we impose the
following incoherence or density conditions on ui and vi:

max
1≤i≤k

∥ui∥∞ ≤ Cu
(log p)ηu

√
p

and max
1≤i≤k

∥vi∥∞ ≤ Cv
(logn)ηv

√
p

, (3.12)

for some positive constants Cu, Cv, ηu, and ηv that do not depend on n and p. Intuitively,
if we have missing data, we cannot expect to recover sparse vectors, as we would be unable
to distinguish between a missing entry and a zero. We then have the following result from
[114, Thm. 2]:
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Theorem 3.3 (Performance of the tSVD with Noisy, Missing Data). Let the data X be
formed according to the model described in Section 5.2 and (3.12), and then masked/ob-
served with probability q, as in (3.11). Let ûi, θ̂i, and v̂i be as defined in (3.4). Define
c = p/n and θ̃i =

√
qθi. Then, we have that almost surely, [114, Thm. 2]

1.
∣∣uHi ûi

∣∣2 → α̃2
ui
=

 1− c(1+θ̃2i )
θ̃2i (θ̃2i+c)

if θ̃i ≥ c1/4,

0 otherwise.

2.
∣∣vHi v̂i

∣∣2 → α̃2
vi
=

 1− (c+θ̃2i )
θ̃2i (θ̃2i+1)

if θ̃i ≥ c1/4,

0 otherwise.

Theorem 3.3 indicates that the effect of missing data is to lower the SNR by a factor of
√
q, where q is the probability of observing an individual entry. Relative to Theorem 3.1,

the rescaling of θi is the only change.
Given Theorem 3.3, we immediately are able to state Theorem 3.4 and Corollary 3.2,

analogous to Theorem 3.2 and Corollary 3.1, respectively. Once again, the form of these
new theorems is exactly analogous to their non-missing counterparts.

Theorem 3.4. Let Â be formed according to (3.6) from the missing data model (3.11),
and let the conditions and results of Theorem 3.3 hold. Then, we have that

1. V̂ HPV̂ is asymptotically almost surely diagonal.

2. The diagonal entries of V̂ HPV̂ , v̂Hi P v̂i, have an almost sure limit of α̃2
vi
γi.

3. In the almost sure limit, the eigenvalues of Â are α̃2
vi
γi with corresponding eigenvectors

ûi.

Corollary 3.2. We may write Â, defined in (3.6), as

Â = Û Λ̂ÛH +∆A, (3.13)

where Λ̂ is diagonal with entries α̃2
vi
γi and

∥∆A∥F → 0

almost surely.
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3.6 Simulations
In this section, we provide some numerical verifications of our results. We use a rank-2
signal

Y = θ u1 vH1 +
θ

2
u2 vH2 ,

where θ2 = θ1/2, the entries of v1 are proportional to a realization of an AR(2) process with
coefficients (1/6, 2/3) (so that γ1 = 1/2), and the entries of v2 are proportional to cosωt
where cosω = 1/4 (so that γ2 = 1/4). The ui are randomly generated and orthogonal
to each other. We vary the ratio c = p/n, the signal strength θ, and the observation
probability q. Using oracle knowledge of the rank r, we compute the truncated SVD and
compute V̂ HPV̂ . We compute

∣∣∣q̂Hi ui
∣∣∣2 where q̂i are the DMD eigenvectors generated from

both X and the denoised X̂. Then, given the estimated Q̂, we compute Ŝ by normalizing
the columns of

(
Q̂+X̂

)H
or
(
Q̂+X

)H
. Note that Q̂ has columns qi and Ŝ has columns si.

We first verify the noisy data cases, i.e., Theorem 3.2 and Corollary 3.1. Before proceed-
ing, we present a verification of Theorem 3.1 in Figure 3.1. We then verify the performance
of the tSVD-DMD algorithm in Figure 3.2, and compare it with DMD in Figure 3.3. We
see that the phase transition is correctly predicted, and that DMD performs significantly
worse that the tSVD-DMD algorithm. In Figure 3.4, we see that V̂ HPV̂ is asymptotically
diagonal, as expected.

We next verify the results for missing data. We begin with a verification of Theorem
3.3 in Figures 3.5 and 3.6, and see that the truncated SVD behaves as predicted. We then
verify the performance of the tSVD-DMD algorithm in Figure 3.7 and 3.8, and compare it
with DMD in Figure 3.9 and 3.10. We see that the phase transition is correctly predicted,
and that DMD performs significantly worse that the tSVD-DMD algorithm. In Figure
3.11, we see that V̂ HPV̂ is asymptotically diagonal, as expected.

3.7 Optimally Weighted DMD
Recall that for the orthogonal model, we consider

Â = X̂PX̂+ = ÛΘ̂
[
V̂ HPV̂

]
Θ̂+ÛH , (3.14)
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(a) tSVD: v̂1.

(b) tSVD: v̂2.

(c) tSVD: û1.

(d) tSVD: û2.

Figure 3.1: We verify Theorem 3.1. The white line in each heatmap indicates the
phase transition, as predicted in the theorem.

and the equivalent noise-free version is

A = XPX+ = UΘ
[
V HPV

]
Θ+UH = Udiag (γi)UH . (3.15)

Moreover, we have shown that using the truncated SVD is equivalent (in the almost sure
limit) to writing

Â = Ûdiag
(
α2
vi
γi
)
ÛH .
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In the noisy setting, we are given Û instead of U : we may then ask the question, is there
an alternative weighting of the ûi that yields a lower error? I.e., what is

argmin
W

∥∥∥ÛWÛH − Udiag (γi)UH
∥∥∥
F
. (3.16)

Manipulating this equation, we see that the optimal W is given by

Ŵ = ÛHUdiag (γi)UHÛ . (3.17)

We will refer to this as the optimal value of W . Noting that the ‘true’ W is diagonal, we
may go one step further and write down an optimal approximation

Ŵ = diag
(
ÛHUdiag (γi)UHÛ

)
. (3.18)

Finally, using random matrix theory, we know that in the almost sure limit, we may write
down the following predicted result for W

Ŵ = diag
(
α2
ui
γi
)
, (3.19)

and call it the estimator for the optimal W . Note that α2
ui

and α2
vi

are defined in Theorem
3.3. Of course, we do not have access to γi directly: however, note that the diagonals of
V̂ HPV̂ are approximately α2

vi
γi. Moreover, we do not have access to the α2

vi
directly either,

as these depend on knowledge of the θi. However, we may estimate the θi and α2
vi

using [12,
Thm. 2.8, 2.9]. It follows that we may find the optimal weights by rescaling these values,
and that the estimator is completely data-driven.

We verify the power of this estimator, and plot the numerical error in estimating A

and the DMD eigenvectors Q, and the weights used in our formulation. We fix p and
rotate between varying one of n, θ, and the estimated rank r̂. We fix the rank r = 2

and use the orthogonal cosines model once again. In Figures 3.12, 3.13, 3.14, we see that
our estimator outperforms the tSVD-DMD procedure. Moreover, we see that the behavior
of our procedure is either that of a shrinkage estimator or the opposite (an expansion)
depending on the relative values of p and n.

Note that in the limit, we have shown that V̂ HPV̂ is diagonal; in the finite sample
regime, there will necessarily be some error or non-zero values in the off-diagonals. We
repeat our simulations and compare the values of our estimators where we discard the
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off-diagonal entries of V̂ HPV̂ , referred to as the oracle approximation. Additionally, we go
further and replace the values of

∣∣∣ûHi ui
∣∣∣2 (and similarly for the vi) with their theoretical

limits (the α2
ui

), and refer to this as the ‘RMT’ version of the oracle estimators. In Figures
3.15, 3.16, 3.17, we see that replacing the oracle estimators with their approximation and
RMT approximations does not lead to a notable change: all of the empirical values of the
oracle estimator are very close to the approximations. The important takeaway here is
that we are able to predict the behavior of the oracle estimator.

3.7.1 Extension to the non-orthogonal model

Here, we extend our previous result for the optimal W to the setting in which the latent
signals and the mixing matrix are not orthogonal. I.e., X = QCH is a rank r matrix, with
an SVD X = UΘV H , but the columns of Q and C are not necessarily orthogonal. We still
impose that the columns of Q are unit norm and that the columns of C are mutually 1-lag
uncorrelated, with distinct, non-zero lag-1 autocorrelations γi. Recall that we consider

Â = X̂PX̂+ = ÛΘ̂
[
V̂ HPV̂

]
Θ̂+ÛH . (3.20)

Effectively, we are working with ÛK̂ÛH , where

K̂ = Θ̂
[
V̂ HPV̂

]
Θ̂+,

and in the noise-free setting we would have

K = Θ
[
V HPV

]
Θ+.

We may ask, is there a better matrix Ŵ that would yield a lower error, i.e., what is

argmin
W

∥∥∥ÛWÛH − UKUH
∥∥∥
F
. (3.21)

We see that the optimal W is given by

Ŵ = ÛHUKUHÛ , (3.22)
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and refer to this as the optimal value of W . The design of an estimator of W is still an
open question, and will be the subject of future work.

We repeat our simulations with all of the parameters the same, except we do not use an
orthogonal model. In Figures 3.18, 3.19, 3.20, we see that our estimator outperforms the
tSVD-DMD procedure. Moreover, we see that the behavior of our procedure is either that
of a shrinkage estimator or the opposite (an expansion) depending on the relative values
of p and n.

3.8 Conjectures about DMD in the Noise-only Setting
We state a conjecture about DMD in the noise-only setting.

Conjecture 3.1. Let G be a p× n matrix with i.i.d. N
(
0, 1

n

)
entries and let c = p

n−1
. If

we define Â as in (3.5) with G in place of X, let λ1, λ2, . . . , λp be the eigenvalues of Â. If
we write λi = ri exp (iωi), where ωi ∈ [−π, π) and ri ≥ 0, we have that:

1. The limiting distribution of the ωi is uniform on [−π, π).

2. If c ≥ 1, the limiting distribution of ri has a density

f(r) =

(
1− 1

c

)
δ1(r) +

1

c
δp(r).

3. If c < 1, the limiting distribution of ri has a density

f(r) = 2

(
1

c
− 1

)
r

[1− r2]2
1[0,

√
c](r).

Here, 1[0,√c](r) denotes the indicator function of the interval [0,
√
c] and δx(r) denotes the

Dirac delta function centered at the value x.

Note that the density in the c < 1 case is exactly that of a product of truncated unitary
matrices, as described in [1, Sec. 3.1.1, (3.12)].

3.8.1 Simulations

We present a few simulations to verify Conjecture 3.1. We fix p = 500 and vary n. We plot
the empirical densities of the eigenvalues and overlay the theoretical predictions in Figure
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3.21, and observe that our conjecture is numerically substantiated.

3.9 Some Expressions for DMD in the Rank-1 Setting
While the general analysis of DMD in the low-rank signal-plus-noise setting is still open,
we are able to give a partial characterization in the rank-1 setting.

Here, our model is
X = θ u vH +G ∈ Cp×n, (3.23)

where we assume that vH P v = γ ̸= 0, θ > 0, and that u and v have unit ℓ2 norm.
Moreover, the entries of G are once again i.i.d. N (0, 1/n) random variables. We will
denote the columns of G by gi and the entries of v by vi. P once again denotes the circular
left-shift matrix, v(0) will denote the vector composed of the first n− 1 elements of v, and
ei will denote the vector with a 1 in the ith position and 0 elsewhere.

We have the following result for DMD in the rank-1 plus noise setting:

Theorem 3.5. Given X as defined in (3.23), let Â be formed as in (3.5). Then, Â is a
rank-4 perturbation of G̃ = G(0)PG

+
(0), where G(0) is defined analogously to X(0) in (3.5).

Note that we conjecture that the eigenvalue distribution of G̃ is as described in Conjec-
ture 3.1, but our results do not depend on the conjecture. In the rest of this section, we
prove this result. We also state the following conjecture about the behavior of higher rank
signals plus noise:

Conjecture 3.2. Let X be a rank r plus white noise signal matrix, analogous to (3.23),
and let Â be formed as in (3.5). Then, Â is a rank-r̃ perturbation of G̃ = G(0)PG

+
(0), where

G(0) is defined analogously to X(0) in (3.5) and r̃ = min{p, n− 1, 3r + 1}.

3.9.1 Perturbation: p ≤ n− 1

We begin with the case where p ≤ n− 1.

Definitions

Assume that p ≤ n− 1. Following [80, Theorem 3], let

ũ = G+
(0) u and ṽ =

(
I −G+

(0)G(0)

)
v(0),
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so that we may define
β̄ = 1 + θ

[
vH(0) ũ

]
,

where the over-line denotes a complex conjugate; and

σ̃ = θ2∥ũ∥22∥ṽ∥22 + |β|2.

Note that with probability 1, u is in the range of G(0) and β̄ is non-zero.

Pseudoinverse Perturbation

If we write
X+

(0) = G+
(0) +∆G,

from applying the result of [80, Theorem 3], we have that

∆G =

{
θ

β̄

(
1− θ2∥ũ∥22∥ṽ∥22

σ̃

)
ṽũH − θ2∥ũ∥22

σ̃
ṽ vH(0)−

θ2∥ṽ∥22
σ̃

ũũH − θβ̄

σ̃
ũ vH(0)

}
×G+

(0).

For future use, we will define c1 through c4 and write

∆G =
{
c1ṽũH + c2ṽ vH(0)+c3ũũH + c4ũ vH(0)

}
×G+

(0).

Perturbation of G(0)PG
+
(0)

Note that
X(1) = X(0)P +∆,

where
∆ = ([gn−g1] + θ [vn − v1]u) eHn−1 = δ eHn−1 .

Then,
X(1)X

+
(0) =

([
θ u vH(0)+G(0)

]
P +∆

) (
G+

(0) +∆G

)
,

which can be written as

X(1)X
+
(0) = G(0)PG

+
(0) + θ u vH(0) PG+

(0) +∆G+
(0) +

[
θ u vH(0)+G(0)

]
P∆G +∆∆G.
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We will (temporarily) ignore the first term, and the common G+
(0) term. Let c1 through c4

denote the coefficients of the outer products in ∆G. We have:

θ u vH(0) P + δ eHn−1+X(0)P [c1ṽ + c3ũ] ũH +X(0)P [c2ṽ + c4ũ]vH(0)
+ δ [c1ṽn−1 + c3ũn−1] ũH + δ [c2ṽn−1 + c4ũn−1]vH(0) .

(3.24)

A Rank-4 Perturbation

Let
W =

[
X(0)P ṽ X(0)P ũ θ u δ

]
,

Y =


c1 c3 0 c1ṽn−1 + c3ũn−1

c2 c4 0 c2ṽn−1 + c4ũn−1

0 0 1 0

0 0 0 1


H

,

and
Z =

[
ũ v(0) PH v(0) en−1

]
.

Then, we have that
X(1)X

+
(0) = G(0)PG

+
(0) +WY ZHG+

(0).

That is, X(1)X
+
(0) is a rank-4 perturbation of G(0)PG

+
(0).

Note that if θ = 0, the perturbation is rank-1, and is equal to

[gn−g1] eHn−1G
+
(0) = δ eHn−1G

+
(0).

3.9.2 Perturbation: p ≥ n− 1

We now finish with the case where p ≥ n− 1.

Definitions

Assume that p ≥ n− 1. Following [80, Theorem 5], if we define

ũ =
[
I −G(0)G

+
(0)

]
u and ṽ =

[
vH(0)G

+
(0)

]H
,
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we have that
σ̃ = θ2∥ũ∥22∥ṽ∥22 + |β̄|2,

and β exactly as before, with
β̄ = 1 + θ

[
vH(0)G

+
(0) u

]
in the current notation.

Note that with probability 1, v(0) is in the range of GH
(0) and β̄ is non-zero.

Pseudoinverse Perturbation

Similar to what we wrote previously, applying the result in [80, Theorem 5] yields that

∆G = G+
(0) ×

{
θ

β̄

[
1− θ2

σ̃
∥ũ∥22∥ṽ∥22

]
ṽũH +−θ

2

σ̃
∥ũ∥22ṽṽH +−θ

2

σ̃
∥ṽ∥22 u ũH +−θβ̄

σ̃
u ṽH

}
.

Similarly, we may define c1 through c4 to be the coefficients of the outer products.

A Rank-4 Perturbation

We define

W =
[(
X(0)P + δ eHn−1

)
G+

(0)ṽ
(
X(0)P + δ eHn−1

)
G+

(0) u θ u δ
]
,

Y =


c1 c3 0 0

c2 c4 0 0

0 0 1 0

0 0 0 1


H

,

and
Z =

[
ũ ṽ

[
vH(0) PG+

(0)

]H [
eHn−1G

+
(0)

]H]
,

so that
X(1)X

+
(0) = G(0)PG

+
(0) +WY ZH .

Once again, X(1)X
+
(0) is a rank-4 perturbation of G(0)PG

+
(0).

Note that we require n ≥ 2; before, we required p ≥ 1 and n ≥ 2. When min{p, n−1} <
4, the rank of WY ZH is obviously smaller than 4.
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Once again, we have that if θ = 0, the perturbation is rank-1, and is equal to

[gn−g1] eHn−1G
+
(0) = δ eHn−1G

+
(0).

3.10 Proof of Theorem 3.2 (and Theorem 3.4)
Note that proving that V̂ HPV̂ is diagonal yields that the diagonal entries of V̂ HPV̂ are
the eigenvalues for the eigenvectors ûi. I.e., item 3 is a simple consequence of items 1 and
2 in Theorem 3.2. Our proof will proceed by first characterizing v̂i and then writing out
the full form of v̂Hi P v̂j. We will then note that the expression for v̂i involves a resolvent,
so that v̂Hi P v̂j involves a product of resolvents: we will analyze this product. Then, we
will combine all of our results, make simplifications, and show that the matrix V̂ HPV̂ is
asymptotically diagonal.

3.10.1 The form of v̂i

Let
R(z) =

(
GHG− z In

)−1
. (3.25)

From [12, Lem. 5.1, Proof], we have that

v̂i ∝ R
(
θ̂2i

) [
θ̂iY

Hûi +GHY v̂i
]
. (3.26)

Hence, we may write

v̂i =
R
(
θ̂2i

) [
θ̂iY

Hûi +GHY v̂i
]

[
θ̂2i û

H
i Y R

(
θ̂2i

)2
Y Hûi + v̂Hi Y HGR

(
θ̂2i

)2
GHY v̂i + 2θ̂iRe

{
ûHi Y R

(
θ̂2i

)2
GHY v̂i

}]1/2 .
(3.27)
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3.10.2 The form of v̂H
i P v̂j

We consider the general form of v̂Hi P v̂j. We first consider the numerator of the product:

an = θ̂iθ̂jûHi Y
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
Y Hûj

= θ̂iθ̂j
∑
l,k

θlθk
(
uHl ûi

) (
ûHj uk

)
vHk
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
vl,

(3.28a)

bn = θ̂iûHi Y
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GHY v̂j

= θ̂i
∑
l,k

θlθk

(
ûHi uk

) (
vHl v̂j

)
vHk
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GH ul,

(3.28b)

cn = θ̂jv̂Hi Y HG

[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
Y Hûj

= θ̂j
∑
l,k

θlθk

(
v̂Hi vk

) (
uHl ûj

)
uHk G

[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
vl,

(3.28c)

dn = v̂Hi Y HG

[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GHY v̂j

=
∑
l,k

θlθk
(
vHk v̂i

) (
v̂Hj vl

)
uHk G

[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GH ul .

(3.28d)

Next, we consider the denominator, noting that we have two sets of variables (for vi and
vj):

ad,i = θ̂2i û
H
i Y R

(
θ̂2i

)2
Y Hûi

= θ̂2i
∑
k,l

θkθl
(
uHl ûi

) (
ûHi uk

)
vHk R

(
θ̂2i

)2
vl,

(3.29a)

bd,i = v̂Hi Y HGR
(
θ̂2i

)2
GHY v̂i

=
∑
k,l

θkθl
(
vHl v̂i

) (
v̂Hi vk

)
uHk GR

(
θ̂2i

)2
GH ul,

(3.29b)
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cd,i = 2θ̂iRe
{

ûHi Y R
(
θ̂2i

)2
GHY v̂i

}
= 2θ̂iRe

{∑
k,l

θkθl

(
ûHi uk

) (
vHl v̂i

)
vHk R

(
θ̂2i

)2
GH ul

}
.

(3.29c)

Putting everything together, we find that

v̂Hi P v̂j =
an + bn + cn + dn√

ad,i + bd,i + cd,i
√
ad,j + bd,j + cd,j

. (3.30)

3.10.3 The entries of R(z)PR(w)

Note that for any unit vectors a and b ∈ Cn, if mϕ(z) is the Stieltjes transform of the
Marcenko-Pastur law and the imaginary part of z is denoted by η, we have that

∣∣aH R(z)b−mϕ(z) aH b
∣∣ ≺ Ψ(z) =

√
Immϕ(z)

nη
+

1

nη
, (3.31)

where the symbol ≺ denotes stochastic domination [18, Thm. 2.4]. We want to bound an
expression of the form

∣∣aH R(z)PR(w)b−mϕ(z)mϕ(w) aH P b
∣∣ ,

where z and w may be different. Assume that a has entries ai and b has entries bi, and that
all subscripts are taken modulo the number of coordinates n (e.g., a0 is an). For notational
clarity, we will define Z = R(z) and W = R(w). We may then write:

aH R(z)PR(w)b =
∑
l,k

albk
∑
q

ZlqWq−1,k. (3.32)

Expanding this summation, we may write

aH R(z)PR(w)b =
∑
l

albl−1ZllWl−1,l−1 +
∑
l

albl−1Zl,l−1Wl−1,l−1

+
∑
l

∑
q:q ̸=l,l−1

albl−1ZlqWq−1,l−1 +
∑

l,k ̸=l−1

albkZllWl−1,k

+
∑

l,k ̸=l−1

albkZl,k+1Wkk +
∑

l,k ̸=l−1

∑
q:q ̸=l,k+1

albkZlqWq−1,k.

(3.33)
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Notice that only the first summation has no off-diagonal entries of Z and W : this is the
term that we care about, and our goal is to show that the remaining terms are bounded.

To bound the remaining terms, we will point to the derivation in [18, Sec. 5]. In particu-
lar, we note that expanding the off-diagonal entries of Z and W using the various resolvent
identities (see [18, Lem. 3.8]) enables us to find products of the (i.i.d) entries of G, Gij

inside each term of the summations. We are in the same setting as [18, Sec. 5], and it is
hence an immediate consequence that the size of the remaining five terms is stochastically
dominated by Ψ(z)Ψ(w).

To bound the diagonal terms, we note that individually we have

|Zll −mϕ(z)| ≺ Ψ(z) and |Wll −mϕ(z)| ≺ Ψ(w)

uniformly in z, w, and the index l. Using [18, Lem. 3.1, 3.2], it follows that∣∣∣∣∣∑
l

albl−1ZllWl−1,l−1 −
∑
l

albl−1mϕ(z)mϕ(w)

∣∣∣∣∣ ≺ Ψ(z)Ψ(w).

We have proven that

∣∣aH R(z)PR(w)b−mϕ(z)mϕ(w) aH P b
∣∣ ≺ Ψ(z)Ψ(w). (3.34)

3.10.4 Putting things together

Following [12, Lemma 4.1, Proof], we immediately conclude that bn, cn, and cd,i and cd,j → 0

almost surely. Moreover, [12, Eqn. (17)] indicates that we may reduce the summations in
(3.28) to only terms such that θl = θi and θk = θj, and to θk = θl = θi in (3.29). However,
by assumption, the θi are distinct, so that the summations in the surviving terms collapse.
Hence, we may write

an = θ̂iθ̂jûHi Y
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
Y Hûj

= θ̂iθ̂jθiθj
(
uHi ûi

) (
ûHj uj

)
vHi
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
vj +o(1),

(3.35a)
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dn = v̂Hi Y HG

[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GHY v̂j

= θiθj
(
vHi v̂i

) (
v̂Hj vj

)
uHi G

[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GH uj +o(1)

(3.35b)

ad,i = θ̂2i û
H
i Y R

(
θ̂2i

)2
Y Hûi

= θ̂2i θ
2
i

∣∣uHi ûi
∣∣2 vHi R

(
θ̂2i

)2
vi+o(1),

(3.35c)

bd,i = v̂Hi Y HGR
(
θ̂2i

)2
GHY v̂i

= θ2i
∣∣vHi v̂i

∣∣2 uHi GR
(
θ̂2i

)2
GH ui+o(1).

(3.35d)

We have characterized the behavior of vHi
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
vj and shown that it

concentrates around
mϕ

(
θ̂2i

)
mϕ

(
θ̂2j

)
vHi P vj .

However, by assumption, vHi P vj has limit zero, so that unless i = j, an vanishes. The

randomness of the ui means that uHi G
[
R
(
θ̂2i

)H
PR

(
θ̂2j

)]
GH uj vanishes for all i and j,

so that dn vanishes. Hence, we have that v̂Hi P v̂j → 0 for i ̸= j, and

v̂Hi P v̂i =
θ̂2i θ

2
i

∣∣uHi ûi
∣∣2mϕ

(
θ̂2i

)2
γi

θ̂2i θ
2
i |uHi ûi|2 vHi R

(
θ̂2i

)2
vi+θ2i |vHi v̂i|2 uHi GR

(
θ̂2i

)2
GH ui

+ o(1).

However, this is exactly equal to the expression in [12, Thm. 2.9] times γi, and we conclude
that

v̂Hi P v̂i → α2
vi
γi

almost surely, as desired.
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(a) tSVD-DMD: ŝ1.

(b) tSVD-DMD: ŝ2.

(c) tSVD-DMD: q̂1.

(d) tSVD-DMD: q̂2.

Figure 3.2: Here, we verify Theorem 3.2 by presenting the performance of the tSVD-
DMD algorithm. We see that the estimates from the algorithm inherit
the tSVD phase transition of Theorem 3.1, and that above the phase
transition they are correct.
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(a) DMD: ŝ1.

(b) DMD: ŝ2.

(c) DMD: q̂1.

(d) DMD: q̂2.

Figure 3.3: Here, we present performance results for the DMD algorithm on noisy
data. We see that the performance is much worse than that of the tSVD-
DMD algorithm (Figure 3.2).
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(a) tSVD: Error in V̂ HPV̂ . (b) tSVD: Error in the off-diagonal en-
tries of V̂ HPV̂ .

Figure 3.4: We verify the results of Theorem 3.2 by plotting the error between the
limiting diagonal matrix and V̂ HPV̂ . We separate the total error and the
error in the off-diagonals, and note that both are small.
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(a) tSVD: v̂1, c = 10−1.

(b) tSVD: v̂2, c = 10−1.

(c) tSVD: v̂1, c = 102/5.

(d) tSVD: v̂2, c = 102/5.

Figure 3.5: We verify Theorem 3.3. The white line in each heatmap indicates the
phase transition, as predicted in the theorem.
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(a) tSVD: û1, c = 10−1.

(b) tSVD: û2, c = 10−1.

(c) tSVD: û1, c = 102/5.

(d) tSVD: û2, c = 102/5.

Figure 3.6: We verify Theorem 3.3. The white line in each heatmap indicates the
phase transition, as predicted in the theorem.
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(a) tSVD-DMD: ŝ1, c = 10−1.

(b) tSVD-DMD: ŝ2, c = 10−1.

(c) tSVD-DMD: ŝ1, c = 102/5.

(d) tSVD-DMD: ŝ2, c = 102/5.

Figure 3.7: Here, we verify Theorem 3.4 by presenting the performance of the tSVD-
DMD algorithm. We see that the estimates from the algorithm inherit
the tSVD phase transition of Theorem 3.3, and that above the phase
transition they are correct.
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(a) tSVD-DMD: q̂1, c = 10−1.

(b) tSVD-DMD: q̂2, c = 10−1.

(c) tSVD-DMD: q̂1, c = 102/5.

(d) tSVD-DMD: q̂2, c = 102/5.

Figure 3.8: Here, we verify Theorem 3.4 by presenting the performance of the tSVD-
DMD algorithm. We see that the estimates from the algorithm inherit
the tSVD phase transition of Theorem 3.3, and that above the phase
transition they are correct.
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(a) DMD: ŝ1, c = 10−1.

(b) DMD: ŝ2, c = 10−1.

(c) DMD: ŝ1, c = 102/5.

(d) DMD: ŝ2, c = 102/5.

Figure 3.9: Here, we present performance results for the DMD algorithm on noisy
data. We see that the performance is much worse than that of the tSVD-
DMD algorithm (Figure 3.7).
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(a) DMD: q̂1, c = 10−1.

(b) DMD: q̂2, c = 10−1.

(c) DMD: q̂1, c = 102/5.

(d) DMD: q̂2, c = 102/5.

Figure 3.10: Here, we present performance results for the DMD algorithm on noisy
data. We see that the performance is much worse than that of the
tSVD-DMD algorithm (Figure 3.8).
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(a) tSVD: Error in V̂ HPV̂ , c = 10−1.

(b) tSVD: Error in V̂ HPV̂ , c = 102/5.

(c) tSVD: Error in the off-diagonal en-
tries of V̂ HPV̂ , c = 10−1.

(d) tSVD: Error in the off-diagonal en-
tries of V̂ HPV̂ , c = 102/5.

Figure 3.11: We verify the results of Theorem 3.4 by plotting the error between the
limiting diagonal matrix and V̂ HPV̂ . We separate the total error and
the error in the off-diagonals, and note that both are small.
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Figure 3.12: We study our Optimally Weighted DMD procedure, where we fix all
parameters except the sample size n. We see that the estimation error
of A and Q is lower with the reweighted DMD procedure than with the
tSVD. Moreover, we see a transition in the behavior of the weights from
shrinkage to growth as n changes.

Figure 3.13: We study our Optimally Weighted DMD procedure, where we fix all
parameters except the SNR θ. We see that the estimation error of
A and Q is lower with the reweighted DMD procedure than with the
tSVD.
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Figure 3.14: We study our Optimally Weighted DMD procedure, where we fix all
parameters except the estimated rank r̂. We see that the estimation
error of A and Q is lower with the reweighted DMD procedure than
with the tSVD.

Figure 3.15: We study our Optimally Weighted DMD procedure, where we fix all
parameters except the sample size n. We see that the diagonal approx-
imation and the data driven estimator are very close to the optimal.
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Figure 3.16: We study our Optimally Weighted DMD procedure, where we fix all
parameters except the SNR θ. We see that the diagonal approximation
and the data driven estimator are very close to the optimal.

Figure 3.17: We study our Optimally Weighted DMD procedure, where we fix all
parameters except the estimated rank r̂. We see that the diagonal ap-
proximation and the data driven estimator are very close to the optimal.
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Figure 3.18: We study our Optimally Weighted DMD procedure for the non-
orthogonal model, where we fix all parameters except the sample size n.
We see that the estimation error of A and Q is lower with the reweighted
DMD procedure than with the tSVD. Moreover, we see a transition in
the behavior of the weights from shrinkage to growth as n changes.

Figure 3.19: We study our Optimally Weighted DMD procedure for the non-
orthogonal model, where we fix all parameters except the SNR θ. We
see that the estimation error of A and Q is lower with the reweighted
DMD procedure than with the tSVD.
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Figure 3.20: We study our Optimally Weighted DMD procedure for the non-
orthogonal model, where we fix all parameters except the estimated
rank r̂. We see that the estimation error of A and Q is lower with the
reweighted DMD procedure than with the tSVD.

(a) The empirical radial distribution with the theoretical prediction overlaid.

(b) The empirical phase distribution with the theoretical prediction (uniform)
overlaid.

Figure 3.21: We numerically verify Conjecture 3.1. We see that the distribution of
phases is indeed uniform, and that for for p ≥ n−1 the radial distribution
concentrates around 1 and 0. The non-trivial case for p ≤ n − 1 is also
observed to closely align with the theoretical prediction.
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Chapter 4

Extensions and Applications of the
DMD Algorithm

In Chapter 2, we introduced the DMD (Dynamical Mode Decomposition) algorithm and
provided a performance analysis in the noise-free and missing data settings. In Chapter
3, we extended our analysis to the noisy data setting. In this chapter, we provide some
alternate perspectives on and applications of the DMD algorithm.

First, recall that the DMD algorithm solves an eigenvalue problem, and that our results
in Chapter 2 indicate that the solutions / outputs from the algorithm have certain qualities.
We present an optimization-based framework that mimics the eigenvalue problem solved
by the algorithm. We provide an algorithm with some convergence guarantees, as well as
some numerical results. Additionally, we show that our formulation can be used to impose
additional structure on the DMD outputs, e.g., sparsity.

Next, we discuss the utility of the Hilbert transform for DMD. Originating from signal
processing, the Hilbert transform is the integral transform that takes in a real-valued signal
and produces a complex signal that is analytic on the complex plane. We show that using
the Hilbert transform on certain datasets prior to applying DMD may be advantageous.
We follow the Hilbert transform discussion with a two-dimensional, spatial DMD extension.
The DMD algorithm operates on time series, but we might imagine a spatial variation
instead of temporal variation (e.g., images instead of time series).

We then apply the DMD algorithm to some real data. We apply DMD to two datasets:
an fMRI dataset and a real, still-camera video. We next revisit audio unmixing, and present
a comparison of DMD and kurtosis-based ICA. We derive an example of real audio signals
that DMD can unmix, but fail to be unmixed by ICA. Finally, we briefly compare DMD
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and Singular Spectrum Analysis (SSA), another time series decomposition technique.

4.1 An Optimization-Based Formulation of DMD
Once again, assume that we are given a p × n data matrix X with columns xt and that
we seek to write X as a linear combination of some latent signals {s1, s2, · · · , sk}. That is,
for a given matrix X, we seek matrices

B =
[
b1 b2 · · ·bk

]
∈ sp×k and S =

[
s1 s2 · · · sk

]
∈ sn×k,

such that X = BSH . We will assume that we have oracle knowledge of the rank k. Once
again, we use P to denote the circular left-shift matrix, where we will leave the dimension
unspecified and clear from context.

4.1.1 The Objective Function

The conclusion of Theorem 2.1 was that DMD unmixes or produces signals that are un-
correlated at a lag of one-time step but also have non-vanishing lag-1 autocorrelations.
Additionally, given estimates B̂ and Ŝ, we want X = B̂ŜH . These two properties suggest
minimizing the following objective function:

L (X,B, S,λ) =
1

2

∥∥X −BSH
∥∥2
F
+
λ21
2

∑
i ̸=j

(
sHi P sj

)2 − λ22
2

∑
i

(
sHi P si

)2
,

while constraining ∥si∥2 = 1. However, this function is non-convex, is not even block
convex, and has a subtraction of terms. Moreover, the unit norm constraint for the si is
difficult to work with. A relaxation of the following form may be easier to work with:

L (X,B, S,λ) =
1

2

∥∥X −BSH
∥∥2
F
+
λ21
2

∥∥Ik−SHPS
∥∥2
F
.

We have relaxed the unit norm constraint by asking that the diagonal terms of SHPS
(equal to sHi P si) are close to 1. This formulation eliminates the subtraction of terms, but
is still not block-convex due to the SHPS term. A natural way to create block-convexity
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would be to use variable splitting [44]. We then may write

L (X,B, S, Z,λ) =
1

2

∥∥X −BSH
∥∥2
F
+
λ21
2

∥∥Ik−ZHPS
∥∥2
F
+
λ22
2
∥Z − S∥2F . (4.1)

Essentially, splitting S into Z and S and then penalizing the difference between Z and S

creates a block-convex function.

Gradients and Updates

Given (4.1), we may use an alternating minimization approach to seek the minima [132].
That is, we take gradient descent steps in each variable until convergence.

We see that the gradient in S is given by

∇SL =
[
BSH −X

]H
B + λ21

(
ZHP

)H [
ZHPS − Ik

]
+ λ22 [S − Z] , (4.2a)

and that in Z is given by

∇ZL = λ21 (PS)
[
(PS)H Z − Ik

]
+ λ22 [Z − S] . (4.2b)

Moreover, as in [105, Proof of Prop. 1], we find that B has a closed form update of the
form

bi 7→
1

sHi si
(
X −BSH

)
si+bi . (4.2c)

Sparsity

At this point, we may extend the original DMD problem to include sparsity: if we believe
that the modes bi and hence the mixing matrix B are sparse, can we find sparse solutions?
A natural choice would be to include a term of the form∑

i

∥bi∥0

in the optimization:

L (X,B, S, Z,λ) =
1

2

∥∥X −BSH
∥∥2
F
+
λ21
2

∥∥Ik−ZHPS
∥∥2
F
+
λ22
2
∥Z − S∥2F + λ23

k∑
i=1

∥bi∥0 .

(4.3)
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The only change is to the update for bi in (4.2) [105, Proof of Prop. 1]:

bi 7→ Hλ3

(
1

sHi si
(
X −BSH

)
si+bi

)
, (4.4)

where Ht denotes the hard-thresholding operator:

Ht(x) =

{
0 if |x| ≤ t,

[|x| − t] exp (i∠x) otherwise.
(4.5)

4.1.2 Algorithm

Formally, we are solving the following problem:

B̂, Ŝ, Ẑ = arg min
B∈Cp×k;S,Z∈Cn×k

L (B, S, Z,λ) , (4.6a)

where

L (X,B, S, Z,λ) =
1

2

∥∥X −BSH
∥∥2
F
+
λ21
2

∥∥Ik−ZHPs
∥∥2
F
+
λ22
2
∥Z − S∥2F + λ23

k∑
i=1

∥bi∥0 .

(4.6b)
Note that

λ =
[
λ1 λ2 λ3

]
,

and that λi ≥ 0. Then, our algorithm is an alternating minimization procedure, where we
iterate updates of the form

1. for i ∈ {1, 2, . . . , k},

bi 7→ Hλ3

(
1

sHi si
(
X −BSH

)
si+bi

)
,

2.
S 7→ S − αS∇SL,

3.
Z 7→ Z − αZ∇ZL,

where Z and ∇SL and ∇ZL are defined in (4.2), and αS and αZ are positive step-sizes.
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4.1.3 Convergence Analysis

As written, we are unable to state any guarantees or convergence results for the problem
(4.6). However, if we were to modify the objective function and problem slightly, we are
able say something [132].

First, we need to impose boundedness on the variables bi, si, and zi, e.g., by saying that

∥bi∥∞ ≤ λ4,

and similarly for the si and zi with λ5 and λ6. Once again, the only change to our updates
that is made is to threshold from above [105, Proof of Prop. 1]: that is, given the current
variable value, we perform a capping operation Ct(x) at λ4, where

Ct(x) =

{
x if |x| ≤ t,

t exp (i∠x) otherwise.
(4.7)

Note that we need λ3 ≤ λ4.
Second, we need to ensure that each ‘block’ and subproblem is strongly convex. Adding

λ27
2

[
∥B∥2F + ∥S∥2F + ∥Z∥2F

]
to the objective function L, where λ7 is a small, positive constant, achieves this. Note
that λ7 must be smaller than λ1 and λ2. Here, the updates are now different, but if λ7
is sufficiently small, heuristically, we expect that the solution/limit points will be close to
what they would be with λ7 = 0.

Given these two small modifications to our problem, we are able to state the following
convergence result for the problem (4.6) as a consequence of [132, Cor. 2.4]:

Theorem 4.1. When algorithm in Section 4.1.2 is applied to the modified version of (4.6),
every limit point is a Nash equilibrium point.

4.1.4 Simulations

We numerically solve the problem (4.6) using the algorithm specified in Section 4.1.2 and
compare the performance with ordinary DMD.

We fix p = 200 and vary the number of samples n between 102 and 103.5. We generate
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two different rank-2 datasets, both composed of cosines. In the first, the columns of S are
proportional to cos t

4
and cos t

2
, and in the second, they are proportional to cos t

2
and cos 2t.

We use a sparse B with 10 non-zero entries. We add i.i.d. Gaussian noise (mean 0 and
variance σ2/n to the data, and vary σ.

We perform a coarse grid-search over λ (43 values), and use 103 iterations of the alter-
nating descent updates. We search over 5 starting points and perform 5 trials of different
noise instances. The total run time for this procedure is ∼ 27 hours.

We present results for the estimation error of B and S (after normalization/rescaling to
unit ℓ2 norm), as defined in (2.33a). In Figures 4.1 and 4.2, we see that the optimization
formulation is slightly more robust to noise than the original DMD algorithm. Of course,
this robustness comes at a high computational cost, and it is unclear whether this cost
is worth it relative to denoising with a truncated SVD followed by the original algorithm.
Of course, the main cost here comes from the parameter grid search: one immediate
improvement to the tractability would be to replace the parameter grid search with some
more intelligent, like a Bayesian Hyperparameter Search [112] or even a simple random
search [15].

4.2 Complex Exponentials and Hilbert DMD
Assume that we have a data matrix X ∈ Cp×n that can be written as

X = BCH , (4.8)

where B ∈ Cp×k has linearly independent columns and the jth column of C, denoted by cj
has entries (cj)t = exp (iωjt). I.e., each sample xj (column j) in X is a linear combination
of complex exponentials. Note that if any of the ci had a phase shift, we would simply
absorb the constant into the corresponding column of B, bi.

The DMD algorithm proceeds by forming

X(1) =
[
x2 x3 · · · xn

]
and X(0) =

[
x1 x2 · · · xn−1

]
,

and takes the eigendecomposition of

Â = X(1)X
+
(0).
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Our goal is to characterize the behavior of DMD in this setting (complex exponentials).
First, we observe that if we define C(0) and C(1) analogously to X(1) and X(0) (we subset

to the first/last n− 1 rows), we may write

CH
(1) = WCT

(0),

where W ∈ Ck×k is diagonal with entries exp (iωj). I.e., multiplication by W advances
every entry of CH

(0) by one timestep, thus forming CH
(1). We may then write

Â = X(1)X
+
(0) = BCH

(1)

(
BCH

(0)

)+
= BWCH

(0)

(
BCH

(0)

)+
. (4.9)

By construction, CH
(0) has linearly independent rows andB has linearly independent columns.

It follows that
Â = X(1)X

+
(0) = BWCH

(0)

(
CH

(0)

)+
B+. (4.10)

Moreover, since CH
(0) has linearly independent rows, we may write CH

(0)

(
CH

(0)

)+
= Ik, so

that
Â = X(1)X

+
(0) = BWB+. (4.11)

That is, DMD yields a matrix Â whose non-zero eigenvalues are exp (iωj) with correspond-
ing eigenvectors proportional to bj.

4.2.1 Hilbert DMD

A large portion of the simulations and examples in this thesis are of linearly mixed cosines,
where the error from performing DMD is small but non-zero. Having observed that complex
exponentials are perfectly recovered with DMD, one might wonder whether it is possible
to transform the cosines into complex exponentials, and hence have perfect recovery.

The Hilbert Transform of a real-valued signal f(t) is a linear transformation that returns
the real-valued signal g(t) such that f(z) + ig(z) is an analytic function in the complex
plane [91]. Colloquially, this analytic function is referred to as the Hilbert transform of
the input signal. In the case of the signal a cos (ωt+ ϕ), the corresponding transformed
output would be the complex exponential a exp (iωt+ iϕ).

Hence, if we observe a data matrix X whose rows are linear combinations of cosines of
various frequencies and phases, applying the Hilbert transform to each row yields linear
combinations of complex exponentials. Then, applying DMD to the transformed data
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yields perfect recovery of the mixing matrix and complex exponentials; taking the real
part would yield the original latent signals.

4.2.2 Simulations

We test the power of Hilbert-DMD on simulated data. Our data model is

X = θ q1 sT1 +
1

2
θ q2 sT2 .

We fix p = 250 and vary the number of samples n. We use a rank-2 dataset, where the si
are cosines of frequencies 1/4 and 2. We vary the signal strength θ and add i.i.d. Gaussian
noise of variance 1/n and mean zero. We compare the estimation error of DMD, the
tSVD-DMD, and the Hilbert-DMD algorithms for Q and S.

We begin with the noise-free setting in Figure 4.3. We observe that the Hilbert-DMD
algorithm does not perform quite as well as does vanilla DMD, but that its error is still
low. In Figure 4.4, we present the noisy data setting. We see that there is an intermediate
regime wherein Hilbert-DMD performs slightly better than DMD, when the signal strength
is not too large (but is sufficiently large to not be lost) and the sample size is sufficiently
large. I.e., it is possible that Hilbert-DMD can offer a slight edge over vanilla DMD.

4.3 A Two-Dimensional Version of DMD
In Chapter 2, we discovered that DMD is able to solve the Blind Source Separation prob-
lem. I.e., it is able to unmix linear combinations of latent signals, if the signals are
uncorrelated at lags of zero and one timesteps. However, the DMD algorithm is inher-
ently one-dimensional, and relies on uncorrelatedness in a temporal sense. In this section,
we develop a spatial version of DMD, that is, a version of DMD that can unmix linear
combinations of images.

4.3.1 Model

Assume that we have images
Z1, Z2, . . . , Zr ∈ Rm×n.
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Assume that we observe linear mixtures of the images,

Y1, Y2, . . . , Yp ∈ Rm×n,

where r ≤ p. Moreover, assume that the mixtures are generated by

Yi =
r∑
l=1

B[i, l]Zl,

for B ∈ Rp×r. Without loss of generality, assume that the images Zr have zero mean and
unit norm.

The 1-dimensional DMD algorithm is able to unmix linearly mixed signals that are
uncorrelated at a lag of zero and one more, non-zero lag (traditionally, a lag of 1). Here,
we continue the generalization and impose uncorrelatedness at a lag (τx, τy). That is, the
inner product

Tr
[
Zi[(τx + 1) : m, (τy + 1) : n]Zj[1 : (m− τx), 1 : (n− τy)]

T
]

vanishes for i ̸= j and does not vanish for i = j.
Let Â be the p× p matrix with entries

Tr
[
Yi[(τx + 1) : m, (τy + 1) : n]Yj[1 : (m− τx), 1 : (n− τy)]

T
]
. (4.12)

If the inner product of the Zi, Zj vanishes for pairs i ̸= j, we have that

Â ≈ Bdiag
(
Tr
[
Zi[(τx + 1) : m, (τy + 1) : n]Zi[1 : (m− τx), 1 : (n− τy)]

T
])
BT . (4.13)

Notice that if we define a matrix Q where the ith column of Q is the corresponding column
of B scaled to have unit norm, we may write

Â ≈ Qdiag
(
∥B[:, i]∥22 Tr

[
Zi[(τx + 1) : m, (τy + 1) : n]Zi[1 : (m− τx), 1 : (n− τy)]

T
])
QT .

(4.14)
If the columns of B are orthogonal, so that the columns of Q are orthonormal, the columns
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of Q are the eigenvectors of Â. Then, up to a scaling, we may recover the latent images by

Ẑi =

p∑
l=1

Q[l, i]Yl. (4.15)

We will refer to the computation of Â as in (4.12), the subsequent eigendecomposition
Â = QΛQT , and the unmixing in (4.15) as the orthogonal 2D-DMD algorithm.

Remark 4.1. If the images are not orthogonally mixed, we may first whiten the mixtures
Yi, as in [131]. That is, we compute

Ỹi =

p∑
l=1

C[i, l]Yl,

where C = Â−1/2. We may then apply the orthogonal 2D-DMD algorithm to the Ỹi.

4.3.2 Application

In this section, we demonstrate the ability of the 2D-DMD algorithm to unmix mixtures
of images. In Figures 4.5 and 4.6, we present results for two orthogonally and non-
orthogonally mixed images, respectively. We see that our method works to unmix the
images.

4.4 Data Analysis
In this section, we present applications of DMD to real data.

4.4.1 Functional fMRI Data

Courtesy of J. Fessler and M. Karker, we were given access to a 3D functional MRI dataset.
The data is a cleaned, reconstructed image, with dimensions (x, y, z) = (72, 48, 12) and 235

samples in time. We reshaped each sample into a vector and formed a [72 · 48 · 12] × 235

matrix. This data is reconstructed to be low-rank and sparse (in the Fourier domain) [65,
72]. We compare the results of DMD on the de-meaned logged/not-logged data with the
SVD.

Our analysis ‘pipeline’ is as follows:
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1. Reshape the data into a matrix.

2. Take the base-10 logarithm of each element in the matrix (for the logged data; oth-
erwise do nothing).

3. Subtract the mean from each row of the data.

4. Perform DMD (at a lag of 1) on both the logged/not logged matrices.

5. Take the SVD of both matrices to compare with DMD.

Our motivation for taking the logarithm is twofold. First, we observed that after performing
DMD, some of the signals in Ĉ looked like they were modulated cosines, i.e., a product of
two different signals; and second, the scale of values is quite large, and the logarithm is a
monotonic transformation reduces the absolute variation in the data.

We first present the mean images in Figures 4.7 and 4.8. Next, we present the leading
estimated components for DMD, logged-DMD, and the SVD in Figures 4.9, 4.10, 4.11, and
4.12. We see that none of these are particularly convincing relative to the mean image, but
that the edges of the image are captured well. Moreover, all of the images are qualitatively
similar.

When we consider the temporal variations C and the right singular vectors V , given
in Figures 4.13, 4.14, 4.15, and 4.16, we see a stark difference. Recall that this image is
reconstructed from a sparse representation in a Fourier basis, i.e., as a linear combination
of complex exponentials. The results from DMD are exactly sinusoidal: they are the latent
Fourier series that reconstructed this image. However, the SVD does not capture any of
this structure, and it is unclear what the right singular vectors convey.

4.4.2 Video Data

We recorded a video containing two laptop screens on two chairs, where the two screens
flashed at different frequencies; in Figure 4.17, we display the background of the scene.
The first screen flashed at a frequency f1 = 1.0Hz and the second at a frequency f2 =

2/3Hz. There are 233 frames of size 160× 120, so that we have a video data cube of size
160 × 120 × 233. We reshaped the cube into a matrix (each frame is a column of length
160× 120) before proceeding with our analysis.

There are three components to the video: the two flashing screens and the background,
and we hope that any decomposition would capture this behavior. We first apply DMD
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to the video, as-is. In Figures 4.18 and 4.19, we present these results. We see that the
second screen and accompanying frequency is lost, and that the first is duplicated (as a
complex conjugate). The background is estimated well, but the decomposition is somehow
incomplete. Noting that there are three components in the video, we might expect that
truncating the video to a rank-3 matrix might yield better results. Indeed, it does. In
Figures 4.20 and 4.21, we see that we recover all three frequencies and components, and
there is no visual degradation.

We next repeat our experiment, but with the video corrupted by additive white noise
with standard deviation equal to 0.01% of the Frobenius norm of the video matrix. Our
results are shown in Figures 4.22 and 4.23. The estimated modes are noisy (although all
of the components are visible), and the temporal variations are inaccurate. Once again,
however, denoising with a truncated SVD before applying DMD is a good solution, as seen
in Figures 4.24 and 4.25.

In general, there is the question of whether the latent rank is correctly estimated: in our
video, we know that there are three components, and hence use a rank-3 approximation.
We study the effect of a rank overestimation on the output: we now repeat our previous
simulations for a non-oracle, estimated rank of 4. In Figures 4.26 and 4.27, we see that
the rank-4 truncation loses all the components except the background; however, in Figures
4.28 and 4.29, we see that using the OptShrink method recovers all three components
[88]. The OptShrink method is a modification of the tSVD low-rank matrix estimator
that applies a shrinkage to the empirical, noisy singular values, so that the estimated low
rank matrix has a lower error relative to the truth. With the tSVD, there is no shrinkage,
and the fourth singular value (pure noise) is strong enough to negatively affect the DMD
results. However, with OptShrink the shrinkage applied to the fourth singular value (noise)
is sufficient to mitigate the rank overestimation. This story is repeated for the noisy video
setting, with the tSVD results shown in Figures 4.30 and 4.31 and OptShrink in Figures
4.32 and 4.33. Once again, we see that the OptShrink shrinkage is sufficient to mitigate
the rank overestimation, whereas the tSVD is not robust.

4.5 Audio Unmixing Revisited
In Chapter 2, we demonstrated that DMD is able to unmix linearly mixed, real audio
signals. We also saw that kurtosis-based ICA (referred to as ICA in this work) was able to
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unmix the signals. In this section, we revisit this example and modify it so that we have
an example where DMD works to unmix the signals but ICA does not.

Here, we have three speech signals and one music signal, all sampled at 48000Hz and with
141540 samples (approximately 2.9 seconds). The three speech signals are from different
speakers, all adult. The first signal has an adult male saying ‘The DMD algorithm is
very interesting’, the second has an adult female saying ‘DMD is a very boring algorithm’,
and the third has an adult female saying ‘I don’t know what DMD is’. The music is an
instrumental segment from the Reggaeton song ‘Rakata’, by Wisin y Yandel [87].

We begin by normalizing the signals to have identical ranges and zero mean, and then
we mix the signals with a 4× 4, randomly generated mixing matrix. We apply both DMD
and ICA to the mixture, and see that we are able to recover the signals with squared errors
(defined in (2.39)) of 2× 10−3 and 1× 10−3, respectively. Our results are shown in Figure
4.34.

4.5.1 Breaking Kurtosis-Based ICA

Recall that kurtosis-based ICA fails to unmix signals with a Gaussian marginal [56, Ch. 7].
Using this fact, we will construct an example of ‘real’ signals that DMD can unmix but
cannot be unmixed with ICA. Note that for a random variable x with distribution function
F (t) = P (x ≤ t), we may transform x into a normal random variable by

x̃ = F−1
g (F (x)) , (4.16)

where F−1
g is the functional inverse of the standard normal distribution function. We have

used the fact that F (x) has a uniform distribution on [0, 1].
We return to our four real signals, and transform each of them according to (4.16). Once

again, we mix the signals with a 4× 4, randomly generated mixing matrix. We apply both
DMD and ICA to the mixture, and see that ICA completely fails to recover the signals, but
that DMD comes reasonably close with a squared error of 2× 10−1. Our results are shown
in Figure 4.35. We note that since the success of DMD is tied to the lag-1 cross correlations
and autocorrelations of the signals, the continued success of DMD is due to the fact that
the transformation does not change the correlations significantly. In particular, computing
the lag-1 correlation matrix L from the signal and L̃ from the transformed signals, defined
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in (2.29), we find that ∥∥∥L− L̃
∥∥∥
F
/ ∥L∥F ≈ 0.03.

Qualitatively, the transformed signals are akin to ‘bad radio transmissions’, and are still
recognizable and intelligible. I.e., this transformation is not too extreme or even terribly
unrealistic.

4.6 DMD and SSA
In Chapter 2, we have shown that DMD can be used as a multivariate time series decom-
position method: given a p-variate time series, we can recover up p latent time series. In
this section, we take a brief look at another time series decomposition method and provide
a comparison of the two methods.

Singular spectrum analysis (SSA) is a decomposition method for univariate time series
[45]. The method relies on a Singular Value Decomposition (SVD) of an embedding matrix.
I.e., given a times series xt with entries x1, x2, . . . , xn and a window parameter l, the
l × (n− l + 1) matrix is fomed:

X =


x1 x2 · · · xn−l+1

x2 x3 · · · xn−l
...

... · · ·
...

xl xl+1 · · · xn

 .

The SVD of X is then grouped and reshaped into several component time series vectors.
A multivariate extension exists, wherein each individual time series is embedded and the
individual embedding matrices are stacked up.

There are well established separability (recovery) results for SSA [45, Sec. 1.5]. Assume
that a univariate time series xt is a sum of components c1, c2, . . . , ck. First, for a fixed
window l, we say that the ci are separable (recoverable) from xt in a weak sense if every
contiguous subsequence of ci is orthogonal to every contiguous subsequence of cj for i ̸= j

and subsequences of identical length. Strong separability is guaranteed by the singular
values of the embedding matrix being distinct. Moreover, there are approximate and
asymptotic notions of strong and weak separability (that the conditions hold approximately
or in the limit n, l → ∞). Concretely, cosines of different frequencies are asymptotically
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weakly separable, and if their magnitudes are distinct, they will be asymptotically strongly
separable [50].

The first point of comparison is the number of components that can be distinguished with
the algorithms. Given a p-variate time series of length n, DMD is able to extract min{p, n−
1} series. It follows that DMD is inherently multivariate: given a single, univariate time
series, DMD would not be able to extract anything meaningful. Contrastingly, SSA is by
definition a univariate time series decomposition. The number of components is necessarily
a function of the window size, and will be at most min{l, n− l+ 1}, for a maximum value
of n/2 components when l = n/2. With a multivariate SSA decomposition of a p-variate
series, the number of components is scaled by p.

The second point of comparison is the computational properties of the algorithms. Given
a p-variate time series of length n, DMD involves the pseudoinverse of a p× n− 1 matrix,
the product of a p×n− 1 matrix with an n− 1× p matrix, and the eigendecomposition of
a p× p matrix. To recover the latent series, if there are k components, the pseudoinverse
of a p × k matrix and the product of this pseudoinverse with a p × n matrix is required.
SSA is dominated by the reshaping and SVD steps: for each variable/series, there is an
l × n− l + 1 matrix formed. Then, a multivariate SSA procedure would require the SVD
of a pl × n − l + 1 matrix. If l and n are both large, the scaling of the algorithm with p

may quickly become unfeasible.
The third point of comparison is the choice of parameters. With DMD, unless we are

using the extension to lags other than 1, the only parameter is the number of components.
With SSA, both the number of components and the window size are parameters that must
be identified. In particular, the window size plays a critical role in the identifiability of
signals, and is directly related to the temporal resolution of the recovered signals [45, Ch. 1].
In practice, a larger window size is balanced against computational considerations, as well
as any known periodicities in the data.

We next compare DMD and SSA numerically. We generate a random 10 × 2 mixing
matrix Q and two cosines that are to be mixed: the first with frequency ω1 = 3/2 and
the second with frequency ω2 = 2. We fix the length n = 1000 and use a window size of
l = n/2. We compare SSA, multivariate SSA (MSSA) and DMD in Figures 4.36, 4.37, and
4.38. We see that SSA outperforms MSSA, but both are worse than DMD. Nonetheless,
both SSA and MSSA return outputs that are recognizably close to the true signals. We
repeat our experiment with ω1 = 1/2 and ω2 = 2, seen in Figures 4.39, 4.40, and 4.41.
Here, we see that MSSA suffers from additional artefacts at the edges of the signals, and
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that SSA misses one of the cosines in every case. DMD once again performs well.
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Figure 4.1: We present results for the estimation error of B (after normaliza-
tion/rescaling to unit ℓ2 norm), as defined in (2.33a). We fix p = 200
and vary n, the frequencies, and the noise level. We see that the opti-
mization formulation is more robust to noise than DMD.
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Figure 4.2: We present results for the estimation error of S (after normaliza-
tion/rescaling to unit ℓ2 norm), as defined in (2.33a). We fix p = 200
and vary n, the frequencies, and the noise level. We see that the opti-
mization formulation is more robust to noise than DMD.
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Figure 4.3: We present results for the estimation error of Q and S as defined in
(2.33a) for the noise-free setting. We fix p = 250 and vary n. We see that
Hilbert-DMD performs well, but not as well as vanilla DMD here.

Figure 4.4: We present results for the estimation error of Q and S as defined in
(2.33a) in the noisy setting. We fix p = 250 and vary n. We see that
Hilbert-DMD performs better than DMD in the intermediate regime
where the sample size n is sufficiently large and the signal strength θ is
moderately large.
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Figure 4.5: We present results for the orthogonal 2D-DMD algorithm for an orthog-
onal mixture of two images. We see that the algorithm successfully un-
mixes the two linearly mixed images, as expected.
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Figure 4.6: We present results for the orthogonal 2D-DMD algorithm for a non-
orthogonal mixture of two images. We whiten the mixtures before ap-
plying the algorithm, and we see that the algorithm successfully unmixes
the two linearly mixed images.
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Figure 4.7: The mean image for the fMRI dataset.

Figure 4.8: The mean image for the logged fMRI dataset.
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Figure 4.9: The leading DMD eigenvector for the fMRI dataset.

Figure 4.10: The leading DMD eigenvector for the logged fMRI dataset.
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Figure 4.11: The leading left singular vector for the fMRI dataset.

Figure 4.12: The leading left singular vector for the logged fMRI dataset.
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Figure 4.13: The leading DMD temporal variations for the fMRI dataset.

Figure 4.14: The leading DMD temporal variations for the logged fMRI dataset.
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Figure 4.15: The leading right singular vectors for the fMRI dataset.

Figure 4.16: The leading right singular vectors for the logged fMRI dataset.
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Figure 4.17: The mean frame (background) of the video.

Figure 4.18: The modes from applying DMD to the video as-is. We see that the
second screen is lost.
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Figure 4.19: The temporal variations from applying DMD to the video as-is. We see
that the second frequency is lost. In the eigenvalue plot, the black ‘x’
indicates the empirical DMD eigenvalues, and the red markers indicate
the true values.

Figure 4.20: The modes from applying DMD to the truncated, rank-3 video. We see
that all three components are present.
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Figure 4.21: The temporal variations from applying DMD to the truncated, rank-3
video. We see that all three components are present. In the eigenvalue
plot, the black ‘x’ indicates the empirical DMD eigenvalues, and the red
markers indicate the true values.

Figure 4.22: The modes from applying DMD to the noisy video as-is. We see that
the second screen is present, but the quality of the estimated modes is
poor.
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Figure 4.23: The temporal variations from applying DMD to the noisy video as-
is. We see that the estimated frequencies are not accurate. In the
eigenvalue plot, the black ‘x’ indicates the empirical DMD eigenvalues,
and the red markers indicate the true values.

Figure 4.24: The modes from applying DMD to the noisy video after a rank-3 trun-
cation. We see that all components are estimated well.
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Figure 4.25: The temporal variations from applying DMD to the noisy video after a
rank-3 truncation. We see that all frequencies are estimated well. In the
eigenvalue plot, the black ‘x’ indicates the empirical DMD eigenvalues,
and the red markers indicate the true values.

Figure 4.26: The modes from applying DMD to the truncated, rank-4 video. We see
that of the three components, only the background is present.
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Figure 4.27: The temporal variations from applying DMD to the truncated, rank-4
video. We see that only the background is present. In the eigenvalue
plot, the black ‘x’ indicates the empirical DMD eigenvalues, and the red
markers indicate the true values.

Figure 4.28: The modes from applying DMD to the OptShrink-truncated, rank-4
video. We see that of the three components, only the background is
present.
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Figure 4.29: The temporal variations from applying DMD to the OptShrink-
truncated, rank-4 video. We see that only the background is present.
In the eigenvalue plot, the black ‘x’ indicates the empirical DMD eigen-
values, and the red markers indicate the true values.

Figure 4.30: The modes from applying DMD to the noisy video after a rank-4 trun-
cation. We see that only the background is estimated well.
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Figure 4.31: The temporal variations from applying DMD to the noisy video after
a rank-4 truncation. We see that only the background is estimated
well. In the eigenvalue plot, the black ‘x’ indicates the empirical DMD
eigenvalues, and the red markers indicate the true values.

Figure 4.32: The modes from applying DMD to the noisy video after a rank-4 Opt-
Shrink truncation. We see that all three components are estimated
well.
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Figure 4.33: The temporal variations from applying DMD to the noisy video after a
rank-4 OptShrink truncation. We see that all three components are esti-
mated well. In the eigenvalue plot, the black ‘x’ indicates the empirical
DMD eigenvalues, and the red markers indicate the true values.
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(a) Truth: c1

(b) Mixed: x1

(c) DMD: ĉ1

(d) ICA: ĉ1

(e) Truth: c2

(f) Mixed: x2

(g) DMD: ĉ2

(h) ICA: ĉ2

(i) Truth: c3

(j) Mixed: x3

(k) DMD: ĉ3

(l) ICA: ĉ3

(m) Truth: c4

(n) Mixed: x4

(o) DMD: ĉ4

(p) ICA: ĉ4

Figure 4.34: We present the waveforms for the true audio signals (three speakers
and one music signal), the mixed signals, and the unmixed signals. We
see that both DMD and ICA unmix the signals, with squared errors of
2× 10−3 and 1× 10−3, respectively (defined in (2.39)).
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(a) Gaussianized
Truth: c1

(b) Mixed: x1

(c) DMD: ĉ1

(d) ICA: ĉ1

(e) Gaussianized
Truth: c2

(f) Mixed: x2

(g) DMD: ĉ2

(h) ICA: ĉ2

(i) Gaussianized
Truth: c3

(j) Mixed: x3

(k) DMD: ĉ3

(l) ICA: ĉ3

(m) Gaussianized
Truth: c4

(n) Mixed: x4

(o) DMD: ĉ4

(p) ICA: ĉ4

Figure 4.35: We present the waveforms for the Gaussianized audio signals (three
speakers and one music signal), the mixed signals, and the unmixed
signals. We see that DMD unmixes the signals with a squared error of
2× 10−1 (defined in (2.39)), whereas ICA fails completely.
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Figure 4.36: We present the waveforms for SSA applied to p = 10 mixtures of two
cosines with ω1 = 3/2 and ω2 = 2. We see that SSA applied to the
individual channels performs well.
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Figure 4.37: We present the waveforms for multivariate SSA (MSSA) applied to
p = 10 mixtures of two cosines with ω1 = 3/2 and ω2 = 2. We see that
MSSA performs well, but not as well as SSA (Figure 4.36).

Figure 4.38: We present the waveforms for DMD applied to p = 10 mixtures of two
cosines with ω1 = 3/2 and ω2 = 2. We see that DMD performs better
than SSA (Figure 4.36) and MSSA (Figure 4.37).
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Figure 4.39: We present the waveforms for SSA applied to p = 10 mixtures of two
cosines with ω1 = 1/2 and ω2 = 2. We see that SSA applied to the
individual channels tends to lose one of the components.
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Figure 4.40: We present the waveforms for multivariate SSA (MSSA) applied to
p = 10 mixtures of two cosines with ω1 = 1/2 and ω2 = 2. We see that
MSSA performs better than SSA (Figure 4.36).

Figure 4.41: We present the waveforms for DMD applied to p = 10 mixtures of two
cosines with ω1 = 1/2 and ω2 = 2. We see that DMD performs better
than SSA (Figure 4.39) and MSSA (Figure 4.40).
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Chapter 5

Sparse Equisigned PCA: Algorithms
and Performance Bounds in the

Noisy Rank-1 Setting

Singular value decomposition (SVD) based principal component analysis (PCA)
breaks down in the high-dimensional and limited sample size regime below a
certain critical eigen-SNR that depends on the dimensionality of the system and
the number of samples. Below this critical eigen-SNR, the estimates returned by
the SVD are asymptotically uncorrelated with the latent principal components.
We consider a setting where the left singular vector of the underlying rank one
signal matrix is assumed to be sparse and the right singular vector is assumed
to be equisigned, that is, having either only nonnegative or only nonpositive
entries. We consider six different algorithms for estimating the sparse principal
component based on different statistical criteria and prove that by exploiting
sparsity, we recover consistent estimates in the low eigen-SNR regime where the
SVD fails. Our analysis reveals conditions under which a coordinate selection
scheme based on a sum-type decision statistic outperforms schemes that utilize
the ℓ1 and ℓ2 norm-based statistics. We derive lower bounds on the size of
detectable coordinates of the principal left singular vector and utilize these
lower bounds to derive lower bounds on the worst-case risk. Finally, we verify
our findings with numerical simulations and a illustrate the performance with
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a video data where the interest is in identifying objects.3

5.1 Introduction
It is well-understood that singular value decomposition (SVD) based principal component
analysis (PCA) breaks down in the high-dimensional and limited sample size regime below
a certain critical eigen-SNR (eigenvalue signal-to-noise ratio) that depends on the dimen-
sionality of the system and the number of samples [61, 17]. Several sparse PCA algorithms
have been proposed in the literature (see [61, 17, 31, 75, 134, 16]) and have been shown
to successfully estimate the principal components in the low eigen-SNR regime where the
SVD fails.

Prior work in this area primarily considers the Gaussian signal-plus-noise model with
random effects, where the signal matrix is assumed to have sparse left singular vectors, nor-
mally distributed right singular vectors, and the noise matrix is assumed to have normally
distributed i.i.d. entries. Here, we consider the setting where the left singular vector of the
rank one signal matrix is sparse and the right singular vector is assumed to be equisigned.
We say that a vector is equisigned if its entries are all non-negative or all non-positive.
This is motivated by applications such as diffusion imaging in MRI where the right singu-
lar vector represents a physical quantity (e.g. intensity as the diffusion agent is absorbed
by a tissue) that is non-negative, by imaging problems such as foreground-background sep-
aration in video data [99, 127] and object detection in astronomy [107], where the data
are naturally non-negative, and by problems in bioinformatics where the data are (non-
negative) counts of genes [118]. When analyzing data that are non-negative, it is logical
to take advantage of this property, and investigate how we may use this knowledge to do
better than the (generic) alternatives. Alternatively, a practitioner may seek to use tech-
niques that constrain or impose non-negativity to preserve interpretability of the results,
e.g., non-negative matrix factorization. Additionally, we motivate the rank-1 assumption
by noting that for a video with a static background, the foreground is a perturbation of
a rank-1 background [86, 42]. Finally, even though we do not pursue this angle here, our
framework can be extended to deal with the scenario where the signal can be viewed of a
rank 1 tensor with all but one of the representors in the Kroneker product representation
of the tensor is an equisigned vector.

3This chapter describes joint work with Raj Rao Nadakuditi and Debashis Paul, and has appeared in
[103].
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There is precedent for and prior work on non-negative PCA, including the sparse biased
PCA in [23], the sparse PCA with non-negativity priors in [98], and the work in [85]. These
works differ from our work in that they impose non-negativity on the factors or the left
singular vectors. In this work, we study sparse factors with non-negative loadings; i.e., we
are solving a different problem in this work.

A natural question at this juncture is the following: how does our problem differ from
that solved by Non-Negative Matrix Factorization (NNMF)? NNMF takes a given matrix
X and looks for non-negative matrices F and G such that X = F GT [54, 128]. Ordinary
NNMF has no sparsity constraints. We might impose such constraints, as is done in [53]
and [73], but except in special cases, these solutions have no known theoretical guarantee
of statistical performance. This problem partly stems from the fact that solutions to the
corresponding optimization problems may not be unique. In contrast, our problem only
constrains the right singular vectors, while the left singular vectors are free to take any
sign. The work in [34] extends the NNMF framework to one wherein only one of the factors
is non-negative; nevertheless, the rest of the constraints we impose are not included. The
work in [135] seeks factors (left singular vectors) with disjoint supports and non-negative
loadings, but this definition of sparsity does not match that from the sparse PCA literature.
Hence, NNMF is not an answer to the problem we consider herein.

The main contribution of this chapter is a rigorous sparsistency analysis of the various
algorithms that brings into focus the various very-low eigen-SNR regimes where the new
algorithms work and the SVD based methods provably fail. Additionally, a major novelty
of this work is the integration of FDR-controlling (False Discovery Rate) hypothesis testing
to the Sparse PCA problem.

Our analysis illustrates the situations where the sum based coordinate selection scheme
dramatically outperforms the ℓ1 and ℓ2 [61, 17] based sparse PCA schemes. Additionally,
our proposed algorithms are non-iterative, do not require the computation of the sample
covariance matrix, and do not require knowledge of the sparsity level. We separate our
algorithms into two groups: one where the Family-Wise Error Rate (FWER) is controlled,
and another where the False Discovery Rate (FDR) is controlled. We utilize sharp tail
probability bounds for relevent statistics to derive our FWER-controlling estimators [20].
For the FDR controlling estimators, we relate the problem at hand to that of the sparse
normal means problem [36].

This chapter is organized as follows. In Section 5.3, we describe three algorithms for
estimating the sparse principal component that utilize a coordinate selection scheme based
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on the sum, ℓ1, and ℓ2 norm-based statistics respectively. We call our family of algo-
rithms SEPCA, an abbreviation for Sparse Equisigned PCA. Section 5.4 proposes three
FDR-controlling refinements of the sum- and ℓ2-based algorithms in Section 5.3 by relating
coordinate detection to the sparse normal means estimation problem. In Section 5.5 we
show how the estimation performance is governed by the size of the smallest detectable
coordinate, which we analyze in Section 5.6 and validate using numerical simulations in
Section 5.7. In Section 5.8, we provide some geometric intuitions about the relative per-
formance of three of our algorithms. We show that the sum statistic is potentially the
most powerful, while the ℓ1 is the least powerful. We provide some concluding remarks in
Section 5.9.

5.2 Problem Formulation
Let X ∈ Rp×n be a real-valued signal-plus-noise data matrix of the form

X = θ u vT +σG . (5.1)

The columns of the p× n data matrix X represent p-dimensional observations. In (5.1), u
and v are the left and right singular vectors of the rank-one latent signal matrix, and have
entries ui and vj, respectively. The entries of G, the noise matrix, are assumed to be i.i.d.
Gaussian random variables with mean 0 and variance 1/n. We assume that u ∈ Rp has
unit norm and is sparse in the sense of small ℓ0 norm, with s≪ p non-zero entries, where
s/n→ 0. That is, for a set I = {i1, · · · , is} ⊂ {1, · · · , p},

ui ̸= 0 for i ∈ I,
ui = 0 for i ∈ IC ,

(5.2)

where IC denotes the complement of I. We further assume v ∈ Rn to be of unit norm,
deterministic, and equisigned. Given X, our goal is to recover u and v.

Note that the (i, k) entry of X, Xik, is a Gaussian random variable with mean [θui]vk

and variance σ2/n. Moreover, it follows that

E(X XT ) = θ2 u uT +σ2 Ip,

where Ip denotes the p × p identity matrix. The quantity (θ/σ)2 is, for this model, the
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eigen-SNR (signal-to-noise ratio).

5.2.1 Motivation: Breakdown of PCA / SVD

From [12], we have the following result: let û be the estimate of u given by the Singular
Value Decomposition (SVD) of X, and let p(n)/n have limit c ∈ [0,∞] as n grows, with θ

fixed and σ = 1. Then, with probability 1,

|⟨û,u⟩|2 →
{

1− c(1+θ2)
θ2(c+θ2)

if θ ≥ c1/4,
0 otherwise.

(5.3)

For general σ, we replace θ by θ/σ in (5.3). Hence, SVD based PCA leads to inconsistent
estimates of u (and also for v, which can be deduced from (5.3)) when the dimension p is
comparable to or larger than the sample size n. Moreover, in the low eigen-SNR regime,
the estimates break down completely. SVD does not exploit any assumed structure in u
and v. Consequently, (5.3) holds for arbitrary u and v, including our setting where u is
sparse and/or v is equisigned. Our goal, in what follows, is to derive consistent estimators
for u and v that outperform the SVD by exploiting the sparsity of u and the equisigned
nature of v.

5.2.2 Problem Statement

Note that we have assumed that u is sparse and that the sparsity s is such that s/n has
limit zero. Hence, if we had oracle knowledge of the sparsity pattern I (the indices of
u that have non-zero coordinates), restricting the matrix X to those rows indexed by I

and performing the SVD on the smaller matrix would yield a consistent estimator for the
non-zero elements of u and the vector v. This conclusion follows from (5.3), since the value
c is replaced with s/n, which has limit zero. Thus, if we derived consistent estimators of
the support of u, we have a consistent two-stage estimation procedure of the vectors u and
v.

Formally, we are interested in finding a procedure that estimates I by Î such that in the
limit n→ ∞,  P

(
i ∈ Î

)
→ 1 if i ∈ I,

P
(
i ∈ Î

)
→ 0 if i /∈ I.

(5.4)
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Equivalently, noting that the Hamming distance of I and Î, denoted by dH
(
I, Î
)

, is given
by the cardinality of their symmetric set difference,

dH

(
I, Î
)
=
∣∣∣(I ∪ Î) \(I ∩ Î)∣∣∣ ,

we want the expected Hamming distance E dH
(
I, Î
)

to have limit 0, which is stronger
than requiring consistency in recovering the support (or sparsity pattern) of u. However,
as the work in [24, 106] indicates, this limit will not in general be zero, and will depend on
the noise level, signal strength, and sparsity.

5.3 Proposed Algorithms
We propose six different two-stage algorithms for estimating u. The first three algorithms
are designed to control the family-wise error rate (FWER), or, the probability of obtaining
a false positive in the coordinate selection. The last three algorithms aim to control the
false discovery rate (FDR), or, the proportion of false discoveries (coordinate detections)
among all discoveries. We defer discussion of the FDR-based algorithms to Section 5.4.

All of the algorithms have the same basic form given in Algorithm 2. Given X, we
associate a test statistic Ti to each row of X. The sparsity of u implies that the majority of
the rows of X are purely noise, so that the majority of the Ti come from the null, noise-only
distribution. Hence, based on the statistics {Ti}, we perform a form of multiple hypotheses
testing procedure, and select the set Î of indices that are non-null. In this way, we can
estimate the support of u, thereby isolating the the rows of X that contain the signal.
Then, taking the SVD of this submatrix (comprised of only the selected rows of X) yields
a better estimate of the non-zero coordinates in u, as well as v.

We begin by discussing the FWER-controlling algorithms. The work in [61] proposed a
covariance thresholding method for Sparse PCA called DT-SPCA; this is equivalent to a
coordinate selection scheme based on the ℓ2 norm-based statistic. In our terminology and
with our choice of thresholds, we label it as ℓ2-SEPCA. We label the coordinate selection
scheme based on the ℓ1 norm-based statistic ℓ1-SEPCA. Finally, the sum-SEPCA algorithm
utilizes row sums of the data matrix.
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Algorithm 2 Variable Selection and Estimation Algorithm
Input: Threshold τn,p and form of Test Statistic Ti from Table 5.1

Let Î be an empty list
for all Rows i of X, 1 ≤ i ≤ p do

Form test statistic Ti from row i of X
if Ti ≥ τn,p then

Add i to Î
end if

end for
Let [ũ, θ̃, v̂] = SVD(XÎ,:) be the rank-1 SVD of X restricted to rows in Î = [i1, · · · , i|Î|]
For ik ∈ Î, let ûik = ũk; the other entries of û are set to 0.

5.3.1 Computational Complexity

Note that the variable selection part of our procedures has a computational complexity
that is O (pn): the formation of the test statistic is linear in the number of columns, and
the formation is repeated once per row. Noting that for a p × n matrix, the complexity
of the rank-1 SVD is O (1× pn), we find that if

∣∣∣Î∣∣∣ coordinates are selected, we have an

overall complexity of O
(
pn+

∣∣∣Î∣∣∣n) = O (pn) [2].
Computation of the covariance matrix has a (naive) complexity of O (p2n), and in prac-

tice is somewhere between O (p2) and O (p3) [41]. Immediately, our methods here are
faster than those requiring explicit formation of the covariance matrix [17, 61, 75, 134, 16].
Additionally, there is no iteration or convergence of any optimization problems required.
Note that a semi-definite programming-based formulation is at least polynomial in the
problem size: O (p4) [31] or O (p3) [16]. The ITSPCA method applied to our rank-1 set-
ting would have a cost of O (ps) per iteration [75, Sec. 4]. TPower has a similar complexity
of O (sp+ p) per iteration [134].

5.3.2 The DT-SPCA Algorithm and Two-Stage Procedures

The DT-SPCA algorithm was proposed in [61] and later used as the first stage of the
ASPCA algorithm given in [17]. The algorithm thresholds the diagonals of the matrix
XXT to perform variable selection: note that in our setting, these values are

θ2u2i + σ2

n∑
j=1

G2
ij,
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with expectation (θ2u2i + σ2). The DT-SPCA algorithm thresholds these diagonal values

at σ2

(
1 + γ

√
log p
n

)
, where γ > 0, and then performs PCA on the reduced matrix formed

from the selected variables. Noting that the diagonals of XXT are the same as the row sum-
of-squares of X, we see that ℓ2-SEPCA is essentially the same (up to choice of threshold)
as DT-SPCA.

However, the innovation of [61, 17] that we carry forward is the two-stage procedure.
That is, we perform some sort of testing to estimate the support of the sparse singular
vector u, and then perform an SVD on the reduced matrix. As we will see in what follows,
there is flexibility in the choice of testing or support estimation method.

5.3.3 Statement of Thresholds

We shall choose the thresholds τn,p for the coordinate selection scheme so that in the
noise-only case,

P
(

max
1≤i≤p

Ti ≥ τn,p

)
≤ 1

ep
→ 0, (5.5)

where e is Euler’s number, or the base of the natural logarithm. This choice ensures
that the probability of a false positive tends to zero as p → ∞. That is, the FWER
is asymptotically zero and is bounded by 1/ep in the finite-dimensional case. Note that
the constraint used to control the FWER is simply that the distribution of the noise is
log-concave. In the Gaussian case, we obtain the specific expressions given summarized
in Table 5.1; however, with knowledge of the moments ETi and Var Ti, we can repeat our
analysis and find thresholds for the ℓ1 and ℓ2-SEPCA algorithms with any log-concave
noise distribution. The thresholds are summarized in Table 5.1.

Table 5.1: Test Statistics and Thresholds for Algorithm (2)
Algorithm Statistic Ti Threshold τn,p

ℓ1-SEPCA 1√
n

∑n
k=1 |Xi,k| σ

(√
2
π
+ C1

log ep√
n

)
ℓ2-SEPCA

∑n
k=1X

2
i,k σ2

(
1 + C2

log ep√
n

)
sum-SEPCA 1√

n
|
∑n

k=1Xi,k| σCU

√
log p
n

See (5.6) and (5.10) for definitions of the constants C2, C1, and CU .

Remark 5.1. Note that we impose strong control over the FWER and seek to reject
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individual null hypotheses, instead of weak control and considering the global null hypothesis
as in [16].

5.3.4 FWER Thresholds

ℓ2- and ℓ1-SEPCA

In the noise-only cases, the statistics for ℓ2- and ℓ1-SEPCA are distributed as scaled χ2
n

and sums of half-normal, respectively. Both of these quantities are log-concave random
variables, so we may apply the result in [68] to set the threshold τn,p in both cases.

Defining K to be some absolute constant (we may use K = e, as in [19]), we define the
constants

C2 =
√
2K and C1 = K

√
(1− 2/π). (5.6)

sum-SEPCA

From Proposition 4.4 of [21], we obtain that the threshold for sum-SEPCA is given by

τn,p =
σ√
n

(√
2 log p+ 1

U(p)

(
1

3
log ep+

√
log ep

)
+ δp

)
. (5.7)

In (5.7), we have that

U(p) =
√
2 Erf−1

(
1− 1

p

)
and δp ≍

π2

12
(log p)−3/2 , (5.8)

where Erf denotes the error function, or alternatively, the cumulative distribution function
of a standard Gaussian random variable is given by

Φ(x) =
1

2

(
1 + Erf

(
x√
2

))
. (5.9)

Moreover, τn,p ≤ σCU

√
log p
n

for some constant CU . For a fixed value of p, choosing

κU ≥
√
2

U(p)

(
3 +

√
log p

)
> 1 and CU =

√
2 +

κU

3
√
2

(5.10)

is sufficient. The choice of 1/ep is the largest bound justified by Proposition 4.4 of [21],
so we have calibrated all of our algorithms to the same constant factor times 1/p. The
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thresholds are summarized in Table 5.1.

5.3.5 Estimation of the Noise Variance, σ2

In this work, we assume that the noise variance σ2 is known; however, in general, estimation
of σ2 may not be straightforward [94]. Recently proposed procedures such as those proposed
in [94, 96, 113] could be employed to estimate the noise variance, and we point the interested
reader to these references for more theoretical background on the problem. We note that
in most applications, including the video example we consider, one can obtain a relatively
sparse representation of the object in a multiscale basis such as a wavelet basis [60, Sec. 7.5].
Under such circumstances, under the assumed additive, isotropic noise model, we can easily
obtain a consistent estimate of σ2 by utilizing the inherent sparsity of the signal, especially
in finer scales. This can be done, for example, by computing the variance of the wavelet
coefficients in the finest scale [60, Sec. 7.5]. One can obtain a more robust estimate by
taking the median absolute deviation of the coefficients about their median and then by
multiplying its square with a known scale factor (assuming normality) [96, 60].

5.4 Controlling the False Discovery Rate
So far, we have controlled the probability of a false alarms when detecting coordinates.
However, there are two relevant observations to make. First, under the Gaussian noise,
rank-1, and equisigned assumptions, the vector of test statistics {Ti} in the sum-SEPCA
algorithm looks like a sparse vector plus Gaussian noise (or a vector of χ2

n-variates with
varying non-centralities, in the ℓ2-SEPCA algorithm). Secondly, controlling the false dis-
covery rate, that is, the proportion of rejected nulls that are false positives, can lead to
increased detection power relative to controlling the false positive rate. We hence look at
FDR-controlling tests for the Sparse Normal Means problem.

That is, given a vector of test statistics (as before), we replace the thresholding and
selection in Algorithm 2 with an FDR-controlling selection procedure. We summarize this
change in Algorithm 3. There are three procedures we consider. The first two are known
as Higher Criticism, and directly extend the sum- and ℓ2-SEPCA algorithms [36, 37]. The
third is a method for detection in the sparse normal means problem that comes out of
complexity-penalized estimation theory for linear inverse problems [62].
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Algorithm 3 FDR-Controlling Variable Selection and Estimation Algorithm
Input: Test Statistic Ti from Table 5.1 and Selection Procedure

Let Î be an empty list
for all Rows i of X, 1 ≤ i ≤ p do

Form test statistic Ti from row i of X
end for
Perform an FDR-Controlling selection procedure, and add the selected indices to Î
Let [ũ, θ̃, v̂] = SVD(XÎ,:) be the rank-1 SVD of X restricted to rows in Î = [i1, · · · , i|Î|]
For ik ∈ Î, let ûik = ũk; the other entries of û are set to 0.

5.4.1 Higher Criticism

Formulation of Higher Criticism

Assume we have p independent tests of the form

Ho,i : Wi ∼ N (0, 1) ,

H1,i : Wi ∼ N (µi, 1) ,
(5.11)

and assume that at most p1−β of the p hypotheses are truly non-null, for some β ∈ (1/2, 1).
Further assume that the non-null means have magnitude

µi = µp =
√

2r log p,

for r ∈ (0, 1). Here, the means will correspond to the coordinate size. Note that the
expected maximum of p standard Gaussian random variables is upper bounded by

√
2 log p,

with the bound being asymptotically sharp.
If we let p(1) ≤ p(2) ≤ · · · ≤ p(p) be the sorted p-values of the individual tests, we may

define the Higher Criticism statistic:

HCp = max
i:1/p≤p(i)≤1/2

√
p
(
i/p− p(i)

)√
p(i)(1− p(i))

. (5.12)

Rejecting the global null hypothesis (that there are no non-null coordinates) when HCp >√
2 log log p(1+o(1)) leads to asymptotically full power when r is greater than some decision
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boundary ρ, and that under the global null,

HCp√
2 log log p

→ 1 (5.13)

in probability as n, p → ∞. The function ρ depends on the sparsity index β, and as [37]
indicate:

ρ(β) =

{
β − 1/2 when β ∈ (1/2, 3/4),(
1−

√
1− β

)2 when β ∈ (3/4, 1).
(5.14)

If we replace the normal distribution with a χ2
n distribution, the same results hold for

tests of the form
Ho,i : Wi ∼ χ2

n,

H1,i : Wi ∼ χ2
n(δ),

(5.15)

where δ is a non-centrality parameter and we consider r ∈ (0, 1) such that δ = 2r log p.

Remark 5.2. While Higher Criticism is typically formulated for the case of identical
non-null means or parameters (all of the non-zero µi are identical), this constraint is not
mandatory [6, 47]. Indeed, the results hold without modification for the Gaussian model
with non-null means of size µi = αi

√
2 log p, where αi is a non-negative random variable

with the property that P(αi ≤
√
r) = 1 and P(αi >

√
r− ϵ) > 0 for all ϵ > 0 [47]. The case

of a χ2
n distribution is similar.

As a point of interest, the test in (5.11) can be extended to (and potentially strengthened
in) the case where the p tests are correlated, i.e., when the additive Gaussian noise has a
non-identity covariance [47].

Application to our Problem

Recall that for the sum-SEPCA algorithm, we formed a vector of row-sums. That is, in
the equisigned setting, taking sums across the rows of X, we obtain a vector y where
yi = µi + σzi, with µi = (θui)∥v ∥1: this situation is exactly that of a sparse mean vector
embedded in Gaussian noise. Similarly, taking sums of squares across the rows of X (as in
the ℓ2-SEPCA algorithm) yields scaled χ2

n distributed random variables, of which only a
few have non-zero non-centrality parameters.

With knowledge of the noise distribution, we may compute the p-values of each row
statistic: these p-values are used to form the Higher Criticism statistic (5.12). As in [37],
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we may adapt the original global testing problem to a selection problem. For each p-value
p(i), we have a value HCp,i of the higher criticism statistic (the value that is maximized
in (5.12)). Rejecting each null hypothesis (that the coordinate of the corresponding row is
zero) when HCp,i is larger than the threshold

√
2 log log p is a variable selection procedure.

We refer to the procedure based on the sum statistic as HC-sum-SEPCA and that based
on the sum of squares statistic as HC-ℓ2-SEPCA. Importantly, we note that the form of
the decision boundary ρ is identical to the global testing case, and that applying Higher
Criticism to our row statistics is a viable global testing procedure [37].

5.4.2 FDR-SEPCA

In this section, we give an summary of the algorithm for uncorrelated noise and defer the
general case and details to Appendix 5.D. We continue in the same vein as in the previous
section on Higher Criticism.

We note that in the equisigned, rank-1 setting, coordinate selection is equivalent to the
estimation of a sparse mean vector. Let yi = µi+ σzi, where i ∈ {1, · · · , p} and the vector
z of the zi is normally distributed with mean 0 and covariance Ip. The mean vector µ of
the µi is assumed to be sparse; the goal is to estimate µ. Taking sums across the rows of
X, we obtain a vector y where yi = µi + σzi, with µi = (θui)∥v ∥1. Hence, we are in the
same setting as in the previous section.

The following penalized least squares formulation, taken from [62], yields an estimator
for µ:

µ̂ = arg min
µ

∥y−µ ∥22 + σ2pen (∥µ ∥0) , (5.16)

where pen(k) is defined as

pen(k) = ζk
(
1 +

√
2 log(νp/k)

)2
, (5.17)

with ζ > 1; we may take ζ = 1 + o(1). The parameter ν is no smaller than e. We define
∥µ ∥0 to be the number of non-zero coordinates of µ.

The solution to (5.16) is given by hard-thresholding. Let |y|(i) be the ith order statistic
of |yi|, namely |y|(1) ≥ · · · ≥ |y|(p). Then if

k̂ = arg min
k≥0

∑
i>k

|y|2(i) + σ2pen(k), (5.18)
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defining
t2k = pen(k)− pen(k − 1), (5.19)

the solution is to hard threshold at tk̂.
In this set-up, we have that

tk ≈
√
ζ(1 +

√
2 log(νp/k)).

We provide a precise quantification of tk in Appendix 5.D.
Hence, by computing tk and performing hard thresholding of the row sums, we can

perform coordinate selection. Once again, this procedure replaces the test statistic/thresh-
olding in Algorithm 2.

5.5 Estimation Error and Smallest Detectable
Coordinate

As we will see, our theorems discuss the “detectability” of the coordinates ui of u. However,
it is common in the sparse PCA literature to discuss lower bounds for the risk (estimation
error) [61, 17, 75]. In what follows, we will show that these two notions are equivalent.

We define the L2 estimation error for a principal component estimator as

L(û,u) = ∥u−sign(⟨u, û⟩)û∥22 . (5.20)

The quantity in (5.20) is upper bounded by 2; this bound is attained when u and û are
unit norm and mutually orthogonal. Following [17], we want to compute a lower bound for
the maximum expected loss for the s-sparse vectors u (in the sense of ℓ0 sparsity) defined
as

sup
u∈Sp−1:∥u ∥0≤s

EL (û,u) , (5.21)

where Sp−1 denotes the unit sphere in Rp. Let Î be some index set of coordinates selected
by an algorithm of the form given in Algorithm (2). We may take ⟨u, û⟩ to be non-negative,
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and decompose the loss as

∥u−û∥22 = ∥uÎ −û∥22︸ ︷︷ ︸
Estimation Error from

detected coordinates

+ ∥uÎc ∥
2
2︸ ︷︷ ︸

Error from
missed coordinates

≥ ∥uÎc ∥
2
2. (5.22)

Equation (5.22) shows that the loss is lower-bounded by the squared sum of the missed
coordinates. Indeed, it is a natural consequence of the result in [12] that if the sparsity
s grows slower than does n, and we have a consistent estimate of the support of u, the
estimation error will asymptotically be small. Essentially, we are estimating the singular
vectors of an s × n matrix instead of a p × n matrix, so that if the ratio s/n has limit
zero, our estimates will be consistent (see (5.3) and [12]). This suggests the following
strategy for lower-bounding (5.21): we want to construct a non-trivial ‘worst-case’ sparse
vector. That is, we want a vector u that has a non-trivial loss (less than 2), is sparse (fewer
than s non-zero coordinates), and has maximal error from missed coordinates. To ensure
a non-trivial loss, we set the first coordinate u1 to be large, i.e., u1 =

√
1− r2, where

r = o(1). To ensure sparsity, we set u2, · · · , um+1 to be non-zero for some m ≤ s− 1, with
the subsequent coordinates of u set to 0. Then, the expected loss has the lower bound

EL(u, û) ≥
p∑

k=1

|uk|2P (Not Selecting Coordinate k)

≥
m+1∑
k=2

|uk|2P (Not Selecting Coordinate k) ,
(5.23)

since u1 is detected with probability approaching 1 and uk is zero for k > m+ 1. Now, let
u2 through um+1 all have value r/

√
m, so that we may simplify the lower bound to

EL(u, û) ≥ r2P (Not Selecting Coordinate k) . (5.24)

If coordinates of size r/
√
m are not detected with a probability approaching 1, r2 is a

lower-bound on the risk. This construction shows that specifying the sizes of coordinates
that are not detected with probability approaching 1 is equivalent to specifying a worst-
case risk lower bound. Note that the value of r2 depends on the specific algorithm and
estimator, and that this is not a general or universal bound. Rather, the purpose of this
construction is to show the equivalence between the two perspectives (a lower bound and
detectable coordinate size).
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Consequently, in what follows we focus on the smallest detectable and largest unde-
tectable coordinates because they directly shed light on the attainable estimation error.
The details of the risk calculations and extensions to approximate sparsity are deferred to
Appendix 5.C, where we summarize our findings in Theorem 5.3.

5.6 Main Results
The following theorem characterizes consistent support recovery conditions. These results
are the analogue of the ‘sparsistency’ guarantees found in the LASSO and ℓ1-norm min-
imization literature [104]. Throughout, Î denotes the set of coordinates selected by the
coordinate selection scheme.

Theorem 5.1. For the model specified in (5.1) and (5.2) and the algorithms specified in
Table 5.1, assume that p(n), n → ∞, s(n)/n → 0, and log p(n) = o(n). Let ϵ ∈ (0, 1). We
have that

a. For i ∈ Ic,
max
i∈Ic

P
(
i ∈ Î

)
→ 0,

b. For i ∈ I,
min

i∈I : |θui|>βcrit(1+ϵ)
P
(
i ∈ Î

)
→ 1,

max
i∈I : |θui|<βcrit(1−ϵ)

P
(
i ∈ Î

)
→ 0.

Here

βcrit =


σCU

√
log p

|∑k vk|
for sum-SEPCA,

σ
√
C2

√
log ep√

n
for ℓ2-SEPCA,

σtℓ1 for ℓ1-SEPCA,

(5.25)

and tℓ1 satisfies the relation(√
2

π
+ C1

log ep√
n

)
=

1

n

√
2

π
[
∑
k

exp
(
−
(√

n
(tℓ1)vk√

2

)2
)
+

√
π
∑
k

(√
n
(tℓ1)vk√

2

)
Erf
(√

n
(tℓ1)vk√

2

)
].
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We defer the proof to Appendix 5.A.
Theorem 5.1 identifies a phase transition in the ability of the algorithms to accurately

estimate the support of u. Note that the analysis brings into sharp focus the dependence of
βcrit on v for the ℓ1- and sum-SEPCA algorithms, but not the ℓ2-SEPCA algorithm. Con-
sequently, we can expect the algorithms to perform differently depending on the structure
of the underlying v. It is important to note that the sparsity s of u is not a parameter in
the thresholds and results.

It is also important to note that ℓ2-SEPCA and ℓ1-SEPCA do not rely on the equisigned
character of v. However, it is clear that the sum-SEPCA algorithm explicitly depends on
the equisigned assumption.

5.6.1 Hamming Loss

It is also possible to state the above results in terms of the Hamming loss for the support
of u, and prove consistency of the coordinate selection scheme by assuming that all the
nonzero coordinates of u lie above a critical threshold. A detailed decision-theoretic anal-
ysis of variable selection under a sequence model with i.i.d. noise and with respect to the
Hamming loss has recently been carried out by [24]. Recall that the Hamming loss mea-
sures the number of elements in two sets that are different, so that here the loss between
the true support I and the estimated support Î would be the size of the symmetric set
difference of I and Î. Let dH

(
I, Î
)

denote the Hamming loss and assume that whatever
algorithm we are using has a threshold βcrit. Then, for any ϵ ∈ (0, 1), we may write

E dH
(
I, Î
)

=
∑

i∈I:|θui|>βcrit(1+ϵ)

P
(
i /∈ Î

)
+

∑
i∈I:|θui|<βcrit(1−ϵ)

P
(
i /∈ Î

)
+

∑
i∈I:(1−ϵ)≤|θui|/βcrit≤(1+ϵ)

P
(
i /∈ Î

)
+
∑
i/∈I

P
(
i ∈ Î

)
. (5.26)

We can then restate the results on coordinate selection in terms of the Hamming loss under
a more restricted setting that assumes an exact form of sparsity of the vector u.

Corollary 5.1. For the model specified in (5.1) and (5.2), and an algorithm specified in
Table 5.1, assume that the conditions of Theorem 5.1 hold. Let the support I of u be
estimated by Î. Moreover, assume that the algorithm has a threshold βcrit (given in (5.25))
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such that for a small, fixed ϵ0 > 0, the set

I0 := {j : |θuj| > βcrit(1 + ϵ0)} (5.27)

equals the set I. Then the expected Hamming loss satisfies

E dH
(
I, Î
)
/|I| → 0. (5.28)

The proof of the corollary, given in Appendix 5.A.1, follows from applying Theorem 5.1,
with a more detailed enumeration of the sets and the inclusion probabilities, to each term
of (5.26).

5.6.2 FDR-Based Algorithms

We may summarize the coordinate selection properties of the FDR refinements as follows:

Theorem 5.2. For the model specified in (5.1) and (5.2) and the three FDR-controlling
algorithms summarized in Algorithm 3, assume that p(n), n → ∞, s(n)/n → 0, and
log p(n) = o(n). Let ϵ ∈ (0, 1). We have that

a. For all three algorithms and i ∈ Ic,

max
i∈Ic

P
(
i ∈ Î

)
→ 0,

b. For the Higher Criticism-based algorithms and i ∈ I,

min
i∈I : |θui|>βcrit(1+ϵ)

P
(
i ∈ Î

)
→ 1,

max
i∈I : |θui|<βcrit(1−ϵ)

P
(
i ∈ Î

)
→ 0.

c. For the FDR-SEPCA algorithm, uniformly over i ∈ I,
if |θui| > βcrit(1 + ϵ), coordinate i is selected;
if |θui| < βcrit(1− ϵ), coordinate i is not selected
with probability tending to 1.
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Here

βcrit =


σ
√
ρ(β)

√
2 log p

∥v ∥1 for HC-sum-SEPCA,
σρ(β)2 log p√

n
for HC-ℓ2-SEPCA,

σ (1− o(1))
√
ζ
1+
√

2 log(νp/k̂)
∥v ∥1 for FDR-SEPCA,

(5.29)

where ζ > 1, ν > e, and the FDR-SEPCA algorithm detects k̂ coordinates.

We defer the proof to Appendix 5.B.
Once again, we see that the structure of the underlying v plays a role in the performance

of the sum-based algorithms, but not for the ℓ2-based HC-ℓ2-SEPCA algorithm. Unlike in
the FWER-controlling cases, the sparsity of u plays a (small) role here, via the constant
ρ (β) for the Higher Criticism-based methods and via k̂ for FDR-SEPCA. Moreover, ℓ2-
HC-SEPCA, like ℓ2-SEPCA, does not make use of the equisigned nature of v.

5.6.3 Higher Ranks

In this work, we restrict our focus to the rank-1, equisigned setting. A natural question is
are our results extensible to the higher rank setting?

The first point is concerned with the right singular vectors. To preserve orthogonality, we
would need equisigned right-singular vectors vi with disjoint supports. The second point
is concerned with the left singular vectors. Our algorithms are based on thresholding row-
statistics: it is possible that the union of supports of several sparse vectors is a relatively
large set. The FWER-controlling algorithms (by design) are not sensitive to the increased
supports, but the FDR-controlling algorithms are sensitive to this. Indeed, the decision
boundaries for the FDR algorithms explicitly depend on the sparsity levels. Third point,
once again, is concerned with the left singular vectors. It is possible that a sum-based
statistic suffers from cancellations that decrease the size of the row-statistic. For example,
in a rank-2 setting, if u1 = 1√

2

[
1 1 0 · · · 0

]T
and u2 = 1√

2

[
1 −1 0 · · · 0

]T
and

∥v1∥1 and ∥v2∥1 have similar values and are both non-negative, the row-sum of the second
row will be small. Note, however, that the ℓ2-norm based methods do not suffer from this
issue.
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5.7 Simulations
To illustrate the relative powers of the six algorithms, we compute the theoretical limits
on the sizes of detectable coordinates as a function of n. We use a unit-norm, equisigned
v such that

vk ∝ exp
(
−5

k

n

) ∣∣∣∣sin(4kn
)∣∣∣∣ for 1 ≤ k ≤ n. (5.30)

This choice of v has a ‘rise and fall’ sort of behavior, and is motivated by physical signals,
e.g., chemical reactions or nerve signals in the brain. The value of βcrit is shown in Figure
5.1; for this choice of v, it is clear that the sum-SEPCA dramaticaly outperforms the other
SEPCA variants in terms of size of the smallest detectable component. The FDR-SEPCA
algorithm has similar performance to sum-SEPCA, and the HC-sum-SEPCA algorithm
has the strongest performance.

In Figure 5.2, we plot the estimation error as a function of n and θ for all six algorithms.
We also include results for the SVD and competing algorithms TPower [134] and ITSPCA
[75]. In the simulations, we fix p = 1000 and vary n, since the dependence in p in the
thresholds is logarithmic, whereas that in n is not. The left singular vector u is chosen
to be the vector with 1 in the first coordinate and 0 elsewhere. We fix the noise variance
σ2 at 1, so that θ2 is the eigen-SNR. The results should be interpreted as follows. For the
particular v chosen here, we expect HC-sum-SEPCA to have the lowest detectable limit,
and ℓ1-SEPCA to have the largest. This behavior is confirmed. Moreover, the sum-based
algorithms offer a slight strengthening of both ITSPCA and TPower. Importantly, note
that the sum-based algorithms explicitly take advantage of the equisigned nature of v: that
is, algorithms that explicitly use the equisigned property outperform algorithms that do
not (the ℓ2 and ℓ1 algorithms, as well as ITSPCA and TPower).

We repeat our simulations for a u ∈ Rp with √
p non-zero coordinates (of equal size) and

the same v, as seen in Figure 5.3. We find similar conclusions as in Figure 5.2, where the
sum-based algorithms offer a strengthening over ITSPCA and TPower; the ℓ2-norm based
algorithms do not perform well. Note that a sparsity of √p is at the limit/valid edge for
the higher criticism-based methods, but that these methods still perform well.
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Figure 5.1: This plot shows βcrit for all six algorithms for the v described in (5.30).

Figure 5.2: The plots show the empirical estimation error for all six algorithms for
the u with one non-zero coordinate and the v described in (5.30). We
include results from TPower, ITSPCA and the SVD for comparison.
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Figure 5.3: The plots show the empirical estimation error for all six algorithms for
the u with √

p non-zero coordinates and the v described in (5.30). We
include results from TPower, ITSPCA and the SVD for comparison.
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5.7.1 Comments on the FDR-controlling procedures

The Higher Criticism for the χ2
n-variates ‘pushes back’ the phase transition between de-

tecting nothing and something to a lower value of θ relative to the ℓ2-SEPCA algorithm,
but is still less powerful than any of the sum-based algorithms. Moreover, even above the
phase transition, the ℓ2-SEPCA algorithm may be preferable, as the error is increased by
unacceptably many false positives.

The Higher Criticism procedure for the sum statistic has the lowest phase transition
point and hence the highest power. Its transition is more gradual than the penalized FDR
thresholding procedure and sum-SEPCA, which have roughly the same performance in this
simulation.

5.7.2 An example where ℓ2-based algorithms outperform
sum-based algorithms

Sum-SEPCA has a βcrit that depends on v. Looking at the form in (5.25), if ∥v ∥1 is
smaller than n1/4, we would expect ℓ2-SEPCA to detect a smaller coordinate size. Vectors
with smaller coordinates have a smaller ℓ1-norm, i.e., one that is closer to their ℓ2-norm.
Hence, if we choose

vk ∝
1

k2
for 1 ≤ k ≤ n, (5.31)

we expect sum-SEPCA to have worse performance relative to ℓ2-SEPCA. Figures 5.4 and
5.5 confirm this expectation. The FDR refinements perform poorly. It should be noted,
however, that TPower and ITSPCA retain their performance. This choice of v effectively
corresponds to a very small value of n: the majority of coordinates are tiny in size and
buried beneath noise regardless of the value of θ. If we ‘corrected’ the scenario and used a
smaller n and a subset of v, we would be in a situation closer to that given in (5.30).

5.7.3 A video data example

We conclude our sequence of examples with a real data study. This example is motivated
by the problem of foreground-background separation in videos. Consider a grayscale video
of stars twinkling against a black background [108]. Our goal is to estimate the locations
of the stars: by reshaping the video, we may treat each frame as a vector and hence treat
the video as a sparse matrix. Only a few locations have a star and are hence non-zero.
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Figure 5.4: This plot shows βcrit for all six algorithms for the v described in (5.31).

The scale of the video pixels is between 0 and 255. We examine the top-left 72× 64 pixels
for 89 frames, as shown in Figure 5.2a. In Figure 5.2b, we plot the singular values of the
video matrix. The first singular value stands out strongly against the rest, and at most
two more singular values are well-separated from the bulk. This structure suggests that
our rank-1 based approach is well suited to this problem.

We add Gaussian noise of variance σ2 and study the True Positive Rates (TPR) and False
Discovery Rates (FDR) across all algorithms and across different values of σ. In Figure
(5.6), we show the results of our simulations. In terms of the TPR, everything other than
the SVD has a similar performance, while the test-statistic SEPCA-based algorithms enjoy
the best performance in terms of the FDR. In Figure 5.7 we zoom in on the top-right three
stars and show how the algorithms perform as noise increases. Here, we see that the
behavior alluded to in the TPR/FDR results actually occurs in the video.

5.8 A geometric view: which algorithm to use?
We have stated detectability results for each algorithm in Section 5.6 and provided a
numerical verification and comparison in Section 5.7. In this section, we wish to analytically
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Figure 5.5: The plots show the empirical estimation error for all six algorithms for the
u and v described in (5.31). We include results from TPower, ITSPCA
and the SVD for comparison.

compare the algorithms. In particular, we have seen that the right singular vector v plays a
critical role in the detectability and estimability of u, and we will characterize this behavior
carefully.

In this section, will use the following notational convenience: we absorb (θui) into v ∈ Rn,
and write the detectability of coordinates in terms of v. That is, if vT is a row of X, we
specify when that row is selected. Moreover, we take σ = 1 for simplicity.

There are two ‘classes’ of detectability: in terms of ∥v ∥1 and in terms of ∥v ∥2. The
sum-, HC-sum, and FDR-SEPCA algorithms select a coordinate if |

∑
k vk| = ∥v ∥1 is

large enough for a v in the orthant with all non-negative or all non-positive coordinates.
Geometrically, the vector v is selected if it is ‘outside’ a hyperplane with a normal vector
proportional to the vector of all 1s. The ℓ1-SEPCA algorithm is similar, as it selects a
coordinate when ∥v ∥1 is large enough, or if v lies outside an ℓ1-ball of some radius. The
connection between the previous three algorithms and ℓ1-SEPCA comes from noting that
the faces of an ℓ1-ball are sections of hyperplanes with normal vectors proportional to a
vector of ±1s. Finally, the ℓ2- and HC-ℓ2-SEPCA algorithms select a coordinate when
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Figure 5.6: The left plot shows the True Positive Rate of the various algorithms as
a function of the noise level σ. The right plot shows the False Discovery
Rates.
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Stars Video Example

(a) The image shows the mean inten-
sity of pixels from the top-left 72×
64 pixels for 89 frames. White in-
dicates the presence of a star.

(b) The plots shows the singular val-
ues of the video data. The spac-
ing suggest a low-rank-plus-noise
structure.

Table 5.2: Video Example Figures

∥v ∥2 is large enough. I.e., when v lies outside some ℓ2-ball.
Our goal in this section is to derive comparisons between the six algorithms. Specifically,

for a given vector v, which algorithm will have the greatest detection ability (we are, for
the moment, only concerned with maximizing power)? Note that when v has a large norm,
it does not matter which algorithm is used. Questions only arise when ∥v ∥1 or ∥v ∥2 are
relatively small and are close to the thresholds.

5.8.1 Intersection of a hyperplane and a hypersphere

We may think of the ℓ1 ball as a hyperplane when restricted to a single orthant. If a
hypersphere of radius r intersects a hyperplane with a normal vector proportional to the
vector of all ±1s and minimum distance to the origin of r − h, a hyperspherical cap of
height h is formed: see Figure 5.8 for a simple illustration. Geometrically, a right triangle
is formed, with hypotenuse r and leg r − h. Hence, the angle between the center of the
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(a) σ = 0 (b) σ = 0.3

(c) σ = 15 (d) σ = 200

Figure 5.7: A zoomed-in view of the three top-right stars in the video example.
White indicates a false negative (missed star), Red a false positive (a
guessed pixel where there was nothing), and Blue a true positive (cor-
rectly identified pixel).

cap and the edge is:
θlim = cos−1 r − h

r
. (5.32)

It is sufficient to guarantee that
0 ≤ r − h

r
≤ 1

for the hyperspherical cap to exist. Moreover, a vector v has a direction contained inside
the cap when the angle between v and the vector of ±1 in the orthant containing v is
smaller than θlim. In other words, defining the angle for a vector v as

θ(v) = cos−1 ∥v ∥1
∥v ∥2

√
n
, (5.33)
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we need θ(v) ≤ θlim.

θ
lim r

r 
- 
h

h

Figure 5.8: A spherical cap in R2

5.8.2 Comparison: ℓ2-based versus sum-based statistics

We begin with a summary of the performance of each individual algorithm in Table 5.3.
We first compare ℓ2-SEPCA and then compare HC-ℓ2-SEPCA with sum-, HC-sum, FDR-
SEPCA in Tables 5.4 and 5.5. In our comparisons, we consider when the hyperspherical
cap exists and give the angle of the cap. These are routine calculations, so we omit the
details. We also omit ℓ1-SEPCA from our comparisons, as we lack a closed-form expression
for tℓ1 .

Note that the existence of this cap is a proxy for the equivalent statement that there
exist vectors for which the sum-based algorithms are more powerful than the ℓ2-based
algorithm. While this existence is not the same as attributing uniformly greater power
to the sum-based algorithms relative to the ℓ2-based algorithm, the cap not existing is
equivalent to the ℓ2-based algorithm having uniformly greater power.

Essentially, we observe that for n and p sufficiently large, the cap will exist. Moreover,
for v that is sufficiently dense (∥v ∥1 is sufficiently large), θlim will lie inside the cap. Hence,
in these situations we would prefer a sum-based algorithm over an ℓ2-based algorithm.
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Table 5.3: A summary of the six algorithms.
Algorithm Threshold Geometric Quantity
sum ∥v ∥1 ≥ CU

√
log p r − h = CU

√
log p
n

HC-sum ∥v ∥1 ≥
√

2ρ(β) log p r − h =
√

2ρ(β) log p
n

FDR
∥v ∥1 ≥ (1− o(1))

√
ζ(

1 +

√
2 log

(
νp/k̂

)) r − h = (1− o(1))
√
ζ

1 +

√
2 log

(
νp/k̂

)
√
n

ℓ1 ∥v ∥1 ≥ tℓ1 r − h = tℓ1

ℓ2 ∥v ∥2 ≥
√
C2

√
log ep√

n
r =

√
C2

√
log ep√

n

HC-ℓ2 ∥v ∥2 ≥ 2ρ(β)2 log p√
n

r = 2ρ(β)2 log p√
n

Table 5.4: The relative performance of ℓ2-SEPCA.
Algorithm cos θlim Cap exists if
sum CU/

√
C2

√
log p

(1+log p)
√
n

n ≥ C4
U/C

2
2 , p ≥ 1

HC-sum
√

2ρ(β)/C2

√
log p

(1+log p)
√
n

n ≥ 1, p ≥ 1

FDR-sum 1+
√

2 log νp/k̂√
C2

√
n log νp

p ≥ 11, n ≥ 1

Table 5.5: The relative performance of HC-ℓ2-SEPCA.
Algorithm cos θlim Cap exists if
sum CU

2ρ(β)
√

log p
p ≥ exp

(
C2

U

4ρ(β)2

)
HC-sum [2ρ(β) log p]−1 p ≥ exp

(
1

2ρ(β)

)

FDR-sum 1+
√

2 log νp/k̂
2ρ(β) log p

log p ≥
1

4ρ(β)2
(
1 + 2ρ(β)

+
√

8ρ(β)2 + 4ρ(β) + 1
)

5.8.3 HC-ℓ2-SEPCA versus ℓ2-SEPCA

Now, we consider when HC-ℓ2-SEPCA is more powerful than ℓ2-SEPCA. The ratio of the
radii is given by

2ρ(β)√
C2n1/4

log p√
1 + log p

. (5.34)
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If this ratio is smaller than 1, HC-ℓ2-SEPCA is more powerful than ℓ2-SEPCA. Note that
the quantity

2
√
2√
C2

√
log p√
n

is an upper bound for (5.34), so that if

log p√
n
<

e

4
√
2
,

the original ratio is smaller than 1 and HC-ℓ2-SEPCA is preferable to ℓ2-SEPCA.

5.8.4 Comparing the sum-based algorithms

Finally, we compare sum-, HC-sum-, and FDR-SEPCA. First, the ratio of the thresholds
for HC-sum- and sum-SEPCA is √

2ρ(β)

CU
. (5.35)

Noting that ρ(β) ≤ 1 and that CU ≥
√
2 + 1/3

√
2, it is clear that this ratio is always

smaller than 1 so that HC-sum-SEPCA is a strict improvement on sum-SEPCA.
Next, we compute the ratio of the thresholds for FDR- and sum-SEPCA:

1 +

√
2 log νp/k̂

CU
√

log p
. (5.36)

Using the lower bound on CU , we find that if k̂ ≥ 11 (and p ≥ k̂, naturally), FDR-SEPCA
is always more powerful than sum-SEPCA. For smaller values of k̂, for sufficiently large
values of p, the ratio will be smaller than 1.

Lastly, we compare FDR-SEPCA to HC-sum-SEPCA, wherein the ratio of the thresholds
is (FDR to HC-sum):

1 +

√
2 log νp/k̂√

2ρ(β)
√

log p
. (5.37)

Because of involvement of ρ(β), this quantity is hard to analyze. If in an oracle manner,
FDR-SEPCA obtained k̂ correctly as p1−β, we would find that this ratio is always larger
than 1 for p > 1. That is if k̂ assumes the the correct value, HC-sum-SEPCA is more
powerful than FDR-SEPCA. Alternatively, we can note that ρ(β) ∈ (0, 1] and ask when
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the ratio is larger than 1. Based on the ratio above, we can see that in the following
scenarios 

k̂ = 1 and p > 1,

2 ≤ k̂ ≤ 18 and p ≥ k̂ (always),
k̂ ≥ 19 and log p ≥ 1

8

(
4(log k̂)2 − 4 log k̂ + 1

)
,

(5.38)

HC-sum-SEPCA is more powerful than FDR-SEPCA.
To summarize, we prefer the FDR-controlling alternatives to sum-SEPCA, but depend-

ing on the output of FDR-SEPCA, HC-sum-SEPCA may be more powerful. However, as
the simulations in Section 5.7 revealed (see Figure 5.2), the number of false positives with
HC-sum-SEPCA may be higher than with FDR-SEPCA.

5.8.5 Overall Message

We have seen that for n and p sufficiently large and v that is sufficiently dense (in the sense
of ∥v ∥1 being large), a sum-based statistic and algorithm leads to better performance.
This is expected behavior, as by using a sum-based method, we are taking advantage of
the equisigned nature of v. Moreover, within the class of sum-based algorithms, controlling
the FDR leads to greater power, as expected. It is difficult to clearly identity which of
HC-sum- and FDR-SEPCA will have the greatest power, and the end result may come
down to a practitioner’s tolerance for false discoveries.

5.9 Conclusions
We have considered the setting where the left singular vector of the underlying rank one
signal matrix plus noise data matrix is assumed to be sparse and the right singular vector
is assumed to be equisigned. We have proposed six different SEPCA algorithms for esti-
mating the sparse principal component based on different decision statistics and provided
sparsistency conditions for the same. Our analysis reveals conditions where a coordinate
selection scheme based on a sum-based decision statistic outperforms schemes that utilize
the ℓ1 and ℓ2 decision statistics. Thereby, the proposed algorithm outperforms known
schemes such as diagonal thresholded PCA [61] in terms of estimation of the singular vec-
tors associated with the rank-1 component. We have derived lower bounds on the size of
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detectable coordinates of the principal left singular vector, utilized these lower bounds to
derive lower bounds on the worst-case risk and verified our findings with numerical simula-
tions. Finally, we have discussed the results of our simulations analytically, by providing
a geometric interpretation of the differences in power among the algorithms.

We note that while we have stated our results for Gaussian noise with identity covariance,
we can extend the FWER-controlling results to any log-concave noise distribution, and the
FDR-controlling procedures to Gaussian noise with certain non-identity covariances. Addi-
tionally, another way to view this work is that it proposes a two-stage procedure/framework
for sparse PCA based around hypothesis testing of statistics associated to each row. Some
natural extensions would be the inclusion or consideration of other testing frameworks, e.g.,
that in [90], where knowledge of the size of coordinates is taken into account.

5.A Proof of Theorem 5.1
a. Note that

P (Ti ≥ τ) ≤ P
(

max
j∈Ic

Tj ≥ τ

)
for i ∈ Ic. Taking the maximum over the left-hand side and noting that the right-hand
side has limit zero yields the result. This follows from (5.5).

b. We consider when true positives occur with probability approaching 1. We want to
find the smallest coordinate (θui) such that the following probability approaches 1:

P (Ti > τn,p) = P
(
Ti − ETi√

Var Ti
>
τn,p − ETi√

Var Ti

)
. (5.39)

Note that if (τn,p − ETi) is negative and not tending to zero as n grows, and if the
variance of Ti decays to zero as n grows, the quantity

τn,p − ETi√
Var Ti

(5.40)

tends toward negative infinity. Hence, we will specify conditions so that Var Ti decays
to zero as n grows and then compute when a coordinate is detectable by considering
when τn,p is strictly less than ETi. For brevity, we omit the computations in solving
τn,p < ETi for |θui| and present verifications that the variance of Ti has limit 0. These
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results show that above the decision boundary, we have uniform detection.

In sum-SEPCA, Ti is a Gaussian random variable with mean (θui)√
n

∑
k vk and variance

σ2

n
. Since σ does not grow with n, Var Ti always decays to zero.

In ℓ2-SEPCA, Ti has
ETi = (θui)

2 + σ2

and
Var Ti =

2σ2

n

(
σ2 + 2 (θui)

2) .
Since σ and θ are fixed, the variance always decays to 0.

Let xi,k =
(√

nvk(θui)
σ

)
. In ℓ1-SEPCA, Ti has

Var Ti =
σ2

n2

∑
k

x2i,k

(
1−

(
Erf

(
xi,k√
2

))2
)

+
σ2

n

(
1− 2

nπ

∑
k

exp
(
−x2i,k

))

− 2

√
2

π

σ2

n2

∑
k

xi,k exp
(
−
x2i,k
2

)
Erf

(
xi,k√
2

)
,

which is less than or equal to

(θui)
2

n

∑
k

v2k +
σ2

n
+ 2

√
2

π

σ

n
√
n
| (θui) |

∑
k

|vk|. (5.41)

Since ∥v ∥2 = 1, the variance of Ti has limit 0. Because we cannot solve the inequality
τn,p < ETi analytically, we leave the bound in the form given previously.

In the proof above, note that if (τn,p − ETi) is positive and not tending to zero as n
grows, the quantity in (5.40) tends to positive infinity when the variance decays to zero.
Hence, modifying the proof by solving τn,p > ETi for |θui| yields when a coordinate
is not detectable with probability approaching 1: i.e., when |θui| is smaller than the
values given in (5.25).
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5.A.1 Proof of Corollary 5.1

The first three terms of (5.26) are characterized by Theorem 5.1(b) and by noting that
I0 = I in the corollary. The last term can be characterized as follows. In particular, for an
algorithm with row test statistics Ti and a threshold τ from Table 5.1, we may write∑

i/∈I

P
(
i ∈ Î

)
=
∑
i/∈I

P (Ti ≥ τ) . (5.42)

For the ℓ2- and ℓ1-SEPCA algorithms, we may reindex the Ti according to their order
statistics T(i), where ∣∣T(1)∣∣ ≥ ∣∣T(2)∣∣ ≥ · · · ≥

∣∣T(p−s)∣∣ ,
and write ∑

i/∈I

P
(
i ∈ Î

)
=

p−s∑
i=1

P
(
T(i) ≥ τ

)
. (5.43)

Note that there are p− s null entries. For the ℓ2- and ℓ1-SEPCA algorithms, we have that
(as a consequence of [68, Thm. 3])

P
(
T(i) ≥ τ

)
≤
(

1

ep

)√
i

,

so that ∑
i/∈I

P
(
i ∈ Î

)
=

p−s∑
i=1

P
(
T(i) ≥ τ

)
≤

p−s∑
i=1

(
1

ep

)√
i

. (5.44)

The right-hand side of (5.44) has limit zero, as needed.
For the sum-SEPCA algorithm, from (5.10), it follows that there exists a non-zero con-

stant ϵ > 0 such that the threshold τ satisfies

τ = σ
(√

2 + ϵ
)√ log p

n
.

In particular, from (5.10), we have that

ϵ =
1 +

√
log p/3√

2Erf−1 (1− 1/p)
,
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where for p > 1,
1

3
√
2
< ϵ < 2.

Hence, for any Ti such that i /∈ I,

P (Ti ≥ τ) ≤ exp
(
−
(√

2 + ϵ
)2

2
log p

)
= p−(1+

√
2ϵ+ϵ2/2),

where we have used a Gaussian tail bound [20, Sec. 2.3]. Then,∑
i/∈I

P
(
i ∈ Î

)
=
∑
i/∈I

P (Ti ≥ τ)

≤ (p− s) p−(1+
√
2ϵ+ϵ2/2)

≤ p−(
√
2ϵ+ϵ2/2).

(5.45)

Since ϵ is larger than 1/3
√
2, the right-hand side of (5.45) is upper bounded by p−13/36,

which has limit zero, as desired.

5.B Proof of Theorem 5.2

5.B.1 Size of Detectable Coordinates

Sum: HC-SEPCA

If v is equisigned, summing across the rows of X yields a normally distributed quantity
with mean (θui)∥v ∥1 and variance σ2. Dividing by σ and adopting the notation of HC,
we have that under the alternative hypothesis, µi =

√
2r log p, so that

r =

(
|θui|∥v ∥1√

2 log p

)2

.

Rearranging the inequality r > ρ(β) yields

|θui| > σ
√
ρ(β)

√
2 log p
∥v ∥1

. (5.46)
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Note that sum-SEPCA can detect coordinates of size

|θui| > σCU

√
log p

∥v ∥1
. (5.47)

However, CU is strictly larger than
√
2 + 1/(3

√
2). Thus, using HC yields a threshold of

the same order, but with a strictly smaller scaling.

Sum of squares: HC-ℓ2-SEPCA

If we sum the squares of the entries of rows of X, abusing notation slightly and using
N (µ, σ2) to indicate a Gaussian random variable with mean µ and variance σ2, the statistic
for the ith coordinate is of the form

n∑
k=1

(
σ√
n
N
(
θui
σ
vk
√
n, 1

))2

.

Assuming oracular knowledge of σ, the statistic

n

σ2

∑
k

X2
ik

places us in the setting of (5.15). The non-centrality parameter δ is given by

δ =

√√√√ n∑
k=1

(
θui
σ
vk
√
n

)2

=

∣∣∣∣θuiσ
∣∣∣∣√n.

Setting δ = 2r log p and solving r > ρ(β) yields

|θui| > σρ(β)
2 log p√

n
. (5.48)

We have that ℓ2-SEPCA can detect coordinates with

|θui| > σ

√
e
√
2

√
1 + log p√

n
. (5.49)

Using HC offers a significant improvement over ℓ2-SEPCA. However, we also expect HC
with the χ2

n statistic to have a smaller detectable coordinate: ∥v ∥1 ≤
√
n, so that for fixed
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β and p, the threshold in (5.46) is asymptotically larger than that in (5.48) (but potentially
of the same order). This result is strange in context of the non-FDR results. In any case,
HC improves on ℓ2-SEPCA.

FDR-SEPCA

Recall that taking sums across the rows of X, we obtain a vector y where yi = µi + σzi,
with µi = (θui)∥v ∥1. Moreover, we have noted that

tk ≈
√
ζ(1 +

√
2 log(νp/k)),

where tk is the level at which y is thresholded. It follows that, entries of y that are of size
at least

yi > (1− o(1))
√
ζσ

(
1 +

√
2 log(νp/k̂)

)
are selected, or, since µi = (θui)∥v ∥1 (when v is equisigned), if we select k̂ coordinates,
we expect to detect

|θui| > (1− o(1))
√
ζσ

(
1 +

√
2 log(νp/k̂)

)
∥v∥1

= O

σ
√
2 log

(
νp/k̂

)
∥v ∥1

 .

(5.50)

Relative to HC and sum-SEPCA, the gain here is found when there are many smaller
coordinates of u and k̂ is large.

5.B.2 Proofs for the Higher Criticism-Based Methods

a. From (2.8) in [47],

P (Ti ≥ τ) ≤ P
(

max
j∈Ic

Tj ≥ τ

)
has limit zero.

b. Let I1 ⊆ I be the set of coordinates with signal larger than the detection limit (i ∈ I

such that |θui| > βcrit(1 + ϵ)), and let I2 ⊆ I contain the rest of the coordinates (i ∈ I
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such that |θui| < βcrit(1− ϵ)). By Theorem 1 in [6], the asymptotic power for detecting
signals below the detection limit is one, and that for signals below the limit is zero.
Hence, for i ∈ I1,

min
i∈I : |θui|>βcrit(1+ϵ)

P (i selected) → 1,

and for i ∈ I2,
max

i∈I : |θui|<βcrit(1−ϵ)
P (i selected) → 0.

As with Theorem 1, we omit the computation of βcrit, as it follows from the discussion
in Section 5.4.1.

5.B.3 FDR-SEPCA

The details of these computations are in Appendix 5.D.1, so we will summarize the prop-
erties here.

a. The choice of ν = 21/ω controls the FDR at level ω [62]. Choosing ω = ω(p) → 0 as
p→ ∞ leads to an asymptotic FDR of zero. I.e., for i ∈ Ic,

max
i∈Ic

P (i selected) → 0.

b. Noting that the consistency of estimating the mean vector µ = (θ∥v∥1)u encompasses
the estimation of the support of u, risk bounds for the estimation of µ yield the result.
To be precise, if the expected risk E∥µ−µ̂∥22 ≤ B for some bound B, we expect to
detect coordinates of size larger than B and to not detect those smaller than B.

5.C Risk bounds under ℓq sparsity
In this section, we simultaneously generalize our setting to approximate sparsity, and
specify the risk lower-bounds. We omit the ℓ1-SEPCA algorithm from consideration.

Let u ∈ Rp have unit ℓ2-norm and belong to an ℓq ball with radius C for q ∈ (0, 2]. I.e.,

p∑
i=1

|ui|q ≤ Cq. (5.51)
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When q = 0, we replace Cq with s, the level of ‘hard’ sparsity. We have the following
result:

Theorem 5.3. Let
L(û,u) = ∥u−sign(⟨u, û⟩)û∥22 (5.52)

be the risk of the estimator û of u, where u is as specified in (5.1) and the estimators are
the six algorithms that we have previously described. Then,

a. sum-, HC-sum, and FDR-SEPCA have expected risks lower-bounded by

EL(û,u) ≥ O
(
[Cq − 1]∥v ∥−(2−q)

1

)
. (5.53)

b. ℓ2-SEPCA has a risk lower-bounded by

EL(û,u) ≥ O
(
[Cq − 1]n− 1

2
(1−q/2)

)
. (5.54)

c. HC-ℓ2-SEPCA has a risk lower-bounded by

EL(û,u) ≥ O
(
[Cq − 1]n−(1−q/2)) . (5.55)

The rest of this section contains the proof of Theorem 5.3.

5.C.1 Proof of Theorem 5.3

We construct a ‘worst-case’ sparse u. Note that Cq ≥ 1 necessarily, and that if C ≥ p1−q/2,
every unit norm vector is in the ℓq ball. Hence, we take C ∈ [1, p1−q/2).

Let θ and σ be fixed. We want a sparse vector with several coordinates guaranteed to
be missed (the probability of not detecting them is asymptotically 1). For this vector u
to be sparse and for the loss to not be 1, set u1 to be

√
1− r2n, where r2n = o(1), and take

u2, · · · , umn+1 to be rn/
√
mn. The other coordinates of u are 0, so that u has unit ℓ2-norm.

We assume that u1 is detected with probability 1 as n→ ∞, and want to set u2, · · · , umn+1
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so that the expected loss is lower bounded by:

EL(u, û) ≥
p∑

k=1

|uk|2P(Not Selecting Coordinate k)

≥
mn+1∑
k=2

|uk|2P(Not Selecting Coordinate k).
(5.56)

If coordinates of size rn√
mn

are not detected, the expected loss is lower bounded by r2n.
Let mn = ⌊m⌋ where

m = δnϕrψn∥v∥η.

Note that we have not specified the norm used in ∥v∥: we will choose the norm at the very
end of the calculation. Let

rn = [Cq − 1]αnβ+γq∥v∥κ,

so that,
rn√
mn

≈ rn√
m

=
1

δ
n−ϕ/2∥v∥κ−η/2r1−ψ/2n .

We will choose δ, ϕ, η, α, β, γ, κ, ψ so that the ℓq sparsity constraint is met and the lower
bound r2n is maximized. The sparsity constraint requires:

p∑
i=1

|ui|q = (1− rn)
q/2 +m1−q/2

n rqn ≤ 1 +m1−q/2rqn ≤ Cq. (5.57)

First, we will assume (for now) that rn = o(1) and that via other parameters we may
control the scaling of the coordinate sizes; hence, we set ψ = 2. Then,

rqnm
1−q/2 = δ1−q/2n2(β+γq)+(1−q/2)ϕ[Cq − 1]2α∥v∥2κ+η(1−q/2). (5.58)

We need this quantity to be smaller than Cq − 1. To eliminate the n dependence, we set
β = −ϕ

2
and γ = ϕ

4
. We choose α = 1

2
to match powers of [Cq − 1] on both sides of the

inequality. Defining another parameter ρ, let δ = ρ∥v ∥−η. Then, the inequality is

ρ1−q/2∥v ∥2κ[Cq − 1] ≤ [Cq − 1].

Choosing ρ ≤ ∥v ∥−2κ/(1−q/2) is enough.
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With these choices of parameters,

rn =
√

[Cq − 1]n− 1
2
ϕ(1−q/2)∥v ∥κ,

and
m = ρnϕr2n,

so that
rn√
m

=
1
√
ρ
n−ϕ/2.

Noting that
1
√
ρ
≥ ∥v ∥κ/(1−q/2),

choosing ρ = ∥v ∥−2κ/(1−q/2) leads to the smallest possible choice of coordinate.
In summary:

rn =
√

[Cq − 1]n− 1
2
ϕ(1−q/2)∥v ∥κ, (5.59)

r2n = [Cq − 1]n−ϕ(1−q/2)∥v ∥2κ, (5.60)

m = ∥v ∥−2κ/(1−q/2)nϕr2n, (5.61)

and
rn√
m

= ∥v ∥κ/(1−q/2)n−ϕ/2. (5.62)

So, for a given algorithm, it remains to choose ϕ and κ so that the worst-case risk is
lower-bounded by r2n. Sum-SEPCA misses coordinates of size O

(√
log p

∥v ∥1

)
and ℓ2-SEPCA

misses coordinates of size O
( √

log p
n1/4∥v ∥2

)
. For sum-SEPCA, κ = q−2

2
, and for ℓ2-SEPCA, κ

is irrelevant, as ∥v ∥2 = 1. Sum-SEPCA uses ϕ = 0 and ℓ2-SEPCA uses ϕ = 1
2
. Hence,

sum-SEPCA has a risk lower-bounded by

O
(
[Cq − 1]∥v ∥−(2−q)

1

)
. (5.63)

Noting that ∥v ∥2 = 1, ℓ2-SEPCA has

O
(
[Cq − 1]n− 1

2
(1−q/2)∥v ∥−(1−q/2)

2

)
=

O
(
[Cq − 1]n− 1

2
(1−q/2)

)
.

(5.64)
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In the ℓ0 case, i.e., when u has no more than s non-zero entries, the preceding analysis
goes through with Cq replaced by s and q set to zero.

FDR Algorithms

For HC-sum-SEPCA, the βcrit is of the same order as that for sum-SEPCA. Similarly, for
FDR-SEPCA, if k̂ is much smaller than p, βcrit is of roughly the same order. Hence, these
two algorithms have the same risk bound as sum-SEPCA. For HC-ℓ2-SEPCA, κ = 0 and
ϕ = 1. The risk is therefore lower-bounded by

O
(
[Cq − 1]n−(1−q/2)) . (5.65)

5.D FDR-SEPCA: Further Details
Let yi = µi + σzi, where i ∈ {1, · · · , p}, the vector z of the zi is normally distributed with
mean 0 and covariance Σ, and Σ satisfies

ξoIp ≤ Σ ≤ ξ1Ip.

Here, ξ0 is the smallest eigenvalue of Σ and ξ1 is the largest. The mean vector µ of the µi
is assumed to be sparse; the goal is to estimate µ. The following penalized least squares
formulation yields an estimator for µ:

µ̂ = arg min
µ

∥y−µ ∥22 + σ2pen (∥µ ∥0) , (5.66)

where pen(k) is defined as

pen(k) = ξ1ζk
(
1 +

√
2Lp,k

)2
, (5.67)

with ζ > 1 and
Lp,k = (1 + 2β) log(νp/k). (5.68)

The parameter β may be set to 0 here, and ν is chosen to be no smaller than e1/(1+2β). We
define ∥µ ∥0 to be number of non-zero coordinates of µ.

The solution to (5.66) is given by hard-thresholding. Let |y|(i) be the ith order statistic
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of |yi|, namely |y|(1) ≥ · · · ≥ |y|(p). Then if

k̂ = arg min
k≥0

∑
i>k

|y|2(i) + σ2pen(k), (5.69)

defining
t2k = pen(k)− pen(k − 1), (5.70)

the solution is to hard threshold at tk̂.
In this set-up, we have that

tk ≈ λp,k =
√
ξ1ζ(1 +

√
2Lp,k),

with |tk − λp,k| < c/λk. More precisely, Lemma 11.7 of [60] says that

λp,k −
4ζb

λp,k
≤ tk ≤ λp,k.

When ν ≥ e2, we may take b = (1 + 2β). In any case, if k = o(n), λp,k ≍
√

log p. Hence,
entries of y that are of size at least

yi > (1− o(1))
√
ξ1ζσ

(
1 +

√
2 log(νp/k̂)

)

are selected, or, since µi = (θui)∥v ∥1 (when v is equisigned), if we select k̂ coordinates,
we expect to detect

|θui| > (1− o(1))
√
ξ1ζσ

(
1 +

√
2 log(νp/k̂)

)
∥v ∥1

= O

σ√ξ1

√
2 log

(
νp/k̂

)
∥v ∥1

 .

(5.71)

5.D.1 Risk Behavior

Recalling that (5.66) solves a penalized least squares problem for ŷ close to y, we may
discuss the statistical behavior of this estimator. The following discussion follows and
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reproduces that in [62]
First, note that for β = 0, the parameter ν directly controls the FDR (where a false

positive corresponds to selecting a zero coordinate in y): a choice of ν = 21/ω for ω ∈ (0, 1)

bounds the FDR at a level ω.
Second, the expected risk, E∥y−ŷ∥22, is bounded as follows. By Proposition 4.1 in [62],

E∥y−ŷ∥22 ≤ D
[
2M ′

pξ1σ
2 +R(y, σ)

]
, (5.72)

where D is a constant 2ζ(ζ + 1)3(ζ − 1)−3 = Θ(1), we assume that ξ1 = 1, and 0 ≤ M ′
p ≤

Cβp
−2βν−1, for some Cβ > 0. Since β = 0, M ′

p = O(1/ν) = O(ω), if we control the FDR
at level ω.

The second term in (5.72) is the ideal risk, or, the infimum of the penalized least squares
objective. If y belongs to an ℓq ball with radius C and 0 < q < 2, and we define

rp,q(C) =


C2 if C ≤

√
1 + log p,

Cq[1 + log(p/Cq)]1−q/2 if
√
1 + log p ≤ C ≤ p1/q,

p if C ≥ p1/q,

(5.73)

the ideal risk is bounded as

sup
y∈Rp:

∑
i |yi|q≤Cq

R(y, σ) ≤ c(log ν)σ2rp,q(C/σ), (5.74)

for some c > 0. The supplementary results in [62] yield that R(y, σ) is bounded by C2 log ν,
and by C2 when C ≤

√
1 + log p.

As in Appendix 5.C, we may replace q with 0 and Cq with s in the case of hard sparsity
with s non-zero coordinates. Doing so leads to the bound:

E∥y−ŷ∥22 ≤ sσ log ν log σpν
s

+ σ1σ
2 2

ν
. (5.75)

Note that we have recovered the factor of log νp/s in βcrit.
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Chapter 6

Afterword

In this work, we have studied two methods, both of which are eigenvalue problems, for
learning, inferring, and unmixing signals in the presence of noise. We have seen that when
the signals are structured, the effect of noise can be mitigated and we can recover the latent
signal.

We have studied the Dynamic Mode Decomposition algorithm in the noise-free, missing
data, and noisy data settings. A major novelty and advance of this work is the demon-
stration that DMD can solve the blind source separation problem [29]. Moreover, we have
demonstrated that a truncated SVD denoising step can improve performance of the algo-
rithm. Additionally, we have presented different perspectives on the algorithm, including
that of convex optimization.

We have also presented a novel perspective for sparse PCA, based off hypothesis testing.
We have incorporated FDR control into the sparse PCA problem, and have compared the
effectiveness of various decision statistics in the rank-1, non-negative coordinates setting.
Moreover, this work generalizes to more than just Gaussian-distributed noise.

6.1 Future Work and Open Questions
There are some unanswered questions, and it is our hope that this thesis can serve as a
starting point toward answering those.

First, the performance of DMD without the truncated SVD is an open question. So far,
we have shown that we may express the DMD eigenvalue problem of a rank-1 plus noise
data matrix as a rank-4 perturbation of the noise-only setting. However, analysis of the
perturbation is an open problem, as is the analysis of how the perturbation affects the
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result. Moreover, we have not extended our work to higher rank signal matrices, and it
is not clear what the relationship between signal rank and the perturbation is. Second,
the analysis of DMD with the truncated SVD for the non-orthogonal model is open. This
is the subject of ongoing work, and the design of the optimal weighting estimator is still
open.

Taking a step back, the behavior of DMD in the noise-only setting is still an open
question. We have conjectures that we can numerically substantiate, but a formal proof
is still to be written down. In particular, we need to show convergence of the empirical
eigenvalue density to the conjectured density, and we have undertaken preliminary moment
calculations.

Returning to DMD, another interesting direction that one could take this work would
be the incorporation of multiple lags: a novelty of this work was the demonstration that
DMD could be performed at lags other than one. Much like the SOBI algorithm, it may
be advantageous to use more than one lag to recover the latent signals/eigenvectors [83].
The SOBI algorithm performs a joint diagonalization of covariance matrices from different
lags, and one might imagine a similar approach for DMD (jointly diagonalizing several non-
Hermitian Â matrices). Taking a step back from the incorporation of multiple lags, there
is still the question of choosing the optimal lag (much like with SOBI). Our investigations
have shown that lags that have the greatest separation of autocorrelations (from each
other and from zero) while having the lowest cross-correlations of the latent signals lead
to the best performance. However, without oracle knowledge of the latent signals, it is not
necessarily clear how one should choose the best lag. Finally, non-linear extensions of this
work, particularly in the design and analysis of provably convergent DMD-based unmixing
on non-linearly mixed ergodic time series are of interest and would complement related
works on non-linear ICA [3, 39, 57, 78, 55, 22, 58, 46, 4, 133] and non-linear DMD [130,
124].

In Chapter 4, we presented several vignettes that extended the themes in our DMD
analysis. The first problem that we considered was the convex optimization framework
that mimicked the DMD eigenvalue problem and offered the ability to impose sparsity.
We have presented an algorithm to solve the problem and some results to characterize
the resulting solutions, but our method is computationally demanding and not tractable
for larger problems. An immediate next step would be to either reformulate this problem
or improve the algorithm to handle larger problems. One immediate improvement to the
tractability would be to replace the parameter grid search with some more intelligent, like a
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Bayesian Hyperparameter Search [112] or even a simple random search [15]. Additionally,
it would be interesting to formalize the performance analysis of the algorithm for noisy
data.

Two other ideas in Chapter 4 were DMD performed on Hilbert-transformed data and a
two-dimensional, spatial DMD analogue. It would be interesting to study the behavior and
effects of the algorithm on non-sinusoidal data. For the two-dimensional DMD algorithm,
a careful study in the same theme as that in Chapter 2 would be of interest.
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