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ABSTRACT

The description of electron correlation has been a critical problem among theoretical

and computational chemistry researchers. To describe the physics of many new ma-

terials, this interaction is crucial. Typically, chemists and physicists have constructed

approximations to classic electronic structure methods - wavefunction methods and den-

sity functional theory - to attempt to solve this problem. Both have had many successes

in the computational chemistry field, but are hindered by either their computational cost

or ability to rigorously describe the electron correlation. More recently, researchers have

come back to investigating how Green’s functions can be of use to study this correlation.

This thesis focuses on the second-order Green’s function which has shown successes in

its moderate computational cost and ability to describe electron correlation. However,

in solid-state chemistry where the systems to be studied are quite large, the method still

must be implemented by other means. Instead of exploring this method deterministi-

cally, this thesis moves towards investigating the method via a stochastic method. While

stochastic methods such as diagrammatic Monte Carlo are quite common in the physics

community, they are far lesser explored among theoretical chemists.

This work attempts to develop a computationally feasible way to implement dia-

grammatic Monte Carlo within the second-order Green’s function scheme. This method

is preferred to be implemented in a fully self-consistent matter. Thus, chapter 4 of this

work will explore the algorithmics required to sample for the second-order self-energy

component of the method. Further in chapter 5, the correct statistical exploration required

to obtain important expectation values such as the one-body and two-body energies are

x



discussed. It is found that due to the non-linearity of the data, non-parametric statistical

resampling methods are required. In this work, it is shown that via a jackknife algorithm

built into the second-order Green’s function scheme, the stochastic error from a Monte

Carlo evaluation of the self-energy can be controlled. To show the power of this analy-

sis, in chapter 6 self-consistency is shown to be possible via calculations of a few model

systems as well as larger more realistic chemical systems.

Finally, chapter 7 of this thesis segues into a problem within the chemistry commu-

nity. Coding skills are at the core of developing the methods described in this thesis;

however, coding is not required in the chemistry curriculum in the United States. This

chapter describes a curriculum that encouraged chemistry students to develop coding

skills in a low stakes environment. While the overall hypothesis going into the study was

that students who use coding to study a quantitative problem in chemistry will increase

their understanding of that problem, the study left with further results. Via surveys, it was

discovered that many chemistry students desire to learn coding and feel that developing

the skill positively impacts their studies and future goals.

Overall, this thesis has made great progress in developing a diagrammatic Monte

Carlo technique that could be of interest to the chemistry community. The method has

proven to be computationally feasibly and quantitatively correct in comparison to the

analogous deterministic method. This work has formulated a scheme that can provide an

accessible approach to solving other Green’s function methods of interest and hopefully

bring us closer to finding a method that is computationally approachable to quantitatively

describing electronic correlation.
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Introduction
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CHAPTER 1

Introduction

Materials research is becoming increasingly relevant and diverse. Researchers are looking for ma-

terials that will pave the way for new technologies or new sources of energy. High-quality and

uniquely featured materials, such as the batteries that power our phones, or the semiconductor

screens on our tablets, are currently needed for our everyday use. Discovery and analysis of these

materials have mostly come from tedious synthetic research. Since the 1960s, theoretical and com-

putational chemistry have been on the rise for the study of molecular systems. This particular field

of quantum chemistry research focuses its work on the motion of electrons. The behavior of the

movement of electrons in relation to the other electrons in materials, also known as electron corre-

lation, cannot be calculated exactly due to the immense computational size of the problem. Even

so, at the molecular level, the methods that have been developed have been fine-tuned and well

examined to give informative results for many physical properties. Much of this research has been

directly used by synthetic chemists to streamline their research and development process. How-

ever, the lack of computational power has created a threshold for the size of the systems that could

be examined. Many of the materials that we as a society are interested in are large periodic solids.

The methods that were largely developed for the study of molecular systems are not suitable for

this type of calculation. In the case of materials development, new physical problems arise even

beyond a solid’s cumbersome system size.

When studying a solid, two major aspects of physics interplay. One is the interactions such

as exchange interactions between spins. The other aspect is band theory which describes that the
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states of electrons in solid materials can only have values of energy within specific ranges. An

electron is correlated to all the other particles around it; in a solid, this issue becomes increasingly

important to analyze along with both the interactions and band states. For example, the Mott in-

sulator is an important type of material that is notoriously difficult to simulate the properties of.

Band theory would predict an insulating state when all bands are occupied or empty, yet a metallic

state occurs under certain conditions. In many cases, these conditions for a metallic state can be

dominated by a Coulomb interaction. Highly sought after materials such as transition metal oxides

are often Mott insulators. Choosing or developing the right theory that can describe the physics

of these systems accurately as well as simulate the material within a feasible computational cost

is difficult. As of recent, high performance computing (HPC) power has grown at a spectacular

pace. While the physics of this problem is still not exactly solvable, the growth in computational

resources has made the study of electron correlation of large chemical systems more feasible and

of great current interest. Via theoretical chemistry, mathematical simulation and HPC, there are

many paths to follow in the pursuit of accurate calculations of the electron correlation in solids.

One of the most common paths taken is Density Functional Theory (DFT) because of its compu-

tational tractability. However, DFT typically fails in the case where electron correlation effects are

important. For example, DFT alone cannot reliably capture the physics of the Mott insulator.3, 4, 5

In light of this, the following work will consider another path known to capture the relevant physics

of such difficult problems - the second order Matsubara Green’s function (GF2).

As introduced, this field of electronic structure and studying electron correlation is important

academically as well as industrially in that computational discoveries have the ability to help guide

experimentalists. Computational discoveries demand in depth computer skills, and in many cases,

the ability to code. The chemistry curriculums at most United States universities do not include a

component on learning to code. Yet, The majority of our research level chemists have been trained

at these institutions. Across many sub-disciplines in chemistry, coding skills are an important tool

to have in a chemist’s arsenal. In many cases, coding skills may help an analytic chemist analyze

their data. Coding skills could come in handy for a biochemist handling sequencing data. Further-
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more, students who pursue theoretical chemistry will typically need to code either small scripts for

efficiency or even new theoretical models. Additionally, in the process of learning chemistry, there

is a huge and intricate area of quantitative modeling. Many students struggle when learning these

concepts. It is interesting to consider whether a student who programs these models, as opposed

to simply reading about them, may gain further insight and confidence in using chemistry mod-

els. This thesis further includes an introductory advance in research that combines coding into the

chemistry curriculum at the university level. Initial outcomes are given, and further directions in

which this research should be pursued in will be discussed.

The following chapters will discuss this new method in electronic structure as well as a chem-

istry education process crucial to making our future chemists more proficient. Chapter two gives a

general introduction to the well-known and a few lesser-developed methods in electronic structure

theory. Chapter three overviews the Monte Carlo integration method and how it can be useful in

computationally intensive electronic structure calculations. Chapter four suggests a new stochastic

algorithm to give insight into electronic structure problems. Chapter five considers how to con-

trol the error in the unique stochastic algorithm and the validation needed to execute the methods

described in chapter four. Chapter six considers the quality and benefits of this type of method,

as well as summarizes the preliminary results obtained from the new stochastic method. Chap-

ter seven segues into giving an overview as to how coding can be introduced into the chemistry

curriculum, and the obvious benefit it has on students. Chapter eight summarizes the outcomes,

discusses future directions, and concludes this thesis.
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CHAPTER 2

Electronic Structure Background

How does science describe a molecule?

The composition of a molecule is the collection of two or more interacting atoms of the same

or different elements. These elements exist as a collection of two types of charged particles: their

positive nuclei and their negative electrons. The interaction of two or more particles is described

by the potential energy,

Vi j = V(ri j) =
qiq j

ri j
.

This interaction between particles, Vi j, the attraction or repulsion, is the only physical (aka experi-

mentally measurable) quantity required to describe chemistry.

The potential energy only describes a snapshot in time. In reality, the particles that make up a

molecule are in constant motion. Moreover, there are also interactions ”forgotten” by this term that

must be accounted for when studying the properties of a molecule. When more than one electron

is present, the full description of these interactions is already impossible to solve analytically.

Now consider a solid material. In general, solid materials can be thought of as a regular or

irregular repeating units of a molecule (crystal). These systems, in most cases, can contain 1023

electrons per cm3. If a molecule is already impossible to solve analytically, or without a computer,

it should be apparent that a regularly repeating molecule proves to be an even more daunting task.

This thesis discusses one route that may bring us closer to describing the electronic structure,

including the physical and non-physical interactions of electrons, of solid materials.
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2.1 Electron Correlation

In classical mechanics, how a system and its particles evolve in time is described by Newton’s

second law. In quantum mechanics, the behavior of particles are typically described in terms of a

wave-function and can be solved via the time-dependent Schrödinger Equation.

ĤΨ(r, t) = ih
δΨ(r, t)
δt

.

If Ĥ , the hamiltonian operator, is time-independent, the time-independent Schrödinger equation

can be written as follows.

ĤΨ(r) = EΨ(r).

The time-independent Schrödinger equation describes the particle-wave duality of electrons. Tak-

ing a system or molecule with N-particles, the Hamiltonian must contain a sum consisting of the

kinetic (T̂ ) and potential (V̂) energy:

Ĥ = T̂ + V̂ .

By describing the Hamiltonian this way, the dynamics of all electrons and nuclei in the system

should be taken into account. The Hamiltonian is then further simplified via the Born-Oppenheimer

approximation which states that because nuclei are much heavier than electrons, the velocity of the

nuclei is negligible in comparison. The Schrödinger equation can then be split into two parts where

one part describes the electronic wavefunction for the fixed nuclear geometry and the second part

describes the nuclear wavefunction where the electronic energy is the potential energy.

Unfortunately, even for small molecules, the Schrödinger equation cannot be solved analyti-

cally in its exact form. Instead, the methods to solve the time-independent Schrödinger equation

must make approximations. One of the most basic and widely known methods is the Hartree-
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Fock (HF) approximation. The HF method poses that each electron’s motion in a system can be

described by an orbital (a single-particle function). This orbital does not explicitly depend on

any instantaneous motions of the other electrons. It effectively replaces the Schrödinger equation

by a set of these orbitals, in which each electron moves in an effective field (typically known as

the mean-field). The mean field is approximated to be the same for all electrons. This replaces

the many body Schrödinger equation into many one-electron problems. The computational effort

formally scales as M4 (where M is the number of basis functions).

In the study of real applications, where the systems are highly correlated or not near equilib-

rium geometry, it becomes clear that the HF approximation does not adequately describe electron

dynamics. Where HF falls short is the correlation energy. The correlation energy is defined as,

Ecorr = Eexact − EHF

Again, as alluded to in the introduction, in the Hartree-Fock approximation electrons interactions

are not treated explicitly, and electrons are then allowed to occupy orbitals in formations that are

physically too close. Thus, because the Coulomb correlation is not taken into account, a part of the

electron repulsion is completely forgotten. This interaction that is missing from the Hartree-Fock

description of the energy is the correlation energy. One of the most important aspects of research

in the field of electronic structure theory is finding a computationally feasible method to calculate

the electron correlation. The next section will explore some of those available methods.

2.2 Common Methods in Modern Electronic Structure

As computational power increased, the opportunity to calculate the many body Schrödinger equa-

tion at a more exact level than HF became enticing. Many methods have been developed to more

accurately describe the correlation energy. In most cases, HF is used as the starting point for these

correlated methods.

In Hartree-Fock, it is clear that using a single slater determinant does not fully describe that

7



Cost Method
N4 HF
N5 MP2
N6 MP3, CISD, MP4SDQ CCSD, QCISD
N7 MP4, CCSD(T) QCISD(T)
N8 MP5, CISDT, CCSDT
N9 MP6
N10 MP7, CISDTQ, CCSDTQ

Table 2.1: This table gives a summary of many of the popularly explored wave function methods
in theoretical chemistry. The formal computational cost of each method is given.

the electrons can actually occupy excited states, because the ground and excited states are only

approximate. One method that can completely account for these excitations is the full configuration

interaction (FCI). This method is built off of an N-electron wavefunction made up of a linear

combination of slater determinants describing the ground state, all single, double, etc, excitations

possible.

Some of the strengths of FCI are that it can apply in situations where many other methods fail.

For example, FCI applies to excited states, to open-shell systems, and to systems far from their

equilibrium geometries. However, it comes at a steep cost. For a chemical system with a finite

number of orbitals (K) in its basis set, and N electrons, the number of possible configurations to

be described in the wavefunction are:

(2K)!
N!(2K − N)!

Solving the full wavefunction becomes an intractable problem for anything more than the smallest

molecules. However, if a complete basis set is used and we had the computational power, the

resulting energy, ECI , subtracted by the Hartree-Fock energy would give us the exact correlation

energy. Thus, in reality, to calculate information about the correlation energy of chemical systems,

one has to make a trade-off between accuracy and computation time/cost.

Many other wavefunction-based approximations beyond the level of Hartree-Fock can be made.

Some of the most common wavefunction methods used are second-order Møller-Plesset Perturba-
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tion Theory (MP2) and coupled cluster. However, MP2 fails for many systems in their stretched

regime, and coupled cluster quickly becomes far too expensive. Beyond wavefunction methods,

other routes have been explored. The most ubiquitous of those paths is Density Functional The-

ory (DFT). While the theories so far described work with the many body wavefunction to solve

the electronic Schrödinger equation, these methods are dealt the unfortunate card of managing the

3N coordinates contained in the wavefunction. If available, it would be useful to instead work

with an object that only depends on one main variable. In DFT, this is exactly what is done. The

many body problem is essentially mapped to a single-body problem where the key variable is the

electronic density:

n(−→r ) = N
∫

d3−→r2...

∫
d3−→rNΨ∗(−→r ,−→r2, ...,

−→rN)Ψ(−→r ,−→r2, ...,
−→rN)

A material with N electrons can be studied as a combined set of N one-electron equations that

look similar to Schrödinger equations: these are known as the Kohn-Sham equations.

The method further depends on a theorem that defines an energy functional for the system

and proves that the correct ground state electron density minimizes this energy functional. A

dominating problem with DFT is that the exact functionals that describe both the exchange and

correlation for any material is not known. While many rigorous approximations have been made

and left us with what feels like an endless list of functionals, choosing a functional to best describe

the physics of the material being calculated is crucial. Yet, this work pursues development of new

materials. If a material is not yet in existence, knowledge of the physical properties are unknown.

In this case, a scientist must guess the “correct” functional which is clearly impractical. The

following section gives insight into a lesser-known and far lesser-studied non-empirical method

which has shown promise in giving insight to the important physical properties of a solid at a

practical computational cost.
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2.3 The Green’s Function and Self-Energy

Some very well understood methods to solve the Schrödinger equation have been discussed. These

methods fall into two categories: the wavefunction and the one-electron density. While these

methods have several uses, they also suffer from several shortcomings. Yet another category of

method, one perhaps less explored can also be used, this is the Green’s function.

As discussed, the many-particle system is complex; the detailed form of its energy spectrum

and wavefunctions is neither exactly calculable nor measurable. In most experimental measure-

ments involving a many-particle system, a system in equilibrium is weakly perturbed by either

a particle being added or removed, by applying a weak electromagnetic field, or by a beam of

electrons or neutrons. It can be rather useful to try to understand how a system responds to such

external perturbations. The Green’s function method is an excellent mathematical tool to do this.

The Green’s function formalism has many unique aspects that make it a useful method to study.

For example, in certain formalisms the Green’s function can be temperature dependent. Addition-

ally, it is directly related to experimentally measured quantities. It should be noted that the Green’s

function method is widely applicable. It can be applied to systems at 0K, finite temperature, sys-

tems in equilibrium, systems out of equilibrium, time-dependent cases and time-independent cases.

There are many excellent textbooks that outline this formalism in detail.6, 7 In the remaining sec-

tions of this chapter, I will briefly discuss the parts of the Green’s function method that are relevant

to this work. Specifically, I will focus on the imaginary time Green’s function formalism.

2.4 Green’s function and Inhomogeneous Differential Equations

Green’s functions are named after the British mathematical physicist, George Green, who wrote

“An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Mag-

netism.” Through the mathematical lens, the Green’s function describes the impulse response of

an inhomogenous differential equation. The Green’s function is a method to solve inhomogenous
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differential equations such as:

[z − L(r)]u(r) = f (r),

where the solution is given as,

u(r) =

∫
dr′G(r, r′; z) f (r′).

In mathematics, the Green’s function is the impulse response. In fact, in many fields, Green’s func-

tions are actually called response functions. A complete mathematical description of the Green’s

function formalism as well as its basic properties in both time-independent and time-dependent

cases is given in “Green’s Functions in Quantum Physics”.8

2.5 Green’s function and Quantum Mechanics

In quantum mechanics, the time independent Schrödinger equation again can be written as:

Ĥψ = Eψ

Or equivalently,

[E − Ĥ(r)]ψ(r) = 0

Here Ĥ is the Hamiltonian operator and E denotes the discrete eigenvalues of the Hamiltonian.

The mathematical formalism introduced in section 2.4 can be extended to solving the Schrödinger

equation as follows:

[EH(r)]G(r, r′; E) = δ(r − r′)
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Furthermore, this can be extended to the time dependent Schrödinger equation as:

(
ih
∂

∂t
− Ĥ

)
|ψ(t)〉 = 0

Defining the time evolution operator as,

Û(t − t0) = e−i(t−t0)Ĥ/h

the Green’s function for the operator can be defined as:

Û(t − t0) = ihG(t − t0)

The time-dependent Schrödinger equation in terms of the time evolution operator takes the follow-

ing form,

|ψ(t)〉 = Û(t − t0) |t0〉 .

This equation can then be rewritten in the r, or position, representation to obtain the equation:

ψ(r, t) = ψ0(r, t0) + ih
∫

G(r, r′, t − t0)ψ(r′, t0)dr′

It can be seen that from the quantum-mechanical view, the Green’s function is a type of propagator

in that it shows that a particle is being propagated from a position r′ and time t0 to a later position

r and time t. To completely solve the entire Green’s function is almost as difficult as solving for

the wavefunction. Thus, just like in wavefunction methods, approximations are made when trying

to solve for Green’s functions of practical chemical systems. In many cases, one begins from

the non-interacting Green’s function and applies perturbation theory to calculate the full, or some

approximation of, Green’s function for the interacting case. The following section, 2.6, will give

background into how using perturbation theory within the Green’s function formalism can bring
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us closer to accessibly modeling electron correlation.

2.6 Green’s Function Perturbation Theory and the Self-Energy

Going back and reconsidering the eigensolutions of the time-dependent Schrödinger equation,

(
ih
∂

∂t
− Ĥ

)
|ψ(t)〉 = 0,

we can also rewrite the time-dependent Schrödinger equation including a potential, V̂ , that will be

considered as the “perturbation”.

(
ih
∂

∂t
− Ĥ − V̂

)
|ψ(t)〉 = 0

The corresponding Green’s function will be:

ψ(r, t) = ψ0(r, t0) + ih
∫

G0(r, r′, t − t0)V̂(r′)ψ(r′, t0)dr′

For convenience, dropping the integration variables the following expansion can be seen:

ψ(r, t) = ψ0 + G0V̂(ψ0 + G0V̂ψ)

ψ(r, t) = ψ0 + G0V̂ψ0 + G0V̂G0V̂(ψ0 + G0V̂ψ)

ψ(r, t) = ψ0 + G0V̂ψ0 + G0V̂G0V̂G0 + ...)V̂ψ0

This lays a foundation for perturbation themes in terms of successive orders of a scattering poten-

tial, V̂ . From here, one ends up with a formalism known as the Dyson equation:

G = G0 + G0V̂G
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or equivalently,

G−1 = G−1
0 − V̂

The Dyson equation represents the amplitude of probability of going from (r, t0) to (r′, t) with-

out collision (G0), with one collision (G0V̂G0), with two collisions (G0V̂G0V̂G0) and so on. When

describing an interacting system, the interacting Green’s function can be treated as having a series

of collisions with a potential called the self-energy. The self-energy represents the interactions be-

tween the particle and its system. The system, in this case, may be a material. This means that the

self-energy represents the potential felt by the single electron interacting with the other electrons

in the material, and this interaction in turn also interacting with the single electron. Here we will

use the greek letter, Σ, to denote the self-energy. Thus, the Dyson equation becomes:

G−1 = G−1
0 − Σ (2.1)

The guiding purpose of this work is to use the self-energy to obtain information about the energy

of a system. Thus, I will rewrite the Dyson equation in the form that solves for the self-energy:

Σ = −G−1 + G−1
0 (2.2)

Specifically, the self-energy we are interested in is at a level of perturbation that includes some

form of correlation. The calculations to obtain this information will be further described in the

next section. However, it is important to mention that an important aspect of perturbation theory

is choosing what level of perturbation to use. In other words, what level of approximation will

be made to make this problem soluble. For the purpose of this thesis, the self-energy and corre-

sponding Green’s function will always be considered approximated at the level of one collision,
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also considered the second-order Green’s function:

G2 = G0Σ
2G0

2.7 Luttinger-Ward Functional

There are several Green’s function formalisms. The only one that is discussed in this work is the

Matsubara formalism. The Matsubara Green’s function is built on an imaginary frequency axis in

equilibrium, rather than real time. This formalism is temperature dependent and mathematically

attainable. For a system of interacting electrons, it is imperative to know the relationship between

static quantities which describe the thermodynamics of a system and dynamic quantities that de-

scribe one-particle excitations. For the one-electron many body Green’s function, those dynamic

quantities are the Green’s Function and the self-energy. The Luttinger-Ward functional relates ther-

modynamic quantities to the Green’s function and self-energy via the grand canonical potential,

Ω.9

Ω = Φ + Tr ln G + Tr ΣG

This relationship is useful when calculating thermodynamically meaningful quantities.10 For the

case of this work, those quantities of interest are specifically focused on the internal energy of a

system. Thus the energy can be calculated as:

E =
1
2

Tr
[
(Ĥ + F)γ

]
+

2
β

∑
Re(Tr[GΣ])

where γ is the one-body density matrix, Ĥ is the one-body Hamiltonian, F is the Fock matrix.

More than just a connection to thermodynamics, the Luttinger-Ward functional has many unique

properties. Some of those properties are introduced here as they can be useful to algorithm design.
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First, the Luttinger-Ward functional is defined as:

Φ =

∞∑
m=1

1
2m

Tr

∑
n

Σ(m)(iωn)G(iωn)


where m defines the order of the self-energy. The functional, Φ[G], is just a scalar that is depen-

dent on the Green’s function. Additionally, one can think of the Luttinger-Ward functional as a

functional of the self-energy, Φ[Σ]. The fact that it is a scalar quantity directly relevant to the mul-

tidimensional Green’s function can be convenient in certain schemes. This will become important

and will carefully be reiterated in chapter four of this thesis.

2.8 A Note on Particle Conservation

The assertion to use many body perturbation theory using partial summation of self-energy dia-

grams has been made. At the second order it has proven efficient as well as convergent.11 More-

over, the desire to obtain ground-state properties like the total energy has been made. Evaluation

in this method circumvents the expense and complicated calculations via wavefunction methods

as well as avoids the limiting approximations used in DFT. The many body method of integration

to evaluate the total energy has a consequence: the requirement of particle conservation via the

grand canonical potential may not be obtained in a single iteration. Therefore, the second-order

Green’s function method, as well as diagrammatic many body perturbation theory in general, must

be solved fully self-consistently to ensure that the particle number and total energy are conserved.12

While it has been proven that the Green’s function obtained self-consistently from the Dyson equa-

tion does yield the exact particle number,1 many formalisms such as G0W0 forgo self-consistency

due to its expense. In this work, however, I argue self-consistency is imperative to formulating

both qualitative and quantitative convergent energy results from the GF2 method. More discussion

of the self-consistent procedure will be given in chapter five.
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CHAPTER 3

Monte Carlo Integration

3.1 Stochastic vs Deterministic Methods: Monte Carlo Meth-

ods

Thus far, I have discussed a series of electronic structure methods. First discussed was FCI, an

exact method at the basis set limit. However, the dimensionality of this problem is impossible to

solve for any reasonably sized system. Further, I went on to discuss other approximate wavefunc-

tion methods. These had their benefits, such as reduced cost, yet they still can be quite cumbersome

to solve for systems with many orbitals. Furthermore, I discussed the profound impact DFT has

had on the field of electronic structure. While its low computational cost makes calculations of

large systems reasonable, its results are often inaccurate or require too many empirical observa-

tions. Lastly, I introduced the benefit of Green’s function methods - specifically the second-order

Green’s function (GF2). These methods have a reduced scaling and can give insight into the elec-

tronic structure of materials that other wavefunction methods cannot. This exploration of possible

methods can be summarized in one way: how do we compromise between lost accuracy by way of

approximation and the ever increasing computational cost? When the dimensionality of a problem

is too large to approach via analytic methods, and deterministic approaches to integration are too

expensive, a method called Monte Carlo can be of use.

Initially, Monte Carlo methods were discovered as useful for creating an estimate of integrals

that could not be analytically solved. Many advances have been made in probability theory and
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statistics which are now included in the broader field of “Monte Carlo Methods”; however, this

thesis only requires an understanding of the corner of this field called Monte Carlo integration.

In a deterministic approach to numerical integration, each attempt to solve the problem pro-

vides the same outcome. In a Monte Carlo, or stochastic, approach, each attempt to solve the

problem provides a different outcome. In the Monte Carlo approach, the outcome is an approxi-

mation to the correct value likely to be within predetermined error bars.

In this chapter, the principal ideas behind quantum Monte Carlo methods are outlined. The

theory behind Monte Carlo integration will be presented. As will be described, finding an efficient

implementation of Monte Carlo integration for the object to be studied is important. Any inef-

ficiencies increase computational overheads and will create limitations to the size of system and

statistical accuracy that may be obtained. A few examples of how to promote efficient calculations

are given in this chapter; however, full details of the specific approach used in this thesis and its

implementation are presented in the following chapter.

3.2 Monte Carlo Integration

A very simple explanation of Monte Carlo is the application to evaluating a one-dimensional defi-

nite integral. For example, take the following one-dimensional integral:

E =

∫ b

a
f (x)dx

Different ways to approximate this integral can be made. One method is to apply the mean value

theorem. Within the mean value theorem, the integral can be approximated as,

EN =
b − a

N

N∑
i=1

f (xi)

As the number of instances of N increases, the value of EN is known to evaluate closer and closer

to the true value of E. A standard choice for the points xi would be a completely uniform grid.

18



More accurate methods of quadrature instead use grids made of a weighted average of the points:

EN =
b − a

N

∑N
i=1 wi f (xi)∑N

i=1 wi

The computational cost of evaluating an integral (to a certain determined accuracy) of dimension-

ality d increases as Nd. However, for many functions actually evaluating the sum of every point

may not be necessary. For a system with a very large grid, a more efficient approach is to select

points xi randomly from a given probability distribution. This can be done by a Monte Carlo sim-

ulation. If the points are selected truly at random over the interval [a, b], the Monte Carlo estimate

of the integral becomes

EN = (b − a) f̄ =
b − a

N

∑
i=1

N f (xi) + O(1/
√

N)

with the error behaving as,

σN =

√
b−a
N

∑N
i=1 f 2(xi) − E2

N

N − 1
.

Assuming a large number of independent samples, the normalized sum should tend towards a

normal distribution. Thus, the probability that E is within EN ± σN is ≈ 0.68 and the probability

of being with 2σN is ≈ 0.95. This error decays as 1/
√

N independent of the dimensionality of the

integral. A great benefit of Monte Carlo simulation is that the behavior of Monte Carlo error is

well understood and can be predicted. Statistical knowledge of how the error behaves in Monte

Carlo simulations is crucial when developing and validating new algorithms dependent on Monte

Carlo sampling. This important aspect of Monte Carlo as it pertains to this thesis will be further

discussed in Chapter five.
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3.3 Importance Sampling

Simple schemes for Monte Carlo integration can be of huge benefit. However, in some cases, these

simple schemes may suffer from low efficiency. For example, if sampling a higher dimensional

function, the function of interest may only have significant weight in certain regions. These regions

may be considered more “important” than other regions. For example, most of the contributions to

an integral of a simple Gaussian are located near the central peak as seen in figure 3.1. If a simple

Figure 3.1: Importance sampling of a Gaussian integral would involve the following three steps
shown in images a, b, and c. In a sample from a prior belief q(x), for example the distribution is
uniform. In b, compute importance weights of different portions of the function w(x) =

p(x)
q(x) . In

c, resample according to importance weights to get p(x). Samples with greater weight should be
sampled more times as portrayed by the greater density of the lines.

Monte Carlo integration simulation scheme was used to sample a Gaussian, the points would be

sampled uniformly. This means that considerable effort would be wasted by sampling the tails of

the Gaussian. The techniques used to overcome this problem attempt to increase the density of

points in regions of interest and, therefore, improve the overall efficiency of the simulation. These

techniques of choosing points based on weight are called importance sampling.

In an importance sampling scheme, instead of choosing points from a uniform distrubution,

points are sampled from a non-uniform distribution w(x). w(x) is chosen to always be positive and

chosen to approximate f (x) over the region of interest. This allows the integral to be evaluated by

selecting points from the probability distribution p(x),
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p(x) =
w(x)∫ b

a
w(x)dx

From here, points xi are generated from a probability distribution of p(x) and the integral may be

evaluated.

E =

∫ b

a

f (x)
p(x)

p(x)dx ≈
1
N

N∑
i=1

f (xi)
p(xi)

The integration procedure is more efficient than sampling without importance, and the error still

decays as 1/
√

N.

3.4 Broader Applications

The method of Monte Carlo integration is an extremely useful tool for numerical integration. Its

most well-known advantages are its simplicity, its easy adaptation to multi-dimensional integrals,

and the fact that it is unbiased. One additional point important for very large calculations is that

Monte Carlo integration is consistently parallel in nature: each processor of a parallel computer

can be assigned the task of simulating each random trial. The fact that it can be completely general

to almost any function, assuming issues such as sign error can be avoided, makes it a useful method

in many areas of mathematical modeling. In this work, I will show how Monte Carlo integration

can be a means to study the imaginary time self-energy described in section 2.6 at a second-order

approximation. The resulting stochastically evaluated self-energy can in turn be used within a

slightly altered GF2 self-consistent scheme which will be called stochastic GF2 (sGF2). This study

is a type of application of diagrammatic perturbation theory and, more specifically, diagrammatic

Monte Carlo. This implementation described in the following chapters is completely unique. I will

discuss how this method is employed, the error evaluation scheme, as well as a set of introductory

results for small toy systems to moderately-sized systems. In continuation, I will discuss how it
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may provide important insight into the second-order Green’s function as well give mention to the

insight it may provide to other Green’s function methods.
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Part II:

Methods and Results
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CHAPTER 4

Monte Carlo Second-Order Self-Energy:

Algorithmics

Studying the exact solution of the many-electron problem has an exponential computational cost.

In most electronic structure methods designed to study molecular systems two major decisions are

made, one: choose an approximation to reduce excessive computational cost but forgo accuracy,

or two: treat the electrons more accurately and endure the great computational cost. Another

branch of electronic structure methods, those that employ Monte Carlo (MC) simulations, can be a

way to explore those more accurate electronic structure methods. These stochastic methods scale

more eloquently with increasing system size than deterministic methods, but will retain an error

associated with the calculation. Luckily, this error - the stochastic error - is well understood and

can be easily monitored.

Some of the more common stochastic electronic structure methods fall under the umbrella of

”Quantum Monte Carlo” such as variational or diffusion monte carlo. Other types of stochastic

methods such as sGW, sMP2, and stochastic Coupled Cluster have shown promise. However, in

many of these methods, such as a suggested implementation of sGF2,13 the method is evaluated

in ”one shot” and forgoes self-consistency. Furthermore, this particular method suggests an em-

pirical method to evaluate the stochastic error instead of a statistically and repeatably rigorous

approach. Another option that hasn’t been explored is a stochastic procedure in the evaluation of

a self-consistent method. The deterministic second-order Green’s Function (GF2) is an interesting

method to study through a MC simulation. GF2 can distinguish between metallic, insulating, and
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mott regimes. This is an important quality when studying larger realistic systems; however, with a

computational cost of Onτ(N5) it is quite prohibitive in studying large realistic systems. A stochas-

tic evaluation of GF2 can be a beneficial method to improve the cost. Moreover, we can take

advantage of GF2’s ability to distinguish between electronic regimes by employing a metropolis

algorithm.

4.1 Introduction to the Method

The self-consistent Green’s function theory at a second order approximation (GF2) is solved by

iterative solution of the Dyson equation: G(iωn) =
[
[G0(iωn)]−1−Σ(2)(iωn)

]−1 Here the term, G0(ω)

is the non-interacting Green’s function and Σ(2)(ω) is the self-energy. In GF2, the self-energy

is truncated at the second order and can be expressed as a functional of the Green’s function

Σ[G(ω)]. This work is built upon the deterministic self-consistent procedure used to obtain elec-

tronic structure elements from the second order Green’s function (GF2). An important aspect in

the self-consistent GF2 scheme is that it uses the Matsubara imaginary frequency Green’s func-

tion. The Matsubara imaginary frequency Green’s function is particularly useful because it can

be transformed to the imaginary time Green’s function, G(τ), which is a smooth function. This

smoothness makes it convenient for stochastic sampling. In this chapter, section 4.2 will give a

general overview of the deterministic GF2 algorithm, section 4.3 discusses a stochastic scheme

to sample for the second-order self-energy, section 4.4 gives further insight into the configuration

space chosen, section 4.5 and 4.6 discuss the type of importance sampling scheme chosen, and

lastly section 4.7 gives mention to other variations in the metropolis schemes that could be chosen.

4.2 Description of the GF2 Algorithm

In this work, the second order self-energy is the object of interest. The self-energy and Green’s

function are mutually dependent and the Green’s function can be thought of as a functional of the

self-energy, G[Σ]. Deterministically, the GF2 method is solved self-consistently on an imaginary
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Figure 4.1: Diagrammatic expansion of the self-energy cut off at the second order. Within this
subset of diagrams, the first two are frequency-independent and are included in in the Fock matrix.
The second two diagrams represent the second-order correlation effects and are the frequency-
dependent part of the self-energy.

time τ and imaginary frequency iωn axes. The interacting Green’s function is built using the Dyson

equation, namely

G(iωn) = [G0(iωn)−1 − Σ(iωn)]−1, (4.1)

where G0 is the non-interaction Green’s function defined as

G(iωn) = [(iωn + µ)S − F−]−1, (4.2)

where F and S are the Fock and overlap matrices in a given orbital basis and µ is the chemical

potential. The chemical potential is a necessary to guarantee a proper particle number. In this

work, the self-energy, Σ(iωn), is truncated at the level of second-order perturbation. The second-

order self-energy is described diagrammatically in figure 4.1. Algebraically, the second-order

self-energy is given as

Σi j(τ) = −
∑

klmnpq

Gkl(τ)Gmn(τ)Gpq(−τ)vimqk(2vlpn j − vnpl j), (4.3)

where G(τ) is the Green’s function on the imaginary time τ axis and v are two body Coulomb

integrals.

A general implementation of GF2 can be described as follows:

1. Run either Hartree-Fock or DFT reference solution

2. Build the HF ( non-interacting) Green’s Function: GHF(ω) = [(µ + ω)S − F]−1
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3. Build second-order self-energy in the time domain from the Fourier transformed GHF(ω):

Σi j(τ) = −
∑

klmnpq Gkl(τ)Gmn(τ)Gpq(−τ)vimqk(2vlpn j − vnpl j)

4. Fast Fourier transform (FFT) Σ(τ) to the ω domain

5. Rebuild interacting Green’s function: G(ω) = [(µ + ω)S − F − Σ(ω)]−1

6. Update the chemical potential, µ, and build correlated single-particle density matrix, γ =

−2G(τ = β) with the correct particle number

7. Update the Fock matrix i j =
∑

kl γkl(vi jkl − 0.5vilk j)

8. Rebuild interacting Green’s function using the new Fock matrix.

9. Begin the self-consistent scheme by repeating steps 3-8 using the new interacting G(ω) and

iterate until convergence of both one-body and two-body energies

A simplified bird’s eye view of this scheme can be seen in figure 2.

Figure 4.2: The second order Green’s function can be solved via an iterative self-consistent scheme.
Further description of the implementation and unique benefits of GF2 have been previously stud-
ied.1

GF2 has several promising aspects such as possible evaluation within a non-orthogonal atomic

orbital basis. Additionally, the method has been proven to give qualitatively correct descriptions
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of correlated systems such as stretched hydrogen lattices. Further more, while its computational

expense, O(τnN5), is similar to MP2, in the strongly correlated limit it does not suffer from di-

vergences known to affect MP2. While GF2 displays these benefits, its computational scaling of

O(τnN5) results in quite costly algorithm limiting its applicability to rather small systems. The

following sections will explore a new stochastic method to reduce the cost of these calculations.

4.3 Phi Functional and self-energy

Evaluated stochastically, the GF2 algorithm will now be called, stochastic GF2 (sGF2). To be-

gin, we must choose an object to sample. The most obvious objects to choose from are either

the Green’s function itself or the self-energy in the imaginary time domain where they behave

smoothly. However, there is a related object called the Luttinger-Ward functional, Φ, which de-

pends both of the self-energy and Green’s function and is defined as

Φ =

∞∑
m=1

1
2m

Tr

∑
n

Σ(m)(iωn)G(iωn)

, (4.4)

where m signifies the order of perturbation. Unlike the N×N×nτ matrices of Green’s function and

self-energy, where N is the number of orbitals and nτ is the number of imaginary time grid points,

the Luttinger-Ward functional is a scalar.

Given that Φ is a scalar it is convenient to sample for its value whenever possible. At the

second-order, the Luttinger-Ward functional is given algebraically as

Φ =
∑

i jklmnpq

∑
τ

vimqk(2v jnlp − v jlnp)Gi j(−τ)Gkl(τ)Gmn(τ)Gpq(−τ). (4.5)

The diagrammatic representation of Φ is illustrated in Fig. 4.3.

The Luttinger-Ward functional is especially useful because of its direct relationship to the self-

energy. The second order self-energy is evaluated from the second-order Luttinger-Ward functional
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Figure 4.3: Diagrammatic expansion of the Luttinger-Ward functional, truncated at the second
order.

as a functional derivative over Green’s function, namely

dΦ(2)

dG ji(τ)
= Σ

(2)
i j (τ). (4.6)

Thus, while Φ(2) is stochastically sampled, the self-energy quantity is simply and directly mea-

sured based on the sampled object Φ(2).

As discussed, evaluating Σ at the second order level scales as O(τN5) thus it is important to to

devise a method even at the deterministic level which could help with the reduction of the computer

time. When matrices in a numerical calculation are sparse, a useful mathematical trick is to reduce

the size of the dimensions using the Cholesky or eigen decomposition. In this case, each G(τ) from

Eq. 4.5 decay along the diagonal and contain many zero elements. Each G(τ) can be decomposed

such that

Gi j(τ) = Gλ
i (τ)Dλ(τ)Gλ

j (τ) (4.7)

where λ represents the number of Cholesky eigen vectors vectors from the given decomposition.

The two-electron integrals vimqk can be similarily decomposed

vimqk = vαikDαvαmq, (4.8)

where α represents the number of Cholesky or eigen vectors. Under these assumptions, contrac-

tions over the orbital indices i and k in vαik with the decomposed Green’s functions Gλ
i and Gµ

k to

further define

xαλµ = Gµ
kvαikG

λ
i . (4.9)
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After contracting all subexpressions for vimqk and Gi j, the overall expression for Φ then becomes

Φ =

∫
dτ

nv
d∑
αβ

ng
d∑

λµνσ

xαλµ(τ)xασν(τ)DαDλ(−τ)Dµ(τ)Dν(τ)Dσ(−τ) (4.10)

×(2xβλµ(τ)xβσν(τ) − xβλν(τ)xβσµ(τ))Dβ,

where nv
d and ng

d denote number of Choleskly or eigen vectors from the decompositions or in-

tegrals and Green’s functions, respectively. These numbers can be radically truncated without

loosing any accuracy if either Dλ(τ) from the Green’s functions or Dα from the interaction matrix

decomposition decay quickly.

Now that Φ has been built in a more manageable form amenable to stochastic and importance

sampling, in Sec. ?? we will discuss how Monte Carlo integration can be applied to it.

4.4 Configurations and Weights

In section 4.3 we found a useful way to begin reducing the complexity of the problem. While

the main object of interest is the self-energy, Σ, it is more convenient to focus sampling over

configurations of Φ, especially in the truncation scheme proposed. When possible, typically one

should avoid sampling for a multidimensional object, such as Σ. Instead, Φ, which is a scalar value,

is computationally more favorable for a sampling procedure. Again, looking at Φ

Φ =

∫
dτ

nv
d∑
αβ

ng
d∑

λµνσ

xαλµ(τ)xασν(τ)DαDλ(−τ)Dµ(τ)Dν(τ)Dσ(−τ) (4.11)

×(2xβλµ(τ)xβσν(τ) − xβλν(τ)xβσµ(τ))Dβ,

the possible configuration space contains four discrete Green’s functions indices, two interaction

indices, and one τ index :

C = {λµνσ : αβ; τr}
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In the same manner as GF2, τ is prebuilt on a non-uniform grid.14 In the proposed sampling

scheme, these τ points will have discrete integration weights we will denote as wr.

It can be assumed that to good approximation, the analytical calculation of Φ can by carried

out by summing all orbital indices, {λµνσ : αβ}, from 0 to all orbitals within the truncation limit.

Additionally, the tau index goes from 0 < r < Nτ. This means that Φ becomes a simple summation

Φ =

∫
dτ

nv
d∑
αβ

ng
d∑

λµνσ

xαλµ(τ)xασν(τ)DαDλ(−τ)Dµ(τ)Dν(τ)Dσ(−τ) (4.12)

×(2xβλµ(τ)xβσν(τ) − xβλν(τ)xβσµ(τ))Dβwr,

While the equation itself looks daunting, the process of sampling such an object can be simple.

Taking a look at individual terms, it is clear that the sampling scheme must access individual

precalculated scalars

w(c) = xαλµ(τ)xασν(τ)DαDλ(−τ)Dµ(τ)Dν(τ)Dσ(−τ) (4.13)

×(2xβλµ(τ)xβσν(τ) − xβλν(τ)xβσµ(τ))Dβwr,

However, upon observation of these scalars it is apparent that individual terms may be positive or

negative. In the processes of building the overall summation, this means the Monte Carlo mean

could likely sum to zero. Instead, a simple fix is to redefine the terms as absolute values

p(c) = |w(c)|

This process of taking the absolute value seamlessly avoids the ever-worrisome numerical sign

problem often cumbersome to stochastic calculations.
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4.5 Importance Sampling

While the method could be done with standard Monte Carlo sampling, in many chemical systems

this does not take full advantage of the physical behavior of the objects to be sampled. For example,

it is known that the Green’s function and integrals have many 0 values. If an algorithm treats

particular indices of the Green’s function with 0 value and and other indexes with greater values

equally, excessive sampling time will be wasted choosing configurations that have little to no

influence on the final result. Instead, an importance sampling scheme can be used. In the current

work, a Metropolis algorithm will be employed. In order to use the Metropolis algorithm, the

procedure must sample a configuration with the weight with which it will contribute to the integral.

This means a normalization factor, proportional to the entire integral must be chosen. While this

choice of normalization factor could be a number of choices, a simple first choice is as follows. A

subset of the integral is chosen to calculate analytically - this is the normalization factor. For the

first choice of implementation, a subset of the possible range of orbitals 1 < λµνσ < Cholesky is

chosen and can be renamed norm.

Φ =

∫
dτ

nv
d∑
αβ

norm∑
λµνσ

|xαλµ(τ)xασν(τ)DαDλ(−τ)Dµ(τ)Dν(τ)Dσ(−τ) (4.14)

×(2xβλµ(τ)xβσν(τ) − xβλν(τ)xβσµ(τ))Dβwr|,

This subset of orbitals can be as small as 1 term, but as the subset chosen gets larger and a greater

portion of Φ is summed up deterministically, the closer the result should be to the true deterministic

value. While other normalization factors could easily be chosen, the proposed normalization factor

is a good first choice.
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4.6 Metropolis Sampling Scheme

In the last sections, it was mentioned that the possible configuration space contains four discrete

Green’s functions indices, two interaction indices, and one τ index :

C = {λµνσ : αβ; τr}

We will call C the configuratin space. Within an importance sampling scheme, it is important that

no important contributions to the overall calculation are missed. This takes careful management

of the walkers over the entire configuration space. The following will describe the metropolis

conditions chosen as well as exactly how walkers were allowed to move through each subset of the

configuration space. In diagrammatic Monte Carlo schemes, it is particularly important to devise

a scheme where walkers can move throughout the diagrams and not get ”stuck” sampling in only

one vertice. This could be done in a few different ways, but we will mention only one specific

method.

The configuration space, C, can be broken into three pieces - C1, C2, and C3. Where,

C1 = {τr}

C2 = {λµνσ}

C3 = {αβ}

We must create a unique metropolis condition for each piece. Beginning with C1, we can document

within a specific calculation how many times certain tau points are sampled. These tau points

should be weighted so that places where a cross-section of the Green’s function, say Gxx(τ), has

high curvature there will be lots of samples taken. Places where the cross-section has almost no

curvature or is zero should have no sampling. The method that sGF2 has shown most success with

is choosing a value tau jump << nτ and allowing each new metropolis opportunity to jump along
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the tau grid according to the value of tau jump. If the grid reaches one end of the grid, the procedure

automatically resets the new point to be sampled at the other end of the grid. Figure 4 displays that

the metropolis condition for C1 = {τ} successfully samples only for those important contributions.

Figure 4.4: The figure shows that places of high curvature in the Green’s function have higher fre-
quency of sampling, thus more contribution to the phi functional. On the other hand, places where
the curvature is almost vertical or the value of the Green’s function is 0, there is 0 contribution to
the phi functional.

Similarly, the indexes from the cholesky decomposed Green’s functions must be efficiently

sampled. These indices again should have larger contributions coming from the lower valued

indices within C2 and smaller contributions from the larger value indices within C2. One successful

way to ensure proper sampling of all important contributions of the space is to simply choose a

random number between zero and one at each update. This random number can be multiplied

by the predetermined truncated Cholesky space for λ, µ, ν, or σ. New configurations are chosen

each time a new update is required for this space. The quality of this algorithmic choice can be

visualized for any system. Here we show that the metropolis condition chosen efficiently chooses
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orbitals for both a chain of 10 Hydrogens and a four by four square lattice of Hydrogens in minimal

basis sets. In each case, Hydrogens are spaced 1 Angstrom apart. Both systems are important to

consider because while in a chain it is generally easy to choose walkers that will sample the system

properly, adding another dimension - such as in the square lattice - is often more difficult for

walkers to efficiently evaluate the whole space. Figure 5 displays how effectively the Metropolis

algorithm ensures to promote sampling at indices of the Green’s Functions where values are non-

zero.

Figure 4.5: The figure shows that where the elements of the decomposed Green’s function are
large, there is the most contribution to Φ. Because each Green’s function decays quickly, after
only a few Cholesky orbitals indices the contribution to Φ decays to 0.

Finally, the third piece we call C3 must be considered in a similar fashion to C2. The only

difference is that the predetermined truncated Cholesky space for α and β from the two-electron

integrals is a different value than the predetermined truncated Cholseky space for the green’s func-

tion Cholesky indices λ, µ, ν, and σ. Again a random number between 0 and 1 is chosen which is

multiplied by α or β. Again, figure 6 shows the success of the metropolis algorithm.
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Figure 4.6: The figure shows that where the elements of the decomposed 2-electron vertex function
are large, there is the most contribution to Φ. Because each 2-electron vertex function decays
quickly, after only a few Cholesky orbitals indices the contribution to Φ decays to 0.

4.7 Other Choices for Metropolis Sampling Schemes

While the method described has proven to work well, other methods of implementing the metropo-

lis conditions are available. Of those methods, one other has been considered. A cumbersome

aspect of this method is that the contractions involving the two-electron integrals must be stored

in memory for each tau point, xαλµ(τ). While storing this decomposed form is favorable to storing

the entirety of the two-electron integrals, the size can still easily surpass the size of a standard

computer processing unit (4GB). Another option is to fully parallelize each sampling procedure on

individual τ points. Contrary to how Φ was previously evaluated

Φ =

∫
dτ

nv
d∑
αβ

norm∑
λµνσ

|xαλµ(τ)xασν(τ)DαDλ(−τ)Dµ(τ)Dν(τ)Dσ(−τ) (4.15)

×(2xβλµ(τ)xβσν(τ) − xβλν(τ)xβσµ(τ))Dβwr|,
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the Monte Carlo scheme can now fully evaluate every point of the τ space

Φτ =

∫
dτ

nv
d∑
αβ

norm∑
λµνσ

|xαλµxασνD
αDλDµDνDσ (4.16)

×(2xβλµxβσν − xβλνx
β
σµ)D

βwr|,

This method clearly becomes embarassingly parallel with each Φτ being evaluated on a different

core. While this method technically loses mathematical optimization, in most cases studied the tau

grid is only a few hundred points and if parallelized the time of simulation is not greatly effected.

Results to summarize this sampling scheme will be included in the results section.
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CHAPTER 5

Error Control and Validation

Many body perturbation theory by way of the second-order Green’s function has shown many suc-

cesses. Given the expense of the problem, evaluation of the self-energy via a stochastic algorithm

has clear motivation. In the second section, the methods for sampling in a stochastic evaluation

were discussed. An important portion of analysis of a stochastic calculation is the error control

and validation. Typically, error is controlled by running the same calculation with many differ-

ent seeds and taking an average of the resulting values. In the case of the second-order Green’s

function, this is not as straight forward for a few reasons. First, in this work the values of primary

interest are the one-body, E = 1
2 Tr

[
(H + F)γ

]
, and two-body, 2

β

∑
Re(Tr[GΣ]), energy. The sum of

these two values should equal the total energy of the system. These values are obtained via both the

Green’s function and self-energy. This leads into the second difficulty. Baym showed that when the

self-energy is calculated via a subset of diagrams, such as in the case of the second-order Green’s

function, conservation laws may be violated.15 When the Green’s function is obtained from a fully

self-consistent solution of the Dyson equation, the approximation is then called Φ derivable and

is automatically conserving. While self-consistency is clearly the most physically rigorous way to

evaluate a system via diagrammatic perturbation theory, many formalisms forgo self-consistency

due to the immense computational cost. However, this work will follow the rigorous path involving

self-consistency. The stochastic second-order Green’s function can be calculated self-consistently

in a similar scheme to the deterministic second-order Green’s function. In the deterministic GF2

scheme, each iteration can generate a single one-body and two-body energy. In the stochastic
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scheme, while the object obtained from the stochastic procedure is still the imaginary time self-

energy, there are actually a population of imaginary time self-energies produced from different

starting seeds. In order to generate an error bar, M starting seeds must be used and each resulting

self-energy must be stored. To return the Green’s function from the self-energy, an inverse of the

matrix must take place. This inversion is given as follows,

G(ω) = [(µ + ω)S − F − Σ(ω)]−1. (5.1)

An aspect of inversion well known in the statistical community is that an inversion of a normal

set of data is considered to be a non-linear transformation. This means that data that was initially

normal and then put through a non-linear transformation, may lose its normality. In this case,

standard parametric statistics such as the simple method of taking a mean (ā),

ā =
1
n

n∑
i=1

ai =
a1 + a2 + · · · + an

n
(5.2)

are no longer applicable. Instead, bias has been introduced and must be monitored. This new set

of non-parametric data must be adjusted in order to study statistical objects such as the mean and

standard error. One way to make this adjustment is via a non-parametric procedure called resam-

pling. Resampling can be done via many methods, most commonly the jackknife and bootstrap

procedures. In this work, a jackknife analysis is the resampling method of choice. This section

will explore whole jackknife analysis can be employed within a slightly altered GF2 scheme which

includes evaluation of the stochastic self-energy.

5.1 Review of the Jackknife Procedure

In statistics, the jackknife method is a type of resampling technique useful for variance and bias

estimation. The jackknife estimator of a parameter is found by leaving out a single observation

from a dataset and calculating the estimate, x̄i, then repeating for each observation in the dataset.
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This is typically done in systematic and ordered way. After each observation has been dropped and

the corresponding estimate of these calculations has been stored, the average,X̄ of each of these

estimates is taken. If a sample dataset has size n, the jackknife estimate is found by systematically

accumulating the estimates of each (n − 1)-sized sub-sample, x̄i.

5.2 Jackknife Analysis Within sGF2 Scheme

Implementing the Jackknife Analysis within the sGF2 scheme is not completely straight forward.

One may assume that the one-body and two-body energies at the end of the first iteration can

simply be resampled to find the jackknife average; however, the noise from the inversion of the

stochastically obtained self-energy would create too expensive of a chemical potential search for

this to be a viable solution. Instead, the jackknife must be built into steps 4-8 of the self consistent

scheme - these steps are described in the first section.

The self consistent scheme remains exactly the same for steps 1 and 2. The method must be

adjusted to accommodate the stochastic self-energy and the jackknife analysis starting in step 3.

The steps are summarized here:

1. Run restricted Hartree-Fock reference solution

2. Build HF ( non-interacting) Green’s Function: GHF(ω) = [(µ + ω)S − F]−1

3. Build a sample of stochastic second-order self-energies in the time domain via the method

described in chapter 4 from the Fourier transformed GHF(ω): Σseed
i j (τ) = −

∑
klmnpq Gkl(τ)Gmn(τ)Gpq(−τ)vimqk(2vlpn j−

vnpl j)

4. Using the ”leave-one-out” method described in the previous section, obtain a sub-estimate,

x̄i for each Σseed
i j (τ)

5. Fast Fourier transform (FFT) Σ(τ) sub-estimate to the ω domain

6. Rebuild an interacting Green’s function: G(ω) = [(µ + ω)S − F − Σ(ω)]−1 for each sub-

estimate.
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7. Update the chemical potential, µ, and build correlated single-particle density matrix, γ =

1
2πi

∮
G(ω)dω with correct particle number for each sub-estimate

8. Update the Fock matrix for each sub-estimate.

9. Find the jackknife estimate/average of each interacting Green’s function G(ω) and Fock

matrix. Repeat steps 3-8 using the newly jackknifed correlated G(ω).

10. Iterate until both the jackknifed one-body and two-body energies converge independently.

Convergence can be deemed where the one-body/two-body energy changes by less than the

error bar for two iterations.

Figure 5.1: The stochastic second order Green’s function can be solved via an iterative self-
consistent scheme. The scheme in many ways looks similar to the GF2 scheme given in figure
1. However, due to the inversion of data taken from transforming the self-energy to the Green’s
function, the scheme needs to be altered to account for non-parametric bias. This is carefully done
through a resampling scheme called the jackknife analysis.

This method very clearly mimics the deterministic GF2 self-consistent procedure with a few alter-

ations. While this method of self-consistency is clearly more costly than the typical GF2 proce-

dure, the sGF2 jackknife analysis can again easily be parallelized so that each seed, or instance of

41



”take-one-out”, is processed on a different node. The following results will discuss the success of

this method and proof of its viability to properly study the error associated with the Monte Carlo

evaluation.
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CHAPTER 6

Data

In this subsection, we will provide a calibration of the one-body, two-body, and subsequent total

energies for a few simple toy systems. The values determined from the sGF2 procedure will be

compared to those at the deterministic GF2. While the goal of sGF2 is to obtain physical infor-

mation about systems too large or expensive to reach by deterministic GF2, to analyze the quality

of the method it must be first compared to deterministic GF2 results for small systems. Addition-

ally, some larger real chemical systems will be explored. In these systems, the efficiency of the

metropolis algorithm will be shown and discussed. While the energies could be given, these values

are far less interesting than observing the efficiency of using the metropolis algorithm for even

increasingly large systems.

The overall sGF2 algorithm can be considered in two main parts. Part one is the Monte Carlo

sampling scheme. This procedure is built on a version of the core libraries of ALPS (Applications

and Libraries for Physics Simulations libraries) [ALPSCore libraries].16 Further the Cholesky de-

compositions for all Green’s functions are done via the Eigen3 library. The Cholesky decomposi-

tion for all two-electron integrals are done via Dalton. The second part is the overall self-consistent

scheme and required jackknife analysis. The results will analyze the error following one iteration

of sGF2 for a chain of 10 Hydrogens as well as a 4x4 plaquette of Hydrogens in a minimal basis

set. Following, full self-consistent convergence of a water molecule in a cc-pVDZ basis will be

displayed. Finally, the efficiency of the metropolis algorithm will be shown with a water trimer

being stretched as well as a series of Glycine peptide chains ranging from 1-5 Glycine residues.
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6.1 Error Following One Iteration of sGF2

To monitor the error of the sGF2 method, it is important to start by comparing small toy chemical

systems such as a chain of Hydrogens or a plaquette of Hydrogens.

In the first iteration of the sGF2 scheme, the two-electron integrals, Green’s function and Fock

matrix used to calculate the first interacting Green’s function matrix could be identical to those

in the first iteration of deterministic GF2. This makes it convenient to compare the one-body and

two-body energies after the first iteration of sGF2 to those after the first iteration of deterministic

GF2.

If the error is well controlled, a two conditions must be met. First, after the first iteration

the resulting one-body and two-body deterministic energies must fall within two error bars of the

stochastic one-body and two-body energies. Second, as the the numbers of samples considered

increases, the error bars on the resulting stochastic energies should systematically decrease by

1/
√

N.

The following results show the validation of error control for two toy systems.

6.2 Chain of 10 Hydrogens Spaced 1 Angstrom Apart

First, we chose a system of 10 Hydrogens placed 1Å apart. A minimal sto-3G basis set is used.

τ jump is set at 16, and a thermalization of 800,000 is used. The number of Monte Carlo sampling

steps is 107, with 10 measurements taken at each step. The normalization subspace is only one

orbital. Finally the matsubara frequency grid is built with 6,000 points and the non-uniform tau

grid contains 416 points. The jackknife results on the one-body and two-body energies are given

for calculations with 8, 16, 32, 64 and 128 seeds in the plots in figures 1 and 2. It is clear that the

error decreases by 1/
√

N as the number of seeds increases. Additionally the energies stay within

two error bars of the deterministic result.
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Figure 6.1: Here we show that with increase number of starting seeds on the x axis, the determinis-
tic one-body and two-body energies fall within two error bars of the stochastic one-body energy of
a chain of 10 Hydrogens in a sto-3G basis. The black horizontal line represents the deterministic
result for the one-body energy. The purple vertical lines represent the 1-σ error bars.

6.3 4x4 Square Lattice of Hydrogens Spaced 1 Angstrom Apart

Second, we chose a system of 16 Hydrogens organized into a 4x4 square lattice in a minimal sto-

3G basis. τ jump is set at 16, and a thermalization of 800,000 is used. The number of Monte Carlo

sampling steps is 107, with 10 measurements taken at each step. The normalization subspace is

chosen as three orbitals. Finally the matsubara frequency grid is built with 6,000 points and the

non-uniform tau grid contains 416 points. The jackknife results on the one-body and two-body

energies are given for calculations with 8, 16, 32, 64 and 128 seeds in the plots in figures 3 and 4.

It is clear that both conditions required for error validation are met.
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Figure 6.2: Here we show that with increase number of starting seeds on the x axis, the determinis-
tic one-body and two-body energies fall within two error bars of the stochastic two-body energy of
a chain of 10 Hydrogens in a sto-3G basis. The black horizontal line represents the deterministic
result for the one-body energy. The pruple vertical lines represent the 1-σ error bars.

6.4 Error Following Upon Convergence of Fully Self-Consistent

sGF2

As discussed the sGF2 procedure is self-consistent like deterministic GF2. Unlike the first iter-

ation where the same two-electron integrals, Green’s function, and Fock matrix are read into the

procedure, in later iterations a jackknife average Green’s function and Fock matrix will be fed into

the following iterations. These objects have associated errors. Due to this, convergence cannot be

assumed behave identically to the deterministic procedure; however, if the error is controlled prop-

erly between iterations, once at convergence the one-body and two-body deterministic converged

energy should still lie within two stochastic one-body and two-body error bars. Additionally, the

error bar should stay stable in that it will not grow or shrink arbitrarily.
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Figure 6.3: Here we show that with increase number of starting seeds on the x axis, the determinis-
tic one-body energy fall within two error bars of the stochastic one-body energy of a square lattice
of 16 Hydrogens in an sto-3G basis. The black horizontal line represents the deterministic result
for the one-body energy. The pruple vertical lines represent the 1-σ error bars.

6.5 Water Molecule

To study the full self-consistent scheme, we chose a slightly less homogenous system and consider

the error between each iteration until convergence is reached. The system is a water molecule in a

optimized geometry at the restricted Hartree Fock level with a 6-31G(d,p) basis set. In this case a

cc-pVDZ basis set is used for the deterministic and stochastic GF2 calculations. τ jump is set at 16,

and a thermalization of 800,000 is used. The number of Monte Carlo sampling steps is 108, with

10 measurements taken at each step. The normalization subspace is chosen as six orbitals. Finally

the matsubara frequency grid is built with 10,000 points and the non-uniform tau grid contains 416

points. The jackknife results on the totaled one-body and two-body energies are given for each

iteration of the calculation. Each iteration is evaluated with 128 seeds. The results are given in

figure 5.
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Figure 6.4: Here we show that with increase number of starting seeds on the x axis, the determinis-
tic two-body energy fall within two error bars of the stochastic two-body energy of a square lattice
of 16 Hydrogens in an sto-3G basis. The black horizontal line represents the deterministic result
for the one-body energy.The pruple vertical lines represent the 1-σ error bars.

The purpose of the sGF2 method is to reach insight into systems that deterministic GF2 cannot

yet reach. If we are studying a system where we don’t know the resulting deterministic value, an

important question to ask is: what convergence criteria can be set so we know convergence is met?

We propose that this criteria should be that the change in the jackknife estimate of the one-body

and two-body energies, individually, should not change by more than one error bar for two itera-

tions.

6.6 Metropolis Efficiency in a Stretched Water Trimer

Next, we consider how efficient the metropolis condition is in the sGF2 procedure. For this we

studied a water trimer in the cc-pVDZ basis. The geometries studied were based off an optimized
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Figure 6.5: Here we show that upon iterating the self-consistent sGF2 procedure, the converged
deterministic GF2 total energy will fall within two error bars of the stochastic converged total
energy of a water molecule in the cc-pVDZ basis. The x-axis displays which iteration the procedure
is in. Overall, the procedure converges at 14 iterations.The pruple vertical lines represent the 1-σ
error bars of the total energy, and the black horizontal line represents the deterministic GF2 result
for the converged total energy.

geometry at the restricted Hartree Fock level with a 6-31G(d,p) basis set. Each stretched geometry

took the individual water molecules from the midpoint and placed them 1 Angstrom further from

the midpoint. τ jump is set at 16, and a thermalization of 800,000 is used. The number of Monte

Carlo sampling steps is 108, with 10 measurements taken at each step. The normalization subspace

is chosen as eight orbitals. Finally the matsubara frequency grid is built with 10,000 points and

the non-uniform tau grid contains 416 points. As expected, we show that as the distance between

individual water monomers increases, a threshhold is met where the number of accepted orbital

and Green’s function updates reaches a plateau.
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Figure 6.6: Here we show that with a Water trimer that is stretched, the the acceptance ratios for
each type of metropolis condition behave as expected.

6.7 Metropolis Efficiency for Growing Glycine Peptide Chain

Finally, we consider how efficient the metropolis condition is in the sGF2 procedure as the size of

the system, or number of orbitals, increases. For this we studied a series of peptide chains contain-

ing Glycine residues in the 6-31G basis. We studied peptides ranging from 1 to 5 residues. The

geometries studied are given in the supplementary information. τ jump is set at 16, and a thermaliza-
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tion of 800,000 is used. The number of Monte Carlo sampling steps is 107, with 10 measurements

taken at each step. The normalization subspace is chosen as fifteen orbitals. Finally the matsubara

frequency grid is built with 10,000 points and the non-uniform tau grid contains 416 points. While

the cost of a deterministic calculation would be expected to grow like O(nτN5), we expect the com-

putational cost of the Monte Carlo simulation to grow at slower rate. In this example, the time of

simulation seems to develop a linear relationship with the number of orbitals in the Glycine chain

studied. This result is exactly as desired from the Monte Carlo simulation.

Figure 6.7: Here we show that with a five-fold increase in the number of orbitals, the timing of
simulation also increases five-fold.
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CHAPTER 7

Compute-to-Learn: Authentic Learning via

Development of Interactive Computer

Demonstrations within a Peer-Led Studio

Environment

Reproduced with permission from Jafari, M.; Welden, A. R.; Williams, K. L.; Winograd, B.;

Mulvihill, E.; Hendrickson, H. P.; Lenard, M.; Gottfried, A.; Geva, E. J. Chem. Educ. 2017, 94,

1896-1903. Copyright 2017 American Chemical Society.

7.1 Introduction

Learning is widely acknowledged as being situational17, 18, 19, 20, 21 meaning it is inherently depen-

dent upon the environment in which it occurs. “Where” and “how” something is learned is just

as important as “what” is learned, because knowledge is dependent on the context in which it was

developed and applied. Within this framework of situated cognition, instructors can provide stu-

dents with opportunities to reconstruct a concept for themselves through engagement in activities

that are typical of the discipline’s practices,22 thus providing a more meaningful and authentic

learning environment.23, 24 This can be accomplished via the use of real-world problems that are

investigated in a collaborative environment over a sustained period of time.25 It can be difficult
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to incorporate such authentic learning activities into the traditional lecture-based undergraduate

classroom, which is often explanatory in nature and relies on activities structured around estab-

lished knowledge, generally in an environment that is not conducive to collaboration. In an effort

to address these issues in the physical sciences we have developed a compute-to-learn pedagogy,

which incorporates important features of scholarly research into a collaborative studio environment

for undergraduate students.

The compute-to-learn pedagogy was developed as an extension and expansion of the writing-

to-teach pedagogy of Vázquez et al.,ázquezmcloughlinsabbaghrunklesimoncoppolapazicni2012 which focused on uti-

lizing explanatory writing and peer learning activities to engage students in authentic and mean-

ingful learning, and on creation of textbook-like sections that could be utilized by future students

in the course as learning resources. While writing-to-teach effectively enhanced students’ ability

to generate explanations of scientific concepts, incorporating the textbook-like sections written by

the students was not straightforward due to the likelihood of mis-statements and misinformation.

Furthermore, reviewing the documents written by students for accuracy, providing feedback, and

repeating this cycle to achieve a correct description of the physical concept was a time-consuming

and cumbersome process. Due to the time commitment of reviewing said documents, the writing-

to-teach pedagogy could only be applied to small groups of students. The compute-to-learn peda-

gogy follows a guided inquiry approach,26, 27 in which students design and develop an interactive,

computer-based demonstration that illustrates a physical chemistry concept of their choice. Stu-

dents work on this semester-long project in a studio environment that borrows elements from the

arts, where students work in a studio and receive feedback from one another regarding their artis-

tic creations.ázquezmcloughlinsabbaghrunklesimoncoppolapazicni2012, ?, 29 The pedagogy focuses on active learning

strategies and encourages cooperation and collaboration among peers, with undergraduate peer

leaders and graduate student instructors (GSIs) serving as mentors.28, 29 Students investigate a

challenging, open-ended physical chemistry concept rather than a well-defined problem, similar to

a researcher in a scientific discipline. After they have completed a computer-programming tutorial

and studied their topic, students design an interactive visual representation that they present to their
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peers for review in a storyboard process. The students proceed to develop their demonstrations us-

ing the programming skills obtained during the tutorial. Utilizing feedback from several cycles of

development and peer review, students continue to program and refine their demonstrations. Fi-

nally, students submit their work to the Wolfram Demonstrations Project,30 an open-source library

of interactive demonstrations from a variety of fields, for external review and publication. Thus,

students incorporate physical chemistry concepts into teaching tools that could be utilized by oth-

ers.

This framework preserves the advantageous components of writing-to-teach, such as enhancing

the ability of students to generate explanations of scientific concepts, and overcomes the cumber-

some review process of writing-to-teach. The introduction of computer programming into the

pedagogy of compute-to-learn corresponds to an additional benefit for students who are interested

in acquiring that skill. The compute-to-learn pedagogy immerses students in a research environ-

ment that closely simulates the real-world scientific research process, and thus helps to apprentice

students as members of the scientific community.19, 22 Through the process of creating the demon-

stration, students learn new concepts in physical chemistry, mathematics, writing, and program-

ming and are given the opportunity to hone various skills, such as communication, collaboration,

and task management.

The paper is organized as follows. In the next (second) section, we present our first imple-

mentation of the compute-to-learn pedagogy and reflect on the shortcomings that we found. In the

third section, we provide an overview of why we utilized Wolfram Mathematica31 to develop the

demonstrations and provide an example of a demonstration developed in the studio. In the fourth

section, we detail the modifications we made in subsequent iterations of the compute-to-learn stu-

dio and the motivations behind these improvements. In the fifth section, we discuss assessment

of the compute-to-learn pedagogy on student learning utilizing interviews of participants from the

Fall 2016 and Winter 2017 semesters.
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7.2 Initial Implementation of Compute-to-Learn

Compute-to-learn32 was first implemented at the University of Michigan in the 13-week-long Fall

semester of 2015 as the Honors option affiliated with the “Chemical Principles” (CHEM 260)

course. CHEM 260 provides a survey of quantum mechanics, thermodynamics, and kinetics. It

serves as an introductory physical chemistry course in place of a second-semester general chem-

istry course for those students majoring in chemistry or biochemistry. Students could take the

course for honors credit (CHEM 260H) by participating in the compute-to-learn studio, which in-

cluded additional weekly 2 hour meetings. This option was available to all students enrolled in the

primary course. Of the 60 students that were enrolled in CHEM 260 during the Fall 2015 semester,

six students chose to participate in the compute-to-learn studio. This subset of six students met for

12 weekly 2 hour studio sessions. During those sessions the students learned to program in Mathe-

matica, design and create an interactive visualization of a physical chemistry concept, and prepare

their work for publication.

A team consisting of faculty members, graduate students, and a pair of undergraduate peer

leaders met regularly throughout the semester to develop course materials, review progress of stu-

dents, and prepare for studio sessions. The undergraduate peer leaders served as advisors during

the studio sessions and were the primary source of guidance for the students, while two GSIs were

also present during the sessions to assist the peer leaders when necessary. The weekly meeting

schedule for the Fall 2015 studio is shown in Table 1.

Compute-to-learn was designed with the expectation that students would have no prior experi-

ence with Wolfram Mathematica or computer programming in general. To this end, we designed

a four-week tutorial to introduce students to the Wolfram Language. The tutorial focuses on core

Wolfram syntax, with an emphasis on components of the language that are necessary for devel-

oping interactive Mathematica demonstrations. A detailed description of Mathematica demonstra-
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Table 7.1: This table gives a week-by-week overview of the curriculum used in the third iteration
of the compute-to-learn curriculum.

tions is provided in the next section. Scaffolding was incorporated into the tutorial to provide

initial support to students, and is systematically removed as they progress through it.33, 34 The full

tutorial, which is formatted as a Mathematica notebook file, is provided in the Supporting Infor-

mation. While the peer leaders guided students through the tutorial in the studio, the tutorial itself

is entirely self-contained and was designed to make it possible for one to complete it with minimal

supervision. To keep students engaged in the tutorial, they were given short homework assign-

ments after each session and were encouraged to collaborate with peers on these programming

exercises as they completed the tutorial.

Along with small, practical coding assignments, students were provided with a number of what

we refer to as “prompts” (see Supporting Information), which were meant to serve as open-ended

introductions to scientific concepts that they could potentially use in their visualizations. This is

similar to how a research mentor would pitch a research idea to an incoming graduate student.

Each prompt included the following: background information about a physical chemistry concept,

resources to find more information about that topic, and a few open-ended questions to help the
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students think about how they might want to design their demonstration. The prompts were based

on concepts from thermodynamics, such as heat flow, heat capacities, heat engines, ideal solu-

tions, and redox reactions. Students were asked to read the prompts or brainstorm other physical

chemistry concepts of interest and then select and research a topic for their project. Each student

was tasked with creating a storyboard visualization of his or her Mathematica demonstration, to be

used as a guide for completing the project. These storyboards were presented to the class as part

of a peer-review process during which the other students, peer leaders, and GSIs were free to ask

questions and make suggestions.

Following the storyboarding process, students began a three-week period of programming their

demonstrations. They were encouraged to work collaboratively to solve any programming or de-

sign problems, with the peer leaders and graduate students available to provide guidance and advice

as necessary. After completing the first 3 weeks of programming, students presented drafts of their

Mathematica demonstrations to the rest of the class in a second peer-review session. During this

second peer review, students were required to discuss how the input from the previous peer-review

session impacted the development of their demonstrations. Following this session, students had an

additional 1–2 weeks to implement any changes deemed necessary from the review session and to

finish programming their demonstrations. At the end of the semester, students were asked to sub-

mit a brief paragraph describing their Mathematica demonstration. After the descriptive paragraph

was reviewed by peer leaders and edited by students, the demonstrations were submitted to the

Wolfram Demonstration Project to undergo official review. Finally, students were asked to submit

a one-page reflection describing how they dealt with the comments given in each peer-review pro-

cess.

By the final week of the inaugural semester of the compute-to-learn studio, every student sub-

mitted their individually coded Mathematica demonstration to the Wolfram Demonstrations Web

site for a total of six submitted demonstrations; however, only one of the six demonstrations was

published. Students received official review from the Wolfram Demonstrations Project at or after

the end of the semester. This made it difficult to continue working with the students to address
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reviewer comments and incorporate requested changes to complete the publication process. This

was clearly a problem that we needed to address in future iterations of the compute-to-learn studio

in order to provide a more complete research experience. We discuss the implementation of these

and other changes made in two subsequent iterations of the studio later in this article.

7.3 Mathematica Demonstrations

Wolfram Mathematica is a powerful computing environment commonly used in academia, indus-

try, and education.35 It was chosen as the development tool for the compute-to-learn studio primar-

ily based on its fairly straightforward syntax, availability of tools for creating interactive demon-

strations, and the existence of the Wolfram Demonstrations Project, which is a peer-reviewed,

open-source web catalog of interactive demonstrations that provides students with a platform for

publishing their newly created demonstrations. Students can also take advantage of the existing

catalog of 10,000+ demonstrations to survey the capabilities of Mathematica and adopt ideas for

their own visualizations, similar to how researchers can review and be inspired by the scientific

literature.

The user does not need to have any knowledge of programming in order to interact with the

dynamic output of Mathematica, which generally consists of graphics, sliders, and simple button

presses. Creating an original demonstration from the ground up, however, requires a basic under-

standing of the Wolfram Language used in Mathematica, so this is taught in the first few weeks

of the studio using the tutorial developed by our team. The code for many published demonstra-

tions is short and concise, making construction of a demonstration an achievable goal in a single

semester. Additionally, the external review process of the Wolfram Demonstrations Project serves

to simulate the real-world peer-review process involved in publishing a paper in a peer-reviewed

scientific journal, thus contributing to an authentic research experience for the students.

An example of a Mathematica demonstration and the corresponding code are shown in Figures

1 and 2, respectively, and can be found on the Wolfram Demonstration Project webpage.2 This par-
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Figure 7.1: Snapshots of a Mathematica demonstration illustrating heat flow between two reser-
voirs of water. There are two sets of sliders for mass and temperature of each reservoir, which are
varied between snapshots a, b, and c. Adjusting the slider for time will update the temperatures of
the reservoirs until equilibrium has been reached, as has nearly been achieved in snapshot d. This
demonstration is available on the Wolfram Demonstrations Project webpage2

ticular example was developed by a student who participated in CHEM 260H in the Fall of 2015. It

demonstrates heat flow between a hot and a cold vessel, each containing water. The user is able to

interact with the sliders to vary the mass and temperature of both the hot and cold reservoirs, while

the visual demonstration calculates the equilibrium temperature in real time. Additionally, there is

a slider to show how the system approaches equilibrium with exponential time dependence. The

heat capacity is chosen to be a constant. The code in Figure 2 contains several lines (ca. 20) of

Mathematica’s built-in functions, which produce all of the visual and interactive components of

the demonstration.
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Figure 7.2: Code used for creating the heat flow demonstration2 shown in Figure 1.
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7.4 Subsequent Implementations of Compute-to-Learn

Since the initial pilot run, the compute-to-learn honors studio has been offered two additional times

in the Fall 2016 and Winter 2017 semesters. These subsequent iterations presented opportunities

to ameliorate problems that became evident after the first semester (Fall 2015). At the end of the

first iteration of compute-to-learn, the students, peer leaders, and GSIs had an informal discussion

about the studio in order to generate a set of modifications for improving on the studio experience

and execution. For the following iterations, we developed and conducted formal interviews with

individual students, which are discussed in more detail in the next section. We sought Institutional

Review Board (IRB) approval for these interviews and surveys involving students, which were

determined to be exempt from IRB oversight. Most of the concerns that students mentioned were

centered on time management and project management, as well as misleading visualizations stem-

ming from misunderstandings of physical chemistry concepts. Common concerns from students

revolved around not knowing where to start with their code or experiencing frustration during ex-

tended time periods where it was felt that little progress was being made. As a way to help address

these issues, as well as further promote collaboration, we encouraged students to work in groups

of two or three in the Fall 2016 and Winter 2017 semesters.

Similar to the issues found in the writing-to-teach implementation, we found that students were

prone to creating confusing visualizations of concepts. For example, a student who was showing

the difference between temperature and heat chose to show heat change on a thermometer. For this

reason, we decided to increase the level of GSI involvement to a role similar to that of a research

advisor, with the purpose of addressing misconceptions and ensuring physically accurate represen-

tations earlier in the semester. Additionally, the GSIs began holding weekly office hours during the

Winter 2017 semester so that students had a forum between studio sessions to ask questions and

discuss problems they were having.

In the first iteration of the studio, many students indicated that they would have liked to have

additional time in the studio allocated to programming their projects, and would rather have spent

61



less time on the Mathematica tutorial. To accommodate this, we reduced the length of the tutorial

from 4 weeks to 3 weeks for both the Fall 2016 and Winter 2017 iterations of the studio. While this

presented the students with less formal training in programming with Mathematica, most students

expressed their appreciation for having more time to program. With an extra week available for

programming, we instituted an additional peer-review session the week prior to submission of the

demonstrations, as we found the peer-review sessions and the discussions that took place during

them to be very beneficial during the first iteration. This provided the students, peer leaders, and

GSIs with another chance to identify mistakes. With this additional peer-review session, students

were able to discuss and compare challenges they were facing with their projects, and to provide

suggestions or solutions to their peers. Because most of the students in the first iteration did not

follow through with publication once the semester had ended, in subsequent iterations we asked

all students to submit their demonstrations for publication 3 weeks prior to the end of the semester.

This allowed time to receive official review from the Wolfram Demonstrations Project and imple-

ment any changes that were required before the end of the semester.

In addition to format changes, we have expanded the studio to include students from the

second-semester general chemistry/physical chemistry course for nonchemistry majors (CHEM

230), in order to enhance diversity and increase communication between the two groups of stu-

dents. CHEM 230 covers many of the same topics as the CHEM 260 course, including thermody-

namics, kinetics, electrochemistry, and nuclear chemistry. It excludes calculus-based formulations

and quantum mechanics. The CHEM 230H and CHEM 260H students met together within the

same studio environment as a single class, enabling collaboration between students with different

levels of physical chemistry and mathematics knowledge. Opening the honors studio to CHEM

230 students increased enrollment, and had the benefit of allowing for more collaboration and a

greater diversity of projects among students.

Many of the students enrolled in CHEM 230 are interested in health professions and medicine.

To tailor the honors studio experience to better fit their needs, we invited a guest speaker from the

University of Michigan Medical School during the Winter 2017 iteration of the studio. The invited
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speaker was a medical student who uses programming with his own medical studies. He develops

demonstrations that visualize and simulate medical topics, such as anesthesia administration rates,

that are not easy for students or patients to understand. He also discussed how his skills were used

at clinics to help parse through and find patterns in large backlogs of data. The speaker presented

computer programming in a context that many of the students could relate to. As one student put it:

He used programming a lot using medical concepts and I thought that was really cool, and right

now I’m trying to choose between one or the other and it just gave me the idea, ”Why not do

both?”

The students were extremely interested in his talk; it further motivated them to learn more

about programming and complete their projects.

A comparison of the three iterations of the compute-to-learn honors studio is shown in Table

2. With the modifications made in each successive iteration, the number of publications increased

significantly. In the first semester, one of six students published, while in the second iteration of

the studio three of four groups published. In the most recent semester, where we had the most

students and strictly enforced the submission deadline, all nine groups submitted and published

their demonstrations. It should be noted that publishing a demo was not a requirement for com-

pleting the studio (see Table 2). Every student who completed the studio acquired the level of

mastery necessary for creating an educational demo. Thus, a student who submitted all work, put

in a strong display of effort, and created an educationally effective demo could still complete the

studio without publishing the demo. Students who dropped out of the studio did so for a variety of

reasons, most of which related to health issues and time constraints. Students were not penalized

for dropping out of the studio. Surveying the semesters, the studio retained the most students in the

Winter 2017 semester, with only about 20% deciding to drop out of the studio compared to 50%

in the prior semesters.
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Parameters Fall 2015 Fall 2016 Winter 2017
Courses Involved CHEM 260 CHEM 260 + CHEM 230 CHEM 260 + CHEM 230
Students Initially
Enrolled in Studio 12 16 24

Students Completing
Studio 6 8 19

Tutorial Length 4 weeks 3 weeks 3 weeks
Group/Individual

Work Individual Groups of 1-3 Groups of 1-3
Guest Speaker No No Yes

GSI Involvement Very little Biweekly meetings with groups 1 GSI per 3 groups; biweekly meetings
Office Hours No No Yes

Table 7.2: This table summarizes the general enrollment statistics as well as interventions that took
place in each iteration of the compute-to-learn curriculum.

7.5 Student Outcomes from the Compute-to-Learn Studio

We conducted formal interviews at the end of the Fall 2016 and Winter 2017 iterations of the

compute-to-learn studio to assess student experiences and outcomes. Our hypothesis was that the

students enrolled in the honors studio would gain meaningful experience and familiarity with the

scientific research process, as well as new skills in programming and problem solving. The in-

terviews were voluntary for the students and were composed of 10 general questions about their

experience in the studio (see Supporting Information). The interviews were conducted by studio

peer leaders from the previous semester. The students were not acquainted with their interviewer

so that they could speak more freely about their experiences. Eight students were interviewed in

the Fall 2016 semester and nine students were interviewed in the Winter 2017 semester. Audio

recordings of the interviews were transcribed and then coded to identify commonalities and over-

arching themes. While many of the themes that we identified fit well with our hypothesis, others

came as a surprise.

The themes most commonly mentioned by five or more students can be placed into the follow-

ing seven categories:

1. Desire to learn programming (mentioned by all 17 students)

2. Appreciation for peer review
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3. Independent learning

4. Learning to ask questions

5. Benefits of group work

6. Appreciation for hands-on activities

7. Need for patience and practice when faced with a new challenge

The most universal theme we discovered was that every student was either motivated to join

the studio because of the opportunity to learn to code or finished the studio with a sense of accom-

plishment having gained programming skills. As one student described the reason they joined the

compute-to-learn studio, “I thought it would be really interesting because I don’t have any coding

experience, and I don’t think I would have had the opportunity to take any classes on coding.” After

working closely with the students and analyzing the interviews, we found that many of the students

shared this sentiment of not having the opportunity or the ability to learn computer programming

within the confines of their curricula. The compute-to-learn studio provided students in CHEM

230 and 260 with an environment in which they could learn how to code within the context of a

required chemistry course. Many students felt that the greatest skill they learned in the studio was

how to code; as one student put it, “Just learning what code really is, and I guess how it works,

because I had no interaction with that before.”

The remaining six categories fit well into the main purpose of the studio: to apprentice students

into a scientific community via an authentic research experience. To identify this, we looked for

an impact on the following student abilities:

1. The ability to learn independently while collaborating with a broader community

2. The ability to ask substantive, pertinent questions and to expediently ask a colleague or

mentor for assistance when necessary

3. The ability to manipulate or analyze data or information into a presentable form

Many of the students commented on the sense of accomplishment associated with being able to

independently learn complex topics or navigate various resources to resolve programming issues,

without relying on formal instruction from a teacher. In one student’s words, “I think I learned
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how to teach myself how to use the online guides and play with them, and kind of just figure it out

without much official lecture”, while another student described it as, “Alright, this is an individual

project and you’re going to have to figure it out on your own.” Other students even mentioned that

they found it more “fun” and fulfilling to research their problems independently and come to a

solution without help.

Many students also mentioned that they learned the benefits of knowing when and how to seek

help, rather than spend an exorbitant amount of time trying to solve problems on their own. Ad-

ditionally, they found the peer-review process generally helpful, both from the perspective of the

reviewer and as the presenter. As a researcher, the process of official peer review prior to publica-

tion in a journal is integral to the scientific process. While we expected students to underappreciate

the importance of this part of their project, a sizable number mentioned how important peer review

was to submitting a high-quality demonstration. For example, one student offered the following

observations:

It was really useful when we would present our storyboard and then everyone else would tell

us what they thought about it, because we already have our own opinions on it. I was like, ”Oh,

I think it’s perfect already, the way it is,” and the audience members, our peers, were like ”Oh, I

think you should add that and then you’ll clarify this one point for other people,” and I was like

“Oh, I didn’t know that’s another way to view my demo.” So, be open to other comments that

people might have.

In addition to the benefit of peer review, many students discovered the interdisciplinary as-

pect of research through their participation in the studio. Students learned that they could utilize

computer skills, which they originally did not relate with chemistry, to help guide their chemistry

research. As one student phrased it, “I definitely think that’s a skill, to be able to analyze something

and then be able to use your intuition to translate that to another field. Chemistry into computer

science, I thought that was a good skill to pick up.” Overall, the feedback from the interviews
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was positive. In addition, their comments were consistent with our original hypothesis that the

compute-to-learn studio constitutes an experience for the students that resembles that of scientific

research.

7.6 Future Directions

After completion of three full semesters of the compute-to-learn studio, it is clear that the studio

provides a suitable environment for students interested in scientific programming to learn how to

write code in Mathematica and to utilize this skill to explain physical chemistry concepts. While

we recognize that the low ratio of students to peer leaders and GSIs would make scaling up the

studio to a traditional large lecture setting challenging, we would like to emphasize the fact that the

Wolfram Mathematica software is incredibly versatile, as the Wolfram Demonstration Project in-

cludes demonstrations from a wide variety of fields. As such, the compute-to-learn pedagogy that

we implemented within the CHEM 260H and CHEM 230H studio can easily be generalized and

extended to many other courses and disciplines. For example, the studio could be easily extended

to quantitative courses in Physics, Statistics, Economics, Math, and Engineering. The software and

pedagogy is also suitable for more qualitative topics, such as those found in Biology, Medicine,

Art, and Architecture.

Going forward, several ways of expanding and strengthening the pedagogy will be investigated.

For example, we intend for the peer leaders to take stronger leadership roles in the forthcoming

Fall 2017 iteration. We are also considering shortening the tutorial to 2 weeks as we have seen the

students’ confidence in self-guided learning of programming increase semester to semester. This

will give the students more time to research their chosen prompts before presenting their story-

boards and beginning to code. Overall, we wish to make note of the positive impact the studio

had on the students’ ability to problem solve, develop an appreciation for research, and acquire

confidence in learning new and useful skills such as programming.

We also plan on expanding our assessment efforts. In Fall 2016 and Winter 2017, we collected
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some preliminary data regarding student attitudes about chemistry using the “Colorado Learning

Attitudes about Science Survey” (CLASS survey).36 The survey was given to all students enrolled

in CHEM 230 and CHEM 260, including the students enrolled in CHEM 230H and CHEM 260H,

at the beginning and end of the semester. The CLASS survey is meant to model the distinctive

differences between novice and expert learners’ beliefs about learning science and science as a

discipline. Ideally, a person who takes part in research would be defined as a more expert learner

while a nonresearcher would be a novice learner. At the end of each semester, the surveys showed

neither a positive nor a negative relationship for the students enrolled in either the normal CHEM

230/260 course or the CHEM 230H/260H compute-to-learn studio. We will continue to expand

and improve the compute-to-learn pedagogy by expanding our assessment and continuing to im-

prove the studio, which we hope will benefit anyone in the scientific community who will consider

adopting this pedagogy.
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Part III:

Conclusions
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CHAPTER 8

Conclusion

This work has made progress toward understanding the full quantitative potential of the second-

order Green’s function to study real solids. In chapter four of this thesis, I proposed a method to

use importance sampling in the Monte Carlo integration of the second-order Luttinger-Ward func-

tional in a way that can easily provide us with the second-order self-energy. It was shown that this

sampling scheme was behaving as expected. In Chapter five, I have shown that the newly devised

method can be used within the fully self-consistent second-order Green’s function scheme with

the proper statistical analysis. I described how the use of jackknife resampling provides a rigorous

way to complete self-consistency. In chapter six, I have shown that the use of jackknife resampling

does indeed control the stochastic error to behave as expected with a 1/
√

N relationship for a chain

of 10 Hydrogens and a square plaquette of 16 Hydrogens both in minimal basis sets. Additionally,

I showed with a series of results ranging from one dimensional and two dimensional toy systems

to more realistic systems like stretched water trimers and amino acid chains, that the metropolis

algorithm is extremely beneficial at a large enough system size. Overall, these sections of the

thesis showed that by using the method in a slightly altered self-consistent second-order Green’s

function scheme, we were able to accurately evaluate the energetics of several systems of interest.

We also were able to investigate the bias associated with the necessary inversion of data required

in the sGF2 iterative procedure, and by way of jackknife resampling showed good control of the

bias through iterations of multiple systems. This gives us insight into what can be achieved with

the GF2 method. Lastly, in chapter seven I discussed an investigation of the importance to include
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coding, such as the coding needed to develop the worked presented in chapters four through six,

curriculum into upper level physical chemistry courses.

Overall, this work opens many avenues for future research. To begin, recently an interesting

extension of the GF2 formalism has been extensively studied. It is an embedding procedure called

Self-Energy Embedding Theory (SEET).37 A very clear next direction for the sGF2 algorithm is

for it to be used within an embedding procedures such as SEET for molecules and solid-state

problems. The major concern in this field of study would be how to incorporate the error of the

stochastically evaluated bath with the deterministically calculated system. Furthermore, stochastic

procedures and importance sampling could be used to make a generic study on the Dyson equation

to observe what order of perturbation is necessary to retrieve all the physical information necessary

from a particular system. There is still much to be explored in the area of Monte Carlo studies of

electronic structure methods. Like the Second-Order Green’s function, other many body Green’s

function formalisms may also benefit from use the importance sampling procedures described. The

GW method is one that could seamlessly introduce a nearly identical algorithm as sGF2 to study

the results of GW for increasingly large systems. Additionally, it is my hope that this work pro-

vides a foundation for using self-consistent methods in electronic structure theory, even when the

computational cost seems steep. From this work, it should be clear that much is to be done in the

area of not only Green’s function research, but stochastic diagrammatic perturbation theory within

the field of chemistry.

Electronic structure is a growing field with immense importance to the chemistry, physics, and

materials community. Considering the importance of this field, high performance computing and

technology in general, I would like to comment on the importance of enhancing and reconstructing

the educational program that undergraduate chemists in the United States receive. Most programs

do not including a programming requirement, and it is clear that our world in the 21st century is

dominated by computer technology. This is important for even a synthetic chemist. Many phar-

maceutical companies are obtaining data at a scale never before seen. Chemists entering industrial

positions will need to deal with this data in an efficient way. Generally, this should involve using
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many of the new sophisticated programming languages meant to deal with the statistics of large

amounts of data such as Python or R. Even more, open source software packages are becoming a

standard for computational chemists. Learning the standard coding practices is of upmost impor-

tance for incoming (and continuing) theoretical chemists. Lastly, I argue that most chemists who

use programming languages in their work would agree that they have obtained a deeper under-

standing of the chemistry behind the quantitative aspect of the field by implementing new codes.

Further work must be done to include programming into, not only the undergraduate, but also the

graduate level coursework for the chemistry degree at the institutions in the United States. This

addition will not only strengthen the educational background of our chemists, but it will also drive

forward the field of theoretical chemistry.
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Appendix A

Interview Questions

1. What were the reasons that made you want to join the honors studio?

2. What was the biggest challenge that you encountered through your participation in the hon-

ors studio, and how did you overcome it?

3. What was your biggest accomplishment in the honors studio?

4. What are the most important skills that you learned through your participation in the honors

studio?

5. What are the most important lessons that you learned through your participation in the hon-

ors studio?

6. What advice would you give to future participants regarding how to be successful at producing

a publishable demo?

7. Did participation in the studio have an impact on your view of scientific research, and if so

in what way?
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8. Did participation in the studio change in any way your view of your own strengths and weak-

nesses as a scientist, and if so how?

9. Did participation in the studio have an impact on your future professional plans, and if so

in what way?

10. In your opinion, how did your participation in the studio impact your performance in CHEM

230/260?
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