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ABSTRACT 

 

 
 

Cancers of the breast and prostate are primarily driven by sex hormone signaling which 

has been targeted clinically with considerable success. The genomic and transcriptomic 

landscape of these tumors has been thoroughly elucidated and major advances have been made in 

characterization from non-invasive “liquid biopsy”, however, the full potential of these advances 

is yet to be realized in the clinic. Two areas of our focus, with such opportunities to improve 

patient outcomes in hormone-driven cancers are: 1) Non-invasive tracking of metastatic breast 

cancer (mBC) evolution for precision medicine; 2) Non-invasive early detection of prostate 

cancer (PCa). 

mBC is an ultimately treatment-resistant, lethal disease characterized by intra-patient 

molecular heterogeneity including genomic alterations driving resistance to therapy directed at 

estrogen receptor (ER; ESR1) signaling (endocrine therapy). Tumor biopsies are not routinely 

available in this setting. We sought to determine whether circulating tumor cells (CTCs) 

recapitulate the genomic landscape of bulk tumor tissue. In project 1, we isolated and 

genomically profiled individual CTCs from 12 patients with mBC who had concurrent whole 

exome sequencing of their metastatic biopsy bulk tissue. In 76 individual and pooled informative 

CTCs, we observed 85% concordance in at least one driver somatic mutation/copy number 

alteration (CNA) between CTCs and matched tissue metastases, with CTC profiling identifying 
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diverse intra- and inter-patient molecular mechanisms. For example, in one patient, we observed 

CTCs that were either wild type for ESR1 (n = 5/32), harbored the known activating ESR1 

p.Y537S mutation (n = 26/32) also present in tissue, or harbored a novel ESR1 p.A569S 

mutation not observed in tissue (n = 1/32), which was demonstrated to be modestly activating in 

vitro. Our results demonstrate the feasibility and potential clinical utility of comprehensive 

profiling of archived fixed CTCs.  

Despite advances in biomarker development, early detection of aggressive PCa remains 

challenging. We previously developed a clinical-grade laboratory-developed test—MiProstate 

Score (MiPS)—for individualized aggressive PCa risk prediction. MiPS combines serum PSA 

with transcription-mediated amplification (TMA)-quantified expression of the gene-fusion 

TMPRSS2:ERG (T2:ERG) and the lncRNA PCA3 from whole urine obtained after a digital rectal 

exam (DRE). To improve upon MiPS, in our second project, we describe the pre-clinical 

development and validation of a post-DRE whole urine targeted RNA NGS assay (NGS-MiPS) 

assessing ~90 PCa candidate transcriptomic biomarkers, including: T2:ERG.T1E4 and PCA3, 

additional common PCa gene fusion isoforms, mRNAs, lncRNAs, and expressed mutations. 

NGS-MiPS showed high analytic validity and was able to detect expressed germline risk 

HOXB13 and somatic driver SPOP mutations. In an extreme design cohort (benign or Grade 

Group (GG) 1 vs. GG 3-5 cancer on biopsy) NGS-MiPS showed expected differences in the 

levels of T2:ERG.T1E4 and PCA3, as well as additional biomarkers, between benign/GG 1 vs. 

GG 3-5 PCa. A machine learning approach trained on a subset of the extreme design cohort 

(n=73) generated a 15-transcript model that outperformed derived MiPS and serum PSA models 

in predicting biopsy outcome in two validation cohorts: 1. A held-out set from the extreme 

design cohort (n=36); and 2. A separate PCa active surveillance cohort (n=45). These results 
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support the potential utility and continued development of our novel urine-based targeted RNA 

NGS assay to improve aggressive PCa early detection. 

Leveraging recent technological advances—CTC isolation, NGS, liquid biopsy 

techniques—as well as knowledge of the genomic landscape of hormone-driven cancers, we 

demonstrate feasibility of non-invasive precision medicine in mBC and PCa with potential 

clinical utility.  
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CHAPTER I 

 

Introduction 

 

1.1 Cancer statistics  
 

Cancer is a relatively common disease, responsible for an estimated 1.75 million new 

cases in the US in 2019, with over 58,000 cases in the state of Michigan alone[1]. Cancer 

remains among the leading causes of death with mortality due to all cancer types estimated at 

over 440,000 patients in 2019, second only to cardiovascular disease[2]. In addition, national 

cost of direct medical care and loss of economic productivity due to cancer are projected to cost 

the US economy $158 and $150 billion, respectively, in 2020[3-5]. Importantly, cancer death 

rates have been on a sustained decrease over the past few decades (~20% in the past 20 years) 

likely due, at least in part, to advances in early detection, treatment and monitoring[6]. This 

supports continued efforts on many fronts, ranging from better understanding basic the 

mechanisms of disease to translating those findings into improved clinical outcomes.  

 

1.2 Breast and prostate normal and tumor tissue growth is largely driven by sex 

hormone signaling 

Cancers of the breast and prostate are among the most commonly diagnosed malignancies 

responsible for nearly one third of new cancer cases and 17% of cancer deaths in the US[1, 2]. 

Many molecular similarities exist in the normal function and tumors between these two 
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secondary sex organs. Both are largely controlled by the signaling activity of sex hormones: 

estrogens (mainly estradiol, estrone and estriol) and progesterone in breast, and androgens 

(mainly testosterone, dihydrotestosterone and androstenedione) in the prostate. These steroid 

hormone family members are derivatives of cholesterol (as are aldosterone and glucocorticoids), 

and estrogens are derived directly from enzymatic conversion of androgens by the enzyme 

aromatase (Figure 1). Epithelial cells of the breast and prostate are exposed to these growth 

inducing hormones over decades[7, 8].  

Fat-soluble estrogens and androgens, produced primarily in ovaries and testes, 

respectively, (with more minor contributions from the adrenal cortex) diffuse through the cell 

membrane of target cells to bind to their respective intracellular receptors: the estrogen and 

progesterone receptors (ER [ESR1], PR) in the breast, and androgen receptors (AR) in the 

prostate. Interaction of these hormones with their receptors promotes transport into the nucleus, 

where the hormone-bound receptors dimerize (some extranuclear activity of ER has been 

reported but its function is less well understood)[9].  Receptor homodimers bind to conserved 

specific DNA sequences: estrogen response elements (EREs) and androgen response elements 

(AREs)[10, 11]. Upon DNA binding in combination with other co-activators (or co-repressors), 

they serve as transcription factors to induce expression of downstream genes and implement a 

transcriptional program that drives cellular growth, among other effects[12, 13]. In cancer, this 

same signaling promotes tumor cell growth, a notion supported by the fact that therapies targeted 

at inhibiting ER and AR signaling have effective antitumor activity as described below[14]. It 

should be mentioned that not all breast and prostate cancers share dependence on sex hormone 

molecular signaling. The membrane receptor tyrosine kinase Erbb2/Her-2 (not ER/PR signaling) 

is responsible for driving a subset of hormone receptor-negative breast cancers. Similarly, a 
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subset of prostate cancers of small cell/neuroendocrine character are independent of AR 

signaling.  

 

Figure 1. Steroid hormone biosynthesis and pharmacological inhibition. Cholesterol molecules 

undergo several oxidation/reduction steps via hydroxylation, carbonylation and hydrogenation 

catalyzed by specific localized enzymes to yield mineralocorticoids, glucocorticoids and sex 

hormones (modified from Haggstrom et al. [15]). 
 

 

1.3 Pharmacological endocrine therapy for breast and prostate cancers 

As mentioned above, treatment approaches that inhibit hormone signaling in a targeted 

manner have led to marked improvements in outcomes of hormone driven cancers in both 

organs. Specifically, endocrine therapy for ER/PR+ breast cancer (with or without chemotherapy 
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and radiation) is a mainstay treatment strategy used in the adjuvant (i.e. post-surgical resection of 

a primary breast tumor in order to eradicate any local or distant residual cancer cells and prevent 

cancer recurrence) and metastatic settings[16-19]. Several drug classes have emerged that inhibit 

estrogen receptor signaling. Selective estrogen receptor modulators (SERMs), with tamoxifen 

being a canonical example, have both pro- and anti-estrogenic function depending on tissue type, 

with anti-estrogenic activity predominating in the breast, although instances of tamoxifen ER 

agonist activity in breast cancer are known[20]. Tamoxifen is among the most widely-prescribed 

treatments for hormone sensitive breast cancer and it has been shown to act by binding to ER and 

inhibiting its transcription factor activity[21]. Selective estrogen receptor degraders (SERDs), 

exemplified by fulvestrant, on the other hand, are pure anti-estrogens that lack off- (or on-) site 

pro-estrogenic effects, and act by binding to ER and preventing its dimerization leading to 

eventual degradation[22]. The anti-cancer activity of fulvestrant is comparable to tamoxifen, 

however it requires intra-muscular injection of a large-volume formulation which has led to the 

search for oral SERDs[23, 24]. Other endocrine therapies include gonadotropin releasing 

hormone (GnRH) agonists such as leuprolide and buserelin, which act by triggering a negative 

feedback loop on hypothalamic production of GnRH leading to decreased pituitary gonadotropin 

hormones: follicle stimulating hormone (FSH) and luteinizing hormone (LH), whose normal 

function is to induce sex hormone production. This decrease, in turn, leads to a shutdown of 

estrogen production in the ovaries and adrenal cortex[25]. Lastly, aromatase inhibitors (AIs) such 

as anastrozole and exemestane, are another class of anti ER+ breast cancer drugs that act by 

inhibiting a key enzyme, aromatase, which converts testosterone to estrogen in extra-ovarian 

tissues such as the adrenal cortex (Figure 1). As such, it is used effectively as an endocrine 

therapy drug only in post-menopausal women. 
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Similarities between breast and prostate normal and cancerous tissues extend to the drugs 

used in treating their respective cancers as well. Thus, anti-androgen therapy, also called 

androgen deprivation therapy (ADT), is a mainstay in hormone sensitive primary prostate cancer 

in the adjuvant and especially metastatic setting, alone or in combination with chemotherapy 

and/or radiation[26]. GnRH agonists, including some of the same compounds mentioned above 

in breast cancer, such as leuprolide and buserelin, are commonly used ADT drugs for so-called 

chemical castration (as opposed to orchiectomy - surgical removal of the testicles). Another 

prostate cancer ADT drug class, GnRH antagonists, are opposite in their immediate function but 

similar in their ultimate effect to GnRH agonists. Agonists cause an initial increase in 

gonadotropins such as LH and consequently androgen hormones. This is followed by a sharp 

decrease due to eventual onset of feedback signaling as described above in breast cancer. GnRH 

antagonists, on the other hand, directly bind to GnRH receptors on pituitary cells and 

competitively antagonize binding of the native GnRH hormone, thus having a more immediate 

effect[27, 28]. GnRH antagonist drug examples include degarelix.  

Similarities in breast and prostate cancer pharmacological treatment extend to direct 

inhibitors of the sex hormone nuclear receptors as well. Thus prostate cancer counterparts to 

breast cancer SERMs and SERDs are direct AR inhibitors which are used in combination with, 

or after suppressors of pituitary hormones above (GnRH agonists/antagonists). Part of the benefit 

of their concomitant use with GnRH agonists at the start of therapy is thought to lie in mitigating 

the effects of the initial androgen boost by GnRH agonists before negative feedback inhibition 

sets in[29]. These drugs include the older generation bicalutamide and its other class 

members[30] as well as the newer drugs, enzalutamide and apalutamide[31]. The latter two have 

been effective in the clinic for prostate cancer that becomes eventually resistant to older 
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generation ADT (metastatic castration resistant prostate cancer, mCRPC), an almost universal 

occurrence[32]. Recently, enzalutamide and the same-class drug apalutamide were shown to also 

provide benefit in combination with ADT in patients with metastatic castration-sensitive prostate 

cancer (mCSPC), in progression-free and importantly, in overall survival as well[33, 34]. 

Finally, inhibitors of steroidogenic enzymes act in a similar way to breast cancer aromatase 

inhibitors above to block biosynthesis of testosterone and its derivatives in prostate cancer 

(Figure 1). Specifically, dutasteride, finasteride and other class members are inhibitors of 5α-

reductase, the enzyme that catalyzes the reduction of testosterone to the much more potent 

androgen dihydrotestosterone (DHT). They are more commonly used to treat benign prostatic 

hyperplasia (BPH). A newer drug, abiraterone, inhibits the 17α-hydroxylase enzyme 

(Cytochrome P450 17A1, CYP17A1), an upstream enzyme in steroidogenesis pathway and has 

been used successfully in mCRPC[35]. Similarly to enzalutamide and apalutamide, it was 

recently shown to be improve overall survival in combination with ADT in mCSPC patients as 

well[36, 37]. 

Thus overall pharmacological treatment strategy in hormone receptor-positive breast and 

prostate cancers shows substantial similarities reflecting mirroring molecular biology and 

endocrinology characteristics of these two organs and by extension, their tumors. 

 

1.4 The molecular landscape of breast and prostate cancer endocrine therapy 

resistance 

The somatic molecular landscapes of breast and prostate primary tumors have been 

thoroughly elucidated as part of The Cancer Genome Atlas (TCGA) and other efforts[38-42]. 

Furthermore, large cohorts of metastatic samples of these two tumor types have also been 



7  

sequenced to determine recurrent alterations, thought to underlie therapy resistance 

mechanisms[43-47]. Several patterns have emerged from these studies. Although, as described 

above, the sex hormone nuclear receptors are key drivers of disease biology of these cancers, 

recurrent genomic alterations in ER/PR or AR and their fellow signaling pathway protein 

members in primary tumors are notably absent in both tumor types. In fact, it is not until these 

cancers become resistant to endocrine therapy or ADT (usually in the metastatic setting) that ER 

and AR mutations or gene amplifications emerge in dominant tumor cell subclonal populations 

(whether pre-existing or acquired de novo). Evolution of these alterations is thought to happen 

due to selective evolutionary pressure from endocrine therapy. Specifically, advanced ER+ 

breast cancers with acquired resistance to SERMs/SERDs and aromatase inhibitors often have 

mutations in ESR1, the gene encoding estrogen receptor alpha (ERα)[48]. These missense amino 

acid substitutions are concentrated in a hotspot region of the ESR1 ligand binding domain (LBD) 

and have been shown to constitutively activate ER[48]. This activation obviates the need for 

estrogen ligand binding and thus defeats the effects of anti-estrogen endocrine therapy. This 

cluster of ESR1 LBD hotspot amino acids was shown by Robinson et al. to include p.Y537, 

p.D538 and less commonly, p.L536[48]. In some patients, these initially heterozygous mutant 

cell subclones undergo deletion of the wild type ESR1 allele (loss of heterozygosity, LOH, with 

copy loss or copy-neutral) which results in all-mutant ER homodimers. These are hypothesized 

to be superior transcriptional activators over mutant:wild-type dimers by being entirely free from 

the inhibitory effects of wild type ER inhibitors[49]. Furthermore, ESR1 copy number 

amplifications have also been observed in treated advanced breast cancers making this another 

apparent endocrine therapy resistance mechanism. Gene amplification presumably causes ESR1 

overexpression due to a greater number of gene copies being transcribed and translated to 
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generate additional ERα[43]. 

As may be expected from the discussion so far, the molecular landscape of prostate 

cancer resistant to androgen deprivation therapy largely parallels that in endocrine therapy-

resistant ER+ breast cancer. Thus, the selective pressure that earlier generation ADT drugs of 

diverse mechanisms exert on AR generates dominant subclones (whether pre-existing or de 

novo) containing genomic alterations of this nuclear receptor gene[50]. Indeed, AR gene 

amplifications are present in ~30% of mCRPC patients and these alterations are not observed in 

the patient-matched primary tumors, at least not at the sensitivity level of the sequencing 

methods used[51]. A greater number of AR gene copies presumably increases its expression 

which can overcome AR inhibition in an equivalent manner to ESR1 gene amplifications in 

endocrine therapy resistant breast cancer. Interestingly, AR gene amplification is the dominant 

endocrine therapy resistance mechanism in prostate cancer as opposed to activating mutations. 

This is in contrast with endocrine therapy resistant breast cancer where LBD mutations 

predominate over gene amplifications. However, mutations in AR are present in approximately 

15% of mCRPC patients and, as expected, are found in the AR LBD domain. They are primarily 

centered on 3 hotspots somewhat distant from each other: p.L702, p.W742 and 

p.H875/p.T878[50]. As in breast cancer, they cause constitutive activation of the receptor which 

enables ligand-independent transcriptional activity. Interestingly, in some cell lines/xenografts, 

mutant AR at positions p.H874 and p.F876 exhibit activation, as opposed to inhibition, by direct 

AR inhibitors flutamide and enzalutamide, respectively. This indicates a potential resistance 

strategy by prostate cancer cells by turning an AR antagonist into an agonist for their benefit[52, 

53]. In line with this observation, ER+ breast cancer endocrine therapy drugs such as SERMs 

mentioned above, (namely tamoxifen), are also well-known to paradoxically convert from ER 
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antagonists to agonists. Tumor regression in these patients upon tamoxifen withdrawal is 

sometimes observed[54-56]. In these tumors, a molecular “reversal” is observed whereby 

tamoxifen-bound ER drives robust paradoxical ER signaling whereas the estrogen-bound 

receptor may impede it. This mechanism is supported by observations in in vitro models of such 

tamoxifen-resistant tumors where tamoxifen promotes tumor cell growth, whereas subsequent 

estrogen treatment has the opposite effect[55].  

Another interesting molecular commonality between subsets of advanced hormone-

positive breast and prostate cancers are gene rearrangements of their hormone receptors. 

Specifically, ESR1 gene fusions in advanced endocrine therapy-resistant breast cancer have been 

shown to induce overexpression and estrogen independent activity in vitro[57-60]. Likewise, 

genomic rearrangements at the AR locus have also been observed in patients and, as may be 

expected, these are found in the context of mCRPC disease[61, 62]. 

Additional AR-related ADT resistance mechanisms have been described in prostate 

cancer that have less well-documented (yet not inexistent) equivalents in endocrine resistant 

breast cancer. These include AR splice variants such as AR-V7 which lacks an LBD (although 

there are reports of breast cancer ER variants in patient circulating cell-free DNA[63]) and 

upregulation of glucocorticoids (CG) that can bind to mutant AR or drive AR-controlled gene 

expression via GC receptor signaling[50]. 

 

1.5 Other genomic alterations in advanced breast and prostate cancers show 

similarities 

Sustained anti-androgen therapies with newer drugs that overcome initial prostate cancer 

resistance to prior generation ADT treatments have been shown in some cases to eventually lead 
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mCRPC into androgen-independent small-cell/neuroendocrine differentiation[50, 64, 65]. This 

has been hypothesized to be as a result of either selection from pre-existing ADT-refractory cells 

or from de novo transdifferentiated subclones derived from earlier AR+ cells. Recent evidence 

seems to support the latter model since TMPRSS2:ERG fusions (AR-driven) are present in the 

genomes of these cells at the same frequency as in primary disease (~50%)[64]. By the time of 

neuroendocrine disease development, these fusions are likely genomic records of a previously 

active fusion protein, now a non-functional, passenger event. This is supported by the fact that 

this stage of disease molecular evolution is confirmed not only by loss of ADT effectiveness, but 

marked downregulation of androgen signaling in these tumors (which is required for TMPRSS2 

gene expression). This latter point is in contrast to earlier stages where the tumor becomes 

resistant to traditional ADT (mCRPC), yet maintains robust or even elevated AR function which 

can be inhibited by next generation drugs such as enzalutamide or apalutamide. Other alterations 

such as deletion of the tumor suppressors TP53 and RB1 (these two typically occurring in 

neuroendocrine tumors), PI3 kinase negative regulator PTEN as well as amplification of the 

MYCN transcriptional activator and deleterious alterations in DNA damage repair genes (BRCA1, 

BRCA2 and ATM) appear to drive tumor growth at this later stage[45, 47, 64, 65].  

Some of the same genes are altered in advanced treated breast cancers although 

similarities are not as striking as for the hormone receptor altered cancers under endocrine 

therapy[43, 66]. Thus alterations specific to metastatic disease in breast cancer include TP53, 

RB1 and PTEN but also other genes not recurrently altered in prostate cancer. Among these are 

HER-2 (ERBB2) mutations and amplifications, usually as primary Her-2+ breast cancers 

developing resistance under anti-Her-2 therapy. However, in vitro studies also show ER+ breast 

cancer cell lines upregulating Her-2 under sustained tamoxifen treatment, thus supporting 
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evolution from endocrine therapy-treated ER+ breast cancer into more hormone-independent 

Her-2+ disease as a potential endocrine therapy resistance mechanism[54]. Other genomic 

alterations in advanced breast cancer include deleterious changes in NF1 (a GTPase activating 

protein, GAP), which is a negative regulator of the MAP kinase pathway that normally induces 

RAS GTPase activity to self-catalyze hydrolysis of Ras-bound GTP into GDP thus inactivating 

it[66]. Other genes in growth factor receptor tyrosine kinase (e.g. EGFR) – MAP kinase (e.g. 

KRAS) axis are also recurrently mutated in advanced breast cancers[66]. 

 

1.6 The genomic landscapes of primary breast and prostate cancers show fewer 

similarities 

Despite notable parallels in sex hormone receptor signaling driving a considerable 

portion of pro-cancer transcriptional programing in hormone receptor-positive breast and 

prostate cancers, the greatest dissimilarity between the two cancer types lies in the genomic 

alterations driving their primary tumors (which have not been exposed to selective pressures 

from various anti-cancer therapies). While sex hormone receptor driven transcription is essential 

in most breast and prostate tumors, as mentioned above, no genomic alterations appear to be 

involved in this effect in early untreated primary tumors. Studies have shown differing sets of 

genomic alterations responsible for early cancer development in breast and prostate[38, 39, 42]. 

Thus hotspot mutations in primary breast cancers center around TP53, the PI3 kinase active 

subunit gene PIK3CA, MAP kinase genes, the transcription factor GATA3 etc. An exception are 

breast cancers of lobular subtype, which have highly recurrent inactivating mutations (with or 

without LOH events) in CDH1, the gene encoding E-cadherin[38, 42]. 

By contrast, early genomic events in most primary prostate cancers include highly-
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recurrent gene fusions between AR-responsive genes such as TMPRSS2 or SLC45A3 and 

oncogenic Ets transcriptions factors ERG, ETV1, -4, -5, FLI1 etc. (~65% of cases) with the 

TMPRSS2:ERG fusion being the most common (~50% of all prostate tumors)[39, 67, 68]. In 

these genomic rearrangements, the 5’ AR-controlled fusion partners serve to drive expression of 

the fusion transcript whereas the 3’ Ets genes are the oncogenic end of the fusion (inducing an 

invasion-associated transcriptional program in the case of ERG [69]). The second most common 

genomically altered gene in primary prostate cancer is the E3 ubiquitin ligase SPOP. These 

account for an additional 5-15% of cases compared to fusion-positive cancers since the presence 

of hotspot activating mutations in this gene is mutually exclusive with Ets gene fusions[39]. 

Various less recurrent alterations and other yet unknown molecular mechanisms account for the 

rest of primary prostate cancer molecular driver alterations.  

An interesting subset of prostate cancers include genomic alterations in FOXA1, a 

pioneer transcription factor that precedes binding of nuclear receptors such as AR (and ER) to 

their genomic response elements[70]. In prostate cancer these alterations fall under distinct 

subclasses based on the protein domains they affect[71] and like SPOP mutations, they are also 

mutually exclusive with Ets fusions and to some extent with SPOP mutations as well[39]. One 

subclass of FOXA1 alterations (Class-1 mutations), located in the DNA binding forkhead 

domain, occurs specifically in early prostate cancer as opposed to mutations in the C-terminal 

domain which appear to arise in metastatic disease[71]. Interestingly, FOXA1 mutations are also 

recurrent in primary breast cancer, particularly of the lobular subtype[38, 42]. Intriguingly these 

are also limited to the same forkhead domain[42] as Class-1 mutations in early prostate cancer 

described above[71]. This highlights some rather fundamental similarities in genomic alterations 

of early breast and prostate cancers, at least in a subset of patients, despite other differences in 
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their genomic makeup.  

 

1.7 Biomarker potential of tumor molecular alterations for advanced breast cancer 

precision medicine and prostate cancer early detection 

As discussed above, the genomic and transcriptomic alterations emerging at various 

stages of breast and prostate malignant disease are rich in information. They involve many 

recurrent DNA point mutations, short insertions/deletions (indels), copy number changes or 

chromosomal rearrangements/gene fusions. These alterations at the genetic level, as well as other 

non-genetic modifications, lead to transcriptional changes reflected at the expression level or 

amino acid sequence of the proteins encoded. This in turn switches the molecular signatures and 

mechanisms inside the cell from normal to tumorigenic. Importantly, ongoing efforts to make 

use of this wealth of genomic and transcriptomic information promises to impact clinical care in 

the form of tumor biomarkers for early disease detection, prognostication, monitoring, evolution 

and therapy. 

The vast majority of the genomic and transcriptomic profiling above has been performed 

on bulk patient tumor tissue obtained from biopsies or surgical resections. This relatively 

recently elucidated wealth of candidate molecular biomarkers with potential clinical utility can 

now be coupled with major advances in “liquid biopsy” techniques. These center around 

extracting useful information, usually in the form of biomarkers, by sampling relatively (or 

entirely) non-invasively, various biofluids such as blood, urine, cerebrospinal fluid (CSF), feces, 

saliva etc. This rests on the principle, backed by abundant observations, that tumors passively or 

actively release some of their contents into the surrounding extra-tumoral space, which 

eventually finds its way in the circulation/stream of these biofluids[72]. These materials include 
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circulating cell-free DNA and RNA (naked, protein-bound or as part of extracellular membrane-

bounded vesicles such as exosomes) which can be released by necrotic (dead) or live tumor 

tissue. They also include intact, usually viable individual tumor cells or cell-clusters which are 

more commonly thought of in the context of metastatic seeding[72]. These cells obviously 

contain the entire genomic and transcriptomic makeup of a tumor cell, although they can be 

limited to the tumor subclonal population they are derived from, which may be important in 

cases characterized by intra-tumoral molecular heterogeneity. Despite this progress in assaying 

and analyzing cancer molecular features in individual patients, the full potential of these 

advances is only beginning to be translated in the clinic.  

Two areas of our focus, with such opportunities to improve patient outcomes in hormone-

driven cancers are: 1) non-invasive tracking of metastatic breast cancer (mBC) evolution for 

precision medicine approaches; and 2) non-invasive detection of prostate cancer (PCa) in the 

early setting. 

mBC is an ultimately treatment-resistant, lethal disease characterized by intra-patient 

molecular heterogeneity including genomic alterations driving resistance to endocrine therapy in 

hormone receptor-positive tumors, as described earlier. Multiple temporally-distributed tumor 

biopsies are not readily available in this setting as part of routine clinical care due to cost, 

complications, metastasis anatomical location etc. This fact limits investigation of the tumor 

molecular landscape for determining precision medicine strategies (individualized treatment 

options based on tumors’ individual molecular profiles) and tracking of potential molecular 

resistance mechanisms in real time. A considerable portion of women with mBC have tumor 

cells circulating in their bloodstream (circulating tumor cells, CTCs) and CTC counts are 

prognostic markers for disease outcome[73]. CTCs’ potential to track the tumor genomic 
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landscape however, has not been fully utilized. Specifically, it is not clear to what extent the 

genomic profiles of individual CTCs recapitulate the genomic landscape of bulk tumor tissue. In 

project 1, we enriched and isolated individual blood circulating tumor cells (CTCs) and 

performed genomic profiling using targeted next generation sequencing (NGS) of ~135 cancer-

related genes in 12 mBC patients who had concurrent whole exome sequencing of their 

metastatic biopsy bulk tissue. We addressed questions regarding the extent to which tumor tissue 

and CTC genomic landscapes differ especially with regard to endocrine therapy resistance 

mechanisms, whether all epithelial cells purified from blood are true tumor cells, and in general 

the feasibility of CTC comprehensive genomic profiling to contribute to mBC precision 

medicine. Our results demonstrate the feasibility and potential clinical utility of comprehensive 

profiling of archived fixed CTCs as a complementary approach to tissue biopsy sequencing for 

precision medicine in advanced breast cancer patients.  

Despite advances in biomarker development, early detection of aggressive prostate 

cancer remains challenging. Biomarkers currently in use are somewhat limited in number and 

clinical utility. Serum prostate specific antigen (PSA) has revolutionized prostate cancer early 

detection largely by improvements in sensitivity. However, despite looking at various serum 

PSA protein isoforms and combining them with clinical/demographical/medical history 

parameters, the specificity of cancer detection by this approach remains unsatisfactory. Thus, 

~40% of prostate biopsies triggered by a serum PSA level above the clinically used threshold of 

4.0 ng/ml at the initial detection setting show no presence of cancer on pathology. Other prostate 

cancer biomarker tests take advantage of prostate’s direct route to the urinary tract by detecting 

prostate cancer-associated transcriptomic biomarkers in urine RNA. We previously developed 

one such clinical-grade laboratory-developed urine-based test and predictive algorithm—
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MiProstate Score (MiPS)—for individualized prediction of risk of having aggressive prostate 

cancer on biopsy. MiPS combines serum PSA with transcription-mediated amplification (TMA)-

quantified expression of the gene-fusion TMPRSS2:ERG (T2:ERG; T1E4 splice isoform) and the 

lncRNA PCA3 from whole urine obtained after a digital rectal exam (DRE)[74]. To improve 

upon MiPS, in our second project we describe the pre-clinical development and validation of a 

post-DRE whole-urine targeted RNA NGS assay (NGS-MiPS) assessing ~90 PCa transcriptomic 

biomarkers, including: T2:ERG.T1E4 and PCA3, additional common PCa gene fusion isoforms, 

mRNAs, lncRNAs, and expressed mutations. Our assay showed high technical validity, 

outperformed currently used clinical models/biomarkers and demonstrated novel features such as 

detection of expressed mutations. These results support the potential utility and continued 

development of our novel urine-based targeted RNA NGS assay to supplement serum PSA to 

help guide initial biopsy and other clinical decisions for improved aggressive prostate cancer 

early detection.  

Our overall approach consists in leveraging recent technological advances (liquid 

biopsies, CTC isolation, next generation sequencing etc.) as well as knowledge of the genomic 

landscape of sex hormone-driven cancers to show the potential of non-invasively enabling 

precision medicine in mBC and accurately detecting early prostate cancer. This work suggests 

that our approach merits continued development and has potential for clinical utility in order to 

improve care for breast and prostate cancer patients. 
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CHAPTER II 

 

Comprehensive mutation and copy number profiling in archived circulating 

breast cancer tumor cells documents heterogeneous resistance mechanisms1 

 

 
2.1 Abstract 

 
 

Metastatic breast cancer (mBC) is an ultimately treatment-resistant, lethal disease 

characterized by intra-patient molecular heterogeneity including genomic alterations driving 

resistance to therapy directed at estrogen receptor (ER; ESR1) signaling (endocrine therapy). 

Tumor biopsies are not routinely available in this setting. We sought to determine whether 

circulating tumor cells (CTCs) recapitulate the genomic landscape of bulk tumor tissue. In 

project 1, we isolated and genomically profiled individual CTCs from 12 patients with mBC who 

had concurrent whole exome sequencing of their metastatic biopsy bulk tissue. In 76 individual 

and pooled informative CTCs, we observed 85% concordance in at least one driver somatic 

mutation/copy number alteration (CNA) between CTCs and matched tissue metastases, with 

CTC profiling identifying diverse intra- and inter-patient molecular mechanisms. For example, in 

one patient, we observed CTCs that were either wild type for ESR1 (n = 5/32), harbored the 

known activating ESR1 p.Y537S mutation (n = 26/32) also present in tissue, or harbored a novel 

ESR1 p.A569S mutation not observed in tissue (n = 1/32), which was demonstrated to be 

                                                      
1 This study has previously appeared in Paoletti, C.#, Cani, A.K.#, et al. Cancer Research 2018. 49. Paoletti, C., et al., 

Comprehensive Mutation and Copy Number Profiling in Archived Circulating Breast Cancer Tumor Cells 

Documents Heterogeneous Resistance Mechanisms. Cancer Res, 2018. 78(4): p. 1110-1122. (# Co-first authors) 
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modestly activating in vitro. Our results demonstrate the feasibility and potential clinical utility 

of comprehensive profiling of archived fixed CTCs. 

 

2.2 Introduction 

 
The promise of precision oncology implies that patients with advanced cancer might 

undergo somatic genomic profiling to identify molecular alterations that match with potentially 

active molecularly targeted therapies. Most of the strategies of precision medicine to date have 

used archival or prospectively biopsied tissues for somatic profiling. The use of liquid biopsies, 

to obtain circulating tumor cells (CTC) or circulating cell free DNA (cfDNA) for phenotypic or 

molecular analyses, has the potential to overcome tissue availability as a major barrier to 

precision oncology [75-78]. Such approaches may be particularly valuable in the context of 

patients progressing after targeted therapy, in whom a single tissue biopsy may be unable to 

capture the diverse resistance mechanisms driving individual clonal populations of progressing 

metastases [79]. Importantly, although numerous cfDNA and CTC platforms have been profiled, 

the only Food and Drug Administration (FDA)-cleared CTC platform is the CellSearch® system 

(Menarini, Silicon Biosystems), which has regulatory clearance in several cancers for prognostic 

utility of CTC counts [80, 81]. CTC profiling in treatment-refractory cancers holds particular 

promise as a translational research tool to capture the global set of resistant cell populations in 

individual patients, as deconvolution of individual resistant populations in cfDNA requires 

massive sequencing depth or breadth (when cfDNA tumor content is low) and tissue based 

profiling only provides information on the biopsied metastasis [48, 82-84].   

Nearly all patients with hormone receptor positive (HR+) metastatic breast cancer (MBC) 

initially respond to anti-estrogen treatments (endocrine therapy, ET), but ultimately progression 
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is nearly universal. Several ET resistance mechanisms in estrogen receptor (ER)-positive MBC 

have been identified, including ER down-regulation (through deletion or suppression), alterations 

in ER-signaling pathway genes, deregulation of growth pathways, down-regulation of apoptosis 

pathways, and unbalanced ER-co-regulator activity [85]. More recently, we and others have 

reported mutations in the ligand binding domain (LBD) of ESR1, the gene that encodes for ER 

alpha, in patients with MBC after ET [48, 86-89].  These mutations appear to confer absolute 

resistance to estrogen depletion, and relative resistance to selective ER modulators, such as 

tamoxifen, and selective ER down-regulators, such as fulvestrant [48].  

We and others have investigated concordance between tissue, cfDNA and CTC-based 

assessment of ESR1 mutations in patients with MBC [90-92]. Importantly, the majority of CTC-

based genomic profiling approaches in MBC—and other cancers—either rely on platforms that 

do not fix CTC, utilize low pass whole genome sequencing to identify broad copy number 

alterations (CNAs) and targeted NGS/Sanger Sequencing approaches that only assess mutations 

in a very focused set of genes, or rely only on pools of CTC as opposed to single cells [93-97]. In 

order to interrogate CTC-based ET resistance mechanisms and to determine concordance with 

tissue biopsy, we performed comprehensive mutation and copy number profiling in 130 genes 

from archived CTC captured from patients with ET-resistant MBC enrolled on a prospective 

clinical trial. Importantly, these patients were enrolled on a concurrent clinical trial in which they 

underwent metastatic tissue biopsy (for whole exome sequencing) enabling comparison of 

comprehensive CTC and tissue metastasis genomic profiles. 

 

2.3 Materials and Methods 

 
 

2.3.1 Preclinical evaluation of cultured breast cancer cells spiked into normal human blood 
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Cultured human breast cancer cell line BT-474 was obtained from the laboratory of Dr. 

Stephen Ethier and routinely maintained in DMEM +10% FBS at 37°C in 5% CO2. The identity 

of the cells was confirmed by standard Short Tandem Repeat profiling (February 2011). BT-474 

(n=300) were freshly harvested and spiked into pooled de-identified healthy human whole blood 

(WB) collected in a CellSave Preservative tube (Janssen Diagnostics, LLC). Tumor cell isolation 

and enumeration was performed using the CellSearch® system with the CellSearch® CXC kit, as 

previously described [98]. The elapsed time between CTC enrichment and purification varied 

from 2 years (cartridges were stored at RT), 6 months (cartridge stored at 4°C), and 3 days 

(cartridge stored at 4°C). This evaluation was also performed to see the effects of long term 

storage on the quality of the cells. As described below for patient specimens, BT-474 cells were 

flushed from the CellSearch® cartridges and purified using DEPArray™ technology. Isolated 

single or groups of CTC were subjected to whole genome amplification (WGA) before 

sequencing analysis. 

 

2.3.2 Patient population 

Twenty-eight eligible patients with MBC, who were enrolled in the MI-ONCOSEQ 

protocol at the University of Michigan Comprehensive Cancer Center [84], signed a separate 

informed consent approved by the University of Michigan IRB to be enrolled in a companion 

protocol  designated Mi-CTC-ONCOSEQ that allowed blood collection for cfDNA (data 

partially reported elsewhere) [90] and CTC analyses. All patients enrolled into this study had 

WES previously performed on their metastatic research tissue biopsy using the Illumina HiSeq 

2500 platform. Thirteen of these 28 patients who had ≥5 CTC/7.5 ml WB by CellSearch® 

enumeration, and who had at least one DEPArray™-purified CTC with high quality DNA 
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determined by the Ampli1™ quality control (QC) kit (as described in methods below), were 

enrolled in the present study.  

Blood specimens were collected into fixative-containing 10 ml vacutainer tubes 

(CellSave) and processed within 96 hours. These specimens were collected from a range of 7 

days prior, to 344 days after the research biopsy. For two patients (#4, who had <5 CTC/7.5 ml 

at time of enrollment and #24, who had ≥5/7.5 ml CTC at time of enrollment), blood for CTC-

DNA was also collected at the time of disease progression after 690 days and 465 days from the 

baseline samples, respectively. 

 

2.3.3 CTC enrichment and enumeration 

CTC were enriched from WB using ferrofluid particles coated with EpCAM antibody and 

enumerated using the CellSearch® System, according to manufacturer’s instructions (Janssen 

Diagnostics, LLC Raritan, NJ, United States), and as previously described [98]. Briefly, cells 

were stained with anti-cytokeratin (CK) 8, 18, and 19- Fluorescein isothiocyanate (FITC) labeled 

antibodies, the nuclear dye 4’,6’-diamino-2-phenylindole (DAPI), and CD45 antibody labeled 

with allophycocyanin (APC). CTC were defined by visual inspection as CK positive/DAPI 

positive/CD45 negative. After processing, CellSearch® cartridges were stored protected from 

light at 4°C for an average of 322 days (range 37-827 days) before CTC purification (Table 1). 
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Table 1. Results of CTC purification by DEPArray. CellSearch®-enriched cells were purified into 

individual cells by DEPArray™. Patient # and CellSearch® cartridge (by letter) are shown in left-

most column. CTC enumeration, processing dates, DNA quality and sequencing status are shown. 

BL = baseline; P = progression; *For these samples, only 1/2 cartridge was purified by DEPArray, % 

of purified CTC was adjusted accordingly. 

 

 

2.3.4 Single cell purification and DNA isolation 

Each CellSearch® cartridge was processed to recover single CTC using the DEPArray™ 

system (Menarini Silicon Biosystems, S.p.A., Bologna, Italy) per the manufacturer’s 

instructions. Briefly, after being flushed from the cartridges, cells were placed into the 

DEPArray™ 300k chip which separates individual cells based on immunofluorescent staining 

criteria and cell morphology (CTC: CK-FITC positive, DAPI positive, and CD45-APC negative; 

WBC: CK-FITC negative, DAPI positive, and CD45-APC positive). After imaging, individual 

selected cells were routed for isolation and recovery [99]. DNA from individual CTC or WBC 

was isolated and subjected to WGA using Ampli1™ WGA kit (Menarini Silicon Biosystems, 

S.p.A.) with MseI digestion per the manufacturer’s instructions [100]. Subsequent DNA quality 

control was performed using Ampli1™ QC kit [100] and low quality DNA cells were excluded 
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from down-stream sequencing Because CellSearch® technology enriches, but does not purify 

CTC from WBC, each CellSearch® cartridge was subsequently processed to recover single and 

pooled populations of pure CTC using the DEPArray™ system (Di-Electro-Phoretic Array; 

Menarini Silicon Biosystems, S.p.A., Bologna, Italy) according to the manufacturer’s 

instructions. In detail, after the cells were flushed from the cartridges using the manipulation 

buffer wash provided by the manufacturer, the cell pellet was re-suspended and placed into the 

DEPArray™ 300k chip which contains electronically controlled electrodes used to generate the 

electrophoretic cages. The DEPArray™ single cell sorting system separates individual cells into 

separate virtual magnetic nests/cages, based on immunofluorescent staining criteria and cell 

morphology (CTC: CK-FITC positive, DAPI positive, and CD45-APC negative; WBC: CK-

FITC negative, DAPI positive, and CD45-APC positive). After imaging of the cell within each 

virtual magnetic nest/cage generated by DEPArray™, individual cells of interest were routed for 

isolation and recovery into 0.2 ml tubes [99]. DNA from individual CTC or WBC from the same 

specimen, was isolated and subjected to whole genome amplification (WGA) using Ampli1™ 

WGA kit (Menarini Silicon Biosystems, S.p.A.) which includes digestion with a restriction 

enzyme (MseI) according to the manufacturer’s instructions [100]. Subsequent DNA quality 

control was performed using Ampli1™ QC kit as described by Polzer et al [100]. Only cells with 

high quality DNA were further investigated for down-stream sequence analysis. Normal control 

DNA derived from matched WBC was processed and tested for QC following the same process 

and criteria.  

 

2.3.5 CTC genomic profiling and data analysis 

NGS was performed essentially as previously described using 20 ng of WGA DNA for 
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each CTC/WBC sample for targeted, multiplexed PCR-based NGS (Ampliseq, Ion Torrent)[101, 

102]. Selected mutations were confirmed by Sanger Sequencing. Targeted next-generation 

sequencing (NGS) was performed essentially as previously described [101-103]. Briefly, 20 ng 

of WGA DNA (quantified with the Qubit Fluorometer 3.0, ThermoFisher, Waltham, MA) for 

each single, or equally pooled CTC, or WBC DNA was used for targeted, multiplexed PCR-

based NGS (Ampliseq, Ion Torrent). Libraries with barcode incorporation were constructed 

using the DNA component of the Oncomine Comprehensive Assay (OCP), a panel comprised of 

2,531 amplicons targeting 130 genes covering 260,717 bases (ThermoFisher, Waltham, MA). 

Genes were selected based on pan-solid tumor NGS and copy number profiling data analysis that 

prioritized somatic, recurrently altered oncogenes, tumor suppressor genes, genes present in high 

level copy gains/losses and known/investigational therapeutic targets [102]. Libraries for spiked 

BT-474 cells were constructed using the Cancer Hotspot v2 Assay (CHPv2), a panel comprised 

of 207 amplicons targeting regions containing recurrent alterations in 50 onco- and tumor 

suppressor genes (ThermoFisher, Waltham, MA). Because the WGA method we used digests the 

DNA with the MseI restriction enzyme, some amplicons in each panel were adversely affected 

based on the presence of the MseI restriction site (for OCP see Table 2; for CHPv2, as 

previously described [104]).  
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Table 2. Oncomine Comprehensive Panel (OCP) target genes by presence of the MseI 

restriction site. Genes included in the Oncomine Comprehensive Panel (OCP) divided in three 

categories based on the presence of the MseI restriction site in at least one amplicon. 

 

 

Library preparation, template, and sequencing using the Ion Torrent Proton were 

performed according to the manufacturer’s instructions. Data analysis was performed using 

Torrent Suite 4.0.2 – 5.0.2, with alignment by TMAP using default parameters, and variant 

calling with the Ion Torrent Variant Caller plugin (version v4.0-r76860 – v5.0.2.1) using default 

low-stringency somatic variant settings. Variant annotation, filtering and prioritization was 

performed essentially as previously described using validated in-house pipelines [101-103]. 

Briefly, called variants were filtered to remove synonymous or non-coding variants, those with 

flow corrected read depths (FDP) less than 10, flow corrected variant allele-containing reads 

(FAO) less than 10, variant allele frequencies (FAO/FDP) less than 0.10, extreme skewing of 

forward/reverse flow corrected reads calling the variant (FSAF/FSAR <0.2 or >5), or indels 

within homopolymer runs >4. Called variants were filtered using a panel-specific, in house 

blacklist. Variants reported at population allele frequencies >0.5% in ESP6500 or 1000 Genomes 
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were considered germ line variants unless occurring at a known cancer hot-spot. Variants located 

at the last mapped base (or outside) of amplicon target regions, those with the majority of 

supporting reads harboring additional mismatches or indels (likely sequencing error), those in 

repeat–rich regions (likely mapping artifacts), and those occurring exclusively in one amplicon if 

overlapping amplicons cover the variant, were excluded. High confidence somatic variants 

passing the above criteria were then visually confirmed in Integrated Genome Viewer (IGV) as 

were the same regions in samples from the same patient where the variant was not called to 

confirm both coverage and absence of the variant. We have previously confirmed that these 

filtering criteria identify variants that pass Sanger Sequencing validation with >95% accuracy 

[101, 103, 105]. We prioritized potential driving alterations using the Oncomine annotation in 

the Oncomine Knowledge Base, which uses pan-cancer NGS data to identify genes as oncogenes 

or tumor suppressors, based on overrepresentation of hot-spot or deleterious mutations, 

respectively. Variants in oncogenes are then considered gain-of-function (GoF) if at a hot-spot, 

and variants in tumor suppressors are considered loss-of-function (LoF) if deleterious or at a hot-

spot [101, 102, 105]. 

Copy number analysis from total amplicon read counts provided by the coverageAnalysis 

plugin (version v4.4.2.2 - v5.0.2.0) was performed essentially as previously described using a 

validated approach [101-103, 106] with adaptations for single cell sequencing. Specifically, for 

copy number analysis, we retained only well-performing amplicons (with >100 reads in all 

individual or pooled WBC samples,795 total amplicons) in order to exclude amplicons lost due 

to their containing the MseI restriction site. To identify CNAs, normalized read counts per 

amplicon for each sample were divided by the normalized mean read count of the corresponding 

amplicons from the WBC samples, yielding a copy-number ratio for each amplicon. Gene-level 
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copy-number estimates were determined by taking the coverage-weighted mean of the per 

amplicon ratios, with expected error determined by the amplicon-to-amplicon variance [106]. 

Genes with a log2 copy-number estimate < -2 or > 2 were considered to have high-level loss or 

gain, respectively.  

 

2.3.6 Confirmation of ESR1, CDH1 and BRCA2 mutations by Sanger Sequencing 

Bidirectional Sanger Sequencing to validate patient #2 CDH1 (p.Q641X) and ESR1 

(p.Y537S, p.D538G, p.A569S) and patient #17 BRCA2 (p.Q1931X) somatic variants was 

performed on selected samples. WGA CTC/WBC Genomic DNA (10 ng) was used as template 

in PCR amplifications with Invitrogen Platinum PCR Supermix Hi-Fi (ThermoFisher, Waltham, 

MA) with the suggested denaturation and cycling conditions. Primer sequences were designed 

with the PrimerQuest tool from IDT (Coralville, IA) (CDH1 Q641 forward: 

CAGACCTTCCTCCCAATACATC, reverse: AAGGGAAGCATGGCAGTT; ESR1 Y537/D538 

forward: CTTTCTGTGTCTTCCCACCTAC, reverse: TTTGGTCCGTCTCCTCCA; ESR1 

A569 forward: CTGCTGGAGATGCTGGAC, reverse: AGGGAAACCCTCTGCCT; BRCA2 

Q1931 forward: TTGTTACGAGGCATTGGATGA, reverse: 

ACTGACTTATGAAGCTTCCCTATAC) (Table 3). PCR products were subjected to 

bidirectional Sanger Sequencing by the University of Michigan DNA Sequencing Core after 

purification with the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and sequencing 

traces were analyzed using SeqMan Pro software (DNASTAR) and visually inspected. 
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Table 3. Primer/probe sequences used in Sanger sequencing and ddPCR 

 

2.3.7 Tissue biopsy whole exome sequencing 

Sequencing of clinical samples was performed as previously described [48]. Genomic 

DNA from frozen needle biopsies was used to generate exome libraries of matched 

tumor/normal pairs using the Illumina TruSeq DNA Sample Prep kit. WES was performed on 

Illumina HiSeq 2000 or HiSeq 2500 (paired-end) and analyzed as previously described[48], see 

below.  

 

2.3.8 Tissue Analysis: Specimen collection and processing 

Sequencing of clinical samples was performed under IRB-approved studies at the 

University of Michigan. Patients were enrolled and consented for integrative tumor sequencing 

in MI-ONCOSEQ Protocol, HUM00046018, as previously described [48]. Needle biopsies were 

snap frozen in Optimal Cutting Temperature compound, and a longitudinal section was cut. 

Frozen sections stained with hematoxylin and eosin were reviewed by pathologists to identify 

cores with the highest tumor content. Remaining portions of each needle biopsy core were 

retained for nucleic acid extraction. 
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2.3.9 DNA extraction and library preparation for exome sequencing.  

Genomic DNA from frozen needle biopsies was isolated using the Qiagen DNeasy Blood 

and Tissue kit, according to the manufacturer's instructions. Exome libraries of matched 

tumor/normal paired DNA were generated using the Illumina TruSeq DNA Sample Prep kit, per 

manufacturer's instructions as previously described [48]. Briefly, 1–3 μg of DNA was sheared to 

a 250 bp peak target size, and end repaired followed by A-base addition and ligation of Illumina 

indexed adaptors. Agarose gel purified 300–350 bp fragments were amplified using Illumina 

index primers for eight cycles and purified. One μg of library was hybridized to the Agilent 

SureSelect Human All Exon v4 chip (Agilent Technologies) and hybridized exon fragments were 

captured and amplified with the Illumina index primers for nine additional PCR cycles. Purified 

PCR products were analyzed for quality and quantity with the Agilent 2100 Bioanalyzer (DNA 

1000 kit). WES was performed on Illumina HiSeq 2000 or HiSeq 2500 (paired-end). Sequencing 

quality was assessed with FastQC. For each sequencing lane, we examined per-base quality 

scores across the length of the reads with lanes deemed passing if the per-base quality is >Q20 in 

>85% of the reads for bases 1–100. We also assessed alignment quality (Picard package) by 

monitoring duplication rates and potential chimeric reads from ligation artifacts. 

 

2.3.10 Tissue mutation analysis. 

Analysis was performed as previously described [48]. Briefly, FASTQ converted 

sequence files were processed through an in-house pipeline for WES analyses of paired cancer 

and normal genomes. Sequencing reads were aligned to reference genome hg19 with Novoalign 

multithreaded (v2.08.02, Novocraft) and converted into BAM files using SAMtools ( v0.1.18) 
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[107]. Mutation analysis was performed using VarScan2 (v2.3.2) [108] with the pileup files 

created by SAMtools mpileup for tumor and matched normal samples, simultaneously 

performing pairwise comparisons of base call and normalized sequence depth at each position. 

For SNV detection, filtering parameters including coverage, variant read support, variant 

frequency, P value, base quality, the presence of homopolymers and strandedness were applied. 

For indel analysis, Pindel (v0.2.4) was used and indels common to both tumor and matched 

normal samples were classified as germline, whereas indels present in tumor but not in normal 

samples were classified as somatic. Finally, a list of candidate indels and somatic mutations was 

generated by excluding synonymous SNVs. Detected variants were functionally annotated with 

ANNOVAR [109]. 

Tumor content for each tumor exome library was estimated from the sequence data by 

fitting a binomial mixture model with two components to the set of most likely SNV candidates 

from two-copy genomic regions as determined by copy number analysis, as previously described 

[48]. Copy number aberrations were quantified for each gene as the segmented, normalized, GC 

content-corrected, log2-transformed exon coverage ratio between each tumor sample and its 

matched normal sample [110]. 

 

2.3.11 ddPCR analysis of tissue and cfDNA: DNA extraction from FFPE blocks 

Formalin fixed paraffin embedded (FFPE) blocks and slides were obtained from 

University of Michigan Department of Pathology archives. A representative block from each 

specimen was chosen and DNA extracted using a commercial kit (Qiagen QiAMP FFPE tissue 

kit) according to the manufacturer’s instructions. 
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2.3.12 Isolation of cfDNA for ddPCR 

Blood sample and plasma preparation were performed as previously described [111]. 

Blood was collected in DNA BC tube (Streck) and centrifuged within 7 days. Plasma was 

obtained by a double-spin centrifuge protocol of whole blood to remove cellular concomitants 

and DNA was extracted using the Qiagen Circulating Nucleic Acid Kit (Qiagen) per the 

manufacture’s protocol as previously described [90].  

 

2.3.13 ddPCR for FFPE DNA and cfDNA 

Genomic and plasma DNA samples were subjected to short cycle PCR amplification for 

the ESR1 p.Y537S/p.D538G and p.A569S locus with the primers shown in Table 3. Amplified 

DNA was purified using the QIAquick PCR Purification kit (Qiagen). The Bio-Rad QX200 

platform was then used for ddPCR per the manufacturer’s protocols with the ddPCR primers and 

probes listed in Table 3. The results are reported as fractional abundance of mutant DNA alleles 

to total (mutant plus wild-type) DNA alleles for each sample assayed. 

 

2.3.14 In vitro functional studies of ESR1 A569S mutation 

pCDH-ESR1 plasmid was mutated at alanine 569 of ER to serine with Quick Change 

Lightning Kit (Agilent Technologies). Cells were obtained from the Tissue Culture Shared 

Resource at the Lombardi Comprehensive Cancer Center (Georgetown University, Washington, 

DC) in 2001. Cells were never passaged more than 15 times, were free of mycoplasma 

contamination (most recent testing, May, 2015) and identity was confirmed by short tandem 

repeat (most recent testing, July, 2014). Lentivirus containing the p.A569S ESR1 transgene was 

packaged in 293T cells. 24 hours after plating, cells were transfected with 8ug of pCDH-ESR1-
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A569S plasmid, 5ug psPAX2 and 2ug pMD2.G plasmids. MCF-7 cells were virally transduced 

with 1ml of viral supernatant supplemented with 4ug/ml polybrene for 8 hours. Steroid-depleted 

parental and ESR1 p.A569S MCF-7 cells were seeded into 96-well plates and treated with 17β-

estradiol (Sigma Aldrich) or ethanol control alone or in combination with tamoxifen, 4-

hydroxytamoxifen, endoxifen or fulvestrant. Cell number was assessed by crystal violet stain 

five days after hormone treatment as previously described [112]. 

  

2.3.15 Steroids and drugs 

17β-estradiol, tamoxifen, fulvestrant, polybrene and caffeine were obtained from Sigma 

Aldrich. 4-hydroxytamoxifen and endoxifen were obtained from Toronto Research Chemical. 

 

2.3.16 Plasmids and mutagenesis 

The lentiviral vector for wild-type ESR1 coding sequence, pCDH-ESR1, was obtained 

from stock used in [48]. The viral packaging plasmids psPAX2 and pMD2.G were gifts from 

Didier Trono (Addgene plasmids # 12260 and 12259, respectively). The previously constructed 

plasmid pCDH-ESR1 was mutated with Quick Change Lightning Kit (Agilent Technologies). 

The alanine residue at position 569 of ER was mutated to a serine residue according the 

manufacturer’s protocol. The sequences for the sense and anti-sense primers for site-directed 

mutagenesis were as follows, sense: 5’-GAGCCCGCA GTGGACAAGTGGCTTTGG-3’; anti-

sense: 5’-CCAAAGCCACTTGTCCACTGCGGGCTC-3’ (the underlined nucleotides are 

mutated). Mutagenesis was confirmed by Sanger Sequencing. 

 

2.3.17 Cell Culture 
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MCF-7 and 293T cells were obtained from the Lombardi Comprehensive Cancer Center 

and routinely maintained in DMEM (ThermoFisher) supplemented with 5% fetal bovine serum 

(Valley Biomedical). Lentivirus containing the p.A569S ESR1 transgene was packaged in 293T 

cells. 293T cells were plated at a density of 2 x 106 cells/10 cm dish. 24 hours after plating, cells 

were transfected with 8ug of pCDH-ESR1-A569S plasmid, 5ug psPAX2 and 2ug pMD2.G 

plasmids via calcium chloride. Transfection medium was allowed to remain on the cells for 8 

hours and then replaced with fresh DMEM/5% FBS medium and cells were incubated overnight. 

On the following day, 12 ml of DMEM/5% FBS supplemented with 0.5mM caffeine was added 

to the dish for virus production. 48 hours later, the supernatant was carefully removed from the 

dish, filtered through a 0.45 um filter and frozen down in 1 ml aliquots.  

MCF-7 cells were seeded into a 6-well plate at a density of 0.25 x 106 cells per well and 

allowed to attach overnight. 24 hours after plating, cells were virally transduced with 1ml of viral 

supernatant supplemented with 4ug/ml polybrene for 8 hours and then restored in fresh 

DMEM/5% FBS. 48 hours after viral transduction, cells were stably selected in DMEM/5% FBS 

medium supplemented with 1ug/ml puromycin for one week. p.A569S ESR1 transgene 

expression was confirmed by Sanger Sequencing of genomic DNA and cDNA reverse 

transcribed from 1ug of DNase-treated total RNA. For growth assays in defined hormone 

conditions, cells were depleted of exogenous steroids as previously described [112]. Steroid-

depleted parental and ESR1 p.A569S MCF-7 cells were seeded into 96-well plates at a density of 

1,000 cells/well in 0.1 ml and allowed to attach overnight. Cells were treated with 17β-estradiol 

(Sigma Aldrich) or ethanol control alone or in combination with tamoxifen, 4-hydroxytamoxifen, 

endoxifen or fulvestrant. Cell number was assessed by crystal violet stain five days after 

hormone treatment as previously published [112]. 
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2.4 Results 

 
 

2.4.1 Preclinical, proof-of-concept validation of targeted NGS of CTCs from archived 

CellSearch® cartridges 

We performed a pilot, pre-clinical study to determine if cells stored for long periods of 

time in CellSearch® cartridges after enrichment from whole blood (WB) could be purified using 

the DEPArray™ technology for subsequent high quality genomic profiling. Cultured BT-474 

human breast cancer cells (containing a TP53 p.E285K hotspot mutation) spiked into normal 

human blood and pre-enriched by CellSearch® were archived in the collection cartridges for 

several months-years. After separation from leucocytes to purity, single cell DNA derived from 

spiked cells underwent whole genome amplification (WGA) using Ampli1™ WGA kit and NGS 

with an ~300-amplicon, 50-gene multiplexed PCR based panel (CHPv2). This approach 

successfully identified the expected TP53 p.E285K mutation in cells from all seven samples 

processed, with an elapsed time between archiving of the CellSearch® cartridge (in 4°C) and cell 

isolation using DEPArray™ of three days to six months; cartridges archived for two years in RT 

did not yield assessable genomic DNA (Table 4). 
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Table 4. NGS of BT-474 cells spiked into blood and purified identifies known TP53 mutation. 
NGS of CellSearch®-enriched and DEPArray™-purified spiked in cells from the BT-474 breast 

cancer cell line with the CHPv2 panel. Number of cells per sample, storage time and conditions, 

DNA quality (4=high) and the detected variant frequency of the expected mutation are shown. RT= 

room temperature; * Low library quality and uniformity of coverage over the target regions. 

 

2.4.2 Trial cohort for CTC assessment and comparison to matched tissue metastases 

Genomic ET resistance mechanisms in individual CTC and concordance with biopsy 

obtained fresh tissue was examined in thirty patients with MBC. These patients participated in 

the Michigan Oncology Sequencing Center (MI-ONCOSEQ) trial, in which a biopsy of 

metastatic tissue was subjected to genomic profiling. They were also enrolled in a companion 

trial (MI-CTC-ONCOSEQ) to collect WB for CTC enrichment and purification using the 

CellSearch® and DEPArray™ systems. Two patients were deemed ineligible for regulatory 

reasons. Of the 28 remaining patients, 16 (57%) had ≥5 CTC/7.5 ml whole blood (WB) by 

CellSearch® at baseline (Figure 2).  

 



36  

 

 

Figure 2. REMARK diagram for patient enrollment and distribution. Of 30 enrolled patients, 12 

were protocol-conforming, had ≥5 CTC/7.5 ml WB by CellSearch® and had at least one CTC with 

high quality DNA at baseline or progression. 

 

 

Approximately 15% of the enriched CTC were purified using DEPArray™ and had high 

quality DNA (Table 1, referenced earlier).  Eleven patients had at least one CTC with 

sufficiently high quality DNA for genomic analysis.  

Two patients had a blood sample drawn containing ≥5 CTC/7.5 ml WB at the time of 

disease progression, so that a total of 12 patients had a sufficient number of CTC for genomic 

analysis at either baseline or progression. Eleven of the 12 patients had been diagnosed with HR-

positive breast cancer (either from primary or metastatic tissue); the remaining patient (#19) was 

diagnosed with triple negative (ER/progesterone receptor [PR]-/HER2 [ERBB2]-) breast cancer in 

both primary and metastatic tissue. Clinical histories are shown in Figure 3. 
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Figure 3. Clinical timelines. Clinical timelines and treatment from first diagnosis until enrollment 

into MI-CTC-ONCOSEQ for the 11 metastatic breast cancer patients (No available timeline for 

patient #14). Each bar represents the timeframe of treatment. Colors represent different therapies: 

Surgery=■; RT=■; NED= ; Tamoxifen=■; Letrozole =■; Anastrazole=■; Exemestane=■; Fulvestrant 

=■; Therapy other than chemo-or endocrine-therapy =■; chemotherapy =■; oophorectomy = ■; 

Estrace = ■; Everolimus = *; Palbociclib = #. 

 

2.4.3 Simultaneous assessment of somatic mutations and copy number alterations in 

archived CTC from patients with metastatic breast cancer 
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From the 12 patients with evaluable CTC, individual CTC were isolated from archived 

CellSearch® cartridges by DEPArray™, followed by genomic DNA extraction and WGA. DNA 

from 53 individual CTC, 23 pooled CTC samples (containing equal DNA amounts from 2 - 7 

individual CTC), and 16 individual or pooled white blood cells (WBC) was subjected to 

comprehensive multiplexed-PCR based NGS using the DNA component of the Oncomine 

Cancer Assay (OCP) (Table 5).  This assay, which is also being used in the National Cancer 

Institute MATCH trial [113], interrogates activating and deleterious mutations and CNAs in 130 

genes [102].  All patients had WES performed on near synchronous metastatic tissue biopsies as 

part of the MI-ONCOSEQ platform. After OCP profiling, CTC doubly positive (CD45+/CK+) or 

pooled CTC samples lacking all molecular alterations (any somatic CNAs or prioritized 

mutations) were excluded, resulting in 67 evaluable CTC samples (both single and pooled cells) 

from 12 patients. 

 

 

Table 5: Mean CTC Next Generation Sequencing parameters. Mean sequencing parameters for 

91 samples including mapped reads (total number of targeted reads per sample), reads on target 

(percentage of total reads that mapp to regions targeted by the sequencing panel), mean sequencing 

depth (mean number of reads covering each targeted base), sequencing uniformity (percentage of 

targeted bases that have at least 0.2X of the mean sequencing depth), variants (mean of total number 

of sequencing variants detected per sample by the somatic low stringency setting). 

 

In these 67 evaluable CTC samples, we identified a total of 23 high-confidence, 

prioritized, somatic, nonsynonymous point mutations and short insertions/deletions, (median = 

1.5, range = 0–6 per patient) and 31 high-confidence high-level CNAs (median = 2.5, range = 0–

6 per patient), as shown in an integrative heat map (Figure 4A; B).  
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Figure 4. Integrative heat map of somatic molecular alterations identified in archived 

circulating tumor cells (CTC) and comparison with metastatic tissue in endocrine therapy-

resistant metastatic breast cancer patients. Next generation targeted sequencing for circulating 

tumor cells (CTC), whole exome sequencing (WES) for tissue biopsy, and digital droplet PCR 

(ddPCR) for cell free tumor DNA (cfDNA) identified high confidence mutations (top half of each 

patient table) and copy number alterations (CNAs) (bottom half) in A) Patient #2 and B) Patients #4 
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– 30. Colored boxes indicate presence of alteration, empty boxes represent absence of alteration 

(despite adequate sequencing coverage for the position). NC = no adequate sequencing coverage to 

evaluate mutation presence; NA = not assayed. Numbers inside mutation boxes show variant 

frequency (VF), with dark and light green boxes indicating homozygous (>0.8 VF) and 

heterozygous/complex (<0.8 VF) mutations, respectively. Orange boxes indicate presence of 

mutation and corresponding VF for CTC pools, tissue WES, and cfDNA. Numbers inside CNA 

boxes show the log2 copy number ratio (CNR), with gains and losses shown in red and blue, 

respectively. CTC IDs are shown at the top of heat map with pooled sample IDs shaded. Note: tumor 

cont. = tumor content; for patient #24, “B” and “P” in sample ID represent CTC samples at baseline 

and progression, respectively; *ddPCR droplets for this mutation were detected, but below the 

predetermined threshold. 

 

Importantly, no high-confidence mutations were found in the matched WBC in any of the 

12 patients, and high-confidence CNAs in WBC were exceedingly rare and were limited to 

occasional copy losses, consistent with high fidelity purification, WGA and NGS (Figure 5A; 

B).  
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Figure 5. Heterogeneity of copy number alterations (CNAs) detected in circulating tumor cells 

(CTC) across patients with metastatic breast cancer. Next generation targeted sequencing 

generated gene-level log2 copy number ratios (CNR), with copy number alteration (CNA) losses in 

blue (negative log2CNR) and gains in red (positive CNR). A. Patient #2; and B. Patients #4 – 30. 

Greater absolute value of log2CNR indicates a more pronounced CNA. A dendrogram from 

unsupervised hierarchical clustering of CNAs in Patient #2 CTC is shown on the left. 

 

 

2.4.4 Comparison of somatic mutations and copy number alterations in matched CTC and 

tissue metastases 

Our study design provided the opportunity to compare prioritized somatic mutations and 

CNAs in CTC vs. synchronous/near-synchronous metastatic tissue biopsies. Critically, we 

observed highly concordant somatic alterations from CTC subjected to targeted NGS and 

matched WES of fresh metastatic tissue biopsy. Specifically, 57 of 67 CTC samples (85%) and 
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CTC in 8 of 12 patients (67%) showed at least one, but usually multiple, prioritized genomic 

alterations detected in the corresponding tissue biopsy (Figure 4A; B; Table 6).  

 

 

 

Table continued below 
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Table 6. NGS-identified prioritized mutations in individual and pooled CTC samples. All high 

confidence, non-synonymous variants identified in CTC samples are shown. For each variant, the 

gene, location (hg19), reference and variant (Alternate) alleles, amino acid (AA) change, RefSeq ID, 

variant type, variantiant read frequency (flow corrected variant over total reads) and flow-corrected 

variant and total reads separately are shown. See supplementary methods for variant filtering and 

prioritization. Each variant location was visually checked in IGV (Integrated Genome Viewer) in all 

samples from each patient who harbored at least one sample with that variant in order to confirm 

adequate coverage and quality. 

 

Of 23 point mutations and short indels detected in CTC across all patients, 14 (61%) were 

also found in the WES of corresponding tissue biopsies, which additionally harbored another 9 
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mutations/indels that were assayed, but not detected by the targeted panel in any of the 

corresponding CTC (Table 7A).  

 

               

Table 7. 2 x 2 contingency concordance tables for alterations in CTC vs tissue. Legend: 

Cohort-wide numbers of alterations for A. Mutations and B. Copy number alterations (CNA) that 

were detected by either method, showing numbers and percentages of alterations concordant in 

either direction. Y= Yes (detected), N= No (not detected). 

 

Of note, the fraction of sequencing reads containing the variant (variant frequency, VF) 

in individual CTC was in the vast majority of cases either 1.0 or approximately 0.5, consistent 

with homo- or heterozygous status of mutations in individual cells, and was highly concordant 

with tumor content-corrected VFs in tissue samples (Figure 4A; B).  
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Although previous studies have assessed mutations or CNAs from CellSearch® isolated 

CTC and other fixative based CTC platforms, we are unaware of simultaneous assessment of 

both categories of somatic alterations in fixed CTC. We have previously validated the ability of 

our multiplexed PCR based NGS approach to assess gene-level CNAs in fresh tissue, FFPE 

tissues and cfDNA [101, 102, 106, 114]. Herein, we adapted our approach to include only high 

performance amplicons in WGA CTC genomic DNA allowing us to assess CNAs (both high-

level amplifications and deletions) in 71 robustly assessed OCP target genes (See Materials and 

Methods).  Critically, we observed high concordance in prioritized CNAs detected in CTC and 

matched tissue biopsies across our cohort. Specifically, 19 of 31 (61%) total CNAs detected in 

CTC were also present in fresh tissues subjected to WES, while WES identified an additional 7 

alterations assessable but not detected in matched CTC (Table 7B). Furthermore, similarly to 

mutations, the approximate copy number of concordant CNAs was highly consistent between 

CTC and matched tissue biopsies, as shown in Figure 4A; B and Figure 5A; B. For example, 

the tissue metastasis from patient #12 harbored prioritized PIK3CA p.H1047R and TP53 

p.R248Q mutations, as well as WT1, TSC2, MYC and NF1 amplifications. The single high 

quality CTC available from this patient similarly harbored both mutations, as well as the WT1, 

TSC2 and MYC amplifications, with WT1 showing the greatest estimated copy number in both 

the tissue and CTC samples (Figure 4B; 5B). Further supporting our technique, patient #2 CTC 

CNA data showed no batch effects by unsupervised clustering despite being processed from 

three different CellSearch® cartridges (A; B; C) stored for varying amounts of time before single 

cell isolation (Figure 5A; Table 1).  

Discordant genomic alterations between CTC and corresponding tissue metastases were 

found in several patients, even if they only had a few high quality CTC. For example, patients 
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#7, 14, 17, and 19, had complete discordance in genomic alterations between CTC and tumor 

tissues (Figure 4B; 5B). Of note, potentially targetable BRCA2 p.Q1931X and PTCH1 

p.E1242X mutations were found exclusively in CTC (and not tissues) from patients #17 and 19, 

respectively. Whether such events represent bona-fide mutations or WGA/NGS technical 

artifacts cannot be reliably determined.  To further investigate these possibilities, we performed 

Sanger Sequencing for the BRCA2 p.Q1931X mutation, which confirmed its presence at low 

level in that pooled sample made up of four CTCs, consistent with the subclonal VF (0.10) in 

that pooled NGS sample (Figure 6A). Sanger sequencing of these four individual CTCs 

confirmed the mutation at heterozygous level in one of these four CTCs pooled in the NGS 

sample.  
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Figure continued below 
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Figure 6. Sanger sequencing of WGA CTC DNA was fully concordant with NGS 

sequencing. A. Sanger sequencing of for CDH1 (Q641X), ESR1 (Y537S, D538G, A569S) and 
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BRCA2 (Q1931X). NGS variant fraction (V.F.) shown when performed. Codon of affected 

aminoacid is underlined. Red rectangles denote Pt #2 single CTC with novel ESR1 mutation and 

Pt #17 single CTC with BRCA2 mutation. Only forward Sanger traces are shown, reverse traces 

were all in concordance (not shown); B. Sanger sequencing results of cDNA from parental and 

A569S over-expressing MCF-7 cells; C. Western blot confirming the presence of A569S 

mutation in overexpressed cells compared to Wild Type. 

 

Importantly, however, NGS of this CTC pool did not show the PIK3CA (p.H1047R) or 

the NF1 (p.W2494X) mutations clearly present in this patient’s tissue, suggesting that these cells 

are not of the same subclonal origin as the biopsied tumor tissue region that underwent WES. 

Similarly, none of the CTC from patient #17 harbored the PIK3CA (p.E542K) and ESR1 

(p.Y537S) hotspot mutations present in tissue (Figure 4B). In addition, CTC and tissue from 

these patients harbored several discordant copy number changes, again suggesting that these 

CTC were from subclones that were entirely different from that of the biopsied tissue (Figure 4B 

and 5B). 

 

2.4.5 Integrative mutation and CNA assessment of resistance mechanisms and clinically 

relevant intratumoral heterogeneity in CTC from individual patients 

 

 Our ability to assess mutations and CNAs in individual CTC from patients with matched 

tissue metastases profiled by WES provides a unique cohort to assess intra- and inter-patient 

diversity in ET resistance/progression mechanisms—including ESR1 mutations and CNAs—as 

well as comprehensive genomic profiles. For example, patient #30 had HR+ MBC and 

developed ET-resistance between her tissue biopsy and CTC collection. In the tissue biopsy 

subjected to WES, we detected a heterozygous PIK3CA p.H1047R hotspot mutation, a 

homozygous ESR1 p.D538G hotspot mutation (with LOH due to single copy ESR1 loss), and 
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high level FGFR1 and CCND1 amplifications. Consistent with the presumed contribution of 

ESR1 hotspot mutations in resistance to some, but not all, types of ET, she progressed on ET 

after her tissue biopsy (Figure 3). Critically, all informative individual (n=5) and pooled (n=1) 

CTC samples harbored the same heterozygous PIK3CA p.H1047R mutations that were detected 

in her tissue biopsy. Similarly, while all informative individual (n=4) and pooled (n=1) CTC 

samples also harbored the ESR1 p.D538G mutation, our integrative mutation and copy number 

profiling allowed us to clearly distinguish CTC harboring homozygous ESR1 mutations with 

LOH (n=3 individual and n=1 pooled CTC samples; VF of 1.0 and one copy ESR1 loss) from 

CTC harboring ESR1 mutation with no CNA (n=1 individual CTC; VF of 0.29 CTC and no 

ESR1 copy alteration). Lastly, both the FGFR1 and CCND1 amplifications were detected in all 

individual and pooled CTC at estimated copy numbers that were concordant with those in the 

tissue biopsy (FGFR1>CCND1) (Figure 4B, Figure 5B, Figure 7A). Taken together, these 

results support the ability of our single (and pooled) CTC profiling approach to identify known 

clinically relevant mutations and CNAs from tissue samples, as well as integrate the CTC 

sequencing results to identify LOH mechanisms.  

 



53  

 

   



54  

 

 

Figure 7.  Integrative CNA and mutational profiling of CTCs in comparison to tissue 

metastases identifies intra- and inter-patient heterogeneity in resistance/progression 

alterations. A. Clinical time lines, copy number plots and mutations from tissue metastases 

subjected to whole exome sequencing (WES) and CTCs subjected to targeted NGS from A) Patient 

#30, B) Patient #28, C) Patient #24 and D) Patient #2. For timelines, treatment courses, development 

of metastasis, and research biopsy (for exome sequencing) and CTC collection time points are 

indicated according to the legend. Treatment courses shown with a broken box are given in months. 

For WES, log2 copy-number ratios per segment are plotted and prioritized mutations are given below 

the plot. For CTCs, each individual amplicon is represented by a single gray dot and gene-level copy-

number estimates are shown in red bars (blue bars for genes of interest). Selected high-level CNAs 

are indicated. 

 

 

Likewise, in patient #28, who had ET-resistant HR+ MBC, we detected homozygous 

TP53 p.G245V and heterozygous PIK3CA p.E542K mutations in both CTC (one individual and 

one pooled sample) and in a liver tissue biopsy sequenced by WES (Figure 4B and Figure 7B). 

In addition, this patient harbored high-level ESR1, MYC, and ERBB2 amplifications in the tissue 

biopsy (Figure 5B; Figure 7B). Importantly, while both the ESR1 and MYC amplifications were 

clearly detected in the CTC samples, neither of the CTC samples harbored the ERBB2 

amplification (Figure 7B). Of note, although this patient was initially considered HER2/ERBB2 

negative based on clinical immunohistochemistry (1+ expression in primary and metastatic bone 

lesion), the ERBB2 amplification in the liver biopsy prompted repeat bone metastasis IHC that 
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showed heterogeneous HER2/ERBB2 expression, with 10-15% of cells having 3+ staining. In 

addition to further validating the utility of our approach, these results highlight the importance of 

discordant subclonal alterations, as previously reported at the mRNA level[115],  that may only 

be present in individual metastases resulting in low levels/frequencies or absence in the 

circulation.  

 

2.4.6 Comprehensive profiling of single CTC identifies potential alterations driving 

progressive disease 

A major potential advantage of “liquid” biopsies is the ability to non-invasively monitor 

driving genomic alterations during disease progression. For patient #24, who had ET-resistant 

lobular MBC, CTC were isolated from blood specimens concurrently with the tissue biopsy 

(baseline) as well as at progression (465 days later) after three lines of chemotherapy (Figure 

7C). As expected for lobular carcinoma, we identified a CDH1 frameshift mutation (p.I584fsdel) 

in all informative baseline CTC (n=3 pooled CTC, B in Figure 4B) as well as the tissue biopsy. 

We similarly detected a TP53 frameshift mutation (p.152_156fsdel), as well as PIK3CA and 

SOX2 amplifications in all baseline CTC samples and the tissue biopsy. Of note, while all four of 

these alterations were also present in the CTC samples at progression (P in Figure 4B, Figure 

7C), two of the individual progression CTC also harbored high-level MYCN amplifications 

(estimated at 16 copies) that were not present in any baseline specimen (CTC or tissue), 

demonstrating the utility of this approach to identify somatic alterations conferring treatment 

resistance during disease monitoring. 

  

2.4.7 Comprehensive CTC profiling in a single patient identifies multiple ET resistance 



56  

mechanisms in circulation 

Tissue and cfDNA based studies have demonstrated numerous resistance mechanisms to 

targeted therapies in the same patient [116], including studies in breast cancer demonstrating 

multiple ESR1 mutations detectable in cfDNA from patients with ET resistant MBC [116, 117]. 

Hence, we performed detailed profiling of numerous CTC from patient #2, who had ET-refractory 

lobular breast carcinoma at the time of research biopsy (for WES) and CTC collection (189 days 

later) (Figure 7D). Tissue WES detected two E-cadherin (CDH1) mutations (p.Q641X and 

p.S70F) at homozygous VF due to single copy CDH1 loss (Figure 2A and Figure 7D) as well as 

a heterozygous ESR1p.Y537S mutation, which is presumed to be one mechanism contributing to 

ET-resistance [48]. No high level amplifications or deletions (in genes targeted in CTC) were 

present, although TP53 and chromosome (chr) X one copy losses were present by WES.  

Across this patient’s 32 assessed CTC samples (26 individual and 6 pools of 5-7 total 

individual CTC), we identified the CDH1 p.Q641X and p.S70F mutations in 22/23 (96%) and 

27/28 (96%) CTC samples informative for those genomic positions, respectively. Of note, 12/13 

individual CTC informative for both CDH1 mutations showed both at homozygous VF, consistent 

with tissue metastasis WES and the known early role of deleterious alterations in CDH1 as founder 

events in lobular breast carcinoma. Although our CNA profiling is not optimal for single copy 

alterations, we observed the CDH1, TP53, and chr X losses variably across individual and pooled 

CTC (n= 13, 14, and 4 of 32 CTC samples, respectively). Lastly, one of this patient’s purified 

CK+/CD45- circulating cells was wild-type for all the tested genes, suggesting the presence of a 

minority of circulating epithelial cells of non-tumor origin (CTC R10C, Figure 4A).  

As expected, in this patient, greater genomic heterogeneity was observed for the ESR1 

p.Y537S mutation, which presumably arose after ET treatment (whether through selection for a 
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rare pre-existing or acquired mutated clone). ESR1 p.Y537S mutations were detected in 26/32 

individual and pooled CTC samples. However, five of the six CTC harboring one or more CDH1 

mutations,(strongly suggesting these are true cancer cells), lacked the ESR1 mutation. Likewise, 

both heterozygous (n=14/20 ESR1 mutation-harboring individual CTC) and homozygous 

(n=6/20 ESR1 mutation-harboring individual CTC) ESR1 p.Y537S mutations were observed in 

CTC. Of particular interest, one individual CTC from this patient (A12A) harbored both 

homozygous CDH1 mutations and lacked the ESR1 p.Y537S mutation, but instead harbored a 

unique, previously undescribed ESR1 p.A569S mutation at heterozygous VF (Figure 4A). 

Although the ESR1 p.A569S mutation was not observed in any other individual or pooled CTC, 

or in the patient’s tissue metastasis (Figure 4A), it, as well as ESR1 p.Y537S and CDH1 

mutations in other CTC, were confirmed by Sanger Sequencing of WGA DNA (Figure 6A, 

referenced earlier).   

Genomic profiling of tissue biopsy material and a finite number of CTC, as in our study, 

is still likely to underestimate the full repertoire of minor subclonal driving mutations in an 

individual patient with targeted therapy resistance. To further investigate this concept, droplet 

digital PCR (ddPCR) was performed on various specimen types at several time points during this 

patient’s course. An additional ESR1 p.D538G hotspot mutation was detected albeit at extremely 

low level. Interestingly, the novel ESR1 p.A569S mutation detected in one CTC was also only 

present in a few droplets, but below the predetermined detection threshold [90] in post-ET 

specimens (Table 8; Table 3, referenced earlier). 
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Table 8. Patient #2 analysis of primary, clinical metastatic tissue, research biopsy, pt-DNA by 

ddPCR. For each timepoint, specimen type and detection technique, presence/absence (and variant 

frequency) are shown for all three ESR1 mutations. FFPE = Formalin-Fixed Paraffin-Embedded; 

ddPCR = droplet digital PCR; WES = whole exome sequencing; mut = mutation present; WT = Wild 

Type; **a few droplets mutated for specific mutation, but below the predetermined threshold. Shaded 

area = assay not performed. With this approach, we detected, albeit at extremely low levels, an ESR1 

p.D538G hotspot mutation that was absent from both CTC and tissue by the respective NGS 

techniques applied. ddPCR droplets carrying this mutation were present at VF 0.0001 – 0.0002 (0.01 

– 0.02%) but consistently appeared in the primary tumor, two consecutive metastases, and later in 

plasma derived cfDNA collected concurrently with CTC. In concordance with CTC and tissue 

profiling, ddPCR of tissues and cfDNA detected the ESR1 p.Y537S mutation only in post-ET 

specimens. Interestingly, the novel ESR1 p.A569S mutation detected in one CTC was also only 

present in a few droplets, but below the predetermined detection threshold [Chu, Clin Cancer Res 

2016; Beaver, Clin Cancer Res 2014] in post-ET specimens. 

 

 Taken together, these results are consistent with a large circulating pool of 

heterogeneous sub-clones, which may each harbor differing mechanisms of resistance to one or 

more types of ET in patients with initially HR positive MBC. They further support tissue, CTC 

and cf-DNA as complementary approaches to characterize this diversity of resistance 

mechanisms. 

  

2.4.8 In vitro functional characterization of the novel ESR1 A569S mutation 

As mentioned, the observed ESR1 p.A569S mutation has not been described previously 

in ET resistant MBC and was only observed in 1 of 32 total CTC samples (pooled and 

individual) from patient #2 (Figure 4A; Figure 8A). Therefore, we hypothesized that it 

conferred a modest selective advantage since the cell in which it was detected was clearly a CTC 
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(it harbored both CDH1 mutations present in the tissue metastasis and other CTC), it lacked the 

ESR1 p.Y537S mutation present in 26 of 32 other CTC samples from the patient, and no other 

prioritized mutations were observed in this or any other CTC from the patient.  
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Figure 8. Functional validation of novel ESR1 p.A569S mutation demonstrates modest 

estradiol sensitivity and increased tamoxifen agonist activity. A. Summary of ESR1 mutations 

detected in Patient #2 from tissue, CTC-DNA, and cfDNA in schematic representation of the 

encoded ERα with the LBD and F domains indicated; B. MCF-7 ESR1 A569S are more sensitive to 
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estradiol after 5 days when assessed by crystal violet assay. Inset table indicates EC50 of estradiol in 

pM; C. Tamoxifen has increased agonist activity in MCF-7 cells over-expressing ER-A569S. Inset 

table indicates maximal growth at 100nM tamoxifen. Assays were performed in triplicates with P-

values and error bars (standard error) indicated. 

 

Hence, we used lentiviral mediated infection to stably over-express the ESR1 p.A569S 

mutation in the ER-positive breast cancer cell line MCF-7. Expression of the p.A569S mutation 

was confirmed by Sanger Sequencing and western blot analysis (Figure 6B; C). In vitro growth 

assays, which compared MCF-7 ESR1 p.A569S with parental MCF-7, showed that the former 

was estrogen dependent, unlike cells expressing ESR1 p.Y537S or p.D538G mutations, which 

confer estrogen-independent growth (Figure 9). Notably, however, MCF-7 ESR1 p.A569S were 

more responsive to estradiol induced growth compared to parental MCF-7 (EC50 of 2.97 pM vs 

5.38 pM; p=0.0001, F-test), (Figure 8B).  

 

 

Figure 9. MCF-7 (ESR1 A569S) are not estrogen independent over 5 days in hormone-free 

conditions when assessed by crystal violet assay. Cells were depleted of exogenous steroids and treated 

with 17β-estradiol or ethanol control in triplicates. Cell number was assessed by crystal violet stain five 
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days after treatment. 

 

Tamoxifen is a partial ER agonist.  Therefore, we tested its ability to stimulate growth in 

parental MCF-7 and MCF-7 ESR1 p.A569S cells in the absence of estradiol. Although tamoxifen 

stimulated growth in both MCF-7 and MCF-7 ESR1 p.A569S cells in the absence of estradiol, 

MCF-7 ESR1 p.A569S cells showed a significantly greater growth increase than parental MCF-7 

cells (130% vs. 180% over vehicle control, p<0.0001, F-test, Figure 8C). As expected, the 

tamoxifen metabolites 4-hydroxytamoxifen and endoxifen (4-Hydroxy-N-desmethyltamoxifen), 

both potent ER antagonists, did not stimulate growth in either parental MCF-7 or MCF-7 ESR1 

p.A569S cells in the absence of estradiol (Figure 10A; B).  
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Figure 10. The tamoxifen metabolites 4-hydroxytamoxifen and endoxifen have no increased 

agonistic effect in MCF-7 cells over-expressing ER-A569S. 

 

Lastly, the antiestrogens tamoxifen, 4-hydroxytamoxifen, endoxifen, and fulvestrant were 

all able to similarly attenuate growth induced by 50 pM estradiol in both parental MCF-7 and 

MCF-7 ESR1 p.A569S (Figure 11A; B; C; D, respectively). Taken together, these results 

demonstrate that this ESR1 mutation showed increased estradiol and tamoxifen induced growth. 

Presumably, this mutation provides a modest selective growth advantage, consistent with the 

rarity of this mutation in circulation (1/32 CTC samples) compared to the ESR1 p.Y537S 

mutation known to confer estrogen independent growth and present at higher frequency in the 

patient’s CTC (26/32 samples) and tissue metastasis. 
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Figure 11. Inhibition of estradiol-stimulated MCF-7 parental or A569Soverexpressing cells. 
Cells were withdrawn from estrogen and treated with 50pM estradiol in combination with increasing 

concentrations of A. tamoxifen, B. 4-hydroxytamoxifen, C. endoxifen or D. fulvestrant, in triplicates. 

Cell growth was assessed six days after treatment by crystal violet staining and plotted as %-growth 

vs. vehicle control. 

 

 
 

2.5 Discussion 
 

 

2.5.1 Overall review of findings  

 

In these proof-of-concept studies, we have demonstrated that individual CTC from 

archived cartridges of the FDA cleared CellSearch® system can be isolated, whole genome 

amplified, and comprehensively profiled for somatic mutations and CNAs using multiplexed 
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PCR-based NGS. Importantly, although comprehensive genomic profiling of single non-fixed 

CTC has been reported [118], and CTC isolated by CellSearch® (or other fixative based 

approaches) have been used for assessment of genome wide CNA profiling and mutations in a 

limited set of genes [92, 97, 119, 120], we are unaware of prior concurrent somatic mutation and 

precise gene-level CNA assessment in individual fixed CTC from NGS. Leveraging near 

synchronous matched tissue biopsies subjected to WES as part of the MI-ONCOSEQ clinical 

trial, we demonstrated high concordance between driving somatic mutations and CNAs 

identified by our approach in CTC compared to single tissue metastases, including CNAs, 

mutations, and LOH assessment in both oncogenes (e.g. ESR1 and PIK3CA) and tumor 

suppressors (e.g. CDH1 and TP53).    

In addition to the high concordance between prioritized alterations identified in CTC and 

matched tissue metastases, several lines of evidence support the validity of our findings. Process-

matched WBC assessed in parallel for each of the patients were wild-type for all assessed 

genomic alterations. Likewise, at the patient level, in addition to high concordance for somatic 

mutation and CNA presence/absence in CTC vs. matched tissue metastases, VFs (for mutations) 

and estimated copy number ratios (for CNAs) were similarly concordant. Lastly, Sanger 

Sequencing of WGA CTC DNA validated the selected mutations tested in two patients, one of 

which had highly heterogeneous findings among tissue, CTC and cfDNA.  

Several patients had somatic alterations present in tissue metastases that were not present 

in all matched CTC such as ESR1 p.Y537S mutation for patient #2. Likewise, in patient #28, the 

high level ERBB2 amplification present in the liver metastasis was not identified in the CTC. In 

fact, only ~15% of tumor cells in a femur metastasis had 3+ HER2 expression by IHC, consistent 

with ERBB2 amplification being a subclonal event within an individual tissue metastasis as well 
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as in tissue vs. circulation.  

A purported advantage of liquid biopsies is the theoretical ability to capture the global 

collection of molecular alterations harbored by a patient with metastatic cancer. In our study, we 

were able to simultaneously assess mutations and copy number in individual cells. Thus, we 

observed numerous examples of intra-patient somatic alteration variability between individual 

CTC and tissue metastases, including assessment of heterozygosity/homozygosity supported by 

copy number state. For example, although all CTC from patient #30 harbored PIK3CA 

p.H1047R mutations, we detected individual CTC that harbored either heterozygous or 

homozygous (with one copy loss) ESR1 p.D538G mutations. Similarly, we observed several 

CTC that harbored somatic mutations and CNAs not present in tissue, but also detected 

alterations in tissue metastases not observed in CTC. Importantly, we identified potentially 

targetable alterations (in PTCH1 and NOTCH1) in subsets of CTC from two patients (#19 and 

#24) but not in matched tissue, a finding that supports these as subclonal alterations.  In this case, 

knowledge of the subclonal populations might enable more specific, and even tailored 

combination targeted therapy, either at initiation of treatment or for emerging subclones during 

cancer progression short of any deep sequencing of primary/metastatic tissue. The latter has 

shown that most discordant “private” CTC alterations can be detected in the tissue at low 

frequencies [97]. 

As an additional mechanism of discordance between CTC and tissue metastases, patient 

#4 harbored PIK3CA p.E545K and TP53 p.D259H mutations in both CTC and tissue metastases. 

Importantly, however, while both these mutations were heterozygous in the tissue metastasis, we 

observed both as homozygous in a single CTC (without evidence of copy loss), but wild-type in 

the other two cells. Lastly, in patient #24, while CTC and the concurrent tissue metastasis shared 
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several alterations, CTC taken subsequently after progression on several lines of chemotherapy 

not only harbored these alterations, but uniquely had high level MYCN amplifications. These 

findings further suggest that serial “liquid profiling” to monitor molecular alterations mediating 

resistance might permit specific selection of combination targeted therapies during a patient’s 

clinical course.  

Emerging genomic tumor heterogeneity due to accumulated subclones with different 

mutations, as well as more plastic epigenetic/transcriptomic heterogeneity as a function of 

cellular stress and environmental changes, are drivers of resistance to specific treatments. Indeed, 

we and others have demonstrated inter- and intra-patient heterogeneity of CTC-protein 

expression, including ER, BCL2, HER2, Ki-67, and PI3K from patients with MBC [98, 121-

124].  These data, coupled with the results of the present report, demonstrate similar 

heterogeneity in both somatic mutations and CNAs through simultaneous profiling, and suggest 

that both genetic and protein data should be monitored to truly tailor precision therapy.  

 

2.5.2 Circulatory non-tumoral epithelial cells 

 

Of note, 3 out of 46 individual CTC included in our cohort matched the 

immunohistochemical definition of CTC (CK+, CD45-), but did not contain any high confidence 

mutations, indels or high-level CNAs.  These cells were present in patients where other CTC 

were concordant with tissue metastases. These observations suggest that benign, non-

hematopoietic circulating cells of epithelial origin may be captured by platforms using anti-

epithelial enrichment/purification methods.  Because the CellSearch® enrichment method is 

based on epithelial cell capture by EpCAM expression and characterized by the presence of CK 
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and lack of CD45 expression, it is possible that these cells represent normal circulating epithelial 

cells (CEC) that were in the patient’s blood either as a function of shedding or during the blood 

draw  in patients without cancer [125, 126]. Likewise, we confirmed (by Sanger Sequencing) the 

presence of a subset of mutations that were detected exclusively in several CTC and not matched 

tissue samples. However, due to the complete discordance between alterations in these CTC 

(some of which were pooled) and tissue samples, we cannot exclude that these cells are either of 

non-tumor origin or that these findings may be technical artifacts.  These findings emphasize the 

need for CTC platforms to document that detected CTC are malignant cells through the 

identification of pathognomonic molecular alterations or orthogonal tissue based validation. We 

cannot be certain that CTC captured by the CellSearch assay are the source of tissue metastases. 

Since CellSearch requires fixation of the captured cells, culture of those cells is not possible. 

Other investigators have demonstrated presumed CTC (CK+/DAPI+/CD45-) captured using 

different platforms can, indeed, be cultured ex vivo and in vivo [127, 128]. Importantly, although 

numerous CTC platforms report the ability to detect CTC “missed” by capture and/or expression 

based CTC platforms[77], the CellSearch® platform has been clinically validated for its 

prognostic role in breast colon, prostate, and lung cancer [80, 81, 129]. Combined with the high 

concordance of known oncogenic genomic alterations between CellSearch- identified CTCs and 

tissue metastases, our results support these CTCs as having malignant potential, at least in part. 

In addition, our results herein support the vast majority of identified CTC as bona-fide tumor 

cells based on somatic molecular alteration concordance with tissue metastases. 

 

2.5.3 Heterogeneity of endocrine therapy resistance mechanisms in CTCs  
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In an effort to comprehensively profile the CTC genomic landscape in an ET resistant 

patient, we profiled 32 individual and pooled CTC samples from patient #2, who had ET 

resistant metastatic lobular breast cancer. Both CTC and tissue metastases showed concordant 

CDH1 mutations, as expected. However, while 20 of 26 single CTC harbored ESR1 p.Y537S 

mutations consistent with that detected in the tissue metastasis, a single CTC instead harbored a 

novel unreported ESR1 p.A569S mutation confirmed by Sanger Sequencing of the amplified 

genomic DNA. Intriguingly, p.A569 is localized to the F domain of the ER receptor, which 

differs from the more common mutations, such as p.Y537S and p.D538G, identified in the LBD 

(Figure 8A). LBD missense mutations lead to ligand-independent constitutive ER activation [48, 

85-87, 130] and confer relative resistance to tamoxifen and fulvestrant. In contrast, ESR1 

p.A569S expressing MCF-7 cells were estrogen dependent and not tamoxifen nor fulvestrant 

resistant. However, the ESR1 p.A569S mutation conferred a modest, but statistically significant, 

increased agonist activity to tamoxifen in the absence of estrogen in MCF-7 cells compared to 

wild-type ESR1-expressing cells. Interestingly, a mutation in the adjacent aminoacid (p.T570I) 

was recently reported (without functional characterization) in a CTC of an ET-treated MBC 

patient [94]. In addition, a mutation in the same domain in another steroid hormone receptor 

family member, the androgen receptor, (p.F876L), in prostate cancer cell lines confers agonist 

activity to the normally androgen antagonist enzalutamide [53]. It is well established that in 

breast, tamoxifen is not a pure ER antagonist, but rather serves as a selective estrogen receptor 

modulator, with mixed ER agonism and antagonism, including in estrogen-deprived ER positive 

cultured human breast cancer cells. Multiple mechanisms of this duality in tamoxifen effect have 

been proposed, including up-regulation of a variety of other genes such as NFⱪB and HER-2 [54, 

55]. Of note, the F, domain which harbors our novel mutation, was shown to be important in the 
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agonist and antagonist balance of antiestrogens [131].  We speculate that the ESR1 p.A569S 

mutation may also contribute to this paradoxical effect of tamoxifen on ER. 

Notably, this modest activity of the ESR1 p.A569S mutation is consistent with the rarity 

of this mutation amongst the patient’s CTC burden compared to the highly active p.Y537S. 

However, given the interest in developing therapeutic approaches for ESR1 LBD mutations, 

including ongoing clinical trials based on ESR1 LBD mutation detection (e.g. NCT03079011), 

our data demonstrate that such patients likely have rare tumor subclones potentially capable of 

expanding upon selective pressure. Of note, ddPCR profiling of previous tissue samples and 

cfDNA demonstrated even more complexity in regards to ESR1 status in this patient. Taken 

together, these results highlight the diverse repertoire of ET resistance mechanisms in patients 

with advanced, endocrine treated ER positive breast cancer, analogous to those observed in rapid 

autopsy series of hormonally treated prostate cancer [132].  

 

2.5.4 Novel ESR1 mutation is not a technical artifact  

 

We cannot entirely exclude that the observed ESR1 (p.A569S) mutation may be a 

technical artifact from CTC fixation, WGA or NGS [133]. However, this unique mutation was 

found at uniallelic variant fraction of 0.56 in a cell containing the same CDH1 mutations 

observed in other CTCs and the tissue metastasis. Likewise detection by Sanger sequencing in 

pre-NGS WGA DNA strongly argues against this being an NGS error. In addition, the fact that 

the other most common ESR1 mutation (Y537S) is not present in this CTC underlines that these 

mutations are mutually exclusive. Furthermore, multiple circulating ESR1 mutations in the same 

patient are well described in metastatic breast cancer, with 17% of patients having >2 detectable 
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ESR1 LBD mutations in cfDNA[134]. Lastly, the modest, but observable functional activity of 

the mutant support this mutation as a bona-fide mutation present as a minor circulating subclone 

rather than a technical artifact.  

In more detail, this cell appears to be a true CTC as both founder CDH1 mutations 

present in the matching tissue were also present in this CTC in 100% of the sequencing reads. In 

addition, this cell did not harbor the Y537S hotspot mutation which is the most prevalent ESR1 

mutation in this patient (26 of 32 CTC samples), which suggested to us the possibility that this 

could be a bona fide mutation with some functional activity allowing this cell to be resistant to 

endocrine therapy.  

While it is true that the Ion Torrent sequencing platform can have a slightly more 

elevated error profile compared to Illumina sequencing, this is mainly limited to the introduction 

of erroneous indels in homopolymer regions. All our data were filtered to exclude indels in 

homopolyers of >4 bases long and this mutation is a G > T single nucleotide substitution variant 

in a stretch of only 2 guanines and thus not a homopolymer indel. And obviously, the fact that 

we also detected this (and all other mutations tested) by Sanger Sequencing of the post-WGA 

DNA at trace peak heights consistent with the Ion Torrent variant frequency greatly increases our 

confidence that this mutation is at least present in the whole genome amplified DNA and not an 

Ion Torrent artifact.  

However, we have reason to believe that this mutation was also present in the original 

pre-amplified DNA. Firstly, the mutation was present in 56% of the reads covering that position, 

consistent with heterozygosity (50%) +/- some degree of error, also supported by Sanger 

sequencing peak heights. If the mutation were to be erroneously introduced during the whole 

genome amplification step prior to sequencing, it would have a wide distribution of probability 
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of the final variant frequency (0 – 100%) depending on how early in the PCR cycles it is 

introduced. It is further reassuring that the Ampli1 PCR-based WGA kit that was used on our 

CTC DNA, is a WGA platform with the best error profile among the ones tested. Another 

potential point of acquisition of the DNA error could be in the pre-amplified DNA at the cell 

preservation and fixation step as the damaging activity of cross-linking fixatives on DNA is well 

recognized. While it is true that our cell preservation method (CellSave) uses fixative substances 

that are potentially damage-inducing, we have extensive experience with Ion Torrent sequencing 

of formalin fixed tissue. We have for example shown 100% concordance of mutation detection 

in a cohort of over 100 FFPE tumor samples orthogonally tested in a clinical molecular 

diagnostic lab among other cohorts, (although DNA was obviously extracted by different 

methods that in the current project). Furthermore, as we report, we did not observe a high level 

of erroneous or discordant mutations in this cell, patient or other patients compared to tissue. 

While we agree that the absence of this mutation in the biopsied matched tissue casts 

doubt on our claim, this result is perhaps not surprising considering the extensive intrapatient 

heterogeneity we observed in this patient. After all, tissue analysis is only limited to the material 

obtained in the biopsy needle and CTC NGS and functional data suggested this mutation had 

very low prevalence in this patient. Furthermore, as we reported, the mutation was present by 

ddPCR in both omental and pleural effusions from this patient in a few droplets in each, 

(although this was below our pre-determined threshold of positivity), suggesting the presence of 

this mutation in the patient. 

 

2.5.5 Novel ESR1 mutation functional activity  
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Finally, the activity of our ESR1 p.A569S mutation in vitro is modest and unlike p.Y537S 

or p.D538G mutations, is not consistent with true estrogen independence suggesting that this is at 

best a passenger mutation if not entirely an artifact. However, this mutation is present in the F 

domain which is C-terminal to the ligand binding domain that harbors the p.Y537 and p.D538 

aminoacids. As we point out, the F domain has been shown to be involved with regulation of 

agonist/antagonist balance of estrogen receptor modulators such as tamoxifen (used in this 

patient) perhaps though involvement of receptor co-activators and co-inhibitors. Therefore this 

mutation would confer to this cell a more nuanced and milder selective advantage which is 

consistent with its low prevalence in circulation (1 of 32 CTC samples). Importantly, there are 

recent reports in metastatic breast cancer of one patient with a mutation in the ESR1 aminoacid 

adjacent to ours (p.T570I) in only one CTC (although without functional characterization). To 

our knowledge, biologic/functional characterization of our mutation or of any in the vicinity has 

not been reported.   

In conclusion, we are unable to absolutely exclude the possibility of the artefactual nature 

of this mutation. However, given the reasoning and evidence presented above, and in absence of 

evidence to the contrary, the speculation that this mutation was present and had a functional 

significance in this cell appears to be the most parsimonious explanation. 

 

2.5.6 Limitations 

  

 

Our study is limited due to relatively small sample size.  Indeed, the heterogeneity that 

we have detected has effectively reduced each patient to an “n of 1.”  Further, this investigation 

was performed as a pilot, principally to determine if DNA from CTC that have been fixed and 
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archived in CellSearch® cartridges for some period of time could be harvested, purified, and 

sequenced with analytical fidelity, and subsequently, if these data can be reliably compared to 

genomic analysis of tissue collected in roughly the same time frame.  Importantly, our data 

provide proof-of-concept evidence that this strategy is viable, and studies to determine if our 

approach can be used to predict patient outcome or guide therapy are ongoing.  

 

2.5.7 Overall conclusions  

 

In conclusion, we have demonstrated the ability to purify and comprehensively sequence 

archived individual CTCs from an FDA-cleared CTC detection platform (CellSearch®) coupled 

with an automated technique for single cell purification and analysis (DEPArray™). Further, we 

have reproducibly performed simultaneous somatic mutation and CNA profiling of these cells. 

We observed high, but not absolute, concordance between somatic alterations in CTC and 

matched tissue metastases subjected to WES.  The resultant discordance may identify potentially 

clinically informative/actionable alterations exclusively present either in CTC or tissue 

metastases, supporting the complementary nature of these approaches. Through sequencing >20 

CTC in a single patient with ET resistant lobular breast carcinoma, we identified distinct ESR1 

mutations in individual CTC, including a novel, modestly active ESR1 mutation present in only a 

single cell compared to the strongly activating ESR1 mutation present in the vast majority of the 

patient’s CTC and a tissue metastasis. Taken together, our results support the feasibility of 

simultaneous somatic mutation and copy number profiling from archived CTC, which may be 

used to track resistance mechanisms under selective pressure of targeted therapy. We speculate 

that these findings could lead to identification of both CTC-protein expression and genomic 
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abnormalities that could serve as potential therapeutic targets, and complement tissue or cfDNA 

based precision oncology approaches.  

 

 

2.5.8 Acknowledgments  

We are grateful to all the patients who generously volunteered to participate in the study. 

We thank the research nurses, and study coordinators for their efforts on the behalf of the 

patients. We would like to thank the MI-ONCOSEQ team (Michigan Oncology Sequencing 

Center). We would also like to acknowledge thoughtful suggestions from Dr. Benita 

Katzenellenbogen. 

 

2.5.9 Funding  

This work was supported by Veridex/Janssen, LLC, Menarini Silicon Biosystems, Inc., 

Fashion Footwear Charitable Foundation of New York/QVC Presents Shoes on SaleTM (D.F. 

Hayes). D.Chu and B.H.Park were supported by the Commonwealth Foundation, NIH 

CA194024 and the Breast Cancer Research Foundation. A.K.Cani was supported by the NIH 

Training Program in Translational Research T32-GM113900. S.A.Tomlins was supported by the 

A. Alfred Taubman Medical Research Institute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76  

 

 

 

 

 

 

CHAPTER III 

 

Development of a Whole-Urine, Multiplexed, Next Generation RNA-

Sequencing Assay for Aggressive Prostate Cancer Early Detection2 
 

 

3.1 Abstract 

 

 
Despite advances in biomarker development, early detection of aggressive PCa remains 

challenging. We previously developed a clinical-grade laboratory-developed test—MiProstate 

Score (MiPS)—for individualized aggressive PCa risk prediction. MiPS combines serum PSA 

with transcription-mediated amplification (TMA)-quantified expression of the gene-fusion 

TMPRSS2:ERG (T2:ERG) and the lncRNA PCA3 from whole urine obtained after a digital rectal 

exam (DRE). To improve upon MiPS, in our second project, we describe the pre-clinical 

development and validation of a post-DRE whole urine targeted RNA NGS assay (NGS-MiPS) 

assessing ~90 PCa candidate transcriptomic biomarkers, including: T2:ERG.T1E4 and PCA3, 

additional common PCa gene fusion isoforms, mRNAs, lncRNAs, and expressed mutations. 

NGS-MiPS showed high analytic validity and was able to detect expressed germline risk 

HOXB13 and somatic driver SPOP mutations. In an extreme design cohort (benign or Grade 

Group (GG) 1 vs. GG 3-5 cancer on biopsy) NGS-MiPS showed expected differences in the 

levels of T2:ERG.T1E4 and PCA3, as well as additional biomarkers, between benign/GG 1 vs. 

GG 3-5 PCa. A machine learning approach trained on a subset of the extreme design cohort 

                                                      
2 This study will appear in literature as Cani, A.K., et al. (in submission).  
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(n=73) generated a 15-transcript model that outperformed derived MiPS and serum PSA models 

in predicting biopsy outcome in two validation cohorts: 1. A held-out set from the extreme 

design cohort (n=36); and 2. A separate PCa active surveillance cohort (n=45). These results 

support the potential utility and continued development of our novel urine-based targeted RNA 

NGS assay to improve aggressive PCa early detection. 

 

3.2 Introduction 

 
Prostate cancer (PCa) can follow a varied clinical course ranging from indolent to lethal 

metastatic disease [135], and despite recent advances in biomarker development and imaging, 

non-invasive early detection of PCa with aggressive potential remains challenging. Prostate 

biopsy and pathological grading is currently the gold standard[26]. Although serum prostate 

specific antigen (PSA) has revolutionized PCa early detection in the past few decades, it’s 

performance is limited by poor specificity[136]. Recently, multiparametric magnetic resonance 

imaging (mpMRI) and subsequent targeted biopsy has improved the ability to sample clinically 

significant lesions for assessment of tumor aggressiveness[137], however, mpMRI misses up to 

35% of aggressive PCa foci in the context of multifocal disease [138-140]. In addition, prostate 

biopsy remains a costly procedure with potential complications including bleeding and 

infections[141], as well as other possible effects on the prostate/tumor microenvironment[142, 

143]. The potential consequences of this paradigm are: delayed detection of high-grade prostate 

cancer; unnecessary biopsies and their associated effects; overdetection, overtreatment and the 

associated treatment-related complications for likely indolent, low grade (Gleason score 6 [Grade 

Group 1; GG1]) PCa and the consequent addition of unnecessary burden to the health care 

system[144]. Hence, non-invasive biomarkers that can accurately identify patients at risk for 
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aggressive PCa, particularly at the first biopsy decision-making point, are urgently needed.  

Serum prostate specific antigen (PSA) has revolutionized the PCa early detection 

biomarker field[136]. Several forms of the protein (total-, free-, complexed-, intact- or [-2]pro-

PSA) as well as multiplexed models/tests combining PSA with other clinicopathological 

parameters or the related kallikrein KLK2 (e.g. PCPT risk calculator, PHI, 4K score[145-147]) 

have improved on its performance. However, as a prostate epithelial tissue as opposed to a pure 

PCa protein, PSA remains a low specificity biomarker not recommended for widespread 

screening by the US Preventative Services Task Force (USPSTF), in large part due to false 

positive findings and overdetection of indolent PCa[148]. Furthermore, in the active surveillance 

(AS) setting (a low-grade PCa management strategy of “watchful waiting”) PSA shows poor 

performance in discerning cancers likely to progress, with biopsy remaining the best strategy, 

albeit an imperfect one[149].  

Other “liquid biopsy” approaches have included urine as a biofluid uniquely positioned 

anatomically to non-invasively assay prostate contents particularly when immediately preceded 

by a digital rectal exam (DRE) in order to enrich for prostate-derived material[150]. PCa is a 

multifocal disease with individual co-occurring clonally unrelated foci having heterogeneous 

inter- and intra-focal genomic and transcriptomic profiles[151-153]. Urine provides the 

opportunity to sample contents from the entire prostate (which biopsies may under-sample or 

entirely miss), a particularly important aspect for small or mpMRI-negative cancer foci. The only 

FDA approved urine PCa biomarker test is the PROGENSA PCA3 assay, which uses 

transcription mediated amplification (TMA) to measure the PCa-associated lncRNA PCA3[150]. 

Additional urine based laboratory developed tests include SelectMDx which uses (reverse 

transcription quantitative PCR (RT-qPCR) to measure post-DRE whole urine mRNA for the 
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genes DLX1 and HOXC6 [normalized to urinary KLK3 (PSA)][154] and the ExoDx Prostate 

IntelliScore, also an RT-qPCR test measuring lncRNA PCA3 and the oncogenic Ets family 

transcription factor ERG mRNA (normalized to SPDEF) in urine exosomes without a DRE 

[155]. A third urine-based laboratory developed test, Mi Prostate Score (MiPS), previously-

developed by our group, uses TMA to measure PCA3 and the chimeric RNA product of the 

fusion between androgen receptor (AR) driven gene TMPRSS2 and ERG (TMPRSS2-ERG; splice 

isoform T1E4[68]) normalized to KLK3 in post-DRE whole urine[74].These available urine tests 

have been shown to outperform serum PSA alone in predicting the presence of PCa and high-

grade PCa (GG > 1) at first biopsy and other settings.  

Importantly, the wealth of information generated in the past decade by large-scale next 

generation sequencing (NGS) profiling studies of the PCa tissue genome and transcriptome 

remains largely underdeveloped for the purposes of early detection biomarker translation[39, 44, 

156, 157]. Prominent PCa molecular features include rearrangements involving Ets transcription 

factor family members primarily fused to highly expressed AR-controlled genes[67] (e.g. 

TMPRSS2-ERG), SPOP somatic mutations, and germline PCa predisposing variants (e.g. the 

HOXB13 p.G84E risk SNP) [39, 44, 68]. As part of the Early Detection Research Network 

(EDRN), our group has discovered, validated and/or utilized a number of tissue-based PCa RNA 

biomarkers[158], including lncRNAs (such as SChLAP1 and ARLNC1) that have been 

increasingly associated with PCa development and progression[159-161].  Tissue RNA PCa 

biomarkers have also been shown to predict various cancer related outcomes and are in clinical 

use primarily in the three available tissue prognostic assays (Prolaris – CCP[162], Decipher – 

GC[163] and OncotypeDx – GPS[164, 165].  Importantly, none of the currently available urine 

(or tissue) assays target gene fusions (beyond TMPRSS2-ERG), recurrent SNPs/somatic 
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mutations or employ NGS technology.    

Here we leveraged the wealth of PCa genomic and transcriptomic knowledge, including 

our previous development and application of a 306 gene targeted multiplexed RNA NGS assay 

to formalin fixed paraffin embedded (FFPE) PCa tissue samples[158] to develop a whole post-

DRE urine, multiplexed, RNA NGS assay for aggressive prostate cancer early detection, named 

NGS-MiPS. NGS-MiPS includes 84 transcriptomic biomarkers (assessed by amplicons qualified 

in our previously developed FFPE tissue assay[158]) including those in the three aforementioned 

urine tests, many additional splicing isoforms of common PCa gene fusions, gene signature 

mRNAs and established and novel lncRNAs as well as expressed germline SNP variants and 

somatic mutations. We describe the pre-clinical development of NGS-MiPS showing high 

analytical performance and concordance with MiPS. We used a machine learning approach to 

train a preliminary NGS-MiPS model for aggressive PCa detection that outperformed serum PSA 

and other current models in two separate validation cohorts. Lastly, NGS MiPS detected 

germline predisposing and somatic PCa driver mutations in patient urine RNA. Taken together 

our data support continued clinical development of NGS-MiPS for the non-invasive early 

detection of aggressive prostate cancer. 

 

3.3 Materials and Methods 

 

3.3.1 Patient selection 

All samples were collected under Institutional Review Board (IRB)-approved protocols 

by the University of Michigan or other local IRBs with patient informed consent. To asses MiPS 

vs. NGS-MiPS concordance, we selected patients from multiple cohorts with available clinical 
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MiPS (or PROGENSA PCA3 alone) testing representing a range of sores for PCA3 and 

TMPRSS2-ERG. For model training and validation in our extreme design cohort, we selected 

Michigan Medicine patients representing the entire spectrum of disease grade on pathology 

(Benign to Gleason score 10 [Grade Group 5], but excluding Gleason score 3+4=7 [Grade Group 

2]) in order to assess more pronounced transcriptomic differences likely to be found in the more 

extreme ends of localized disease spectrum. For our active surveillance (AS) cohort we selected 

Michigan Medicine patients on AS with urine collected prior to an on-AS biopsy where the 

biopsy pathology showed the range of NCCN guideline category (very low, low, and 

intermediate) risk or benign prostate tissue. Lastly, pre-DRE work was done on matched pre- and 

post-DRE urine of a pilot cohort of randomly selected Michigan Medicine PCa patients. 

 

3.3.2 Digital rectal exam and urine collection 

 

For all urine samples, collection was done as for the MiPS assay[74]. DRE was 

conducted immediately prior to urine collection applying enough pressure to slightly depress the 

prostate surface from the base to the apex and from the lateral to the median line with 3 strokes 

for each lobe. 20-30 ml (but no less than 2.5 ml) of first-catch urine (initial part of the urine 

stream) was collected in a preservative-free cup following DRE and chilled to 2 to 8°C or on ice. 

Within 4 hours of collection, the chilled urine specimen was inverted 5 times to mix and ~2.5 ml 

of it was transferred into the urine specimen transport tube (Progensa PCA3 Urine Specimen 

Transport Tube containing 2.3 ml of urine transport media) and the tube was inverted 5 times to 

mix. The mixed samples were processed immediately or stored within five days at 2°C to 8°C for 

up to 14 days, –35°C to –15°C for up to 11 months or below –65°C for up to 36 months. 
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Samples were subjected to no more than five freeze–thaw cycles. 

 

3.3.3 RNA isolation 

 

RNA isolation for NGS-MiPS was performed using the ZR Viral RNA Kit (Zymo 

Research, Irvine, CA). The entire ~5 ml of urine/urine transport media mixture was fully thawed 

and stored at room temperature for 30 min (vortexing occasionally to dissolve precipitate), then 

warmed up to 37°C for 5 min to fully dissolve. 3x volume (~15 ml) of Viral RNA Buffer, pre-

warmed for 30 min at 37°C, was added and the mix was vortexed. The mix was transferred 

immediately to a reservoir connected to the spin column in a vacuum manifold filtration system 

connected to -850 to -900 mbar vacuum pressure generated using a KNF Laboport pump 

(Qiagen, Hilden, Germany) until the entire sample filtered through or for up to 80 min, 

whichever came first. 500 ul Viral Wash Buffer was added to the spin columns which were then 

centrifuged for 2 min x 13,000g. RNA was eluted by centrifuging as in the previous step with 13 

ul of RNAse-free water and stored in -80°C. RNA concentration was measured with the High 

Sensitivity RNA Kit on the Qubit Fluorometer (Thermo Fisher Scientific, Waltham, MA). RNA 

for the high-throughput testing experiments in Figure 16 was isolated using 0.5 ml of the ~5 ml 

urine/media mix with a high-throughput method. 

 

3.3.4 Panel selection, NGS and data analysis 

 

We used our previously developed and validated amplicon based multiplexed RNAseq 

PCa tissue panel[158] as the starting pool of 306 target transcripts. These were filtered down to 
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84 transcripts targeting prostate-, PCa- or aggressive PCa-specific genes, and this custom 

targeted RNA NGS-MiPS panel was generated by the ThermoFisher white glove team for the 

multiplexed PCR Ion Torrent Ampliseq platform (Thermo Fisher Scientific, Waltham, MA). All 

amplicons are exon-exon junction-spanning except for the one targeting the HOXB13 p.G84E 

risk SNP.  

Targeted NGS was performed essentially as previously described[49, 102, 158, 166-169]. 

Briefly, to construct targeted RNA NGS libraries, 10 - 15 ng RNA was treated with DNase 

(ezDNase Enzyme kit, Thermo Fisher Scientific, Waltham, MA; 5 ul reaction volume) to remove 

any DNA impurities and subjected to random priming mediated RT with the SuperScript IV 

VILO Master Mix kit (Thermo Fisher Scientific, Waltham, MA; 10 ul reaction volume). Target 

amplification was then performed on the resulting cDNA using the custom designed NGS-MiPS 

panel containing 84 amplicons covering 7,587 bases and the Ion AmpliSeq™ Library Kit 2.0 

(Thermo Fisher Scientific, Waltham, MA; 20 ul reaction volume) with 23 PCR amplification 

cycles (24 or 25 cycles were used for ~5% of samples that only had 5 – 10 or 2 – 5 ng RNA 

available, respectively). The rest of the library procedure was performed per kit protocol with 

barcode incorporation. Libraries were quantitated with the Ion Library TaqMan™ Quantitation 

Kit (Thermo Fisher Scientific, Waltham, MA; 10 ul reaction volume in duplicates). Templating 

was performed using the Ion PI™ Hi-Q™ OT2 200 Kit on the Ion OneTouch™ 2 System using 

the Qubit Fluorometer QC method (Thermo Fisher Scientific, Waltham, MA). Sequencing was 

performed using the Ion PI™ Hi-Q™ Sequencing 200 Kit on the Ion Proton System with the Ion 

PI chip (Thermo Fisher Scientific, Waltham, MA). 

Sequencing data were analyzed using Torrent Suite 5.0.4 with alignment by TMAP and 

coverage was analyzed with the Ion Torrent coverageAnalysis plugin (version 5.0.4.0), both 
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using default parameters. Filtering thresholds of mapped reads > 300,000, on-target mapped 

reads > 60%, and end-to-end mapped reads > 50% were used to select samples for downstream 

analysis. End-to-end read numbers for each target were normalized to sample-specific KLK3 

end-to-end reads and multiplied by 100,000 yielding normalized read counts. Log2 of these 

normalized reads + 1 are plotted in figures as indicated. Expression level heatmaps were 

generated and visualized in Cluster 3.0 and TreeView, respectively. Targets with zero reads in all 

samples (those targeting rare gene fusions) were removed prior to heatmap generation. To 

generate NGS-derived traditional MiPS-like scores for MiPS and NGS-MiPS comparison 

analysis, KLK3-normalized PCA3 reads were multiplied by 1,000 (as opposed to 100,000) for 

consistency with the clinical MiPS formulas[74]. Traditional MiPS (or the PROGENSA PCA3 

assay alone) was performed per protocol as previously described[74]. Expressed mutations were 

analyzed using aligned read pileups in the Integrated Genome Viewer (IGV, Broad Institute, 

Boston, MA).  

 

3.3.5 RT-qPCR 

 

KLK3, PCA3, TMPRSS2-ERG.T1E4 and TMPRSS2-ERG.T2E4 NGS-MiPS expression 

levels were validated by quantitative RT-qPCR for 8 samples with a range of expression. Pre-

designed TaqMan assays were obtained from Thermo Fisher Scientific, Waltham, MA. cDNA 

generated from 2ng RNA with the SuperScript IV VILO Master Mix kit (Thermo Fisher 

Scientific, Waltham, MA; 10 ul reaction volume) was subjected to pre-amplification using the 

TaqMan™ PreAmp Master Mix kit, (Thermo Fisher Scientific, Waltham, MA; 25 ul reaction 

volume, 6.25 ul cDNA, 12.5 ul Pre-amplification Mix, pooled TaqMan assays to 0.05x final 
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concentration, 14 PCR cycles). qPCR reactions (20 ul) were performed in triplicate using 

TaqMan Gene Expression Assay (5’ FAM, minor groove binder (MGB) and 3’ non-fluorescent 

quencher NFQ, Thermo Fisher Scientific, Waltham, MA). 0.55 ul of pre-ampified DNA was 

mixed with 10 ul TaqMan Gene Expression Mastermix and 1 ul Taqman Assay (20x) and water. 

Reactions were performed in 384 well plates on the QuantStudio 12K Flex (Applied 

Biosystems). Baseline and Ct thresholds were set using QuantStudio 12K Flex Real-Time PCR 

System Software. 2ΔCt values (ΔCt calculated as the difference in Ct of KLK3 to each of the other 

3 transcripts) were scaled up by 30,000, 100,000 and 500,000 for PCA3, TMPRSS2-ERG.T1E4 

and TMPRSS2-ERG.T2E4, respectively, for ease of visualization. 

 

3.3.6 Expressed mutation confirmation 

 

Urine RNA for Sanger sequencing was purified as for NGS-MiPS above. cDNA was 

made from 9 ng urine RNA using the SuperScript IV VILO Master Mix (Thermo Fisher 

Scientific, Waltham, MA). Urine genomic DNA was purified using the ZYMO Quick-DNA 

Urine Kit (Zymo Research, Irvine, CA) per the manufacturer’s protocol to purify total (cell and 

cell-free) DNA from 3.0 ml of the urine:media mix, as above. Bi-directional Sanger sequencing 

was performed over the observed HOXB13 SNP (G84) on the genomic and cDNA using primers 

described in Storebjerg et al.[170] 1.0 ng genomic DNA or the entire cDNA was used as PCR 

template with the Invitrogen Platinum PCR Supermix Hi-Fi (Thermo Fisher Scientific, Waltham, 

MA) using the manufacturer’s suggested conditions except a 2-round PCR with 42 and then 50 

cycles was used for genomic DNA due to low amounts. PCR products were subjected to 

bidirectional Sanger sequencing by the University of Michigan DNA Sequencing Core after 
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treatment with ExoSAP-IT PCR cleanup reagent (GE Healthcare) and sequences were analyzed 

using SeqMan Pro software (DNASTAR, Madison, WI). 

 

3.3.7 NGS-MiPS modeling  

 

Modeling and statistical analysis was done using R version 3.2.3 (R foundation for 

Statistical Computing, http://ww.R-project.org). Quality control thresholds of > 300,000 mapped 

reads, on-target percentage > 60%, and > 50% of the mapped reads being end-to-end were used 

to select samples for downstream analysis. The extreme design cohort of patient samples 

described in Patient Selection section above was used for model training and validation (109 of 

126 samples passed QC filtering). Prior to selecting informative variables, a third of the data 

(n=36) proportional to the ratio of classes present in the entire cohort (Benign/Grade Group 

(GG1) vs. GG3-GG5), was randomly selected and set aside, to be used as a held-out testing set 

for the model. The remaining training dataset was subjected to a random forest variable selection 

method (VSURF R package[171]) which reduced the target pool from a total of 84 to 29 

transcripts. Briefly, VSURF calculates variable importance (VI) by averaging the mean decrease 

in the out-of-bag error from permutation of variables across 50 grown forests. Variables are then 

ranked and uninformative variables are removed based on a threshold for the standard deviation 

of the VI - computed through a classification and regression tree (CART)[171]. VSURF was run 

with default parameters (ntree = 2000 and mtry = number of transcripts/3). The resulting variable 

list of 29 transcripts was used to build a regularized logistic regression model with an R package 

caret[172]. The caret package was used to train and perform a 5-fold validation process by 

performing a grid search that maximizes the area under the receiver operating characteristic 
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(AUROC [AUC]) curve. The final tuned model was then used to predict the classes on the: 1) 

held-out validation dataset and 2) Active Surveillance cohort dataset and AUC was used to 

evaluate the model’s performance (with 95% confidence intervals). Model predictions with 

NGS-MiPS data were calculated for: 1) Clinical high-grade MiPS[74]; 2) A retrained MiPS 

model (using the 3 MiPS variables on the Extreme Design NGS-MiPS training dataset); 3) 

Serum PSA alone; 4) A retrained SelectMDx model (using the 2 SelectMDx variables (HOXC6 

+ DLX1) on the Extreme Design NGS-MiPS training dataset) and 5) A retrained ExoDx Prostate 

IntelliScore model (using the 2 ExoDx Prostate IntelliScore variables (PCA3 + ERG) on the 

Extreme Design NGS-MiPS training dataset), were compared with the 15-transcript model. 

 

3.4 Results 

 

3.4.1 NGS-MiPS assay design and workflow 

The starting pool of candidate targets for our urine RNA NGS assay (NGS-MiPS), 

consisted of the 306 transcripts in our previously reported tissue RNA NGS assay[158]. These 

include transcripts from: the three commercially available PCa tissue prognostic assays (Prolaris 

– CCP[162], Decipher – GC[163] and OncotypeDx – GPS[164, 165]); relevant transcriptional 

signatures such as stroma-expressed genes, AR-driven transcriptional module; multiple splice 

isoforms of the most commonly occurring PCa gene fusions; PCa-associated lncRNAs and 

expressed germline variants and somatic mutations. Application of that panel on tissue-derived 

RNA representing the entire spectrum of disease aggressiveness showed the expected expression 

patterns[158] (Figure 12, heatmap) and validated individual amplicons for inclusion in our urine 

assay. 
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Figure 12. Workflow for development of urine RNA NGS assay (NGS-MiPS) for early 

detection of aggressive prostate cancer (PCa). Our previously validated FFPE tissue-based PCa 

prognostic RNA NGS assay (Salami et al. JCI Insight, 2018[158]) served as the starting pool of gene 

targets and amplicons. Its 306 amplicons include those in the three commercial tissue-based 

prognostic assays, relevant transcriptional signatures, the vast majority of PCa gene fusions, known 

and novel PCa-related lncRNAs, expressed somatic/germline variants etc. Heatmap shows tissue 

expression data with expected patterns of expression across the disease spectrum. We filtered these 

306 targets to select 84 transcripts relevant in urine by prioritizing 1) Prostate-specific targets 

(FOLH1 expression levels by tissue type in GTEX database are shown), 2) Transcripts differentially 

expressed in PCa vs. normal prostate tissue (HPN tissue expression levels for benign vs. prostate 

cancer are shown[158]), and 3) Transcripts differentially expressed in aggressive PCa (Gleason Score 

>6) (SChLAP1 tissue expression levels for benign vs. prostate cancer are shown[158]). For our urine 

assay ~30 ml of first-catch urine obtained immediately after a digital rectal examination of the 

prostate is mixed with RNA-preserving GenProbe urine transport media in a 1:1 ratio. 5 ml of this 

mix undergoes RNA isolation. NGS with the 84-transcript-panel described above is performed on the 

Ion Torrent sequencing platform, and target transcript read counts are normalized to sample-specific 

KLK3 read counts. A machine learning approach was used to train a model for predicting the 

presence of PCa and aggressive PCa on tissue pathology results. 

 

We reduced this target set down to 84 transcripts (Table 9) for urine based assessment by 
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three major criteria: 1) Prostate specificity (in order to avoid confounding urine RNA 

contributions from other tissue types, in particular those in the GU system); 2) Differential 

expression in PCa vs. normal prostate tissue, and 3) Differential expression in aggressive/high 

grade PCa vs. indolent/low grade PCA (Figure 12, violin and box-plots). We thus generated a 

custom targeted RNA NGS panel for the Ion Torrent platform (NGS-MiPS) using this set of 84 

amplicons qualified from our tissue RNA NGS assay.  

 

 

Table 9. NGS-MiPS panel targets. Genes or gene fusions targeted in NGS-MiPS are shown, with 

alternate gene names given in parentheses when available. For genes, exon-exon junctions spanned 

(or exon in the case of HOXB13) by the corresponding NGS-MiPS amplicons are shown. For gene 

fusions, the exons for the 3' and 5' fusion partners participating in the fusion at the breakpoint are 

shown, with the exons being named using the initial of the corresponding gene. For genes, the type of 

RNA [mRNA or lncRNA (long non-coding RNA)] is shown. Expression levels for all targets were 

assessed with HOXB13 and SPOP amplicons being additionally used to detect germline variant and 

somatic mutation respectively, indicated in parentheses. 

 

 

Urine was collected as “first-catch” (first ~30 ml of the urine stream) immediately 

following DRE (3 strokes per lobe), as this has been shown to be enriched for prostate-derived 

contents[150]. We isolated RNA from whole urine, which has been shown to be superior to 

urinary sediment or exosomes for detection of PCA3 lncRNA and ERG mRNA[173]. This 

established urine collection strategy is the basis for the PROGENSA PCA3 test (Hologic Inc, 

Bedford, MA, USA)[150, 174], our previous clinically-approved laboratory-developed MiPS 
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assay[74] and the SelectMDx assay[154]. Across a total of 233 patient samples used in NGS-

MiPS development, we obtained a median of 62.5 ng urinary RNA (interquartile range 34.2 to 

109.2 ng) from ~2.5 ml urine with lysis, which is enough to perform NGS-MiPS four times. 

NGS-MiPS sequencing results were consistent with high quality Ampliseq library preparation 

and sequencing metrics; specifically, we obtained a median of 100% of reads mapping to target 

regions (range, 99% - 100%) with 87% of those being end-to-end reads (reads spanning the 

entire amplicon, range, 82%-90%). Importantly, NGS-MiPS has a current informative sample 

rate of 98% (Table 10).     

 

 

Table 10. NGS-MiPS Sequencing Quality Metrics. Sequencing quality metrics for samples passing 

quality filters for a representative NGS-MiPS run. Median, mean and range are shown for: total 

number of raw reads; on-target reads (% of reads mapping to the target list); end-to-end reads (% of 

on-target reads spanning the entire target amplicon); high-quality bases (% of on target reads of a 

Q20 or better quality); mean read length (in base pairs). Bottom: informative sample rate (% of 

samples passing quality filters). NGS-MiPS performs highly in all sequence quality metrics. 

 

3.4.2 NGS-MiPS assay analytical validity testing 

To assess NGS-MiPS reproducibility, we constructed two replicate libraries for each of 

10 urine RNA PCa samples with library and sequencing performed ~6 months apart on stored 

RNA samples. Normalized target amplicon expression (urine target reads x 100,000 / urine 

KLK3 reads) is shown in the heatmap in Figure 13A for targets above-background in at least one 

sample. As shown by unsupervised hierarchical clustering, paired replicates were highly 

correlated (median Pearson’s R = 0.97, range 0.91 – 0.99); one representative sample is shown in 
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Figure 13B to demonstrate the dynamic range of gene expression assessable by the multiplexed 

amplicon based NGS-MiPS assay. Importantly, related amplicons—such as various splic 

isoforms of the same gene fusion (TMPRSS2-ERG) known to be coexpressed—or multiple 

amplicons targeting the same transcript (e.g. the lncRNAs ARLNC1 or PRCAT104, Figure 13A) 

also showed highly correlated expression across samples, demonstrating internal validity of the 

individual targets (also shown in Figure 13C dot plots for PCA3 and TMPRSS2-ERG.T1E4).  
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Figure 13. NGS-MiPS shows high technical reproducibility and accuracy. NGS-MiPS showed 

high performance in reproducibility and accuracy testing. A. 20 replicate NGS libraries (UR_A vs. 

_B in sample ID) for 10 randomly selected PCa patient urine RNA samples were constructed and 

sequenced on separate days. Paired replicates are denoted with the same color in header above 

heatmap. Pearson’s pair-wise correlation R values for all KLK3-normalized targets are shown inside 

colored boxes and demonstrated high reproducibility (Median R = 0.97, range 0.91 – 0.99). Heatmap 

shows expression levels (gene-median-centered, log2(normalized reads +1)) where red and blue 

indicate over- and under-expression, respectively. Gene fusion targets are restricted to those having 

>32 normalized sequencing reads in at least one sample (read levels below that threshold are zeroed 

as background noise). Unsupervised hierarchical clustering (uncentered correlation similarity metric 

and centroid linkage clustering method) assigned paired replicates adjacent to each other and in 

separate branches for all 10 samples (sample dendrogram). B. Expression levels (Log2(normalized 

reads +1)) over all 84 transcripts for Replicate A vs. B are plotted for one representative sample 

(UR222) showing high concordance over the entire range of expression. C. Expression levels 

¬(Log2(normalized reads +1)) over all 10 samples for Replicate A vs. B are plotted for PCA3 and 

TMPRSS2-ERG isoform T1E4 (targets that are part of the MiPS test) showing high concordance. D. 

Assay accuracy against an orthogonal method was assessed by comparing NGS-MiPS vs. RT-qPCR 

in 8 samples for PCA3 and the two main TMPRSS2-ERG splice isoforms: T1E4 and T2E4. Bar 

graphs show KLK3-normalized reads for NGS-MiPS and 2ΔCt x c for RT-qPCR (where the constant c 

= 30,000, 100,000 and 500,000 for PCA3, TMPRSS2-ERG.T1E4 and .T2E4, respectively, for ease of 

visualization). Samples are sorted left to right by the RT-qPCR value. Pearson’s R values are shown 

demonstrating high concordance between the two orthogonal methods for all three transcripts. 

 

 

Expression level correlation matrices of pair-wise target Pearson’s correlation R 

coefficients with unsupervised hierarchical clustering yielded expected clusters of related NGS-

MiPS targets. This included the two different amplicons each for ARLNC1 or PRCAT104 as well 

as a cluster containing ERG, TMPRSS2-ERG and TDRD1, a known co-expressed ERG 
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target[175] (Figure 14A). TMPRSS2-ERG splicing isoforms, known to be co-expressed in the 

same tumor, showed the expectedly high correlation to each-other for the majority of transcripts, 

although this was not true for all isoform combinations, which supports the potential clinical 

utility of multiple TMPRSS2-ERG isoforms as non-redundant, complementary PCa biomarkers 

(Figure 14B). 

A 
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B 

 

Figure 14. NGS-MiPS target correlation matrices. Unsupervised hierarchical clustering heatmaps 

of inter-transcript Pearson correlation coefficients for the A. non-fusion (except TMPRSS2-

ERG.T1E4) and B. all TMPRSS2-ERG fusion NGS-MiPS transcripts in a randomly selected patient 

cohort. Targets are shown in the same clustered order both across and top-to-bottom. Shades of red 

and blue represent positive and negative correlation coefficients, respectively and white represents a 

correlation coefficient of zero. Boxes inside heatmap show several highly correlated clusters of 

transcripts. 

 

We also assessed robustness of the NGS-MiPS assay to various optimal and suboptimal 

conditions using 23 total matched pairs of samples with variable pre-analytical and analytical 

conditions, such as varying the number of PCR cycles, using different urine aliquots, using fully 

dissolved urine:media mix vs. precipitate, and using NGS-MiPS vs. our PCa tissue NGS assay 

on urine RNA[158] (Figure 15A). Even under suboptimal conditions, NGS-MiPS showed strong 

reproducibility, with 19/23 (83%) of pairs clustering adjacently by unsupervised hierarchical 

clustering. The remaining 4 pairs ranged from being in the same main branch to the same higher 

level sub-branches (see sample dendrogram). We obtained high overall correlation (Pearson’s 

median R = 0.96, range 0.79 – 1.00) with urine vs. tissue assays being the only pairs to show a 

slightly more inferior concordance (median Pearson’s R = 0.87, range 0.79 – 0.94, Figure 15B).  
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Figure 15. Robustness of the NGS-MiPS assay. In order to assess robustness of the NGS-MiPS 
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assay to various optimal and suboptimal conditions, NGS libraries were constructed for 23 total 

replicate pairs of the following types: 1) Using the same RNA sample and identical conditions as in 

main Figure 2 (denoted by _v1 vs. _v2 in sample ID). 2) As in 1. above, but with one replicate 

receiving 5 additional PCR cycles during library construction (_plus5 in sample ID). 3) Using RNA 

from whole urine vs. urine precipitate (_Diss (dissolved precipitate) in sample ID). 4) Different 

aliquots of the same urine sample (_A1 vs. _A2 in sample ID). 5) Using NGS-MiPS vs. our tissue 

PCa RNA NGS assay on the same urine RNA with analysis restricted to NGS-MiPS targets (_U vs. 

_T in sample ID). A. Paired replicates are denoted with the same-color boxes. Pearson’s pair-wise 

correlation R values for all KLK3-normalized targets are shown inside colored box in header. 

Heatmap shows expression levels (gene median centered, log2(normalized reads +1)) where red and 

blue indicate over- and underexpression, respectively. Unsupervised hierarchical clustering 

(uncentered correlation similarity metric and centroid linkage clustering method) assigned paired 

replicates exactly adjacent to each other for 19/23 (83%) pairs with the other 4 ranging from being in 

the same branch to the same sub10 branch (sample dendrogram). TMPRSS2-ERG splice isoforms 

clustered together (target dendrogram). B. Mean, median and range of Pearson’s correlation R 

coefficients are tabulated for the 5 pair types. No drastic decrease in correlation R values was 

observed for the various condition aberrations (see table), with the exception of replicates done with 

the tissue vs. urine assays which had a slightly lower median R of 0.87 (range 0.79 – 0.94). 

 

 

We further assessed our assay’s compatibility with a high-throughput automated RNA 

isolation method using 10-fold lower urine input volume (0.25 ml) (Figure 16A). We obtained 

~1/5 of the standard RNA yield, yet 10/10 (100%) samples passed NGS-MiPS quality criteria 

and were not inferior in quality to samples processed with the standard method (Figure 16B). 

Standard and high-throughput RNA expression levels over the entire NGS-MiPS target set were 

highly concordant (median Pearson’s R over 10 patient samples = 0.92, range 0.54 – 0.98) also 

shown in Figure 16C dot plot for one representative sample and in Figure 16D dot plots for 

PCA3 and TMPRSS2-ERG.T1E4 over the 10-patient set.  
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Figure 16. NGS-MiPS assay compatibility with a high-throughput urine RNA isolation method. 
Urine aliquots from the same urine collection from 10 PCa patients underwent RNA isolation with 

the standard method (Zymo Research, Irvine CA) using 5ml urine : buffer mix as well as a high-

throughput, automated RNA isolation method using 0.5ml urine : buffer mix. A. Median total and 

adjusted per ml RNA amounts are plotted. B. NGS-MiPS with RNA from both methods was 

performed showing no inferiority in sequencing quality metrics for the high-throughput method as 

compared to standard RNA: on-target reads (% of reads mapping to the target list); end-to-end reads 

(% of on-target reads spanning the entire target amplicon); high-quality bases (% of on-target reads 

of a Q20 or better quality); mean read length [in base pairs (bp)]. C. Expression levels 

(Log2(normalized reads +1)) over all 84 transcripts for High-throughput vs. Zymo RNA NGS-MiPS 

are plotted for one representative sample (UR443) showing high concordance over the entire range of 
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expression. D. Expression levels (Log2(normalized reads +1)) over all 10 samples for High-

throughput vs. Zymo RNA NGS-MiPS are plotted for PCA3 and TMPRSS2-ERG isoform T1E4 

(targets which constitute the clinical MiPS test) showing high concordance. 

 

 

Lastly, we assessed NGS-MiPS robustness to using ordinary whole urine not preceded by 

DRE (pre-DRE). While we obtained ~1/3 of the patient-matched post-DRE RNA yield, 11/11 

(100%) patient pre- and post-DRE samples passed sequencing quality criteria and pre-DRE 

samples were non-inferior to their matched post-DRE samples (Figure 17A, B). Furthermore, 

we detected robust levels of highly expressed transcripts (KLK2 and -3) in pre-DRE urine, in 

high concordance with their matched post-DRE samples (Pearson’s R = 0.96 and 0.72, 

respectively, Figure 17C). More modestly expressed transcripts such as PCA3 and especially 

TMPRSS2-ERG.T1E4 had generally reduced and more variable pre-DRE levels unlike in their 

post-DRE counterparts (Pearson’s R = 0.38 and 0.62, respectively, Figure 17C) leading to the 

conclusion that robust detection of PCa RNA biomarkers in standard non-DRE urine, at least 

with respect to whole urine, needs optimization for low expression genes.   
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Figure 17. NGS-MiPS assay compatibility with pre-digital rectal exam (pre-DRE) urine. 11 

pairs of matched pre- and post-DRE urine samples from 11 randomly selected prostate cancer 
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patients were subjected to NGS-MiPS. A. Boxplot shows RNA amount isolated (in ng) being lower 

in pre-DRE urine (Mann-Whitney p-value is shown). B. Sequencing quality metrics: on-target reads 

(% of reads mapping to the target list); end-to-end reads (% of on-target reads spanning the entire 

target amplicon); high-quality bases (% of on-target reads of a Q20 or better quality); mean read 

length (in base pairs), showed no differences between pre- and post-DRE urine. C. Bar graphs show 

expression levels (in log2 scale) for highly expressed transcripts KLK3 (coverage-normalized) and 

KLK2, intermediate expression PCA3, and low expression level transcript TMPRSS2-ERG.T1E4. 

Pearson’s R values for the log2 transformed data are shown. For TMPRSS2-ERG.T1E4, R* value 

denotes Pearson’s R limited to the subset of samples (n=7) that are not fusion-negative in both pre- 

and post-DRE urine. Pre-post-DRE concordance decreased with decreasing expression level. 

 

 

Finally, to assess our assay’s accuracy against an orthogonal method, we also performed 

RT-qPCR on patient post-DRE urine RNA samples using commercial pre-designed TaqMan 

primer-probe sets for PCA3, the two main splicing isoforms of TMPRSS2-ERG, T1E4 and T2E4, 

and KLK3 for normalization (Figure 13D). NGS-MiPS and RT-qPCR expression levels for these 

three target transcripts were highly correlated (Pearson’s R = 0.92, 0.95 and 0.97, respectively), 

thus indicating high NGS-MiPS accuracy in detection of RNA biomarker levels. Taken together, 

these data support NGS-MiPS as a reproducible, robust and accurate assay for quantifying PCa 

transcriptomic biomarkers from whole urine. 

 

3.4.3 NGS-MiPS accurately recapitulates the clinically validated MiPS assay for PCA3 and 

TMPRSS2-ERG.T1E4 expression 

The clinical MiPS test previously developed, validated and clinically offered by our 

group in a CLIA/CAP accredited, New York state approved laboratory[74], uses transcription 

mediated amplification (TMA) to measure urinary PCA3 and TMPRSS2-ERG.T1E4 expression 

levels (normalized to urine KLK3 expression). We compared clinical MiPS scores to derived 

NGS-MiPS scores calculated similarly, but using NGS-MiPS PCA3 and TMPRSS2:ERG.T1E4 

expression instead of TMA-quantified PCA3 and TMPRSS2:ERG.T1E4 scores in a total of 48 
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PCa patients. MiPS and derived NGS-MiPS scores for the two transcripts were highly 

concordant (Spearman’s Rho = 0.75 and 0.96 for the 48 and 32 patient samples with available 

PCA3 and TMPRSS2-ERG.T1E4 MiPS scores, respectively, Figure 18A & 18B). MiPS also 

combines these urine PCA3 and TMPRSS2:ERG.T1E4 scores with serum PSA into two logistic 

regression models that predict risk of having PCa or high-grade [Grade Group (GG) > 1 

(Gleason Score > 6)] PCa on biopsy[74]. MiPS and high-grade MiPS model biopsy risk 

predictions calculated using MiPS and derived NGS-MiPS scores above were also highly 

concordant (Spearman’s Rho = 0.86 and 0.82 for the 32 patients with available scores for both 

transcripts, for all-grade and high-grade PCa, respectively, Figure 18C & 18D; Table 11). 

Taken together these data support NGS-MiPS as a highly reproducible, accurate and robust assay 

that is concordant with the analytically and clinically validated MiPS test. 
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Figure 18. NGS-MiPS shows high accuracy compared to the clinical MiPS laboratory 

developed test. We performed NGS-MiPS on RNA isolated from stored aliquots of same urine void 

from PCa patients that had undergone our laboratory developed transcription-mediated amplification 

(TMA) based MiPS test (measuring PCA3 and TMPRSS2-ERG.T1E4). A. For MiPS scores, clinical 

TMA-based PCA3 number of copies is normalized to sample-specific KLK3 number of copies and 

multiplied by a coefficient of 1,000. Similarly, for NGS-MiPS derived scores, PCA3 sequencing 

reads were normalized to sample-specific KLK3 reads and multiplied by 1,000. Expression level 

(Log2(normalized number of copies or sequencing reads +1)) are plotted for 48 samples with 

available clinical MiPS (or PROGENSA) PCA3 data. PCA3 scores were highly concordant between 

the two methods (Spearman’s Rho = 0.75, linear fit R2 = 0.63) B. TMPRSS2-ERG.T1E4 scores for 
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the two methods were calculated and plotted as for PCA3 in panel A. above (with the exception that a 

coefficient of 100,000 is used as opposed to 1,000) for 32 samples with available clinical MiPS 

TMPRSS2-ERG.T1E4 data. TMPRSS2-ERG.T1E4 scores were highly concordant between the two 

methods (Spearman’s Rho = 0.96, linear fit R2 = 0.91). C. & D. Concordance plots of urine-based 

risk probabilities for presence of C. prostate cancer, and D. high grade prostate cancer (Gleason 

Score > 6, Grade Group > 1), on biopsy. The clinical MiPS algorithm (Tomlins SA, et al., European 

Urology, 2016[74]) which combines serum PSA with urine PCA3 and TMPRSS2-ERG.T1E4 into a 

model validated to predict biopsy pathology was used to calculate risk probabilities for clinical 

(TMA) and NGS-derived MiPS scores for the two transcripts. Log2(% risk) is plotted for the 32 

samples having clinical MiPS data. Risk predictions were highly concordant between the two 

methods (Spearman’s Rho = 0.86 and linear fit R2 = 0.71 for all-grade prostate cancer; Spearman’s 

Rho = 0.82 and linear fit R2 = 0.74 for high-grade prostate cancer). 

 

 

Table 11. MiPS model urine risk scores for presence of PCa and high-grade PCa on biopsy 

from clinical MiPS vs. NGS-MiPS derived data. 32 prostate cancer urine samples underwent 

clinical TMA-based MiPS testing and NGS-MiPS. TMA and NGS PCA3 and TMPRSS2:ERG.T1E4 

scores were applied to the MiPS algorithm (Tomlins, SA, et al. European Urology,2015[74]) to 

generate risk probabilites for having any-grade and high-grade (Gleason Score > 6, GG > 1) prostate 

cancer on biopsy. Calculated risk probabilites and upper and lower 95% confidence intervals are 

tabulated, sorted by increasing high-grade MiPS risk score. 

 

3.4.4 NGS-MiPS model training and validation 
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We next assessed a new cohort of urine samples from 126 patients undergoing biopsy or 

prostatectomy (RRP) of which 109 (86.5%) met stringent NGS-MiPS quality control criteria. 

These patients were categorized into two groups based on their biopsy (or RRP if available) 

results as benign or Grade Group (GG) 1 (Gleason Score 6) (n=65) vs. GG ≥ 3 (Gleason ≥ 

4+3=7) (n=44), thus excluding GG2 (Gleason 3+4=7) patients (Extreme Design Cohort). This 

was done in order to identify the more pronounced transcriptomic differences expected between 

the extremes of the disease spectrum, while grouping commonly indolent GG1 cancer together 

with benign biopsy cases. Pathologic measures such as tumor size (for prostatectomy cases), 

positive biopsy core fraction and maximum core involvement showed marked differences 

between the two groups as expected, Figure 19A. In contrast, 50/65 (77%) of benign/GG1 

patients had a serum PSA greater than the commonly used threshold of 4.0 ng/ml consistent with 

that biomarker’s modest sensitivity (Figure 19A).  
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Figure 19. Extreme design cohort clinicopathological characteristics and NGS-MiPS 

housekeeping gene expression levels. A cohort of 109 patients representing those with benign or 

Grade Group (GG) 1 vs. those with GG ≥ 3 prostate cancer on biopsy (Extreme Design Cohort) as 

described in Figure 4, underwent NGS-MiPS. Clinicopathological measures showed the expected 

differences between the two categories. A. Boxplots show serum PSA (in ng/ml); tumor size (in cm, 

prostatectomy cases only); positive core fraction (fraction of tumor-positive biopsy cores); and 

maximum core involvement (% tumor in the biopsy core with the highest tumor content). Mann-

Whitney test p-values (or Student’s T test for normally distributed values) are shown. Serum PSA 
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boxplot red horizontal line represents the clinically used 4 ng/ml threshold. B. KLK3 expression 

levels (used as a “housekeeping” gene in NGS-MiPS) normalized by total sequencing coverage show 

no difference between the two categories. Mann-Whitney test p-value is shown. 

 

NGS-MiPS on Extreme Design Cohort patients yielded nearly identical distributions of 

urine KLK3 (PSA) transcript levels between the two groups (Figure 19B), supporting its use as a 

“housekeeping” transcript for NGS-MiPS as in the PROGENSA PCA3, MiPS and SelectMDx 

assays[74, 154]. Importantly, numerous NGS-MiPS targets showed statistically significant 

differential expression in urine of benign/GG1 vs. GG ≥ 3 patients. Specifically, PCA3 (p=0.02), 

TMPRSS2-ERG.T1E4 (p=0.000003), ERG (0.0006), TDRD1 (0.0003) and HOXC6 (0.03), 

transcripts used currently (or previously) in the existing aforementioned clinical urine assays, 

were more highly expressed in urine of higher biopsy grade cancer patient group than those with 

benign or low-grade disease as was the aggressive PCa associated lncRNA SChLAP1[159] 

(p=0.005) and others (Figure 20A).  
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B 
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Figure 20. NGS-MiPS trained model outperforms serum PSA and derived clinical MiPS 

models in predicting biopsy results. Urine from a cohort of 109 patients representing those with 

benign or Grade Group (GG) 1 vs. those with GG ≥ 3 prostate cancer on biopsy (Extreme Design 

Cohort) was subjected to the NGS-MiPS assay. Sequencing reads for the 84 targets were normalized 

to sample-specific KLK3 reads and multiplied by 100,000. A. Boxplots for 9 selected targets with 

significant differential expression between the two groups are shown (median and interquartile range 

in log2 scale shown). Mann-Whitney test p-values (or Student’s T test for normally distributed 

values) are shown. Boxplots for the rest of the transcripts selected in the trained NGS-MiPS model 

(see below) are shown in Figure 21. B. Heatmap shows expression levels for all 18 targeted 

TMPRSS2-ERG splice isoforms (gene-median-centered, log2(normalized reads +1)). Red and blue 

indicate over- and under-expression, respectively. Headers show tissue pathology results; type of 

tissue (RRP – radical retropubic prostatectomy, PBX – prostate biopsy); serum PSA (ng/ml); clinical 

(TMA) and NGS-derived MiPS TMPRSS2-ERG.T1E4 and PCA3 scores (calculated as in Figure 3); 

and the NGS-MiPS model (see below) prediction score from 0 to 1 for having GG ≥ 3 PCa on 

biopsy. C. NGS-MiPS data for all 84 targets from 73/109 Extreme Design Cohort patients (Training 

Set) randomly selected to have a group-wise ratio proportional to that of the entire cohort, underwent 

a random forest target reduction method to select the minimal number of the most informative targets 

(29 transcripts). A regularized logistic regression model was built on the Training Set and showed a 

higher area under the receiver operating characteristic (ROC) curve (AUC = 0.9) compared to serum 

PSA or the clinical high-grade (Hi-grade) and a retrained MiPS model using derived NGS-MiPS 

PCA3 and TMPRSS2-ERG.T1E4 scores (left panel). The NGS-MiPS model also outperformed these 

three models in the held out set of 36 samples (Validation Set), (AUC = 0.82), right panel. AUC 95% 

CIs are shown. 

 

 

Further, a number of additional TMPRSS2-ERG splicing isoforms not assessed by the 

clinical MiPS test also showed elevated levels in the high-grade group, a subset of whom with 

very high specificity (Figure 20A and 21A). As shown in the expression-level heatmap of all 18 

targeted NGS-MiPS TMPRSS2-ERG splice isoforms, T1E4 was the most commonly expressed 

isoform, mirroring PCa tissue data, followed by T2E4 and other rarer isoforms (Figure 20B). 

Furthermore, a number of isoforms were co-expressed in any individual urine sample with less 

common ones having lower expression levels, an observation that is also similar to PCa tissue. 

Notably, a number of benign biopsy cases contained urine TMPRSS2-ERG RNA albeit at lower 

levels and fewer isoforms, consistent with the notion that random systematic or even MRI-

guided biopsy may under-sample or entirely miss smaller cancer foci whereas urine biomarker 

testing may give a readout of the entire prostate[139, 158]. Interestingly, while the isoforms 
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present in these benign/low grade cancers were limited to low levels of the more common ones, 

such as T1E4, higher grade cancers also expressed rarer isoforms such as T1EIIIc_4 or 

T2EIIIc_4 while these were negligible or absent in benign/low grade cases (Figure 20B). Taken 

together, these data suggest potential utility of multiple TMPRSS2-ERG splicing isoforms, 

including less common, moderately expressed ones, as specific urine biomarkers for non-

invasive high-grade PCa detection.  

To assess the feasibility of developing an optimized risk predictor from the multiplexed 

NSG-MiPS assay, we used a machine learning approach to develop a pre-biopsy risk predictor 

using the Extreme Design Cohort NGS-MiPS urine data set. A third of the data (n=36 patients) 

proportional to the cohort-wide category ratio (benign/GG1 vs. GG ≥ 3), was randomly sampled 

and set aside, to be later used as a held-out validation set. A random forest feature reduction 

process on the remaining 2/3 of the Extreme Design Cohort (training set, n=73) decreased the 

number of targets from 84 down to 29 likely to be the most informative and non-redundant. 

Next, training of a regularized logistic regression model on this training set assigned non-zero 

weights to 15 of these 29 targets, to yield a model which included several TMPRSS2-ERG splice 

isoforms, other currently used clinical biomarkers, and additional mRNAs and lncRNAs 

(expression level distributions and weights for the complete list of model targets are shown in 

Figure 21A boxplots). A simple unweighted unsupervised hierarchical clustering of the Extreme 

Design Cohort dataset limited to these 15 targets suggested potential utility of these transcripts in 

discerning the benign/GG1 cases from high-grade ones (as well as was able to cluster related 

targets such as TMPRSS2-ERG isoforms or AR splicing variants adjacent to each other; heatmap 

is shown in Figure 21B).  
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Figure 21. Expression levels for NGS-MiPS preliminary model targets in the extreme design 

cohort. A. Expression-level boxplots for the 15 transcripts selected in the trained NGS-MiPS model 

(Figure 20C) are shown. Urine from a cohort of 109 patients representing those with benign or Grade 

Group (GG) 1 vs. those with GG ≥ 3 prostate cancer on biopsy (Extreme Design Cohort) was 

subjected to the NGS-MiPS assay. Raw sequencing reads for each target were normalized to sample-

specific raw KLK3 reads and multiplied by 100,000. Boxplots show the interquartile range and 
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median in log2 scale. Mann-Whitney test p-values (or Student’s T test for normally distributed 

values) are shown. Model weights (W) for each target are shown. B. Heatmap shows expression 

levels for all 15 NGS-MiPS model targets (gene-median-centered, log2(normalized reads +1)). Red 

and blue indicate over- and underexpression, respectively. Header shows tissue pathology results by 

grade group colored as in figure legend. Unweighted, unsupervised hierarchical clustering 

(uncentered correlation similarity metric and centroid linkage clustering method) by gene and by 

sample was applied. 

 

Receiver operating characteristic (ROC) curves (Figure 20C, training set, left panel) 

were plotted for serum PSA, the NGS-derived high-grade MiPS model[74], a retrained NGS-

derived MiPS model (limited to the three MiPS variables but retrained on the Extreme Design 

Cohort training set), as well as the full 15-transcript NGS-MiPS trained model. Expectedly, 

serum PSA showed the poorest discriminatory ability (AUC = 0.65 (95%CI 0.51-0.78). The 

NGS-derived high-grade MiPS and retrained MiPS models had AUCs of 0.72 and 0.80 (95%CIs 

0.60-0.84 and 0.74-0.87, respectively), thus confirming MiPS biomarker and model superiority 

to serum PSA alone. Our NGS-MiPS model had the highest training set AUC of 0.90 (95%CI 

0.83-0.97). Importantly, the 36-patient held-out validation set showed a similar AUC distribution 

to the training set where serum PSA, high-grade MiPS and retrained MiPS had AUCs of 0.69 

(95%CI 0.51-0.87), 0.69 (95%CI 0.50-0.87) and 0.74 (95%CI 0.55-0.92), respectively. As in the 

training set, the 15-transcript NGS-MiPS model was the strongest performing, with a validation 

set AUC of 0.82 (95%CI 0.65-0.98) supporting the potential value of additional urine transcripts 

beyond PCA3 and TMPRSS2-ERG.T1E4 in PCa early detection using urinary biomarkers 

(Figure 20C, validation set, right panel).  

Finally, we used the Extreme Design Cohort to assess the performance of our 15-

transcript NGS-MiPS model compared to NGS-MiPS-derived, retrained models using the 

transcripts in the SelectMDx (HOXC6 + DLX1)[154] and ExoDX Prostate IntelliScore (PCA3 + 

ERG)[155] urine tests described earlier. AUCs for the 15-transcript NGS-MiPS models were 
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higher than the retrained NGS-MiPS derived HOXC6+DLX1 and PCA3+ERG models in both our 

training and validation sets [Training set: NGS-MiPS AUC = 0.90 (95%CI 0.83-0.97) vs. 

HOXC6+DLX1 AUC = 0.69 (95%CI 0.57-0.81) and PCA3+ERG AUC = 0.69 (95%CI 0.57-

0.81); Validation set: NGS-MiPS AUC = 0.82 (95%CI 0.65-0.98) vs. HOXC6+DLX1 AUC = 

0.50 (95%CI 0.50-0.50) and PCA3+ERG AUC = 0.66 (95%CI 0.47-0.85), Figure 22]. Although 

the latter two were only models retrained by us using our moderately-sized cohort, used NGS-

derived expression levels as opposed to these assays’ actual RT-qPCR method, and, in the case 

of ExoDx, used whole urine as opposed to that test’s intended substrate, urinary exosomes, our 

data suggest superiority of our biomarker set over currently used ones. Taken together these 

findings support the potential utility of our non-invasive multi-transcript urine biomarker 

strategy which promises to improve the early detection of aggressive PCa over currently 

available serum and urine biomarker-based approaches.  
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Figure 22. NGS-MiPS vs. derived retrained SelectMDx and ExoDx Prostate Intelliscore 

models. Models using HOXC6 + DLX1 (biomarkers comprising the SelectMDx assay) and PCA3 + 

ERG (ExoDx Prostate IntelliScore assay) were trained using the NGS-MiPS Extreme Design Cohort 

training data set (n=73) and were applied to its validation set (n=36). Receiver operating 

characteristic (ROC) curves for predicting pathology results for training (filled lines) and validation 

(dashed lines) sets were plotted and areas under the curve (AUCs) were calculated for each model. 

 

3.4.5 NGS-MiPS performance in the active surveillance (AS) setting 

 

Given the extreme design cohort results, we next explored our model’s performance in a 

pilot AS cohort, a much more difficult early detection/prognostic scenario. AS is an observation-

based management strategy for low-grade PCa that centers on treatment delay and regular 

prostate biopsy assessment in order to prevent overtreatment of disease likely to be indolent. 
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Urine from a cohort of 45 AS patients (collected prior to on-AS biopsy) was subjected to the 

NGS-MiPS assay. Patients were categorized as having benign biopsies (1), or very low (2), low 

(3) and intermediate (4) risk prostate cancer on biopsy according to National Comprehensive 

Cancer Network (NCCN) AS guidelines. Patients were then classified into two categories as 

group 1 + 2 (Benign/Very Low) vs. 3 + 4 (Low/Intermediate). Risk probabilities of being in each 

of the two biopsy categories above, calculated using urine NGS-MiPS data (or serum PSA) and 

the corresponding ROCs were plotted for the 4 models compared in Figure 4 earlier (Figure 

23A, B). Serum PSA exhibited expectedly poor discriminating ability between the two categories 

in this challenging clinical scenario, with an AUC of 0.53 (95%CI 0.35-0.71). High-grade and 

retrained MiPS models also performed unsatisfactorily in this patient cohort with AUCs of 0.56 

(95%CI 0.37-0.75) and 0.43 (95%CI 0.27-0.65), respectively, as did the all-grade MiPS model 

(Figure 24). However, our 15-transcript NGS-MiPS model, although trained to distinguish the 

more extremes of PCa aggressiveness spectrum, displayed promising signal with statistically 

significant differences in risk prediction between the two categories (Benign/Very Low vs. 

Low/Intermediate) (Figure 23A) and an AUC of 0.66 with the entire 95%CI range being at or 

above 0.50 (95%CI 0.50-0.83, Figure 23B). Although our AS cohort contained only a limited 

number of patients upgraded on biopsy, thus precluding formal assessment of NGS-MiPS 

performance in this key event in the AS patient’s possible clinical course, taken together, these 

data support the potential and continued investigation of our multi-biomarker NGS-MiPS assay 

in this patient setting where effective biomarkers that can aid in clinical decision-making are 

much urgently needed. 
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Figure 23. NGS-MiPS trained model detects differences in the active surveillance setting. Urine 

from a cohort of 45 patients on prostate cancer active surveillance (AS, an observation based 

management strategy for patients with low grade/indolent prostate cancer on biopsy) was subjected 

to the NGS-MiPS assay. Patients were categorized as having benign biopsies (1), or very low (2), 

low (3) and intermediate (4) risk prostate cancer (based on AS biopsy pathology) according to NCCN 

AS guidelines. Patients were then classified into two groups as category 1 + 2 (Benign/Very Low) vs. 

3 + 4 (Low/Intermediate). A. Boxplots for serum PSA (ng/ml), and risk/probability scores for having 

high grade prostate cancer on biopsy are shown for clinical high-grade and retrained MiPS models as 

well as our trained 15-transcript NGS-MiPS model. All risk/probability scores were calculated using 

NGS-derived PCA3 and TMPRSS2-ERG.T1E4 scores. Boxplots represent the interquartile range and 

median in log2 scale. Mann-Whitney test p-values (or Student’s T test for normally distributed 

values) are shown with the NGS-MiPS model showing the greatest discriminating power. B. ROC 

curves (with AUCs and 95%Cis indicated) show the trained NGS-MiPS model outperforming the 

other three models in panel A. in this AS patient cohort. 
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Figure 24. All-grade PCa MiPS model prediction in the active surveillance (AS) cohort. Urine 

from a cohort of 45 patients on prostate cancer AS (from Figure 23) was subjected to the NGS-MiPS 

assay. Boxplot of % risk scores for having PCa of any-grade on biopsy for the clinical MiPS model is 

shown. All risk scores were calculated using NGS-derived PCA3 and TMPRSS2-ERG.T1E4 scores. 

Boxplot represents the interquartile range and median in log2 scale. Student’s T test p-value is 

shown. 

 

3.4.6 NGS-MiPS detects expressed PCa predisposing germline variants and somatic driver 

mutations 

 

Common germline SNPs have shown limited ability to improve upon serum-based PCa 

risk predictors[176], and the lack of highly recurrent somatic mutations has limited the 

performance of somatic DNA-based PCa early detection approaches. Indeed, with the exception 

of the TMPRSS2-ERG gene fusion, none of the currently offered urine (or tissue) assays target 
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such driver events. The PCa genomic landscape however may provide several potentially useful 

candidate early detection biomarkers. The HOXB13 p.G84E risk variant has been associated with 

increased risk of PCa (1.4% frequency in PCa patients vs. 0.02% in healthy population), 

especially in familial early onset cases[177, 178]. Using our FFPE tissue-based RNA NGS 

approach, we previously demonstrated the ability to detect HOXB13 p.G84E in tumors from 

patients known to harbor this germline alteration, as well as detection of somatic mutations (such 

as those in SPOP, NRAS, BRAF)[158]. Hence, to determine whether such genomic events could 

similarly be detected in RNA from urine, we included in NGS-MiPS amplicons targeting 

HOXB13 p.G84E and the most common SPOP hotspot somatic mutations. Although germline 

HOXB13 p.G84E status was not independently known for any patients in our cohort, NGS-MiPS 

successfully detected the HOXB13 G84E variant in the urine RNA of one patient (UR_B, Figure 

25) at a variant allele frequency (VAF) of 42%, consistent with a potential heterozygous 

germline SNP (assuming approximately equal expression from the mutant and wild type alleles). 

We are confirming the variant in the sequencing library and urine RNA of this patient by Sanger 

sequencing. As no biospecimen other than urine was available from this patient, we used 1.5 ml 

of urine in Progensa media to isolate DNA (yield, 1.26 ng). We are confirming this mutation in 

this patient’s genomic urine DNA sample by Sanger sequencing. 
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Figure 25. Detection of a HOXB13 p.G84E prostate cancer predisposing germline variant by 

NGS-MiPS. Figure shows detection by NGS-MiPS of an expressed germline SNP (population allele 
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frequency of 0.02%) in a patient urine sample. RNA sequencing read pile-up from Integrated 

Genome Viewer (IGV) is shown for two samples (UR_A, wild-type; UR_B, variant carrier). Header 

for each sample (gray bars) shows a summary of that position over the entire read set covering it. 

Patient UR_B carries the expressed variant at near half of all reads (42%) indicating a heterozygous 

SNP assuming approximately equal expression from each allele. Both forward (pink) and reverse 

(blue) strand reads show presence of the SNP. Corresponding HOXB13 exon 1 aminoacid position 

(p.G84) as well as NGS-MiPS HOXB13 target amplicon position are shown (bottom). 

 

As mentioned above, NGS-MiPS also targets expressed somatic driver mutations in the 

hotspot-rich MATH-domain region of the E3 ubiquitin ligase SPOP, the most highly recurrent 

mutated gene in PCa (frequency = 11%)[39]. Although SPOP mutational status was not 

independently known for any patients in this cohort, NGS-MiPS was also able to successfully 

detect two SPOP hotspot somatic mutations, p.F102C and p.F125I in two different PCa patients’ 

urine samples (UR_C and UR_D, Figures 26 and 27, respectively). These mutations exhibited 

low VAFs (1.62% and 0.42%, respectively), consistent with the expected low overall fraction of 

tumor derived SPOP RNA in the urine due to high SPOP expression of in benign prostate and 

urothelium[179] (Figure 28), However these were high-confidence mutational calls as their 

VAFs were well above the low background variant rates for those positions (tables in bottom of 

Figures 26 and 27). Negligible TMPRSS2-ERG sequencing reads were present in these samples, 

consistent with mutual exclusivity between SPOP mutations and ETS gene fusions[39, 44]. 

Given these somatic mutations’ low urine VAF, we are confirming these mutations in 

sequencing library, urine RNA and DNA with Sanger sequencing by employing a method that 

uses wild-type allele PCR suppression strategy using 3’dideoxy-modified primers while allowing 

extension of the mutant 3’unmodified primer (QuanTAS-PCR [180]). 
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Figure 26. Detection of an SPOP F102C prostate cancer hotspot somatic mutation by NGS-

MiPS. Figure shows detection by NGS-MiPS of an expressed SPOP hotspot somatic mutation in a 
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patient urine sample. RNA sequencing read pile-ups from Integrated Genome Viewer (IGV) are 

shown for two samples (UR_C, mutant; UR_D, wild type, for SPOP F102C). Header for each sample 

(gray bars) shows a summary of that position over the entire read set covering it. Mutant and wild 

type read sections are shown for patient UR_C. Patient UR_C carries the expressed mutation at 

1.62% variant allele frequency indicating a somatic mutation. Both forward (pink) and reverse (blue) 

strand reads show presence of the mutation. Corresponding SPOP exon 5 aminoacid position 

(p.F102) as well as NGS-MiPS SPOP target amplicon position are shown below IGV image. Table in 

bottom, shows VAFs at that base position for variants of each nucleotide for sample UR_C as well as 

background variant read distribution as mean, median and range over 10 randomly selected urine 

samples. SPOP p.F102C mutation VAF >> background VAF. 
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Figure 27. Detection of an SPOP p.F125I prostate cancer hotspot somatic mutation by NGS-

MiPS. Figure shows detection by NGS-MiPS of an expressed SPOP hotspot somatic mutation in a 

patient urine sample. RNA sequencing read pile-ups from Integrated Genome Viewer (IGV) are 

shown for two samples (UR_D, mutant; UR_E, wild type, for SPOP p.F125I). Header for each 

sample (gray bars) shows a summary of that position over the entire read set covering it. Mutant and 
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wild type read sections are shown for patient UR_D. Patient UR_D carries the expressed mutation at 

0.42% variant allele frequency indicating a somatic mutation. Both forward (pink) and reverse (blue) 

strand reads show presence of the mutation. Corresponding SPOP exon 5 aminoacid position 

(p.F125) as well as NGS-MiPS SPOP target amplicon position are shown below IGV image. Table in 

bottom, shows VAFs at that base position for variants of each nucleotide for sample UR_C as well as 

background variant read distribution as mean, median and range over 10 randomly selected urine 

samples. SPOP p.F125I mutation VAF >> background VAF. 

 

 

                                       
 

Figure 28. SPOP expression in cancer and normal tissues of the urinary tract. Boxplots of SPOP 

expression levels in the cancer and normal tissues presumed to be the major contributors to the 

urinary tract. Boxes represent interquartile range with median value and are plotted in transcripts per 

million (TPM). Data were obtained using the MiPanda tool (mipanda.org). Higher expression levels 

in normal tissues compared to cancer are observed for bladder and prostate. 
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Taken together, these data support NGS-MiPS’ ability to detect expressed PCa 

predisposing germline variants and somatic mutations in urine, a novel approach in the PCa 

urinary biomarker field. Larger training cohorts can determine whether these genomic alterations 

as well as other rarer non-TMPRSS2-ERG PCa gene fusions can be combined with the 

biomarkers selected earlier in our preliminary model into improved models for aggressive PCa 

early detection with high specificity and sensitivity.  

 

3.5 Discussion 

 

3.5.1 Overall review of findings 

We demonstrated the potential utility of our whole-urine RNA NGS assay, NGS-MiPS, 

in the non-invasive detection of high grade PCa. NGS-MiPS was highly concordant with the 

TMA-based clinical-grade MiPS assay for the two MiPS transcripts. Furthermore, NGS-MiPS 

comprises a broad additional target set of 84 total transcripts that upon training in an extreme 

design patient cohort yielded a 15-transcript model that outperformed current biomarkers/models 

in predicting tissue pathology results. Additionally, NGS-MiPS offers novel aspects including 

detection of an expressed germline PCa risk SNP (HOXB13 p.G84E) and expressed somatic PCa 

driver mutations in SPOP. These data suggest continued pre-clinical and clinical development of 

our assay to guide initial PCa biopsy decisions as well as potential benefit in other settings such 

as patients with negative MRI findings or negative biopsies, those on active surveillance, 

identification of patients/families with potential inherited risk alleles, tumors with targetable or 

risk-stratifying somatic alterations etc. 
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Our preliminary 15-transcript urine model was trained to predict tissue pathology results 

in a 73-patient cohort representing the ends of disease spectrum (Extreme Design Cohort). As 

discussed earlier, urine following a thorough DRE is expected to contain information from all 

regions of the prostate as opposed to the more localized approach of tissue core biopsies. This 

may overcome issues of molecular and histological intratumoral heterogeneity and multi-focality 

that pathological tissue evaluation may under-sample or entirely miss. Despite using tissue 

biopsy pathology results as the training gold standard, our 15-transcript model had a higher AUC 

(0.82) than both serum PSA (0.69) and the high-grade clinical MiPS (0.69) models (using NGS-

assessed expression levels) in predicting pathology results in the 36-patient held-out validation 

set. We also allowed for retraining the MiPS model in our Extreme Design Cohort using its 

variables in order to eliminate any cohort-specific effects in the comparison. The retrained MiPS 

model, although having higher AUC (0.74) than MiPS, still underperformed our 15-transcript 

model. This supports potential improved utility in using biomarkers beyond PCA3 and 

TMPRSS2-ERG, (as well as fusion splicing isoforms beyond TMPRSS2-ERG.T1E4), in detecting 

the presence of aggressive, high-grade PCa from urine. Furthermore, we used our Extreme 

Design Cohort to retrain models using NGS-MiPS-measured expression of transcripts that are 

part of two clinically available urine PCa tests, SelectMDx (HOXC6+DLX1) and ExoDx Prostate 

IntelliScore (PCA3+ERG). Although we used retrained models, and in the case of ExoDx, used 

our whole-urine RNA data as opposed to its intended substrate, urine exosomal RNA, our 15-

transcript model’s AUC (0.82) was higher than either of these retrained models (0.50 and 0.66, 

respectively), suggesting that additional biomarkers can improve upon those included in current 

clinically-used tests.  

Given NGS-MiPS’ encouraging results in our Extreme Design Cohort we also explored 
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whether NGS-MiPS could detect any discriminatory signal in active surveillance patients, who 

usually fall in GG1 (and in some cases, benign or less aggressive end of GG2) region of the 

spectrum. These patients follow a strategy of regular (usually bi-yearly) prostate biopsies and 

delayed treatment until biopsy results show evidence that their disease has advanced into a 

higher grade. There is an urgent need for non-invasive biomarkers that can identify patients at 

high risk of upgrading in order to avoid delaying the required treatment, while confirming stable 

indolent disease in other patients in order to alleviate patient anxiety. Importantly, although 

trained to discern the more extreme ends of the PCa spectrum, our 15-transcript model, had 

higher AUC (0.66) than serum PSA (0.53) and the existing high-grade (0.56) and retrained (0.43) 

MiPS models in this patient population. Notably, our model’s entire AUC 95%CI range was at 

least 0.50, supporting promise of our approach in the active surveillance setting.  

Our assay design strategy centered on casting a wide net for candidate biomarkers which 

included validated transcripts currently in clinical use as well as many from tissue clinical assays 

and non-clinical studies. We expanded our target set to assay most reported splice isoforms of 

the TMPRSS2-ERG gene fusion, the most highly recurrent PCa alteration (as opposed to only 

assessing for the most commonly expressed isoform, T1E4, as in MiPS), a novel approach in the 

field. We also assay several isoforms each of many non-TMPRSS2-ERG fusions involving other 

androgen driven genes (e.g. SLC45A3) and/or other Ets transcription factor family members 

(e.g. ETV1, -4, -5)[67] as well as non-Ets gene fusions involving oncogenic Raf family 

members. Being less recurrent, these latter biomarkers will require larger training patient cohorts 

in order to show their potential utility. In addition, we included several recently reported 

aggressive PCa-associated lncRNAs (e.g. SChLAP1 and ARLNC1) in addition to the already 

clinically used PCA3. Lastly, in another innovative approach, we targeted and successfully 
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detected at the RNA level, expressed germline PCa-predisposing genomic variants (HOXB13 

p.G84E) and cancer driving hotspot somatic mutations (e.g. SPOP p.F102C and p.F125I). These 

genomic biomarkers may also improve upon the potential utility of our assay in larger training 

cohorts. Importantly, all NGS-MiPS target primers/amplicons were previously qualified in tissue 

in a large study of FFPE tissue RNA samples (n=193) as part of our tissue-based PCa RNA 

multiplexed NGS assay[158]. 

 

3.5.2 Urine-based prostate cancer assay design considerations 

 

In order to have the most accurate signal and avoid confounding information from non-

prostatic GU or other tissue types, we prioritized transcripts expressed in prostate, PCa and/or 

aggressive PCa for our final assay design. This included the transcripts described above, but 

excluded potentially useful targets such as cell proliferation markers for the purposes of this 

assay. Their use in urinary PCa detection warrants further investigation. Given the relatively 

large number of post filtering targets (n=84), we used a targeted RNA NGS approach based on 

the Ion Torrent Ampliseq platform leveraging our expertise in the field. The only literature 

example of a many-biomarker PCa urine assay to our knowledge was the recently reported assay 

by Connell et al.[181], an exosomal RNA test using the NanoString platform. That report’s 

targets modeled to stratify PCa outcome risk, only overlapped with NGS-MiPS in a subset of the 

current clinically used biomarkers (e.g. HOXC6, TMPRSS2-ERG.T1E4, ERG, PCA3). 

Furthermore, its performance compared to current assays (or their derived versions) remains to 

be shown.  

Our use of whole-urine collected as “first-catch” immediately following a DRE is 
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supported in findings by Hendriks et al.[173] as being superior to urinary sediments or exosomes 

for detection of prostate/PCa-derived transcripts. Furthermore, whole-urine has been the method 

of choice in the FDA approved PROGENSA PCA3 assay and the SelectMDx and MiPS 

laboratory-developed tests (LDT). DRE’s effect of enriching for prostate contents in urine was 

confirmed by our comparison of matched pre- and post-DRE samples where we saw a somewhat 

diminished ability to accurately detect some less strongly expressed transcripts in normal non-

DRE urine. Low-expression transcripts include important clinically validated biomarkers such as 

TMPRSS2-ERG, DLX1, HOXC6 etc. and the difficulty of assessing them in pre-DRE urine may 

be overcome by increasing sequencing depth and/or future NGS-MiPS assay iterations that 

exclude unnecessary highly-expressed transcripts in order to allow more sequencing depth for 

more scantly expressed ones.   

We extensively tested and successfully showed reproducibility of our assay using 

identical replicates as well as robustness to varying optimal and suboptimal experimental 

conditions. The vast majority of urine samples passed quality control filters for a current 

informative sample rate of 98%. Importantly, NGS-MiPS accurately measured expression levels 

as compared to orthogonal methods such as RT-qPCR and the TMA-based predecessor LDT, 

MiPS, which has been implemented in our CLIA certified, CAP accredited, NY-State-approved 

clinical laboratory. These data support high overall accuracy, as previously shown using the 

same amplicons and approach in FFPE tissue samples[158].  

 

3.5.3 Conclusions 

 

Serum PSA is a widely used biomarker for PCa early detection, however, its poor 
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specificity especially in patients near the clinically used cut off of 4.0ng/mL has led to many 

unnecessary biopsies and overdetection of low-grade, likely indolent PCa. In addition to other 

serum based tests incorporating other PSA isoforms or closely related proteins, several urine-

based RNA tests have been introduced clinically that are able to improve on serum PSA in 

detecting aggressive PCa. Importantly, all of these tests assess at most two target genes. Our data 

support our multi-biomarker urine RNA NGS approach, as exemplified in our preliminary 15-

transcript model, as showing the potential to improve upon these current tests supporting the 

continued development of this assay for guiding initial biopsy decision-making and other settings 

for highly accurate early detection of aggressive prostate cancer. 
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CHAPTER IV 

 

Discussion 
 

 

4.1 Current clinical landscape and need in the sex hormone-driven cancer 

biomarker field  

 

 

As mentioned in Chapter I, sex hormone-driven molecular signaling is a central theme in 

the biology of most breast and prostate cancers. Furthermore, additional molecular alterations are 

involved in the oncogenesis and progression of these tumors from localized all the way to lethal 

metastatic disease. These genomic and transcriptomic alterations themselves, and the molecular 

mechanisms they engender, have served as biomarkers for detection, prognostication and 

prediction of rational pharmacological targeting of disease in these and other cancers. Tests such 

as breast cancer OncotypeDx and MammaPrint are tissue expression-level assays measuring 

RNA for 21 and 70 genes, respectively, and have been used successfully to assess primary breast 

cancer aggressiveness and prognosticate risk of recurrence as well as predict benefit from 

chemotherapy[182]. Likewise, OncotypeDx (GPS), GenomeDx (Decipher) and Prolaris (CCP) 

assays are similar tissue expression-based tests assessing similar numbers of genes and have 

prognostic value in prostate cancer[183]. In advanced prostate cancer, detection of AR-V7 

mRNA, an overactive AR splice variant lacking a ligand binding domain, is predictive of lack of 

benefit even from next generation androgen deprivation therapies (enzalutamide and 

abiraterone), but of benefit from chemotherapy[184].  
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With the advent of the precision oncology era, several oncogenic molecular alterations 

have entered the clinic as biomarkers predictive of response for various actionable cancer-driving 

defects in breast cancer. These include the use of trastuzumab (Herceptin) and its variants in 

tumors overexpressing Her-2; the CDK4/6 inhibitor palbociclib (Ibrance) to target the cell cycle, 

(although alterations in the involved genes do not seem to confer additional benefit compared to 

non-altered tumors); the recently-approved inhibitor of mutant PI3 kinase (PIK3CA gene) 

alpelisib (Piqray); and the PARP inhibitors such as olaparib (Lynparza) in patients with germline 

BRCA gene mutations[185-188]. Furthermore, non-invasive liquid biopsy approaches have 

become common in the clinic including CTC detection in the blood of advanced breast (and 

prostate) cancer patients, which has been shown to be a prognostic biomarker of progression-free 

and overall survival[73]. However, CTCs’ use beyond cell counts, phenotypic marker staining 

and some limited genetics, has been not fully explored, yet it remains clinically promising. 

Likewise, in prostate cancer, non-invasive detection approaches in urine have been coupled with 

the validation of several transcriptomic biomarkers. These include oncogenic Ets transcription 

factor ERG (alone or fused to androgen-driven gene TMPRSS2), the lncRNA PCA3 and a few 

others[189]. In advanced disease, PARP inhibitors have also shown success in prostate cancer 

patients with mutations in BRCA and other DNA damage repair (DDR) genes[190]. Although 

AR amplifications and mutations are genomic alterations conferring resistance to traditional 

androgen deprivation therapy, they are not used as clinical biomarkers since the majority of 

patients that have failed ADT will respond to next generation androgen inhibitors enzalutamide 

(Xtandi) and abiraterone (Zytiga), and are thus treated with them.  

The clinical success of the molecular biomarkers mentioned above in sex hormone-driven 

cancer supports continued development in the field. Thus, as the breast cancer precision 
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medicine approaches mentioned above, and others that are sure to follow in the future, become 

important, there will be a need for continued monitoring of the tumor molecular evolution and 

mechanisms of treatment resistance in real-time. However, tissue biopsies at multiple metastatic 

sites and multiple time points are likely to continue to remain impractical due to a host of 

obvious reasons. Another drawback to tissue biopsy sequencing is the limited tumor region 

sampled by the biopsy needle, which can provide an incomplete picture of tumor 

heterogeneity[191].  

Advances that attempt to address these shortcomings have been made in the detection of 

circulatory biomarkers shed by the tumor, one of which being tumor-derived circulating cell-free 

(cf) DNA and the cancer-driving alterations it harbors. This strategy has shown considerable 

recent success in the clinic. Its use, however, is somewhat limited by the need for high sensitivity 

in detecting these minute amounts of circulating tumor DNA diluted in large fractions of cf-DNA 

originating from normal healthy cells elsewhere in the body. The small amount of DNA can limit 

the comprehensiveness of profiling to the assessment of genomic alterations only. (This may not 

even include deleterious mutations in large tumor suppressors since they require thorough 

sequencing of their entire coding regions). And obviously, detection of RNA or phenotypic 

changes (as in cell staining techniques) are not possible in cf-DNA profiling. As an example, 

PD-L1 expression remains the main and currently approved predictive biomarker for checkpoint 

blockade-based immunotherapy (in several malignancies, including triple-negative breast 

cancer[192]). However, its assessment requires direct detection of PD-L1 protein on the cell 

surface which is possible only by tissue immunohistochemistry (IHC, the current clinically 

approved checkpoint inhibitor companion diagnostic) or staining in single cells. Presumably, 

quantitation of PD-L1 mRNA in tissue or cells would be an equivalent approach to this. And in 
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general, use of any other antibody based therapies, including antibody-drug conjugates (ADCs) 

will require assessment of expression of these target proteins on cancer cells, yet any of these 

strategies are obviously not possible in cf-DNA. In addition, like bulk tissue biopsies, tumor cf-

DNA represents the sum total of tumor genomic events thus precluding the full elucidation of 

relationships between subclonal tumor cell populations and the effect that this heterogeneity may 

have on clinical disease progression at the single cell resolution.  

Looking for precision medicine biomarkers in individual CTCs appears to fill this clinical 

need by representing a “best of both worlds” scenario. Specifically, CTC profiling allows non-

invasive tracking of the tumor molecular biomarker landscape at regular time points (not 

possible in tissue biopsies) This is coupled with robust sequencing of tumor genome (tumor 

content over normal cells = 100%, not usually the case in tissue and drastically less so in cf-

DNA) and the ability to analyze individual cells and thus reveal potential subclonal tumor cell 

populations (severely impaired in tissue biopsies or cf-DNA) that may harbor varying breast 

cancer molecular resistance mechanisms or targetable vulnerabilities. Additionally, as mentioned 

above, phenotypic analysis is amenable in CTCs, as in tissue IHC, by staining with 

fluorescently-labeled antibodies, as is transcriptomic analysis by single cell RNA sequencing. 

This can be of interest in breast cancer when trying to assess PD-L1 levels for immuno-oncology 

in the triple-negative subtype etc. Our proof of concept approach, described in Chapter II, of 

applying comprehensive genomic profiling in metastatic breast cancer patient individual (and 

pooled) CTCs, although currently limited to DNA, is an attempt to begin to fill just such a need 

in the clinic.  

There is a great need for biomarkers with clinical utility in prostate cancer as well, 

however, at the opposite end of disease spectrum. Thus, instead of metastatic disease, we focused 



134  

our prostate cancer work in the early detection setting, as described in Chapter III. As mentioned, 

given the variable clinical course of prostate cancer and complications/cost related to biopsies, 

there is currently a great need for biomarkers that have high specificity in addition to sensitivity, 

and that can be detected non-invasively to allow for low-complication/cost detection of 

aggressive prostate cancer early and tracking its progression temporally. As mentioned, serum 

PSA and the few current urine biomarkers in clinical use have limitations especially in their 

specificity. Furthermore, the combination of a large number of biomarkers offered by the now 

fully elucidated prostate cancer molecular landscape, modeled via artificial intelligence 

approaches such as machine learning into algorithms that can improve early detection, is only 

beginning to be explored pre-clinically[181]. Moreover, there is a great need in the active 

surveillance prostate cancer setting for biomarkers that can predict cancers likely to be upgraded 

and thus become eligible for treatment by surgery or radiation. Our approach, in this setting, 

consisted in combining a large number of such candidate RNA biomarkers into a urine based 

NGS assay. It showed very encouraging results in the ability to predict presence of aggressive 

prostate cancer as opposed to low grade (likely indolent) one or complete absence of cancer 

using tissue pathology results as known truth standard. Furthermore, we detected a 

discriminating signal of our assay in the active surveillance setting, a challenging patient 

population which, as explained, is in great need of good biomarkers. 

 

4.2 Metastatic breast cancer CTC comprehensive genomic profiling is feasible and 

complements and improves that of tissue.    

 

 

As mentioned in Chapter II earlier, the degree to which the tumor genomic landscape 
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obtained from CTC sequencing represents that of bulk tissue biopsies/resected tumor material, 

has not been thoroughly examined. This question is of considerable translational importance as it 

addresses whether CTC profiling can serve as a proxy for tissue biopsies which are not always 

available/feasible especially when monitoring patient treatment response or even at the initial 

metastatic biopsy setting. To answer this question, we performed targeted DNA sequencing in 

multiple individual CTCs and CTC pools composed of several cells from each of 12 patients 

which had concurrent whole-exome sequencing of their metastatic tissue biopsies. We found a 

concordance of 85% (defined as fraction of CTC samples having at least one –but usually 

multiple– alterations found in the matched tissue sample). There were both kinds of private 

genomic events, those found only in tissue and those limited to CTCs only. This supports both 

approaches as complementary. Thus one can imagine a clinical scenario where advanced breast 

cancer patients undergo broad, comprehensive genomic profiling on their available 

biopsied/resected tissue. This can then be followed by continuous monitoring of their disease 

progression and molecular evolution in response to treatment by CTC profiling. The latter can 

take the shape of tracking a targeted set of that individual patient’s tumor genomic alteration 

repertoire found in tissue (potentially complemented by cf-DNA, as needed) or more 

comprehensive assessment of CTC genomic landscape as in our study. This latter approach can 

also be complemented with cf-DNA profiling, especially in patients for whom CTCs can not be 

collected in adequate numbers.  

Other important contributions of our work include findings of actionable genomic 

alterations in CTCs including in some of the genes mentioned earlier such as PIK3CA hotspot 

mutations now targetable by an FDA-approved drug, alpelisib. Another curious finding was the 

presence of a minority of circulating epithelial cells that do not appear to harbor any genomic 
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alterations, thus presumably having non-tumor origin. These may come from normal epithelial 

tissues anywhere in the body or may be enriched at the blood collection site due to needle 

damage of normal epithelial tissues of the skin and deeper glandular structures. Additional 

important findings from this project include the detection of multiple molecular resistance 

mechanisms to endocrine therapy within one patient’s CTC repertoire as exemplified by multiple 

ESR1 hotspot mutations. These included a functional mutation not found in tissue and previously 

unreported in literature. Another finding was the detection of emergent genomic alterations upon 

disease progression on therapy in patient CTCs over time which highlights the ability of 

temporal tracking of disease evolution non-invasively.  

An interesting finding in one patient was detection of CTCs containing ESR1 mutant cells 

that also harbored an ESR1 one-copy loss (presumably a deletion of the wild type copy resulting 

in loss of heterozygosity, LOH). This LOH event is expected to generate all-mutant ER dimers 

hypothesized to be stronger transcriptional activators compared to mutant/wild type or wild 

type/wild type dimers (Figure 29). Such LOH events in mutated oncogenes have been shown to 

recur in cancers of various kinds[193]. Both of these genomic ESR1 alterations (mutation and 

copy-loss) constituting the LOH event were present in bulk tissue sequencing although the one-

copy loss was less apparent due to dilution of tumor signal from intratumoral normal cells. Due 

to these factors, LOH in tissue sequencing could only be presumed. This event was quite clear in 

individual CTCs on the other hand since the tumor cell fraction is essentially 100% and mono- 

and bi-allelic mutations will appear at discrete mutant read fractions of approximately 0.5 and 

1.0, respectively. Intriguingly, another, more minor CTC subpopulation was present in that 

patient, which harbored the ESR1 mutation (at heterogeneous read fraction) but not the wild type 

copy loss. This may represent a cell in that patient’s cancer genomic evolution which may 
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descend from a time prior to the LOH event happened and subsequently became the dominant 

clone under the selective pressure imposed by endocrine therapy. This subpopulation was 

undetectable in bulk tissue sequencing for reasons explained so far and would be much less so by 

cf-DNA profiling as well. 

 

 

Figure 29. Potential effect of ESR1 activating mutations in the context of LOH on ER-driven 

transcription. ER dimers containing all mutant ER (C) may be stronger transcriptional activators 

than those composed of wild type/mutant (B) or all wild type (A) dimers. Tumors without ESR1 

mutations will have only type A dimers, those with heterozygous mutation will have a distribution of 

all three types (likely predominated by type B dimers) and those with LOH mutations will only have 

type C ER dimers presumably showing elevated resistance to endocrine therapy. (ERα homodimer 

ribbon crystal structure modified from Tanenbaum et al.,[194]) 

 

 

Limitations of our approach center around the fact that the number of CTCs collected is 

variable among patients, with a subset being CTC-negative despite having abundant metastatic 

burden on imaging. Furthermore, the number of individual CTCs that can be feasibly sequenced 

for a given patient, given that they are even available, is finite. This may lead to the inability to 

detect highly subclonal alterations present only in a small percentage of cells. This can perhaps 
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be overcome by high depth tissue sequencing or ultra-sensitive ddPCR on cf-DNA. However, a 

highly subclonal alteration is not likely to be the main driver of disease burden, at least at that 

point in time. In the event that this subpopulation becomes a driver of therapy resistance and a 

dominant subclone, its representation in the CTC repertoire will likely increase and its detection 

will become possible.  

Thus, the various aspects of our CTC study listed above underscore the potential of CTC 

genomic analysis to non-invasively unravel cancer’s complex molecular makeup in a 

personalized fashion for individual patient precision medicine approaches in breast and likely 

other cancers as well.  

 

4.3 Our prostate cancer urine detection assay has the potential to outperform 

current clinically approved assays    

 

 

As mentioned in Chapter III, the results of our prostate cancer urine RNA next generation 

sequencing assay (NGS-MiPS) support its continued development toward a test with potential 

clinical utility. Thus in this highly translational project with potential for clinical implementation 

we demonstrated high analytical validity using an NGS approach which was consistent with 

clinically validated methods of expression-level measurement such as transcription mediated 

amplification and RT-qPCR. We then used machine learning to select a subset of our 84 total 

candidate biomarkers previously validated in prostate cancer tissue, which was trained into a 

final 15-transcript model that outperformed currently used models/biomarkers in predicting 

presence of prostate cancer on tissue pathology. Furthermore, it showed potential signal in the 

active surveillance setting which, as aforementioned, is in need of clinically useful biomarkers. 
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Lastly, we demonstrated an entirely novel aspect of our assay, specifically in the detection of 

several prostate cancer somatic hotspot mutations and a germline risk SNP.  

A few aspects contribute to this assay’s encouraging results and its potential for clinical 

development. Firstly, our assay is non-invasive (compared to prostate biopsies and even 

circulatory biomarkers such as CTCs which require a blood draw). The required digital rectal 

exam (DRE) prior to urine collection for NGS-MiPS is usually performed clinically regardless of 

whether urine is to be collected or not. Thus our assay does not generally add any invasive 

procedures on the patient. Furthermore, we showed encouraging results of our assay’s 

performance in pre-DRE urine, thus opening up the potential to disrupt prostate cancer detection 

with a direct-to-patient approach much like direct-to-consumer genomic ancestry tests. 

Additionally, the small amount of RNA in urine is not likely to be a limitation since we showed 

very good NGS-MiPS performance in a high-throughput approach that uses several fold less 

RNA. Another advantage lies in our use of NGS, which allows for detection of expressed 

somatic mutations/germline SNPs more readily compared to the current non-NGS approaches. 

Furthermore, NGS allows for assessment of a large number of transcripts simultaneously which 

enabled us to include multiple splice isoforms of most observed prostate cancer gene fusions, m- 

and lncRNAs, transcriptional signatures etc.. Thus, making use of a broad set of candidate 

biomarkers, coupled with the power of machine learning, is likely to have contributed to our 

model outperforming clinically used urine models/biomarkers which are currently limited to a 

few biomarkers at a time. 

Limitations of this work include the relatively low tumor content (fraction of tumor-

derived as opposed to normal tissue material) in urine. While this is obviously not a drawback in 

the case of our germline SNP detection, which will be expressed by all of that patient’s cells, it 
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can be a disadvantage for the rest of the biomarkers which are expression-level or somatic 

mutation based. We can deduce the approximate tumor content in our case of somatic SPOP 

mutation (Chapter III, Figure 26) detected at 1.6% variant allele frequency. Assuming a 

heterozygous mutation as well as considering the fact that normal tissues of the urinary tract 

express SPOP at a few fold higher levels than cancer cells (Figure 28), we can estimate a tumor 

content of 5-10% in that patient. This is perhaps an acceptable trade-off considering the non-

invasiveness of urine testing compared to tissue biopsies which themselves will still not have a 

perfect tumor content even with any tumor content enrichment methods. (We are exploring the 

possibility of isolating and performing DNA/RNA profiling of single tumor cells purified form 

urine, a step that increases tumor content to 100%, as explained above for CTCs). Massaging the 

prostate by performing a DRE prior to urine collection contributes to enriched prostate contents 

in urine which may mitigate some of the issues with urine tumor content. Furthermore, the 

majority of our biomarkers are prostate cancer (e.g. Ets fusions) or even aggressive prostate 

cancer specific (e.g. SChLAP1) and thus are likely unaffected by any diluting signal from normal 

cells. Another limitation is our training/validation patient cohort size and thus our 15-transcript 

model can be considered preliminary and will likely require retraining in larger cohorts in order 

to reveal its full potential. Despite any limitations, our overall approach and findings support 

continued development of our assay as a tool with potential clinical utility in aiding first biopsy 

decision-making and other prostate cancer clinical settings. 

 

4.4 Future directions of our breast cancer CTC and prostate cancer urine 

biomarker work   
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Further work remains to be done, primarily towards clinical implementation of our breast 

and prostate cancer work. Having shown proof of concept data supporting analytical validity and 

potential utility of genomic profiling of breast CTCs, we are directing our attention to 

applications of our method to correlative exploratory studies in patients participating in various 

clinical trials assessing novel therapies. E.g. our CTC genomic profiling in patients on a Phase I 

study of a new oral SERD[23, 24] shows signs of diminution of ESR1 mutant cells in circulation 

post-treatment (data not shown). Analysis of additional pre- and post-treatment CTCs from these 

patients will allow accurate determination of the drug’s effect on ESR1 mutant CTCs with 

statistical certainty. Furthermore, given intra-patient heterogeneity of ESR1 resistance mutations, 

a proposed future clinical trial could test whether this is clinically important by determining 

whether presence of heterogeneity of ESR1 molecular resistance mechanisms predicts response 

to endocrine therapy (or lack thereof) compared to non-heterogeneous cases. A trial outcome to 

measure for this might be duration of endocrine therapy until time of disease progression.  

In another exciting recent application of our model, we have detected a TP53 p.Y205D 

hotspot mutation in CTCs purified from cerebrospinal fluid (CSF) of a breast cancer patient with 

brain metastasis, a mutation which was also present in the primary tumor FFPE tissue biopsy 

sequenced clinically on the FoundationOne platform (data not shown). This pilot study shows 

proof-of-concept for presence and successful isolation and genomic profiling of brain metastasis 

cells in CSF. In contrast to blood CTCs, which may come from multiple metastases (if present), 

CSF CTCs are likely derived from the brain metastasis only, thus potentially allowing tracking 

tumor evolution of brain vs. other metastases separately. Further work will be needed to fully 

explore this aspect by more comprehensively comparing tissue biopsy genomics vs. CSF vs. 
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blood CTCs and determining the degree of their complementarity, discordance and exploring 

potential clinical application for patients with brain metastases. 

Other liquid biopsy strategies with future potential for the purification of CTCs, in 

addition to blood and CSF, include urine for cancers of the urinary tract (kidney, bladder, 

prostate, penis), saliva for salivary gland and head and neck cancers, fecal matter for colorectal 

cancer etc. Another exciting potential application to explore is detection of tumor mutation 

burden in individual CTCs, a biomarker shown to predict response to checkpoint inhibitor 

immunotherapy[195]. This application can be of particular importance in triple-negative breast 

cancer (ER/PR-, Her2-) as well as other cancer types such as non-small cell lung cancer and 

melanoma where immunotherapy has become mainstay[196]. This can be coupled with real-time 

monitoring of CTCs while on immunotherapy for genomic alterations known to confer 

checkpoint blockade resistance such as JAK2 mutations, loss of β2-macroglobulin (B2M) 

etc.[197]. 

As scarcity of CTCs in relatively small blood samples, especially in a subset of patients, 

remains a limitation of CTC clinical implementation, apheresis-based strategies are emerging in 

order to overcome this problem[198-200]. This centers on the use of external nanofluidic devices 

connected to a surface vein which allows blood flow through the device for CTC capture by 

various affinity methods before blood is redirected back to circulation. This increases the amount 

of blood that can be sampled to 50 – 100 ml or more (depending on duration of collection) 

compared to static blood draws of several ml each[199]. This has resulted in an increase in the 

number of cells captured per patient and can thus greatly extend the number of CTC+ patients for 

which circulating precision therapy approaches described in our method will be possible. Future 

work in this nascent and exciting area includes confirming that our genomic profiling is 
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compatible with CTCs purified by this approach, device improvement, portability outside of the 

clinic to allow for longer collection times in order to screen greater volumes of blood etc. 

Potential limitations to clinical implementation of our CTC work include the cost of 

genomically profiling multiple individual CTCs per patient. This is important in light of the fact 

that detailed assessment of tumor heterogeneity, despite providing a fascinating window for 

peering into cancer evolutionary development, has yet to have a real impact in the clinic. In fact, 

current data supports more robust targeted therapy responses when acting on clonal (truncal) 

mutations as opposed to subclonal (branch) ones. Some data also suggests that in some cases of 

excessive tumor heterogeneity, especially after resistance to targeted therapy, a more generalized 

approach such as cf-DNA may be better than detailed assessment of individual subclones[201], 

which can be described as a situation of “missing the forest for the trees”. In such cases, CTC 

analysis can be easily converted to a bulk sequencing approach similar to tissue or cf-DNA by 

pooling multiple individual CTCs from that patient into one sample. Although subclonal 

alterations present only in one or a minority of cells will be somewhat diluted by other fellow 

pool cells that don’t harbor them, the high tumor content in a CTC pool (100%) is an advantage 

compared to tissue or cf-DNA profiling which can suffer from low tumor content.  We 

performed just such an analysis on a number of pooled patient CTC samples as a proof of 

concept study (Figure 4) showing similar distribution of alterations in pools as in bulk tissue 

sequencing. The issue of which approach is optimal (individual or pooled CTCs) could be 

addressed by a clinical trial whereby ESR1 resistance mutations in a patient are tracked by both 

methods in order to compare how well each approach provides a thorough assessment of such 

heterogeneity.  

Given the existence of a few different approaches for tumor molecular profiling (tissue 
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biopsy, cf-DNA, CTCs), each with its advantages and disadvantages explained above, clinical 

trials will be required that can tease out the most optimal strategy, or combination of strategies, 

that provides the best precision oncology outcomes at the lowest cost and invasiveness on the 

patient’s body. Low-pass (depth) cf-DNA sequencing has been proposed as an initial low-cost 

screening method to first determine tumor content in a patient’s circulation as a molecular triage 

of sorts in order to determine follow up strategies (higher depth cf-DNA, CTCs etc.[114, 202]) 

Future clinical trials following this approach vs. current precision oncology strategy could 

determine its clinical utility or lack thereof. 

Future work for our urine prostate cancer detection assay should be centered on retraining 

and re-validating a model in larger patient cohorts composed of at least 200-300 patients each. 

Although our preliminary 15-transcript model showed an advantage compared to current 

clinically-used models/biomarkers, the fact that it was trained in a relatively small cohort (n=73 

patients) and validated in two small cohorts (the held out portion of the extreme design cohort, 

n=36 patients and the active surveillance cohort, n=45 patients) suggests that our model may not 

capture the full potential of our biomarker set. In fact, the difference in ROC AUCs between our 

training set (0.90) and validation set (0.82) suggests some degree of model overfitting to the 

specific samples in our training cohort. Furthermore, larger training cohorts can allow our model 

to take advantage of less recurrent biomarkers/alterations (such as rare gene fusions) that are 

targeted by our assay but are likely to be misrepresented in small cohorts. 

Another aspect of our assay that requires further development is streamlined detection of 

germline SNP and somatic mutations. Our NGS-MiPS mutation detection method currently rests 

on a rather manual approach. Due to relatively low expected variant read fractions for somatic 

mutations, bioinformatics strategies should center around an analysis pipeline for automated 
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mutant read detection compared to the pre-determined background variant rate noise for those 

positions. This should be coupled with statistical analysis in order to determine whether the 

purported mutation variant fraction is truly above background in a statistically significant 

manner. 

As previously discussed, our preliminary data in matched pre- post-DRE urine samples 

suggested good performance in pre-DRE urine also, especially for targets with high or 

intermediate expression levels. Potential pre-DRE NGS-MiPS optimization strategies should 

center around redesigning the assay to decrease the number of targets by removing unnecessary 

or redundant highly-expressed transcripts. This in order to allow more sequencing reads to go to 

more useful transcripts that are more scantly expressed. A similar effect can be accomplished by 

higher sequencing depth with the current assay, although this would result in cost increase. Other 

potential assay improvements to allow compatibility with pre-DRE urine could include pre-

amplification of the low levels of RNA, reverse transcription by gene-specific (as opposed to our 

current random) priming etc. In addition, looking for cancer biomarkers in various urine 

compartments such as pellet or exosomes as opposed to whole urine should be explored for pre- 

(and perhaps even for post-) DRE urine. (ExoDx Prostate Intelliscore, a clinical prostate cancer 

detection test, uses pre-DRE urine exosomal RNA[155]). Lastly, isolation and testing of our 

assay on RNA from individual intact urinary cells (after whole transcriptome amplification) is an 

exciting area that warrants further investigation. 

After improvements to our NGS-MiPS assay/model are addressed, its clinical 

implementation can be explored. This should be done by giving careful consideration to the 

proposed clinical time point(s) of intended use in the disease course of the prostate cancer 

patient, the current standard of care with respect to available biomarkers at that time point and 
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how introduction of our assay intends to change clinical decision-making. This includes whether 

our assay will be used as an Opt-In factor (supporting performing an intervention where the 

standard of care is not to), Opt-Out (supporting foregoing an intervention where the standard of 

care is to perform it) or Opt-Alt (supporting the decision to choose one standard of care 

intervention over others)[203]. As previously mentioned, one of the clinical junctures of our 

assay’s intended use is to help decision-making at the time of first biopsy for patients presenting 

with a serum PSA > the clinically used threshold of 4.0 ng/ml. Current standard of care (at least 

until recently), recommends that a prostate biopsy be performed, a decision that requires better 

biomarkers as explained earlier. In this scenario, NGS-MiPS would be an Opt-Out test (requiring 

high sensitivity) which would detect patients likely to have no cancer or very indolent one and 

would support foregoing the biopsy at that time. By that reasoning, it would also further 

reinforce the decision to proceed with a biopsy in those patients with PSA over the threshold 

where urine supports presence of aggressive disease. As multi-parametric magnetic resonance 

imaging (mpMRI) for suspected prostate cancer is becoming increasingly adopted before biopsy 

for men presenting with PSA over the threshold, our assay could likewise be an Opt-Out factor 

in the decision whether to preform MRI or not.  

Further down the prostate cancer clinical road, if biopsy results are positive, but only for 

low grade (likely indolent) cancer, leading to the patient being placed on active surveillance, 

current standard of care is to repeat biopsy yearly until evidence of upgrading is found. Our 

assay, could serve here as an Opt-In factor (requiring high specificity) to recommend more 

frequent repeat biopsies or treatment if urine shows evidence of aggressive disease. Our assay’s 

potential clinical utility in this scenario is supported by NGS-MiPS results in our active 

surveillance cohort (Figure 23). Likewise, for high PSA patients whose biopsy and mpMRI 
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show no evidence of cancer, the standard of care in such cases being to refrain form any 

interventions (other than periodical repeats of PSA testing), an NGS-MiPS result showing 

aggressive cancer signal could serve as an Opt-In factor supporting repeat biopsy (potentially 

with more random cores than the usual 12) until there is evidence of that aggressive cancer on 

pathology. This could be an important contribution of our assay since as explained earlier, 

massaging of the prostate and isolation of the global urine RNA allows NGS-MiPS to assay the 

entire prostate. This is in contrast to the random core biopsy approach that may miss small/MRI-

invisible cancer foci which could be a reason for the discrepant results between the biopsy and 

NGS-MiPS. Other potential clinical paths one could entertain for NGS-MiPS are cases of low 

PSA but presence of other factors that add suspicion of cancer. These include age, race, family 

history, abnormal DRE findings etc. In this case, where the standard of care is to conduct and 

MRI, our assay could be a factor supporting opting out of that path if urine shows no signs of 

(aggressive) cancer. In contrast, a direct-to-consumer approach of a potential pre-DRE version of 

our assay would position it as an assay that suggests opting into making a doctor’s appointment 

if there is some evidence of aggressive prostate cancer in their pre-DRE urine.  

Thus, thorough knowledge of the prostate cancer clinical work-up flow chart and current 

standard of care at each step allows for a value-based approach for implementation of our assay’s 

use in clinical decision-making in order to provide maximum clinical utility.    

 

4.5 Potential for inter-applicability of our precision medicine and biomarker 

approaches between hormone dependent cancers.   

 

Lessons learned through our breast cancer work have the potential to be applied to 



148  

prostate cancer and vice versa. Thus, our platform for CTC genomic analysis can be 

implemented in advanced prostate cancer where, similarly to breast, CTC enumeration has been 

shown to be a prognostic marker. In addition to blood CTC collection in metastatic disease, urine 

could also serve as a point of access for collecting prostate cancer cells. In fact, given the 

prostate’s anatomical relationship with the distal urinary tract, prostate cancer tumor cells in 

urine may be collected for the localized primary tumor thus moving up the detection timeframe 

to earlier disease stages. Our whole-urine detection platform does not differentiate between cell 

and cell-free RNA and employs a bulk sequencing approach. Isolation of individual prostate 

cancer cells in urine, coupled with our already-established CTC analysis platform, can open new 

opportunities for precision medicine approaches in this malignancy. By extension, isolation of 

individual (or bulk) cancer cells from breast secretions in women with breast cancer could enable 

detection, enumeration and phenotypic/genomic profiling on the localized primary tumor or 

localized recurrence. Likewise, our prostate cancer transcriptomic biomarker NGS approach 

could be applied to breast cancer by isolating RNA in bulk (cell and cell-free) from breast 

secretions as mentioned above. Additionally a similar breast cancer transcriptomic NGS assay 

can be applied to a collection of CellSearch-enriched or individually DEPArray-purified and then 

combined pure CTCs. Expressed recurrent breast cancer mutations could be targeted and 

detected in RNA in a similar fashion to our prostate cancer HOXB13 and SPOP mutations, thus 

enabling precision medicine in addition to cancer detection. 
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Appendix I 

 

Precision medicine / liquid biopsy approaches to eye lymphomas 

 

 

A.1.1 Ocular and orbital adnexal lymphomas 

 
Ocular and orbital adnexal lymphomas (OOALs) are non-Hodgkin’s lymphoid 

malignancies of the eye and surrounding extra-orbital tissues. When originating in the eye, they 

are the most common primary eye tumor in adults, accounting for up to 15% of eye tumors, and 

their incidence is on the rise[204, 205]. The vast majority of cases are of B cell origin and are 

subdivided into several subtypes (marginal zone (MZL), follicular (FL), diffuse large B cell 

lymphoma (DLBCL) etc.) mirroring systemic lymphomas[206, 207]. Although locally well-

controlled with radiation therapy (accompanied by some eye toxicity), OOAL distant metastatic 

disease, especially for the DLBCL subtype, can have poor prognosis and a 5-year survival rate 

of 30-70% depending on node involvement[208]. Genomic studies of systemic lymphomas have 

defined their molecular landscape[209, 210], however, it is unclear how well lymphomas of the 

eye and surroundings reflect the landscape of their systemic counterparts. Furthermore, 

precision oncology approaches that target tumor driver alterations and pathways are desperately 

needed to treat OOALs. To that end, we subjected FFPE lymphoma tissue DNA from a set of 38 

OOAL patients to targeted next generation sequencing (NGS) using a panel covering ~130 

genes altered in cancers including lymphoid malignancies. These data are presented in appendix 

A.2 below. We detected similarities as well as differences in the OOAL genomic landscapes 

compared to those reported for systemic lymphomas and observed potential actionable 
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alterations. Defining for the first time the landscape of genomic alterations driving eye 

lymphomas this work can serve as a foundation for precision medicine approaches to these 

malignancies. 

 

 

A.1.2 Intraocular (vitreoretinal) lymphomas 

 
Intraocular or vitreoretinal lymphomas (VRL) are defined as the presence of lymphoma 

cells in the vitreous/retinal space of the eye often presenting as floaters (floating particles in the 

visual field) that can impair clear vision[211]. They are commonly of B cell origin and in up to 

90% of the time are derived from a lymphoma primary to the brain (primary CNS lymphoma, 

PCNSL)[212]. In addition to radiotherapy, treatment strategies include surgical vitrectomy 

which consists in aspirating the fluid of the vitreous body containing tumor cells and replacing it 

with cell-free fluid in order to improve vision. The collected fluid (whether the original 

undiluted vitreous or the diluted subsequent washes) thus provides a liquid biopsy for the 

original PCNSL or primary VRL and cytology and flow cytometry is commonly performed 

clinically to stain for lymphoma markers in any cells present in the collected fluid. This method 

however can have limited sensitivity and specificity and may be confounded for uveitis, the 

inflammation of the uveal layer of the eye (choroid, iris and ciliary body). Molecular diagnostic 

methods that take advantage of the knowledge of the PCNSL genomic landscape are missing 

and the landscape of primary VRL is not well defined. In Appendix A.2 we present genomic 

profiling of vitreous fluid-derived DNA obtained from four VRL patients with confirmed 

PCNSL-derived VRL or suspected VRL without PCNSL or vitrous cytology/flow cytometry 

confirmation. We used a targeted DNA next generation sequencing (NGS) approach using a 

panel covering ~130 genes altered in cancers including lymphoid malignancies. We successfully 
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detected know lymphoma tumor driver alterations in all four cases such as MYD88 mutations 

(major and minor hotspots) and highly recurrent CDKN2A deletions. In one case of unconfirmed 

malignancy, our MYD88 mutation detection in vitreous fluid occurred 2 years ahead of clinical 

PCNSL diagnosis. This work is a proof-of-concept study for clinical implementation of 

molecular liquid biopsy approaches for highly specific and sensitive clinical diagnosis in 

vitreoretinal lymphomas.  
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Appendix II 

 

Comprehensive genomic profiling of orbital and ocular adnexal lymphomas 

identifies frequent alterations in MYD88 and chromatin modifiers: new 

routes to targeted therapies3 
 

 

A.2.1 Abstract 

Orbital and ocular adnexal lymphomas (OOALs) are increasing in incidence, and many 

forms have high relapse rates, unfavorable prognoses, and complications from localized 

treatment. Hence, there is an unmet need to identify potentially targetable alterations to improve 

therapeutic approaches. The objective of this study was to discover potential precision medicine 

opportunities in patients with OOALs. We performed retrospective targeted next generation 

sequencing (NGS) profiling of 38 OOAL formalin-fixed paraffin-embedded (FFPE) specimens 

obtained from a single academic ophthalmology clinic. Potentially actionable mutations and 

copy number alterations (CNAs) were prioritized based on gain- and loss-of function (GoF, LoF) 

analyses and catalogued approved and investigational therapies. We performed NGS on DNA 

from 38 FFPE OOALs (9 follicular lymphomas [FL], 21 marginal zone lymphomas [MZL] and 8 

high grade diffuse large B cell lymphomas [DLBCL]) using a panel targeting near-term 

clinically relevant genes. Of 36 informative samples, 56% harbored a prioritized alteration 

(median of 1, range 0-5 per sample). MYD88 was the most frequently altered gene in our cohort, 

                                                      
3 This study has previously appeared in Cani, A.K., et al. Modern Pathology, 2016. (168. Cani, A.K., et al., 

Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in 

MYD88 and chromatin modifiers: new routes to targeted therapies. Mod Pathol, 2016. 29(7): p. 685-97.) 
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with hot-spot GoF mutations identified in 28% of OOALs (17% and 71% of low [FL and MZL] 

and high grade OOALs, respectively). Prioritized alterations in epigenetic modulators were 

common and included GoF EZH2 mutations and LoF ARID1A mutations (both in 8% of 

OOALs). Single prioritized alterations were also identified in the histone methyltransferases 

KMT2B and KMT3B. Lastly, LoF mutations and CNAs in the tumor suppressors TP53, 

CDKN2A, PTEN, ATM and NF1, as well as GoF mutations in the oncogenes HRAS and NRAS 

were also observed. In conclusion, potentially actionable alterations are frequent in OOALs, 

including 25% of sample with recurrent GoF MYD88 or EZH2 mutations that are 

inclusion/stratification criteria for ongoing clinical trials in lymphomas or other tumors. 

Prioritized alterations in histone/chromatin modifying genes were also common in FL and 

DLBCLs, including LoF ARID1A alterations reported to enhance sensitivity to EZH2 inhibition. 

Taken together, we demonstrate that NGS can be used to profile routine OOALs for 

identification of somatic driving alterations and nomination of potential therapeutic strategies. 
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A.2.2 Introduction 

Non-Hodgkin lymphomas of the orbital and ocular adnexa (OOALs) represent 10-15% of 

all tumors present in the orbit, eyelids, conjunctiva, and lacrimal apparatus (i.e. the “adnexa”) 

and are the most common primary orbital cancer in adults[204, 205].  OOALs are B-cell 

proliferations that include low-grade tumors such as extra-nodal marginal zone (MZL, also 

known as mucosa-associated lymphoid tissue lymphoma [MALT]) and follicular lymphoma 

(FL), as well as high grade tumors such as mantle cell lymphoma (MCL) and diffuse large B-cell 

lymphoma (DLBCL). MZL, FL, MCL and DLBCL account for ~50%, 10-20%, 5-10% and 5-

10% of OOALs, respectively[206, 207]. While the mainstay of treatment for primary OOALs, 

external beam radiation therapy (EBRT), results in high rates of local control, distant relapse 

rates are high (up to 40%) and local toxicities can lead to vision loss or blindness[213].  

Likewise, despite combinations of EBRT chemotherapy regimens, antibiotic therapy, 

immunotherapy, and radioimmunotherapy, 5-year survival rates for OOALs range from 70-80% 

without lymph node involvement, to 30-40% with lymph node involvement[208]. Alarmingly, 

OOALs have also shown a rapidly increasing incidence (~6% yearly increase in white 

Americans from an analysis of Surveillance, Epidemioloyg, and End Results [SEER] data)[214]. 

Taken together, these data demonstrate an unmet need to develop novel treatment strategies for 

OOALs.  

The development of novel therapies for OOALs has been hampered by the limited nature 

of studies exploring genomic drivers of the disease. Although cytogenetic, copy number and 

transcript,  and immunohistochemistry (IHC) based profiling studies have been reported[215-

219], these represent limited cohorts mainly assessing MZL, the most common OOAL subtype 

that is associated with good prognosis. Importantly, although next generation sequencing (NGS) 
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studies have defined genetic alterations and potential therapeutic targets in non-orbital 

lymphomas, such approaches have not been applied to NHLs. Hence, in order to define 

potentially actionable somatic mutations and copy number alterations (CNAs) in OOALs, we 

performed NGS on 38 formalin-fixed paraffin embedded (FFPE) OOALs, including MZL, FL, 

and DLBCL histologic subtypes. 

 

A.2.3 Materials and Methods 

A2.3.1 Case Selection 

           With University of Michigan IRB approval, we identified a cohort of 38 archived, routine 

clinical FFPE orbital lymphoma specimens from the University of Michigan Department of 

Pathology Tissue Archive for next generation sequencing. Clinicopathological information for 

each case was obtained from the clinical archive. Hematoxylin and eosin (H&E) stained slides 

and immunostains (when available) were reviewed for all cases by board-certified Anatomic 

Pathologists (A.S.M. and S.A.T.) to ensure sufficient tumor content.  

A2.3.2 Targeted Next Generation Sequencing (NGS)  

Targeted NGS was performed essentially as described[101-103].  For each specimen, 3-7 

x 10um FFPE sections were cut from a single representative block per case, using 

macrodissection with a scalpel as needed to enrich for tumor content. DNA was isolated using 

the Qiagen Allprep FFPE DNA/RNA kit (Qiagen, Valencia, CA) and quantified as 

described[101-103]. Targeted, multiplexed PCR based next generation sequencing (NGS) was 

performed by Ion Torrent NGS using the DNA component of a beta version of the Oncomine 

Comprehensive Assay (OCP), a custom panel comprised of 3435 amplicons targeting 126 genes. 

Genes included in this panel were selected based on pan-solid tumor NGS and copy number 
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profiling data analysis that prioritized somatic, recurrently altered oncogenes, tumors 

suppressors, genes present in high level copy gains/losses and known/investigational therapeutic 

targets[102]. Library preparation with barcode incorporation, template preparation and 

sequencing using the Ion Torrent Proton sequencer were performed according to the 

manufacturer’s instructions. Data analysis was performed using Torrent Suite 4.0.2, with 

alignment by TMAP using default parameters, and variant calling using the Torrent Variant 

Caller plugin (version 4.0-r76860) using default low-stringency somatic variant settings. Variant 

annotation filtering and prioritization was performed essentially as described using validated in 

house pipelines[101-103, 105]. Briefly, called variants were filtered to remove synonymous or 

non-coding variants, those with flow corrected read depths (FDP) less than 20, flow corrected 

variant allele containing reads (FAO) less than 6, variant allele frequencies (FAO/FDP) less than 

0.10, extreme skewing of forward/reverse flow corrected reads calling the variant (FSAF/FSAR 

<0.2 or >5), or indels within homopolymer runs >4. Called variants were filtered using a panel-

specific, in house blacklist. Variants with allele frequencies >0.5% in ESP6500 or 1000 genomes 

or those reported in ESP6500 or 1000 genomes with observed variant allele frequencies between 

0.40 and 0.60 or > 0.9 were considered germ line variants unless occurring at a known hot-spot 

variant. Variants located at the last mapped base (or outside) of amplicon target regions, variants 

with the majority of supporting reads harboring additional mismatches or indels (likely 

sequencing error), those in repeat–rich regions (likely mapping artifacts), and variants occurring 

exclusively in one amplicon if overlapping amplicons cover the variant were excluded. High 

confidence somatic variants passing the above criteria were then visually confirmed in IGV. We 

have previously confirmed that these filtering criteria identify variants that pass PCR validation 

with >95% accuracy[220]. Copy number analysis from total amplicon read counts provided by 
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the Coverage Analysis Plug-in was performed essentially as described using a validated 

approach[101-103, 106]. Genes with a log2 copy number estimate of <-1 or >0.6 were considered 

to have high level loss or gain, respectively. 

 To prioritize potential driving alterations, we utilized Oncomine software tools 

(powertools.oncomine.com) to annotate called variants, which use pan-cancer NGS data to 

identify genes as oncogenes or tumor suppressors, based on overrepresentation of hot-spot or 

deleterious mutations, respectively. Variants in oncogenes are then considered gain-of-function 

(GoF) if at a hot-spot and variants in tumor suppressors are considered loss of function (LoF) if 

deleterious or at a hot-spot[101, 102, 105]. Likewise, high level copy number alterations were 

prioritized if they were concordant with the minimal common region (MCR) analysis used to 

design the OCP (e.g. high level copy number gain in a gene prioritized as amplified/deleted by 

MCR analysis.                 

A2.3.3 Immunohistochemistry (IHC) 

 IHC was performed on the DAKO Autostainer (DAKO, Carpinteria, CA) using DAKO 

Envision+ and diaminobenzadine (DAB) as the chromogen. Sections of de-paraffinized OOALs 

were labeled with ARID1A (mouse monoclonal, clone PSG3, 1:250, Santa Cruz Biotechnology, 

Dallas TX, #sc-32761), EZH2 (mouse monoclonal, clone 11, 1:100, BD Biosciences, San Jose, 

CA, #612666), or KMT3B/NSD1 (rabbit polyclonal, 1:250, EMD Millipore, Billerica, MA, 

#ABE1009) for 60 minutes at ambient temperature. Microwave epitope retrieval in 10 mM 

Tris/HCl, pH 9 containing 1 mM EDTA was used prior to staining. Appropriate negatives (no 

primary antibody) were stained in parallel with each set of tumors studied. IHC slides were 

examined by light microscopy by two pathologists (A.S.M. and S.A.T.). Only staining of the 

nucleus was marked as positive expression. The staining was scored semiquantitatively and 
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recorded based on percent nuclei staining (0 = negative, 1 = 1 – 25% immunoreactive cells, 2 = 

26% – 50% immunoreactive cells, 3 = 51% - 75% immunoreactive cells, 4 = 76% - 100% 

immunoreactive cells) and intensity of staining (0 = negative, 1 = weak, 2 = moderate, 3 = 

strong). Corresponding sections were also H&E stained as previously described[221-223]. 

A2.3.4 Statistics 

 Comparisons of the number of mutations and copy number alterations per sample by 

lymphoma subtype were performed using the Kruskal-Wallis test with post-hoc pairwise 

comparison of subgroups using R 3.1.0.  

 

A.2.4 Results 

      We performed targeted NGS on a cohort of 38 FFPE OOALs comprised of 8 DLBCLs, 9 

FLs and 21 MZLs; representative photomicrographs are shown in Figure 30A & B and clinical 

characteristics of all informative patients (see below) are presented in Figure 30C. We isolated 

an average of 5.5 ug DNA per case (range 0.1-24.1 ug) and all samples had >70% estimated 

tumor content by H&E evaluation after macrodissection (as needed). NGS was performed using 

the DNA component of a beta version of the Oncomine Comprehensive Assay (OCP v1), a 

custom panel comprised of 3,435 amplicons targeting 126 genes and Ion Torrent based 

sequencing on the Proton machine. Targeted genes were selected based on pan-solid tumor NGS 

and copy number profiling data analysis to prioritize somatic, recurrently altered oncogenes, 

tumors suppressors and genes present in high level CNAs, filtered by available or investigational 

therapeutic targets.[102]  

Of the 38 samples assayed, one MZL (IE-26) and one DLBCL (IE-31) sample yielded 

low quality sequencing data due to poor genomic DNA quality and were excluded from all 
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subsequent analyses. Across the thirty-six informative samples, NGS generated an average of 

1,871,816 mapped reads yielding 545x targeted base coverage (Table 12). We identified a total 

of 41 high-confidence, prioritized somatic alterations (median n=1, range n=0-5 per sample) 

comprised of non-synonymous point mutations (n=33), short insertions/deletions (indels; n=2) 

and copy number variations (CNVs; n=6). All prioritized somatic mutations and high level 

CNAs for each case are shown in an integrative heat map (Figure 30C) and given in Table 13. 

Prioritized alterations were present in 19 of 36 samples (53%). DLBCLs harbored the majority of 

total prioritized alterations (6 of 7 [86%] with prioritized alterations; median prioritized 

alterations n=3, range n=0-5). Prioritized alterations were identified in 6 of 9 (67%) FL (median 

prioritized alterations n=1, range n=0-3) and 7 of 20 (35%) MZL (median prioritized alterations 

n=0, range n=0-2). The number of prioritized alterations was significantly different between the 

lymphoma subtypes (Kruskal-Wallis test, p=0.0014), as shown in Figure 30D.  
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Figure 30. Targeted next-generation sequencing (NGS) of routine formalin-fixed, paraffin-

embedded orbital and ocular adnexal lymphomas identifies recurrent informative/potentially 

actionable alterations. (A and B) Representative histology by hematoxylin and eosin (H&E) 

staining of a formalin-fixed, paraffin-embedded lymphoma sample (IE-38, a follicular lymphoma 

(FL)). Original magnification, × 4 (A) and × 40 (B). C Integrative heatmap of prioritized, 

driver/potentially actionable mutations and copy number alterations across the 36 informative orbital 
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and ocular adnexal lymphomas. Clinicopathologic information including patient sex, age, estimated 

tumor content, and subtypes (diffuse large B-cell lymphoma (DLBCL), FL, and marginal zone 

lymphoma (MZL)) are indicated in the header according to the legend on the right. All prioritized, 

high-confidence, gain-of-function or loss-of-function somatic mutations in oncogenes and tumor 

suppressors, respectively, as well as high-level copy number alterations are shown for each case. 

Specific alteration types are indicated according to the legend (Fp and Fs indel, frame-preserving and 

frame-shift indels, respectively; Gain, copy number gain; Loss, copy number loss). Slashed boxes 

indicate two alterations. D Comparison of the number (n) of prioritized alterations per sample 

(mutations and copy number alterations) by subtype. The median number of alterations per type is 

shown by thick black bars. **P<0.01 from posthoc subgroup comparison of Kruskal–Wallis test. E 

Stick plot of recurrent domain mutations. Schematic representation of the location and subtype of 

MYD88 gain-of-function mutations identified in 10 of 36 orbital and ocular adnexal lymphomas. The 

number of mutations (n) at each residue is indicated by the stick length according to the scale (left). 
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Table 12. Sequencing statistics for informative orbital and ocular adnexal lymphomas. Orbital 

and ocular adnexal lymphomas were subjected to next generation sequencing of multiplexed 

templates using Ion PI chips on the Proton sequencer Multiplexed PCR. For all informative samples, 

the number of mapped reads, % reads on target, average read coverage depth over targeted bases and 

uniformity of mapped reads are shown. Average values for the cohort are given. 
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Table 13. Prioritized mutations and high level copy number alterations (CNAs) across 

informative sequenced orbital and ocular adnexal lymphomas (OOALs). All high confidence, 

prioritized, somatic non-synonymous mutations and and high-level CNAs (see Methods) identified 

across the 36 informative OOALs are shown. For each variant the sample, subtype (follicular 

lymphoma [FL], diffuse large B-cell lymphoma [DLBCL] and marginal zone lymphoma [MZL], 

alteration type, chromosomal location and gene are indicated. For mutations, the (Ref.) and variant 

(Var.) alleles, amino acid (AA) change and flow corrected variant allele frequency (Var. freq.) are 

shown. For CNAs, gain or loss and log2 copy number ratios are shown. Gene type (Oncogene [Onc] 

vs. Tumor suppressor [TSG]) and known status as an epigenetic regualtor are shown. 

 

 

Across the 36 OOALs, 10 (28%) harbored prioritized GoF mutations in the 

Toll/interleukin-1 receptor (TIR) domain of myeloid differentiation factor 88 (MYD88), making 

it the most frequently altered gene (by prioritized alterations) in our cohort. MYD88 is an 

adaptor protein that binds to the intracellular domains of Toll-like receptors (TLRs) as well as 

interleukin 1 receptor on B cells and macrophages, which stimulates the nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-B) signaling pathway, and is involved in innate 

immunity.[224] In our cohort, MYD88 hot-spot GoF mutations were present in 5/7 (71%) 
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DLBCLs, including three p.L265P,  one p.M232T and one p.S219C mutations. The former 

represents the most frequently altered MYD88 hot-spot across human cancers, while the latter 

two mutations occurred at minor hot-spots. The remaining MYD88 (TIR domain) mutations 

occurred in 5 of 20 (25%) MZL samples. Of note, MYD88 mutations comprise the majority of 

total prioritized alterations (5 of 8, 63%) in our MZL samples, with three p.L265P mutations and 

two other TIR domain hot-spot mutations (one each of p.M232T and p.I220T). All GoF MYD88 

mutations across the cohort are shown in Figure 30E. Taken together, our data demonstrate that 

MYD88 TIR domain mutations are common in the DLBCL and MZL subtypes of OOALs.  

Recurrent somatic alterations in histone/chromatin remodeling proteins are frequent in 

extra-OOALs. Specifically, 22% of DLBCLs and 7-22% of FLs outside of the orbit and ocular 

adnexa carry GoF missense mutations (at the p.Y646 hot-spot) in the methyltransferase SET 

domain of the histone H3 lysine 27 trimethylase enhancer of zeste 2 (EZH2)[225-227]. Herein, 

we identified 3 of 36 OOALs (8%; 2/9 FLs and 1/7 DLBCLs) with EZH2 p.Y646 mutations 

(Figure 30C). We also identified LoF mutations in tumor suppressor AT-rich interactive 

domain-containing protein 1A (ARID1A), an epigenetic regulator that is an ATPase dependent 

SWI/SNF nucleosome remodeling complex subunit. We identified a prioritized ARID1A 

nonsense mutation (p.Q1363X) in 1 of 7 (14%) DLBCLs; two of 9 (22%) FLs harbored LoF 

ARID1A mutations (p.Q482X and p.727_730del). Interestingly, the ARID1A mutated DLBCL 

sample (IE-39; p.Q1363X) also contained one of the aforementioned activating EZH2 Y646 

mutations (p.Y646S) (Figure 30C). Lastly, we identified prioritized mutations in other 

chromatin modifying genes, including LoF mutations in KMT2B (also known as MLL2 or MLL4; 

p.Q2495X) and KMT3B (also known as NSD1; p.Q1532X) in one case, each, of FL and DLBCL, 

respectively (Figure 30C).  
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 All mutations in the above chromatin modeling genes in our current were heterozygous 

based on estimated tumor content and variant allele frequencies. Hence, to determine the impact 

of mutations on protein expression, we assessed ARID1A, EZH2 and KMT3B expression in 

several OOAL samples by IHC. Although limited by the number of mutant samples, IHC levels 

of ARID1A in wild type and mutant FL samples showed no qualitative differences, as ARID1A 

protein was very low or absent in both samples (Figure 31A, B). These results suggest that 

mechanisms besides mutation/CNA may lead to decreased ARID1A expression in OOALs. In 

contrast, the DLBCL harboring the LOF KMT3B (NSD1) p.Q1532X non-sense mutation showed 

decreased KMT3B expression compared to a DLBCL sample without prioritized KMT3B 

alteration (Figure 31C, D). As predicted for GoF mutations, EZH2 expression was retained in 

two samples that each harbored prioritized p.Y646N or p.Y646S mutations (Figure 31E, F).  

In addition to MYD88 and chromatin modifying genes, we also identified samples with 

prioritized alterations in well-known tumor suppressors and oncogenes (Fig 30C and Table 13). 

Three DLBCLs harbored single LoF mutations in phosphatase and tensin homolog (PTEN), 

ataxia telangiectasia mutation (ATM) or neurofibromin 1 (NF1). Of interest, sample IE-07, a FL, 

harbored biallelic tumor protein 53 (TP53) LoF hot-spot mutations (R248 and G244). Another 

FL contained a TP53 nonframeshift deletion (p.255-256del) while a DLBCL harbored a TP53 

R175 hot-spot missense mutation. LoF nonsense mutations were also observed in the tumor 

suppressor split end family protein (SPEN) in one case each of DLBCL and FL. Prioritized 

alterations in oncogenes included missense mutations in neuroblastoma RAS Viral oncogene 

homolog (NRAS, Q61K) and Harvey rat sarcoma viral oncogene homolog (HRAS, G60S) in a 

single DLBCL and FL sample, respectively. 
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Figure 31. Immunohistochemistry for chromatin-modifying proteins in mutant ARID1A, 

NSD1, and EZH2 lymphoma samples. Hematoxylin and eosin (H&E, A, C and E) stains (large 

panels, original magnifications: × 400, insets × 100) and corresponding immunohistochemistry (B, D 

and F, original magnifications: × 400) for indicated chromatin-modifying proteins was performed in 
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selected 

orbital and ocular adnexal lymphomas based on mutational status. (A and B) IE-07, a usual appearing 

follicular lymphoma (a) with a loss of-function ARID1A mutation (p.Q842X), demonstrates absent 

ARID1A expression (A). (C and D). IE-39, a diffuse large B-cell and marginal zone lymphoma with a 

truncating stopgain mutation in NSD1 (p.Q1532X), shows very weak expression of NSD1 (D) in 

tumor cells (wildtype NSD1 diffuse large B-cell and marginal zone lymphoma samples showed 

robust expression of NSD1 by immunohistochemistry, see Figure 32). IE-17, a follicular lymphoma 

(E) with a predicted gain-of-function variant in EZH2 (p.Y646N), shows robust EZH2 (F) expression 

(wild-type EZH2 marginal zone lymphoma samples did not show EZH2 expression by 

immunohistochemistry, see Figure 32). 

 

 

Figure 32. lmmunohistochemistry for chromatin modifying proteins in orbital and ocular 

adnexal lymphomas with wild-type NSD1 and EZH2. Hematoxylin and eosin (H&E, A, C) stains 

(400x magnification) and corresponding immunohistochemistry (B, D, 400x magnification) for 

indicated chromatin modifying proteins in representative lymphomas without mutations in the 

indicated genes. A & B. IE-13, a diffuse large B-cell lymphoma (DLBCL, A) with wild-type NSD1 

shows robust expression of NSD1 in nearly every cell (B, compare with Figure 31D). C & D. IE-12, 
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a marginal zone lymphoma (C) with wild type EZH2, shows absent expression of EZH2 (D, compare 

with Figure 31F). 

 

In addition to single nucleotide alterations and short indels, we used NGS to assess copy 

number alterations (CNAs) in genes targeted by our panel using a validated approach[106]. 

Overall, we identified relatively few focal, high level amplifications or deletions in our OOAL 

cohort (Fig 30C). We identified high level, prioritized deletions in CDKN2A (p16INK4A) in 

three DLBCLs and one MZL, as well as a high level deletion in PTEN in a DLBCL. Finally, 

although not prioritized, broad low level gains/losses were observed, including one-copy gains in 

chromosomes 12 and 3 in a DLBCL and an MZL, respectively, as well as one-copy losses in 17p 

in two DLBCLs. Cohort wide copy number plots are shown in Figure 33A, with individual 

amplicon level plots for DLBCLs with high level deletions in CDKN2A and PTEN (IE-18) and 

CDKN2A (IE-32), respectively, shown in Figure 33B.  
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Figure 33. Copy number analysis of orbital and ocular adnexal lymphomas from next-

generation sequencing (NGS) data. For each sequenced orbital and ocular adnexal lymphoma, GC-

content corrected, normalized read counts per amplicon were divided by those from a composite 

normal sample, yielding a tumor-to-normal copy number ratio for each amplicon. Gene-level copy 

number estimates were determined by taking the weighted mean of the per-probe copy number ratios. 

(A) Summary of gene-level copy number ratios (log2) for all profiled orbital and ocular adnexal 

lymphomas stratified by subtype according to the legend. Selected genes of interest with high-level 

copy number alteration are indicated. Copy number plot for IE-23 was not informative and was 

removed from Figure 33A. (B). Copy number profiles for three individual orbital and ocular adnexal 

lymphomas, IE-18 (diffuse large B-cell lymphoma, DLBCL), IE-17 (follicular lymphoma, FL), and 
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IE-29 (marginal zone lymphoma, MZL). Log2 tumor-to-normal copy number ratios per amplicon are 

plotted (with each individual amplicon represented by a single dot and each individual gene indicated 

by different colors), with gene-level copy number estimates (black bars) determined by taking the 

weighted mean of the per-probe copy number ratios. Selected high-level copy number alterations are 

indicated. Log2 copy number ratios for CDKN2A in both IE-18 and IE-29 are off the scale (IE-18 = − 

4.26; IE-29 = − 2.37). IE-17 shows no copy number changes. 

 

A.2.5 Discussion 

We performed targeted NGS of 38 FFPE OOALs (MZL, FL, and DLBCL types) to 

identify somatic mutations and copy number alterations associated with tumorigenesis and 

identify novel potential therapeutic strategies. Importantly, although numerous studies have 

profiled extra-ocular NHLs and B-cell neoplasms using NGS, OOALs have not been profiled by 

comprehensive approaches, and it is unclear if extra-ocular NHLs and OOALs share similar 

alterations and potential therapeutic targets. Of note, the NGS panel used herein was designed to 

target pan-cancer altered genes filtered to those with near term potential actionability and a 

modified, solid tumor-specific version[102] is being used in the MATCH trial, a multi-site, 

basket trial sponsored by the National Cancer Institute that aims to match patients to 

investigational therapeutics based on their prioritized mutation profile rather than site of tumor 

origin. 

The most frequently mutated gene in our cohort was MYD88, with 28% of OOALs 

harboring GoF hot-spot mutations. Similar MYD88 mutations are frequent in non-orbital B cell 

neoplasms, including Waldenstrom’s Macroglobulinemia (79-100%), DLBCL (6-39%), and 

MZL (4-15%)[224, 228-233]. Interestingly, MYD88 mutations occur in ~70% of primary 

DLBCL of the central nervous system (also known as primary central nervous system 

lymphoma, or PCNSL),[234] and primary vitreoretinal B-cell lymphoma, a subtype of 

PCNSL[235, 236]. However, MYD88 mutations have been reported infrequently (0-7%) in 
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extranodal MZLs[231, 233, 237-240] the most common form (76-100%) of OOAL[231, 233, 

237, 238, 241]. Hence, the observed rates of MYD88 mutations in our OOAL MZLs (25%) and 

DLBCLs (71%) are notably higher than those in non-orbital NHLs. Importantly, in addition to 

numerous clinical trials targeting downstream MYD88-dependent factors in the NF-B signaling 

pathway (such as phosphorylated Bruton tyrosine kinase [pBTK] and interleukin-1 receptor-

associated kinases [IRAK-1 and -4]) and those stratifying response by MYD88 p.L265P mutation 

status, a currently recruiting clinical trials in DLBCL assessing a TLR inhibitor requires MYD88 

p.L265P mutation as an entry criterion (https://clinicaltrials.gov/ct2/results?term=myd88; 

accessed 8/23/15). In summary, our results support evaluation of therapeutic strategies targeting 

MYD88 and downstream mediators activated by GoF mutations in OOALs. 

 Alterations in chromatin modifying genes such as those that encode histone lysine 

methyltransferases (e.g. KMT2B, KMT3B and EZH2), and ATP-dependent chromatin remodelers 

(e.g ARID1A) are amongst the most common mutations in human cancers, including many forms 

of B-cell lymphomas, especially DLBCLs and FLs.[210, 225-227, 242-251] Indeed, in our 

cohort, prioritized mutations in chromatin modifying genes were found only in DLBCLs and FLs 

(6 of 16 [38%] with prioritized alterations). Specifically, 2 of 9 (22%) FLs and 1 of 7 (14%) 

DLBCLs harbored prioritized EZH2 or ARID1A mutations, rates that are consistent with extra 

ocular/adnexal FLs and DLBCLs.[225-227, 252]. Given its association with poor prognosis in 

several cancers, there has been intense interest in the development of EZH2 inhibitors[253-255]. 

At present, there are three trials (https://clinicaltrials.gov/ct2/results?term=ezh2; accessed 

8/23/15) currently recruiting individuals with relapsed or refractory B-cell lymphomas (including 

DLBCLs and FLs) for evaluation of oral EZH2 inhibitors in phase 1 and 2 clinical trials. In these 

trials, the presence of GoF EZH2 mutations will be tested, in order to determine in which arm an 

https://clinicaltrials.gov/ct2/results?term=myd88
https://clinicaltrials.gov/ct2/results?term=ezh2
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affected individual will enroll (wild type or mutant EZH2 status). Likewise, a recent report 

demonstrated that LoF ARID1A mutations in ovarian clear cell carcinomas (OCCCs) render these 

tumors sensitive to EZH2 inhibitors in vitro and in vivo[256], suggesting additional ways to 

target alterations in histone modifiers. Of interest, a DLBCL sample (IE-39) contained both a 

GoF EZH2 mutation (p.Y646S) and a LoF ARID1A mutation (p.Q1363X), suggesting potentially 

enhanced sensitivity to EZH2 inhibition. In summary, our results support frequent potentially 

targetable alterations in histone/chromatin modifiers in OOALs, consistent with results in non-

orbital/ocular NHLs.  

In recent years, significant interest has emerged in the potential clinical value of NGS of 

tumoral DNA in order to discover or guide strategies that link personalized therapies to specific 

genomic alterations present in the cancer. For the first time, we apply comprehensive NGS 

genomic profiling to routine FFPE OOALs, a cancer subtype for which comprehensive NGS 

based profiling has not been reported. Of note, the NGS panel used herein was designed to target 

pan-cancer altered genes filtered to those with near term potential actionability and a modified, 

solid tumor-specific version[102] is being used in the MATCH trial, a multi-site, basket trial 

sponsored by the National Cancer Institute that aims to match patients to investigational 

therapeutics based on their prioritized mutation profile rather than site of tumor origin. 

 Limitations of our study include a single site cohort, relatively few samples for each 

subtype, and the use of a targeted panel based approach without assessment of other key 

alterations (e.g. chromosomal rearrangements, methylation and transcriptional profiling). Hence, 

larger, prospective, multi-institutional studies will be required to confirm our findings and 

clinical trials are needed in OOALs to test potential treatment strategies proposed herein.  

Here, through NGS targeting informative/potentially actionable genomic alterations, we 
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identified recurrent mutations and CNAs across 36 OOALs, including MZL, FL and DLBCL 

subtypes. We identified MYD88 GoF mutations at higher rates in orbital/ocular adnexal MZL 

and DLBCLs (25% and 71%, respectively) than those reported in non-orbital/ocular sites. 

Likewise, histone/chromatin modifiers showed frequent alterations in our cohort (at similar rates 

to non-orbital/ocular adnexal sites), including potentially targetable GoF mutations in the 

histone methyltransferase EZH2 (Figure 34). As novel therapeutic approaches are urgently 

needed for OOALs, our results demonstrate the utility of an NGS-based approach to nominate 

precision therapeutic approaches for OOALs and other ocular, orbital and adnexal tumors. 

 

 

Figure 34 Workflow of determining driver and potentially actionable genomic alterations. 

Genomic DNA from formalin-fixed, paraffin-embedded orbital and ocular lymphoma tissue 

enriched by macrodissection is subjected to targeted next-generation sequencing (NGS) using a 

cancer gene panel. Bioinformatics analysis yields candidate point mutations, small indels and copy 

number alterations that potentially drive tumor growth and development in orbital and ocular 
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adnexal lymphomas. Potential therapeutic targets are prioritized and reported. 
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Appendix III 

 

Next generation sequencing of vitreoretinal lymphomas from small-volume 

intraocular liquid biopsies: new routes to targeted therapies4 
 

 

A.3.1 Abstract 

Vitreoretinal lymphoma (VRL), the most common lymphoma of the eye, is a rare form of 

primary CNS lymphoma (PCNSL). Most frequently a high-grade diffuse large B cell lymphoma, 

VRL can cause vision loss and its prognosis remains dismal: the overall survival time is 3 years 

after diagnosis. Radiotherapy and chemotherapy are used but remain frequently ineffective, and 

no standardized treatment regimen exists. Furthermore, no biologically targeted treatments, 

based on the genetic profile of the tumor, are available, as VRL has hitherto not comprehensively 

been profiled. To address these unmet needs, we hypothesized that a next generation sequencing 

(NGS)-based, National Cancer Institute (NCI) MATCH Trial-modified panel would be able to 

identify actionable genomic alterations from small-volume, intraocular liquid biopsies. In this 

retrospective study, we collected diluted vitreous biopsies from 4 patients with confirmed or high 

suspicion for VRL. Following cytological confirmation of lymphoma (all were diffuse large B 

cell lymphomas), we subjected genomic DNA from the liquid biopsies to NGS, using a panel 

containing 126 genes (3,435 amplicons across several hotspots per gene), which was modified 

from that of the NCI MATCH Trial, a precision oncology clinical trial that matches patients with 

                                                      
4 This study has previously appeared in Cani, A.K., et al. Oncotarget, 2017. ( 169. Cani, A.K., et al., Next 

generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to 

targeted therapies. Oncotarget, 2017. 8(5): p. 7989-7998.) 
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cancers to investigational therapeutics based on their prioritized mutation profile rather than site 

of tumor origin. Using a validated bioinformatics pipeline, we assessed for the presence of 

actionable mutations and copy number alterations.  

In all four small-volume, intraocular liquid biopsies, we obtained sufficient genomic 

DNA for analysis, even in diluted samples in which the undiluted vitreous was used for cytology 

and flow cytometry. Using NGS, we found targetable heterozygous gain-of-function mutations 

in the MYD88 oncogene, and confirmed in our cohort the presence the p.L265 mutations, 

previously described using PCR-based assays. For the first time in VRL, we also identified the 

MYD88 p.S243N mutation. We also identified two-copy copy number losses in the tumor 

suppressor CDK2NA in all four cases, and one copy loss of the tumor suppressor PTEN in one 

sample. In one case, in which vitreous biopsies were originally read as cytologically negative, 

but which was confirmed as lymphoma when a lesion appeared in the brain two years later, our 

NGS-based approach detected tumoral DNA in the banked, original liquid biopsy.  

In conclusion, we performed the first systematic exploration of the actionable cancer 

genome in VRL. Our NGS-based approach identified exploitable genomic alterations such as 

gain-of-function MYD88 oncogene mutations and loss of the tumor suppressor CDK2NA, and 

thus illuminates new routes to biologically targeted therapies for VRL, a cancer with a dismal 

prognosis. This precision medicine strategy could be used to nominate novel, targeted therapies 

in lymphomas and other blinding and deadly ocular, orbital, and ocular adnexal diseases for 

which few treatments exist. 
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A.3.2 Introduction 

Vitreoretinal lymphoma (VRL), the most common lymphoma of the eye, is linked closely 

to CNS lymphoma (PCNSL), and affects ~380 individuals in the U.S per year[257]. Fifty to 90% 

of those with primary VRL have concurrent (or will develop) PCNSL, while 15-25% of patients 

with primary PCNSL develop VRL[257]. Often mistaken for uveitis, delays in VRL diagnosis are 

common. Diagnosis relies on small-volume intraocular (vitreous) fluid biopsy, yet the limited 

number of malignant cells recovered complicates cytological analysis, especially in distinguishing 

from inflammatory lymphoid infiltrates. Flow cytometry, immunohistochemistry, and cytokine 

analyses are suggestive, but not diagnostic. The high viscosity of vitreous fluid often interferes 

with sampling and can confound cytological analyses and flow cytometry, which can lead to false-

negatives, though this can be dependent on experience of consultant pathologists[211, 258]. Most 

frequently a high-grade diffuse large B cell lymphoma (DLBCL), VRL can cause vision loss, with 

progression-free survival of ~1 yr and overall survival less than 3 years after diagnosis. 

Radiotherapy and chemotherapy are used but are frequently ineffective: no standardized 

treatments exist. Since the genomic landscape of VRLs have never been comprehensively 

profiled, no molecularly targeted treatments exist. To address these unmet needs, we hypothesized 

that a next generation sequencing (NGS)-based panel, a modified version of that used in the 

National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) Trial 

(NCT02465060),[102, 168] would identify actionable genomic alterations from small-volume, 

intraocular liquid biopsies and nominate precision medicine-based treatment strategies. The 

modified NCI-MATCH panel we used herein is designed to detect actionable alterations in both 

advanced solid tumors and lymphomas (http://www.cancer.gov/about-cancer/treatment/clinical-

trials/nci-supported/nci-match)[113]. We analyzed four cytology-confirmed VRL cases, which 
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represents about 1% of the VRL cases that occur in the U.S. annually (~380/yr)[257]. 

 

 

A.3.3 Materials and Methods 

A.3.3.1 Case selection  

The study was carried out at the highest ethical standards and with the approval of the 

University of Michigan Institutional Review Board. We identified a cohort of three archived, 

flash-frozen vitreous specimens linked to biopsy-proven VRL or PCNSL from the intraocular 

liquid biobank (Cases 101-103) and one fresh specimen highly suspicious for VRL (Case 104) at 

the Kellogg Eye Center, Department of Ophthalmology & Visual Sciences at the University of 

Michigan for next generation sequencing (NGS). Clinicopathological information for each case 

was obtained from the clinical archive. 

A.3.3.2 Targeted next generation sequencing (NGS)  

Targeted next generation sequencing was performed essentially as previously described, 

with few modifications relating to sample preparation[101-103, 168]. Each intraocular liquid 

specimen was thawed and centrifuged to pellet tumor cells. Genomic DNA was isolated using the 

Qiagen All-Prep formalin-fixed paraffin-embedded DNA/RNA kit (Qiagen, Valencia, CA) and 

quantified as previously described. Targeted, multiplexed NGS was performed on the Ion Torrent 

platform using the DNA component of a beta version of the Oncomine Comprehensive Assay 

(OCP), a custom panel comprised of 3,435 amplicons targeting 126 genes. Genes included in this 

panel were selected based on pan-solid tumor next generation sequencing and copy number 

profiling data analysis that prioritized somatic, recurrently altered oncogenes, tumors suppressors, 

genes present in high level copy gains/losses and known/investigational therapeutic targets[102]. 

Library preparation with barcode incorporation, template preparation and sequencing using the 
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Ion Torrent Proton sequencer were performed according to the manufacturer’s instructions. Data 

analysis was performed using Torrent Suite 4.0.2, with alignment by TMAP using default 

parameters, and variant calling using the Torrent Variant Caller plugin (version 4.0r76860) using 

default low-stringency somatic variant settings. Variant annotation filtering and prioritization was 

performed essentially as described using validated in house pipelines[101-103, 259, 260]. Briefly, 

called variants were filtered to remove synonymous or non-coding variants, those with flow 

corrected read depths (FDP) less than 20, flow corrected variant allele containing reads (FAO) 

less than 6, variant allele frequencies (FAO/FDP) less than 0.10, extreme skewing of 

forward/reverse flow corrected reads calling the variant (FSAF/FSAR <0.2 or >5), or indels within 

homopolymer runs >4. Called variants were filtered using a panel-specific, in house blacklist. 

Variants with allele frequencies >0.5% in Exome Sequencing Project 6500 (ESP6500) or the 1000 

Genomes project, and those reported in ESP6500 or 1000 genomes with observed variant fractions 

between 0.40 and 0.60 or > 0.9 were considered germline variants unless occurring at a known 

hot-spot variant. Variants located at the last mapped base (or outside) of amplicon target regions, 

variants with the majority of supporting reads harboring additional mismatches or indels (likely 

sequencing errors), those in repeat–rich regions (likely mapping artifacts), and variants occurring 

exclusively in one amplicon if overlapping amplicons cover the variant were excluded. High 

confidence somatic variants passing the above criteria were then visually confirmed in Integrative 

Genomics Viewer (https://www. broadinstitute.org/igv/). We have previously confirmed that 

these filtering criteria identify prioritized high-confidence somatic variants that pass Sanger 

sequencing validation with >95% accuracy[101, 103, 220, 259, 260]. Copy number analysis from 

total amplicon read counts provided by the Coverage Analysis Plug-in (v4.0-r77897) was 

performed essentially as described using a validated approach[101-103, 106, 168]. Genes with a 
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log2 copy number estimate of <-1 or >0.6 were considered to have high level loss or gain, 

respectively. To prioritize potential driving alterations, we utilized Oncomine software tools 

(https://powertools. oncomine.com) to annotate called variants, which use pan-cancer next 

generation sequencing data to identify genes as oncogenes or tumor suppressors, based on 

overrepresentation of hot-spot or deleterious mutations, respectively. Variants in oncogenes are 

then considered gain-of-function if at a hot-spot and variants in tumor suppressors are considered 

loss-of-function if deleterious or at a hot-spot[101, 102]. Likewise, high-level copy number 

alterations were prioritized if they were concordant with the minimal common region analysis 

used to design the Oncomine Comprehensive Assay (e.g. high level copy number gain in a gene 

prioritized as amplified/deleted by minimal common region analysis. 

 

A.3.4 Results  

We collected four small-volume vitreous biopsies from four patients with a high suspicion 

for VRL. All (cases 101-104) were males in their 60s. Cases 101 and 102 were diagnosed with 

PCNSL prior to biopsy, and showed cytology-proven VRL on vitreous biopsy (DLBCL). Cases 

103 and 104 underwent vitreous biopsy in both eyes after developing vitreous debris and 

subretinal infiltrates bilaterally (Case 103, Figure 35A-H), yet vitreous cytological analyses were 

negative. Two years later, Case 103 developed vision loss with right hemianopia (Figure 36A) 

and MRI (Figure 36B) revealed a lesion in the right optic nerve and chiasm. Since cytologic 

analysis of CSF fluid confirmed PCNSL (DLBCL), the patient’s earlier ocular presentation was 

presumed bilateral VRL. Case 104 exhibited painless and chronic, bilateral vitreous debris for 2 

years with a negative workup for uveitis or other systemic causes of inflammation. This patient 

also had a right parietal lobe lesion on MRI, suggestive of PCNSL with VRL.  
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Figure 35 Manifestations of vitreoretinal lymphoma in Case 103. A. Montaged fundus photo of 

the left eye with vitreous debris prior to intraocular liquid biopsy and vitrectomy. Lymphoma cells 

are suspended in the vitreous, resulting in a “hazy” view, which obscures anatomic details of the 
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retina (arrowheads). B. Following intraocular liquid biopsy and vitrectomy, which did not detect 

malignant cells, the media of the left eye is clear and retinal details can be discerned, such as 

subretinal lipofuscin clumps, and sub-retinal pigment epithelium (RPE) deposits, which manifest in 

a yellow and dark stippled, leopard-like pattern (arrowheads). Ultra-wide field fundus 

autofluorescence of the right C. and left D. eye, shows stippled hyper-autofluorescence 

corresponding to the lymphomatous sub-RPE deposits (arrowheads). Optical coherence tomography 

of the right E. and left F. eye shows nodular hyperreflective lymphomatous lesions at the RPE level 

(arrowheads). Prior to biopsy of the left eye (F), lymphoma cells can be seen in the posterior 

vitreous. Insets G, H. represent near infrared reflectance imaging of the right (G) and left (H) eyes, 

which highlight the leopard-like pattern of the sub-RPE lymphomatous macular infiltrates. Green 

lines and arrowheads of insets (G, H) correspond to the cross sectional plane of the OCT images in 

(E) and (F). Similar to (A), autofluorescence (D), OCT (F), and near infrared reflectance imaging 

(H) in the left eye appear blurry compared to the right eye due to the presence of lymphoma cells in 

the vitreous. Except for (B), images were obtained following biopsy and vitrectomy in the right eye 

(C, E, G) but prior to these interventions in the left eye (A, D, F, H). During this time, visual acuity 

was within normal range. 

 

 

 

 

Figure 36 Functional and structural cause of vision loss in Case 103. Two years following negative 

cytology results from intraocular liquid biopsies in each eye, the patient developed severe vision loss 

in the left eye. A. Humphrey 24-2 visual field testing report of the left eye revealed a dense temporal 

hemianopia, denoted by black area (arrowheads), which signified lack of sensitivity to light stimulus 

in the temporal half of visual field. B. Magnetic resonance imaging with gadolinium contrast revealed 

an enhancing lesion abutting the right optic chiasm and optic nerve. Subsequent cytological analysis 
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of cerebrospinal fluid confirmed the diagnosis of primary CNS lymphoma, diffuse large-B cell 

subtype. 

 

 

Sufficient genomic DNA was recovered from each vitreous biopsy (Table 1). NGS was 

performed using the DNA component of the Oncomine Comprehensive Assay, a panel comprised 

of 3,435 amplicons targeting 126 genes, a modified version of which is being used in the 

NCIMATCH trial[113], and sequencing on the Ion Torrent Proton sequencer[168]. Targeted 

genes were selected based on pansolid tumor NGS and copy number profiling data analysis to 

prioritize somatic, recurrently altered oncogenes, tumors suppressors and genes present in high 

level copy number alterations, filtered by available or investigational therapeutic targets. All four 

samples provided informative data, and sample statistics are listed in Table 1.  

 

 
 
Table 14. Summary of NGS Statistics. Means and corresponding standard deviations (SD) are given 

for the amount of genomic DNA isolated from each intraocular liquid biopsy, number of mapped 

reads, on target reads, coverage depth, and uniformity in next generation sequencing summary table 

for each case. 

 

We identified one non-synonymous point mutation each in Cases 101-103 and one high 

level deletion in each sample (Figure 37A-D). Three of the four VRLs (75%) harbored prioritized 

gain-of-function mutations in the Toll/interleukin-1 receptor (TIR) domain of MYD88. MYD88 

is an adaptor protein that binds to the intracellular domains of Toll-like receptors (TLRs) and 

interleukin-1 receptor on B-cells and macrophages, which stimulates NF-κB signaling pathway, 
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and is involved in innate immunity[224]. These included two p.L265P (cases 101 homozygous 

and 103 heterozygous) and one p.S243N (case 102 heterozygous) mutations all at presumed 

clonal, variant frequency (Figure 37A-C). We also assessed somatic copy number alterations 

from the same NGS data using a validated approach[106], with case-specific gene (and amplicon) 

level copy number plots (Figure 37A-D). We identified few copy number alterations in our VRL 

samples, however we identified prioritized, high level copy loss of CDKN2A in all samples. High 

level copy loss was observed in cases 101, 102, and 104, while case 103 also harbored a high level 

loss given the presumed tumor content of 30% (based on presumably heterozygous MYD88 

p.L265P at 0.15 variant allele frequency). We also detected a one-copy deletion in PTEN in case 

102. Lastly, although not prioritized, we identified a focal one-copy loss in AKT1 in case 101 and 

low level gain of chromosome 19 was observed in case 103 (targeted genes included STK1, 

MLL4/KMT2D, and ARHGAP43). 
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Figure 37 Mutation and copy-number analysis of vitreoretinal lymphomas from next generation 

sequencing data. Copy-number profiles, with prioritized alterations in MYD88 (including point 

mutation/variant, variant fraction in the sample, and overall coverage depth [sum of the number of 

variant-containing reads and the number of reads without the variant]) are listed below each plot, for 

each of the three vitreoretinal lymphomas: A. Case 101, B. Case 102, C. Case 103, and D. Case 104. 

For each sequenced vitreoretinal lymphoma case, GC-content corrected, normalized read counts per 

amplicon were divided by those from a composite normal sample, yielding a tumor-to-normal copy-

number ratio for each amplicon. Log2 tumor-to-normal copy-number ratios per amplicon are plotted 

(with each individual amplicon represented by a single dot, and each individual gene indicated by 

different colors), with gene-level copy-number estimates (black bars) determined by taking the 

weighted mean of the per-probe copy-number ratios. Prioritized high-level copy number alterations 

are indicated in bold. Log2 copy-number ratios for CDKN2A for Case 101 (A) are off the scale. 

Annotated, but not prioritized, one copy number losses in AKT1 (A, Case 101), and low level copy 

number gains in genes on chromosome (chr) 19 (C, Case 103) are noted by arrows. 
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A.3.5 Discussion  

 

We demonstrate the feasibility of targeted NGS on intraocular liquid biopsies using minute 

volumes (as little as 500 microliters) of non-diluted and diluted vitreous. Our approach does not 

compromise the volumes needed for cytology-based and other diagnostics (e.g. flow cytometry). 

Our NGS approach may overcome difficulties related to high vitreous viscosity, poor cellular 

preservation, low cellularity, false-negative and false-positive PCR-based results, which often 

leads to delays in diagnosis and therapy (Figure 38)[261]. For instance, in case 103, presumably 

false negative cytologic interpretations of vitreous biopsies in both eyes led to a two-year delay 

in treatment, when PCNSL cells were finally detected in the CSF. Despite repeated false-negative 

findings in Cases 103 and 104, our NGS strategy detected actionable genomic alterations in as 

little as 5.8 ng of tumor DNA from the original biopsy. MYD88 GOF mutations were found in 3 

of 4 samples (75%) and high level copy number loss of CDKN2A were found in all 4 samples 

(100%). All MYD88 mutations occurred in the TIR domain, and 2 of 4 samples (50%) harbored 

the p.L265P point mutation. We detected MYD88 p.S243N mutation (1 of 4 samples, 25%), high 

level CDKN2A loss (4 of 4 samples, 100%), and low level PTEN loss (1 of 4 samples, 25%) for 

the first time in VRL. Nearly all of these alterations are potentially targetable. For instance, 

currently recruiting clinical trials in DLBCLs assessing TLR inhibitors require the MYD88 

p.L265P mutation as an entry criterion (https://clinicaltrials.gov/ct2/results?term=myd88; 

accessed 8/8/16). Both p.L265P and p.S243N MYD88 mutations show high levels of NF-κB 

transactivation, which can potentially be targeted by the Bruton’s kinase inhibitor ibrutinib, and 

IRAK1/4 antagonists[229, 262, 263]. MYD88 mutations other than p.L265P make up a quarter of 
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all MYD88 mutations in patients with DLBCLs and unlike previous limited studies that solely 

evaluate for the p.L265P mutation (and one study that reported p.P258L)[235, 236, 264], our 

comprehensive NGS-based approach reveals other potentially actionable, and diagnostic, GOF 

MYD88 alterations in VRL. High level CDKN2A loss is considered potentially targetable, as 

ilorasertib (an inhibitor of Aurora, VEGF, and PDGF tyrosine kinase families; 

https://clinicaltrials. gov/ct2/show/NCT02540876; accessed 8/8/16) and palbociclib (a CDK4/6 

inhibitor; https://clinicaltrials. gov/ct2/show/NCT02693535; accessed 8/8/16) are being tested in 

advanced CDKN2A-deficient tumors. Likewise, although observed at only a single copy loss in 

our study, PTEN-deficient tumors are being targeted through PI3K-beta inhibition 

(https://clinicaltrials.gov/ct2/show/ NCT02465060), as well as similar strategies targeting other 

components of the PTEN-PI3K-AKT pathway (e.g. 

https://clinicaltrials.gov/ct2/show/NCT02761694 and others). Although not prioritized, an 

annotated one-copy loss in the oncogene AKT1 was observed in case 101. While oncogenic AKT1 

GOF mutations and amplifications have been linked to a variety of cancers [265], a recent report 

has found recurrent one-copy losses of AKT1 in DLBCLs[266]. How a one-copy loss of a known 

oncogene like AKT1 might be related to DLBCL/VRL tumorigenesis requires further 

investigation.  
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Figure 38 Workflow of determining VRL driver and potentially actionable genomic 

alterations. Genomic DNA from intraocular liquid biopsies is subjected to targeted next 

generation sequencing using a cancer gene panel. Bioinformatics analysis yields candidate point 

mutations and copy number alterations that potentially drive tumor growth and development in 
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vitreoretinal lymphomas. Potentially actionable therapeutic targets are prioritized and reported. 

 

 

 

 

There are limitations in our study. While our analyzed samples represent > 1% of the 

number of VRLs that occur annually in the U.S., our sample size of 4 is modest. Future studies 

should investigate a larger cohort of VRL samples. While VRL is considered a subtype of PCNSL, 

similarities in their respective genetic landscapes have not yet been explicitly tested. A future 

investigation should focus on comparing the genetic alterations between PCNSL and VRL, 

especially in paired sample sets in patients with lymphoma cells in the eye (vitreous or choroid) 

and elsewhere in the CNS (cerebrospinal fluid, brain, spinal cord). Finally, while the modified, 

NCI-MATCH panel we employ is designed to detect alterations in solid tumors and lymphoma, a 

custom NGS panel enriched for potential non-Hodgkin lymphoma targets may be able to capture 

alterations not covered in our panel. As improved therapies are urgently needed for VRLs due to 

dismal survival rates, high rates of relapse as well as local and vision-related toxicities of present 

treatments (e.g. radiotherapy), our results demonstrate the utility of an NGS-based approach to 

nominate precision therapeutic approaches for VRLs. The route of administration of therapy 

employed would depend on how currently available targeted agents (FDA-approved for other 

cancers or in clinical trials) are delivered, and may be systemic (oral, intravenous, intrathecal, 

etc). Our NGS-based strategy is not intended to replace standard diagnostic methods, but to 

complement it. In cases in which VRL is confirmed by standard-of-care cytology-based diagnostic 

methods, our NGS-based strategy would be an adjunctive approach to characterize actionable 

targets and nominate potential therapeutic strategies. In our previous work, we confirmed that the 

filtering criteria employed here identify prioritized high-confidence somatic variants in tumoral 
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DNA that pass Sanger sequencing validation, the main comparator technique, with >95% 

accuracy[102]. This approach could potentially be used for detecting intraocular recurrence and 

monitoring treatment response, which currently remains difficult. If our results are confirmed in 

larger cohort analyses and are employed as an adjunctive strategy for VRL, we recognize that 

NGS-based testing may not be feasible for every clinical site. We envision that after collection of 

undiluted vitreous for cytology and other point-of-care diagnostic tests, diluted samples could be 

flash frozen and sent to centers with expertise in genomic DNA collection from vitreous, NGS, 

and bioinformatics analyses.  

To our knowledge, this is the first NGS study to comprehensively profile VRLs. This 

precision medicine approach may have potential diagnostic and therapeutic applications in 

characterizing small-volume, liquid biopsies in order to nominate rationally driven clinical trials 

for ocular diseases with few therapeutic options. 
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