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Abstract

Code-reuse attacks are the leading mechanism by which attackers infiltrate systems. Various
mitigation techniques have been proposed to defend against these attacks, the most promi-
nent one being control-flow integrity (CFI). CFI is a principled approach that restricts all
indirect control flows to adhere to a statically determined control-flow graph (CFG). CFI
has gained widespread adoption in industry – such as Microsoft Control Flow Guard and
Intel Control-flow Enforcement Technology. However, recent attacks dubbed CFG mimicry
attacks, like control flow bending and counterfeit object-oriented programming, have shown
that code-reuse attacks are still possible without violating CFI. Furthermore, data-oriented
programming (DOP) has generalized non-control data attacks to achieve Turing-complete
computation; it accomplishes this by repeatedly corrupting non-control data to execute a se-
quence of instructions within the legitimate control flow of the program. In this dissertation,
we present techniques to mitigate these advanced code-reuse attacks.

First, this dissertation presents a novel approach to thwart advanced control flow attacks
called ProxyCFI. ProxyCFI replaces all code pointers in a program with a less powerful
construct: pointer proxies. Pointer proxies are random identifiers associated with each
legitimate control flow edge in the program. Pointer proxy values are defined per-function
and are re-randomized at program load time to mitigate their disclosure. To ensure that the
approach covers the entire control flow of the program, we have a load-time verifier built-in
the program loader that performs reachability analyses of the code and verify that there is
no vulnerable control flow transfer. ProxyCFI delivers these protections incurring minimal
performance overhead, while stopping a broad range of real-world attacks and achieving a
100% coverage of the RIPE x86-64 attack suite.

Second, this dissertation evaluates the effectiveness of previously proposed stack layout
randomization techniques against attacks that only utilize relative offset between allocations
(e.g., data-oriented programming) and demonstrate that they are ineffective at stopping
real-world DOP exploits. We then propose Smokestack, a runtime stack-layout randomiza-
tion technique that addresses the problems with prior approaches. Smokestack instruments
programs to randomize their stack layout at runtime for each invocation of a function. By

xi



doing so, Smokestack minimizes the utility of information gained in the probes of chained
DOP attacks for later attack stages. Our evaluation on SPEC benchmarks and various
real-world applications shows that Smokestack, with a cryptographically secure pseudo
random generator, can stop DOP attacks with an average slowdown of 8.7%.

Lastly, we present a technique to randomize heap allocations at runtime to prevent
attackers from orchestrating advanced control flow attacks as well as DOP attacks through
heap-resident variables. To this end, we explored the use of multi-variant execution (MVX)
with each variant having uniquely seeded random heap allocators. This capability enables
our system to automatically track heap allocation pointers without the need for storing
explicit meta-data. We then re-randomize heap allocations to thwart attacks that perform
runtime probes to discover allocations. This technique will provide modular heap allocation
protection while maintaining compatibility with legacy binaries.

In all, this thesis presents novel techniques that carve out a new space in advanced
code-reuse attack protections, offering a protection strength as good or better than prior
solutions. These techniques provide additional protections for advanced control flow attacks
and DOP attacks, while incurring minimal performance overheads.
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Chapter 1

Introduction

Society’s reliance on computing platforms has continued to rapidly increase over the past few
decades. Computing devices play a vital role in our daily lives: these devices keep private
information (e.g., bank accounts, passwords, etc.) as well as keep track of our activities
(e.g., browsing history, location information, etc.). The bulk of information gathered and
accessed via these devices has made them an attractive target for malicious actors to perform
attacks in order to gain access to this information. This is exacerbated by the fact that many
of these devices are interconnected through internet, enabling remote attacks.

1.1 A Brief History of Exploits and Defenses

Memory corruption is the leading attack vector used to compromise systems security. At-
tackers perform this attack by exploiting memory bugs in the program, such as buffer
overflow, dangling pointers and format string vulnerabilities to corrupt sensitive data, like
code pointers. The root cause of these vulnerabilities is that performance bound applications,
including most legacy systems, are written in type-unsafe languages, such as C and C++,
which are inherently prone to memory errors. Performance bound applications include most
low level system code, spanning from the operating system kernels to language runtime
of type-safe languages. Memory corruption attacks typically target control-plane memory,
which consists of data used in control-flow transfer instructions, such as return addresses
and function pointers. These attacks are commonly known as control-flow hijacking attacks,
in which an attacker sends a maliciously crafted message to the target machine in order to
eventually control the execution flow of the program.

In the early days, memory errors were exploited in stack smashing attacks, in which
an attacker overflows a stack resident buffer to inject shellcode and clobber adjacent con-
trol data, such as a return address, in order to redirect the execution flow of a vulnerable
application to the injected shellcode [1]. To mitigate stack smashing, stack canaries [2] are
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introduced where a random value is inserted to precede the return address on the stack, and
the integrity of the canary is checked before the function returns. This protection has led
attackers to overflow a heap resident buffer to overwrite heap resident control data instead
[3][4]. In response to these attacks, several mitigation techniques have been introduced, the
most widely adopted being Address Space Layout Randomization (ASLR) [5] and Data
Execution Prevention (DEP) [6][7]. ASLR randomizes the base address of data sections,
as most attacks rely on discovering the absolute address of the code to jump to. An early
attack to circumvent ASLR was heap spraying, where an attacker sprays a large portion of
the program’s heap with shell code (which was achievable in 32-bit systems) to increase the
chances of successful exploitation. DEP, in contrast, marks all writable pages non-executable
(read/write-only), rendering all code injection attacks ineffective.

To circumvent DEP, attackers began to reuse existing code in the form of return-into-libc
[8] and its more general form, return-oriented programming (ROP) [9]. These attacks utilize
an existing library function (i.e., return-into-libc) or chain of instruction sequences that
end with an indirect jump (i.e., ROP), commonly known as code gadgets, to implement an
arbitrary operation. Various mitigation techniques have been proposed to defend against
these attacks, the most prominent one being control-flow integrity (CFI) [10]. CFI is a prin-
cipled approach that restricts all indirect control flows to adhere to a statically determined
control-flow graph (CFG).

1.2 Advanced Attacks

CFG Mimicry Attacks CFI inserts checks before indirect branches to ensure that all
indirect control transfers are within the CFG. The effectiveness of CFI is strongly tied to the
precision of the control-flow graph it enforces. Based on the precision of their CFG, CFI
techniques can be broadly categorized as coarse-grained and fine-grained. Coarse-grained
CFI techniques, such as CCFIR [11], relax the CFG to achieve practical solutions. CCFIR
categorizes target addresses into only three sets: return, indirect call and indirect jump. For
example, CCFIR only enforces returns to target a call-preceded instruction. Because of their
low overhead, coarse-grained CFI techniques have gained wide spread adoption in industry –
Microsoft Control Flow Guard and Intel Control-flow Enforcement Technology are such
examples. However, recent advanced attacks generally referred to as CFG mimicry attacks,
like control flow bending [12] and counterfeit object-oriented programming [13], have
shown that control-flow attacks are still possible without leaving the CFG. These attacks
piggyback on the relaxed CFG by swapping targets of indirect control-flow instructions with

2



another one from the allowed set of targets to circumvent these CFI solutions. Recently
proposed fine-grained CFI solutions, such as cryptographically enforced CFI (CCFI) [14],
have been shown to be immune to these attacks. CCFI is a compiler transformation that uses
a cryptographically-secure hash-based message authentication code to enforce the CFG.
However, its high performance overhead (52% for SPEC’06) deemed it impractical for
production environments.

DOP Attacks In contrast to control-flow attacks, non-control data attacks manipulate the
data plane memory of the program or data that is not directly used for control-flow transfer.
These attacks do not need to directly modify the control-flow of the program, and thus
cannot be detected by traditional control-flow protections. Instead, these attacks corrupt
sensitive data used for decision making in the program to escalate privileges [15], leak
secret keys (HeartBleed) [16] and import untrusted code into browsers [17]. Early measures
against non-control data attacks provide protection of security critical data (kernel data [18],
programmer annotated critical data [19]). However, a recent advanced technique called
data-oriented programming (DOP) [20] has generalized non-control data attacks to achieve
Turing-complete computation by repeatedly corrupting any non-control data in order to
execute a sequence of instructions embedded in the legitimate control-flow.

Figure 1.1 shows an overview of how memory corruption attacks morphed over time
to these advanced code-reuse attacks. In this dissertation, we make the following key
observations for stepping up protections to mitigate these advanced attacks:

• Keeping the program on the CFG is important for reducing the control-flow attack
surface. However, the effectiveness of CFI protections is highly correlated with the
precision of the enforced CFG. To mitigate CFG mimicry attacks in production sys-
tems, it is essential to have a CFI solution with a more precise CFG and minimal
performance overhead.

• Even though complete memory safety enforcement techniques can stop advanced code-
reuse attacks, they are impractical because of their very high overhead. Lightweight
enforcement techniques, such as stack canary, are ineffective in the face of memory
disclosure (e.g., Just-in-time ROP [21]) and systematic brute force attack (e.g., Blind
ROP [22]). A more durable and practical approach is adding uncertainty in the layout
of the program using randomization and periodic re-randomization (churn) to mitigate
runtime disclosure of the layout.

3
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Figure 1.1 Overview of the evolution of code-reuse attacks show how the memory corruption
exploit landscape evolved through time.

1.3 Contributions

In this dissertation, we present techniques to mitigate against advanced code-reuse attacks
that do not leave the CFG of the program. First, we explore a novel approach to protecting
CFG called ProxyCFI. Instead of building protections to stop code pointer abuse, ProxyCFI
replaces code pointers whole-sale in the program with a less powerful construct: pointer
proxies. Pointer proxies are not pointers; rather, they are random identifiers associated
with legitimate control-flow edges. Pointer proxy values are defined per-function and are
randomized at program load-time to mitigate advanced CFG attacks. If a program wants
to make an indirect jump to a code entry point, it must express this jump with the correct
pointer proxy; otherwise, the program is terminated. To ensure that the approach covers all
control-flow (thus, the attacker cannot leave the control-flow graph and introduce unchecked
indirect jumps), our implementation includes a load-time verifier that performs reachability
analysis of code to ensure that there is no vulnerable control and a loader that marks all
code pages unreadable to mitigate runtime discovery of the randomized pointer proxies.
ProxyCFI delivered these protections with only a 4% average slowdown, stopping a broad
range of real-world attacks and 100% of the RIPE x86-64 attack suite, while accommodating
existing programming frameworks, including shared libraries.

Second, we evaluated the effectiveness of prior stack layout randomization techniques
and show that they are ineffective at stopping real-world DOP exploits. We then propose
Smokestack, a runtime stack-layout randomization technique that addresses the problems
with previous approaches. Smokestack instruments programs to randomize their stack layout
at runtime for each call. By doing so, Smokestack minimizes the utility of information
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Table 1.1 Summary of proposed defenses The unshaded circles show no protection, half shaded
circles show partial protection, and fully shaded circles show full protection.

CFG Stack Heap
ProxyCFI
Smokestack
Heap Re-randomization

gained in the probes of a chained DOP attack for later attack stages. We evaluated our
runtime stack layout randomization technique on both CPU intensive and I/O bound ap-
plications as well as investigated its security, performance and memory usage. Our results
demonstrate that Smokestack, with a cryptographically secure pseudo random generator, is
effective in stopping DOP attacks with an average slowdown of 8.7%.

Finally, we present HeapRand, a runtime technique to randomize heap allocations to
prevent attackers from orchestrating advanced control flow attacks as well as DOP attacks
through heap-resident variables. HeapRand uses multiple replicas of a program with each
having uniquely seeded random heap allocator. This will allow the system to automati-
cally track heap resident pointers without the need for storage meta-data. We use these to
re-randomize heap allocations to thwart attacks that perform runtime probes to discover
allocations to orchestrate advanced code-reuse attacks. HeapRand provides a modular heap
allocation protection and is compatible with legacy binaries.

In all, this dissertation proposes novel and practical techniques in the landscape of
advanced code-reuse attack protections, offering security guarantees as good as or better
than prior proposed techniques and providing defenses for CFG mimicry attacks and DOP
attacks, but with significantly lower overheads. Table 1.1 summarizes the proposed defenses.

1.4 Dissertation Road map

The remainder of this dissertation is organized as follows. Chapter 2 presents a detailed back-
ground on advances in code-reuse attacks and illustrates concepts that are vital to understand
the remainder of this dissertation. Chapter 3 details how the use of load-time randomized
per-function pointer proxies loaded to an execute-only code region can deter CFG mimicry
attacks. In Chapter 4, a stack-layout randomization technique that mitigates DOP attacks is
discussed. In Chapter 5, we present HeapRand, a heap layout randomization technique
using multi-variant execution. Lastly, Chapter 6 concludes the dissertation and hint towards
future directions in advanced code-reuse defenses.
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Chapter 2

Background

In this chapter, we present a detailed background on memory corruption exploits and their
development over time. We start by describing the major categories of memory corruption
exploits based on the type of memory they target. Then we show how the attack surface has
persisted through time, adapting to various defenses that have been proposed and deployed
on modern systems. Finally, we show the recent advances in code-reuse attack that this
dissertation addresses.

2.1 Memory Errors

Programs written in low level languages are vulnerable to memory errors. In most cases,
memory errors force the program to show an erratic behavior or crash. These errors can
also be exploited by an adversary to perform malicious operations on the victim system.
These operations can range from crashing the program repeatedly for mounting a Denial of
Service attack (DoS) [23] to executing unintended operation in the program for extracting
sensitive information. In general, memory errors constitute two major categories: spatial
and temporal memory errors.

Spatial Memory Error Spatial memory errors enable a memory access to go beyond the
bounds of an allocated object. A classic example of spatial memory errors is buffer overflow,
during which a buffer is overwritten beyond its allocation bounds to read or modify the
content of an adjacent memory locations. Buffer overflows can happen, for example, when
performing a memory copy operation if the destination buffer is not big enough to hold the
content of the source buffer. This typically happens if the source buffer is supplied by an
adversary and the destination is a fixed size buffer. Buffer overflow bugs can be exploited to
corrupt sensitive control-flow data, such as a return address or function pointers, to hijack
control-flow of a program.
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Temporal Memory Error Temporal memory error happens when a program dereferences
a dangling pointer. With temporal memory errors, a dangling pointer is dereferenced after
the memory allocation it points to has been freed. Programs typically have multiple pointers
to a single allocation, as codes are usually shared across different parts of the program.
Dangling pointers occur when the object is deallocated with one of the references to the
allocation and the program keeps using the other references to the allocation afterwards.
In the mean time, another allocation may occupy the location that has been freed. Hence,
successive dereferencing of the dangling pointers of the previous object will erroneously
access the new allocation to corrupt other pointers or data inside the new allocation. Most
temporal errors target heap allocations, but it is also possible to have dangling stack pointers
when a stack pointer is assigned to global scope pointers, which can be exploited to corrupt
sensitive stack resident data, such as a return address to hijack control-flow.

Based on the type of memory they exploit, memory corruption attacks can be categorized
into two major categories: control flow attacks and non-control data attacks.

2.2 Control Flow Attacks

Control flow hijacking attack is the primary means of exploitation for memory corruption
vulnerabilities, as it enables an adversary to execute an arbitrary code in the victim system.
The early variants of control flow hijacking attacks involve code injection, in which an
adversary uses buffer overflow vulnerability in the program to inject malicious payload in
the address space of the program and then redirects control flow to the injected malicious
payload by corrupting a control flow data, such as return address. In response to a number
of principled defenses introduced in modern systems, recent advances in exploit involve
code-reuse attacks, such as return-oriented programming (ROP) [9] and its variants, have
surfaced [24][25].

Code Injection Attacks Figure 2.1a illustrates code-injection attacks. In these attacks, an
attacker introduces a new malicious node in the control-flow graph of the program during
the program runtime. In the example, the node 7’ is introduced in the normal control flow
of the program. This is typically accomplished using a memory corruption vulnerability
in the program, such as buffer overflow, to add a sequence of malicious instructions in
the address space of the program. This attack is complete when an attacker manages to
divert the control-flow of the program to execute the injected malicious payload. This can
be achieved by corrupting a control-flow data to point to the injected code, instead of the
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legitimate control flow destination.

Code-reuse Attacks Code-reuse attacks are typically used on systems hardened with data
execution prevention capabilities. The principle behind code reuse attacks is to redirect the
execution flow of the program to unintended instructions that are already in the address space
of the program to perform malicious operations. There are various ways that code-reuse
can be achieved. Early attacks in this domain involve an adversary redirecting the program
execution to an existing library function (e.g., system() function in libc) to perform an
attack [8]. The more general approach for this attack vector is return-oriented programming
(ROP) [9]. ROP stitches together short sequences of instructions in the address space of the
program, known as gadgets, to allow an adversary to perform arbitrary Turing complete
computation in the victim system. Gadgets are chosen to end in an indirect control-flow
instruction in order to chain them together.

4
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3

65

7

8

7’

(a) Code injection attacks

4
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65

7

8

legitimate control flow

malicious control flow

(b) Code-reuse attacks

Figure 2.1 Control flow hijacking attacks

2.3 Non-control Data Attacks

With the widespread adoption of control-flow hijacking attack defenses, attacks through
corrupting non-control data have become prevalent. These attacks allow an adversary to
access data that is not directly used in control flow transfer from the address space of the pro-
gram. These attacks are typically used to tamper with a security critical program data (e.g.,
to achieve a privilege escalation) or leak sensitive information. For example, overwriting
the Safemode flag on Internet Explorer 10 has been shown to achieve privilege escalation
attacks capable of running arbitrary code in victim process[15]. Another infamous example
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of non-control data attacks is the Heartbleed [16] attack in OpenSSL, in which the the bug
in the program enables a buffer over-read of adjacent memory to leak sensitive information,
such as secret keys.

2.4 Memory Corruption Defenses

There is an enormous body of work in memory corruption defenses. Various memory
corruption mitigation techniques have been proposed to upend attacks at different stages
of the exploit. These proposed solutions can be broadly categorized as enforcement based
techniques and randomization based techniques.

2.4.1 Enforcement Based Defenses

These defense techniques generally work to enforce lower level policies in order to deter
memory corruption attacks at various stages. Some techniques enforce policies to stop
the problem at the source while other techniques involve stopping the exploitation of the
vulnerability. Complete memory safety is a typical example of the former while control-flow
integrity is an example of the later.

Memory Safety

High-level languages achieve memory safety with builtin runtime bounds checking to pro-
tect against spatial memory errors and garbage collection, ultimately protecting against
temporal memory errors. Low-level languages, such as C and C++, trade these features
for performance and hence do not provide any memory safety guarantees. Memory safety
techniques try to regain these features by instrumenting the program so that all memory
accesses stay within the bounds of the allocated objects in order to completely eliminate
memory corruption attacks from their source. Most proposed memory safety defenses are
either pointer based or object based.

Pointer based techniques work by storing a lower and upper bound metadata for a pointer
and adding checks at runtime, ensuring the memory accesses through the pointer are within
the bound. Fat pointers [26] extend the pointer representation to a structure which also stores
the bounds metadata alongside the data. Changing the representation of pointers, however,
alters the memory layout, resulting in binary incompatiblity. Softbound [27] addresses this
issue by storing the metadata in a shadow memory region. Another alternative approach
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is low-fat pointers [28], in which the bounds metadata is implicitly encoded in the address
of pointers. This approach requires customizing stack and heap allocators to associate
allocation sizes with finite sets of addresses.

Object based approaches, on the other hand, work to detect out-of-bound memory ac-
cesses by associating the bounds metadata with the allocated objects, focusing on pointer
arithmetic operations instead of dereferces of pointers. Unlike pointer based approaches,
object based approaches do not allow pointers to go beyond the bounds even if they are
not referenced. Address Sanitizer (ASan) [29] is a popular memory error detector capable
of detecting out-of-bounds memory accesses of allocations in various sections of memory,
including global, stack and heap. ASan stores metadata for each allocated object in a disjoint
memory region to detect erroneous memory accesses based on a corrupted pointer. Baggy
Bounds Checking [30] is the state-of-the-art in this domain. Baggy bounds checking trades
memory overhead for performance by adding padding to allocated objects in order to align
the base address to be a multiple of their size, making their size to be the nearest higher
power of two. This affords Baggy Bounds Checking an effective bounds lookup operation
in addition to the compact way of representing the bounds meta-data.

Even though complete memory safety techniques are the most effective means to stop
memory corruption attacks, their performance overhead makes them unfavorable for pro-
duction systems. For example, Softbound provides a spatial memory safety, incurring an
average overhead of 116% , and CETS [31] provides temporal memory safety, incurring an
average of 48% on SPEC CPU benchmarks. Due to their high overhead, complete memory
techniques are more suited for debugging purposes.

2.4.2 Control-flow Integrity

A typical program is composed of a number of subroutines interacting with each other to
perform a certain task. Each subroutine performs a certain task and transfers control to the
next subroutine. All the possible paths by which the subroutines of a program interact with
each other defines the control-flow graph (CFG) of the program. CFG of the program is com-
posed of blocks of instruction that are interconnected with edges, showing all the possible
routes the program execution can take. CFG edges can be used for forward edge control-flow
transfers and backward edge control-flow transfers. Forward edges are control-flow transfers
that direct execution flow to a new code location and are typically used to represent indirect
jump and indirect call instructions. Backward edges, in contrast, are used to return to an
earlier code location that was involved either in a direct control-flow transfer, such as direct
calls, or indirect forward control-flow edges. CFG of a program can be discovered through

10



source-code analysis, binary analysis, or execution profiling. Malicious control-flow trans-
fers due to attacks, such as code injection return-oriented programming, result in violation
of the CFG of the program, as they typically use a new edge that is not present in the benign
CFG specified by the programmer. Even though data execution prevention is capable of
stopping code injection attacks, it can be circumvented by code-reuse attacks.

Control-flow Integrity (CFI), originally introduced by Abadi et al. [32], enforces a policy
to restrict the set of potential targets of an indirect control-flow transfer. Even though it does
not mitigate the initial memory corruption, CFI ensures the validity of code pointers before
they are used. CFI works by determining the valid set of targets of all indirect control flow
instructions, including calls and returns, to construct the CFG of the program. Before each
indirect control flow, a check is performed to ensure the target address is within the valid set
of targets for instruction during the runtime of the program. If it is not within the valid set, a
violation is issued. This puts a strict limit on the choices an attacker has to overwrite a code
pointer.

1 boo l l e s s e r ( i n t x , i n t y ) { r e t u r n x < y ;}
2 boo l g r e a t e r ( i n t x , i n t y ) { r e t u r n x > y ;}
3

4 boo l s o r t ( i n t a [ ] , comp f p t r ) {
5 . . .
6 i f ( f p t r ( a [ i ] , a [ i + 1 ] ) )
7 swap ( a [ i ] , a [ i + 1 ] ) ;
8 . . .
9 }

10 vo id s o r t a s c ( i n t a [ ] ) {
11 s o r t ( a , l e s s e r ) ;
12 }
13

14 vo id s o r t d s c ( i n t a [ ] ) {
15 s o r t ( a , g r e a t e r ) ;
16 }

Listing 2.1 Example control flow in a program.

Figure 2.2 illustrates the instrumentation introduced by CFI for the example program in
listing 2.1. CFI assigns a unique identifier for each possible target of an indirect control-flow
transfer and then gathers a set of all valid identifiers for each control-flow transfer instruction
in the program. These sets are used in the checks, which are inserted before an indirect
control-flow instruction is executed to ensure that the instruction only targets valid identifiers
in the target set. For instance in figure 2.2 the return instruction of sort function can only
target valid targets in set L2, which contains addresses a1 and a2, the only addresses that
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call sort

a1:
call L1, R

a3:

ret L2

a4:

ret L3

a5:

ret L3

sort_asc:
sort: lesser:

greater:

L1: {a4, a5}

L2: {a1, a2}

L3: {a3}

Forward Edge
Backward Edge

2

1

3

4

5

7

6

8

call sort

a1:

sort_dsc:

Figure 2.2 Control-flow transfer checks inserted by CFI

are next to calls to function sort. If the target of the return instruction is not within the
valid set, a violation is issued.

Several other enforcement techniques have been proposed in the past, including checking
the integrity of code pointers, data flow graphs and points-to sets. Code-pointer Integrity
(CPI) [33] provides more comprehensive memory safety for code-pointers by isolating
them, including their bounds information from other memory regions. Data-Flow Integrity
(DFI) [34] performs checks to detect the corruption of data before it is accessed by read
instructions. DFI enforces an integrity check of reads based on the instruction that wrote
to the memory location that is being read. Write Integrity Testing (WIT) [35], on the other
hand, restricts pointer dereferences for write accesses to accomodate only objects in their
points-to set gathered through pointer analysis of the program.

2.4.3 Randomization Based Defenses

Randomization based defenses aim to obfuscate targets of memory corruption attacks by
randomizing various assets used in the program, including location of program segments,
layout of the code section, layout of the data segment or even the data itself in order to make
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memory corruption attacks result in unpredictable behavior. These defenses are effective in
stopping attacks as attackers typically rely on the certain details of the program to perform a
successful exploit. For example, control flow hijacking attacks rely on finding the location
of control data to be overwritten in order to divert the execution flow of the program. Elimi-
nating the predictability of certain assets in the system can effectively limit the success of
attacks that rely on them. To circumvent this, attacks have to either rely only on assets that
are not diversified or adapt to account for the diversity introduced by the defenses.

Earlier efforts in randomization based defenses include instruction set randomization
[36] that works to mitigate code injection and tampering with existing code. However, the
wide spread deployment of data execution prevention (DEP) and read-only code pages has
outdated this defense.

The other randomization based defense approach involves diversifying the layout of
various sections of the program. The most widely deployed randomization based defense in
this domain is Address Space Randomization (ASLR). ASLR randomizes the locations of
different memory segments in the address space of the program, including stack, heap and
code segments. Certain implementations of ASLR suffer from some weaknesses, including
low entropy and not randomizing code regions. For example, However, the biggest threat
for ASLR is memory disclosure, as a single information leak is capable of de-randomizing
it. There are numerous fine-grained layout randomization based techniques that have been
proposed to close the shortcomings of ASLR, including randomization of code section at
function level [37], basic block level [38][39] and instruction level [40][41]. Yet another
approach for randomization based defenses is data space randomization. These defenses
randomize the representation of data as it resides in memory. Pointguard [42] encrypts
data while it is stored in memory and decrypts it before it is used in operations. However,
Pointguard uses a single key to XOR all pointers for encryption and decryption. So, if a
single known encrypted pointer is leaked, the key can be recovered to de-randomize the
whole memory. Data Space Randomization [43] addresses the issues of Pointguard by using
a different key for all variable, including all pointers in the program.

Another important aspect in randomization based defenses is the frequency of randomiza-
tion. Randomization can be performed at various stages of the program life cycle, including
during compile time, load time and run time of the program. This has an important implica-
tion for the effectiveness of these defenses. ASLR, for example, randomizes sections of the
program at program load time. So, if the randomization offset is discovered during runtime
of the program, then it can be bypassed to mount a successful attack. Runtime randomiza-
tion techniques are immune to de-randomizing efforts; they mutate various aspects of the
program during runtime. A recent example of runtime randomization technique is Morpheus
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[44], which periodically changes the location of pointers using a random displacement for
code pointers and data pointers. Morpheus also periodically re-randomizes the encryption
keys used to encrypt code and pointers while they are in memory.

2.5 Advanced Code-reuse Attacks

In this section, we detail advanced code-reuse attacks that are capable of bypassing control
flow integrity (CFI) based defenses. These attacks can be grouped in to two major groups.
The first category includes attacks that still manipulate control data while staying in CFG of
the program. We call these attacks CFG mimicry attacks. The other category is data-oriented
attacks, which only manipulate non-control data and hence do not violate the control-flow
integrity of the program.

2.5.1 CFG Mimicry Attacks

Classic code reuse attacks, such as return-oriented programming, enable an adversary to
execute arbitrary computation on the victim system by reusing existing code. Control-flow
integrity protects against these attacks by enforcing the execution flow of the program to
follow the programmer specified control flow graph. CFI techniques typically achieve these
protections by instrumenting the program in order to check if the destination of an indirect
control transfer at runtime is within the allowed set of targets. Hence, CFI techniques still
allow modification of control-flow data, such as return addresses and indirect branch targets,
as long as the new indirect branch target is within the allowed set of targets in the enforced
control-flow graph. A typical example is Control-flow bending [12]. These attacks involve
finding useful gadgets in the legitimate control flow of the program. Then these attacks
exploit a memory corruption vulnerability to corrupt code pointers within the allowed set to
perform malicious computation while piggybacking on the benign CFG of the program.

For example, in Figure 2.2, let as assume a call to sort asc is followed by a call to
sort dsc. CFI inserts a check before the return sort functions to ensure that it only
takes either edge 3 or edge 4. Under normal execution, a call to sort through edge 1
is followed by a return through edge 3 and a call through edge 2 is followed by a return
through edge 4, even tough both targets are valid at any point according to the enforced CFG.
CFG mimicry attacks manipulate this by allowing the first call to sort from sort asc to
return normally through edge 3, but these attacks manipulate the call from text dsc to
return through edge 3 instead of its normal return path, edge 4. This affords the attacker
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to execute gadgets available in between the two call sites as many times as needed. This
technique is known as loop injection and is used to achieve Turing complete computation
without violating the control-flow integrity of the program.

2.5.2 Data-Oriented Attacks

Data-oriented attacks can take various forms based on how an adversary manipulates non-
control data resident in the address space of the program. Early attacks in this domain
involve direct data manipulation, wherein an attacker directly manipulates a specific target
data in the program memory to accomplish the malicious purposes. To perform a direct
data manipulation attack, an attacker needs to know the exact location of the target data in
the address space of the program. Chen et al. [15] demonstrate the serious implication of
non-control data by showing how they can be used to corrupt or leak security-critical data.

Data-Orientated Programming is a generalization of data-oriented attacks to perform ex-
pressive computation without relying on tampering with code pointers. DOP attacks instead
tamper with non-control-data in order to induce the execution of sequences of instruction
within the normal program flow, using an attacker controlled input. The attack consists of a
data-oriented gadget performed by each sequence on top of normal program logic. DOP
gadgets are stitched together using a gadget dispatcher, which could be a loop whose counter
is controlled by the attacker in order to chain together data-oriented gadgets within the loop
to perform Turing-complete computation. Listing 2.2 shows a program vulnerable to DOP
attacks. If the input bounds of function (get input()) are unchecked, an attacker can
control variables size, step, ctr and req.

1 f unc ( ) {
2 i n t ∗ c t r , ∗ s i z e = 0 , ∗ s t e p = 1 ;
3 c h a r ∗ b u f f [LEN ] ; i n t ∗ r e q ;
4 f o r ( ; c t r < MAX; c t r ++){
5 g e t i n p u t ( bu f f , r e q ) ; / / v u l n e r a b l e f u n c t i o n
6 i f (∗ r e q == 0)
7 ∗ s i z e += ∗ i n c ;
8 e l s e i f (∗ r e q == 1)
9 ∗ s i z e −= ∗ i n c ;

10 e l s e
11 ∗ s t e p = ∗ r e q ;
12 }
13 }

Listing 2.2 Example DOP attack.
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DOP attack grants an adversary the ability to perform addition, subtraction and copy
operations on any memory value, in any order desired by the attacker. Hu et al. [20]
demonstrate a DOP attack on ProFTPD capable of bypassing randomization based defenses
(such as ASLR) in order to leak the private key of the OpenSSL server.

2.5.3 Key Characteristics

Advanced code-reuse attacks can be characterized by the requirements that they introduce
to adapt to deployed defenses. These requirements have been growing due to prevalence of
various defenses built in modern systems, including DEP, ASLR and stack canaries. For
example, DEP has added finding an address of a gadget using static analysis or memory dis-
closure as a requirement to perform a code-reuse attack. The most common characteristics
required by advanced code-reuse attacks include memory disclosure, non-linear overwrite,
relative address attacks and partial overwrite vulnerabilities.

Memory Disclosure ASLR has been deployed on virtually every modern system due to its
insignificant performance overhead. Consequently, bypassing ASLR has become a precursor
for any successful memory corruption exploit. On 32-bit implementations of ASLR brute
force attacks were viable because of its low entropy. On 64-bit systems an attacker would
require more than that to bypass ASLR. The most common technique used to bypass ASLR
on 64-bit systems is memory disclosure, by which an adversary leaks a runtime address.
A single memory address leakage is sufficient to randomize ASLR, as it only randomizes
the base address of sections and hence the offsets with the section always remain the same.
Memory disclosure attacks are generally used to circumvent randomization based defenses
for de-randomizing layouts or extracting secret keys used for the randomization.

Non-linear Buffer Overflow Stack canaries [2] are the first line of defense proposed to
protect against stack smashing attacks. This defense works by inserting a secret value be-
tween return address and the rest of the stack allocations, which are checked before returning
to detect whether the return address is corrupted by buffer overflow. Similarly, ASAN [29]
adds redzones around objects in the stack, heap and global sections to detect spatial memory
bugs when the redzone is corrupted. Non-linear overflow bypasses these type of defenses, as
it enables an attacker to overwrite an arbitrary address without corrupting adjacent locations.
This could be achieved, for example, when an attacker has control over the index of an array
that is accessed without any bounds checking, where in a user supplied index of the array is
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made to point to an arbitrary address in the program. This is commonly caused by integer
overflow related memory errors.

Relative distance based attacks require only relative offset between allocations; for exam-
ple, in non-control data attacks, an attacker only needs to know the relative distance between
a buffer that has a buffer overflow vulnerability and the location of the security critical
data to be corrupted. These attacks are generally immune to base address randomization
protections, such as ASLR, since the relative offset stays the same.
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Chapter 3

Wrangling in the Power of Code Pointers

3.1 The Unending Cycle of Control-flow Attacks

For more than four decades, control flow attacks, in which attackers force programs into ex-
ecuting code sequences unanticipated by the developer, have played an important role in the
infiltration of secure systems. These attacks are particularly attractive to attackers because
they provide the immediate agency necessary to deploy attack payloads, leak important
information, embed a rootkit, launch an additional attack (such as, privilege escalation), etc.
As such, there has been much attention paid to reducing systems’ vulnerability to control
flow attacks.

Early measures to stop control flow attacks included the StackGuard [45], which deterred
the overwriting of return addresses by placing a random canary word next to it and checking
the integrity of the canary before jumping to the address pointed by it. Shortly after the use
of canaries became prevalent, the injected code moved into the heap, using attacks such as
double-free attacks [46], heap overflows [3] or heap spray attacks [4]. Code injection into
the heap resulted in the locking down of the entire data segment from code execution (e.g.,
data execution prevention [6] [7]), which in turn led to return-oriented programming (ROP)
techniques by which existing code sequences ending with a return are reused to create new
attacker-selected code sequences [9]. ROP attacks have motivated the wide use of address
space layout randomization (ASLR) [5], by which the location of code is changed each time
a program is executed. However, pointer leaks [47] and brute-force attacks [48] [49] have
skirted even this powerful defense. This led to the emergence of more advanced defense
techniques, the most prominent one being Control-flow Integrity (CFI).

CFI [10] follows a principled approach to mitigating control flow attacks by enforcing
the runtime execution path of a program to adhere to the statically determined CFG. It
takes this approach by checking if the target of an indirect jump is within a valid set of
targets. However, prior proposed CFI solutions are either impractical or ineffective. Some,
which strictly follow a program’s CFG, have high overheads that render them impractical
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[14]. Others attempt to reduce overheads by approximating the CFG with limited classes of
targets (e.g., two classes for function pointers and return addresses) [11][50][51][52], but
these do not protect against control flow attacks that swap targets while remaining on the
CFG [53][12][54][13].

In this work, we make the key observation that many of the vulnerabilities in control
flow stem from the excessive power inherent in code pointers. To stem the tide of control
flow attacks, we propose a novel approach to control flow integrity, called ProxyCFI [55],
that replaces all code pointers in the program with pointer proxies. A pointer proxy is a
unique random identifier (64-bits in our implementation), which represents a forward or
backward control flow edge from specific exit point to specific entry point in the program.
Wherever in the program a code pointer lies, it is replaced with its corresponding pointer
proxy. Consequently, all indirect jumps in the program (e.g., returns and jumps-through-
register) are replaced with a multi-way branch that implements a direct jump to the address
associated with the pointer proxy. As pointer proxies are a function of both the source and
the target of an edge, swapping pointer proxies results in a violation even if they have the
same target.

Using this approach for indirect control flow, ProxyCFI provides a strong form of CFI,
so that the program gains a number of highly desirable properties. First, by replacing
all indirect jumps with fully enumerated multi-way branches, the program code is fully
discoverable at load time using only a single breadth-first traversal of the program’s CFG.
Second, if the program replaces all code pointers with pointer proxies and all indirect jumps
with multi-way fully enumerated direct branches, it becomes impossible for control flow to
escape the control flow graph implemented by the program. In fact, there is simply no direct
path in these programs from the data segment to the program counter; thus, all PC updates
are via direct branches specified by the programmer.

To ensure that all executions stay on the program CFG for even third-party-generated
ProxyCFI compliant code, a binary-level program verifier first validates that programs and
libraries have CFGs that are fully discoverable, use only pointer proxies, and avoid all
indirect jumps/returns. Once validated, execution cannot leave the programmer-specified
CFG. Finally, to thwart a highly motivated attacker who studies the code in advance to
discover the code entry points associated with pointer proxy values, the verifier assigns a
load-time-unique set of random pointer proxies before the program begins execution. In
addition, the verifying-loader marks code sections unreadable, to protect from active-read
attacks that gather pointer proxies using memory leaks.

More importantly, ProxyCFI has a number of powerful features to deter attacks that
mimic legitimate control flow (i.e., control flow attacks that seemingly remain on legitimate
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Table 3.1 Comparison of Code Pointers to Pointer Proxies. Pointer proxies preserve program
control integrity by reducing their capabilities. This table lists the differences in capabilities between code
pointers and pointer proxies. Ultimately, it is the powerful nature of code pointers that enable many CFG
attacks.

Code Pointer
Pointers Proxies

Arithmetic Allowed Yes No
Totally Ordered Yes No
Trivial Forgery Attacks Yes No
Permit Relative Distance Attacks Yes No

Replay Attacks on Returns and fptrs Yes
Only from the

same source address

control flow edges), such as control flow bending (CFB) [12]. These attacks exploit the fact
that existing CFI techniques allow executions to maliciously divert indirect branches if the
target address is still in the valid set of targets. ProxyCFI thwarts this attack, as a pointer
proxy is unique to a particular source and target address, which makes a pointer proxy used
in one function context invalid in another even if they share the same target addresses.

Table 3.1 lists the comparative capabilities of traditional code pointers versus pointer
proxies. As shown in the table, pointer proxies do not support arithmetic manipulation;
thus, relative-address based control flow attacks, such as ASLR derandomization attacks
[49], would not be possible with pointer proxies. Moreover, pointer proxies are much more
difficult to forge, since their assignment is not in anyway related to other pointer proxies,
whereas pointer values often reveal much information through relative address distances
to other code objects, facilitating relative address inspired attacks. Since pointer proxies
are unique to a given function, return address copy attacks, such as the return-into-libc [8]
and backward-edge active-set attacks [56], become more challenging, as the pointer proxies
of other functions (which are assigned at load-time) must be leaked and then translated to
the local function’s proxies (which have no correlation even if the current function calls the
intended target).

3.1.1 Contributions of This Work

In this thesis, we introduce ProxyCFI, a novel control flow integrity technology that works
to deter advanced control flow attacks while incurring lower performance overhead. In-
stead of putting protections in place to enforce proper indirect jumps and returns, our
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approach replaces all code pointers in the program with pointer proxies, which lack many
features afforded to traditional code pointers. Specifically, this thesis makes the following
contributions:

We present a novel control flow enforcement technology dubbed ProxyCFI that provides
an efficient and practical enforcement of the programmer-specified control flow, while also
providing protections against advanced CFG reuse attacks. This enforcement is achieved
with a relaxed threat model that assumes the attacker has read and write control over all data
memory.

Then, we detail the end-to-end implementation of ProxyCFI within the GNU GCC
compiler toolchain. Our implementation includes support for shared libraries and a verifying
loader that allows the safe introduction of third-party codes without fear of compromising
control flow integrity. In addition, our loader further protects control flow by assigning
program pointer proxies at load time and marking code pages unreadable.

Moreover, We demonstrate the efficiency of the approach by running a wide range
of CPU-centric and network-facing applications. In addition, we implement two pointer
proxy compile-time optimizations: profile-guided sled sorting and function cloning, which
ultimately reduce the slowdown of this technology to only 4% on average. In addition, our
security analyses shows that the technology stops real-world control flow attacks, including
attacks that mimic legitimate control flow, and also demonstrating 100% coverage for the
RIPE x86-64 control flow attack suite [57].

The remainder of this chapter is organized as follows. Section 3.2 details the ProxyCFI
technology. Section 3.3 details our implementation of ProxyCFI in the GNU GCC C/C++
toolchain. Section 3.4 presents a detailed performance and security analyses of the ProxyCFI.
Section 3.5 compares ProxyCFI to a wide array of previous control flow integrity techniques,
and Section 3.6 concludes the chapter.

3.2 Protecting Control Flow with ProxyCFI

In this section, we detail our threat model and the broad ProxyCFI concept, and then present
how to build and verify programs (including shared libraries) with pointer proxies.

3.2.1 Threat Model

In this work, we assume a very powerful attacker who wants to redirect control flow to a
code sequence that deviates from the programmer-specified CFG. In accomplishing their
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Figure 3.1 Example Code Sequence using Pointer Proxies. Pointer proxies replace the code
pointers in a program with per-function random identifiers associated with legal code targets. Multi-
way direct branch sleds translate pointer proxies into direct jumps. As such, pointer proxy programs
lack the use of indirect jumps (e.g., jump-through-register or returns), and thus, it is not possible to
leave the programmer-specified control flow graph.

control flow attack, the attacker has read and write access to any data location, including
globals, stack and heap variables, as well as data storage locations holding pointer proxies.
The code segment of the program is assumed to be non-writable.

The programmer-specified CFG includes the basic blocks of the program connected
by edges specified by the direct jumps in the program. For indirect calls, the programmer-
specified CFG is assumed to allow the program to jump to any same-typed function (as
the function pointer) entry point which has had its address taken (&) somewhere in the
program. Finally, the indirect jumps made by returns are assumed to jump to any instruction
immediately following a legal calls (direct or indirect) to the returning function.

Given this powerful attacker, ProxyCFI work to prevent the attacker from hijacking
control from the programmer-specified CFG. In addition, ProxyCFI also provides protection
against non-gadget code reuse attacks (e.g., COOP, where the attack does not leave the CFG
of the program but instead enlists the code in a CFG mimicry attack [13]).

3.2.2 Pointer Proxies

To stop control flow attacks, we replace all program code pointers with pointer proxies. A
pointer proxy is a random identifier (64-bits in our evaluated implementation), in which
pointer proxy P represents an edge from code exit point Y to entry point X . Wherever a
code pointer resides in the program (e.g., in a jump table or on the stack as a return address),
it is replaced by its corresponding pointer proxy value P. Figure 3.1 illustrates a small
code snippet in which the code pointers have been replaced by pointer proxies. As seen in
the example, where code pointers would have been stored (e.g., on the stack for a return
address), they are replaced with pointer proxies (denoted by a $).
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At indirect jumps and returns, the pointer proxy is inspected, and then, using a multi-way
direct branch, the appropriate code entry point associated with the pointer proxy is targeted.
We call a multi-way direct branch, which matches a pointer proxy and then directly jumps
to the associated code target, a sled. Direct jumps are not replaced with pointer proxies.
Since our threat model assumes that code cannot be written, any direct jump is naturally a
write-protected programmer-specified control transfer, and thus, no additional protections
are required. Three multi-way branches can be seen in the example in Figure 3.1. The
indirect call to bar() and baz() in function foo() is implemented with a multi-way branch
that jumps to bar() if the proxy $7743d2ff is encountered and jumps to baz when the pointer
proxy is $1f324a19. Additionally, both of the returns from functions bar() and baz() are
implemented with a multi-way branch.

Pointer proxies are assigned to code pointers within the context of a single function;
thus, the pointer proxies of function X are meaningless to function Y . This powerful feature,
which does not impact the usability of pointer proxies, works to thwart a large number
of advanced CFG mimicry attacks. These powerful attacks, such as control-low bending
[12] undermine CFI by using a code pointer copied from one function context to jump to
addresses in some other function without violating CFI constraints. To stop the potential
forgery of pointer proxies, all pointer proxy values are defined per-function, and they are
assigned at program load time by the pointer proxy verifier as detailed in Section 3.2.4. This
aspect of pointer proxy context is shown in Figure 3.1 in the returns of functions bar() and
baz(). While both functions return to the same address (i.e., label done), they each use a
distinctly different pointer proxy. As such, if each of the functions were to steal each other’s
pointer proxy and return to it, it would not match any target in the return’s multi-way branch,
and the program would abort.

3.2.3 Building Code with Pointer Proxies

Building code to work with pointer proxies requires replacing every place in the program
that uses a code pointer with a pointer proxy. Code pointers in typical programs are used to i)

capture a reference to a code entry point, typically when a switch statement is implemented
with a jump table of code pointers; ii) capture a reference to a function entry point, typically
when a call through a function pointer or virtual function method invocation occurs; and
iii) capture a reference to a return point in the program, which is stored on the stack during
a function call. Note that in each of these cases, an indirect branch of some form is used
(e.g., jump-through-register or return); thus, the compilation of all indirect jumps is the focal
point of all pointer proxy activities.
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Replacing indirection with pointer proxies. All indirect branches (e.g., switch jump
tables, indirect calls, and returns) are replaced with multi-way direct branch sleds. Of course,
to know what targets must be tested for in a sled, we must fully anticipate all of the targets
of each indirect branch. For locally sourced indirect jumps, such as a switch statement
jump table, we can easily anticipate in the current compilation module all of the indirect
jump targets. For indirect calls and returns, more work is necessary because the locations
(and pointer proxy values) may come from another compilation unit. Consequently, the
compilation framework must support whole-program CFG construction (including the call
graph). In our prototype implementation in the GNU GCC toolchain, we utilize a two-pass
compilation strategy, to first build the whole program CFG and then to compile programs
with fully enumerated multi-way direct branch sleds. Details of this compilation strategy
are covered in Section 3.3.

At indirect calls, the type of the target function is noted, and when the whole program
CFG is constructed, an indirect function call is assumed to possibly happen to only same-
typed function and has had its address taken (&). Similarly, the return address sleds target the
instruction after all actual and potential calls to the returning function, in which a potential
call directly targets the function or indirectly targets the function through a compatible
function pointer. This approach works quite well until a program declares a void * indirect
function call, which could potentially call any function in the program. Fortunately, our
optimizations, detailed in Section 3.3.2, perform well to reduce the overall impact of these
generic indirect function calls.

When good code pointers go bad. Our approach to control flow integrity replaces code
pointers with less powerful pointer proxies. Despite this decrease in capability for code
pointers, the programming language (C and C++ for our prototype implementation) may
still allow a more full range of capabilities for code pointers. In C for example, code pointers
are represented in the language as full-fledged pointers; thus, it is possible to encounter oper-
ations on code pointers that deviate from the low-capability pointer proxies, such as pointer
arithmetic and casting to and from code pointers. For example, we could manufacture a
code pointer to a private function in x86-64 GCC by simply adding the size of the preceding
function (in bytes) to its code pointer.

In our prototype GNU GCC C/C++ implementation of pointer proxies, we issue a secu-
rity warning for these operations and then compile the requested operations into the program.
If the program is performing potentially dangerous code pointer operations, this will result
in code performing the same operations on pointer proxies, resulting in invalid pointer
proxies that cause the program to declare an attempt to break the programmer-specified CFG
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Figure 3.2 ProxyCFI Program Loader. This figure illustrates the process of loading a ProxyCFI
compliant program for execution. The program is first inspected by the verifier to ensure its use of
pointer proxies covers the entire CFG. The loader then re-assigns randomly selected load-time pointer
proxy values to all pointer proxies in the program. This re-assignment coupled with non-readable
code pages prevents attackers from building associations between pointer proxies and program
address even in the presence of an active read attack.

(when a multi-way direct branch sled aborts). While we were able to create these problems
in test programs, none of our benchmark programs suffered from dangerous code pointer
manipulations.

setjump() and longjmp() require special handling in the compiler because these functions
implement a unique user-directed program control flow transition. Together, these functions
implement a superset of function pointer behavior, such that a call to setjmp() can be the
target of any other longjmp() in the program. This extra functionality of longjmp() can
be easily addressed with pointer proxies. Both function pointers and longjmp() share an
indirect jump, but a longjmp will generate a multi-way direct branch, including all of the
pointer proxies assigned to the instruction immediately after each call to setjmp(). Thus, any
tampering in the setjmp() control context cannot pull execution off the CFG.

3.2.4 Load-time Program Verifier

It is a key requirement of any ProxyCFI implementation that it covers the entire control flow
graph. This ensures that the attacker cannot simply leave the control flow graph and execute
instructions with dangerous code pointers and unconstrained indirection. Hence, no benign
control flow transfer results in a violation and no deviation from programmer-specified
control flow is missed. ProxyCFI maintains this property by verifying that programs utilize
only pointer proxies for indirect branches via multi-way direct branches that are fully enu-
merated by the programmer-specified CFG. If an unexpected pointer proxy is encountered,
the program is terminated.

Figure 3.2 shows how a binary or shared library is loaded and validated to only use
pointer proxies for control transitions. If a code object passes verification, the verifier
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generates load-time assigned pointer proxies, such that an attacker cannot anticipate any
pointer proxy values even with an active read attack on the program.

Algorithm 3.1 ProxyCFI Load-time Program Verifier. When ProxyCFI programs are
loaded for execution, the following verification algorithm is run to ensure that the program
maintains CFG integrity that covers all control flow. The algorithm performs a reachability
analyses of the CFG to identify any illegal jumps or uses of indirection.

1: procedure VERIFY(ob j)
2: for all f in ob j do
3: ep←f.entry point
4: while ep 6= /0 do
5: e← ep.pop()
6: if e.checked == True then
7: continue
8: else
9: br←scan for next branch(e)

10: switch br do
11: case Indirect(br) or Invalid(br.target)
12: return Fail
13: case Direct Branch
14: ep.push({br.target, e.next})
15: case sled
16: inspect ({sled.proxies})
17: ep.push({sled.targets})
18: return Success

The psuedocode for the ProxyCFI code verifier is shown in Algorithm 3.1. The verifier
performs reachability analyses on the code object’s CFG to validate that it is i) free of
indirect control transfers and ii) all control transfers point to a valid instruction within
the current code object or the entry point of another code object for calls. To this end,
it performs a breadth-first traversal of the CFG of the code object, inspecting all control
transfer instructions. If indirect call/jump or return instructions are encountered in the code
object, it immediately fails verification. For direct control transfer (i.e., direct call, direct
jump, loop instructions), it analyzes the target address for any possible violations.

For direct jump instructions, the verifier checks that the target address points to a valid
instruction within the current code object. For direct function calls, the verifier validates that
the target is a valid code object entry point. For multi-way branch sleds replacing an indirect
call/jump, the verifier validates that the targets are valid pointer proxies for function entry
points. Finally, for multi-way branch sleds replacing function returns, the verifier ensures
that all targets follow potential calls to the current function, either directly or indirectly.
Once the verifier completes reachability analyses of the control flow graph without failure,
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the code is assured to use pointer proxies for all indirect control flow, and thus, it is safe
to load and execute. Interestingly, the use of fully enumerated multi-way branch sleds for
implementing indirection is precisely the reason why the verifier is able to perform complete
reachability analyses of the code. The same would not be possible with unconstrained
indirection, since this would require strong assurances as to what code pointers could or
could not be created by the program.

3.2.5 Deterring CFG Mimicry Attacks

A mimicry attack [58] on the CFG is one that implements attacker-directed control without

leaving the programmer-specified CFG. With the introduction of powerful control flow
integrity mechanisms, such as CFI [10] and ASLR [5], these non-gadget code reuse-based
attacks have quickly grown in number, including counterfeit OOP [13], control flow bending
[12] and active-set backward-edge attacks [56]. ProxyCFI can provide protection against
these attacks, in particular, through per-function pointer proxy namespaces and load-time
pointer proxy assignment.

Per-function pointer proxy namespaces. Traditional full-fledged code pointers repre-
sent a code location that is sharable with any other part of the program. It is this property
that allows an adversary to copy a code pointer from one function and replay it in an attack
on another function, an approach that Counterfeit OOP [13] utilizes to implement method-
level code reuse that does not leave the CFG. Pointer proxies deter these copy-based CFG
mimicry attacks by defining unique pointer proxy namespaces for each function. Thus, if
a function copies the pointer proxy from another function, for example, by searching for
pointer proxies up the stack, any attempt to use that pointer proxy will always result in an
abort when the multi-way branch sled executes. The only copying of a pointer proxy that
would not be detected involves it being in the context of a recursive function. In Figure 3.1,
although bar() and baz() both return to the same location, they each have their own proxy
namespace, which have different proxy-to-edge mappings. The differing pointer proxies
$ae23afcc and $bc41c823 in the multi-way branches branches implement the per-function
namespaces.

Function pointer proxies do not enjoy the same weakened state that return pointer proxies
leverage. Function entry pointer proxies may be passed around arbitrarily through parameter
lists, return expressions, and global variables. However, our whole-program CFG analyses
infrastructure works to only connect indirect function calls to same-typed function entry
points that are publicly accessible. As such, wholesale use of mismatching methods, as is
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done by Counterfeit OOP [13] and jump-oriented programming [24], are not allowed. These
attacks are potentially still possible, but the attacker’s agency to create method and function
gadgets are limited to similarly typed functions.

For function pointers that are passed as arguments, the function consuming it cannot
reasonably know from where the pointer originated. Therefore, the local agreements that
enabled pointer proxy variance among functions are not scalably feasible for function
pointer proxies. Like code pointers, function pointer proxies rely on a global agreement—a
one-to-one mapping between function pointer proxies and the addresses to which they lead.

Return pointers are a temporal agreement between the calling function and the called
function concerning the location execution resumes. Traditional return pointers must contain
the return address, but pointer proxies may contain any 32 bit value as long as the caller and
the callee agree on the meaning of the pointer proxy. There is but one restriction: the pointer
proxy must not collide with any other agreements the caller is engaged in. Each function
has its own pointer proxy namespace. Formally:

ptr1, ptr2 ∈ return sled( f oo)⇒ ptr1 = ptr2 (3.1)

Given a pointer proxy used for returning from a function, a function must have only
one way to interpret it. In contrast, traditional return pointers have an excessively powerful
restriction: given a code pointer, all functions must have only one way to interpret it.

Suppose an adversary intends to attack a return edge e on the CFG. Given a non-readable
code section, the attacker must first see edge e used before they may attempt a confused
deputy attack. Consider the function pointer call in Figure 3.1. Functions f oo and bar both
return to the same location, but they need not share the same pointer proxy for returning.
Instead, main generates a pointer proxy separately for f oo and bar. To attack the return in
f oo, an attacker must first dynamically observe the proxy used: it is insufficient to steal the
pointer proxy used in bar.

Load-time assignment of pointer proxies. Pointer proxies are re-randomized at load
time to further deter mimicry attacks on the CFG (and all other control flow attacks in
general). Load-time re-assignment of random pointer proxies prevents offline analyses of
code to generate a translation table from pointer proxies to source and target code addresses.
Pointer proxy forgery requires prior knowledge of the pointer proxies; thus, enforcing a
non-readable code section and load-time assignment of proxies significantly complicates
mimicry attacks on the CFG. This is particularly powerful because a pointer proxy is only
meaningful in the context of the function that uses it. Hence, to exploit a pointer proxy, the
attacker must either share proxies among separate code reuse attacks or write their attack
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solely with recursive invocations on the enclosing function. In fact, because pointer proxies
are assigned randomly, they cannot be effectively guessed; thus, any mimicry attack on a
pointer proxy protected CFG would, in the very least, require an active read attack to expose
possible pointer proxy values that have been stored in the data segment.

3.2.6 Shared Libraries with Pointer Proxies

Shared libraries are an attractive target for control flow attacks because they are used among
multiple applications. Attacks that target libc, for example, can be reused on any application
that links to it. The classic attack is return-into-libc [8], wherein the adversary overwrites
the return address so that the program returns to an exploitable libc function such as system().
Shared libraries, in general, are a popular target for control flow attacks as they are loaded
for most programs and contain wrappers for system calls. In addition, most shared libraries
contain large enough codebases, leaving an attacker with wide selection of gadgets for
all classes of code reuse attacks, such as ROP [9], JOP [24], LOP [25] and their variants
[59][60].

Shared libraries are built on indirection. Connections into and out of shared libraries
must be managed by unshared data or code that is generated dynamically. Returns and
indirect calls are natural solutions to entering and exiting shared libraries because they draw
on unshared data in the stack and the global offset table, respectively. As such, shared
libraries therefore clash with ProxyCFI which works to remove indirection. One solution to
securing shared libraries is to forbid them; Intel chose this with SGX [61]. However, we
want to retain their advantages: reduced page swapping, simplified version management and
facilitated modularity.

Insecure shared libraries utilize unshared data to manage connections between code
objects via returns and indirect calls. ProxyCFI compliant shared libraries, however, must
use unshared code to manage control flow in and out because indirection must be replaced
with multi-way branches. While calling a shared library function still traverses the procedure

linkage table (PLT), the indirect call within the PLT is dynamically replaced with a pointer
proxy sled. At load time, extra space in the caller’s address space is mmap’ed for the code
that channels control flow on return. Shared library functions have their returns statically
replaced with a relative jump down to the unshared multi-way branches.

Our approach to deploying shared libraries with ProxyCFI is illustrated in Figure 3.3.
We split the process of returning from a shared library into two stages, which are associated
with the selection linkage table (SLT) and the return linkage table (RLT), respectively. Two
pointer proxies are used to return from a shared library, one for the SLT and one for the
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Figure 3.3 Shared Library Control Flow. Shared libraries, which rely heavily on indirect jumps
and returns, can be built with proxy pointers. We allocate linkage tables using pointer proxies in the
caller’s address space, which permit entry and exit from the ProxyCFI compliant shared library.

RLT. For each PLT entry to a shared library function, there is an RLT entry that contains a
multi-way branch leading back to each call site in the code object. If shared library function
f oo() is called from multiple code objects, then each code object will have a separate RLT
entry for f oo() in its own address space. While the RLT specifies how to return within
a code object, the SLT specifies which code object to return to. To accomplish this, SLT
entries contain a multi-way branch of absolute jumps directed at RLT entries. Since the size
of SLT entries varies based on the code objects that use the shared library, relative jumps
down from shared library functions cannot target SLT entries directly. A trampoline table
facilitates static generation of the relative jumps by forwarding control onto the appropriate
SLT entry.

Using load-time pointer proxy assignment, it is possible to assign proxies for the tendrils
into a shared library in a way that creates pointer proxies when the library is first loaded.
Moreover, our approach allows the pointer proxies used to enter and exit the shared library
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function to be unique to each address space that utilizes the shared library. This feature
ensures that an attacker cannot gather pointer proxy information from their own address
space and use it to attack a program using the same shared library.

Re-randomization must be performed carefully to allow code pages to be shared. Since
SLT multi-way branches are generated at load time, reassigning their proxies will not
un-share any code pages. A call from one shared library to another must be moved to an
unshared code page since the call is transformed to push two proxies onto the stack (one for
the SLT and one for RLT). Re-randomization of proxies requires that the RLT be unshared
since all non-empty multi-way branches contain pointer proxies.

3.3 ProxyCFI in GNU GCC

In this section, we detail the implementation of ProxyCFI in the GNU GCC C/C++ toolchain.
We present the overall compilation flow, and then dive into the details of the optimizations
implemented.

3.3.1 Compilation Flow

ProxyCFI instrumentation involves a two-pass transformation on assembly generated mid-
compilation by the existing GCC infrastructure. All sites of indirection are replaced with
fully enumerated multi-way direct branches that validate CFG transitions with pointer
proxies. Figure 3.4 describes the overall flow of ProxyCFI compilation.

• Pass 1. CFG Discovery: Assembly files are parsed for function labels, (direct or in-
direct) call sites and return sites. Return edges are constructed by observing the target
set for each direct and indirect call. Indirect call target sets include only functions that
have had their addresses taken and have a matching type signature. Type information
on function pointer calls are passed from the GCC frontend to the ProxyCFI compiler
core.

• Pass 2. Branch Enumeration: Since the CFG contains all transitions between func-
tions, multi-way branch targets are fully enumerated before the second pass begins.
For return sites, pointer proxies are selected in the context of the called function and
shared with the calling function’s indirect call sled. Pointer proxies are generated in
this way to deter CFG mimicry attacks (see Section 3.2.5 for details).
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Figure 3.4 ProxyCFI Compilation Flow. The compilation occurs in two passes. In the first
pass, the entire CFG of the program is discovered using identifier type and visibility information
gathered in a full pass over the program code. In the second pass, all legal program entrypoints
are assigned randomly selected pointer proxy identifiers, and all indirect jumps, indirect calls and
returns are replaced with fully enumerated multi-way direct branches that translate pointer proxies to
direct jumps. The linker resolves all jumps using compiler-generated global identifiers for all entry
points. The profiler instruments the code to count the most frequent targets of multi-way branches,
which is used for optimization. Finally, all code is passed through the pointer proxy verifier, assigned
load-time random pointer proxies and loaded into execute-only pages before execution begins.

After generating a binary, runtime analytics, which are generated by the profiler, are
passed back to the branch enumeration phase, at which point the multi-way branch sleds
are rewritten with optimizations. Load time invocation of the verifier rewrites all pointer
proxies before executing the program, ensuring that attackers cannot use offline analyses to
observe pointer proxies before launching an attack.

3.3.2 ProxyCFI Optimizations

Indirect jump and return sleds can become very long, especially for frequently called
functions. To address these potential concerns, we implemented two optimizations: profile-
guided sled sorting and function cloning.

Profile-guided sled sorting. The main source of performance degradation with ProxyCFI
is the overhead incurred by the repeated comparisons used to implement multi-way direct
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branch sleds. The number of checks required is directly proportional to the number of
legitimate targets for the corresponding indirect control transfer instruction. By analyzing
our early implementation, we observed that some multi-way direct branch sleds suffered
significant performance degradation. Yet, we also observed that these sleds were highly
biased to only a few of the branch targets. Our sled sorting optimization takes advantage of
the biased distribution of multi-way branch targets by sorting the order of entries in a sled in
descending order of profiled execution count. As shown in Section 3.4, this optimization
significantly reduces the average depth a program must traverse into a sled before finding
the pointer proxy target.

Function Cloning. While profile-guided sorting of the sleds significantly reduces perfor-
mance degradation associated with multi-way branch sleds, the improvements are limited
for functions with more uniformly distributed sled profiles. To combat this, we adapted
function cloning [62] – an optimization that creates specialized copies of functions – as
a means to reduce overall sled lengths. For sleds with more uniform distributions, this
optimization significantly reduces the performance overhead incurred by executing sleds.
Figure 3.5 illustrates function cloning. A function with near uniform sled distribution is
cloned (e.g., function f2 becomes identical functions f2 and f2 c1). Then, half of the call
sites to the cloned function are redirected to the cloned function. This has the desirable
effect of cutting both the cloned function’s and the clone’s return sleds in half.

Once a clone function is created, we evaluated the reassignment of multi-way branch
sled entries among clones using the following approaches: i) evenly distributing the sled
entries between clones in descending order of their dynamic execution count; ii) assigning
the most frequent entries to one clone and least frequent entries to the other to address worst
case execution count on least frequently taken branches. The results show that scenario i)

performs better, so we chose this method as our assignment strategy.
Function cloning also improves the security guarantee provided by ProxyCFI, as it cuts

the number of return target addresses at the expense of an increase in code size. For control
flow attacks that do not leave the CFG [12][54][13], this optimization would significantly
reduce the attacker’s agency in selecting CFG edges to exploit. Moreover, gadget dispatcher
functions (functions that can overwrite their own return address and have large target sets
such as memcpy()) qualify for function cloning, which strictly limits the number of legitimate
edges for every clone of the function. This observation is contrary to optimizations used for
coarse-grained CFI that reduce the incurred performance overhead by merging labels used
for checks [63] – which weakens the security guarantee by over-approximating the allowed
targets for indirect control transfers.
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Figure 3.5 ProxyCFI Function Cloning Optimization. Function cloning cuts the number of
legitimate edges by a factor of the number of clones. Legitimate edges 6 and 8 from f2 sled are no
longer legitimate after cloning. This optimization reduces return sled lengths and raises the bar for
CFG mimicry attacks, at the cost of increased code size.

3.4 Evaluation

In this section, we examine the performance and security of ProxyCFI. First, the perfor-
mance impact of ProxyCFI is assessed by examining the slowdown incurred for many
CPU-centric and network-facing benchmarks, with and without ProxyCFI optimizations.
We then examine the overheads occurred when using ProxyCFI with shared libraries. To
gauge the security benefits, we performed penetration testing with the RIPE control flow
attack suite [57]. In addition, we demonstrate the ability to stop a variety of additional
real-world control flow attacks, including CFG mimicry attacks.

3.4.1 Evaluation Framework

ProxyCFI build framework. Our ProxyCFI compiler framework was built on GCC ver-
sion 6.1.0. In our evaluations, we used Ubuntu 16.04 on x86-64. Using x86-64 is essential
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in our implementation because our shared libraries rely heavily on relative jumps to preserve
code page sharing, which is significantly more efficient in 64-bit x86. We customized
GLIBC’s loader to handle ProxyCFI compliant shared libraries and mark code pages execute-
only. Many modern processors have hardware support for execute-only memory. For
example, recent Intel CPUs support unreadable code pages using the Memory Protection
Keys (MPK) feature.1 In our prototype implementation, we used this feature to make the
code section execute-only (i.e., disabled read/write access).

We built our benchmarks with the musl C library. This decision allowed us to sidestep
the added complexity of employing pointer proxies on GLIBC, which makes frequent use of
GCC-specific virtual ifuncs function pointers, which, in turn require special (but arduous)
modifications to the GCC compiler backend. In contrast, musl’s goal of high portability
made it a straightforward port into our compilation framework, and it did not compromise
our system’s ability to build large projects, such as redis.

Benchmarks analyzed. We evaluated the performance and space overhead incurred by
ProxyCFI using the SPEC CPU 2006 benchmarks. In addition, we evaluated the overhead on
the network-facing application redis-server, running it with the standard redis-benchmark

with 50 parallel clients and a 3-byte payload. To isolate the performance overhead incurred
by ProxyCFI-hardened shared objects, we also ran microbenchmarks for varying shared
library sled depths. To evaluate the security guarantees provided by ProxyCFI, we analyzed
applications from all the major categories commonly targeted by control flow hijacking
attacks, including multimedia processing, Javascript engines, document rendering, network
infrastructure and VM interpreters. Specifically, we analyzed the following common attack
targets:
MuPDF is a light weight PDF XPS and EPUB parsing and rendering engine. MuPDF
versions V1.3 and prior have a stack-based buffer overflow vulnerability (CVE-2014-2013)
[64] that results in remote code execution via a maliciously crafted XPS document.
bladeenc is a cross-platform MP3 encoder, which is also used as a daemon for encoding in
distributed MP3 encoders/CDDB servers like abcde. bladeenc has several vulnerabilities
that lead to control flow attacks including, CFG mimicry attacks that could be exploited
remotely (CVE-2017-14648) [65].
dnsmasq is a DNS forwarder designed to provide DNS services to a small-scale networks,
and it is included in most Linux distributions. Versions of dnsmasq prior to 2.78 have a
stack-overflow vulnerability that enables a remote attacker to send a maliciously crafted
DHCPv6 request to hijack control flow on the target system (CVE-2017-14493) [66].

1Execute-only memory is also supported on ARMv8 and above.
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Gravity is a dynamically typed concurrent scripting language written in C. The Grav-
ity runtime contains a stack-based buffer overflow that leads to remote code execution
(CVE-2017-1000437) [67]. We built upon the proof-of-concept exploits provided for these
vulnerable applications to test the effectiveness of ProxyCFI in stopping real-world control
flow exploits, including CFG mimicry attacks.

3.4.2 Performance Analyses

We ran the SPEC CPU 2006 benchmarks performance analyses experiments on an Intel
Xeon Gold 6126 Processor with 24 cores and 32GB RAM running Ubuntu 16.04 LTS
Xenial Xerus with Linux kernel 4.15.0-33-generic. For the I/O-intensive network-facing
applications, we ran the experiments on an Intel Core i7 5500U, running at 2.40 GHz with
8GB RAM.

Figure 3.6 shows the performance overhead incurred by ProxyCFI instrumentation,
with the results summarized in Table 3.3. For compute-intensive applications, the näive
implementation’s performance overheads are non-trivial, since these programs have high
average sled depth. Average sled depth is a measure of how many pointer proxy tests are
required in a sled, on average, before a direct branch is taken. Ideally, we would like this
value to be close to 1 to lower the performance overhead for ProxyCFI. For applications
with heavy use of function calls, such as perlbench, gobmk and sjeng, the performance
degradation for the unoptimized implementation is more pronounced, having a average
return sled depth of 27 for perlbench.

With optimizations, the average sled depth drops dramatically, as do the performance
overheads. For example, perlbench benefits significantly from profile-guided sled sorting
optimization. h264ref also benefits significantly from optimizations, as it makes heavy use
of generic function pointers with indirect functional call sleds having up to 855 entries,
of which only two are frequently targeted. gcc, on the other hand, makes considerable
use of both function calls (average sled depth of 32) and generic function pointer (with an
average sled depth of 26 for indirect calls). The performance benefit of the function cloning
optimization is more visible on gcc, as the probability distribution of taken branches falls
off slower than the other applications. For network-facing applications, the performance
overhead is insignificant due to their I/O-bound nature. The average performance overhead
of ProxyCFI on redis-server is 0.25% and overall incurs an average overhead of 0.93% for
all of network-facing applications we evaluated. Table 3.2 shows the break down of the
results of running redis-server with the standard redis-benchmark using 50 parallel clients
and a 3-byte payload.
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Table 3.2 Results of running redis-benchmark on ProxyCFI compliant redis-server versus unhard-
ened baseline

Command Baseline ProxyCFI
(request/sec) (request/sec)

PING INLINE 12320.9 12115.34
PING BULK 12881.67 12926.58
SET 12469.83 12158.05
GET 12941.73 13010.67
INCR 10514.14 11189.44
LPUSH 12227.93 12997.47
RPUSH 11592.86 11828.72
LPOP 12659.83 12255.46
RPOP 12804.1 12604.8
SADD 12218.96 12055.46
HSET 12023.57 11872.7
SPOP 11855.36 11552.39
LPUSH (needed to benchmark LRANGE) 12968.49 12600.12
LRANGE 100 (first 100 elements) 6506.82 6325.19
LRANGE 300 (first 300 elements) 2788.99 2690.05
LRANGE 500 (first 450 elements) 2403.4 2211.26
LRANGE 600 (first 600 elements) 1730.2 1652.59
MSET (10 keys) 10409.08 9959.79

Figure 3.7 shows the percentage increase in the binary size as a result of pointer proxy
instrumentation, both with and without optimizations. On average the code size grows by
49% for our benchmarks with the worst case of 121% for h264ref, due to the large amount
of instrumentation required for its generic function pointers. Finally, Figure 3.8 shows the
impact of ProxyCFI verification and load-time proxy randomization on program load times.
As shown in the graph, the load time impacts are minimal, adding at most 1 second to the
load time of the largest benchmark.

Shared library performance. Shared libraries have a strong reliance on indirect calls and
jumps, which poses a challenge to a ProxyCFI system because all control flow indirection
must be replaced with multi-way direct branches. In our analyses, we measure the cost of
our shared library support infrastructure by microbenchmarking entries and exits to shared
libraries, ultimately comparing the cost to unprotected shared library calls. The average
percent slowdown for a shared library call using optimized ProxyCFI compilation is 1.48%
and 2.31%, respectively, for the best and worst-case average sled hit depths observed in our
benchmark experiments.
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Figure 3.6 Performance Overhead of ProxyCFI. ProxyCFI (Unopt.) shows the performance
overhead for unoptimized, while ProxyCFI (prof.) and ProxyCFI (Prof. + function clon.) show per-
formance with varied optimizations applied. The numbered programs on the left are computationally
intensive programs from SPEC2006, while the unnumbered programs on the right are I/O-intensive
benchmarks.

Unprofiled Profiled Profiled
+ cloning

Performance
SPEC 39.95% 8.14% 5.95%

Network 4.15% 1.21% 0.93%
Overall 25.9% 5.43% 4.09%

Binary Size
SPEC 51.9% 51.9% 61.5%

Network 44.4% 44.4% 50.6%
Overall 49.1% 49.1% 57.4%

Sled Hit Depth Fptrs 18.54 1.33 1.31
Returns 7.03 1.26 1.24

Table 3.3 Summary of ProxyCFI Overheads. This table summarizes the performance and code
size impacts of ProxyCFI. The top line lists the slowdown for ProxyCFI instrumented programs
running on an Intel Xeon CPU. The second line lists the impact on code size due to ProxyCFI, with
and without optimizations. The bottom line of the table shows the average depth into multi-way
branch sleds at jumps, with and without optimizations.

Load-time overhead. We measured the load-time overhead incurred by pointer proxy
randomization at load time. We observed that it has approximately linear relationship
with code size, consistent with previous works that perform load-time randomization [39]
[68]. Figure 3.8 shows the load-time overhead incurred for the benchmarks used for our
evaluation, the longest being 1200 ms for redis-server. The average load time is 0.98 ms per
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Figure 3.7 ProxyCFI’s Increase in Code Size. This graph shows the impact of ProxyCFI on
code size. Code size increases are shown with respect to the original program with code pointers and
no control flow protections. The blue bars (left) represent unoptimized ProxyCFI programs, while
the green bar (right) represents optimized ProxyCFI programs. The function-cloning optimization
introduces code into the program binary, thus, its increased performance and security comes with a
slight increase in code size.
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Figure 3.8 ProxyCFI’s load-time overhead vs. code size This graph shows the impact of pointer
proxy randomization on load-time. It has approximately linear relationship with code size, the longest
being 1200ms, consistent with previous works that perform load-time randomization.

KB of code size, which is comparable to Binary Stirring [39] and O-CFI[68].
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3.4.3 Security Analyses

To assess the security strength of ProxyCFI, we first examine its ability to stop control
flow attacks in the RIPE attack suite, then we examine to what extent ProxyCFI can stop
real-world control flow attacks, including CFG mimicry attacks.

Penetration testing with RIPE RIPE is a control flow attack testbed that generates at-
tacks by permuting five dimensions of attack: location (e.g., stack, heap, ...), target (e.g.,
return address, function pointers, ...), overflow technique (e.g., direct/indirect) and function
of abuse (e.g., memcpy, ...) [57]. Native RIPE targets 32-bit x86 code; thus, with the help
of a recently implemented low-fat pointer extension [28], we ported the RIPE test suite to
x86-64. Our port supports the following five dimensions: location, target (excluding setjmp()

and longjmp()), overflow method and overflow type. Permuting all the aforementioned RIPE
dimensions will result a total of up to 850 unique tests. With all built-in defenses (ASLR,
DEP and stack canaries) disabled, 264 attacks succeed on our baseline system (Ubuntu
16.04). With ProxyCFI protections, 100% of the RIPE attacks are stopped. In addition,
ProxyCFI was able to detect the exact point at which attacks escape the CFG.

Real-world vulnerabilities. To evaluate the effectiveness of ProxyCFI against real at-
tacks, we included recent attacks reported on the National Vulnerability Database (NVD)
[69] in our evaluation. We examined two specific types of exploits: making an application
crash (to cause Denial of Service attacks) or remote arbitrary code execution attacks. Using
ProxyCFI we were able to detect the first variety of attacks by enforcing the dynamic
execution flow which caused the crash, and we completely stopped the later by detecting
tampering to any pointer proxy. We adopted the vulnerabilities reported on NVD into
our benchmarks and introduced exploits that perform control flow attacks including CFG
mimicry attacks.

With ProxyCFI, we were able to stop all of the following real-world attacks, in-
cluding CFG mimicry attacks on Bladeenc. None of the tested vulnerabilities were able
to inject code locally or remotely, and all of the denial of service attacks declared attacks
immediately upon invocation. In testing, we found that the declared violations enabled us to
quickly identify the root cause of the vulnerability. We analyzed four attacks.

MuPDF has a stack-based buffer overflow vulnerability in the xps parse color() func-
tion that performs an unchecked strcpy() of a user supplied (via XPS input) array to a fixed
size buffer[64]. The exploit uses this bug to overwrite the return address and jump to an
ROP gadget. With ProxyCFI, we were able to detect the stack pivot based on the corrupted
pointer proxy.
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Bladeenc’s command line parser uses unchecked calls to strcpy() to copy parameters to
a 256-byte buffer that is exploited for arbitrary code execution by using a carefully crafted
command line arguments[65]. The exploit corrupts a function pointer to jump to another
function that is also in its legal target set to hijack control flow via a CFG mimicry attack.
We were able to detect the exploit when trying to jump using a forged pointer proxy (which
was interpreted as invalid pointer proxy from the source address).

Dnsmasq has a vulnerability caused by an unchecked use of memcpy() in the
dhcp6 maybe relay() function to a 16-byte field of the variable state. This bug allows
an attacker to perform inter-object overflow to perform ROP attack. Using ProxyCFI, we
were able to detect all of the exploits.

Gravity contains a stack-based buffer overflow in the function operator string add()

which can be used to write past the end of a fixed-sized static buffer to achieve code exe-
cution. The exploit uses this vulnerability to overwrite a return address using a malicious
Gravity script. For the ProxyCFI hardened version the attack was detected when the exploit
tried to make an indirect jump based on forged pointer proxy.

3.5 Related Work

Memory safety. Memory corruption attacks have been often used to hijack control flow,
either by injecting code or reusing existing code. Code reuse attacks, including ROP [9],
JOP [24] and return-into-libc [8], are particularly powerful as they defeat even standard
protections deployed today. Data execution prevention [7] [6] is sidestepped entirely as reuse
attacks need not inject code. While in theory address space layout randomization (ASLR)
[5] should stop address forgery, only a single leaked pointer is enough to compromise all
benefits of randomizing code addresses, which can be accomplished with a buffer over-read
[47]. Comprehensive memory safety techniques, such as Softbound [27], can completely
eradicate memory exploitation, but they suffer from high overhead or compatibility issues,
deeming them as yet impractical for widespread adoption.

PointGuard [42] protects pointers by encrypting them on storage and decrypting on
dereference. To achieve low overhead, the defense uses XOR-encryption of pointers with a
global key, which makes it possible for an attacker to exploit the cryptography. They can do
this by partially overwriting pointers and performing brute-force relative distance attacks to
forge pointers that differ only in the least significant bytes. However, a cryptographically
secure software-based version is prohibitively expensive, preventing widespread use.
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Control flow integrity. A new wave of practical defenses has emerged with a focus on
validating that execution adheres to a static, programmer specified CFG. Control flow
integrity (CFI) [10] was the first of these CFG defenses. The defense inserts checks be-
fore indirect branches to ensure that all indirect control transfers are within the statically
discovered CFG. Various coarse-gained variants have relaxed CFI constraints to achieve
practical solutions through both software and hardware approaches[11][50][51][52]. CCFIR
[11] uses a load-time randomized springboard section to redirect all indirect control flow
transfers, which have been bypassed by a successive work [53]. Intel CET [51] provides
rudimentary hardware protection for forward edges through its indirect branch tracking
by enforcing coarse-grained CFI, which restricts the targets of indirect branch instructions
(indirect call/jump) to entry points of basic blocks. Microsoft CFG enforces a weak form
of CFI by restricting indirect function calls to function entry points [52]. Unlike these
coarse grained CFI techniques, ProxyCFI provides fine grained protection, and also affords
protection against CFG mimicry attacks.

CCFI [14] is a fine-grained CFI technology that protects code pointers by storing hash
based message authentication code (MAC) alongside code pointers and checking the MAC
before indirect branches. While CCFI can protect against CFG mimicry attacks, its high
performance overhead (52% for SPEC’06) will undoubtedly limit its applicability in pro-
duction environments. Like CCFI, ProxyCFI provides fine-grained control flow protection,
while incurring significantly lower overheads (only 5.9% average slowdown for SPEC’06).

Other control flow integrity works have proposed to completely remove instructions
employed for control flow hijacking attacks. Return-less kernels [63] avoid use of ret

instruction by replacing them with a lookup into a static return table, which provides pro-
tection solely against return-based attacks. Control-data isolation (CDI) [70] rewrites both
forward and backward edges with exclusively direct branches. CDI would conceivably
constrain execution to the programmer-specified CFG, if it were to verify that all binaries
adhered to CDI compilation requirements. But since the approach still uses code pointers to
identify program pointers, the approach is readily attackable with control flow attacks that
do not leave the CFG, such as Counterfeit OOP [13]. We adopt CDI’s approach of excising
indirection from the program, but we back it up with a load-time verifier that guarantees
the use of pointer proxies for all indirect control flow. Moreover, ProxyCFI addresses CFG
mimicry attacks by replacing code pointers with pointer proxies that utilize per-function
namespaces, which are assigned at program load-time to execute-only memory.

Readactor [71] replaces code pointers in data with execute-only trampolines to their
targets. However, hidden functions imported from other sub-modules can be invoked if
trampoline addresses are even partially disclosed [72]. Code-Pointer Integrity (CPI) [33]
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provides memory safety for code pointers by storing them (and pointers that point to them)
in a safe region, then instrumenting and bounds-checking all accesses to that region. CPI
requires allocation of a safe region inaccessible to an attacker which is achieved by segmen-
tation on 32-bit x86 systems and by information hiding on x86-64 systems [73]. ProxyCFI
does not require any special data region protections. Moreover, ProxyCFI begins to chip
away at the power of CFG mimicry attacks through the use of per-function pointer proxy
namespaces and load-time assignment of pointer proxies.

3.6 Chapter Summary

While significant effort has been exerted to shut down control flow attacks, their existence
and value persists today, even 40 years after the first buffer overflow attack. With ProxyCFI,
we take the novel approach of replacing all of a program’s code pointers with the much
less powerful pointer proxy. A pointer proxy is a random identifier representing a specific
program entry point from the context of a specific function. A control transfer with a
pointer proxy utilizes a multi-way direct branch that fully anticipates all of the potential
jump targets. As such, ProxyCFI provides much resistance to advanced control flow attacks
because it is difficult to forge/swap pointer proxies to mimic a legitimate CFG transition.
Our implementation of ProxyCFI is built into the GNU GCC C/C++ compiler toolchain,
such that all code pointers are replaced with pointer proxies, including those contained
within shared libraries. analyses of our optimized pointer proxy implementation reveals that
they introduce minimal slowdown, only an average 4% slowdown with optimizations across
a wide range of benchmarks. Moreover, security analyses of ProxyCFI shows that it stops
all of the control flow attacks we tested, including 100% of the attacks in the RIPE x86-64
attack suite and a wide range of real-world attacks, including CFG mimicry attacks.
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Chapter 4

Runtime Stack Layout Randomization

4.1 Data-Oriented Attacks and Defenses

Despites decades of security research, memory corruption still poses a great threat to soft-
ware systems. This results from the fact that a large amount of code has been written with
memory unsafe languages like C and C++, making them vulnerable to memory corruption
attacks. Using memory corruption, attackers deploy control-flow attacks in which the ex-
ecution flow of a program is manipulated to execute code sequences unanticipated by the
programmer, with the ultimate goal of circumventing system security measures.

Due to the prevalence and power of control-flow attacks, various mitigations have
been proposed, such as Control-flow Integrity (CFI) [32], which enforces the runtime
execution path of a program to adhere to the statically determined Control-Flow Graph
(CFG), and Code Pointer Integrity (CPI) [74], which provides memory safety for code
pointers. These techniques have been shown to be effective at confining programs to the
programmer-specified control flow graph. However, widespread adoption of control-flow
attack protections has resulted in attacks that corrupt non-control data to perform malicious
operations. Non-control data attacks do not violate the constraints imposed by these defenses
as they do not violate control-flow of the program, rather they reuse existing control-flow
to manipulate program data. Moreover, recent studies have shown that Turing-complete
computation capabilities can be achieved without leaving the statically determined CFG [12]
or without modifying code pointers [75]. Control-flow bending bypasses CFI protections by
swapping target addresses of an indirect branche with another valid address from the same
branch. Data-Oriented Programming (DOP)[75] enables an attacker to execute a sequence
of instructions within the legitimate control flow of the program by repeatedly corrupting
non-control data. In this thesis, we broadly term any attack that provides a programming
capability without leaving the programmer-specified CFG as a data-oriented programming

(DOP) attack.
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Address randomization defenses, e.g., address space layout randomization (ASLR), can
be used as a first line of defense against DOP attacks. However, information leaks are
increasingly being utilized to bypass these defenses, including fine-grained and runtime
based randomization techniques [21]. Information leaks coupled with attackers’ knowledge
of program internals can successfully bypass state-of-the-art randomization techniques and
allow an attacker to launch a successful DOP attack, as we will show in Section 4.2.3.

Most DOP gadgets take advantage of the deterministic nature of the stack layout of
programs to grant an attacker the ability to corrupt operands used by gadgets. Stack layout
randomization, which has already been proposed, could be a powerful tool to stop DOP
attacks. However, those techniques fall short in the presence of memory disclosure by
relying on one-time static randomization or coarse-grained random padding. Additionally,
it is a requirement to have a true random source at runtime for randomizing the stack, as
it can be expected that an attacker will have access to the memory variables used to drive
pseudo-random number generation.

In this thesis, we evaluate the effectiveness of previously proposed stack layout random-
ization techniques at stopping real-world DOP exploits. We show that previous stack-layout
protections can be easily overcome by DOP attacks. To address this deficiency, we present
Smokestack, a runtime stack-layout randomization technique that randomizes function stack
layout at each invocation, using a true random permutation selection that is protected against
memory disclosure attacks. Using these defenses, Smokestack is able to thwart proposed
and real-world DOP attacks.

Objectives and Contributions. Our objective is to develop a runtime solution resilient
to DOP attacks, i.e., attacks that manipulate program execution but do not leave the
programmer-specified CFG.

First, we assess the effectiveness of prior stack layout randomization schemes at stopping
data-oriented attacks and enumerate their limitations. To this end, we developed a real-world
DOP attack based on a recently disclosed vulnerability [76] that is able to achieve a Turing-
complete computation capability despite the constraints imposed by previous stack-layout
randomization schemes.

Then, we alleviate the limitations of prior stack randomization techniques by presenting a
novel runtime stack layout randomization solution, called Smokestack [77], which is capable
of stopping stack-based data-oriented attacks. Smokestack randomizes the stack layout of
functions for every function invocation, thereby thwarting attacker attempts to discover stack
frame layouts. Smokestack implements true-random selection of stack layout permutations
that cannot be anticipated, even by attackers with full control over data memory.
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Finally, we implemented Smokestack in the LLVM compiler framework. Our im-
plementation provides a secure random permutation, at function invocation, using an
intrusion-resistant pseudo-random number generator (cased on the Intel AES-NI instruction
set extensions), which is seeded from a true random number source. We present a compre-
hensive performance evaluation of the SPEC 2006 benchmarks and additional previously
vulnerable applications. In addition, we assessed the effectiveness of Smokestack at stopping
data-oriented attacks using real-world DOP attacks.

The remainder of the chapter is organized as follows. Section 4.2 presents background
on data-oriented attacks and assesses the strength of previous stack layout randomization
techniques. Section 4.3 presents details of our proposed runtime stack layout randomization
scheme. Sections 4.4 details our LLVM-based implementation. Section 4.5 presents a
performance and security evaluation of our prototype system. Finally, Section 4.7 concludes
the chapter.

4.2 Background

Attackers can exploit memory corruption vulnerabilities in type-unsafe languages like C
and C++ to control vulnerable programs. These vulnerabilities are commonly exploited in a
control-flow hijacking attack, in which an attacker uses memory errors to corrupt control
data, such as a function pointer, return address, or C++ virtual function table, to eventually
hijack the control flow of the program. A wide range of methods for control-flow protection
have been proposed. These include enforcement based techniques like CFI [32], CPI [74] as
well as randomization techniques like timely randomization of code pointers (TASR) [78].
These mitigations either prevent corruption of control data [74] or stop indirect jumps from
leaving the programmer-specified CFG.

With the introduction of powerful control-flow protections like CFI [32], the next avenue
for an attacker is using a memory error to overwrite non-control data to cause non-control
data attacks [15], which have been shown to cause detrimental effects, such as the leaking
of secret keys (HeartBleed) [16]. In non-control-data attacks, the execution of the program
adheres to a valid control-flow path in the CFG of the program; however, the data and
how it is manipulated is controlled by the attacker. Chen et al. [15] demonstrated that
non-control-data attacks can be used to overwrite sensitive data used for decision-making
and can cause leakage of sensitive data or cause privilege escalation by overwriting variables
used in authorization decisions. In its more generalized form, attackers have shown that
Turing-complete computations with rich expressiveness can be achieved by manipulating
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only non-critical data [12].

4.2.1 Data-Oriented Programming

Data-oriented programming (DOP) attacks work to corrupt non-control data to execute
sequences of instructions within the program using attacker-controlled operands. Each
sequence of instructions, called a DOP gadget, performs a single operation that contributes
towards the overall attack payload. DOP attacks can achieve Turing completeness by chain-
ing DOP gadgets together through the control of a vulnerable loop, called a DOP gadget
dispatcher, that is enclosing multiple DOP gadgets.

A few techniques have been proposed to mitigate non-control data attacks, typically
relying on protecting only sensitive data, e.g., kernel data [18] and programmer-annotated
critical data [79]. However, proposed mitigations have been mostly ineffective. Hu et

al. [75] demonstrated that DOP attacks can bypass state-of the art defenses like ASLR to
perform malicious operations on real-world applications.

4.2.2 Previous Stack Randomization Efforts

DOP attacks’ strong reliance on the manipulating stack variables suggests that previously
proposed stack layout randomization efforts may provide a groundwork to stop DOP attacks.
Prior works in stack randomization perform one or more of the following transformations:
Stack base address randomization. This transformation randomizes the base address of
the stack by allocating random-sized padding at the beginning of the program to make the
absolute address of stack objects unpredictable [80, 5, 81].
Random padding at function entry. This transformation adds a random padding at the
beginning of functions to randomize the relative alignment between stack frame allocations.
Forest et al. [81] proposed adding a random padding before stack frames of functions with
buffer variables at compile time. They use the size of the stack frame (greater than 16 bytes)
to identify functions containing buffer variables. For every stack frame allocation greater
than 16 bytes, their technique adds one of the 8 possible paddings ( 8, 16, ..., 64 bytes)
randomly.
Static stack layout randomization. This transformation permutes stack object allocations in
a function at compile time to randomize the relative distances between objects in a stack
frame [80].

The main weakness of prior stack layout randomization schemes is that they focus only
on protecting against the corruption of code pointers in the stack, which requires knowledge
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of the absolute distance between the vulnerable buffer and code pointer of interest. However,
DOP attacks only require relative distance to variable of interest, a local variable used
in a DOP gadget and a DOP gadget dispatcher for a successful attack. Consequently, to
assess the effectiveness of previous stack randomization efforts in stopping DOP attacks, we
developed a proof-of-concept DOP exploit for a recently disclosed vulnerability in librelp

logging library (CVE-2018-1000140) [76]. In the following section, we present the details
of the attack.

4.2.3 Bypassing Previous Stack Randomization Efforts

The vulnerability in librelp is caused by improper use of snprintf(). The C library function
snprintf() writes a null terminated series of characters and values to a non-zero sized buffered
and returns the number of bytes that would have been written assuming there was sufficient
space, excluding the terminating null byte. It is a common coding mistake to use snprintf()

in a loop, assuming it returns the number of bytes actually written. If an attacker manages to
control the size of the string to be written on the boundary of the buffer, successive iteration
of the loop will grant the attacker a non-linear overflow of the buffer, which can bypass
protections, such as stack cookies. Listing 4.1 shows the vulnerable code in librelp.

relpTcpChkPeerName() checks valid Subject alternative names (SANs) within a X.509
certificate for a peer name until it finds a match. While doing so, it copies all SANs checked
so far to a buffer for error reporting. Our proof-of-concept attack exploits the stack-based
buffer overflow in the relpTcpChkPeerName() function, as shown in Listing 4.1, to con-
struct a DOP gadget dispatcher and series of DOP gadgets. This is achieved by repeatedly
corrupting local variables of functions in the call hierarchy used for controlling a loop
and performing operations in the socket initializing function —relpTcpLstnInit(). Using
static analysis, we discovered gadgets for MOV, DEREFERENCE and STORE operations.
Moreover, we were able to de-randomize statically randomized stack layout, random stack
padding and ASLR by taking advantage of the semantics of the underlying program.

1 relpTcpChkPeerName ( . . . , g n u t l s x 5 0 9 c r t t c e r t ) {
2 . . .
3 c h a r szAltName [ 1 0 2 4 ] ;
4 c h a r a l lNames [ 3 2∗1 0 2 4 ] ; /∗ f o r e r r o r r e p o r t i n g ∗ /
5 b F o u n d P o s i t i v e M a t c h = 0 ;
6 iAl lNames = 0 ;
7

8 iAltName = 0 ;
9 w h i l e ( ! b F o u n d P o s i t i v e M a t c h ) {
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10 szAltNameLen = s i z e o f ( szAltName ) ;
11 gnuRet = g n u t l s x 5 0 9 c r t g e t s u b j e c t a l t n a m e (
12 c e r t , iAltName , szAltName ,
13 &szAltNameLen , NULL) ;
14 i f ( gnuRet < 0)
15 b r e a k ;
16 e l s e i f ( gnuRet == GNUTLS SAN DNSNAME) {
17 . . .
18 /∗ s t a c k based b u f f e r−o v e r f l o w ∗ /
19 iAl lNames += s n p r i n t f (
20 a l lNames +iAllNames , s i z e o f ( a l lNames )−
21 iAllNames , ”DNSname : %s ; ” , szAltName ) ;
22 relpTcpChkOnePeerName ( pThis , szAltName ,
23 &b F o u n d P o s i t i v e M a t c h ) ;
24 }
25 ++iAltName ;
26 }
27 . . .
28

29 done :
30 r e t u r n r ;
31 }

Listing 4.1 Vulnerable function in librelp logging library.

We exploited this vulnerability by supplying a maliciously crafted X.509 certificate,
containing more than 32KB of ”subject alt names”, to a GnuTLS enabled RELP logging
service. By manipulating the size of the string for ”subject alt name” on the 32KB boundary,
we were able to vary the gap precisely enough to control which part of the stack to overwrite.
This is essential for our proof-of-concept attack, as it enables the attack to avoid unintended
corruption of adjacent stack resident data, which might lead to a crash.

Bypassing static stack layout randomizations To bypass static stack layout randomiza-
tion schemes, an attacker can perform a read attack and then infer the layout of the stack by
analyzing its contents. In our proof-of-concept exploit, we de-randomized the stack layout of
the program by looking for the location of the local variable hints, which is a struct addrinfo

instance that gets printed to stdout in case of an address error. Then we use the snprintf

vulnerability in the vulnerable function to repeatedly overwrite the local variables used for
the DOP gadgets and gadget dispatchers to perform our DOP attack. Using this approach,
we could easily bypass all previously proposed one-time permutation and padding-based
stack-layout randomization schemes.
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4.3 Smokestack Runtime Stack Layout Randomization

4.3.1 Design Objectives

Our main objective is to provide a practical mitigation technique to stop stack-based
non-control data attacks. To achieve this goal, our solution has to meet the following
requirements:

• Provide a runtime stack randomization solution resilient to memory disclosure and
pointer leaks.

• Have low performance overhead on both CPU-bound and I/O-bound applications.

• Be compatible with legacy code. This requirement includes source and binary as well
as modular support to enable gradual migration of code.

4.3.2 Threat Model

Prior stack layout randomization schemes only consider control-flow attacks and hence rely
on the assumption that obfuscating the absolute address of stack resident data is sufficient to
stop runtime attacks. Even though they are shown to mitigate control-flow attacks, purely
data-oriented attacks are not stopped by these protections. Section 4.2.3 shows that an
attacker can use DOP attack to undermine static stack layout randomization and random
padding schemes.

In this thesis, we assume a powerful attacker who is able to read/write all writable data
memory. However, we assume the attacker is unable to write to non-writable data/code sec-
tions and registers used by our instrumentation code. In all, we consider a strong adversary
capable of:

• Bypassing protections, such as ASLR, using memory disclosure vulnerabilities in the
program to get full read access to all code pages mapped in the address space of the
program.

• Exploiting memory vulnerabilities and using the semantics of the underlying program
to reverse engineer a randomized stack layout of a function based on a disclosed stack
frame data, which allows the adversary to instantiate a runtime attack on future calls
of the same function.

• Performing a brute-force attack with a finite number of attempts before being detected
by the system.
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Figure 4.1 Smokestack system Overview. Overview of our runtime stack layout randomization
scheme with the components of Smokestack highlighted.

4.3.3 Overview of Smokestack

The primary means to perform non-control-data attacks is to identify local stack variables or
registers from the caller that are saved on the stack at the entry of a function and restored be-
fore it returns. Then, successive steps of the attack exploit memory corruption vulnerabilities
to control the identified local variables to execute the attack payload using the instructions
in the vulnerable program. Thus, our protection needs to ensure the absolute address of the
variables as well as the relative distance between the changes with every function invocation.
Smokestack achieves both goals by dynamically deciding, at the function entry, the ordering,
relative distance and alignment between all stack resident objects.

Smokestack performs allocation of stack frames with live re-randomization while re-
taining all the desirable features of stack allocation, such as automatic deallocation of stack
objects for all possible control-flow paths. It achieves this by replacing each stack allocation
in a function with a slice into the total allocation, where its location within the total allocation
is decided dynamically at the function entry, based on true-random perturbation of the local
variables.

Figure 4.1 shows the overview of Smokestack infrastructure. To avoid the performance
overhead associated with computing a permutation at runtime, Smokestack embeds a read-
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only permutation box, P-BOX, that contains all the possible permutations for all functions
in in a shared library that gets dynamically linked with Smokestack-hardened programs.
Section 4.3.5 presents optimizations we employed to reduce the associated overheads. The
details of the Smokestack compilation and runtime follow.

4.3.4 Discovering Stack Allocations

In this phase, we identify the stack frame allocations for all functions in the program. This
includes gathering the type and alignment requirement of for each function’s resident objects.
We then use this meta data to generate possible permutations of its stack based allocations
and the total allocation considering the alignment requirements of all objects. This step
requires adding padding to fulfill the alignment requirements of allocations in every possible
permutation, which also contributes towards the finally entropy of our randomization.

Algorithm 4.2 Smokestack Permutation Generator. This algorithm generates all the
possible permutations of stack allocations within a function.

1: procedure ALIGN(index,alignment)
2: if index%Alloca.alignment == 0 then
3: return index
4: else
5: return (index / alignment + 1)* alignment
6: procedure PERMUTE(F)
7: P Table← /0
8: N←Count(F.Alloctions)
9: for p index in 0 to N! do

10: Allocas← F .Allocations()
11: temp← p
12: curr index← p
13: for a index in 0 to N! do
14: Allocas←F.Allocations
15: e←temp/(N−a index)!
16: temp← temp%(N−a index)!
17: index← ALIGN(index,Allocas[e].alignement)
18: Indexes[e]← index
19: index← index+ sizeo f (Allocas[e])
20: Allocas.pop(e)
21: P Table.append(Indexes)
22: Empty(Indexes)
23: return P Table
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Figure 4.2 Function call and return in a Smokestack. This figure shows an overview of the
stack layout randomization steps involved in Smokestack function calls and returns for the AES
based random number generation schemes.

Generating Random Permutation In this stage, we generate all the possible permuta-
tions of stack allocations of each function. To do this, we represent each stack allocation
as an index from the start of the stack frame, a size and alignment requirement. We then
generate all possible permutations, in lexical order, for all the stack allocations within the
function. Algorithm 4.2 shows the pseudo-code of our permutation engine. The permutation
engine takes all the stack allocation in a function as an input. At each iteration of the outer
loop, it generates a unique permutation of all the allocations within the total allocation.
After computing all the iterations, we will have a table, where each row in the table contains
a set of indexes for a given random permutation of allocations in the function. We then
permute the rows in a table to avoid the lexical correlation between any two consecutive
rows in a table. Finally, we store the permutation table of the function, which holds the
indexes of each allocation in the total allocation of the its stack frames for every possible
order of allocations, in the P-BOX. A P-BOX is shared among all functions with the same
stack format. In section 4.3.5, we show how we reduce the associated memory overhead by
sharing permutation tables between different functions. Tables in the P-BOX are indexed by
a random number, generated at function invocation, to get the indexes of the local variables
from the base of the stack frame for that particular permutation.
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Runtime Allocation of Randomly Permuted Stack Frames

This phase instruments the program in order to randomize the stack layout of each function
call by randomizing the order and alignment of all of local variables. This is achieved by
maintaining a single stack frame allocation with a size equal to the total allocation and
replacing all stack variable allocations in the stack frame with a slice into this total allocation.
Figure 4.2 shows the instrumentation introduced by Smokestack. Upon a function invocation,
a random permutation of the local variables is chosen, using a random number to index the
table associated with the function in the P-BOX to get a row of indexes. Then, allocations in
the stack frame are assigned to their respective slices within the total allocation based on the
indexes in the row of indexes. This will ensure that the absolute address and the relative
distance to a stack resident object, which can be used in a DOP gadget, is unpredictable for
each invocation of a function.

Random Number Generation We considered various random number generation
schemes at the beginning of each function to choose a random permutation of local variables.
We considered any form of pseudo-random number generation, in which the algorithms
state is in memory, as unsafe, since a powerful DOP-oriented attacker could certainly read
and manipulate the state of a memory-based pseudo-random generator.

• Generating a true random number at the entry of each function. For this scheme,
we tested a true random number generator (i.e., /dev/random) and rdrand, the
on-chip hardware random number generator on Intel processors. As /dev/random
stalls when the system’s internal entropy pool is exhausted, we tested only rdrand
on our prototype implementation.

• Generating cryptographically secure pseudo-random number. For this scheme, we
generate encryption keys using true random number. This is accomplished by main-
taining a universal call counter to track the number of function calls before generating
a new true random number to guarantee strong source of entropy. At the entry point of
a function we generate a pseudo random number using AES counter mode encryption
by using the last generated random number as an initial value and the call counter as a
counter. We used the Intel’s AES-NI extensions [82] to accelerate our random number
generation. On our prototype implementation, we tested by varying the rounds of the
AES encryption to see the trade-off between security and performance.

Our instrumentation defers randomization of allocations whose size cannot be deter-
mined at compile to runtime by adding a random sized padding on top of the static total
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allocation. Variable length arrays (VLA), which are supported in the C99 standard, are one
such example. We randomize the layout of stack frames with VLAs at runtime by adding
a random sized dummy alloca before each VLA in a stack frame. This randomization
guarantees that both the absolute address of the VLA and its relative distance from other
stack resident objects is indeterministic.

Protecting Smokestack Defenses

Finally, the instrumentation phase adds checks to detect attacks that bypass our instru-
mentation, for example, by jumping into the middle of a function. To achieve this the
instrumentation phase adds a unique load-time identifier for each function, which is XOR’ed
with a random key at the prologue of the function. At the epilogue, it is XOR’ed again
with the random key and checked against the function identifier. These checks, together
with the the stack runtime stack layout randomization, can be a second line of defense for
control-flow attacks.

4.3.5 Performance and Memory Size Optimizations

To reduce the performance overhead and the memory footprint of our instrumentation, we
applied the following optimizations to Smokestack:

• P-BOX size of power of 2. This optimization rounds up the size of P-BOX from n! to
the next power of 2. This is achieved by wrapping around indexes n! to next-power-

of-2. It allows the replacement of a modulo operation in our instrumentation with a
much faster left shift operation.

• Rearranging Stack Allocations This optimization rearranges stack allocations of func-
tions to use existing P-BOX entry tables if a match table is already in the P-Box. For
example, function f1 with local variables int, double can share a P-BOX entry
with function f2 with local variables double, int. This optimization reduces
the associated memory overhead and doesn’t have any effect on the performance as
the actual order of the variables in the resulting binary is determined by subsequent
phases of the compilation.

• Rounding up Allocations. This optimization reduces the memory usage of P-BOXs by
sharing a table for functions having stack frames that differ only by one primitive allo-
cation. For example, functions f1(double, double, int) and f2(double,
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double) can share a P-BOX table at the expense of extra padding in the stack frame
of f2.This optimization takes advantage of the fact that the least significant indexes
within a permutation entry of a smaller table is same as permutation of a bigger size
in lexical order of permutation. This optimization also improves performance for
frequently called functions.

4.4 Implementation

We implemented Smokestack on top of the LLVM 3.9 compilation framework [83], modi-
fying the LLVM libraries and the compiler-rt runtime. Our analysis and instrumentation
passes operate on LLVM intermediate representation (IR), which is generated from source
files using the LLVM clang front-end.

4.4.1 Analysis passes

We implemented P-Box generation in several LLVM passes. The first function pass gathers
all stack allocation for all functions that have an on-stack memory object. Then, a module
pass uses the meta-data generated by the function pass to generate a P-BOX table for each
function, considering the alignment requirements and the optimization discussed in Section
4.3.5. The final analysis pass generates the P-BOX for all the unique P-Box entry tables.

Alignment requirements. For primitive types, their alignment requirement can be ex-
tracted as part of the IR instruction. For aggregate and user defined types, we have to
consider both element alignment requirements and aggregate alignment requirements. An
element could be a primitive type whose alignment requirement can be extracted easily or an
aggregate type, in which case the process is recursive. Aggregate alignment requirements, on
the other hand, depends on the alignment requirement of the largest element in the aggregate
type.

4.4.2 Instrumentation passes

The instrumentation pass inserts an allocation with the size of the total allocation at the
beginning of the function and inserts a call to a random number generator inline library
function. Then, it replaces all the alloca’s in the function with getelementptr whose
index is decided by the generated random number. Finally the instrumentation pass inserts
checks to detect attacks that bypass the stack allocation instrumentation.
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4.5 Evaluation

This section presents the detailed performance and security evaluation of Smokestack. We
ran our experiments on an Intel Xeon D-1541 processor, running Ubuntu 16.04 Linux with
32GB memory.

4.5.1 Performance Evaluation

We evaluated the performance overhead of Smokestack using SPEC 2006 benchmarks and
I/O bound real-world applications, e.g., ProFTPD, Wireshark. We ran four experiments,
which varied in implementation of random number generation. pseudo utilizes a memory-
based pseudo-random number generator. This is only included as a performance baseline,
as it is considered completely unsafe by our threat model (since the attacker can expect the
state of the generator at any time). The AES-1 and AES-10 experiments use the Intel AES-NI
instructions to repeatedly re-encrypt a true-random seed, with the former experiment only
running one AES round and the latter running all 10 required by the specification. Finally,
RDRAND uses the Intel RDRAND instruction to get a true-random number for use by the
stack layout permutation code.

Figure 4.3 shows the performance overhead of Smokestack for the SPEC 2006 bench-
marks. Our measurements show that the performance is dependent on the way we generate a
random number. For unsafe pseudo-random number generation, the normalized performance
varies from a speedup of 2.6% to a slowdown 7.2%, averaging to 0.3% slowdown over
the SPEC2006 benchmarks. Using a cryptographically secure pseudo random generation
(AES-128 10 rounds), the overhead spans from 0.6% up to 20% and averaging 8.7%. To
assess the overhead vs. security trade-off, we also examined the performance of a less secure
pseudo-random number generation (AES-128 1 round), which has an average slowdown of
2.2%. For RDRAND-based true-random number generation, there was greater slowdown
due to the bandwidth limitations of the true random number generator. This experiment
experienced an overall slowdown of nearly 19%.

To examine the source of performance gain on our benchmarks, we ran the Oprofile
[84] tool with our SPEC 2006 experiments, which clearly show the variation on the RE-

SOURCE STALLS parameter, depending on the benchmarks. Our analysis illustrates that
this result is due to instruction scheduling and register pressure by Smokestack. On some
benchmarks, Smokestack increases register pressure and consumes load delay slots during
the CPU scheduling. The register pressure improved performance on benchmarks where
registers are underutilized, and degrades performance if registers were already fully utilized.
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Figure 4.3 Percentage performance overhead of Smokestack. This figure shows the percent-
age runtime overhead of Smokestack on SPEC2006 benchmarks. The experiments varied based on
the method by which we generated random numbers. RDARAND shows the use of rdrand, the on-
chip random number generator on Intel processors. The others show use a cryptographically secure
pseudo-random number, AES-128 counter mode with 10 rounds (AES-10) and less secure variant
with 1 round (AES-1). Finally, pseudo shows the overhead of using an insecure memory-based
pseudo-random number generator.

On I/O bound applications, we used for our performance evaluation, ProFTPD and Wire-
shark. Smokestack incurs negligible overhead, with the worst case performance overhead of
5%.

4.5.2 Memory Overhead

We evaluated the memory overhead of Smokestack by measuring the maximum resident set
size (ru maxrss) while running SPEC 2006 benchmarks. Figure 4.4 shows the results of
these experiments. It’s interesting to note that benchmarks with higher memory overhead,
like perlbench and h264ref, have lesser performance overheads. This is due to the fact that
the source of the memory overhead is the addition of the index P BOX in the read-only data
section, which doesn’t strongly affect the I-cache miss rate.

4.5.3 Security Analysis

In this section, we assess effectiveness of Smokestack in protecting against DOP attacks. To
this end, we first analyze the security vs. data rate of the sources of randomness we used for
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Figure 4.4 Percentage memory overhead of Smokestack. This figure shows the percentage
increase in maximum resident set size of Smokestack on SPEC2006 benchmarks.

Table 4.1 Smokestack source of randomness. shows the rate at which random values can be
generated by the random generator schemes we tested for our prototype implementation.

source Security Rate (cycles/Invocation)
pseudo None 3.4
AES-1 Low 19.2
AES-10 High 92.8
RDRAND High 265.6

our prototype implementation. We then evaluate Smokestack’s effectiveness in protecting
DOP attacks in both synthetic benchmarks and real-world applications.

Source of randomness. We performed tests to examine the rate at which we can generate
random numbers. Table 4.1 shows the rate at which we can generate random numbers,
using random generation schemes with varying security guarantees, back to back on our
test machine. While pseudo is fastest, it also offers no protection. RDRAND, in contrast,
provides true random values for each invocation, but at a great delay. The AES based random
number generators provide a convenient trade-off between security and performance, with
overall quite good performance.

Penetration testing with synthetic benchmarks. We synthesized two types of DOP at-
tacks that exploit buffer overflow vulnerabilities to control local variables used as DOP
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gadgets and also a loop counter used as gadget dispatchers. The first set of attacks use a
stack based buffer overflow vulnerability to corrupt variables in the stack to perform the
attack. And, the second set of attack overflow a buffer in data segment or heap to overwrite
local variables in the stack. We also consider two types of overflows, direct and indirect
(overflows a buffer until a pointer is corrupted, and then uses an assignment through the
corrupted pointer to overwrite the target pointer) —an approach followed by the RIPE [85]
control-flow attack benchmark suite.

Smokestack is able to prevent all the attacks by breaking the DOP gadgets and gadget
dispatchers. All of the direct overflow attacks based on any buffer were stopped. Also, any
indirect overflow attacks based on buffers in the data segment or heap corrupted unintended
locations in the stack, including padding and function IDs, were stopped. All of the indirect
overflows attacks failed on the first step, as they overwrite a different address than the
intended pointer that is used to write to the target pointer.

Real Vulnerabilities. In our final set of security analyses, we tested Smokestack’s ability
to protect against attacks that exploit real vulnerabilities including our own proof-of-concept
DOP attack on librelp logging library. The following reported DOP attacks were considered
for our analysis:

Wireshark network protocol analyzer prior to version 1.8 has a stack-based buffer
overflow vulnerability (CVE-2014-2299 [86]) in mpeg reading function cf read frame r().
This vulnerable function is called from packet list dissect and cache record () to copy user
specifier mpeg frame data to a fixed sized buffer pd. Hu et’al. [75] exploited this vulnerabil-
ity by sending a maliciously crafted trace file that contains a frame larger than the buffer size
(0xffff). Their DOP exploit repeatedly overflows the buffer to overwrite variables col, cinfo,
and parameter packet list in the same function, i.e., packet list dissect and cache record (),
and the loop condition cell list in parent function, gtk tree view column cell set cell data(),
with malicious input. col, cinfo and packet list are used as DOP gadget operands and
packet list used for stitching together gadgets in the subsequent calls to the function
packet list change record(), which contains all the DOP gadgets. We run this attack on a
Smokestack-hardened version of the vulnerable Wireshark version. Smokestack stopped this
attack by detecting the violations when the overflow corrupted unintended critical data, like
Smokestack function identifier, as Smokestack changes the index of pd in the stack frame for
every call of the function.

ProFTPD. has a stack-based buffer overflow vulnerability (CVE-2006-5815) due to the
use of sstrncpy(dst,src,negative argument) in the sreplace() function [87]. Hu et al. has
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demonstrated DOP attacks1, which extract private keys bypassing ASLR, simulate remotely
controlled network bot and alter memory permissions by exploiting this vulnerability.

Extracting private keys bypassing ASLR: ProFTPD stores its OpenSSL private key
in a buffer which has a chain of 8 pointers pointing to it with only the base pointer not
randomized. A successful attacks requires using memory disclosure to de-randomize 7
global pointers. Hu et al. used a DOP attack composed of 24 DOP gadget chains (this
requires corrupting operands of virtual operations consisting MOV, ADD and LOAD for 24
iterations) to successfully extract the OpenSSL private key bypassing ASLR. This attack
was demonstrated to bypass TASR [88], which does fine-grained re-randomization of code
on every output system call.
The other two DOP attacks on ProtFTPD use sreplace() to corrupt relocation metadata in the
link map structure. This is then used by dlopen(), which is invoked in its PAM module to
dynamically load libraries, to process the corrupted relocation metadata. The two end-to-end
exploits used this to simulates a bot that repeatedly responds to network commands and
alters memory permissions to bypass defenses, including wx̂, .rodata and CFI defenses that
use read-only legitimate address tables.

All these attacks repeatedly use a memory corruption vulnerability in sreplace() to
chain together virtual instructions used in the DOP attack by repeatedly overwriting a loop
counter, which is used as a DOP dispatcher. We were able to detect all the attacks on the
Smokestack-hardened version of the affected version of ProFTPD. Smokestack was able
to stop this attack by randomizing the address of the loop counter used to stitch the DOP
gadgets together, hence breaking the gadget chain.

4.6 Related work

Several memory corruption attack mitigation techniques have been proposed. These protec-
tions can generally be categorized in to two classes. The first class is enforcement-based
protections that perform explicit checks based on predefined policies. These techniques vary
from protection, which guarantee full spatial memory safety, such as Softbound [27], to
attacks that target particular type of exploit, such as CFI [32], that protects against control
flow hijacking exploits.

The other class is randomization-based protections, in which a critical asset used by an
attacker for a runtime attack is randomized after it is acquired and before used in a payload.
Randomization-based solutions are more efficient, incurring very low to no overhead, than

1https://huhong-nus.github.io/advanced-DOP/
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enforcement-based solutions. Address space layout randomization (ASLR) [5] is a widely
deployed randomization-based technique. It randomizes the base of sections of a program,
such as code, stack, heap and shared libraries in its address space during load time. However,
ASLR is shown to be ineffective in the presence of even a single memory leak [89] or
brute-force attacks [49]. Successive improvements to randomization-based techniques were
proposed to increase entropy by decreasing the granularity of the randomization to function
level [37], basic-block level [39], and instruction level[40]. However, subsequent works
[21][90] have shown that compile-time and load-time fine-grained randomizations can be
bypassed by runtime attacks that dynamically generate their payloads. Recently, periodic
re-randomization [91] has been shown to be effective in stopping runtime attacks. But it
has only been validated for code pointer protection to thwart control-flow attacks that are
resilient to static randomizations.

With the ultimate goal of taking control of the program, control-flow hijacking is usu-
ally the easiest and the primary way of exploiting memory corruption attacks. To address
control-flow hijacking attacks, a wave of mitigation techniques has been proposed. The
leading approach is control flow integrity (CFI) [32], which is based on constructing the
program’s CFG prior to its execution and validating at runtime whether the execution path
follows a valid edge in the CFG. With the advent of low overhead CFI techniques to protect
corruption of control data, non-control data attacks have received significant attention by
attackers.

Several works propose to mitigate attacks based on non-control-data, including enforce-
ment, randomization and language-based approaches.
Data-Flow Integrity (DFI) [34] statically performs reaching definition set analysis of in-
structions. DFI then instruments read access instructions to ensure that the last instruction
that last wrote to the location is within the reaching definition set of the instruction. Even
though DFI is capable of mitigating DOP attacks, a complete DFI protection incurs a very
high overhead (50 - 100% on SPEC 2000 benchmarks).
PointGuard [42] proposed encrypting all pointers when they are stored in memory and
decrypting them just before they are loaded into registers. However, it uses a single key to
XOR all pointers, hence a single leak on known encrypted pointer from memory can be used
to recover the key. Data Space Randomization (DSR) [43] tries to solve the shortcomings of
PointGuard by using a different key for all variables. However, even that has been revealed
as ineffective in the face of memory leaks [89].
Giuffrida et al.[80] proposed an ASR technique that periodically performs live re-
randomization of program modules. Unfortunately, their re-randomization technique induces
significant runtime overhead when applied when the re-randomization period is small (e.g.,
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50% performance overhead for re-randomization period 1 sec ). In addition, their proposed
technique is tailored to microkernels, relying on hardware-isolation and runtime error recov-
ery. Moreover, their stack randomization is static randomization and randomized padding
that can be bypassed by the techniques we presented in section 4.2.3.
YARRA [19] provides a C language extension for validating sensitive pointers pointing to a
critical data, such as secret keys, in the program as annotated by the programmer. It does
these by using page protection to lock its protected data when running unsafe procedures.
YARRA offers a security guarantee for non-control data attacks against annotated data.
However, it incurs a very high overhead for protecting the whole program (e.g., 6x overhead
on gzip).

HardScope [92] ensures an intra-program memory compartmentalization by enforcing
compile-time discovered variable scope constraints at run-time. HardScope instruments
memory accesses at compile-time to check that the memory address requested is within the
allowed memory areas. HardScope was demonstrated by extending the RISC-V instruction
set with six new instructions. Even though Hardscope has a low overhead, it requires a
hardware support. In addition, it is still susceptible to DOP attacks that share access to the
same global data structures or have a data flow reaching a global data structure.

4.7 Chapter Summary

With widespread adoption of control-flow hijacking attack mitigations, DOP attacks have be-
come an increasingly popular source of attacks against systems. While randomization-based
mitigations are gaining popularity due to their efficiency, we found their protections to be
ineffective at stopping DOP attacks. We also found previously proposed stack randomization
efforts to be ineffective at stopping DOP attacks. Smokestack gains additional power at
stopping DOP attacks by randomizing stack frames for functions each time they are called.
In addition, we leverage true-random stack layout permutation that is resistant to memory
disclosure attacks, forcing the attacker to reverse engineer a function frame in the same
invocation that it is attacked. Our proof-of-concept implementation in LLVM demonstrates
that the approach can effectively stop DOP attacks with only minimal slowdown in program
execution.
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Chapter 5

Runtime Heap Layout Randomization

5.1 Introduction

Programs written in C and C++ are inherently vulnerable to memory bugs, including buffer
overflows and use-after-free. These memory bugs in optimistic scenarios cause program
crashes or degrade the performance of the program. In worst case scenarios, they can
be exploited to perform security attacks, such as remote code execution to steal sensitive
information or denial-of-service (DoS) to impact availability of services. Despite significant
advances in techniques to find memory errors during the testing stage of programs (i.e.,
before they escape to production systems) [93] [29][94], it has been apparent that it is
very difficult to eliminate all memory errors through testing. This is partly due to the ever
increasing code base in modern systems. Hence, proactive preventive measures against the
exploitation of memory errors provide a viable approach and continue to be widely deployed
in modern systems.

Early system level exploits of memory corruption vulnerability, such as stack smashing,
relied on using memory errors to corrupt a code pointer on the stack to hijack the control
flow of the program. These early attacks were mitigated by stack based protections, such
as stack canaries. Attackers then added heap based exploits to their playbook in response
to the wide spread adoption of stack resident code pointer protections. Heap based attacks
commonly corrupt either the allocator metadata or the allocated data itself using memory
access errors. Based on the allocator’s management of metadata, control flow hijacking
attacks are possible through corrupting the metadata. For instance, by corrupting the header
on free-list based allocators, such as Windows and DLmalloc allocators that store the free-list
metadata adjacent to heap resident buffer, it is possible to jump to a shell code when the
corrupted free chunk is reallocated [95].

Even though secure allocators, such as OpenBSD’s allocator, provide probabilistic
guarantees against these attacks that require the knowledge of the absolute address of a
given allocation, they do not provide strong security guarantees for attacks that only utilize
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relative distance between allocations. In addition, even though these allocators ensure their
allocation and reuse is randomized, an allocated buffer stays at the same location until it is
freed, which can last as long as the entire runtime of the program. However, the relative
distance can be disclosed considering the abundance of memory leak attacks and can be
exploited using non-linear buffer overwrite techniques.

In this work, we make an observation that it is essential to randomize heap allocations
throughout their life time to mitigate attacks that can discover allocations through memory
disclosure. To mitigate attacks that utilize only relative distance between allocations, we
relocate chunks of memory used by the heap allocators on output system call granularity.
We utilize multi-variant execution (MVX) with carefully diversified variants to keep track
of pointers. Our design leverages invariants across the variants to identify pointer values
from non-pointer data by comparing the variants’ memory.

Based on this observation, we propose HeapRand, which builds on top of a Dune [96].
Dune utilizes hardware virtualization features in modern systems (Intel-VTx) to acceler-
ate intra-process isolation and provide a safe and direct access to virtualization hardware
features for user space processes. Once a process enters in Dune mode, it uses hypercalls
to invoke system calls, using the same principle devirtualization uses for file input output
operations. Dune, more importantly, doesn’t suffer from the same performance degradation
as devirtualization due to blocking, as it runs processes in their own separate virtual space.

In sum, in this work we make several key contribution towards defensive research against
heap based code-reuse attacks. First, we present a heap layout randomization technique
called HeapRand. In addition, We introduce a metadata tracking technique without explicit
tagging of memory addresses, by running multiple variants, with each having a carefully
designed program diversification to identify pointer values from other memory regions.
Moreover, we present the evaluation of HeapRand on SPEC CINT 2006 benchmarks.

The remainder of this chapter is organized as follows. Section 5.2 presents a detailed
background on heap based memory corruption exploits and requirements for HeapRand.
Section 5.3 details the assumed threat model and the design of HeapRand. Implementation
details are presented in Section 5.4. Section 5.5 presents the evaluation of HeapRand .
And finally, section 5.7 concludes the chapter.

5.2 Background

Before delving into the design and implementation of HeapRand, in this section, we
present the background of the problem and technique used to develop our solution. We
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Figure 5.1 Trends in memory error vulnerabilities [97]

specifically discuss heap based memory vulnerabilities, the state-of-the-art in securing heap
allocations and the hardware assisted virtualization technology we based our work on.

5.2.1 Heap Based Memory Vulnerabilities

Figure 5.1 shows the number of heap-based errors, such as use-after-free, heap overread,
and heap overflow, discovered in the past two decades (extracted from the CVE data feed) 1.
This trend depicts that the stack based attack was a more prevalent attack vector in earlier
days of exploitation whereas, more recently, the heap has gotten attackers attention as a
result of widespread adoption of stack based protection, such as stack canaries.

Heap Overflows. A heap overflow/underflow occurs when a program writes outside of
the boundary of an allocated object. Like stack based overflows, the overwrite could be a
linear overwrite (i.e., sequentially overwriting all memory addresses starting from the buffer
being overflown) or offset (non-linear) overwrite( i.e., skips intermediate addresses and
corrupts only the intended memory addresses). Heap overflows can be utilized for malicious
purposes, such as privilege escalation, code execution and program crashes. Offset based
overflows in particular are stealthier, as they can be used to overwrite the target address
without corrupting the address in between; hence, they are able to bypass protections, such
as heap canaries.

1https://nvd.nist.gov/vuln/data-feeds#CVE FEED
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Heap Over-reads. Heap over-read happens when a program reads memory that was not
intended to be accessed through a heap allocated object by overrunning its boundary. Heap
under-reads, in which memory locations prior to the heap allocated object are accessed,
is generally categorized under this category. Heap over-reads can cause erratic program
behavior such as memory access violation (i.e., if the access reached an unmapped region),
memory disclosure or denial-of-service attacks.

Uninitialized Reads. Uninitialized reads happen when a program reads from a newly
allocated heap object. Similar to heap over-reads, it can cause a memory disclosure, as the
newly allocated object may contain data from previously freed allocations.

Use-after-free. Use-after-free happens when a program prematurely frees a heap allocated
object and continues using it. Double frees are one type of use-after-free. in which the
program frees a previously deallocated object. Depending on an allocator’s handling of
freed objects, use-after-free vulnerabilities can have detrimental security consequences,
including memory leaks that may cause denial-of service, code execution and corruption of
the allocator’s metadata.

Heap Based DOP Attacks. A recent attack demonstrated a heap based DOP attack against
GStreamer2 decoder for FLIC file format [98]. GStreamer has an non-linear heap buffer over-
flow vulnerability in its decode function. It enables to overflow a JPEG buffer to overwrite
an arbitrary target skipping over the intermediate data. The attack uses this vulnerability to
repeatedly corrupt heap resident pointers that are used in a chain of dereference, addition and
assignment DOP gadgets. The DOP attack is used to de-randomize an ASLR randomized
program to obtain a pointer to a function, which is then used for code execution in later
stages of the attack.

5.2.2 Heap Allocators

Existing heap allocators can be categorized in two major categories, namely: Sequential/free-
list based allocators and BIBOP (Big-Bag of Pages) allocators [95].

Sequential/Free-list allocators These allocators maintain a linked list to keep track of
freed allocations, where the lists are grouped by allocation size. Allocated objects maintain
allocation metadata, which includes the allocation size, the status of the allocation and size

2https://gstreamer.freedesktop.org
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Figure 5.2 Sequential Allocators shows a fragment of memory allocated with sequential/free-
list based allocators. Memory objects are prepended by headers which store allocation metadata,
including status of the allocation, size and pointer to previous and next freed allocations.

of previous chunk (if allocated) in the allocation header, which is stored prepending the
allocated object. Storing the metadata alongside the allocated object enables the allocator
to efficiently place freed allocations to their corresponding free-list size class; as well as
efficient coalescing of adjacent free allocations. Typical examples of sequential allocators
include Window’s and Linux’s default allocators. These allocators are vulnerable to overflow
based attacks, as the the allocated memory that is used by the program is adjacent to the
metadata used by the memory management functions themselves. Buffer overflows or
underflows can corrupt the data structures that the memory management functions maintains
to track allocated and freed memory regions, which can potentially result in control-flow
attacks [95].

Figure 5.2 shows a fragment of memory as used in free-list based allocators. The alloca-
tion header precedes the allocation and contains metadata used by the memory management
function to keep track of the status of available allocations. Even though storing the alloca-
tion metadata inline offers a good performance for memory management functions, metadata
corruption can have serious security implications. For instance, control-flow hijacking is
possible if an attacker manages to overwrite the next pointer of a freed object metadata to
point to an attack payload (e.g., ROP gadget) and the previous pointer to point to function
pointer used for memory management (e.g., free hook, a function pointer used during a
call to free()). When this freed object is allocated, the freelist is updated by writing the
content of next pointer metadata to previous pointer metadata, overwriting the free hook

function pointer now to point to the shell code. Then, subsequent calls to free() will end
up hijacking the control-flow of the program to execute the attack payload.
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Figure 5.3 BIBOP Allocators illustrates a fragment of memory allocated with BIBOP based
allocators. Memory object are stored in a chunk of memory according to their size and the allocator
metadata is usually placed in a segregated shadow region to protect from being corrupted with buffer
overflow.

BIBOP Allocators These allocators reserve chunks (bags) of memory to allocations with
each bag serving a request for a particular allocation size. Bags are usually sized multiple of
pages. These allocators generally have less attack surface compared to sequential allocators.
as they typically segregate the allocation meta-data from the actual allocations. Hence,
BIBOP allocators are not susceptible to meta-data corruption with linear overflow of alloca-
tions. Figure 5.3 shows a fragment of memory regions allocated using BIBOP allocators.
Typical examples of BIBOP allocators include PHKmalloc and OpenBSD allocators.

5.2.3 Memory Disclosure

Modern systems are replete with randomization based security measures, the main one
being Address Space Layout Randomization (ASLR), to protect against a wide range of
exploits, such as control flow hijacking and non-control data attacks. The exploits typically
require corrupting a code or data pointer to overwrite it with an address of exploit code
or data pointer (in case of DOP attacks). ASLR randomizes the address of the code/data
pointer overwritten by the exploits and the address of the exploit code, which an attacker
is required to know to perform a successful attack. However, as ASLR is implemented as
a one time (load-time) randomization technique, its effectiveness relies completely on the
confidentiality of the randomized addresses. ASLR has been shown to perform weakly in
practice, as attackers can extract a randomized address, which is abundantly available in a
program’s memory.
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Figure 5.4 Overflow to Memory disclosure.

Hence, reliable memory corruption exploits in modern systems rely on memory dis-
closure to reveal the memory layout or content of various sections of the process/kernel
memory. For instance, memory disclosure can be a precursor for a successful attack against
an ASLR hardened system. Load-time randomization techniques, such as ASLR[5], ensure
that the memory layout of the program will be different for every run. However, it will
remain with the one time randomize layout through out the runtime of the program. To
circumvent this, there are a number of memory disclosure attacks capable of de-randomizing
the layout of fully fine-grained randomized programs at runtime. including JIT-ROP[99] and
Blind ROP [22]. JIT-ROP repeatedly exploits an out of bound memory access vulnerability
to recursively find memory resident code pointers in order to then extract code pages from a
fine-grained randomized program and deploy an ROP payload using just-in-time compilation
techniques. Blind-ROP, in contrast, uses the response (whether a process crashed or not) of
worker processes of a daemon web server to incrementally obtain the memory layout of the
program required to remotely deploy a malicious payload on fully diversified programs.

Moreover, many memory error vulnerabilities, including stack/heap overflow and use-
after-free, have proven to be convertible to a memory disclosure attacks [100]. Figure 5.4
shows an example of how a heap based memory disclosure can be converted to a memory
disclosure attack. If a string that stages an attacker controlled sized sub-string operation is
placed adjacent to an object of interest (such as code pointer), a heap based buffer overflow
can be used to overwrite the terminating character of the string. Hence, subsequent sub-
string operations performed on the corrupted string will leak contents of adjacent memory
locations. Likewise, most other memory corruption vulnerabilities were demonstrated to
be amenable to be converted into a memory disclosure attacks, which is a precursor for
successful exploits on modern systems equipped with ASLR [100].

5.2.4 Multi-Variant Execution

Multi-Variant Execution (MVX), in which multiple diversified variants’ of a program are
run to detect variation when malicious input is provided, has been shown as a promising
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approach to systems security as it is capable of providing a comprehensive defense against
many classes of attacks. Diversified variants of the program are executed in lockstep by a
variant monitor/s and synchronized at certain points. Typical synchronization happens during
system calls as it is the primary means by which an attacker interacts with the system. The
variants are chosen to be semantically equivalent while exhibiting diversity in their memory
layout. To exploit an MVX program, an attack needs to exhibit the same behaviour across all
the variants. Depending on how they monitor the variants, MVX systems can be categorized
as centralized and distributed. The majority of the MVX systems proposed in the literature
use a single, centralized monitor component that is placed outside the address spaces of the
variants. Additionally, the monitor can run either in user space [101][102][103][104][105]
or kernel space [106][107].

The MVX monitor is responsible for synchronizing variants and comparing the variants
to detect divergence behavior. Synchronization of variants can be performed at different
granularities. A typical approach to synchronize variants is at the granularity of system
calls, as it is the primary means the program interacts with the outside environment. In
addition, MVX systems should present all variants running concurrently as a single program.
Hence, the monitor should synchronize the diversified variants and pose as a single program
to the user. The MVX system accomplishes this by making system calls that should only
be performed once to be executed by a leader variant and distributing the result to all the
other variants. This includes I/O operation in which a single input is duplicated to serve
each variant and outputs from all variants are compared; and a single output operation is
performed by the monitor in order to create the impression that the user is interacting with a
single instance of the program.

The synchronization point is a defining character for MVX systems. MVX systems
that focus on reliability and availability can have a wide synchronization window, where
variants can run out of sync most of the time. MVX systems that allow variants to run
asynchronously need to have a shared ring buffer where the leader variant can store the
results of the system call, which then are consumed by all follower variants. On the other
hand, MVX systems that are security focused have a low synchronization window, which is
based on the type of security guarantee. For example, MVX systems that target memory
disclosure need to synchronize at output system calls.

Some recent MVX systems [108][109][110] utilize distributed monitoring of variants,
wherein monitors can be placed at each variant’s address space and communicates through a
shared memory region. The shared memory region usually is composed of a ring buffer that
is optimized to hold system call arguments and their return values. In addition, some recent
MVX systems [106][108] offer a capability to setup extra ring buffers that can be utilized

71



for additional divergence detection below the system call interface.
The use of non-overlapping address spaces across variants can effectively stop all attacks

that rely on absolute address in the address space of the program, such as return-into-libc and
ROP attacks. However, it doesn’t give any guarantees against attacks that rely on relative
distance between allocations, including most non-control data attacks. Prior works have
proposed different techniques to overcome this. MvArmor [109] ensures non overlapping
offsets across variants by using a compact allocator in the leader variant and maintaining
the distance between allocations in the other variants to be larger than the entire heap in the
leader, using a sparse allocator to stop relative distance based attacks.

Variant Generation MVX systems generate and run multiple randomized variants of
a program to detect variations in the execution of the program when under attack. The
randomization introduced in the variants has to preserve the semantics of the program, all
randomized variants must give the same output, and yet must also exhibit difference when
the program is under attack. On the one hand, having too much divergence in the variants
may result in a scenario where it is impossible to differentiate divergence introduced by the
MVX system design from a divergence introduced by an attack. On the other hand, having
too few divergence among the variants may result in an attack having the same effect across
variants, making the MVX system unable to detect attacks.

To mitigate attacks that rely on the relative distance between allocation HeapRand

randomizes all allocations during output system calls. To achieve this, the monitor keeps
track of all allocated pages in the program. For all the variants, we use a randomized
allocator with different randomization seeds. During the randomization, the monitor remaps
all allocated pages in the program.

5.3 Runtime Heap Layout Randomization

5.3.1 Threat Model

HeapRand provides protection against memory corruption attacks based on exploitation of
linear/non-linear spatial memory bugs as well as temporal memory bugs on heap allocations.
To this end, we assume a strong threat model where an attacker has an access to interact
with the target program arbitrary number of times to perform linear/non-linear buffer over-
reads (e.g., to disclose the memory layout of the program) and perform linear/non-linear
overwrites (e.g., to corrupt code/data pointers). We also assume that the attacker is capable
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of performing repeated attacks as well as allocate and free objects at will.

5.3.2 Using MVX for Heap Layout Randomization

In this section, we present the design of HeapRand based on MVX system. MVX systems
run multiple variants of a given program, providing the same inputs for all the variants while
monitoring for variations in their behaviors. HeapRand is based on the observation that
when multiple variants of a program run on MVX, at blocking system calls, their memory
content should only differ for pointer values. To achieve this, HeapRand utilizes a Dune
[96] based MVX system to randomize the address of chunks used in BIBOP stype allocators.

5.3.3 Process Virtualization with Dune

Dune utilizes Intel’s VT-x technology to provide user space programs to safely use privileged
CPU features, such as ring protection, tagged TLB and management of their own page ta-
bles. Hardware-based paging afforded by Dune has a significant performance improvement
over software-based paging [111]. Dune exposed guest page table that maps guest-virtual
addresses to their corresponding guest-physical addresses for user-level processes. The
Extended Page Table (EPT), which is managed by the underlying kernel, performs the
guest-physical to host-physical address translations. Figure 5.6 shows the address translation
of Dune processes.

HeapRand leverages Dune’s hardware based secure in-process monitoring features,
adopting the approach followed by MvArmor [109]. MvArmor uses Dune’s process virtual-
ization feature to implement its monitor. This helps to avoid the expensive context switches
that are observed with monitors implemented in user space. Figure 5.5 shows the system
call control flow for HeapRand using Dune.

5.3.4 Randomizing Relative Distance between Allocations

HeapRand aims to re-randomize chunks based on BIBOP allocations by mapping a new
shadow guest-virtual page to the same guest-physical page of each chunk and updating all
pointers to allocations in the chunk. The two possible design options to achieve this are
either maintaining the randomization metadata in the kernel or storing it into a separate user
space process that traces the running process. Keeping the metadata in the kernel has the
advantage of a direct access to privileged features, such as page tables, direct page accesses
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Figure 5.5 Syscall control-flow HeapRand using Dune

and other features that facilitate the randomization. However, it has the a disadvantage of
increasing the possible attack surface, as a bug in the implementation of the kernel module
can affect the entire system. Maintaining it in a separate user space process, in contrast, has
the benefits of limited attack surface if the system is compromised and requires minimal
change to be used in existing systems. However, it requires frequent context switching
between the tracer process and the process being randomized. Dune based MVX monitors
have the benefit of accessing the privileged features required for our randomization while
running in the same address space as the process.

HeapRand runs two variants of a process with each variant using a randomly seeded
BIBOP allocator. BIBOP allocators, such as OpenBSD [112], randomly choose an allo-
cations from a set of chunks available for a particular size at runtime. In addition to the
randomized allocation, these allocators add a random timeout to the reuse of freed alloca-
tions. These properties guarantee that there is no inferred relative order among allocations
based on the temporal locality of the memory management function invocations. This is
contrary to sequential allocators, which provide no such guarantees. HeapRand works to
re-randomize the address of chunks used for allocations by randomizing the virtual addresses
of pages used by each chunk in the BIBOP allocators. Due to this, it works well with BIBOP
allocators, which maintain the size of the bag used in allocations for each allocation class
aligned at page boundaries and have a size of a page. OpenBSD is one such example.
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HeapRand also needs to update the allocation metadata. Luckily, BIBOP alloca-
tors maintain their allocation metadata in a segregated region of memory. The allocation
metadata is located by obtaining the start address of the page for a given address to find
its corresponding metadata. Some allocators, such as Freeguard, maintain the allocation
metadata at a randomized offset from the base of the heap which is determined during the
initialization of the allocator. Others, including OpenBSD, Dieharder and Guarder, maintain
a hash table to keep the mapping from pages used to store bags for a particular allocation
size class to its corresponding allocation metadata.

HeapRand re-randomizes the relative distance between allocation pages by mapping
another virtual page to the same physical page as the original allocation. This is achieved
by manipulating the user page table entry for the guest-virtual address of the new chunk
to point to the guest-physical address of the old chunk. Once all the pointers to allocation
in the old virtual page are updated to point the new virtual page, the page table entry for
the old page is invalidated, making subsequent accesses to virtual addresses invalid. As
memory disclosure to leak addresses of multiple allocations will involve several output
system calls, HeapRand can guarantee that any leaking of a memory address to reverse
the randomization provided by the allocators will be futile.

Tracking Pointers

To re-randomize heap allocation, we need to track pointers to heap allocation in order to
update them upon randomization. There are various options to keep track of pointers.

• Trampoline: Using a trampoline requires replacing all heap allocation pointers in the
program with a pointer to an entry in a trampoline table (which stores the actual point-
ers to the allocation). It also requires memory management functions, like malloc
and free to accommodate these.

• Tagged Memory: This requires a specialized hardware and compiler to maintain the
tags of various memory regions.

In our design, we instead rely on variations among diversified execution of the same
program to identify pointer values from non-pointer data. We make the observation that by
running multiple replicas of a program, at synchronizing points we can identify pointers
based on their variation in their values across variants. This property enables us to keep
track of heap pointers in all regions of memory without explicitly storing a tag meta-data.
As deviation in the values are detected at system calls that synchronize variants, the state of
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Figure 5.6 Address translation using Dune In Dune processes, the guest page table maps guest-
virtual address to guest-physical address and the EPT that is managed by the kernel performs the
additional translation to host-physical. Other applications used the kernel’s standard page table

the program in each variant are guaranteed to be the same, except for pointers. Our design,
in general, makes the following distinction for different types of data resident in memory:

• Data: This includes data used during the execution of the program, such as non-buffer
variables resident in stack and heap, non-pointer variables in data and .bss regions of
memory. Data is supposed to be the same across all variants at synchronization points.

• Code/Data Pointers: This includes code pointers, such as return addresses and func-
tion pointers as well as data pointers residing in stack, heap, data and .bss sections of
the program memory. Based on the diversification introduced in variants by the MVX
system, these could be different among variants. So, when the monitor encounters
divergent data in the memory, it is assumed to be a code/data pointer. Based on the
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region of the memory a particular pointer points to, it could be identified as a pointer
to a particular region, such as code, stack and heap.

Randomizing Chunks

HeapRand randomizes the address of a chunk used for a particular allocation class by
mapping a new page and updating its guest page table of the guest virtual address to point to
the guest physical address of the old page. HeapRand also needs to update the hash table
used by the allocator to add the guest virtual address to map to the metadata address of the
old bag, removing the entry of the old bag. HeapRand is suited to be used with memory
allocators that keep mapping of pages to their corresponding metadata in a hash table to
facilitate updates. To use HeapRand with allocators that use random offset would require
additional metadata to facilitate the metadata update during re-randomization.

When any memory management function (such as malloc and free) is invoked the heap
allocator performs the allocation and traps to the monitor to update the metadata. This meta-
data is required during the randomization to update pointers to heap allocations resident in
various writable parts of memory, including stack, heap, data and .bss sections. Maintaining
the metadata is particularly important to perform Randomization of pointers to heap objects
that are resident in the heap itself, since the address of heap objects varies among variants.
The monitor also updates the metadata used by the allocator.
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Randomization Frequency

From a security perspective, it is essential to have a high re-randomization frequency,
which limits the window an attacker has to synthesize and deploy a successful attack. This
can be achieved by performing periodic re-randomization, in which the frequency of re-
randomization is a trade-off with the incurred performance overhead. In our design, we make
the distinction that any memory disclosure attempt by an attacker would require performing
an output system call. Hence, we based our design on performing re-randomization at the
granularity of output system calls.

Updating Pointers

Once the page table entries of the new chunks are updated, the next step is to find all pointers
in the address space of the program, updating the pointers to allocations to the old chunk
address to point to the new chunk address. HeapRand does this by comparing equivalent
memory regions from both variants, including stack, heap, etc. If the memory layout of the
variants is randomized, equivalent values show a non-pointer data, while a differing value
shows a pointer. This requires the HeapRand monitor of the leading variant to access the
address space of the follower. There are a number of options to access another process’s
address space:

• ptrace API: Memory reads using the ptrace API need to be performed in a 4-byte
granularity, with each requiring a separate system call. Due to this requirement, it is
very slow to be used for our purpose.

• Shared Memory: Shared memory APIs allow multiple processes virtual address pages
to be mapped to the same physical address. Although shared memories have signifi-
cant setting up cost, they provide a native like performance for the accesses there after.
Even though it is an ideal choice for continual regions of memory (for e.g., stack), it
will incur frequent setup cost for non-continual regions of memory (for e.g., the heap).
Due to this, it is not an ideal choice for our purpose.

• process vm read/write: These system calls are introduced in Linux kenel 3.2
and allow transfer of a chunk of data between process address spaces without requiring
the remote process to be stopped.

process vm read/write offers an efficient means to access the follower’s address
space. Section 5.5.1 shows the comparative latency of inter-process communication APIs.
By comparing equivalent regions of memory in the leader variant and the follower variant
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the monitor first identifies pointer values. If a heap pointer is found, its page address is used
to locate the corresponding page virtual address of the new chunk, which is thus updated
accordingly. Once all live memory is scanned and updated, the control is transferred back to
the variants.

5.4 Implementation

We implemented HeapRand on top of Dune sandbox [113]. Dune enables virtualization
of processes by safely exposing privileged features to a user level process. Even though
HeapRand can be used with any BIBOP based allocator that maintains hash table for
pages to metadata mapping, our prototype implementation uses the port of OpenBSD’s
allocator to Linux [114]. All allocations over 2KB are treated as large objects by OpenBSD,
in which their allocation is performed using mmap operation instead. For our prototype
implementation, we don’t consider re-randomization of large allocations, as it would require
non-trivial modification to the allocator. In addition, re-randomizing small allocations (i.e.,
all allocation sized less than 2KB) will effectively change their relative distance with the
large allocations.

Re-Mapping Chunks Upon output system calls, HeapRand’s monitor will block all
variants and re-map all chunks that are alive based on the metadata stored during the al-
location. During the re-mapping, the monitor maintains a hashmap for mapping the old
guest-virtual address of a chunk to its new guest-virtual address. We keep the hashmap in a
shared memory region and is accessed by all monitors.

To facilitate tracking of pointers, in our prototype implementation we kept all regions
of the variants’ memory except the heap at the same address, since HeapRand is only
concerned with heap pointers. This is not a strict requirement for HeapRand, as a pointer to
any region can be identified by adding extra checks to boundaries of the region. The monitor
of the leader variant compares all memory regions that can occupy heap pointers, including
the heap itself; based on the variation in values at equivalent addresses, the monitor identifies
a heap pointer. If it is a heap pointer, the monitor updates its page address with the new
address of the chunk.

Once all pointers are updated, we use dune flush tlb one(<addr>) function to
invalidate the TLB entries of the old allocation. As HeapRand utilizes a small number of
pages at time, this function enables to flush only the required pages instead of the entire TLB.
Belay et al. have demonstrated the advantage of this feature to improve the performance of
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Table 5.1 Inter-process memory access Latency. This table shows the average number of clock
cycle latency to read a memory page for each the process communication technique we evaluated
and there normalized latency with an intra-process copy.

API Latency (cycles/page) Normalized
Intra-process 35.32 1
Ptrace API 1520.075 43.03
Shared Memory 38.58 1.09
process vm read/write 38.27 1.08

Boehm garbage collector [115].

5.5 Evaluation

In this section, we present the evaluation of HeapRand. We performed our experiments
on a server based machine with Intel Xeon E5-2630 CPU with 32 cores and 128 GB RAM.
Hyper-threading was disabled to reduce the performance fluctuations of the experimental
results. All the experiments were run on a Red Hat Enterprise Linux 7.5 system, running a
Linux kernel 3.10 (x86 64). We evaluated HeapRand on the SPEC CPU2006 benchmark
suite as well as other network facing programs, focusing on accessing its performance
overheads and its security guarantees.

5.5.1 Inter-process Memory Access Latency

We evaluated the run-time overhead induced by existing APIs for accessing memory across
processes.We designed a simple microbenchmark that maps a large file (8 GB) in one
process and which is read from another process in page size granularity using ptrace,
POSIX shared memory and process vm read/write APIs. We took a geometric mean of 5
runs. Table 5.1 shows the latency incurred by each API and their normalized performance
compared to a local memory access. The result shows that POSIX shared memory and
process vm read/write APIs are capable of providing a native like performance
for inter-process memory access, while ptrace API incurs significant orders of magnitude
overhead because of its fixed (4 bytes) access granularity.
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5.5.2 Performance Overhead

To assess the performance overhead, we evaluated the impact induced by HeapRand on
SPEC 2006 benchmarks. Since we used OpenBSD allocator for each variant in HeapRand,
we used the same allocator for the baseline runs. This helps to assess the overhead of
HeapRand , which is independent from the overhead induced by allocator. Figure 5.8
shows the normalized performance overhead incurred by the MVX system alone and
HeapRand at four different number of out system call granularities. As shown in the
figure, the MVX system alone incurs an average overhead of 11%, while re-randomizing at
every output system call incurs 32%. On benchmarks that have regular usage of the heap
allocator and output system calls, HeapRand incurs moderate performance overheads.
HeapRand incurs significant overhead on that put too much stresses on the heap allocator,
such as perlbench and omnetpp. Table 5.3 shows the heap allocation statistics for reference
inputs we used to evaluate each SPEC CPU2006 benchmark. In addition, this benchmarks
perform a lot of output system calls, which induces a significant number of randomization
during their runtime. While on certain memory intensive benchmarks (e.g., mcf and libquan-
tum) the overhead is mostly a result of using MVX systems. This is consistent with the
results observed in prior works, illustrating the poor scalability of these benchmarks with
concurrent runs.

The performance results also show that benchmarks with a high number of output
system calls respond well for increasing the granularity of the number of system calls
between re-randomization. It also comes at no surprise that benchmarks with minimal
output system call interactions exhibit similar behaviors for variation in the granularity of
re-randomization. As it requires multiple memory disclosures to perform a successful attack
[21], this property gives a performance trade-off for HeapRand while gracefully reducing
security guarantees.

To evaluate the memory overhead of HeapRand we measured the amount of physical
memory required to hold the running program’s working set. Table 5.2 shows the maximum
resident set size for running HeapRand on SPEC 2006 benchmarks. For most of the
benchmarks we ran, the increase in the maximum resident set size is minimal. hmmer is an
outlier, which showed 15x increase in the maximum resident set size, due to its unusually
high number of reallocation operations for each allocation.

Table 5.3 shows the heap memory management function call statistics for the reference
inputs we ran on each SPEC CPU2006 benchmark.
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Figure 5.8 Normalized performance overhead This graph shows the performance overhead of
running SPEC benchmarks on HeapRand at various granuralities normalized to native runs. MVX
shows the performance overhead incurred by the MVX system without any re-randomization, while
rand-1, rand-2, rand-4 and rand-8 show re-randomization performed after 1, 2, 4 and 8
output system calls, respectively.

Table 5.2 Memory Overhead of HeapRand on SPEC benchmarks.

Benchmark Native (KB) MVX (KB) HeapRand (KB)
400.perlbench 239036 246000 297160
401.bzip2 318532 325204 325228
429.mcf 1717020 1726380 1726400
445.gobmk 28892 36080 42040
456.hmmer 3892 13212 58716
458.sjeng 179508 186240 186260
462.libquantum 99084 108412 108432
464.h264ref 27876 35220 35432
471.omnetpp 173316 180564 203756
473.astar 334924 349956 394232
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Table 5.3 Memory Management Functions call statistics for SPEC benchmarks.

Benchmark malloc calloc realloc
400.perlbench 55095483 654 3863517
401.bzip2 28 1 0
429.mcf 2 4 0
445.gobmk 128282 0 8994
456.hmmer 1963593 122440 368134
458.sjeng 5 0 0
462.libquantum 0 122 58
464.h264ref 3196 35076 0
471.omnetpp 266808014 3705 1147
473.astar 3683333 15 16

5.5.3 Limitations

Our implementation HeapRand does not support multi-threaded applications since Dune’s
implementation of page table management is not thread safe. The dune flush tlb one()

function uses INVLPG instruction, which on some processors we tested invalidates the
entire TLB instead of the particular TLB entry for the page that contains addr. Under
this circumstances, HeapRand may induce a much higher performance degradation. This
could be an implementation specific side-effect on certain Intel processors processors, as
described in the the Intel ISA reference manual. 3

5.6 Related Work

Similar to stack data protections, heap protections can be categorized as enforcement based
and randomization based protection.

Enforcement Based Protections. Complete memory safety techniques that enforce spa-
tial and temporal memory safety, such as Softbound+CETs [27], fat pointers [26], and
low-fat pointers [28, 117], fall in this category. However, complete memory safety tech-
niques are infeasible for production systems because of their significantly high overhead.
Other enforcement based heap protections have been proposed that append random canary
words to each heap allocated object and check integrity of all the registered canaries every

3”There are implementation-specific side effect on the Pentium 4, Intel Xeon, and P6 processor family.
When modifying PE or PG in register CR0, or PSE or PAE in register CR4, all TLB entries are flushed,
which includes global entries. Software implementations should take this into consideration when using this
functionality in the above Intel 64 or IA-32 processors.” [116]
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time the process requests a system call [118]. Even though heap canaries incur a relatively
lower overhead, they only protect against sequential heap overflows.

Randomization Based Protections. Sequential allocators, such as DLmalloc and Win-
dows, maintain a linked list of free allocations for different size classes to assist fast
allocations. This metadata is stored adjacent to the allocated buffers and is prone to over-
writes. Randomization based heap protections work by adding entropy to the allocation
layout, the reuse of freed allocations and the location of allocation metadata to mitigate one
or more of the attacks discussed in section 5.2.1. OpenBSD’s allocator [119] segregates
the heap metadata from the heap allocations, uses sparse page layout, and introduces 4 bits
of randomization to new allocations as well as reuse of freed allocations. Like OpenBSD,
DieHard [120] randomizes the placement of allocated objects and the length of time before
freed objects are recycled. However, unlike OpenBSD’s random choice from 16 entries,
DieHard picks one out of all the available allocations of given sizes through a bitmap based
metadata. In addition, DieHard uses a replicated execution framework to improve reliability.
However, DieHard doesn’t use a sparse page layout, which increases the exploitability of
overflows. Furthermore, its reliability feature enables the program to continue running after
experiencing memory errors, without being detected. DieHarder [95] improves the limita-
tions of DieHard by using OpenBSD’s sparse page layout, destroying on free features, and
reporting violations, instead of continuing operations upon errors. Bitmap based allocators
incur high overhead compared to sequential allocators; for example, DieHarder results in
an average slowdown of 36% on SPEC2006 benchmarks over DLmalloc. More recent
heap layout randomization schemes [121][122] adopt the inline freelist idea from sequential
allocators to improve performance and utilize sparse pages and randomize the layout of the
allocation like secure allocators. Furthermore, there are heap data protections which are
tailored to a particular type heap corruption exploit, such as use-after free [123].

Generally randomization based heap allocators offer a probabilistic security guarantee
and have relatively less overhead than enforcement based techniques. Due to these capabili-
ties, they are more suited for production environments than enforcement techniques. One
typical example is OpenBSD’s allocator.

In this work we propose re-randomization of heap resident buffers during the runtime of
the program.
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5.7 Chapter Summary

With an increase in number and sophistication of control-flow hijacking attack protections,
data only attacks have become more popular for penetrating runtime systems. These attacks
bypass control-flow integrity techniques, as they do not alter any control flow data whose
integrity is enforced by these protections. The most important distinction of data plane
attacks is that they utilize relative distance between memory regions instead of the absolute
memory address, which is a requirement for most control flow based attacks. Secure heap
allocators randomize the relative distance between allocation by randomly choosing an
allocations from multiple possible allocation class chunks as well as randomzing the reuse
of freed allocations. These ensures a randomized distance among heap objects during
allocation. However, the relative distance between allocations is intact until the allocation is
freed. The relative distance can be disclosed considering the abundance of memory leak
attacks.

In this work we introduce HeapRand, a technique to randomize the relative distance
between heap allocation in order to mitigate disclosure of relative distance among alloca-
tions, which can be utilized to perform a successful code-reuse exploit. HeapRand uses
Dune, which enables user-level access of privileged features by providing process virtual-
ization, to remap pages used as allocation chunks. By performing remapping of chunks,
HeapRand effectively randomizes the relative distance between heap allocations with
moderate overhead. Our evaluation shows that HeapRand incurs moderate performance
overhead.
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Chapter 6

Conclusion and Future Direction

6.1 Dissertation Conclusion

Exploitation of most modern systems relies on the principle of code-reuse attacks, since
they do not need injecting code in the system and are capable to bypass built-in defenses to
perform arbitrary computation. Classical code-reuse attacks, such as ROP, are used to hijack
the control-flow of the program. With an increase in wide spread adoption of low overhead
control flow defences, there is proliferation of advanced code-reuse attacks that can exploit
systems protected by these defences.

Most advanced code-reuse attacks utilize relative distance between memory allocations
instead of absolute addresses, which is the asset protected by earlier defences. Even though
enforcement based techniques provide a comprehensive solution to memory corruption
vulnerabilities, they are hampered from being able to be deployed in production systems
by their high overheads and backward incompatibility issues. Because of these reasons
enforcement techniques are mostly used as debugging tools. Randomization techniques,
on the other hand, introduce diversification in the program to provide probabilistic security
guarantees with minimal overheads. The security guarantee afforded by these techniques
can be tuned by the amount of diversification introduced. In this dissertation, we propose
three techniques to thwart these advanced attacks.

In Chapter 3, we presented ProxyCFI, a CFI based technique to thwart code-reuse attacks
including CFG mimicry attacks. Classic CFI techniques inserts instrument indirect branch
instructions to check the validity of their target according to the application’s legitimate
control-flow graph. ProcyCFI instead totally eliminates indirect branches from the program
by replacing them with white-listed multi-way direct branches that use pointer proxies.
Our implementation of ProxyCFI instruments indirect control flow transfer instructions at
compile time whose values are re-randomized at application load-time to prevent them from
static analysis based discovery of pointer proxies. ProxyCFI also has a verifier built-in the
program loader to ensure all binaries are checked for compliance before being loaded. Due
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to these features, ProxyCFI puts a strict limit on advanced code-reuse attacks. With our opti-
mizations applied ProxyCFI affords strong security guarantees with minimal performance
overhead.

In chapter 4, we presented Smokestack, a binary hardening compiler that automati-
cally translates a vulnerable program in to a self randomizing program that dynamically
re-randomizes the layout of each stack frame for all function invocations. At the heart
of Smokestack is the static analysis pass, which performs analysis of each stack frame in
the program independently to capture all possible permutations of the allocations within it.
These is fed to an instrumentation pass that instruments the prologue of all functions to pick
a random permutation based on a secure random-number generated during the invocation.
The experimental evaluation demonstrates that Smokestack achieves high effectiveness in
stopping advanced code-reuse attacks while incurring reasonable performance overheads.
As Smokestack is a technique to introduce artificial diversification it provides a robust pro-
tection to hardened programs in the face of memory leakage and repeated de-randomization
attempts.

In chapter 5, we present HeapRand, a runtime heap layout randomization scheme.
HeapRand identifies pointers to heap allocations by comparing the values of memory lo-
cations in two versions running with same memory layout except for the heap throughout
their execution. HeapRand uses BIBOP based heap allocators for each variant with different
randomization and performs randomization of addresses of chunks used for allocations at
output system call granurality.

6.2 Future Direction

Through out this dissertation, we have identified advanced code-reuse attacks and how they
may circumvent prior proposed defenses as well as defenses that are builtin modern systems.
In chapter 3, we discussed prior implementations of CFI can be undermined by attacks that
piggy back on the enforced CFG. In chapter 4 and 5, we showed how data-oriented attacks
can bypass defenses by only utilizing relative distance among stack and heap allocation and
presented our strategies to defend against these attacks. In this section, we will present the
future research landscape in protections against advances in code-reuse attacks.

In Chapter 3, we presented ProxyCFI which randomizes code pointers at program load
time. This requires compiling of source codes with ProxyCFI compiler. One important
challenge for any CFI technique is extracting precise control flow graph of a program.
As the strength of a CFI solution is directly tied with the precision of the enforced CFG,
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precise CFG discovery is an active research area. In addition, ProxyCFI can be extended to
support legacy binaries, by using binary analysis tools to generate the CFG of the program
and doing binary rewriting to update all indirect branches to use pointer proxies instead.
ProxyCFI currently doesn’t support applications that run JITted code like browsers, as it is
impossible to get the executed code during our static analysis. One viable solution to support
JITted code in ProxyCFI is to modify system such as mprotect(), to detect calls during
JIT compilation in order to instrument the JITted code to use pointer proxies at runtime.
Generally, the effectiveness of any CFI technique depends on discovering a precise CFG of
the program, which is a topic of utmost interest. The use of advanced pointer analyses, such
as Multi-layer type analysis schemes, can significantly reduce the attack surface for CFG
mimicry attacks.

Smokestack introduces a stack layout randomization technique to defend against code-
reuse attack that rely on relative offset between allocations. Current implementation of
Smokestack, however, has certain limitations. First, Smokestack can not randomize intra-
record allocations. One possible solution for this is to adopt the data structure randomization
scheme proposed by Peng et al [124]. Another weakness of Smokestack is that the random-
ization entropy is dependent on the number of allocations in a stack frame. For example,
if a stack frame has just 2 allocations, the entropy introduced by Smokestack is just 50%.
Smokestack addresses this issue by adding random sized puddings in the allocations with
having trade off of using extra memory space. However, it still doesn’t give equal security
guarantees for functions with different sized and number of allocations. This is a common
problem in randomization based allocations [112]. One possible solution for this problem
is the use of over-provisioning similar to Dieharder [95], to provide a constant minimum
security guarantee.

HeapRand uses dune based MVX system to randomize heap resident allocations. As
MVX systems have the potential to provide a modular support to adopt more defenses, it can
be extended to randomize other regions of memory of memory such as stack, data and .bss
regions. Current implementation of HeapRand keeps other regions of memory, including
stack and code, at the same location across variants to facilitate identifying heap allocation
pointers from pointers to other regions of memory. This can weaken the security guarantee
provided by MVX for other regions of memory. A possible solution for this issue is to keep
bounds of regions of memory in the monitor and identify pointers to a particular region
based on whether its value maps to which region.

This thesis illustrates that randomization based defenses (i.e., avoiding discoverability of
assets used for code-reuse attacks) and re-randomization (i.e., putting a strict time limit to
perform an attack) are favorable to stop advances in code-reuse attack. The effectiveness of
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randomization based defenses in defending against code-reuse attacks hinges on the amount
of the entropy the schemes provide. Most proposed defenses provide limited entropy in
practice to reduce performance overheads, which in turn makes them vulnerable to more
sophisticated attacks (e.g., side channels [125], guessing [126], spraying [4]) or disclosure
attacks [21]. If the entropy source is compromised, an adversary will be able to predict or
even control the re-randomization to effectively bypass it. A promising approach towards
improved entropy is to provide a hardware support for true random number generation and
strong cipher algorithms [127][128][129].
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[60] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and Geor-
gios Portokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In Proceedings of the 23rd USENIX conference on
Security Symposium, pages 417–432. USENIX Association, 2014.

[61] Intel. Dynamic libraries, 2015. Accessed 2018-02-29.

[62] Keith D Cooper, Mary W Hall, and Ken Kennedy. A methodology for procedure
cloning. Computer Languages, 19(2):105–117, 1993.

[63] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating
return-oriented rootkits with return-less kernels. In Proceedings of the 5th European
conference on Computer systems, pages 195–208. ACM, 2010.

[64] Cve-2014-2013. https://www.cvedetails.com/cve/
CVE-2014-2013/, 2018. Accessed: 2018-04-13.

[65] Bladeenc: Vulnerability statistics. https://www.cvedetails.com/product/2851/Bladeenc-
Bladeenc.html, 2018. Accessed: 2018-01-05.

[66] Cve-2017-14493. https://www.cvedetails.com/cve/
CVE -2017-14493/, 2017. Accessed: 2018-02-12.

[67] Cve-2017-1000437. https://www.cvedetails.com/cve/
CVE-2017-1000437/, 2018. Accessed: 2018-01-05.

[68] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W Hamlen, and Michael
Franz. Opaque control-flow integrity. In NDSS, volume 26, pages 27–30, 2015.

[69] National vulnerability database. Accessed: 2018-02-29.

[70] William Arthur, Ben Mehne, Reetuparna Das, and Todd Austin. Getting in control
of your control flow with control-data isolation. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, pages
79–90. IEEE Computer Society, 2015.

[71] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 763–780. IEEE, 2015.

[72] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and Thorsten
Holz. Enabling client-side crash-resistance to overcome diversification and informa-
tion hiding. In NDSS, 2016.

95
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