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ABSTRACT   

 

 Cancer cells require increased rates of protein synthesis to sustain rapid cell growth and 

proliferation. Increased secretory and membrane protein synthesis relies on an upregulation of the 

translational and protein folding machinery in the endoplasmic reticulum to aid tumor growth. For 

example, many critical cancer signaling kinases, such as EGFR (epithelial growth factor receptor), 

function as membrane proteins. Protein disulfide isomerase (PDI) is the major enzyme responsible 

for disulfide bond formation in the endoplasmic reticulum, and knockdown of PDI halts tumor 

progression. Thus, the goal of this dissertation project was to identify novel PDI inhibitors and 

provide an extensive preclinical evaluation of their activity for the treatment of cancer, specifically 

glioblastoma. 

 Through a phenotypic screening approach, we identified the pyrimidotriazinedione 35G8 

as a potent cytotoxic agent that inhibited PDI. Because of its known pan-assay interference 

(PAINS) properties, we first validated that the activity of 35G8 was not due to its redox cycling 

characteristics and used a variety of assays to confirm PDI inhibition. 35G8 destabilized PDI in 

cell-based target-engagement assays and had a transcriptomic profile similar to PDI knockdown. 

These results demonstrated the ability of 35G8 to inhibit PDI and potently kill cancer cells.
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 The chalcone BAP2 was also identified through a phenotypic screening approach, and an 

initial structure-activity relationship (SAR) campaign with 67 analogues revealed important 

binding characteristics that allowed us to hypothesize that the compounds were binding in the b’ 

domain of PDI. Mutation of His256 to Ala abolished BAP2 activity and confirmed the binding 

hypothesis. Furthermore, BAP2 and analogues inhibit glioblastoma cell growth, induce ER stress, 

increase expression of G2M checkpoint proteins, and reduce expression of DNA repair proteins. 

BAP2 and analogues also sensitized glioblastoma (GBM) cells to radiation. These results establish 

the BAP2 series as PDI inhibitors and support their further study as a novel strategy to treat 

glioblastoma.   

 Finally, a manual biochemical screen of over 1,000 compounds in the PDI reductase assay 

produced a benzyl-benzodioxole, AS15, as a potent hit with an IC50 value under 1 μM. SAR 

analysis was performed with over 100 analogues of AS15. The SAR indicated that the compounds 

were binding PDI via a retro-Michael addition onto the cysteines, and protein mass spectrometry 

confirmed covalent binding. Cytotoxicity of the AS15 analogues was improved when combined 

with glutathione synthesis inhibitor buthionine sulfoximine (BSO), which confirmed that PDI 

competed with glutathione for binding the AS15 series in the cells. Thus, this study provides an 

excellent foundation to build analogues that are less sensitive to glutathione and more selective for 

PDI in the cells. 

 The work as a whole provides an extensive characterization of PDI inhibition and its role 

in cancer. We were able to provide extensive preclinical evaluation of lead PDI inhibitors 

identified from medium throughput screens. This work provides the foundation for a guided 

optimization of the PDI inhibitors discovered to further improve the potency and selectivity of the 

compounds and design a PDI inhibitor for testing in clinical trials. 
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CHAPTER I 

Current Challenges and Opportunities in Treating Glioblastoma 

Introduction1 

Glioblastoma (GBM) is the most malignant primary central nervous system tumor, and the 

prognosis for patients is often bleak. Currently, there are no curative treatment options for GBM, 

and despite rigorous therapeutic research, the survival rate of patients diagnosed with GBM 

remains low. Median overall survival is 15-23 months and five-year survival is less than 6 %, 

which is the lowest long-term survival rate of malignant brain tumors.1 An estimated 79,270 new 

cases of primary brain and other central nervous system (CNS) tumors were expected to be 

diagnosed in 2017.1 To improve therapeutic options, studies to identify and validate single protein 

targets are underway. However, in most cases, targeted compounds that perform well in preclinical 

studies have failed expensive Phase III clinical trials in humans. Ultimately, several major factors 

are responsible for drug failure, including poor pharmacokinetic properties, emergence of 

resistance pathways, complex intratumoral heterogeneity, and suboptimal clinical trial design. 

Thus, there is a desperate need for an efficient approach to identify and vet potential drugs at the 

preclinical stage, to prevent late stage failure. Genomic- and proteomic-scale analysis can identify 

 
1 This work has been published and is being reprinted with permission from Shergalis, A., Bankhead, A., Luesakul, 

U., Muangsin, N., & Neamati, N. (2018). Current challenges and opportunities in treating 

glioblastoma. Pharmacological reviews, 70(3), 412-445. 

Author contributions: Andrea Shergalis was the primary author, Armand Bankhead III generated figures I-5, I-6, 

and I-7. Urarika Luesakul generated figure I-10. Nouri Neamati is the corresponding author. 
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proteins and pathways involved in the development of chemotherapeutic resistance mechanisms 

responsible for recurrent disease. 

   With the advent of TCGA (The Cancer Genome Atlas) consortium and resources, 

genomic analysis of cancers is at the forefront of drug discovery. Additionally, proteomics is 

gaining widespread use in drug discovery efforts. Quantitative proteomics can measure the 

expression and, in some cases, post-translational modification status of up to and over 8,000 

proteins in the cell at any given time. The advent of novel proteomic techniques in the last decade, 

in tandem with the resources allocated to address the lack of a cure for GBM, will accelerate the 

discovery of a treatment and shed light on the feasibility of precision medicine.  

   The target and mechanism of action of many Food and Drug Administration (FDA)-

approved drugs are not fully established. Of the approximately 1,600 FDA-approved drugs with 

known targets, most belong to four classes: GPCRs (33 %), ion channels (18 %), nuclear receptors 

(16 %), and kinases (3 %).2 This suggests uncharted proteomic space exists in which novel drug 

targets may be identified. Of the six drugs approved for the treatment of GBM, three act as DNA 

alkylators, two are kinase inhibitors, and one is a tubulin inhibitor. Burgeoning research efforts in 

novel treatment areas, including alternating electric field therapy (tumor-treating fields), 

immunotherapy, and antibody-drug conjugates are improving patient outcomes. Much of the 

challenge in developing a GBM therapy lies in reaching therapeutic concentrations at the target 

site. Few drug molecules cross the blood-brain barrier (BBB), and those that do may be exported 

via efflux pumps. Therefore, valid target selection, permeability, and drug pharmacokinetics are 

important considerations in GBM drug design. 
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   In this review, we highlight the importance of genomic and proteomic research on 

identifying novel biomarkers and drug targets for GBM treatment. Additionally, we demonstrate 

a genomic approach to drug discovery and uncover novel potential drug targets by performing 

bioinformatics analysis of TCGA data. While further validation is necessary and increased 

expression of some of these targets may be a response to oncogenic stress, this approach provides 

a list of proteins that, if inhibited alone or in combination with other targets, could effectively treat 

GBM. Furthermore, we address the challenges faced in the drug discovery and delivery process 

and discuss potential solutions to those problems. In particular, we focus on the challenge of BBB 

permeability, nanocarrier design, and the application of computational methods to aid compound 

optimization. In recent years, major clinical trials for small molecule treatment of GBM have failed 

because the compounds did not reach effective concentrations in the brain (i.e. gefitinib and 

erlotinib).3, 4 Thus, an understanding of BBB function and physiology is crucial for the 

development of efficacious small molecule treatment strategies and the avoidance of failed 

expensive clinical trials. The lack of effective treatment options for GBM emphasizes the unmet 

need for successful target inhibition and drug delivery strategies.  

Current treatment options for glioblastoma 

Upon diagnosis, GBM treatment includes maximal surgical resection, followed by 

temozolomide and radiation.5 Due to the invasive nature of GBM, surgical resection rarely 

eliminates all tumor cells, and post-surgical treatment is usually necessary to prevent recurrence. 

Treatment varies based on the age of the patient and stage of the disease. Depending on the overall 

health of the patient and disease status, they may also be enrolled in relevant ongoing clinical trials.  
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The standard-of-care temozolomide is a DNA-alkylating agent discovered in the 1970s and 

approved in 2005 by the FDA to treat newly diagnosed brain tumors. The first clinical trial with 

temozolomide was conducted in 1993, and, of the ten patients who received adjuvant 

temozolomide, five patients showed significant clinical and radiographic improvement.6 The 

success of this initial study prompted further successful studies of temozolomide treatment in 

GBM patients. In these studies, subsets of patients were more responsive to temozolomide 

treatment than others. Responsive patients had methyl-guanine-methyltransferase (MGMT) genes 

with methylated promoters and showed higher survival rates than patients with hypomethylated 

MGMT genes.7 MGMT is a DNA repair enzyme that repairs the N7 and O6 positions of guanine 

alkylated by temozolomide. While MGMT depletion does not seem to be an effective treatment 

strategy,8, 9 MGMT gene methylation status nevertheless remains an important biomarker for GBM 

prognosis. Although temozolomide is part of the standard chemotherapeutic regimen for GBM, it 

presents unwanted toxicity and does not eliminate the disease. As an alternative approach, targeted 

therapies may limit unwanted toxicity and more effectively block tumor proliferation.  

A promising targeted treatment is the anti-vascular endothelial growth factor (VEGF) 

monoclonal antibody bevacizumab. Bevacizumab was first approved by the FDA in 2004 to treat 

metastatic colorectal cancer. Since then, it has been approved for several different types of cancer, 

including GBM in 2009. Angiogenesis is a key survival feature of many cancers as tumors rely on 

nutrients from the vasculature to proliferate. VEGF is a broad mediator of tumor 

neovascularization, and VEGF expression is linked with GBM tumorgenicity.10 Bevacizumab was 

first tested in 21 patients with malignant glioma in 2004. Patients were treated with bevacizumab 

at 5 mg/kg and irinotecan at 125 mg/m2 every two weeks producing a significant 43 % response 
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rate.11 However, the Phase III “Avaglio” trial, conducted on 921 patients with newly diagnosed 

GBM, resulted in no overall survival benefit in bevacizumab-treated versus placebo-treated 

patients (median overall survival of 16.8 months for bevacizumab-treated patients and 16.7 months 

for placebo-treated patients).12 A second Phase III trial, the RTOG 0825 trial, produced similar 

results. Out of 637 patients receiving either 10 mg/kg bevacizumab every two weeks or placebo, 

there was no significant difference in overall survival between the two groups (median overall 

survival of 15.7 months for bevacizumab-treated patients vs. 16.1 months for the placebo group).13 

Therefore, bevacizumab treatment is an option reserved for patients with recurrent GBM.  

Almost all GBM tumors that respond to first-line therapy recur. There is no standard 

approach for a successful treatment of recurrent GBM. Second-line treatment may take several 

directions, depending on factors such as tumor size and location, previous treatments, age, and 

time from initial diagnosis. Treatment can include surgical resection, reirradiation, nitrosoureas, 

temozolomide rechallenge, bevacizumab, or tyrosine kinase inhibitors.14 Even with these 

treatments, median overall survival after recurrence is 6.2 months.15 In a Phase II study that led to 

conditional FDA approval, the longest median progression-free survival (5.6 months) was seen 

with a combination of bevacizumab and irinotecan,16 while longest overall survival (12 months) 

resulted from CCNU + bevacizumab.17 
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Figure I-1 Classification of brain tumors as reported from the Central Brain Tumor Registry of the United States.18 Numbers in 

parentheses indicate incidence or cases per 100,000 individuals and are age-adjusted to the 2000 United States standard population.  

Molecular diagnostic signature of glioblastoma 

 Glioblastoma is a grade IV glioma and the most malignant astrocytoma (Figure I-1).19 

GBM tumors consist of a complex mixture of heterogeneous cells, complicating the search for the 

cell of origin. Previously, GBM was thought to originate from neural stem cells. However, studies 

have suggested that gliomas may differentiate directly from progenitor cells, and the type of 

progenitor cell each tumor originates from dictates their chemosensitivity.20 Until recently, GBM 

tumors have been diagnosed histologically and are characterized by increased cell density, 

abnormal cell types (atypia), areas of necrosis, and robust angiogenesis (Figure I-2). This 
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histological diagnosis hinders therapeutic approaches at personalized therapy. TCGA project 

improved characterization of GBM tumors with whole genome sequencing and identified key 

oncogenic signaling pathways to further classify tumor types. The molecular aberrations required 

for gliomagenesis include: mutations in the P53, retinoblastoma (RB), and receptor tyrosine kinase 

(RTK)/Ras/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways (Figure 

I-3).21 RB and P53 are tumor suppressors that lose function in several cancers.22, 23 Additionally, 

epithelial growth factor receptor (EGFR) expression is amplified in some GBM tumors, leading to 

increased cell proliferation through the RTK/Ras/PI3K/AKT signaling pathway.24 Through TCGA 

project, tumors were also profiled with Reverse Phase Protein Array (RPPA), a high-throughput 

technique similar to Western blotting that detects and quantifies protein expression levels. Out of 

171 antibodies, 127 correlated with transcriptomal subtype, and signaling pathway alterations were 

confirmed, including increased EGFR, Notch1, and Notch3 expression and activated MAPK 

pathway signaling.21 While this is a useful tool, only 171 antibodies were used in this study and 

therefore only 171 gene products could be profiled, providing a limited scope of potential novel 

drug targets. TCGA results were used by the World Health Organization to describe novel 

guidelines for GBM diagnosis to supplement histological findings with the mutation status of 

several biomarkers of GBM, including IDH1/2, ATRX, and Histone Cluster 1 H3 Family Member 

A (HIST1H3A or H3F3A) (mutation at position K27M or simply H3-K27M mutation).25 The 

novel classification of GBM subtypes will aid patient stratification and the development of targeted 

therapeutics based on genetics. 
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Figure I-2 Common characteristics of glioblastoma. Object images obtained from Servier Medical Art by Servier.  

Molecular profiling has been used to classify GBM into four subtypes: Classical, 

Mesenchymal, Proneural, and Neural. Expression and aberrations of specific genes associated with 

each subtype have been identified.26 All Classical GBM tumors contain chromosome 7 

amplification and chromosome 10 loss, and almost all (97 %) display EGFR amplification.26 

Mesenchymal GBM tumors show loss of NF1, contain markers of epithelial-to-mesenchymal 

transition (CD44 and MERTYK), and highly express genes in the tumor necrosis factor super 

family and NF-κB pathways. Alterations of PDGFRA and point mutations in the IDH1 gene are 

characteristic of Proneural subtypes. Tumors with expression of neural markers NEFL, GABRA1, 

SYT1, and SLC12A5 are classified as the Neural subtype. Of these subtypes, patients classified 

with the Proneural subtype generally had a longer overall survival, though the results were not 

statistically significant. Furthermore, the Proneural subtype is most common in younger patients. 

However, of the four subtypes, the Proneural subtype seemed the least responsive to aggressive 
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treatment (concurrent chemo- and radiotherapy, or more than three subsequent cycles of 

chemotherapy).26  

 

Figure I-3 Canonical gliomagenesis mediators EGFR, P53, and RB1 are important for cancer signaling. EGFR is amplified or 

mutated to the constitutively active EGFRvIII and propagates kinase signaling cascades to promote proliferation, invasion, and 

angiogenesis. P53 is a tumor suppressor that is mutated in GBM, allowing BCL2 to inhibit apoptosis. RB is another tumor 

suppressor gene that, when inactivated, releases E2F1 to activate cell cycling and growth. Percentages of aberrations of commonly 

mutated genes (in yellow) are reported, determined from TCGA analysis of patient samples.21 

Improvements in tumor profiling may drastically alter how GBM is treated and may 

improve the fidelity of new diagnoses. Furthermore, treatment of each tumor subtype may be 

individualized for optimal success. Although no targeted therapies have been approved for GBM 

yet, these diagnostic criteria may lead to more effective personalized treatments. Moreover, 

targeted therapies should be evaluated in a specific GBM subtype for optimal response. Further 

complicating the development of targeted treatments is the fact that a single cell of origin may not 

exist because of the cellular complexity of GBM. Conversely, multiple factors lead to the disease, 
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and, in fact, the cell of origin may not be the cell type that contains the transforming mutation. 

However, deciphering the cell of origin of GBM may be important to properly identify targets for 

drug discovery, stratify patient diagnosis, and optimize an effective treatment strategy. 

Characteristics of protein expression in glioblastoma 

 Dynamic signaling pathways govern cancer cell proliferation. A major consequence of 

cancer signaling is an imbalance in protein expression to allow the cells to evade apoptosis, 

proliferate, and metastasize. Approximately 40% of GBM tumors are characterized by 

amplification and overexpression of EGFR, an effector of several signaling cascades that aid tumor 

growth, angiogenesis, migration, and metastatic spread.21 EGFR is a receptor tyrosine kinase that, 

upon ligand binding, dimerizes and activates downstream signaling through the Ras/PI3K/AKT 

pathway. EGFR overexpression and EGFRvIII amplification may be prognostic markers that 

correlate with decreased overall survival of GBM patients27; however, a recent meta-analysis 

disputes this claim.28 Nevertheless, because EGFR amplification and mutations promote glioma 

growth and survival, EGFR has been proposed as an attractive therapeutic target. Unfortunately, 

several clinical trials with EGFR inhibitors have failed, likely due to poor BBB permeability, 

intratumoral heterogeneity, and the difference between local versus systemic administration.29 

Gliomagenesis is driven by mutations such as EGFRvIII, and those gene mutations promote tumor 

growth and proliferation through protein expression networks. 

Large-scale proteomic research has shown that GBM tumors have increased expression of 

membrane proteins involved in cellular function and maintenance (p = 2.03 x 10-8), protein 

synthesis (p = 7.74 x 10-11), cell-to-cell signaling and interaction (p = 1.82 x 10-10), cellular 

movement (p = 1.34 x 10-8), and antigen presentation (p = 2.24 x 10-7) compared to normal brain 
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tissue (Figure I-4).30 More specifically, GBM tumors had increased expression of membrane 

proteins involved in acute phase response signaling, caveolar-mediated endocytosis signaling, and 

calcium signaling.30  

 

Figure I-4 Signaling pathways involving membrane proteins upregulated in GBM as determined by LC-MS/MS and iTRAQ. 

Results are from proteomics analysis of human GBM tumors with Ingenuity Pathway Analysis software.30 Representative genes 

from each category are shown. 

Proteomic approaches have identified proteins that are involved in chemotherapeutic 

resistance. For example, a study using 2D gel electrophoresis (2DGE) and mass spectrometry 

identified that lipocalin 2 (LCN2) and integrin β3 (ITGB3) were downregulated in BCNU-resistant 

rat models of glioma.31 Furthermore, 2DGE coupled with liquid chromatography-mass 

spectrometry analysis identified several proteins important for the invasive properties of gliomas.32 

In particular, annexin A2 was highly expressed in an angiogenesis-dependent cell line,32 and its 

overexpression further correlated with tumor aggressiveness and patient survival.33  
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Although many other proteins have been found to contribute to GBM tumor growth, for 

this review, we will focus on targets that have been discovered through proteomic approaches and 

TCGA data mining. Some examples of proteins overexpressed in GBM that may represent novel 

drug targets that were not discovered via proteomic approaches include heat-shock protein 47 

(HSP47),34 cathepsin L (CTSL),35 glycoprotein nonmetastatic melanoma protein B (GPNMB),36 

transcription factor 12 (HEB),37 targeting protein for Xenopus kinesin-like protein 2 (TPX2),38 and 

B-cell CLL/lymphoma 3 (BCL3).39 Due to the characteristic intratumoral heterogeneity of GBM, 

it is likely that a single target approach will not be effective, and appropriate drug combinations 

will be necessary. 

Emerging targets in glioblastoma 

Numerous proteins are overexpressed in GBM, and abundant research has identified 

potential targets; however, extensive genomic and proteomic research suggests that tumor 

heterogeneity will likely render GBM unresponsive to single agent therapy. Of equal importance 

to target discovery is biomarker identification. Disease biomarkers can be used for early diagnosis 

and monitoring responsiveness to treatment. 

Biomarker identification 

Biomarkers have been used successfully as tools for cancer diagnosis. Prostate cancer was 

one of the first to benefit significantly with the discovery of prostate specific antigen to inform 

early diagnosis and response to treatment. In addition, biomarkers have been discovered for 

ovarian, head and neck, lung, and breast cancer, among others.40-43 Gliomas are characterized in 

the clinic by IDH1 and IDH2 mutations and MGMT gene promoter methylation status to better 

inform treatment strategies; however, for GBM, proper prognostic biomarkers do not yet exist. By 
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studying glioma tumorigenesis in detail, prognostic markers can be identified. Better prognostic 

markers would allow physicians to diagnose and begin treatment of GBM at early onset, possibly 

preventing disease progression. 

Several groups have used proteomic techniques to analyze GBM and identify potential 

biomarkers for early diagnosis. For example, small extracellular vesicles transporting RNA and 

protein between cells can help clinicians diagnose and begin treatment of GBM at an earlier stage. 

Small extracellular vesicles in the cerebrospinal fluid (CSF) carry important microRNA that could 

be used as biomarkers.44 In addition, the oncometabolite 2-hydroxyglutarate (2-HG) has been 

studied as a noninvasive biomarker in gliomas. In one study, urinary 2-HG levels were elevated in 

patients diagnosed with IDH1-mutant gliomas.45 However, it is still unclear whether 2-HG levels 

could be used as a diagnostic measure for IDH1-mutant GBM, and whether 2-HG levels could 

determine patient health outcome in response to chemotherapy and radiation. A computational 

approach was used to identify dysregulated pathways associated with short-term survival including 

proteins associated with gene ontology terms “protein kinase cascade” and “NFκB pathway.”46 

Despite this research, novel disease biomarkers identified with mass spectrometry-based 

proteomics have yet to reach the clinic.47  

Drug discovery targets 

Genomic and proteomic techniques inform the development of precision medicine. The 

evolution of large-scale proteomic efforts is likely to benefit future drug discovery, and 

information on genomic events in GBM could lead to valuable insights about protein target 

candidates. Using TCGA GBM project cohort genomic analysis, we identified 20 genes with high 

expression that correlates with poor overall survival. These genes encode for proteins that promote 
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the aggressive nature of GBM tumors and therefore may be important drug targets. However, 

further validation is necessary to confirm that the increased expression is not a response to 

oncogenic stress.  

Gene expression associated with reduced patient survival 

In an effort to better understand the landscape of known and unknown GBM drug targets 

based on available gene expression data, we performed an analysis on 141 GBM samples from the 

TCGA cohort with both survival metadata and RNASeq expression data 

(http://cancergenome.nih.gov/). Patient sample RNASeq RSEM-normalized gene expression 

values and survival metadata were sourced from the TCGA GDAC Firehose.48 When multiple 

samples were available for a given patient, barcodes were sorted alphabetically and the first was 

selected for analysis. 

https://cancergenome.nih.gov/
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Figure I-5 Twenty genes associated with reduced survivability in the TCGA GBM patient cohort profiled with RNASeq expression 

data. Patients were stratified by high and low gene expression based on one of five expression percentile thresholds. Kaplan-Meier 

survival plots are shown with patients having increased expression in red and all other GBM patients shown in green. Non-adjusted 

p-values generated using the log-rank test are shown. All p-values shown survived multiple testing corrections (qValue ≤ 0.1) 

across all 5 percentile thresholds and 20,531 genes. 

GBM patient samples were evaluated for reduced survivability by comparing survival 

outcomes for patients with high and low expression of each gene (Figure I-5). Thresholding for 

high and low expression patient populations was evaluated using five different quantile cutoffs: 

95%, 90%, 75%, 50%, and 25%. A log-rank test statistic was calculated for each cutoff to compare 

the survival distributions of high and low expression patient populations with the null hypothesis 

that there was no difference in survival curves. P-values were FDR-adjusted across all diseases, 
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quantile cutoffs, and genes evaluated. To reduce over-fitting of a single cutoff per gene, genes for 

which the high expression population was associated with reduced survivability were required to 

have FDR-adjusted p-values ≤ 0.1 for at least two quantile cutoffs. Survival test statistics were 

calculated in R using the survival package.49 

Twenty genes were identified as significantly associated with reduced survivability using 

the criteria described in the previous paragraph. Several of the 20 significant genes encode proteins 

involved in EGFR signaling. Our results reveal novel EGFR signaling proteins that may have more 

prominent roles than previously thought. These proteins include proteases (FURIN, GZMB, and 

NDEL1), transcription factors (LITAF, IRX3, NKX3-1, and VEGFC), and receptors (ERβ, BOC, 

EREG, and PTPRN). Agglomerative hierarchical clustering was performed using the 20 

significant genes across TCGA GBM patients, and patients were stratified based on cluster 

membership. One cluster group had higher average expression across the 20 genes, and this higher 

expression corresponded with reduced time to death and disease-free survival (Figure I-6). Patients 

belonging to the cluster group with higher average expression had significantly reduced survival 

compared to those not included. Survival stratification significance (p = 5.59 x 10-11) was greater 

when evaluating by cluster group across all 20 genes compared with any of the 20 genes separately 

(Figure I-6). Gene expression association with poor overall survival was further validated by 

applying survival test statistics to samples from three independent GBM cohorts.50-52 Eight of the 

20 genes (LITAF, FURIN, VEGFC, C20orf166-AS1, ELOVL6, PODNL1, ESR2, and QSOX1) were 

significantly associated with reduced survivability in at least one additional GBM cohort. This 

additional validation supports the importance of the overexpression of these genes in the context 

of GBM. 
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Figure I-6 Hierarchical clustering of 20 genes (A) Hierarchical clustering was performed to identify groups of patients with similar 

RNASeq expression of 20 genes associated with reduced survivability in the TCGA GBM patient cohort. (B) Patients stratified 

using clustering dendrogram assignment into high and low expression groups showed significant differences in survival. Heatmap 

z-scores were calculated per gene. Agglomerative hierarchical clustering with complete linkage was performed using Euclidean 

and Pearson correlation distance metrics on rows and columns respectively. 

Further validation of the proteins was performed with the open-access resource Pharos.53 

The majority of the identified genes (12) had Tbio classifications while two (ESR2 and TH) had 

Tclin classifications and three (ELOVL6, FURIN, GZMB) were assigned a Tchem classification. 

All targets that were mapped to GTEx expression were classified as having high or medium 

expression levels in normal brain tissue. From the analysis, 21 out of 25 genes in Figure I-4 and 

12 out of 20 genes (Table I-1) have a known link to brain cancer. Of the 12 genes, seven are linked 

to GBM: BOC, ELOVL6, IRX3, LITAF, NDEL1, PTPRN, and QSOX1. Furthermore, ELOVL6 

small molecule probes have been identified and could be used to validate ELOVL6 as a drug target. 

Given that ELOVL6, ESR2, TH, FURIN, and GZMB have probes or inhibitors identified, these 

proteins could be a starting point for validation of our TCGA data mining. 
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Table I-1 Gene descriptions from DAVID bioinformatics database (https://david.ncifcrf.gov). 

No. Name Full Name Description Refs. 

1 BOC 

BOC cell adhesion 

associated, 

oncogene 

regulated 

Component of a cell-surface receptor complex 

that mediates cell-cell interactions between 

muscle precursor cells 

54 

2 CLEC4GP1 

C-type lectin 

domain family 4 

member G 

pseudogene 1 

function unknown N/A 

3 ELOVL6 

ELOVL fatty acid 

elongase 6 

Fatty acid elongase specific to C12-C16 

saturated and monounsaturated fatty acids 

55 

4 EREG epiregulin 
May be a mediator of localized cell 

proliferation 

56 

5 ESR2 estrogen receptor 2 

Nuclear hormone receptor that binds estrogens 

with an affinity similar to that of ESR1 and 

activates expression of reporter genes 

containing estrogen response elements in an 

estrogen-dependent manner 

57, 58 
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6 FDCSP 

follicular dendritic 

cell secreted 

protein 

Can bind to the surface of B-lymphoma cells, 

but not T-lymphoma cells, consistent with a 

function as a secreted mediator acting upon B-

cells 

59, 60 

7 FURIN 

furin, paired basic 

amino acid 

cleaving enzyme 

Release of mature proteins from their 

proproteins by cleavage of -Arg-Xaa-Yaa-Arg-

|-Zaa- bonds, where Xaa can be any amino acid 

and Yaa is Arg or Lys and regulates TGF-β 

bioavailability 

61 

8 FUT8-AS1 

fucosyltransferase 

8 antisense RNA 1 
Fucosylation of proteins, including EGFR  

62 

9 GZMB granzyme B 

This enzyme is necessary for target cell lysis in 

cell-mediated immune responses. It cleaves 

after Asp. Seems to be linked to an activation 

cascade of caspases (aspartate-specific cysteine 

proteases) responsible for apoptosis execution. 

It has been associated with both tumor 

progression and regression, in a case-dependent 

manner. 

63, 64 

10 IRX3 

iroquois homeobox 

3 

Belongs to the TALE/IRO homeobox family 

and may have a direct functional relationship to 

both obesity and type 2 diabetes. IRX3 is a 

proneural gene important for neuronal 

differentiation. 

65, 66 
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11 LITAF 

lipopolysaccharide 

induced TNF 

factor 

Probable role in regulating transcription of 

specific genes. May regulate through NFκB1 

the expression of the CCL2/MCP-1 chemokine. 

May play a role in tumor necrosis factor alpha 

(TNF-alpha) gene expression 

67 

12 NDEL1 

nudE 

neurodevelopment 

protein 1 like 1 

Facilitates the polymerization of 

neurofilaments from the individual subunits 

NEFH and NEFL. Required for organization of 

the cellular microtubule array and microtubule 

anchoring at the centrosome 

68 

13 NKX3-1 NK3 homeobox 1 

Transcription factor, which binds preferentially 

the consensus sequence 5'-TAAGT[AG]-3' and 

can behave as a transcriptional repressor. Could 

play an important role in regulating 

proliferation of glandular epithelium and in the 

formation of ducts in prostate 

69 

14 PODNL1 podocan like 1 
Belongs to the small leucine-rich proteoglycan 

(SLRP) family 

70-72 

15 PTPRN 

protein tyrosine 

phosphatase, 

receptor type N 

Implicated in neuroendocrine secretory 

processes. May be involved in processes 

specific for neurosecretory granules, such as 

their biogenesis, trafficking or regulated 

exocytosis or may have a general role in 

neuroendocrine functions 

73, 74 
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16 QSOX1 

quiescin sulfhydryl 

oxidase 1 

Catalyzes the oxidation of sulfhydryl groups in 

peptide and protein thiols to disulfides with the 

reduction of oxygen to hydrogen peroxide. May 

contribute to disulfide bond formation in a 

variety of secreted proteins 

75 

17 SEMA4F semaphorin 4F 

Estrogen-regulated semaphorin ligand with 

growth cone collapse activity against retinal 

ganglion-cell axons 

76 

18 TH 

tyrosine 

hydroxylase 

Plays an important role in the physiology of 

adrenergic neurons 

77 

19 VEGFC 

vascular 

endothelial growth 

factor C 

Growth factor active in angiogenesis and 

endothelial cell growth, stimulating 

proliferation and migration. Has effects on the 

permeability of blood vessels. May function in 

angiogenesis of the venous and lymphatic 

vascular systems during embryogenesis, and in 

the maintenance of differentiated lymphatic 

endothelium in adults 

78, 79 

20 C20orf166AS1 

chromosome 20 

open reading frame 

166 antisense RNA 

1 

long non-coding RNA 
80 
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Figure I-7 Expression of 20 genes significantly associated with reduced survivability in GBM across 33 TCGA diseases. Gene 

expression from each patient sample was converted to a z-score, and z-scores were re-calculated across all diseases for each gene 



 

23 

 

to show relative expression. Regions of the heatmap are circled to highlight genes with consistent higher expression (10th percentile 

> 0.5) and previously published support for relevance to disease progression (cyan) or high expression without previously published 

support for disease progression (purple). Diseases are ranked by decreasing average expression and ribbon on the right is colored 

to indicate average expression per patient sample. 

We expanded our analysis of the 20 genes to include 33 TCGA diseases (Figure I-7). Head 

and neck squamous cancer had the highest average expression of the 20 genes in the analyzed 

patient samples. In addition, several genes were identified that have consistently higher expression 

in several cancers. For example, PTPRN was highly expressed in pancreatic adenocarcinoma and 

the pheochromocytoma and paraganglioma cohort; and therefore, those cancer subsets may be 

more sensitive to targeted PTPRN therapy. Several of the genes are involved in the transcriptional 

regulation of EGFR, including ESR2, EREG, and VEGFC. In addition, several genes are indirectly 

involved in EGFR regulation, including FUT8, LITAF, FURIN, NKX3-1, and TH. Upon further 

validation, these transcription factors may prove to be relevant to the progression and recurrence 

of GBM. 

Below, we briefly summarize the 20 genes significantly associated with reduced 

survivability and discuss current research on the link between each gene and cancer. Further 

validation of each target is necessary to confirm the importance of each gene in the context of 

GBM. Inhibiting the activity or expression of one, or a combination, of the proteins discussed 

below may prove to be a viable treatment strategy for GBM. 

BOC cell adhesion associated, oncogene regulated (BOC) 

BOC is a member of the immunoglobulin/fibronectin type III repeat family and promotes 

myogenic differentiation. During oncogenesis, BOC promotes hedgehog pathway signaling by 

sustaining a feedback mechanism that enhances the concentration of Sonic hedgehog (Shh) 

ligand.54 The hedgehog signaling pathway is necessary for normal cellular processes such as 
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embryogenesis and growth of hair follicles and taste papillae in adults.81 In the absence of the Shh 

ligand, the GPCR Ptch is active, which blocks Smo signaling. When Shh ligand is present, it 

inactivates Ptch, allowing Smo to signal transcription of target genes. Since BOC activates 

hedgehog pathway signaling, it likely contributes to GBM progression and may be a potential drug 

target. In our analysis, increased BOC expression is strongly associated with poor overall survival 

(p = 1.36 x 10-6). This is the first report, to our knowledge, of BOC associated with GBM.  

C-type lectin domain family 4 member G pseudogene 1 (CLEC4GP1)  

CLEC4G is a 32.6-kDa membrane-bound protein expressed in the liver and lymph nodes 

and plays a role in T-cell immune response. TCGA whole-genome sequencing revealed CLEC4G 

was downregulated in hepatocellular carcinoma tissue.82 As a pseudogene, CLEC4GP1 is likely a 

non-functional copy of the enzyme. Pseudogenes can arise during duplication if a mutation occurs 

in the DNA, or with retrotransposition, in which the cDNA product of the reverse-transcribed 

mRNA becomes incorporated in the genome. In our analysis, increased CLEC4GP1 expression is 

strongly associated with poor overall survival (p = 2.63 x 10-5). CLEC4GP1 is located on 

chromosome 19. In one study, CLEC4GP1 mRNA expression increased in response to an mRNA-

based vaccine encoding influenza A hemagglutinin from a pandemic strain.83 Additionally, 

expression of CLEC4GP1 is high in samples from patients diagnosed with adenoid cystic 

carcinoma (Figure I-7).  

ELOVL fatty acid elongase 6 (ELOVL6) 

ELOVL6 is highly expressed in the brain, and the gene is often hypomethylated in GBM.84 

This enzyme performs the first and rate-limiting step of fatty acid elongation, with malonyl-CoA 

as a 2-carbon donor and is important for insulin sensitivity and energy metabolism.85 
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Phospholipids containing longer acyl chains are abundant in cancer tissue, and ELOVL6 is the 

main enzyme responsible for fatty acid elongation in cancer.86 The gene is located on chromosome 

4q25, adjacent to the EGF gene. Expression of ELOVL6 may be high because it shares an enhancer 

region with EGF. Enhancers perform complex functions and can activate transcription of specific 

genes upstream or downstream, by engaging the transcriptional machinery. In acute myeloid 

leukemia, a novel chromosomal rearrangement was found to activate ELOVL6 and EGF.87 

ELOVL6 has been studied in the context of many cancers. Increased ELOVL6 mRNA expression 

was found in triple-negative breast cancer tissue.88 Additionally, ELOVL6 and lipid composition 

may be regulated by the RB-E2F1 pathway.89 An ELOVL6 inhibitor, Compound A, inhibited 

tumor growth in an in vivo model of squamous cell carcinoma,86 and therefore validation and 

pursuit of ELOVL6 inhibition in GBM is warranted.  

Epiregulin (EREG) 

EREG is a 19-kDa peptide hormone that acts as a ligand for the EGF receptor and ErbB4. 

When cleaved by a disintegrin and metalloproteinase (ADAM) enzyme from the transmembrane 

pro-peptide to an active soluble form, EREG binds EGFR family members and initiates the 

signaling cascade. EREG expression is upregulated in gastric,90 colon,90 lung,91 and head and 

neck92 cancers, among others. In a colon cancer xenograft model, EREG expression correlated 

with a positive response to the anti-EGFR monoclonal antibody cetuximab, suggesting the tumors 

were dependent on the EGFR signaling pathway activated by EREG.93 EREG transcription is 

regulated by insulin, Sp1, NFκB, and AP-2.94-96 Silencing of EREG in a breast cancer cell line 

inhibited metastasis, angiogenesis, and tumor cell extravasation.97 EREG is a partial agonist of 

EGFR dimerization and induces differentiation in breast cancer cells.98 The emerging role for 
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EREG as a key activator of EGFR signaling driving cancer cell proliferation suggests that 

inhibition of EREG binding to EGFR is a potential targeted cancer treatment. In our analysis, 

EREG expression was associated with poor overall survival in GBM patients (p = 5.6 x 10-5). High 

EREG expression was also found in TCGA samples from patients diagnosed with rectum 

adenocarcinoma (Figure I-7). Furthermore, EREG activates the ERK/MAPK pathway in GBM 

suggesting inhibition of the EREG-EGFR interaction may be a strategy for EREG-overexpressing 

GBM patients.99  

Estrogen receptor 2 (ESR2) 

ESR2 encodes the gene for estrogen receptor β (ERβ), a nuclear hormone receptor for 

estrogen, is considered a tumor suppressor in the context of GBM and other cancers,58, 100 and 

enhances chemosensitivity in NSCLC.101 Treatment with ERβ agonist, LY500307, is efficacious 

in a GBM tumor-bearing mouse model.58 Additionally, ERβ expression, analyzed 

immunohistochemically, declines as brain astrocytic tumors progress.57 In our analysis, increased 

ESR2 expression is strongly associated with poor overall survival (p = 1.68 x 10-4), which is in 

contrast with the tumor suppressing effects of the protein. Furthermore, expression of ESR2 is high 

in TCGA samples from patients diagnosed with diffuse large B-cell lymphoma (Figure I-7). The 

tumor-suppressing characteristics of ESRβ may prevent it from being a potential anticancer target. 

Follicular dendritic cell secreted protein (FDCSP) 

FDCSP (C4orf7) is a 9.7-kDa peptide that promotes invasion and metastasis of tumor cells. 

While relatively little is known about this peptide, overexpression of FDCSP is common in 

tumorigenesis, especially in ovarian cancer.60 FDCSP expression has also been implicated as a 

marker of follicular dendritic cell sarcoma.102 The position, on chromosome 4q13, and 
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characteristics, including amino acid composition, molecular mass, and isoelectric point suggest 

FDCSP may be similar to the inflammatory C-X-C chemokines, such as IL-8.103 In our analysis, 

increased FDCSP expression is strongly associated with poor overall survival (p = 1.24 x 10-4). 

FDCSP expression may be important for GBM progression. 

Furin 

Furin is a protease that activates matrix metalloproteinases including proparathyroid 

hormone, transforming growth factor beta 1 precursor, proalbumin, pro-beta-secretase, membrane 

type-1 matrix metalloproteinase, beta subunit of pro-nerve growth factor, and von Willebrand 

factor. Furin is linked with tumor progression in several cancers including head and neck squamous 

cell carcinoma, breast cancer, and rhabdomyosarcoma.104 In astrocytoma cells, inhibition of furin 

decreases cell proliferation and invasiveness.105 Furthermore, furin promotes activation of pro-

TGFβ1 and pro-TGFβ2, demonstrating a tumorigenic role in glioma-initiating cells.106 In our 

analysis, increased furin expression is strongly associated with poor overall survival (p = 1.79 x 

10-4). Transcription of furin is promoted by AP-1 (activator protein-1), c-Jun, and ATF-2. 

Proteolysis is important in cancer, and furin activates several enzymes via proteolysis that 

contribute to cell migration and survival, including protein kinase C.107 Combined inhibition of 

furin, ADAM, calpain, and another serine protease is necessary to prevent glioma migration and 

slow growth mediated by protein tyrosine phosphatase μ.61 Inhibitors of furin demonstrate 

antiproliferative effects and are being optimized in the context of inhibition of viral replication.108, 

109 The extensive evidence of the tumorigenic role of furin in several cancers, including brain 

cancer, suggests it may be a promising therapeutic target, and inhibitors of furin may improve 

treatment outcomes. 
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Fucosyltransferase 8 antisense RNA 1 (FUT8-AS1) 

FUT8 is a 66.5-kDa enzyme located in the Golgi apparatus and extracellular space and 

catalyzes the transfer of fucose from GDP-fucose to N-linked type complex glycopeptides. 

Fucosylation is an important post-translational glycosylation event that regulates cancer signaling 

processes including metastasis and epithelial-to-mesenchymal transition. The expression of FUT8-

AS1 suggests FUT8 expression may be downregulated in GBM patients. In our analysis, increased 

FUT8-AS1 expression is strongly associated with poor overall survival (p = 8.6 x 10-5). FUT8 

function has been studied in the context of several cancers. For example, knockdown of FUT8 

halted growth of in vitro and in vivo models of lung cancer.110 Additionally, inhibitors have been 

developed that block fucosylation in models of cancer.111 While FUT8 expression has been studied 

in the context of lung, liver, colon, and other cancers, it has not been evaluated in GBM. 

Granzyme B (GZMB) 

GZMB is a serine protease in the peptidase S1 family and is involved in mediating 

apoptosis. This enzyme cleaves after aspartate and plays a role in the cellular caspase cascade that 

leads to apoptosis. GZMB is the most abundant enzyme in cytotoxic granules responsible for the 

clearance of tumor cells, as well as cells infected with intracellular pathogens and allogeneic 

cells.112, 113 It is also a prognostic marker in colorectal cancer.114 In our analysis, increased GZMB 

expression is strongly associated with poor overall survival (p = 5.29 x 10-7). Additionally, there 

is high expression of GZMB in TCGA samples from patients diagnosed with diffuse large B-cell 

lymphoma (Figure I-7). GZMB transcription is regulated by nuclear factor of activated T cells, 

Ikaros, and AP-1.115 GZMB gene transcription is also activated and enhanced by NF-κB, which 
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binds approximately 10 kilobases downstream from the GZMB transcription start site,116 and by 

JAK1/STAT signaling.117 The role of GZMB in apoptosis makes it an attractive anticancer target. 

Iroquois homeobox 3 (IRX3) 

IRX3 is a 5.2-kDa transcription factor in the Iroquois homeobox family of developmental 

factors and is involved in Shh-dependent neural patterning. IRX3 belongs to class I proteins of 

neural progenitor factors and is repressed by Shh signals. IRX3 contains transcription factor 

binding sites for ERα, Pax-5, AP-2α, AP-2β, AP-2γ, FOXD1, and C/EBP, among others. In our 

analysis, increased IRX3 expression is strongly associated with poor overall survival (p = 1.15 x 

10-4). In addition, consistently higher expression of IRX3 is observed in TCGA samples from 

patients diagnosed with breast cancer (Figure I-7). IRX3 is a target gene of WHSC1L1 (Wolf-

Hirschhorn syndrome candidate 1-like 1 gene, or NSD3), a known oncogene in breast cancer, and 

may be a regulator of WNT signaling.66 DNA methylation profiling of an oligodendroma-derived 

cell line revealed hypermethylation of the CpG island on an IRX3 exon, consistent with 

overexpression of IRX3 in tumor tissue compared to normal brain samples.118 Although IRX 

transcription factors have been identified in multiple genome-wide sequencing studies in cancer, 

they specifically hamper the tumor-suppressing activity of the TGF-β pathway.119 Therefore, 

blocking IRX3 expression, or inhibiting its ability to suppress the TGF-β pathway, may be an 

option for GBM treatment.  

Lipopolysaccharide-induced tissue-necrosis-factor factor (LITAF) 

LITAF is a lipopolysaccharide-regulated transcription factor located on chromosome 16 

that regulates VEGF and plays a role in angiogenesis and inflammatory response.120 LITAF 

contains a small integral membrane protein of lysosome/late endosome (SIMPLE)-like domain 



 

30 

 

(SLD) with a YXX ϕ motif that mediates transport of membrane proteins to and from the 

endosome, Golgi apparatus, and lysosomes. In several cancers, LITAF induces inflammation and 

promotes cancer cell survival. Stimulation by lipopolysaccharide (LPS) causes LITAF to 

translocate from the cytoplasm with its partner protein STAT6(B) to the nucleus to promote gene 

expression.67 In our analysis, increased LITAF expression is strongly associated with poor overall 

survival (p = 2.3 x 10-5). Furthermore, LITAF was in the top 30 overexpressed genes in GBM in a 

large-scale expression analysis study.121 Therefore, blocking the LITAF-STAT6(B) protein-

protein interaction may be a viable treatment strategy. However, LITAF possesses a tumor-

suppressing role in pancreatic cancer,122 and its expression can be induced by P53.123 LITAF 

knockdown promoted tumor malignancy and growth in nude mice injected subcutaneously with 

prostate cancer cells.124 Overall, LITAF plays a complex role in the progression of cancer. 

NudE neurodevelopment protein 1 like 1 (NDEL1) 

NDEL1 is a 38-kDa cytoskeletal protein that contains an N-terminal coiled coil NUDE 

domain and is important for the regulation of microtubule organization to promote neuronal 

migration. Expression of NDEL1 is highest during mitosis, and it is necessary for mitotic cell 

division.125 In our analysis, increased NDEL1 expression is strongly associated with poor overall 

survival (p = 5.7 x 10-5), and consistently higher expression is found in acute myeloid leukemia 

(Figure I-7). NDEL1 has also been implicated in the development of schizophrenia via its protein-

protein interactions with Disrupted-in-Schizophrenia 1 (DISC1).126 NDEL1 associates with 

microtubules, dynein, CENPF, and ZNF365. Additionally, the NDEL1 gene contains P53, c-myc, 

and ARP-1 transcription factor binding sites. With an increased understanding of the role of 
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NDEL1 in cancer migration, effective, targeted inhibitors could be developed to control tumor 

growth. 

NK3 homeobox 1 (NKX3-1) 

NKX3-1 is a transcription factor that negatively regulates epithelial cell growth in prostate 

tissue. Loss of NKX3-1 is common in prostate cancer patients.69, 127 NKX3-1 negatively regulates 

the PI3K-AKT pathway to suppress tumor growth, and heterozygous deletions of NKX3-1 and 

PTEN cause prostate adenocarcinomas in mice.128 Additionally, NKX3-1 functions as a tumor 

suppressor in hepatocellular carcinoma.129 In our analysis, increased NKX3-1 expression is 

strongly associated with poor overall survival (p = 1.74 x 10-4), and consistently higher expression 

is also found in prostate adenocarcinoma (Figure I-7). To our knowledge, NKX3-1 has not yet 

been studied in the context of GBM. 

Podocan like 1 (PODNL1) 

PODNL1 is an extracellular protein expressed in tibial nerves, coronary arteries, and bone 

marrow mesenchymal stem cells and is involved in proteinaceous extracellular matrix formation. 

It belongs to the small leucine-rich proteoglycan (SLRP) family of 17 genes and is a member of 

Class V SLRPs, residing on chromosome 19q. SLRPs also act upstream of signaling cascades, 

including receptor tyrosine kinases like ErbB family members.130 Interestingly, the Class V SLRPs 

bind collagen I and inhibit cell growth by inducing p21 expression.131 Additionally, another SLRP 

family member, decorin, binds to EGFR and lowers receptor levels by caveolin-mediated 

internalization.132-134 High expression of PODNL1 correlates with poor prognosis in ovarian 

cancer.71 Methylation of the PODNL1 gene may be important for phenotypic changes that occur 

during aging,70 and PODNL1 expression is associated with high-grade glioma.72 Our analysis 
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supports these findings; increased PODNL1 expression is strongly associated with poor overall 

survival (p = 3.61 x 10-6). Because several proteins in the SLRP family play a role in cancer 

progression, PODNL1 may have an important function as well. 

Protein tyrosine phosphatase, receptor type N (PTPRN) 

PTPRN (also known as islet antigen-2 or IA-2) is a gene encoding a 105.8-kDa protein in 

the protein tyrosine phosphatase family responsible for signaling processes related to cell growth, 

differentiation, and oncogenic transformation. Hypermethylation of PTPRN in ovarian cancer 

patients was associated with shorter survival.73 It was initially discovered as a gene differentially 

expressed in human pancreatic beta islet cells and is localized on the plasma membrane and in 

endosomes. PTPRN depletion reduced small cell lung cancer cell growth.135 Valproic acid induced 

the expression of PTPRN as a result of increased acetylation in the promoter region.136 Analysis 

of TCGA samples from patients with pancreatic adenocarcinoma, pheochromocytoma, 

paraganglioma, GBM, and LGG revealed consistently higher expression of PTPRN (Figure I-7). 

In our analysis, increased PTPRN expression is strongly associated with poor overall survival (p 

=2.19 x 10-5). While PTP family proteins have been well-studied in the context of cancer, little 

work has been done to elucidate the role of PTPRN in brain cancer. 

Quiescin sulfhydryl oxidase 1 (QSOX1) 

QSOX1 is a FAD (flavin adenine dinucleotide)-dependent 82.6-kDa enzyme that forms 

disulfide bonds in proteins by oxidizing sulfhydryl groups. It is found in the extracellular space, 

Golgi apparatus, and endoplasmic reticulum, where it functions alongside protein disulfide 

isomerase to fold nascent proteins.137 QSOX1 contains one thioredoxin domain and one ERV/ALR 

sulfhydryl oxidase domain. In pancreatic cancer, QSOX1 expression correlates with cell migration 
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and survival, and QSOX1-mediated migration of pancreatic ductal carcinoma cells may be 

activated by MMP-2 and MMP-9.75 Interestingly, loss of NKX3-1 expression correlates with an 

increase in QSOX1 expression in prostate cancer.138 In our analysis, increased QSOX1 expression 

is strongly associated with poor overall survival (p = 1.96 x 10-8). Proteomic analysis using iTRAQ 

identified that QSOX1 expression was upregulated in hepatocellular carcinoma.139 Furthermore, 

knockdown of QSOX1 sensitizes nasopharyngeal carcinoma cells to radiation.140 Ebselen, a 

covalent inhibitor of QSOX1, suppressed pancreatic tumor growth in vivo.141 Much work has been 

done to elucidate the complex role of QSOX1 in several cancers, and it clearly plays an important 

role in disease progression. 

Semaphorin 4F (SEMA4F)  

SEMA4F is a membrane-bound glycoprotein in the semaphorin family of receptors. 

Semaphorins are involved in eliciting intracellular signaling cascades and may be receptors for 

EGFR signaling ligands. Therefore, semaphorins are important regulators of tumor growth, 

angiogenesis, migration, and apoptosis.142 For example, SEMA3B was found to be a marker for 

poor survival in patients over 50 diagnosed with GBM.143 In contrast, SEMA4D can stimulate or 

inhibit breast cancer cell migration and adhesion, depending on the presence of receptor tyrosine 

kinases ERBB2 and MET.144 In our analysis, increased SEMA4F expression is strongly associated 

with poor overall survival (p = 3.24 x 10-9). SEMA4F is linked to the induction of prostate cancer 

neurogenesis145 and may be important for breast cancer progression.146 SEMA4F knockdown was 

linked to Schwann cell proliferation in the development of neurofibroma downstream of the loss 

of NF1 tumor suppressor function.76 The molecular mechanisms driving the function of this 

signaling receptor in cancer are complex. 
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Tyrosine hydroxylase (TH) 

TH, as its name suggests, hydroxylates tyrosine to form the precursor for dopamine, l-dopa, 

and is induced by hypoxic stress via HIF1α, common in the tumor microenvironment. TH is also 

a marker for neurons containing downstream products dopamine, norepinephrine, and epinephrine. 

In our analysis, increased TH expression is strongly associated with poor overall survival (p = 4.62 

x 10-5). TH gene expression is also significantly increased in pheochromocytoma and 

paraganglioma (Figure I-7). To date, eight inhibitors of TH have been studied. One of the 

inhibitors, alpha-methyl-p-tyrosine (AMPT), was used to treat pheochromocytoma; however, use 

was discontinued because of severe side effects. In general, inhibition of TH may rely on a small 

therapeutic window for safe usage, because of the crucial role of the enzyme in dopamine 

synthesis. 

Vascular endothelial growth factor C (VEGFC) 

VEGFC is a dimeric, secreted growth factor in the VEGF (vascular endothelial growth 

factor) family. The VEGF family contains five members, VEGFA, placenta growth factor (PGF), 

VEGFB, VEGFC, and VEGFD, and acts by binding tyrosine kinase VEGF receptors on the cell 

surface. VEGFC binds and activates VEGFR-2 and VEGFR-3. VEGFC is overexpressed in 

peripheral blood mononuclear cells and plays an important role in lymphoangiogenesis.147 VEGFC 

is also strongly overexpressed in patients with thyroid cancer (Figure I-7). Furthermore, VEGFC 

expression is upregulated in brain tumors including GBM and haemangioblastomas, suggesting 

this protein is important for tumor-associated inflammation.148 In our analysis, increased VEGFC 

expression is strongly associated with poor overall survival (p = 7.08 x 10-7). Expression of 

VEGFC is associated with poor overall survival in GBM (p < 0.001 and p = 0.023).149, 150 VEGFC 
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is targeted by microRNA-144 and microRNA-186 to halt tumor growth in cervical and bladder 

cancer, respectively.151, 152 High expression of this protein in GBM suggests VEGFR-3 plays a 

vital role in cancer proliferation, potentially as much as VEGFR-1. CS2164 is a novel multi-kinase 

inhibitor that targets VEGFR1, VEGFR2, VEGFR3, PDGFR alpha, c-Kit, Aurora kinase b, and 

CSF-R1, and exhibited anti-tumor potency in mouse xenograft models of colon, lung, liver, and 

stomach cancer.153 Inhibitors of VEGFR-1 or VEGFR-3, or inhibitors of the maturation of 

VEGFC, could be efficacious in GBM, based on the strong correlation between poor prognosis in 

several cancers and VEGFC expression. 

Chromosome 20 open reading frame 166 antisense RNA 1 (C20orf166AS1) 

C20orf166AS1 is an 8.5-kb long noncoding RNA (lncRNA). C20orf166AS1 was reported 

as a prostate-cancer-specific lncRNA that was negatively correlated with prostate cancer.80 

Analysis of TCGA samples supports these findings; C20orf166AS1 is consistently higher in 

prostate adenocarcinoma patient samples than in normal tissue (Figure I-7). In our analysis, 

increased C20orf166AS1 expression is strongly associated with poor overall survival (p = 3.6 x 

10-7). Aside from its possible role in prostate cancer, C20orf166AS1 function has not been fully 

elucidated. 

Protein targets identified via proteomic approaches 

Although the application of modern proteomic approaches has yet to reach its full potential 

in GBM research, several important studies have identified potential drug targets. Traditionally, 

proteomics has been performed with 2DGE and mass spectrometry. While useful, 2DGE has 

several major limitations. For example, 2DGE cannot detect low abundance proteins, proteins with 

a molecular weight greater than 100 kDa, or hydrophobic membrane proteins.154 In addition, 
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proteins with isoelectric point (pI) values outside the pH range go undetected, including important 

GBM proteins such as EGFR and VEGFR.155 Proteomic technologies have overcome these 

challenges with several methods, namely targeted mass spectrometry via Selected Reaction 

Monitoring (SRM), iTRAQ, and SWATH-MS (Sequential Window Acquisition of All Theoretical 

Mass Spectra). Here we discuss several preclinical protein targets involved in GBM identified via 

proteomic approaches. 

Several GBM proteomic studies have identified annexin A2 as a possible drug target.30, 32, 

156 Annexin A2 is a calcium-binding cytoskeletal protein expressed in cancer cells and is strongly 

correlated with tumor aggression, metastasis, and glioma patient survival.33 The protein aids the 

conversion of plasminogen to plasmin, a serine protease that activates metalloproteinases and 

degrades the extracellular matrix to promote cell metastasis.157 Consistent overexpression of 

annexin A2 emphasizes its role in various subtypes of GBM. Thus, annexin A2 may be a promising 

drug target. Small molecule annexin A2 inhibitors have been developed to prevent human 

papilloma virus.158, 159 Further validation of annexin A2 inhibitors in models of GBM is warranted.  

One study identified nine potential GBM targets by comparing microarray data sets of 

neural stem cells and GBM stem cells and further validating the findings with RT-PCR and 

Western blot.160 Nine overexpressed proteins: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, 

KIF18A, EZH2, and HMMR, correlated with poor patient survival and are potential GBM drug 

targets. CENPA was further validated as a potential target in GBM initiating cells.161 PBK is a 

MAPKK involved in p38-mediated cell motility and DNA damage response162 and has been 

validated in vivo as a GBM target.163 EZH2 has also been validated as a target in GBM, and 

overexpression is associated with poor prognosis.164, 165 CDC6, a gene involved in the RB/E2F 
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pathway, was associated with decreased astrocytic glioma patient survival.166 Additionally, 

HMMR was validated as a potential target for GBM stem cell inhibition.167 The other proteins 

have not been validated further in the context of GBM but may also represent potential drug 

targets. 

Proteomic approaches may also explain potential reasons for drug or target failure. To 

determine why anti-angiogenic therapies failed, a proteomic approach based on SRM was 

employed on patient-derived intracranial GBM xenografts in rodents.49 Levels of tricarboxylic 

acid cycle enzymes such as isocitrate dehydrogenase and aldehyde dehydrogenase decrease in 

response to anti-angiogenic therapy, suggesting the cells evade death by increasing glycolysis.49 

Additionally, a systems-based statistical analysis of a proteomic and transcriptomic signature of 

GBM was identified, concluding a strong link between GBM invasive properties and the TGF-β 

signaling pathways.168 Targeting these pathways may inhibit GBM proliferation; however, target 

validation is necessary to rule out proteins that do not drive tumor growth.  

Target validation 

Correlation between gene expression and patient survival does not necessarily indicate the 

gene (or protein) is critical for tumor progression, or a viable drug target. For example, tyrosine 

hydroxylase is required for the synthesis of dopamine, and inhibition of TH, at least by the reported 

inhibitors, showed significant adverse effects. Therefore, rigorous validation of the 20 genes 

determined from TCGA analysis is crucial to move forward and develop a viable treatment option 

for GBM. 

Clinical trials fail often due to insufficient target validation in the preclinical stage of the 

drug discovery process. To validate each target appropriately, CRISPR-Cas9-mediated gene 
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knockdown can be used to assess tumor growth in vitro and in vivo. Gene knockouts that 

significantly inhibit tumor growth would be pursued for druggability. High throughput small 

molecule binding screens of each target could be run, using differential scanning fluorimetry or 

other binding determination methods. For targets with selective inhibitors, further validation can 

be performed. While our TCGA analysis results demonstrate a potential direction for GBM drug 

discovery research, target validation is required before further effort is used to develop inhibitors 

of these targets. 

Synthetic lethality  

GBM tumor heterogeneity will likely render single target inhibition ineffective. In general, 

combination therapies are necessary to halt tumor growth. A potential approach to identify 

synergistic interactions is to perform “synthetic lethal” screens. Synthetic lethality is the concept 

that a combination of two or more gene mutations or alterations is necessary for cell death, and the 

mutation or inhibition of only one of the genes allows tumor cells to survive.169 Synthetic lethal 

combinations can be identified via several strategies. For example, large, short hairpin RNA 

(shRNA) libraries can be used to screen cell lines with an inhibitor, that, when in combination with 

certain shRNAs, causes a lethal phenotype. Synthetic lethal pairs can also be discovered 

computationally, by mining large datasets. Using this method, the known synthetic lethal 

relationship between P53 and PLK1 was validated by comparing patient survival data with pairs 

of genes in which the expression of one of the genes was under-represented.170 

   Several other synthetic lethal combinations have been identified in the context of GBM. Large-

scale, shRNA library screening identified that the inhibition of MYC, P38MAPK, or ERK signaling 

pathways may be synthetically lethal with PI3K inhibitor PX-866.171 EGFR inhibition is 
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synthetically lethal with pharmacological stabilization of P53.172 P53 mutations have also 

sensitized GBM cells to combined p-AKT inhibition and radiation, by antagonizing DNA repair.173 

Furthermore, IDH1-mutated gliomas are potentially more susceptible to BCL-xL inhibition than 

other gliomas.174 Continued work in this area is expected to generate novel effective treatment 

strategies for GBM. 

Preclinical models of glioblastoma 

Preclinical in vivo models of GBM can recapitulate hallmarks of cancer including tissue 

invasion, sustained angiogenesis, evasion of apoptosis, and cancer-specific metabolism that cannot 

be modeled in vitro. Robust models of GBM that mimic the human tumor microenvironment are 

needed to assess drug safety profiles and reduce clinical trial failure. There are three major types 

of preclinical GBM models: chemically induced models, xenograft models, and genetically 

engineered mouse models (GEMMs). Some of the current and state-of-the-art strategies for 

developing animal models of GBM will be summarized here.175, 176  

GBM mouse models have evolved in an attempt to mirror human tumor characteristics and 

microenvironment. One of the earliest models, the chemically induced GBM tumor, is generated 

by treating rats with N-nitroso compounds. The spontaneity of tumor generation in this model 

provides insight about the underlying molecular pathways involved in chemically induced 

mutagenesis. However, the rat tumors generally do not model human GBM histological 

characteristics, and cell lines suffer from genetic drift.175 Xenografts of human tumor cell lines 

injected into immunodeficient mice have also been used. However, these models can be difficult 

to establish and do not factor in immune response or changes in stromal environment.175 Therefore, 

GEMMs are excellent as in vivo GBM models because of the extensive molecular characterization 
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of the human GBM tumor genome, which confirmed key mutations that drive oncogenesis. 

Compounds of interest can be tested on several variations of GEMMs, including those generated 

via combinations of P53, PTEN, NF1, RB, and PDGF alterations.177 GEMMs have also provided 

valuable insight on the cell of origin of GBM. For example, GBM tumors can form in mice with 

conditional tumor suppressor alleles of NF1, P53, and PTEN that are injected with cre 

recombinase-expressing adenovirus.178 The downsides of GEMMs are that they can be costly and 

time-consuming, and do not exhibit the heterogeneity of human GBM tumors. Additional in vivo 

models include orthotopic models in which GBM cells are injected intracranially, and patient-

derived xenograft (PDX) models, in which primary patient tumors are cultured and implanted in 

mice subcutaneously.179 Furthermore, a Human Glioblastoma Cell Culture (HGCC) open resource 

has been organized to promote in vitro and in vivo testing.180 The HGCC resource contains a bank 

of 48 GBM cell lines derived from patients, for translational research use. This bank allows robust 

in vivo representations of GBM to promote new discoveries. Numerous in vivo models of GBM 

exist, but none perfectly capture the complexity of tumor biology and microenvironment.  

Because each GBM tumor model has its shortcomings, there remains a need for better 

preclinical models for compound screening. One strategy to meet this need involves avatar mice 

and co-clinical models of GBM.181 The mouse avatar allows efficient testing of different treatment 

strategies by implanting GBM tumor tissue resected from the patient into mice with the goal of 

selecting a promising therapy for each individual patient.181 Unfortunately, grafted PDX tumors 

are altered by the mouse biology and do not predict response to treatment with great accuracy.182 

CRISPR/Cas9 technology was previously used to generate P53, PTEN, and NF1 gene deletions in 

mice.183 While the CRIPSR/Cas9 system represents a more convenient model for in vivo tumor 
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development, the need for an accurate model of GBM still exists. In general, in vivo models that 

mimic human intratumoral heterogeneity, tumor initiation, and tumor microenvironment are 

needed to accurately assess in vivo efficacy of a drug.  

Blood-brain barrier  

Characteristics of the blood-brain barrier 

The BBB is responsible for nutrient transport, homeostasis, and communication between 

the body and the brain and also prevents foreign substances from reaching the brain. Research on 

the BBB dates to the 1880s, when a barrier to the transport of solutes from the blood to the brain 

was discovered. Paul Ehlrich furthered BBB research with experiments demonstrating that passage 

into the brain of peripherally injected dyes was impeded. Small molecule permeability of the BBB 

is an important consideration for drug development. Not only does the BBB impede small 

molecule transport, but active BBB transporters clear foreign material that passes the protective 

layers. The BBB is a dynamic, flexible interface between the brain and the body. 
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Figure I-8 The blood-brain barrier protects the brain from foreign material with a layer of endothelial cells bound by adherens 

junctions (i.e. vascular endothelial (VE)-cadherin) and tight junctions (i.e. junction adhesion molecules (JAMs), endothelial cell 

adhesion molecule (ESAM), claudins, and occludins). 

The BBB is composed of a monolayer of endothelial, ependymal, and tanycytic cells held 

together by restrictive tight junctions (Figure I-8). Two types of cellular junctions halt passive 

diffusion and prevent leakiness between the endothelial cells: intercellular adherens junctions and 

paracellular tight junctions. Adherens junctions are composed of vascular endothelium, cadherin, 

actinin, and catenin.184 Tight junctions consist of three major proteins: occludin, claudin, and 

junction adhesion molecules. Occludins are regulated by phosphorylation of serine, tyrosine, and 

threonine residues. Junction adhesion molecules regulate the formation of tight junctions during 

the acquisition of cell polarity.185 Furthermore, there are several other important cytoplasmic 

accessory proteins including zonula occludens and cingulin. Altogether, these proteins maintain 

the integrity of the BBB. 
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Nutrients and small molecules may be transported in and out of the brain by various 

methods, including passive diffusion, carrier-mediated transport, endocytosis, and active transport. 

Small biomolecules, such as water and various lipid-soluble molecules, are transported by passive 

diffusion. Typically, small lipophilic compounds will diffuse through the BBB; however, these 

properties make compounds more likely to be P-glycoprotein (Pgp) substrates or be taken up by 

peripheral tissues.186 Thus, while lower molecular weight and ClogP values are often optimal in 

theory for CNS drug discovery, the determination of appropriate values is a balancing act. Carrier-

mediated transport is driven by two major protein families, the solute carrier (SLC) superfamily 

and ATP binding cassette (ABC) transporters. The main function of these transporters is to carry 

essential amino acids and glucose from the blood to the brain. Carrier-mediated transport may be 

hijacked by drug delivery. For example, System L has a broad substrate specificity for large 

molecules, and, therefore, can transport levodopa.187, 188 Endocytosis imports nutrients such as 

insulin via the formation of intracellular transport vesicles.189 Active transport requires energy in 

the form of ATP hydrolysis; the µ-opioid agonist fentanyl is likely taken up into the brain via 

active transport mechanisms.190 However, due to the complexity of the BBB neovascular unit, drug 

uptake and efflux likely proceed via multiple transport pathways.  

The BBB poses several challenges for effective drug discovery. One challenge is reaching 

and maintaining effective CNS permeation and drug concentration. The brain uses efflux pumps 

at the luminal side of the BBB to recognize and remove foreign substances. In particular, ABC 

transporters prevent a large influx of lipophilic molecules, xenobiotics, toxic metabolites, and 

drugs.191 CNS tumors compromise the structural integrity of the BBB, causing it to be leaky at the 

tumor core.192 While this may suggest that small molecules may be more permeable at the tumor 
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site, the BBB surrounding the proliferating cells at the tumor’s edge remains intact.193 Thus, BBB 

physiology and compound permeability are critical considerations for the CNS drug discovery 

process.  

BBB transporters may provide an opportunity for the pursuit of alternative drug targets. L-

dopa, melphalan, baclofen, and gabapentin are examples of drugs that cross the BBB via neutral 

amino acid transporters. Organic cation-carnitine transporters are used by verapamil, levofloxacin, 

and cephaloridine.194 Generally, compounds that use these transporters are similar in size and 

shape to the endogenous substrate of the protein. Additionally, uptake and efflux transporters can 

be inhibited by saturating the transporters. For example, saturating the LNAA (large neutral amino 

acid) transporter with LNAA competes off the excess branched chain amino acids that enter the 

brain and cause neurotoxicity in maple syrup urine disease.195 Furthermore, a recent study 

demonstrated that metastasizing cells may signal to break down the BBB with microRNA-181c, 

allowing the cells to propagate in the brain.196 As a whole, successful drug discovery and 

development will involve efficient and reliable drug delivery methods to significantly improve 

treatment.  

Blood-brain barrier computational modeling for drug discovery 

Lipinski et al. developed a groundbreaking method of screening for orally bioavailable, 

drug-like molecules by using physicochemical properties known as the “Rule of Five.”197 

Traditional CNS drugs are biased toward targeting monoamine GPCRs, transporters, and ion 

channels. Therefore, an assessment of the physicochemical properties of CNS drugs would 

conclude that CNS drugs should be small lipophilic compounds. Generally, CNS drugs are smaller 

and more lipophilic than oral non-CNS drugs, and have fewer hydrogen bond donors and a lower 
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topological polar surface area.198 However, with increasing drug discovery efforts focused on non-

traditional CNS targets, understanding of CNS-penetrant compounds could expand. To ameliorate 

this problem, a CNS multiparameter optimization (CNS MPO) algorithm was designed by Pfizer 

scientists, with the goal of streamlining the CNS drug discovery process.199 The CNS MPO 

algorithm involves six physicochemical parameters (lipophilicity (ClogP), distribution at pH = 7.4 

(ClogD), molecular weight (MW), topical polar surface area (TPSA), most basic center (pKa), and 

the number of hydrogen bond donors (HBD)) relative to CNS penetration and success. The value 

of each parameter is weighted (0-1) based on the probability of the compound crossing the BBB 

(0 = low probability; 1 = high probability). For example, it is well known that a compound with a 

ClogP value less than 0 will be less likely to cross the BBB, therefore a compound with a ClogP 

value less than zero would receive a 0 for the ClogP parameter. The total CNS MPO desirability 

score is the summation of the weighted scores based on each of the six properties, with a range 

from 0 to 6. An analysis of FDA-approved CNS drugs demonstrated 74 % have a CNS MPO 

desirability score > 4.199 To assess the BBB permeability of novel GBM clinical candidates, we 

applied the algorithm to 73 of the small molecule compounds currently undergoing clinical trials 

related to GBM treatment. 
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Figure I-9 CNS MPO Version 2 scores were calculated for 73 GBM drug candidates. Plots are shown for scores calculated for (A) 

Total CNS MPO score, (B) Molecular weight distribution, (C) LogP value distribution, (D) Polar surface area value distribution, 

(E) Hydrogen bond donor total distribution, and (F) pKa value (of the most basic center) distribution. 

We determined the CNS desirability score for 73 GBM drug candidates in clinical trials, 

using the CNS MPO.v2 algorithm (Figure I-9).200 The CNS MPO.v2 desirability score weighs five 

important CNS physicochemical properties: molecular weight, lipophilicity (ClogP), number of 

hydrogen bond donors, topical polar surface area, and pKa (of the most basic center), from 0 to 1. 

These properties were calculated with ADMET Predictor Version 8. The desirability score was the 

summation of the weighted score of each component, with the number of HBD score doubled. The 

HBD value was found to correlate strongly with BBB permeability, whereas ClogD, a variable 

used in the original equation, was somewhat redundant to ClogP and removed.200 Interestingly, 

only 37 % of the small molecule candidates in clinical trials currently have a score > 4, a much 

lower percentage than the 74 % of FDA-approved CNS drugs. This may highlight the significance 

of emphasizing BBB permeability in early-stage drug discovery and may explain future clinical 

trial failures (or highlights the use of novel drug delivery methods). The compound that scored 
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highest, LB100 with a 5.68 out of 6, is a protein phosphatase 2A inhibitor. Compounds with a 

desirable molecular weight (score = 1) made up 23 % of the group, while an almost equal amount 

(25 %) had higher-than-optimal molecular weight values, over 500 Da. Most of the compounds 

(48 %) had a ClogP score of 1. A large portion of the compounds had a favorable TPSA (45 % 

between 40 and 90 Å2). Several of the compounds had an appropriate number of hydrogen bond 

donors as well (36 % with scores > 0.8). The majority of the compounds (64 %) had a pKa 

desirability score of 1 (pKa < 8 for the most basic center). Use of this CNS MPO algorithm together 

with other useful tools for predicting biological behavior of small molecules could enhance and 

accelerate the drug discovery process. 

Drug discovery challenges in GBM 

CNS drugs typically have a lower FDA-approval rate than non-CNS drugs. Additionally, 

oncology drug discovery attrition rates are characteristically high, second only to the therapeutic 

area of woman’s health.201 Thus, brain tumor drug discovery is characterized by major obstacles 

and historical failure.  

In a study of CNS drugs entered into clinical trials from 1990-2012, CNS drugs were 45 % 

less likely to pass Phase III trials than non-CNS drugs, with 46 % failing to show improved efficacy 

over placebo.202 Even though bevacizumab received FDA approval, other anti-angiogenesis drug 

candidates have been less effective. The Phase III “REGAL” (Recentin in Glioblastoma Alone and 

With Lomustine) trial comparing cediranib and cediranib + lomustine versus placebo in patients 

with recurrent GBM failed to reach the primary endpoint of progression-free survival (PFS) 

prolongation.203 Using a different approach, rindopepimut, a conjugate of the EGFRvIII mutation 

site with an immunogenic carrier protein keyhole limpet hemocyanin, demonstrated efficacy in 
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Phase I and II trials in combination with temozolomide. PFS and median overall survival (OS) 

were 10-15 and 22-26 months, respectively, compared to 6 and 15 months in historical controls.204 

Unfortunately, in the Phase III study, rindopepimut failed to meet OS endpoint criteria; however, 

this was due to a significant outperformance of the control arm (median OS = 21.1 months) 

compared to the treatment arm (median OS = 20.4 months).205 Trials with rindopepimut will 

continue, but this failure highlights an important obstacle faced when bringing a novel therapy to 

the market. 

Several obstacles impede the drug discovery process for GBM treatment. Challenges 

include identifying an effective target at the early research stages amidst the complex intratumoral 

molecular heterogeneity, identifying a therapy that is permeable to the BBB, and developing robust 

clinical trials to assess the effectiveness of the potential treatment. Furthermore, a recent study 

highlighted the variation in the epigenetic tumor microenvironment of in vitro and in vivo models, 

suggesting that research with in vitro cancer cell lines is a “therapeutic roadblock” to GBM drug 

discovery.206 This study identified a single gene, jumonji C-domain-containing protein 6 (JMJD6), 

as a potential target. JMJD6 interacts with bromodomain containing 4 (BRD4), and JMJD6 shRNA 

knockdown was lethal in both in vitro and in vivo models.206 

As for the pharmacokinetics of the drug, there are several important limitations to consider 

for any drug candidate. First, the compound must reach the tumor site without diffusing into other 

tissue and must reach therapeutic concentrations. For example, a retrospective pharmacokinetic 

analysis of lapatinib after a failed Phase I/II clinical trial revealed that therapeutic concentrations 

of the drug were not reached.207 Additionally, CNS drugs must be able to cross the BBB, which 

means they must have appropriate lipophilicity and size. Lipophilicity is measured by the octanol-
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water partition coefficient of a compound (ClogP), and CNS drugs optimally have a ClogP = 2. 

The size of a compound is measured by its molecular weight and polar surface area, which are 

optimal below 450 g/mol and 90 Å2, respectively, for CNS drugs.208 This is a large obstacle for 

biologics, since EGFR antibodies cannot cross the BBB. Generally, only 0.1 - 0.2 % of an 

administered antibody crosses the BBB and reaches the tumor site.209 (Here, it should be noted 

that bevacizumab likely does not need to cross the BBB to target the VEGF receptors in the lumen 

of capillaries of blood vessels in the brain.) Drugs could be administered intratumorally, as with 

the case of DNX-2401. In a Phase I trial, DNX-2401, an oncolytic adenovirus, demonstrated 

antitumor activity with no dose-limiting side effects.210 Intratumoral injections, while effective, 

may be time-consuming, unfamiliar to oncologists, and pose biosafety concerns. Another 

consideration is the presence of Pgp efflux pumps that remove foreign material escaping past the 

BBB. While the BBB is impaired at the tumor site, allowing for increased permeability, the dense 

endothelium of vasculature providing nutrients to the tumor is not compromised, and therefore 

most of the BBB remains intact.211 These issues should be addressed in the preclinical phase, 

before bringing drug candidates into clinical trials. 

Retrospective analysis of EGFR inhibitors provided insight into their failure in GBM 

clinical trials. EGFR inhibitors are widely and effectively used in preclinical models of GBM; 

however, clinical trials with these inhibitors failed to detect any improvement in outcome. These 

tyrosine kinase inhibitors (TKI), namely erlotinib and gefitinib, likely failed clinical trials due to 

limited brain exposure from Pgp and ABCG2-mediated efflux.3, 4 Additionally, gefitinib inhibits 

signaling of EGFR proteins with mutations in exons 19 and 21 of the TK domain that are often 
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absent in gliomas.212 This phenomenon suggests more rigorous preclinical research should be 

conducted before expensive clinical trials are initiated. 

A few recent successes in TKIs, osimertinib and GDC-0084, should be noted. The third 

generation EGFR inhibitor osimertinib (AZD9291) has been studied for its efficacy against non-

small cell lung cancer (NSCLC) and is undergoing a large Phase I/II trial to determine the 

maximum tolerated dose in patients with advanced NSCLC (NCT01802632). Preclinical 

evaluation of osimertinib demonstrated the compound is more BBB-permeable than gefitinib and 

other TKIs.213 Another TKI, GDC-0084, was demonstrated to cross the BBB in a first-in-human 

Phase I dose-escalation study in patients with high-grade glioma.214 Extensive structure-activity 

relationship analysis on the dual PI3K/mTOR inhibitor revealed that removal of a methyl group at 

the 2 position of the pyridine side chain of the purine-based scaffold increased cellular potency 

and human metabolic stability and decreased efflux ratios.215 Since BBB permeability has been a 

major problem with current EGFR TKIs, osimertinib and GDC-0084 both represent exciting 

inhibitors that have the potential to become efficacious treatments for brain and potentially other 

cancers. 

While recent efforts have advanced GBM drug discovery, non-pharmacokinetic problems, 

including clinical trial organization, remain a large obstacle to drug development. Because GBM 

is an orphan disease, clinical trial participation is low, which prevents the detection of subtle 

differences in treatment with statistical significance. Other challenges include determination of 

appropriate controls, stratification according to prognostic factors, and definition of clinical 

endpoint.216 In addition, it is difficult to monitor the molecular signature of a brain tumor because 

surgeries are expensive and risky. It will be important to establish non-imaging methods of 
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determining drug efficacy because targeted therapies may be cytostatic. In addition, biomarkers to 

measure treatment response will be useful for GBM clinical trials.  

Conclusions and future directions 

Treatment of GBM is a complex and formidable, but not unsolvable, problem. The girth of 

available genomic information directs research strategies, allowing researchers to pursue 

meaningful hypotheses supported by patterns in population-level genomics. In tandem, novel 

proteomic tools are a valuable resource that will enhance our understanding of GBM tumor 

complexity. Genomic methods have already revealed a molecular fingerprint of the disease and 

pathways on which to focus our research efforts. Despite the emergence of more specific molecular 

classifications of GBM, targeted therapies to treat specific GBM subtypes are not yet realized. 

Numerous failed clinical trials suggest combination therapies will likely be the most promising 

method of GBM treatment, and emphasis should be applied to drug design and pharmacokinetic 

properties. With this study, we have identified 20 genes that may play important roles in GBM 

progression. These genes should be validated as potential targets for GBM drug discovery, as they 

correlate with poor overall patient survival. We have also uncovered novel transcription factors 

and signaling molecules involved in GBM that may regulate EGFR signaling. Targeting 

transcription factors and membrane proteins upstream of EGFR signaling may prove a promising 

therapeutic strategy for the treatment of GBM. Several genes identified in our analysis have been 

linked with GBM or EGFR signaling in previous studies. It should be noted that gene expression 

of the 20 targets could be a consequence of oncogenic stress, rather than tumor growth and further 

target validation is necessary. This analysis may reorganize research priorities towards targeting 

receptors and proteins involved in glioma progression. In the future, both genomic and proteomic 
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approaches will be standard tools not only to identify novel drug targets, but also to identify non-

invasive biomarkers for diagnosis and treatment response.  
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Notes 

 The article in which the rationale for the CNS MPO.v2 algorithm was published was 

retracted in February 2019 by Eli Lilly in order to validate substantial changes made to the 

manuscript.200, 217 Thus, until the updated CNS MPO.v2 manuscript is published, caution should 

be used when interpreting scores calculated with the CNS MPO.v2 algorithm.  
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CHAPTER II 

Protein Disulfide Isomerase 

Historical background2 

The dithiol-disulfide oxidoreductase protein disulfide isomerase (PDI) was discovered in 

1963 as the first protein folding chaperone. Research groups led by Brunó Straub1 and Christian 

B. Anfinsen2 independently made pivotal discoveries about an enzyme that reactivated reduced 

ribonuclease. Straub and co-workers purified the reactivating system from chicken pancreas. 

Anfinsen studied the system in conjunction with his Nobel-prize-winning work on ribonuclease 

and purified a system with similar activity from rat liver microsomes. In 1972, the enzyme was 

given the name protein disulfide isomerase and its official classification number, EC 5.3.4.1. The 

newly purified protein was identified as the “ribonuclease-reactivating enzyme,” and was nearly 

identical to glutathione-insulin transhydrogenase, causing confusion in the field.3 Both enzymes 

catalyze disulfide exchanges, require a thiol for activity, and inactivate insulin. Confusion was 

cleared with key experiments using covalent chromatography to demonstrate that PDI is more 

sensitive to reducing conditions than glutathione-insulin transhydrogenase.4 The official name was 

first used in a publication on conformational barriers to disulfide bond formation in 1975.5 

Challenges in monitoring disulfide bond formation and isomerization slowed research on the 

 
2 This work has been published and is being reprinted with permission from Shergalis, A., & Neamati, N. (2017). 

Protein Disulfide Isomerase. Encyclopedia of Signaling Molecules, 1-12. 

Author contributions: Andrea Shergalis was the primary author. Nouri Neamati is the corresponding author. 
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enzyme until a pivotal review on PDI was published in 1984.6 Then, in 1985, Edman and 

colleagues identified the sequence of rat PDI, which led to the discovery that PDI contains 

sequences highly homologous to the cytoplasmic redox signaling enzyme thioredoxin.7 This 

discovery provided valuable insight into the mechanism of redox reactions catalyzed by PDI and 

indicated the active sites of PDI contained the critical WCGHC sequence. 

PDI has gained much attention in the following years due to its role in cancer, 

cardiovascular diseases, diabetes, and neurodegenerative diseases such as Huntington’s disease. 

In addition to its role as an oxidoreductase and molecular chaperone, PDI is important for several 

other physiological processes, including collagen biosynthesis, antigen presentation, and 

lipoprotein synthesis. PDI is the beta subunit of prolyl 4-hydroxylase, an essential collagen 

biosynthesis enzyme, and mutations in PDI lead to bone fragility disorders.8 In recent years, it was 

discovered that PDI is overexpressed in several cancers. Following this discovery, researchers 

have found that PDI contributes to tumor growth, progression, and chemotherapeutic resistance. 

In addition to its role in cancer, PDI has a pro-apoptotic function in Huntington’s disease and other 

brain dysfunction diseases.9 Targeting PDI function may be a promising therapeutic approach for 

multiple human diseases. The structure and function, as well as the role of PDI in various disease 

states, will be reviewed in detail in the subsequent paragraphs.  

Since there are numerous PDI family members, this chapter will focus on PDIA1, as it has 

been proven to be most relevant to several disease states. However, the other PDI family members 

will also be discussed in brief. The acronym PDI is often used to refer to PDIA1, but for clarity in 

this text, PDI will be used when making general statements about the protein family, and specific 

isoform nomenclature will be used when necessary. Several comprehensive reviews covering a 

variety of aspects of PDI have been published in recent years.10-13 
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Domain structure and isoforms 

 The PDI family consists of at least 22 members (Figure II-1) that share at least one 

thioredoxin-like fold domain (βαβαβαββα).10 PDI family members primarily reside in the 

endoplasmic reticulum (ER), but have also been found in the nucleus, cytoplasm, and on the 

plasma membrane (Table II-1). The full-length founding member of the PDI family, PDIA1, 

contains 508 amino acids, 17 of which form an ER signal peptide that is cleaved from the N-

terminal tail in the mature form. Most PDI family members contain the catalytic a and a’ domains 

that are structurally similar to thioredoxin, with the conserved CXXC active site surrounded by 

hydrophobic regions. The b and b’ domains are homologous to the a and a’ domains and also 

contain the thioredoxin-like fold, despite lacking sequence similarity to the a and a’ domains and 

the CXXC active site. The structures of several domains of mammalian,14 yeast,15 and fungal16 

PDI have been solved with X-ray crystallography and NMR; however, the full-length structure has 

yet to be resolved, likely due to its size and flexibility. The complete oxidized and reduced 

crystallized PDI structure with the exception of the C-terminal extension (i.e. containing abb’xa’ 

domains) demonstrated that the active site of the a’ domain shifts closer to the a domain active 

site upon reduction, shielding access to the hydrophobic pocket (Figure II-2).14 The b and b’ 

domains are non-catalytic; the b’ domain is primarily responsible for substrate recognition with 

help from the a’ domain, and to date, the function of the b domain is unclear. It has been suggested 

that the b domain in Pdip, a yeast paralog of PDI, plays a role in substrate recognition.15 PDI also 

contains a flexible x linker 19 amino acids long that spans between the a’ and b’ domains. The x 

region can move to obstruct the substrate binding site in the b’ domain, and therefore this 

conformational change may regulate the substrate binding cycle of PDI.15 PDI also contains an 

acidic C-terminal extension in which the ER retention signal resides. While the C-terminal region 
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is important for catalytic activity of the a’ domain in yeast PDI,15 truncating the C-terminal region 

of mammalian PDI has little effect.14 

 

Table II-1 Function and subcellular localization of 22 PDI isoforms 

Isoform Subcellular Localization Function 

PDIA1 
Endoplasmic reticulum, extracellular 

space, plasma membrane 
Oxidoreductase, chaperone 

PDIA2 
Endoplasmic reticulum, extracellular 

space 

Oxidoreductase, chaperone, 

estrogen-binding 

PDIA3 
Endoplasmic reticulum, extracellular 

space, nucleus 
Oxidoreductase 

PDIA4 
Endoplasmic reticulum, extracellular 

space 
Oxidoreductase 

PDIA5 
Endoplasmic reticulum, extracellular 

space 
Oxidoreductase 

PDIA6 
Endoplasmic reticulum, extracellular 

space, plasma membrane 

Oxidoreductase, chaperone, 

platelet aggregation and 

activation 

PDIA7 Endoplasmic reticulum Chaperone, spermatogenesis 

PDIA8 Endoplasmic reticulum Function unknown 

PDIA9 (ERp29) 
Endoplasmic reticulum, extracellular 

space 

Processes and transports 

secretory proteins 

PDIA10 (ERp44) 
Endoplasmic reticulum, extracellular 

space 

Mediator of ER retention of 

proteins such as ERO1 

PDIA11 (TMX1) 
Endoplasmic reticulum, extracellular 

space, nucleus 
Oxidoreductase 

PDIA12 (TMX2) Endoplasmic reticulum Function unknown 

PDIA13 (TMX3) Endoplasmic reticulum Oxidoreductase 

PDIA14 (TMX4) Endoplasmic reticulum Function unknown 

(TMX5) Unknown Potential chaperone 
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PDIA15 (ERp46) 
Endoplasmic reticulum, extracellular 

space, lysosome, vacuole 
Thioredoxin activity 

PDIA16 (ERp19, 

AGR1) 
Endoplasmic reticulum Protein oxidase 

PDIA17 (AGR2, 

HAG-2) 

Endoplasmic reticulum, extracellular 

space 

Mucus production and 

secretion 

PDIA18 (AGR3, 

HAG-3) 
Endoplasmic reticulum 

Calcium-mediated regulation of 

ciliary beat frequency 

PDIA19 (ERdj5) Endoplasmic reticulum Oxidoreductase 

PDIB1 (CASQ1) 
Endoplasmic reticulum, 

mitochondrion, plasma membrane 
Calcium storage 

PDIB2 (CASQ2) Endoplasmic reticulum, cytosol Calcium storage 
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Figure II-1 Domain structure of PDI family members. Active site amino acids are shown. 

The PDI active sites are located on the a and a’ domains, which share 33.6% identity in 

PDIA1 and contain the four conserved amino acids Cys-Gly-His-Cys. The cysteine thiols on each 

domain sit about 30 Å apart when PDI is oxidized, and 15 Å apart when PDI is reduced.14 The 

cysteines are responsible for disulfide exchange on PDI and the kinetics of the reactions catalyzed 

by this enzyme rely on the conformation and pKa of the cysteines. For example, PDI catalyzes 

both the reduction and oxidation of various substrates, and the more favorable of the two reactions 

depends on the conformational state and pKa of the active site cysteine residues. The pKa of the 

N-terminal active-site cysteine is in the range of 4.4 to 6.7, lower than the pKa (8.3) of a typical 

cysteine thiol, allowing it to be more reactive. The pKa of the C-terminal active site cysteine is 

much higher than normal at 12.8, allowing it to attack the N-terminal cysteine after it forms a 
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disulfide with the substrate. The inner histidine and glycine amino acids in the active site also 

affect the pKa of the thiols and the stability of the disulfide state.10 

 

Figure II-2 PDI structure (A) Crystal structures of reduced (4EKZ, red) and oxidized (4EL1, blue) PDIA1. (B) Close up of the 

CGHC active site of the a domain of reduced PDIA1 and associated arginine residue (green). 

Even though the b and b’ domains contain the thioredoxin fold of the a and a’ domains, 

they are enzymatically inactive and do not contain the CGHC active site. The function of the b 

domain is still up for debate, however, the b’ domain is responsible for substrate interactions via 

a hydrophobic pocket. Exposed hydrophobic regions in unfolded or partially folded proteins 

associate with the hydrophobic region spanning the b’xa’ domain, thus allowing PDI to form 

disulfide bridges necessary for proper protein folding. Interestingly, small molecules binding in 

the substrate binding pocket can enhance PDI activity.17 

Function and regulation 

PDI catalyzes the reduction, oxidation, and rearrangement of disulfide bonds in nascent 

polypeptides. PDI is highly abundant in the ER and accounts for up to 0.8% of total cellular 
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protein.6 It is also synthesized downstream of the unfolded protein response (UPR).18 PDI family 

members are also found on the cell surface and in the nucleus, suggesting PDI has multiple 

functions. Cell-surface PDI is involved in multiple biological processes, including glioma cell 

migration,19 T cell migration,20 and injury response.21 PDI family members that lack the ER 

retention sequence localize to other compartments such as the nucleus to influence gene 

transcription. For example, ERp57 mainly resides in the ER, but contains a nuclear localization 

signal that shuttles the enzyme to the nucleus in response to stress signals. In addition to its 

oxidoreductase activity, PDI is also involved in complex formation, substrate recognition, and 

molecular chaperone function. It is also a necessary component of the microsomal triglyceride 

transfer protein complex.22 Knockout experiments have not been reported for a whole-body PDIA1 

knockout model.  

PDI activity is regulated by the redox state of its active site cysteine thiols. In the oxidizing 

environment of the ER, the enzyme is primed to reduce free thiols on other proteins. ER 

oxidoreductin 1 (ERO1), a FAD-cofactor-containing enzyme, recycles PDI for reuse (Figure II-3). 

PDI expression is also regulated by ER stress and the unfolded protein response.18 Three central 

proteins are activated in response to the UPR, which is an overloading burden of unfolded proteins 

on the ER, to maintain homeostatic balance. One of these central effectors, PERK, is a kinase that 

phosphorylates eIF2α, a transcription factor that translocates to the nucleus and attenuates 

translation. eIF2α activates the transcription of several genes, including PDI and GRP78.  
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Figure II-3 Role of PDI in the endoplasmic reticulum. PDI catalyzes the oxidation and isomerization of misfolded proteins in the 

ER. PDI is reoxidized by ERO1, or PRDX4 in the presence of oxidized glutathione. Impairment of PDI activity leads to the unfolded 

protein response, which activates IRE1, PERK, and ATF6. IRE1 splices XBP1 mRNA, which causes it to translocate to the nucleus 

and promote gene expression. PERK phosphorylates eIF2a to inhibit translation and activate ATF4. ATF4 translocates to the 

nucleus and promotes autophagy and cell survival. ATF6 is also modified in the Golgi apparatus and translocated to the nucleus to 

impact ER biogenesis and ERAD to promote cell survival. ERSE: Endoplasmic reticulum stress element. XBP1u: X-box protein 1 

unspliced variant. XBP1s: X-box protein 1 spliced variant. 

PDI catalyzes three different types of reactions (Figure II-4). The first is the oxidation of a 

protein or peptide substrate to the disulfide state. The second is the reduction of a protein or peptide 

disulfide bond. The third reaction PDI is able to catalyze is an isomerization of a mixed disulfide 

bond in a protein or peptide substrate. The oxidoreductase activity of PDI depends on the reduction 

potential and pKa of its active-site cysteine thiols. The N-terminal Cys active site has a low pKa to 
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maintain a sufficiently high reduction potential to form intermediate disulfide species with a 

protein substrate. The transient heterodimer is attacked by the low-pKa C-terminal thiol in the 

“escape pathway,” forming an intramolecular bridge and displacing the thiol. A model substrate 

peptide consisting of 12 amino acids bound PDI with an apparent KM value less than 3 μM in an 

experiment analyzing disulfide bond formation.23 While PDI is generally understood to have 

several folding protein and peptide substrates, only a handful have been experimentally 

determined. These include bovine pancreatic trypsin inhibitor, Δ-somatostatin, mastoparan, 

insulin, and RNase. Interestingly, while PDI does exhibit flexibility in its a’ domain through the x 

linker, substrate binding studies reveal that the protein and peptide substrates of PDI are more 

likely to change conformation to fit into the hydrophobic binding pocket.10 After the reaction takes 

place, oxidized or reduced PDI can be recycled by a number of agents, including glutathione and 

ERO1. 

 

Figure II-4 Multifunctional roles of the PDI family. PDI catalyzes the oxidation (A), reduction (B), and isomerization (C) of 

cysteine thiols on substrate peptides and proteins. 

Before ERO1 was discovered in 1998, the consensus was that glutathione, the primary 

redox buffer in the ER, was the primary oxidizing agent for PDI. However, it is now understood 
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that in its reduced state, PDI is predominantly reoxidized by ERO1. There are two mammalian 

isoforms of ERO1: ERO1α and ERO1β. ERO1α is well-characterized and its activity is tightly 

regulated by the redox environment. The activity of ERO1β is less well-characterized, but it is less 

tightly regulated than ERO1α. The ERO1 enzymes rely on molecular oxygen as the electron 

acceptor and in return for each disulfide bond formed, produce one molecule of H2O2. ERO1 

primarily oxidizes PDIA1, and, to a lesser extent, ERp46.24, 25 Other PDI isoforms are selectively 

recycled by enzymes such as peroxiredoxin 4 (PRDX4) and vitamin K epoxide reductase (VKOR). 

In addition to ERO1 reoxidation, H2O2, PRDX4, docosahexaenoic acid (DHA), and 

vitamin K can reoxidize PDI.10 Moreover, several members of the PDI family can undergo 

disulfide exchanges with each other, without the need for an outside oxidant or reductant.26 The 

cysteine thiols in the active site of PDI are common in other redox-sensing proteins. The low pKa 

value of the active site thiols (around 4.4 to 6.7) means that at physiological pH, the residue is 

deprotonated as a thiolate anion (R-S-). The thiol group of typical cysteines is protonated (R-SH) 

and renders the group unreactive at physiological pH. The charge on the thiolate anion in PDI is 

stabilized by a charge–charge interaction with the nearby positively charged Arg120.27 The 

substrate binding/release cycle of PDI may be dependent on the redox state of the CXXC active 

sites. Oxidized PDI takes on an open conformation, promoting accessibility of the hydrophobic 

binding pocket. After PDI transfers a disulfide bond to its substrate, the conformational shift shuts 

off accessibility to the binding pocket. In addition to redox regulation, PDI can be regulated by 

other post-translational modifications, such as S-nitrosylation. 

Cell-surface PDI is regulated by S-nitrosylation on the thiol active sites, which has been 

shown to contribute to neurological diseases such as Alzheimer’s disease.28 S-nitrosylation can 

change protein conformation, regulate protein activity, and alter protein–protein interactions, 
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among other functions. Aberrant S-nitrosylation leads to protein misfolding that can stimulate 

synaptic loss and contribute to the pathogenesis of Alzheimer’s disease. 

PDI also plays a role as the noncatalytic β subunit of prolyl 4-hydroxylase (P4H).29 The 

P4H complex consists of two non-catalytic PDI subunits and two catalytic α subunits. P4H resides 

in the ER and catalyzes the proline hydroxylation of procollagens, crucial for mature collagen 

function. Hydroxylation of collagen is critical for the stability of the collagen triple helix. PDI is 

necessary to prevent the α subunit from aggregation and is likely responsible for maintaining ER 

localization of the complex.30 

Another well-established function of PDI is as a critical component of the microsomal 

triglyceride transfer protein (MTP) complex.22 MTP is composed of an αβ heterodimeric complex 

in which PDI makes up the smaller β subunit. MTP is a lipid transporter necessary for the 

biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins, regulation of 

cholesterol ester synthesis, and propagation of hepatitis C virus. The reduction, oxidation, and 

isomerization functions of PDI are not necessary for MTP to function properly; therefore, PDI 

likely plays a role in structural stability and solubilization of the complex.31 

 PDI also aids peptide loading onto major histocompatibility complex class 1 (MHC-1).16 

The MHC-1 complex binds antigenic peptides as they are synthesized through the ER and presents 

the synthesized peptides to cytotoxic T lymphocyte cells. 

Functions in disease 

Proper protein folding is essential for cellular homeostasis and signaling. Aberrant PDI 

expression leads to several types of diseases caused by misfolded proteins (Figure II-5). Therefore, 

PDI inhibitors may be important for preventing and curing a wide range of diseases. For example, 

in cancer, PDI is overexpressed to combat the increasing ER load of protein synthesis,11 and 
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knockdown of PDI in breast cancer cells leads to cell death via apoptosis.32 In models of 

Huntington’s disease, PDI induces apoptosis via mitochondrial membrane permeabilization 

(MOMP), and inhibition of PDI suppresses cell toxicity.9 Protein folding malfunctions also play 

an important role in diabetes due to the link between diabetes, misfolding of proinsulin, and the 

UPR. Malfunctions in PDI caused by mutations in PDIA1 and ERp57 contribute to abnormal 

motor control and dendritic morphology.33 

 

Figure II-5 PDI plays an important role in various disease states. In cancer, PDI folds nascent proteins to contribute to cell migration, 

invasion, and metastasis. In neurodegenerative diseases, SNO modification of PDI renders the enzyme incapable of protein folding, 

leading to the formation of Lewy bodies, inclusion bodies, amyloid β and hyperphosphorylated tau. In diabetes, PDI contributes to 

the production of insulin from proinsulin, but it also inhibits insulin secretion into the bloodstream, preventing insulin from lowering 

blood glucose levels. In cardiovascular diseases, in particular atherosclerosis, PDI is required for the PDGF-catalyzed vascular 

smooth muscle cell migration that causes plaque buildup. SNO (S-nitrosylation); PDGF (platelet-derived growth factor) 

 



 

88 

 

Cancer 

The connection between cancer and several PDI family members has been the subject of 

intense study for over a decade. In most cases, higher expression of PDI is protective for the cancer 

cells and correlates with poor patient survival. Inhibition of PDIA1 is cytotoxic to ovarian cancer 

cells.34 In breast cancer mammospheres, knockdown of PDIA1, ERp44, or ERp57 inhibits cell 

growth.35 Increased PDIA3 and PDIA6 gene expression correlates with aggressiveness of primary 

ductal breast cancer,36 and high AGR2 expression is inversely correlated with survival in lung 

cancer patients.37 

Although PDI inhibitors have yet to reach clinical trials, for the past several years, PDI has 

been actively pursued as a small molecule drug target. Several PDI inhibitors that interact with the 

reactive cysteine thiol active site have been identified for ovarian cancer,34 multiple myeloma,38 

and other cancers. A propynoic acid carbamoyl methyl amide, PACMA31 was demonstrated to be 

an orally bioavailable PDI inhibitor with anti-cancer properties against ovarian cancer.34 Small 

molecule inhibitors of PDI will be efficacious as cancer treatments, and research is actively being 

pursued in this area. 

Neurodegenerative diseases 

A common pathological characteristic of neurodegenerative diseases such as Alzheimer’s, 

Parkinson’s, and amyotrophic lateral sclerosis (ALS) is the misfolding of proteins. Changes in 

redox homeostasis in such cases can lead to impairments in PDI function. PDI malfunction is 

involved in protein misfolding in Alzheimer’s, Parkinson’s, and Huntington’s disease, as well as 

ALS and prion diseases. Increased levels of reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) can modify target proteins. For example, the reactive thiol group on the CGHC 

active site of PDI can be modified with a nitric oxide moiety, in a reaction called S-nitrosylation. 
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S-nitrosylation is a post-translational modification in which nitric oxide species attach to a thiol to 

form an S-nitrosothiol. It can occur as a form of redox signaling, but has also been implicated in 

disease states. In the case of Alzheimer’s disease, disruption of normal PDI function by S-

nitrosylation triggers an important signaling event that leads to α-synuclein oligomerization.11 

Interestingly, normally-functioning PDI inhibits tau fibrillization, a possible contributor to the 

pathogenesis of Alzheimer’s disease.  

Similarly, under normal physiological conditions, PDI forms a complex with α-synuclein, 

which are protein aggregates common in Lewy bodies. PDI prevents protein aggregation in 

Parkinson’s disease.11 Patients with Parkinson’s disease also exhibit upregulated levels of brain 

PDIp.39 This suggests that PDI is upregulated in response to increased levels of ER stress; however, 

heightened levels of RNS lead to S-nitrosylation of PDI and prevent the enzyme from halting 

aggregate formation.  

PDI inhibitors are also effective in models of Huntington’s disease.9 Huntington’s disease 

is caused by a mutation in the huntingtin gene that causes the huntingtin protein to fold incorrectly. 

As a response to the mutant huntingtin protein, PDI localizes to the mitochondrial membrane and 

induces MOMP, an event in the intrinsic apoptotic pathway. Inhibitors of PDI are in pre-clinical 

development as a treatment for Huntington’s disease and may be applicable to a wide range of 

neurodegenerative diseases. 

Diabetes 

Dysfunction of human islet amyloid polypeptide (hIAPP) leads to misfolding events in 

diabetes similar to those contributing to the pathogenesis of Alzheimer’s disease.40 In addition, the 

hyperglycemic and hyperlipidemic conditions that occur with diabetes lead to a disruption in ER 

homeostasis and consequently upregulate the UPR. PDI interacts with hIAPP to prevent protein 
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aggregation. Therefore PDI plays an important role in diabetes, but this role varies depending on 

several conditions.41 PDI also interacts with proinsulin in the ER of pancreatic β-cells, and blocks 

insulin export.42 PDI acts as a retention factor for proinsulin in β-cells, and PDI represents an 

attractive potential target in Type II diabetes.  

Other diseases 

The importance of PDI as an ER chaperone and oxidoreductase is realized under 

pathological conditions. PDI has also been implicated in several other protein conformation 

diseases, including liver disease, atherosclerosis, viral infection,43 and prion diseases.12 

Atherosclerosis is the hardening or thickening of the arteries, caused by plaque formation due to 

high cholesterol levels and other factors. In atherosclerosis, PDI is required for platelet derived 

growth factor (PDGF)-induced vascular smooth muscle cell migration that causes platelet 

accumulation.44 In platelets, PDI is localized in storage granules and on the extracellular surface 

of cells within the dense tubular system. UPR activation is involved in liver disease onset and 

progression.45 In viral infections, thiol-disulfide exchange is important for HIV-1 entry in primary 

T-lymphocytes and human monocyte-derived macrophages. Both PDI and thioredoxin play 

essential roles in this process. 

Summary 

Over 30% of secreted proteins rely on disulfide bond formation to both stabilize their 

tertiary structure and function properly. Thus, PDI is a crucial protein for the maintenance of 

cellular protein homeostasis. As a multifunctional protein with oxidoreductase and chaperone 

activity, PDI can be found not only in the ER, but also at the cell surface and in other locations in 

the cell. PDI overexpression is involved in various cancers, and PDI inhibitors are crucial tools for 

exploring disease models of cancer, Huntington’s disease, HIV-1 infection, and cardiovascular 
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diseases. Both inhibitors of PDI function and inducers of PDI expression would be beneficial to 

combat PDI activity in different scenarios. For example, PDI inhibitors would be beneficial against 

cancer and viral infection; however, PDI oxidizers may prove useful against certain neurological 

diseases. PDI inhibitors are currently under pre-clinical development for many of these diseases 

and compelling research is under way to fully comprehend the involvement of PDI in various 

disease states. 
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CHAPTER III  

Discovery and Mechanistic Elucidation of a Class of PDI Inhibitors for the Treatment of 

Glioblastoma 

Introduction3 

Glioblastoma is the most common type of malignant central nervous system (CNS) tumor. 

Prevalence increases with age with peak incidence in individuals aged 60-79 years.1 Despite the 

treatment options available – surgical resection followed by chemoradiotherapy and adjuvant 

chemotherapy (temozolomide) – the five-year survival rate of patients diagnosed with 

glioblastoma is only 5.0 %.1, 2 Current treatments are marginally effective and the number of cases 

is expected to grow with the aging population, emphasizing the urgent need for the development 

of novel and effective therapies for glioblastoma. Disease recurrence and drug resistance remain 

the major challenges for a successful cure.  

Protein disulfide isomerase (PDI; EC 5.3.4.1) is a 57-kDa endoplasmic reticulum (ER) 

oxidoreductase of the thioredoxin superfamily that assists protein folding in the ER by catalyzing 

 
3 This work has been published and is being reprinted with permission from Kyani, A., Tamura, S., Yang, S., Shergalis, 

A., Samanta, S., Kuang, Y., Ljungman, M., & Neamati, N. (2018). Discovery and Mechanistic Elucidation of a Class 

of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma. ChemMedChem, 13(2), 164-177. 

Author contributions: Anahita Kyani, Shuzo Tamara, Suhui Yang, and Andrea Shergalis were the primary authors. 

Anahita Kyani generated figure III-4 and performed docking studies. Shuzo Tamara generated figure III-1 and 

cytotoxicity data. Soma Somanta generated figure III-2, I-5, I-6, and I-7. Yuting Kuang performed experiments to 

generate figure III-6. Suhui Yang synthesized all compounds. Mats Ljungman generated figure III-5. Nouri Neamati 

is the corresponding author. 
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disulfide rearrangements (isomerase activity), disulfide formation (oxidase activity), and disulfide 

reduction (reductase activity).3 PDI is overexpressed in several cancers but most significantly in 

glioblastoma.3 Previously, we demonstrated that PDI knockdown by siRNA leads to substantial 

cytotoxicity in ovarian cancer cells.4 PDI inhibitors and modulators are being developed to combat 

cancer and neurological diseases. The PDI inhibitor bacitracin inhibits migration and invasion of 

glioblastoma cells5 and enhances apoptosis caused by ER stress-inducing agents in melanoma 

cells.6 Another class of compounds, including PS89, are weak reversible inhibitors of PDI and, at 

moderately high concentrations, sensitize several cancer cell lines to etoposide treatment.7 

Interestingly, after further characterization, BAP31 (B-cell receptor-associated protein 31) was 

identified as the major target of PS89, instead of PDI.8 A reversible, selective, non-toxic PDI 

inhibitor, ML359, was developed as a probe to study thrombosis-related diseases.9 Modulators of 

PDI have also been shown to be neuroprotective. A reversible PDI modulator, LOC14 (EC50 = 

500 nM), has neuroprotective effects in cellular and rat models of Huntington’s disease.10 

Furthermore, PDI inhibitor CCF642 was demonstrated to be effective in a mouse xenograft model 

of multiple myeloma.11 Mounting evidence highlights PDI as an important target against several 

diseases including cancer, emphasizing the need for potent, clinically relevant PDI inhibitors for 

cancer treatment.  

Herein, we report on the development of 35G8 as a novel and potent PDI inhibitor that 

demonstrates activity in brain cancer cells and has drug-like properties. The activity of 35G8 in a 

diverse set of robust assays confirmed that the initial observation of activity was not a consequence 

of its redox-cycling status. Results from nascent RNA Bru-seq12 analysis showed that the 

transcription of 498 genes increased and 238 genes decreased at least 2-fold following a 4-hour 

incubation with 35G8 in U87MG glioblastoma cells. Gene set enrichment analysis demonstrated 
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the upregulated genes to be involved in the Nrf2 antioxidant response and the unfolded protein 

response (UPR). Genes with decreased transcription involved histone and DNA repair pathways. 

In addition, 35G8 upregulates two key genes, SLC7A11 and HMOX1, and may kill cells through 

an iron-dependent form of cell death independent of apoptosis and necrosis, called ferroptosis.13 

The alterations in the transcriptional landscape induced by 35G8 provide a more comprehensive 

understanding of the mechanisms of PDI inhibition in brain cancer therapy. 

 

Results and discussion 

35G8 is a nanomolar inhibitor of PDI 

To identify cytotoxic small molecules, we screened a highly diverse library of 20,000 

compounds, representing over one million compounds, in the colon cancer cell line HCT116 

(Figure III-1). From the initial screen, we identified 443 cytotoxic compounds with IC50 values 

under 10 μM. These 443 compounds were tested for PDI inhibition in an insulin turbidity assay.14 

Eight compounds demonstrated potent inhibition (IC50 < 1.0 μM), and after confirming the activity 

with re-purchased compound stocks and verifying a dose-dependent response, the most potent 

compound, 1,3,6-trimethylpyrimido[5,4-e] [1,2,4] triazine-5,7(1H,6H)-dione (35G8), was 

selected for further analysis and optimization.  



 

99 

 

 

Figure III-1 Discovery of 35G8. Workflow summarizing the screening process that identified 35G8 as a potent PDI inhibitor. 

20,000 compounds were screened in an MTT assay with HCT116 cells and 443 compounds were cytotoxic in these cells. The 443 

compounds were tested further in an insulin turbidity assay; 35G8 had the most potent IC50 value and was taken for further 

biochemical analysis and optimization. 

We next used the thermal shift assay15 to validate whether 35G8 stabilizes its presumed target, 

PDI. Intriguingly, 35G8 destabilized PDI, indicated by the decrease in melting temperature of the 

protein (Figure III-2). The dose-dependence of the negative thermal shifts at all concentrations 

tested (ΔTm: −3.64 °C at 100 µM; −2.94 °C at 10 µM; −1.43 °C at 1 µM) provides further evidence 

that 35G8 associates with and destabilizes PDI. The melting temperature of a protein shifts 

positively or negatively in the presence of a ligand, and this change in melting temperature parallels 

the stability of the protein.16 These results suggest 35G8 interacts with PDI at a unique site 

compared to known stabilizing ligands, such as estradiol.17 To further validate 35G8 binding to 
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PDI, we performed the cellular thermal shift assay (CETSA) and drug affinity responsive target 

stability (DARTS) assay. 35G8 also destabilized PDI via CETSA (Figure III-2). 35G8 had little 

effect on a related molecular chaperone, GRP78, but did seem to stabilize the cysteine-containing 

glutathione-transferase Omega 1 (GSTO1). In the DARTS assay, U87MG cell lysates were 

subjected to pronase degradation in the presence or absence of PACMA31 or 35G8. Both 

compounds protected PDI from proteolysis, but had no effect on the degradation of GRP78 or 

GSTO1. These results established 35G8 as a potent, selective inhibitor of PDI. 

 

Figure III-2 35G8 destabilizes PDI. (A) Thermal shifts observed for recombinant PDI (0.3 mg/ml) with various concentrations of 

35G8. DMSO was used as a control. (B) Apparent melting temperatures (Tm) and change in melting temperature derived from 

ThermoFluor assay (C) Protein expression of PDI, GRP78, GSTO1, and actin (loading control) in the absence or presence of 35G8 

at varying temperatures in the cellular thermal shift assay (D) Western blot analysis of DARTS assay with PDI, GRP78, and GSTO1 

subjected to 100 μM PACMA31 (P), 100 μM 35G8 (G), or DMSO (-). Samples were subjected to varying concentrations of 

pronase. Data are means from three independent experiments. 
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Table III-1 PDI inhibitory activity of 35G8 analogues. IC50 values obtained in insulin turbidity assay. Data are means ± standard 

deviation from three independent experiments. 

[a] 1,3,6-Trimethylpyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione. [b] 1,6-Dimethyl-3-phenylpyrimido[5,4-e][1,2,4]triazine-

5,7(1H,6H)-dione. [c] 3-Benzyl-1,6-dimethylpyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione. [d] 3-(4-Methoxyphenyl)-1,6-

dimethylpyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione. [e] 3-(3-Methoxyphenyl)-1,6-dimethylpyrimido[5,4-e][1,2,4]triazine-

5,7(1H,6H)-dione. [f]1,6-Dimethyl-3-(4-nitrophenyl)pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione. [g] 3-(4-Methoxyphenyl)-

1,6-dimethyl-5,7-dioxo-1,5,6,7-tetrahydropyrimido[5,4-e][1,2,4]triazine 4-oxide. 

 

 

 

 

Compound Basic Module R1 R2 IC50 (μM) 

35G8 (4a)[a] A CH3 CH3 0.17 ± 0.01 

4b[b] A 
 

CH3 0.39 ± 0.03 

4c[c] A 
 

CH3 0.33 ± 0.04 

4d[d] A 
 

CH3 0.36 ± 0.05 

4e[e] A 

 

CH3 0.32 ± 0.01 

4f[f] A 
 

CH3 0.24 ± 0.04 

5d[g] B 
 

CH3 0.42 ± 0.07 

NC72 (NSC67078) A H CH3 0.105 ± 0.004 

NC75 (NSC99733) A H H         > 120 

NC79 (NSC280172) B CH3 CH3 6.55 ± 1.19 

PACMA31 - - - 5.81 ± 1.23 
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We also synthesized several analogues of 35G8 to validate the above findings. The lead 

compound, 35G8, contains methyl substituents at the three N1, C3, and N6 positions (Figure III-1). 

We incorporated various substituents at the C3 position while maintaining the methyl groups at 

N1 and N6 due to the efficient introduction of the N1 and N6 methyl groups early in the synthesis 

(Scheme III-1). Nucleophilic attack of methylhydrazine on 6-chloro-3-methyl uracil (1) led to 

hydrazinylpyrimidine-2,4(1H,3H)-dione (2a).18 Further condensation with aldehydes furnished 

the corresponding hydrazones (3a-f). Each hydrazone was cyclized by treatment with sodium 

nitrite in acetic acid/water to afford a mixture of pyrimidotriazinediones (4a-f) and the 

corresponding N-oxide derivative (5d). 

 

All 35G8 analogues had strong PDI inhibitory activity with submicromolar IC50 values, 

except NC75 (> 120 μM) and NC79 (6.55 ± 1.19 μM) in the insulin turbidity assay (Table III-1). 

The pyrimidotriazinedione compound (35G8, IC50: 0.17 ± 0.01 μM) was more potent than the 

corresponding N-oxide compound (NC79). A similar trend was observed between 4d (IC50: 0.36 

± 0.05 μM) and 5d (IC50: 0.42 ± 0.07 μM). Among the pyrimidotriazinediones, the compounds 

Scheme III-1 Synthesis of 3-substituted 35G8 analogues. Reagents and conditions: (a) methylhydrazine, EtOH, reflux; (b) aldehyde 

(R-CHO), anhydrous EtOH, room temperature; (c) NaNO2, AcOH/H2O, room temperature. 
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containing a methyl group (4a) or no substituent (NC72) at R1 had enhanced activity compared to 

those with an aromatic moiety (4b-f), likely due to steric effects. Interestingly, the PDI inhibitory 

activity was abolished upon removal of the methyl substituent at R2 (NC75: IC50 > 120 µM) 

compared to NC72 (IC50: 0.11 µM), indicating that the methyl group at R2 may be necessary to 

retain PDI inhibitory activity. Furthermore, the removal of PDI inhibitory activity abolished the 

cytotoxicity of the compound. 

35G8 analogues inhibit glioblastoma cell proliferation 

All synthesized compounds demonstrated potent cytotoxicity in four glioblastoma cell 

lines, U87MG, U118MG, A172 and NU04, with IC50 values under 10 μM, except 4c (Table III-2).  

The IC50 value of 35G8 in U87MG cells is 1.1 ± 0.2 μM. NC72 demonstrated the most potent 

cytotoxicity (IC50 = 0.5 ± 0.1 μM), complementing its potency in the PDI assay. NC75 and NC79 

had little effect on cell growth. Interestingly, this suggests that the methyl substituent is important 

for both PDI activity (as seen in the dramatic IC50 value increase from NC72 to NC75) and 

cytotoxicity. 
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Table III-2 In vitro cytotoxicity of 35G8 analogues in a panel of human glioblastoma cell lines. Cytotoxicity measured in the MTT 

assay. Data are means from at least three independent experiments. 

 IC50 (μM) 

Compound U87MG U118MG NU04 A172 

35G8 1.1 ± 0.2 3.9 ± 0.1 0.8 ± 0.2 2.0 ± 0.6 

4b 3.0 ± 0.3 4.6 ± 0.5 3.7 ± 1.2 1.8 ± 0.4 

4c 12.7 ± 3.7 24.0 ± 7.4 > 30 8.2 ± 2.5 

4d 1.2 ± 0.2 3.9 ± 0.6 0.86 ± 0.04 1.5 ± 0.4 

4e 1.1 ± 0.2 2.4 ± 0.6 0.76 ± 0.22 1.5 ± 0.1 

4f 1.8 ± 0.7 6.2 ± 1.6 4.9 ± 1.2 1.1 ± 0.2 

5d 1.9 ± 0.7 4.3 ± 0.1 1.5 ± 0.7 1.7 ± 0.1 

NC72 0.5 ± 0.1 - - - 

NC75 > 100 - - - 

NC79 > 100 - - - 

PACMA31 0.13 ± 0.07 0.28 ± 0.04 0.4 ± 0.1 0.12 ± 0.10 

 

 

Pretreatment with Z-VAD-FMK, an irreversible caspase inhibitor,19 and necrostatin-1, a 

necroptosis inhibitor,20 did not protect the cells from 35G8-induced cell death (Table III-3). These 

results indicate that neither necrosis nor apoptosis are the main pathways responsible and another 

pathway may be implicated in cell death. To assess the role of ferroptosis upon 35G8 treatment, 

we treated the cells with deferoxamine (DFO), an iron chelator (Figure III-3). 35G8-induced cell 

death was rescued in the presence of DFO, suggesting ferroptosis may play a role in 35G8-induced 

cell death. 
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Table III-3 Cell death rescue from 35G8 treatment in U87MG cells 

IC50 (µM) 

35G8 35G8+ZVAD 35G8+Necrostatin 

1.12 ± 0.04 1.22 ± 0.11 1.06 ± 0.01 

 

 

Figure III-3 DFO decreases the potency of 35G8. U87MG cells were subjected to 100 μM DFO at increasing concentrations of 

35G8. Results are means from three independent experiments; error bars show s.d. 

 

35G8 induces the Nrf2 antioxidant pathway and ER stress response 

To better elucidate the cellular response to the pyrimidotriazinediones, we performed 

nascent RNA sequencing using the Bru-seq21 method and analyzed changes in gene transcription 

rates in response to 35G8 in U87MG cells. Four hours after 35G8 treatment, 498 genes were 

upregulated at least two-fold and 238 genes were downregulated at least two-fold. Many of the top 

upregulated genes are implicated in the Nrf2 antioxidant response, ER stress response, and 

autophagy. We identified the top 20 upregulated and downregulated gene sets and analyzed the 

genes that were upregulated or downregulated at least two-fold with IPA (Ingenuity Pathway 

Analysis) (Figure III-4) and GSEA (Gene Set Enrichment Analysis). GSEA revealed enrichment 

of the Nrf2-mediated oxidative stress response upon 35G8 treatment (Figure III-4). Treatment also 
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correlates with KOBAYASHI_EGFR_SIGNALING_24HR_DN gene set, suggesting 35G8 may 

inhibit EGFR signaling. DAVID (the Database for Annotation, Visualization and Integrated 

Discovery) analysis and GSEA identified functional terms related to ER and redox-active 

disulfide, providing further evidence for PDI inhibition by 35G8 (Figure III-4).  

The upregulation of Nrf2 response genes, including HMOX1 (19-fold increase), SLC7A11 

(63-fold increase), AKR1C1 (59-fold increase), and LOC344887 (23-fold increase), is likely a 

protective response to the insults caused by 35G8. 

We also confirmed parallel increases in HMOX1 and SLC7A11 protein expression (Figure 

III-4). The Nrf2 antioxidant pathway mitigates oxidative stress by inducing antioxidant response 

elements.22 PDI is vital in the UPR, and inhibiting this key protein disrupts proteostasis, ultimately 

leading to ER stress and cell death when the cell cannot cope with the accumulation of misfolded 

proteins. ER stress target genes downstream the PERK-ATF4 ER stress response pathway, 

CHAC1 (46-fold increase), DDIT3 (4-fold increase), and HSPA5 (8-fold increase) increased as a 

result of 35G8 treatment. Protein expression of GRP78 (HSPA5) and DDIT3 increased upon 24-

hour treatment of 2 μM 35G8; however, CHAC1 protein was undetectable, likely because the 

CHAC1 protein is rapidly degraded by the proteasome.23 mRNA expression of other downstream 

targets of the PERK-ATF4 ER stress response pathway, including TRIB3 and ASNS,24, 25 also 

increased in response to 35G8. These results suggest that brain cancer cells rely on PDI to maintain 

redox homeostasis, and when PDI is inhibited, cells undergo irremediable ER stress that leads to 

cell death.  
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Figure III-4 Effects of 35G8 treatment on cellular pathways. (A) Pathways from the Bru-seq analysis of 35G8-treated cells. (B) 

GSEA for “NFE2L2.V2,” the top gene set matched with upregulated genes from Bru-seq results. Functional terms represented by 

genes upregulated (C) and downregulated (D) at least 2-fold by 35G8 treatment. Pathway analysis was performed using DAVID 

(left) and GSEA (right). (E) Histograms of differentially expressed proteins between 35G8-treated and DMSO-treated U87MG 

cells. Fold change bars are in black for UPR genes, dark grey for autophagy-related genes, and light grey for Nrf2-related genes. 

(F) Western blot showing Nrf2-regulated proteins SLC7A11 and HMOX1 expression upon 24-hour treatment of U87MG cells 

with 1 or 2 μM 35G8. (G) Western blot of ER stress-induced proteins DDIT3 and GRP78 expression upon 24-hour treatment of 

U87MG cells with 1 and 2 μM 35G8. (H) Western blot of autophagy-related proteins LC3B, beclin 1, ATG3, ATG5, and ATG7 

expression upon 24-hour treatment of U87MG cells with 1 (+) and 2 (++) μM 35G8. -: vehicle-treated control. GAPDH used as a 

loading control. Experiments repeated in triplicate.  

 

We also identified several autophagic signaling genes that respond to ER stress triggered 

by 35G8, including TRIB3, IRS2, and TMEM74. TRIB3 (23-fold increase), as a downstream target 

of ATF4, mediates autophagy by inhibiting the mTORC1 pathway.26 IRS2 (12-fold increase) 

activation induces protective autophagy to clear unwanted protein aggregates27 and may also help 

remove damaged cells. TMEM74 (28-fold increase), a transmembrane protein localized to the 

lysosome and autophagosome, regulates autophagy.28 The increased transcription of these 

autophagy-related genes prompted us to measure protein expression of several autophagy markers. 

Cleaved LC3B expression increased significantly after 24-hour treatment with 2 μM 35G8, 

however expression levels of other autophagy markers, including ATG3, ATG5, ATG7, and beclin 

1, did not change, suggesting that autophagy may play a more protective role in this case. These 

results indicate that 35G8 induces the ER stress and Nrf2 response in brain cancer cells to 

contribute to cell death.  

Bru-seq analysis identifies novel glioblastoma markers 

AKR1C1, IL-6, CHAC1 and TNFSF9 are among the top 20 upregulated genes with 

significantly decreased expression in brain cancer compared to normal brain tissues (Figure III-5). 

Conversely, genes that were downregulated upon 35G8 treatment, including TXNIP (−7.40-fold 

change), EGR1 (−5.65-fold change), and ITGA3 (−3.89-fold change) are often overexpressed in 

brain cancer (Figure III-5). Additional genes affected include HMOX1, IRS2, SLC7A11, and 
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mir181A2HG (Figure S6). These data suggest 35G8 inhibits transcription of these mRNA or 

inhibits an upstream regulator of ITGA3 and EGR1. The results also indicate a gene such as IL6 

may be used as a biomarker of 35G8 inhibition in future studies and EGR1 may be a novel 

glioblastoma marker. 
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Figure III-5 Effect of 35G8 treatment on RNA synthesis in U87MG cells. 35G8 induces transcription of (A) AKR1C1, (B) CHAC1 

and (C) TNFSF9 while corresponding box plots show downregulation of these genes in brain cancer. 35G8 inhibits the transcription 

of (D) TXNIP, (E) EGR1 and (F) ITGA3 while corresponding box plots show upregulation of these genes in brain cancer. FC: fold 

change; GBM: glioblastoma 
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35G8 induces ROS formation 

Because the cells responded to 35G8 by upregulating the Nrf2-mediated oxidative stress 

response, we investigated the production of reactive oxygen species (ROS) by 35G8 and its 

analogues to determine whether the cytotoxicity of these compounds is dependent on ROS 

induction. We observed significant ROS induction by all 35G8 analogues tested at 5 μM as early 

as four hours after treatment, except for 4c (Figure III-6). ROS accumulation with these 

compounds was time-dependent. At 24 hours, 5 μM 35G8 treatment achieved maximal ROS 

induction, comparable to 100 μM H2O2 treatment. No change in the fluorescent signal in the 

samples containing 35G8 without H2DCFDA dye was observed, eliminating the possibility of 

endogenous fluorescence affecting the assay. N-

acetyl cysteine (NAC) did not affect the cytotoxicity 

of 35G8 significantly. This suggests 35G8-induced 

cell death is not solely dependent on ROS induction. 

35G8 induces ferroptosis 

Both transcription and protein expression of 

HMOX1 and SLC7A11 are highly upregulated by 

35G8. These proteins have been implicated in the 

non-apoptotic cell death mechanism, ferroptosis. 

HMOX1 is necessary for ferroptosis and is a major 

source of iron in the body.29 Inhibition of cysteine-

glutamate exchange through system xc-, of which 

SLC7A11 is a component, induces iron-dependent 

cell death.30 To determine whether 35G8 induces 

Figure III-6 ROS induction of 35G8 analogues at (A) 4 

hours, (B) 6 hours, and (C) 24 hours. In (C), H2O2 

concentration is 500, 100, and 20 μM, from left to right. 

Data are means from three independent experiments; 

error bars show standard deviation. 
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ferroptosis in U87MG cells, we treated the cells in the presence or absence of deferoxamine (DFO), 

an iron chelator.31 In the presence of DFO, 35G8 is almost three times less potent (IC50 = 5.8 ± 1.0 

μM) than when used alone (IC50 = 2.2 ± 0.7 μM). These data suggest that PDI may play an 

important role in preventing ferroptosis in brain cancer.    

35G8 is expected to cross the blood-brain barrier 

The likelihood of blood-brain barrier (BBB) permeation, AlogP, water solubility, polar 

surface area, and number of rotatable bonds of 35G8 and its synthesized analogues were 

determined with a qualitative model in the ADMET predictor (Version 7.0). The AlogP of the 

compounds is between -1.1 and 1.1 and the likelihood of BBB permeation is high. The polar 

surface area of 35G8 is less than 90 Å2, the cutoff for predicted CNS penetration.32 The average 

molecular weight of marketed CNS compounds is 310, and the 35G8 analogues range in molecular 

weight from 207 – 315. Similarly, TMZ has a molecular weight of 194 Da, ClogP of -0.82, and a 

polar surface area of 108 Å2. These data demonstrate that 35G8 will be able to cross the blood-

brain barrier. 

Discussion 

The screen of 20,000 diverse compounds in a growth inhibition assay produced 35G8 as 

the most potent inhibitor of proliferation of the colon cancer cell line HCT116. 35G8 destabilizes 

PDI and blocks its reductase activity. As a consequence, 35G8 likely causes cell death via 

continuous activation of ER stress and disruption of homeostatic balance, among other factors. 

35G8 was validated in orthogonal assays to rule out that activity was not a consequence of its 

redox-cycling status. 35G8 generates H2O2 in the presence of DTT at the concentrations used in 

the PDI assay (Figure III-7), however, H2O2 does not interfere with insulin reduction catalyzed by 
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PDI (Figure III-7). The reactive nature of the pyrimidotriazinedione class underlines the 

importance of testing activity in a wide variety of assays, including non-fluorescent methods, in 

order to eliminate false positive results. Therefore, we performed several assays with various 

output methods to test our novel compounds.  

 

Figure III-7 PAINS characteristics of 35G8 do not interfere with PDI activity in the insulin turbidity assay. (A) Redox cycling 

assay measuring absorbance at 610 nm. Data are presented as mean ± standard deviation of three independent experiments. (B) 

H2O2 in insulin turbidity assay. Ability of PDI to reduce insulin measured in the presence of 10 μM and 100 μM H2O2, and 10 μM 

35G8. ● Sodium phosphate buffer only.  130 μM insulin in buffer and DTT  1 μM PDI + 130 μM insulin + DTT  10 μM 

35G8 in 1 μM PDI + 130 μM insulin + DTT  10 μM H2O2 in 1 μM PDI + 130 μM insulin + DTT  100 μM H2O2 in 1 μM PDI 

+ 130 μM insulin + DTT. 

The Bru-seq results revealed that 35G8 promoted the activation of the Nrf2 pathway. Of 

the top 20 upregulated genes following a 4-hour 35G8 treatment, four are implicated in the Nrf2 

pathway (SLC7A11, HMOX1, AKR1C1, and LOC344887). Nrf2 is a transcription factor that 
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normally is kept at low levels due to degradation mediated  by Keap1.33 Following exposure to 

ROS, Keap1 is inactivated and Nrf2 induces transcription of genes to counteract the oxidative 

insult.34 SLC7A11 is part of a cysteine-glutamate transporter (system xc-) that is regulated by Nrf2 

as well as ATF4.35 HMOX1, another Nrf2-regulated gene, increased over 19-fold upon 35G8 

treatment. We also found that transcription of the AKR1C1 gene, which is induced by ROS but 

expressed at low levels in gliomas, increased significantly following 35G8 treatment. Furthermore, 

the lncRNA LOC344887 has been shown to be activated by Nrf2.36 Nrf2-regulated genes may be 

responsible for treatment resistance in glioblastoma, providing further evidence that inhibiting PDI 

could be a sound strategy to treat glioblastoma.37, 38 

Several ER stress markers were induced in response to 35G8 treatment, including CHAC1, 

DDIT3, ASNS, and ATF3. Due to the strong upregulation of CHAC1, a pro-apoptotic marker 

regulated by ATF4, we hypothesize that the PERK-ATF4-DDIT3 branch of the UPR is likely 

activated upon PDI inhibition by 35G8 treatment. The ER stress response and autophagy are 

closely linked, and ER stress may induce autophagy in 35G8-treated cells. 

Autophagy is the process of protein and organelle degradation by lysosomes, used as a 

survival mechanism to provide energy for the cell.39 The ER stress response protein ATF4 

promotes autophagy40 by upregulating genes like TRIB3.41 While autophagy can be protective as 

a survival mechanism, increased autophagic signaling causes cell death. It is still unclear whether 

TMEM74 is regulated by ATF4, but upregulation of TMEM74 mRNA may lead to autophagic 

PI3K signaling. The increase of ARG2 expression upon 35G8 treatment may be a result of the 

activation of the UPR and lower cellular levels of arginine, leading to autophagy.42 IRS2, a key 

insulin signaling protein regulated by the UPR and silenced by JNK, is expressed to remove 

damaged cells.43 35G8 treatment initiates a protective response by upregulating the UPR and 
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inducing autophagy to combat ER stress. Ultimately, unbalanced homeostatic mechanisms 

overwhelm the cellular machinery, and this leads to cell death. 

ROS induction is likely responsible for the increased expression levels of TXNRD1 (9-fold 

increase) and TXN (2-fold increase). TXNIP inhibits TXN activity, and TXNIP expression is 

significantly inhibited by 35G8 treatment (7.4-fold decrease). ER stress activates the ERK1/2 

MAP kinase signaling pathway, repressing TXNIP expression leading to thioredoxin nuclear 

translocation.44 Interestingly, TXNIP is overexpressed in brain cancer patients. Furthermore, 

TXNIP can bind PDI and increase its activity. Lower TXNIP levels allow TRX to bind ASK1 and 

prevent apoptosis.45 Therefore, decreased expression of TXNIP may contribute to the absence of 

apoptosis signaling observed upon 35G8 treatment.  

Another class of genes that were repressed by 35G8 are involved in DNA repair. GSEA 

analysis showed that several genes involved in mismatch repair, homologous recombination, base 

excision repair and nucleotide excision repair had reduced transcription following 35G8 treatment. 

It is possible that these genes share a common transcription factor that requires PDI-assisted 

protein folding for optimal function. Importantly, these findings suggest that 35G8 may be used 

in combination with DNA damaging agents or PARP1 inhibitors to augment their therapeutic 

effectiveness.   

The key Nrf2-regulated genes SLC7A11 and HMOX1 are essential markers for iron-

dependent, erastin-induced ferroptosis. SLC7A11 is a negative regulator of ferroptosis and 

upregulation of SLC7A11 occurs as a response to system xc- inhibition. Efforts to treat glioma 

patients by inhibiting system xc- have failed;46 however, combining SLC7A11 inhibition with a 

PDI inhibitor may be a promising new strategy.  
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 System xc- imports cystine for glutathione synthesis to maintain intracellular redox 

balance, and the expression of this system is often elevated in several cancers, including gliomas.47 

System xc- inhibitors, in particular sulfasalazine, as single agents for the treatment of gliomas have 

been unsuccessful,48 but have been shown to sensitize glioma cells to radiation therapy.49 

Similarly, the ferroptosis inducer erastin sensitizes glioblastoma cells to temozolomide by 

inhibiting system xc-.50 These studies provide evidence that system xc- is an important target for 

combating resistance in brain cancer. Importantly, 35G8-induced cell death can be rescued by 

deferoxamine, suggesting that ferroptosis is occurring. Interestingly, Bru-seq analysis of 35G8-

treated cells revealed a pattern of gene expression similar to that of erastin-treated cells (Figure 

III-8), including induction of the ER stress response, unfolded protein response, and expression of 

the erastin-exposure pharmacodynamic marker, CHAC1.30 

 

Figure III-8 Venn diagram for the genes with greater than two-fold change in 35G8 and erastin treatments. 

This indicates that as a consequence of PDI inhibition, 35G8 blocks transport via system 

xc-. However, a link between PDI and SLC7A11 expression has not yet been established and 

further investigation is warranted.  
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Conclusions 

We identified 35G8 as a markedly potent PDI inhibitor that may have therapeutic potential 

as a single agent and in combination with SLC7A11 inhibitors or DNA-damaging agents. 35G8 

and its analogues demonstrate activity in human brain cancer cells likely through upregulation of 

ER stress and UPR that leads to autophagy-mediated ferroptosis. Taken together, our data suggest 

35G8 is a useful investigational PDI inhibitor, expected to easily cross the blood brain barrier, that 

can be optimized to develop novel therapeutic agents to treat malignant glioma. 

Experimental Section 

Reagents. 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was purchased 

from Amresco (Solon, OH). N-acetylcysteine (NAC) was purchased from Sigma-Aldrich (St. 

Louis, MO). Methyl (3S)-5-fluoro-3-[[(2S)-2-[[(2S)-3-methyl-2-(phenylmethoxycarbonylamino) 

butanoyl] amino] propanoyl] amino]-4-oxopentanoate (Z-VAD-FMK) was purchased from Tocris 

Bioscience (Bristol, UK). 5-(1H-indol-3-ylmethyl)-3-methyl-2-sulfanylideneimidazolidin-4-one 

(Necrostatin-1) was purchased from Cayman Chemical Company (Ann Arbor, MI). Phenol red, 

H2O2, and horseradish peroxidase (HRP) were purchased from Sigma-Aldrich (St. Louis, MO). 

Hank’s Balanced Salt Solution (HBSS) was purchased from Hyclone (Logan, UT), and sodium 

hydroxide was purchased from EMD (Gibbstown, NJ). 

Cell Culture. The human glioblastoma cells, U87MG, U118MG, NU04 and A172 (ATCC, 

Manassas, VA), were obtained in 2013 and were maintained in RPMI-1640 (Thermo Fisher 

Scientific, Waltham, MA) supplemented with 10 % fetal bovine serum (Thermo Fisher Scientific). 

Cells were grown as monolayer cultures at 37 °C in a humidified atmosphere of 5 % CO2 and 
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tested for Mycoplasma contamination with the Mycoplasma detection kit, PlasmoTest (InvivoGen, 

San Diego, California). 

Growth Inhibition Assay. Cell growth inhibition was assessed by MTT assay as previously 

described.51 Cells were seeded in duplicate in 96-well plates at 7000 - 10000 cells/well. After 

overnight incubation at 37 °C and 5 % CO2, cells were treated with indicated compounds for 72 

hours. For the combination therapies, NAC was added to the well at the same time as 35G8 (24 

hours after plates were seeded), and Z-VAD-FMK and Necrostatin-1 were added to the well 1 hour 

prior to 35G8 addition. The plates were incubated with drug or vehicle control for 72 hours at 37 

°C and 5 % CO2. MTT solution (20 μL, 3 mg/mL) was added to the wells, and the cells were 

incubated for 4 hours at 37 °C. Supernatant was removed and DMSO (100 μl) was added to each 

well. The plates were shaken for 15 min at room temperature, and absorbance of the formazan 

crystals was measured at 570 nm. Cell growth inhibition was assessed by the cell viability rate as 

[1-(At-Ab)/(Ac- Ab)]×100 (At , Ac and Ab were the absorbance values from cells treated with 

compound, cells not treated with compound, and blank, respectively). Cell viability was 

determined with the MTT assay. U87MG cells were seeded at 5000 cells per well in 96-well plates. 

Deferoxamine (Sigma Aldrich) was added to cells in a five-point, three-fold dilution series from 

400 μM. 35G8 was added immediately after in a five-point, three-fold dilution series from 100 

μM. Cells were incubated with compounds for 12 hours at 37 °C, and MTT assay was performed 

as stated above. 

PDI Protein Purification. The expression vector of recombinant human PDI protein with N-

terminal His tag was a gift from Dr. Lloyd W. Ruddock (University of Oulu, Oulu, Finland). PDI 

expression and purification were performed as previously described with slight modifications.4 In 

brief, protein production was carried out in Escherichia Coli strain BL21 (DE3) grown in LB 
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medium with 200 μg/ml ampicillin (EMD Biosciences, La Jolla, CA) at 37 °C and incubated at an 

A600 of 0.5 for 4 hours with 1 mM isopropyl β-D-1-thiogalactopyranoside (GoldBio, St. Louis, 

MO). Cells were harvested by centrifugation (4000g for 15 min) and were re-suspended in one-

tenth volume Buffer A (20 mM sodium phosphate, pH 7.3). Cells were lysed by sonication and 

the cell debris was removed by centrifugation (17000g for 45 min). The supernatant was applied 

to a bed of Ni-nitrilotriacetic acid in a histidine-binding column (Qiagen, Hilden, Germany), 

equilibrated with 10 ml of Buffer A and incubated at 4 °C, overnight. After incubation, the column 

was washed in Buffer A and then in Buffer B (20 mM sodium phosphate, 0.5 M sodium chloride 

and 50 mM imidazole, pH 7.3). His-tagged proteins were eluted using Buffer C (20 mM sodium 

phosphate and 50 mM EDTA, pH 7.3) and eluent was dialyzed in 100 mM sodium phosphate 

buffer (pH 7.0) with 2 mM EDTA. 

Measurement of PDI Activity. PDI activity was assessed by measuring the PDI-catalyzed 

reduction of insulin as described previously.14 In brief, recombinant PDI protein (0.4 μM) was 

incubated with indicated compounds at 37 °C for 1 hour in sodium phosphate buffer (100 mM 

sodium phosphate, 2 mM EDTA, 8 μM DTT, pH 7.0). A mixture of sodium phosphate buffer, 

DTT (500 μM), and bovine insulin (130 μM; Gemini BioProducts, West Sacramento, CA) was 

added to the incubated PDI protein. The reduction reaction was catalyzed by PDI at room 

temperature, and the resulting aggregation of reduced insulin B chains was measured at 620 nm. 

PDI activity was calculated with the formula, PDI activity (%) = [(ODT80[PDI+DTT+compound] 

- ODT0[PDI+DTT+compound]) - (ODT80[DTT] - ODT0[DTT])] / [(ODT80[PDI+DTT] - 

ODT0[PDI+DTT]) - (ODT80[DTT] - ODT0[DTT])] × 100 (ODT0 and ODT80 were the absorbance 

values at 0 min and 80 min after the reduction reaction, respectively). 
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Thermal Shift Assay. Thermal shift of purified PDI (0.3 mg/ml in 100 mM NaPO4, pH 7.0) in 

the presence or absence of 35G8 was determined as described.15 Briefly, 5 µl protein-dye (1,8-

ANS, 0.3 mM; Sigma Aldrich) solutions were dispensed in each well of a 384-well microplate 

(Thermo Scientific, AB1384K) and equal volumes of the test compound solutions were dispensed 

to each well. Then, 3 µl of silicone oil (Sigma Aldrich) was added to each well to prevent 

evaporation. DMSO (2 % in buffer) was used as control. Fluorescence emission was detected by 

measuring light intensity using a CCD camera. The plate was heated at a temperature range from 

25 to 90 °C at 1°C/minute in the ThermoFluor instrument (Johnson & Johnson, New Brunswick, 

NJ). Compounds were replicated three times in a 384-well plate.  

Cellular Thermal Shift Assay. The cellular thermal shift assay was performed following 

previously established procedure.52 U87MG cells were seeded at 2 x 106 cells/100 mm dish and 

allowed to attach overnight. Cells were treated with 0.5, 1.0, or 2.0 μM 35G8, or DMSO as the 

negative control, for 2 hours at 37 °C, 5 % CO2. After treatment, cells were trypsinized, washed 

with DPBS twice, and suspended in 600 μL DPBS. The cells were split into 100 μL aliquots, 

heated at indicated temperatures for 3 min in the Veriti Thermal Cycler (Applied Biosystems), and 

incubated for 3 min at room temperature. The cells were flash-frozen twice and spun at 14000g 

for 20 min at 4 °C. Supernatants were collected and loaded onto a 10 % polyacrylamide gel at a 

volume of 16 μL, with 4 μL 4X SDS loading dye. Subsequently, Western blotting was run 

following the procedure reported herein. 

Drug Affinity Responsive Target Stability. The DARTS assay was performed following 

previously established procedure.53 U87MG cells were grown to approximately 80-85% 

confluence, washed with ice-cold DPBS, and lysed with lysis buffer (150 mM NaCl, 1.0% NP-40, 

0.5% sodium deoxycholate, 50 mM Tris, pH 8.0). Cells were collected, and lysis was allowed to 
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occur for 10 min on ice. Cells were spun at 18000g for 20 min at 4 °C to collect the supernatant. 

Protein concentration was determined via BCA assay. 100 μM PACMA31 or 35G8 or 1% DMSO 

were incubated with aliquots of cell lysate at 5 mg/ml for 30 min with shaking at room temperature. 

Pronase (Sigma Aldrich) was added to 20 μL aliquots of cell lysates at 0, 1:1000 (0.005 μg/μL), 

1:500 (0.01 μg/μL), or 1:250 (0.02 μg/μL) for 30 min at room temperature. Digestion was stopped 

by adding 1X protease inhibitor cocktail (Sigma Aldrich) and incubating the reactions on ice for 

10 min. SDS-PAGE loading buffer (6 μL of 5X) was added to the samples, and samples were 

heated for 10 min at 70 °C. Samples were spun down briefly and 20 μg of protein was loaded into 

acrylamide gels (10 %) for Western blot analysis. 

Bru-seq Analysis. Bru-seq experiments12 and analysis were performed as previously reported. 

Briefly, U87MG cells were placed in dishes on Day 1. Cells were changed to fresh media on Day 

5 and treated with DMSO or 35G8 at 1 μM for 4 hours. Bromouridine was added into the media 

to a final concentration of 2 mM to label newly synthesized nascent RNA in the last 30 min of 

treatment. Cells were then collected in TRIzol (Thermo Fisher Scientific) and total RNA was 

isolated. The bromouridine-containing RNA population was further isolated and sequenced. 

Sequencing reads were mapped to a reference genome.  

Bioinformatic Analysis. Bru-seq data of 35G8 treatment was filtered using the cut off value of 

gene size > 300 bp and mean (RPKM) > 0.5 and a total of 7,770 genes were ranked based on the 

fold change values versus control (DMSO). DAVID functional annotation analysis54, 55 was 

performed on 460 upregulated and 220 downregulated genes with fold change ≥ 2 and ≤ -2. IPA 

of Bru-seq data was performed using the IPA web-based application (Ingenuity Systems, Inc.) on 

the list of 680 up- and downregulated genes (fold change ≥ 2 and ≤ -2). Top canonical pathways 

were ranked based on the P-value of significance and maximum number of genes in the pathway. 
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GSEA of Bru-seq data was done on a pre-ranked gene list of 7,770 genes of 35G8 treatment based 

on the Kolmogorov–Smirnov statistic.56  

ROS Detection Assay. U87MG cells were detached with 0.05% trypsin-EDTA, neutralized, 

centrifuged and resuspended in cell culture media. Suspension was treated with 20 μM cell-

permeable H2DCFDA for 30 min at 37 °C. Cells were centrifuged again and washed with cell 

culture media to remove excess probe. After washing, cells were placed in a black-wall 384-well 

plate at 20,000 cells/well, incubated for 30 min and treated with compounds at designated 

conditions. Fluorescent signals were read at 493 nm/523 nm for ROS detection at designated time 

points (4, 6, and 24 hours).    

Western Blot. Primary antibodies for GRP78, HMOX1, CHAC1, CHOP, LC3B, GSTO1, and 

SLC7A11 and secondary antibodies were purchased from Cell Signaling (Danvers, MA). Primary 

antibody for P4HB was purchased from Protein Tech (Rosemont, IL). U87MG cells were treated 

with DMSO or 2 μM 35G8 for 1, 3, 6, 12, or 24 hours. Cells were harvested with a lysis buffer 

(25 mM tris(hydroxymethyl)aminomethane, 150 mM sodium chloride, 17 mM Triton X-100, 3.5 

mM sodium dodecyl sulfate, pH 7.4), lysed via sonication, and spun in a centrifuge at 13500g at 4 

°C for 10 min. Supernatant was collected and protein concentration determined with the BCA 

assay (Thermo Fisher Scientific, Waltham, MO). Samples were prepared with 50 μg protein and 

loaded onto 10 % (or 12 % for LC3B and DDIT3) acrylamide (Bio-Rad, Hercules, CA) gels. 

Protein from gels was electrotransferred to methanol-activated immobilon-FL PVDF membranes 

(EMD Millipore, La Jolla, CA). Membranes were blocked for 1 hour with Odyssey blocking buffer 

(LI-COR Biosciences, Lincoln, NE). Membranes were probed for proteins using primary 

antibodies (P4HB, 1:1000; GRP78, 1:1000; GSTO1, 1:1000; HMOX1, 1:1000; CHAC1, 1:1000; 

CHOP, 1:500; LC3B, 1:2000; SLC7A11, 1:2000) overnight at 4 °C. Membranes were incubated 
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with secondary antibodies (anti-rabbit, 1:7500, or anti-mouse, 1:7500) and fluorescence was 

imaged by Odyssey imaging system (LI-COR Biosciences). 

Redox Cycling Assay. The redox cycling assay was adapted from a previously published 

experiment.57 In duplicate in a 384-well plate, 20 μL of HBSS buffer, 100 U of catalase, 100 μM 

H2O2, 100 μM H2O2 + 100 U catalase, 0.5% DMSO, 500 μM DTT, 10 μM 35G8, 10 μM 35G8 + 

500 μM DTT, or 10 μM 35G8 + 500 μM DTT + 100 U of catalase was added to a reaction mixture 

with HBSS to a final volume of 60 μL. The reaction was incubated at room temperature for 30 

min, and phenol red-HRP detection reagent was added to a final concentration of 100 μg/ml phenol 

red and 60 μg/ml HRP in each well. The reaction was incubated for an hour at room temperature. 

Sodium hydroxide (10 μL, 1 N) was added to wells and absorbance was measured at 610 nm.  

Statistical Analysis. IC50 values were calculated using GraphPad Prism 7 software (GraphPad 

Software, Inc.). The error bars indicate mean ± standard deviation. 
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CHAPTER IV 

Design, Synthesis, and Biological Evaluation of Novel Allosteric Protein Disulfide 

Isomerase Inhibitors 

Introduction4 

Cancer cells require increased protein synthesis and respond to endoplasmic reticulum 

(ER) stress by activating the unfolded protein response (UPR) which is mediated by ER 

chaperones.1-3 ER chaperones such as protein disulfide isomerase (PDI) have emerged as 

interesting targets for cancer research. PDI is an oxidoreductase chaperone, located in the ER, that 

assists protein folding by catalyzing disulfide-bond formation (oxidation), breakage (reduction), 

and rearrangement (isomerization).4, 5 PDI is composed of four thioredoxin-like domains (a, a’, b, 

and b’), a linker between the a’ and b’ domains (x), and a C terminal acidic tail. Both the a and a’ 

domains contain structurally similar active sites, including a CGHC motif, and are responsible for 

the oxidoreductase activity.6 The b’ domain possesses a large hydrophobic pocket for substrate 

binding and recognition. The C-terminal domain functions in chaperone activity.7 All these 

domains are attached in a U-shaped structure that is open in the oxidized state and closed in the 

 
4 This work has been published and is being reprinted with permission from Yang, S., Shergalis, A., Lu, D., Kyani, 

A., Liu, Z., Ljungman, M., & Neamati, N. (2019). Design, synthesis, and biological evaluation of novel allosteric 

protein disulfide isomerase inhibitors. Journal of medicinal chemistry, 62(7), 3447-3474. 

Author contributions: Suhui Yang and Andrea Shergalis were the primary authors. Suhui Yang, Dan Lu, and Ziwei 

Liu synthesized and characterized all compounds. Andrea Shergalis evaluated compounds in biochemical and cell-

based assays. Suhui Yang generated figures IV-1 and IV-2. Anahita Kyani generated figure IV-16 and performed 

docking studies. Mats Ljungman generated figure IV-7. Nouri Neamati is the corresponding author. 
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reduced state. In addition to the vital roles in protein folding, PDI is overexpressed in a variety of 

cancers but more significantly in GBM.4 Furthermore, upregulation of PDI is associated with 

acquired temozolomide resistance in GBM, thus inhibition of PDI enhances temozolomide-

mediated cell death through apoptosis via the ER stress response pathway.8 Selective PDI 

inhibitors can sensitize several cancer cell lines to chemotherapeutic agents such as etoposide, 

fenretinide, and velacade.9, 10 PDI inhibition induces acute ER stress in multiple myeloma cells 

accompanied by apoptosis-inducing calcium release.11 In addition, PDI is strongly expressed in 

invasive glioma cells, in both xenografts and at the invasive front of human GBMs, and PDI 

inhibition leads to reduced glioma cell migration and invasion by interfering with the integrin 

outside-in signaling pathway.12, 13 All these findings suggest that PDI is an important target for 

cancer therapy, especially for brain cancers, thus emphasizing the need for the development of 

novel and potent PDI inhibitors. 

Recently, we discovered the PDI inhibitor BAP2, a benzylidene acetophenone, with an 

IC50 value of 930 ± 90 nM, via a combination of high-throughput screening and experimental 

analysis.14 BAP2 shows in vitro and in vivo antiproliferative activities in human brain cancer 

models as a single agent. A simple chalcone is a 1,3-diaryl-2-propen-1-one in which the two 

aromatic rings are connected by a three-carbon α,β unsaturated carbonyl bridge. Chalcone is 

considered a valuable scaffold due to its simple chemistry, ease of synthesis, and wide biological 

activity, including anti-oxidant, anti-inflammatory, anti-bacterial, and antitumor properties.15 

Several chalcones, such as metochalcone, sofalcone,16, 17 PD-156707, licochalcone A, and 

Elafibranor, have been marketed or clinically tested for various diseases, indicating that chalcones 
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are well-tolerated and non-toxic to humans, and they have reasonable pharmacokinetic properties 

(Figure IV-1).18 Herein, we report the synthesis of 67 novel BAP2 derivatives, a structure-activity 

relationship (SAR) analysis, and evaluation of PDI inhibitory activity and cytotoxicity against 

brain cancer cells. The most potent BAP2 analogues inhibited GBM migration and cell growth, 

lowered MMP9 expression, and blocked MMP2 secretion. Furthermore, extensive transcriptomic 

and proteomic analysis of analogue treatment in a brain cancer cell line demonstrated that BAP2 

and analogues induced ER stress, increased expression of G2M checkpoint proteins, and reduced 

expression of ribosomal and DNA replication proteins. While BAP2 and 59 have some thiol 

reactivity, we provide evidence that PDI inhibition by BAP2 analogues is dependent on allosteric 

binding in the b’ domain. 

 

Figure IV-1 Chemical structures of chalcones that have been marketed or clinically tested, and the hit compound BAP2 as a PDI 

inhibitor. 
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Results 

Synthesis of BAP2 derivatives and their structure-activity relationship 

To investigate the structural aspects of the lead BAP2 for ability to inhibit PDI reductase 

activity, a series of derivatives were designed and prepared. For the synthesis of chalcones, the 

most commonly used method is the base-catalyzed Claisen-Schmidt condensation reaction 

between a methyl ketone and an aldehyde in the presence of sodium hydroxide (NaOH),19, 20 

potassium hydroxide (KOH),21 or lithium hydroxide (LiOH∙H2O).22 However, the base-mediated 

reactions sometimes require longer reaction times (several days), give low chemical yields, and 

have a high possibility of side reactions such as the Cannizzaro reaction of an aldehyde, aldol 

condensation, or Michael addition reaction.23 On the other hand, the acid-catalyzed method 

involves the use of aluminum trichloride (AlCl3)
24 or dry HCl,25 and recently boron trifluoride 

etherate (BF3∙Et2O) has been used as a condensing agent.26, 27 This new BF3∙Et2O-assisted method 

is advantageous over existing methods because it produces higher yields, requires shorter reaction 

times, and has minimal side reactions.26, 28, 29 Therefore, we applied the BF3∙Et2O method for the 

synthesis of most BAP2 derivatives in this study.  

Several 4-substituted acetophenones (3a-n) and benzaldehydes (4a-b) were prepared via 

typical methylation (3a),30 nucleophilic substitution reactions with amines (3b-i, 4b), activation of 

acid with thionyl chloride and the subsequent substitution reaction with nucleophiles (3j-m), 

hydroxylation at an aliphatic carbon of 3’-bromo-4’-methyl acetophenone (3n), and esterification 

of 3-carboxybenzaldehyde (4a) (Scheme IV-1). With the acetophenones (3) and benzaldehydes 

(4), most BAP2 derivatives were prepared by a modified procedure of the BF3∙Et2O-assisted 
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Claisen-Schmidt reaction (Scheme IV-2).26 Some BAP2 derivatives were synthesized by applying 

the base-catalyzed condensation reaction (8-9, 39),19 and pyrazine-containing derivatives were 

obtained in the presence of diethylamine in pyridine at 80-120 °C (29 and 56). Microwave-assisted 

one-pot reaction of a Sonogashira coupling of an aryl halide with an aryl alcohol and the 

subsequent base-catalyzed isomerization were carried out to provide the boronate-containing 

chalcone 71,31 and further oxidative cleavage of the boronate afforded the boronic acid chalcone 

72.32 Another boronic acid chalcone 31 was prepared by Miyaura borylation of aryl halide 10 and 

subsequent oxidative cleavage. Microwave-assisted Suzuki coupling of aryl halide 67 afforded 

chalcones 68 and 69. In addition, methylation of compounds 5 and 25, demethylation of 8, 

esterification of 37, and base-promoted hydrolysis of 53 afforded corresponding BAP2 derivatives 

7, 27, 6, 46, and 45, respectively. 
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Scheme IV-1 Synthesis of 4-substituted acetophenones (3a-n) and benzaldehydes (4a-b)a 

 
aReagents and conditions: (i) 3a: K2CO3, MeI, acetone, reflux; (ii) 3b: THF, rt; 3c-i: Et3N, anh THF, rt; (iii) 3j: (1) pyridine, anh 

DCM, rt; (2) 1 N HCl. 3k-m: (1) SOCl2, rt; (2) pyridine, DCM; (iv) 3n: (1) NBS, AIBN, MeCN, reflux; (2) CaCO3, dioxane, H2O, 

reflux; (v) (1) Cs2CO3, MeOH/H2O (10:1), rt; (2) MeI, DMF, rt; (vi) benzimidazole, K2CO3, DMF, 100 °C. 
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Scheme IV-2 Synthesis of BAP2 analogues 5-72a 

 
aReagents and conditions: (i) 5, 10-26, 28, 30-38, 40-44, 47-55, 57-67, 70: BF3∙Et2O, 1,4-dioxane, 80 °C. 8-9, 39: 60% NaOH, 

EtOH, 0 °C → rt 29, 56: (1) Et2NH, pyridine, 80-120 °C; (2) acetic acid; (ii) 71: DBU, PPh3, PdCl2(PPh3)2, THF, MW 120 °C, 40 

min; (iii) 6: (1) Py.HCl, 210 °C; (2) NaHCO3, pH 7-8; (iv) 7, 27: K2CO3, MeI, acetone, reflux; (v) 31: (1) Bis(pinacolato)diboron, 

PdCl2(dppf), KOAc, dioxane, reflux; (2) NaIO4, THF, H2O, rt; (3) HCl, H2O, rt; (vi) 45: (1) NaOH, H2O, THF, rt; (2) HCl, H2O; 
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(vii) 46: cat H2SO4, anh MeOH, reflux; (viii) 68: Pyridine-3-boronic acid, 10 mol% Pd(OAc)2, KF, PEG/EtOH, MW 110 °C, 30 

min; (ix) 69: Cs2CO3, Pd(PPh3)4, DMF, MW 130 °C, 20 min; (x) 72: (1) NaIO4, H2O, THF, rt; (2) HCl, H2O, rt.  

 

A total of 68 synthetic chalcone compounds were prepared and tested for the inhibitory 

effect against PDI using the PDI reductase assay.33, 34 Their structure-activity relationship (SAR) 

was analyzed by categorizing the derivatives into three clusters based on the substituent of ring B. 

In the first series of analogues (Table IV-1), we maintained the nitrile group of the lead BAP2 at 

R2 and made modifications at R1. Replacement of the hydroxyl group (6, IC50 of 0.85 μM) with 

bromine (10) led to a 2-fold decrease in the inhibition of PDI activity. Activity dropped 

substantially upon replacement of the hydroxyl group (5, IC50 of 1.87 μM and 6) with a methoxy 

group (7 and 8), amine (9), or heterocycle (11, 12), and upon the introduction of a pyrazine moiety 

to replace the phenyl ring (29). Similarly, the compounds containing at least one hydroxyl group 

retained activity or showed stronger activity depending on the additional substituent (21-24, 32-

36, IC50 range of 0.21 – 2.37 μM), regardless of the position of the nitrile at meta or para of R2. 

However, introduction of a methoxy group (25, 26) seemed to be unfavorable for activity even 

with the hydroxyl group maintained (IC50 of 10.9 and 2.72 μM, respectively). Analogue activity 

decreased with dimethoxy groups (27) or dihalogen atoms (28) in place of the hydroxyl group, 

indicating the importance of the hydroxyl group for potency. Interestingly, several BAP2 

analogues lacking a hydroxyl group retained or even improved PDI inhibitory activity (13-20). 

These compounds contain a sulfonamide moiety in place of the hydroxyl group and increase in 

hydrophobic character with increasing alkyl chain. As hydrophobicity increased, the PDI 

inhibitory activity of the analogues improved, and the derivatives with 3 < ClogP < 5 were the 
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most potent with IC50 values of 0.82 – 1.23 μM (15, 16, 19, 20). On the other hand, another type 

of sulfonamide-containing chalcone derivative (e.g. 30, IC50 of 8.51 μM) was not as potent as 20 

(IC50 of 1.11 μM) although they both have a bulky hydrophobic moiety, suggesting that electron 

withdrawing group such as -SO2NHR prepare the olefin for nucleophilic attack by the thiol in the 

active site. Potentially, the hydrophobic region would interact with a pocket near the active site to 

stabilize binding. These findings suggest that both active site and hydrophobic interactions play 

important roles in the activity of this series. 

Table IV-1 PDI inhibitory activity of the synthesized BAP2 derivatives 5-36a 

 

Compd Scaffold X R1 R2 IC50 (µM)b  

6 

(BAP2) 

A C 4-OH 3-CN 0.85 ± 0.14 

5 A C 3-OH 3-CN 1.87 ± 0.58 

7 A C 3-OMe 3-CN 8.13 ± 1.53 

8 A C 4-OMe 3-CN > 500 

9 A C 4-NH2 3-CN > 500 

10 A C 4-Br 3-CN            1.66 ± 0.42 

11 A C 4-Morpholine 3-CN > 500 

12 A C 4-Piperidine 3-CN > 500 

13 A C 4-SO2NH2 3-CN 6.64 ± 0.11 

14 A C 4-SO2NMe2 3-CN 6.23 ± 0.67 
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15 A C 4-SO2NEt2 3-CN 1.23 ± 0.06 

16 A C 4-SO2NPr2 3-CN 0.82 ± 0.34 

17 A C 4-SO2NBu2 3-CN 1.34 ± 0.19 

18 A C 4-SO2NPe2 3-CN 0.16 ± 0.06 

19 A C 4-SO2NHCPh 3-CN 1.05 ± 0.76 

20 A C 4-SO2NHPh 3-CN 1.11 ± 0.14 

21 A C 2-OH, 4-F 3-CN 2.37 ± 1.22 

22 A C 3-OH, 4-F 3-CN 1.15 ± 0.08 

23 A C 3-F, 4-OH 3-CN 1.14 ± 0.17 

24 A C 3-CF3, 4-OH 3-CN 2.00 ± 0.37 

25 A C 3-OH, 4-OMe 3-CN 10.93 ± 0.73 

26 A C 3-OMe, 4-OH 3-CN 2.72 ± 0.74 

27 A C 3,4-OMe 3-CN >100 

28 A C 3-F, 4-Cl 3-CN >500 

29 A N H 3-CN >500 

30 B  

N-methyl-4-

nitrobenzenesulfonamide 

3-CN 8.51 ± 3.51 

31 B  B(OH)2 3-CN 0.83 ± 0.38 

32 A C 4-OH 4-CN 0.74 ± 0.09 

33 A C 2-OH, 4-F 4-CN 1.80 ± 0.60 

34 A C 3-OH, 4-F 4-CN 1.83 ± 0.49 

35 A C 3-F, 4-OH 4-CN 0.21 ± 0.08 

36 A C 3-CF3, 4-OH 4-CN 1.11 ± 0.33 

 

aInhibition of PDI was assessed by PDI reductase assay. bIC50 values are indicated as the mean ± SD (standard error) of at least 

three independent experiments.  
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Next, we investigated PDI inhibitory activity of the derivatives containing a carboxylic 

acid or carboxymethyl ester in place of the nitrile group at meta position of R2 (Table IV-2). The 

introduction of carboxylic acid at R2 (37-45) generally reduced potency, regardless of the presence 

of a hydroxyl group at R1. However, a carboxymethyl ester (46, 47, 49) increased potency with an 

IC50 range of 0.12 – 0.49 μM compared to compounds containing a nitrile group (5, 6, 24, IC50 

range of 0.85 – 2.0 μM), and we obtained the most potent analogue 46 with a carboxymethyl ester 

(IC50 = 120 ± 10 nM) at R2. These results indicate that the carboxymethyl ester facilitates stronger 

binding affinity for PDI than chalcones containing other electron-withdrawing groups such as a 

nitrile group or carboxylic acid. Intriguingly, the activity was lost when the carboxymethyl ester 

at R2 was added to the sulfonamide-containing chalcones (51-53), suggesting that the chalcones 

with a hydroxyl group or a sulfonamide moiety at R1 may have different binding modes. 

 

Table IV-2 PDI inhibitory activity of the synthesized BAP2 derivatives 37-53a 

 

Compd Scaffold X R1 R2 IC50 (µM)b 

6 

(BAP2) 

A C 4-OH 3-CN 0.85 ± 0.14 

37 A C 3-OH 3-COOH 10.19 ± 1.41 

38 A C 4-NO2 3-COOH 40 < IC50 < 500 

39 A C 4-NH2 3-COOH > 100 
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40 A C 4-Morpholine 3-COOH > 100 

41 A C 4-Piperidine 3-COOH 40 < IC50 < 500 

42 A C 3-OH, 4-OMe 3-COOH > 100 

43 A C 3-F, 4-OH 3-COOH 9.10 ± 2.10 

44 A C 3-CF3, 4-OH 3-COOH 4.09 ± 1.31 

45 B  N-methyl-4-nitrobenzenesulfonamide 3-COOH 4.00 ± 0.60 

46 A C 3-OH 3-COOMe 0.12 ± 0.01 

47 A C 4-OH 3-COOMe 0.40 ± 0.16 

48 A C 3-OH, 4-OMe 3-COOMe 47.8 ± 11.0 

49 A C 3-CF3, 4-OH 3-COOMe 0.49 ± 0.13 

50 A C 3-Br, 4-CH2OH 3-COOMe 0.13 ± 0.03 

51 A C 4-SO2NPr2 3-COOMe > 100 

52 A C 4-SO2NBu2 3-COOMe > 100 

53 B  N-methyl-4-nitrobenzenesulfonamide 3-COOMe > 100 

aInhibition of PDI was assessed by PDI reductase assay. bIC50 values are indicated as the mean ± SD (standard error) of at least 

three independent experiments.   
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We also examined the potency of BAP2 derivatives containing different functional groups 

such as trifluoromethyl, hydroxy, methoxy, bromo, boronate, or boronic acid moieties at R2 (Table 

IV-3). Replacing the nitrile in BAP2 (6) and 32 with a trifluoromethyl group reduced the potency 

about 2 to 4-fold (55, 57), suggesting the electron-withdrawing properties at R2 are not driving 

inhibition. But interestingly, replacement with a heterocycle increased analogue activity with IC50 

values of 0.21 – 0.35 μM (68-70). In a series of carboxamide-, sulfonamide-, or carboxylate-

containing analogues (60-65), the compounds with a hydroxyl group at R2 afforded PDI inhibition 

with an IC50 range of 1.7 – 11 μM (60-62), but the potency was abolished upon replacement with 

a methoxy group (63-65), suggesting that the analogues with a hydrophobic moiety at R1 may 

require the hydroxyl anchor at R2 to position them for hydrophobic interactions around the binding 

pocket. In addition, the analogues containing -SO2NHR at R1 and hydroxyl group at R2 (58, 59) 

tolerated the activity compared to the ones containing nitrile group at R2 (15, 16).  
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Table IV-3 PDI inhibitory activity of the synthesized BAP2 derivatives 54-72a 

 

 

Compd Scaffold  X R1 R2 IC50 (µM)b 

6 

(BAP2) 
A C 4-OH 3-CN 0.85 ± 0.14 

 54 A C 4-OH 2-CF3 1.67 ± 0.29 

55 A C 4-OH 3-CF3 1.56 ± 0.36 

56 A N H 3-CF3 9.57 ± 0.52 

57 A C 4-OH 4-CF3 2.56 ± 1.01 

58 A C 4-SO2NEt2 3-OH 1.29 ± 0.31 

59 A C 4-SO2NPe2 3-OH 0.81 ± 0.56 

60 B  N-methylthiophene-2-carboxamide 3-OH 5.74 ± 0.10 

61 B  N-methylthiophene-2-sulfonamide 3-OH 11.13 ± 0.50 

62 B  Methyl thiophene-2-carboxylate 3-OH 1.75 ± 0.27 

63 B  N-methylthiophene-2-carboxamide 4-OMe > 500 

64 B  N-methylthiophene-2-sulfonamide 4-OMe 40 < IC50 < 500 

65 B  Methyl thiophene-2-carboxylate 4-OMe 40 < IC50 < 500 

66 A C 4-OH 4-OMe 1.74 ± 0.50 

67 A C 3-OH 4-Br 0.40 ± 0.04 

68 A C 3-OH 4-(Pyridin-3-yl) 0.35 ± 0.20 

69 A C 3-OH 3-(Pyridin-4-yl) 0.21 ± 0.19 

70 A C 3-OH 4-(Benzoimidazol-1-yl) 0.23 ± 0.09 

71 B  H 
 

2.20 ± 0.79 
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72 B  H 4-B(OH)2 1.25 ± 0.19 

 

aInhibition of PDI was assessed by PDI reductase assay. bIC50 values are indicated as the mean ± SD (standard error) of at least 

three independent experiments.  

 

The SAR of all derivatives are summarized in Figure IV-2, and the results indicate there 

are two different series of active chalcone derivatives. The first series contains a hydroxyl group 

at meta or para position of ring A, and the potency of compounds decreases based on the functional 

group on ring B as follows: COOMe ≈ Br, pyridine, benzimidazole ＞CN ＞CF3 ≫ COOH. The 

second series contains a sulfonamide moiety or aromatic ring with linkers such as carboxamide, 

carboxylate, or sulfonamide at para position on ring A, and the potency of compounds decreased 

based on the functional group of ring B as follows: CN ≈ OH ＞OMe ≈ COOMe.  

 

Figure IV-2 Summarized SAR of synthesized BAP2 analogues. 
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BAP2 analogues selectively reduce brain cancer cell viability 

We selected 23 BAP2 analogues with IC50 values lower than 1.5 μM against PDI and tested 

for cytotoxicity in a panel of brain cancer cell lines (U87MG, A172, and NU04) (Table IV-4). 

Compound 19 was not soluble in DMSO and therefore not considered further in this study. The 

BAP2 analogues were moderately cytotoxic to U87MG cells, with IC50 values from 10 to 30 µM 

for most of the analogues. In general, the NU04 cells were more sensitive than the U87MG cells 

to treatment. Compounds more potent than BAP2 (6) in both A172 and NU04 cells included 18, 

59, 68, 69, and 70. Among the compounds, compound 18 was the most potent in both U87MG and 

A172 cells (IC50 = 5.6 ± 2.1 µM and 9.0 ± 3.4 µM, respectively). Compound 69 was the most 

potent in the NU04 cell line, with an IC50 value of 3.8 ± 0.1 µM. These chalcone derivatives also 

inhibited PDI activity more potently compared to PACMA3133, a previously reported PDI 

inhibitor (Figure IV-3). Next, we investigated the effect of five BAP2 derivatives on GBM cell 

proliferation. All compounds generally showed a dose-dependent inhibition of colony formation 

in U87MG cells. BAP2 was less potent in the colony formation assay than in the MTT assay as it 

inhibited less than 40 % of cell proliferation at 10 µM, whereas the IC50 value of BAP2 in U87MG 

cells was 10.7 ± 1.8 µM (Table IV-4). Interestingly, unlike BAP2, all other analogues except 59 

inhibited more than 50% of cell proliferation at a lower dose than their IC50 values in U87MG 

cells, indicating that these analogues can inhibit the clonogenic properties of the cells.  
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Table IV-4 Cytotoxicity of the 23 selected BAP2 analogues in a panel of human GBM cell linesa  

Compd 
IC50 (µM) 

U87MG A172 NU04 

6 (BAP2) 10.3 ± 2.3 16.8 ± 3.5 15.7 ± 3.4 

15 17.7 ± 4.6 26.4 ± 4.1 19.9 ± 8.3 

16 25.6 ± 5.0 35.0 ± 13.1 26.6 ± 0.7 

17 17.0 ± 3.3 67.3 ± 46.8 15.5 ± 4.2 

18               5.6 ± 2.1 9.0 ± 3.4                    5.0 ± 1.8 

19 NS NS NS 

20 48.5 ± 37.5 28.9 ± 3.0 18.7 ± 11.4 

22 22.9 ± 8.1 16.8 ± 3.3 10.6 ± 3.8 

23 29.1 ± 6.9 21.9 ± 7.1                    9.8 ± 1.3 

31             24.3 ± 11.0 20.2 ± 11.0 13.0 ± 2.2 

32 15.1 ± 5.6 20.0 ± 8.6 12.8 ± 2.7 

35 29.0 ± 9.3 28.4 ± 8.4                  15.8 ± 10.3 

36 26.4 ± 8.2 33.7 ± 13.5 10.4 ± 1.3 

46 16.5 ± 7.6 19.5 ± 6.9 22.7 ± 8.2 

47 28.8 ± 2.3 32.3 ± 1.6 30.6 ± 4.4 

49 11.6 ± 0.6 35.0 ± 35.7 10.3 ± 0.7 

50 13.6 ± 1.8 20.6 ± 10.4                  17.2 ± 10.2 

58             40.7 ± 14.5 31.2 ± 8.0                  19.2 ± 10.1 

59 15.0 ± 3.5 11.3 ± 0.3                    7.6 ± 3.1 

67             76.3 ± 23.8 67.8 ± 6.4                  26.2 ± 8.3 

68 10.7 ± 0.8 11.0 ± 0.8                    4.9 ± 1.0 

69             24.9 ± 12.1 11.3 ± 0.1                    3.8 ± 0.1 

70             10.8 ± 1.2 10.7 ± 0.6                    9.9 ± 1.5 
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72 31.2 ± 2.1 32.1 ± 1.1 22.9 ± 6.5 

 

aCytotoxicity was assessed by MTT assay. IC50 values are indicated as the mean ± SD (standard error) of at least three independent 

experiments for active compounds (IC50 < 20 μM). NS: not soluble in DMSO. 

 

Next, we tested the five BAP2 derivatives in HFF-1 normal human fibroblast cells to 

determine the therapeutic window of this series (Table IV-5). Interestingly, BAP2 had the largest 

therapeutic window, with a 5.8-fold difference in potency in NU04 (15.7 ± 3.4 µM) versus HFF-

1 cells (91.2 ± 13.1 µM). Compounds 59 and 68 demonstrated a 3.8-fold and 4.6-fold difference 

in potency, respectively, between cancer cells and normal cells. In the case of compound 18, 

potency was greater against the HFF-1 cells (3.4 ± 1.1 µM) than the NU04 cells (5.0 ± 1.8 µM). 

These results suggest that BAP2 and analogues may be effective in combination therapy because 

they may cause less off-target toxicity.  
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Table IV-5 Cytotoxicity of 6 BAP2 analogues in a human fibroblast cell line HFF-1 and comparison to NU04a 

ID 
IC50 (µM) 

NU04 (µM)  HFF-1 (µM) Fold Difference 

BAP2 15.7 ± 3.4 91.2 ± 13.1 5.80 

18   5.0 ± 1.8   3.4 ± 1.1 0.67 

46 22.7 ± 8.2 17.4 ± 3.5 0.77 

59   7.6 ± 3.1  29.2 ± 4.5 3.85 

68   4.9 ± 1.0 22.5 ± 8.0 4.57 

69   3.8 ± 0.1 31.8 ± 13.2 8.39 

aCytotoxicity was assessed by MTT assay. IC50 values are indicated as the mean ± SD (standard error) of at least three independent 

experiments. 
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Figure IV-3 Optimized BAP2 analogues inhibit colony formation and PDI activity. (A) Chemical structures of five optimized 

BAP2 (6) analogues. (B) PDI reductase inhibition activity of PACMA31, 6, 18, 46, 59, 68, and 69. Recombinant PDI at 400 nM 
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was incubated at 37 °C for 1 h in the presence or absence of indicated compounds. Reduction of insulin was followed by an increase 

in absorbance at 620 nm for 120 min. IC50 values were calculated at 80 min. (C) Colony formation ability of U87MG cells was 

determine in the presence of DMSO, or PDI inhibitors. Normalized well intensity from three independent experiments is shown in 

the right panel. 

 

BAP2 analogues stabilize PDI to thermal degradation 

In order to validate that our compounds interact with PDI and stabilize the protein to 

thermal denaturation, we further tested the compounds in the biochemical thermal shift assay. 

Compounds 18, 46, 59, 68, and 69 were tested at 100 µM against recombinant PDI, and an inactive 

compound 8 was used as a negative control in addition to DMSO. Typically, compounds that bind 

to a protein stabilize its secondary structure and increase the melting temperature; however, 

PACMA31, a validated PDI inhibitor, does not stabilize PDI. This may be explained by the 

irreversible covalent nature of binding to the reactive site cysteines. Because the bond is 

irreversibly covalent, it may not require additional interaction to inhibit PDI activity. On the other 

hand, estradiol, known to bind in the b’ domain of PDI and form critical interactions with His256,35 

stabilizes PDI to thermal denaturation.   

Similar to estradiol and BAP2, the analogues 46, 59, and 68 increased the melting 

temperature by more than 1 °C in a dose-dependent manner, suggesting that these compounds form 

important stabilizing interactions with PDI (Figure IV-4). However, compounds 18 and 69 did not 

stabilize PDI in the thermal shift assay, despite being potent inhibitors of PDI activity; these results 

suggest that these compounds may interact in the active site of PDI, instead of the hydrophobic 

pocket of the b’ domain. This suggests that BAP2 analogues 46, 59, and 68 may form critical 

interactions with PDI that PACMA31 does not form. To provide additional evidence to support 
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our hypothesis, we prepared two mutants of PDI: H256A and C53S/C397S. The H256A mutant 

contains a point mutation from histidine to alanine at the key residue 256 where estradiol was 

proposed to bind. The C53S/C397S mutant contains serine residues replacing one cysteine from 

each of the CGHC active sites. In the thermal shift assay, the stabilization by estradiol and BAP2 

was abolished in the H256A mutant, but not the C53S/C397S mutant (Figure IV-4). Interestingly, 

the shift caused by analogues 46, 59, and 68 was not abolished by either mutation. This suggests 

that the histidine may be crucial for BAP2 binding, but other hydrophobic interactions are 

important for analogue binding and activity. Specifically, 46, 59, and 68 may react with the active 

site thiols. These results ultimately suggest that 46, 59, and 68 may be interacting with both the 

active site and b’ domain of PDI. 
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Figure IV-4 Optimized BAP2 analogues stabilize PDI. (A) Boltzmann melting temperatures calculated for PDI (0.5 µg/µl) in the 

presence of 100 µM PACMA31, 6, 8, 18, 46, 59, 68, 69, or DMSO. The change in melting temperature compared to DMSO is 

reported above each bar. (B) Dose-response effects of estradiol, 6, 46, 59, and 68 in the presence of PDI. Results are reported as 

the change in the melting temperature of the curve compared to the vehicle control. (C) Change in melting temperature of 0.5 µg/µl 

wild-type, C53S/C397S, and H256A PDI in the presence of indicated compounds at 100 μM (DMSO used as vehicle control.) P: 

PACMA31; E2: estradiol. Results are reported as mean ± standard deviation of three experiments. *: p < 0.05; **: p < 0.01; ***: 

p < 0.001, compared to wild-type PDI values. Statistical significance was measured using 2-way analysis of variance (ANOVA). 

 

BAP2 analogues induce ER stress in GBM cells 

PDI plays an important role in regulating the ER stress response, a mechanism that triggers 

the UPR and ultimately balances ER homeostasis.36 In this study, we hypothesized that inhibition 

of PDI by BAP2 analogues would exacerbate ER stress mechanisms by disrupting homeostatic 

balance, ultimately leading to cell death. We first investigated their effect on phosphorylation of 
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eukaryotic translation initiation factor 2α (EIF2α) in U87MG and A172 cells (Figure IV-5). EIF2α 

is a translation initiation factor downstream of the PERK arm of the UPR, and phosphorylation of 

EIF2α in response to ER stress leads to inhibition of protein synthesis.36 Like tunicamycin, a 

protein glycosylation inhibitor, treatment with BAP2 analogues increased phosphorylation of 

EIF2α above basal levels in both GBM cell lines. Unexpectedly, PACMA31 did not induce 

phosphorylation of EIF2α. PACMA31, BAP2, and analogues also increased expression of GRP78 

(Figure IV-5). These results indicate that treatment of GBM cells with BAP2 analogues promotes 

ER stress, upregulates the UPR, and inhibits protein synthesis. Compound 46 significantly 

promotes the ER stress response in GBM cells. 

 

Figure IV-5 BAP2 analogues inhibit protein synthesis via EIF2α pathway. (A) U87MG cells were treated with tunicamycin (10 

µg/mL), 1.0 μM PACMA31, or 20 μM 6, 46, 18, 68, 69, or 59 for 2 hours and Western blots were performed as described in the 

Experimental Section.  (B) U87MG cells treated with tunicamycin (10 µg/mL), 1.0 μM PACMA31, or indicated compounds at 20 

µM for 24 hours. Abbreviations: P – PACMA31; TM – tunicamycin 
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BAP2 analogues inhibit GBM cell migration 

PDI is involved in the migratory capabilities of glioma cells via the integrin outside-in 

pathway.37 Therefore inhibiting PDI may prevent GBM cell invasion and metastasis. In order to 

determine whether the BAP2 analogues could inhibit cell migration, we performed the wound 

healing assay in A172 cells. BAP2 inhibited wound healing at 10 μM, and all analogues, except 

69, inhibited cell migration in a dose-dependent manner, similar to PACMA31 (Figure IV-6).  

An additional transwell migration assay was performed to validate the migration of A172 

cells in the presence of selected compounds, PACMA31, 6, 18, and 59 at subtoxic concentrations 

(Figure IV-6). Cells were treated with the compounds for 4 hours. All compounds inhibited 

migration at 30 μM, and 18 inhibited migration at 10 μM. We further examined the effect of the 

compounds on the expression level of migration markers including MMP2, MMP9 and p-FAK in 

U87MG cells at 10 µM for 48 hours. Gelatin zymography and Western blot analysis of the 

conditioned media confirmed that PACMA31 and 68 inhibit MMP2 activity and secretion. MMP2 

expression in cells did not change upon BAP2 analogue treatment; however, MMP9 expression 

decreased in the presence of PACMA31, 18, 59, and 68. FAK phosphorylation did not change 

with BAP2 analogue treatment. These results demonstrate that BAP2 analogues inhibit GBM cell 

migration via downregulation of MMP9 and decreased secretion of MMP2.  
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Figure IV-6 BAP2 analogues inhibit cell migration in a dose-dependent manner. (A) Compounds tested in the wound healing assay 

for 24 hours. Cells were stained with Giemsa stain and images were taken at 10X magnification. (B) A172 cells migrated through 

an 8.0 µm membrane in the transwell migration assay, in the presence of 6, 18, 59, PACMA31, at indicated concentrations, or 

DMSO as a vehicle control. Wells without FBS were used as a control. Images are representative of 5 fields per well. (C) U87 cells 

were treated for 48 hours with 10 µM BAP2 analogues (or 0.25 µM PACMA31). The activity of MMP2 was assessed by gelatin 

zymography. (D) Western blot was performed on the conditioned media of the chalcone-treated cells to determine the expression 

of cleaved MMP2. (E) Western blot was performed on the cell lysates of the chalcone-treated U87MG cells to determine expression 

of MMP2 and MMP9. (F) Western blot was performed on chalcone-treated U87MG cells to assess changes in the phosphorylation 

of FAK. 

 

BAP2 and analogue 46 induce ER stress and downregulate DNA damage response genes 

 Previously, with nascent RNA sequencing (Bru-seq), we demonstrated that BAP2 

treatment of U87MG cells upregulated ER stress and UPR genes and decreased expression of DNA 

repair and DNA damage response (DDR) genes.38 We performed Bru-seq on analogues 18 and 46 
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and found they had a similar effect on the cells. The transcription of ER stress response genes 

including DDIT3, CHAC1, ASNS, and XBP1 increased upon treatment with both compounds, 

though 18 increased transcription to a greater extent (Figure IV-7). Furthermore, both compounds 

also decreased transcription of RAD51 and E2F1 (Figure IV-7). Additionally, Gene Set 

Enrichment Analysis (GSEA) was performed on the log 2-fold changes of the abundance ratios of 

protein expression between DMSO- and compound-treated U87MG cells. GSEA confirmed that 

both 18 and 46 treatment resulted in profiles that positively correlated with UPR and negatively 

correlated with E2F signaling (Figure IV-8, Figure IV-9, Figure IV-10, Figure IV-11). We applied 

Hallmark pathway analysis via GSEA and identified that genes with decreased transcription upon 

46 treatment also correlated with epithelial-to-mesenchymal transition, TNFα signaling, and 

KRAS signaling.  
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Figure IV-7 BAP2 analogues induce transcription of ER stress genes and downregulate DNA damage response genes RAD51 and 

E2F1. Traces of RNA transcripts derived from (A) ER stress genes, (B) RAD51, or (C) E2F1 loci in U87MG cells treated with 10 

μM 18 or 16 μM 46 for 4 hours. Traces represent RNA abundance following treatment. RPKM: reads/kilobase of transcript/million 

mapped reads. 

 To further validate the GSEA results, proteomics with tandem mass tag multiplexing was 

performed in U87MG cells treated for 24 hours with DMSO, 20 μM of BAP2 or 18. GSEA 

revealed that BAP2 treatment was positively correlated with the G2M DNA damage checkpoint 

and negatively correlated with ribosomes and associated proteins. Furthermore, 18 treatment was 
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positively correlated with an arsenic oxide signature and negatively correlated with DNA 

replication (Figure IV-12). These results suggest the analogues are targeting PDI and promoting a 

similar transcriptional profile in the cells as BAP2. Long, non-coding RNAs (lncRNA) can act as 

transcriptional regulators39 and impact glioma initiation and progression.40 GSEA of the Bru-seq 

transcription profiles of 18 and 46 also revealed non-coding genes with increased or decreased 

transcription. Transcription of NMRAL2P, a transcribed unprocessed pseudogene and target of 

Nrf2,41 increased upon both 18 (+ 2.72 log2 fold change) and 46 (+ 4.10 log2 fold change) 

treatment of U87MG cells.  

 

Figure IV-8 Upregulated GSEA of 18 treatment. Compound 18 treatment (10 μM in U87MG cells) positively correlates with 

enrichment of (A) HALLMARK_TNFA_SIGNALING_VIA_NFKB, (B) HALLMARK_MTORC1 _SIGNALING, (C) 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE, (D) KEGG_ PROTEASOME, (E) TTCNRGNNNNTTC_HSF_Q6, and (F) 

CONCANNON_APOPTOSIS _BY_EPOXOMICIN_UP. NES: normalized enrichment score; FDR q-val: false discovery rate q-

value 



 

160 

 

 

Figure IV-9 Downregulated GSEA of 18 treatment. Compound 18 treatment (10 μM in U87MG cells) negatively correlates with 

enrichment of (A) HALLMARK_E2F_TARGETS, (B) HALLMARK_G2M_CHECKPOINT, and (C) E2F1_Q6. NES: normalized 

enrichment score; FDR q-val: false discovery rate q-value 

 

Figure IV-10 Upregulated GSEA of 46 treatment. Compound 46 treatment (16 μM in U87MG cells) positively correlates with 

enrichment of (A) HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY, (B) HALLMARK_MTORC1_SIGNALING, 

(C) HALLMARK_XENOBIOTIC_METABOLISM, (D) HALLMARK_UNFOLDED_PROTEIN_RESPONSE, (E) 

KEGG_PROTEASOME, and (F) TTCNRGNNNNTTC_HSF_Q6. NES: normalized enrichment score; FDR q-val: false discovery 

rate q-value 
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Figure IV-11 Downregulated GSEA of 46 treatment. Compound 46 treatment (16 μM in U87MG cells) negatively correlates with 

enrichment of (A) HALLMARK_E2F_TARGETS, (B) HALLMARK_EPITHELIAL _MESENCHYMAL_TRANSITION, (C) 

HALLMARK_TNFA_SIGNALING_VIA_NFKB, (D) HALLMARK_KRAS_SIGNALING_UP, (E) KEGG_RIBOSOME, and 

(F) BMI1_DN.V1_UP. NES: normalized enrichment score; FDR q-val: false discovery rate q-value 

 

 Additionally, PDI inhibition by 18 and 46 induces an immune response. Treatment of 

U87MG cells with 18 increases transcription of genes involved in the 

GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_EXOGENOUS_PEPTIDE_AN

TIGEN_VIA_MHC_CLASS_I gene set (NES = +2.37; FDR q-val = 0), and treatment with 46 

correlates with the REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING 

_PRESENTATION gene set (NES = + 1.47; FDR q-val = 0.24). Furthermore, treatment with 

compound 18 correlates with both an inflammatory and immune response. PDI has been 

demonstrated to play a role in the immune response, and PDI is required for the degradation of 

major histocompatibility complex (MHC) class I, a protein responsible for antigen presentation 

that is essential for adaptive immunity.42, 43 On the other hand, another study demonstrated that 
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PDI forms a key disulfide bond with the α2 domain of the MHC class I heavy chain to aid early 

folding of the complex,44 and another PDI family member, ERp57, may also aid stabilization of 

the MHC class I heavy chain via disulfide bond formation.45 Thus, the role of PDI in the immune 

response is complex and the upregulation of transcription in these pathways in response to PDI 

inhibition may be a feedback response to pathway inhibition. 

 

Figure IV-12 GSEA analysis of proteome perturbation by BAP2 and 18 reveals increased expression of G2M checkpoint and 

arsenic trioxide response and reduced expression of proteins involved in ribosome and DNA replication. Gene set enrichment 

analysis was used to assess the effect of PDI inhibitors BAP2 and 18 on the proteome of U87MG cells. GSEA plots of (A) 

upregulated and (B) downregulated pathways upon 20 μM BAP2 treatment: G2M Checkpoint and Ribosome, respectively. GSEA 

plots of (C) upregulated and (D) downregulated pathways upon 20 μM 18 treatment: Response to Arsenic Trioxide and DNA 

replication, respectively. 

BAP2 analogue treatment is synergistic with arsenic trioxide 

Previously, we demonstrated that BAP2 treatment induces transcription of genes similar 

to that of arsenite treatment.38 Furthermore, we observed increased expression of proteins involved 

in the response to arsenic oxide upon treatment with compound 18. Arsenic oxide has been used 

to treat patients with acute promyelocytic leukemia46 and synergy between tetra-arsenic oxide and 

paclitaxel in cancer cells has been observed.47 BAP2 and derivatives 13, 14, and 45 inhibit GBM 

cell proliferation synergistically with As2O3 (Figure IV-13). Synergistic combinations had a 



 

163 

 

combination index value below 1 using the Chou-Talalay method.48 Our results suggest that these 

BAP2 analogues may best function in combination with other drugs. 

 

Figure IV-13 BAP2 analogues synergize with As2O3. (A) U87MG cells were treated with indicated compounds and As2O3 for 24 

hours and the ability of cells to form colonies was measured. (B) Combination index of the concentration response in Panel A, 

calculated with the Chao Talalay method. Points below the 1.0 indicate synergistic combinations. Points above the line indicate 

antagonistic combinations. (C) Surface representation of the concentration response in Panel A. 

BAP2 analogue treatment synergizes with radiation 

Since PDI inhibition and BAP2 treatment cause global downregulation of DNA damage 

repair genes, we next determined whether BAP2 analogues would synergize with radiation to 

decrease GBM cell viability. PDI inhibition radiosensitizes GBM cells.38 The clonogenic survival 
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assay demonstrated synergy upon combination of PDI inhibitors and ionizing radiation (IR) 

compared to either modality alone (Figure IV-14). Both BAP2 and 68 treatment synergized with 

IR; however, PACMA31 at 0.05 μM did not. It is likely that the dose of PACMA31 was too low 

to demonstrate synergy, because the enzymatic IC50 value of PACMA31 inhibition of PDI is 

around 10 μM. Therefore, the more potent BAP2 analogues likely synergize with IR by inhibiting 

PDI. These findings provide a strong rationale for the development of PDI inhibitors as agents to 

combine with DNA damage-inducing therapies such as IR. 

 

Figure IV-14 BAP2 and analogue 68 synergize with radiation to inhibit clonogenic growth. (A) D54 cells were treated with 

indicated compounds after exposure to 0, 1, 2, 4, or 6 Gy of radiation. Cells were allowed to form colonies for ten days before 

staining and imaging. Survival curves were generated and radiation enhancement ratio (RER) was calculated for PACMA31 (B), 

BAP2 (C), 59 (D), and 68 (E). 
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BAP2 analogue activity varies against H256A mutant PDI 

As we previously demonstrated that BAP2 requires His256 in the b’ domain for activity, 

similar to estradiol binding, we also tested the BAP2 analogues in the PDI reductase assay against 

H256A PDI (Figure IV-15). The activity of BAP2 analogues, except 59, was reduced upon 

mutation of His256 to Ala similar to BAP2, suggesting the analogues also bind in the b’ domain 

of PDI and require His256 for activity. To further confirm their binding, we used the fluorescent 

dye, 1-anilinonaphthalene-8-sulfonic acid (ANS), which is known to bind and fluoresce 

selectively in the b’ domain of PDI.49 As expected, BAP2 and active analogues hindered the 

ability of ANS to fluoresce at 370 nm, whereas PACMA31, which binds in the active site of 

PDI, and inactive BAP2 analogues (8 and 29) did not hinder dye fluorescence (Figure IV-15). 

Compound 59 is active against the H256A mutant, but competes with ANS for the b’ domain, 

further suggesting a complex binding mode. It is possible that 59 inhibits PDI by binding in 

between the a’ and b’ domains or binds in both sites. To address the potential role of thiol-

dependent inhibition, we tested the BAP2 analogues after competition with N-acetyl cysteine 

(NAC). As a positive control, the activity of PACMA31 was significantly abolished after 

competition with NAC (Figure IV-15). Activity of BAP2 and 68 were unaffected by up to 5 mM 

NAC. Activity of 46 and 59 was abolished by 5 mM NAC, but not by lower concentrations, 

suggesting they may be attacked by the thiol groups on the cysteine active sites. For compound 

59, this is further confirmed by the fact that activity is not dependent on His256. These results, in 

combination with the alanine mutation of His256, suggest that analogue 68 binds in the b’ domain 

of PDI to inhibit activity. 
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Figure IV-15 BAP2 analogues interact with the b’ domain of PDI. (A) Activity of PDI inhibitors at 10 μM (PACMA31 tested at 

30 μM) against wild-type and H256A PDI, measured with the PDI reductase assay. Results are reported as mean ± standard 

deviation of three independent experiments. (B) ANS spectral scan with 5 μM PDI and 100 μM PDI inhibitors (estradiol, BAP2, 

PACMA31, 46, 68, and 59) or inactive BAP2 analogues (8 and 29). (C) Activity of PDI inhibitors at 40 μM in the presence of 

indicated concentrations of N-acetyl cysteine (NAC). P: PACMA31. DMSO used as a negative control. **: p < 0.01; ***: p < 

0.001 compared to wild-type PDI result in the same treatment group. Statistical significance was measured using 2-way analysis 

of variance (ANOVA). 
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BAP2 analogues interact with hydrophobic residues in the b’ domain 

We hypothesized that BAP2 derivatives may interact with the b’ domain to enhance 

binding to PDI. This hypothesis is supported by the observation that the replacement of residue 

His256 with Ala abolishes the activity of BAP2 and its analogues. Using a computational 

approach, we docked all BAP2 analogues into three PDI ligand binding sites, including two 

catalytic sites as well as the hydrophobic pocket in the b’ domain (Figure IV-16). The catalytic 

sites contain reactive Cys56 and Cys397, where PACMA31 binds33, and the b’ domain contains a 

hydrophobic pocket for substrate recognition. Molecular docking demonstrated that BAP2 

analogues preferentially interact with the b’ domain of PDI compared to catalytic sites, supporting 

the mutagenesis results (Figure IV-16).  

 

Figure IV-16 BAP2 analogues interact with the b’ domain of PDI. (A) Molecular docking of 68 BAP2 derivatives into three binding 

sites of PDIA1 (PDB ID: 4EKZ): Cys56 (Top right), His256 (middle) and Cys397 (top left). (B) Heat map plot for binding affinities 

of BAP2 derivatives in three potential binding pockets. 
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Discussion 

In this study, we report a novel target, PDI, for a series of chalcones, perform an extensive 

SAR study, determine their activity on human glioblastoma cell lines, and propose their 

mechanism of action as allosteric inhibitors of the b’ domain of PDI. Electron-deficient olefins 

such as Michael acceptors are susceptible to reactions with nucleophiles, resulting in a covalent 

bond with threonine and cysteine residues of proteins.50, 51 For example, PACMA31, which was 

previously discovered as PDI inhibitor, irreversibly inhibits PDI through its propynoic acid amide 

moiety by covalently binding to cysteine residues in the active site 33, and this is further supported 

by the results herein that demonstrate that PACMA31 inhibition of PDI is challenged by N-acetyl 

cysteine. We would expect chalcone analogues would also inhibit PDI via Michael addition 

reaction with the nucleophilic cysteines in the PDI active site because of their olefin structure. 

However, the activity of BAP2 and its analogues 46 and 68 is unaffected by NAC. Instead, their 

ability to inhibit PDI is abolished upon mutation of the key residue, His256, that is responsible for 

substrate-binding interactions in the b’ domain.35, 52 Furthermore, the stabilizing shift caused by 

BAP2 and analogues in the thermal shift assay is also abolished upon H256A mutation, and BAP2 

and analogues compete with ANS for the b’ hydrophobic binding pocket of PDI. These results 

suggest that the b’ domain is at least critical for BAP2 analogue binding. It should be noted that 

the activity of some BAP2 analogues, such as 59, is not His256-dependent, and the electron-

withdrawing sulfonamide may activate the olefin for nucleophilic attack., These findings indicate 

that BAP2 and analogues primarily use the hydrophobic pocket in the b’ domain to inhibit PDI. 
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When the substituent on ring A is an electron-withdrawing group such as a sulfonamide, 

the carbonyl may be activated for a Michael addition with the thiols in the PDI active sites. Without 

an electron-withdrawing group on ring A, the carbonyl is a weak electrophile, and other 

hydrophobic interactions, such as the hydrogen bond with His256, may play a more important role 

instead. It remains to be determined whether b’ domain-binding analogues such as BAP2 and 46 

also interact reversibly with the active site cysteines. As a whole, the mutagenesis evidence 

suggests that BAP2 and analogue 46 inhibit PDI not by attack on the weak Michael acceptor, but 

by interaction with the hydrophobic binding pocket of PDI. This agrees with the recent findings 

that chalcones without any substituents on the olefin do not induce Nrf2, possibly because no 

effective alkylation reaction occurs between the electrophilic chalcone compound and the distinct 

cysteine residues in Keap1.53 Finally, although all the tested chalcones contain the Michael 

accepting site, only few are potent PDI inhibitors. Additionally, the SAR profile of the analogues 

was not flat, demonstrating that these compounds do not all bind the active site cysteines, but have 

a more complex binding mode.  

Nascent RNA transcription analysis of BAP2 analogue treatment provided a blueprint of 

their effect on GBM cell transcription. Cells treated with BAP2 analogues 18 and 46 demonstrated 

increased transcription of genes related to the UPR after four hours of treatment. The increased 

transcription of UPR genes suggests the compounds inhibit PDI in the cells, leading to an increase 

in the unfolded protein load. This result is consistent with the findings of another research group 

that treatment with 2'-hydroxy-2,3,5'-trimethoxychalcone induces the UPR in MDA-MB-231 

breast cancer cells.54 Additionally, BAP2 analogues 18 and 46 decreased transcription of E2F 

targets. BAP2 downregulated protein expression of E2F1, and PDI knockdown was linked to 
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reduced E2F expression.38 These results provide further target engagement validation and suggest 

BAP2 analogues inhibit PDI activity in the cells.  

In addition to their role in tumor proliferation, PDI family members are involved in tumor 

immune recognition. Immune response proteins, such as antibodies, are secretory molecules and 

require maturation through the ER to be prepared for secretion. Tumors evade immune recognition 

by “shedding” key immune signal proteins from the tumor cell surface. Neutrophil L-selectin 

adhesion to lymphocytes is dependent on disulfide bonds. PDI inhibition promotes neutrophil L-

selectin shedding, suggesting that PDI promotes signaling for immune pathways to eliminate 

tumor cells.55 Furthermore, PDI has been shown to promote antibody production and the humoral 

immune response in GM-CSF-secreting cancer cells.56 However, ERp5 is necessary for shedding 

of the soluble major histocompatibility complex class-I-related ligand MICA, and thus allows the 

tumor to evade the immune response.57 ERp5, along with ADAM10 (a disintegrin and 

metalloproteinase 10), were also found to block the anti-tumor immune response in classic 

Hodgkin’s lymphoma by shedding NKG2D (natural killer group 2D) receptor ligands.58 Thus, the 

increase in transcription of MHC-related genes that we observe upon treatment with BAP2 

analogues may be a response to MHC complex degradation. Clearly, thiol-based redox reactions 

play a key role in regulating the humoral immune response; however, the precise role of PDI in 

each pathway remains to be defined. 

In summary, we explored the structure of BAP2 by modifying the substituents around ring 

A and ring B and identified potent analogues that may be promising treatment strategies for GBM. 

We identified five compounds that were more potent and cytotoxic than the lead BAP2, as well as 
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compounds that induced ER stress and inhibited GBM cell migration and MMP9 expression. 

Especially, the analogues 18 and 46 induced genes involved in the UPR and decreased expression 

of E2F target genes, validating PDI inhibition in the cells. Additionally, we demonstrated the 

therapeutic window afforded with the derivatives and the potential for combination with As2O3. 

Furthermore, preliminary results suggest that the interaction between the compounds and PDI may 

rely on more than a nucleophilic attack with the Michael acceptor region of the compound, and 

hydrophobic interaction in the b’ domain of PDI may play the most significant role. Further 

structural studies are needed to confirm the binding pose of the BAP2 analogues. Our data 

demonstrate that PDI inhibitors should be tested in combination with other targeted agents as well 

as cytotoxic chemotherapy to deliver significant beneficial effects. 

Experimental section 

Cell Culture. The human cell lines, U87MG, A172, and NU04 (ATCC, Manassas, VA), were 

obtained in 2013 and were maintained in RPMI-1640 or DMEM (Thermo Fisher Scientific, 

Waltham, MA) with 10 % fetal bovine serum (Thermo Fisher Scientific, Waltham, MA). Cells 

were grown as monolayer cultures at 37 °C in a humidified atmosphere of 5 % CO2 and tested for 

Mycoplasma contamination with the Mycoplasma detection kit, PlasmoTest (InvivoGen, San 

Diego, California). All cell lines were authenticated with STR DNA profiling (University of 

Michigan, Michigan) and matched to reference profiles from the ATCC database.  

PDI Protein Purification. PDI for this project was purified as reported in Chapter 3. PDI wild-

type, C53S/C397S, and H256A expression and purification were performed as previously 

described with slight modifications.9,14  
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Measurement of PDI Activity and Competition With N-Acetyl Cysteine. PDI activity was 

assessed by measuring the PDI-catalyzed reduction of insulin as previously described.17 In brief, 

recombinant PDI protein (0.4 μM) was incubated with indicated compounds at 37 °C for 1 hour in 

sodium phosphate buffer (100 mM sodium phosphate, 2 mM EDTA, 8 μM DTT, pH 7.0). For the 

PDI reductase assay containing H256A PDI, the compounds were tested at 10 μM. A mixture of 

sodium phosphate buffer, DTT (500 μM), and bovine insulin (130 μM; Gemini BioProducts, West 

Sacramento, CA) was added to the incubated PDI protein. The reduction reaction was catalyzed 

by PDI at room temperature, and the resulting aggregation of reduced insulin B chains was 

measured at 620 nm. PDI activity was calculated with the formula, PDI activity (%) = 

[(ODT80[PDI+DTT+compound] - ODT0[PDI+DTT+compound]) - (ODT80[DTT] - ODT0[DTT])] / [(ODT80[PDI+DTT] - 

ODT0[PDI+DTT]) - (ODT80[DTT] - ODT0[DTT])] × 100 (ODT0 and ODT80 were the absorbance values at 0 

min and 80 min after the reduction reaction, respectively).  

To assess the effect of NAC on compound activity, compounds were pre-treated with NAC 

for 30 min at 37 °C. The compound:NAC complexes were added to the PDI reductase assay as 

described above to a final concentration of 40 μM and 0, 1, 2, or 5 mM NAC.  

Thermal Shift Assay. Thermal shift of purified PDI (0.5 mg/mL in 50 mM Tris, pH 7.0) in the 

presence or absence of 100 μM compound was determined as described.18 Briefly, 5 µl PBS, 2 µL 

PDI, 1 µL ligand in 100% DMSO, 2.5 µL 8X ROX dye (from Protein Thermal Shift Dye Kit, 

Thermo Fisher Scientific), and water to 20 µL, were dispensed in each well of a 384-well 

microplate. DMSO (5 % in buffer) was used as control. The plate was heated at a temperature 

range from 25 to 99 °C at 1°C/minute in the QuantStudio 6 Flex Real-Time PCR System (Thermo 
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Fisher Scientific), and melt curves were analyzed with the Protein Thermal Shift software (Thermo 

Fisher Scientific).  

Growth Inhibition Assay. Cell growth inhibition was assessed by MTT assay as previously 

described in Chapter 3.61 Cells were seeded in 96-well plates at 4000 cells/well (A172, NU04) or 

5000 cells/well (U87MG).  

Colony Formation Assay. U87MG cells were seeded in 96-well plates at 200 cells/well. After 

overnight incubation at 37 °C and 5 % CO2, cells were treated with indicated compounds for 24 

hours. The media was removed and replaced with fresh media, and the cells were incubated ten 

days at 37 °C and 5 % CO2. Media was then removed, and crystal violet solution was added (50 

μL) for 30 min. Crystal violet was removed, and cells were washed twice with water and imaged 

with the Odyssey imaging system (LI-COR Biosciences).  

Western Blot Analysis. For ER stress analysis, 0.5 x 106 U87MG cells/well in 6-well plates were 

treated with 20 µM chalcone analogues, 1 µM PACMA31, or DMSO for 24 hours to assess 

changes in GRP78 expression. As a positive control, cells were treated with 10 µg/mL tunicamycin 

for 2 or 24 hours before cells were harvested. For EIF2α phosphorylation analysis, cells were 

treated with 1 μM PACMA31 or 20 μM 6, 18, 46, 59, 68, or 69 for 2 hours. Cells were harvested 

with a lysis buffer (25 mM tris(hydroxymethyl)aminomethane, 150 mM NaCl, 17 mM Triton X-

100, 3.5 mM SDS, pH 7.4), lysed via sonication, and spun in a centrifuge at 13,500g at 4 °C for 

10 min. Supernatant was collected, and protein concentration determined with the BCA assay 

(Thermo Fisher Scientific). Samples were prepared with 30 μg protein and loaded onto 10 % 

acrylamide (Bio-Rad, Hercules, CA) gels. Protein was electrotransferred to methanol-activated 
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immobilon-FL PVDF membranes (EMD Millipore, La Jolla, CA). Membranes were blocked for 

1 hour with Odyssey blocking buffer (LI-COR Biosciences). Membranes were probed for proteins 

using primary antibodies (PDI, Cell Signaling, Danvers, MA, 1:4000; GRP78, Cell Signaling, 

Danvers, MA, 1:2000; pEIF2α, Cell Signaling, 1:200; EIF2α, Cell Signaling, 1:200; actin, Santa 

Cruz, 1:3000; MMP2, Cell Signaling, 1:1000; MMP9, Cell Signaling, 1:1000; p-FAK, Cell 

Signaling, 1:1000; FAK, Cell Signaling, 1:1000) overnight at 4 °C. Membranes were incubated 

with secondary antibodies (anti-rabbit, Cell Signaling, 1:7500, or anti-mouse, Cell Signaling, 

1:5000) and fluorescence was imaged with the Odyssey imaging system (LI-COR Biosciences). 

Gelatin Zymography. U87MG cells were seeded at 0.5 x 106 cells/well in 6-well plates and 

allowed to attach overnight. Cells were serum-starved for 12 hours prior to designated treatment 

with chalcone analogues for 24 hours. Conditioned media was collected, cleared, and mixed with 

5X SDS loading buffer, and 5 µg of protein was subjected to electrophoresis on a 10% SDS-PAGE 

gel containing 0.1% gelatin. After electrophoresis, the gels were washed in washing buffer (50 

mM Tris HCl, 5 mM CaCl2, 1 µM ZnCl2, 2.5 % Triton X-100) twice for 30 min each time, then 

washed for 5 min in incubation buffer (50 mM Tris HCl, 5 mM CaCl2, 1 µM ZnCl2, 1.0 % Triton 

X-100). Incubation buffer was replaced, and the gels were incubated overnight at 37 °C to allow 

for digestion of the gelatin. The gelatinolytic activity of MMPs was visualized by staining the gels 

with 0.5% Coomassie blue R-250 in 45 % methanol and 10 % acetic acid for 1 hour. The gels were 

destained with 45 % methanol and 10 % acetic acid until clear bands appeared. Gels were imaged 

with the Odyssey imaging system (LI-COR Biosciences). 
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Wound Healing Assay. A172 cells were seeded in 12-well plates at 50,000 cells/well. After 

overnight incubation at 37 °C and 5 % CO2, media was replaced with serum-free DMEM and the 

cells were incubated another 24 hours. A scratch was made in each well, and compounds were 

added at indicated concentrations in media containing 10 % FBS. Cells were allowed to grow for 

24 hours, until the scratch in the negative control wells containing DMSO closed. Cells were 

stained with Giemsa stain (Sigma Aldrich) and imaged with the Olympus IX83 inverted 

microscope at 10X magnification.  

Transwell Migration Assay. The transwell migration assay was performed with BioCoat Control 

Inserts with 8.0 μm PET membrane (Corning, Corning, NY). 1 x 105 A172 cells were treated with 

indicated compounds and seeded into inserts containing serum-free medium. 500 μL DMEM with 

10 % FBS was added to the bottom of each well. The cells were incubated for 4 hours and stained 

with the Giemsa stain. The stained cells were imaged with the Olympus IX83 inverted microscope 

at 10X magnification.  

Bromouridine RNA Sequencing (Bru-seq). Bru-seq was performed as previously described.59 

U87MG cells were treated with DMSO, 18 (10 μM), or 46 (16 μM) for 4 hours. 2 mM Bru was 

added in the last 30 min of treatment. Cells were collected, and total RNA was isolated with TRIzol 

reagent. Bru-labeled RNA was captured from total RNA by incubation with anti-BrdU antibodies 

(BD Biosciences) conjugated to magnetic beads (Dynabeads, goat anti-mouse IgG; Invitrogen). 

Bru-containing RNA population was isolated and sequenced. Sequencing reads were mapped to 

the hg19 reference genome. Pre-ranked gene lists were generated for each treatment ranking genes 
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by fold change in transcription compared to control. Sequencing results were filtered using cutoff 

value of gene size > 300 bp and mean RPKM > 0.5. 

The datasets were interrogated with Gene Set Enrichment Analysis (GSEA).60 A pre-

ranked gene list of 7,749 genes was analyzed for gene enrichment using GSEA gene sets based on 

the Kolmogorov-Smirnov statistic. For each gene set, an enrichment score (ES) was normalized to 

account for the difference in gene set size, and a false discovery rate (FDR) was calculated based 

on the normalized enrichment score (NES) values.  

The datasets were also interrogated with Connectivity Map (CMap, 

https://www.broadinstitute.org/connectivity-map-cmap). Bru-seq gene sets were used with a cut 

off of ≥ 2-fold change in transcription. Some genes were omitted from analysis because they had 

no connection in CMap. 

Proteomics with Tandem Mass Tag Multiplexing. U87MG cells were seeded and allowed to 

attach overnight. Cells were treated with DMSO, 20 μM BAP2 or 20 μM 18. Cells were washed 

three times in DPBS and suspended in RIPA buffer. Proteomics experiment and analysis 

performed by the Mass Spectrometry-Based Proteomics Resource Facility in the Department of 

Pathology at the University of Michigan with the TMTsixplex™ Isobaric Label Reagent Set 

(Thermo Fisher). The abundance ratio datasets were transformed to log2(fold change) values and 

interrogated with GSEA.  

Protein Identification and Relative Quantitation by TMT labeling and LC-Tandem MS. 

Tandem Mass Tag (TMT) labeling was performed using the TMT-6plex™ isobaric labeling kit 

(ThermoFisher Scientific, catalogue no. 90061) according to the manufacturer’s protocol with 
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minor modifications. Briefly, 75 μg of protein from each sample was reduced with DTT (5 mM) 

at 45 °C for 1 h followed by alkylation with 2-chloroacetamide (15 mM) at room temperature for 

30 min. Proteins were precipitated by adding 6 volumes of ice cold acetone and incubating 

overnight at -20 °C. Precipitated proteins were pelleted by centrifuging at 8000g for 10 min at 4 °C 

and supernatant was discarded. The pellet was resuspended in 100 μL of 100 mM TEAB and 

digested overnight at 37 °C by adding 1.5 μg of sequencing grade, modified porcine trypsin 

(Promega, V5113). TMT reagents were reconstituted in 41 μL of anhydrous acetonitrile and 

digested peptides were transferred to the TMT reagent vial and incubated at room temperature for 

1 h. The reaction was quenched by adding 8 μL of 5 % hydroxylamine and incubating it for further 

15 min. The samples were combined and dried. 

Prior to MS analysis, two-dimensional separation of the samples was performed. For the 

first dimension, an offline fractionation of an aliquot each sample mix (200 μg) using high pH 

reverse phase fractionation kit into 10 fractions was performed following the manufacturer’s 

protocol (Pierce, catalogue no. 84868). Fractions were dried and reconstituted in 12 μL of loading 

buffer (0.1 % formic acid and 2 % acetonitrile). 

Liquid chromatography-mass spectrometry analysis (LC-MultiNotch MS3). The 

MultiNotch-MS3 method was employed.61 Orbitrap Fusion (Thermo Fisher Scientific) and RSLC 

Ultimate 3000 Nano-UPLC (Dionex) were used to acquire the data. Two μM of each fraction was 

resolved in the second dimension on a nano-capillary reverse phase column (Acclaim PepMap 

C18, 2 μm, 75 μm i.d. x 50 cm, ThermoScientific) using a 0.1% formic/acetonitrile gradient at 300 

nl/min (2-22% acetonitrile in 150 min; 22-32% acetonitrile in 40 min; 20 min wash at 90% 

followed by 50 min re-equilibration) and directly sprayed on to Orbitrap Fusion using EasySpray 



 

178 

 

source (ThermoFisher Scientific). Mass spectrometer was set to collect one MS1 scan (Orbitrap; 

120K resolution; AGC target 2×105; max IT 100 ms) followed by data-dependent, “Top Speed” 

(3 seconds) MS2 scans (collision induced dissociation; ion trap; NCD 35; AGC 5×103; max IT 

100 ms). For multinotch-MS3, top 10 precursors from each MS2 were fragmented by HCD 

followed by Orbitrap analysis (NCE 55; 60K resolution; AGC 5×104; max IT 120 ms, 100-500 

m/z scan range). 

Proteome Discoverer (v2.1; Thermo Fisher) was used for data analysis. MS2 spectra were 

searched against SwissProt human protein database (release 2015-11-11; 42084 sequences) using 

the following search parameters: MS1 and MS2 tolerance were set to 10 ppm and 0.6 Da, 

respectively; carbamidomethylation of cysteines (57.02146 Da) and TMT labeling of lysine and 

N-termini of peptides (229.16293 Da) were considered static modifications; oxidation of 

methionine (15.9949 Da) and deamidation of asparagine and glutamine (0.98401 Da) were 

considered variable.  Identified proteins and peptides were filtered to retain only those that passed 

< 1% FDR threshold.  Quantitation was performed using high-quality MS3 spectra (average signal-

to-noise ratio of 6 and < 40% isolation interference). 

1-Anilinonaphthalene-8-sulfonic Acid (ANS) Spectral Scan. The ANS spectral scan was 

performed as previously described.49 Briefly, 5 μM PDI was incubated in the presence 100 μM 

compounds or equivalent DMSO concentration in 50 μL of TBS at 37 °C for 1 hour. Subsequently, 

50 mM ANS was added and the mixture was incubated in the dark at 25 °C for 20 min. 

Fluorescence spectrum (Ex, 370 nm, Em, 400–700 nm) was measured in a 384-well plate.  
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Clonogenic Assay. D54 cells were irradiated with 0, 1, 2, 4, or 6 Gy and immediately plated in 6-

well plates at 200, 200, 400, 600, and 1000 cells/well, respectively. Cells were treated with DMSO, 

0.05 μM PACMA31, 1 μM BAP2, 1 μM 59, or 1 μM 68 and incubated for 10-12 days before 

colonies were stained using 0.1% crystal violet solution. 

Molecular Docking. Molecular docking of BAP2 derivatives on PDI was performed in the two 

catalytic sites and the hydrophobic binding site using a crystal structure of PDI (Protein Data Bank 

4EKZ). In three separate docking studies, all analogues were docked into the three binding sites 

using Autodock Vina.62 The structures of the BAP2 derivatives were optimized using steepest 

descent geometry optimization with the MMFF94 force field and PyRx tool.  

AutoDock (version 1.5.6; Molecular Graphics Laboratory, La Jolla, CA, USA) was used 

to prepare the input pdbqt file by merging nonpolar hydrogen atoms of PDI and calculating 

Gasteiger charges. Docking was conducted by defining the SG atom in Cys56 and Cys397 and 

NE1 in His256 as the center of the grid box for the catalytic and hydrophobic sites, respectively. 

The grid cavity size was set to 15 × 15 × 15 in the dimensions of x, y and z using 0.375 Å spacing. 

The 2D and 3D diagrams for receptor-ligand interactions were plotted using Discovery Studio 

Visualizer v17.2.0.16349. 

Statistics. The 50 % inhibitory concentration values (IC50) were determined by analyzing the log 

of the concentration−response curves by nonlinear regression analysis using GraphPad Prism 

(version 5). Biochemical and cell culture experiments were performed at least three separate times 

unless otherwise noted. Bru-seq and proteomics experiments were performed once. 
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CHAPTER V  

Characterization of Alpha-Aminobenzylphenol Analogues in Glioblastoma Cell Lines 

 

Introduction5 

 GBM cells survive by upregulating the protein folding oxidoreductase protein disulfide 

isomerase (PDIA1, also known as PDI). PDI reduces, oxidizes, and isomerizes disulfide bonds in 

nascent polypeptides and other substrates via two catalytic CGHC active sites that sit 15-30 Å 

apart in two homogenous domains.1 PDI is overexpressed in several cancers to meet the increased 

demands in protein synthesis.2-4 PACMA31, an irreversible inhibitor of PDI, demonstrated in vivo 

efficacy in a mouse model of ovarian cancer.5 Furthermore, PACMA31 exhibited synergy with 

the multi-kinase inhibitor sorafenib in a mouse model of hepatocellular carcinoma.6  

 The a and a′ domains of PDI are connected by b and b′ domains, which share identity with 

the a and a′ domains, but do not contain the CGHC active sites. As evidenced by the pKa values, 

the N-terminal cysteine in each a and a′ domain active site (Cys53 and Cys397) is stabilized in the 

thiolate form, while the C-terminal cysteine thiolate is destabilized. This allows the nucleophilic 

N-terminal cysteines to attack substrates and form mixed disulfides. The C-terminal cysteines 

 
5 Author contributions: Ding Xue synthesized all compounds and prepared Tables V-6, V-7, and V-8. Hannah Driks 

generated data for Figure V-6F, Figure V-8, and Figure V-10. Kirin Cromer generated data for Figure V-10, V-11, 

and V-14A. Amina Tanweer helped generate IC50 values for AS15 analogues and data for Figure V-6G and V-15. 
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more selectively react with the N-terminal cysteines, mediated in the a domain by the pKa of Cys56 

that is lowered by the local environment, containing a conserved Arg120.7 This reaction generates 

a reduced substrate and oxidized state of PDI.  

 The thiolate form of the redox active N-terminal cysteines reacts with electrophilic 

compounds. Thus, many electrophilic compounds have been identified as covalent PDI inhibitors, 

including PACMA315, KSC-348, 3,4-methylenedioxy-β-nitrostyrene (MNS)9, and 16F1610 

(Figure V-1). One of the main challenges of characterizing the many PDI inhibitors identified to 

date, only recently emphasized by Foster, et al., is competition with endogenous levels of 

glutathione.11 Active site PDI inhibitors, especially reactive electrophiles such as PACMA31, may 

compete with glutathione for binding the cysteine thiols of PDI. This strategy is further confounded 

by the fact that numerous PDI family members share similar active site motifs, and although the 

CGHC active site is one of the most reactive of the thioredoxin superfamily, electrophiles that bind 

this site may also bind to other CxxC-containing PDI family members. To address this 

characteristic, we assessed whether the PDI inhibitors retained activity in the presence of 

competing glutathione and used BODIPY-labeled probes to validate target engagement. 
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Figure V-1 Previously reported PDI inhibitors studied in the context of ovarian cancer (PACMA31), Huntington’s disease 

(LOC14), brain cancer (BAP2 and 35G8), thrombosis (Bepristat 1a and isoquercetin), and multiple myeloma (CCF642). KSC-

34 is an a-site selective probe and estradiol is an endogenous ligand of PDIA1. 

 In addition to upregulated PDI expression, glioblastoma cells upregulate the antioxidant 

defense system and are increasingly dependent on glutathione as the tumor grows.12 Glutathione 

is one of the most abundant molecules in the cell, with concentrations of reduced glutathione 

(GSH) estimated to reach up to 10 mM in cellular compartments. The tripeptide composed of 

glutamic acid, glycine, and cysteine is a key redox buffer and antioxidant molecule involved in 

many cellular processes including reactive oxygen species removal, signal transduction, and 

protein synthesis.13 Although the total glutathione concentration is similar in the cytosol and 
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endoplasmic reticulum, the ratio of reduced to oxidized glutathione dictates its role in each 

compartment. In the cytosol, glutathione is present mainly in its reduced form, with a ratio of 

GSH:GSSG of ~50,000:1; the ER is a more oxidizing compartment, with an estimated GSH:GSSG 

ratio of less than 7:1.14 The oxidizing environment of the ER aids in protein folding and specifically 

disulfide bond formation. 

 The initial goal of this study was to characterize a new class of PDI inhibitors in the context 

of glioblastoma. Via a medium-throughput biochemical screen, we identified a series of α-

aminobenzylphenols as inhibitors of PDI that likely target the active site cysteines of PDI via a 

retro-Michael addition reaction. Similar compounds have been reported for multiple targets, 

including HDACs15, MIF tautomerase16-19, STAT3/520, and frataxin21, among others. Furthermore, 

we synthesized two BODIPY-labeled analogues that covalently bound at least two proteins in the 

cell lysate. In addition, cytotoxicity was enhanced when the cells were pre-treated with BSO. Thus, 

the compounds are cell-permeable; however, they may target other thiol-containing proteins in the 

cell. Further optimization to consider these compounds as selective PDI inhibitors in the cells is 

warranted. In all, this study represents the importance of validating in-cell target engagement early 

in the drug discovery process and provides extensive characterization of a class of cysteine-

reactive small molecules. 

Results 

Lead Compound AS15 Is a Nanomolar Inhibitor of PDI. A screening campaign of 1000 highly 

diverse compounds from the National Cancer Institute at 40 μM in the PDI reductase assay 
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afforded almost 200 compounds that inhibited 50% of PDI activity (Figure V-2). Those 

compounds were screened for cytotoxicity in U87MG and MiaPaCa-2 cell lines, and compounds 

with > 40% inhibition of cell growth at 30 μM were subjected to dose response assays in both the 

MTT assay and PDI reductase assays. AS15 and CD343 emerged as lead scaffolds with IC50 values 

in the PDI reductase assay of 300 ± 90 nM and 150 ± 40 nM, respectively (Figure V-2). When a 

residue in the b′ domain of PDI important for substrate binding, Histidine 256, was mutated to an 

alanine residue, both AS15 and CD343 retained their activity (Figure V-3). AS15 inhibited activity 

of PDIp and ERp57 (Figure V-3). Interestingly, CD343 demonstrated selectivity for PDI, was 

relatively inactive against PDIp, and inactive up to 40 μM against ERp57. The lead compounds 

decreased viability of U87MG cells with IC50 values of 18.3 ± 9.2 μM for AS15 and 10.6 ± 0.7 

μM for CD343 (Figure V-3). Interaction with PDI was further probed with the thermal shift assay; 

however, AS15 and CD343 did not stabilize PDI to thermal degradation, similar to PACMA31. 

These initial results suggested that the compounds inhibit PDI by binding to the active site 

cysteines, and not in the substrate-binding domain like estradiol or BAP2.22, 23 
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Figure V-2 Discovery and characterization of AS15 and CD343. (A) Discovery funnel. (B) Structures of AS15 and CD343, and 

IC50 values calculated in the PDI reductase assay. (C) Dose-response curves of PACMA31, AS15, and CD343 in the PDI reductase 

assay. (D) Thermal melt curves of PACMA31, AS15, and CD343 in the thermal shift assay. SAR: structure-activity relationship. 
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Figure V-3 AS15 selectivity for PDIA1 (A) Activity of AS15 and CD343 against wild-type PDIA1 (wt) and H256A mutant PDIA1 

(H256A) in the PDI reductase assay (B) Activity of AS15 and CD343 at 40 μM against PDIp and ERp57 in the PDI reductase 

assay (C) Dose response curves of PDI inhibitors in the MTT assay against U87MG cells. Cells were treated with compounds for 

72 hours before cell viability was measured. 

 

Structure-Activity Relationships Reveal AS15 Analogues Are Not Substrate-Binding 

Domain Inhibitors. To further assess the mechanism of inhibition of AS15 and CD343 and 

determine the structural requirements for their activity, we obtained 89 analogues from Chem Div 

libraries and the NCI Cancer Therapeutics program and tested their potency in the PDI reductase 

assay (Table V-1; Table V-2; Table V-3; Table V-4). Compounds were tested for purity, and only 

compounds with purity > 95 % were used for structure-activity relationship analysis. Generally, 

all AS15 and CD343 analogues possess an α-aminobenzylphenol core that has a 2-phenol, amino 

and phenyl moiety attached to a center tertiary carbon (Figure V-4). We kept the 5-
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hydroxybenzo[d][1,3]dioxole (AS15 analogues) or 8-hydroxyquinoline (CD343 analogues) 

moiety consistent as the phenolic moiety and explored more diverse structures in the amino and 

phenyl moieties. For compounds with 5-hydroxybenzo[d][1,3]dioxole moiety, a variety of cyclic 

amines like morpholine, piperidine, piperazine and pyrrolidine were incorporated. Most of the 

compounds inhibited PDI with IC50 values below 1 µM, and different halogens and electron 

donating groups such as chloro, fluoro, methoxy, amino and hydroxy were well-tolerated. Some 

of those compounds showed moderate cytotoxicity with IC50 values of 10-30 µM; however, 

correlation with PDI inhibition was not well observed (Table V-1). Aromatic amines such as 

aminopyridine, aminopyrimidine and imidazole were generally accepted, and PDI inhibition was 

comparable to those with saturated cyclic amines. Ureas were not tolerated, and lead to a complete 

loss of activity, possibly because the basicity contributes to PDI binding (Table V-2). Compounds 

without the bicyclic aromatic core or hydroxy group were inactive against PDI and non-toxic 

(Figure V-5). Furthermore, compounds without the tertiary amine were inactive against PDI and 

were non-toxic, with the exception of compounds containing the tri-methoxy substituent on the 

aromatic ring (Table V-5). The CD series compounds possess the 8-hydroxyquinoline core along 

with aromatic amines such as 2-aminopyridines and anilines, and inhibition of PDI was 

comparable to the AS15 analogues, except that the 4-methyl substitution of the pyridine was not 

compatible when methyl or chloro was present on the phenyl moiety. Interestingly, many of these 

compounds showed stronger cytotoxicity with IC50 values as low as 2.1 ± 0.1 µM.  
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Figure V-4 Structure-activity relationship analysis of AS15 analogues in the PDI reductase assay.  
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Table V-1 SAR of compounds with 5-hydroxybenzo[d][1,3]dioxole and saturated cyclic amine moieties 

 

Compound 

NSC 

Number 

R1 R2 

PDI IC50  

(μM)a 

MTT IC50  

(μM)b 

AS15/NC014 368252 

 

3,4-di-OCH3 0.30 ± 0.09 18.3 ± 9.2 

NC016 368260 3,4,5-tri-OCH3 0.64 ± 0.31 > 10 

NC133 381577 2,4,6-tri-OCH3 0.98 ± 0.30 13.6 ± 1.7 

NC107 368248 3,4-OCH2O- < 0.2 > 30 

NC108 368256 2-OH, 3-OCH3 0.90 ± 0.75 > 10 

NC110 368261 3-OCH3, 4-OH 0.23 ± 0.11 27.1 ± 2.4 

NC161 364724 4-OCH3 0.13 ± 0.06 > 10 

NC134 381579 2-OCH3 0.33 ± 0.05 27.7 ± 2.7 

NC115 368275 4-Cl 0.092 ± 0.023 > 30 

NC117 368277 4-F 0.23 ± 0.06 > 30 

NC141 667921 2-OH 0.34 ± 0.09 > 30 

NC018 368267 3,4-di-OCH3 0.96 ± 1.08 24.8 ± 1.2 
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NC015 368253 

 

3, 4, 5-tri-OCH3 0.70 ± 0.13 > 10 

NC022 368274 4-OCH3 0.88 ± 0.36 28.3 ± 1.6 

NC020 368273 4-N(CH3)2 1.27 ± 0.34 24.7 ± 2.4 

NC024 370278 2,4-di-OCH3 2.59 ± 1.84 > 30 

NC162 368254 3,4-OCH2O- 0.35 ± 0.11 > 10 

NC116 368276 4-F 0.27 ± 0.04 > 30 

NC120 369090 

 

4-OH 0.68 ± 0.35 > 30 

NC025 370279 

 

2,4-di-OCH3 0.36 ± 0.05 > 30 

NC026 370281 4-OCH3 1.52 ± 0.02 22.6 ± 5.9 

NC027 370283 4-N(CH3)2 < 0.20 > 30 

NC028 370285 2-OH, 3-OCH3 1.65 ± 0.65 > 10 

NC122 370280 4-F < 0.20 > 30 

NC123 370282 3,4-OCH2O- 0.023 ± 0.017 > 30 

NC124 370284 3,4,5-tri-OCH3 0.18 ± 0.02 24.2 ± 7.1 

aInhibition of PDI was assessed by PDI reductase assay. IC50 values are indicated as the mean ± SD (standard deviation) of 

at least three independent experiments. bMTT cytotoxicity IC50 values were determined in U87MG cells. 
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Table V-2 SAR of compounds with 5-hydroxy benzo[d][1,3]dioxole and other amine moieties 

   

 

  

Compound 

NSC 

Number 

R1 R2 

PDI IC50  

(μM)a 

MTT IC50  

(μM)b 

NC163 368255 

 

3,4-OCH2O- 0.072 ± 0.017 > 10 

NC300 368281 3,5-di-OCH3, 4-OH 0.17 ± 0.04 > 10 

NC017 368265 

 

3,4-OCH2O- 1.18 ± 0.11 > 10 

NC019 368270 4-OCH3 1.30 ± 0.39 > 10 

NC165 368268 2-OH, 3-OCH3 9.02 ± 4.61 > 10 

NC299 368279 3,5-di-OCH3, 4-OH 2.20 ± 0.53 > 10 

NC166 368278 4-F 12.72 ± 3.47 > 10 

NC118 368280 

 

4-F 0.67 ± 0.14 > 10 

NC119 369087 4-OCH3 0.62 ± 0.04 > 10 

NC023 ` 

 

4-OH > 40 > 10 

NC029 371006 3,4-OCH2O- > 40 > 10 
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NC030 371007 

 

3,4,5-tri-OCH3 > 40 > 10 

NC168 371005 4-F > 30 > 10 

aInhibition of PDI was assessed by PDI reductase assay. IC50 values are indicated as the mean ± SD (standard deviation) of 

at least three independent experiments. bMTT cytotoxicity IC50 values were determined in U87MG cells. 
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Table V-3 SAR of compounds with 8-hydroxyquinoline and 2-aminopyridine moieties 

   

 

  

Compound 

NSC 

Number 

R1 R2 

PDI IC50  

(μM)a 

MTT IC50  

(μM)b 

CD528 G856-2528 

 

3,5-di-OCH3, 4-OH 0.18 ± 0.06 7.4 ± 1.2 

CD343 4896-2958 

 

4-Cl 0.17 ± 0.05 10.6 ± 0.7 

CD345 4896-3004 2,6-di-Cl 1.89 ± 0.31 6.9 ± 1.6 

CD639 7706-0076 2-Cl 0.50 ± 0.17 9.4 ± 0.6 

CD611 4896-3086 4-CH3 0.46 ± 0.07 > 10 

CD344 4896-3003 4-CH2CH3 0.17 ± 0.12 9.3 ± 5.9 

CD346 4896-3082 2,5-di-CH3 0.73 ± 0.12 13.8 ± 5.9 

CD355 4896-4013 2,4,6-tri-CH3 0.19 ± 0.09 10 ± 0.6 

CD638 4896-3084 3-OCH3 2.86 ± 2.37 11.9 ± 0.4 

CD626 G856-2546 2-F 0.47 ± 0.17 > 10 

CD613 5994-0466 2-Cl, 3-OH 0.37 ± 0.03 > 10 
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NC272 1014 

 

- < 0.20 > 10 

CD354 4896-4000 2-CH3 > 40 > 10 

CD361 5994-0131 2,5-di-CH3 > 40 > 10 

CD350 4896-3501 4-F 0.14 ± 0.06 > 10 

CD377 7706-0074 2-F 0.88 ± 0.23 13.1 ± 3.5 

CD341 4896-0018 2-F, 6-Cl > 40 20.6 ± 7.8 

CD373 7033-0321 3-F 0.35 ± 0.07 9.2 ± 0.4 

CD348 4896-3250 2-Cl > 40 9.9 ± 1.4 

CD349 4896-3254 2,6-di-Cl > 40 7.2 ± 2.2 

CD352 4896-3773 4-OBn 0.62 ± 0.29 9.3 ± 0.9 

CD362 5994-0331 4-CH2CH3 5.39 ± 0.68 8.9 ± 2.2 

CD601 G856-2531 4-CF3 26.50 ± 19.15 2.1 ± 0.1 

CD363 5994-0397 4-NO2 0.53 ± 0.15 3.4 ± 0.6 

CD594 5704-0657 3-OH, 4-OCH3 0.15 ± 0.02 > 10 

aInhibition of PDI was assessed by PDI reductase assay. IC50 values are indicated as the mean ± SD (standard deviation) of 

at least three independent experiments. bMTT cytotoxicity IC50 values were determined in U87MG cells. 
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Table V-4 SAR of compounds with 8-hydroxyquinoline and aniline moieties 

 

Compound 

NSC 

Number 

R 

PDI IC50  

(μM)a 

MTT IC50  

(μM)b 

NC266 1008 - 0.11 ± 0.04 > 10 

NC268 1010 4-NO2 0.15 ± 0.05 > 10 

NC269 1011 4-COOH 0.30 ± 0.05 > 10 

NC270 1012 2-COOH 1.48 ± 1.52 > 10 

NC273 1015 2-COOC2H5 < 0.20 > 10 

NC282 84087 2-OCH3 0.39 ± 0.11 > 10 

aInhibition of PDI was assessed by PDI reductase assay. IC50 values are indicated as the mean ± SD (standard deviation) of 

at least three independent experiments. bMTT cytotoxicity IC50 values were determined in U87MG cells. 
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Figure V-5 Activity of additional AS15 analogues in the PDI reductase assay (IC50) and MTT assay (in U87MG cells). 
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Table V-5 SAR of compounds lacking the tertiary amine 

 

 

NSC 

Number 

R1 R2 R3 R4 R5 

PDI IC50  

(μM)a 

MTT IC50  

(μM)b 

NC002 269128 -H -H -OMe -H -H > 40 > 10 

NC003 269130 -Me -H -OMe -H -H > 40 > 10 

NC007 353647 -H -H -OMe -H -Me > 40 > 10 

NC008 353649 -Me -H -OMe -OMe -Me > 40 > 10 

NC013 363959 -H -OMe -OMe -OMe -Me > 30 0.67 ± 0.46 

NC006 352687 -CH2CH3 -H -OMe -OMe -Me > 40 9.6 ± 0.4 

NC005 350123 -Me -H -OCH2O- -H > 40 > 10 

NC010 355074 -Me -H -OCH2O- -CH2COOH > 40 > 10 

NC011 358073 -Me -Me -OCH2CH3 -Me -Me > 40 > 10 

NC012 363958 -H -H -OCH2CH3 -H -Me > 40 > 10 

aInhibition of PDI was assessed by PDI reductase assay. IC50 values are indicated as the mean ± SD (standard deviation) of 

at least three independent experiments. bMTT cytotoxicity IC50 values were determined in U87MG cells. 
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 Having explored the SAR around the amino and phenyl moieties, which generally had a 

nominal impact on PDI inhibition, we synthesized and tested an additional 38 new compounds to 

diversify the phenolic moiety and probe the impact on PDI inhibition. Notably, this is, to our 

knowledge, the first comprehensive synthesis and biological study of diverse α-

aminobenzylphenol compounds that have distinct heterocyclic phenolic moieties other than 

phenols, hydroxy naphthalenes, hydroxybenzo[d][1,3]dioxoles, and hydroxyquinolines. 

Compounds were classified into three types based on the substitution pattern around the phenolic 

moiety. We speculated that the chelating 8-hydroxyquinoline in the CD series of compounds might 

improve PDI inhibition, acting as a H-bond donor-acceptor pair; thus, several other heterocyclic 

structures with similar characteristics were incorporated to yield Type I compounds (Table V-6). 

The PDI inhibitory effects of Type I compounds indicated that 8-hydroxyquinazoline, 5-

hydroxyquinoxaline, 4-hydroxybenzothiazole, 7-hydroxybenzofuran, 4-

hydroxybenzo[d][1,3]dioxole and 5-hydroxy-1,4-benzodioxane are all well tolerated. The 5-

hydroxy-1,4-benzodioxane DX1-114 inhibited PDI most potently with an IC50 value of 290 ± 120 

nM. The importance of the H-bond acceptor was further validated when replacement with a 4-

indanol structure (DX1-31) resulted in a loss of potency. Interestingly, the position of the H-bond 

donor was flexible (DX1-88), indicating that binding may be supported by interactions with 

surrounding amino acids in the binding pocket. The fact that DX1-113 lost its activity despite 

containing the H-bond donor-acceptor group suggested a bicyclic structure is necessary to fulfill 

the steric requirement around this moiety. Using DX1-133 as a model compound, different 

substituents were introduced. All substituents were well-tolerated, and DX1-202 and DX1-203 
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exhibited IC50 values below 0.2 µM. For Type II compounds with a similar substitution pattern as 

AS15 (Table V-7), both 5-hydroxybenzo[d][1,3]dioxole and 6-hydroxy-1,4-benzodioxane are 

preferred, with 6-hydroxylindoline leading to a moderate loss of activity (DX1-158). Adding a di-

fluoro substitution to DX1-1 improved activity, suggesting the di-fluoro analogue is a potential 

analogue to improve metabolic stability (DX1-17). Compound DX1-69 and DX1-97 lost activity 

completely, again demonstrating the importance of a H-bond acceptor on the bicyclic phenolic 

moiety. Type III compounds with substitution patterns different from AS15 and CD343 were also 

synthesized by incorporating different phenolic moieties (Table V-8). Most compounds lost their 

activity, suggesting an unfavorable binding mode. The exceptions contained a 5-hydroxyindole or 

5-hydroxyindazole, with the latter leading to comparable inhibition of PDI at sub-micromolar IC50 

values for all its analogues. This might be due to the -NH group of indole/indazole forming 

additional interactions with PDI as a H-bond donor. Most of the synthesized α-

aminobenzylphenols were not cytotoxic at 30 µM, which was similar to the trend observed with 

the NC and CD series.  
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Table V-6 SAR of Type I compounds 

 
 

Compound R R
1
-N-R

2
 Phenol Moiety IC

50 
(μM) 

MTT (% 

inhibition 

at 30 μM) 

DX1-23 2,3-OMe-Ph 

  

0.39 ± 0.03 74 

DX1-24 4-F-Ph 

  

0.69 ± 0.13 54 

DX1-48 4-F-Ph 

  

4.86 ± 2.04 > 30 

DX1-58 4-F-Ph 

  

1.20 ± 0.51 > 30 

DX1-125 4-F-Ph 

 
 

0.66 ± 0.13 > 30 

DX1-116 4-F-Ph 

  

0.57 ± 0.25 > 30 

DX1-133 4-F-Ph 

 
 

0.56 ± 0.13 > 30 

DX1-114 4-F-Ph 

  

0.29 ± 0.12 > 30 

DX1-115 4-F-Ph 

  

2.83 ± 1.26 > 30 

DX1-88 4-F-Ph 

  

0.61 ± 0.20 > 30 

DX1-31 4-F-Ph 

 
 

> 10 > 30 
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DX1-113 4-F-Ph 

  

> 30 > 30 

DX1-187 4-F-Ph 

 
 

1.23 ± 0.23 > 30 

DX1-199 2-OH,4-F-Ph 

 
 

1.07 ± 0.01 > 30 

DX1-201 

  
 

0.41 ± 0.11 > 30 

DX1-202 
   

< 0.2 > 30 

DX1-203 

  
 

< 0.2 > 30 

DX1-205 4-CF3-Ph 

 
 

0.30 ± 0.03 > 30 
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Table V-7 SAR of Type II compounds 

 
 

Compound R R
1
-N-R

2
 Phenol Moiety IC

50 
(μM) 

MTT (% 

inhibition at 

30 μM) 

DX1-1 2,3-OMe 

  

1.06 ± 0.31 66 

DX3-59B 4-F 

  

2.9 ± 2.4 > 30 

DX1-155 4-F 

  

0.67 ± 0.29 > 30 

DX1-158 4-F 

  

7.01 ± 1.39 > 30 

DX1-17 2,3-OMe 

  

0.51 ± 0.13 > 30 

DX1-69 4-F 

  

> 30 > 30 

DX1-97 4-F 

  

> 100 > 30 
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Table V-8 SAR of Type III compounds 

 
 

Compound R Phenol Moiety IC
50 

(μM) 
MTT (% 

inhibition at 

30 μM) 

DX-73 4-F 

 

> 30 > 30 

DX-96 4-F 

 

> 100 > 30 

DX1-101 4-F 

 

> 100 > 30 

DX1-137 4-F 

 

10.20 ± 2.88 > 30 

DX1-138 4-F 

 

> 100 > 30 

DX1-147 4-F 

 

1.81 ± 0.06 > 30 

DX1-98 4-F 

 

0.35 ± 0.14 87 

DX-142 4-CF3 

 

0.71 ± 0.10 > 30 

DX-143 4-NO2 

 

0.52 ± 0.36 > 30 

DX1-150 

  

0.34 ± 0.26 > 30 

DX1-152 

 
 

0.29 ± 0.13 > 30 
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DX1-153 

  

0.83 ± 0.29 > 30 

 

 AS15 Analogues Covalently Bind to PDI. We addressed the importance of the phenolic 

hydroxy and amine moiety of the series with two compounds; DX1-185 lost activity with the 

replacement of the phenolic hydroxy (DX1-133) with a methoxy (Figure V-6). Similarly, replacing 

the piperidine in DX3-59B with a cyclohexane abolished its PDI inhibition. Both compounds 

demonstrated the importance of the α-aminobenzylphenol core to the potency of this series of 

compounds. 
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Figure V-6 SAR indicates that compounds are covalent PDI inhibitors. (A) Comparison of compounds with free hydroxy or 

methoxy on the bicyclic moiety. (B) Comparison of compounds with piperidine or cyclohexane moiety. (C) Proposed mechanism 

of inhibition via retro-Michael addition reaction. (D) DX1-1 covalently binds to PDI. 100 μM DX1-1 was incubated with 10 μM 

PDI for 30 minutes prior to injection. (E) DX1-1 binds to PDI preferentially over GSTO1. 100 μM DX1-1 was incubated with a 

mixture of 10 μM PDI and 10 μM GSTO1 for 30 minutes prior to injection. (F) Concentration- and time-dependent PDI inhibition 

curves for kinact/KI determination of PACMA31, 16F16, and AS15. Activity was measured using the PDI reductase assay. 

Absorbance was monitored over time at various concentrations and preincubation times with indicated compounds. (G) Gel-based 

competition with recombinant PDI and PACMA57. +: 20 μM; ++: 100 μM 

         The covalent disulfide bond is a reversible covalent interaction; thus, small molecules could 

also bind reversibly to the cysteine thiols. For example, a Michael-type conjugate addition of 2-

cyanoacrylates to thiols was discovered to be a rapid reversible reaction at physiological pH.24 Due 

to the nature of reversible disulfide bonds, we hypothesized that the AS15 analogues, although 

demonstrating reversible inhibition, may be attacked by the nucleophilic cysteine thiols in the 

active sites of PDI. Upon base-mediated fragmentation to expose the Michael acceptor, the free 

thiol on PDI could react and form a covalent adduct (Figure V-6). This type of retro Michael 

addition to protein thiols has been observed with hydroxyquinolines like CD343. A zinc-dependent 

mechanism opened a quinone methide for selective reaction with HDAC5 and HDAC915, another 

quinone methide intermediate was found to react with protein thiols over forming DNA adducts25, 

and co-crystallization confirmed pyridinylmethyl quinoline fragment binding to MIF tautomerase 

via a proline residue.16 In the case of the pyridinylmethyl quinoline fragment, the compound bound 

via a retro Michael addition reaction that formed the quinone methide intermediate. This 

intermediate was primed to undergo the aza-Michael addition to covalently link to a proline residue 

in MIF tautomerase.  

 To confirm AS15 analogues covalently label PDI, we incubated 10 μM PDI with 100 μM 

DX1-1 or DX1-69 and monitored adduct formation with quadrupole time-of-flight mass 

spectrometry (QTOF). The fragment matching the proposed mechanism of action was apparent 
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rapidly (< 5 minutes) after the compound was added. DX1-1 bound oxidized PDI at three sites. 

When DX1-1 was incubated in a mixture of 1:1 PDI:GSTO1, the mass of PDI increased by two 

equivalents of the fragment, demonstrating in vitro selectivity. An inactive analogue of DX1-1 

without the aromatic benzoxole (DX1-69) did not demonstrate covalent binding under the same 

conditions (Figure V-7). 

 

Figure V-7 Spectrum of inactive AS15 analogue, DX1-69 

 To assess the covalent binding nature, we measured the kinact/KI of the lead compounds. 

For covalent inhibitors, the kinact/KI is the ratio of the observed rate of inactivation after a reversible 

reaction to form a protein-inhibitor (P-I) complex with all the protein molecules (kinact) to the 

concentration of inhibitor required to reach half of the maximum rate of covalent bond formation 

(KI). The kinetics of covalent PDI inhibitors 16F16, PACMA31, and AS15 were measured by 

assessing activity in the PDI reductase assay at incubation times from 5 to 60 minutes. AS15 

inhibited PDI with a kinact/KI of 2.6 x 103 M-1s-1 (Figure V-6). kinact/KI for PACMA31 was 2.0 x 



 

 

216 

 

102 M-1s-1 and kinact/KI for 16F16 was 1.7 x 102 M-1s-1. Thus, AS15 more efficiently inhibited PDI 

than both covalent inhibitors PACMA31 and 16F16. Furthermore, a gel-based competition assay 

with the fluorescent probe of PACMA31, PACMA57, confirmed AS15 analogues could compete 

with PACMA57 to bind PDI.5  

 To address whether the AS15 analogues targeted the active site cysteines of PDI, like 

PACMA31, we performed washout experiments with the PDI reductase assay. AS15 (50 μM) was 

incubated with 40 μM PDI for 3 hours at room temperature. After 3 hours, the PDI-AS15 complex 

was diluted 100-fold into reaction buffer, the reaction was incubated for another hour at 37 °C, 

and insulin was added as a substrate to initiate the reaction. PACMA31 (an irreversible inhibitor) 

at 1 and 100 μM and BAP2 (a reversible inhibitor) at 0.5 and 50 μM were used as controls (Figure 

V-8). We found that both AS15 and CD343 did not maintain the characteristics of the high 

concentration of inhibitor after dilution to the low concentration. These results indicate that AS15 

and CD343 behaved as reversible inhibitors in this wash out experiment. We further tested whether 

the compounds were binding in the b′ domain with the ANS (anilinonaphthalene sulfonic acid) 

spectral scan.26 ANS is a dye that fluoresces upon binding hydrophobic pockets and specifically 

targets the b′ domain in PDI. B′ domain-selective inhibitors of PDI such as estradiol and bepristat 

1a compete with ANS.26 AS15 and CD343 did not lower the fluorescence of ANS (Figure V-8). 

Our combined results from the thermal shift assay, washout experiment, and ANS spectral scan 

demonstrated that AS15 and CD343 are likely not substrate-binding domain inhibitors like 

estradiol and BAP2, but may be reversible covalent inhibitors of the active site cysteines.    
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Figure V-8 Recovery of PDI activity upon treatment with PACMA31 (A), BAP2 (B), AS15 (C), or CD343 (D). (F) ANS spectral 

scan with 5 μM PDI and 100 μM PACMA31, estradiol, or AS15. 

 

AS15 Analogues Compete with Glutathione. Because the AS15 analogues seemed highly 

reactive toward nucleophilic attack, we hypothesized that glutathione may also react with the 

compounds. Glutathione is present in high concentrations in the cytoplasm and is an important 

redox regulator in the ER.27 The oxidizing environment of the ER is maintained by the ratio of 

reduced to oxidized glutathione, which is lower than the ratio in the cytoplasm. Incubating the 

compounds with NAC before adding them to the PDI reductase assay rendered the compounds 

inactive (Figure V-9). AS15 analogues were also inactivated with competing glutathione at 

physiological concentrations (5 mM) in the PDI reductase assay (Figure V-9). These results 
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provided further support that the AS15 analogues act via addition to the active site cysteines in 

PDI.  

 

Figure V-9 N-Acetyl cysteine and glutathione inactivate AS15 analogues. (A) N-Acetyl cysteine competition in PDI reductase 

assay. (B) Glutathione competition in PDI reductase assay. (C) Top two AS15 analogues least sensitive to competition with 5 mM 

GSH in the PDI reductase assay. 

 

 To assess trends in the glutathione sensitivity of the AS15 series, we screened all the 

analogues in the PDI reductase assay in the presence of 5 mM GSH. The high concentrations of 

glutathione in the cytoplasm may inactivate the compound in vivo; thus, the in vitro IC50 value 

may not be a reliable indicator of in vivo activity.11 Although the PDI reductase assay is performed 

at a relatively high concentration of DTT (500 μM), we added 5 mM glutathione to mimic a more 

physiological environment. This issue is particularly relevant because the analogues behave as 

reversible thiol adducts (Table V-9). Substrate-binding domain inhibitors isoquercetin and BAP2 

remained active in the presence of high GSH concentrations. We found two AS15 analogues out 

of 93 that maintained potency in the presence of competing glutathione: DX1-30 and DX1-58.  



 

 

219 

 

Table V-9 Percent inhibition of AS15 analogues in the absence or presence of 5 mM GSH in the PDI reductase assay 

 10 μM  
 

10 μM  
 

10 μM 

 - GSH + GSH  - GSH + GSH  - GSH + GSH 

PACMA31 95 -2 DX1-114 29 23 NC108 62 0 

isoquercetin 54 42 DX1-115 53 31 NC110 86 5 

CD343 100 15 DX1-116 42 20 NC115 85 3 

CD344 97 3 DX1-125 86 30 NC116 98 9 

CD345 -21 17 DX1-133 99 36 NC117 100 7 

CD346 106 2 DX1-137 32 29 NC118 94 11 

CD350 95 14 DX1-147 47 49 NC119 95 3 

CD352 27 -2 DX1-150 79 32 NC121 100 20 

CD355 90 14 DX1-152 72 47 NC122 97 27 

CD362 98 1 DX1-153 79 55 NC123 100 21 

CD363 -16 1 DX1-155 40 41 NC124 105 31 

CD373 101 -3 DX1-158 40 43 NC133 96 19 

CD377 101 7 DX1-187 99 46 NC134 87 20 

CD528 98 -1 DX1-199 99 42 NC141 102 15 

CD594 109 2 DX1-201 100 53 NC161 98 11 

CD601 -22 -1 DX1-202 100 44 NC162 102 -1 

CD611 102 3 DX1-203 99 47 NC163 99 10 

CD613 123 10 DX1-205 100 52 NC165 0 -1 

CD626 101 9 NC014 100 52 NC166 0 23 

CD638 93 5 NC015 101 55 NC266 101 19 

CD639 30 3 NC016 100 63 NC268 0 21 

CD640 101 4 NC017 60 56 NC269 97 15 

DX1-001 58 29 NC018 95 13 NC270 98 18 

DX1-017 101 34 NC019 27 13 NC272 33 13 

DX1-023 93 23 NC021 97 13 NC273 61 15 

DX1-024 41 33 NC022 100 9 NC282 65 35 

DX1-030 55 21 NC024 95 12 NC299 0 18 

DX1-048 37 21 NC025 -17 11 NC300 97 22 

DX1-058 100 44 NC026 98 23 NC301 0 23 

DX1-088 98 12 NC027 96 4    

DX1-098 73 20 NC028 92 7    

DX1-101 28 31 NC055 97 8    

DX1-113 30 31 NC107 98 2    
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 We observed that DX1-58 spontaneously formed a dimer after long-term storage, so we 

repurified the monomeric and dimeric forms of DX1-58 and tested each form in the PDI reductase 

assay in the presence of glutathione (Figure V-10). The dimeric form of DX1-58 was less sensitive 

to glutathione competition than the monomer (Figure V-10). Furthermore, we found that both the 

monomer and dimer of DX1-58 bound to PDI (Figure V-10). Incubation with the a′c domain gave 

a species with two fragments of DX1-1 bound, suggesting the compound binds two sites in the a′c 

domain, likely at least at the N-terminal redox-active cysteine Cys397 (Figure V-10). Furthermore, 

when we incubated the monomer and dimer of DX1-58 with a C53S mutant of PDI, we observed 

only one species bound, suggesting that Cys53 is likely one of the key residues for binding (Figure 

V-10). 
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Figure V-10 Dimerized analogue is less sensitive to GSH treatment. (A) Structure of DX1-58 dimerization. (B) Percent inhibition 

of DX1-58 monomer and dimer in the PDI reductase assay in competition with 5 mM glutathione. (C)  Protein mass spectrometry 
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confirms fragment of DX1-58 binds to PDI. (D) One fragment of DX1-58 binds the a′c domain. (E) DX1-58 and DX1-58 dimer 

bind C53S mutant PDI. Toxicity of PACMA31 (F), AS15 (G), CD343 (H), DX1-58 monomer (I), and DX1-58 dimer (J) in the 

colony formation assay in the absence or presence of BSO. U118MG cells were pretreated with BSO for 24 h prior to compound 

addition.   

 Although the PDI disulfides are 500-fold more reactive than glutathione28, we 

hypothesized that glutathione may be inactivating the AS15 analogues and contributing to lower 

their potency. Pretreatment of GBM cells with BSO for 24 hours before adding the compounds 

increased potency in the colony formation assay (Figure V-10; Figure V-11). While the monomer 

of DX1-58 was more sensitive to BSO addition, the DX1-58 dimer was more potent, and its 

potency was not dependent on BSO addition. These results support the hypothesis that glutathione 

depletion sensitizes GBM cells to PDI inhibition. 
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Figure V-11 Colony formation assay of PDI inhibitors in combination with BSO in (A) U118MG and (B) A172 cells. Cells were 

pretreated with BSO for 24 h prior to compound addition. 

AS15 Analogue Target Identification. We sought to confirm whether the AS15 analogues could 

target PDI in the cells by synthesizing two analogues of DX3-59 with a BODIPY fluorescent tag 

on the phenyl ring (Figure V-12). The BODIPY-labeled compounds differed in the linker length 

between the parent compound and the tag. DX3-173B contained a two-carbon linker separating 

the amide groups on the BODIPY structure. The first BODIPY analogue did not inhibit PDI 

activity in the PDI reductase assay (Figure V-13). However, it did covalently bind proteins around 

55-70 kDa when added to cells (Figure V-12). Incubation of both DX3-159 and DX3-173B with 
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cell-free medium supplemented with fetal bovine serum demonstrated that the compounds bound 

to serum albumin (Figure V-12). Although DX3-173B bound to serum albumin, it inhibited PDI 

activity with an IC50 value comparable to the unlabeled analogue of 1.37 ± 0.23 μM (Figure V-12). 

To verify the band from DX3-159 was not PDI, a Western blot was run with cells treated with 

DX3-159 and DX3-173B. The GFP band from the DX3-159-treated cells runs closer to the 

molecular weight of albumin (69 kDa) than the PDI band around 55 kDa (Figure V-14). 

Additionally, when the cells are treated with DX3-159 after serum starvation, the band disappears 

(Figure V-14). Furthermore, treatment with DX3-173B results in several bands, suggesting the 

compound may have more than one target. With recombinant PDI, DX3-173B covalently binds, 

and binding can be blocked with DTT, further supporting the mechanism of inhibition of this series 

(Figure V-15).  



 

 

225 

 

 

Figure V-12 AS15 analogues bind serum albumin. (A) Structures of BODIPY-labeled AS15 analogues (B) U118MG cells treated 

with 40 μM DX3-159B overnight (C) Cell-free DMEM treated with 20 μM DX3-159B or DX3-173B overnight at 37 °C. (D) DX3-

173B dose-response curve in the PDI reductase assay. (E) Cell lysates incubated with indicated compounds for 24 h at room 

temperature after cell lysis. (F) Cell lysates treated with increasing concentrations of parent compound DX3-59 before addition of 

BODIPY-labeled DX3-173B. 
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Figure V-13 Activity of DX3-159 against wild-type PDIA1 in the PDI reductase assay   

 

Figure V-14 DX3-159B protein band migrates higher than PDI (A) U118MG cells (in medium supplemented with 10 % FBS) 

incubated with DMSO, 40 μM DX3-159B or 2 μM DX3-173B for 24 hours before being collected in Cell Lytic M buffer and run 

on a 10 % polyacrylamide gel. The gel was imaged in the GFP channel prior to probing for PDI and GAPDH in Western blot 

analysis. (B) U118MG cells were serum starved overnight before incubation with 10 μM DX3-159B for 24 hours before being 

collected in Cell Lytic M buffer, run on a 10 % polyacrylamide gel, and imaged in the GFP channel on the iBright (Thermo Fisher 

Scientific). 
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Figure V-15 DTT outcompetes DX3-173B for binding to PDI (A) 250 ng/μL recombinant PDI was incubated with indicated 

concentrations of N-acetyl cysteine (NAC) and DX3-173B at room temperature for 24 hours and run on a 10 % acrylamide gel. 

The PDI band was imaged with the GFP channel on the iBright (Thermo Fisher Scientific). (B) 250 ng/μL recombinant PDI was 

incubated with indicated concentrations of dithiothreitol (DTT) and DX3-173B at room temperature for 24 hours and run on a 10 % 

acrylamide gel. The PDI band was imaged with the GFP channel on the iBright. 

 To further investigate whether the BODIPY-labeled AS15 analogues can target PDI, we 

treated cell lysates with the compounds for 24 hours. DX3-159 did not covalently label proteins in 

the cell lysate, however, DX3-173B bound in two major bands around 55 and 40 kDa, and a minor 

band below 55 kDa (Figure V-12; Figure V-16). In addition, the unlabeled, parent compound 

competed for labeling both bands in a dose-dependent manner, but seemed to compete off the 55 

kDa band at a lower concentration (5x [probe]) than the 40 kDa band (20x [probe]). In addition to 

inhibiting PDIA1 activity, AS15 could also inhibit PDIA3 activity; thus, the band around 55 kDa 

could contain both PDIA1 and PDIA3. Additionally, DX3-173 bound PDIA1, PDIA2, and PDIA3, 

in addition to BSA, and was competed off by the parent compound. Competition was not observed 

for binding to BSA, likely due to multiple binding sites for DX3-173 on BSA (Figure V-17). DX3-

59 dose-dependently competed off DX3-173B for binding PDIA2 and PDIA3 (Figure V-18). 

Combining BSA with PDIA1 for 24 hours with DX3-159 or DX3-173B did not improve binding 

to PDIA1 (Figure V-19). Because glutathione inactivated the compounds in vitro, cells were pre-
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incubated with BSO prior to BODIPY-labeled compound treatment to determine whether 

depleting the cells of glutathione would improve on-target binding. BSO addition improved 

binding for DX3-159, however, binding was non-selective. Furthermore, addition of 10 % FBS 

decreased binding, further confirming the interaction between this series and serum albumin 

(Figure V-20). Incubation of the cell lysate with DX3-173B consistently resulted in three major 

bands (Figure V-20).  

 

 

Figure V-16 AS15 analogues bind multiple proteins. (A) U118MG cell lysates (30 ug) incubated with 50 μM DX3-59 and 10 μM 

DX3-159 or DX3-173B for 24 h at room temperature after cell lysis. (B) U118MG cell lysates (30 ug) treated with increasing 

concentrations of parent compound DX3-59 before addition of BODIPY-labeled DX3-173B. (c) MiaPaCa-2 cell lysates (30 ug) 

incubated with 50 μM DX3-59 and 10 μM DX3-159 or DX3-173B for 24 h at room temperature after cell lysis. (D) MiaPaCa-2 

cell lysates (30 ug) treated with increasing concentrations of parent compound DX3-59 before addition of BODIPY-labeled DX3-

173B. Samples were prepared under reducing conditions and BODIPY labeling was imaged with the iBright on the GFP channel. 



 

 

229 

 

 

Figure V-17 DX3-59 competition with BODIPY-labeled probe. Fluorescence imaging of recombinant PDI family members and 

BSA at 3.5 μM treated with 100 μM DX3-59 overnight at room temperature. The samples were then treated for 30 minutes at room 

temperature with 20 μM DX3-159 (top) or DX3-173B (bottom). Samples were prepared under reducing conditions and BODIPY 

labeling was imaged with the iBright on the GFP channel. 
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Figure V-18 Competitive inhibition of BODIPY-labeled AS15 analogue (A) DX3-159 or (B) DX3-173B binding to 10 μM PDIp 

or ERp57 was assessed by in-gel fluorescence imaging. Recombinant protein was incubated with compounds for 24 h at room 

temperature before being analyzed by SDS PAGE. 

 

 

Figure V-19 Competitive inhibition of 20 μM BODIPY-labeled AS15 analogue in BSA. DX3-159 (left) or DX3-173B (right) 

binding to 3.5 μM BSA or PDIA1 was assessed by in-gel fluorescence imaging. Recombinant protein was incubated with 

compounds for 24 h at room temperature before being analyzed by SDS PAGE. 
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Figure V-20 Cell-based binding of BODIPY-labeled AS15 analogues DX3-159 (left) or DX3-173B (right) in U118MG cells in the 

presence of 20 μM BSO or 10 % FBS. Cells were serum-starved and/or treated with BSO for 24 hours before compound addition. 

Cells were treated with compounds for 24 hours, then lysed and binding was assessed by in-gel fluorescence imaging under 

reducing or non-reducing conditions. (b) A172 cells were serum-starved 24 hours prior to addition of 20 μM DX3-173B (+). After 

24 hours, cells were lysed in Cell Lytic M buffer, and 40 ug was subjected to SDS-PAGE under reducing conditions. Bands were 

submitted for proteomic analysis. L: protein ladder 

  Proteomic analysis of each of the bands revealed lists of potential target proteins (Table 

V-10; Table V-11; Table V-12). Several PDI family members have a molecular weight around 40 

kDa, including ERp44, PDIA6, and TXNDC5, which could be responsible for the lower band 

(Table V-13). Reported targets of similar scaffolds include MIF tautomerase, HDAC5/9, and 

BRAFV600E. We did not observe bands at the molecular weights of those three targets, suggesting 
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that the AS15 analogues do not bind these proteins, or the proteins have low abundance in the cell 

lines tested (Table V-14). Furthermore, those known targets, as well as STAT3, STAT5, Mcl-1, 

frataxin, and P2Y12 were not found in the bands analyzed with the proteomics experiment. In 

addition, confocal microscopy revealed that the BODIPY-labeled analogues mainly reside in the 

cytoplasm and ER, not in the nucleus with HDAC5/9 (Figure V-21). 
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Table V-10 Most abundant proteins around 40 kDa in A172 cells 

Accession Description 

# 

cysteines Location 

Coverage 

[%] 

# 

Peptides 

# 

PSMsa 

# Unique 

Peptides 

MWb 

[kDa] 

P60709 
Actin, cytoplasmic 1 (ACTB) 6 

cytoskeleton; cytosol; 

membrane; nucleus 

74 21 184 9 41.7 

P00558 Phosphoglycerate kinase 1 

(PGK1) 
7 

cytosol; membrane 69 24 84 20 44.6 

P68133 Actin, alpha skeletal muscle 

(ACTA1) 
6 

cytoskeleton; cytosol 53 15 115 5 42 

P04075 
Fructose-bisphosphate aldolase 

A (ALDOA) 
8 

cytoskeleton; cytosol; 

extracellular; membrane; 

nucleus 

72 21 67 18 39.4 

P05783 Keratin, type I cytoskeletal 18 

(KRT18) 
0 

cytosol; nucleus 70 29 113 28 48 

O43852 

Calumenin (CALU) 2 

endoplasmic reticulum; 

extracellular; Golgi; 

membrane 

59 19 48 19 37.1 

P05787 Keratin, type II cytoskeletal 8 

(KRT8) 
0 

cytoskeleton; cytosol; 

membrane; nucleus 

71 32 155 27 53.7 

P08670 
Vimentin (VIM) 1 

cytoskeleton; cytosol; 

membrane 

76 36 225 33 53.6 

P04406 Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 
3 

cytoskeleton; cytosol; 

membrane; nucleus 

57 16 54 16 36 

O15260 
Surfeit locus protein 4 (SURF4) 4 

endoplasmic reticulum; 

Golgi; membrane 

18 4 42 4 30.4 

P04439 HLA class I histocompatibility 

antigen, A-3 alpha chain (HLA-

A) 

5 

cell surface; endoplasmic 

reticulum; Golgi; membrane 

53 15 28 2 40.8 

Q15293 Reticulocalbin-1 (RCN1) 0 endoplasmic reticulum 57 15 30 15 38.9 

P23526 Adenosylhomocysteinase 

(AHCY) 
10 

cytosol; nucleus 47 19 44 19 47.7 

O75874 Isocitrate dehydrogenase 

[NADP] cytoplasmic (IDH1) 
5 

cytosol; extracellular; 

mitochondrion 

53 19 33 17 46.6 

P00505 Aspartate aminotransferase, 

mitochondrial (GOT2) 
7 

cell surface; membrane; 

mitochondrion 

38 15 31 15 47.5 

P04264 
Keratin, type II cyto 

skeletal 1 (KRT1)  
3 

cytoskeleton; cytosol; 

extracellular; membrane; 

nucleus 

57 33 101 29 66 

P24752 Acetyl-CoA acetyltransferase, 

mitochondrial (ACAT1) 
5 

membrane; mitochondrion 37 12 18 12 45.2 

P07339 
Cathepsin D (CTSD) 9 

extracellular; membrane 

vacuole 

44 14 32 14 44.5 
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aPSMs: post-translational modifications bMW: molecular weight 

 

  

Q99536 Synaptic vesicle membrane 

protein VAT-1 homolog 

(VAT1) 

4 

extracellular; membrane; 

mitochondrion 

52 13 45 13 41.9 

P30460 HLA class I histocompatibility 

antigen, B-8 alpha chain (HLA-

B) 

6 

cell surface; endoplasmic 

reticulum; Golgi; membrane 

40 11 20 4 40.3 

Q01105 HLA-DR-associated protein II 

(SET) 
0 

cytosol; endoplasmic 

reticulum; nucleus 

30 7 10 7 33.5 

P17174 Aspartate aminotransferase, 

cytoplasmic (GOT1) 
4 

cytosol; mitochondrion; 

nucleus; vacuole 

55 18 19 18 46.2 

Q96I99 Succinate--CoA ligase [GDP-

forming] subunit beta, 

mitochondrial (SUCLG2) 

6 

membrane; mitochondrion 46 17 18 17 46.5 
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Table V-11 Most abundant proteins around 55 kDa in A172 cells 

Accession Description 

# 

cysteines Location 

Coverage 

[%] 

# 

Peptides 

# 

PSMs 

# Unique 

Peptides 

MW 

[kDa] 

P08670 Vimentin (VIM) 

1 

cytoskeleton; cytosol; 

membrane 

76 36 225 33 53.6 

P06733 Alpha-enolase (ENO1) 

6 

cell surface; cytosol; 

membrane; nucleus 

66 20 79 16 47.1 

P68104 Elongation factor 1-alpha 1 

(EEF1A1) 

6 

cytoskeleton; cytosol; 

extracellular; membrane; 

nucleus 

55 16 82 7 50.1 

P60709 Actin, cytoplasmic 1 (ACTB) 

6 

cytoskeleton; cytosol; 

membrane; nucleus 

74 21 184 9 41.7 

P05787 Keratin, type II cytoskeletal 8 

(KRT8) 0 

cytoskeleton; cytosol; 

membrane; nucleus 

71 32 155 27 53.7 

P05783 Keratin, type I cytoskeletal 18 

(KRT18) 0 

cytosol; nucleus 70 29 113 28 48 

P04264 Keratin, type II cytoskeletal 1 

(KRT1) 

0 

cytoskeleton; cytosol; 

extracellular; membrane; 

nucleus 

57 33 101 29 66 

P07954 Fumarate hydratase, 

mitochondrial (FH) 3 

cytoplasm; mitochondrion 54 17 34 17 54.6 

Q15084 Protein disulfide-isomerase A6 

(PDIA6)  

cytosol; endoplasmic 

reticulum; membrane 

39 13 25 13 48.1 

P60842 Eukaryotic initiation factor 4A-

I (EIF4A1) 4 

cytosol; membrane; nucleus 53 18 37 10 46.1 

P13645 Keratin, type I cytoskeletal 10 

(KRT10) 4 

cytoskeleton; cytosol; 

membrane; nucleus 

50 26 84 23 58.8 

Q71U36 Tubulin alpha-1A chain 

(TUBA1A) 

12 

cytoskeleton; cytosol; 

endosome; membrane; 

nucleus 

53 17 82 1 50.1 

O43852 Calumenin (CALU) 

2 

endoplasmic reticulum; 

extracellular; Golgi; 

membrane 

59 19 48 19 37.1 

P50454 Serpin H1 (SERPINH1) 

2 

cytoplasm; endoplasmic 

reticulum; membrane 

55 18 29 18 46.4 

P07099 Epoxide hydrolase 1 (EPHX1) 

4 

endoplasmic reticulum; 

membrane 

56 20 49 20 52.9 

O60664 Perilipin-3 (PLIN3) 

3 

cytosol; endosome; Golgi; 

membrane 

63 19 41 19 47 

P49411 Elongation factor Tu, 

mitochondrial (TUFM) 6 

membrane; mitochondrion 54 19 41 19 49.5 

O75390 Citrate synthase, mitochondrial 

(CS) 4 

mitochondrion; nucleus 40 13 20 13 51.7 
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aPSMs: post-translational modifications bMW: molecular weight 

  

Q8NBS9 Thioredoxin domain-containing 

protein 5 (TXNDC5) 12 

endoplasmic reticulum; 

extracellular 

39 13 23 13 47.6 

P35527 Keratin, type I cytoskeletal 9 

(KRT9) 4 

cytosol; membrane; nucleus 59 26 75 25 62 

P26641 Elongation factor 1-gamma 

(EEF1G) 

6 

cytosol; endoplasmic 

reticulum; membrane; 

nucleus 

32 14 24 14 50.1 

P61158 Actin-related protein 3 

(ACTR3) 8 

cytoskeleton; cytosol; 

membrane 

53 17 24 17 47.3 

Q12765 Secernin-1 (SCRN1) 

11 

cytoplasm; membrane; 

nucleus 

39 14 30 14 46.4 
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Table V-12 Most abundant proteins around 57 kDa in A172 cells 

Accession Description 

# 

cysteines 
Location 

Coverage 

[%] 

# 

Peptides 

# 

PSMs 

# Unique 

Peptides 

MW 

[kDa] 

P08670 Vimentin (VIM) 1 
cytoskeleton; cytosol; 

membrane 
76 36 225 33 53.6 

Q71U36 
Tubulin alpha-1A chain 

(TUBA1A) 
12 

cytoskeleton; cytosol; 

endosome; membrane; 

nucleus 

53 17 82 1 50.1 

P04350 
Tubulin beta-4A chain 

(TUBB4A) 
8 

cytoskeleton; cytosol; 

nucleus 
72 22 107 4 49.6 

P27797 Calreticulin (CALR) 8 

cytosol; endoplasmic 

reticulum; extracellular; 

Golgi; membrane; nucleus 

71 27 52 27 48.1 

P05787 
Keratin, type II cytoskeletal 8 

(KRT8) 
0 

cytoskeleton; cytosol; 

membrane; nucleus 
71 32 155 27 53.7 

P06576 
ATP synthase subunit beta 

(ATP5F1B) 
16 

cell surface; membrane; 

mitochondrion; nucleus 
68 25 68 25 56.5 

P07437 Tubulin beta chain (TUBB) 7 
cytoskeleton; extracellular; 

membrane; nucleus 
67 21 134 4 49.6 

P68104 
Elongation factor 1-alpha 1 

(EEF1A1) 
6 

cytoskeleton; cytosol; 

extracellular; membrane; 

nucleus 

55 16 82 7 50.1 

P25705 
ATP synthase subunit alpha 

(ATP5F1A) 
2 membrane; mitochondrion 52 23 48 23 59.7 

P60709 Actin, cytoplasmic 1 (ACTB) 6 
cytoskeleton; cytosol; 

membrane; nucleus 
74 21 184 9 41.7 

P68371 
Tubulin beta-4B chain 

(TUBB4B) 
8 

cytoskeleton; cytosol; 

extracellular; nucleus 
67 21 118 1 49.8 

P04264 
Keratin, type II cytoskeletal 1 

(KRT1) 
3 

cytoskeleton; cytosol; 

extracellular; membrane; 

nucleus 

57 33 101 29 66 

P00352 
Retinal dehydrogenase 1 

(ALDH1A1) 
11 cytosol 59 25 31 23 54.8 

P35527 
Keratin, type I cytoskeletal 9 

(KRT9) 
4 cytosol; membrane; nucleus 59 26 75 25 62 

P00367 
Glutamate dehydrogenase 1 

(GLUD1) 
6 cytoplasm; mitochondrion 43 20 25 20 61.4 

P13645 
Keratin, type I cytoskeletal 10 

(KRT10) 
4 

cytoskeleton; cytosol; 

membrane; nucleus 
50 26 84 23 58.8 

P50995 Annexin A11 (ANXA11) 6 
cytoskeleton; cytosol; 

membrane; nucleus 
33 16 18 16 54.4 
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aPSMs: post-translational modifications bMW: molecular weight 

 

 

 

 

 

 

 

 

 

 

Q6NZI2 
Caveolae-associated protein 1 

(CAVIN1) 
0 

cytosol; endoplasmic 

reticulum; membrane; 

mitochondrion;  nucleus 

35 13 22 13 43.5 

P09622 
Dihydrolipoyl dehydrogenase 

(DLD) 
10 mitochondrion 33 13 18 13 54.1 

Q07960 
Rho GTPase-activating protein 1 

(ARHGAP1) 
1 

cytosol; endosome; 

membrane 
52 16 18 16 50.4 

P06733 Alpha-enolase (ENO1) 6 
cell surface; cytosol; 

membrane; nucleus 
66 20 79 16 47.1 

P43490 

Nicotinamide 

phosphoribosyltransferase 

(NAMPT) 

5 
cytosol; extracellular; 

nucleus 
53 19 20 19 55.5 

Q16658 Fascin (FSCN1) 11 cytoskeleton; cytosol 44 18 19 18 54.5 

P54727 
UV excision repair protein 

RAD23 homolog B (RAD23B) 
1 

cytosol; nucleus; 

proteasome 
44 12 12 10 43.1 

P68366 
Tubulin alpha-4A chain 

(TUBA4A) 
13 

cytoskeleton; cytosol; 

extracellular 
54 17 70 6 49.9 
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Table V-13 PDI family members and molecular weight 

Gene name Size (kDa) Gene name Size (kDa) 

P4HB 55 PDIA12 (TMX2) 34 

PDIA2 55 PDIA13 (TMX3) 52 

PDIA3 (ERp57) 54 PDIA14 (TMX4) 39 

PDIA4 (ERp72) 71 (TMX5) not reported 

PDIA5 (PDIR) 57 PDIA15 (ERp46) 48 

PDIA6 (P5) 46 PDIA16 (ERp19, AGR1) 18 

PDIA7 (PDILT) 67 PDIA17 (AGR2, HAG-2) 20 

PDIA8 (ERp27) 30 PDIA18 (AGR3, HAG-3) 19 

PDIA9 (ERp29) 
29 PDIA19 (ERdj5) 91 

PDIA10 (ERp44) 
44 PDIB1 (CASQ1) 45 

PDIA11 (TMX1) 
32 PDIB2 (CASQ2) 46 
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Table V-14 Known targets of similar inhibitors 

Structure Target Size (kDa) 

# of 

cysteines 

cellular 

distribution 

 

HDAC5/HDAC915 122/111 14/11 nucleus 

 

STAT3/520 88/91 14/10 nucleus 

 

Mcl-129 37 2 nucleus 

 

MIF16-19 12.5 3 

extracellular 

space 
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P2Y1230 39 10 

cell 

membrane 

 

frataxin21 23 2 cytoplasm 

 

BRAFV600E 31 84 13 nucleus 
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Figure V-21 Confocal microscopy images at 60X magnification of A172 cells treated with 10 μM DX3-159B (A) or 2 μM DX3-

173B (B) for 24 h prior to fixation and staining for PDI 

 

AS15 Analogue Activates the Unfolded Protein Response. We performed nascent RNA 

sequencing of one of the most potent analogues of AS15, DX1-202, to analyze changes in gene 

transcription in U87MG cells (Figure V-22).32 Four hours after 20 μM DX1-202 treatment, 68 

genes were upregulated at least two-fold and 12 genes were downregulated at least two-fold. We 

performed Gene Set Enrichment Analysis on the pre-ranked gene list of 7907 genes and identified 

that DX1-202 upregulates transcription of genes involved in the unfolded protein response (Figure 

V-23). STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) interactions of 

significant genes in the DX1-202 Bru-seq dataset also demonstrated genes affected were involved 

in protein folding, ER stress, and response to ER stress (Figure V-22; Table V-15). Affected UPR 

genes included CALR, HSPA5, MYZAP, NQO1, and SLC7A11. Calreticulin (CALR) is an 

endoplasmic reticulum chaperone like PDI, specifically folds glycoproteins to be secreted, and 

mediates calcium homeostasis in the organelle.33 Calreticulin acts as a sensor of ER stress because 

ER Ca2+ depletion triggers ER stress. Calreticulin has been demonstrated to bind to ERp57 and 
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regulate glycoprotein isomerization.34 However, DX1-202 treatment did not increase total cellular 

CALR expression in brain cancer cells (Figure V-22). HSPA5 encodes for GRP78/BiP, an 

important chaperone responsible for promoting tumor growth.35 Nascent polypeptides enter the 

endoplasmic reticulum and interact with GRP78/BiP to initiate protein folding. Increased 

transcription of GRP78/BiP indicates the cells are undergoing an unfolded protein stress response. 

NAD(P)H Quinone Dehydrogenase 1 (NQO1) is a cytosolic quinone reductase that promotes 

quinone-glutathione conjugation and removal from the cells. It is generally highly expressed in 

cancers and allows the tumor to cope with increased cytotoxic stress.36 SLC7A11 encodes for a 

cystine/glutamate antiporter protein that resides on the cell membrane. SLC7A11 is part of the 

system xc
- antiporter system that uptakes extracellular cystine as a precursor for GSH biosynthesis 

in exchange for glutamate.37 Interestingly, we observed upregulated transcription of SLC7A11 

upon treatment with PDI inhibitor 35G8 as well.38 Our results indicate that PDI inhibition may be 

synthetically lethal with system xc
- inhibition. Myocardial Zonula Adherens (MYZAP) is part of a 

transcriptional unit containing downstream gene POLR2M (polymerase (RNA) II (DNA directed) 

polypeptide M). MYZAP protein is expressed in cardiac tissue and is involved in signaling via 

Rho-related GTP-binding proteins. The Bru-seq RNA sequencing genes affected support DX1-

202-mediated PDI inhibition in U87MG cells. 



 

 

244 

 

 

Figure V-22 DX1-202 upregulates transcription of genes involved in the unfolded protein response. (A) Structure of DX1-202. (B) 

DX1-202 promoted gene set enrichment similar to the unfolded protein response. NES: normalized enrichment score. FDR q val: 

false discovery rate q value. Criteria for GSEA was p < 0.05 and false discovery rate < 25%. (C) STRING interactions of significant 

genes in DX1-202 Bru-seq dataset. Four-hour treatment with DX1-202 increases transcription of representative unfolded protein 

response genes including CALR (D), HSPA5 (E), MYZAP (F), NQO1 (G), and SLC7A11 (H). (I) U118MG cells were treated with 

20 μM DX1-202 for 12, 24, or 48 h and probed for calreticulin protein expression. GAPDH is used as a loading control. 
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Figure V-23 Compound DX1-202 treatment (20 μM in U87MG cells) positively correlates with enrichment of (A) 

HALLMARK_MYC_TARGETS_V1, HALLMARK_MTORC1 _SIGNALING, and KEGG_PROTEASOME, and negatively 

correlates with enrichment of (B) KEGG_TASTE_TRANSDUCTION, KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS, and 

HALLMARK_UV_RESPONSE_DN. NES: normalized enrichment score; FDR q-val: false discovery rate q-value 

 

Table V-15 STRING process terms for significantly affected genes upon DX1-202 treatment. 

term description 

observed 

gene count 

background 

gene count 

false 

discovery rate matching proteins in your network (labels) 

protein folding 7 214 0.00021 CALR,CLU,FKBP4,HSPA2,HSPA5,P4HB,PPIB 

response to endoplasmic 

reticulum stress 
7 240 0.00022 CALR,HSPA5,HYOU1,P4HB,PSMC3,PSMC5,SRPR 

proteasome-mediated ubiquitin-

dependent protein catabolic 

process 

7 257 0.00023 HSPA5,PSMC3,PSMC5,PSMD2,PSMD4,UBB,UBC 
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 We further analyzed the Bru-seq signature of DX1-202 with the Connectivity Map (Table 

V-16; Table V-17).39 Because less than ten genes were significantly downregulated upon DX1-

202 treatment, the Connectivity Map analysis included only upregulated genes. DX1-202 had a 

similar gene expression signature as the seleno-organic glutathione peroxidase mimetic ebselen.40 

Ebselen is an antioxidant that is known to react with cysteines, and it targets GTPase protein Rac1 

in humans.41, 42 Interestingly, ebselen inhibits MIF tautomerase activity as well.18 This indicates 

that the signature of DX1-202 may be an artifact of global cysteine reactivity rather than selective 

target inhibition. Furthermore, the signature of DX1-202 demonstrated similarity with knockdown 

of KDELR3 (KDEL endoplasmic reticulum protein retention receptor 3). KDELR3 contains four 

cysteines and is upregulated as part of the unfolded protein response.43 The protein is in a family 

of three KDEL receptors localized to the ER and Golgi complex. These results confirm that DX1-

202 exhibits a cysteine-reactive signature in brain cancer cells.  
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Table V-16 Top 25 compounds that positively correlate with DX1-202 treatment in CMap. 

Name Description CMap Score 

avrainvillamide-analog-3 nucleophosmin inhibitor 99.47 

BRD-K06817181 JAK inhibitor 99.40 

perospirone dopamine receptor antagonist 99.33 

ebselen GTPase inhibitor 99.33 

hydroquinidine antiarrhythmic 99.25 

devazepide CCK receptor antagonist 99.19 

tosyl-phenylalanyl-chloromethyl-ketone chymotrypsin inhibitor 98.84 

erbstatin-analog EGFR inhibitor 98.41 

SA-792728 sphingosine kinase inhibitor 98.30 

isoliquiritigenin guanylate cyclase activator 98.17 

sappanone-a tyrosinase inhibitor 97.60 

exemestane aromatase inhibitor 96.86 

CA-074-Me cathepsin inhibitor 96.76 

RITA MDM inhibitor 96.62 

penicillic-acid other antibiotic 96.44 

ABT-737 BCL inhibitor 96.30 

tyrphostin-AG-82 EGFR inhibitor 95.36 

NVP-AUY922 HSP inhibitor 95.35 

capsazepine TRPV agonist 94.82 

INCA-6 calcineurin inhibitor 93.42 

dihydro-7-desacetyldeoxygedunin HSP inhibitor 93.30 

etacrynic-acid sodium/potassium/chloride transporter inhibitor 93.14 

PD-160170 neuropeptide receptor antagonist 92.87 

MNITMT lymphocyte inhibitor 90.69 

7b-cis exportin antagonist 90.39 
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Table V-17 Top 25 compounds that negatively correlate with DX1-202 treatment in CMap. 

Name Description CMap Score 

dexbrompheniramine histamine receptor antagonist -99.93 

KU-C103428N CDC inhibitor -99.93 

cabergoline dopamine receptor agonist -99.93 

RO-90-7501 beta amyloid inhibitor -99.93 

calyculin protein phosphatase inhibitor -99.93 

motesanib KIT inhibitor -99.89 

L-745870 dopamine receptor antagonist -99.89 

TUL-XXI039 serine/threonine kinase inhibitor -99.86 

tandutinib FLT3 inhibitor -99.82 

etilefrine adrenergic receptor agonist -99.82 

telenzepine acetylcholine receptor antagonist -99.79 

scopolamine acetylcholine receptor antagonist -99.79 

erythromycin NFkB pathway inhibitor -99.79 

rufloxacin bacterial DNA gyrase inhibitor -99.75 

xanthoxyline antifungal -99.74 

nefopam cyclooxygenase inhibitor -99.74 

andarine androgen receptor modulator -99.72 

mofezolac cyclooxygenase inhibitor -99.72 

AR-A014418 glycogen synthase kinase inhibitor -99.72 

damnacanthal SRC inhibitor -99.71 

tiaprofenic-acid cyclooxygenase inhibitor -99.69 

axitinib PDGFR receptor inhibitor -99.68 

NAS-181 serotonin receptor antagonist -99.61 

betaxolol adrenergic receptor antagonist -99.61 

olanzapine dopamine receptor antagonist -99.59 
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Discussion 

  Target engagement in cells is a critical aspect of preclinical targeted drug 

development. It is important to understand and verify that the compound can hit the target, and 

that interaction causes the observed phenotype. There are multiple techniques used to assess target 

engagement, including direct assays such as the cellular thermal shift assay (CETSA), drug affinity 

responsive target stability (DARTS), the NanoLuc thermal shift assay, and bioluminescence 

resonance energy transfer (BRET), or indirect methods such as knockdown effects or biomarker 

expression.44 The core scaffold of AS15 contains a phenolic Mannich base, which is a known 

promiscuous structure.45 Thus, these compounds require careful assessment beyond lead 

discovery, especially in terms of selective target engagement. In order to determine on-target 

labeling of PDI in cells, we synthesized two variations of BODIPY-labeled AS15 analogues. Our 

initial discovery upon treating cells with these compounds was that the compounds bind to serum 

albumin, an abundant protein containing 35 cysteine residues. When the AS15 analogues were 

incubated with the cell lysates, we observed binding in three major bands, indicating that the 

compounds bound to proteins around 57 and 40 kDa. While plasma protein binding is a 

consideration for improvement of potency of this series, it will be important to establish whether 

one of the bands in the lysate contains PDIA1, and what the other targets of the compounds are. If 

the targets are identified, selectivity could be optimized to one or more of the targets. 

 These results corroborate previous findings with this Mannich base series. Targets 

identified for this series of compounds are summarized in Table V-14. The frataxin inhibitor, 

which differed from AS15 by only an ortho methoxy that replaced the para methoxy, was non-
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toxic up to 100 μM in cells and dose-dependently prevented the ubiquitination of frataxin. The 

authors did not perform selectivity experiments since they were measuring a cellular protein 

function; however, they did show that the compound did not bind denatured protein. In the same 

year, another group reported a series of hydroxyquinolines similar to CD343 as selective Mcl-1 

inhibitors. With an SAR campaign, they demonstrated that the hydroxyl group and nitrogen were 

important for Mcl-1 activity. While we did not test their reported Compound 9, DX1-23 and DX1-

24 are similar compounds, with the piperazine replaced by a morpholino group or pyrazine group. 

These compounds had submicromolar IC50 values in the PDI reductase assay, similar to the IC50 

against Mcl-1 in the fluorescence polarization assay. In terms of selectivity, the researchers were 

able to demonstrate a correlation between a downstream response to Mcl-1 inhibition – 

cytochrome c release, and the extent of mitochondrial priming in cells.29 Further targets of this 

series include HDAC5/9 and STAT3/5, BRAFV600E, and P2Y12. NC124 was highly potent against 

leukemia cell lines (THP-1 and KASUMI-1), though it was much less potent against U87MG cells 

(IC50 = 24.2 ± 7.1 μM), possibly because TET1 expression is relatively lower.46 Interestingly, 

several of the groups remarked that this series of compounds passed protein reactivity filters. 

 Because the analogues we tested were inactivated by GSH addition in the PDI reductase 

assay, we tested whether GSH depletion in a cell-based assay would influence potency. The 

compounds were all more potent when the cells were treated with non-toxic concentrations of 

BSO, the glutathione synthesis inhibitor. This result suggests that either the compounds are being 

sequestered by GSH in the cytoplasm and unable to reach the target protein, or that GSH depletion 
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prevents PDI from rescue. Thus, a potential strategy for further modification would include 

decreasing GSH reactivity of the series. 

 The glutathione-mediated antioxidant defense system is upregulated in cancer cells 

compared to normal cells to mitigate the harmful byproducts of increased cell metabolism.47 Thus, 

increased concentrations of GSH are responsible for resistance to anti-cancer therapy. 

Temozolomide-resistant GBM tumors rely on glutathione antioxidant signaling pathways for 

survival.48 Glutathione promotes metastasis in liver cancer and overexpression of glutathione 

synthesis enzymes has been linked with drug resistance.49, 50 

 Starting from a lead compound containing a benzobenzoxole scaffold and morpholine 

moiety, we investigated modifications around the core. The trends in the structure-activity 

relationships of the analogues that a tertiary amine and hydroxyl group were critical for activity 

demonstrated that the inhibitors likely bound to the active site cysteines of PDI. These results were 

validated by protein mass spectrometry that showed that AS15 analogues bound in the active site 

of PDI. Though the compounds were potent in vitro inhibitors of PDI, glutathione inactivated the 

compounds, and target engagement will need optimization to move this series forward. The 

promiscuity of this series requires careful medicinal chemistry optimization to pursue as a target-

based anti-cancer strategy. Because of the binding pattern of the AS15 analogues and reactivity 

with glutathione, they have the potential to be optimized as in vivo thiol-reactive inhibitors. 
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Experimental section 

Cell Culture. Human glioblastoma cells U87MG, NU04 and A172 were obtained from the ATCC 

(Manassas, VA), and NU04 and A172 were maintained in RPMI-1640 (Thermo Fisher Scientific, 

Waltham, MA) supplemented with 10 % fetal bovine serum (FBS) (Thermo Fisher Scientific). 

Dulbecco′s phosphate-buffered saline (DPBS) was purchased from Thermo Fisher Scientific. 

U87MG and HEK293T cells were maintained in DMEM supplemented with 10 % FBS. Cells were 

grown as monolayer cultures at 37 °C in a humidified atmosphere of 5 % CO2 and tested for 

Mycoplasma contamination with the Mycoplasma detection kit, PlasmoTest (InvivoGen, San 

Diego, California). All cell lines were authenticated with STR DNA profiling (University of 

Michigan, Michigan, USA) and matched to reference profiles from the AATC database. 3-(4,5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was purchased from Amresco 

(Solon, OH). Small molecule screening libraries were purchased from ChemDiv (San Diego, CA) 

or obtained from the National Cancer Institute through the Developmental Therapeutics Program. 

 

PDI protein purification. PDI for this project was purified as reported in Chapter 3. PDIp, 

ERp57, and the a′c domain of PDI were purified as described previously.22 

Site-directed mutagenesis. H256A and C53S mutants of PDI were obtained using wild-type PDI 

as the DNA template with the QuikChange II XL Site Directed Mutagenesis kit (Agilent 

Technologies, Santa Cruz, CA). Procedure was performed according to the manufacturer’s 

protocol. All constructs were sequenced for verification and no additional mutations were 
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observed. Mutant PDI constructs were transformed into BL21 DE(3) cells and purified according 

to the wild-type PDI purification protocol. 

PDI reductase assay. PDI activity was assessed by measuring the PDI-catalyzed reduction of 

insulin as described previously.17 In brief, recombinant PDI protein (0.4 μM or 50 nM for PDIA1, 

1.6 μM PDIp or ERp57) was incubated with indicated compounds at 37 °C for 1 hour in sodium 

phosphate buffer (100 mM sodium phosphate, 2 mM EDTA, 8 μM DTT, pH 7.0). A mixture of 

sodium phosphate buffer, DTT (500 μM or 125 μM for 50 nM PDI reaction), and bovine insulin 

(130 μM; Gemini BioProducts, West Sacramento, CA) was added to the incubated PDI protein. 

The reduction reaction was catalyzed by PDI at room temperature, and the resulting aggregation 

of reduced insulin B chains was measured at 620 nm. PDI activity was calculated with the formula, 

PDI activity (%) = [(ODT60[PDI+DTT+compound] − ODT0[PDI+DTT+compound]) − (ODT60[DTT] − ODT0[DTT])] / 

[(ODT60[PDI+DTT] − ODT0[PDI+DTT]) − (ODT60[DTT] − ODT0[DTT])] × 100 (ODT0 and ODT60 were the 

absorbance values at 0 and 60 min after the reduction reaction, respectively). For reactions 

containing 50 nM PDI, PDI activity was measured at T180, or 180 min after insulin was added. 

 To determine the Kinact/kI of covalent PDI inhibitors, the published procedure was adapted 

with the following modifications.8 Compounds were incubated at 13.2 μM,19.8 μM, 29.6 μM, 44.4 

μM, 66.7 μM, 100 μM, and 150 μM for 5, 15, 30, 45, or 60 min before addition of the insulin 

solution. The linear portions of the slopes of each kinetic curve obtained were used to calculate 

the Kobs in GraphPad Prism. The kobs at each concentration was plotted to obtain the slope of the 

linear portion of the line as Kinact/kI. 
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Growth inhibition assay. Cell growth inhibition was assessed by MTT assay as previously 

described in Chapter 3.61 Cells were seeded in duplicate in 96−well plates at 3000 − 5000 

cells/well. For glutathione depletion experiments, cells were pretreated for 24 h with buthionine 

sulfoximine (1 mM in A172 or 4 μM in U118MG) before compound addition.  

Thermal shift assay. Thermal shift of purified PDI (0.3 mg/ml in 100 mM NaPO4, pH 7.0) in the 

presence or absence of indicated compounds was determined as described.18 Briefly, PDI, 100 μM 

compound or DMSO as a vehicle control, 1X ROX dye, and 5 μl Protein Thermal Shift Buffer 

were mixed to a 20 μl total volume in a 384−well microplate. Each reaction was repeated in 

quadruplicate and reactions were mixed before measurements were taken. The plate was heated 

from 25 to 90 °C at 0.05 °C/second with the ViiA 7 Real−Time PCR System (Thermo Fisher 

Scientific, Waltham, MO). Melt curves were analyzed with the Protein Thermal Shift software 

(Thermo Fisher Scientific) and Boltzmann melting temperatures were reported. 

Reversibility Assay. PDI activity was assessed by measuring the PDI−catalyzed reduction of 

insulin as described previously.17 In brief, 0.4 μM recombinant PDI was incubated with 

compounds at indicated concentrations at 37 °C for 1 hour in sodium phosphate buffer (100 mM 

sodium phosphate, 2 mM EDTA, 8 μM DTT, pH 7.0). For samples containing diluted 

protein−compound complexes, 40 μM PDI was incubated with 100 μM PACMA31, 50 μM BAP2, 

50 μM AS15, or 50 μM CD343 for 3 h at room temperature. The mixtures were diluted 100−fold 

into buffer (100 mM sodium phosphate, 2 mM EDTA, 8 μM DTT, pH 7.0) and added to the 

384−well, black, clear−bottom plate. A mixture of sodium phosphate buffer, DTT (500 μM), and 

bovine insulin (130 μM; Gemini BioProducts, West Sacramento, CA) was added to the incubated 
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PDI−compound samples. The reduction reaction was catalyzed by PDI at room temperature, and 

the resulting aggregation of reduced insulin B chains was measured at 620 nm. Absorbance at 620 

nm was measured in a 384−well black−walled, clear−bottom plate. 

1-Anilinonaphthalene-8-sulfonic acid (ANS) Spectral Scan. The ANS spectral scan was 

performed as previously described.26 Briefly, 5 μM PDI was incubated in the presence 100 μM 

compounds or equivalent DMSO concentration in 50 μL of TBS at 37 °C for 1 hour. Subsequently, 

50 mM ANS was added and the mixture was incubated in the dark at 25 °C for 20 min. 

Fluorescence spectrum (Ex: 370 nm, Em: 400–700 nm) was measured in a 384−well black−walled, 

clear−bottom plate.  

Bromouridine RNA Sequencing (Bru-seq). Bru-seq was performed as previously described.51 

U87MG cells were treated with DMSO or DX1-202 (20 μM) for 4 h. 2 mM Bru was added in the 

last 30 min of treatment. Cells were collected, and total RNA was isolated with TRIzol reagent. 

Bru-labeled RNA was captured from total RNA by incubation with anti-BrdU antibodies (BD 

Biosciences) conjugated to magnetic beads (Dynabeads, goat anti-mouse IgG; Invitrogen). Bru-

containing RNA population was isolated and sequenced. Sequencing reads were mapped to the 

hg38 reference genome. Pre-ranked gene lists were generated for each treatment ranking genes by 

fold change in transcription compared to control. Sequencing results were filtered using cutoff 

value of gene size > 300 bp and mean RPKM > 0.5. 

The datasets were interrogated with Gene Set Enrichment Analysis (GSEA).52 A log2(fold change) 

pre-ranked gene list of 7,908 genes was analyzed for gene enrichment using GSEA gene sets based 



 

 

256 

 

on the Kolmogorov-Smirnov statistic. For each gene set, an enrichment score (ES) was normalized 

to account for the difference in gene set size, and the false discovery rate (FDR) was calculated 

based on the normalized enrichment score (NES) values.  

Western blot. Cells were harvested with a lysis buffer (25 mM 

tris(hydroxymethyl)aminomethane, 150 mM NaCl, 17 mM Triton X-100, 3.5 mM SDS, pH 7.4), 

lysed via sonication, and spun in a centrifuge at 13,500g at 4 °C for 10 min. Supernatant was 

collected and protein concentration determined with the BCA assay (Thermo Fisher Scientific, 

Waltham, MO). Samples were prepared with 30 μg protein and loaded onto 10 % acrylamide (Bio-

Rad, Hercules, CA) gels. Protein from gels was electrotransferred to methanol-activated 

immobilon-FL PVDF membranes (EMD Millipore, La Jolla, CA). Membranes were blocked for 

1 hour with Odyssey Blocking Buffer (LI-COR Biosciences, Lincoln, NE). Membranes were 

probed for proteins using primary antibodies (PDI, Cell Signaling, Danvers, MA, 1:1000) 

overnight at 4 °C. Membranes were incubated with secondary antibodies (anti-rabbit, Cell 

Signaling, 1:7500, or anti-mouse, Cell Signaling, 1:7500), and fluorescence was imaged by 

Odyssey imaging system (LI-COR Biosciences). 

Proteomics. U118MG cells were seeded in a 6-well plate at 0.5 x 106 cells/well in RPMI 

supplemented with 10 % FBS and allowed to attach overnight. Cells were treated with DMSO or 

40 μM DX3-159 overnight. Cells were washed with PBS and harvested with Cell Lytic M buffer 

(Sigma). The cells were lysed by incubation for 1 h on ice and spun in a centrifuge at 13,500g at 

4 °C for 10 min. Supernatant was collected and protein concentration determined with the BCA 

assay (Thermo Fisher Scientific, Waltham, MO). For the proteomics experiment with A172 cells, 
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cell lysates in Cell Lytic M buffer were incubated with 10 μM DX3-173B overnight at room 

temperature. Samples were prepared with 50 μg protein boiled with Laemmli sample buffer and 

loaded onto 1 mm 10 % acrylamide gels. The gel was immediately imaged on the iBright with the 

GFP channel and stained with Coomassie. The band containing the BODIPY-labeled compound 

was cut out, digested, and analyzed at the University of Michigan Proteomics Resource Facility in 

the Department of Pathology. 

Confocal imaging. A172 cells were treated with 10 μM DX3-159 or 2 μM DX3-173B overnight. 

Cells were fixed in 4% paraformaldehyde for 15 minutes at room temperature and washed with 

1X PBS before blocking in 10% fetal bovine serum for 60 minutes. PDI antibody (Cell Signaling; 

3501S) was applied at 1:100 dilution in overnight at 4 °C. ProLong Diamond with DAPI 

(Invitrogen) was used to prepare the slides for analysis on the ZEISS Laser Scanning Microscope. 

Gel-based binding assays. Gel-based binding assays were performed with recombinant protein 

and cell lysate, as indicated. Briefly, cells were coated in 6-well or 12-well plates. After overnight 

attachment, cells were either serum-starved, treated with BSO, or treated with test compounds at 

indicated concentrations overnight at 37 °C, 5 % CO2. Cells were then washed with PBS and lysed 

using Cell Lytic M buffer (Sigma) for 60 min on ice. A unit of 30-50 μg of whole-cell protein was 

boiled with Laemmli sample buffer or non-reducing sample buffer (62.5 mM Tris–HCl, pH 6.8. 

10% glycerol. 2% SDS. 0.05% bromophenol blue) and resolved on a 10% polyacrylamide gel. 

Gels were immediately imaged on an iBright imaging system (Thermo Fisher Scientific). For cell 

lysates, cells were harvested as above prior to compound treatment, then incubated with 

compounds overnight at room temperature before subjecting to SDS-PAGE. Similarly, in vitro 
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binding assays with recombinant PDIA1, PDIp, ERp57, and BSA were performed using 3.5 μM 

protein in Cell Lytic M buffer incubated with compounds overnight at room temperature.  

Statistical analysis. The IC50 values were calculated using GraphPad Prism 7 software (GraphPad 

Software, Inc.). The error bars indicate mean ± s.d. Bru-seq experiments were performed once. 
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CHAPTER VI 

Concluding Summary 

Current state of glioblastoma drug discovery research 

 The aggressive nature and complex genetic origin of glioblastoma render most targeted 

therapies inactive against GBM tumor growth and underline the urgent need for research into new 

treatments. Even the current standard of care, temozolomide, a non-selective DNA alkylating 

agent, prolongs survival by only a few months before the tumor regains the ability to proliferate. 

Research into targeted agents has uncovered a variety of “driver” mutations and proteins, such as 

mTOR and BRAF V600 mutations, but the research has not yet resulted in targeted therapies for 

patients.1, 2 Furthermore, brain cancer research should be built carefully on the foundation of 

neuroscience and an understanding of brain biology.  

 Several small molecules are undergoing clinical trials to treat glioblastoma. Ribociclib is a 

cyclin D1/CDK4 and CDK6 inhibitor approved to treat breast cancer that was tested in a Phase 0 

study in patients with recurrent glioblastoma. Ribociclib was able to penetrate the blood-brain 

barrier, but exhibited limited efficacy in the small cohort (progression-free survival: 9.7 weeks, 

cohort size: 6 patients).3, 4 Olaparib has also been tested in combination with the standard-of-care 

for GBM. Olaparib is a poly(ADP-ribose) polymerase (PARP) inhibitor that sensitizes tumors to 

radiation and chemotherapy. Olaparib typically causes hematological toxicity. However, patients 

in the OPARATIC trial tolerated intermittent dosing of olaparib with minimal dose-limiting 
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toxicity.5 These results provided the rationale to continue into a randomized Phase II trial to further 

evaluate the efficacy of the combination. Dacomitinib, an irreversible EGFR tyrosine kinase 

inhibitor, was tested in patients with recurrent GBM with EGFR amplification in the GEINO11 

trial.6 Four of the 30 patients with EGFR amplification without EGFRvIII mutation were 

progression-free at 6 months; however, even though the study did not reach its endpoint, three 

patients were progression-free at 12 months. These results indicate that mutation status of other 

GBM drivers or outside factors may play a role in drug efficacy. Despite the low success rate of 

small molecules in GBM clinical trials, treatments based on the genetic characterization of the 

tumor may provide more promising results in future studies. 

 Small molecules are not the only glioblastoma treatment undergoing research. Extensive 

research is underway to study the efficacy of antibodies, vaccines, nanoparticles, stereotactic 

surgery and other types of radiotherapy on brain cancer prognosis. Of the eight completed Phase 

III trials from 2005 to 2016, only one had positive results.7 The successful study used tumor-

treating fields (TTF), or low-intensity, alternating electric fields administered on the scalp, to treat 

patients with glioblastoma who had completed concomitant chemotherapy following surgical 

resection. TTFields, when combined with temozolomide, significantly improved overall survival 

compared with patients receiving chemotherapy alone (20.9 months versus 16.0 months).8 

Immunotherapy has become another area of great interest for glioblastoma treatment, even though 

the tumor microenvironment enlists immunosuppressive mechanisms to limit drug efficacy.9 For 

example, a dendritic cell vaccine generated with autologous tumor lysate, DCVax-L, was effective 

and preliminary results from the ongoing trial reported that early median survival of patients 

receiving the vaccine was 23.1 months.10 The dendritic cell vaccine works by activating the natural 
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killer cells to destroy the tumor. An autologous dendritic cell vaccine is prepared by isolating the 

dendritic cells from a patient’s blood and stimulating the cells with a cancer associated antigen. 

Dendritic cell vaccines represent a potential novel immune-oncology therapeutic strategy to treat 

glioblastoma, in addition to peptide vaccines and checkpoint inhibition. Furthermore, the oncolytic 

adenovirus DNX-2401, developed from the cold virus, showed promising activity in a Phase I trial 

in patients with recurrent malignant glioma. Of the 25 patients who received treatment, 20 % 

survived over 3 years after treatment.11 Thus, the rationale for treating brain tumors with immune 

and viral therapy is growing. In the future, it could be possible that small molecules could be 

harnessed to hijack the complex pathways activated by these macromolecular therapies, to improve 

drug delivery and efficacy.  

 In addition to the novel types of glioblastoma therapies being explored, it will be likely that 

single agent targeted therapy would be ineffective at wiping out glioblastoma. Unlike the success 

of imatinib in chronic myeloid leukemia – a cancer that originates from a specific chromosomal 

abnormality – targeted therapies have had limited efficacy in glioblastoma. More likely, an arsenal 

of specific targeted agents will be able to selectively attack the tumor cells. Synthetic lethal 

screening campaigns, discussed in detail in Chapter 1, have attempted to identify potent 

combination therapies. Interestingly, a genome-wide CRISPR-Cas9 lethality screen revealed no 

synthetic lethal targets for common alterations including RB1mut, TERT expression, or 

TP53loss/mut.12 This suggests that the cancer cell growth is either mediated by different pathways, 

or inhibition is more complex than the knockout of just two genes. While their results were not 

published, Hoellerbauer, et al. indicate that GBM cell growth is mediated by the RTK/Ras and 

PI3K pathway or amplification of MYC and MYCN.12 Further questions must be addressed as well, 
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including clinical trial design, better preclinical models, and the involvement of the tumor 

microenvironment.13  

Challenges of developing PDI inhibitors 

 Developing effective PDI inhibitors requires careful consideration; thiol-reactive 

compounds are common pan-assay interference compounds because of their promiscuity. The 

mainstay of PDI inhibitor development is the PDI reductase assay because it is amenable to high 

throughput screening. However, because the assay requires the reducing agent dithiothreitol, redox 

cycling compounds can be false positives, as well as reactive electrophiles. The PDI reductase 

assay uses insulin as a substrate. Under reducing conditions, PDI reduces the disulfide bonds in 

insulin to break apart the a chain and b chain. In the PDI reductase assay, the b chain aggregates. 

Thus, thiol-reactive compounds can inhibit PDI activity, but thiol reactive compounds can be 

promiscuous, as demonstrated by the AS15 analogues that inhibit PDI, but also MIF tautomerase, 

HDACs, STATs, and other targets. Thus, it is critical to validate PDI inhibitors with orthogonal 

assays during the initial phase of lead discovery to rule out promiscuous hits. To confirm PDI 

inhibition, we used multiple assays including the thermal shift assay, ANS spectral scan, drug 

affinity responsive stability (DARTS), and the cellular thermal shift assay. Furthermore, the 

endoplasmic reticulum as an organelle and its effects on small molecules should be considered. 

Firstly, the ER is a highly oxidizing environment that could modify reactive small molecules, 

especially substituents that are prone to oxidation. Additionally, phase I metabolic enzymes such 

as cytochrome P450 reside in the endoplasmic reticulum of various tissues including the liver, 

kidney, and brain, and could block a small molecule from reaching its target. 
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 Because of the potential issues for selectivity with thiol directed PDI inhibitors, b’ domain 

inhibitors represent a more selective approach for PDI inhibition. The b’ domain is specific to PDI 

family members, and each b’ domain of the PDI family members is unique for diverse substrate 

recognition. Several inhibitors have been characterized to bind in the substrate-binding pocket, 

including estradiol14, bepristat 1a15, isoquercetin16, and BAP217. With the exception of BAP2, 

these inhibitors are less toxic than active site PDI inhibitors. For example, isoquercetin analogues 

are in clinical trials for thrombosis-related indications16. The low cytotoxicity of substrate-binding 

domain inhibitors may be related to their low binding affinity. For example, the Kd of quercetin, 

measured by isothermal calorimetry, is 18.3 μM, and the binding Kd for BAP2 is 9.4 μM.18 The 

low binding affinity for small molecules in the substrate-binding domain may be explained by the 

mechanism of PDI substrate proteins associating and dissociating with the pocket. If substrate-

binding domain inhibitors were optimized for binding affinity, we may find a more potent 

cytotoxic PDI inhibitor that is ideally more selective. 

Summary of the dissertation 

 In this dissertation, a detailed preclinical evaluation of an extensive library of PDI 

inhibitors was carried out with a focus on scaffolds of three lead compounds: 35G8, BAP2, and 

AS15. PDI plays a critical role in the proper disulfide bond formation of nascent polypeptides in 

the ER, and brain cancer cells are highly addicted to PDI. PDI knockdown is lethal to cancer cells, 

and PDI inhibition prevents neurosphere formation in patient derived GBM cells. Thus, PDI 

inhibition represents a potential anti-cancer strategy. Major strategies for small molecule inhibitor 

develop focus on thiol-directed inhibitors of the active site cysteines or hydrophobic reversible 

inhibition by binding in the b’ domain. Through rigorous biochemical analysis, BAP2 was 
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demonstrated as a b’ domain inhibitor, while AS15 was revealed to covalently bind to PDI to 

inhibit its function. 

 

Figure VI-1 Potential drivers of GBM tumors based on TCGA analysis 

 

 Chapter 1 of this dissertation provides an overview of the research on small molecule 

treatment of glioblastoma (Figure VI-1). Importantly, we used a bioinformatics approach to probe 

the TCGA survival data and identify potential drivers of disease. In this review, we found 20 genes 

associated with reduced survival, 5 of which (ELOVL6, ESR2, TH, FURIN, and GZMB) are 

druggable protein targets. This study demonstrated a bioinformatics approach to generating 

hypotheses about previously unknown genes that may be responsible for disease progression. 

Further experimental validation of the role these proteins play in glioblastoma is warranted. 
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Figure VI-2 PDI modulators in different diseases 

 

 Chapter 2 of this dissertation provides an overview of PDI function and the unique roles it 

plays in different disease states (Figure VI-2). Because PDI has numerous substrates, its function 

or dysfunction has been reported in neurological disorders, atherosclerosis, and diabetes, as well 

as in cancer. Thus, PDI inhibitors, or modulators, may be useful in a wide range of indications. 

With respect to cancer, PDI has been demonstrated to play a role in glioblastoma, multiple 

myeloma, ovarian cancer, and non-small cell lung cancer. The importance of PDI in the 

progression of these diseases emphasizes the need for a potent, selective small molecules inhibitor 

of the enzyme. 
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Figure VI-3 Discovery of 35G8 as a PDI inhibitor 

 

 In Chapter 3, we characterized 35G8 as a novel, potent PDI inhibitor (Figure VI-3). Much 

effort was involved in validating that the compound did not exhibit its PDI inhibition via its PAINS 

redox cycling properties before pursuing this scaffold as a bona fide PDI inhibitor. After 

confirming 35G8 inhibited PDI activity and destabilized PDI in the cells, we compared its 

transcriptomic profile with that of PDI knockdown. 35G8 induced an ER stress response and a 

ferroptosis cell death signature. To confirm this, we rescued cell death with iron chelator DFO. 

This study was the first to link PDI inhibition to ferroptosis, an iron-dependent form of cell death. 
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Figure VI-4 Lead compound BAP2 optimization 

 In Chapter 4, we detail an extensive structure-activity relationship campaign of 67 chalcone 

analogues that supported the identification of the binding pocket of the lead compound to further 

structure-based drug design and optimization (Figure VI-4). Although BAP2 and optimized 

analogue 59 have modest thiol reactivity, mutation of His256 to Ala abolishes BAP2 analogue 

activity. Importantly, analogues inhibit glioblastoma cell growth, induce ER stress, increase 

expression of G2M checkpoint proteins, and reduce expression of DNA repair proteins. 

Cumulatively, our results support inhibition of PDI as a novel strategy to treat glioblastoma.   
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Figure VI-5 Identification of AS15 analogues that covalently bind PDI 

 

 Lastly, Chapter 5 details yet another potent PDI inhibitor series (Figure VI-5). We report 

the benzyl-benzodioxole AS15 analogues as potent PDI inhibitors and investigate modifications 

to the scaffold to optimize PDI inhibition and target engagement. We performed the first 

systematic synthesis of diverse α-aminobenzylphenol modifications to the-

hydroxybenzo[d][1,3]dioxole core. Furthermore, we were able to identify the binding mechanism 

as a retro Michael addition to thiolate anions in the a′ and a domains, though the compounds likely 

bind other sites in the protein as well. Nascent RNA sequencing revealed that an active analogue 

of AS15 triggers the unfolded protein response in glioblastoma cells. Based on the mechanism of 

action of the AS15 analogues, we confirmed that the compounds are sensitive to glutathione in 

vitro, and glutathione blocks target binding. Additionally, glutathione synthesis inhibitor BSO 

sensitized glioblastoma cells to AS15 analogue treatment. However, the compounds likely have 

more than one target in the cells and are not selective for PDI. Thus, this series would require 

further medicinal chemistry optimization to produce potent, selective PDI inhibitors. 
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Significance of the study 

 This work details the successful preclinical evaluation of several small molecules as 

inhibitors of PDI. These molecules were identified through both phenotypic and target-based 

screens. The lead compounds are potent at inhibiting PDI reductase activity and bind to PDI in the 

in-cell target engagement assays. Furthermore, we identified PDI inhibitors that sensitized GBM 

cells to radiation and had in vivo efficacy in a subcutaneous xenograft. Collectively, this 

dissertation provides further evidence for PDI as a target in GBM and rationalizes the pursuit of 

combinations of PDI inhibitors with the standard-of-care in more robust preclinical models, and 

finally, clinical trials. 

Future Directions 

Validation of PDI as a target in brain cancer 

 Although glioblastoma is not a secretory cancer, PDI expression correlates with GBM 

disease progression, and PDI knockdown inhibits patient derived neurosphere formation. These 

observations provide strong initial validation to target PDI in glioblastoma. Further validation 

could include more robust models of glioblastoma and CRISPR/Cas9-mediated PDI knockout. 

Using the limiting dilution method in Cas9-expressing cells, we used CRISPR RNA targeting exon 

2 of PDI to knockout the gene. By using this method, we selected for cells that survived gene 

knockout, and the cells had a similar doubling time as the wild-type cells. Extensive 

characterization of the RNA profile of three PDI knockout clones is underway to determine how 

the cells are able to survive without PDI. It is possible that the cells have established a mechanism 
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of resistance to promote survival. It is also possible that transient transfection of cells with PDI 

crRNA provides a more realistic response that would mimic the effect of a potent PDI inhibitor. 

Structure-based drug design 

 Because of the complexity and flexibility of PDI, binding should be the first priority after 

identifying a potent lead compound in order to rationally optimize the compound as a PDI 

inhibitor. The substrate-binding domain offers opportunities for structure-guided design because 

there are several residues available for hydrophobic and electrostatic interactions. Ideally, an active 

site inhibitor could also be modified to make critical non-covalent interactions with residues 

around the CGHC motif to improve selectivity and binding. NMR studies with PDI fragments may 

be the most efficient strategy for structure-based drug design. A PDI crystal structure has eluded 

researchers for over 30 years, potentially because we do not fully understand the complex 

oligomerization of the protein, its flexibility, and presence as a mixture of multiple 

oxidized/reduced conformations. Hopefully researchers will continue to pursue this challenge and 

solve a co-crystal structure with PDI and its inhibitors. 

Novel assay development and the limit of detection 

 To characterize the inhibition of PDI, we used one enzymatic activity assay– the PDI 

reductase assay. This assay measures the ability of PDI to reduce disulfide bonds in insulin over a 

period of a few hours. The assay is a standard PDI activity assay because of its ease of use and 

robust applicability for high throughput screening. However, the standard protocol requires a 

relatively high concentration of PDI (400 nM), especially when we are reaching the limit of 

detection with the PDI inhibitors we have discovered, with IC50 values around 200 nM. As part of 
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my dissertation project, I was able to optimize the reductase assay to run with 50 nM PDI, and 

with the optimized assay we could characterize IC50 values down to 25 nM. However, another 

important issue remains. PDI catalyzes reactions on nascent polypeptides in its oxidized state. 

Therefore, the ability of PDI to oxidize thiols should be tested to mimic the physiological 

environment as closely as possible. PDI oxidase assays do exist, but they are complex and require 

the observation of multiple folding intermediates of substrates such as BPTI via mass 

spectroscopy. Thus, they are typically set aside for the more convenient alternative. However, in 

the future it will be critical to develop a robust PDI oxidase assay, both in vitro and cell-based, to 

identify PDI inhibitors that would inhibit PDI in cells. 
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