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Abstract
In electrical power systems, when the supply from wind or solar-powered generation fluctu-
ates, other resources adjust their power to maintain the system’s balance between demand
and supply. Traditionally, gas, coal, and hydro-powered generators have provided this bal-
ancing service. In the future, as the proportion of renewable power generation increases,
additional balancing resources will be needed. In this work, we develop methods that enable
a new resource—aggregations of flexible loads—to provide energy balancing.

Load aggregations are a promising resource for transmission-level energy balancing, but
this service should not come at the expense of lower-level services and requirements. Specif-
ically, an aggregator’s control should not compromise the loads’ service to the end-user and
should not cause operational issues on the distribution network. Thermostatically controlled
loads (TCLs), such as air conditioners and water heaters, have user-set temperature limits
and cycling constraints that must be satisfied. Distribution networks have loading and volt-
age constraints to ensure reliable operation. When providing balancing services, aggregators
partially synchronize loads, which can cause constraint violations on the distribution net-
work. Third-party aggregators are unaware of conditions on the network and must coordinate
with the distribution operator to ensure network reliability.

The objective of this dissertation is to develop control methods by which a third-party
aggregator can provide energy balancing without disrupting consumers and without causing
unsafe conditions on the distribution network.

Multiple methods are proposed for identifying and protecting distribution constraints that
are at risk of violation due to load control. We conduct a simulation study of realistic dis-
tribution networks and find only a small subset of network constraints is at risk of violation.
This result implies that network-safe control strategies may need to account for only a subset
of network constraints, enhancing computational efficiency. We propose using a “mode-count
algorithm’’ to control a group of TCLs to minimize their impact on an at-risk network con-
straint. Results show that the mode-count algorithm can effectively reduce the variability
of voltage at a constrained distribution node. Developing an online method to identify the
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set of at-risk constraints is non-trivial; towards this end, we propose an optimization-based
method that identifies the network’s most at-risk individual constraint and provides a con-
servative, global safety constraint on power deviations caused by the aggregator. Because
the method is computationally intensive, we develop techniques based on power-flow analysis
to reduce the problem size; we are able to reduce the problem size by more than 60% for a
test network.

Two network-safe control strategies for energy balancing are proposed. Both strategies are
hierarchical: the aggregator controls loads to track an energy-balancing signal, and the opera-
tor removes particular TCLs from the aggregator’s control when necessary for network safety.
The strategies differ in terms of modeling and communication requirements. In a case study,
the more complex strategy achieves a root-mean-square tracking error of 0.10% of the TCLs’
baseline power consumption while removing fewer than 1% of TCLs from the aggregator’s
control; the other strategy achieves a 0.70% tracking error while removing approximately 15%
of TCLs. The two strategies provide options—one better performing, one less costly—for op-
erators and aggregators with different capabilities and preferences. Overall, these strategies
enable third-party aggregators to control larger proportions of distribution-network load,
enhancing competition in wholesale markets and providing the greater balancing capacities
that will be needed by future, low-carbon power systems.
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Chapter 1

Introduction

1.1 Motivation
The electric power system must transition to clean energy sources to reduce society’s carbon
emissions and mitigate the effects of climate change. In 2017, the electricity sector accounted
for 28% of the U.S.’s greenhouse gas emissions, just one percentage point less than the sector
with the most emissions—transportation [85]. One strategy for reducing emissions is to
transition the electricity sector to 100% clean energy sources and then “electrify everything”,
that is, convert other sectors, such as transportation and space heating, to electrical power
as much as possible. The U.S. electricity sector has a long way to go before it is fully
decarbonized: in 2018, the sources for electricity generation were 62% natural gas and coal,
20% nuclear, and 17% renewable [84].

Increasing the proportion of generation from renewable sources poses challenges to reliable
power system operation because of the intermittency and uncertainty of wind- and solar-
powered generation. A fundamental aspect of reliable power system operation is energy
balancing: energy supplied must equal energy demanded, on the time scale of seconds, or
else the system may become unstable. Traditionally, supply has been controlled to follow
variations in demand, and the system’s major balancing resources have been gas-, coal-, and
hydro-powered generators. As carbon-emitting generators are retired, the grid’s balancing
requirements will need to be met by other resources. Two such resources are batteries
and demand-side resources, frequently referred to as demand response. Not only are these
resources zero-emission but they may also perform better, responding faster and with higher
accuracy, than traditional balancing resources [8].

One promising resource for balancing—and the subject of this dissertation—is aggregations
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of small, flexible electrical loads. By aggregating thousands of kilowatt (kW) scale loads, an
aggregator can provide balancing at the megawatt (MW) scale that is needed by the greater
power system. Prime candidates for aggregation include electric vehicles (EVs), home back-
up battery systems, and thermostatically controlled loads (TCLs) (e.g., heat pumps, air
conditioners, and electric water heaters). These loads all have some flexibility in when they
draw power from the power system. EVs and home battery systems have flexibility due to
their electrical energy storage capacity; TCLs have flexibility due to their thermal energy
storage capacity—a house does not instantly become hot when an air conditioner cycles off.
(Note, here we refer to residential batteries and EVs as loads because that is how they are
most often operated.)

The capacity of loads that are suitable for balancing is already large [50] and is likely
to grow due to electrification trends and policies [47]. EV adoption has been increasing
in the U.S. [35], and ten states support the sales of EVs through Zero Emission Vehicle
mandates [80]. Policies supporting electrification of home appliances are nascent. In 2019,
Berkeley, CA became the first U.S. city to pass an ordinance banning natural gas connections
for new buildings [29]. If other cities follow suit, there will be a substantial increase in electric
space and water heating loads available for aggregation.

This dissertation addresses three technical challenges of providing balancing with load
aggregations. The first challenge, which inspires much of the research in this area, is to
develop a control strategy that coordinates loads to provide energy balancing while also
ensuring the end-users of the loads are not inconvenienced. The second challenge is to
ensure that the control strategy works well given the complexities of load behavior in the
real-world. The third challenge—and the challenge that has inspired the majority of this
dissertation—is to ensure that aggregator-controlled loads do not cause operational issues
on the distribution network. (The distribution network is the low-voltage network that
distributes power to buildings, as shown in Fig. 1.1.)

We address these three challenges using a variety of methods. To design control algorithms
for tracking a balancing signal, we use model-based control and estimation methods. To
analyze effects on distribution networks, we run detailed power flow simulations. To design
aggregator-operator coordination strategies, we draw upon policy and industry knowledge
as well as hierarchical control concepts. To design control algorithms that guarantee safety,
we apply correct-by-construction control techniques. Finally, to determine a global safety
constraint for a distribution network, we employ optimization-based methods.
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Figure 1.1: Structure of the power system.

1.2 Background
This section provides relevant background information on power system operation, thermo-
statically controlled loads, and policies for wholesale electricity markets.

1.2.1 Power System Operations

Figure 1.1 shows the general structure of the power system: large generators supply power to
the transmission network; the high-voltage transmission network transmits the power, some-
times over hundreds of miles, to the lower voltage distribution network; and the distribution
network distributes power to loads, which are devices that consume power (e.g., electronics,
home appliances, and lighting). Increasingly, resources capable of supplying power are con-
necting to the distribution network, such as roof-top photovoltaic (PV) systems and home
battery systems. Given high penetrations of these resources, it is possible for power to flow
in the reverse direction (i.e., from distribution to transmission) during certain hours of the
day.

Power system operation is effectively divided into two parts: 1) transmission and wholesale
market operation, and 2) distribution operation. In regions of the U.S. with a competitive
electricity market, an independent system operator (ISO) or regional transmission organi-
zation (RTO) operates the transmission network and wholesale electricity market. Separate
entities, referred to as distribution network operators, or distribution operators for short,
operate the distribution networks.

One of the fundamental objectives of ISOs and RTOs is to ensure power system reliability
(i.e., to avoid power outages). An important aspect of ensuring reliability is maintaining the
system’s energy balance. An imbalance in energy can cause the frequency of the system’s
voltage and current waveforms to become unstable, which can result in large-scale outages.
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The wholesale electricity market has a variety of products that are designed to match supply
and demand in an economically efficient manner. The day-ahead energy market and real-
time energy market schedule dispatchable resources so that their net supply matches the
forecasted net demand of non-dispatchable resources. Whereas the energy markets schedule
resources to match forecasts, regulation (an ancillary service market product) retroactively
corrects for errors in the energy balance. Regulation-providing resources are dispatched at
2 or 4 second intervals to correct for measured area-control error (ACE) which is a function
of measured error in system frequency and in scheduled power flows between ISOs/RTOs.
Regulation, as it is known in the U.S., is referred to as secondary frequency control in many
other countries.

In this work, we use the term energy balancing to refer to fast changes in a resource’s
demand or supply to help balance energy at the transmission level. We consider fast changes
to be on the time scale of 5 minutes to a few seconds. In market terms, energy balancing
includes regulation, where changes occur every few seconds, and real-time energy markets,
where changes occur every 5 minutes. We will also refer to these services as transmission-
level services to distinguish them from distribution-level services that are designed to improve
distribution operation.

1.2.2 Access to Wholesale Markets for Demand Resources

Demand response resources have not always been able to participate in wholesale electricity
markets, and still face some barriers to participation today. The Federal Energy Regulatory
Committee (FERC), which regulates interstate ISOs and RTOs, has made efforts to open the
wholesale electricity markets to nontraditional resources such as load aggregations. Listed
below are FERC orders that have made it easier for load aggregators, as well as other
nontraditional resources, to participate in the wholesale markets and to be fairly compensated
for energy balancing services.

• FERC Order No. 719: In the ancillary service market, ISOs/RTOs must compensate
demand response resources at the market price. Furthermore, they must allow aggre-
gators of retail consumers to participate as demand response providers in wholesale
markets [87].

• FERC Order No. 745: In the wholesale day-ahead and real-time energy markets,
ISOs/RTOs must compensate demand response providers at the market price, referred
to as the locational marginal price (LMP) [88].
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• FERC Order No. 755: ISOs/RTOs must compensate frequency regulation resources
based on their performance, i.e., the accuracy with which they follow the regulation
signal [89].

• FERC Order No. 841: ISOs/RTOs must open up their wholesale markets (capacity,
energy, and ancillary services) to participation by electric storage [90]. This order
specifically does not address aggregations of electric storage resources.

• FERC Notice of Proposed Rulemaking (November 17, 2016): In this notice, FERC
proposed rules to facilitate the participation of aggregations of distributed energy re-
sources (DERs) in the wholesale markets [86], but these rules have been contentious
and have not yet been finalized. (DER aggregations differ from aggregations of demand
resources in that DER aggregations can both receive power from and inject power into
the power system.)

1.3 Literature Review and Research Gaps
In this section, a review of the literature on load aggregation and control for energy balancing
is presented, and research gaps are identified.

1.3.1 Nondisruptive, High-Performance Load Control

A TCL aggregation must be controlled to provide high performance energy balancing with-
out inconveniencing the end-users. Providing energy balancing with small, distributed loads
is a challenge in and of itself: loads, whose parameters are not fully known, must be coordi-
nated such that their aggregate power consumption matches a fast-moving energy balancing
signal. In addition, each load has a service it provides to the end-user that should not be
compromised. For example, an air conditioner cannot be kept on or off for too long before
occupants become uncomfortable. Ensuring that end-users are not disrupted is considered
crucial for user acceptance [8] but also adds constraints, and therefore complexity, to the
control problem.

The disruptiveness of a program depends, in part, on the mechanism used to control TCLs.
A TCL can be controlled either by adjusting its temperature setpoint (e.g., [3], [40], [96])
or by directly switching it on/off (e.g., [28], [52]). Adjusting a consumer’s setpoint may be
perceived as inconvenient, even if the change in setpoint (and effect on user comfort) is small.
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In contrast, on/off switching can be implemented while respecting user-set temperature
constraints.

Another way in which load control may inconvenience users is from an increase in the
frequency of on/off cycling. Increased cycling may reduce the lifetime of the loads due to
strain on mechanical components, and may disrupt users due to changes in noise upon turn-
on and turn-off. In [52] and [28], different methods are proposed for switching TCLs in terms
of temperature priority, which indirectly increases an aggregation’s minimum cycling time
compared to other control methods. More recently, researchers have been including explicit
constraints that ensure a minimum on-time and off-time for each TCL [14] [99].

A TCL’s individual temperature and cycling constraints can make a TCL unresponsive
to external control. If enough TCLs become unresponsive, the tracking performance of the
aggregation can suffer; this phenomenon is referred to as saturation. To predict and avoid
saturation, aggregate models of TCLs’ flexibility, referred to as virtual battery models, have
been proposed. The virtual battery models proposed in [28], [49], and [83] account for
TCLs’ temperature constraints only; the more recent models of [14] and [99] account for
TCLs’ cycling constraints in addition to temperature constraints.

The research community is in need of better data on TCLs’ actual minimum on- and off-
time constraints. Recent work assumes TCLs require both minimum on-time and off-time
constraints to protect physical components, but this may not be the case. For example,
compressors have a minimum off-time but not a minimum on-time [67]. Research is also
needed on how consumers perceive increased cycling. Does the noise or sensation of TCLs
switching on/off bother consumers? Is this effect worse for certain types of TCLs (e.g.,
forced air versus resistive heating)? And how much might consumers need to be reimbursed
to compensate for this inconvenience?

1.3.2 Performance in the Real World

Another important topic is the development of load control strategies that will perform well
when subject to real-world disturbances and changing conditions. In the literature, it is
common to test control methods on an aggregation of simulated loads (referred to as the
simulated plant) rather than an aggregation of actual loads because of the prohibitive costs
of doing the latter. In many cases, the simulated plant is substantially simplified; it is
unclear if control methods tested in such simplified environments would perform well when
implemented on actual loads.
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In the literature, control strategies have not been adequately designed for, or tested on,
loads with realistic disturbances. As an example of a disturbance, consider a cooled house: if
doors to the outside are opened or the number of occupants increases, the house’s tempera-
ture will deviate from that of a simple thermal model. In much of the literature, disturbances
are modeled in the simulated plant by adding a stationary, zero-mean Gaussian noise term to
each TCL’s temperature dynamics (e.g., [52] and [28]). Instead of this arbitrary noise term,
more accurate models of disturbances would be based on real load data. A statistical model
of disturbances to refrigerators was developed in [37] based on real data; similar models are
needed for other types of TCLs, and in particular space heating/cooling systems. In addi-
tion, other types of disturbances should also be considered, such as the voltage dependence
of TCLs’ power consumption.

In model-based control strategies, the controller’s model of the plant must be identified.
Typically, this identification is done empirically by observing the simulated plant under ideal,
constant conditions; identification can also be done analytically, as proposed in [52] and [60].
Additional research is needed on identifying models of physical plants for varying conditions.
For example, it is known that [52]’s aggregate model of air conditioners must be re-identified
for different outdoor temperatures. But what other changing conditions could cause the
aggregate model to deviate from actual behavior? One might expect humidity and incident
solar radiation to have large effects.

Finally, real control systems also experience delay (due to communication and computa-
tion) and loss of messages. Control algorithms designed to perform well given these distur-
bances are proposed in [42] and [95].

1.3.3 Impacts on Distribution Networks

Most research has neglected the effect that aggregator-controlled loads can have on distribu-
tion networks. By definition, aggregators partially synchronize loads to track energy balanc-
ing signals. On a distribution network with a high concentration of aggregator-controlled
loads, it is possible for this synchronization to cause operational issues such as under- or
over-voltages. Separately, distribution operation is becoming more challenging due to in-
creasing concentrations of PV systems [15] and uncoordinated EVs [43]. On such networks,
the provision of energy balancing with load aggregations could exacerbate operational issues.

When the load aggregator is also the distribution operator, the problem—controlling loads
to provide energy balancing while respecting distribution constraints—can be solved in a
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centralized manner as a constrained optimization problem, as in [93]. Or the problem can be
solved in a distributed manner through the use of Lagrange multipliers, as in [17] and [30].

More research is needed for the case in which the aggregator is a third-party, i.e., distinct
from the distribution operator. This problem is different because third-party aggregators
and distribution operators have private information that they may be unwilling to share
with one another. The operator may want to keep its network parameters private and would
need to keep its load data private for consumer privacy. A third-party aggregator will likely
want to keep its proprietary control algorithm private.

The impacts of load-control on distribution networks as well as the challenges posed by
third-party aggregators have not been studied in detail; specific related research questions
include:

• What are the effects on the distribution network when a large portion of the network’s
loads are aggregated and controlled to provide transmission-level energy balancing?

• If only a few distribution constraints are at risk of violation due to energy balancing, can
these constraints be satisfied using a targeted intervention (rather than, for example,
solving a centralized optimization problem)?

• How can a distribution network operator ensure third-party aggregators do not cause
unsafe operation without overly restricting aggregators’ actions?

• What are the benefits of coordination (i.e., information sharing) between an operator
and third-party aggregator?

1.3.4 Economic Viability

Another challenge is making the technology economically viable. When providing energy
balancing with a load aggregation, the revenue per load is low, so the costs per load must
also be low. In [50], the potential revenue for different types of TCLs participating in
California’s regulation market was estimated; the study found a mean revenue of $24/year
for a water heater, $0-32/year for an air conditioner, and $22-56/year for a heat pump, where
the ranges reflect different climate zones in California. Because these revenues are small, the
annualized per-load costs must be kept low in order to make the technology economically
attractive to consumers and aggregators.

One way to reduce costs is to reduce the cost of infrastructure required to implement load
control. This infrastructure includes communication, sensing, and computation. Researchers
have proposed estimation-based methods to reduce the number of load measurements (e.g.,

8



temperature and power measurements) that are sensed and communicated (see [6], [9], [41],
and [52]). Although these papers have shown that an aggregation can perform well with
fewer measurements, ISOs’/RTOs’ metering and telemetry requirements may not allow such
reductions [46].

In this setting, the biggest economic improvements are likely to come from the development
of new ISO/RTO rules. To improve their economic viability, aggregators may need to propose
changes to ISO/RTO metering and telemetry requirements that will help them reduce the
associated costs without diminishing the quality of the provided services.

1.3.5 Adapting to New Technologies

Most proposed strategies that aggregate and control space heating/cooling systems assume
relatively simple systems (e.g., systems with single-speed compressors and single-zone tem-
perature control). More complex systems—with two-speed or variable-speed compressors,
occupant sensing, and multi-zone temperature control—are growing in popularity. Con-
trol strategies should be developed that are compatible with the constraints of these more
complex systems.

1.3.6 Gaps Addressed by the Dissertation

This dissertation addresses many, but not all, of the aforementioned research areas and gaps.
Chapter 2 addresses some of the real-world performance concerns raised in Section 1.3.2. The
majority of the dissertation (Chapters 3-7) is devoted to the gaps identified in Section 1.3.3,
i.e., assessing and preventing the negative impacts of load control on the distribution net-
work. Throughout the dissertation, TCL controllers are designed to be non-disruptive and
high performance, as described in Section 1.3.1. In addition, the controllers proposed in
Chapters 5 and 6 include TCL cycling constraints and contribute to the recent literature on
control solutions that have minimum cycle-time guarantees.
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1.4 Organization and Contributions of the Dissertation
Chapter 2 proposes two online methods for updating aggregate models of TCLs when con-

ditions (e.g., temperatures) are changing or when biased disturbances are active. The
proposed methods are incorporated into a model-based control system and are shown to
improve the control system’s tracking performance compared to two benchmark meth-
ods.

Chapter 3 presents a simulation study of distribution networks with high proportions of
aggregator-controlled loads. The goal of the study is to determine what negative ef-
fects aggregated loads (controlled to provide energy balancing) can have on distribution
operation.

Chapter 4 presents a hierarchical control strategy for providing network-safe load control
with a third-party aggregator and distribution operator. In this strategy, the opera-
tor blocks TCLs from receiving the aggregator’s commands when necessary to ensure
safe network operation. An estimation algorithm for the aggregator is proposed that
estimates the percentage of TCLs that are blocked; this estimate is used within the
aggregator’s tracking controller to compensate for blocking. In this chapter, a sim-
plified plant model is used—that is, TCLs’ cycling constraints are neglected and the
distribution network is not modeled. These simplifications are removed in Chapter 6.

Chapter 5 presents mode-count control, a control algorithm designed to satisfy constraints
on the power consumption of groups of TCLs. The algorithm can be used in a targeted
fashion to relieve particular constraints on a distribution network. We demonstrate the
algorithm with a group of 25 TCLs and show that it can reduce local voltage variability.
Finally, we extend the algorithm to account for TCLs’ cycling constraints.

Chapter 6 presents two control strategies for providing network-safe load control with a
third-party aggregator and distribution operator. In the first strategy, the distribution
operator blocks TCLs in certain areas of the network to ensure safety (as in Chapter 4),
and the aggregator uses an aggregate-model based controller for tracking. A new aggre-
gate model is proposed for TCLs with cycling constraints. In the second strategy, the
operator uses targeted mode-count control to ensure network safety, and the aggregator
uses a priority-stack controller that relies on individual TCL models. The two strategies
are compared in terms of performance as well as their measurement, communication,
and computational requirements.
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Chapter 7 presents a method of constraining an aggregator’s control actions such that
they do not cause violations of distribution network constraints. We design a safety
constraint as a function of aggregator-induced power deviations, and formulate a set of
optimization problems to determine the safety constraint’s limit.

Chapter 8 concludes the dissertation and discusses future avenues of investigation.

Note that the each chapter is self-contained in terms of mathematical notation except when
an equation from a different chapter is explicitly referenced.
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Chapter 2

Load Control to Reject Biased
Disturbances

This chapter is largely based on the published work [16]1.

2.1 Chapter Introduction
Power system operators are looking to new sources of flexibility to support the growing
number of wind and solar installations on the grid [27, 48]. The power production of these
renewable energy resources is intermittent and uncertain, requiring flexible generators and
loads to quickly change their production and consumption to ensure real-time energy sup-
ply/demand balance. Thermostatically controlled loads (TCLs), such as air conditioners,
heat pumps, and electric water heaters, are a vast, flexible resource [50] because the power
consumption of these sorts of loads can be manipulated without substantially impacting their
end use function [8]. Residential TCLs generally operate within a temperature deadband,
i.e., the consumer sets the temperature set point and the load modulates temperature to
plus/minus some small range around that set point by cycling the load on and off. Non-
disruptive load control techniques exploit inherent TCL flexibility by changing the timing
of TCL on/off switches while ensuring that temperatures remain within the deadband; see
e.g., [52, 94]. Coordinating the switching of hundreds to thousands of TCLs enables them
to provide services to the power system such as regulation or load following.

1S. Crocker and J.L Mathieu. “Adaptive state estimation and control of thermostatic loads for real-time
energy balancing”. In: Proceedings of the American Control Conference (ACC). Boston, MA, July 2016,
(Invited).
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A key challenge of controlling a TCL aggregation is maintaining accurate tracking per-
formance when TCLs are subject to disturbances and changing conditions. Most related
work assumes that noise affects each TCL’s temperature dynamics, and that this noise is an
independent identically distributed, zero-mean Gaussian, stationary random process (e.g.,
[28, 52]). This noise is meant to represent stochastic processes that increase/decrease the
internal temperature of a load, such as steam from a shower warming a house. In practice,
we would expect some disturbances to depend on the time of day and to have a bias. For
example, these types of disturbances might occur as a result of cyclic human behaviors, such
as everyone cooking dinner at approximately the same time of day. Some research has con-
sidered the effect of changing ambient temperatures on TCL control [51]; this is a changing
condition that we will refer to as a disturbance in this chapter.

The contribution of this chapter is the development of two online methods for updating an
aggregate TCL model to account for biased disturbances. The first system uses infrequent
state measurements to update the aggregate model, and the second uses aggregate power
measurements. We add these model-update methods to the model-based control system of
[52] and compare their performance to two benchmark methods.

2.2 Modeling of Thermostatically Controlled Loads

2.2.1 Individual TCL Model

A model of a house’s temperature dynamics was developed in [34, 58, 79] and has been
frequently used in the literature [7, 19, 74]. It is a lumped-element model and can be
represented by the equivalent electrical circuit shown in Fig. 2.1. In this model, the interior
temperature of the house is 𝜃, the ambient outdoor temperature is 𝜃amb, the heat capacity of
the house’s interior is 𝑐, and the resistance of the house’s thermal envelope is 𝑟. When heat
is actively being transferred in or out of the house, the conditioning device’s power status 𝜎
is on, otherwise it is off. If 𝑝𝜃 < 0 the house is being cooled, if 𝑝𝜃 > 0 the house is being
heated. Given this model, the 𝑖th TCL’s temperature 𝜃𝑖 evolves according to the hybrid
dynamics,

d
d𝑡𝜃𝑖(𝑡) =

⎧{
⎨{⎩

1
𝜏 𝑖 (𝜃amb(𝑡) − 𝜃𝑖(𝑡) + 𝑝𝑖

𝜃𝑟𝑖), if 𝜎𝑖(𝑡) = on,
1
𝜏 𝑖 (𝜃amb(𝑡) − 𝜃𝑖(𝑡)), if 𝜎𝑖(𝑡) = off .

(2.1)

where 𝜏 𝑖 = 𝑟𝑖𝑐𝑖 is the thermal time constant of the house.
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Figure 2.1: Electrical circuit equivalent of the thermal of an individual TCL. Figure based on [58].

In this chapter, we use a discrete time model of a TCL’s temperature dynamics. The
model, derived in [58], is just the discretized solution to (2.1) with a time step duration of
ℎ. Using the discrete model, the temperature of the 𝑖th TCL at time step 𝑘 + 1 is given by

𝜃𝑖(𝑘 + 1) =
⎧{
⎨{⎩

𝑎𝑖𝜃𝑖(𝑘) + (1 − 𝑎𝑖)(𝜃amb(𝑘) + 𝑟𝑖𝑝𝑖
𝜃), if 𝜎𝑖(𝑘) = on

𝑎𝑖𝜃𝑖(𝑘) + (1 − 𝑎𝑖)𝜃amb(𝑘), if 𝜎𝑖(𝑘) = off ,
(2.2)

where 𝑎𝑖 = exp(−ℎ/(𝑟𝑖 𝑐𝑖)).
In this dissertation, we restrict attention to TCLs with a fixed heat transfer rate 𝑝𝜃. For

this type of TCL, the thermostat controls temperature by toggling the heating/cooling device
on and off. For a cooling TCL, the thermostat’s control is modeled as

𝜎𝑖(𝑘) =
⎧{{
⎨{{⎩

off , 𝜃𝑖(𝑘) < 𝜃𝑖

on, 𝜃𝑖(𝑘) > 𝜃𝑖

𝜎𝑖(𝑘 − 1), otherwise.
(2.3)

where 𝜃𝑖 = 𝜃𝑖
set − 𝛿𝑖/2, 𝜃𝑖 = 𝜃𝑖

set + 𝛿𝑖/2, 𝜃𝑖
set is the user-set temperature, and 𝛿 is the allowed

range in temperature and is typically less than 1∘C. The temperature range between 𝜃𝑖 and
𝜃𝑖

is referred to as the temperature deadband, or simply as the deadband.
The coupled set of equations (2.2) and (2.3) describe the trajectory of an autonomous

TCL through its state space. Ranges of parameter values for residential air conditioning
systems, sourced from [50, 52], are listed in Table 2.1.

Finally, the rated electrical power consumption of a TCL is given by

𝑃 𝑖
R = |𝑝𝑖

𝜃|/𝜁𝑖, (2.4)
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Table 2.1: Cooling House Parameters

Parameter Range of Values Unit
Setpoint temperature (𝜃set) 18 to 27 ∘C
Width of temperature range (𝛿) 0.25 to 1 ∘C
Thermal resistance (𝑟) 1.2 to 2.5 ∘C/kW
Heat capacity of interior (𝑐) 1.5 to 2.5 kWh/∘C
Heat transfer rate (𝑝𝜃) -18 to -10 kW
Coefficient of performance (𝜁) 2.5 –

where 𝜁𝑖 is the coefficient of performance. If there are 𝑁 TCLs in the aggregation, their
total power consumption is given by

𝑃total(𝑘) =
𝑁

∑
𝑖=1

𝟙on(𝜎𝑖(𝑘))𝑃 𝑖
R. (2.5)

We use the notation 𝟙{𝑎}(𝑏) to represent the indicator function of the singleton set containing
𝑎: if 𝑏 = 𝑎 the function has value 1 and if 𝑏 ≠ 𝑎 the function has value 0.

2.2.2 Aggregate TCL Model

Within the proposed control systems, we use a linear time-invariant (LTI) model to describe
the aggregate dynamics of the TCL population. The model, developed in [52] and similar to
the models of [3, 40, 45], is of the standard LTI form:

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐮model(𝑘) (2.6)
𝑦(𝑘) = 𝐂𝐱(𝑘). (2.7)

This model makes the control problem more tractable. We briefly describe the derivation of
this model but refer the reader to [52] for full details.

First, each TCL’s temperature deadband is normalized so that the state of all TCLs can be
described by the same deadband. Then, the normalized deadband is discretized by uniformly
dividing it into 𝑁B/2 intervals. A TCL’s state is described by which “bin” it is in, where
each bin corresponds to a distinct temperature interval and power status (on or off). There
are a total of 𝑁B bins. A TCL’s dynamics can be approximately model with a Markov
chain, where transitions from bin to bin are modeled probabilistically. Fig. 2.2 illustrates
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Figure 2.2: Representation of TCL state dynamics as a Markov chain. Bins (indicated by circles)
are defined by a temperature interval and power status (on or off ). A subset of
possible bin transitions are shown with arrows.

the Markov chain; bins are represented by circles and transitions by arrows.
The aggregate state 𝐱 represents the fraction of the population that is in each bin. The

𝐀-matrix governs the autonomous dynamics of 𝐱 and is the transpose of the Markov chain’s
transition matrix. Let 𝑝𝑖,𝑗 be the probability of transitioning from bin 𝑖 to bin 𝑗, then the
𝐀 is given by

𝐀 =
⎡
⎢
⎢
⎢
⎣

𝑝1,1 𝑝2,1 ⋯ 𝑝𝑁B,1

𝑝1,2 𝑝2,2 ⋯ 𝑝𝑁B,2

⋮ ⋮ ⋱ ⋮
𝑝1,𝑁B

𝑝2,𝑁B
⋯ 𝑝𝑁B,𝑁B

⎤
⎥
⎥
⎥
⎦

. (2.8)

Assuming 40 bins and ℎ = 2 seconds, as we do in this chapter, the transition probabilities
above the diagonal, and below the lower off-diagonal are very small or zero.

The control input vector 𝐮model, which is half the length of 𝐱, specifies the fraction of
the TCL population that is designated to switch from each bin. Positive entries of 𝐮model

represent commands to switch on and negative entries represent commands to switch off.
The 𝐁-matrix is given by

𝐁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0
⋱

0 −1
0 1

. .
.

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.9)
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The structure of 𝐁 ensures that the fraction that switches out of an on bin is moved into
the corresponding off bin of the same temperature.

The output 𝑦 represents the total power consumption of the TCLs. The 𝐂-matrix is
defined as

𝐂 = ̄𝑃on 𝑁 [0, ⋯ , 0⏟
𝑁B

2

, 1, ⋯ , 1⏟
𝑁B

2

], (2.10)

where the binary vector sums the fraction of the TCLs that are on and the scaling term
converts this fraction into the approximate power consumption of all TCLs that are on.
It is approximate because ̄𝑃on is a constant parameter that estimates the average power
consumption of all TCLs that are on in the current time step; in practice, this value is
time-varying.

2.3 Original Control System
A look-ahead proportional controller with a Kalman filter for estimation was developed in
[52]. In this chapter, we refer to this control system as the original control system, because
it serves as the base for the systems that we propose in Section 2.4.

The block diagram of the original control system is shown in Fig. 2.3. The power signal
to be tracked is 𝑃 ∗

total. The controller computes the control input 𝐮plant which is sent to
the plant. The plant consists of a population of TCLs that switch on/off based on the
control input. In aggregate, the TCLs consume real power with magnitude 𝑃total, which is
supplied by the distribution substation. The substation also supplies power to other loads.
Two forms of feedback are shown in Fig. 2.3: output feedback 𝑃total,meas and state feedback
𝚯, 𝚺. The output feedback is determined from the substation’s measurement of the total
power consumption of its distribution system 𝑃DS and a forecast of the power consumption
of ‘other’ loads (i.e., loads not in the plant) ̂𝑃other,forecast. The forecast is subtracted from
𝑃DS to determine 𝑃total,meas, a noisy measurement of the TCLs’ total power consumption.
State feedback consists of TCLs’ temperature histories 𝚯(𝑘) = {𝜽(𝑘), 𝜽(𝑘 − 1), ..., 𝜽(𝑘 − 𝑗)}
and on/off histories 𝚺(𝑘) = {𝝈(𝑘), 𝝈(𝑘 − 1), ..., 𝝈(𝑘 − 𝑗)}. This feedback is used within a
state estimator, which provides the state estimate 𝐱̂ to the controller.

Note the dashed line indicates that the state histories are transmitted periodically. For
example, this data could be sent from a smart meter that communicates with the TCL
through a home energy management system. Because of communication protocols, smart
meters are generally unable to send high-frequency data, but can collect data and transmit
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Figure 2.3: Block diagram of the original control system and plant with output feedback. Red
dash-dot lines indicate physical power flows.

packets of data on timescales of minutes to hours [1]. When available, state feedback is used
to directly update the state estimate.

2.3.1 Controller

The controller first predicts what the output would be one time step ahead if the TCLs were
allowed to move through their deadbands unforced:

𝑃total,pred(𝑘 + 1) = 𝐂𝐀𝐱̂(𝑘) (2.11)

𝑃total,pred is used to compute the fraction of TCLs that need to be switched on or off to
achieve 𝑃 ∗

total in the next time step. This fraction is divided between the bins; here we divide
it equally among all bins excluding those on the edges of the temperature band:

𝑢𝑗
model(𝑘) = 1

(𝑁B/2 − 2) × 𝐾P(𝑃 ∗
total(𝑘 + 1) − 𝑃total,pred(𝑘 + 1))

̄𝑃on𝑁 (2.12)

where 𝑗 ∈ {2, ..., (𝑁B/2 − 1)} and 𝑢𝑗
model is the 𝑗th entry of 𝐮model. Note the first and last

elements of 𝐮model are set to zero. 𝐾P is a control gain; if the prediction is perfect, then the
optimal value of 𝐾P is 1.

Before the control input is sent to the plant, it is converted from fractions based on the
total number of TCLs to fractions based on the number of TCLs in the bins that the TCLs
are being switched out of. These “switching probabilities” are computed by dividing the
entries of 𝐮model(𝑘) by the associated entries of 𝐱̂(𝑘). The resulting vector 𝐮plant(𝑘) contains
a switching probability for each bin being switched out of. Each TCL receives the vector,
determines which switching probability to act upon based on its current state, then draws a
random number between zero and one and switches state if its random number is less than
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its switching probability.

2.3.2 State Estimator

In [52], a Kalman filter was used for state estimation and was designed for the system:

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐮model(𝑘) + 𝐰(𝑘) (2.13)
𝑦(𝑘) = 𝐂𝐱(𝑘) + 𝑣(𝑘) (2.14)

where 𝐰(𝑘) is process noise, 𝑣(𝑘) is measurement noise, and the pair (𝐀, 𝐂) is observable
[52]. The process noise is due to plant-model mismatch as well as individual TCL noise.
Measurement noise arises because of our assumption that the output measurement, 𝑦(𝑘) (in
Fig. 2.3 labeled 𝑃total,meas), is obtained by subtracting a forecast of the power consumption
of uncontrolled loads from the total substation power. The measurement noise is thus equal
to the error in the forecast of uncontrolled loads. We assume this forecast error is Gaussian
with mean zero. The process noise is inherent to the model-plant mismatch and is not
zero-mean or Gaussian. Thus, our use of a Kalman filter is suboptimal. We recognize that
in practice the measurement noise is also unlikely to be zero-mean and Gaussian, and the
application of a Kalman filter would thus be even less optimal.

In our implementation of the Kalman filter, we assume the output measurement can be
used immediately for estimation as in [52]. Thus if the current time step is 𝑘, the algorithm
updates the state estimate to the current time step by calculating the a priori state estimate:

𝐱̂(𝑘|𝑘 − 1) = 𝐀𝐱̂(𝑘 − 1|𝑘 − 1) + 𝐁𝐮model(𝑘 − 1) (2.15)

This estimate is then corrected using 𝐌, the Kalman filter’s innovation gain, which weights
how much the output measurement influences the state estimate correction. The algorithm
calculates the a posteriori state estimate using:

𝐱̂(𝑘|𝑘) = 𝐱̂(𝑘|𝑘 − 1) + 𝐌(𝑃total,meas(𝑘) − 𝐂𝐱̂(𝑘|𝑘 − 1)) (2.16)

Once calculated, 𝐱̂(𝑘|𝑘) is substituted for 𝐱̂(𝑘) in (2.11).
To calculate 𝐌 we use the kalman function in MATLAB and provide as inputs the co-

variance matrix 𝐖 of 𝐰 and the variance 𝑉 of 𝑣. 𝐖 is calculated by first characterizing 𝐰
through a simulation of the controlled plant. In this simulation, time series data is collected
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Figure 2.4: Block diagram of the original control system with model updates.

on the error between the actual states and the modeled states; this error can be thought
of as samples of the random vector 𝐰. 𝑉 is calculated simply by squaring the standard
deviation of 𝑣, which is predefined. In contrast to [52], we treat the magnitude of 𝐌 as a
tunable parameter; we scale it by 𝐾M when searching for the optimal combination of tuning
parameters for the control systems considered in the case studies.

2.4 Methods for Bias Rejection
We propose two methods for rejecting biased disturbances. Both methods update the LTI
model to improve controller and estimator accuracy. The model updates are added to the
control system as shown in Fig. 2.4. We also present two benchmark methods that will be
used for comparison in the case study.

2.4.1 Proposed Methods

State-Based Update

In this method, we propose updating 𝐀 using state histories 𝚯 and 𝚺. When a state history
arrives, we compute TCLs’ current transition rates between bins. Then the updated entries
of 𝐀 are computed as the weighted sum of the previous 𝐀 and the current bin transition
rates. The weighting parameter 𝐾wt takes a value between 0 and 1. The optimal value for
𝐾wt is found through iterative tuning.
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Output-Based Update

In this method, we update 𝐀 as a function of estimated output error: (𝑃 ∗
total − ̂𝑃total). The

idea for the output-based update originated from a simple observation about the original
control system: if output error has a consistent bias, then the control system is consistently
under- or over-predicting the number of TCLs that will be on in the next time step. This
bias can come from several sources of inaccuracy: 1) the 𝐀-matrix does not capture the
current rates of state transitions, 2) the state estimate has deviated substantially from the
actual state, and 3) the TCL aggregation is unable to follow the target trajectory because
all TCLs are operating at the limits of their temperature ranges. One way to address the
first issue is to update 𝐀 as a function of the integrated output error.

For instance, if the integrated output error is negative, this indicates that too many TCLs
have been switched on, which means the control inputs have been too large. The control
input can be too large if the model-based prediction, 𝑃total,pred(𝑘) = 𝐂𝐀𝐱(𝑘), is too small.
To compensate for this under-prediction, we should increase the number of TCLs predicted
to be in on-states by decreasing the probability of transitioning from on-state to on-state in
the 𝐀-matrix. (A change of the opposite sign should be applied to the transition probabilities
corresponding to off -states.) This update slows the modeled progression of the TCLs in the
on-states and speeds up the progression in the off -states, resulting in the desired increase to
on-state entries. In addition, these changes to the 𝐀-matrix will result in an increase to the
on-states for the state estimate, 𝐱̂, because the Kalman filter’s a priori estimate depends on
the 𝐀-matrix as well.

We propose updating transition probabilities with an additive term that is proportional
to the integrated output error. For a four-bin LTI model, the update is given by

𝐀(𝑘) =
⎡
⎢
⎢
⎢
⎣

𝑝1,1 + 𝛼(𝑘) 𝑝2,1 𝑝3,1 𝑝4,1 + 𝛼(𝑘)
𝑝1,2 − 𝛼(𝑘) 𝑝2,2 + 𝛼(𝑘) 𝑝3,2 𝑝4,2

𝑝1,3 𝑝2,3 − 𝛼(𝑘) 𝑝3,3 − 𝛼(𝑘) 𝑝4,3

𝑝1,4 𝑝2,4 𝑝3,4 + 𝛼(𝑘) 𝑝4,4 − 𝛼(𝑘)

⎤
⎥
⎥
⎥
⎦

. (2.17)

The additive term 𝛼(𝑘) = 𝐾𝛼𝑒I(𝑘), where 𝐾𝛼 is a tunable gain and the integrated error is

𝑒I(𝑘) =
𝑘

∑
𝑗=1

(𝑃 ∗
total(𝑗) − ̂𝑃total(𝑗)). (2.18)

In (2.17), we update only the dominant transition probabilities because all other entries are
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typically orders of magnitude smaller and have a negligible effect on model dynamics.
Analyzing the stability of the control system when using the output-based update is future

work. It should be noted that, by substituting (2.17) into (2.12), the control law can be
reformulated to have an integrator term. This suggests that output-based update may be
equivalent to an integrator.

2.4.2 Benchmark Methods

Temperature-Based Update

The first benchmark method updates the aggregate model to account for changing temper-
atures. We update 𝐀 and ̄𝑃on using lookup tables for the parameter values at different
temperatures, similar to the approach of [51]. Specifically, we find the two values in the
lookup table that are associated with the closest temperatures that bound 𝜃amb, and linearly
interpolate between them to generate updated values. The updated parameters replace the
originals in both the estimation and control algorithms. Note that this approach differs
slightly from that of [51], which does not use linear interpolation.

Integrator

The second benchmark method is the addition of an integrator to the original system’s
control law. Specifically, we subtract the term 𝐾I𝑒I from the numerator of (2.12), where 𝐾I

is the integral gain and 𝑒I is calculated as in (2.18). When state feedback is available, we
use measured output error within (2.18) rather than estimated output error.

2.5 Case Study

2.5.1 Disturbance Models

If ambient temperature has been forecasted poorly, or if ambient temperature is assumed
constant over the course of an hour, a rapid change in ambient temperature will act as a
disturbance to the original control system. We model this type of disturbance as a linear
change in ambient temperature over the course of an hour. The disturbance affects all house
heating/cooling TCLs located in the same geographical area similarly. In the case study, we
produce a temperature disturbance by varying 𝜃amb in (2.2) from 32∘C to 35∘C for each TCL
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in the plant. When this disturbance is not active, ambient temperature is held constant at
32∘C.

Another type of disturbance that can cause biased error is user activities that occur at
similar times for TCLs across the aggregation. As an example, consider the hour after the
workday ends: families return home, warm air enters cooled spaces when doors open, and
internal heat gains increase due to occupant activity. We model this type of disturbance by
adding a Bernoulli random variable 𝜃𝑖

d to (2.2) for each TCL model in the plant. For the
case study’s simulation hour, the disturbance 𝜃𝑖

d has distribution:

pr(𝜃𝑖
d(𝑘) = 0.5𝛿𝑖) = 1

2000 (2.19)

pr(𝜃𝑖
d(𝑘) = 0) = 1 − 1

2000, (2.20)

where 𝛿𝑖 is the TCL’s temperature range. Note the probability of the disturbance occur-
ring (1/2000) is the same for all TCLs. Over the course of a day, the probability of user
disturbances would vary, but, for the case study’s one hour time period, we assume the
probability is constant. Given that there are 1800 time steps in the simulation hour, the
expected number of disturbances a TCL will experience during the hour is 1800/2000 = 0.9.

2.5.2 Setup

We compare the proposed methods to the benchmark methods in six cases. Cases are defined
in Table 2.2 and are distinguished by which disturbance(s) are active and what feedback is
available to the control system. In the table, output feedback indicates that 𝑃total,meas is
available in all time steps. State feedback indicates that 𝚯, 𝚺 are available every 5 minutes.
The output feedback 𝑃total,meas is noisy due to the error in the forecast of the ‘other’ loads.
We assume that this error has a zero-mean Gaussian distribution with standard deviation
of 5% of the total substation power. As in [52] we assume a substation load of 17 MW.

The simulated plant parameters are chosen to be reflective of air conditioners. To pro-
duce a heterogeneous population of 1,000 air conditioners, we randomly draw instances of
parameters for each load from the uniform distributions described by the ranges in Table
2.1, except for the setpoint range for which we use 15-25∘C. The same parameter instances
are used in all simulations. We set the simulation time step, ℎ, equal to 2 seconds, which
is sufficiently small given that a TCL’s temperature cycle is on the order of 20 minutes.
Finally, a noise term, 𝜖𝑖, is added to the plant’s individual TCL equations (2.2) to make the
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simulated plant more realistic. We use the same Gaussian distribution for 𝜖𝑖 as [52] with
zero mean and standard deviation of 5×10−4 ∘C.

In the LTI model, we use 40 bins. The 𝐀-matrix is identified by simulating the unforced
plant over one hour and computing transition probabilities based on the state information.
For the temperature-based update method, we calculate one 𝐀-matrix for each integer value
from 32 to 35 ∘C. For the output and state based update methods, the 𝐀-matrix in the first
time step corresponds to 𝜃amb = 32 ∘C. For the 𝐂-matrix, we identify ̄𝑃on by simulating the
unforced plant and computing 𝑃 on = ∑1800

𝑘=1 𝑃total(𝑘)/∑1800
𝑘=1 ∑𝑁

𝑖=1 𝟙on(𝜎𝑖(𝑘)).
We use the reference signal from [52], which was designed to represent a 5-min market

signal from the California Independent System Operator. The signal 𝑃 ∗
total is composed of

piecewise linear deviations (of up to ±25% of the signal’s offset). The signal’s offset is the
aggregation’s baseline power consumption 𝑃total,bl. We identify a constant value of 𝑃total,bl for
each of the four ambient temperatures by simulating the unforced plant at each temperature
and taking the average of 𝑃total.

We evaluate control system performance by measuring the error between 𝑃 ∗
total and 𝑃total at

every time step, normalizing the values by 𝑃total,bl, and taking the root mean square (RMS).
Results are reported as RMS errors averaged over 25 simulation runs. All parameters and
gains are held fixed across the 25 simulations. The simulation runs differ from each other in
that the random elements in the simulation (𝜖, 𝜃d, and 𝑣) have different realizations.

For each case-method combination, we search iteratively for a set of optimal tuning pa-
rameters by simulating the forced plant and searching for parameters that minimized the sys-
tem’s tracking error. The range of optimal values found for the tuning parameters were 𝐾M ∈
[0.8, 2.2]; 𝐾P ∈ [0.4, 1.4]; 𝐾I ∈ [0.001, 0.5]; 𝐾wt ∈ [0.7, 1]; and 𝐾𝛼 ∈ [3 × 10−6, 8 × 10−6].

2.5.3 Results

Table 2.2 shows the tracking error results for each of the methods across the six cases. As
expected, percent RMS error rises as disturbances are added. For every case that has state
feedback available, the state-based update has the lowest RMS error. However, when state
feedback is not available, the state-based update cannot be implemented. Among the cases
that have only output feedback, in Cases 2 and 6 the output-based update results in the
lowest RMS error, and in Case 4 the temperature-based update results in the lowest RMS
error.

Cases 1 and 2 serve as base cases, since they include no disturbances, and can be directly
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Table 2.2: Tracking Performance: % RMS Error

Case Method
Basis for Model Update

Case Disturbance Feedback State Output 𝜃amb Integrator
1 – State, Output 3.34 3.42 3.42 3.42
2 – Output – 4.15 4.65 4.53
3 A State, Output 3.66 3.98 3.70 4.72
4 A Output – 4.59 4.33 7.55
5 A, U State, Output 6.36 7.23 7.52 7.82
6 A, U Output – 7.19 9.44 10.55

A= Ambient temperature change, U = User disturbance

compared to the results of other research work. In Case 1, three of the methods have the same
RMS error because none of them are able to improve upon the result of the original control
system. In contrast, the state-based update does offer a small amount of improvement.
This result suggests that the state-based updates may be beneficial even when there are
only small changes in the plant’s transition probabilities, such as those due to the changing
characteristics of TCL clusters that move together through the temperature space. In Case
2, the integrator and output-based update outperform the temperature-based update (which,
again, for this case is equivalent to the original control system because ambient temperature
is constant).

In Cases 3 and 4, the ambient temperature disturbance is active. Setting aside the state-
based update, in both cases the temperature-based update performs better than the output-
based update and the integrator. We attribute this result to the fact that the temperature-
based update is designed specifically for ambient temperature disturbances.

In Cases 5 and 6, both ambient temperature and user disturbances are active, and the
state and output based updates outperform the temperature based update, which in turn
outperforms the integrator. Fig. 2.5 shows the improved tracking of the control system with
the output-based update in comparison to the temperature-based update in Case 6.

One counter-intuitive result is that the output-based update results in lower RMS error
when it has no state feedback (Case 6) compared to when it has state feedback (Case 5).
This may be due to the sudden corrections to ̂𝑥 and ̂𝑃total that occur when state histories
arrive periodically in Case 5. These corrections induce a step change in the control input
that has the potential to cause an over or undershoot in the plant output.
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Figure 2.5: Tracking performance of the control system with two different model updates:
temperature-based and output-based. Data is from Case 6. Percent RMS error is
9.44% for the temperature-based update and 7.19% for the output-based update.

2.6 Chapter Conclusion
We have developed control strategies that improve the tracking performance of large aggre-
gations of TCLs when subject to biased, population-wide disturbances. We proposed two
online methods of updating the state-bin model that is used within the model-based control
system. These updates enable the control systems to partially reject biased disturbances and
changing ambient temperature. In a case study, we found that the state-based model update
outperformed all other methods, but this method is only an option when state measurements
are available. When state feedback was unavailable, we found that the output-based update
outperformed the benchmark methods in 2 of 3 cases. Regardless of the type of feedback
available, the benefit of the proposed methods is clear when TCLs are subject to changes in
ambient temperature and user-driven disturbances simultaneously.

In future work, we plan to develop disturbance models based on measured disturbance
data and to conduct further testing using these more realistic disturbance models.

26



Chapter 3

Effects of Load-Based Energy
Balancing on Distribution Network

Operation

This chapter is largely based on the published work [73]2 and [69]3.

3.1 Chapter Introduction
Utilizing aggregations of loads for frequency regulation requires local distribution networks to
transmit the service to the regional power system. As a result, distribution power flows will
change, and load actions could cause local constraints, such as thermal limits of components
or voltage limits of nodes, to become violated. Thus, although the load aggregator’s objective
is to provide a transmission-level ancillary service, the aggregator must also avoid violating
distribution network constraints. This control problem is distinct from much of the work on
control of distributed energy resources (DERs), which focuses on providing distribution-level
services (e.g., [32, 98]).

In this chapter, we assess the impacts of load-based regulation on distribution network
operation. Similar studies on network impacts have been conducted for DERs such as resi-
dential photovoltaic (PV) systems [15, 36], and electric vehicles (EVs) [13, 22, 31, 81], but

2S.C. Ross, G. Vuylsteke, and J.L Mathieu. “Effects of load-based frequency regulation on distribution
network operation”. In: IEEE Transactions on Power Systems 34.2 (2019), pp. 1569-1578.

3S.C. Ross, G. Vuylsteke, and J.L Mathieu. “Effects of load control for real-time energy balancing on
distribution network constraints”. In: Proceedings of the IEEE Power & Energy Society PowerTech.
June 2017.
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Figure 3.1: Illustration of possible effects of load-based regulation on distribution network opera-
tion at different baseload levels. On left: Aggregate TCL power is relatively flat in the
base case and follows a regulation signal in the regulation case. On right: Increased
variation in power during regulation could cause violations in voltage limits and trans-
former power limits; as baseload levels increase, under-voltage violations may become
more likely than over-voltage violations, and transformer power violations may also
become more likely. Operational limits are indicated with red dashed lines.

these studies did not investigate the network impact of DERs providing frequency regulation.
For example, [15, 36] studied the impacts of high penetrations of grid-feeding PV systems,
and [13, 22, 31, 81] studied the impacts of high penetrations of EVs with uncoordinated
charging. Because load-based regulation has a unique effect on distribution network power
flows—variation in power flows increase while mean power flow stays the same—its effects
cannot be approximated by the aforementioned impact studies. The one impact study that
does address load-based regulation, [97], found that regulation-provision by TCLs affects
distribution transformers’ maximum temperatures. However, the scope of this study was
limited to distribution transformers; a model of the network and analysis of other network
components was not included.

In this chapter, we study five different distribution networks and, for each network, identify
the subset of network constraints that are at increased risk of violation when TCLs provide
regulation. We identify these sets by simulating the distribution networks in a “base case” in
which TCLs operate normally, and a “regulation case” in which TCLs are controlled to track
a regulation signal. The illustration in Fig. 3.1 shows how network variables might change
in the regulation case, as compared to the base case, at three different baseload levels. For
instance, voltages may vary more when TCLs provide regulation, which may increase the
prevalence of over-voltages in light baseload conditions and under-voltages in heavy baseload
conditions. The full set of constraints that we assess includes line current, transformer power,
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transformer aging rate, voltage magnitude, and voltage unbalance.
The primary contribution of this chapter is the comprehensive study of the effects of load-

based regulation on distribution network operation. Additional contributions include: i) an
examination of load-based regulation’s effect on voltages at different baseload levels, ii) an
explanation of why some transformers are more likely than others to age faster due to load-
based regulation, given our chosen control strategy, and iii) identification of the common
trends across the five feeders studied and preliminary ideas on network-protecting control
techniques.

3.2 Feeder, HVAC, and Transformer Models

3.2.1 Simulation Software and Prototypical Feeder Models

We use GridLAB-D [63] to run power flow simulations of distribution networks with time-
varying loads. GridLAB-D performs quasi-steady state analysis using a Newton-Raphson
algorithm at each time step to solve for a network’s three-phase, unbalanced power flow
solution. We also use GridLAB-D’s dynamic, physics-based models of heating, ventilation,
and air conditioning (HVAC) systems.

We use network models from the Pacific Northwest National Lab’s (PNNL’s) prototyp-
ical feeder database [63]. These models are of actual networks and include fuses, voltage-
regulators, capacitor banks, and distribution transformers. The feeders are prototypical in
that their characteristics are representative of other networks, as determined by the rigorous
statistical analysis of [75]. Each prototypical feeder represents a certain class of networks
in one of five climatic regions in the U.S. For example, feeder R1-12.47-1 is estimated to
represent 20.56% of networks on the west coast of the U.S. Thus, the effects of load-based
regulation on a prototypical feeder will be indicative of, though not identical to, those that
will occur in a much larger set of networks.

The original feeder models have only one constant-power load per distribution transformer;
we require higher resolution, time-varying load models. Therefore, we disaggregate the
transformer-level loads using a method provided by PNNL [64] that estimates the number
of houses represented by each load and then constructs a time-varying model for each house.
The house model comprises individual load models (HVAC, water heaters, and pool pumps)
and ZIP models that aggregate all other loads in the house. The HVAC model is primarily
driven by changes in hourly weather, with region-specific data sourced from the typical
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meteorological year (TMY) database; the ZIP loads’ base power values vary according to
heterogeneous hourly schedules provided by [64].

We make the following modifications to the feeder models to improve the realism of our
study.

• Capacitor banks: By default, capacitor banks with more than one phase are configured
so that the voltage-sensing phase is the only phase that is controlled. We modify these
types of banks so that all phases are controllable.

• Power factors: The disaggregation method [64] sets houses’ zip-loads to a power factor
of 1.0. We adjust the power factors using Table A.2 of [15] to better represent common
loads in residential and commercial buildings.

• Small static loads: In the original feeder models, there are a number of small static
loads. By default, method [64] converts these loads to “street lights”, which are only
on in the evening. We revert these back to constant loads so that the loads are on
during the peak hour.

• Transformer sizing: The disaggregation method [64] can result in some transformers
being undersized. We increase the size of transformers whose average loading is both
greater than the transformer’s original rating and greater than its original planning
load by selecting the next largest transformer.

3.2.2 Controlled HVAC Model

GridLAB-D’s HVAC model includes a thermal model of a house, as well as a model of the
space-conditioning devices. The disaggregation method [64] selects randomized parameter
values (e.g., wall insulation, house footprint size, temperature setpoints), such that each
HVAC model is unique. Throughout this chapter we use the term “AC” to refer to the
thermal model of the house, as well as the air cooling device itself. GridLAB-D’s AC model
has three dynamic states: indoor air temperature, mass temperature, and on/off status (see
[65] for details).

We non-disruptively [8] control ACs with on/off commands that maintain indoor temper-
ature within the user-set deadband. We use the simplest form of the probabilistic dispatch
method (see [9, 52, 96]) in which a single switching probability is broadcast to all ACs and,
based on this probability, each AC individually decides whether to switch. An AC is avail-
able to switch if three conditions are satisfied: 1) its indoor air temperature is within the
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temperature deadband; 2) the AC has not switched within the last two minutes; and 3)
if the AC were switched, it would not reach its temperature limit in under two minutes,
as predicted by a model. The first condition ensures the control will be non-disruptive to
the user and the last two conditions protect the unit’s compressor by preventing excessive
switching.

We use the proportional control scheme from [52] to calculate the switching probability 𝑢.
The sign of 𝑢 indicates the direction to switch: positive to switch on, negative to switch off.
Let 𝑃 ∗

total be the desired power setpoint and 𝑃meas the measured power of the AC population.
If (𝑃 ∗

total(𝑘+1)−𝑃meas(𝑘)) ≥ 0, then TCLs need to be switch on and the switching probability
is calculated as

𝑢(𝑘 + 1) = 𝐾P
𝑃 ∗

total(𝑘 + 1) − 𝑃meas(𝑘)
̄𝑃on𝑁off(𝑘) . (3.1)

If (𝑃 ∗
total(𝑘 + 1) − 𝑃meas(𝑘)) < 0, then TCLs need to be switched off and

𝑢(𝑘 + 1) = 𝐾P
𝑃 ∗

total(𝑘 + 1) − 𝑃meas(𝑘)
̄𝑃on𝑁on(𝑘) , (3.2)

where the parameter 𝐾P is a proportional gain, ̄𝑃on is the average power of ACs that are
on in steady-state, 𝑁on is the number of on ACs that are available to switch off, and 𝑁off is
the number of off ACs that are available to switch on. We assume 𝑁on, 𝑁off, and 𝑃meas are
measured perfectly.

3.2.3 Aging Model of Distribution Transformers

The primary aging mechanism for distribution transformers is the deterioration of coil insu-
lation due to heat from resistive losses [33]. To estimate transformer aging, we use GridLAB-
D’s built-in model, which is based on sections 5-7 of IEEE Standard C57.91-1995 [33].
Figure 3.2 shows three key variables within the model: the transformer’s load, winding
temperature, and estimated minutes aged.

The model has two dynamic states: ̃𝜃oil the difference between the transformer’s top-oil
temperature and ambient temperature (i.e., 𝜃oil − 𝜃amb); and ̃𝜃w the difference between the
hot-spot winding temperature and the top-oil temperature (i.e., 𝜃w−𝜃oil). Given these states,

31



0 10 20 30

Time (min.)

0

1

2

L
o

ad
 (

p
.u

.)
0 10 20 30

Time (min.)

95

100

105

110

W
in

d
in

g
 T

em
p

. 
(°

 C
)

0 10 20 30

Time (min.)

0

5

10

15

M
in

u
te

s 
A

g
ed

Figure 3.2: Variables within the transformer aging model: (left) load served by transformer; (mid-
dle) temperature of the winding’s hot-spot; (right) minutes aged by the transformer.
Note that minutes aged are less than the number of simulated minutes because the
winding temperature is always <110∘C.

Table 3.1: Single-Phase Transformer Thermal Parameters

Parameter Valuea Unit Source
Winding time-constant (𝜏w) 5 min [33]
Winding hot-spot rise ( ̃𝜃w,R) 80 ∘C [33]
Top-oil rise ( ̃𝜃oil,R) 60 ∘C [20]
Full-load loss (𝑙fl) 0.0232-0.0112 per unit [66]
No-load loss (𝑙nl) 0.0065-0.0042 per unit [66]
Oil volume 5.7-62.7 gal [91]
Core-plus-coil weight 56.6-484.9 lb [91]
Tank-fittings weight 67.9-581.9 lb [91]

aValues expressed as a range are parameters that depend on the rating of the transformer (5 kVA-175 kVA).

a transformer’s thermal dynamics are described by

𝑑 ̃𝜃oil
𝑑𝑡 = 1

𝜏oil
( ̃𝜃oil,u − ̃𝜃oil)

𝑑 ̃𝜃w
𝑑𝑡 = 1

𝜏w
( ̃𝜃w,u − ̃𝜃w),

(3.3)

where ̃𝜃oil,u and ̃𝜃w,u represent the ultimate temperatures that would be reached if the present
load were sustained indefinitely [33]. The ultimate temperatures are computed as ̃𝜃w,u =

̃𝜃w,R𝐿1.6 and ̃𝜃oil,u = ̃𝜃oil,R((𝐿2𝑙fl/𝑙nl + 1)/(𝑙fl/𝑙nl + 1))0.8, where 𝐿 is the time-varying load
(per unit). The oil time constant 𝜏oil is computed according to equations (14) and (15)
in [33]. Values for the thermal parameters in the above equations are derived from data
found in [20, 33, 66, 91] (see Table 3.1).
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Table 3.2: Network Constraints

Component Variable Lower limit Upper limit
Service node Continuous voltage 0.95 p.u. 1.05 p.u.

Emergency voltage 0.9 p.u. 1.083 p.u.
3-Phase node Voltage unbalance 3%
Transformer Apparent power 200% of rating

Average aging rate 1x nominal
Line Current 100% of rating

The final stage of the model calculates a transformer’s aging rate 𝐹AA according to the
empirically derived formula [33]

𝐹AA = exp (1500
383 − 1500

𝜃w + 273), (3.4)

where 𝜃w is the winding temperature and 𝜃w = 𝜃amb + ̃𝜃oil + ̃𝜃w. The nominal aging rate is
equal to one and occurs when 𝜃w = 110∘C. Note that, in this model, the aging rate is not
dependent on the transformer’s age.

3.3 General Methodology for Studies
We test feeders with a scenario designed to reveal the negative effects of load-based regula-
tion. In this scenario, we assume 100% of residential ACs are controllable, we test networks
during the peak-load hour of the year, and we maximize the amplitude of the regulation
signal (described in Section 3.3.2). We assess the effects of load-based regulation by compar-
ing the operation of the distribution network through two 1-hour simulations: 1) the “base
case” simulation, in which ACs operate normally, and 2) the “regulation case” simulation,
in which ACs are controlled to track a regulation signal.

3.3.1 Assessment Criteria

We assess the effects of regulation by identifying changes in network variables between the
base and regulation cases. Variables of interest and their corresponding constraints are listed
in Table 3.2. First in the table are constraints on the voltage magnitude at service nodes,
which are where service lines connect to distribution transformers. The continuous voltage
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limits are based off of ANSI standard C84.1 [59] and are only violated if surpassed for over
two minutes. The emergency limits are from [26] and are similar to those in [59] and [76].
Second in the table is voltage unbalance of 3-phase nodes: unbalance should be kept below
3% to keep 3-phase motors from overheating [59].

Third in the table are constraints to prevent transformers from aging too rapidly. Many
utilities use apparent power as a proxy for aging rate. We use a limit of 200% of a trans-
former’s rating as in [76]. Unlike utilities, we have access to our simulated transformers’
aging rates. We constrain a transformer’s aging rate such that its average rate over the
simulation hour must be less than one. If a transformer surpasses this limit, its lifetime will
be shorter than nominal (20 years). Fourth in the table is current flow, which is monitored
for overhead and underground lines on the primary side of distribution transformers. We set
the over-current constraint to 100% of the line’s rating. We also monitor the status of all
fuses.

3.3.2 Testing Conditions

To create peak-loading conditions in the test simulations, we prepare each feeder model as
follows. First, we populate the feeder model using the disaggregation method [64] described
in Section 3.2.1. Next, we find the populated feeder’s peak-load hour by running a simulation
over the summer months and selecting the date and hour of maximum substation-load. We
calibrate the populated feeder’s peak-load by comparing it to the original “planning load”,
which was selected by the utility to represent the expected peak load conditions [24]. If the
populated feeder’s peak load is less than 90% of the planning load, we use [64] to iteratively
repopulate the feeder with more houses until its peak is between 90% and 100% of the
original planning load.

For the regulation signal, we select a segment of the PJM Reg-D signal [68] in which the
energy consumed during the regulation hour is equal to that of the base case. We scale the
signal to achieve maximum power deviations by the population of 40% of its average baseline
consumption—the largest capacity the AC population could provide before performance
began to deteriorate.

To ensure appropriate initialization of dynamic states, we simulate the feeder in the 24
hours that precede the test hour (using a 30 second time step for the first 23.5 hours and a 2
second time step for the last 0.5 hours). Once properly initialized, we run the base case and
regulation case simulations using a 2 second time step. We have stored all data and code
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Table 3.3: Feeder Characteristics and Peak-Hour Average Conditions

Feeder Areas Temp. Load AC Regulation
served (∘C) (MVA) Load Capacity

R1-12.47-1 Suburb, rural 34.7 5.71 43% 17%
R2-12.47-2 Suburb 34.4 7.08 51% 20%
R3-12.47-3 Suburb 45.6 8.13 42% 17%
R4-12.47-1 Urban, rural 35.8 6.12 51% 20%
R5-25.00-1 Suburb, urban 33.1 8.25 55% 22%

Regulation capacity expressed as a percentage of total feeder load

needed to replicate the test simulations in the public repository [72].

3.4 Main Study

3.4.1 Setup

We conduct a survey across five networks with the goal of determining how sensitive the
results are to different feeder parameters and topologies. Each feeder is from one of five
climate regions in the U.S. and varies in terms of voltage level, topology, geographical density
of buildings, etc. [75]. Table 3.3 lists the feeders’ key characteristics and conditions during
the peak-hour. The first two parts of a feeder’s name indicates (climate region number)-
(voltage level). For brevity, we will refer to the feeders only by region number. In this study,
we expect the effects of regulation to be larger for feeders R2, R4, and R5 because they have
higher percentages of AC load and thus higher regulation capacities as a percentage of feeder
load (see Table 3.3). We also anticipate that regulation could cause voltage issues on feeders
with long lines, which are typically in rural areas (i.e., R1 and R4).

3.4.2 Results

Service-Node Voltage Results

We find that load-based regulation causes voltages to vary more, but the increase is not
large enough to cause constraint violations in the networks we study. As shown in Fig. 3.3,
voltages deviate in the opposite direction of the change in power injections due to load-based
regulation. Figure 3.4 shows that, for all feeders, load-based regulation causes an increase in
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Figure 3.3: Negative correlation between the regulation signal and average voltage during a reg-
ulation case simulation. The voltage trajectory is the average across all residential
service nodes. (Data from R1.)

the variation of voltage at service nodes. Despite the increase in voltage variation, no limit
violations occur as a result of regulation for any of these feeders. Feeder R4 has voltages
that surpass the continuous upper limit in the regulation case, but for less than the 2 minute
duration required for continuous limit violations. For all feeders, there are no violations of
emergency limits.

Figure 3.5 shows the voltage distributions of all service nodes for the five feeders. An
increase in variation due to regulation is indicated by elongation in the distributions. We
find that the voltage density outside of (or close to) voltage limits generally increases due to
regulation: three of five distributions move closer to the upper limit, and five of five distri-
butions move closer to the lower limit. There would likely be worse impacts on long, rural
feeders with poor voltage regulation. In these “weak” feeders, we expect voltage distribu-
tions would be longer-tailed, and more density would shift outside of the limits in regulation
cases. Unfortunately, we did not have access to a weak feeder model for testing.

3-Phase Node Voltage-Unbalance Results

Load-based regulation has little impact on voltage unbalance. Although feeders R1 and
R4 have nodes that violate the upper limit of 3%, they do so in both the base case and
the regulation case. The largest increase in unbalance due to load-based regulation is only
+0.076%. Its minimal effect on voltage unbalance is likely due to the even distribution of
ACs across the three phases of each network.

36



19.3

16.2

14.7

12.2

12.0

19.8

16.4

16.9

14.1

12.1

0.0 5.0 10.0 15.0 20.0

R1

R2

R3

R4

R5

0.72

0.66

0.57

0.57

0.70

0.89

0.96

0.76

0.79

0.74

0.00 0.50 1.00

R1

R2

R3

R4

R5

Mean Standard Deviation in Voltage (V) Total Range of Voltage (V)

Regulation CaseBase Case

Figure 3.4: Variation of voltage at residential service nodes. Mean standard deviation of voltages
is the mean across all nodes; total range of voltages is the range across all nodes. Both
metrics increase in regulation cases for all five networks.

Feeder
R1 R2 R3 R4 R5

V
ol

ta
ge

225

230

235

240

245

250

255

Base case
Regulation case

upper limit (252V)

lower limit (228V)

Figure 3.5: Voltage distributions of residential service nodes. Distributions for R1 and R4 cross
the continuous upper limit in both cases. Regulation reduces over-limit voltages for
R1 but increases over-limit voltages for R4. Distributions are visualized using kernel
density plotting.

37



Table 3.4: Transformer Results: Apparent Power and Aging Rate

Feeder
Population mean % of pop. w. violation

Power (p.u.) Aging rate Power Aging
base = reg. base reg. base = reg. base = reg.

R1 0.42 0.026 0.025 0.17 0
R2 0.55 0.076 0.070 0 1.04
R3 0.23 0.077 0.076 0.06 1.23
R4 0.43 0.015 0.015 0 0.21
R5 0.47 0.031 0.030 0.54 0.81
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Figure 3.6: Transformer population distributions for (a) power, (b) aging rate, and (c) change in
aging rate (regulation - base). Plots (a) and (b) show that the power and aging rate
distributions are positively skewed and do not change substantially from base case to
regulation case. Plot (c) shows that the change in aging rate is mostly symmetric
about the 𝑦 = 0 line, excluding a few large outliers.
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Transformer Results

For all networks, we find that transformers experience very few apparent power or aging
rate violations and that load-based regulation has little effect on these violations as shown
in Table 3.4. For all five feeders, the per-unit apparent power of transformers, averaged
across the population, is less than 0.6 p.u. (where the p.u. base is the transformer rating)
and does not change from base case to regulation case. These low loading levels translate
to low mean aging rates. In four of five feeders, the mean aging rate decreases slightly
due to regulation, indicating that regulation may be beneficial for some transformers. The
percentage of the population with violations (apparent power or aging rate) is small and
unaffected by regulation.

Distributions of the transformer populations’ loading and aging rates are shown in Fig. 3.6.
In each feeder, a small number of transformers have much higher loading and aging rates than
the rest of the population, as indicated by the positive skews in Fig. 3.6(a) and (b). Notably,
the aging rate distributions require a log-scale for visualization. Figure 3.6(c) demonstrates
that the changes in aging rate from base to regulation case are generally small. As indicated
by the thin spikes, there are a few transformers that experience large changes in aging rate.
Excluding these outliers, the distributions in Fig. 3.6(c) are approximately symmetric about
the line 𝑦 = 0, i.e., about 50% of transformers age faster due to regulation, and about 50%
age slower.

Line Results

In all simulations, line-current stays well below the 100% conductor rating constraint, and
all fuses remain closed.

3.5 Baseload Study

3.5.1 Setup

In this study, we examine the effects of load-based regulation as net baseload changes. In
the future, large-scale adoption of DERs could result in large changes to net baseload. For
example, EV charging would increase net baseload during popular charging hours, and PV
in-feed would decrease net baseload during daylight hours. We conduct this study on feeder
R1 and investigate a shift up in baseload in the “Heavy Baseload” trial, and a shift down
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in baseload in the “Light Baseload” trial. We model these changes in baseload by adding
a constant power ZIP load to 20% of R1’s houses, with power demand of +3.3kW for an
increase in load and -3.3kW for a decrease in load. (The power level of 3.3kW represents a
reasonable charging rate for an EV.) In these trials, the aggregate capacity of the added ZIP
loads is 25.6% of R1’s nominal baseload of 5.71 MVA.

3.5.2 Results

We find that at different baseload levels, the prevalence of voltage violations changes, but
not always in an intuitive direction. Voltage results are presented in Table 3.5. We restrict
our attention to the 1.05 p.u. continuous limit because it is the only constraint violated. In
the base case, the results for the Heavy Baseload and Nominal Baseload trials are similar:
5.69% and 5.35% of nodes, respectively, exceed the 1.05 p.u. limit for at least one time
step. However, in the regulation case, over-limit nodes increase to 20.07% in the Heavy
Baseload trial and decrease to 4.85% in the Nominal Baseload trial. A similar divergence
occurs in the Heavy and Nominal Baseload trials when examining nodes with continuous
voltage violations (i.e., over-limit for more than 2 minutes). In contrast to the other trials,
the Light Baseload trial has only 1.34% of its nodes over-limit for any duration, and this
percentage remains almost constant across cases and durations.

We use two metrics—voltage mean and voltage range—to explain the above results; these
metrics are shown in Fig. 3.7 as distributions across all primary-side nodes. In general, we
observe that mean voltages change primarily as a function of baseload level (see Fig. 3.7(a)),
and voltage ranges change primarily as function of case, i.e., base case or regulation case
(see Fig. 3.7(b)). Setting aside phase A, we observe two trends: 1) as baseload increases,
mean voltages decrease; and 2) in all trials, voltage ranges substantially increase from the
base case to the regulation case. However, because the majority of nodes on phase B and C
have mean voltage less than 1.03 p.u., all voltages remain below the 1.05 p.u. upper limit
even in regulation cases.

All of the nodes that experience over-voltages are located on phase A. Counterintuitively,
as baseload increases, more nodes on phase A experience over-voltages for at least one time
step (see Table 3.5). However, these over-voltage results are consistent with the distributions
for phase A in Fig. 3.7. Specifically, relative to the Nominal Baseload trial, mean voltages
on phase A decrease in the Light Baseload trial (due to a capacitor bank switching off),
resulting in fewer over-voltages. In the Heavy Baseload trial, mean voltages stay constant
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Table 3.5: Baseload Study: % of Nodes above 1.05 p.u. Voltage Limit

For at least one time step For more than 2 min
base regulation base regulation

Heavy Baseload 5.69 20.07 0.17 0.84
Nominal Baseload 5.35 4.85 0.17 0
Light Baseload 1.34 1.34 1.34 1.17

relative to the Nominal Baseload trial, but voltage ranges on phase A increase, resulting
in more over-voltages. It is worth noting that this feeder is particularly unbalanced: the
substation’s average apparent power flow is 1.1 MVA, 2.2 MVA, and 2.4 MVA for phases
A, B, and C, respectively; and so the 3-phase capacitor bank, sized evenly across the three
phases, over compensates phase A.

3.6 Randomization Study

3.6.1 Setup

This study is designed to investigate one of the results from the main study—that some
transformers have an increased aging rate due to load-based regulation. Our goal is to de-
termine whether some transformers consistently have an increased aging rate across multiple
trials. We run six randomized trials, all on feeder R1, with different random instantiations
of the initial on/off status of the ACs as well as the ACs’ probabilistic responses; all other
parameters are kept constant.

3.6.2 Simulation Results

We find that some transformers are more likely to age faster due to load-based regulation and
some are more likely to age slower. Figure 3.8 shows the observed distribution of the number
of trials transformers experience an increased aging rate due to regulation. We compare
this distribution to the “expected distribution”, which represents the hypothesis that all
transformers are equally likely to have an increased aging rate. Specifically, we model the
transformers’ aging outcomes as i.i.d. Bernoulli random variables with probability 0.49 of
increased aging. (This value is the observed prevalence of increased aging in the randomized
trials.) The expected distribution, then, is the number of increased aging outcomes that
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Figure 3.7: Voltage distributions across primary-side nodes for (a) mean voltages and (b) voltage
ranges. Plot (a) indicates that mean voltages generally decrease as baseload increases
and are relatively unaffected by regulation. Plot (b) indicates that voltage ranges
increase in regulation cases, and the effect of baseload on voltage ranges is inconsistent.
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Figure 3.8: Observed and expected distributions for the number of randomized trials a transformer
will experience an increased aging rate due to regulation. The difference between the
two distributions indicates that some transformers are more likely than others to
experience an increased aging rate.

occur over six Bernoulli trials, i.e., a Binomial distribution. The difference between the two
distributions in Fig. 3.8 indicates that the aging outcomes cannot be modeled as i.i.d. random
variables. Instead, the edges of the observed distribution indicate that a large portion of
transformers is very likely to experience an increased aging rate, and another large portion
is very likely to experience a decreased aging rate.

Load-based regulation does not have a consistent effect on transformers’ aging rates, in
part, because of an unanticipated effect of probabilistic dispatch. In the following discussion,
we will refer to switching in response to probabilistic dispatch as “dispatch-switching”. We
will also refer to a cycle through an AC’s deadband without dispatch-switching as a “natural
cycle”. When all ACs receive the same probabilistic command, an AC with a low natural
duty-cycle is more likely to be dispatch-switched on than off, and an AC with a high natural
duty-cycle is more likely to be dispatch-switched off than on. See Section 3.6.3 for a derivation
of this result. If an AC is dispatch-switched on more than off, it will “cool-cycle”, i.e., cycle in
the cooler part of its deadband. This cycling behavior reduces the average temperature of the
house, thus increasing its average power consumption and, consequently, the transformer’s
aging rate. A similar argument can be made for why warm-cycling reduces transformer aging
rates. As shown in Fig. 3.9, there is a negative correlation between the percent change in
aging rate of a transformer and the average natural duty cycle of the ACs the transformer
supplies. Transformers supplying ACs with a lower than average duty cycle (< 0.503)
frequently have an increased aging rate, and transformers supplying ACs with a higher than
average duty cycle frequently have a decreased aging rate.
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Figure 3.9: Scatter plot of each transformer’s percent change in aging rate (averaged across the
randomized trials) versus the average natural duty cycle of the ACs supplied by the
transformer. The data is negatively correlated, with correlation coefficient = 0.628.

3.6.3 Analytical Result

We show that, in a heterogeneous population of ACs under probabilistic dispatch in which
all ACs receive the same 𝑢, some ACs will be more likely to be dispatch-switched off than
on, and others will be more likely to be dispatch-switched on than off. We then show that
the natural duty cycle of an AC can be used to predict which behavior will be most likely.

When an AC is off, the probability of it dispatch-switching on is equal to one minus the
probability of it not dispatch-switching on during the same time. Thus, the probability of
an AC dispatch-switching on at least once during the time it would take to complete the off
part of its natural cycle is

𝑝s,on = 1 −
𝜏off

∏
𝑘=1

(1 − 𝑢on(𝑘)), (3.5)

and the probability of dispatch-switching off at least once during the on part of its natural
cycle is

𝑝s,off = 1 −
𝜏on

∏
𝑘=1

(1 − 𝑢off(𝑘)). (3.6)

Here 𝑢on and 𝑢off are the probabilistic dispatch commands for the off and on directions, and
𝜏on and 𝜏off are the number of time steps the AC is on and off during a natural cycle.

If an AC has 𝑝s,on > 𝑝s,off, then it is more likely to dispatch-switch on than off; if
𝑝s,on < 𝑝s,off, the AC is more likely to dispatch-switch off than on. To determine an AC’s
behavior a priori, we estimate 𝑝s,on and 𝑝s,off with a few simplifying assumptions. Let 𝐷c

be the average of the ACs’ natural duty cycles and 𝑁 be the total number of ACs. We
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assume that the regulation signal’s amplitude is relatively small such that the ratio of the
number of ACs on to number of total ACs remains approximately equal to 𝐷c. Thus, if
we switch a fixed number of ACs, 𝑁S, in each time step, we can approximate the switching
commands as constant values: 𝑢on ≈ 𝑁S/((1 − 𝐷c)𝑁) and 𝑢off ≈ 𝑁S/(𝐷c𝑁). Finally, let
𝑑c be the natural duty cycle of the given AC and 𝜏P be the number of time steps in its
period, then 𝜏on = 𝑑c𝜏P and 𝜏off = (1 − 𝑑c)𝜏P. With these substitutions, the probabilities of
dispatch-switching during a natural cycle are

𝑝s,on ≈ 1 − (1 − 𝑁S
(1 − 𝐷c)𝑁

)
(1−𝑑c)𝜏P

and (3.7)

𝑝s,off ≈ 1 − (1 − 𝑁S
𝐷c𝑁

)
𝑑c𝜏P

. (3.8)

After manipulating (3.7) and (3.8), we find that an AC is more likely to dispatch-switch on
than off (i.e., 𝑝s,on > 𝑝s,off) if

𝑑c
(1 − 𝑑c)

<
log (1 − 𝑁S

(1−𝐷c)𝑁 )
log (1 − 𝑁S

𝐷c𝑁 )
. (3.9)

Note that if 𝐷c = 0.5 then the right-hand side of (3.9) is equal to one. In this case,
an individual AC will be more likely to dispatch-switch on than off if 𝑑c < 0.5, which is
equivalent to 𝑑c < 𝐷c and is what we observe empirically.

3.7 Control Recommendations
The simulation results have shown that, for the feeders studied, only a small subset of
constraints are at risk of violation from load-based regulation. Because the feeders are pro-
totypical, we expect this to be true in many other feeders. This is promising from the
standpoint of developing a computationally efficient control algorithm, since it may be only
necessary to enforce a subset, rather than the full set, of network constraints. The particular
subset of at-risk constraints will be feeder-dependent. Networks with nodes whose voltage
magnitudes are close to constraint limits are likely to be at risk because load-based regula-
tion causes an increase in variation of voltage. Voltage unbalance constraints are unlikely
to be a risk, unless the loads participating are unevenly distributed across the three phases.
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Transformer constraint violations (power and aging) were rare in the networks studied. From
a short-term reliability perspective, there may be a few transformers predisposed to over-
loading that are at risk of failure with any increase in loading—such transformers are at risk
from load-based regulation. However, from a long-term reliability and cost perspective, a
utility may benefit from load-based regulation since load-based regulation can decrease the
transformer population’s mean aging rate (and thus decrease the frequency of transformer
replacement). Finally, it appears unlikely for line constraints to be at risk, unless load-based
regulation capacity is significantly greater than the levels studied here, or a network has
lines that already operate close to their limits.

We propose a few strategies for providing load-based regulation while protecting distri-
bution networks. First, to prevent AC cool-cycling and thereby the likelihood of increased
aging rates for transformers, ACs closer to naturally switching should be dispatched first
(i.e., priority-stack control [28]). Second, to prevent constraint violations more generally,
the amount of participation by loads in at-risk areas could be reduced, or additional controls
could be used (e.g., smart inverters for voltage support). Reduction in participation could
be implemented in one of two ways: 1) by allowing only a portion of loads in the area to
participate in regulation, or 2) by dispatching loads in that area less frequently. Both of
these strategies require some coordination between DER aggregators and the distribution
operator.

3.8 Chapter Conclusion
In this chapter, we studied five prototypical feeders and, for each feeder, identified the subset
of constraints that are at risk of increased violation due to the provision of regulation by
TCLs. Ultimately, this subset is network dependent; however, in the five networks studied
here, the subset of at-risk constraints is substantially smaller than the set of all network
constraints, and we expect this is true for many other networks. This finding suggests
that targeting at-risk constraints is a promising approach for computationally-efficient load
control strategies.

It is possible that the impacts of regulation were not severe in the networks studied here
because of their typical nature. Impacts would likely be larger for non-typical feeders, partic-
ularly ones with voltage-weak areas. Additionally, future distribution networks may be much
more active and complex than those modeled here. For instance, a network could simultane-
ously have high penetrations of photovoltaics, EVs, and regulation-providing loads, as well
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as multiple aggregators controlling portions of each DER population. On such a network,
fluctuations in power injections due to transient clouds or intermittent EV charging could
exacerbate the increased voltage variation caused by load-based regulation. The remaining
chapters address the roles of the distribution operator and the aggregator in these types of
networks—in particular, how to constrain aggregators’ actions to ensure the reliability of the
distribution network.
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Chapter 4

Strategy for Network-Safe Load
Control (Given Simplified Plant)

This chapter is largely based on the published work [71]4.

4.1 Chapter Introduction
Large-scale participation of load aggregations in energy balancing services could result in
local operational issues on distribution networks, particularly as other distributed energy
resources (DERs) such as electric vehicles and photovoltaic systems become more active on
distribution networks [73]. Transmission operators, aggregators, and distribution operators
will need to coordinate to prevent negative impacts on distribution networks [25, 57]. How
this coordination should be structured is an open question. The U.S. Federal Energy Reg-
ulatory Commission has recently requested comments on the following questions: What, if
any, real-time information do distribution operators need about aggregations or individual
resources within an aggregation? Should distribution operators be able to override real-time
dispatch of aggregations to resolve local reliability issues? [21].

Traditionally, load-control algorithms for frequency regulation services have not taken
distribution network constraints into account. Instead, it has been assumed that the effect on
network operation will be negligible if the percentage of loads participating in the aggregation
is relatively small. To the best of our knowledge, only a few papers [17, 93] have proposed

4S.C. Ross, N. Ozay, and J.L. Mathieu. “Coordination between an aggregator and distribution operator to
achieve network-aware load control”. In: Proceedings of the IEEE Power & Energy Society PowerTech
Conference. Milan, Italy, June 2019.
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real-time algorithms for network-aware load control at the time scale required by frequency
regulation services (i.e., seconds). However, in both [93] and [17], the distribution operator
also acts as the load aggregator—an additional role that some operators may not want.
Moreover, in some locations, operators may be required to allow independent aggregators to
participate on their networks.

The purpose of this chapter is to achieve network-aware load control through aggregator-
operator coordination. In Section 4.2, we propose two different frameworks for real-time
coordination. In Section 4.3, we propose a specific coordination scheme in which an operator
blocks an aggregator’s commands if they will cause network issues, and we describe the
resulting control problem for an aggregator of thermostatically controlled loads (TCLs). In
Section 4.4, we propose a control strategy for the aggregator. Finally, in Section 4.5, we test
the proposed controller against a benchmark controller in a simulation study.

The contributions of this chapter are: 1) development of two frameworks for real-time
coordination between an independent aggregator and a distribution operator; 2) development
of a controller for an aggregator whose commands can be blocked by an operator (specifically,
design of a Kalman Filter that estimates the portion of TCLs not receiving commands and
compensates within the controller accordingly); 3) a comprehensive simulation study that
compares the proposed controller to a benchmark controller across multiple scenarios.

4.2 Operator-Aggregator Coordination

4.2.1 Objectives of Aggregator and Operator

The aggregator’s objective is to non-disruptively control hundreds to thousands of loads
such that their total power consumption accurately tracks a frequency regulation signal.
Load control is considered non-disruptive if the end-use service delivered by loads (e.g.,
refrigeration) is not disrupted [8].

The distribution operator’s objective is to provide sufficient quality power to consumers,
while also ensuring safe operation of network components. Voltage magnitudes should be
maintained between 0.95 and 1.05 p.u. and unbalance should be less than 3% [59]. Network
components, such as lines and transformers, should not be loaded beyond their ratings.

49



4.2.2 Time Scales of Coordination

There are multiple time scales at which the aggregator and operator could coordinate: 1)
upon formation of the aggregation, 2) prior to market-biding by the aggregator, and 3)
during real-time operation. Upon formation of the aggregation, the distribution operator
could run a power flow analysis of the network under worst case load-control scenarios as in
[73]. If the operator finds operational issues, then coordination at the other two time scales
will likely be necessary. Before submitting market bids, an aggregator would benefit from
a prediction of network conditions from the operator. For example, if the network is likely
to be constrained, the aggregator might reduce the power capacity of its bid. Lastly, the
operator and aggregator could coordinate in real-time in order to adjust the aggregator’s
control if the operator judges that it is adversely affecting network operation. Different
frameworks for real-time coordination are described in the next section.

4.2.3 Real-Time Coordination Frameworks

We propose two frameworks for real-time coordination between the aggregator and operator,
as shown in Fig. 4.1. In the aggregator-centric framework, the operator sends the aggregator
constraints on load actions (e.g., maximum and minimum power consumption of groups of
loads), and the aggregator computes a control input that will satisfy these constraints. In
the operator-centric framework, the operator receives the aggregator’s desired control input
(e.g., on/off commands to each load) and modifies the input if necessary to satisfy network
constraints. The aggregator uses feedback from the loads to compute its control inputs,
and the operator uses feedback from the network to estimate three-phase power flows and
determine constraints on load actions.

Next we compare the frameworks in terms of their implications for tracking accuracy,
network reliability, and information privacy,

Tracking Accuracy: In the aggregator-centric framework, the aggregator knows the con-
straints on its load actions and can adjust its control to mitigate the effect on tracking
accuracy. In the operator-centric framework, the aggregator does not have explicit knowl-
edge of the constraints and will have a harder time compensating for them.

Network reliability: In the operator-centric framework, the operator has full control over
its network and can ensure its reliability; however, this reliability could come at the expense
of the aggregator’s objective. In the aggregator-centric framework, the operator may only
be able to ensure network reliability by providing overly conservative constraints on load
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Figure 4.1: Proposed coordination frameworks. The distribution operator provides constraints
on load actions, the aggregator provides its desired control input, and one entity ((a)
aggregator or (b) operator) combines this information into a modified control input
that is sent to the loads.

actions, which could result in poor tracking accuracy for the aggregator.
Information privacy: In the aggreagtor-centric framework, the aggregator’s information

is kept private, but the aggregator gains information about the operator and may be able
to learn the network’s parameters and configuration. In the operator-centric framework,
the operator’s information is kept private, but the operator gains information about the
aggregator and may be able to learn the aggregator’s control algorithm.

The proposed frameworks are only two of the many options for operator-aggregator co-
ordination. Other options include a blend of these frameworks and a parallel framework in
which the operator and aggregator independently send commands to the load aggregation.

4.3 Problem Description
This section describes a specific coordination strategy within the operator-centric framework
and the resulting control problem for the aggregator.

4.3.1 Specific Coordination Strategy

A block diagram of the coordination strategy is shown in Fig. 4.2. As indicated by the
figure, the aggregator’s loads may be located on more than one of the operator’s feeders, and
each feeder has a safety controller to ensure the feeder’s constraints are satisfied. When a
safety controller receives the aggregator’s desired control input, it uses its current estimate
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Figure 4.2: Specific coordination strategy within the operator-centric framework. The aggregator
calculates its desired control input based on the reference signal and feedback from
loads. The operator estimates the feeders’ states based on measurements and modifies
the control inputs if necessary. Information on modifications may or may not be shared
with the aggregator.

of the feeder’s states to determine if the input needs to be modified to ensure constraint
satisfaction.

Although the modification of the aggregator’s input could take many forms, in this problem
we assume the operator “blocks” control inputs to certain loads. Unblocked inputs are sent
unmodified to the appropriate loads; blocked inputs are simply not sent. Note, we refer to
a load as “being blocked” if its control input is blocked. Finally, we define 𝛽(𝑘) to be the
percentage of loads that are blocked at time step 𝑘.

We consider three scenarios in which the information available to the aggregator varies (see
Table 4.1). In Scenario F, the aggregator has full information on which loads are blocked, as
well as the on/off state of each load. In Scenario P, the aggregator has partial information
on blocking. In Scenario N, the aggregator has no information on blocking.
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Table 4.1: Information Scenarios

Scenario F Scenario P Scenario N
Measurement of 𝑃total ✓ ✓ ✓
Percent of loads blocked ✓ ✓
On/Off state of each load ✓
Blocked state of each load ✓

F = Full information on blocking, P= Partial information on blocking, N
= No information on blocking

4.3.2 Aggregator’s Control Problem

The aggregator’s objective is to minimize the error between the reference power 𝑃 ∗
total and the

load aggregation’s actual power consumption 𝑃total in each time step. In this problem, the
load aggregation consists of TCLs, such as water heaters, air conditioners, and refrigerators.
We use the term “TCL” to refer to both the conditioning device (e.g., heat pump) and the
system being conditioned (e.g., water tank or house).

The aggregator’s control problem is to track the reference power by switching TCLs on
or off, in a manner that is non-disruptive to the end-user. Thus, the control method must
respect the TCLs’ user-set temperature constraints:

𝜃𝑖
set − 𝛿𝑖/2 < 𝜃𝑖(𝑘) < 𝜃𝑖

set + 𝛿𝑖/2, (4.1)

where 𝜃 is the TCL’s temperature, 𝜃set is the setpoint, and 𝛿 is the width of the allowed
range. A TCL’s temperature dynamics can be described by the following model (developed
in [79] and frequently used in the literature [7, 19]):

𝜃𝑖(𝑘 + 1) =
⎧{
⎨{⎩

𝑎𝑖𝜃𝑖(𝑘) + (1 − 𝑎𝑖)(𝜃amb(𝑘) + 𝑟𝑖𝑝𝑖
𝜃), if 𝜎𝑖(𝑘) = 1

𝑎𝑖𝜃𝑖(𝑘) + (1 − 𝑎𝑖)𝜃amb(𝑘), if 𝜎𝑖(𝑘) = 0,
(4.2)

where 𝑎𝑖 = exp(−ℎ/(𝑐𝑖 𝑟𝑖)) and ℎ is the duration of the discrete model’s time step. Variable
𝜎 represents the TCL’s power status (1 for on and 0 for off ). All other TCL parameters are
defined in Table 2.1.

We assume that the TCLs’ temperature constraints and blocking conditions take prece-
dence over the aggregator’s switching commands. Let 𝑏𝑖 indicate whether the 𝑖th TCL is
blocked (𝑏𝑖 = 1) or not blocked (𝑏𝑖 = 0). Let 𝑠𝑖 be the aggregator’s switching command

53



to the 𝑖th TCL with 𝑠𝑖 = 1 indicating “switch on”, 𝑠𝑖 = −1 indicating “switch off ”, and
𝑠𝑖 = 0 otherwise. Thus, when the 𝑖th TCL is under aggregator control, its on/off state is
determined by

𝜎𝑖(𝑘 + 1) =

⎧{{{{
⎨{{{{⎩

1 if 𝜃𝑖(𝑘) ≥ 𝜃𝑖
set + 𝛿𝑖/2,

0 if 𝜃𝑖(𝑘) ≤ 𝜃𝑖
set − 𝛿𝑖/2,

1 if 𝑠𝑖(𝑘) = 1, 𝑏𝑖(𝑘) = 0, and (4.1),
0 if 𝑠𝑖(𝑘) = −1, 𝑏𝑖(𝑘) = 0, and (4.1),
𝜎𝑖(𝑘) otherwise.

(4.3)

Lastly, if there are 𝑁 TCLs in the aggregation, their total power consumption is given by
𝑃total(𝑘) = ∑𝑁

𝑖=1 𝜎𝑖(𝑘)𝑃 𝑖
R, where 𝑃 𝑖

R = 𝑝𝑖
𝜃/𝜁𝑖 is the rated electrical power consumption of

the 𝑖th TCL and 𝜁𝑖 is the coefficient of performance.

4.4 Control System Design

4.4.1 Probabilistic Control

We use probabilistic commands to switch TCLs on/off, as in [52], because of the light com-
munication requirements. If the operator does not modify the aggregator’s desired control
inputs, then only two numbers need to be broadcast to all TCLs: 𝑢off the probability with
which on TCLs should switch off and 𝑢on the probability with which off TCLs should switch
on. Each TCL determines its individual switching command 𝑠𝑖 by drawing a random number
𝑧𝑖(𝑘) from the uniform distribution between 0 and 1, and

𝑠𝑖(𝑘) =
⎧{{
⎨{{⎩

1 if 𝜎𝑖(𝑘) = 0 and 𝑧𝑖(𝑘) < 𝑢on(𝑘),
−1 if 𝜎𝑖(𝑘) = 1 and 𝑧𝑖(𝑘) < 𝑢off(𝑘),

0 otherwise.

Once 𝑠𝑖 is calculated, a TCL switches according to (4.3).
Probabilities to switch are calculated based on the predicted error between 𝑃 ∗

total(𝑘 + 1)
the desired total power in the next time step and 𝑃total(𝑘 + 1|𝑘) the predicted total power

54



in the next time step. If 𝑃 ∗
total(𝑘 + 1) ≥ 𝑃total(𝑘 + 1|𝑘), then 𝑢off(𝑘) = 0 and

𝑢on(𝑘) = 𝐾 |𝑃 ∗
total(𝑘 + 1) − 𝑃total(𝑘 + 1|𝑘)|

̂𝑃off(𝑘)
. (4.4)

If 𝑃 ∗
total(𝑘 + 1) < 𝑃total(𝑘 + 1|𝑘), then 𝑢on(𝑘) = 0 and

𝑢off(𝑘) = 𝐾 |𝑃 ∗
total(𝑘 + 1) − 𝑃total(𝑘 + 1|𝑘)|

̂𝑃on(𝑘)
. (4.5)

In (4.4) and (4.5), 𝐾 is a proportional control gain, and ̂𝑃on and ̂𝑃off are estimates of the
total capacity of all on and unblocked TCLs and all off and unblocked TCLs, respectively.
Lastly, we constrain switching probabilities to within the range [0, 1].

4.4.2 Estimator

To implement the controller in (4.4)-(4.5), the aggregator needs to estimate the total capac-
ities available to switch, ̂𝑃on and ̂𝑃off. We assume the aggregator has little to no information
about the operator’s blocking actions. Thus, our approach is to estimate the number of
TCLs that are on and not blocked 𝑁on and the number that are off and not blocked 𝑁off,
and then estimate the capacities as

̂𝑃off(𝑘) = 𝑝off
̂𝑁off(𝑘) and ̂𝑃on(𝑘) = 𝑝on

̂𝑁on(𝑘).

Here ̂ indicates an estimate, and 𝑝off and 𝑝on are the average power ratings of an off TCL
and an on TCL, respectively. For simplicity, we model 𝑝off and 𝑝on as constant parameters;
in practice, they are time-varying for a heterogeneous aggregation.

We formulate a linear time varying model that represents aggregate TCL dynamics and
for which a Kalman Filter can be designed. The aggregate model is

𝐱(𝑘 + 1) = 𝐀(𝑘)𝐱(𝑘) + 𝐰(𝑘)
𝐲(𝑘) = 𝐂𝐱(𝑘) + 𝐯(𝑘),

(4.6)

where 𝐰 and 𝐯 are process noise and measurement noise, respectively. The state 𝐱 is defined
as

𝐱(𝑘) = [𝑁on(𝑘) 𝑁off(𝑘) 𝑁[on](𝑘) 𝑁[off](𝑘)]
T

,

where 𝑁[on] the number on and blocked, and 𝑁[off] the number off and blocked.
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We model the state dynamics as a Markov chain, in a similar manner to [52]. However,
in this formulation the Markov chain is time-varying because we include the time-varying
commands 𝑢on and 𝑢off within the transition probabilities, as in [11]. The Markov chain can
be represented by the transition matrix

𝐀(𝑘) =
⎡
⎢
⎢
⎢
⎣

1 − 𝑓 − 𝑢off(𝑘) 𝑔 + 𝑢on(𝑘) 0 0
𝑓 + 𝑢off(𝑘) 1 − 𝑔 − 𝑢on(𝑘) 0 0

0 0 1 − 𝑓 𝑔
0 0 𝑓 1 − 𝑔

⎤
⎥
⎥
⎥
⎦

.

The upper block in 𝐀 consists of the transition probabilities for TCLs that are not blocked;
the lower block consists of transition probabilities for TCLs that are blocked. The model
does not include transition probabilities between blocked and unblocked states because the
operator determines these transitions with its blocking actions; thus, from the perspective
of the aggregator, these transitions are an unknown disturbance to the state. Scalars 𝑓
and 𝑔 represent the probability of transitions caused by TCLs’ internal thermostat control,
i.e., from “internally switching”. Scalar 𝑓 is the probability that an on TCL is switched
off internally, and scalar 𝑔 is the probability that an off TCL is switched on internally. In
the upper block, the probability of transitioning to a new state is equal to the sum of the
probabilities of switching internally and switching externally.

The output 𝐲 and corresponding 𝐂 matrix are defined as

𝐲(𝑘) = [ 𝑃total,meas(𝑘)
𝑁 ] 𝐂 = [ 𝑝on 0 𝑝on 0

1 1 1 1 ] .

Here the first output equation relates the number of TCLs that are on to the measured power
consumption of the aggregation. The second output equation is an equality constraint on
the states: the sum of the states must be equal to the number of TCLs in the aggregation.
To incorporate this constraint into the Kalman Filter, we assume the second output is a
perfect measurement with zero measurement noise [77].

The system (4.6) is observable in the time interval 𝜏 = [𝑘, (𝑘 + 3)] if the observability
matrix 𝐎(𝜏) = [𝐂; 𝐂𝐀(𝑘); 𝐂𝐀(𝑘 + 1)𝐀(𝑘); 𝐂𝐀(𝑘 + 2)𝐀(𝑘 + 1)𝐀(𝑘)] has rank 4 [4]. We
find sufficient conditions for observability by finding conditions under which the matrix has
four linearly independent rows. Let the matrix 𝐎sub be made up of rows {1, 2, 3, 5} of
𝐎. Then 𝐎 has four linearly independent rows if 𝐎sub’s determinant is non-zero. The
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determinant is given by

det 𝐎sub(𝜏) = 𝑝3
on(𝑢on(𝑘)(𝑢off(𝑘)(1 − 𝑓) − 𝑓𝑢on(𝑘 + 1))

+ 𝑢off(𝑘)(𝑔𝑢off(𝑘 + 1) + 𝑢on(𝑘 + 1)(𝑔 − 1))).

Recall that in each time step either 𝑢off = 0 or 𝑢on = 0. Thus, there are four conditions for
a non-zero determinant:

1. 𝑢off(𝑘 + 1) ≠ 0 & 𝑢on(𝑘) ≠ 0, if 𝑢on(𝑘 + 1) = 0 & 𝑢off(𝑘) = 0;

2. 𝑢on(𝑘 + 1) ≠ 0 & 𝑢off(𝑘) ≠ 0, if 𝑢off(𝑘 + 1) = 0 & 𝑢on(𝑘) = 0;

3. 𝑢off(𝑘 + 1) ≠ 0 & 𝑢off(𝑘) ≠ 0, if 𝑢on(𝑘 + 1) = 0 & 𝑢on(𝑘) = 0;

4. 𝑢on(𝑘 + 1) ≠ 0 & 𝑢on(𝑘) ≠ 0, if 𝑢off(𝑘 + 1) = 0 & 𝑢off(𝑘) = 0.

In summary, a sufficient condition for system observability is for either 𝑢on or 𝑢off to be
non-zero in each time step. Note, the internal switching probabilities 𝑓 and 𝑔 cannot cause
the determinant to be zero because we assume TCLs are cycling through their temperature
range, which implies 𝑓 and 𝑔 are not equal to 0 or 1 by definition.

We use a time-varying Kalman Filter [53] to estimate the states of the stochastic model
described by (4.6). Process noise 𝐰 and measurement noise 𝐯 represent plant-model mis-
match and unknown disturbances. We assume that 𝐰 and 𝐯 are zero-mean, Gaussian, white
noise processes with covariance 𝐐 and 𝐑, respectively.

4.4.3 Implementation

In the case of full feedback, the proposed controller does not use all of the information
available to it in every time step. Instead, the Kalman Filter is used to estimate the state,
except for time steps in which the percentage blocked changes, i.e., 𝛽(𝑘) ≠ 𝛽(𝑘 − 1). At
these time steps, the Kalman Filter is bypassed and the state estimate is updated according
to 𝐱̂(𝑘) = [ ∑ 𝜎𝑖(𝑘)(1 − 𝑏𝑖(𝑘)), ∑(1 − 𝜎𝑖(𝑘))(1 − 𝑏𝑖(𝑘)), ∑ 𝜎𝑖(𝑘)𝑏𝑖(𝑘), ∑(1 − 𝜎𝑖(𝑘))𝑏𝑖(𝑘)],
where all summations are from 𝑖 = 1 to 𝑁 .

In the case of moderate feedback, the proposed controller uses information on the percent-
age blocked to improve its state estimate. At time steps when 𝛽(𝑘) ≠ 𝛽(𝑘 − 1), the Kalman
filter produces the state estimate 𝐱̂(𝑘) as usual, and then we update the estimate such that the
percentage of TCLs estimated to be blocked equals 𝛽(𝑘). The update is given by 𝐱̂(𝑘) = [(1−
𝛽(𝑘))( ̂𝑥1(𝑘) + ̂𝑥3(𝑘)), (1 − 𝛽(𝑘))( ̂𝑥2(𝑘) + ̂𝑥4(𝑘)), 𝛽(𝑘)( ̂𝑥1(𝑘) + ̂𝑥3(𝑘)), 𝛽(𝑘)( ̂𝑥2(𝑘) + ̂𝑥4(𝑘))].
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4.4.4 Benchmark Controller

The benchmark controller computes switching probabilities with (4.4)-(4.5) but does not
use a Kalman Filter to estimate ̂𝑃on and ̂𝑃off. Instead, with full feedback, the bench-
mark controller estimates are given by ̂𝑃on(𝑘) = ∑𝑁

𝑖=1 𝑃 𝑖
R𝜎𝑖(𝑘)(1 − 𝑏𝑖(𝑘)) and ̂𝑃off(𝑘) =

∑𝑁
𝑖=1 𝑃 𝑖

R(1−𝜎𝑖(𝑘))(1−𝑏𝑖(𝑘)). With moderate feedback, the benchmark controller estimates
are given by ̂𝑃on(𝑘) = (1 − 𝛽(𝑘))𝑃total(𝑘) and ̂𝑃off(𝑘) = (1 − 𝛽(𝑘))( ∑𝑁

𝑖=1 𝑃 𝑖
R − 𝑃total(𝑘)).

Finally, with minimal feedback, the controller uses the same equations as with moderate
feedback, but 𝛽(𝑘) is set to 0 because the aggregator does not have any information about
blocking.

4.5 Simulation Study

4.5.1 Setup

We test controller performance using 1-hour simulations of 1000 TCLs controlled to tracking
a frequency regulation signal. A constant set of TCLs is blocked between minutes 20 and 40.
We test each controller in 12 different scenarios, where a scenario is defined by a combination
of blocking level (0%, 20%, 40%, or 60% of the population) and feedback level (see Table 4.1).

We run 24 randomized trials for each scenario. Each trial has: a different random instance
of TCL parameters, different random numbers generated during probabilistic dispatch, and a
different frequency regulation signal. TCL parameters are drawn from the uniform distribu-
tions described in Table 2.1. For the frequency regulation signal, Trial 1 uses the first 1-hour
segment of PJM’s RegD signal [68] from June 3, 2018, Trial 2 uses the second segment, and
so on. In all trials, the ambient temperature is 32∘C, and the TCL aggregation’s regulation
capacity is set to +/-20% of baseline power consumption.

For these simulations, we use a persistence model to predict the total power of the aggre-
gation in the next time step (i.e., 𝑃total(𝑘 + 1|𝑘) = 𝑃total,meas(𝑘) in (4.4)-(4.5)) because using
the aggregate model (4.6) for prediction would result in poor accuracy. In addition, we do
not add noise to the measurement of 𝑃total, i.e., 𝑃total,meas(𝑘) = 𝑃total(𝑘).

Values for tuning parameters are listed in Table 4.2. The parameters for each combination
of controller and feedback level are tuned separately, although sometimes are equal. For the
proposed controller, we iteratively tune 𝐐 and 𝐑 with 𝐾 = 1. Then, with 𝐐 and 𝐑 fixed for
the proposed controller, we sweep through values for 𝐾 from 0.95 to 1.05 for both controllers.
We select the parameter values that yield the lowest sum of root-mean-square errors (RMSE)
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Table 4.2: Tuning Parameters

Controller Scenario 𝐾P 𝐖b 𝐕b

Benchmark F, P 0.96 – –
Benchmark N 1.03 – –
Proposed F, P 0.96 2.5diag(3, 3, 1, 1) diag(1, 0)
Proposed N 1 9.3diag(1, 7, 1, 7) diag(1, 0)

diag(⋅) maps an 𝑛-tuple to the corresponding 𝑛x𝑛 diagonal matrix.

in tracking, across Trials 1-4 and all blocking levels.
Prior to the test hour, we run the simulation for an hour to ensure steady-state conditions

at the start of the test. We also use this pre-test hour to calculate the aggregation’s baseline
power consumption, the 𝐀 matrix’s transition probabilities, and the parameter 𝑝on. For
simplicity, we set 𝑝off = 𝑝on.

4.5.2 Results

Estimation Performance

The proposed controller’s Kalman Filter is able to estimate the number of TCLs that are
blocked, even when no explicit blocking information is available. Performance of the Kalman
Filter during Trial 4 is shown in Fig. 4.3. State estimates are more accurate when feedback
on percent blocked is available (left column) than when no feedback on blocking is available
(right column), as would be expected. Step changes in the percentage blocked occur at
minutes 20 and 40; in the case of minimal feedback, these step changes cause a lag in the
state estimates.

Tracking Performance

Fig. 4.4 shows the proposed and benchmark controllers tracking the frequency regulation
signal while 60% of TCLs are blocked in Trial 2. We evaluate performance in terms of percent
RMSE, which is the error in total power consumption as a percentage of the aggregation’s
average baseline power consumption. In this trial, the proposed controller improves upon
the benchmark controller at every level of feedback. The decrease in RMSE is largest in the
case of minimal feedback.

Table 4.3 reports the average RMSE in tracking for each scenario, with the average taken
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Figure 4.3: Estimated states and actual states with the proposed controller when partial infor-
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(right). (Data is from Trial 4.)
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Figure 4.4: Benchmark and proposed controllers tracking the frequency regulation signal during
the blocking period of Trial 2 with 60% blocked. The proposed controller improves
upon the benchmark controller in all three scenarios.

across the 24 trials. In every scenario, the proposed controller’s average RMSE is less than
or equal to that of the benchmark controller. On average, error increases as the percentage
blocked increases and as the level of feedback decreases. The proposed controller’s improve-
ment over the benchmark is not very large in most scenarios, with a decrease in average
percent RMSE of ≤ 0.03% in 10 of 12 scenarios. The largest improvements occur in the
remaining two scenarios when there is minimal feedback and blocking is at 40% and 60%.
In these scenarios, average percent RMSE decreases by 0.09% and 0.29%, respectively.

Box plots of the 24 trials across all scenarios are shown in Fig. 4.5. The proposed controller
generally reduces the maximum and median RMSE across the 24 trials. In all scenarios,
the maximum error decreases with the proposed controller; in all but two scenarios, the
median error also decreases. As with the mean error results, the box plots show that the
proposed controller yields the biggest improvements when 40% or 60% of TCLs are blocked
and minimal feedback is available.

It is somewhat surprising that the proposed controller outperforms the benchmark con-
troller when full feedback is available. This result may be because the benchmark controller
lacks information on how many TCLs are outside of their set temperature range and thus

61



Table 4.3: Controller Performance: Average % RMSE in Tracking

Percent
Blocked

Scenario F Scenario P Scenario N
BM PP BM PP BM PP

0% 0.76 0.75 0.76 0.75 0.77 0.75
20% 0.77 0.75 0.77 0.76 0.78 0.75
40% 0.78 0.76 0.79 0.77 0.86 0.77
60% 0.86 0.86 0.89 0.86 1.22 0.93

BM = Benchmark controller and PP = Proposed controller
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unavailable to switch. In contrast, the proposed controller has some information of this na-
ture because its Kalman Filter estimates how many TCLs are generally unavailable, whether
it is due to blocking or out-of-range temperature.

4.6 Chapter Conclusion
We have proposed two coordination frameworks—“operator centric” and “aggregator centric”—
that enable network-aware load control while maintaining the independence of the aggregator
and the distribution operator. Working within the operator-centric framework, we proposed
a specific scheme in which the operator has the authority to block aggregator commands in
order to protect network reliability. We then designed a controller for the aggregator that
successfully estimates and compensates for the number of loads that are blocked. In future
work, we plan to develop a strategy for the operator that it is maximally permissive of the
aggregator’s control and includes a real-time assessment of network reliability.
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Chapter 5

Mode-Count Control

This chapter is largely based on the published work [70]5.

5.1 Chapter Introduction
In this chapter, we propose a control strategy that restricts the range in power consumption
of a group of TCLs in order to reduce the TCLs’ impact on at-risk distribution constraints.
For a particular group of TCLs, the strategy limits the number of TLCs that are on at
a particular time, referred to as the group’s on-count. Specifically, the strategy switches
individual TCLs such that the group’s on-count always satisfies an upper bound and a lower
bound. The strategy is based on the “mode-count control” policy developed in [61, 62]
for a group of one-dimensional two-mode switched systems. In our application, the switched
system is a TCL, which has one continuous dimension (temperature) and two discrete modes
(on and off).

We propose using mode-count control to reduce the aggregate variability of a TCL group’s
power consumption, and to thereby relieve at-risk constraints on the distribution network.
A group’s variability can be reduced by setting the upper and lower bounds on the group’s
on-count as close together as possible. There has been related work, in terms of reducing
on/off synchronization of TCLs, for the prevention of power oscillations or rebound after
a period of load reduction [78, 92]. However, these strategies control TCLs by adjusting
temperature setpoints or ranges; in contrast, we control TCLs by switching them on/off,

5S.C. Ross, P. Nilsson, N. Ozay, and J.L. Mathieu. “Managing voltage excursions on the distribution
network by limiting the aggregate variability of thermostatic loads”. In: Proceedings of the American
Control Conference (ACC). Philadelphia, PA, July 2019, (Invited).
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and do so within the user-set temperature range so that the control is non-disruptive to the
end-user [8].

Prior work on non-disruptive control of TCLs has focused on aggregating hundreds to
thousands of TCLs to provide transmission-level services (e.g., [3, 52, 96]), rather than pro-
viding distribution-level services. Distribution voltage constraints are considered within [12,
17, 93], but their centralized optimization-based algorithms are computationally intensive,
considering all network constraints rather than targeting at-risk constraints as proposed here.

The contributions of this chapter are as follows:

• We propose a control strategy, using the theory developed in [61, 62], to reduce the
impacts of TCLs’ variable power consumption on at-risk distribution network con-
straints.

• We examine the effectiveness of the control strategy for different sizes of TCL groups.

• We apply the proposed control strategy to the problem of distribution voltage man-
agement for a long line with substantial PV generation at its end bus.

• Finally, we extend the control strategy to the case in which TCLs have cycling con-
straints.

5.2 Background
This section summarizes the theory developed in [61, 62] as it applies to TCLs. We refer the
reader to [61, 62] for full details.

5.2.1 Counting Problem for TCLs

The control objective of [61, 62] is to maintain a TCL group’s on-count between an upper
bound and lower bound, while also satisfying each TCL’s individual temperature constraints
𝜃𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖

. The underlying temperature dynamics are the same as (2.1), with the ambient
temperature assumed constant. The notation of equation (2.1) is simplified to

d
d𝑡𝜃𝑖(𝑡) =

⎧{
⎨{⎩

𝑓 𝑖
on(𝜃𝑖(𝑡)) if 𝜎𝑖(𝑡) = on,

𝑓 𝑖
off(𝜃𝑖(𝑡)) if 𝜎𝑖(𝑡) = off .

(5.1)
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Formally, the on-count of a group of 𝑁 TCLs is

𝐻(𝑡) =
𝑁

∑
𝑖=1

𝟙{on}(𝜎𝑖(𝑡)), (5.2)

and is controlled between the lower bound 𝐻 and the upper bound 𝐻:

𝐻 ≤ 𝐻(𝑡) ≤ 𝐻. (5.3)

5.2.2 Switching Strategy

The proposed control strategy determines when a TCL’s power mode should be switched.
The switching policy uses time rather than temperature to determine which TCL to switch
next. In the definitions that follow, we refer to cooling TCLs (e.g., ACs) simply as TCLs.
The policy ranks TCLs in terms of their “time-to-upper-limit”, defined as the time it takes
for the a TCL to travel in the off-mode from its current temperature 𝜃𝑖(𝑡) to its upper limit
𝜃𝑖

, and their “time-to-lower-limit”, defined as the time to travel in the on-mode from 𝜃𝑖(𝑡)
to the lower limit 𝜃𝑖. Let the output of the function 𝑇 𝑖

on(𝜃1, 𝜃2) be the time it takes the 𝑖th
TCL to progress from 𝜃1 to 𝜃2 in the on-mode, and let the function 𝑇 𝑖

off(𝜃1, 𝜃2) be similarly
defined but for the off-mode. The control strategy proposed in [62] is below.

Original Strategy for a Cooling TCL [62]

• If 𝑇 𝑖
off(𝜃𝑖(𝑡), 𝜃𝑖) = 0 and TCL 𝑖 is off, switch it on.

• If 𝑇 𝑖
on(𝜃𝑖(𝑡), 𝜃𝑖) = 0 and TCL 𝑖 is on, switch it off.

• If 𝐻(𝑡+) < 𝐻 for 𝑡+ > 𝑡, switch on the TCL in off-mode with the largest time-to-
lower-limit. Repeat this step if the constraint continues to be violated.

• If 𝐻(𝑡+) > 𝐻 for 𝑡+ > 𝑡, switch off the TCL in on-mode with the largest time-to-
upper-limit. Repeat this step if the constraint continues to be violated.

5.2.3 Conditions on Feasible Count Bounds

In [62], the authors derive conditions for values of 𝐻 and 𝐻 that can be satisfied indefinitely
by the proposed switching strategy. For a group of 𝑁 TCLs, the condition for lower bound
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values that can be satisfied indefinitely is

𝐻 <
𝑁

∑
𝑖=1

−𝑓 𝑖
off(𝜃𝑖)/𝑓 𝑖

on(𝜃𝑖)
1 − 𝑓 𝑖

off(𝜃𝑖)/𝑓 𝑖
on(𝜃𝑖)

, (5.4)

and the condition for upper bound values is

𝐻 > 𝑁 −
𝑁

∑
𝑖=1

−𝑓 𝑖
on(𝜃𝑖)/𝑓 𝑖

off(𝜃𝑖)
1 − 𝑓 𝑖

on(𝜃𝑖)/𝑓 𝑖
off(𝜃𝑖)

. (5.5)

Moreover, these constraints are shown to be tight. That is, no switching strategy can achieve
a greater lower bound or a smaller upper bound and guarantee that the bound will be satisfied
indefinitely.

5.3 Methods Part 1: Reducing the Variability of a
TCL Group’s Power Consumption

5.3.1 Reducing the Variability of a TCL Group’s Power
Consumption

We reduce the variability of a TCL group’s power consumption by minimizing the variability
of the group’s on-count. We use mode-count control, and select on-count bounds that maxi-
mally constrain the on-count. Specifically, the bounds are selected to minimize the difference
(𝐻 − 𝐻) and to ensure feasibility (i.e., (𝐻 − 𝐻) ≥ 0). For large enough group sizes, we can
set 𝐻 = 𝐻 because the greatest lower bound (GLB) that satisfies (5.4) is greater than the
least upper bound (LUB) that satisfies (5.5). Note the GLB is equal to the right hand sides
of (5.4), rounded down to the nearest integer, and the LUB is equal to the right hand side of
(5.5), rounded up to the nearest integer. Figure 5.1 shows the (unrounded) GLB and LUB
for TCL groups of different sizes; each group consists of heterogeneous ACs with parameters
drawn from Table 2.1.

For a homogeneous group of TCLs, controlling the on-count between 𝐻 and 𝐻 also con-
strains the group’s aggregate power consumption 𝑃grp such that

𝐻𝑃R ≤ 𝑃grp(𝑡) ≤ 𝐻𝑃R, (5.6)
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Figure 5.1: The GLBs and LUBs that can be satisfied indefinitely for different AC-group sizes.
The set of feasible upper bounds lie above the LUB line, and the set of feasible
lower bounds lie below the GLB line. Bounds were calculated for a particular set of
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where 𝑃R is the TCLs’ individual power rating. For a group of TCLs with heterogeneous
power ratings, a count bound can be satisfied by different sets of TCLs within the group,
and thus can result in different aggregate power levels. Let 𝑃 grp(𝐻) be the group’s minimum
power consumption while satisfying the lower count bound, and let 𝑃 grp(𝐻) be the group’s
maximum power consumption while satisfying the upper count bound. We find an expression
for these power bounds by first ordering the TCLs in the group by power rating from least to
greatest with index 𝑗, i.e., 𝑃 𝑗

R ≤ 𝑃 𝑗+1
R . Given a group of size 𝑁 and count bounds 𝐻 and 𝐻,

the group’s power consumption will be bounded between that of the 𝐻 lowest-power-rating
TCLs and the 𝐻 highest-power-rating TCLs, i.e.,

𝑃 grp =
𝐻

∑
𝑗=1

𝑃 𝑗
R (5.7)

𝑃 grp =
𝑁

∑
𝑗=𝑁−𝐻+1

𝑃 𝑗
R. (5.8)

5.3.2 Numerical Results

We use Monte Carlo methods to assess the effectiveness of using mode-count control to
reduce the variability of a TCL group’s power consumption. We compare the variability
of TCL groups in two cases: 1) the group is not controlled, and 2) the group is controlled
with the mode-count policy, with upper and lower bounds set as close together as possible.
We run 100 simulations for each of eight group sizes, which range from 5 to 1000 ACs. For
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Figure 5.2: Reduction in range of power when the Original Strategy is used, across different size
groups of ACs. Each box shows the statistics (25th percentile, median, 75th percentile)
for 100 Monte Carlo runs at each group size. Medians are also shown numerically.
Red + signs are outliers.

each simulation, AC parameters and initial conditions are re-sampled from their respective
random distributions. AC parameters are drawn from Table 2.1. All simulations have the
following settings: the simulation duration is 12 hours; the outdoor temperature is 32∘C;
and one third of ACs are initialized in the on-mode. We simulate the ACs for an hour prior
to the test to ensure steady-state conditions have been reached.

Figure 5.2 shows that the control strategy reduces the range of aggregate power for each
group size. The reduction in range is relative to that of the uncontrolled TCL groups; each
box plot represents the distribution across the group size’s 100 Monte Carlo simulations. For
group sizes under 50, the median percent reduction in range decreases with decreasing group
size because setting 𝐻 = 𝐻 is infeasible for some of the groups. Instead, for these smaller
groups, the on-count is maintained between two distinct bounds, for example, 𝐻 = 4 and
𝐻 = 3 for a group of 10. For group sizes of 50 or more, the range in the on-count decreases
by 100% because setting 𝐻 = 𝐻 is feasible for all groups of this size. However, the range
in power cannot decrease by 100% because of TCLs’ heterogeneous power ratings (see (5.7)-
(5.8)). For group sizes greater than 50, the controlled range in power grows with increasing
group size, which results in a slow decline in the percent reduction in range. Thus, we find
that the control strategy is most effective at reducing the range in power of medium sized
groups, but, for all group sizes tested, one can expect at least a 40% reduction in range.
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5.3.3 Application to Scenario with High Penetration of PV

As distribution-level photovoltaic (PV) generation continues to grow, so too does the possi-
bility of large, fast changes in net load. Aggregate PV power generation can drop by 60% in
less than 30 seconds when a cloud passes over a neighborhood [38]. There is also substantial
variation in the aggregate power consumption of small groups of thermostatically controlled
loads (TCLs) because of random periods of synchronization in their on/off power cycles. In
an area of a network with high penetration of PV and TCLs, a simultaneous drop in PV
generation and increase in TCL consumption could result in under-voltages, particularly if
the systems are located at the end of a long distribution line.

Conventionally, distribution voltages are regulated with on-load tap-changing transform-
ers, voltage regulators, and capacitor banks. However, these techniques have not been de-
signed to mitigate fast, repetitive excursions in voltage; for example, tap changers typically
have built-in delays to avoid responding to transient conditions [39]. New forms of voltage
management are needed in network areas with highly variable power injections and high
voltage sensitivity to these variations (e.g., at nodes far from the substation with high TCL
and PV penetration).

We propose mode-count control of TCLs as a new tool for voltage management. The idea
is simple: The variation of voltage at a bus can be reduced by reducing the variation of net
load at the bus, which can be reduced by reducing the variation of TCL-load at the bus. In
this subsection, first we show the voltage problem that can arise when highly variable PV
generation and a group of ACs are co-located at the end of a long distribution line. Then
we use mode-count control to reduce the TCL group’s variability and show a corresponding
reduction in voltage variability.

Variation in PV Power Generation

If multiple PV systems are located in close proximity, changes in power generation due to
transient clouds will occur nearly simultaneously and could cause voltages to fluctuate in that
area of the distribution network. We use the following model and simulation to demonstrate
this effect.

The PV model is based on that of [18] and estimates PV power output as a function of
solar irradiance. Neglecting temperature effects, PV power output can be calculated as

𝑃pv(𝑡) = 𝜂inv𝐷𝑃dc0𝑆(𝑡)/𝑆ref. (5.9)
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Figure 5.3: Simulated power profiles of PV generation, AC consumption, and net load. Top: The
PV generation profile drops sharply due to partial clouding. Middle: Variation in the
ACs’ power consumption is due to random periods in which ACs are synchronized.
Bottom: The variation of the net load is larger than that of either resource alone.

Parameters are defined in Table 5.1 with values sourced from [18, 23]. The variable 𝑆 is the
incident irradiance on the PV surface; we approximate the incident irradiance as the sum
of direct normal irradiance and diffuse horizontal irradiance, which should overestimate PV
production [18]. Lastly, we assume PV systems are controlled to inject power at a unity
power factor.

Using solar irradiance data from Oak Ridge National Lab [54], we simulate the total
output power of 12 residential PV systems on a partially cloudy day (see Fig. 5.3 (top)).
The irradiance data has 1 minute resolution and was measured in Oak Ridge, TN on Sept.
15, 2018 [54]. As shown in Fig. 5.3, partial clouds can cause PV generation to drop quickly;
for example, at 12:42 PM the power output of the PV systems decreases by 82% in less than
1 minute.
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Table 5.1: Photvoltaic Parameters

Parameter Values Unit
Inverter efficiency (𝜂inv) 96% –
Derating factor (𝐷) 0.86 –
Rated DC power capacity (𝑃dc0) 5.7 kW
Reference irradiance for rated power (𝑆ref) 1000 W/m2

Variation in a TCL Group’s Power Consumption

A group of TCLs co-located at a distribution node can also cause large variations in power
injections due to random periods of synchronization. We use the following model and simu-
lation to demonstrate this effect.

We model a group of heterogeneous ACs with equations (2.2)-(2.4) and with parameters
drawn randomly from Table 2.1. We assume that, when an AC is on, it is a constant power
load with a power factor of 0.97. (Power factor values for residential loads are from Table
A.2 of [15].)

We simulate a group of 25 heterogeneous ACs with outdoor temperature varying over
the course of the day (see Fig.5.3 (middle)). The outdoor temperature data has 1 minute
resolution and is from the same day and location as the solar data [54]. Variations in power
are of a similar magnitude and frequency as those of the PV systems; for example, at 1:22 PM
power consumption by ACs decreases by 89% in 6 minutes.

Net Load Variation

When groups of ACs and PVs are co-located at the same node, the variation of the net
power injection can be greater than that of either resource independently. The bottom plot
of Fig. 5.3 shows the net load profile, which is just the difference of the PV profile (top)
and the AC profile (middle). The total range in power for the three profiles in Fig. 5.3 is
62 kW, 90 kW, and 122 kW for the PV, AC, and net load profiles, respectively. Figure 5.4
shows the range of the net load in each hour of the simulated day; the range is largest in the
mid-afternoon when large variations in PV generation and AC consumption coincide. Note,
in Fig. 5.4, range is calculated as the difference between the 5th and 95th percentiles.
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Figure 5.4: Range of net load over each hour of the simulated day. The range is largest in the
afternoon when PV generation and AC consumption both have large variations.

Voltage Excursions

Large and fast variations in net load can cause voltage excursions at the end of a long
distribution line. We use the following model and simulation to demonstrate this effect.

As shown in Fig. 5.5, we model a distribution line that connects two nodes: node 1, an
infinite bus with voltage of 1.0 p.u., and node 2, a PQ bus that supplies 25 households. We
assume twelve of these households also have a PV system. Each household has an AC and
a constant power load that aggregates all other loads. The constant power load draws 1.5
kW of real power and has a power factor of 0.95. The PV systems and ACs are modeled as
described in Sections 5.3.3 and 5.3.3.

We use an intentionally simple distribution system model so that we can fully interpret the
results. The line is single phase, and we omit distribution transformers between node 2 and
the loads. Node 1 models a substation with voltage regulation. Given these assumptions,
we derive the following power flow equations:

𝑃net = 𝑉1𝑉2(𝑔12 cos 𝜙21 + 𝑏12 sin 𝜙21) − 𝑔12𝑉 2
2 (5.10)

𝑄net = 𝑉1𝑉2(𝑔12 sin 𝜙21 − 𝑏12 cos 𝜙21) + 𝑏12𝑉 2
2 , (5.11)

where 𝑃net and 𝑄net are the net power injections at node 2, 𝑉1 and 𝑉2 are the nodes’ voltage
magnitudes, 𝜙21 is the difference in voltage angle between the two nodes (𝜙2 − 𝜙1), and
parameters 𝑔12 and 𝑏12 are the line’s conductance and susceptance, respectively. The line is
10 miles long and consists of a single phase and neutral, both of which have a 180-ampere
conductor with parameters from a feeder model provided by [63]. We calculate the line’s per
mile impedance to be 1.86 + 1.41𝑗 using the “Modified Carson’s Equations” (see Chapter 4
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Figure 5.5: Diagram of distribution line between infinite bus (node 1) and load bus (node 2). The
line is single phase, 10 miles long, and supplies a group of 25 households.
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Figure 5.6: Voltage profile at node 2 on the simulated distribution line. Voltage excursions reach
below the 0.95 p.u. lower limit during large positive variations in net load.

of [39]).
We simulate the power flow along the modeled distribution line using the same daily

weather data as in previous sections. We solve for node 2’s voltage in each time step by
applying the Newton Raphson method to (5.10)-(5.11). The voltage profile of node 2 is
shown in Fig. 5.6. In the middle of the day, large variations in the net power injection at
node 2 cause voltage excursions below 0.95 p.u. (the national standard for service voltage is
0.95-1.05 p.u. [59]).

In a real system, the under-voltages in Fig. 5.6 could be prevented by increasing the
setpoint of the voltage regulator at node 1 above 1 p.u. However, a higher setpoint could
result in over-voltages on a sunny day with minimal load. Because of this trade-off, we
expect that some systems’ voltage regulation schemes will not be able to prevent all possible
voltage excursions, and excursions similar to those in Fig. 5.6 will sometimes occur.
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Voltage Management with Mode-Count Control

Through simulation, we demonstrate the control strategy’s ability to constrain the aggregate
power of an AC group and thereby reduce voltage excursions on a network. We consider two
scenarios: the “Uncontrolled Scenario” in which there are no external switching commands,
and the “Controlled Scenario” in which mode-count control is used. We set the upper and
lower count bounds as close together as possible: in this case, 𝐻 = 𝐻 = 10. The simulations
use the same models, parameters, and weather data as previously described. The 1-hour
simulations start at 14:00, which is the hour with the largest range in net load (see Fig. 5.4).
Initial temperatures are drawn from the uniform distribution between an AC’s upper and
lower temperature limit, and the first 10 ACs are initialized to the on mode.

Fig. 5.7 compares the results for the two scenarios. The total demand of the AC group
is much less variable in the Controlled Scenario than the Uncontrolled Scenario (top plot),
which results in less variability in net load (second plot), which in turn results in less vari-
ability in voltage (third plot). The bottom plot shows that variation in the AC group’s
average temperature is very small, both with and without control.

5.4 Methods Part 2: Mode-Count Control Considering
Cycling Constraints

5.4.1 Cycling Constraints

A drawback of the strategy proposed in [62] is the possibility of cycling a TCL too frequently,
which could irritate the end-user or could damage the TCL’s compressor [67]. In this section,
we assume TCLs have cycling constraints and propose a new switching strategy that can
satisfy these new constraints. Cycling constraints are a current thrust of research on TCL
control, and our proposed control strategy adds to a growing body of work including [10, 82,
99]. Note cycling constraints are often referred to as lockout constraints in the literature.

Cycling constraints can be defined in terms of a minimum time that must elapse before a
TCL can be switched again, referred to as a lockout period. Given a homogeneous lockout
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Figure 5.7: Comparison of loads and voltage with and without control. The control strategy
reduces the variation in the aggregate power consumption of ACs, which reduces
net load variation and results in a reduction in voltage excursions. The average
temperature of the AC group stays relatively constant in both cases.

76



3

Temperature
𝜃 ഥ𝜃

O

N

O

F

F

Upper margin

ҧ𝜃𝐿

1

6
4

2
3

7

6

4

5

Lower margin

𝜃𝐿

Figure 5.8: Illustration of switching strategy for TCLs with cycling constraints. TCLs are repre-
sented by numbered circles; outer boxes indicate the TCL is locked.

period of 𝑡L for all TCLs, the cycling constraints for the 𝑖th TCL are

𝜆𝑖(𝑡) =
⎧{
⎨{⎩

locked if ∫
𝑡

𝑡−𝑡L

𝟙{𝜎𝑖(𝑡)}(𝜎𝑖(𝜏))𝑑𝜏 < 𝑡L,

unlocked otherwise.
(5.12)

If a TCL is locked, then its power mode cannot be switched. This condition is enforced by

𝜎𝑖(𝑡) = 𝜎𝑖(𝑡−) if 𝜆𝑖(𝑡) = locked. (5.13)

5.4.2 Switching Strategy

Given a group of TCLs with cycling constraints, we propose a switching strategy that satisfies
the cycling constraints (5.12)-(5.13), the on-count bounds (5.3), and the individual TCL
temperature constraints. The strategy hinges on switching TCLs before they reach their
upper and lower temperature limits. The strategy begins to try to switch a TCL once it has
entered the “upper temperature margin” or “lower temperature margin” (see Fig. 5.8). A
switch from off to on within the upper margin can occur if the on-count is less than the upper
bound or if another TCL is available to switch in the opposite direction (off ). Similarly, a
switch from on to off within the lower margin can occur if the on-count is greater than the
lower bound or if another TCL is available to switch in the opposite direction (on).
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For the 𝑖th TCL, the inner temperature of the lower margin 𝜃𝑖
L is calculated as 𝜃𝑖

L =
max(𝜃𝑖

L1, 𝜃𝑖
L2). The temperature 𝜃𝑖

L1 is the temperature reached after the TCL travels in the
off-mode from 𝜃𝑖 for a 𝑡L length of time. The temperature 𝜃𝑖

L2 is the starting temperature
from which it takes a 𝑡L length of time for the TCL to travel in the on-mode to 𝜃𝑖. Temper-
atures 𝜃𝑖

L3 and 𝜃𝑖
L4 are defined similarly but with respect to the upper limit 𝜃𝑖

. The inner
temperature of the upper margin 𝜃𝑖

L is calculated as 𝜃𝑖
L = min(𝜃𝑖

L3, 𝜃𝑖
L4).

To formalize the switching strategy, we must first define the following sets. Let 𝕄(𝑡) be
the set of off TCLs in the upper margin, and let 𝕄(𝑡) be the set of on TCLs in the lower
margin. Let 𝔸on→off(𝑡) be the set of TCLs that are available to switch off at time 𝑡, i.e.,
𝔸on→off(𝑡) ∶= {𝑖 ∣ 𝜃𝑖(𝑡) < 𝜃𝑖

L, 𝜎(𝑡)𝑖 = on, 𝜆(𝑡)𝑖 = unlocked}. Similarly, let 𝔸off→on(𝑡) ∶= {𝑖 ∣
𝜃𝑖(𝑡) > 𝜃𝑖

L, 𝜎(𝑡)𝑖 = off , 𝜆(𝑡)𝑖 = unlocked}.

Proposed Strategy: Mode-Count Control for TCLs with Cycling
Constraints

• If |𝕄(𝑡)| > 0, order the TCLs in 𝕄 by time-to-upper-limit in ascend-
ing order.

– Set 𝑚 equal to the smallest index in 𝕄 for which the TCL is
also unlocked.

– If 𝑚 ≤ ((𝐻 − 𝐻(𝑡)) + |𝔸on→off(𝑡)|),
∗ switch TCL 𝑚 on if (𝐻 − 𝐻(𝑡)) > 0,
∗ otherwise switch TCL 𝑚 on and simultaneously switch off

the TCL in 𝔸on→off(𝑡) with the largest time-to-upper-limit.

• If |𝕄(𝑡)| > 0, order the TCLs in 𝕄 by time-to-lower-limit in ascend-
ing order.

– Set 𝑚 equal to the smallest index in 𝕄 for which the TCL is
also unlocked.

– If 𝑚 ≤ ((𝐻(𝑡) − 𝐻) + |𝔸off→on(𝑡)|),
∗ switch TCL 𝑚 off if (𝐻(𝑡) − 𝐻) > 0,
∗ otherwise switch TCL 𝑚 off and simultaneously switch on

the TCL in 𝔸off→on(𝑡) with the largest time-to-lower-limit.

• If 𝑇 𝑖
off(𝜃𝑖(𝑡), 𝜃𝑖) = 0 and TCL 𝑖 is off, switch it on.

• If 𝑇 𝑖
on(𝜃𝑖(𝑡), 𝜃𝑖) = 0 and TCL 𝑖 is on, switch it off.
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The strategy fails if a TCL travels all the way through its margin without being switched.
When it reaches its upper or lower limit, it will switch and a count-bound will be violated.

Prior to the start of the strategy, we assume that TCLs have been operating “naturally”,
i.e., without external control. This implies that an off TCL will only be locked if 𝜃𝑖(𝑡0) < 𝜃𝑖

L1
and an on TCL will only be locked if 𝜃𝑖(𝑡0) > 𝜃𝑖

L3, where 𝑡0 is the time at which the strategy
starts.

For the switching strategy to succeed, TCLs’ initial states must satisfy the following
conditions. First is a trivial condition: TCLs’ initial temperatures and the group’s on-count
must satisfy their constraints. Second, to prevent more than 𝐻 from being locked on at the
same time, no more than 𝐻 TCLs should be in the off mode with 𝑇 𝑖

off(𝜃𝑖(𝑡), 𝜃𝑖) < 𝑡L. Third,
to prevent fewer than 𝐻 from being on, no more than (𝑁 − 𝐻) TCLs should be in the on
mode with 𝑇 𝑖

on(𝜃𝑖(𝑡), 𝜃𝑖) < 𝑡L.

5.4.3 Conditions on Feasible Count Bounds

We hypothesize that, under the proposed strategy for cycling constraints, the count bounds
that can be satisfied indefinitely will have bound values that satisfy conditions similar to
those in (5.4)-(5.5). Instead of depending on the upper and lower temperature limits, we
expect the conditions will depend on the margin temperatures 𝜃L and 𝜃L, as formulated
below.

𝐻 <
𝑁

∑
𝑖=1

−𝑓 𝑖
off(𝜃𝑖

L)/𝑓 𝑖
on(𝜃𝑖

L)
1 − 𝑓 𝑖

off(𝜃𝑖
L)/𝑓 𝑖

on(𝜃𝑖
L)

(5.14)

𝐻 > 𝑁 −
𝑁

∑
𝑖=1

−𝑓 𝑖
on(𝜃𝑖

L)/𝑓 𝑖
off(𝜃𝑖

L)
1 − 𝑓 𝑖

on(𝜃𝑖
L)/𝑓 𝑖

off(𝜃𝑖
L)

(5.15)

5.4.4 Simulation Results

We demonstrate the proposed strategy with simulations of a group of 1000 ACs with cycling
constraints. The group’s heterogeneous parameters are generated by sampling the ranges
listed in Table 2.1. We use a lockout period of 1 minute for all ACs. We run three simulations:
in the first, 𝐻 is set to the “adjusted” least upper bound (LUB) determined by (5.15); in
the second, 𝐻 is set to the original LUB determined by (5.5); and in the third, the original
strategy from [62] is tested with the adjusted LUB. In all simulations, the AC group is
initialized such that each AC has an initial temperature of 𝜃𝑖

L, and 𝐻 number of ACs are set
to the on-mode. The lower bound 𝐻 is set to zero for all simulations.
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Figure 5.9: Group of 1000 ACs with cycling constraints controlled to satisfy an upper count-
bound. The proposed strategy is able to satisfy the upper bound of 339 computed
with (5.15) (top) but unable to satisfy the upper bound of 336 computed with (5.5)
(middle). When we use the original strategy from [62] and the upper bound computed
with (5.15), the strategy is unable to satisfy the upper bound (bottom).
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As shown in the top plot of Fig. 5.9, the proposed strategy is able to satisfy the adjusted
LUB for the simulated 12 hours. However, when the upper bound decreases to the original
LUB, the strategy is unable to satisfy the bound (see middle plot). Finally, the original
strategy is unable to satisfy the adjusted LUB and causes large spikes in a group’s on-count
(see bottom plot).

5.5 Chapter Conclusion
We have demonstrated a novel TCL control strategy that minimizes variation in the number
of TCLs that are on by constraining the on-count between close lower and upper bounds. We
have shown that the strategy is able to reduce the range of a TCL group’s aggregate power
and have found that the strategy is most effective at reducing the variability of medium-size
groups (i.e., 50-100 TCLs).

We have also proposed a new control strategy for TCLs with cycling constraints and have
demonstrated the strategy’s ability to satisfy on-count bounds over 12 consecutive simulation
hours. In future work, we will investigate heterogeneous lockout periods and the effect of
longer lockout periods on the set of feasible bounds. In addition, we plan to incorporate
the proposed strategy into a broader control architecture to track a balancing signal with
aggregated TCLs while still ensuring that local constraints, such as voltage, are satisfied.

81



Chapter 6

Strategies for Network-Safe Load
Control

This chapter is largely based on a manuscript6 that is under review at a journal.

6.1 Chapter Introduction
High penetrations of aggregator-controlled distributed energy resources (DERs) pose a chal-
lenge to safe operation of distribution networks. In particular, DER aggregations partici-
pating in wholesale markets may cause unexpected power flows at the distribution level that
result in reliability issues, as was noted by the U.S. Federal Energy Regulatory Commission
(FERC) in a recent notice [21]. This is of particular concern with third-party aggregators,
which are separate from distribution operators and do not necessarily have awareness of the
local impacts of their control actions. In the U.S., third-party load aggregators are active
in ancillary service markets as a result of FERC Order No. 719 [87]. As an example of
the problem, consider a third-party load aggregator participating in regulation (i.e., sec-
ondary frequency control). To achieve a maximum setpoint, the aggregator may need 80%
of its loads to draw power at the same time—effectively turning a distribution network’s
diversified load into coincident load—which could cause violations of lower limits on voltage
magnitudes [73]. In this chapter, we propose new strategies for controlling a particular type
of aggregation—an aggregation of residential, thermostatically controlled loads (TCLs).

The objective of this chapter is to develop TCL control strategies that provide regula-

6S.C. Ross and J.L. Mathieu. “Strategies for network-safe load control with a third-party aggregator and
a distribution operator”. (Under review).
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tion without causing network constraint violations, all while preserving the privacy of the
operator’s and third-party aggregator’s proprietary information. We propose a control archi-
tecture in which the aggregator controls a TCL aggregation to provide regulation, but, when
necessary for network safety, the operator overrides the aggregator’s commands to specific
TCLs in the aggregation.

Our approach contrasts with that of prior work, which has not focused on maintaining
privacy and separation between the operator and aggregator. In [93], the aggregator and
operator are treated as the same entity, and a centralized AC-OPF is solved to achieve reg-
ulation while satisfying network constraints. In [17, 30], distributed strategies are proposed
which could be implemented by a separate operator and aggregator; however, the two enti-
ties would be highly dependent on one another as they executed prescribed (i.e., not private)
algorithms coupled through Lagrange multipliers.

We develop and compare two control strategies with different attributes. Strategy I is
easier to implement but lower accuracy than Strategy II. In Strategy I, the aggregator uses
an aggregate-model based control strategy to provide regulation, while the operator blocks
particular TCLs from receiving the aggregator’s commands when the network is at risk.
In contrast, in Strategy II both the aggregator’s and operator’s control algorithms rely on
individual models of each TCL; to ensure network safety, the operator not only blocks TCLs
but also controls them with its own commands. In a case study, we evaluate the strategies in
terms of regulation-signal tracking accuracy, and we test two versions of each control strategy.
In the first, there is no coordination (i.e., no direct communication between operator and
aggregator); in the second, the operator sends the aggregator partial information about its
control actions.

The main contributions of this chapter are as follows. First, we propose two new con-
trol strategies for network-safe TCL control that preserve the privacy of the third-party
aggregator and the distribution operator. The strategies differ in terms of cost, ease of im-
plementation, and accuracy, and thus provide options for operators and aggregators with
different capabilities and preferences. Second, we evaluate the performance of the proposed
strategies, with and without coordination, in simulations of a realistic distribution network
model with a high penetration of aggregated TCLs.

This chapter builds off of our work in Chapters 4 and 5. Strategy I is similar to the
strategy in Chapter 4 in that they both use blocking. However, we develop new control
methods for the aggregator to satisfy TCLs’ cycling constraints—something that was not
considered in Chapter 4. In Strategy II, we apply Chapter 5’s mode-count control algorithm
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to protect network constraints.

6.2 Problem Description
The aggregator’s objective is to control the total power consumption of its TCL aggregation
such that it tracks a regulation signal with sufficient accuracy. We assume that the aggrega-
tor’s control actions should be non-disruptive [8] to the TCL’s end-user. Thus, we restrict an
aggregator’s control actions to switching TCLs on/off only when the TCLs are within their
user-set temperature range. The aggregator’s control is subject to the individual dynamics
and constraints of each TCL.

A distribution operator’s objective is to reliably deliver power of sufficient quality to con-
sumers. In Table 6.1, we list the set of constraints for power quality and reliability that are
considered in this chapter. For transformers, apparent power is averaged over an hour be-
cause a transformer’s thermal mass enables short-term violations of its power rating without
causing overheating [33]. Note we will use the term “network safety” to refer to a distribution
network’s power quality and reliability.

Operators may need new tools to ensure network safety when third-party aggregators are
active on their networks. Traditional network management tools, such as network recon-
figuration and voltage regulation with regulators, have not been designed for the short but
recurring fluctuations in power that can occur when aggregated loads provide frequency reg-
ulation. In this chapter, we give the operator the ability to override the aggregator’s control
actions when necessary to avoid network constraint violations. As with the aggregator, we
assume that the operator’s TCL control actions are non-disruptive to the end-user.

The control plant, for both the aggregator and operator, is an aggregation of thousands of
heterogeneous TCLs. Each TCL in the plant is modeled separately to capture its individual
temperature dynamics and constraints. We use an individual TCL model that was developed
in [79] and is commonly found in the literature (e.g.,[28, 52]). For an aggregation of cooling
TCLs, the 𝑖th TCL’s temperature at time step 𝑡+1 is modeled as

𝜃𝑖
𝑡+1 =

⎧{
⎨{⎩

𝑎𝑖𝜃𝑖
𝑡 + (1 − 𝑎𝑖)(𝜃amb,𝑡 − 𝑟𝑖𝑝𝑖

𝜃) if 𝜎𝑖
𝑡 =1,

𝑎𝑖𝜃𝑖
𝑡 + (1 − 𝑎𝑖)𝜃amb,𝑡 if 𝜎𝑖

𝑡 =0,
(6.1)

where 𝑎𝑖 = exp(−ℎ/(𝑐𝑖 𝑟𝑖)) and ℎ is the duration of the discrete model’s time step. Variable 𝜎
represents the TCL’s power status (1 for on and 0 for off ). All other TCL parameters are
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Table 6.1: Distribution Network Constraints

Component Variable Lower Limit Upper Limit
Line Current magnitude – 100% of rating
Transformer Avg. apparent power – 100% of rating
Service node Voltage magnitude 0.95 p.u. 1.05 p.u.

defined in Table 2.1.
To ensure non-disruptive control, we give the TCL’s internal thermostat controller priority

over external controllers. A TCL’s power status is switched on/off by its internal controller
if it reaches its upper or lower temperature limit. This condition is given by

𝜎𝑖
𝑡+1 =

⎧{
⎨{⎩

1 if 𝜃𝑖
𝑡 ≥ 𝜃𝑖,

0 if 𝜃𝑖
𝑡 ≤ 𝜃𝑖,

(6.2)

where 𝜃𝑖 = 𝜃𝑖
set − 𝛿𝑖 and 𝜃𝑖 = 𝜃𝑖

set + 𝛿𝑖 (see Table 2.1 for parameter definitions).
TCLs can also have cycling constraints that prevent them from cycling too frequently. Such

constraints are particularly important for TCLs with compressors (e.g., air conditioners)
which must be off for a specific length of time to protect the compressor from physical
damage. One way to reduce cycling frequency is to enforce a lockout period after a TCL
has switched. During the lockout period, a TCL is “locked” in that it cannot be switched.
Given a lockout period of 𝜏L time steps, a TCL’s power status is constrained by

𝜎𝑖
𝑡 = 𝜎𝑖

𝑡−1 if
𝑡−1
∑

𝑘=𝑡−𝜏L

𝟙{𝜎𝑖
𝑡−1}(𝜎𝑖

𝑘) < 𝜏L, (6.3)

where the indicator function 𝟙{𝑓}(𝑔) equals one if 𝑔 = 𝑓 and zero otherwise. In this chapter,
we assume the cycling constraint is designed to prevent excessive switching by external
controllers and that it does not apply to internal control.

Finally, the total power of an aggregation of 𝑁 TCLs is given by 𝑃total,𝑡 = ∑𝑁
𝑖=1 𝑃 𝑖

R𝜎𝑖
𝑡,

where 𝑃 𝑖
R is a TCL’s electric power rating with 𝑃 𝑖

R = 𝑝𝑖
𝜃/𝜁𝑖.
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Figure 6.1: Control Architecture. The operator controls a portion of TCLs when necessary to pre-
vent network violations. The aggregator controls all other TCLs to provide tracking.
The dashed arrow indicates possible coordination.

6.3 Control Architecture
We propose a control architecture by which the aggregator and operator can both achieve
their control objectives. Figure 6.1 shows the architecture. In this architecture, the operator
determines in real-time which (if any) TCLs need to be temporarily removed from the aggre-
gator’s control in order to prevent network violations. Because the operator’s interventions
occur in real-time, we assume the aggregator is unable to reduce its regulation capacity, re-
move TCLs from its aggregation, or adjust its contract with the wholesale market operator
in any other way. This creates a challenge for the aggregator: the aggregator must provide
the same regulation service but with fewer TCLs responding to its control than expected.

In this architecture, the aggregator and operator act in parallel. In each time step, the
aggregator and operator both receive measurements from, and send commands to, the TCL
aggregation. On the aggregator side, the tracking controller receives a regulation setpoint
from the bulk-system operator and computes switching commands such that aggregation’s
power consumption will match the setpoint in the next time step. On the operator side, the
safety controller receives network measurements (e.g., currents and voltages) and determines
which TCLs to block from receiving the aggregator’s control and what commands to send to
them. Finally, the operator may coordinate with the aggregator by sending the aggregator
information about its control actions.

We propose two control strategies—Strategy I and II—both of which use the proposed
architecture. Table 6.2 provides details on the components of each strategy and enables a
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comparison of their measurement and communication (M&C) requirements.
The aggregator’s M&C requirements are more substantial in Strategy II than Strategy I. In

Strategy I, the aggregator’s controller requires only an aggregate TCL power measurement
and sends back a small number of probabilistic commands to all TCLs. In contrast, in
Strategy II, the aggregator’s controller requires power and temperature measurements from
each TCL and sends back an individual on/off command to each TCL.

The operator’s M&C requirements are also more substantial in Strategy II than Strategy I.
In Strategy I, the operator’s controller requires only power measurements from each TCL and
sends back a “block” or “unblock” command to each unit, as needed. In contrast, in Strategy
II, the operator’s controller requires temperature and power measurements from each TCL
and sends back individual on/off commands to blocked units in addition to block/unblock
commands.

6.4 Methods: Strategy I

6.4.1 Blocking Control

In Strategy I, we propose that operators use blocking control to ensure safe network oper-
ation. When a TCL is blocked, it is unresponsive to aggregator commands, and it returns
to its regular on/off cycles governed by its internal thermostat. To protect a particular net-
work constraint, we block a group of TCLs whose demand would otherwise contribute to the
violation of the constraint. To protect the full network, we must identify which constraints
are at risk of violation due to regulation and select an appropriate set of TCLs to block.
The ideal control solution would identify the at-risk constraints online, so as to adjust for
changing operating conditions, and would select the minimum set of TCLs to block, so as to
minimize impact on the aggregator’s control. Since this is not the focus of this chapter, we
identify at-risk constraints using offline simulations and use approximate methods to select
which TCLs to block. Developing an online control solution is future work.

The method that we use for selecting TCLs depends on the type of constraint that is
at risk. If a line or transformer are overloaded, then we incrementally block TCLs that
are downstream from the component until the overload is relieved. Specifically, we block
TCLs furthest from the component first, where distance is in terms of line length. This is
an approximate method for blocking TCLs according to how much they contribute to the
overload, where a TCL’s contribution is the sum of its demand and associated line losses. If a
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Table 6.2: Control Strategies

Entity Controller Measurements Commands to TCLs

St
ra

te
gy

I ⎧{
⎨{⎩

Aggregator Aggregate-Model
Based Control Aggregate power Probabilistic, one

value for each bin

Operator Blocking Control Power of each
TCL

Block or unblock to
each TCL

St
ra

te
gy

II ⎧{
⎨{⎩

Aggregator Individual-Model
Based Control

Power & temp. of
each TCL On/off to each TCL

Operator Mode-Count
Control

Power & temp. of
each TCL On/off to each TCL

service node has a voltage violation, then we incrementally block TCLs that are downstream
of the node. If the violation persists, then we incrementally block TCLs that are directly
or indirectly on the “path” of lines that connect the node to the substation. (A TCL is
indirectly on the path if located on a line that branches off of the path.) We block TCLs
according to their distance along the path: TCLs closer to the node are blocked first.

6.4.2 Aggregate-Model Based Tracking Control

Strategy I’s proposed tracking controller is based on an aggregate model of TCL state pro-
gression. In Section 6.6, we benchmark the tracking performance of the proposed, aggregate-
model based controller against that of a model-less, PI controller. We expect the proposed
controller to have better performance because it uses model-based prediction to compensate
for the internal control actions of TCLs and uses state estimation to prioritize switching
TCLs that are about to internally switch.

Aggregate TCL Model

The proposed model takes the form of a population transition model, which has been com-
monly used in the literature on TCL control (e.g., [44, 52]). In this type of model, the state
space of all TCLs is discretized into the same number of “bins” and the progression of TCLs
from bin to bin is modeled with transition probabilities.

In this chapter, we extend the population transition model to include TCL lockout dy-
namics. Figure 6.2 depicts the proposed model. Each bin is represented by a circle and is
defined by a locked/unlocked status, on/off status, and one of 𝑁I temperature intervals. In
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Figure 6.2: State Transition Diagram with Locked States. Arrows indicate the most likely state
transitions for an uncontrolled TCL with a lockout period.

Fig. 6.2, horizontal arrows represent transitions from one temperature interval to the next
due to TCLs’ temperature dynamics. Diagonal arrows represent transitions due to thermo-
stat actions. Vertical arrows represent TCLs becoming unlocked after their lockout times
have elapsed. Transitions due to aggregator-control are not shown but would be downward
diagonals in each temperature interval.

We formulate the aggregate model as a linear time-varying system:

𝐱𝑡+1 = 𝐀𝑡𝐱𝑡

𝐲𝑡 = 𝐂𝐱𝑡,
(6.4)

where 𝐱 is the state vector, 𝐀 the state transition matrix, 𝐲 the output, and 𝐂 the
output matrix. The state 𝐱 is the distribution of the TCL population across the bins.
Given the different types of bins, the state vector can be divided into four categories:
𝐱 = [ 𝑥1 … 𝑥𝑁I⏟

off, unlocked
𝑥𝑁I+1 … 𝑥2𝑁I⏟⏟⏟⏟⏟

on, unlocked
𝑥2𝑁I+1 … 𝑥3𝑁I⏟⏟⏟⏟⏟⏟⏟

off, locked
𝑥3𝑁I+1 … 𝑥4𝑁I⏟⏟⏟⏟⏟⏟⏟

on, locked
]𝑇 . The entries of the state

transition matrix 𝐀𝑡 are the probability that a TCL will transition from bin to bin. For
example, the entry in the 𝑖th row and 𝑗th column is the probability that a TCL in bin 𝑗 will
transition to bin 𝑖 in the next time step.

We model transitions due to the aggregator’s probabilistic commands within the 𝐀 matrix.
This is similar to the Markov Decision Process approach in [11]. We formulate 𝐀𝑡 as the
product of two transition matrices: 𝐀𝑡 = 𝐀u,𝑡𝐀s, where 𝐀s models “internal” transitions due
to temperature dynamics, lockout dynamics, and internal control, and 𝐀u,𝑡 models external
transitions due to aggregator control. For the purpose of modeling, we have assumed that,
in a given time step, internal transitions occur before external transitions. The matrix
𝐀s can be identified for a particular outdoor temperature by counting bin transitions when
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aggregator-control is inactive. Here we assume a constant outdoor temperature, which makes
𝐀s time-invariant.

Transition probabilities in 𝐀u,𝑡 depend on the aggregator’s control command 𝐮𝑡. The 𝑖th
entry of 𝐮𝑡 is the probability with which TCLs in bin 𝑖 should switch at time step 𝑡. The
entries only correspond to bins that are unlocked, so 𝐮𝑡 has length 2𝑁I. Given this definition
of 𝐮𝑡, matrix 𝐀u,𝑡 takes the form

⎡
⎢
⎢
⎢
⎣

𝐈 − diag(𝑢1
𝑡 , … , 𝑢𝑁I

𝑡 ) 𝟎 𝟎 𝟎
𝟎 𝐈 − diag(𝑢𝑁I+1

𝑡 , … , 𝑢2𝑁I
𝑡 ) 𝟎 𝟎

𝟎 adiag(𝑢2𝑁I
𝑡 , … , 𝑢𝑁I+1

𝑡 ) 𝐈 𝟎
adiag(𝑢𝑁I

𝑡 , … , 𝑢1
𝑡 ) 𝟎 𝟎 𝐈

⎤
⎥
⎥
⎥
⎦

,

where 𝐈 is the identity matrix, diag(⋅) maps the input vector to a diagonal matrix, and
adiag(⋅) maps the input vector to an anti-diagonal matrix, where the diagonal runs from the
upper right corner to the lower left corner. The left side of 𝐀𝑢,𝑡 models transitions due to
aggregator control: the diagonal sub-matrices model transitions out of unlocked bins, and
the anti-diagonal sub-matrices model transitions into locked bins.

The two outputs of the aggregate model are: 1) the total power consumption of the
aggregation and 2) the fraction of TCLs in the aggregation, which should always equal one.
The output matrix is given by 𝐂 = [𝐂s 𝐂s], where

𝐂s = [ 0 … 0 𝑝on𝑁 … 𝑝on𝑁
1 … 1 1 … 1 ]

and 𝑝on is the average power consumption of an on TCL.

State Estimation

We use a time-varying Kalman filter [53] to estimate the aggregate state in (6.4). The output
of the Kalman filter in each time step is 𝐱̂𝑡. We account for process noise and measurement
noise by adding terms 𝐰 and 𝐯 to the state and output equations in (6.4), respectively. We
treat the covariances of 𝐰 and 𝐯, denoted as 𝐐 and 𝐑, as tuning parameters. For output
measurements, we use 𝐲meas,𝑡 = [ 𝑃total,𝑡 1 ]

T
. We assume the second output measurement

is perfect (i.e., has zero measurement noise) and set the corresponding entry in 𝐑 to zero.
In this way, the second output equation acts as an equality constraint within the Kalman
Filter [77].
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Control Policy

We propose a control policy based on one-step model prediction. The policy selects a control
input such that the model’s predicted output in the next time step matches the desired
output. We note that the proposed policy is similar to that of [52]; differences emerge due
to differences in aggregate models.

We derive the policy by solving the aggregate model (6.4) for 𝐮𝑡 given the state estimate
𝐱̂𝑡. To achieve the desired output 𝐲∗

𝑡+1, we choose 𝐮𝑡 such that 𝐲∗
t+1 = 𝐂𝐀u,𝑡𝐀s𝐱̂𝑡. The

matrix 𝐀u can be decomposed into two matrices: 𝐀u,𝑡 = 𝐀̃u,𝑡 + 𝐈, and therefore 𝐲∗
t+1 =

𝐂𝐀̃u,𝑡𝐀s𝐱̂𝑡 +𝐂𝐀s𝐱̂𝑡. Given the structure of 𝐀u,𝑡, the second row of this equation is satisfied
by any choice of 𝐮𝑡; however, 𝐮𝑡 must be chosen carefully to satisfy the first row. The first
row of this equation is

𝑃 ∗
total,𝑡+1= 𝑝on𝑁⎛⎜

⎝

𝑁I

∑
𝑛=1

𝑢𝑛
𝑡 𝑥𝑛

pred,𝑡 +
2𝑁I

∑
𝑛=𝑁I+1

−𝑢𝑛
𝑡 𝑥𝑛

pred,𝑡⎞⎟
⎠

+ 𝐂1𝐀s𝐱̂𝑡, (6.5)

where 𝑃 ∗
total,𝑡+1 is the desired power in the next time step and is the first entry of 𝐲∗

t+1. The
vector 𝐱pred,𝑡 is the predicted state if only internal transitions were to occur in the next time
step and is given by 𝐱pred,𝑡 = 𝐀s𝐱̂𝑡. The vector 𝐂1 is the first row of 𝐂.

We design the control policy such that, in each time step, TCLs are switched in only one
direction (on or off ). The entries of 𝐮𝑡 are probabilities and must be between 0 and 1. Given
these restrictions, when a positive change in power is needed, (6.5) can be simplified and
rearranged such that

𝑁I

∑
𝑛=1

𝑢𝑛
𝑡 𝑥𝑛

pred,𝑡 = 𝐾
𝑃 ∗

total,𝑡+1 − 𝐂1𝐀s𝐱̂𝑡
𝑝on𝑁 , (6.6)

where 𝐾 has been added as a proportional gain and all other entries of 𝐮𝑡 are set to zero.
Similarly, when a negative change in power is needed, the last 𝑁I entries of 𝐮𝑡 must satisfy

2𝑁I

∑
𝑛=𝑁I+1

−𝑢𝑛
𝑡 𝑥𝑛

pred,𝑡 = 𝐾
𝑃 ∗

total,𝑡+1 − 𝐂1𝐀s𝐱̂𝑡
𝑝on𝑁 . (6.7)

Because (6.6) is under-determined when 𝑁I > 1, we have the freedom to choose 𝐮 as long
as (6.6) is satisfied. We design a rule for selecting 𝐮 that prioritizes switching TCLs that
are closest to being switched by internal control. When switching TCLs on, bin 𝑁I has first
priority, bin 𝑁I−1 has second priority, and so on. Let 𝑏 be the minimum index for which
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∑𝑏
𝑘=0 𝑥𝑁I−𝑘

pred,𝑡 is greater than the right hand side of (6.6). We set the entries of 𝐮 equal to
1 for all bins of higher priority than 𝑁I−𝑏 and equal to zero for all bins of lower priority.
Finally, the value for bin 𝑁I−𝑏 is chosen such that (6.6) is satisfied.

The control policy is very similar when a decrease in power is needed. In this case, 𝐮 must
satisfy (6.7), and bins 2𝑁I to 𝑁I+1 are switched out of, in that order.

Coordination

When there is coordination in Strategy I, the operator informs the aggregator of the number
of TCLs it is blocking in the current time step. To incorporate this information into the
aggregator’s control policy, we use a lookup table of proportional gains for each of five
blocking levels: 0%, 10% 20%, 30%, and 40%. When the number blocked changes, we
update 𝐾 in (6.6) and (6.7) by linearly interpolating between the nearest values in the
lookup table.

6.5 Methods: Strategy II

6.5.1 Mode-Count Control

For the operator in Strategy II, we propose the use of Chapter 5’s mode-count control
algorithm to ensure network safety. We propose two applications of mode-count control: 1)
prevention of under-voltages or over-currents by reducing a TCL group’s maximum demand,
and 2) prevention of over-voltages by increasing a TCL group’s minimum demand. For
brevity, we present only the first application; the methods for the second application follow
directly.

For a group of co-located TCLs, the policy determines which TCLs to switch on/off to
constrain the group’s “on-count”, and thereby the group’s demand. A group’s on-count is
the number of TCLs in the group that are on at a particular time and is denoted 𝐻𝑗

𝑡 for
group 𝑗 at time 𝑡. We constrain a group’s on-count such that 𝐻𝑗

𝑡 ≤ 𝐻𝑗
, where 𝐻𝑗

is a low
(but feasible) upper bound.

Figure 6.3 provides an example of the control policy. Consider a group of 7 TCLs with
upper bound 𝐻 = 3. The central idea of the policy is to switch TCLs on as soon as possible
once they have entered the “upper margin” of their temperature range. At the time step
shown in Fig. 6.3, the policy switches TCL #4 on because it has just entered its upper
margin, and switches TCL #1 off to satisfy the counting constraint. A main goal of the
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Figure 6.3: Demonstration of Mode-Count Control. The policy maintains the on-count ≤ 3 by
switching off TCLs on, as soon as possible after entering the upper margin, and if
needed, switching an on TCL off to compensate. TCLs are indicated by numbered
circles; boxes indicate locked status.

policy is to avoid having too many TCLs locked on at the same time, which could happen
if we waited to switch TCLs at their upper temperature limit.

We summarize the steps of the control policy in Algorithm 1 and define three terms
used within the algorithm as follows. (For a more detailed treatment of the policy see
Section 5.4.) First, a TCL’s “time-to-upper-limit” is the time it would take a TCL to
progress from its current temperature 𝜃𝑖

𝑡 to its upper limit 𝜃𝑖
in the off direction. This time

can be explicitly calculated from the individual TCL model, and for the 𝑖th TCL is given by
𝑡𝑖
UL = 𝑟𝑖𝑐𝑖 ln ((𝜃amb − 𝜃𝑖

𝑡)/(𝜃amb − 𝜃𝑖)). Second, the “upper margin temperature” 𝜃L is the
lesser of two temperatures: 1) the temperature from which it takes the TCL 𝜏L time steps
to reach 𝜃 when off, and 2) the temperature reached by the TCL 𝜏L time steps after leaving
𝜃 when on. Third, a TCL “counter-switches” with another TCL by switching at the same
time but in the opposite direction (i.e., to the opposite power status).

To prevent the violation of a particular network constraint, an operator must first identify
the group of TCLs to control and then set a lower bound on the group’s on-count. As with
blocking, we wish to control the smallest set of TCLs that will prevent the network constraint
violation. In this work, we use the same approximate methods described in Section 6.4.1 to
determine this set, but instead of blocking the TCLs, we constrain them using Algorithm 1.
After a group of TCLs has been selected, we set the group’s upper bound 𝐻𝑗

to the lowest
feasible value; see Section 5.4 where we make a conjecture on this value.
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Algorithm 1: Mode-Count Control for Upper Bound
In each time step,

1. Initialize Δ𝐻 = 𝐻 − 𝐻𝑡, and find the off unit in the upper margin
with shortest time-to-upper-limit. Let this unit’s index be 𝑔.

2. If unit 𝑔 is unlocked:
a) If Δ𝐻 > 0, then switch unit 𝑔 on and decrement Δ𝐻.
b) Otherwise, find a TCL that is available to counter-switch; this

TCL must be on and unlocked, must have 𝜃𝑖
𝑡 < 𝜃𝑖

L, and must not
be reserved to counter-switch with a different TCL. Let 𝑠 be the
index of the available TCL with the longest time-to-upper-limit.
Switch unit 𝑔 on and unit 𝑠 off.

3. If unit 𝑔 is locked:
a) If possible, find a TCL that is available to counter-switch. Reserve

this TCL for counter-switching with 𝑔 in the future.
b) Otherwise if Δ𝐻 > 0, decrement Δ𝐻 so that unit 𝑔 will be able

to switch in the future, as soon as it is unlocked.

4. Find the off unit with the next shortest time-to-upper limit. Let
this unit’s index be 𝑔.

5. Repeat 2)-4) until either there are no more off, unlocked units in the
upper margin, or Δ𝐻 = 0 and there are no more on TCLs available
for counter-switching.

6.5.2 Individual-Model Based Tracking Control

For the aggregator in Strategy II, we propose a control policy based on individual TCL
models. The general principal of the control policy is to switch TCLs that are closest
in terms of time to being switched internally. The proposed controller is similar to the
priority stack method of [28], but we use time to determine priority instead of temperature.
We summarize the steps of the control policy in Algorithm 2 and discuss each step in the
remainder of the section.
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Algorithm 2: Individual-Model Based Tracking Control
In each time step,

1. Calculate Δ𝑃track,𝑡, the change in power needed to track 𝑃 ∗
total,𝑡+1,

taking into account changes in power due to internal switching and,
if there is coordination, safety control.

2. Update priority stacks 𝕊on,𝑡 and 𝕊off,𝑡.

3. If Δ𝑃track,𝑡 ≥ 𝑃small

a) Find index 𝑗∗ ∈ 𝕊off,𝑡 that minimizes | ∑𝑗
𝑖=1 𝑃 𝑖

R − Δ𝑃track,𝑡|
b) Switch on unit 𝑗∗ and all units of higher priority in 𝕊off,𝑡

4. Otherwise, if Δ𝑃track,𝑡 ≤ −𝑃small

a) Find index 𝑗∗ ∈ 𝕊on,𝑡 that minimizes | ∑𝑗
𝑖=1 𝑃 𝑖

R + Δ𝑃track,𝑡|
b) Switch off unit 𝑗∗ and all units of higher priority in 𝕊on,𝑡

In step 1, we calculate the change in power that is needed to achieve tracking in the next
time step. When there is no coordination, this change in power is given by

Δ𝑃track,𝑡 = 𝑃 ∗
total,𝑡+1 − (𝑃total,𝑡 + Δ𝑃internal); (6.8)

see the end of this section for the calculation with coordination. Variable Δ𝑃internal is the
change in power that will occur in the next time step due to internal switching. We determine
Δ𝑃internal by predicting which TCLs will be switched by their internal controllers in the next
time step. For each TCL, we calculate its time-to-upper-limit 𝑡UL (as defined in Section 6.5.1)
and its time-to-lower-limit 𝑡LL (defined as the time it would take a TCL to progress from its
current temperature to its lower limit in the on direction). Both metrics can be solved for
using (6.1). A TCL is predicted to switch in the next time step if it is off and has 𝑡UL < ℎ,
or if it is on and has 𝑡LL < ℎ.

In step 2, we update the priority stacks. Priority stack 𝕊on is composed of on and unlocked
TCLs and is sorted by time-to-lower-limit; priority stack 𝕊off is composed of off and unlocked
TCLs and is sorted by time-to-upper-limit. In each time step, we update the priority stacks
according to the switching actions from the last time step and newly calculated values for
𝑡UL and 𝑡LL. The set of TCLs under control by the operator are excluded from the priority
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stacks; we assume the aggregator is able to identify this set given its TCL measurements.
In step 3, we select which TCLs to switch. To prevent excessive switching, we only

switch TCLs if the desired change in power has magnitude greater than a threshold, 𝑃small.
Parameter 𝑃small can be thought of as a tuning parameter; here we set it to 25% of the
smallest, individual power rating in the aggregation. If the threshold is reached, then we
calculate how much of the stack should switch to minimize the tracking error (see step 3a).
In this calculation, we take the sum of the TCLs’ power ratings in order of priority. The
selected TCLs are switched in step 3b.

Step 4 is similar to step 3, except Δ𝑃track is negative, so units need to be switched off
rather than on.

When there is coordination, the operator sends the aggregator Δ𝑃safety, the change in
power its safety control actions will cause in the next time step. The aggregator compensates
for the operator’s actions by subtracting Δ𝑃safety from the right-hand side of (6.8). All other
aspects of the control are the same.

6.6 Case Study

6.6.1 Benchmark Strategy

In the case study, we compare the proposed control strategies to a benchmark strategy. The
benchmark is identical to Strategy I, except the aggregator’s tracking controller is a model-
free proportional-integral (PI) controller. The PI controller computes a scalar switching
command, whose magnitude is the probability with which TCLs should switch and whose
sign is the direction with which TCLs should switch: positive (on) or negative (off ). We
use a discrete-time PI control algorithm with anti-windup (see pp. 311-312 of [2]). The
tuning parameters are a proportional gain 𝐾P and an integral gain 𝐾P/𝑇I, where 𝑇I is the
integral time constant. We set the anti-windup time constant equal to that of the integral
gain. When there is coordination, we use a look-up table for the gains, as in Strategy I.

6.6.2 Setup

We test the control strategies in simulations of a distribution network with a high-penetration
of aggregator-controlled residential air conditioners (ACs). We assume 100% of houses on
the network have ACs, and we use an outdoor temperature of 32∘C in order to capture a
peak-load hour. We compare the strategies’ performances across 10 1-hour trials, where each
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Table 6.3: Case Study: Aggregation and Network Details

# of Nodes # of ACs Baseline AC Load Non-AC Load
613 2265 4.42 MW 2.01 MW

trial uses a different segment of the RegD regulation signal from the PJM Interconnection
[68]. We scale the signal such that its amplitude is +/-33% of the ACs’ baseline power
consumption. Good control performance is marked by high accuracy in tracking and low
prevalence of network violations.

The model has two main parts: 1) the network and 2) the AC aggregation and controllers.
We use a realistic network model and GridLAB-D [63] to solve the network’s three-phase,
unbalanced power flow. The network model is of an actual system: # R1-12-47-1 in Pacific
Northwest National Lab’s (PNNL’s) database [75]. The network model includes dynamic
voltage regulation in the form of one voltage regulator and two capacitor banks. During sim-
ulations, we measure current flow through lines, apparent power flow through transformers,
and voltages at residential meters.

We make the following five modifications to improve the accuracy of the network model:
1) we increase a distribution transformer’s rating if its average load over an hour is higher
than both its original planning load and its original rating; 2) we increase the size of triplex
lines if their maximum current is larger than their rating; 3) we shift the regulation range
of capacitor banks so that voltages stay within 0.95-1.05 p.u. during nominal operation; 4)
we adjust the capacitor bank settings such that phases are individually controlled; 5) we set
the initial conditions of capacitors and regulators so that they are at steady state condition
when the test trials begin.

We model the AC aggregation and controllers in MATLAB. We determine the number
of houses served by each residential distribution transformer using a disaggregation method
developed by PNNL [64]. Each house is composed of one AC model and one constant-power
baseload. We use (6.1)-(6.3) to model each AC and generate a heterogeneous population by
randomly selecting parameter values from the uniform distributions described in Table 2.1.
A power factor of 0.97 is used for ACs and 0.95 for baseload. Table 6.3 reports the AC
aggregation’s baseline power consumption, as well as other important metrics about the
network and loads.

We tune the tracking controllers of Strategy I and the benchmark strategy for the best
average tracking performance over a set of tuning trials. When there is no coordination,
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Table 6.4: Tuning Parameters

Strategy I Benchmark
𝐾 𝐐 𝐑 𝐾P 𝑇I

1 diag(𝐼, 102𝐼) 109diag(1, 0) 3.4 × 10−4 100

diag(⋅) maps the input matrices to a block diagonal matrix

we use 50 tuning trials consisting of 25 different hours of the RegD signal and two different
blocking levels: 0% and 20%. Table 6.4 lists the resulting tuned parameters. When there
is coordination, we tune the controllers for each blocking level independently, again using
25 hours of the RegD signal. The tuned parameters have the following ranges of values:
𝐾 ∈ [1, 1.15], 𝐾P ∈ [3 × 104, 5 × 105], and 𝑇I ∈ [80, 800], where the lower and upper values
correspond to 0% and 40% blocked, respectively. Finally, in Strategy I’s aggregate load
model, we use five temperature intervals, i.e., 𝑁I = 5.

For each strategy and trial, we determine which ACs should be under safety control
through a series of preliminary simulations. Before each simulation, we select additional
ACs for safety control according to the methods proposed in Section 6.4.1. We repeat this
process until no violations occur.

6.6.3 Results

Table 6.5 shows the results of our case study, with values averaged over the 10 test trials. For
all strategies, the safety controllers are successful—no network violations occur. Without
safety control, there are an average of 2.2 over-voltage nodes and 1.2 overloaded lines, where
the averages are taken over all trials and strategies. The number of ACs under safety
control varies considerably, depending on whether blocking or mode-count control is used.
In the benchmark strategy, 13.8% of ACs are blocked, on average, in order to avoid network
violations; this number falls slightly to 10.3% when coordination is used. Similarly, in
Strategy I, 15.3% of ACs are blocked, and 15.2% with coordination. In contrast, Strategy II’s
mode-count controller requires only 0.4% of the aggregation to prevent network violations,
with and without coordination.

In terms of tracking error, Strategy II outperforms Strategy I, and both outperform the
benchmark strategy. In Table 6.5, root-mean-square (RMS) error in tracking is reported as a
percentage of the baseline power of the aggregation. Comparing against the benchmark, we
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Table 6.5: Case Study Results: Averages over 10 Trials

Strategy Coord-
ination

ACs under
Safety Control

Network
Violations

Tracking Error
(RMS)

Benchmark { No 13.8% 0 1.37%
Yes 10.3% 0 1.28%

Strategy I { No 15.3% 0 0.72%
Yes 15.2% 0 0.70%

Strategy II { No 0.4% 0 0.10%
Yes 0.4% 0 0.10%

find that the tracking error of Strategy I (0.72%, and 0.70% with coordination) is almost 50%
less than that of the benchmark (1.37%, and 1.28% with coordination), and the tracking error
of Strategy II (0.10% with and without coordination) is more than an order of magnitude
less than that of the benchmark. In all strategies, tracking performance improves with
coordination; we note that for Strategy II this improvement is not shown by Table 6.5 due
to rounding.

In Fig. 6.4, we demonstrate a few of Strategy I’s key features using time-series plots from a
selected trial. In the upper plot Strategy I’s aggregate-model based controller closely tracks
the regulation signal, despite a large percentage—in this trial, 38%—of its aggregation being
blocked. However, the tracking is not perfect: there is noticeable error in the 6th minute,
when the aggregation has saturated (i.e., not enough ACs are available to switch off due
to blocking or lockout). The middle plot of Fig. 6.4 demonstrates an attribute of Strategy
I’s state estimator: for bins that frequently receive external switching commands (i.e., bins
𝑁I and 2𝑁I), the state estimate corresponds to the number of ACs that are available to
switch (i.e., unblocked ACs), rather than the total number of ACs in the bin. This helps the
controller compensate for blocking. The lower plot of Fig. 6.4 demonstrates the effects of
blocking. In this trial, phase C of overhead line 301 experiences an over-current in minutes 7
and 8 when no ACs are blocked; this over-current is effectively reduced by blocking a portion
of the ACs on phase C.

Fig. 6.4 also highlights the main drawback of using blocking for safety control: a relatively
large percentage of ACs must be blocked to protect just a few network constraints. This is
because, unlike mode-count control, blocking does not actively constrain a group’s maximum
demand. Instead, blocking returns a group to its normal variations in demand and level of
load-diversity. Because larger groups of ACs have more diversified load, blocking is more
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Figure 6.4: Strategy I during a selected trial. The plots shows the strategy’s high tracking accu-
racy (top plot) and state-estimation performance for bin 5 (middle plot). The bottom
plot shows that blocking a large portion of TCLs can prevent over-currents, here on
overhead line #301.
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Figure 6.5: Strategy II during a selected trial. Plot (a) shows the strategy’s very high tracking
accuracy. The plots in (b) shows that mode-count control can maintain a group of 3
TCLs’ on-count to ≤ 2 (top plot) and thereby prevent under-voltages (bottom plot),
here for residential meter # 469.

effective with larger group sizes.
In Fig. 6.5, we demonstrate a few of Strategy II’s key features using the same selected

trial. The top plot shows the high-accuracy tracking of Strategy II’s individual-model based
controller. Compared to Strategy I, Strategy II has very few ACs under safety control—only
0.4% in this trial. Strategy II also results in fewer switching actions than Strategy I, and
therefore, fewer locked ACs. Both of these features make Strategy II less prone to saturation,
as can be seen by its accurate tracking in the 6th minute. The middle and lower plots of
Fig. 6.5 demonstrate Strategy II’s mode-count controller. Without mode-count control, an
under-voltage occurs at meter 469 between minutes 15-18. With mode-count control, the
three AC’s connected to meter 469 are constrained to have an on-count ≤ 2, and this prevents
the under-voltage from occurring.

Overall, our results suggest that when a control strategy has more access to information
it has better tracking performance. Notably, this increased information can come in sev-
eral forms: estimation, coordination between aggregator and operator, communication with
TCLs, or detailed modeling. Strategy I uses state estimation and modeling and thereby
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has better tracking performance than the benchmark strategy. All three strategies perform
better when there is coordination between the operator and aggregator. Finally, Strategy II
utilizes more detailed models and more communication than the other two strategies, and
has the best tracking performance.

6.7 Chapter Conclusion
We have proposed two strategies for network-safe load control; in the strategies, a third-party
aggregator controls TCLs to provide frequency regulation, while the operator overrides the
aggregator’s control when necessary to ensure network safety. The two control strategies
differ markedly in terms of performance and ease of implementation. Strategy II substan-
tially outperforms Strategy I. Its safety controller is able to prevent network violations using
less than 3% of the ACs used by Strategy I. This reduction in the number of safety ACs,
in combination with a more information-rich tracking controller, translates into improved
tracking performance for Strategy II. However, Strategy II would likely be more difficult
to implement. Compared with Strategy I, it is more computationally complex—using in-
dividual AC models rather than an aggregate model—and requires more communication
infrastructure. Choosing between these alternative control strategies will require balancing
the costs of implementing the more intensive strategy against the benefits of its improved
performance.
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Chapter 7

Safety Constraints

This chapter is largely based on a manuscript7 that has been submitted to a conference.

7.1 Chapter Introduction
The objective of this chapter is to develop a method that ensures a third-party load ag-
gregator’s control actions are safe for distribution networks without requiring the operator
and aggregator to share private information. We assume that, to maintain a competitive
advantage, third-party aggregators prefer to keep their control algorithms private. Distribu-
tion operators protect the privacy of their consumers by keeping network models and load
measurements private.

Most prior research on aggregate load control for wholesale services either does not consider
distribution network safety or does not consider the privacy needs of third-party aggregators.
Many proposed strategies are “grid-agnostic” [17]; these strategies ignore network constraints
and cannot ensure safe distribution operation (e.g., [3, 52]). A few “grid-safe” strategies have
been developed that ensure safe distribution operation. In [93], an AC-OPF is solved to
safely provide load frequency control with an aggregation of loads. In [17], a gradient-based
algorithm is used to safely control distribution resources to provide frequency regulation.
However, the strategies in [93] and [17] do not enable a third-party aggregator to use its own
private control algorithm.

A recent strategy proposed in [56] is both grid-safe and suitable for a third-party aggrega-
tor. The proposed method certifies whether a distribution network will operate safely under

7S.C. Ross and J.L. Mathieu. “A method for ensuring a load aggregator’s power deviations are safe for
distribution networks”. (Under review).
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Figure 7.1: Control architecture in which the operator and aggregator coordinate using the safety
constraint. (Feedback from the aggregation is not shown.)

any set of possible power injections. If a network is certified safe, then any control actions
by a third-party aggregator will be safe. However, this approach leaves open the problem
for networks that cannot be certified as safe.

In this chapter, we design and compute an explicit “safety constraint” that ensures safe
distribution operation by limiting the size of the power deviations an aggregator can cause
across the network, where deviations are with respect to a nominal operating point. The
design of the safety constraint is conservative and ensures that the size of the aggregator’s
deviations are always smaller than the size of the smallest unsafe deviation for the network’s
operating point. We compute the safety constraint’s limit by solving a set of optimization
problems; each problem is for a particular bus in the network and finds the minimum sized
vector of deviations that causes an unsafe voltage at that bus. The minimum size of these
minimum sized vectors is the safety constraint’s limit.

Fig. 7.1 shows a control architecture in which the operator and aggregator coordinate
using the safety constraint. This control architecture protects the privacy of the operator
and aggregator: The operator computes the safety constraint’s limit given its private net-
work information and measurements, and sends the limit—which reveals little about the
network—to the aggregator; the aggregator incorporates the constraint into its private con-
trol algorithm, and ensures the resulting regulation-tracking-power-deviations satisfy the
constraint.

The main contributions of this chapter are as follows. First, we propose a method of con-
straining a third-party aggregator—without prescribing a particular control algorithm—such
that the aggregator’s control actions are safe for distribution networks. Second, through anal-
ysis and simulation, we compare the conservativeness of two versions of the safety constraint:
one that measures the size of deviations with a 2-norm, and the other with a 1-norm. Third,
we propose and prove two propositions that enable a substantial reduction in the number of
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optimization problems that must be solved to compute a safety constraint and therefore a
reduction in overall computation time.

7.2 Methods

7.2.1 Designing the Safety Constraint

There are four desired criteria for the safety constraint: 1) it should ensure the aggregator’s
actions will not cause unsafe distribution operation, 2) it should not overly restrict the
aggregator’s control actions, 3) an operator should be able to calculate the constraint without
the aggregator’s private information, and 4) the aggregator should be able to adhere to the
constraint without the operator’s private information.

We design the safety constraint to prioritize safety (criteria 1) over the aggregator’s range
of control (criteria 2). The constraint takes the general form

||𝚫𝐏c|| < ||𝜶||, (7.1)

where || ⋅ || represents the 1-norm or 2-norm, variable 𝚫𝐏c is the vector of controllable
loads’ power deviations at each bus, and parameter 𝜶 is the minimum-sized vector of power
deviations that causes unsafe operation somewhere on the network. For brevity, we refer to
𝜶 as the minimum unsafe deviation. The controllable loads’ power deviations are relative
to the power the aggregation would have consumed in the absence of control, referred to as
the aggregation’s “baseline”.

The safety constraint (7.1) ensures network safety by the definition of 𝜶. The constraint
is conservative; that is to say, some safe values of 𝚫𝐏c will not satisfy the constraint. The
benefit of the constraint is that if we are able to compute the minimum unsafe deviation 𝜶,
then, by definition, the constraint will guarantee safe distribution operation.

7.2.2 Computing the Safety Constraint’s Limit

Overview

To determine the safety constraint’s limit, we must find the minimum unsafe deviation for
a given network at a nominal operating point. We reduce the scope of the problem by
considering only the most likely modes of unsafe operation on a network which, for this
application, are out-of-range voltage magnitudes [73]. The voltage constraint for bus 𝑖 is
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Figure 7.2: Process for computing the safety constraint’s limit. Variable 𝐷𝑚 is the size of the
minimum unsafe deviation that causes an under-voltage at bus 𝑚, and 𝐷𝑚+𝑁 is the
size of the minimum unsafe deviation that causes an over-voltage at bus 𝑚.

𝑉 ≤ 𝑉𝑖 ≤ 𝑉 , where 𝑉𝑖 is the voltage magnitude, 𝑉 = 1.05 p.u., and 𝑉 = 0.95 p.u. Extending
our methods to include all network constraints (e.g., over-currents on lines) is future work.

Fig. 7.2 shows the three main steps of computing the size of the minimum unsafe deviation,
referred to as 𝐷min. In step 1, we find candidate values for 𝐷min by solving two optimization
problems for each bus: the first searches for the minimum deviation that causes an under-
voltage at the selected bus; the second does the same but for an over-voltage at the selected
bus. In step 2, we set 𝐷min equal to the minimum of the candidate values. In step 3, we set
the safety constraint’s limit (the right hand side of (7.1)) to 𝐷min.

The remainder of Section 7.2.2 proceeds as follows. First, we define the models that will
be used in the optimization problems. Then we formulate the optimization problems used
to compute the 2-norm safety constraint’s limit. Finally, we formulate the problems used to
compute the 1-norm safety constraint’s limit.

Modeling

We model an 𝑁 -bus distribution network with aggregator-controlled loads at each bus. We
use a single-phase equivalent line model, which assumes balanced power flow and symmetric
lines. The network’s 𝑁 ×𝑁 conductance and susceptance matrices are denoted as 𝐆 and 𝐁.
We aggregate loads at the bus-level and use a constant power model: each bus has real and
reactive power consumption 𝑃𝑖 and 𝑄𝑖, respectively. We separate a bus’s power consump-
tion into two components: a controllable component (𝑃 c

𝑖 , 𝑄c
𝑖) that represents aggregator-

controlled loads, and an uncontrollable component (𝑃 uc
𝑖 , 𝑄uc

𝑖 ) that represents all other loads.
Thus, we have that 𝑃𝑖 = 𝑃 c

𝑖 + 𝑃 uc
𝑖 and 𝑄𝑖 = 𝑄c

𝑖 + 𝑄uc
𝑖 .

We model the aggregator’s control actions in terms of bus-level power deviations. When
providing balancing, an aggregator controls the aggregation’s deviation from baseline such
that it tracks a balancing signal. In terms of bus-level power deviations, the aggregator
controls loads such that sum of real-power deviations across all buses, ∑𝑁

𝑖=1 Δ𝑃 c
𝑖 (𝑘), tracks
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the balancing signal with sufficient accuracy in every time step 𝑘. The variable Δ𝑃 c
𝑖 is the

deviation in 𝑃 c
𝑖 from the bus’s baseline value 𝑃 c

𝑖 (i.e., Δ𝑃 c
𝑖 (𝑘) = 𝑃 c(𝑘) − 𝑃 c

𝑖 ). We assume
the controllable loads have a constant power factor 𝜁𝑖, such that any deviation in real power
Δ𝑃 c

𝑖 is accompanied by a deviation in reactive power given by Δ𝑄c
𝑖 = Δ𝑃 𝑐

𝑖 tan(arccos 𝜁𝑖).
Finally, the deviations at each bus are naturally constrained by the physical capacities of
the loads at that bus; this constraint is given by

𝑃 c
𝑖 ≤ (𝑃 c

𝑖 + Δ𝑃 c
𝑖 ) ≤ 𝑃 c

𝑖 , (7.2)

where 𝑃 c
𝑖 and 𝑃 c

𝑖 reflect the loads’ aggregate physical capacity.

2-Norm Safety Constraint

In step 1, we find the minimum-sized deviation (as measured by the squared 2-norm) that
causes an under-voltage at bus 𝑚 by solving the following optimization problem:

minimize
𝑁

∑
𝑖=1

(Δ𝑃 c
𝑖 )2 (7.3a)

subject to
𝑉𝑚 ≤ 𝑉 , (7.3b)
𝑃 c

𝑖 ≤ (𝑃 c
𝑖 + Δ𝑃 c

𝑖 ) ≤ 𝑃 c
𝑖 ∀𝑖 ∈ 𝒩, (7.3c)

Δ𝑄c
𝑖 = 𝛽𝑖Δ𝑃 𝑐

𝑖 ∀𝑖 ∈ 𝒩, (7.3d)
𝑃𝑖 = Δ𝑃 c

𝑖 + 𝑃 c
𝑖 + 𝑃 uc

𝑖 ∀𝑖 ∈ 𝒩, (7.3e)
𝑄𝑖 = Δ𝑄c

𝑖 + 𝑄c
𝑖 + 𝑄uc

𝑖 ∀𝑖 ∈ 𝒩, (7.3f)

𝑃𝑖 = 𝑉𝑖
𝑁−1
∑
𝑘=0

𝑉𝑘(𝐺𝑖𝑘 cos 𝜙𝑖𝑘 + 𝐵𝑖𝑘 sin 𝜙𝑖𝑘) ∀𝑖 ∈ 𝒩, (7.3g)

𝑄𝑖 = 𝑉𝑖
𝑁−1
∑
𝑘=0

𝑉𝑘(𝐺𝑖𝑘 sin 𝜙𝑖𝑘 − 𝐵𝑖𝑘 cos 𝜙𝑖𝑘) ∀𝑖 ∈ 𝒩, (7.3h)

𝜙0 = 0, (7.3i)
𝑉0 = 𝑉set. (7.3j)

The optimal objective value for bus 𝑚’s is denoted 𝐷𝑚. The set 𝒩 is the set of all buses in
the network. The decision variables in this problem are Δ𝑃 c

𝑖 , Δ𝑄c
𝑖 , 𝑃𝑖, 𝑄𝑖, 𝑉𝑖 ∀ 𝑖 ∈ 𝒩 and

𝜙𝑖𝑘 ∀ 𝑖, 𝑘 ∈ 𝒩, where 𝜙𝑖𝑘 is the voltage angle difference between buses 𝑖 and 𝑘.
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The objective function (7.3a) and constraint (7.3b) are opposing forces on the size of 𝚫𝐏c:
the objective function minimizes the size of the deviations, but the deviations must be large
enough such that an under-voltage occurs at bus 𝑚. A deviation in power is necessary to
create an under-voltage at bus 𝑚 because we assume that the network’s voltages are within
the operational range [𝑉 , 𝑉 ] at the nominal operating point.

Constraints (7.3c) and (7.3d) model the controllable loads. Constraint (7.3c) restricts
power deviations at each bus according to the controllable loads’ physical capacities; the
baseline value 𝑃 c

𝑖 is assumed known. Constraint (7.3d) enforces a constant power factor for
controllable loads, where 𝛽𝑖 = tan(arccos 𝜁𝑖).

Constraints (7.3e)-(7.3f) sum the controllable and uncontrollable components of the power
consumption at each bus. The uncontrollable components 𝑃 uc

𝑖 and 𝑄uc
𝑖 are assumed known.

Constraints (7.3g)-(7.3j) model the power flow in the network and define the slack bus.
Constraints (7.3g)-(7.3h) are the standard power flow equations, where the real and reactive
power consumption at bus 𝑖 must be balanced by the sum of all real and reactive power
flows into bus 𝑖. Constraint (7.3j) sets the substation bus as the reference for voltage angles.
Constraint (7.3j) fixes the substation bus’s voltage magnitude as a constant; we assume the
value of parameter 𝑉set is set by the distribution operator (e.g., 𝑉set = 1.0 p.u.).

We also solve an over-voltage problem for each bus 𝑚 in the network. The over-voltage
problem is given by

minimize
𝑁

∑
𝑖=1

(Δ𝑃 c
𝑖 )2 (7.4a)

subject to constraints (7.3c)-(7.3j) and
𝑉𝑚 ≥ 𝑉 . (7.4b)

The optimal objective value for bus 𝑚’s over-voltage problem is denoted 𝐷𝑁+𝑚.
The optimization problems (7.3) and (7.4) are non-convex because of the non-linear con-

straints (7.3g)-(7.3h) that model the network’s AC power flow. In this chapter, we use a
non-linear solver to solve (7.3) and (7.4); the solver finds locally optimal solutions, so global
optimality is not guaranteed. In future work, we plan to apply a convex relaxation to the
AC power flow equations in order to identify a lower bound on the globally optimal objective
value of the original problem; this lower bound will make 𝐷𝑚 conservative but will ensure
no smaller-sized unsafe deviation exists.

In step 2, we find 𝐷min the size of the minimum of the minimum unsafe deviations found
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in step 1. We simply take the minimum across the set of optimal objective values:

𝐷min = min
𝑚∈ℳ

𝐷𝑚, (7.5)

where ℳ is the set of problems for which a feasible solution was found.
In step 3, we set the limit of the 2-norm safety constraint to 𝐷min. The constraint is then

given by
𝑁

∑
𝑖=1

(Δ𝑃 c
𝑖 )2 < 𝐷min. (7.6)

1-Norm Safety Constraint

We use the same general 3-step method to compute the limit of the 1-norm safety constraint.
In step 1, the optimization problem formulation is identical to (7.3) except the objective
function is in terms of the 1-norm. The under-voltage problem is given by

minimize
𝑁

∑
𝑖=1

∣Δ𝑃 c
𝑖 ∣

subject to constraints (7.3b) − (7.3j).

The optimal objective values are denoted by 𝐹𝑚 for the under-voltage problems and 𝐹𝑁+𝑚
for the over-voltage problems. To improve solvability, we reformulate the absolute value
terms in the objective function such that the objective function is linear (see chapter IX of
[55] for details). In step 2, we find 𝐹 min the minimum of the minimum unsafe deviations
found in step 1. We calculate 𝐹 min as 𝐹 min = min𝑚∈ℳ 𝐹𝑚, where ℳ is the set of problems
for which a feasible solution was found. Finally, in step 3, we define the 1-norm safety
constraint as

𝑁
∑
𝑖=1

∣Δ𝑃 c
𝑖 ∣ < 𝐹 min. (7.8)

7.2.3 Conservativeness of 1 and 2-Norm Safety Constraints

The less conservative of the two constraints should be used because it will allow the aggrega-
tor more feasible control actions. However, determining which constraint is less conservative
can be a challenge. The conservativeness of a constraint cannot be determined a priori
because it depends on the minimum unsafe deviation that has been found. Fig. 7.3 demon-
strates this point with illustrations of the 1-norm and 2-norm approximations of the set of

109



∆𝑃1
c

∆𝑃2
c

∆𝑃1
c

∆𝑃2
cActual safe set

2-norm approx. 

1-norm approx. 

(∆𝑃1
c)2 + (∆𝑃2

c)2 = (𝐷min)2

|∆𝑃1
c| + |∆𝑃2

c| = 𝐹min

Figure 7.3: Approximations of the set of safe deviations given by the 1-norm and 2-norm con-
straints. Left: neither the 2-norm or 1-norm approximation is uniformly less conser-
vative than the other. Right: the 2-norm approximation is uniformly less conservative.

safe power deviations for two different operating points. (Note, for illustration purposes,
we consider deviations in only 2 dimensions.) On the right side of Fig. 7.3, both methods
have found the same minimum unsafe deviation; this is the point where the boundaries of
the approximations intersect with the boundary of the actual set. Because the minimum
unsafe deviation lies on the x-axis, the 2-norm constraint is uniformly less conservative than
the 1-norm constraint; in this case, the 2-norm constrain should be used since it allows the
aggregator more feasible control actions. On the left side of Fig. 7.3, the 1-norm and 2-norm
methods have found different minimum unsafe deviation points, and neither constraint is
uniformly less conservative than the other.

For cases in which neither constraint is uniformly less conservative than the other, we
propose choosing the constraint that allows the larger maximum balancing capacity. In
general, an aggregator is compensated for the size of its capacity and would prefer the safety
constraint that maximizes its balancing capacity. We find 𝐶II, the maximum balancing
capacity that the 2-norm safety constraint will allow, by maximizing the capacity ∑𝑁

𝑖=1 Δ𝑃 c
𝑖

subject to (7.6). We find that the solution must have all deviations equal (i.e., Δ𝑃 c
𝑖 =

Δ𝑃 c
𝑗 ∀ (𝑖, 𝑗) ∈ 𝒩). Setting both sides of (7.6) equal and all deviations equal gives us the

following result
𝐶II = 𝑁√𝐷min−/𝑁, (7.9)

where 𝐷min− is just slightly less than 𝐷min. The value of 𝐶I, the maximum balancing capacity
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𝑉up∠𝜙up 𝑉dn∠𝜙dn
𝑍∠𝜙𝑍 Ԧ𝐼

𝑆eqv∠𝜙𝑆

Figure 7.4: Two-bus equivalent system. Every pair of adjacent buses in a network can be repre-
sented by this two bus system.

that the 1-norm constraint will allow, is clear upon inspection and is given by

𝐶I = 𝐹 min−, (7.10)

where 𝐹 min− is just slightly less than 𝐹 min. To maximize balancing capacity, if 𝐶II > 𝐶I,
the 2-norm constraint should be used; otherwise, the 1-norm constraint should be used.

7.2.4 Reducing Problem Size

Solving 2𝑁 optimization problems to compute a safety constraint may be too computation-
ally intensive for real-time operations. We propose reducing computation time by reducing
the number of buses for which an optimization problem must be solved. We can eliminate
a problem if we can guarantee it is infeasible or its solution will not have the minimum
objective value of the full set of problems.

We propose two conditions—one for the under-voltage problem and one for over-voltage
problem—that if satisfied enable the problem to be eliminated. To derive these conditions, we
find the loading conditions that guarantee two adjacent buses in a radial network, referred to
as a “bus-pair”, have decreasing voltage magnitudes in the downstream direction (i.e., away
from the substation). We represent a generic bus-pair with the two-bus equivalent system
in Fig. 7.4. (Note we use vector notation 𝑋⃗ and polar notation 𝑋∠𝜙𝑋 interchangeably to
represent a vector in the complex plane.) In Fig. 7.4, ⃗𝑆eqv is the apparent power of the
equivalent load at the downstream bus and is equal to the sum of all loads connected to
and downstream of the bus in the actual network, as well as their associated line-losses.
Variables ⃗𝑉up and ⃗𝑉dn are the voltages at the upstream and downstream buses, respectively.
Parameter ⃗𝑍 is the line’s impedance, and ⃗𝐼 is the line’s current flow.

We derive the loading conditions that ensure 𝑉dn ≤ 𝑉up as follows. By Ohm’s law we have
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that ⃗𝑉dn = ⃗𝑉up − ⃗𝐼 ⃗𝑍. After a few simple operations, we transform this expression into

𝑉 2
dn = 𝑉dn𝑉up cos(𝜙up − 𝜙dn) − 𝑍𝑆eqv cos(𝜙Z − 𝜙S) (7.11a)
0 = 𝑉dn𝑉up sin(𝜙up − 𝜙dn) − 𝑍𝑆eqv sin(𝜙Z − 𝜙S), (7.11b)

where the voltage angle of the downstream bus has been defined as the reference angle.
Next, we make the small angle approximation: cos(𝜙up − 𝜙dn) ≈ 1, which is suitable for two
adjacent buses on a distribution network. With this approximation, (7.11a) simplifies to

𝑉 2
dn = 𝑉dn𝑉up − 𝑍𝑆eqv cos(𝜙Z − 𝜙S). (7.12)

If the last term in (7.12) satisfies

𝑍𝑆eqv cos(𝜙Z − 𝜙S) ≥ 0, (7.13)

then 𝑉dn𝑉up − 𝑍𝑆eqv cos(𝜙Z − 𝜙S) ≤ 𝑉dn𝑉up. Substituting (7.12) into the latter inequality,
we have 𝑉 2

dn ≤ 𝑉dn𝑉up and thus 𝑉dn ≤ 𝑉up, since 𝑉dn is positive by definition.
We have derived the following loading condition: if (7.13) is satisfied, then 𝑉dn ≤ 𝑉up.

Since the magnitudes 𝑆eqv and 𝑍 are positive by definition, (7.13) is satisfied if cos(𝜙Z−𝜙S) ≥
0. Thus, the loading condition simplifies to: if

− 𝜋
2 < 𝜙Z − 𝜙S < 𝜋

2 , (7.14)

then 𝑉dn ≤ 𝑉up.
We state the first of two propositions for reducing the overall problem size:

Proposition 1: If a bus-pair satisfies (7.14) for all possible operating points,
then the under-voltage problem for the upstream bus in the pair can be elim-
inated from the set of problems that are necessary to solve.

The proof follows. Let us assume (7.14) is satisfied for a given bus-pair for all operating
points. According to the loading condition, we have 𝑉dn ≤ 𝑉up for all operating points.
Thus 𝑉dn ≤ 𝑉up for the optimal solution of the under-voltage problem for the upstream
bus. This solution is also a feasible solution for the downstream bus’s under-voltage problem
because 𝑉dn ≤ 𝑉up ≤ 𝑉 , which satisfies constraint (7.3b). Thus the optimal objective
value 𝐷up is a candidate value for 𝐷dn and 𝐷up must be greater than or equal to 𝐷dn. If
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𝐷up ≥ 𝐷dn, then the upstream bus’s optimal objective value is not a candidate for 𝐷min and
the under-voltage problem for the upstream bus can be eliminated.

Proposition 2: If all bus-pairs on the path between bus 𝑚 and the substation
satisfy (7.14) for all possible operating points, then the over-voltage problem
for bus 𝑚 can be eliminated from the set of problems that are necessary to
solve.

The proof follows. Let us assume (7.14) is satisfied for all bus-pairs between bus 𝑚 and
the substation. The voltage magnitude is necessarily non-increasing along this path since
𝑉dn ≤ 𝑉up for all of the bus-pairs. Thus the voltage magnitude of bus 𝑚 must be less than
or equal to that of the substation. Since the voltage at the substation is regulated within
operational limits (i.e., 𝑉 ≤ 𝑉0 ≤ 𝑉 ), bus 𝑚’s voltage magnitude cannot be greater than 𝑉 .
Thus constraint (7.4b) cannot be satisfied and the over-voltage problem is infeasible for bus
𝑚. Because the problem is infeasible, it can be eliminated.

7.3 Case Study

7.3.1 Study Setup

In the case study, we use a 56-bus distribution feeder model that is a modified version of
the IEEE 123-bus test feeder. The 56-bus model has balanced loads and symmetric lines,
enabling a single-phase equivalent model. Full details of the model are provided in [5].
Fig. 7.5 shows the network’s radial topology and its range of voltage magnitudes at the
nominal operating point. In most of the case study, we assume there are no capacitor banks
on the network and set the substation voltage to 1.02 p.u., which ensures that there are no
under-voltage violations at the nominal operating point. We also assume there are no voltage
regulators except at the substation. Extending the optimization problem (7.3) to include
in-line voltage regulators is future work. We solve the proposed optimization problems using
the non-linear solver Ipopt. We initialize the solver at the network’s nominal operating point.

We use the network’s nominal loading data to determine the operating points for our
model’s uncontrollable and controllable loads. At each bus, we assume 50% of the nominal
real-power consumption is controllable and set 𝑃 c

𝑖 equal to it. We assume the controllable
load’s power factor 𝜁𝑖 is 0.95 lagging for all buses. At each bus, the remaining nominal power
consumption is assigned to the uncontrollable load (𝑃 uc

𝑖 , 𝑄uc
𝑖 ). When the controllable loads

are at baseline, the network’s loading matches that of the nominal data. Finally, we assume
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Figure 7.5: 56-Bus distribution network used in case study. Voltage magnitudes are shown for
the nominal operating point.

the physical capacity of the controllable loads at each bus is ±80% of their baseline power
(i.e., 𝑃 c

𝑖 = 0.2𝑃 c
𝑖 and 𝑃 c

𝑖 = 1.8𝑃 c
𝑖 ).

7.3.2 Demonstration of 2-Norm Method

We demonstrate step 1 of the 2-norm method by showing the optimal solution of the over-
voltage optimization problems for a particular bus. The top plot of Fig. 7.6 shows the
network’s voltage magnitudes for the optimal solution to the under-voltage, 2-norm problem
for bus 20. Voltages at and around bus 20 are close to or under the lower voltage limit, as
indicated by dark red. Fig. 7.6 (middle) shows the exact voltage magnitudes at each bus.
At its nominal operating point, bus 20’s voltage is 0.9571 p.u. and decreases to 0.9500 p.u
for the optimal solution. Because bus 20 is not a terminal bus, under-voltages also occur
at downstream buses 21-26, as well as at adjacent buses 27-32. Fig. 7.6 (bottom) shows
the change in real power at each bus with respect to nominal for this solution. Power
consumption increases at all load-buses: the largest increases occur at or downstream of bus
20, and the smallest increases occur close to the substation (buses 1-4). This pattern shows
which buses’ power deviations have the most influence over bus 20’s voltage, with larger
deviations indicating larger influence.

We demonstrate step 2 of the method by selecting the bus/problem that has the minimum
optimal objective value. Fig. 7.7 shows the optimal objective value for each under-voltage
problem for the network. Problem 32 has the minimum objective value, and corresponds
to a terminal bus far from the substation. For buses close to the substation, no feasible
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Figure 7.6: Solution to the under-voltage, 2-norm problem for bus 20. Top and middle plots: the
voltage at bus 20 is exactly at the lower limit (0.95 p.u.); voltages downstream of
bus 20 are below the limit. Bottom plot: Each load-bus contributes some change in
real power to achieve the under-voltage at bus 20; change is relative to the nominal
operating point.
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Figure 7.7: Optimal objective values for all 2-norm, under-voltage problems. Minimum value is
at bus 32. No feasible solutions are found for buses closer to the substation, i.e., buses
1-10 and 40-55 (see Fig. 7.5 for numbering).

solution is found, and likely none exists, because of the controllable loads’ physical capacity
limits (see (7.3c)). In addition, no feasible solutions were found for any of the over-voltage
problems, which is unsurprising since there are no positive power injections in the network
(e.g., from capacitor banks or photovoltaic systems). For all of the optimal solutions found,
that of bus 32 has the minimum optimal objective value, so we set 𝐷min = 𝐷32, which in
this case is 0.0013 MW2. After 𝐷min is known, the last step of the method is simply to set
the limit of the 2-norm safety constraint such that ∑𝑁

𝑖=1 (Δ𝑃 c
𝑖 )2 < 𝐷min.

7.3.3 Comparing and Testing the 1-Norm and 2-Norm Methods

We compare the 1-norm and 2-norm methods for the under-voltage optimization problems.
First, we consider an example problem, again for the under-voltage at bus 20. Fig. 7.8 shows
the percent change in real power for both the 1-norm and 2-norm optimal solutions with
respect to the nominal operating point. As the figure shows, the two solutions are strikingly
different. The solutions differ because of the methods’ different objective functions. The
2-norm objective function penalizes an incremental increase to a large deviation more than
to a small deviation; this preference for small deviations causes the 2-norm problem to
distribute the deviations across all load-buses. In contrast, the 1-norm objective function
penalizes all incremental increases equally; this causes the 1-norm problem to concentrate
the deviations among buses with the largest influence over the constrained bus’s voltage.

Next, we compare the maximum balancing capacities that the two methods allow. For
both methods, the problem for bus 32 has the minimum optimal objective value; the values
are 𝐷min = 0.0013 MW2 and 𝐹 min = 0.163 MW. Using (7.9) and (7.10), we find the
maximum balancing capacities 𝐶II = 0.260 MW and 𝐶I = 0.163 MW, for the 2-norm and 1-
norm methods, respectively. Thus, for this operating point, the 2-norm method is preferred
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Figure 7.8: Comparison of 1-norm and 2-norm solutions to the under-voltage problem for bus 20.
The 1-norm and 2-norm methods find different optimal solutions. Note the physical
capacity limit of controllable loads is 80% of their baseline for all buses.

because it allows for a larger balancing capacity.
We numerically test the 1-norm and 2-norm safety constraints with the optimal solutions

of the other method. The 2-norm safety constraint should exclude the minimum unsafe
deviations found by the 1-norm problem, and the 1-norm safety constraint should exclude
those found by the 2-norm problem. Fig. 7.9 shows the results of these tests. The y-axis
values are calculated by evaluating the objective function of the method being tested at the
optimal solutions of the other method. As shown in the top plot of Fig. 7.9, the 1-norm
safety constraint passes its test: all of the 2-norm method’s minimum unsafe deviations lie
outside of the safe region defined by the 1-norm safety constraint. Similarly, as shown in the
bottom plot of Fig. 7.9, the 2-norm safety constraint passes its test.

7.3.4 Reducing Problem Size

We apply Propositions 1 and 2 to reduce the problem size for the 56-bus network, as well
as a modified version of the network. The modified network has capacitor banks located at
buses 26, 28, 29, and 30 that cause a voltage rise along the line from bus 19 to 26 (see [5] for
details). Because of this voltage rise, fewer problems for the modified network should qualify
for elimination. For Propositions 1 and 2 to hold for a given bus-pair, constraint (7.14)
must be satisfied by both the minimum and maximum possible values of 𝜙𝑆 for the bus-pair.
In this analysis, we evaluate (7.14) at two extreme operating points that approximate the
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(7.14). Fewer optimization problems can be eliminated when this condition is not
met.
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operating points that minimize and maximize 𝜙𝑆. These extreme points are: 1) “maximum
loading” in which the controllable loads consume maximum power and 2) “minimum loading”
in which they consume minimum power. Finding the actual operating points with maximum
and minimum 𝜙𝑆 is future work.

Fig. 7.10 shows which bus-pairs satisfy (7.14) and indicates which problems can be elimi-
nated. points that lie above the 𝜋/2 limit indicate bus-pairs that do not satisfy the constraint.
In the original network, all of the bus-pairs satisfy the constraint. By Proposition 1, we can
eliminate the under-voltage problems for the upstream bus of each of these bus-pairs; after
this elimination, only under-voltage problems for the network’s 11 terminal buses remain.
By Proposition 2, we can eliminate all over-voltage problems because voltages are always
decreasing. In the modified network, eight bus-pairs do not satisfy (7.14). As expected,
these buses are where the voltage rise occurs due to capacitor banks. By Proposition 1,
we can eliminate under-voltage problems for all non-terminal buses except for the identified
eight upstream buses; after the allowed eliminations, under-voltage problems for 11 terminal
buses and 8 non-terminal buses remain. To apply Proposition 2 to the modified network,
we identify bus 18 as the downstream bus closest to the substation for which (7.14) is not
satisfied. By Proposition 2, all buses—except for bus 18 and those downstream of 18—can
be eliminated. Thus, the over-voltage problem must be solved for 15 buses.

Using the proposed reduction techniques, we are able to drastically reduce the size of
the overall problem. For the original network, the number of total optimization problems
decreased from 104 to 11 for the original network and from 104 to 34 for the modified
network.

7.4 Chapter Conclusion
We have proposed a method for constraining a load aggregator’s control actions to ensure
the safe operation of the distribution network. The proposed safety constraint can be com-
puted by a distribution operator and adhered to by a third-party aggregator with minimal
sharing of private information between the two entities. The safety constraint is, by design,
conservative. We compared two versions of the constraint to determine if one was uniformly
less conservative than the other. Although we were unable to draw general conclusions, in a
case study we found that the 2-norm constraint allowed for a larger balancing capacity than
the 1-norm constraint. To reduce the time it takes to compute the safety constraint, we
proposed two conditions under which optimization problems can be eliminated from the set
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of necessary problems. In the case study, we found this reduction technique to be very effec-
tive. Because the method’s conservatism and computational intensity is network dependent,
some networks will be better suited for the safety-constraint method than others.
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Chapter 8

Conclusion

Load flexibility will be an essential component of reliable and cost-effective operation of
future, low-carbon power systems. This dissertation has developed methods that enable
the aggregation and control of loads at a large scale, while avoiding negative effects on
the distribution network. We conclude by summarizing the dissertation’s key findings and
methodological contributions as well as avenues for future research.

8.1 Summary of Key Methods and Results
In Chapter 2, we designed two methods for updating an aggregate TCL model to account
for changing conditions and biased disturbances that affect TCL behavior. One method
uses state measurements and observed transitions between states to update the model; the
other method uses output tracking error. With the state-based update, the proposed control
system outperformed the benchmark control systems in all tests, demonstrating that state-
based updating is a powerful method for adapting to changing load behaviors. Output-
based updating is also promising, but because the update depends on and also influences
the controller’s tracking performance, the method requires additional testing and analysis to
determine if it is stable in all possible scenarios.

In Chapter 3, we conducted a simulation study of realistic distribution networks with
a high penetration of loads controlled to provide regulation. The study’s results indicate
that load-based regulation causes network voltages to vary more and network transformers
to age less rapidly on average. Notably, the networks did not experience an increase in
constraint violations when subject to load control, suggesting that many networks may be
capable of hosting aggregations at a large scale without the use of network-safe control
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techniques. However, in a separate study of a test network with a high penetration of EVs,
load control caused the prevalence of voltage violations to increase from 0.17% of nodes to
0.84%. Thus, as EV and PV adoption increases, coordinating load control with distribution
network operation will become more important.

In Chapter 4, we proposed a network-safe load control strategy in which an operator
blocks TCLs when necessary to ensure network safety. We designed a tracking controller
that successfully estimates and compensates for the number of loads that are blocked. Here,
the key innovation was extending the Markov chain model to include blocked and unblocked
states. The proposed controller outperformed a benchmark controller in 11 of 12 scenarios
with different blocking and feedback levels. Results indicate that the proposed controller is
more advantageous in scenarios with high blocking levels and when feedback to the aggregator
about blocking is minimal.

In Chapter 5, we applied the mode-count control algorithm developed in [62] to groups
of TCLs to manage at-risk network constraints. We proposed setting a group’s upper and
lower on-count limits equal to each other to reduce the variability of the group’s power
consumption. In a case study, this approach successfully reduced voltage deviations at
the end of a long distribution line, demonstrating the method’s ability to manage network
constraints. One drawback of the algorithm is that it can cause TCLs to cycle on and off
rapidly. To address this issue, we designed a mode-count algorithm to satisfy specified TCL
cycling constraints. We proposed new conditions for the feasibility of upper and lower on-
count limits given the new algorithm. In a simulation test, the new algorithm successfully
controlled 1000 TCLs with cycling constraints over the course of 12 hours to satisfy an upper
on-count limit; the original algorithm failed the same test, demonstrating the usefulness of
the new algorithm.

In Chapter 6, we proposed and compared two network-safe control strategies for TCLs
with cycling constraints. In the first strategy, the aggregator provides tracking with an
aggregate-model based controller, and the operator intervenes by blocking particular TCLs
when necessary for network safety; in the second strategy, the aggregator uses an individual-
model based controller, and the operator uses the new mode-count control algorithm. In
a case study, the second strategy achieved a root-mean-square tracking error of 0.10% of
the TCLs’ baseline power consumption while removing fewer than 1% of TCLs from the
aggregator’s control; the first strategy achieved a 0.70% tracking error while removing ap-
proximately 15% of TCLs. These results indicate that mode-count control is a more effec-
tive safety intervention than blocking and would likely be preferred by aggregators, since
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it removes fewer TCLs from the tracking group. However, mode-count control requires
substantially more computational effort and communication infrastructure than blocking,
and for this reason, operators are likely to prefer blocking. It is more challenging to draw
conclusions about the two tracking controllers, since their performance is affected by the
number of TCLs removed from the tracking group. The testing of additional strategies (e.g.,
blocking paired with individual-model based tracking control, and mode-count control paired
with aggregate-model based tracking control) would enable like-for-like comparisons of the
different controllers.

In Chapter 7, we designed a constraint that ensures network safety by limiting the size of
the deviations in power that an aggregator can cause across a network. We proposed two
versions of the safety constraint, based on the 2-norm and 1-norm of deviations, and found
that neither version is guaranteed to be less conservative than the other. The constraint’s
upper limit is computed by solving a set of optimization problems, one for each voltage
constraint on the network. To improve computational efficiency, we derived conditions that
identify problems that will not determine the constraint’s limit and therefore do not need
to be solved. We applied these conditions to a test network and reduced the number of
problems by 67%. Within the context of network-safe load control for energy balancing, the
safety constraint could be computed by the distribution operator and sent to the aggregator
who would ensure their power deviations for energy balancing satisfies the safety constraint.

8.2 Future Research
This work has generated several avenues for additional research. We list research topics that
are direct extensions of this dissertation first and additional topics second.

Extensions to this dissertation:

• Application of Chapter 7’s optimization methods to determine which network con-
straints are most at risk of violation.

• Development of an online method for determining which TCLs to remove from the
tracking population to protect at-risk network constraints. This would, in a sense,
complete the strategies proposed in Chapter 6.

• Development of a network-safe load control strategy that uses the safety constraint
proposed in Chapter 7. This strategy would likely restrict an aggregator more than

123



the strategies proposed in Chapter 6, resulting in more conservative (safer) distribution
operation.

• Proof of Chapter 5’s proposed feasibility conditions and mode-count control algorithm
that account for TCLs’ cycling constraints.

Additional topics:

• Characterization of the mismatch between simulated TCL populations and actual TCL
populations. A model of this mismatch would enable researchers to improve the realism
of the simulated plant and enhance the reliability of controllers tested on simulated
plants.

• Design of a tracking controller for an aggregation of TCLs with cycling constraints that
makes the optimal trade-off between immediate tracking accuracy, which may require
many switching actions and result in many locked TCLs, and future tracking accuracy,
which suffers if too many TCLs are locked from past actions.

• Development of a method to fairly constrain different actors on a distribution network.
In this dissertation, only one load-aggregator was considered, but multiple aggregators
of different types could be active on the same network.

• Design of network-safe control strategies for distributed energy resource (DER) aggre-
gations, where DERs are resources that can inject as well as consume power. This
topic is particularly relevant as the Federal Energy Regulatory Commission (FERC)
is currently grappling with how to enable DER aggregations to participate in whole-
sale markets without burdening distribution operators, who are not under FERC’s
jurisdiction (see [21]).
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