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ABSTRACT

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that

provides an unparalleled ability to non-invasively study brain activity. Since its in-

ception in the early 1990s, fMRI has become a dominant tool in studying neurological

responses to tasks and stimuli and has been critical in our evolving understanding of

brain mapping. These achievements in neuroscience would not be possible without

critical breakthroughs in MRI theory and hardware advancements, which continue to

increase the speed and resolution of fMRI acquisitions. This dissertation explores a

highly signal efficient fMRI imaging strategy known as Oscillating Steady-State Imag-

ing (OSSI) and presents specialized artifact compensation strategies for addressing

the practical challenges of the OSSI method.

First, we develop analytical models and simulations of OSSI, which describe how

the signal magnitude varies as a function of frequency. These simulations are then

used to study how respiration-induced frequency changes cause artifactual signal fluc-

tuations to a signal timecourse. Our simulations show that the severity of respiration

artifacts changes with initial off-resonance. Furthermore, we show that respiration

artifacts are primarily caused by transient signal effects rather than changes to steady-

state magnitude. These findings inform the two correction strategies proposed in the

remainder of the dissertation.

The second portion of this work describes “OSSCOR,” a retrospective method to

correct timecourse magnitude changes caused by temporally varying frequency. We

show how the OSSI signal exhibits a frequency-time duality which can be used to

reshape structured physiological noise into a low-rank matrix. We then use principal

xvii



component analysis in a data-driven correction strategy to create nuisance regressors

for subsequent fMRI analysis. We show that free induction decay (FID) signals can

also be used to create nuisance regressors in the same way in a variation of our

method, referred to as “F-OSSCOR.” Both OSSCOR and F-OSSCOR were found

to significantly improve the functional sensitivity and signal stability compared to

polynomial detrending alone. OSSCOR was also found to significantly outperform a

standard data-driven correction method, CompCor.

Finally, we present a prospective correction method which utilizes FID measure-

ments to estimate and correct for B0 changes in real-time. Prospective correction

has the potential to outperform retrospective correction methods by directly reduc-

ing perturbations to steady-state magnetization during acquisition. We first present

the results of a feasibility analysis where simulation was used to determine how scan

parameters would affect correction performance. We then developed a prospective

correction application using a specialized scanner control platform to perform data

analysis and parameter adjustment in real-time. Our initial fMRI proof-of-concept

shows that real-time correction can increase the number of activated voxels and im-

prove overall image stability as measured by tSNR.
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CHAPTER I

Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is a medical imaging technique that offers

unparalleled non-invasive imaging of soft tissue in the human body. While the first

MRI methods were conceived in the 1960s, it was not until the early 1990s that MRI

was first used to non-invasively image brain function, which would give rise to the

exciting field of functional MRI (fMRI) [1][2][3]. Since then, many improvements

have been made in how fMRI images are acquired, including fast acquisition trajecto-

ries [4][5], simultaneous acquisition of multiple slices [6], and parallel reconstruction

methods [7][8][9]. State-of-the-art fMRI approaches are based on combinations of

these strategies [10] to achieve rapid whole-brain imaging. Despite these advances

in signal detection and reconstruction, most state-of-the-art fMRI methods still use

the gradient-echo contrast mechanism initially proposed by Ogawa. An alternative

class of fMRI techniques, steady-state sequences, has the potential to increase the

theoretical limits of how fast fMRI data can be acquired by creating more signal than

traditional SPGR sequences. This dissertation presents a new steady-state imag-

ing approach called Oscillating steady-state Imaging (OSSI) as well as corresponding

signal processing techniques for practical implementation in fMRI.
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1.2 Outline and Contributions

The following dissertation is organized as follows. Background Chapter 2 reviews

MRI, fMRI, and the problem of physiological noise in fMRI experiments. Chapters

3-5 discuss Oscillating Steady-State Imaging, Retrospective OSSI Physiological Cor-

rection Methods, and Prospective OSSI Physiological Correction Methods. Appendix

A contains a how-to guide for performing fMRI experiments with the real-time B0

correction application developed in RTHawk. Each of these three body chapters in-

troduces novel contributions to the field. Chapter 3 provides an analysis of how scan

parameter selection affects the transient behavior of OSSI. Chapter 4 describes a

retrospective method for reducing the effects of physiological noise in OSSI images.

Concepts in Chapters 3 and 4 were presented at the 2018 Gordon Research Confer-

ence on in vivo MRI, as well as the 2019 ISMRM meeting, and has been submitted

to Magnetic Resonance in Medicine pending review. Chapter 5 describes the use of

prospective real-time control for OSSI and has been submitted as an abstract to the

2020 ISMRM meeting, pending review.

Appendix B contains details of an optimized angiography method for collateral

vessel imaging, previously presented at the BMES 2016 Annual Meeting. This method

has been in pre-clinical studies of arterial and venous disease, the results of which

have been published in several articles [11][12][13][14][15].
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CHAPTER II

Background

2.1 MRI Physics

This section describes selected concepts of MRI imaging and is neither complete

nor rigorous. Instead, it is meant to provide the reader with a general understanding of

some of the principles and terms used in MRI and provide context for the contributions

described in this thesis.

2.1.1 Nuclear Magnetic Resonance

Atoms that have an odd number of protons possess a small magnetic moment due

to having nuclear spin angular momentum. We refer to any such atom as a “spin,”

which can be thought of as a single small magnetically charged nucleus. Conveniently,

the human body is abundant in such nuclei in the form of hydrogen atoms within

water. While these spins naturally have no arrangement in the body and produce

no net magnetic moment, spins will become generally aligned in the presence of

an applied magnetic field, referred to as the B0 or “main” magnetic field. This is

the fundamental physical premise of MRI, where a hydrogen-rich object (typically a

person) is placed inside a large magnet, thus causing a net polarization of spins. This

net polarization is described by the vector M0, which describes the net strength of all

summed spins in their equilibrium state within the field.
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Since the net magnetization M0 is in the same direction as the main magnetic

field at equilibrium, it merely adds to the main field and cannot be detected. This

direction of the M0 vector at rest is referred to as the longitudinal or z-axis. In order

to detect the magnetization, spins must be first rotated off the longitudinal axis into

the perpendicular x-y plane, also called the transverse plane. The action of actively

rotating spins is referred to as “excitation” and is accomplished by transmitting an

RF pulse (B+
1 ) at a particular frequency. For an effective excitation to occur, the

radio wave must be at a specific frequency dictated by the Larmor equation:

ω = γB [2.1]

which describes the resonant frequency, ω, as a function of the applied field B

and the gyromagnetic ratio γ for the nucleus in question. After spins are rotated into

the transverse plane, they undergo precession, a wobbling rotation as they equilibrate

to the longitudinal axis. Spins undergoing precession induce a current in specially

designed receive coils which are placed nearby. This signal is referred to as free

induction decay (FID) and is ultimately used to form MRI images.

The B0 field is ideally static and uniform throughout the tissue being imaged

so that precession occurs at nominal frequency. However, this is hardly the case in

practice as tissue interfaces and hardware imperfections result in a non-uniform B0

field inside the body. Field inhomogeneity can be measured using a technique called

field mapping, which is used to measure and correct for field distortions. Figure 2.1

shows an example field map within the head, displaying distortions due to the tissue-

air interface in the frontal sinus. Modern MRI systems attempt to reduce magnetic

field inhomogeneity by using “shim” electromagnets to apply additional magnetic

fields, improving field homogeneity [16]. Within the head at 3T field strength, field

inhomogeneity can be reduced to about 200 Hz.
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Figure 2.1: An axial field map of brain showing B0 distortion in Hz.

2.1.2 Relaxation

The signal produced by a spin undergoing free induction decay does not persist

forever. Conveniently though, most excited spins within the body produce a signal

for significantly measurable amounts of time, on the order of milliseconds to seconds.

This decay phenomenon is referred to as “relaxation,” a process that is governed

by two time constants. The first is T1, which is the rate constant that describes

the exponential recovery of a spin toward the longitudinal direction. The second is

T2, which describes the exponential decay of the transverse signal. When consider-

ing intra-voxel field inhomogeneity, signals will decay faster with an “apparent T2,”

referred to as T2*. By manipulating the strength of excitation and time between

excitations, tissues that have different T1 or T2 values will produce varying amounts

of signal intensity, resulting in a tissue being bright or dark in an image. Such im-

ages are referred to as “T1-weighted” or “T2-weighted” since they only show relative

differences in T1/T2 and not the actual quantitative values. Images with relative
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Figure 2.2: A diagram of MRI scanner components, depicting the main B0 coil, RF
coil, and gradients.

weighting only take a fraction of the time to produce compared to quantitative maps

and are therefore more clinically valuable as it is only necessary to visually detect

tissue differences (ex. a hyper-intense lesion in the brain).

2.1.3 Spatial Localization

Signals from spins must be spatially localized in order to form an image. This is

not possible by simply receiving the excited signal since the received signal is a sum of

all the spins that were excited. Therefore if all spins are within the same B0 field, then

they all rotate at the same frequency and cannot be differentiated. A second spatially

varying magnetic field is applied to solve this problem. These fields are commonly

linearly varying as a function of space, and induced by large electromagnets within

the scanner bore. These electromagnets are referred to as “gradient coils” or simply

“gradients.” A simplified drawing showing the gradients, B0 magnetic, and RF can

be seen in Figure 2.21.

With the application of a gradient field in the z-axis, Gz, the frequency of a spin

1Unpublished figure from Nishimura [17], used with written permission.
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is determined as a function of its z-position:

ω(z) = γ(B0 +Gz(z)).

Applying a gradient allows spatially localized excitation to be performed. First, a

constant gradient is applied, which results in a linear distribution of frequencies along

the z-axis. Then, a designed RF wave is applied that only excites a desired range of

frequencies. This process is referred to as slice selection. Here we consider a simple

case where a thin slice with a desired thickness is excited in the x-y (axial) plane.

After slice selection in the z-axis, further spatial localization is needed to deter-

mine spin locations within the slice. This is done using the Gx and Gy gradients,

which cause a distribution of frequencies in-plane to occur. By sampling the FID

signal during an applied gradient, the Fourier transform can be used to determine

the amount of energy at each frequency. Since frequencies now correspond to known

spatial locations, a 2D image can be formed.

2.2 MRI Pulse Sequences

The previous description of excitation and spatial localization is an example of

an MRI pulse sequence, which is a series of RF pulses and gradients arranged to

accomplish a goal. In the goal of 2D imaging, a pulse sequence can simply consist of

an RF pulse for excitation, followed by gradients of varying strengths to perform 2D

imaging encoding. However, pulse sequences can create a variety of complex physical

effects, resulting in images with different T1/T2/T2* contrasts, or encoding motion

directly into the image data to measure blood velocity. The following are two of

the simplest pulse sequences to perform 2D imaging and provide the basis for more

complex sequences introduced in Chapter III.
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Figure 2.3: A GRE pulse sequence diagram.

2.2.1 Spoiled Gradient Echo

The gradient echo (GRE) sequence is one of the simplest pulse sequences to con-

struct, consisting of an excitation followed by gradient readout. GRE sequences are

generally used for their speed since each repetition time (TR) can be kept short,

thereby reducing scan time. The GRE signal contrast is T2* weighted, and is widely

used in fMRI. Since each TR can be played faster than T2 decay occurs, it is desir-

able to disrupt or “spoil” the transverse magnetization at the end of each TR. This

is typically achieved using a combination of RF phase cycling and a spoiler gradient

applied at the end of the TR to dephase any remaining magnetization. A diagram of

a spoiled GRE sequence is shown in Figure 2.3, showing one repetition.

2.2.2 Balanced Steady-State Free Precession

Balanced steady-state free precession (bSSFP2) is a modification of the GRE se-

quence, where any phase accumulated by gradients is undone by the end of each TR.

2bSSFP is sometimes referred to as SSFP in literature. This is confusing and inconsistent in the
field, since SSFP can also refer to non-balanced steady state sequences as well.
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Figure 2.4: A bSSFP pulse sequence diagram.

An example bSSFP pulse sequence can be seen in Figure 2.4, where additional gradi-

ents are applied after signal detection such that the integrated gradient area is zero

after a TR.

Because of balanced gradients, the dynamics of bSSFP are solely dictated by the

excitation and any B0 off-resonance [18]. This leads to a unique signal behavior

where both magnitude and phase are highly dependent on off-resonance. bSSFP

sequences typically use fast TRs and large flip angles to create a signal contrast that

is neither purely T1 or T2 dependent, but rather a unique T2/T1 ratio. Figure 2.5

shows an example bSSFP frequency response where the signal magnitude varies as

a function of off-resonance. The dips in signal intensity are commonly referred to

as the “transition band” regions and plateaus of high intensity as the “passband”

regions. This frequency response profile results in images that have dark banding

artifacts, where bands are regions of off-resonance corresponding to the transition

band frequency region. An example of banding artifacts is shown in Figure 2.6, with

an associated field map in Figure 2.1.

One of the simplest proposed solutions for banding artifact removal is to acquire
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Figure 2.5: Frequency response for bSSFP with TR=15 ms, α = 40◦

Figure 2.6: Simulated bSSFP image showing banding artifacts.
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multiple images with different center frequencies, or equivalently, different RF phase

increments [19]. Changing the center frequency would shift the frequency response,

thus moving the bands around the image. The multiple images would then be com-

bined into a single banding free image. The primary drawback of a phase-cycled

approach is that multiple separate images need to be acquired and then combined,

prolonging scan time. Multiple approaches have been proposed to improve the com-

bination step and accelerate the phase cycled acquisition [20][21][22][23][24][25][26].

Despite having the highest SNR efficiency of any known pulse sequence [18],

bSSFP is not commonly used used due to banding artifacts and atypical T2/T1

contrast. The primary clinical application is in cardiac imaging, where blood’s high

T2/T1 ratio results in bright signal and good contrast against myocardium [27].

2.3 Functional MRI

Functional MRI (fMRI) is an MRI technique used to detect neuronal activity in the

brain. This is primarily performed using blood oxygenation level dependent (BOLD)

contrast, where T2* weighted images are used to detect increases in blood oxygenation

related to neuronal activity [1][28][29]. Since oxygenated hemoglobin is diamagnetic,

but deoxygenated hemoglobin is paramagnetic, an increase in oxygenation leads to a

small decrease in local magnetic field inhomogeneity. This decreased inhomogeneity

creates slower T2* signal decay which results in an increase in signal intensity in a

T2* weighted image. This increase in signal intensity is typically measured to be

2-5%. As a result of this small functional signal change, signal to noise ratio (SNR)

becomes the primary limiting factor in reliably detecting BOLD signal changes.
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2.4 fMRI Pulse Sequences

2.4.1 GRE

fMRI commonly employs GRE imaging as a means to acquire fast T2* weighted

images. Following excitation, T2* weighting of the signal will monotonically increase

with time as intravoxel dephasing occurs. However, this does not result in continu-

ously increasing BOLD contrast, since signal decay results in a lower overall signal

to detect. If the signal is sampled too early, no T2* weighting will be present. If

the signal is sampled too late, then the signal will have decayed away, resulting in

poor contrast to noise (CNR). Experimental data has shown that the ideal time after

excitation to sample the signal (TE) is 30-40 ms for fMRI experiments performed at

3T [30].

2.4.2 Frequency Sensitive bSSFP

Using bSSFP is a solution for the low CNR in GRE-based fMRI, originally pro-

posed by Scheffler et. al. [31]. In their seminal work, they noted that an increase

in blood oxygenation causes a shift in mean frequency for intra-vascular spins on

the order of 5 Hz. If these spins were in the bSSFP transition-band region, this

frequency change would then directly cause a large change in signal magnitude of 9-

10%, compared to the typical 2-5% in GRE. A drawback of the original method was

that functional contrast only occurred in the part of the bSSFP frequency response

with the lowest signal magnitude. This problem was later addressed by Miller et al.

[32] in a variation of the method called “blood oxygenation sensitive steady state” or

“BOSS” fMRI. By using a small flip angle, the bSSFP transition band profile could

be inverted thus yielding functional sensitivity in areas of high signal strength. Fur-

thermore, changes in intravascular frequency due to activation would result in a large

change in phase, creating signal contrast through destructive signal cancellation of
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individual spins. Both of these methods proposed a novel way of directly detecting

the effects of blood oxygenation changes as opposed to the traditional GRE approach.

Despite the benefits to SNR and imaging speed, there are two challenges of tran-

sition band fMRI approaches that have limited their adoption. The first is that

transition band fMRI approaches only have functional sensitivity within a narrow

range of off-resonant frequencies, limiting detection of fMRI signals to only certain

parts of the brain at a time. This was addressed by repeating the experiment with

different frequency offsets, shifting the functional sensitivity to different parts of the

brain each time [32]. These runs would then be combined into one activation map

of the stimulus. This approach is not ideal, as the functional task would need to be

repeated several times, slowing the acquisition and therefore reducing the SNR effi-

ciency that the method aimed for in the first place. Second, the frequency-sensitivity

exploited for functional sensitivity also resulted in these approaches being highly sen-

sitive to any change to the B0 field, a common occurrence due to respiration, motion,

or scanner hardware effects which are discussed below in Section 2.5. Such frequency

changes result in shifts to the activation band regions and artifactual changes in signal

magnitude, both deleterious to detecting functional signal changes.

2.5 Physiological Artifacts in BOLD fMRI

Artifactual signal changes make it even harder to detect the small functional

signal changes in fMRI reliably. Artifacts can be caused by physiological processes

such as cardiac pulsatility and respiration, as well as non-physiological sources such as

scanner hardware instability [33][34][35]. Cardiac pulsatility results in fMRI artifacts

due to changing pressure over the cardiac cycle, which induces pulsatile motion in

blood vessels and surrounding tissue. Similarly, the motion of blood and CSF results

in unwanted phase accumulation and an apparent change in M0. These factors can

cause additional artifacts in steady-state sequences like bSSFP, where signal artifacts
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are caused by a disruption of the magnetic steady-state itself [36]. Respiration causes

a similar disturbance, where chest wall motion results in susceptibility changes that

vary the B0 field in the brain. The resulting field changes cause fluctuations in signal

phase and amplitude, as well as errors in the spatial encoding process. In addition

to respiration, scanner hardware instability results in temporally varying B0. This is

primarily due to scanner heating, where heat from the gradients warms the passive

shim elements which are close to the scanner bore and not perfectly insulated [37].

Since the magnetic properties of the shims are temperature dependent, a drift of the

B0 field strength occurs.

Whole-head motion is another important confound in fMRI and corrupts images

through similar physical processes. Motion corruption affects fMRI and structural

MRI images alike, and research into motion correction is ongoing and extensive. In

fMRI, different approaches are used to correct for whole-head motion vs. cardiac or

respiratory motion, since the former permits the assumption of a rigid body whereas

the latter does not. This body of work focuses on non-motion related correction

methods but briefly discusses motion correction in Section 2.6.3 to provide context

for the correction methods proposed in Chapter V.

2.6 Physiological Correction Methods

Numerous strategies have been proposed to “clean” artifacts from fMRI signals

and can be categorized as retrospective or prospective approaches. Retrospective cor-

rection methods are applied after the data has been acquired, either as a previous or

concurrent step with the functional task analysis. Retrospective methods will usually

fall into one of two main strategies: model-based, which rely on external recordings of

physiological states, and data-driven, which use signal processing methods to estimate

physiological noise components. Prospective methods, on the other hand, are applied

in real-time and reduce artifacts by physically correcting for how physiological pro-
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cesses affect the spin-physics during imaging. There is no one best way of performing

physiological correction, and every method has its strengths and weaknesses. The

remainder of this section provides an overview of key methods in each category to

provide background for the later chapters of this dissertation.

2.6.1 Model-based Methods

Model-based fMRI denoising methods are based on an understanding of how res-

piration and cardiac pulsatility affect the acquired signal. These methods begin with

external recordings of the cardiac and respiratory cycle, typically measured by a pho-

toplethysmography sensor (PPG) and pneumatic belt placed on the subject. These

recordings are then used to calculate the cardiac and respiratory phases for input into

a model of physiological noise. Two quintessential models are RETROKCOR [38] and

RETROICOR [39], which model physiological noise as a Fourier expansion of the car-

diac and respiratory phases. In the former approach, these Fourier terms are used to

regress out suspected physiological noise in the central parts of k-space corresponding

to low spatial frequencies. In the latter method, the Fourier terms are used directly

on each voxel’s timecourse as part of the general linear model. Both methods work

well and use a simple but effective assumption of how externally recorded cardiac and

respiratory phases manifest as artifacts in an fMRI time series.

2.6.2 Data-driven Methods

Data-driven methods forgo external physiological recordings and perform physi-

ological denoising just with the data itself. These methods go beyond basic signal

processing techniques such as filtering frequencies since the temporal resolution of

most fMRI acquisitions does not reach the Nyquist rate required to prevent aliasing.

For example, the widely used Human Connectome Project (HCP) protocol uses a TR

of 720 ms [40], resulting in a Nyquist frequency of 0.69 Hz. While this is fast enough
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to prevent aliasing of respiration (0.3-0.4 Hz), cardiac noise will still alias (approx

1 Hz). Instead, data-driven methods focus on using data decomposition techniques

such as PCA or ICA in combination with a spatio-temporal prior.

A popular example of this is CompCor [41], which performs PCA on voxel time

courses within a selected ROI. The ROI contains voxels that ideally contain physi-

ological noise but no functional signal changes. The ROI is either defined manually

by selecting white matter (WM) or cerebral spinal fluid (CSF) voxels, or by selecting

voxels that have a high temporal standard deviation (tSTD) and low correlation with

the task waveform.

There are many other data-driven methods that use similar principles, such as

spatial ICA [42], masked ICA [43], CORSICA [44], and PHYCCA [45][46]. These are

all different approaches of solving the same problem in data-driven physio correction:

determining which signal components are due to an unwanted physiological change

and which are due to a desirable functional change.

2.6.3 Prospective Methods

While model-based and data-driven methods are applied retrospectively after data

has already been acquired, prospective correction is used in real-time during data ac-

quisition to actively reduce physiological noise. Such approaches require specialized

equipment and software to adjust scan parameters during acquisition and can require

additional calibration steps. Most prospective methods have focused on reducing the

effects of motion by tracking the head position and updating the scan volume to

maintain a constant frame of reference. Popular approaches use image or navigator

data to create motion estimates or utilize external optical tracking [47][48][49][50][51].

The end goal is to eliminate the effects of motion during acquisition, rather than ret-

rospectively “cleaning up the damage.” Motion correction is similar to denoising of

cardiac and respiratory signals in fMRI in that both cause unwanted signal changes,
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though the underlying mechanics and approaches of motion correction differ signifi-

cantly and are beyond the scope of this work. However, we call attention to motion

correction since it is currently the dominant use of prospective correction in fMRI.

A less common use of prospective correction is real-time B0 compensation, which

seeks to compensate for any changes to the B0 field through time. As mentioned in

Section 2.1.1, both respiration and scanner heating effects result in changes to the

B0 field. Changes to the B0 field result in signal fluctuations in fMRI timecourses

[33], and can also worsen image quality [52]. These changes to the B0 field can be

prospectively corrected in real-time through adjustments to the RF phase or shims.

While retrospective B0 estimation is a highly effective and popular approach for

correcting image distortion [53][54], there has been limited investigation and use of

prospective B0 correction in fMRI or MRI as a whole.

At first, it seems surprising that while “field-locking” was developed for NMR in

the 1970’s [55] to correct for B0 instability, only a handful of studies have demon-

strated implementations of an equivalent system for MRI [56][57][58][59][60]. There

are a few apparent reasons for the lack of technological development and the adoption

of this technique. First, MRI hardware vendors implement rudimentary correction

methods that perform frequency adjustment based on anticipated B0 changes from

the gradient waveforms, with remaining artifacts corrected retrospectively. Second,

research on real-time B0 correction methods is hindered by the fact that modern MRI

systems are not designed for real-time control, and there is limited vendor support

for developing such technically complex projects. Lastly, modern fMRI sequences use

a spoiled signal mechanism that is only moderately sensitive to B0 changes. The

resulting changes to signal magnitude can be corrected retrospectively using polyno-

mial detrending, but this method is sub-optimal in that it does not account for the

phase changes in image reconstruction or underlying changes to the magnetization.
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CHAPTER III

Analysis of Oscillating Steady-State Signals

3.1 Introduction

Oscillating Steady-State Imaging (OSSI) is a sequence that combines balanced

gradients with a quadratic RF phase increment to produce a large, periodically oscil-

lating signal. This signal has been shown to have T2* weighting that is similar to GRE

[61] but uses a contrast mechanism that is similar to previous balanced steady-state

(transition-band) fMRI approaches, where a small change in frequency can cause large

changes in signal phase or magnitude, resulting in T2* weighting [31][32]. However,

OSSI departs from previous bSSFP based fMRI methods by combining the signals

from an oscillating period into one signal. This combined signal exhibits T2* sen-

sitivity across its entire frequency response, thereby enabling whole-brain coverage

without the need for separate phase-cycled runs.

There are two distinct advantages of OSSI-based fMRI compared to a conventional

GRE sequence. The first is that OSSI is highly SNR efficient, where SNR efficiency is

defined as the SNR divided by the square root of the imaging time. This is because

OSSI produces a signal that is much larger than a conventional spoiled GRE sequence

OSSI. Furthermore, the OSSI sequence uses a short TR that results in acquisition duty

cycles upward of 80%. The second advantage is that OSSI exhibits T2* sensitivity

immediately after excitation and does not require long echo times for BOLD contrast
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to form, similar to transition-band fMRI. This enables the use of much faster TRs and

shorter echo times, thereby increasing the acquisition duty cycle and further boosting

efficiency [62].

OSSI has the potential of exceeding the SNR efficiency limits of conventional

spoiled GRE acquisitions, thereby enabling higher acceleration factors and improved

spatial resolution. Higher SNR is needed to improve the spatial resolution of fMRI

without introducing noise, since SNR is proportional to voxel volume [63]. High-

resolution mapping of brain activity is widely considered one of the next frontiers

of fMRI and may lead to an improved understanding of the intricate architecture of

subcortical brain structures [64][65][66][67].

Steady-state fMRI approaches like OSSI achieve high SNR efficiency by maintain-

ing transverse magnetization, never allowing T2 relaxation to fully occur. As a result,

the signal following an excitation is dependent on the signal state from the conclusion

of the previous TR. This presents a problem for fMRI since univariate fMRI analysis

assumes that every voxel in every time frame is spatially and temporally indepen-

dent. This assumption is violated in a steady-state sequence, where the signal at

any timepoint is affected by the “spin-history” of several TRs before it. As a result,

any perturbation to the steady-state magnetization will result in serially correlated

signal fluctuations. Correlated signal structures result in biased test statistics if left

uncorrected, ultimately undermining the inferences drawn from an fMRI experiment

[68][69].

Model-based correction is a common strategy to minimize the effects of temporally

correlated noise due to physiological changes or scanner drift [70]. These methods

work by modeling the relationship between a latent physiological parameter and a

change in signal, for example, modeling the relationship between respiratory phase

and signal amplitude. The latent physiological parameters are then either fit from the

data or estimated from external measurements such as a pneumatic respiration belt
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or photoplethysmogram. The success of these models is ultimately dependent on the

quality of the model and the ability to accurately estimate latent signal parameters.

This chapter develops signal models and analyzes the behavior of the OSSI sig-

nal in order to determine the viability of model-based correction. First, we present

a discrete-time model of OSSI that describes the frequency-dependent nature of the

signal under steady-state conditions. Next, we present the results of impulse response

simulations that characterize how transient behavior varies as a function of frequency

and OSSI cycle length. Finally, we show how the rate of frequency shift is an impor-

tant factor in modeling the OSSI signal, and how transient fluctuations can create

constructive or destructive interference in the combined OSSI signal magnitude.

3.2 Theory

3.2.1 Steady-States as a Discrete-Time System

The magnetization in a steady-state sequence can be described by the following

discrete-time relationship [71]:

Mk+1 = AMk + B [3.1]

where Mk is a 3× 1 vector representing the magnetization during the kth TR, A

is a 3x3 matrix, and B is a 3x1 vector. Both A and B are functions of scan param-

eters (TR, TE, RF flip angle and phase) and tissue parameters (T1, T2, ∆ω). This

steady-state model considers the case where no gradients are applied (or gradients are

balanced). This model also assumes that RF excitation is instantaneous. Note that

this model only considers a single isochromat, and does not model T2* effects which

arise from a distribution of isochromats resulting from microscopic field distortions.

The steady-state solution of this system is then defined as:
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Mk+1 = Mk = Mss = (I−A)−1B [3.2]

where each successive excitation results in the steady-state magnetization Mss.

Any initial condition M0 will eventually converge to its steady-state value Mss. The

transient response of this system is then defined as the sequence of residuals between

an intermediate state and the steady-state:

Qk = Mk −Mss [3.3]

where Qk is the transient component of the magnetization for the kth TR.

An ideal steady-state signal is temporally stable, such that Mss is constant and

Qk = 0. This is not the case in practice because the target steady-state vector Mss is

a function of ∆ω which can be affected by respiration or scanner field drift. When ∆ω

varies slowly compared to the TR and tissue relaxation rates, the magnetization can

be considered quasi-static where Mss varies through time but Qk ≈ 0. Conversely,

rapid changes to ∆ω changes violate the quasi-static assumption and result in a

transient signal component as the magnetization evolves to the new value of Mss.

Equation 3.2 describes how a single repeated excitation results in a steady-state

magnetization; however, steady-states sequences are not limited to just a single exci-

tation. For example, a sequence with three different RF pulses could be represented

by:

Mk+1 = A1Mk + B1

Mk+2 = A2Mk+1 + B2

Mk+3 = A3Mk+2 + B3
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containing 3 different RF pulses which may have different phases or flip angles.

This sequence will create a steady-state that cycles through three different temporal

phases:

Mss,1 = A1Mss,3 + B1

Mss,2 = A2Mss,1 + B2

Mss,3 = A3Mss,2 + B3

or written as a single equation1:


Mss,1

Mss,2

Mss,3

 =


A1 0 0

0 A2 0

0 0 A3




Mss,3

Mss,1

Mss,2

+


B1

B2

B3


We can generalize this expression to any n number of excitations:



Mss,1

...

Mss,n−1

Mss,n


=



A1 0 . . . 0

0
. . . 0

...

... 0 An−1 0

0 . . . 0 An





Mss,n

Mss,1

...

Mss,n−1


+



B1

...

Bn−1

Bn


[3.4]

where the value for all n steady-states can be solved for using Equation 3.2.

3.2.2 Quadratic Phase Cycling

Steady-state pulse sequence design is a fascinating problem because even the sim-

plest sequences can have incredibly complex behavior. This is the case with quadratic

phase cycling, where only varying the RF phase can create useful steady-state be-

havior. The idea of using a quadratic phase was introduced by Zur et al. [72] as a

1Credit to Tianrui Luo for this insight
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way to perform spoiling of transverse magnetization. Their work described a steady-

state sequence where RF phase was incremented after each TR using the following

recurrence equation:

φ(n)− φ(n− 1) = ψAn+ ψB [3.5]

where ψA and ψB are arbitrary constants, φ is the RF phase in radians, and n is

the TR number. The solution to this equation is:

φ(n) =
1

2
ψA(n+ 1)n+ ψBn+ φ(0) [3.6]

where φ(0) is an arbitrary initial phase. Since the linear and constant terms shift

the frequency response, this expression can be simplified to:

φ(n) =
1

2
ψAn

2 [3.7]

This equation produces periodic phase sequences with the following relationship:

ψA =
2π

nc

[3.8]

When nc is integer-valued, the sequence of phase increments produced by Equation

3.5 is periodic every nc TRs. Furthermore, the sequence of phases from Equation 3.7

is periodic over nc TRs when nc is even, or periodic over 2nc TRs when nc is odd.

bSSFP sequences that implement a quadratic phase sequence can intuitively be

thought of as a sequence that is continuously and linearly increasing its center fre-

quency. When this center frequency increase is small, the frequency response of the

sequence will slowly shift during the scan. If the quadratic sequence was periodic

over nc = 200 TRs, then the frequency response will cyclically shift by 1/200th of the

width of the frequency response every TR, which after the 200th TR the frequency
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response would have returned to the same position as the first TR. This is also ex-

plained by Equation 3.4, where 200 different RF phases result in 200 steady-state

values.

Continuously varying the RF phase is useful as an alternative solution for bSSFP

banding problem, rather than acquiring multiple discretely phase-cycled images. It

was proposed by Foxall [73] that continuous RF phase modulation could be performed

using a quadratic phase increment, where a small linear phase increment (2− 4◦ per

TR) would continuously shift the frequency response. By dynamically increasing the

RF phase increment, the need to re-establish the steady-state after each frequency

shift could be eliminated. Additional variations of this dynamic phase cycling concept

have been proposed [74][75][76][77][78][79].

3.2.3 Oscillating Steady-State Imaging

Foxall proposed that a small phase increment (effectively nc ≥ 120) is needed to

prevent severe distortions to the frequency response and to maintain a steady-state

condition. The following work establishes that this is only partially true. While

decreasing the period of a quadratic sequence does lead to severe distortion of the

frequency response, a new type of steady-state emerges with useful signal properties

like T2* weighting. We refer to this new type of steady-state as Oscillating Steady-

State Imaging, or OSSI for short. The OSSI signal is periodic over nc TRs, with a

different magnetization state for each TR. We refer to each magnetization state as

a phase, such that there are nc different phases per OSSI cycle. Each phase is then

sampled to form nc separate images with different banding artifacts. Each of the nc

images is then used to form one artifact-free image, an approach commonly used in

frequency cycled bSSFP imaging [19][80][81][74][25][82]. In OSSI, we propose a simple

voxel-wise combination strategy of taking the 2-norm of each of the nc images to form

one real-valued image, similar to previous phase-cycled bSSFP image combination
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Figure 3.1: Single slice images of the OSSI steady-state, with period nc = 10. Three
sets of 10 timepoints are shown to demonstrate reproducibility. Each set
of 10 images is then combined into one image with uniform contrast.

methods. An example showing OSSI images and resulting 2-norm combined images

is shown in Figure 3.1.

3.2.4 Modeling the OSSI Frequency Response

An OSSI sequence contains nc different excitation phases, resulting in a signal

evolution with nc different frequency responses as given by Eq. 3.4. Here we present

a framework to represent these multiple frequency responses, which is later used to

analyze the behavior of combined images. This framework is also used in Chapters

IV and V for retrospective and prospective correction of physiological artifacts.

First, consider a bSSFP sequence with a linear phase progression such as a 0◦−0◦

or 0◦ − 180◦ phase pattern. This can be thought of as a trivial quadratic phase

progression with a period of nc = 1. The magnitude-frequency response can then

be written as h : R → R+, defined by the function h(f) = s which maps the off-

resonance frequency f to a single positive signal magnitude s. The shape of the

frequency response function, h, also depends greatly on scan parameters such as the

TR, TE, and flip angle. Note that h is a periodic function, defined by:

h(f + fs) = h(f), [3.9]
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where fs = TR−1, the signal sampling frequency. Since a linear phase progression

results in a single steady-state response, h is a single-valued function for a given

off-resonance frequency, f , and set of sequence parameters.

We then expand this definition to OSSI sequences where nc > 1. Let H : R→ Rnc
+

defined byH(f) = v be the OSSI frequency response, which maps f to a vector v of nc

signal magnitudes which comprise a full period. Since a quadratic phase progression

is equivalent to incrementing the center frequency by a constant amount, the OSSI

frequency response can be described by a series of shifted frequency responses:

H(f) = v =



h(f)

h(f + fs/nc)

h(f + 2fs/nc)

...

h(f + (nc − 1)fs/nc)


[3.10]

An example of the first two frequency responses for nc = 6 is shown in Figure

3.3a. Intuitively, Equation 3.10 describes how an off-resonance f maps to nc copies of

the same frequency response function, with each successive copy shifted by fs/nc Hz.

An increase in off-resonance by ∆f then results in a shift in all nc frequency response

curves by the same amount. This leads to an interesting property: a frequency shift of

f by ∆f = fs/nc Hz results in a circular shift of the elements in the signal vector v by

one position. Additionally, a frequency shift of ∆f = fs would cause a circular shift

of nc positions, which results in no effect since v is of length nc. Since an acquired

timecourse m is a repeating sequence of the nc elements of v, a frequency shift of

∆f = fs/nc results in an apparent temporal shift of m by 1 TR. Similarly, a shift of

∆f = fs would result in a temporal shift of nc TRs, resulting in no effect since the

timecourse is periodic every nc TRs.

This temporal shift property can be exploited to produce a more uniform fre-
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quency response by taking the vector norm of v to produce a single “combined”

signal value. We define the combined signal response as G(f) = ‖H(f)‖2, the 2-norm

of the frequency response signals vector v.

For fMRI, the 2-norm combination of every nc temporal frames creates one com-

bined image, resulting in an effective TR defined by:

TReff = ncTR [3.11]

Selecting smaller values for nc lowers the effective TR, but increases the variation

of the combined frequency response. Conversely, larger nc values create a “flatter”

combined frequency response which is more desirable, but at the cost of a longer

TReff. Furthermore, flip angle and T2 interact with frequency sensitivity and SNR

efficiency, making scan parameter selection non-trivial.

3.2.5 Effects of Temporally Varying Frequency on OSSI

The frequency response analysis presented in Section 3.2.4 assumes a steady-state

condition where the B0 field is stable, unchanging through time. A steady-state

assumption is useful for modeling basic signal characteristics, but does not consider

temporally varying B0 changes due to respiration and scanner drift. Such changes to

the B0 field results in transient signal behavior [71], which can be written as:

Qk = Mk −Mss [3.12]

where Qk is the deviation from the steady-state for the kth excitation.

Though Foxall noted that bSSFP sequences with small phase increments were

relatively robust to transient behavior [73], preliminary experiments have shown that

temporally varying frequency can cause unwanted fluctuations in the OSSI signal

evolution. This chapter presents our investigation on how OSSI parameter selection
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affects the combined frequency response during transient and steady-state conditions,

with the ultimate goal of minimizing the impact of frequency changes in OSSI fMRI.

3.3 Methods

The following experiments used a custom OSSI Bloch simulation based on Hao

Sun’s general Bloch simulator, which is freely available as part of the Michigan Im-

age Reconstruction Toolbox [83]. Scan parameters were kept constant at TR=15ms,

TE=2ms, and FA=10◦ based on prior optimizations for T2* sensitivity. Tissue pa-

rameters were kept fixed for all simulations at literature values for gray matter at

3T: T1=1331 ms and T2=80 ms [84]. Simulation was used to study how nc affects

the amount of “ripple” in the combined frequency response profile at steady-state, as

measured by the average absolute percent signal change from the profile mean. Note

that this simulation is of the combined frequency response where frequency does not

change through time (i.e., no drift or respiration).

The effects of time-varying frequency were analyzed using simulations of a step

response and of respiration. A step of 1 Hz was simulated for nc values ranging from

2 to 16. Next, respiration and drift were simulated over a 30 second period for the

same nc values, shown in Figure 3.2. Respiration frequency changes were scaled to a 2

Hz peak-to-peak magnitude, based on literature reported and in-house experimental

values. Perlin noise (mean = 0 Hz, P-P amplitude = 1 Hz) was added to increase

variability and more accurately mimic the inconsistencies in actual human respiration

patterns. An additional drift term was added of 1 Hz/min. Note that a 2 Hz change

due to respiration is fairly large and usually only observed in lower slices.

Performance was measured by integrating the absolute value of the transient signal

component for each timecourse, as defined by Eq. 3.12.
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Figure 3.2: Time-varying frequency used for OSSI Bloch simulations of respiration
and drift, showing individual and summed timecourses.

3.4 Results

3.4.1 Static Frequency Response Simulations

Figure 3.3 shows examples of the individual and combined frequency responses for

nc = 6. The combined frequency response shows a maximum peak to peak variation

of 17% from its mean, compared to the uncombined response, which varies 127%.

Figure 3.4 shows the combined frequency response variation, showing how profile

uniformity and inter-band spacing increases with nc. A summary of combined profile

variation vs nc is shown in Figure 3.5, illustrating how higher nc values improve the

mean uniformity of the combined frequency response.

3.4.2 Step Response Simulations

Figure 3.6 shows the 1 Hz step response behavior of nc = 10, simulated for initial

off-resonance values of 0 and 3 Hz. The amplitude and duration of the transient re-
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Figure 3.3: Simulated OSSI frequency responses (a) for nc = 6,TR = 15 ms, and
FA = 10◦. The frequency responses for the first 2 of 6 phases in the
cycle are plotted, and are identical except for a fs/nc = 11.1 Hz shift.
The corresponding combined frequency response (b) shows a bSSFP-like
profile that is periodic over fs/nc Hz. Note differing scales.

Figure 3.4: Example combined frequency response variation for selected values of nc.
Variation was calculated as percent change from the profile mean.
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Figure 3.5: Mean absolute percent change for combined frequency responses, calcu-
lated for even nc values from 2 to 16. Increasing nc improved the unifor-
mity of the steady-state combined frequency response.

sponse strongly vary as a function of off-resonance. The integrated transient response

as a function of off-resonance is shown in Figure 3.7 for selected nc values of 6, 10, and

14. The mean severity of transient effects was found to decrease as nc increased. The

response was found to repeat periodically as a function of frequency over a period of

(nc · TR)−1 Hz.

3.4.3 Respiration Simulations

Figure 3.8 shows the simulated effects of respiration for a single combined time-

course initialized at 0 Hz. The continuous timecourse simulates each TR using the

magnetization from the previous TR, thereby maintaining spin history and accurately

accounting for transient behavior. The quasi-static timecourse simulates each TR in-

dependently to steady-state, only showing changes due to variation of the combined

frequency-response profile. The average percent signal change from the timecourse

mean was 0.91% for the quasi-static simulation and 2.64% for the continuous simu-
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Figure 3.6: Combined signal step response and transient signal component for simu-
lated isochromats at 0 and 3 Hz.

Figure 3.7: Integrated transient response vs. off-resonance for nc = 6, 8, and 10.
Integration was calculated as the sum of the transient response multiplied
by the TReff for normalization.
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Figure 3.8: Simulated OSS timecourse with respiration effects for nc = 10. The con-
tinuous simulation maintains spin-history and shows transient behavior,
while the quasi-static case plots the steady-state signal value indepen-
dently for each TR.

lation.

The simulation in Figure 3.8 was then repeated for a range of initial off-resonance

values to visualize how transient effects distort the individual and combined frequency

responses through time. Figure 3.9a shows the simulated respiration waveform initial-

ized at 0 Hz, with two time points of interest marked in blue and orange, representing

minimum and maximum respiratory phase. The corresponding individual frequency

responses for these two timepoints are shown in Figure 3.9b, with the steady-state

frequency response plotted in black for reference. The transient effects caused by

respiration are shown to introduce small sinusoidal distortions to the frequency re-

sponses.

The corresponding combined frequency response for the blue and orange time-

points are shown in Figure 3.9c, showing large sinusoidal distortions. These distor-

tions are caused by the smaller distortions in Fig 3.9b which then constructively or
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Figure 3.9: Effect of respiration on the frequency response for nc = 10. Plot a)
shows the simulated frequency timecourse with two time points of in-
terest marked in blue and orange. Plots b) and c) show the individ-
ual and combined frequency responses for steady-state (black), with the
respiration-distorted frequency responses superimposed.

destructively interfere during the 2-norm combination step. Note that the units in

Fig 3.9c can be directly compared to the combined timecourse in Fig. 3.8.

3.5 Discussion

The OSSI signal combination approach is similar to phase-cycled bSSFP imaging,

where multiple images are acquired with a range of constant RF phase increments,

then combined to form a single image with smooth contrast. Since constant frequency

increments only shift the frequency response, the number of phase cycles in traditional

bSSFP imaging can be chosen independently of the frequency response profile. This is

not the case in OSSI, where reducing the cycle parameter nc was found to increase the

variation of signal amplitude in the individual and combined steady-state frequency

responses (Fig. 3.5). However, increasing nc comes at the cost of a proportional
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increase in time to acquire each cycle of images.

The shifted frequency response model in Eq. 3.10 describes how the combined

frequency response is formed from nc shifted copies of a single frequency response.

An example of the individual and combined frequency responses can be seen in Fig.

3.3, showing how the combined response is periodic over 1/(nc ·TR) Hz. Increasing nc

therefore increases the number of bands in the combined frequency response, however

the signal drop within each band becomes less severe (Fig. 3.4).

The severity of the transient response of the combined signal was also found to

vary as a function of frequency. Figure 3.7 shows the integrated transient response

for selected values of nc, accounting for differences in TReff. The maximum values of

the integrated transient responses were comparable across tested nc values. However,

the inter-band spacing of each profile decreased as nc was increased, similar to the

steady-state signal variation seen in Figure 3.4. The minimum value in each band can

be seen to be approximately zero, indicating that voxels at these frequencies would

have very low sensitivity to physiological artifacts. However, scanner drift may shift

the voxel mean frequency through regions of high and low frequency sensitivity over

time, resulting in physiological artifacts that change in shape and amplitude over an

fMRI timecourse. An example of this effect is shown in Figure 3.8 for nc = 10.

While the severity of scanner drift is dependent on the system and gradient wave-

forms, drift-induced frequency changes are likely to be slow enough to be modeled

as quasi-static in a correction strategy. However, our simulations indicate that res-

piration artifacts are primarily composed of transient effects rather than changes to

steady-state magnitude under a quasi-static condition (Fig. 3.8). Transient signal

behavior can be shown as frequency response distortions, as seen in Fig. 3.9. While

the distortions to the individual OSSI frequency responses were found to be small,

the signal combination step can result in constructive or destructive interference.

This suggests that while the 2-norm combination strategy is an effective method for
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steady-state OSSI signals, an improved method is needed to account for transient

effects due to temporally varying frequency. This may include model-based strate-

gies where frequency is a latent parameter, or data-decomposition methods that can

separate transient signal artifacts from functional changes.

A limitation of these simulations is that magnetization is modeled as a single

isochromat, ignoring the effects of intra-voxel field inhomogeneity. These effects are

important for cases of small inter-band spacing, such as shown in Fig. 3.7 for nc = 14.

If an intra-voxel distribution of frequencies exceeded the width of a repeated unit of

the frequency response, then the observed transient behavior would be invariant to

the distribution mean frequency.

3.6 Conclusion

This work develops relevant models and improves understanding of the OSSI fre-

quency response under static and dynamic conditions. An analysis of simulated OSSI

combined signals shows that respiration artifacts are largely due to distortions to the

frequency response which compound during 2-norm combination. These results sug-

gest that future model-based correction strategies must account for transient signal

behavior caused by respiration and cannot rely on a quasi-static approximation to

produce accurate results.
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CHAPTER IV

Retrospective Correction of Physiological Noise in

OSSI

4.1 Introduction

OSSI exhibits a complicated response to respiration and drift induced frequency

changes, where signal confounds appear non-linear and time-variant. Since behavior

is more complex than physiological artifacts seen in GRE-based fMRI, previously

proposed model-based correction methods such as RETROICOR [39] have not been

found to be reliable. Instead, physiological noise in OSSI can be addressed using

previous data-driven approaches that differentiate physiological noise from functional

changes through a spatial or temporal model [42][41][44][46]. These methods do

not rely on modeling the relationship between respiratory/cardiac phase and signal

changes, and have found to be effective even when physiological noise is aliased.

To this end, we present a novel data-driven method for retrospective correction

titled Oscillating Steady-State CORrection (OSSCOR). OSSCOR uses principal com-

ponents as nuisance regressors, an approach similar to CompCor [41]. However, OS-

SCOR does not rely on specifying a noise ROI, and instead utilizes the unique signal

properties of OSSI as a combined spatiotemporal model to differentiate functional

activation from physiological noise. We also present a variation of our approach
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deemed F-OSSCOR, where FID timecourses are used to generate nuisance regressors

instead of image data. By using FID data, physiological noise is sampled every TR,

independent of the slice or volume acquisition rate.

This paper first presents a signal model that describes the OSSI frequency-time

signal relationship that is central to the OSSCOR method. Next, we show the effects

of respiration and scanner drift on the OSSI signal using simulations, and then use

these simulated effects to estimate the optimal number of principal components for

an OSSCOR correction. Finally, we show that the use of OSSCOR-derived nuisance

regressors in a task-based fMRI experiment can significantly reduce physiological

noise compared to standard methods, as measured by activated voxels, mean t-score,

and tSNR.

4.2 Methods

4.2.1 Image-Based Physiological Noise Estimation

Respiration and scanner drift both cause temporally varying frequency changes,

but we will refer to the effects of both sources of undesired signal changes as “phys-

iological noise” for simplicity. In this method, the concept of multiple frequency

responses is generalized to a voxel timecourse. Since each of the signals for a given

voxel in a period are acquired sequentially, the magnitude voxel timecourse m ∈ Rnt
+

for nt timepoints can be reshaped into nc columns:

M =



m(1) m(2) . . . m(nc)

m(nc + 1) m(nc + 2) . . . m(2nc)

...
...

. . .
...

m(nt − nc + 1) m(nt − nc + 2) . . . m(nt)


, [4.1]

where each row of M ∈ Rnt/nc×nc

+ contains one OSSI period of length nc, and each
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column is treated as a separate timecourse of length nt/nc. We refer to the columns of

M herein as “phase timecourses,” corresponding to the nc phases of an OSSI period.

Using this notation, we assume that the nc phases in each row of M are acquired

simultaneously, since the time to acquire each period (∼100ms) is considerably faster

than respiration induced signal changes. Each row then forms one time point in the

combined timecourse c ∈ Rnt/nc

+ :

c(i) =

√√√√ nc∑
j=1

Mij
2. [4.2]

Each phase timecourse will have a different non-linear response to frequency

changes as previously described by our multiple frequency response model (Eq. 3.10).

This can be seen in Figure 4.1a, where simulated respiration and drift results in

different physiological artifacts for each phase timecourse. Figure 4.1b shows how

combining phase timecourses can cause constructive or destructive interference of

physiological artifacts, an effect that can also change through time.

We can use the signal matrix representation in Eq. 4.1 to correct each phase

timecourse prior to combination using our proposed method, OSSCOR. Since shifts

of fs/nc Hz cyclically permute the columns of M, the phase timecourses of voxels that

differ by multiples of fs/nc Hz will have correlated physiological noise components.

For typical values of fs/nc = 6-10 Hz, any voxel will have local and spatially disparate

correlations across a single slice. By forming a block matrix S for all r voxels

S =

[
M1 M2 . . . Mr

]
, [4.3]

the low-rank physiological noise components of S can be estimated by principal

component analysis (PCA). This is the central concept of OSSCOR, where the signal

properties of OSSI allow for a small number of principal components to sufficiently

describe the physiological noise in any phase timecourse at any spatial location. This
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Figure 4.1: Simulated gray matter signals with respiration and scanner drift effects.
Plot a) shows phase timecourses (3 of 6 plotted for clarity). Plot b) shows
the associated combined timecourse. c) shows simulated B0 changes,
modeled using two terms: a respiration waveform at 12 breaths/min and
pk-pk amplitude of 1 Hz, and a linear scanner drift term of 1 Hz/min.
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is similar to CompCor correction strategy, but differs in that principal components are

estimated from all voxels and phase timecourses using the time-frequency relationship

of OSSI instead of a specified noise ROI.

Once the principal components of S are determined, we can remove physiological

noise components using the following signal model commonly used for BOLD fMRI:

S = Xβ1 + Tβ2 + Pβ3 + ε, [4.4]

where X is a matrix of experimental design variables, T is a matrix of polynomial

detrending terms, and P is a matrix containing principal components of S which act as

nuisance regressors for physiological noise. β1,2,3 contain weights for each respective

matrix, and ε is random error. The use of polynomial terms T was not found to

improve the performance of OSSCOR, but are included to maintain consistent degrees

of freedom with CompCor in the later comparison.

The number of principal components was determined by simulating OSSI time-

courses (TR = 15 ms, FA = 10◦, nc = 6) with temporally varying B0. We first

simulated the physiological noise as a single temporally varying respiration compo-

nent with waveform amplitudes of 0-2 Hz at steps of 0.1 Hz. The respiration rate

was kept constant at 12 breaths/minute. Next, a linear drift component of 1 Hz/min

was added to the respiration component for all frequency amplitude values. A center

frequency offset was then added, specified as a range of ± 50 Hz at steps of 0.1 Hz.

Variations in T1 and T2 were not found to affect the results of the simulation and

were held constant at 1286 ms and 110 ms, respectively. Each of the 21,021 param-

eter combinations was initialized at steady-state and simulated for 90 seconds, then

reshaped into a matrix of 126,126 phase timecourses per Eq. 4.1 and 4.3. PCA was

then applied to the simulated timecourses. Based on the scree plot shown in Figure

4.2 from the simulated data, the top 6 principal components were qualitatively chosen

to estimate physiological noise.
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Figure 4.2: Scree plot of simulated phase timecourses with respiration and drift. Six
principal components were chosen to sufficiently capture variation induced
by respiration and drift.

42



4.2.2 FID Based Physiological Noise Estimation

In addition to image data, principal components can be determined from acquiring

extra samples of the signal FID prior to readout. We refer to this as “F-OSSCOR”,

an FID-based variation of the previously described method. While this signal source

is not spatially encoded using gradients, the individual coils in a receive-array provide

spatially varying sensitivity to different regions of the brain, which in turn have vary-

ing distributions of off-resonant spins. Similar to a blind source separation problem,

PCA can then be used to recover the independent signals that comprise the low-rank

physiological noise subspace.

We implement this method by acquiring multiple samples at kxy = 0 before read-

out, which are then averaged into a single magnitude value. This is performed coil-

wise, resulting in ncoil measurements per TR. Considering these to be ncoil separate

timecourses, the same OSSCOR methods previously described for image data are

then applied. The number of FID samples was varied to determine its effect on the

quality of estimates produced, which showed negligible improvement past 16 samples.

4.2.3 Experimental Setup

All studies (n=6 subjects) were performed on a 3T GE MR750 scanner (GE

Healthcare, Waukesha, WI) with a 32-channel head coil (Nova Medical, Wilmington,

MA). We implemented the OSSI pulse sequence using the vendor’s pulse programming

language, EPIC, as well as our own in-house pulse sequence development framework,

TOPPE [85]. Single slice imaging was performed using a single shot constant-density

spiral-out trajectory (TR = 17.5 ms, FA = 10◦, FOV=19 × 19 cm2, matrix = 45 ×

45 reconstructed at 64 × 64, slice thickness = 2.5 mm, sampling BW = 250 kHz),

with 16 extra k-space center samples prior to readout. Spatial distortions due to B0

field inhomogeneity were corrected using a separately acquired field map.

Subjects were presented with a visual stimulus composed of right- and left-hemifield
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counter-phased 10-Hz flickering checkerboards in 40-second blocks, repeated 6 times

(240 seconds). The subject was instructed to gaze at a fixation cross in the center of

their visual field during the experiment.

4.2.4 Data Analysis

Analysis of functional data was performed using MATLAB (The Mathworks, Inc.,

Natick, MA). A block diagram illustrating the following analysis workflow is shown in

Figure 4.3. The OSSCOR and F-OSSCOR analysis methods were applied by remov-

ing physiological noise components to phase timecourses S using least-squares fitting

of the signal model (Eq. 4.4), which included the task waveform and linear/quadratic

detrending terms. The denoised phase timecourses were then combined using Eq.

4.2, resulting in one denoised combined timecourse per voxel. For comparison, Com-

pCor was implemented on combined timecourses with linear/quadratic detrending.

Temporal standard deviation (tSTD) was used to select the top 2% of noisy voxels,

discarding any timecourse with task correlation higher than 0.2 (tCompCor variation).

In all methods, the resulting denoised combined timecourses were then evaluated for

activation using a simple correlation threshold of r > 0.5. No high-pass filtering or

spatial smoothing was performed.

Method performance was evaluated using average t-score, number of activated

voxels, and average tSNR. Average t-score was calculated within a per-subject-ROI

defined by the union of the activated voxels found in all correction methods. In

counting the total number of activations, only voxels from the bottom-third of the

brain could be considered true active, approximately corresponding to the visual

cortex. Additionally, because the visual stimulus was counter-phased, only negative

correlations were considered from the left hemisphere and positive correlations from

the right hemisphere.

OSSCOR performs nuisance regression on each phase timecourse before combina-
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tion using a least squares fit, which includes the task waveform. To test for multi-

collinearity, the correlation between the task and each nuisance regressor (principal

component) was inspected. Orthogonalization of the nuisance regressors to the task

vector was also tested for its effects on denoising performance, calculated by:

Porth = (I−XXT)P [4.5]

where P is the orthonormal matrix of nuisance regressors, X is the task vector

with unit norm, and I is the identity matrix with nt/nc columns and rows. Note that

XT is written instead of XH since the task and nuisance regressors are all real-valued.

4.3 Results

The technique with detailed results from one subject (#4) is described here, with

results for other subjects summarized in Table 4.1. Figure 4.4 shows activation and

tSNR maps for the proposed methods, with CompCor for comparison. Across all six

subjects, OSSCOR, F-OSSCOR, and CompCor all significantly improved the number

of activated voxels (all P < .03), average t-score (all P < .001), and tSNR (all

P < .001) compared to only polynomial detrending (Table 1). OSSCOR performed

significantly better than CompCor in all three metrics (P = .025,P = .042,P =

0.0025, respectively). F-OSSCOR results were not found to be significantly different

compared to CompCor. An example of uncorrected and OSSCOR corrected phase

timecourse is shown in Figure 4.5, illustrating successful reduction of high-frequency

respiratory noise as well as drift induced low-frequency components.

Increasing the number of principal components used in OSSCOR resulted in de-

creased activation area and mean t-score, and an increase in false positives as defined

by activations outside of the visual task ROI. This reduction of performance was

observed across all subjects. However, increasing the rank of the F-OSSCOR im-
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FID Timecourses
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Reshape to Phase Timecourses
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Denoise Phase Timecourses
Fit S = Xβ1 + Tβ2 + Pβ3

Set Ŝ = S−Tβ2 + Pβ3

Combine Phase Timecourses
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→ Ĉnt/nc×r

Task GLM

Ĉ = Xβ1

Voxel Timecourses
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Combine Phase Timecourses
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Figure 4.3: A diagram outlining the steps implemented for each analysis method.
OSSCOR and F-OSSCOR both calculate principal components and per-
form denoising before phase timecourse combination, while CompCor was
applied on the final combined timecourse.
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Figure 4.4: Activation and tSNR map for each respective correction methods: poly-
nomial detrending only, CompCor, OSSCOR, and F-OSSCOR. OSSCOR
outperformed both CompCor and F-OSSCOR, but all three correction
methods significantly increased the number of activated voxels and mean
tSNR. Voxels with a significant vascular component were observed to have
lower tSNR than their surroundings, which is thought to be the effect of
through-plane flow unable to reach steady-state due to the single-slice
acquisition.
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Figure 4.5: An example of uncorrected and OSSCOR corrected phase timecourses,
with the visual task indicated by black bars on the x-axis. The uncor-
rected timecourse shows high sensitivity to respiration changes in the first
minute of the scan which are greatly reduced by OSSCOR.

proved the number of activations and mean t-score across all subjects with little to

no false activation. Activation maps for representative principal component numbers

are shown in Figure 4.6.

Correlation between the task waveform and principal components for k = 6 was

generally found to be low, and is summarized in Table 4.2. The absolute mean

and standard deviation of correlation values was 0.064, and 0.048, respectively. An

alternative analysis method where OSSCOR nuisance regressors were orthogonalized

to the task was tested. Visual inspection of the resulting activation maps was found

to reduce activation strength and increase the number of false positives, as shown in

Figure 4.7.
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Table 4.1: Summary of results from functional experiments
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Average t-score with detrending 15.1 26.4 38.3 19.0 19.2 27.5

Average t-score with CompCor 31.6 43.4 47.0 33.5 31.1 41.7

Average t-score with OSSCOR 34.5 44.3 49.4 38.6 41.5 43.2

Average t-score with F-OSSCOR 32.8 43.9 48.1 35.7 36.6 41.4

# activated voxels with detrending 0 16 53 27 10 39

# activated voxels with CompCor 22 32 66 91 19 67

# activated voxels with OSSCOR 30 31 71 109 34 75

# activated voxels with F-OSSCOR 28 28 70 87 27 63

Average tSNR with detrending 47.9 41.4 83.9 60.2 46.1 67.2

Average tSNR with CompCor 88.1 72.0 125.6 94.0 74.1 106.4

Average tSNR with OSSCOR 94.9 94.3 135.9 106.1 83.5 119.2

Average tSNR with F-OSSCOR 87.3 75.9 132.6 95.1 80.4 106.7

Figure 4.6: Activation maps for OSSCOR and F-OSSCOR produced with varying
number of principal components (k). Increasing the number of OSSCOR
PCs reduced activation sensitivity and increased the number of false pos-
itives, while increasing the number of F-OSSCOR PCs increased sensitiv-
ity without increasing false positives.
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Figure 4.7: Activation maps for OSSCOR with and without nuisance regressors or-
thogonalized to the task vector (top and bottom rows, respectively). Or-
thogonalizing OSSCOR nuisance regressors to the task waveform prior
to regression was found to decrease activation strength and increase false
positives.

Table 4.2: Correlation of OSSCOR Principal Components with Task
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

PC 1 0.023 0.004 -0.004 0.006 -0.022 0.015

PC 2 -0.101 -0.091 0.123 -0.106 -0.090 -0.160

PC 3 -0.014 0.024 0.113 0.023 -0.126 0.053

PC 4 0.097 0.047 0.100 -0.094 -0.034 0.175

PC 5 -0.039 0.007 0.057 -0.127 0.087 -0.054

PC 6 0.059 0.120 -0.009 -0.050 -0.027 -0.009
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4.4 Discussion

The “phase timecourse” analysis of OSSCOR is based on the assumption that the

time to acquire each period of nc TRs is much shorter than the time-scales at which

respiration and drift occur. Therefore, temporally varying frequency and resulting

transient effects can be treated as quasi-static over the duration of a full nc OSSI pe-

riod. This assumption does not imply that transient effects are negligible, but rather

are slowly varying compared to the speed to acquire a period, TReff. This assumption

performs well at the chosen parameters (nc = 6, TReff = 105 ms), though we found

in initial tests that longer readouts or higher nc values reduced the effectiveness of

OSSCOR. Furthermore, higher values of nc result in reduced amplitude of respiration

and drift artifacts due to a more stable combined frequency response, reducing the

need for retrospective correction. For example, a period of nc = 10 was shown to

have a combined frequency response variation of less than 5% compared to the 17%

variation of nc = 6, though at the cost of a 66% longer TReff.

F-OSSCOR extends the OSSCOR method by using FID timecourses instead of

voxel timecourses. Though not spatially encoded, the FID time series data can be

used to estimate spatially varying physiological noise due to two sources of signal

diversity: coil sensitivity and B0 inhomogeneity. Since the FID signal is detected

independently per coil, each FID timecourse is spatially localized by each coil’s sensi-

tivity. Therefore, each coil will only be sensitive to a local distribution of off-resonant

spins, and by extension, sensitive to a local portion of the OSSI frequency response.

Furthermore, OSSI effectively acquires a sequence of nc different images with different

center frequencies, resulting in each coil receiving FID signals from nc different regions

of the frequency response. In our experimental setup using a 32-channel head array

and nc = 6, the 192 separate FID timecourses produced for the F-OSSCOR analy-

sis were sufficient for correcting the data. An additional benefit of the F-OSSCOR

approach is that the requisite FID signals are measured every TR regardless of the
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encoding strategy, and is therefore compatible with any multi-shot, 3D, or undersam-

pling scheme.

The concept of using FID-based nuisance regressors assumes that FID signal vari-

ance due to functional signal changes will be small compared to respiration or drift

artifacts. This is supported by the comparison shown in Figure 4.6, which shows

OSSCOR and F-OSSCOR activation maps using a varying number of principal com-

ponents. As principal components were increased passed the theorized rank of the

physiological noise, OSSCOR functional sensitivity and specificity decreased in all

subjects. This can be seen as a decreased activation area and strength, as well as an

increased amount of suspected false activations. In contrast, increasing the number

of principal components in F-OSSCOR increased activation strength with minimal

reduction in specificity across subjects, though maintained similar activation areas.

This experimental result suggests that F-OSSCOR could be used in rs-fMRI denoising

like CompCor with the advantage of having less sensitivity to the number of principal

components chosen.

Both OSSCOR and F-OSSCOR use PCA to produce nuisance regressors for sub-

sequent functional analysis, similar to the CompCor denoising approach. However,

a fundamental difference is that CompCor seeks to target noisy voxels and exclude

activated voxels from the PCA by specifying a noise ROI, while OSSCOR and F-

OSSCOR include all data. Despite including activated voxels in the PCA analysis,

OSSCOR performed significantly better than CompCor in all three test metrics, and

F-OSSCOR performed comparably to CompCor. This is attributed to the second

difference in methods: OSSCOR and F-OSSCOR both perform corrections using

phase-time data before combination, and therefore gain the ability to make com-

parisons across both space and time using the OSSI frequency-time shift property.

In the case of OSSCOR, including all voxels as inputs was found to be critical, as

excluding voxels via a tSTD threshold resulted in a loss of denoising performance.
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This implies that a sufficient range of off-resonant signals needs to be included in

the analysis and that only selecting timecourses with high tSTD results in a limited

range of off-resonant behaviors represented in the nuisance regressors. Including all

timecourses in OSSCOR does creates the possibility of the nuisance regressors repre-

senting functional signal instead of noise, which would result in decreased functional

sensitivity. However, this was not observed in the data, as supported by the increases

in functional sensitivity of OSSCOR compared to CompCor, which excluded func-

tional voxels via a noise ROI. Since the majority of voxels included in the analysis

contain physiological noise but no functional signal, noise is expected to dominate

the first principal components.

Our implementation of CompCor excluded timecourses that were correlated with

the task above a threshold, though this pre-processing step was found to be unim-

portant for analyzing OSSI data. This result was confirmed by manually inspecting

the unmodified tSTD-derived ROI, which did not include voxels near the activated

regions of the visual cortex. This pre-processing step was tested with OSSCOR to

exclude phase timecourses potentially containing functional signal, but was also found

to have a negligible impact. Pre-processing the data using second-order polynomial

detrending was effective at removing slowly varying noise components attributed to

drift. This detrending step was found to be essential for defining the CompCor noise

ROI based on tSTD, since respiration-induced noise magnitude is small compared

to drift. However, the detrending step had a negligible effect on OSSCOR since no

ROI is used and low-frequency components are captured in the principal components.

Though not necessary, polynomial detrending terms were included in OSSCOR and

F-OSSCOR in order to match the degrees of freedom in method comparisons.

While OSSCOR and F-OSSCOR demonstrate the ability to mitigate the effects

of respiratory and scanner drift induced frequency changes in OSSI, both methods

inherit limitations of data-driven correction approaches. The first is the selection of
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how many principal components should be included in the analysis. Here we have

shown a rank can be selected through simulation, however, this does not account

for subject-specific B0 distributions or temporally varying respiration rates. This

can lead to a deterioration of performance for some frequencies, as shown in the last

two stimulus blocks in Figure 4.5 where no respiration artifacts are removed. Fur-

thermore, flow-related artifacts in OSSI result in complex frequency-dependent signal

evolutions, which were not well corrected by either proposed methods or CompCor.

This effect can be seen in Fig. 4.4, where tSNR did not improve in areas with signif-

icant vascular components. Further work is needed to determine how to improve the

dimensionality of the physiological noise representation to improve denoising while

excluding functional signal components. This could potentially be performed using

alternative unsupervised methods based on ICA or dictionary learning.

4.5 Conclusion

We have shown that the application of OSSCOR and F-OSSCOR can signifi-

cantly reduce physiological noise due to temporally varying off-resonance during an

OSSI-based fMRI acquisition. Unlike the previous PCA based methods such as Com-

pCor, OSSCOR does not require the selection of a designated noise ROI and instead

uses OSSI-specific signal properties to determine correlated physiological noise com-

ponents. Similarly, we show through F-OSSCOR that FID samples can be used to

produce nuisance regressors independent of the image encoding strategy.
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CHAPTER V

Prospective Correction of B0 Changes in OSSI

5.1 Introduction

Retrospective correction is an effective way to remove respiration artifacts from

fMRI data, though all retrospective strategies are ultimately “undoing damage” done

to the underlying signal during acquisition. This is regarded as acceptable for SPGR

based fMRI for two reasons. The first reason is that the effects of respiration and drift

are approximately uniform at the scale of a voxel and therefore does not alter the

intravoxel frequency distribution or subsequent T2* weighting. The second is that

SPGR signal spoiling intentionally disrupts transverse signal formation at the end

of each TR with large gradient-induced phase changes, preventing any off-resonance

induced phase accumulation from affecting the next TR. These two factors are not

valid for OSSI based fMRI, where the T2* sensitivity and signal magnitude for in-

dividual images can be altered by frequency fluctuations. OSSI attempts to solve

both problems through the image combination step, where nc images from a cycle

are combined into a single image using the 2-norm. In this way, a frequency change

that reduces the T2* weighting in one image is made up for by an increase in T2*

weighting of others in the cycle.

Prospective correction methods are a different approach for cleaning physiolog-

ical noise from fMRI signals, where corrections are applied in real-time to reduce
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perturbations to the acquired MRI signal. Previous work has shown that real-time

approaches are effective at compensating for respiration and drift artifacts, where the

center frequency or shims are dynamically adjusted to negate changes to the B0 field

[57][58][60]. Since compensation is performed concurrently with image acquisition,

prospective correction prevents changes to signal characteristics before they occur,

preventing fluctuations to signal magnitude or T2* weighting. Unlike retrospective

approaches, prospective correction eliminates the need to account for physiological

noise in a signal model and can potentially be used in combination with any image

reconstruction strategy.

Though real-time prospective correction has previously been used for B0 com-

pensation in SPGR and transition-band fMRI approaches, we are not aware of any

research to date that has attempted real-time tracking in combination with a phase-

cycled steady-state imaging sequence such as OSSI. Furthermore, implementing an

OSSI-compatible real-time system is not straightforward due to a complex steady-

state and atypical frequency response. This chapter explores the technical feasibility

of using a real-time B0 compensation method in combination with OSSI, documenting

a proof of concept implementation and application in task-based fMRI.

5.2 Theory and Methods

5.2.1 Real-time B0 Compensation

Uniform changes to the B0 field can be compensated for in real-time by chang-

ing the center frequency of the hardware oscillator, or by changing the phase of the

transmitted/received RF. The former changes the rotating reference frame for trans-

mitted and received signals, while the latter adds a constant phase offset to RF pulse

and subtracts a phase offset from the received data. This is a subtle yet important

difference for implementing a real-time compensation strategy: changing the center
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frequency through the oscillator will change observed phase accumulation over a TR

while changing the RF phase does not.

The following describes the latter approach for B0 compensation because it was

found to be easier to implement RF phase changes due to scanner idiosyncrasies. B0

changes can be compensated for by adjusting a constant increment to the RF phase

(ψB in Equation 3.5), resulting in a frequency response shift. Then, a uniform change

in off-resonance can be negated by shifting the frequency response the same amount:

ψB = 2π ·∆ω · TR−1 [5.1]

For example, a sequence with a TR of 16 ms would yield a frequency-response

which is periodic over 1/(16 ms) = 62.5 Hz. A whole-image off-resonance increase

of 2 Hz could then be compensated for by increasing ψB by 2π · (2 Hz)/(62.5 Hz) ≈

0.2 radians.

5.2.2 Correcting Changes in Off-Resonance using FID Signals

Previous work has utilized FID phase at the beginning of readout to measure

relative changes in off-resonance in transition-band fMRI [57]. This approach uses

the fact that changes in frequency are proportional to FID phase changes within the

central transition band-region of the frequency response, and that all signals can be

shimmed to this narrow spectral region. This region of linearity in the transition-

band frequency response is shown in Figure 5.1. This approach does not work for an

entire slice or volume since the strict shimming requirements cannot be met for larger

spatial extents. Furthermore, the assumption of linearity does not hold true for OSSI,

where signal phase varies non-linearly with off-resonance, as shown in Figure 5.2.

We propose a variation of this method that overcomes both of these challenges,

where the FID phase is sampled before and after the readout. Since the readout is

balanced, the relative phase change between these two measurements will be propor-
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Figure 5.1: Magnitude and Phase Frequency Response for transition-band fMRI,
showing how signal phase varies linearly with frequency near the center
of the spectrum.

Figure 5.2: Magnitude and Phase Frequency Response for OSSI (nc = 10)
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Figure 5.3: OSSI Pulse Sequence showing approximate FID sampling locations

tional to the amount of bulk off-resonance. A pulse sequence diagram illustrating the

FID sampling method can be seen in Figure 5.3.

The relative FID phase is evaluated separately for each of the 32 coils used in

the experimental setup. Since the effects of respiration do not uniformly affect the

brain, each coil will be sensitive to different amounts of respiration-induced phase

changes. We choose to combine all of these phase measurements into one combined

by using an SVD-based coil compression [86], resulting in one FID phase value per

TR, φ̂. Our approach only uses the phase from one user-selected TR per OSSI cycle.

This is because we observed that OSSI images with low uniformity or SNR result in

unreliable phase measurements, reducing the prospective correction effectiveness.

One advantage of using our relative FID phase approach is that the FID signal can

be sampled every OSSI cycle and is therefore compatible with any k-space trajectory,

similar to F-OSSCOR. This is a critical requirement of OSSI since high resolution

or volume imaging requires the use of a multishot acquisition. However, each shot

trajectory will have a different phase offset due to shot dependent eddy currents. We
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correct for initial phase offsets by measuring the mean phase for each shot at the

beginning of the scan, then subtracting the mean phase offset from each subsequent

shot. This effectively aligns the phase of all shots by shifting the initial phase of each

per-shot FID timecourse to 0.

The corrected phase measurement, φ̂, is then used to update the constant RF

phase increment using the following relationship:

ψB = c · φ̂ · TR

∆TE
[5.2]

where ∆TE is the time between the two FID measurements, and c is the scaling

parameter that maximizes signal stability in a region of interest. If the effects of

respiration are uniform across the entire slice, then c will equal 1. However, if respi-

ration effects are stronger or weaker in the ROI to stabilize compared to the rest of

the slice, c will be greater or less than 1, respectively. In this way, real-time tracking

can be tuned to maximize signal stability in a specific region of the slice, even when

the effects of respiration are not uniform.

In practice, the scaling parameter, c, can be set manually or automatically. Our

online automatic tuning method utilized a hill climbing algorithm to maximize the

tSNR for each OSSI phase image in a user-specified region, defined by:

tSNR =
s̄ROI

σROI

[5.3]

where s̄ROI and σROI are the mean and standard deviation of the ROI timecourses

for a 10 second period.

5.2.3 Simulations

Bloch simulation was used to investigate the feasibility of using real-time tracking

with the OSSI method. First, B0, T2, proton density, and coil sensitivity maps of a
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human volunteer was acquired, with the quantitative maps shown in Figure 5.4.

Figure 5.4: Acquired proton density, T2, and B0 maps used for simulation.

An OSSI timecourse simulation was performed using physical properties from

the acquired maps and an additional time-varying frequency component, using our

method previously developed for 1D simulation (Fig. 3.2). Real-time tracking was

then simulated on a per-TR basis for 30 seconds. A FID phase calculation was

performed for the last TR in each simulated OSSI cycle, where the complex simulated

image was multiplied by the 32 acquired sensitivity maps and summed to produce

32 simulated FID phase measurements. The phase measurements were then coil

combined to produce a single phase measurement, which was multiplied by a scaling

parameter c to adjust the RF phase for the next simulated OSSI cycle. Although

the combined OSSI signal frequency sensitivity decreases as nc increases (Ch. III),

increasing nc reduces the update frequency of the real-time tracking system since only

one out of nc cycles is used for the phase estimate. Simulations were run for a range

of values for nc and c to investigate the interaction between these two parameters.

5.2.4 Phantom and In Vivo Experimental Protocols

The OSSI sequence and prospective correction method were implemented using

the RTHawk real-time scanner control software (HeartVista, Los Altos, CA). More

details about the technical implementation of the system can be found in Appendix A.
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A 2D single slice readout was implemented using a 2-shot balanced spiral trajectory

(TR=16ms, FA=10◦, nc=10), resulting in a combined image effective TR of 320 ms.

An additional FID sampling readout section was placed before and after the spiral

readout (approx 100 µs each). FID phase measurements were calculated on a per-coil

basis, then coil compressed. The coil compression matrix was calculated from the first

image of the time series. The FID phase measurement was then used to immediately

update the constant RF phase increment, approximately 10-20 ms after the server

received the data. Only one measurement out of each OSSI cycle was used to update

the RF phase (every 160 ms).

Phantom experiments were used to assess the performance of online parameter

tuning and real-time tracking. Frequency changes were expected to be approximately

uniform across an axial slice due to scanner drift. Tracking stability as a function

of scan duration was measured by acquiring a 10-minute run, then calculating tSNR

maps from the first 0.5, 2, 3, 5, and 10 minutes of the data.

In vivo performance was tested using task-based fMRI experiments, consisting of a

counter-phased flashing checkerboard (20 seconds per block, 4 minutes total). Track-

ing was enabled in the first trial, then disabled for the second. The pulse sequence was

continuously run for the entire experiment, ensuring that the tracking on and track-

ing off trials used the same spatial location, shim values, and center frequency. The

OSSI fast-time point to track was qualitatively determined by visualizing the OSSI

images in real-time and selecting the fast-time image with good signal intensity in the

posterior portion of the slice, corresponding to the ROI where visual activation was

expected to occur. Linear and quadratic detrending were included in the functional

analysis. No other spatial smoothing or post-processing steps were applied.
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Table 5.1: Peak and FWHM tSNR values for selected nc values

nc Peak tSNR FWHM

2 410.4 0.163
4 371.9 0.390
6 232.8 0.634
8 150.1 0.960
10 172.6 1.15
12 157.1 1.55
14 155.3 2.00

5.3 Results

5.3.1 Simulation Results

Figure 5.5 shows example simulated OSSI images created from the quantitative

maps from Figure 5.4, showing one OSSI cycle of nc = 10.

Figure 5.5: Simulated OSS images with nc = 10

Figure 5.6 shows mean tSNR for a range of simulated c values, plotted for selected

nc values of 6, 10, and 14. The peak tSNR of each curve increased with lower nc values.

Sensitivity to c increased with lower values of nc as well, as measured by the full width

at half maximum (FWHM). A summary of peak tSNR and FWHM for nc values from

2 to 14 is shown in Table 5.1.
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Figure 5.6: tSNR vs c for nc = 6, 10, and 14.

Table 5.2: Mean tSNR of tracking on and tracking off phantom trials

30 seconds 2 minutes 3 minutes 5 minutes 10 minutes

Tracking On 448.6 418.7 407.9 384.2 322.1
Tracking Off 471.6 336.5 285.0 217.7 141.5

5.3.2 Phantom Results

Based on the simulation results, phantom imaging was conducted with nc = 10,

which was qualitatively selected for the best combination of peak tSNR, sensitivity to

c, and effective TR. Figure 5.7 shows tSNR maps calculated from the first 0.5, 2, 3,

5, and 10 minutes of images for both tracking on and tracking off trials. Mean tSNR

for each map is summarized in Table 5.2. Both trials exhibit very high tSNR for the

first 30 seconds of data since minimal changes to the B0 field have occurred, with

tSNR decreasing through time. However, real-time tracking substantially improved

the quality of subsequent tSNR maps compared to the no tracking trial, both in

qualitative homogeneity and mean tSNR.

The source of the banding in the tSNR maps is due to B0 inhomogeneity resulting
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Figure 5.7: Phantom tSNR maps of tracking on and tracking off trials. tSNR maps
were computed for the first 0.5, 2, 3, 5, and 10 minutes of OSSI combined
frames. Tracking reduces the shifting of OSSI signal bands, reducing the
variability of the combined images over time. Tracking resulted in a 134%
improvement in mean tSNR vs no tracking at the 10 minute interval.

in a banding pattern across each OSSI image. While the image combination step

results in a “combined frequency response” with less variance, the response is still

not completely uniform. Scanner drift then results in apparent movement of the

signal bands, changing the signal amplitude in a voxel and reducing the tSNR. The

effects of drift can be seen in Figure 5.8, showing OSSI images from a selected phase

in the cycle at the 0.5, 2, 3, 5, and 10 minute mark. Real-time tracking negates the

effects of scanner drift, virtually eliminating any movement of the banding artifacts

in the top row of mages. However, the bottom row of images shows how the banding

artifacts will gradually shift when tracking is disabled.

5.3.3 In Vivo Results

Activation and tSNR maps shown for an in vivo trial in Figure 5.9 using nc = 10.

Tracking dramatically improved the number of activated voxels (72 vs. 13, 454% in-

crease). Tracking also improved mean tSNR compared to no tracking (176.9 vs. 97.7,

81% increase). tSNR in voxels containing significant CSF or vascular components did
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Figure 5.8: Example OSSI images at selected timepoints from a minute run, showing
phase 7 of 10. The OSSI banding pattern remains stable over the 10
minute run when tracking is enabled, while disabling tracking shows a
gradual change in band position.

not noticeably improve since flow-related artifacts cannot be compensated for using

B0 tracking.

Example timecourses with tracking on and off are shown in Figure 5.10. Real-time

tracking is shown to strongly reduce the effects of respiration, improving functional

task correlation. The amplitude of respiration artifacts can be seen to temporally

vary in the tracking-off timecourse as the underlying frequency sensitivity changes

over time due to drift. Tracking-on and tracking-off correlation values for the plotted

timecourses were r=0.86 and r=0.59, respectively.

5.4 Discussion

Our real-time prospective correction approach has demonstrated the ability to

mitigate the effects of respiration and drift artifacts in OSSI by compensating for

bulk B0 changes. While the control system implemented requires online tuning of a

scaling parameter, c, simulation results from Figure 5.6 shows that modest deviations

from the optimal parameter value still reduce the effects of B0 changes and improve
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Figure 5.9: Activation and tSNR maps comparing tracking-off and tracking-on trials

Figure 5.10: Example voxel time courses showing activation from a tracking-off and
tracking-on trial. Black bars on the x-axis indicate stimulus blocks.
Linear and quadratic detrending was applied to each timecourse before
normalization.
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tSNR. Equivalently, a c value optimized for a specific region of the brain can also

improve stability in other regions, even if the other regions have stronger or weaker

respiration effects. Increasing nc is shown to improve tracking robustness as a func-

tion of c, suggesting that larger nc values could improve signal stability even with

spatially varying respiration effects. Evidence of this is shown in Figure 5.9, where

tracking improved tSNR across the entire slice even though the effects of respiration

are measured to be higher in the visual cortex due to the oblique slice planning.

The relative FID phase measurement approach only relies on using a balanced

readout trajectory, where the center of k-space can be sampled before and after the

readout. While this strategy allows the FID signal sampled every TR regardless of the

slice or volume acquisition rate, the FID phase will contain inaccuracies dependent on

eddy currents and gradient inaccuracies specific to a k-space trajectory. Our simple

approach of subtracting the initial mean phase works well, effectively setting the

initial phase of all timepoints to 0. This phase centering step was found to work well

even with subject respiration since the mean phase values were computed from an

average of several TRs.

Our real-time control system sets the constant RF phase increment proportionally

to the FID phase measurement, which can be described as an open-loop control

system. The system is open since changing the RF phase does not alter the rotating

reference frame, resulting in no feedback to the relative FID phase measurement. This

can result in poor tracking performance if c is set inaccurately, with tracking errors

that scale with the magnitude of field deviations. This can be seen in the phantom

data (Fig. 5.7), where tSNR was observed to decrease over time as drift continues to

increase. Furthermore, changing the RF phase does not compensate for the effects

of changing off-resonance in the image encoding, which would result in increased

ghosting in EPI or blurring of a spiral image. A closed-loop approach that modifies

the center frequency could address both of these issues by not requiring the tuning
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of a scaling parameter. Rather, a closed-loop system would continuously monitor

and minimize a phase error metric, potentially resulting in better stability over long

periods of time. However, common closed-loop strategies such as PID controllers [87]

still require a complex tuning process of control gains that can drastically affect the

stability and performance of real-time compensation.

5.5 Conclusion

This proof of concept shows that FID signals can be used to estimate bulk B0

changes in real-time. The system also for per-shot eddy current effects, updating the

RF transmit and receive phases to mitigate perturbations to the oscillating steady-

state. Ultimately, this results in an increase of activated voxels, increased activation

strength, and increased overall tSNR.
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CHAPTER VI

Future Work

6.1 Catalyzation of the OSSI Steady-State

Like many other steady-state sequences, the OSSI sequence takes time to reach

steady-state before imaging can be performed. The OSSI sequence can take several

hundred TRs to reach steady-state, which is on the order of seconds. While this delay

is not prohibitive if the sequence is only started once, it prevents a naive use of prepa-

ration pulses which would regularly interrupt the steady-state (ex. fat suppression).

“Catalyzation sequences” are a common approach to minimizing the amount of time

to establish steady-state, consisting of specific excitations and gradients played before

the regular sequence [18].

Previous work showed that catalyzing a bSSFP sequence can be divided into “scal-

ing” and “directing” steps, which separately address the longitudinal and transverse

magnetization components of the steady-state [71]. We observe that the OSSI steady-

state formation is limited by T1 effects and hypothesize that a similar catalyzation

approach may be effective. Figure 6.1 shows the OSSI signal approaching steady-

state from full relaxation (M0 = [0, 0, 1]), displaying how an oscillation structure is

quickly formed then slowly scaled to the steady-state. Simulation parameters were

set as nc = 10, TR=15ms, TE=2ms, T1=1331 ms, T2=80 ms.

We can define how fast an isochromat reaches steady-state by TRSS, the number
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Figure 6.1: Simulated OSSI steady-state formation for B0=0 Hz with transverse mag-
nitude and longitudinal signals plotted. M0 = [0, 0, 1].

of TRs required for the magnitude and phase of the signal to be within 1% of the

steady-state value. For example, the signal in Fig. 6.1 is considered at steady-state

after 159 TRs.

Our preliminary work shows that off-resonance affects steady-state formation time.

An example of this is shown in Figure 6.2, plotting TRSS as a function of off-resonance.

All signals must reach steady-state before imaging can occur, so the effective steady-

state formation time is dictated by the maximum of all off-resonant cases (ex. 217

TRs in Fig. 6.2).

A simple “scaling” catalyzation method is to scale the initial Mz component,

such that spins are initialized at M0 = [0, 0,Mz] with Mz ∈ [−1, 1]. Scaling Mz

can be accomplished using inversions or through an excitation followed by a crusher

gradient. The results of a proof-of-concept simulation is shown in Figure 6.3, where

the maximum time to steady-state was calculated for a range of initial Mz values.

We found that an initial value of Mz = 0.45 was optimal for the sequence param-

eters tested, reaching steady-state in 138 TRs, 36.4% faster than Mz = 1. The time

required to reach steady-state was reduced from 3.25 seconds to 2.07 seconds.

This proof-of-concept simulation shows that even a simple catalyzation scheme
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Figure 6.2: Number of TRs to establish steady-state as a function of off-resonance
from M0 = [0, 0, 1]. Signals were considered steady state when within 1%
of steady-steady state magnitude and phase.

can accelerate OSSI steady-state formation. Further investigation is needed to deter-

mine an optimal OSSI catalyzation sequence and if catalyzation will enable the use of

preparation pulses.

6.2 Alternative OSSI Signal Combination Approaches

Chapter III describes how each of the phases in the OSSI cycle can be considered

to be separate acquisitions, each with their own frequency response. This concept is

later explored in Chapter IV in the OSSCOR strategy, where each phase time course is

modeled as a linear combination of functional signal change and physiological artifacts

(Eq. 4.4). This model implicitly describes that phase timecourses for a voxel can have

a varying amount of functional sensitivity. The physical reason for this arises from the

fact that the frequency response for each OSSI phase is only T2* sensitive in regions

of steep phase change. An example frequency response is shown in Figure 5.2, with

the phase plotted in orange. Steep regions of the response will exhibit higher T2*

sensitivity (ex. 0 Hz), whereas flat regions will exhibit little to no T2* sensitivity (ex.

11 Hz).
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Figure 6.3: Maximum number of TRs to steady-state vs initial Mz. An initial value
of Mz=0.45 was found to reach steady-state in 138 TRs, compared to
Mz=1 which took 217.

An example of the varying T2* sensitivity is shown in Figure 6.4, which plots

all phase timecourses (nc = 6) for a single activated voxel. Varying amounts of

activation changes can be seen in each phase timecourses. For example, the dark blue

phase timecourse shows activation over the entire run, while the green timecourse

shows practically no activation. Additionally, scanner drift results in slow changes

to off-resonance over the duration of the run, changing the frequency sensitivity and

amplitude of respiration artifacts. This is most notable in the orange timecourse,

which shows respiration artifacts that increase in amplitude over time.

The OSSCOR method attempts to remove the physiological artifacts from each

of the nc phase timecourses, such that only functional changes and thermal noise

remain. The cleaned phase timecourses are then combined using the 2-norm into a

single timecourse which is used in a functional analysis. While the 2-norm is a simple

and effective combination strategy that is robust to frequency offsets, it does not

account for the differing functional sensitivity between phase timecourses or that the

functional sensitivity may change over time.
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Figure 6.4: All 6 phase timecourses plotted for an activated voxel, showing differing
amounts of functional activation and respiration/drift artifacts. Black
bars indicate task periods.
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Lastly, the 2-norm combination strategy adds an additional layer of complexity

for fMRI statistical analysis. fMRI analysis commonly expresses a signal timecourse

as a linear combination of activation-related change (task) and artifactual changes

(nuisance), where degrees of freedom can be calculated. However, OSSCOR performs

denoising on each phase timecourse separately prior to the 2-norm combination. Since

this combination step is non-linear, it is not immediately obvious how to calculate

degrees of freedom for an analysis of the combined OSSI signal if the data is de-

noised/detrended prior to combination.

In summary, future improvements to the OSSI signal combination strategy are

needed that account for changing phase timecourse T2* sensitivity. An improved

understanding of how OSSI signal combination affects statistical degrees of freedom

is also needed for any future application in fMRI.

6.3 Further Work on F-OSSCOR Correction Methods

Chapter III presented F-OSSCOR, a variation of the OSSCOR strategy that de-

rives nuisance regressors from FID signals. Our analysis showed that increasing the

number of principal components in F-OSSCOR did not increase the number of sus-

pected false activations, whereas increasing the number of principal components in

OSSCOR did (Figure 4.6). This is likely because magnitude changes in the FID signal

are dominated by bulk respiration changes, “washing out” small functional changes

in the principal component analysis.

An additional advantage of the F-OSSCOR method is that FID signals can be

sampled every TR, resulting in “fully sampled” nuisance regressors regardless of the

subsequent k-space trajectory. This may be useful for high-resolution 3D acquisitions

where the volume TR may exceed 1 second or more. However, it is not immediately

clear how to reconcile the FID and volume sampling rates into a single correction

method. Furthermore, current OSSCOR and F-OSSCOR methods only use signal
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magnitude, while per-shot correction methods would need to be performed on complex

k-space data. Further work is needed to determine how FID signals can be used to

perform physiological correction in 3D multishot acquisitions.

6.4 Further Work on Prospective Correction of Physiological

Noise

Chapter V presents a real-time method that corrects for respiration induced B0

changes. The described method uses an open-loop control system to proportionally

adjust a constant RF phase increment using FID phase measurements. Simulation

and experimental results showed that this approach could improve signal stability

even when the effects of respiration spatially vary.

The OSSI steady-state is not compatible with a 2D multi-slice approach since exci-

tation must be performed every TR for all imaged areas. Therefore, a 3D acquisition

strategy must eventually be used for any practical fMRI experiment. A 3D acquisition

would present additional challenges for our real-time prospective correction method.

First, our method calculates relative phase changes per coil, then performs coil com-

bination to obtain one phase estimate. A 3D acquisition would result in each coil

detecting a larger volume of signals with varying amounts of respiration-induced fre-

quency changes. Further investigation is needed to determine if FID-based frequency

tracking is compatible with 3D volume acquisitions.

Another challenge is that our system is only able to compensate for uniform fre-

quency changes, whereas the effects of respiration are known to spatially vary through-

out the brain, albeit smoothly. While our system demonstrated robust tracking for

partially oblique slices, we observed that tracking did not work well for slices planned

greater than approximately 30 degrees off of the axial plane. It is likely that a 3D

acquisition would exacerbate this issue where an even greater amount of variation in
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respiration effects would occur.

Previous work showed that linear spatial corrections are an effective method to

correct whole-brain respiration effects [58], however, a significant hurdle in performing

spatially varying B0 correction would be the 3D estimation of B0 changes in the

first place. The FID-based method proposed proposed in V compresses all coils into

a single estimate of uniform B0 changes across the slice. However, an FID-based

method could potentially be used to estimate spatial B0 changes by utilizing a 3D

coil sensitivity map. In this way, the FID signal measured from each coil could be

used to create coarse 3D measurements of relative field changes, which would then be

used to update 1st order shims or gradient blips in real-time. Further investigation

is needed to assess the use of a spatially varying B0 measurement and compensation

strategy for OSSI.
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APPENDIX A

Implementation of Real-time OSSI using RTHawk

Experimental Guide for the RTHawk Real-Time Correction

Application

This appendix provides a brief guide for conducting an fMRI experiment with

prospective B0 correction using RTHawk at the University of Michigan fMRI Lab.

Additional technical details are also included on how this method was implemented,

though the direct source code cannot be made public since RTHawk is proprietary

technology of HeartVista, inc. and is being used under a research agreement.

Overview of the RTHawk System

RTHawk is a software system that allows sophisticated real-time control of the GE

MR750 system. The primary RTHawk application runs on an external server which

is directly connected to the GE scanner network. The RTHawk server then receives

raw data from the scanner host and can change parameters in real-time. Parameters

can be updated as rapidly as every TR.

Figure A.1 shows a process diagram of the prospective B0 correction application.

Raw k-space data is first sent from the scanner to the RTHawk server as soon as it
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Figure A.1: Process diagram for the real-time control system.

is available after each TR. The RTHawk system then passes the raw data through

the reconstruction pipeline. The reconstruction pipeline can then choose to update

sequence parameters which are made effective in the next TR. In this case, relative

phase information is calculated from FID data for one TR in every OSSI cycle. The

FID data is then used to adjust the constant phase increment variable used in the RF

phase calculation. The RTHawk system specifies the RF phase to the scanner every

TR, though the phase increment variable is updated as soon as the FID calculation

is finished (once per OSSI cycle).

Running an OSSI fMRI Experiment with Prospective B0 Tracking

Starting the session

The first step is to load a protocol and start an exam on the GE scanner interface.

Any protocol can be selected with any coil as the RTHawk software will automatically

add its own sequence to the protocol. If performing a human subject scan, enter the

subject ID and weight here.

All subsequent user interaction takes place on the RTHawk server after the exam

is started. The RTHawk application does not work over X11 forwarding, requiring

the use of another remote desktop solution. We use the NoMachine remote desktop
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service which was found to stream high quality 60 FPS desktop capture over a local

network.

After connecting to the RTHawk server via NoMachine, the server must be con-

nected to the scanner network. The RTHawk server has two network interfaces: one

connected to the scanner network (eno1), and the other to the university network

(eno2). Turn on the eno1 interface, which is usually disabled for security purposes.

Now launch the RTHawk application either through the launcher icon or through

the terminal command RTHawk. If the application does not start, ensure that the net-

work interface has been enabled. The protocol selection screen will appear, as shown

in Figure A.2. Select the OSS protocol. The connected coil should automatically be

selected. If it isn’t, select the desired coil from the coil selection dropdown menu.

Figure A.2: The RTHawk protocol selection screen.

Select “Open Protocol.” The patient dialog box will appear, confirming the pa-

tient ID, DOB, and weight, that was read from the exam information (Figure A.3). If

this step fails, check that an exam was loaded on the scanner host computer. Confirm

that this information is correct, then select the “Confirm” button to proceed. The
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system is now ready to scan.

Figure A.3: The RTHawk patient information dialog box.

Running the OSSI Application

The scan location must first be localized. Several localization applications have

been included in the “OSS” protocol:

• Real-Time Loc GRE: a real-time spoiled GRE sequence.

• Real-Time Loc SSFP: a real-time bSSFP sequence.

• FB Multi-Slice GRE: a free breathing multi-slice spoiled GRE sequence.

• FB Multi-Slice SSFP: a free breathing multi-slice bSSFP sequence.

Each application can be run by pressing the “play” button next to its entry in the

Application list, as shown in Figure A.4.

The GRE and SSFP applications can be used to visualize T1 and T2 contrast,

respectively. Because all of these sequences use fast spiral trajectories, take care not

to plan slices that are tilted significantly away from the axial plane as PNS is likely
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Figure A.4: The OSS protocol application list

to result. Select the OSS application and place the slice over the desired anatomy.

Double-click the slice to start the OSS application in real-time mode. For more

information on slice planning, please see the RTHawk information guide.

The OSSI scan control UI will appear at the bottom of the RTHawk interface,

shown in Figure A.5. All parameters can be changed dynamically and will immedi-

ately updated in the next TR.

Figure A.5: The OSS application parameter selection UI.

Enabling Real-Time B0 Tracking

The OSS application shows the 2-norm combined image in the display window by

default, selected as position 0 in the “Fast time frame to display.” Other images in

the OSSI cycle can be displayed by adjusting this slider.

Select the “ROI mean” radio selection button to display the mean ROI timecourse

in the left plot window. Then, select the bottom ROI tool and position the ROI over

the anatomy of interest in order to visualize the tracking effectiveness. As the scan

runs, the left window will show the mean ROI magnitude, and the right window
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Figure A.6: Screenshot of the OSSI application built in RTHawk. The top pane shows
the combined OSSI image in real-time, as well as the user specified ROI
in yellow. The bottom left pane shows the mean signal percent change
within the ROI for each of the OSSI phases, with tracking off. The
bottom right pane shows the FID phase measurement timecourse for
each shot.

will show the FID phase measurements. An example of a selected ROI and the plot

windows is shown in Figure A.6, showing data after 60 seconds of scan time.

Tracking can now be enabled by clicking on the “Start Tracking” button on the

right side of the parameter panel. The “Tracking Gain” value (referred to as c in

Chapter V) can be manually set, or automatically calibrated using the “Start Auto

ROI Tune” button. Automatic calibration can take up to 2 minutes to complete. As

tracking improves, signal variance in the “ROI % Change plot” will decrease. When

tracking is working well, the signal will vary less than 2%. If automatic calibration

fails, try manual adjustments until satisfactory ROI signal variance is achieved.
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Saving Data

Images can be saved directly to a MATLAB *.mat file using the “Slow Time

Frames” parameter box, which will save the specified number of OSSI cycles (nc

frames). Image saving can be performed with or without tracking enabled. Increasing

the number of slow time frames will update the estimated scan time in the bottom left

notification box. Press the “Start Save” when you are ready to start recording data.

Triggering is not implemented in the OSS application, so any fMRI stimulus must be

manually synchronized with the “Start Save” button press. After saving is started,

the estimated number of time left is shown in the notification area. The scan will not

stop after saving is complete, and must be stopped manually in the application list

(Fig. A.4).

Ending the Session

After the scan is complete, close the RTHawk exam by clicking the red “Close

Protocol” button on top of the application list. Disable the eno1 network interface.

End the exam on the scanner host computer. No RTHawk data is saved to the scanner

host, so it is not necessary to clear off any files after scanning.
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APPENDIX B

Contributions to Pre-Clinical Imaging

Methodology

Introduction

Though cardiovascular disease remains the leading cause of death globally, the

pathogenesis of some of the most common vascular diseases can be described by a

single method of action: the stenosis or occlusion of blood vessels [88]. Regardless

of occlusion in the heart, brain, or peripheral vasculature, the fundamental problem

involves a reduction of blood conductance which impedes the normal healthy function

of arterial supply or venous return. Because of this, the mechanism by which the

body responds in order to compensate is also the same, de novo vessel growth and

the enlargement of small pre-existing vessels [89][90][91][92]. The former, termed

angiogenesis, is critical for acute tissue survival and involves formation or splitting

of capillaries. The latter, termed arteriogenesis, involves the adaptive growth of a

collateral blood vessel and is mandatory for long term functional restoration. While

the term arteriogenesis describes the formation of a collateral artery due to blockage,

veins are equally capable of collateralizing. Although the substances constituting

86



these blockages may differ—ex. arterial plaques vs. venous thrombi—the process of

vessel collateralization allow for increased conductance and restoration of flow in both

arteries and veins.

Peripheral artery disease, or PAD, is one of such conditions which results in ar-

teriogenesis [93]. Similar to coronary artery disease, PAD involves a narrowing of

peripheral arteries, typically in the legs, resulting in tissue ischemia and intermittent

claudication. The femoral artery ligation model in mice has been extensively used as

a model of peripheral artery disease in order to study the fundamental physiological

response to an arterial ischemic event, as well as study potential therapeutic targets

[94][95][96][97][98]. This model is significant due to its ability to produce both the

growth factors involved in angio-/arterio-genesis, as well as reproducibly cause struc-

tural changes to the arterial network through the formation of collateral vessels. The

collateral vessels in this model, however, have been visualized with limited success

in-vivo, as the collateral vessels that form are both small during formation and within

deep tissue, making imaging difficult.

Despite most literature focusing on the formation of collateral arteries through

arteriogenesis, veins are equally capable of collateralization in response to stenosis or

occlusion, which we refer to as venogenesis herein [99]. In humans, the most common

cause of such venous blockages is in the form of deep vein thrombosis, or DVT. This

condition affects approximately 300,000-600,000 people in the United States each year

and presents a 33% mortality rate [100]. DVT is difficult to study due to an inability

to safely obtain human biopsy samples at the thrombus-vein wall interface, which has

resulted in the development of a variety of venous thrombosis animal models [101].

Imaging is an essential tool to visualize and explore blood vessels in mice, however,

imaging of collateral arteries in-vivo has been limited. High-resolution x-ray computed

tomography approaches rely on perfusion of a sacrificed animal with contrast agent,

and is unable to capture in-vivo changes over time of an intact disease model. MRI, a
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choice modality to study physiological systems in-vivo, has been limited to only partial

visualization of arteries due to both small vessel size, as well as lower volumetric flow

rate in collateral vessels, at least initially, compared to larger healthy arteries. MRI

contrast enhancement techniques utilizing a bolus of gadolinium chelates combined

with first pass imaging are commonly used for small vessel enhancement in humans,

however, such strategies are not achievable in mice as administered contrast agents

rapidly perfuse through tissue, resulting in an inability to temporally separate the

arterial pass from the venous pass of the contrast agent. While partial visualization

of collateral arteries has been accomplished using MRI time-of-flight imaging, previous

work has not demonstrated in-vivo visualization of collateral veins in mice, despite

knowledge of their existence. Subsequently, this inability to visualize the complete

extent of collateral vasculature in-vivo presents an unknown in the use of pre-clinical

animal models of vascular insufficiency, as the exact nature of how obstructions are

naturally resolved cannot be non-invasively monitored in its entirety. Therefore, a

technical need exists to better non-invasively monitor the structural progression of

arterio-/veno-genesis in mouse models of vascular occlusion. Addressing this need will

result in better understanding of fundamental structural changes in murine models

of vascular obstruction, and to be able to derive metrics and monitor outcomes for

testing vascular therapies.

In this appendix, we present an optimization of the multiple overlapping thin slab

angiography (MOTSA) method [102] to visualize small arteries and veins, beyond

what is achievable using single-acqusition time-of-flight MRI angiography methods.

Using this method, we also present visualizations of collateral vessels within murine

models of peripheral artery disease and venous thrombosis, demonstrating an ability

to non-invasively monitor endpoints in mouse models of both arterial and venous

occlusion.
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Methods

All experiments were performed with local Institutional Animal Care and Use

Committee approval. 10-14 weeks old male C57BL/6 mice were used. Imaging

was performed at 7 Tesla (Agilent; Palo Alto, CA) using a 40 mm inner diame-

ter transmit-receive radio frequency (RF) volume coil (Morris Instruments; Ontario,

Canada), with mice placed in a supine position. Animals were anesthetized and main-

tained on 1.5–2% isoflurane in 1 L/min of oxygen. Respiration was monitored while

body temperature was maintained at 37± 0.3◦C using warmed air and a closed loop

proportional-integral-derivative controller integrated with a commercially available

monitoring system (SA Instruments Inc., Stony Brook, NY).

Imaging Parameter Optimization

Collateral vessels can exhibit both curvature and tortuosity. Therefore, isometric

resolution was set a priori as a primary goal for the basis of each “thin slab” of the

MOTSA implementation to improve the chances of resolving an arterial or venous

collateral vessel in any anatomical plane in which it developed. Secondarily, we

sought to reduce saturation effects and minimize cranial-caudal wrap around while

optimizing for small vessel conspicuity along the cranial-caudal direction of flow (the

direction of flow anticipated for newly formed collaterals). Therefore, the field of

view (FOV) or thin slab, matrix size, and RF excitation thickness were qualitatively

optimized first, using 3D time-of-flight gradient echo acquisitions (3D-TOF) centered

on the iliac vessels which were visualized initially using a 2D gradient echo coronal

acquisition. Starting values for the 3D-TOF datasets were chosen based on previous

work performed at 4.7 T (TR=15 ms, TE=2.6 ms, FA=20◦, FOV=(30x30x15mm)3,

matrix 128x128x64 zero-filled to 256x256x128, NEX=1) [96]. The RF excitation

thickness (RFthk) was varied from 20-100% of the total slab FOV, with the goal of

optimizing small vessel conspicuity while minimizing total imaging time for a complete
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volume.

Quantitative optimizations of TR and FA, two of the most influential parameters

in determining the contrast-to-noise ratio (CNR) of blood vessels in TOF MRA,

were performed using the optimized resolution and RF excitation thickness. The tail

artery was chosen for this work because its diameter (∼350 µm) is comparable to

previously reported peripheral arterial collateral vessel measurements (318 ± 30 µm)

[103]. Additionally, the tail artery can be easily aligned and secured relative to the

imaging volume to provide uniaxial flow in the same primary anatomical direction as

expected in newly formed collaterals (i.e. cranial-caudal). 3D-TOF datasets of the

tail artery were acquired while varying TR from 10 to 50 ms in 5-10 ms increments,

while holding FA constant at 20◦. Flip angle was then optimized in a similar manner.

Holding TR constant at 30 ms, FA was varied from 10◦ to 90◦ in 5◦ increments. Tail

artery voxels were manually segmented from 2D axial slices derived from the 3D-

TOF datasets acquired to optimize TR and FA. Because a region of interest (ROI)

based CNR calculation, i.e., taking the average CNR over an ROI, is sensitive to

under/over segmentation when there are a small number of voxels across the object

of interest (10-14 voxels for the tail artery), the maximum contrast-to-noise ratio

(CNRmax) was determined for each slice. The average CNRmax and 95% confidence

interval (CI) was calculated from 55 axial slices (covering 7 mm of resolvable vessel)

for each dataset acquired for TR or FA and compared across TR or FA values. An

ANOVA test was first used to test differences among CNRmax means. Then, the mean

CNRmax values for successive TRs (10 ms vs 15 ms, 15 ms vs 20 ms, etc.) were tested

for differences using a pairwise t-test with pooled standard deviation and Bonferroni

correction (α = 0.05). A pairwise test was chosen as it allowed pairwise comparison of

CNRmax values from the same slice location. Results from varying FAs were evaluated

by measuring the number of CNRmax values which were above the selected critical

CNR value of 10 for visualization.
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Reconstruction and Visualization of Composite MOTSA Volumes

Reconstruction of the final MOTSA volumes was performed using a MATLAB

script developed in-house (Mathworks; Natick, MA). The full-width-half-maximum

of the signal profile across the RF excitation thickness was evaluated to determine

how much a thin slab could be advanced in the z-direction (cranial-caudal relative

to the mouse), while also considering imaging time. Thin slabs were overlapped

and aligned using the spatial coordinates of each dataset and merged into a single

continuous 3D volume. In areas of overlap between two adjacent thin slabs, voxel pairs

were evaluated individually and the highest intensity voxel was assigned to the final

volume. Preliminary demonstration of the success of the thin slab merging algorithm

was performed on central vasculature spanning the renal arteries. This region was

selected for its complex vascular orientation and because the renal vessels have flow

perpendicular to the RF excitation direction, which incurs the most TOF saturation

effect. Reconstructed MOTSA volumes were visualized by partial and full maximum

intensity projections (MIPs). Finally, MOTSA was performed using Gaussian and

3-, 5-, 7-, and 9-lobe sinc RF excitation pulse shapes to qualitatively evaluate their

effects on image quality after volume merger.

Comparison of MOTSA to Single Thick-Slab 3D-TOF

The optimized MOTSA acquisition was compared to single thick-slab 3D-TOF

acquisition with a gaussian slab excitation profile. A healthy mouse was used to

acquire data from just proximal to the aortic bifurcation to distal of the saphenous-

popliteal bifurcation. Using 46 axial slices from the 3D-TOF or MOTSA datasets,

the right iliac artery was manually segmented from surrounding tissue. Additionally,

the right iliac vein was segmented from the MOTSA dataset, but not from the 3D-

TOF data because veins are not visible. Using 46 axial slices from the 3D-TOF or

MOTSA datasets, the right iliac artery was manually segmented from surrounding
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tissue. Additionally, the right iliac vein was segmented from the MOTSA dataset,

but not from the comparison 3D-TOF data because veins were not visible. Average

vessel CNR was calculated for each segmentation. The mean CNR along the ROI

(averaging across all segmentations of a vessel) was then used to compare results

between 3D-TOF and MOTSA.

Implementation of MOTSA in Surgical Models of Arterio-/Veno-genesis

Mice underwent femoral artery ligation (FAL) on the left side (n = 5) with a sin-

gle 5/0 prolene ligature at the level of the inguinal ligament under general anesthesia

(inhaled isoflurane 2–2.5% in 1 L/min air). The optimized MOTSA strategy was used

to image peripheral hindlimb vasculature and visualize the development of collateral

arteries (arteriogenesis) on days 3, 7, 14, 21, and 28 post-ligation. In a second model,

venous thrombosis was induced in the infrarenal inferior vena cava (IVC) (n = 5) via

the well-established ligation model [104]. Briefly, mice were anesthetized using 2%

isoflurane in 1 L/min oxygen, a midline laparotomy was performed, the gastrointesti-

nal tract was exteriorized and kept moist, a 5-0 prolene ligature was placed around

the IVC immediately distal to the left renal vein, and any lateral or lumbar venous

branches draining into the IVC between the left renal vein and iliac bifurcation were

also ligated. The gastrointestinal tract was returned to the abdominal cavity, and the

abdomen was closed in two layers (muscle with 7-0 vicryl, skin with veterinary glue).

The described MOTSA strategy was used to image peripheral vasculature from just

distal of the kidneys to distal of the saphenous-popliteal bifurcation and visualize the

development of collateral veins on days 2, 6, 14, 21, and 28 post-ligation. Day 2 and

6 are considered acute and chronic timepoints in this model. A total of 13 thin-slabs

were acquired per timepoint, starting centered on the left renal artery. The total

acquisition volume was 30x30x54 mm, matrix of 256x256x461, isotropic resolution =

117 µm3 and a total acquisition time of 53 minutes.
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Data from the arterial and venous ligation models were assessed for evolution

and variability of collateralization. The number of collateral arteries or veins visible

on each dataset were counted by a single observer (A.C.), blinded to animal ID

and timepoint, using coronal MIPs. To mitigate intra-user variability, counting was

repeated a minimum of three times per dataset until the standard deviation of the

measurements was less than one, with up to five attempts. The median value of

each counting set was used as the final value for the number of collateral vessels

visible within a given dataset. These metrics of collateralization were compared across

timepoints within the same animal to observe temporal changes, as well as at each

timepoint between animals to assess model variability.

Results

Thin slab, matrix size, and RF excitation thickness

Field of view in the S-I direction was set to 15 mm to promote small vessel visibil-

ity, with a FOV of 30x30 mm in the A-P and L-R directions. Both arteries and veins

are visible at lower excitation thicknesses, though tracking distance is reduced. A slab

thickness of 40% FOV (6 mm) was chosen because it qualitatively provided the best

balance of: arterial and venous signal, a slab thickness that would minimize the total

number of slabs needed to acquire anatomical data of interest (i.e. peripheral collat-

eral vessels), and minimizing venetian blind artifacts due to signal saturation at the

edge of the slabs. The tail artery was used for subsequent quantitative optimization

of repetition time and flip angle.

Final FOV and matrix size were 30x30x15 mm and 128x128x64 zero-filled to

256x256x128, producing an isometric resolution of (117 µm3). RF excitation thickness

for each thin slab was varied from 100% (15 mm) to 20% (3 mm) of the thin slab

to assess visualization of small vessels. As expected, signals from both arterial and
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Figure B.1: Coronal maximum intensity projections (MIPs) from single slab 3D time-
of-flight (TOF) acquisitions of murine iliac vessels. RF slab excitation
thickness was varied from 20-100% FOV (3-15 mm) while slab thickness
was held fixed. Both arteries and veins are visible at lower excitation
thicknesses, though tracking distance is reduced.

venous flow were increased as RF excitation thickness was decreased (Figure B.1).

Reducing excitation thickness results in increased small-vessel sensitivity comes

but also increased acquisition time, as thinner RF excitation thicknesses results in

additional acquisitions needed to cover a given volume. Conversely, increasing RF

excitation thickness reduces imaging time, but increases saturation effects at either

end of the thin slab, resulting in negation of smaller artery and vein signal, and

causing more apparent venetian blind artifacts after volume merger. A thickness of 6

mm (40% FOV) was selected as it was the maximum thickness in which the veins and

arteries of similar size to peripheral arterial collateral vessels were still visible, while

maintaining an acceptable number of total thin slabs needed to cover the anatomical

region of interest.

Repetition Time and Flip Angle

Figure B.2a shows the resulting CNRmax vs TR summary for acquired tail artery

angiograms. A TR of 30 ms was chosen as it was the only parameter value that
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provided statistically significant improvement as compared to 20, the previous value

tested (95% mean confidence intervals of 23.3 ± 3.9 vs 19.5 ± 3.4, p = 0.003). As

shown in the plot, a TR of 30 ms has nearly the same CNRmax inner quartile range

as TR = 50 ms (26.4± 2.9), but can be acquired 40% faster.

Figure B.2: Optimization results for TR and FA. Subplot a) shows CNRmax vs. TR
for FA=20◦. A TR of 30 ms was chosen as it was the only parameter
value that provided statistically significant improvement as compared to
the previous value tested (20 ms vs 30 ms, p = 0.003). Subplot b) shows
box and whisker plots of the CNRmax vs FA. A flip angle of 25◦ was
qualitatively chosen for the best CNR performance.

Flip angle was quantitatively optimized over the same anatomical region as TR,

holding TR constant at 30 ms. As shown in Figure B.2b, higher flip angles result in a

higher maximum CNR but a lower median CNR (horizontal marks) along the length

of the vessel due to TOF saturation effects as blood passes through the volume. A

final flip angle of 25◦ was qualitatively chosen because it had the greatest number

of CNRmax measurements (78.2%) above a selected CNR value of 10, and nearly the

highest median CNR.
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Reconstruction of MOTSA Volumes and Comparison to Single Thick Slab

3D-TOF

Figure B.3 shows two adjacent thin slabs, with overlapping geometry marked

with a dotted line. Because the full-width-half-maximum of the signal profile across

the 6 mm RF excitation thickness was approximately 3 mm (40% FOV MIP in Fig

B.1), thin slabs were advanced 3 mm at a time in the z-direction (cranial-caudal

relative to the mouse), resulting in an approximately 50% overlap of the RF excitation

thicknesses.

Figure B.3: Two successive multiple overlapping thin slab acquisition (MOTSA)
slabs, with overlapping geometry denoted by the dotted line. Slab 1
and 2 are acquired with identical parameters, with the second positioned
3 mm distal to the first. Adjacent slabs are merged into a final volume
using a voxel-by-voxel maximum signal selection strategy. In both ac-
quisitions, small arteries and veins, such as the renal arterial and venous
branches, are readily visualized.

Using the spatial coordinates of each slab resulted in accurate combination of

thin slabs since the mouse was held secure in a holder, and adjacent volumes were

acquired within 4 minutes of one another. Gaussian RF shapes provided the best

merged volume quality based on smooth transitions of intensity between slabs. All

sinc waveforms tested produced Gibbs artifacts which were visible in the final merged

volume, significantly reducing conspicuity of small vasculature (data not shown).

MOTSA and 3D-TOF acquisitions of healthy peripheral mouse vasculature were
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compared to quantify in vivo CNR improvements using the newly optimized parame-

ter set. Figure B.4 shows coronal MIPs of MOTSA (a) compared to a single thick-slab

3D-TOF (b) of the murine peripheral vasculature starting at the iliac bifurcation. The

calculated maximum vessel CNR values from each successive axial slice are shown in

(c).

Figure B.4: Comparison of a) MOTSA and b) single thick slab 3D-TOF acquisition,
with mean slice CNR shown in subplot c).

As expected, the 3D-TOF maximum CNR profile has an approximately Gaussian

shape corresponding to its RF excitation profile. The mean CNR of the 3D-TOF

profile was 23.8± 4.2 (95% CI). The MOTSA acquisition of the same vessel anatomy
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Figure B.5: Coronal partial MIPs from MOTSA acquisitions of mouse hindlimb vas-
culature after left femoral artery ligation on days (a) 3, (b) 7, (c) 14, (d)
21, and (e) 28. Ligation site is marked in (a) using an arrow with an
asterisk. All images were acquired from the same mouse. Initial collat-
eral formation (black arrows) is visible on day 3, with maximum number
of collateral vessels visualized on days 14 and 21. Pruning of vessels oc-
curs through day 28, when, typically, a single resolvable collateral artery
extends from the ligation site to the popliteal artery. This collateral ex-
hibits the characteristic corkscrew shape at the distal end of the vessel.
MIPs have been inverted to improve vessel conspicuity.

demonstrates greater CNR at nearly all locations, with a mean CNR of 49±3.8 (95%

CI). Additionally, mean CNR of the iliac vein was quantifiable from the MOTSA and

exhibited a similar CNR profile to the iliac artery (mean 55.3 ± 5.4 (95% CI)). The

CNR of the iliac vein could not be measured from the 3D-TOF as veins were not

visible.

Final parameters for MOTSA were empirically defined as: TR/TE 30/2.84 ms,

flip angle 25◦, FOV (slab thickness) 30x30x15 mm, matrix 128x128x64 zero-filled to

256x256x128, isotropic resolution = 117 µm3, RF excitation thickness 6 mm (40% of

FOV), slab spacing 3 mm, with a Gaussian RF-excitation profile (width = 1 ms),

BW = 100 kHz, and NEX = 1.

Visualizing and Quantifying Arterial Collateralization Using MOTSA

An illustrative MOTSA time series visualizing development and adaptation of

collateral arteries in a single mouse over a 28 day period is displayed in Figure B.5.
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Ten thin slab 3D volumes were acquired, starting 2 mm proximal to the aortic

bifurcation, with a total acquisition volume of 30x30x42 mm, matrix of 256x256x358,

isotropic resolution = 117 µm3, and a total acquisition time of 41 minutes. This time

series from the same mouse depicts a successful left iliac artery ligation, followed

by arterial collateralization (arteriogenesis), with collateral vessels forming and then

pruning through day 21. On day 28, a single collateral vessel exists which exhibits a

typical corkscrew shape on the distal end, extending from the femoral ligation site to

the popliteal artery. In all animals, arterial collateralization is visible on day 3. The

number of collateral vessels observed in each animal increased to a maximum on day

14 or 21. On day 28, the number of collateral vessels visible is typically reduced to

1-2 primary pathways, consistently demonstrating a corkscrew shape at their distal

ends.

Visualizing and Quantifying Venous Collateralization Using MOTSA

An example MOTSA time series visualizing the development and adaptation of

collateral veins in two mice over a 28 day period is displayed in Figure B.6. These time

series depict successful IVC ligations, followed by different venous collateralization

patterns visible as early as day 3.

Compared to the femoral artery ligation model, the maximum number of collateral

veins was achieved on day 6, with pruning occurring through 28. As noted during

surgery, mouse 1 had no side branches and on day 28 exhibits two collateral veins

bilaterally. Lack of side branches, one of four anatomical patterns documented in

C57BL/6 mice [101], was found in three other mice, along with a similar day 28

collateral pattern. Conversely, mouse 2 had a single right side branch (ligated during

surgery), the most common phenotype, and on day 28 exhibits two veins that occur

unilaterally on the left side.
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Figure B.6: Coronal MIPs from MOTSA acquisitions of mouse vasculature from just
distal of the kidneys to distal of the saphenous-popliteal bifurcation after
inferior vena cava (IVC) ligation on days (a,f) 2, (b,g) 6, (c,h) 14, (d,i)
21, and (e,j) 28.

Discussion

This study shows that a quantitative parameter optimization combined with a

reduction in slab thickness results in a robust ability to visualize collateral vessels

in both an arterial and venous model of occlusion. The sensitivity of this method is

reflected by being able to visualize networks of small tortuous collateral arteries and

veins, vessels which are small in diameter and have low blood velocity, respectively.

While small and low flow vessels typically do not produce enough signal to be visu-

alized in a thick slab 3D-TOF, the optimized parameter set tested was able to track

the changes in both arterial and venous networks over time within the same animals.

MOTSA can be used to visualize the variability of collateral vessels. The data

acquired in the present study as well as past research suggests that while many col-

lateral arteries initially adapt to increased flow in the hindlimb ischemia model, blood
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flow eventually converges to a single dominant vessel. This vessel has reliably mor-

phology which can be visualized with MOTSA: the collateral begins just above the

ligation site at the iliac artery and progresses distally, reconnecting at the popliteal

artery. Corroborated by other observations, this final collateral artery also typically

assumes a corkscrew shape towards its distal end. This is in contrast to the IVC liga-

tion model, which has very high variation in initial and final collateral states between

animals. In our preliminary results, this difference in venous collateral development is

dependent on initial vessel phenotype. As characterized by Diaz et al, C57BL/6 mice

IVC branches exhibit one of four different anatomical patterns. Four mice out of five

in the group had no side branches, and developed bilateral venous collaterals. The

last mouse had one side branch which was interrupted, which resulted in unilateral

development of a collateral vessel. Given the unique ability to visualize collateral

veins using our MOTSA protocol, it is now possible to explore the collateral vessel

outcome associated with an IVC branch variation.

The acquired MOTSA data demonstrates that a thin slab improves contrast by

mitigating time of flight dependent signal losses. By dividing the thickness and matrix

size of the slab in half (15mm, res=64) compared to the in-plane FOV (30mm2),

res=1282), blood typically remains in the slab for a smaller amount of time compared

to a thicker slab of equivalent TR while maintaining isometric voxel size. This not only

improves the mean contrast of the vessel, but also results in a smoother signal intensity

profile along a vessel by mitigating the gradual signal drop along a longer comparative

slab. This thin slab strategy also increases the sensitivity to small vessels that flow

orthogonal to the excitation direction (vessels that travel in the axial plane), through

the same mechanism of reducing blood transit time through the slab. Additionally,

setting the voxel size isometrically results in the ability to resolve a vessel spatially

regardless of which logical axis it resides on, further improving the ability to resolve

tortuous or non cranial-caudal oriented vessels.

101



A limitation of our method is that it is difficult to quantify the smallest detectable

vessel, since vessel signal is dependent on size, volumetric flow, direction of flow,

and non-laminar/turbulent effects. Due to restrictions on how long mice could be

anesthetized, the smallest achievable isometric voxel resolution was 100 µm for large

extents (about 12 slabs), and 50 µm for smaller extents (about 4 slabs).

Conclusion

This appendix describes a high resolution MOTSA protocol capable of imaging

small, low velocity vessels in both healthy mice and models of arterial and venous

occlusion. This method is able to consistently detect morphological changes in col-

lateral arteries and veins over time, which now enables the ability to reliably and

longitudinally visualize changes in mouse models of vascular occlusion.
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