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ABSTRACT

Application of the electromagnetic scattering theory to the physical models of microwave
remote sensing of natural targets including but not limited to polar ice sheets, soil surface,
vegetated area, etc. and fluctuation electrodynamic as well as microwave resonators are
presented in this thesis. Advancement of the remote sensing technology led the radar and
radiometry measurement to a level of accuracy that correct interpretation of the measure-
ment outcomes and relating those to the unknown parameters under study requires the
physical models that are capable of resembling the real life situation as close and accurate
as possible. Along with accuracy, the model should be simple enough for the purpose of
real time implementation. This is where the analytical solution of the physical problem
manifest itself against pure numerical methods in terms of the fast evaluation and more im-
portantly the insight that is not available in a numerical approach. Scattering from random
rough interferences is studied throughout the first part of the thesis. Also, beyond the small
perturbation method, the T-matrix method is also studied as an alternative approach that
works for larger surface heights. Beside these, an alternative partially coherent approach
is also introduced to significantly reduce the computational cost of the problem of layered
media with random permittivity profile. The finite coherency length of the propagating
wave inside the layered media is considered to divide the layered media into smaller blocks
and then combine the block’s responses afterward. In the second part we consider fast
and broad band computation of the Green’s function inside the cavity of irregular shape.
Conventional way of computing the Green’s function of an irregular shaped cavity is the
numerical methods such as surface integral equation or finite element methods which can
obtain the response at single frequency with intensive computational cost. The proposed
method utilizes the imaginary wave number extraction of the Green’s function from itself to
develop a broad band and at the same time fast converging hybrid spatial-spectral expan-
sion to achieve a highly accurate result for the Green’s function whereas in computing the
Green’s function of cavity using numerical methods, a fine sweep over the frequency band is
required to capture individual resonance line, the broad band solution provide the solution
thousand times faster than the competitor methods. The last part of the thesis includes a
classical electromagnetic treatment of the Casimir self-stress on nano tubes. Although the
Casimir force on the parallel plates can be regularized by throwing away the bulk part of
the full Green’s function, it is shown that such a regularization does not remove divergence
of zero-point energy and the final stress is computed by applying further regularizations.

xix



Chapter 1

Fluctuation-Dissipation Theorem
and Brightness Temperature

1.1 Introduction
Every object at non-zero temperature T radiates electromagnetic wave Spontaneously and
continuously. This electromagnetic radiation is often called the thermal radiation as the
radiation spectrum is stronger over the Infrared band. Thermal radiation from an object
is strongly dependent on the physical properties of the object[1, 2]. In order to simplify
the subject, people often define an imaginary object that radiates perfectly (In term of far
field radiation) which is know as Blackbody. Perfect radiator here stands for an object that
achieves maximum possible radiated power when it is in equilibrium with a thermal bath
at temperature T . Assuming such an object separates out the dependence of the thermal
radiation from the physical characteristics of the radiator. Planck’s radiation law expresses
how the thermal radiation depends on the temperature of the radiator object and what
would be the frequency content of the radiated field.

1.2 Planck’s Radiation Law
The radiated power from an object primarily depends on the size of the object, the direction
in which power being measured, the bandwidth of the receiver, and the distance between
the receiver and the radiator. In order to quantify radiated power in general, a normalized
quantity can be defined that elevates the above dependencies. Radiated power from a unit
surface area of an object at thermal equilibrium at frequency of ω within unit solid angle
of emission is called the Radiance of the object. For a blackbody at fixed temperature T ,
the radiance IB(ω,T ) is given by the Planck’s law[3–6],

IB(ω,T )= ~ω3

2π2c2
1

e~ω/kT−1
(1.2.1)

With unit of [IB]=W·m−2 ·Sr−1 ·Hz. Note that this is the maximum possible radiance for
an ideal object that can deliver whole thermal energy to the radiation field. Now, for an
arbitrary imperfect object (Gray object) we introduce the emissivity function 0≤e(Ω,ω)≤1,
which is its effectiveness in radiating the thermal energy, as [4]

IG(ω,T )=e(Ω,ω)IB(ω,T ) (1.2.2)

The thermal radiation in general is not polarized. However, the emissivity e(Ω,ω) for
different states of polarization can be different that changes the radiated power polarization.
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Figure. 1.1 plots the radiance spectrum for different body temperatures. The frequency
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Figure 1.1: Radiance of a blackbody at temperature T vs frequency for different
temperature.

at which maximum radiance occurs shifts to higher frequencies as temperature increases
in a linear fashion (fmax∝T ). This shows that a light bulb should works at very high
temperature to have a good visible radiation at optical frequencies. For temperatures in
the order of room temperature, maximum radiation falls within the IR band (300 GHz
- 430 THz) where the radiation can be absorbed greatly and produce heat. That’s why
blackbody radiation is known as thermal radiation.

If we have a receiver with infinite bandwidth that integrates the radiated power over
all frequencies, the result is interesting. Power radiated by surface dA of a blackbody
through solid angle of dΩ and frequency band dω/(2π) is dP (T )=IB(T,ω)dAdω/(2π)dΩ.
The blackbody can be placed face up inside a sphere (ẑ is normal to the surface). Then the
power flux through a surface element on the sphere would be IB(T,ω)dAdω/(2π)cosθdΩ
and total radiated power over all bandwidth [7]

dP (T )
dA =

∫ ∞
0

dω
2π

∫
(2π)+

dΩcosθIB(T,ω) (1.2.3)

= ~
4π2~3c2

∫ ∞
0

dω (~ω)3

e~ω/kT−1

=π2(kBT )4

60~3c2

where the last integral can be computed using the Gamma function. Therefore, broadband
radiated power per unit area of the blackbody is [8, 9]

P (T )
A

=σT 4 (1.2.4)

where σ= π2k4
B

60~3c2 is the Stefan-Boltzmann constant ([σ]=W·m−2 ·K−4). This is the Stefan-
Boltzmann law which shows the broadband radiated power from unit area of the blackbody
is proportional to T 4. This law was discovered before Planck discover the black body
radiation spectrum.
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1.2.1 Black Body as a Bosonic Gas

The black body can be considered as a photon gas in equilibrium with the cavity. The
photon gas is actually collection of simple harmonic oscillators with different natural fre-
quencies that construct the modes inside the cavity. The dispersion relation of each mode
of oscillation is

ω=ck (1.2.5)

The density of states of the electromagnetic waves as a function of k is the number of
modes with wave number between k and k+dk. Considering a cavity of volume L3 with
periodic boundary condition, each mode occupies the volume of (2π/L)3 in k−space, while
the volume of a spherical shell of thickness dk at k in spectral space is 4πk2dk. In addition,
in the volume that occupied with a single mode, there are two electromagnetic modes with
two polarizations. Therefore, the density of states can be expressed as,

g(k)dk= 4πk2

(2π/L)3×2=V k
2dk
π2 (1.2.6)

where V is the volume of cavity. Density od states can be equivalently expressed in term
of ω through

g(ω)=g(k)
∣∣∣∣
k=ω/c

dk
dω (1.2.7)

and hence,

g(ω)dω=V ω
2dω
π2c3 (1.2.8)

The density of states g(ω)dω shows number of photons in the box with volume V , that
have oscillation frequency between ω and ω+dω. According to Bose-Einstein statistic for
photons in equilibrium at temperature T , average number of photons in state ω is given by,

N(ω)= 1
e~ω/kT−1

(1.2.9)

Then the energy of all of the system in state ω is (N(ω)+1/2)~ω as the Hamiltonian
of the system can be written as H=(N+1/2)~ω ant N is the particle number operator.
Considering the density of state, total electromagnetic energy of the system is given by

U=
∫ ∞

0
dωg(ω)~ω

(1
2 + 1

e~ω/kT−1

)
(1.2.10)

The constant term of 1/2 corresponds to the zero point energy of the vacuum which results
in a divergent result for the energy. However, this term can be ignored by redefining the
reference of the energy (normal ordering). Therefore, renormalized energy can be written
as

U=V ~
π2c3

∫ ∞
0

dω ω3

e~ω/kT−1
(1.2.11)
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The energy per unit volume u=:U/V

u= ~
π2c3

∫ ∞
0

dω ω3

e~ω/kT−1
(1.2.12)

From the energy density, the radiated power would be cu. If we express the frequency
integral in terms of ν

P= ~
π2c3

∫ ∞
0

2πdν ω3

e~ω/kT−1
(1.2.13)

Normalizing the integrand by 4π gives power density per unit solid angle. In fact, before
discovery of Planck, people tried to do inversely, i.e. somehow finding a radiation spectrum
IB(ω,T ) from the Stefan-Boltzmann law in a compatible way. From (1.2.13), the specific
intensity of the radiation can be identified as

IB(ω,T )= ~
2π2c3

ω3

e~ω/kT−1
(1.2.14)

which is the Planck’s radiation law of the black body.

1.3 Fluctuation-Dissipation Theorem
Although Planck’s radiation law describes radiation intensity of a black body object in
thermal equilibrium at temperature T , for small objects compared to the thermal wave-
length λT , radiated energy differs from black body radiation because of interference of
radiation with the object itself. In other words, the emission from the object depends on
the other physical parameters of the object in addition to its temperature. The thermal
wavelength λT comes to the picture by considering a photon with oscillation frequency of ω.
Assigned energy ~ω corresponds to thermal energy of kBT that gives a thermal wavelength
of λT =~c/kBT (thermal wavelength is approximately 7µm at room temperature).

Another question regarding the thermal radiation of the black body comes about the
polarization of the radiated wave. Experiments have shown that the radiated heat can be
polarized depending on the size of the object (aspect ratio). As we can predict, thermal
radiation is nothing but the radiation from the fluctuating particles inside the object. If
we have a wire like object with radius smaller than the thermal wavelength, it is expected
to mostly have polarized electric field along the wire. Actually it is the case, as the wire
length tends to zero, radiation becomes fully polarized along the wire [1].

If instead of radiation intensity, the excitations sources inside the object are known
in a consistent manner, then radiation formulation can account for the radiation proper-
ties like polarization, near field radiation and physical parameters of the radiating object.
Fluctuation-dissipation theorem provides a consistent inversion of the radiation intensity
to find the source of radiation.

1.3.1 Classical Response Function

Consider a system consists of dipole moments P (s) with Hamiltonian H0(s) where s=
(qi,pi)∈Ω is a point in the phase space of the system where qi’s and pi’s are coordinates
and conjugate momenta, respectively. The probability density of any physical quantity of
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the system (including dipole moment) to be in the state s in equilibrium at temperature
T , is classically given by the Boltzmann distribution [10],

feq(s)∝e−βH0(s) (1.3.1)

where β=1/kBT . Statistical average of the dipole moment P in equilibrium over the whole
phase space can be obtained as

〈P 〉=

∫
Ω

dsP (s)e−βH0(s)∫
Ω

dse−βH0(s)
(1.3.2)

If perturbation electric field E(r,t) interacts with the system, the Hamiltonian become
perturbed H=H0+δH where the perturbation Hamiltonian contains interaction of the
applied electric field with the dipole moment of the system,

δH=−
∫
V

drP (r,t)·E(r,t) (1.3.3)

If we consider an object with physical dimension smaller than the thermal wave length, then
we can approximate the object by it’s dipole moment (which is independent of location)
and write

δH=−P (t)·E(t) (1.3.4)

Due to this perturbation, the expected value of the dipole moment changes 〈δP 〉(t)=
〈P (t)〉−〈P 〉eq where 〈P (t)〉 is the expected value after applying the perturbation at time
t. If we assume the change in the dipole moment expectation is small and is linearly pro-
portional to the perturbation electric field, the change in the dipole moment of the system
can be written as [10, 11],

〈δP 〉(t)=
∫ ∞
−∞

dt′ χ(t,t′)·E(t′) (1.3.5)

where, χ is the linear response function of the system. For a perturbation electric field
which is constant E0 before t and vanishes afterward,

〈δP 〉(t)=
[∫ ∞

t
dt′ χ(t′)

]
·E0 (1.3.6)

where, causality of the response function (χ(t)=0 for t<0) and stationary time response is
applied. Equation (1.3.6) can be solved for the response function to find

χij(t)=− 1
E0j

U(t) d
dt〈δPi〉(t) (1.3.7)

Here, U(t) is the unit step function to enforce causality. The response function χij(t) can
be determined by knowing the time derivative of δ〈P 〉(t). The expectation value of the
dipole moment P after perturbation can be evaluated using Boltzmann distribution with
perturbed Hamiltonian H0+δH [12]

f(s)∝e−β(H0+δH)=feq(s)e−βδH≈feq(s)
[
1−βδH

]
(1.3.8)
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Therefore the expectation value of the dipole moment after applying perturbation would
be

〈P (t)〉= 〈P 〉eq−β〈PδH〉eq
〈1−βδH〉eq

(1.3.9)

=
(
〈P 〉eq−β〈PδH〉eq

)[
1+β〈δH〉eq

]
Keeping the terms up to the first order of applied field,

〈P (t)〉=〈P 〉eq−β〈P (t)δH〉eq+β〈δH〉eq〈P (t)〉eq (1.3.10)

or,

〈δP 〉(t)=−β〈P (t)δH〉eq+β〈δH〉eq〈P (t)〉eq (1.3.11)

For the perturbation at time t=0, δH=−P (0)·E0

〈δP 〉(t)=β
[
〈P (t)P (0)〉eq−〈P (t)〉eq〈P (0)〉eq

]
·E0 (1.3.12)

=β
〈[
P (t)−〈P 〉eq

][
P (0)−〈P 〉eq

]〉
eq
·E0

=β
〈
δP (t)δP (0)

〉
eq
·E0

Note that the expectation value 〈δP 〉(t) is over non-equilibrium states while the above result
is in term of equilibrium expectation. Substituting in Eq. (1.3.7) results in

χ(t)=−βU(t) d
dt

〈
δP (t)δP (0)

〉
eq

(1.3.13)

However, it is assumed that the response function is stationary in time, thus

χ(t)=−βU(t) d
dt

〈
δP (t+τ)δP (τ)

〉
eq

(1.3.14)

In general, being stationary in time implies uncorrelated spectrum in frequency domain,
except at a point. Assuming Fourier transform of dipole moment,

δP (t)=
∫ dω

2π e
−iωtδP (ω) (1.3.15)

and the response function as

χ(t)=
∫ dω

2π e
−iωtχ(ω) (1.3.16)

then, correlation of frequency components yields〈
δP (t+τ)δP (τ)

〉
=
∫ dω

2π

∫ dω′

2π

〈
δP (ω)δP (ω′)

〉
e−iω(t+τ)e−iω

′τ (1.3.17)

=
∫ dω

2π

∫ dω′

2π

〈
δP (ω)δP (ω′)

〉
e−i(ω+ω′)τe−iωt
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Left hand side does not depends on τ . Right hand side becomes independent of τ if〈
δP (ω)δP (ω′)

〉
∝δ(ω+ω′) (1.3.18)

Assuming this proportionality,and since δP (t) is a real quantity

d
dt

〈
δP (t+τ)δP (τ)

〉
eq

=
∫ dω

2π (−iω)
〈
δP (ω)δP ∗(ω)

〉
e−iωt (1.3.19)

Fourier Transform of the response function is convolution of spectrum of step and spectral
density of the dipole moment,

χ(ω)=−βU(ω)?−iω2π

〈
δP (ω)δP ∗(ω)

〉
(1.3.20)

=−β
[
− 1
iω

+πδ(ω)
]
?(−iω)

〈
δP (ω)δP ∗(ω)

〉
Finding the imaginary part of the response function is less difficult.

2Im χ(ω)=2π ω

kBT

〈
δP (ω)δP ∗(ω)

〉
(1.3.21)

If we call the δP (ω) noise polarization PN (ω) caused by perturbation, then〈
PN (ω)P ∗N (ω′)

〉
= kBT

πω
Im χ(ω)δ(ω−ω′) (1.3.22)

This derivation is based on classical physics. In order to transit to the quantum limit,
classical average energy of kBT per degree of freedom should be replaced by energy of the
harmonic oscillator

E(ω,T )=
(
n(ω)+ 1

2

)
~ω=~ω

( 1
eβ~ω−1 + 1

2

)
(1.3.23)

Henceforth, Spectral density of the noise polarization is given by [2, 13]〈
PN (ω)P ∗N (ω′)

〉
= ~
π

Im χ(ω)
( 1
eβ~ω−1 + 1

2

)
δ(ω−ω′) (1.3.24)

= ~
2π Im χ(ω)coth

( ~ω
2kBT

)
δ(ω−ω′)

In our derivation, χ is response of polarization to the external electric field which means
Imχ=ε0ε

′′ and Reχ=ε0(ε′−I). It turns out that for a local medium, the noise polarization
at different points in space is uncorrelated. For an isotropic, local material at temperature
T 〈

PN (r,ω)P ∗N (r′,ω′)
〉

= ~ε0
2π ε

′′(r,ω)coth
( ~ω

2kBT

)
δ(ω−ω′)δ(r−r′)I (1.3.25)
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using D=ε0E+P microscopic Maxwell’s law in the dielectric medium reads

∇×H=J(r)+ε0
∂E

∂t
+ ∂P

∂t
+ ∂PN

∂t
(1.3.26)

The noise current density JN is related to the noise polarization through JN=∂PN/∂t and
therefore,〈

JN (r,ω)J∗N (r′,ω′)
〉

= ~ω2ε0
2π ε′′(r,ω)coth

( ~ω
2kBT

)
δ(ω−ω′)δ(r−r′)I (1.3.27)

This is the statement of Fluctuation-Dissipation Theorem (FDT) [13, 14]. Note that
here we considered positive and negative frequencies. Single sideband power spectral den-
sity would have additional factor of 2. This is the correlation of fluctuating current density
as a result of loss in the medium. According to Fluctuation-dissipation theorem, fluctua-
tions and loss in the medium are always tied together. All the physical media are lossy,
as having a lossless media contradict the Kramers–Kronig relations and consequently the
causality principle. Therefore having a fluctuation or excitation in the medium comes with
dissipations. On the other hand, wherever there is loss (always), there should be some
fluctuations in the medium that is given by FDT.

1.4 Radiated Electric Field From an Object at Temperature
T

Utilizing the Fluctuation-Dissipation theorem, statistics of fluctuating current inside the
object at temperature T is known. Therefore, finding the radiated electric field is a classical
problem of radiation from a statistical source.

Consider an object that occupies volume V1 with permittivity of ε0ε1 and the rest of
space V0=R3−V1 is vacuum. In order to relate the fluctuating current inside the object to
the radiated field in V0, the dyadic Green’s function can be utilized. For a current density
J(r,ω) inside the object, the radiated field satisfies the homogeneous wave equation of

∇×∇×E0(r,ω)−ω2µ0ε0E0(r,ω)=0 (1.4.1)

Here, r∈V0 but the source is inside the object. In order to find the surface fields as boundary
conditions for the radiated field, one should solve the wave equation inside the object

∇×∇×E1(r,ω)−ω2µ0ε0ε1E1(r,ω)=iωµ0J(r,ω) (1.4.2)

Finding the radiated field requires solution of both Eqs. (1.4.1) and (1.4.2) together. Equiv-
alently, we can define dyadic Green’s function as propagator of the field to V0 and V via

∇×∇×G
[01]

(r,r′,ω)−ω2µ0ε0G
[01]

(r,r′,ω)=0 (1.4.3)

∇×∇×G
[11]

(r,r′,ω)−ω2µ0ε0εG
[11]

(r,r′,ω)=iωµ0J(r,ω)

Here, G
[01]

(r,r′,ω), G
[11]

(r,r′,ω) refer to the Green’s propagator with source in the region
1 and observation points in region 0 and 1 (inside and outside the object), respectively.
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Assuming known Green’s functions for the problem of interest, we can find the radiated
field into region 0 as

E0(r,ω)=iωµ0

∫
V1

dr′G
[01]

(r,r′,ω)·J(r′,ω) (1.4.4)

One of the advantages of the dyadic Green’s function formulation is that although the
current density and radiated field are stochastic processes, the Green’s function itself is
deterministic and this isolates the physical parameters of the problem from the statistical
properties. The current density is unknown, but fluctuation-dissipation theorem provides
it’s spectral density. Assuming that J(r,ω) is a stationary Gaussian stochastic process over
space, knowledge of its first two moments is enough for determination of the process. Power
spectral density of the radiated field can be found as〈

E0(r,ω)E∗0(r′,ω′)
〉

=ω2µ2
0

〈∫
V1

ds
∫
V1

du G
[01]

(r,s,ω)·J(s,ω)
[
G

[01]
(r′,u,ω)

]∗
·J∗(u,ω)

〉
(1.4.5)

=ω2µ2
0

∫
V1

ds
∫
V1

du G
[01]

(r,s,ω)·
〈
J(s,ω)J∗(u,ω)

〉
·
[
G

[01]
(r′,u,ω)

]†
Using the expression of power spectral density of the fluctuating current, we arrive at,

〈
E0(r,ω)E∗0(r′,ω′)

〉
=ω2µ2

0
~ω2ε0

2π coth
( ~ω

2kBT

)
δ(ω−ω′) (1.4.6)

×
∫
V1

ds ε′′(s,ω)G
[01]

(r,s,ω)·
[
G

[01]
(r′,s,ω)

]†
Since the medium is reciprocal, The Green’s function manifest the reciprocity through[
G

[01]
(r′,s,ω)

]†
=
[
G

[10]
(s,r′,ω)

]∗
, where, the observation and source medium are swapped

[3, 15],

〈
E0(r,ω)E∗0(r′,ω′)

〉
=ω2µ2

0
~ω2ε0

2π coth
( ~ω

2kBT

)
δ(ω−ω′) (1.4.7)

×
∫
V1

ds ε′′(s,ω)G
[01]

(r,s,ω)·G
[10]∗

(s,r′,ω)

This expression can be simplified using an integral identity as follows.

Theorem:

The dyadic Green’s function in a reciprocal medium of Fig. 1.2 satisfies the following
integral identity.

ω2µ0ε0

∫
V1

ds Imε1(s,ω)G
[01]

(r,s,ω)·G
[10]∗

(s,r′,ω)=ImG
[00]

(r,r′,ω) (1.4.8)
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J0 G
[10]

G
[00]

E1, H1

E0, H0

ε1, µ1

ε0, µ0

V1

V0

n̂

n̂∞

Figure 1.2: Configuration of the object for the complex reciprocity theorem.

Proof: Complex Reciprocity

This proof is similar to the reciprocity theorem but with taking complex conjugate of
the fields. Consider a current density J0(r) locate in region 0 that produce EM fields
(E0,H0) in region 0 and (E1,H1) in region 1 as depicted in Fig. 1.2. The Maxwell’s
equations in region 0 reads

∇×E0=iωµ0H0 (1.4.9)
∇×H0=J0(r)−iωε0E0 (1.4.10)

Multiplying Eq. (1.4.9) and Eq. (1.4.10) by H∗0 and E∗0 respectively and subtract the
results yields

∇·(E∗0×H0)=iωµ0H0 ·H
∗
0−J0 ·E

∗
0+iωε0E0 ·E

∗
0 (1.4.11)

taking the real part of the above equation and integrating over the volume V0 gives

2Re
[
−
∮
S

dSn̂·(E∗0×H0)+
∮
S∞

dSn̂∞ ·(E
∗
0×H0)

]
=−

∫
V0

dr(J0 ·E
∗
0+J∗0 ·E0) (1.4.12)

where n̂ is the unit normal pointing out of region 1 to the interface and n̂∞ is normal
to a sphere at infinity. The integral over the sphere at infinity vanishes by virtue of the
radiation condition (sources are localized). Then,

2Re
∮
S

dSn̂·(E∗0×H0)=
∫
V0

dr(J0 ·E
∗
0+J∗0 ·E0) (1.4.13)
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By the same argument about fields in region 1 due to the current density J0 in region
0, we have

2Re
∮
S

dSn̂·(E∗1×H1)=iωε0

∫
V1

dr
[
ε1(r)−ε∗1(r)

]
E1 ·E

∗
1 (1.4.14)

However, over the interface n̂·(E∗1×H1)=n̂·(E∗0×H0) and therefore,

iωε0

∫
V1

dr
[
ε1(r)−ε∗1(r)

]
E1(r)·E∗1(r)=

∫
V0

dr
[
J0(r)·E∗0(r)+J∗0(r)·E0(r)

]
(1.4.15)

Expressing the fields in terms of the dyadic Green’s function results in,

E0(r)=iωµ0

∫
V0

dr′G
[00]

(r,r′)·J0(r′) (1.4.16)

E1(r)=iωµ0

∫
V0

dr′G
[10]

(r,r′)·J0(r′)

and the right hand side would be,[
J0(r)·E∗0(r)+J∗0(r)·E0(r)

]
=iωµ0

∫
V0

dr′J∗0(r)·G
[00]

(r,r′)·J0(r′) (1.4.17)

−J0(r)·G
[00]∗

(r,r′)·J∗0(r′)

=−2ωµ0

∫
V0

dr′J∗0(r)·Im
[
G

[00]
(r,r′)

]
·J0(r′)

where the symmetry properties of G
[00]

are used. On the other hand

E1(r)·E∗1(r)=ω2µ2
0

∫
V0

dr′
∫
V0

ds
(
G

[10]
(r,s)·J0(s)

)∗
·
(
G

[10]
(r,r′)·J0(r′)

)
=ω2µ2

0

∫
V0

dr′
∫
V0

ds J∗0(s)·G
[01]∗

(s,r)·G
[10]

(r,r′)·J0(r′)

Putting everything together,

ω2µ0ε0

∫
V1

drImε1(r)
∫
V0

dr′
∫
V0

ds J∗0(s)·G
[01]∗

(s,r)·G
[10]

(r,r′)·J0(r′)

=
∫
V0

dr′
∫
V0

drJ∗0(r)·Im
[
G

[00]
(r,r′)

]
·J0(r′)

Interchanging s and r on the left hand side

∫
V0

dr′
∫
V0

drJ∗0(r)·
[
ω2µ0ε0

∫
V1

dsImε1(s) G
[01]∗

(r,s)·G
[10]

(s,r′) (1.4.18)

=Im
[
G

[00]
(r,r′)

]]
·J0(r′)
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Since the current density J0(r) is arbitrary function of position

ω2µ0ε0

∫
V1

dsImε1(s) G
[01]∗

(r,s)·G
[10]

(s,r′)=Im
[
G

[00]
(r,r′)

]
(1.4.19)

The quantity on the right hand side is real and does not change with complex conju-
gation

ω2µ0ε0

∫
V1

dsImε1(s) G
[01]

(r,s)·G
[10]∗

(s,r′)=Im
[
G

[00]
(r,r′)

]
(1.4.20)

The proof is completed.

Using the integral identity of theorem 1.4, Eq. (1.4.8) can be rewritten as

〈
E0(r,ω)E∗0(r′,ω′)

〉
= ~ω2

2πc2ε0
coth

( ~ω
2kBT

)
δ(ω−ω′)Im

[
G

[00]
(r,r′,ω)

]
(1.4.21)

= ω

πc2ε0
E(T,ω)δ(ω−ω′)Im

[
G

[00]
(r,r′,ω)

]
where,

E(T,ω)=~ω
( 1
e~ω/kT−1

+ 1
2

)
is the average energy of harmonic quantum oscillator with frequency ω. This is an interest-
ing result. The radiated field into region 0 is only dependent on the dyadic Green’s function
of region 0. All the dielectric properties of the region 1 will emerge into the picture through
the G

[00]
(r,r′,ω) as it is continuous on the boundary.

1.5 Energy Density of Radiated Field
For the energy densityW (r,t) of the fluctuating radiated field into vacuum at time t [2, 10],

W (r,t)= ε0
2 E0(r,t)·E0(r,t)+µ0

2 H0(r,t)·H0(r,t) (1.5.1)

Upon taking statistical average by assuming stationary fluctuations in time and introducing
correlation functions of the fields as

RE(τ)=
〈
E0(r,t)·E0(r,t+τ)

〉
(1.5.2)

RH(τ)=
〈
H0(r,t)·H0(r,t+τ)

〉
the energy density can be written as

〈W (r,t)〉= ε0
2 RE(0)+µ0

2 RH(0) (1.5.3)
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Power spectral density of the electric and magnetic fields is related to the correlation func-
tion through,

SE(ω)=
∫ ∞
−∞

dτ eiωτRE(τ) (1.5.4)

Now, correlation function at τ=0 can be expressed as

RE(0)=
∫ dω

2π SE(ω)=
∫ dω

2π

∫
dτeiωτRE(τ) (1.5.5)

Therefore the energy density has the following spectral expansion

〈W (r,t)〉=
∫ ∞
−∞

dω
2π

[∫ ∞
−∞

dτeiωτ
(
ε0
2
〈
E0(r,t)·E0(r,t+τ)

〉
(1.5.6)

+µ0
2
〈
H0(r,t)·H0(r,t+τ)

〉)]
=
∫ ∞
−∞

dωS(ω)

where the energy spectral density is given by,

S(ω)= 1
2π

∫ ∞
−∞

dτeiωτ
(
ε0
2
〈
E0(r,t)·E0(r,t+τ)

〉
+µ0

2
〈
H0(r,t)·H0(r,t+τ)

〉)
Substituting for the fields in terms of Fourier transforms to write the energy spectral density
in terms of the fields spectral densities, we get∫ ∞

−∞
dτeiωτ

〈
E0(r,t)·E0(r,t+τ)

〉
=
∫ ∞
−∞

dτeiωτ
∫ ∞
−∞

dω′

2π (1.5.7)

e−iω
′t
∫ ∞
−∞

dω′′

2π e−iω
′′(t+τ)

〈
E0(r,ω′)·E0(r,ω′′)

〉
Based on assumption of stationary fluctuations, the left hand side does not depend on time
t, so the spectral average on the right hand side contains δ(ω′+ω′′) and∫ ∞

−∞
dτeiωτ

〈
E0(r,t)·E0(r,t+τ)

〉
=
∫ ∞
−∞

dτei(ω−ω′)τ
∫ ∞
−∞

dω′

2π
〈
E0(r,ω′)·E∗0(r,ω′)

〉
=δ(ω−ω′)

∫ ∞
−∞

dω
〈
E0(r,ω)·E∗0(r,ω′)

〉
(1.5.8)

Therefore energy spectral density becomes

S(ω)δ(ω−ω′)= ε0
2
〈
E0(r,ω)·E∗0(r,ω′)

〉
+µ0

2
〈
H0(r,ω)·H∗0(r,ω′)

〉
(1.5.9)

1.5.1 Planck’s Black body Radiation Revisited

From fluctuation-dissipation theorem,〈
E0(r,ω)·E∗0(r,ω′)

〉
= ω

πc2ε0
E(T,ω)δ(ω−ω′) lim

r→r′
Im
[
TrG

[00]
(r,r′,ω)

]
(1.5.10)
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In free space the energy in the electric and magnetic fields are equal and the imaginary
part of the dyadic Green’s function is regular [16] (it will be shown later) and the energy
spectral density can be written as

S(ω)= ω

πc2E(T,ω)Im
[
TrG

[00]
(r,r,ω)

]
(1.5.11)

The averaged energy of the fluctuating electromagnetic field is given by

〈W 〉=
∫ ∞
−∞

dωS(ω) (1.5.12)

The average energy of quantum oscillator E(T,ω) is an odd function of ω. On the other
hand, ImG

[00]
(r,r,ω)=−ImG

[00]
(r,r,−ω) which shows the imaginary part of Green’s func-

tion is also an odd function of frequency (as the Green’s function is real in time domain).
Therefore, the energy can be written in terms of one sided spectral density S+(ω) where

S+(ω)= 2ω
πc2E(T,ω)Im

[
TrG

[00]
(r,r,ω)

]
(1.5.13)

and,

〈W 〉=
∫ ∞

0
dωS+(ω) (1.5.14)

The energy spectral density can be decomposed into S+(ω)=E(T,ω)N(r,ω) where N(r,ω)
shows the density of states that depends on r. In contrast to the equilibrium case, when
density of states is independent of spatial coordinates, here local density of states can be
identified as [10, 16, 17]

N(r,ω)= 2ω
πc2 Im

[
TrG

[00]
(r,r,ω)

]
(1.5.15)

In free space, the dyadic Green’s function is given by

G
[00]

(r,r′,ω)=G0(r,r′,ω)=
[
I+∇∇

k2
0

]
eik0|r−r′|

4π|r−r′| (1.5.16)

then,

Im
[
TrG

[00]
(r,r,ω)

]
=Im

[
3+∇·∇

k2
0

]
eik0|r−r′|

4π|r−r′| (1.5.17)

but from the wave equation

∇2 e
ik0|r−r′|

4π|r−r′|=−δ(r−r
′)−k2

0
eik0|r−r′|

4π|r−r′| (1.5.18)

The delta function does not contribute to the imaginary part. Therefore,

Im
[
TrG

[00]
(r,r,ω)

]
=2 lim

r→r′
sink0|r−r′|

4π|r−r′| = k0
2π= ω

2πc (1.5.19)
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The density of states becomes

N(r,ω)= 2ω
πc2 Im

[
TrG

[00]
(r,r,ω)

]
= ω2

π2c3 (1.5.20)

Now the Planck’s radiation law is recovered from the Fluctuation dissipation theorem.
This reveals that the fluctuation dissipation theorem is an answer to the question of inver-
sion of Planck’s radiation spectrum to obtain source of radiations. This is also generalization
of Planck’s radiation for non-equilibrium condition. In such a condition, density of states is
position dependent and should be calculated using the Green’s function of the system. The
position dependent density of states provides a way to manipulate the radiation from the
object by changing the Green’s function. For example by bringing another object close to
the surface of radiating object, the density of states increases near the surface and thermal
radiation becomes orders of magnitude larger than radiation in free space as the radiation
becomes dominant by the evanescent modes that can tunnel between the object, which is
the essence of the radiative heat transfer [9, 18, 19].

1.6 Brightness Temperature
All the objects at temperature greater than absolute zero radiate electromagnetic energy.
This fact brings up the idea of measuring the electromagnetic radiation of an object to
obtain some information about the radiating object. Of course, in order to do this inver-
sion, it is required to isolate radiation of object of interest from other radiating bodies.
Measurement of radiation from a specific object is possible by an antenna that can resolve
between object and surrounding medium well. This would remove line of sight radiation
from undesired bodies but multiple scattering contribution cannot be separated in general.
Consider a surface element dA at r and the intensity passing through it in ŝ direction (Fig.

br ŝ

n̂

θ

dA

Figure 1.3: Power flow in direction ŝ through surface n̂dA

1.3). Specific intensity I(r,ŝ) is a quantity that the power passing through this surface in
frequency interval (f,f+df) can be written as,

dP=I(r,ŝ)cosθdAdΩdf (1.6.1)

Consider an imaginary object in thermal equilibrium with surrounding medium at temper-
ature T . When kBT�hf , Planck’s radiation law can be approximated as (Rayleigh-Jean’s
approximation)

I=hf3

c2
1

ehf/kBT−1
≈ kBT

λ2 (1.6.2)

Let’s examine when approximation of kBT�~ω is valid. As an example, for temperature
in the oder of room temperature t=300 K, corresponding frequency that satisfies kBT=~ω
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would be f∗=kBT/h=6.2 THz. As long as our operation frequency is very small compared
to f∗, the approximation is valid. At room temperature and operational frequency of 100
GHz, the relative error in the intensity is less than 0.7 percent. Now, for any different
configuration, the brightness temperature TB is defined in terms of the measured specific
intensity I by

TB=λ2I

kB
(1.6.3)

If the receiver if Fig. 1.4 measure power P with bandwidth of ∆f then measured specific

x

z

θ0

A0

ε, µ, T

ε0, µ0

r0

Receiver

∆Ω0

Figure 1.4: Measurement of the brightness temperature.

intensity can be related to measured power through

I= P

A0∆f cosθ0∆Ω0
(1.6.4)

Therefore, the brightness temperature can be obtained as

TB= λ2

kB

P

A0∆f cosθ0∆Ω0
(1.6.5)

Depending on the polarization of the receiving antenna, power can be measured for two
polarizations, namely vertical and horizontal. Thus, a polarization can also be assigned to
the brightness temperature.

TαB= λ2

kB

Pα

A0∆f cosθ0∆Ω0
(1.6.6)

where Pα is power measured in channel α= TE, TM (or h and v, respectively).

1.6.1 Brightness Temperature of a Dielectric Half Space

Consider a half space of lossy dielectric material in equilibrium at temperature T . Based
on the Fluctuation-Dissipation theorem, there is a fluctuating current density inside the
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lossy half space with zero mean and power spectral density of〈
J(r,ω)J∗(r′,ω′)

〉
= ~ω2ε0

2π ε′′(r,ω)coth
( ~ω

2kBT

)
δ(ω−ω′)δ(r−r′)I (1.6.7)

Again, for ~ω�kBT , coth(~ω/2kBT )≈2kBT/~ω and,〈
J(r,ω)J∗(r′,ω′)

〉
=ωkBTε0

π
ε′′(r,ω)δ(ω−ω′)δ(r−r′)I (1.6.8)

Note that this is double side band power spectral density. In order to make it single
sideband, a factor of 4 should be inserted. From now on, we work with single side band
spectral density.〈

J(r,ω)J∗(r′,ω′)
〉

= 4ωkBTε0
π

ε′′(r,ω)δ(ω−ω′)δ(r−r′)I , Single side band (1.6.9)

Utilizing the dyadic Green’s function G
[01]

(r,r′) we can find the electric field in the region

ε0, µ0

ε1, µ1

J(r, ω, T )

∞

G
[01]

E0(r), H0(r)

z

z = 0

Figure 1.5: Fluctuating current inside the lossy dielectric half space give rise to
radiated power into region 0.

0 from Eq. (1.4.7) as

〈
E0(r,ω)E∗0(r,ω′)

〉
= 4ω3

πc4ε0
kBTδ(ω−ω′)

∫
V1

dr′ ε′′(r′,ω)G
[01]

(r,r′,ω)·G
[10]∗

(r′,r,ω)

= 4ω3

πc4ε0
kBTδ(ω−ω′)

∫
V1

dr′ ε′′(r′,ω)G
[01]

(r,r′,ω)·G
[01]∗

(r,r′,ω)

(1.6.10)

From the reciprocity of the dyadic Green’s function we have

G
[01]

(r,r′,ω)=
[
G

[10]
(r′,r,ω)

]T
(1.6.11)
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For different Green’s functions, we consider following expression in spectral domain

G(r′,r,ω)= i

2

∫ d2k⊥
(2π)2 e

ik⊥·(r−r′)g(k⊥,z,z′) (1.6.12)

Then, spectral component of the different Green’s function can be expanded as (see Ap-
pendix [2])

g
[10](k⊥,z,z′)= 1

k1z

[
Teê
−
1 ê
−
0 +Thĥ−1 ĥ

−
0

]
e−ik1zz+ikzz′ (1.6.13)

g
[00]
S (k⊥,z,z′)= 1

kz

[
Reê

+
0 ê
−
0 +Rhĥ+

0 ĥ
−
0

]
eikzz+ikzz

′

g0(k⊥,z,z′)= 1
kz

[
ê−0 ê

−
0 +ĥ−0 ĥ

−
0

]
e−ikzz+ikzz

′

Continuity of the tangential component of the Green’s function over the boundary at z=0
requires,

1
k1
Th= 1

k
(1−Rh) (1.6.14)

1
k1z

Te=
1
kz

(1+Re)

Also, continuity of the tangential magnetic field gives,

Te=1−Re (1.6.15)
k1
k1z

Th= k

kz
(1+Rh)

Solution of these equations are the Fresnel reflection coefficients of

Re=
kz−k1z
kz+k1z

Rh= k2
1kz−k2k1z
k2

1kz+k2k1z

Te=
2k1z

kz+k1z

Th= k1
k

2k2k1z
k2

1kz+k2k1z

For spectral component of the dyadic Green’s function, swapping r and r′ is equivalent to
g(k⊥,z,z′)→g(−k⊥,z′,z). Therefore using reciprocity to find the propagator G

[01]
(r,r′,ω)

from G
[10]

(r,r′,ω) results in

G
[01]

(r,r′,ω)=
[
G

[10]
(r′,r,ω)

]T
(1.6.16)

= i

2

∫ d2k⊥
(2π)2 e

ik⊥·(r−r′)
[
g

[10](−k⊥,z′,z)
]T

= i

2

∫ d2k⊥
(2π)2 e

ik⊥·(r−r′) 1
k1z

[
Teê

+
0 ê

+
1 +Thĥ+

0 ĥ
+
1

]
e−ik1zz′+ikzz
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Where we have used that under transformation k⊥→−k⊥, TM polarization unit vectors
changes as ĥ±→ĥ∓ and TE unit vector are always equal, ê+=ê−. Using the stationary
phase approximation of the spectral integral to find the far field Green’s function we have,

G
[01]
FF (r,r′,ω)= eikr

4πre
−ik⊥·r′ kz

k1z

[
Teê

+
0 ê

+
1 +Thĥ+

0 ĥ
+
1

]
e−ik⊥·r

′−ik1zz′
∣∣∣∣
k=ks

(1.6.17)

Where the stationary spectral point is given by

kx=ksinθcosφ
ky=ksinθsinφ
kz=kcosθ

for observation point in direction of (θ,φ) in the far field. Different components of the far
field Green’s function are given by,

ê+
0 ·G

[01]
FF (r,r′,ω)= eikr

4πr
kz
k1z

Teê
+
1 e
−ik⊥·r′−ik1zz′ (1.6.18)

ĥ+
0 ·G

[01]
FF (r,r′,ω)= eikr

4πr
kz
k1z

Thĥ
+
1 e
−ik⊥·r′−ik1zz′

Integration the absolute squared of the Green’s function components over the volume of
half space z′<0, it yields,∫

V1
dr′
∣∣∣ê+

0 ·G
[01]
FF (r,r′,ω)

∣∣∣2= A

16π2r2 |Te|
2 k2

z

|k1z|2
∫ 0

−∞
dz′e2Im(k1z)z′ (1.6.19)

= A

16π2r2
k2
z

|k1z|2
|Te|2

2Im(k1z)∫
V1

dr′
∣∣∣ĥ+

0 ·G
[01]
FF (r,r′,ω)

∣∣∣2= A

16π2r2
|k1z|2+k2

⊥
|k1|2

k2
z

|k1z|2
|Th|2

2Im(k1z)

Now, the brightness temperature can be computed as

TαB=T 16π2k

Acosθ0
lim
r→∞

r2
∫
V1

dr′ ε′′(r′,ω)
∣∣∣α̂·G[01]

(r,r′,ω)
∣∣∣2 (1.6.20)

T eB=T kε′′1
cosθ0

k2
z

|k1z|2
|Te|2

2Im(k1z)
(1.6.21)

T hB=T kε′′1
cosθ0

|k1z|2+k2
⊥

|k1|2
k2
z

|k1z|2
|Th|2

2Im(k1z)

These brightness temperature formulas can be cast into another form which provides greater
insight into the brightness temperature of the half space. From k2

1 =k2ε1 and balancing the
imaginary parts we have k2ε′′=2k′1k′′1 that simplifies brightness temperature expressions to

T eB=T k′1k
′′
1

kzk′′1z

k2
z

|k1z|2
|Te|2 (1.6.22)

T hB=T k′1k
′′
1

kzk′′1z

|k1z|2+k2
⊥

|k1|2
k2
z

|k1z|2
|Th|2
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For TE polarization,

1−|Re|2= 4kzk′1z
|kz+k1z|2

= kzk
′
1z

|k1z|2
|Te|2 (1.6.23)

or,

|Te|2=(1−|Re|2) |k1z|2

kzk′1z
(1.6.24)

Also, balancing real and imaginary parts of k2
1z=k2

1−k2
⊥ gives another identity k′1k′′1 =k′1zk′′1z

and therefore

T eB=T k
′
1z
kz

k2
z

|k1z|2
(1−|Re|2) |k1z|2

kzk′1z
=T (1−|Re|2) (1.6.25)

Brightness temperature of an object at temperature is simply it’s physical temperature
times it’s emissivity. Here TE emissivity of the half space is eTE=1−|Re|2. The same
argument holds true for the TM channel.

1.7 Absorption and Emission
If an object at temperature T radiate energy into surrounding medium, the temperature of
the object eventually decreases. This is a non-equilibrium problem where Planck’s radiation
law does not apply. However, after enough amount of time, thermal equilibrium between
object and environment will be established. In thermal equilibrium, amount of radiated
energy from the object should be balanced with the absorbed energy from the environment.
Therefore for an object at equilibrium with a thermal bath at temperature T , rate of
absorption and emission should be the same, otherwise the object’s temperature would
increase or decrease to achieve a new equilibrium state [20].

If we consider the example of half space at equilibrium with temperature T , we can find
the amount of absorption by the half space from an external source of radiation. For a
point source in the region 0 , spectral component of the dyadic Green’s function has been
calculated as

g
[10](k⊥,z,z′)= 1

k1z

[
Teê
−
1 ê
−
0 +Thĥ−1 ĥ

−
0

]
e−ik1zz+ikzz′ (1.7.1)

g
[00]
S (k⊥,z,z′)= 1

kz

[
Reê

+
0 ê
−
0 +Rhĥ+

0 ĥ
−
0

]
eikzz+ikzz

′

g0(k⊥,z,z′)= 1
kz

[
ê−0 ê

−
0 +ĥ−0 ĥ

−
0

]
e−ikzz+ikzz

′

where the spatial counterpart can be synthesized by

G(r′,r,ω)= i

2

∫ d2k⊥
(2π)2 e

ik⊥·(r−r′)g(k⊥,z,z′) (1.7.2)

The Green’s function at each spectral point k⊥ is the response of the medium to a plane wave
that propagating in direction determined by k⊥ and kz=k2−k2

⊥. Our goal here is to find
the absorptivity of the half space and therefore the propagating wave in the dielectric half
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space is proportional to G
[10]

(r,r′). More precisely, for a current source with polarization
of α̂ and magnitude J0(r0), where r0 is located far away from the surface such that incident
wave is a plane wave. This incident plane wave causes a transmitted plane wave in the
region 1 that is given by

E1(r)=iωµJ0

∫
dr′G

[10]
(r,r′)·α̂δ(r′−r0) (1.7.3)

=G
[10]

(r,r0)·α̂

where we have normalized iωµJ0=1. Using the far field approximation of the Green’s
function as r0→∞ by applying the stationary phase approximation to the spectral integral,

lim
r0→∞

G
[10]

(r,r0)= eikr0

4πr0

kz
k1z

[
Teê
−
1 ê
−
0 +Thĥ−1 ĥ

−
0

]
eik⊥·r−ik1zz (1.7.4)

Therefore the propagating wave in the region 1 can be written in terms of the Green’s
function as

lim
r0→∞

G
[10]

(r,r0)·α̂= eikr0

4πr0
E1(r) (1.7.5)

Now, we are in position to find the power absorbed by the half space. The TE absorbed
power in the half space is given by

P ea= 1
2ωε0

∫
V1

drε′′1|E1(r)|2 (1.7.6)

= 1
2ωε0A0ε

′′
1
k2
z

|k1z|2
|Te|2

2Im(k1z)
|ê−0 ·α̂|

2

However, the incident electric field on the surface is proportional to G0 ·α̂ and is given by

Einc(r)=
[
ê−0 ê

−
0 +ĥ−0 ĥ

−
0

]
·α̂e−ik·r (1.7.7)

Therefore, the incident power in TE channel is given by

P ei = 1
2η cosθ0

∫
dS|Einc|2=A0

2η cosθ0|ê−0 ·α̂|
2 (1.7.8)

The ratio of absorbed power to the incident power can be found as

P ea
P einc

= kε′′1
cosθ0

k2
z

|k1z|2
|Te|2

2Im(k1z)
=1−|Re|2 (1.7.9)

Comparing Eq.(1.7.9) with Eq.(1.6.21) shows that the amount of absorbed power from the
incident field is equal to the emissivity of the surface. This relation also holds for the TM
polarization and in general any arbitrary polarization of the electric field. This example
demonstrates a bridge between absorption and emission from an object in the thermal
equilibrium. The equality of the absorptivity and emissivity connects active and passive
microwave remote sensing scenarios. If one has information about the reflectivity of the
object (which can be measured by a polarimetry radar) then the absorptivity is known
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and the emission from the object at equilibrium can be found and vice versa. However,
the emissivity for complex objects is not as simple as the half space and there are several
parameters contributing in the functionality of the emissivity.

This result is not restricted to the flat boundary half space. For a general surface in
addition to specular reflection and transmission, diffused scattered field should be taken
into account. If reflectivity of the surface is expressed by γαβ(θ,φ;θ′,φ′) that corresponds
to reflected power in channel α in direction (θ,φ) off the surface when β−polarized incident
field in direction (θ′,φ′) is impinging on the surface, then the total reflection coefficient
when surface is illuminated by β-polarized field is given by

Rβ(θ′,φ′)=
∑
α=e,h

∫ π/2

0
dθsinθ

∫ 2π

0
dφγαβ(θ,φ;θ′,φ′) (1.7.10)

Then, the β− channel emissivity of the surface in direction (θ′,φ′) is given by

eβ(θ′,φ′)=1−Rβ(θ′,φ′) (1.7.11)

Similarly, measured β−polarized power in direction (θ′,φ′) would be proportional to the
eβ(θ′,φ′) according to reciprocity.
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1.8 UWBRAD: Brightness temperature of ice-sheets
UWBRAD’s goal of retrieving ice sheet internal temperatures from 0.5-2 GHz brightness
temperature data requires that an accurate and robust forward model for ice sheet thermal
emission be available. Extensive efforts throughout the project have been conducted to
create the required model, as described in this section.

Because ice particle grain sizes are very small compared to UWBRAD’s 0.5-2 GHz wave-
lengths, volume scattering effects should be small. Variations in firn density over cm to m
length scales however can cause significant effects. Both incoherent and coherent models
have been used to examine these effects [21]. Incoherent models include a “cloud model”
that neglects any reflections internal to the ice sheet (Jezek et al., 2015), and the DMRT-
ML [22] and MEMLS [23] radiative transfer codes that are publicly available. The coherent
model is based on the layered medium implementation of the fluctuation dissipation the-
orem for thermal microwave radiation from a medium having a nonuniform temperature.
Density profiles including random fluctuations (which in part account for daily variations
in accumulation and other meteorological forcing) must be modeled using a stochastic ap-
proach, with model predictions then averaged over a large number of realizations to take
into account an averaging over the radiometer footprint. Density profiles are described by
combining a smooth average density profile with a spatially correlated random process to
model density fluctuations. It is shown that coherent model results after ensemble averag-
ing depend on the correlation lengths of the vertical density fluctuations. If the correlation
length is moderate or long compared with the wavelength ( 0.6x longer or greater for Gaus-
sian correlation function without regard for layer thinning due to compaction), coherent
and incoherent model results are similar (within 1K). However, when the correlation length
is short compared to the wavelength, coherent model results are significantly different from
the incoherent model by several tens of kelvins. For example, for a 10cm correlation length,
the differences are significant between 0.5 and 1.1GHz, and less for 1.1GHz to 2GHz. Pre-
dictions of the coherent model have been shown to be able to match v-pol SMOS data (1.4
GHz) closely and also predict h-pol data well for small observation angles. The higher h-pol
brightness temperatures than model predictions observed at large angles are explained by
the presence of multi-layered roughness between ice layers. Roughness introduces angu-
lar and polarization coupling that increases h-pol emissivities at large angles [24, 25]. To
promote efficiency of the forward model so that model-based retrieval is more feasible, a
partially coherent model has been designed in which the fully coherent model is applied
after dividing the ice sheet into blocks [26]. Within each block the coherent model applies,
but within adjacent blocks the radiative transfer theory is used for incoherent cascading
of block parameters. By using a block size of several wavelengths, the partially coherent
approach reproduces the results of fully coherent results but requires a much smaller num-
ber of realizations to reach convergence. The partially coherent model, when combined
with a two-scale density variation model, predicts angular brightness temperatures that
also agree well with the 1.4 GHz SMOS observations over Greenland’s Summit station.
The partially coherent model also enables the inclusion of rough interface effects, which can
couple emissions among angles and polarizations.
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1.8.1 The Effects of Multi-layered Roughness

The effects of interface roughness were also explored under project forward modeling studies.
Density variations near the top of the ice sheet can also introduce interface roughness [27],
which can perturb reflections and modulate ice sheet emissions. In particular, interface
roughness can cause angular and polarization coupling not present with flat interfaces.
The partially coherent approach also allows an effective method for characterizing multi-
layer roughness effects within the same block using coherent wave analysis. A full wave
small perturbation method up to second order (SPM2) was developed to examine interface
roughness effects. The SPM2 has the advantage of conserving energy [24, 25]. Numerical
results have been reported in checking energy conservation and in illustrating the angular
and polarization coupling effects arising due to interface roughness. In Figure 1.6, roughness
effects are examined by modeling the L-band SMOS angular brightness temperatures at
Dome C, Antarctica centered on Concordia Base [28]. The SMOS data are averaged over 4
months between November 2012 and March 2013, over a total of 274 images. There is good
consistency between the SMOS data and DOMEX-2 ground-based radiometer observations.
Airborne data were also acquired during the DomeC Air campaign confirming the same
trends with differences of around 1-2K.

The DMRT-ML model predictions agree with the vertical-pol SMOS observations quite
well with an RMS about 2.7K and mean difference of 2.5K. The RMS difference is on
the level of the standard deviation of SMOS data. The model predictions also follow
the horizontal-pol observations up to 35◦ with difference less than 1.7K. However, as the
observation angle continues to increase, the predictions fall below the observations to 20K
at 60◦. The higher h-pol brightness temperature observed implies an over-estimation of
reflections at large observation angles, which is possibly due to the roughness of interfaces
[21]. In Figure 1.6, the SPM2 model is applied to compute the emission from an equivalent
ice sheet with 20 rough interfaces. The roughness is independent among layers and is each
characterized by a Gaussian correlation function with rms height 1.5cm and correlation
length 25cm. The ice sheet is assumed to have a constant temperature of 228K, close to the
upward emission from below the near surface density fluctuations of the ice sheet at Dome
C. The brightness angular patterns are compared in Figure 9(b) for both flat and rough
interfaces. Results show that roughness has little effect on vertical polarization emission.
However, it significantly increases the horizontal polarization emission at large observation
angles. The v-pol and h-pol emissions agree with each other at nadir as expected, and nadir
emission from the rough interfaces is only slightly larger than the flat counterpart. The
roughness effects are through angular coupling and polarization coupling associated with
the rough interfaces. With roughness, the model predictions show better agreement with
SMOS brightness temperatures at large angles for h-pol [24].

The project’s studies also formulated a Sommerfeld integration path in the SPM2 for-
mulation to facilitate coherent model computations when waveguide modes occur in random
density fluctuations where a dense layer is sandwiched between two less dense layers [84]. A
T-matrix formulation for multi-layered rough surface scattering was also developed for cases
when the SPM2 approximation degrades and to validate the partially coherent approach
[89, 90]. Given the limited influence of interface roughness for the nadiral geometries where
UWBRAD operates, interface roughness was neglected in subsequent UWBRAD retrieval
analyses.
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Figure 1.6: Comparison of model prediction of brightness temperature with L
band (1.4GHz) SMOS angular data at Dome C, Antarctica. (a) Flat layers are
assumed. The ice sheet temperature is characterized by the Robin temperature
model that fits the borehole temperature profile well. Results are computed from
1000 Monte Carlo simulations using the coherent model. (b) Emission from an
equivalent ice sheet with 20 rough interfaces. The roughness is independent among
layers and is each characterized by a Gaussian correlation function with rms height
1.5cm and correlation length 25cm. The ice sheet is assumed a constant temper-
ature of 228K, close to the upward emission from below the near surface density
fluctuations of the ice sheet at Dome C. The results are computed from 400 Monte
Carlo simulations over random density and layer thickness realization with SPM2.
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Chapter 2

2D scattering From Dielectric
Layered Media with Random

Rough Interfaces, Small
Perturbation Method

2.1 Introduction
The small perturbation method has been studied for random rough surface scattering ex-
tensively [24, 29–39]. Recently, the method has been studied for multi-layered random
rough surfaces [24, 30, 34] as an analytical method which has advantages over numerical
methods for multiple rough interfaces. As the number of layers increases, Numerical meth-
ods become costly in CPU and memory [40]. An application of the multi-layered medium is
microwave remote sensing of ice sheets in the Arctic and Antarctica, where the snow layers
have multi-layering of fluctuations of permittivity due to the snow accumulation patterns
as well as rough interfaces between layers [41].

The small perturbation method must be carried out to the second order[24] for energy
conservation in emissivity calculations. In carrying out the Small Perturbation Method,
the higher order field is expressed in terms of a convolution of the layered medium Green’s
function with the lower order field, where the convolution is performed in the spectral
domain. To calculate the emissivity, the energy is decomposed into the incoherent intensity
and the coherent intensity followed by the spectral integration. In the incoherent intensity,
integration is to be carried out over the visible radiation spectrum. However, In the coherent
intensity, integration is to be carried out over the entire k domain spectrum.

Analytical methods provide approximate solutions. There are generally two classical
approaches[3? ]. The high frequency method known as Kirchhoff approach and low fre-
quency method known as small perturbation method (SPM). Higher order perturbation
method has been studied in [37] up to the fourth order. Also the fourth order perturbative
solution of the two layer rough surfaces has been studied recently in [32, 38]. Other ana-
lytical methods include the AIEM method [42] and the Small slope approximation (SSA)
[43].

In recent years, there are numerical methods based on surface integral equations [40,
40, 44–48], the extended boundary condition methods [49, 50] and the finite difference time
domain method [51]. However, for large number of rough interfaces, the dielectric contrasts
between layers are usually weak, and numerical methods suffer from discretization errors.
It is particularly difficult to achieve energy conservation using numerical methods for large
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number of rough interfaces with small dielectric contrasts between adjacent layers. Energy
conservation in scattering from 2D multilayer rough surfaces has been studied recently
[39]. However we need to have solution for actual physical problem of 3D electromagnetic
scattering from multilayer medium with random rough interfaces that conserve energy.

In this chapter, we study energy conservation and emissivity in scattering process of
electromagnetic waves from 2D multi-layer media with a large number random rough in-
terfaces using the second order small perturbation method (SPM2). The formulation is
based on extinction theorem and developing integral equation for surface fields in spec-
tral domain. Using SPM2, we calculate the scattered and transmitted coherent fields and
incoherent fields. Energy conservation is calculated by integration of the coherent and in-
coherent reflected and transmitted power in the spectral domain. In this chapter, we show
that the kernel function of each rough interface obeys the energy conservation. This means
that energy is conserved independent of the statistics of the random rough surfaces nor the
spectral densities of the rough profile of each interface. Results of this strong condition are
illustrated numerically for up to 5 rough interfaces.

Figure 2.1: Dielectric layered media with 2D random rough interfaces excited by
a TE polarized incident field.

2.2 Electric Field Integral Equation

2.2.1 Extinction of Downward Propagating Wave in Region 1

Upon placing the observation point in the extinction theorem [3, 52] just below the first
interface, total field with wave number k1 in lower media would be zero and,

ψi(ρ)−
∫
z′=f1(x′)

dl′
(
g1(ρ,ρ′)n̂′1 ·∇′ψ1(ρ′)−ψ1(ρ′)n̂′1 ·∇′g1(ρ,ρ′)

)
=0 (2.2.1)
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We can define the surface field variables on the first surface as a1(x)dx=dln̂·∇ψ1 and
b1(x)=ψ1(x) to get

ψi(ρ)−
∫
z′=f1(x′)

dx′
(
g1(ρ,ρ′)a1(x′)−b1(x′) dl′

dx′ n̂
′
1 ·∇′g1(ρ,ρ′)

)
=0 (2.2.2)

Notice that measure of integration is changed to the flat line integral from the general
curved path. From plane wave expansion of the Green’s function for z<z′,

g1(z<z′)= i

4π

∫
dkx

1
k1z

eikx(x−x′)−ik1z(z−z′) (2.2.3)

then normal derivative of Green’s function becomes

n̂′1 ·∇′g1(z<z′)= 1√
1+f2

x′

i

4π

∫
dkx

1
k1z

[
ik1z+ikxf ′1(x′)

]
eikx(x−x′)−ik1z(z−f1(x′)) (2.2.4)

Note that for the spectral expansion of the Green’s function we assumed that the observation
point is somewhere that for all values of z′, the condition z<z′ is true. Such an observation
point cannot be on the boundary surface unless the boundary is flat. Because of the fact
that here we are putting the observation point on another surface than the actual surface,
this method of solving the integral equation using the spectral expansion is called Extended
Boundary Condition Method (EBCM)[53–56]. Substituting the spectral expansion of the
Green’s function and its derivative into the Extinction integral equation of (2.2.2), it yields

ψi(ρ)− i

4π

∫
dkx

1
k1z

eikxx−ik1zz
∫

dx′e−ikxx′+ik1zf1(x′)
(
a1(x′)−b1(x′)

[
ik1z+ikxf ′1(x′)

])
=0

(2.2.5)

Notice that the surface fields a1(x),b1(x) are defined in such a way that the surface profile
length element (which depends on the surface profile non-linearly) is not present in the
integral equation of (2.2.5). Inserting the Fourier representation of the downward propa-
gating incident field ψi in the above equation and noting that plane wave with different
wave numbers are eigenfunction of the Hermitian operator of the wave function and are
independent, we arrive at

ψi(kx)− i

4πk1z

∫
dx′e−ikxx′+ik1zf1(x′)

(
a1(x′)−b1(x′)

[
ik1z+ikxf ′1(x′)

])
=0 (2.2.6)

Defining the Fourier transform of the surface fields as

a1(x′)=
∫

dk′xA1(k′x)eik′xx′ (2.2.7)

ψi(kx)− i

4πk1z

∫
dk′x

∫
dx′e−i(kx−k′x)x′+ik1zf1(x′)

{
A1(k′x)−B1(k′x)

[
ik1z+ikxf ′1(x′)

]}
=0

(2.2.8)

There is a term in the integrand that depends on the derivative of the profile. performing
the by part integration on this term yields,∫

dx′e−i(kx−k′x)x′+ik1zf1ikxf
′
1(x′)= kx

k1z

∫
d
[
e−i(kx−k

′
x)x′+ik1zf1

]
(2.2.9)

+i(kx−k′x) kx
k1z

∫
dx′e−i(kx−k′x)x′+ik1zf1
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Assuming periodic boundary condition on the surface (with very large period that simulate
an infinitely large surface), the first term vanishes and∫

dx′e−i(kx−k′x)x′+ik1zf1(x′)
[
ik1z+ikxf ′1(x′)

]
=ik

2
1−kxk′x
k1z

∫
dx′e−i(kx−k′x)x′+ik1zf1(x′)

(2.2.10)

Furthermore, if the scattering potential I−11(kx,k′x) for the downward propagating wave in
the region 1 that is scattered from the first surface defined as

I−11(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
eik1zf1(x′)−1

]
(2.2.11)

Then, the integral equation describing the Fourier transform of the surface fields over the
boundary z=f1(x) can be written as follows,

ψi(kx)− i

2k1z

[
A1(kx)−ik1zB1(kx)+

∫
dk′xI−11(kx,k′x)

{
A1(k′x)−B1(k′x)ik

2
1−kxk′x
k1z

}]
=0

(2.2.12)

The scattering potential is completely responsible for the presence of the roughness in the
problem. If the surface is flat, then the scattering potential vanishes and the integral
equation becomes an algebraic equation.

2.2.2 Extinction of Upward propagating Wave in Region m

∫
z′=−dm−1+fm−1(x′)

dl′
(
gm(ρ,ρ′)n̂′ ·∇′ψm(ρ′)−ψm(ρ′)n̂′ ·∇′gm(ρ,ρ′)

)
(2.2.13)

−
∫
z′=−dm+fm(x′)

dl′
(
gm(ρ,ρ′)n̂′ ·∇′ψm(ρ′)−ψm(ρ′)n̂′ ·∇′gm(ρ,ρ′)

)
=0

Utilizing the boundary conditions to express the surface fields in the first integral in terms
of neighborer layer fields, we arrive at∫

dx′
(
gm(ρ,ρ′)γm−1,mam−1(x′)−bm−1(x′)n̂′ ·∇′gm(ρ,ρ′)

)
(2.2.14)

−
∫

dx′
(
gm(ρ,ρ′)am(x′)−bm(x′)n̂′ ·∇′gm(ρ,ρ′)

)
=0

Using the spectral expansion of the Green’s function in the region m as

gm(z>z′)= i

4π

∫
dkx

1
kmz

eikx(x−x′)+ikmz(z−z′) (2.2.15)

and normal derivative of Green’s function over m and (m−1)th interfaces,

n̂′m−1 ·∇′gm= 1√
1+f ′2m−1

i

4π

∫
dkx

1
kmz

[
−ikmz+ikxf ′m−1

]
eikx(x−x′)+ikmz(z−fm−1)eikmzdm−1

n̂′m ·∇′gm= 1√
1+f ′2m

i

4π

∫
dkx

1
kmz

[
−ikmz+ikxf ′m

]
eikx(x−x′)+ikmz(z−fm(x′))eikmzdm

(2.2.16)
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The integral equation for the upward propagating field in the region m can be obtained
by following the same procedure as region 1 (Inserting Fourier transform of the fields and
performing by part integration) as

eikmzdm−1

[
γm−1,mAm−1(kx)+ikmzBm−1(kx)+

∫
dk′xI+

m,m−1(kx,k′x)
{
γm−1,mAm−1(k′x)

+Bm−1(k′x)ik
2
m−kxk′x
kmz

}]
−eikmzdm

[
Am(kx)+ikmzBm(kx)

+
∫

dk′xI+
m,m(kx,k′x)

{
Am(k′x)+Bm(k′x)ik

2
m−kxk′x
kmz

}]
=0 (2.2.17)

Here 2≤m≤N−1 and scattering potentials are defined as

I+
m,m−1(kx,k′x)= 1

2π

∫
dx′e−i(kx−k′x)x′

[
e−ikmzfm−1(x′)−1

]
(2.2.18)

I+
m,m(kx,k′x)= 1

2π

∫
dx′e−i(kx−k′x)x′

[
e−ikmzfm(x′)−1

]
.

2.2.3 Extinction of Downward propagating Wave in Region m

The extinction relation here is the same as upward propagating wave in the region m.
The only difference is the spectral expansion of the Green’s function. In order to extinct
downward propagating wave in region m, the observation point should be placed under
the surface z=−dm+fm(x) to satisfy the condition z<z′ for all of the source point on the
surface. The Green’s function can be expanded as

gm(z<z′)= i

4π

∫
dkx

1
kmz

eikx(x−x′)−ikmz(z−z′) (2.2.19)

Following the same procedure as extinction of the upward propagating wave, we arrive at

e−ikmzdm−1

[
γm−1,mAm−1(kx)−ikmzBm−1(kx)+

∫
dk′xI−m,m−1(kx,k′x)

{
γm−1,mAm−1(k′x)

−Bm−1(k′x)ik
2
m−kxk′x
kmz

}]
−e−ikmzdm

[
Am(kx)−ikmzBm(kx)

+
∫

dk′xI−m,m(kx,k′x)
{
Am(k′x)−Bm(k′x)ik

2
m−kxk′x
kmz

}]
=0 (2.2.20)

with the scattering potentials I−m,m(kx,k′x) and I−m,m−1(kx,k′x) defined as

I−m,m−1(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
eikmzfm−1(x′)−1

]
(2.2.21)

I−m,m(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
eikmzfm(x′)−1

]
.
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2.2.4 Extinction of Upward Propagating Wave in region N

Application of the extinction theorem to the last half space gives similar results to that of
single interface problem described in Chapter 1. The final integral equation of the surface
fields on the last boundary in the spectral domain can be written as

γN−1,NAN−1+ikNzBN−1+
∫

dk′xI+
N,N−1

{
γN−1,NAN−1(k′x)+BN−1(k′x)ik

2
N−kxk′x
kNz

}
=0

where the scattering potential I+
N,N−1(kx,k′x) is defined as

I+
N,N−1(kx,k′x)= 1

2π

∫
dx′e−i(kx−k′x)x′

[
e−ikNzfN−1(x′)−1

]
. (2.2.22)

For middle layers where 2≤m≤N−1, the surface field variables can be related through the
Lippmann-Schwinger type equation of

G
u

0,m−1ψm−1(kx)+
∫

dk′xS
u

m−1(kx,k′x)ψm−1(k′x)=G
d

0,mψm(kx)+
∫

dk′xS
d

m(kx,k′x)ψm(k′x)

(2.2.23)

where G
u

0,m−1 and G
d

0,m are the propagation operator of the surface field over the flat
surfaces

G
u

0,m−1=
[
eikmzdm−1γm−1,m eikmzdm−1ikmz
e−ikmzdm−1γm−1,m −e−ikmzdm−1ikmz

]
(2.2.24)

G
d

0,m=
[
eikmzdm eikmzdmikmz
e−ikmzdm −e−ikmzdmikmz

]

and S
u

m−1 and S
d

m are scattering operators that incorporate scattering effect of the (m−1)th
and mth rough interfaces, respectively and are given by,

S
u

m−1=

 eikmzdm−1γm−1,mI
+
m,m−1 eikmzdm−1ik

2
m−kxk′x
kmz

I+
m,m−1

e−ikmzdm−1γm−1,mI
−
m,m−1 −e−ikmzdm−1ik

2
m−kxk′x
kmz

I−m,m−1

 (2.2.25)

S
d

m=

 eikmzdmI+
m,m eikmzdmik

2
m−kxk′x
kmz

I+
m,m

e−ikmzdmI−m,m −e−ikmzdmik
2
m−kxk′x
kmz

I−m,m


The superscripts u and d are here to distinguish two operators and finally, the unknown
surface fields on the mth boundary are placed in the column vector ψm and is defined as

ψm(kx)=
[
Am(kx)
Bm(kx)

]
(2.2.26)

The extinction relations of two half spaces (region 1 and regionN) can be combined together
and written as

G0,E(kx)ψE(kx)+
∫

dk′xSE(kx,k′x)ψE(k′x)=ψi (2.2.27)
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Here E refers to the External layers. Again, G0,E is the propagator of the surface fields
over the first and the last interfaces with zero roughness,

G0,E(kx)=
[

i
2k1z

1
2 0 0

0 0 γN−1,N ikNz

]
(2.2.28)

and SE(kx,k′x) is the partial scattering operator that is partially responsible for scattering
from the first and last interfaces due to the presence of roughness.

SE(kx,k′x)=

 i
2k1z

I−11
k2

1−kxk
′
x

2k2
1z

I−11 0 0

0 0 γN−1,NI
+
N,N−1 i

k2
N−kxk

′
x

kNz
I+
N,N−1

 (2.2.29)

and the external surface field vector is defined as,

ψE(kx)=


A1(kx)
B1(kx)
AN−1(kx)
BN−1(kx)

 (2.2.30)

2.3 Solution of the Surface Fields

2.3.1 Zeroth Order Solution

Up to the zeroth order of the surface roughness, the scattering operators are all set to zero
and propagation relation of middle layers can be written as

G
u

0,m−1ψ
(0)
m−1(kx)=G

d

0,mψ
(0)
m (kx) (2.3.1)

Also, for the external layers,

G0,E(kx)ψ(0)
E (kx)=δ(kx−kix)ψi (2.3.2)

The surface fields over the last boundary can be related to the surface fields over the first
boundary by a recursive relation through

ψ
(0)
m (kx)=

[
G
d

0,m

]−1
G
u

0,m−1ψ
(0)
m−1(kx) (2.3.3)

to obtain,

ψ
(0)
N−1(kx)=

([
G
d

0,N−1

]−1
G
u

0,N−2

)([
G
d

0,N−2

]−1
G
u

0,N−3

)
···
([
G
d

0,1

]−1
G
u

0,0

)
ψ

(0)
0 (kx)

:=G
(0)
ψ

(0)
0

Here, G0 is defined as product of all propagation operators and relates the surface fields
of the first boundary to the last one. Combining the middle and external equations, the
obtained a matrix equation for the ψE as G0,E(kx)

G
(0)

−I

ψ(0)
E (kx)=δ(kx−kix)ψi (2.3.4)

which provides the surface fields solution over the first and last interfaces that enable us to
calculated both scattered and transmitted fields. The requirement for the finite solution of
the surface fields is that the matrix on the left hand side should be invertible at kx=kix.

32



2.3.2 First Order Solution

Balancing (2.2.23) and (2.2.27) up to the first order of surface roughness gives

G
u

0,m−1ψ
(1)
m−1(kx)+

∫
dk′xS

u(1)
m−1(kx,k′x)ψ(0)

m−1(k′x)=G
d

0,mψ
(1)
m (kx)+

∫
dk′xS

d(1)
m (kx,k′x)ψ(0)

m (k′x)

G0,E(kx)ψ(1)
E (kx)+

∫
dk′xS

(1)
E (kx,k′x)ψ(0)

E (k′x)=0 (2.3.5)

Since the zeroth order solution exists only in specular spectral point kx=kix, the integrals
will be sifted by the delta function and

G
u

0,m−1ψ
(1)
m−1(kx)+S

u(1)
m−1(kx,kix)ψ(0)

m−1=G
d

0,mψ
(1)
m (kx)+S

d(1)
m (kx,kix)ψ(0)

m (2.3.6)

G0,E(kx)ψ(1)
E (kx)+S

(1)
E (kx,kix)ψ(0)

E =0

We can solve for the first order surface fields and noting that the zeroth order solution of
surface fields are known over all of the interfaces, a recursive relation can be obtained as

ψ
(1)
m (kx)=

[
G
d

0,m(kx)
]−1

G
u

0,m−1ψ
(1)
m−1(kx) (2.3.7)

+
[
G
d

0,m(kx)
]−1(

S
u(1)
m−1(kx,kix)ψ(0)

m−1−S
d(1)
m (kx,kix)ψ(0)

m

)
Observing that the first order approximation of the scattering potentials are related to the
interfaces spectrum through,

S
u(1)
m−1(kx,kix)=

eikmzdm−1γm−1,m(−ikmz) eikmzdm−1ik
2
m−kxk′x
kmz

(−ikmz)
e−ikmzdm−1γm−1,m(ikmz) −e−ikmzdm−1ik

2
m−kxk′x
kmz

(ikmz)

Fm−1(kx−kix)

(2.3.8)

S
d(1)
m (kx,kix)=

eikmzdm(−ikmz) eikmzdmik
2
m−kxk′x
kmz

(−ikmz)
e−ikmzdm(ikmz) −e−ikmzdmik

2
m−kxk′x
kmz

(ikmz)

Fm(kx−kix)

The first order surface field over the mth interface can be decomposed into

ψ
(1)
m (kx)=G

(1)
m ψ

(1)
m−1+Du

m−1Fm−1+Dd
mFm (2.3.9)

where, the following intermediate vectors are introduced for convenience

G
(1)
m (kx)=

[
G
d

0,m(kx)
]−1

G
u

0,m−1 (2.3.10)

D
u
m−1(kx)=

[
G
d

0,m(kx)
]−1

S̃
u(1)
m−1(kx,kix)ψ(0)

m−1

D
d
m(kx)=−

[
G
d

0,m(kx)
]−1

S̃
d(1)
m (kx,kix)ψ(0)

m
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Now we are in position to solve recursive relation of the surface fields to relate first and the
last surface fields together

ψ
(1)
m (kx)=G

(1)
m

(
G

(1)
m−1ψ

(1)
m−2+Du

m−2Fm−2+Dd
m−1Fm−1

)
+Du

m−1Fm−1+Dd
mFm

=G
(1)
m G

(1)
m−1ψ

(1)
m−2+G

(1)
m D

u
m−2Fm−2+G

(1)
m D

d
m−1Fm−1+Du

m−1Fm−1+Dd
mFm

=G
(1)
m G

(1)
m−1ψ

(1)
m−2+G

(1)
m D

u
m−2Fm−2+

[
G

(1)
m D

d
m−1+Du

m−1

]
Fm−1+Dd

mFm

also

ψ
(1)
m−2(kx)=G

(1)
m−2ψ

(1)
m−3+Du

m−3Fm−3+Dd
m−2Fm−2 (2.3.11)

and as a result of substitution, we obtain,

ψ
(1)
m (kx)=G

(1)
m G

(1)
m−1

(
G

(1)
m−2ψ

(1)
m−3+Du

m−3Fm−3+Dd
m−2Fm−2

)
(2.3.12)

+G
(1)
m D

u
m−2Fm−2+

[
G

(1)
m D

d
m−1+Du

m−1

]
Fm−1+Dd

mFm

=G
(1)
m G

(1)
m−1G

(1)
m−2ψ

(1)
m−3+G

(1)
m G

(1)
m−1D

u
m−3Fm−3+G

(1)
m G

(1)
m−1D

d
m−2Fm−2

+G
(1)
m D

u
m−2Fm−2+

[
G

(1)
m D

d
m−1+Du

m−1

]
Fm−1+Dd

mFm

or

ψ
(1)
m (kx)=G

(1)
m G

(1)
m−1G

(1)
m−2ψ

(1)
m−3+G

(1)
m G

(1)
m−1D

u
m−3Fm−3 (2.3.13)

+G
(1)
m

[
G

(1)
m−1D

d
m−2+Du

m−2

]
Fm−2+

[
G

(1)
m D

d
m−1+Du

m−1

]
Fm−1+Dd

mFm

This recursive relation can be generalized to for arbitrary number of layers through,

ψ
(1)
N−1(kx)=G

(1)
N−1G

(1)
N−2 ···G

(1)
2 ψ

(1)
1 (2.3.14)

+G
(1)
N−1G

(1)
N−2 ···G

(1)
3

[
D
u
1F1+Dd

2F2
]

+G
(1)
N−1G

(1)
N−2 ···G

(1)
4

[
D
u
2F2+Dd

3F3
]

+G
(1)
N−1G

(1)
N−2 ···G

(1)
5

[
D
u
3F3+Dd

4F4
]

...

+G
(1)
N−1

[
D
u
N−3FN−3+Dd

N−2FN−2
]

+
[
D
u
N−2FN−2+Dd

N−1FN−1
]

:=G
(1)
ψ

(1)
1 +

∑
D

(1)
j Fj

On the other hand, for external layers,

G0,E(kx)ψ(1)
E (kx)+S

(1)
E (kx,kix)ψ(0)

E =0 (2.3.15)
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where,

S
(1)
E (kx,k′x)=

[
−1

2F1 i
k2

1−kxk
′
x

2k1z
F1 0 0

0 0 −iγN−1,NkNzFN−1 (k2
N−kxk′x)FN−1

]
(2.3.16)

Combination of (2.3.14) and (2.3.15) provides necessary system of equations to solve the
surface fields on the external interfaces, G0,E

−G
(1)

I

ψ(1)
E =

−S(1)
E (kx,kix)ψ(0)

E∑
D

(1)
j Fj

 (2.3.17)

2.3.3 Second Order Solution

Balancing (2.2.23) up to the second order of surface roughness result in,

G
u

0,m−1ψ
(2)
m−1(kx)+

∫
dk′xS

u(1)
m−1(kx,k′x)ψ(1)

m−1(k′x)+
∫

dk′xS
u(2)
m−1(kx,k′x)ψ(0)

m−1(k′x) (2.3.18)

=G
d

0,mψ
(2)
m (kx)+

∫
dk′xS

d(1)
m (kx,k′x)ψ(1)

m (k′x)+
∫

dk′xS
d(2)
m (kx,k′x)ψ(0)

m (k′x)

Before proceeding to the solution second order perturbation of scattering operator are as
following

S
u(2)
m−1(kx,k′x)=−1

2k
2
mz

 eikmzdm−1γm−1,m eikmzdm−1ik
2
m−kxk′x
kmz

e−ikmzdm−1γm−1,m −e−ikmzdm−1ik
2
m−kxk′x
kmz

F (2)
m−1(kx−k′x) (2.3.19)

S
d(2)
m (kx,k′x)=−1

2k
2
mz

 eikmzdm eikmzdmik
2
m−kxk′x
kmz

e−ikmzdm −e−ikmzdmik
2
m−kxk′x
kmz

F (2)
m (kx−k′x)

Inserting specular zeroth order solution yields

G
u

0,m−1ψ
(2)
m−1(kx)+

∫
dk′xS

u(1)
m−1(kx,k′x)ψ(1)

m−1(k′x)+S
u(2)
m−1(kx,kix)ψ(0)

m−1 (2.3.20)

=G
d

0,mψ
(2)
m (kx)+

∫
dk′xS

d(1)
m (kx,k′x)ψ(1)

m (k′x)+S
d(2)
m (kx,kix)ψ(0)

m

From the first order solution of the surface fields, ψ(1)
m can be decomposed as contribution

of the different interfaces as

ψ
(1)
m =

∑
ψ

(1)
m,jFj (2.3.21)

thus,

G
u

0,m−1ψ
(2)
m−1(kx)+

∑
j

∫
dk′xS̃

u(1)
m−1(kx,k′x)ψ(1)

m−1,j(k′x)Fm−1(kx−k′x)Fj(k′x−kix) (2.3.22)

+S̃
u(2)
m−1(kx,kix)F (2)

m−1(kx−kix)ψ(0)
m−1

=G
d

0,mψ
(2)
m (kx)+

∑
j

∫
dk′xS̃

d(1)
m (kx,k′x)ψ(1)

m,j(k′x)Fm(kx−k′x)Fj(k′x−kix)

+S̃
d(2)
m (kx,kix)F (2)

m (kx−kix)ψ(0)
m
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Upon taking statistical average, the second order surface fields become simplified for further
derivations. Using the second spectral moments of the surface profiles [57] as

〈F (2)
j (kx−kix)〉=δ(kx−kix)

∫
dk′xWj(k′x−kix) (2.3.23)

〈Fj(kx−k′x)Fj(k′x−kix)〉=δ(kx−kix)Wj(k′x−kix)

and assuming uncorrelated surfaces 〈Fj(kx−k′x)Fj(k′x−kix)〉=0 we arrive at

G
d

0,m

〈
ψ

(2)
m (kx)

〉
+
∫

dk′xS̃
d(1)
m (kx,k′x)ψ(1)

m,m(k′x)δ(kx−kix)Wm(k′x−kix) (2.3.24)

+S̃
d(2)
m (kx,kix)ψ(0)

m δ(kx−kix)
∫

dk′xW (k′x−kix)

=G
u

0,m−1

〈
ψ

(2)
m−1(kx)

〉
+δ(kx−kix)

∫
dk′xS̃

u(1)
m−1(kx,k′x)ψ(1)

m−1,m−1(k′x)Wm−1(k′x−kix)

+S̃
u(2)
m−1(kx,kix)ψ(0)

m−1δ(kx−kix)
∫

dk′xWm−1(k′x−kix)

This is a recursive relation that relates the surface field on the neighbor interfaces that can
be written as 〈

ψ
(2)
m

〉
=G

(2)
m

〈
ψ

(2)
m−1

〉
+Du

m−1+Dd
m (2.3.25)

where the vector and dyadic quantities Dd
m, D

u
m−1, and G

(2)
m are defined as

G
(2)
m =

[
G
d

0,m

]−1
G
u

0,m−1 (2.3.26)

D
d
m=−δ(kx−kix)

[
G
d

0,m

]−1∫
dk′x

{
S̃
d(1)
m ψ

(1)
m,m(k′x)+S̃

d(2)
m ψ

(0)
m

}
Wm(k′x−kix)

D
u
m−1=δ(kx−kix)

[
G
d

0,m

]−1∫
dk′x

{
S̃
u(1)
m−1ψ

(1)
m−1,m−1(k′x)+S̃

u(2)
m−1ψ

(0)
m−1

}
Wm−1(k′x−kix)

The averaged second order surface fields on the last boundary
〈
ψ

(2)
N−1

〉
can be written in

terms of that of first boundary using the recursive relation (2.3.26), similar to the procedure
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used in the first order solution,〈
ψ

(2)
N−1

〉
=G

(2)
N−1G

(2)
N−2 ···G

(2)
1

〈
ψ

(2)
0

〉
(2.3.27)

+G
(2)
N−1G

(2)
N−2 ···G

(2)
2 D

u
0F0

+G
(2)
N−1G

(2)
N−2 ···G

(2)
3

[
G

(2)
2 D

d
1+Du

1

]
+G

(2)
N−1G

(2)
N−2 ···G

(2)
4

[
G

(2)
3 D

d
2+Du

2

]
...

+G
(2)
N−1

[
G

(2)
N−2D

d
N−3+Du

N−3

]
+
[
G

(2)
N−1D

d
N−2+Du

N−2

]
+Dd

N−1

:=G
(2)
ψ

(2)
0 +

∑
D

(2)
j

where the overall zeroth order propagator from the first to the last boundary is defined as

G
(2)

=G
(2)
N−1G

(2)
N−2 ···G

(2)
1 (2.3.28)

Now that we have a relation between the first and last surface fields, using the exterior
equations we can derive another relation between the first and last region surface fields.
From the second order approximation of the exterior field integral equation,

G0,E(kx)ψ(2)
E (kx)+S

(2)
E (kx,kix)ψ(0)

E +
∫

dk′xS
(1)
E (kx,k′x)ψ(1)

E (k′x)=0 (2.3.29)

Here the second order perturbation of scattering operator becomes

S
(2)
E (kx,k′x)=−1

2

[
i
2k1zF

(2)
1

k2
1−kxk

′
x

2 F
(2)
1 0 0

0 0 γN−1,N (k2
NzF

(2)
N−1) ikNz(k2

N−kxk′x)F (2)
N−1

]

The second order scattering operator can be decomposed into contribution of the first and
last interfaces as,

S
(2)
E (kx,k′x)=S̃

(2)
E,0(kx,k′x)F (2)

0 +S̃
(2)
E,N−1(kx,k′x)F (2)

N−1 (2.3.30)

S
(1)
E (kx,k′x)=S̃

(1)
E,0(kx,k′x)F0+S̃

(1)
E,N−1(kx,k′x)FN−1

In addition, the first order surface field ψ(1)
E has two components proportional to the first

and the last surface spectrum,

ψ
(1)
E =ψ(1)

E,0F0+ψ(1)
E,N−1FN−1 (2.3.31)

Plugging the first and zeroth order solutions in (2.3.29) we will arrive at

G0,E(kx)
〈
ψ

(2)
E

〉
=−δ(kx−kix)

∫
dk′x

[
W0(k′x−kix)D(2)

E,0+WN−1(k′x−kix)D(2)
E,N−1

]
(2.3.32)
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where,

D
(2)
E,0(k′x)=S̃

(2)
E,0(kx,kix)ψ(0)

E +S̃
(1)
E,0(kix,k′x)ψ(1)

E,0(k′x) (2.3.33)

D
(2)
E,N−1(k′x)=S̃

(2)
E,N−1(kx,kix)ψ(0)

E +S̃
(1)
E,N−1(kix,k′x)ψ(1)

E,N−1(k′x)

Now, using general recursive relation of the second order surface field of (2.3.27), it can be
rewritten as〈

ψ
(2)
N−1

〉
−G

(2)〈
ψ

(2)
0

〉
=δ(kx−kix)

∑
j

∫
dk′xWj(k′x−kix)C(2)

j (k′x) (2.3.34)

The governing system of equation for the averaged second order fields on the first and last
surfaces are as followsG0,E(kix)

−G
(2)

I

〈ψ(2)
E

〉
=δ(kx−kix)

∫
dk′xR(k′x) (2.3.35)

R(k′x)=


−W0(k′x−kix)D(2)

E,0−WN−1(k′x−kix)D(2)
E,N−1

∑
j

∫
dk′xWj(k′x−kix)C(2)

j (k′x)

 (2.3.36)

Presence of the delta function on the right hand side shows that the average second order
surface fields are only non-zero in the specular direction.

2.4 Scattered and Transmitted Fields
Using the equivalence principle we can find the scattered field into the region 1 as

Es(kx)=− i

2k1z

[
A10(kx)+ik1zB1(kx)+

∫
dk′xI+

11(kx,k′x)
{
A1(k′x)+B1(k′x)ik

2
1−kxk′x
k1z

}]
(2.4.1)

where the scattering potential for the upward propagating scattered field is defined through,

I+
11(kx,k′x)= 1

2π

∫
dx′e−i(kx−k′x)x′

[
e−ik1zf1(x′)−1

]
(2.4.2)

and the transmitted field into region N can be found by the equivalence principle to the
last half space that results in

Et(kx)= i

2kNz
e−ikNzdN−1

[
γN−1,NAN−1(kx)−ikNzBN−1(kx) (2.4.3)

+
∫

dk′xI−N,N−1(kx,k′x)
{
γN−1,NAN−1(k′x)−BN−1(k′x)ik

2
N−kxk′x
kNz

}]
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with relevant scattering potential of

I−N,N−1(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
e+ikNzfN−1(x′)−1

]
. (2.4.4)

Upon defining the scattered field vector ψs as

ψs(kx)=
[
Es(kx)
Et(kx)

]
(2.4.5)

The scattered field can be written in terms of the external surface field vector ψE as

ψs(kx)=G
0
s(kx)ψE(kx)+

∫
dk′x Ss(kx,k′x)ψE(k′x) (2.4.6)

where G
0
s(kx) is the flat surface propagator of the scattered field

G
0
s(kx)=

[
− i

2k1z
1
2 0 0

0 0 i
2kNz e

−ikNzdN−1γN−1,N
1
2e
−ikNzdN−1

]
(2.4.7)

and Ss(kx,k′x) is the proper scattering operator of the scattered field defined by,

Ss=

− i
2k1z

I+
11

k2
1−kxk

′
x

2k2
1z

I+
00 0 0

0 0 i
2kNz e

−ikNzdN−1γN−1,NI
−
N,N−1 e−ikNzdN−1 k

2
N−kxk

′
x

2k2
Nz

I−N,N−1


(2.4.8)

2.4.1 Zeroth order scattered field

Balancing (2.4.6) up to the zeroth order of the surface roughness yields,

ψ
(0)
s (kx)=δ(kx−kix)G

0
s(kix)ψ(0)

E (2.4.9)

Notice that no inversion operation is involved in calculation of the scattered fields.

2.4.2 First Order Scattered Field

Collecting the terms f order one in (2.4.6) and using the first order solution of the surface
fields, results in

ψ
(1)
s (kx)=G

0
s(kx)ψ(1)

E (kx)+S
(1)
s (kx,kix)ψ(0)

E (2.4.10)

In addition, the first order external surface fields can be expanded in terms of contributions
of individual interfaces as

ψ
(1)
E (kx)=

∑
ψ

(1)
E,j(kx)Fj(kx−kix) (2.4.11)

On the other side the scattering operator of the first order can be decomposed into the first
and the last interfaces contributions,

S
(1)
s (kx,kix)=S

(1)
s,1(kx,kix)F1(kx−kix)+S

(1)
s,N−1(kx,kix)FN−1(kx−kix) (2.4.12)
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Separating different surface spectrum contributions gives

ψ
(1)
s (kx)=

[
G

0
s(kx)ψ(1)

E,1(kx)+S
(1)
s,1(kx,kix)ψ(0)

E

]
F1 (2.4.13)

+
[
G

0
s(kx)ψ(1)

E,N−1(kx)+S
(1)
s,N−1(kx,kix)ψ(0)

E

]
FN−1

+
∑

j 6=1,N−1
G

0
s(kx)ψ(1)

E,j(kx)Fj(kx−kix)

where,

S
(1)
s,1(kx,kix)=

[
−1

2 −ik
2
1−kxkix

2k1z
0 0

0 0 0 0

]
(2.4.14)

S
(1)
s,N−1(kx,kix)=

[
0 0 0 0
0 0 −1

2e
−ikNzdN−1γN−1,N e−ikNzdN−1i

k2
N−kxkix

2kNz

]
(2.4.15)

2.4.3 Second Order Scattered Field

Balancing (2.4.6) up to the second order of the surface roughness and substituting the
zeroth and first order surface fields gives,

ψ
(2)
s (kx)=G

0
s(kx)ψ(2)

E (kx)+ S̃
(2)
s,1(kx,kix)ψ(0)

E F
(2)
1 +S̃

(2)
s,N−1(kx,kix)ψ(0)

E F
(2)
N−1 (2.4.16)

+
∑

i=1,N−1;j

∫
dk′x S̃

(1)
s,i (kx,k′x)Fi(kx−k′x)ψ(1)

E,j(k′x)Fj(k′x−kix)

Upon taking the statistical average and assuming uncorrelated surfaces〈
ψ

(2)
s

〉
=G

0
s(kx)

〈
ψ

(2)
E

〉
+δ(kx−kix)

[
S̃

(2)
s,1(kx,kix)ψ(0)

E

∫
dk′xW1(k′x−kix) (2.4.17)

+S̃
(2)
s,N−1(kx,kix)ψ(0)

E

∫
dk′xWN−1(k′x−kix)

+
∫

dk′x S̃
(1)
s,1(kx,k′x)ψ(1)

E,1(k′x)W1(k′x−kix)

+
∫

dk′x S̃
(1)
s,N−1(kx,k′x)ψ(1)

E,N−1(k′x)WN−1(k′x−kix)
]

Utilizing averaged second order surface field expression as〈
ψ

(2)
E

〉
=δ(kx−kix)

∑
j

∫
dk′xψ

(2)
E,j(k′x)Wj(k′x−kix) (2.4.18)

the second order scattered field in spectral domain can be obtained as〈
ψ

(2)
s

〉
=δ(kx−kix)

∫
dk′x

[ ∑
j 6=0,N−1

G
0
s(kx)ψ(2)

E,j(k′x)Wj(k′x−kix) (2.4.19)

+
{
S̃

(2)
s,1(kx,kix)ψ(0)

E + S̃
(1)
s,1(kx,k′x)ψ(1)

E,1(k′x)+G
0
s(kx)ψ(2)

E,1(k′x)
}
W1

+
{
S̃

(2)
s,N−1(kx,kix)ψ(0)

E + S̃
(1)
s,N−1(kx,k′x)ψ(1)

E,N−1(k′x)+G
0
s(kx)ψ(2)

E,N−1(k′x)
}
WN−1

]
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2.5 Scattered and Transmitted Power
The scattered field in spatial coordinate can be obtained from the spectral representation
through,

ψs(r)=
∫

dkxψs(kx)eikxx+ik1zz (2.5.1)

and for different orders of the scattered field we have

ψ(0)
s (r)=ψ(0)

s (kix)eikix+ikizz (2.5.2)

ψ(1)
s (r)=

∑
j

∫
dkxeikxx+ik1zzψ

(1)
s,j (kx)Fj(kx−kix)

〈ψ(2)
s (r)〉=eikix+ikiz

∑
j

∫
dk′x〈ψ(2)

s 〉jWj(k′x−kix)

Here ψs=Esy. The scattered power density can be expressed in terms of pilot electric field
Esy as

〈Ss ·ẑ〉=−
1
2Im

[ 1
kη
Esy

(
ẑ ·∇E∗sy

)]
=−1

2Im
[ 1
kη

〈
Esy

∂E∗sy
∂z

〉]
(2.5.3)

The zeroth and second oder scattered field are coherent. Therefore the coherent power
consists of

〈Ss ·ẑ〉coh=−1
2Im

[ 1
kη

〈
E(0)
sy

∂E
(0)∗
sy

∂z
+E(0)

sy

∂E
(2)∗
sy

∂z
+E(2)

sy

∂E
(0)∗
sy

∂z

〉]
(2.5.4)

= 1
2Re

[
kiz
kη

〈
E(0)
sy ∂E

(0)∗
sy +E(0)

sy E
(2)∗
sy +E(2)

sy E
(0)∗
sy

〉]
= 1

2Re
[
kiz
kη

(
|E(0)

sy |2+2〈E(2)
sy 〉E(0)∗

sy

)]
The coherent power can be decomposed into the zeroth order and second order as

〈Ss ·ẑ〉(0)
coh= 1

2Re
[
kiz
kη
|E(0)

sy |2
]

(2.5.5)

〈Ss ·ẑ〉(2)
coh=Re

[
kiz
kη
〈E(2)

sy 〉E(0)∗
sy

]
The zeroth order is that of flat interfaces and the second order is given by

〈Ss ·ẑ〉(2)
coh=

∑
j

∫
dk′xRe

[
kiz
kη
ψ(0)∗
s (kix)〈ψ(2)

s 〉jWj(k′x−kix)
]

(2.5.6)

On the order hand, the incoherent power originates from the first order scattered field
(which has zero coherence) that can be computed as

〈Ss ·ẑ〉incoh=−1
2Im

[ 1
kη

〈
E(1)
sy

∂E
(1)∗
sy

∂z

〉]
= 1

2Re
[
kz
kη

〈
E(1)
sy E

(1)∗
sy

〉]
(2.5.7)

= 1
2kηRe(kz)

∑
j

∫
dkx|ψ(1)

s,j (kx)|2Wj(kx−kix)
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The Transmitted power can be computed in a similar way. The final results are given
below. Note that the last region can be lossy (as opposed to the first region with usually is
considered to be vacuum). For coherent transmitted power density,

〈St ·(−ẑ)〉(0)
coh= 1

2Re
[
kNiz
kNηN

|E(0)
ty |2

]
(2.5.8)

〈St ·(−ẑ)〉(2)
coh=Re

[
kNiz
kNηN

〈E(2)
ty 〉E

(0)∗
ty

]
〈St ·ẑ〉(2)

coh=
∑
j

∫
dk′xRe

[
kNiz
kNηN

ψ
(0)∗
t (kix)〈ψ(2)

t 〉jWj(k′x−kix)
]

and the incoherent power density is given by

〈St ·(−ẑ)〉incoh= 1
2kNηN

Re(kNz)
∑
j

∫
dkx|ψ(1)

t,j (kx)|2Wj(kx−kix) (2.5.9)

2.6 Strong Statement of Energy Conservation
For a lossless media, energy conservation mandates that total scattered and transmitted
power balance up the incident power to the structure. This is always the case for the exact
solution of the Maxwell’s equations. However, for an approximate solution of the problem,
it is not clear that approximate solution respects the energy conservation. One may verify
this by considering a special spectral density Wj(kx) for the rough interfaces and calculate
the different components of the scattered and transmitted powers. The power conservation
is critical in computation of the emissivity of the surface as computation of the scattered
field is easier than taking care of the transmitted and lost power within the media.

It can be shown that the SPM2 provides an approximate solution that always satisfies
the energy conservation criteria, irrespective of the surface statistics [24]. Even when the
approximations that are made in SPM perturbation solution are not valid, the SPM2 solu-
tion respects energy conservation. The zeroth order solution is exact solution of the same
problem with flat interfaces. Therefore, the zeroth order scattered and transmitted power
balance up the incident power. The remaining power terms, including the coherent and
incoherent scattered and transmitted powers should sum up to zero. Therefore, energy is
conserved within the solution if

〈St ·(−ẑ)〉incoh+〈St ·(−ẑ)〉(2)
coh+〈Ss ·(ẑ)〉incoh+〈Ss ·(ẑ)〉(2)

coh=0 (2.6.1)

All of the power density terms are in terms of spectral integral of a spectral function times
spectral density of the surfaces. If we define the power spectral coefficients Scoh/incoh

sj,tj of the
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j-th surface such that

〈St ·(−ẑ)〉incoh=
∑
j

∫
dkx S incoh

tj (kx)Wj(kx−kix) (2.6.2)

〈St ·(−ẑ)〉coh=
∑
j

∫
dkx Scoh

tj (kx)Wj(kx−kix)

〈Ss ·(ẑ)〉incoh=
∑
j

∫
dkx S incoh

sj (kx)Wj(kx−kix)

〈Ss ·(ẑ)〉coh=
∑
j

∫
dkx Scoh

sj (kx)Wj(kx−kix)

Then, the energy conservation can be achieved if

∑
j

∫
dkx Wj(kx−kix)

[
S incoh
tj (kx)+Scoh

tj (kx)+S incoh
sj (kx)+Scoh

sj (kx)
]
=0 (2.6.3)

Since the spectral density of the surface can be selected arbitrarily, the energy conservation
is satisfied if the integrand identically vanishes

S incoh
tj (kx)+Scoh

tj (kx)+S incoh
sj (kx)+Scoh

sj (kx)=0 , ∀kx∈R,j=1,2,··· ,N−1 (2.6.4)

at all of the spectral points and for individual interface index j. We will show that for the
SPM2 solution, (2.6.4) is true at all spectral points and for all surfaces (two interfaces here)
that translate to energy conservation irrespective of the statistical shape of the interface
(even when surface parameters do not meet SPM2 criteria, for example, large height).
Consider a dielectric layered media of Fig.[] with dielectric constant of εr=[1,1.5,2.8,3.5,4.3]
from the top (the top medium is vacuum) to the bottom and mean position of rough
interfaces at d=[0,.5,0.8,1.6]λ. The structure is illuminated with a TE polarized wave
with θi=40◦ with the wave length of λ. Figure. 2.2 plots the power spectral coefficients
of the all rough interfaces (with unit of W/m4) versus the normalized spectral variable
kx/k=kxλ/2π. Summation of all power spectral coefficients is identical to zero (up to the
machine precision) for individual interfaces which is plotted with dashed black line. This
shows that the SPM2 solution always satisfies the energy conservation irrespective of the
surface roughness statistics.
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Figure 2.2: Coherent and incoherent power spectral coefficients of the all interfaces
(j=1,··· ,4) (with unit of W/m4) for a TE plane wave incidence along θi=40◦ on
a 2D dielectric rough interface with dielectric constant of εr=[1,1.5,2.8,3.5,4.3]
from the top (top medium is vacuum) and mean rough interfaces position of d=

[0,.5,0.8,1.6]λ.
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Chapter 3

2D scattering From Dielectric
Layered Media with Periodic
Interfaces, T -matrix Approach

3.1 Introduction
The solution is based on the integral equation with periodic Green’s function as he kernel of
the integral equation [56, 58–60]. However, in contrast to the usual surface integral equation
that is mapped on the boundary surface itself [61–63], the integral equation is mapped
on another surface which completely include the scatterer. This extension of boundaries
originates in the fact that the spectral expansion of the Green’s function can be used
if the source and observation positions are globally differentiated (source position always
lower or upper than the observation point). Mapping the integral equation on this surface
with is extended beyond the actual surface is called Extended Boundary Condition Method
[54, 55, 62]. Once we consider this, it naturally results in the presence of only upward going
waves on top of the surface. This is the same as considering the upward propagating waves
in the expansion of the scattered field. This assumption that neglect downward propagating
waves on top of the surface is known as Rayleigh Hypothesis. So the Rayleigh Hypothesis is
essentially the same as extended boundary condition method [53]. The Rayleigh hypothesis
is a good approximation for the surfaces without shadow area. Generally, it is valid when
the surface slop does not exceed certain value [64]. If the average slope is such that some
downward going modes should be present in the scattered field expansion, i.e. the included
modes are not enough to correctly represent the scattered field. If one wants to somehow
compensate lake of shadow modes by increasing the number of included modes, nothing
will be added to the response. The coefficients of the additional modes would be around
zero and the problem becomes ill-conditioned.

3.2 Bloch Theorem for 2D Periodic Surfaces
Assume a 2D periodic surface that is uniform along y direction and variation along x is
described by a periodic function z=f(x) with period L such that

f(x+L)=f(x) (3.2.1)
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Consider a plane wave with unit amplitude Ei(r)=êieiki·r that is impinging upon the peri-
odic surface from the top, where êi is the polarization of the incident field and

ki=kixx̂+kiyŷ−kiz ẑ (3.2.2)

is the incident wave vector. Since the periodic surface is uniform along y direction, all field
quantities have dependence of eikiyy by setting ∂/∂y=ikiy in the Maxwell’s equations. In
order to see why all field quantities have such a dependence, consider a plane wave that is
propagating along the uniform direction of the surface which is y direction. Then, due to
the continuity of the tangential component of the wave vector, wave in both regions (top
and bottom of surface) have the same wave vectors which shows that eikiyy is conserved for
both scattered field and transmitted field (and also for surface fields).

Therefore, without loss of generality, assume that the incident plane wave is propagating
in x−z plane with wave vector ki=kixx̂−kiz ẑ. Also for TE problem assume that the
incident electric field polarization is along y direction. With this assumption we only have
y- directed electric field in the medium as there is no depolarization for electric field since
electric field does not cross the corrugations. Thus, in each medium E=Eyŷ should satisfies
the 2D wave equation of (

∂2

∂x2 + ∂2

∂z2

)
Ey+k2Ey=0 (3.2.3)

In order to solve for Eq. (3.2.3) corresponding free space Green’s function can be introduced
by (

∂2

∂x2 + ∂2

∂z2

)
g(x,z;x′,z′)+k2g(x,z;x′,z′)=−δ(x−x′)δ(z−z′) (3.2.4)

subject to the Sommerfeld radiation condition at infinity. The differential equation of
(3.2.4) can be integrated in the cylindrical coordinate in a closed form to obtain

g(ρ,ρ′)= i

4H
(1)
0 (k|ρ−ρ′|) (3.2.5)

where ρ=xx̂+zẑ. Alternatively, (3.2.4) can be solved in Cartesian coordinate by applying
one Fourier transform over x dimension to obtain the spectral expansion of

g(ρ,ρ′)= i

4π

∫
dkx

1
kz
eikx(x−x′)+ikz |z−z′| (3.2.6)

Applying 2D Green’s second identity results in,

∮
∂S

dln̂·
(
g(ρ,ρ′)∇Ey(ρ)−Ey(ρ)∇g(ρ,ρ′)

)
=
{
Ey(ρ′) ρ′∈S
0 ρ′ /∈S

(3.2.7)

Here n̂ is a unit normal pointing outward from the region S. Now take the region S to be
the half space defined by z>f(x). Upon reversing direction of the unit normal as n̂→−n̂
(points into region S) and swapping the primed and unprimed coordinates it yields

−
∮
∂S

dl′n̂′ ·
(
g(ρ,ρ′)∇′Ey(ρ′)−Ey(ρ′)∇′g(ρ,ρ′)

)
=
{
Ey(ρ) ρ∈S
0 ρ /∈S

(3.2.8)
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This is the statement of the Extinction theorem for scalar wave Ey(ρ). The boundary
integral over ∂S consists of two part. One segment is the integral over the boundary
surface z=f(x) and another integral is over a large closing path at infinity C∞,

−
[∫

z=f(x)
+
∫
C∞

]
dl′n̂′ ·

(
g(ρ,ρ′)∇′Ey(ρ′)−Ey(ρ′)∇′g(ρ,ρ′)

)
=
{
Ey(ρ) ρ∈S
0 ρ /∈S

(3.2.9)

Now for a moment assume that there is no scatterer and everywhere is vacuum. The extinc-
tion theorem is still valid and the first integral has no contribution. With this assumption,
the electric field anywhere is the incident electric field

−
∫
C∞

dl′n̂′ ·
(
g(ρ,ρ′)∇′Ey(ρ′)−Ey(ρ′)∇′g(ρ,ρ′)

)
=Eiy(ρ) (3.2.10)

Therefore, the value of the integral over C∞ is now determined. Substituting back in the
extinction theorem we have

Eiy(ρ)−
∫
z=f(x)

dl′n̂′ ·
(
g(ρ,ρ′)∇′Ey(ρ′)−Ey(ρ′)∇′g(ρ,ρ′)

)
=
{
Ey(ρ) ,ρ∈S
0 ,ρ /∈S

(3.2.11)

where Eiy(ρ)=eikixx−ikizz. In what follows, a simple proof of the Floquet-Bloch theorem
for the periodic surface is derived based on integral equation formalism. Let’s restrict the
observation point to be on the periodic surface but slightly above it, i.e. z=f(x)+, then

Eiy(x,z=f(x))−
∫
z′=f(x′)

dl′n̂′ ·
(
g(ρ,ρ′)∇′Ey(ρ′)−Ey(ρ′)∇′g(ρ,ρ′)

)
=Ey(ρ) (3.2.12)

Note that the normal length element on the surface is given by dl′n̂′=(ẑ−fx′ x̂)dx′. There-
fore,

eikixx−ikizf(x)=Ey(ρ)+
∫ ∞
−∞

dx′
(
ẑ−df(x′)

dx′ x̂
)
·
(
g(ρ,ρ′)∇′Ey(ρ′)−Ey(ρ′)∇′g(ρ,ρ′)

)
(3.2.13)

The notation will be simplified by defining an integro-differential operator G as

Gu(ρ)=u(ρ)+
∫ ∞
−∞

dx′
(
ẑ−df(x′)

dx′ x̂
)
·
(
g(ρ,ρ′)∇′u(ρ′)−u(ρ′)∇′g(ρ,ρ′)

)
(3.2.14)

then
eikixx−ikizf(x)=GEy(ρ) (3.2.15)

From the periodicity of f(x), left hand side transforms under x→x+L as

eikix(x+L)−ikizf(x+L)=eikix(x+L)−ikizf(x)=eikixL
(
eikixx−ikizf(x)

)
(3.2.16)

Lets apply the same transformation on the right hand side of (3.2.15) to see what will
happen. Since the primed coordinate is a dummy variable we can also let x′→x′+L as
well. However, since Green’s function is translational invariant, i.e. g(x+x0,y;x′+x0,y

′)=
g(x,y;x′,y′), G does not change under the transformation. As a result [65]

Ey(x+L,f(x))=eikixLEy(x,f(x)) (3.2.17)

Apart from the phase factor, the surface electric field is a periodic function with the same
period as the surface. This is the statement of the Floquet-Bloch theorem [66] for the
surface fields on a periodic surface.
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3.3 Integral Equation Formulation

Assume a TE polarized incidence electric field of Ei=ŷeiki·r and the polarization vector ŷ is
parallel to the uniform dimension of the surface. The pilot electric field component satisfies
the wave equation of

∇2Ejy+k2
jEjy=0 (3.3.1)

in each region labeled by j. Here k2
j =ω2µjεj and Ejy is electric field in region j. Since the

structure is uniform along y, all field quantities preserve the dependence on y the same as
the incident field and ∂

∂y=ikiy in all of the Maxwell’s equations. In particular, the wave
equation becomes a 2D wave equation of

∇2
tEjy+k2

jtEjy=0 (3.3.2)

where k2
jt=k2

j−k2
iy. We define the Green’s function for the equation (3.3.2) by the same

operator as
∇2
tGj+k2

jtGj=−δ(ρ−ρ′) (3.3.3)

Using the Green’s identity and integrating the result over the surface S0 which is the top
half-space, we have

∮
S0

dl
(
G0

∂E0y
∂n
−E0y

∂G0
∂n

)
=
{
E0y(ρ′), ρ′∈S0

0 , ρ′ /∈S0
(3.3.4)

here n̂ has a negative z component and pointing outside of S0. The boundary integral
consists of two parts. An integral over the first surface which is described by z=f0(x)
and an integral over a closing path at infinity C∞. There are two way of introducing the
incident electric field into the integral equation. One is beginning with the inhomogeneous
wave equation with a forcing function which gives the incident field upon convolution with
the Green’s function inside the integral equation. The other way is to start from the
homogeneous wave equation for the electric field and assuming the source of the incident
field is somewhere at infinity, which is the approach here. The integral equation of (3.3.4)
is a general statement. If we assume that everywhere filled with vacuum (free space),
the boundary integral over the periodic surface z=f0(x) vanishes and total electric field
everywhere is the incident electric field. Therefore,∫

C∞
dl
(
G0

∂E0y
∂n
−E0y

∂G0
∂n

)
=Eiy(ρ′) (3.3.5)

Swapping the primed and unprimed coordinates and also change the direction of unit normal
to pointing into the region 0 (upward), results in

Eiy(ρ)−
∫
z′=f0(x′)

dl′0
(
G0

∂E0y
∂n′0

−E0y
∂G0
∂n′0

)
=
{
E0y(ρ) z>f0(x)
0 z<f0(x)

(3.3.6)

The extinction equations (3.3.6) can be written as

Eiy(ρ)+E0sy(ρ)=
{
E0y(ρ) z>f0(x)
0 z<f0(x)

(3.3.7)

48



where the scattered field propagated by G0 is given by

E0sy(ρ)=−
∫
z′=f0(x′)

dl′0
(
G0

∂E0y
∂n′0

−E0y
∂G0
∂n′0

)
(3.3.8)

Applying the extinction equation to the region 1, results in the similar sort of equations,

Eu1sy(ρ)+Ed1sy(ρ)=


0 z>f0(x)
E1y f0(x)>z>−d+f1(x)
0 z<−d+f1(x)

(3.3.9)

where the upward and downward propagating scattered field in region 1 given in terms of
boundary integrals of

Eu1sy(ρ)=
∫
z′=f0(x′)

dl′0
(
G1

∂E1y
∂n′0

−E1y
∂G1
∂n′0

)
(3.3.10)

Ed1sy(ρ)=−
∫
z′=f1(x′)

dl′1
(
G1

∂E1y
∂n′1

−E1y
∂G1
∂n′1

)
Here, n̂1 is unit vector normal to the surface z=f1(x) that pointing upward. Application
of the extinction theorem to the last region which is region 2 gives

E2sy=
{
E2y z<f1(x)−d
0 z>f1(x)−d

(3.3.11)

where the scattered field in the region 2 is given by

E2sy(ρ)=
∫
z′=f1(x′)

dl′1
(
G2

∂E2y
∂n′1

−E2y
∂G2
∂n′1

)
(3.3.12)

3.3.1 2D Periodic Green’s Function

Different scattered fields can be expressed in terms of condensed integrals over one period
using the periodic Green’s function as a propagator. Considering a typical boundary integral
over the j-th region as

Es(ρ)=
∫
z′=fj(x′)

dl′1
(
Gj(ρ,ρ′)

∂Ejy(ρ′)
∂n′j

−Ejy(ρ′)
∂Gj(ρ,ρ′)
∂n′j

)
(3.3.13)

The integral can be divided into sum of the integrals over individual periods,

Es(ρ)=
∞∑

n=−∞

∫ nLj

(n−1)Lj
dl′1
(
Gj(ρ,ρ′)

∂Ejy(ρ′)
∂n′j

−Ejy(ρ′)
∂Gj(ρ,ρ′)
∂n′j

)
(3.3.14)

By shifting x′ in all of the segments to the interval
[
0,Lj

]
and noting that the surface fields

follow the Bloch condition of [67]

Ejy(x+Lj ,z)=Ejy(x,z)eikixLj (3.3.15)
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and the Green’s function is translational invariant, the scattered field boundary integral
can be written as

Es(ρ)=
∫ Lj

0
dl′1
(
Gjp(ρ,ρ′)

∂Ejy(ρ′)
∂n′j

−Ejy(ρ′)
∂Gjp(ρ,ρ′)

∂n′j

)
(3.3.16)

where the periodic Green’s function of the region j is defined by

Gjp(ρ,ρ′)=
∞∑

n=−∞
Gj(x,z,x′+nLj ,z′)eikixnLj (3.3.17)

where Lj is period of the j-th surface. The 2D Green’s function Gj has a closed form
solution of

Gj(ρ,ρ′)= i

4H
(1)
0
(
kjt|ρ−ρ′|

)
(3.3.18)

In order to evaluate the periodic Green’s function we can use the spatial solution of (3.3.18)
in the summation to get

Gjp(ρ,ρ′)= i

4

∞∑
n=−∞

H
(1)
0

(
kjt

√
(x−x′−nLj)2+(z−z′)2

)
einkixLj (3.3.19)

However this series has a slow convergence as the tail of the Hankel function H0(x) falls
like 1/

√
x that makes the spatial expansion essentially not a useful one. However, if the

problem of interest has some amount of loss, then the spatial summation would have an
exponential convergence. The other approach of calculating the periodic Green’s function
is using the spectral expansion of the 2D free space Green’s function as

H
(1)
0
(
kjt|ρ−ρ′|

)
= 1
π

∫ ∞
−∞

dkx
1
kjz

eikx(x−x′)eikjz |z−z
′| (3.3.20)

Substituting in the periodic Green’s function expression of (3.3.17) gives,

Gjp= i

4π

∫ ∞
−∞

dkx
1
kjz

eikx(x−x′)eikjz |z−z
′|
∞∑

n=−∞
ei(kix−kx)nLj (3.3.21)

Now from the Fourier expansion of the impulse train we can obtain the following identity
∞∑

n=−∞
eiαnL= 2π

L

∞∑
n=−∞

δ

(
α− 2nπ

L

)
(3.3.22)

Using this summation in periodic Green’s function expression, the delta function samples
the integral at kx=kix+ 2πn

Lj
that results in

Gjp= i

2Lj

∞∑
n=−∞

1
kjnz

eiknx(x−x′)eikjnz |z−z
′| (3.3.23)

where the Bloch wave numbers

kjnx=kix+ 2πn
Lj

(3.3.24)

kjnz=
√
k2
j−k2

jnx
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are the possible values of the wave number components. Notice that the periodicity of the
structure leads to a discrete spectrum of the plane wave. This discrete spectrum is result of
the constructive interference of different periods of the structure and the individual plane
waves of order n with the wave vector kn=kjnxx̂+kjnz ẑ are called the Bragg Modes of
the structure. Notice that the periodic Green’s function here, is the collective response of
the empty lattice sites. The periodic Green’s function is similar to the array factor in the
antenna theory where it accounts for the collective response and interaction of individual
elements in an array, but the element can be an arbitrary radiator.

3.4 Integral Equations Using Periodic Green’s Function
Using the periodic Green’s function instead of free space Green’s function, the surface
integrals over the boundary can be shrunk over one period of the surface. Therefore, we
only need to replace ∫

z′=fi(x′)
dl′iGj(ρ,ρ′) [·]=⇒

∫
〈Li〉

dl′iGjp(ρ,ρ′) [·] (3.4.1)

Then scattered field expressions using the periodic Green’s function reduce to

E0sy(ρ)=−
∫
〈L0〉

dx′
√

1+f ′20
(
G0p

∂E0y
∂n′0

−E0y
∂G0p
∂n′0

)
(3.4.2)

Eu1sy(ρ)=+
∫
〈L0〉

dx′
√

1+f ′20
(
G1p

∂E1y
∂n′0

−E1y
∂G1p
∂n′0

)
Ed1sy(ρ)=−

∫
〈L1〉

dx′
√

1+f ′21
(
G1p

∂E1y
∂n′1

−E1y
∂G1p
∂n′1

)
E2sy(ρ)=+

∫
〈L1〉

dx′
√

1+f ′21
(
G2p

∂E2y
∂n′1

−E2y
∂G2p
∂n′1

)
Now we have 4 extinction equations and 6 unknowns Ejy and n̂·∇Ejy(j=0,1,2). These
unknowns are not independent and can be related through the boundary conditions on the
fields.

First, continuity of the tangential electric field eliminates one of the unknowns since at
the interfaces E0y=E1y and E1y=E2y. Also we need to apply continuity of the magnetic
field over a dielectric boundary. Magnetic field can be expressed in terms of the pilot electric
field component as

Hjt=
−iωεj
k2
jt

∇t×(Ejyŷ) (3.4.3)

and also Hjy = 0. We need to impose n̂×Hjt to be continuous across the boundary,

n̂×Hjt=
−iωεj
k2
jt

n̂×[∇t×(Ejyŷ)]= iωεj
k2
jt

n̂·∇tEjyŷ (3.4.4)

Therefore, magnetic field s continuous across the boundaries if
ε0
k2

0t
n̂0 ·∇tE0y= ε1

k2
1t
n̂0 ·∇tE1y (3.4.5)

ε1
k2

1t
n̂1 ·∇tE1y= ε2

k2
2t
n̂1 ·∇tE2y
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We choose two surface fields as n̂0 ·∇tE0y and n̂1 ·∇tE1y as unknowns fields.

ε0k
2
1t

ε1k2
0t

∂E0y
∂n′0

= ∂E1y
∂n′0

(3.4.6)

ε1k
2
2t

ε2k2
1t

∂E1y
∂n′1

= ∂E2y
∂n′1

Using the boundary conditions to eliminate region 2 fields, the scattered fields expressions
can be written as

E0sy(ρ)=−
∫
〈L0〉

dx′
√

1+f ′20
(
G0p

∂E0y
∂n′0

−E0y
∂G0p
∂n′0

)
(3.4.7)

Eu1sy(ρ)=+
∫
〈L0〉

dx′
√

1+f ′20
((ε0k

2
1t

ε1k2
0t

)
G1p

∂E0y
∂n′0

−E0y
∂G1p
∂n′0

)
Ed1sy(ρ)=−

∫
〈L1〉

dx′
√

1+f ′21
(
G1p

∂E1y
∂n′1

−E1y
∂G1p
∂n′1

)
E2sy(ρ)=+

∫
〈L1〉

dx′
√

1+f ′21
((ε1k

2
2t

ε2k2
1t

)
G2p

∂E1y
∂n′1

−E1y
∂G2p
∂n′1

)
We can generalize the approach to the multilayer periodic media in the next section.

3.4.1 Extinction of Downward Propagating Wave in Region 0

Here, we assume that all of the surfaces in the problem have the same period L. Inserting
spectral expansion of the periodic Green’s function into (3.4.7), extinction of the incident
field can be written as

Eiy+
∑
n

b10
n e

i(knxx−k0
nzz)=0 (3.4.8)

where b10
n is amplitude of Floquet modes that are excited to cancel the incident field in the

lower regions (the superscript 10 refers to the source|observation media) that is given by

b10
n =− i

2Lk0
nz

∫
L

dx′
[√

1+f ′2n̂′ ·∇′E0y

]
e−i(knxx

′−k0
nzz
′) (3.4.9)

+ i

2Lk0
nz

∫
L

dx′E0y
[
iknxf

′(x′)+ik0nz
]
e−i(knxx

′−k0
nzz
′)

3.4.2 Extinction of Upward Propagating Wave in Region m

The periodic Green’s function in region m, where 1≤m≤N−1 for z<z′ can be expanded
as

Gmp(z>z′)= i

2L
∑
n

1
kmnz

ei(knxx+kmnzz)e−i(knxx
′+kmnzz′) (3.4.10)

and normal its derivative,

n̂′m ·∇′Gmp(z>f)= 1√
1+f ′2m−1

i

2L
∑
n

1
kmnz

ei(knxx+kmnzz)
[
iknxf

′
m−1(x′)−ikmnz

]
e−i(knxx

′+kmnzz′)

(3.4.11)
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Substituting in upward scattered field of region m with source on the upper layer (u),
Eumsy(ρ) we have

Eumsy=
∫
L

dx′
√

1+f ′2m−1

(εm−1k
2
m−1,t

εmk2
m−1,t

)
n̂′ ·∇′Em−1,y

i

2L
∑
n

1
kmnz

ei(knxx+kmnzz)e−i(knxx
′+kmnzz′)

(3.4.12)

−
∫
L

dx′Em−1,y
i

2L
∑
n

1
kmnz

ei(knxx+kmnzz)
[
iknxf

′
m−1(x′)−ikmnz

]
e−i(knxx

′+kmnzz′)

Note that it is an expansion in terms of upward propagating spatial harmonics ei(knxx+kmnzz).
Also for contribution of the bottom surface of region m, Edmsy,

Edmsy=−
∫
L

dx′
√

1+f ′2mn̂′ ·∇′Emy
i

2L
∑
n

1
kmnz

ei(knxx+kmnzz)e−i(knxx
′+kmnzz′) (3.4.13)

+
∫
L

dx′Emy
i

2L
∑
n

1
kmnz

ei(knxx+kmnzz)
[
iknxf

′
m(x′)−ikmnz

]
e−i(knxx

′+kmnzz′)

Again, this is an expansion in terms of the upward propagating harmonics ei(knxx+kmnzz).
Putting everything together, the extinction relation of the wave in region m, which is sum
of the two contributions can be written as

Eumsy(z>z′)+Edmsy(z>z′)=
∑
n

bm−1,m
n ei(knxx+kmnzz)=0 (3.4.14)

where the harmonic coefficients bm−1,m
n are defined by

bm−1,m
n = i

2Lkmnz

∫
L

dx′
√

1+f ′2m−1

(εm−1k
2
m,t

εmk2
m−1,t

)
n̂′ ·∇′Em−1,ye

−i(knxx′+kmnzz′) (3.4.15)

− i

2Lkmnz

∫
L

dx′Em−1,y
[
iknxf

′
m−1(x′)−ikmnz

]
e−i(knxx

′+kmnzz′)

− i

2Lkmnz

∫
L

dx′
√

1+f ′2mn̂′m ·∇′Emye−i(knxx
′+kmnzz′)

+ i

2Lkmnz

∫
L

dx′Emy
[
iknxf

′
m(x′)−ikmnz

]
e−i(knxx

′+kmnzz′)

3.4.3 Extinction of Downward Propagating Wave in Region m

Following the same procedure as extinction of upward propagating wave n region m, but
here the periodic Green’s function need to be expanded with condition z<z′ as

Gmp(z<z′)= i

2L
∑
n

1
kmnz

ei(knxx−k
m
nzz)e−i(knxx

′−kmnzz′) (3.4.16)

Inserting the Green’s function expansion into the extinction equation of region m with
observation point in lower regions results in

Eumsy(z<z′)+Edmsy(z<z′)=
∑

bm+1,m
n ei(knxx−k

m
nzz)=0 (3.4.17)
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where,

Eumsy(ρ)=
∫
L

dx′
√

1+f ′2m−1

((εm−1k
2
m,t

εmk2
m−1,t

) i

2L
∑
n

1
kmnz

ei(knxx−k
m
nzz)e−i(knxx

′−kmnzz′)∂Em−1,y
∂n′m−1

(3.4.18)

−Em−1,y
1√

1+f ′2m−1

i

2L
∑
n

1
kmnz

ei(knxx−k
m
nzz)

[
iknxf

′
m−1(x′)+ikmnz

]
e−i(knxx

′−kmnzz′)
)

Edmsy(ρ)=−
∫
L

dx′
√

1+f ′2m
(
i

2L
∑
n

1
kmnz

ei(knxx−k
m
nzz)e−i(knxx

′−kmnzz′)∂Emy
∂n′m

−Emy
1√

1+f ′2m
i

2L
∑
n

1
kmnz

ei(knxx−k
m
nzz)

[
iknxf

′
m(x′)+ikmnz

]
e−i(knxx

′−kmnzz′)
)

and the spectral coefficients bm+1,m
n are given by

bm+1,m
n = i

2Lkmnz

∫
〈Lm−1〉

dx′
√

1+f ′2m−1
∂Em−1,y
∂n′m−1

(εm−1k
2
m,t

εmk2
m−1,t

)
e−i(knxx

′−kmnzz′) (3.4.19)

− i

2Lkmnz

∫
〈Lm−1〉

dx′Em−1,y
[
iknxf

′
m−1(x′)+ikmnz

]
e−i(knxx

′−kmnzz′)

− i

2Lkmnz

∫
〈Lm〉

dx′
√

1+f ′2m
∂Emy
∂n′m

e−i(knxx
′−kmnzz′)

+ i

2Lkmnz

∫
〈Lm〉

dx′Emy
[
iknxf

′
m(x′)+ikmnz

]
e−i(knxx

′−kmnzz′)

3.4.4 Extinction of Upward Propagating Wave in Region N

For extinction of wave in the last region, the observation point is considered to be on a place
that is always above the last interface, namely z>−dN−1+fN−1(x). Under this condition,
the periodic Green’s function can be expanded as

GNp(z>z′)= i

2L
∑
n

1
kNnz

ei(knxx+kNnzz)e−i(knxx
′+kNnzz′) (3.4.20)

following the same procedure as before and substituting the periodic Green’s function in
the extinction equation of the last region yields∑

n

bN−1,N
n ei(knxx+kNnzz)=0 (3.4.21)

where the Bloch amplitude of the upward propagating waves is given by

bN−1,N
n = i

2LkNnz

∫
L

dx′
√

1+f ′2N−1

(εN−1k
2
N,t

εNk2
N−1,t

)
n̂′ ·∇′EN−1,ye

−i(knxx′+kNnzz′) (3.4.22)

− i

2LkNnz

∫
L

dx′EN−1,y
[
iknxf

′
N−1(x′)−ikNnz

]
e−i(knxx

′+kNnzz′)

Notice that the surface fields in (3.4.22) are those of region N−1 that replaced the fields
of region N using continuity conditions. The extinction relation in all of the layers are
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obtained as a harmonic expansions of,

Eiy+
∑
n

b10
n e

i(knxx−k0
nzz)=0 (3.4.23)∑

n

bm−1,m
n ei(knxx+kmnzz)=0∑
bm+1,m
n ei(knxx−k

m
nzz)=0∑

n

bN−1,N
n ei(knxx+kNnzz)=0

Since the Bloch modes are orthogonal in space, i.e. for two mode index p,q, the inner
product of two modes can be computed as

〈p,q〉=
∫
L

dxei(kpxx+kpzz)e−i(kqxx+kqzz) (3.4.24)

=ei(kpz−kqz)z
∫
L

dxe2πi(p−q)/L

=Lδpq

Which shows two different modes are spatially orthogonal. Based on this, b01
n =bm+1,m

n =
bm−1,m
n =bN−1,N

n =0 for all values of n and 1≤m≤N−1. Also, assuming incidence electric
field of Eiy=eikixx−ikizz for b10

n we have

eikixx−ikizz+
∑
n

b10
n e

i(knxx−k0nzz)=0 (3.4.25)

Since the electric field is directed along the zeroth spatial harmonic the only non zero
component of b10 is b10

0 with b10
0 =−1 and b10

n6=0=0 for all other n’s. Now that the coefficients
b are known completely, surface fields in the definition of the spectral coefficients are the
unknown quantities to be determined. In order to solve for the surface fields, using the
fact that surface fields are periodic with the period of the surface, the surface fields can be
expanded in a Fourier series. For the surface fields on the q-th surface, the expansion reads,

Eqy(x′)=
∑
m

αqme
ikmxx′ (3.4.26)√

1+f ′2q n̂′q ·∇′Eqy=
∑
m

βqme
ikmxx′

for q=0,1,···N−1. Notice that the length scale of the surface is included in the unknowns
as its all we need to compute the fields everywhere. substituting surface fields Fourier
expansions and noting that z′=f0(x′) for the first surface and z′=−dq+fq(x) for the q-th
surface (1≤q≤N−1) we arrive at

b10
n =− i

2Lk0
nz

∑
m

β0
m

∫
L

dx′ei(kmx−knx)x′+ik0
nzz
′ (3.4.27)

+ i

2Lk0
nz

∑
m

α0
m

∫
L

dx′
[
iknxf

′(x′)+ik0
nz

]
ei(kmx−knx)x′+ik0

nzz
′
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bq−1,q
n = i

2Lkqnz
∑
m

βq−1
m

∫
L

dx′
(εq−1k

2
q,t

εqk2
q−1,t

)
ei(kmx−knx)x′−ikqnzz′ (3.4.28)

− i

2Lkqnz
∑
m

αq−1
m

∫
L

dx′
[
iknxf

′
q−1(x′)−ikqnz

]
ei(kmx−knx)x′−ikqnzz′

− i

2Lkqnz
∑
m

βqm

∫
L

dx′ei(kmx−knx)x′−ikqnzz′

+ i

2Lkqnz
∑
m

αqm

∫
L

dx′
[
iknxf

′
q(x′)−ikqnz

]
ei(kmx−knx)x′−ikqnzz′

bq+1,q
n = i

2Lkqnz
∑
m

βq−1
m

∫
L

dx′
(εq−1k

2
q−1,t

εqk2
q−1,t

)
ei(kmx−knx)x′+ikqnzz′ (3.4.29)

− i

2Lkqnz
∑
m

αq−1
m

∫
L

dx′
[
iknxf

′
q−1(x′)+ikqnz

]
ei(kmx−knx)x′+ikqnzz′

− i

2Lkqnz
∑
m

βqm

∫
L

dx′ei(kmx−knx)x′+ikqnzz′

+ i

2Lkqnz
∑
m

αqm

∫
L

dx′
[
iknxf

′
q(x′)+ikqnz

]
ei(kmx−knx)x′+ikqnzz′

bN−1,N
n = i

2LkNnz

∑
m

βN−1
m

∫
L

dx′
(εN−1k

2
N,t

εNk2
N−1,t

)
ei(kmx−knx)x′−ikNnzz′ (3.4.30)

− i

2LkNnz

∑
m

αN−1
m

∫
L

dx′
[
iknxf

′
N−1(x′)−ikNnz

]
ei(kmx−knx)x′−ikNnzz′

The integrals that have the derivative of the surface profile in the integrand can be simplified
using a by part integration. For example,∫

L
dx′iknxf ′(x′)ei(kmx−knx)x′−ik1nzf(x′)=+ iknx(kmx−knx)

k1nz

∫
L

dx′ei(kmx−knx)x′−ik1nzf(x′)

(3.4.31)

Using this technique to simplify the integrations and upon defining the following integrals,

I−00[m,n]=
∫
L

dx′ei(kmx−knx)x′+ik0
nzf0(x′) (3.4.32)

I±q,q−1[m,n]=
∫
L

dx′ei(kmx−knx)x′∓ikqnzfq−1(x′)

I±q,q[m,n]=
∫
L

dx′ei(kmx−knx)x′∓ikqnzfq(x′)

I+
N,N−1[m,n]=

∫
L

dx′ei(kmx−knx)x′−ikNnzfN−1(x′)
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The governing system of coupled equation for the Fourier coefficients of the surface fields
on the boundaries can be written as

b10
n =− i

2Lk0
nz

∑
m

β0
mI
−
00[m,n]+ i

2Lk0
nz

∑
m

α0
mi
k2
t0−knxkmx

k0
nz

I−00[m,n] (3.4.33)

bq−1,q
n = i

2Lkqnz
∑
m

βq−1
m

(εq−1k
2
q,t

εqk2
q−1,t

)
eik

q
nzdq−1I+

q,q−1[m,n]

− i

2Lkqnz
∑
m

αq−1
m (−i)

k2
q,t−knxkmx

kqnz
eik

q
nzdq−1I+

q,q−1[m,n] (3.4.34)

− i

2Lkqnz
∑
m

βqme
ikqnzdqI+

qq[m,n]+ i

2Lkqnz
∑
m

αqme
ikqnzdq(−i)

k2
qt−knxkmx

kqnz
I+
qq[m,n]

bq+1,q
n = i

2Lkqnz
∑
m

βq−1
m

(εq−1k
2
q,t

εqk2
q−1,t

)
e−ik

q
nzdq−1I−q,q−1[m,n]

− i

2Lkqnz
∑
m

αq−1
m i

k2
q−1,t−knxkmx

kqnz
e−ik

q
nzdq−1I−q,q−1[m,n] (3.4.35)

− i

2Lkqnz
∑
m

βqme
−ikqnzdqI−qq[m,n]+ i

2Lkqnz
∑
m

αqme
−ikqnzdq i

k2
q,t−knxkmx

kqnz
I−qq[m,n]

bN−1,N
n = i

2LkNnz

∑
m

βN−1
m eik

N
nzdN−1

(εN−1k
2
N,t

εNk2
N−1,t

)
I+
N,N−1[m,n]

− i

2LkNnz

∑
m

αN−1
m eik

N
nzdN−1(−i)

k2
N,t−knxkmx

kNnz
I+
N,N−1[m,n]

Note that the integrals defined in (3.4.32) are similar to the scattering potentials in the
formulation of the SPM2 for layered media with rough interfaces. For the case of flat
interfaces, the integrals in (3.4.32) becomes degenerate to I[m,n]=Lδmn that does not
allow mode mixing (similar to the scattering potentials that vanish for the flat surface
case).

3.5 Solution of Surface Fields
In order to solve for the Fourier coefficients of the surface fields αqm and βqm, we need to
connect surface fields of different layers with propagation matrices recursively. Using the
extinction equations of the middle layers which are given for bq−1,q

n and bq+1,q
n we can extract

surface field propagation matrices that relates surface fields of neighbor layers asMu+
q−1 N

u+
q−1

M
u−
q−1 N

u−
q−1

[αq−1

β
q−1

]
=

Md+
q N

d+
q

M
d−
q N

d−
q

[αq
β
q

]
(3.5.1)

or

D
u

q−1

[
αq−1

β
q−1

]
=D

d

q

[
αq

β
q

]
(3.5.2)
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where q=1,2,··· ,N−1 and sub-matrices ofM , andN for different layers are defined through,[
N
u+
q−1

]
nm

= i

2Lkqnz

(εq−1k
2
q,t

εqk2
q−1,t

)
eik

q
nzdq−1I+

q,q−1[m,n] (3.5.3)

[
M

u+
q−1

]
nm

=− i

2Lkqnz
(−i)

k2
q,t−knxkmx

kqnz
eik

q
nzdq−1I+

q,q−1[m,n][
N
d+
q

]
nm

= i

2Lkqnz
eik

q
nzdqI+

qq[m,n]

[
M

d+
q

]
nm

=− i

2Lkqnz
eik

q
nzdq(−i)

k2
qt−knxkmx

kqnz
I+
qq[m,n]

and [
N
u−
q−1

]
nm

= i

2Lkqnz

(εq−1k
2
q,t

εqk2
q−1,t

)
e−ik

q
nzdq−1I−q,q−1[m,n] (3.5.4)

[
M

u−
q−1

]
nm

=− i

2Lkqnz
i
k2
q,t−knxkmx

kqnz
e−ik

q
nzdq−1I−q,q−1[m,n][

N
d−
q

]
nm

= i

2Lkqnz
e−ik

q
nzdqI−qq[m,n]

[
M

d−
q

]
nm

=− i

2Lkqnz
e−ik

q
nzdq i

k2
q,t−knxkmx

kqnz
I−qq[m,n]

Using propagation matrices we can connect the first and last surface fields components to
each other. Also, the extinction relation of the incident field and the last region can be
combined together to get,

b10
n =M

−
0 α

0+N
−
0 β

0 (3.5.5)

0=M
+
N−1α

N−1+N
+
N−1β

N−1

where matrix entries are given by,[
M
−
0

]
nm

= i

2Lk0
nz

i
k2
t0−knxkmx

k0
nz

I−00[m,n] (3.5.6)[
N
−
0

]
nm

=− i

2Lk0
nz

I−00[m,n]

[
M

+
N−1

]
nm

=− i

2LkNnz
eik

N
nzdN−1(−i)

k2
N,t−knxkmx

kNnz
I+
N,N−1[m,n]

[
N

+
N−1

]
nm

= i

2LkNnz
eik

N
nzdN−1

(εN−1k
2
N,t

εNk2
N−1,t

)
I+
N,N−1[m,n]

From the recursive relation of middle layers of (3.5.2) the surface fields over the (N−1)-th
surface can be expressed in terms of the zeroth surface as[

αN−1

β
N−1

]
=
((
D
d

N−1

)−1
D
u

N−2

)((
D
d

N−2

)−1
D
u

N−3

)
···
((
D
d

1

)−1
D
u

0

)[
α0

β
0

]
(3.5.7)

:=D
[
α0

β
0

]
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where the total propagation matrix D is defined as connection between the zeroth and last
boundary surface fields. Using the extinction of the zeroth and the last layer if (3.5.5),
a consistent system of equations for the Fourier coefficients of the surface fields over the
zeroth and last boundary can be obtained as

M
−
0 N

−
0 0 0

0 0 M
+
N−1 N

+
N−1

D −I



α0

β
0

αN−1

β
N−1

=


b
10

0
0
0

 (3.5.8)

Once (3.5.8) is solved for the Fourier coefficients of the surface fields, the actual surface
fields can be synthesized by the Fourier series. In order to find the surface fields on other
boundaries than the zeroth and last boundaries, one can apply the propagation matrices of
(3.5.2) to obtain all of the surface field variables.

3.6 Scattered and Transmitted Fields
Once the surface fields are known through their Fourier coefficients of (3.5.8), the equiv-
alence principle can be applied to the surface fields over the zeroth boundary to find the
scattered field as

Esy(ρ)=−
∫
L

dl′
[
G0p(ρ,ρ′)n̂′ ·∇′E0y(ρ′)−E0y(ρ′)n̂′ ·∇′G0p(ρ,ρ′)

]
, z>f(x) (3.6.1)

Here, the observation point is placed somewhere in the region 0 that satisfies z>f0(x) fo
all values of x. Given this observation point, the periodic Green’s function of the region 0
can be expanded as

G0p(z>f)= i

2L
∑
n

1
k0
nz

ei(knxx+k0
nzz)e−i(knxx

′+k0
nzz
′) (3.6.2)

and for its derivative,

n̂′ ·∇′G0p(z>f)= 1√
1+f ′2

i

2L
∑
n

1
k0
nz

ei(knxx+k0
nzz)

[
iknxf

′(x′)−ik0
nz

]
e−i(knxx

′+k0
nzz
′) (3.6.3)

Inserting the periodic Green’s function expansion into the scattered field expression of
(3.6.1), results in an expansion of the scattered field in terms of the upward propagating
harmonics of

Esy=
∑
n

Bne
i(knxx+k0

nzz) (3.6.4)

where Bn is the amplitude of the n-th order scattered Bloch mode and is equal to

Bn=− i

2Lk0
nz

∫
L

dx′
√

1+f ′2n̂′ ·∇′E0ye
−i(knxx′+k0

nzz
′) (3.6.5)

+ i

2Lk0
nz

∫
L

dx′E0y
[
iknxf

′(x′)−ik0
nz

]
e−i(knxx

′+k0
nzz
′)
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Using the Fourier expansion of the surface fields, which are known after solving (3.5.8), the
scattered field mode coefficient Bn can be written as

Bn=− i

2Lk0
nz

∑
m

β0
m

∫
L

dx′ei(kmx−knx)x′−ik0
nzf(x′) (3.6.6)

+ i

2Lk0
nz

∑
m

α0
m

∫
L

dx′
[
iknxf

′(x′)−ik0
nz

]
ei(kmx−knx)x′−ik0

nzf(x′)

Performing the by part on the first term of the second integrand and defining the following
potential integral of the scattered field as

I+
00[m,n]=

∫
L

dx′ei(kmx−knx)x′−ik0
nzf(x′) (3.6.7)

the scattered field coefficient can be written as

Bn=− i

2Lk0
nz

∑
m

β0
mI

+
00[m,n]+ i

2Lk0
nz

∑
m

α0
m

i(knxkmx−k2
0t)

k0
nz

I+
00[m,n] (3.6.8)

or in matrix form of,

B=M
0,+
00 α

0+N
0,+
00 β

0 (3.6.9)

Similarly, for the transmitted field, the equivalence principle should apply to the last region
as

Ety=
∫
L

dl′
[
GNp(ρ,ρ′)n̂′ ·∇′ENy(ρ′)−ENy(ρ′)n̂′ ·∇′GNp(ρ,ρ′)

]
, z<−dN−1+fN−1(x)

(3.6.10)

where Ety is the transmitted electric field into region N . Using region N periodic Green’s
function expansion when z<z′=−dN−1+fN−1(x) we have

GNp(z<z′)= i

2L
∑
n

1
kNnz

ei(knxx−k
N
nzz)e−i(knxx

′−kNnzz′) (3.6.11)

and for its derivative,

n̂′ ·∇′GNp= 1√
1+f ′2N−1

i

2L
∑
n

1
kNnz

ei(knxx−k
N
nzz)

[
iknxf

′
N−1(x′)+ikNnz

]
e−i(knxx

′−kNnzz′)

(3.6.12)

Substituting the periodic Green’s function expansion in the transmitted field expression
yields a downward propagating Bloch mode expansion of the transmitted field as

Ety=
∑
n

Ane
i(knxx−kNnzz) (3.6.13)

where

An=
∫
L

dx′
√

1+f ′2n−1n̂
′ ·∇′ENy

i

2L
∑
n

1
kNnz

e−i(knxx
′−kNnzz′) (3.6.14)

−
∫
L

dx′ENy
i

2L
∑
n

1
kNnz

[
iknxf

′
N−1(x′)+ikNnz

]
e−i(knxx

′−kNnzz′)

60



Using continuity condition of the tangential electric and magnetic fields across the last
boundary,

ENy=EN−1,y (3.6.15)

n̂·∇tEN,y=
k2
N,t

k2
N−1,t

εN−1
εN

n̂·∇tEN−1,y

and solution of the surface fields Fourier series, the mode coefficient of the transmitted field
can be obtained as

An= i

2LkNnz

(
k2
N,t

k2
N−1,t

εN−1
εN

)
e−ik

N
nzdN−1

∑
m

βN−1
m

∫
L

dx′ei(kmx−knx)x′+ikNnzfN−1(x′) (3.6.16)

− i

2LkNnz
e−ik

N
nzdN−1

∑
m

αN−1
m

i(k2
N,t−knxkmx)

kNnz

∫
L

dx′ei(kmx−knx)x′+ikNnzfN−1(x′)

or in a matrix form,

A=M
−
N,N−1α

N−1+N
−
N,N−1β

N−1 (3.6.17)

where [
M
−
N,N−1

]
nm

=e−ikNnzdN−1
(k2
N,t−knxkmx)

2LkNnz
2 I−N,N−1[m,n] (3.6.18)

[
N
−
N,N−1

]
nm

=e−ikNnzdN−1
i

2LkNnz

(
k2
N,t

k2
N−1,t

εN−1
εN

)
I−N,N−1[m,n]

and potential integral for the transmitted field is defined as

I−N,N−1[m,n]=
∫
L

dx′ei(kmx−knx)x′+ikNnzfN−1(x′) (3.6.19)

3.7 Scattered and Transmitted Power
From the surface fields solution, the scattered and transmitted electric fields are obtained
as a sum of the Bloch modes in region 0 and N , respectively. Since for TE polarization the
only non-zero component of the electric field is Ey we can compute the associated magnetic
field as

H= 1
ikη
∇Ey×ŷ (3.7.1)

Therefore, the time averaged poynting vector becomes

S= 1
2Re

[
Eyŷ×

( 1
ikη
∇Ey×ŷ

)∗]
=−1

2Im
[ 1
kη
Eyŷ×

(
∇E∗y×ŷ

)]
=−1

2Im
[ 1
kη
Ey∇E∗y

]
(3.7.2)

For the scattered field we are interested to the power flow in +ẑ direction. Therefore,

Ss ·ẑ=−1
2Im

[ 1
kη
Esy

(
ẑ ·∇E∗sy

)]
=−1

2Im
[ 1
kη
Esy

∂E∗sy
∂z

]
(3.7.3)
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However, from the Bloch expansion of the scattered field,
∂Esy
∂z

=
∑
n

ik0
nzBne

i(knxx+k0
nzz) (3.7.4)

therefore,

Ss ·ẑ=− 1
2kη Im

[(∑
m

Bme
i(kmxx+k0

mzz)
)(∑

n

ik0
nzBne

i(knxx+k0
nzz)

)∗]
(3.7.5)

=− 1
2kη

∑
m

∑
n

Im
[
(−ik0

nz
∗)BmB∗nei(kmxx+k0

mzz)e−i(knxx+k0
nz
∗
z)
]

=− 1
2kη

∑
m

∑
n

Im
[
(−ik0

nz
∗)BmB∗nei(kmx−knx)xei(k

0
mz−k0

nz
∗)z
]

The scattered power can be obtained by integration of power density over one period,

Ps=
∫
L

dxSs ·ẑ=− 1
2kη

∑
m

∑
n

Im
[
(−ik0

nz
∗)BmB∗n

∫
L

dxei(kmx−knx)xei(k
0
mz−k0

nz
∗)z
]

(3.7.6)

But ei(kmx−knx)x=ei(m−n)2πx/L is a periodic function and∫
L

dxei(kmx−knx)x=
∫ L

0
dxei(m−n)2πx/L=Lδmn (3.7.7)

Thus,

Ps=
∫
L

dxSs ·ẑ=− L

2kη
∑
n

|Bn|2Im
[
(−ik0

nz
∗)
]
e−2Im(k0

nz)z (3.7.8)

= L

2kη
∑
n

|Bn|2Re(k0
nz)e−2Im(k0

nz)z= L

2ωµ0

∑
n

|Bn|2Re(k0
nz)

Similarly, the transmitted power can be obtained as

Pt=
∫
L

dxSt ·(−ẑ)= L

2ωµN

∑
n

|An|2Re(kNnz) (3.7.9)

Presence of the factors Re(k0
nz) and Re(kNnz) in scattered and transmitted power expressions

shows that only propagating Bloch mode contributes to the power transfer. Also note that
above derivation is for non-magnetic materials. Assuming a unit amplitude incident electric
field, associated power flow along −ẑ direction is kiz/2kη and the incident power is

Pinc=
∫
L

dx kiz2kη=Lkiz
2kη (3.7.10)

Then, the fraction of power which is reflected (total reflectivity) and transmitted (total
transmissivity) are given by

S= Ps
Pinc

=
∑
n

|Bn|2
Re(knz0)
kiz

(3.7.11)

T= Pt
Pinc

= µ0
µN

∑
n

|An|2
Re(kNnz)
kiz
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Notice that the above formula for the scattered and transmitted power considers lossless
materials. For a general lossy materials

Ps=
L

2
∑
n

|Bn|2Im
[
ik0
nz
∗

kη

]
e−2Im(k0

nz)z (3.7.12)

=L

2
∑
n

|Bn|2Re
[
k0
nz
∗

kη

]
e−2Im(k0

nz)z

Two differences appear here, one is the loss exponential factor if the power at another plane
is desired, and the second one is the propagating real power is no longer attributed to the
propagating Bloch modes if kη has an imaginary part. This only happens for lossy magnetic
materials where µ is complex.

3.8 Numerical Considerations
Theoretically, for a given medium, there are finite number of propagating Bloch modes.
However, inclusion of the propagating modes is not enough to correctly represent the surface
field. Although the evanescent modes does not contribute to power transfer, they are critical
in correct representation of the surface fields such that satisfy the proper border conditions.

However, one cannot and should not include all of them in a numerical procedure. On
one side system of matrix equation should be finite.

The T -matrix solution or Extended Boundary Condition or equivalently using the
Rayleigh Hypothesis assume that the scattered field is constitute of only upward propa-
gating waves (same as mapping the integral equation to a surface above and below the
boundary surface) and only consider those [68]. In turn if the properties of the boundary
surface is such that allows for backward propagating wave, this phenomena is not captured
within the formulation. Therefore, there is a limit of the shape and slope of the surface to
be eligible for application of this method. If the surface is not a proper surface for applying
the extended boundary condition method, one may want to try increasing number of in-
cluded modes to overcome the neglected backward waves, but since upward and downward
propagating waves are independent, increasing number of modes is not only useful but also
makes the system of equations ill-condition. The reason of ill-condition system is by in-
cluding more and more evanescent modes that have imaginary knz, the factor e±iknzz that
appears in the propagation equations, becomes very large or very small number even for
small values of z. Therefore this results in a matrix that has very large condition number
to be inverted. Therefore, we need to include evanescent mode such that results in the well
conditioned matrix equations. A key to find the proper number of included modes is by
monitoring the energy conservation and condition number of the involved matrices for the
corresponding lossless problem.

3.9 TM Excitation Case
The TM incident field is better represented through the magnetic field of H=ŷHiy and now
the pilot component of the field is Hy in each region. We can obtain the solution of TM
problem using the duality transformation as
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Ey=⇒Hy (3.9.1)
µ⇐⇒ε
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Chapter 4

3D Scattering From Dielectric
Layered Media with Random

Rough Interfaces, Small
Perturbation Method (SPM2)

4.1 Introduction
Scattering of electromagnetic waves by random rough surfaces has broad applications in
optical and microwave remote sensing, imaging, Nano photonic, plasmonic, radiative heat
transfer and many other areas of science and engineering [3, 44, 49, 69–72] In particular,
the problem of multi-layers with multiple interfaces have drawn attention recently [29–
31, 34, 73]. There is a particular interest in applications where there are a large number of
rough interfaces.

Analytical methods provide approximate solutions. There are generally two classical
approaches[3]. The high frequency method known as Kirchhoff approach and low frequency
method known as small perturbation method (SPM). Higher order perturbation method
has been studied in [37] up to the fourth order. Also the fourth order perturbative solution
of the two layer rough surfaces has been studied recently in [32, 38]. Other analytical
methods include the AIEM method [42] and the Small Slope Approximation (SSA) [43].

In recent years, there are numerical methods based on surface integral equations [44–47],
the extended boundary condition methods [49, 50] and the finite difference time domain
method [51, 74]. However, for large number of rough interfaces, the dielectric contrasts
between layers are usually weak, and numerical methods suffer from discretization errors.
It is particularly difficult to achieve energy conservation using the numerical methods for
large number of rough interfaces with small dielectric contrasts between adjacent layers
where the numerical noise can dominate over the layers contrasts. The energy conservation
in scattering from 2D multilayer rough surfaces has been studied recently [39]. However
we need to have solution for actual physical problem of 3D electromagnetic scattering from
multilayer medium with random rough interfaces that conserve energy as 2D layered media
predicts different emissivities for TE and TM channels for observation angle normal to the
surface.

In this chapter, we study energy conservation and emissivity in scattering process of
electromagnetic waves from 3D multi-layer media with a large number random rough in-
terfaces using the second order small perturbation method (SPM2). The formulation is
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based on extinction theorem and developing integral equation for surface fields in spec-
tral domain. Using SPM2, we calculate the scattered and transmitted coherent fields and
incoherent fields. Energy conservation is calculated by integration of the coherent and in-
coherent reflected and transmitted power over the 2D (kx,ky) spectral domain. It is shown
that each of the coherent, and incoherent reflected and transmitted intensities consists of
a summation of the contributions from each rough interface. For each interface in the
integrand, the contribution is a product of the spectral density of roughness of the inter-
face and the kernel function of kx,ky. In this paper we show that the kernel function of
each rough interface obeys energy conservation. This means that energy is conserved in-
dependent of the statistics of the random rough surfaces nor the spectral densities of the
rough profile of each interface. Results of this strong condition are illustrated numerically
for up to 50 rough interfaces without the need of specifying any spectral density of the
roughness. The methodology is also applied to study the effect of roughness on brightness
temperature of Antarctic ice sheets. In the Antarctica, because of the pattern of accu-
mulation o snow, the layered media consists of many layers with varying densities of ice
giving rise to permittivity variations. The dielectric contrasts between adjacent layers are
weak. The brightness temperature were previously studied for a multilayer model without
roughness [41]. Comparisons of the multilayer SPM2 simulations are made with brightness
temperatures measurements of SMOS (Soil Moisture Ocean Salinity ) satellite showing
that theoretical simulations are in good agreement with experimental measurements. The
outline of this chapter is as follows:

In section 4.2 , the integral equations for the surface fields on each rough interfaces using
the Extinction theorem are developed. Section 4.5 dedicated to expansion of the integral
equations in the spectral space and applying perturbation method up to the second order
to find the surface fields and then scattered and transmitted fields. In section 4.6, coherent
and incoherent, scattered and transmitted power have been discussed and then in section
4.7, the energy conservation constraint is derived and it is shown for the 50 layer case as an
example. Application of the problem to the physical model of emission from the Antarctic
ice sheets is discussed in the section 4.8 . The last section includes the energy conservation
verification and the effect of roughness on scattering and transmission of power for a 1-D
photonic crystal.

4.2 Problem Geometry
Consider closed region V with boundary surface ∂V with macroscopic parameters µ,ε and
region V1=R3−V that filled with µ1,ε1. Assume an incident wave Einc(r) impinging upon
closed region V from exterior region.
For such a geometry, statement of Ewald-Osean Extinction theorem [3] reads

Einc(r)+
∫
S

dS′
{
ikηG(r,r′)·

[
n̂′×H(r′)

]
+∇×G(r,r′)·

[
n̂′×E(r′)

]}
=
{

0, r∈V
E(r), r 6∈V

(4.2.1)
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whereG(r,r′) is electric field dyadic Green’s function for unbounded space with wavenumber
k

G(r,r′)=
(
I+∇∇

k2

) eik|r−r′|
4π|r−r′| (4.2.2)

and n̂′(r′⊥) is local unit normal vector pointing outward of region V .

Figure 4.1: Geometry of Multi-layer structure with random rough interfaces.
Every surface is extended to infinity on both x and y directions.

For the present problem we have N distinct media. Figure 4.1 shows the geometry of the
problem. There are N homogeneous mediums such that common interface between two ad-
jacent mediums is a random rough surface. The last media is a semi-infinite half space that
is extended to −∞ in z direction. Assume an incident wave impinging upon the structure
from the uppermost region (region 1). Incident wave that is propagating with wavenumber
k1 cannot exist in the other mediums (such as region 2 ) with different wavenumbers. Thus
another field should be excited in that region (region 2) with wavenumber k1 such that
cancels out the incident field.

4.2.1 Incident Field in Spectral Domain

For an arbitrary incident wave of Ei(r) , it can be expanded in terms of a spectrum of plane
waves as

Ei(r)=
∫

dk⊥Ei(k)ei(kixx+kiyy−kizz) (4.2.3)

where, Ei(k) loosely represents the strength of the plane wave with wave vector k in the
expansion. If the incident field is a single plane wave of Ei(r)=êiei(ki⊥·r⊥−kizz) with definite
wave vector ki, then

Ei(r)=êiei(ki⊥·r⊥−kizz)=
∫

dk⊥ êiδ(ki⊥−k⊥)ei(ki⊥·r⊥−kizz) (4.2.4)
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and spectrum of the incident field becomes,

Einc(k)=êiδ(ki⊥−k⊥) (4.2.5)

If incident field originated from a dipole source in α̂ direction at r0=(0,0,z0), we should
solve the wave equation to obtain the incident field,

∇×∇×Ei(r)−k2Ei(r)=ikηIlα̂δ(r⊥)δ(z−z0) (4.2.6)

The incident field that satisfies the above vector wave equation, can be obtained by the
dyadic Green’s function of free space G(r,r′) that satisfies the same vector wave equation
(and radiation condition at infinity)

E(r)=ikηIlG(r,r′)·α̂ (4.2.7)

Since we are interested in plane wave expansion of the incident field, we can use plane wave
expansion of the dyadic Green’s function. If we assume that the source is radiating to the
region of interest from above (like satellite), for z<z′ we have

G(r,r′)= i

2(2π)2

∫ 1
kz

dk⊥
[
ĥ(−kz)ĥ(−kz)+ê(−kz)ê(−kz)

]
eik⊥.(r⊥−r

′
⊥)−ikz(z−z′) (4.2.8)

Therefore,

Ei(r)=− kηIl

2(2π)2

∫ 1
kz

dk⊥
[
ĥ(−kz)ĥ(−kz)+ê(−kz)ê(−kz)

]
·α̂eik⊥.r⊥−ikz(z−z0) (4.2.9)

Comparing (4.2.9) with the original expansion of (4.2.3), spectral representation of the
incident field can be identified as

Ei(k)=− kηIl

2(2π)2
1
kz

[
ĥ(−kz)ĥ(−kz)+ê(−kz)ê(−kz)

]
·α̂eikzz0 (4.2.10)

For example if we have a horizontal dipole aligned along α̂=x̂, the TE and TM components
of the incident field spectrum are proportional to

ê(−kz)·x̂= 1
kρ

(x̂ky−ŷkx)·x̂= ky
kρ

(4.2.11)

ĥ(−kz)·x̂=
[ kz
kkρ

(x̂kx+ŷky)+ kρ
k
ẑ
]
·x̂= kxkz

kkρ

Note that a horizontal dipole produce both TM and TE polarizations. Using (4.2.11) in
(4.2.10) results in

Ei(k)=− kηIl

2(2π)2
eikzz0

kz

[
kxkz
kkρ

ĥ(−kz)+ ky
kρ
ê(−kz)

]
(4.2.12)

On the other hand, a vertical dipole (z-directed) only radiates vertical polarized (TM)
electric field.
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4.3 Integral Equation for the Surface Fields
In this section, we formulate the problem using integral equation in terms of the electric
and magnetic surface currents on the interfaces. We assume the electric and magnetic fields
over the boundaries and according to the Extinction theorem, the surface currents should
satisfy certain constraints from where the surface currents can be obtained.

4.3.1 Extinction of Downward Propagating Wave in region 1

According to the extinction theorem, the incident wave propagating in region 1 with the
wave number k1 cannot be present in other regions as it is not solution of the Maxwell’s
equations. Therefore, a set of surface current should exist over the dielectric boundary such
that upon propagation with region 1 Green’s function cancel the incident field in other
regions. Mathematically [47, 52],

Einc(r)+
∫
S1

dS′
{
ik1η1G1(r,r′)·

[
n̂1×H1(r′)

]
+∇×G1(r,r′)·

[
n̂1×E1(r′)

]}
=0,z<f1(r⊥)

(4.3.1)
where, E1(r) and H1(r) are electromagnetic fields in the region 1, n̂1 is the unit normal
to the boundary (that points into region 1), and G1(r,r′) is the free space dyadic Green’s
function (that satisfies the radiation condition at infinity) in region 1, i.e. with wave
number k1=ω√µ1ε1. In the above integral equation the unknowns are tangential electric
and magnetic fields at the boundary z=f1(x,y). Here, the surface fields are unambiguously
defined as the boundary condition on the tangential electromagnetic fields of region 1 and
2 requires that

n̂1×E1(r′)=n̂1×E2(r′) (4.3.2)
n̂1×H1(r′)=n̂1×H2(r′)

Defining the surface field variables of a1(x,y) and b1(x,y) over the boundary in terms of
region 1 tangential fields according to

a1(x,y)dx′dy′=n̂1×η1H1(r′)dS′ (4.3.3)
b1(x,y)dx′dy′=n̂1×E1(r′)dS′

Note that Using this definition, both unknown fields a1(x,y) and b1(x,y) have dimension
of the electric field. Second, the measure of integration is changed from the general surface
element dS to the Cartesian surface element dxdy that simplifies dealing with the surface
Jacobian. The statement of the extinction theorem in terms of the ne surface field variables
can be written as

Einc(r)+
∫

dr′⊥
{
ik1G1(r,r′)·a1(r′⊥)+∇×G1(r,r′)·b1(r′⊥)

}
=0, z<f1(r⊥) (4.3.4)

where r⊥=(x,y). Assuming the observation point is placed somewhere below the boundary
surface such that z<f1(r⊥) for all values of r⊥ (z<min

r⊥
f1(r⊥)), we can expand the dyadic

Green’s function under condition z<z′ in spectral domain (see Appendix B) as

G1(r,r′)= i

2(2π)2

∫
dk⊥

1
k1z

[
ê(−k1z)ê(−k1z)+ĥ(−k1z)ĥ(−k1z)

]
eik⊥·(r⊥−r

′
⊥)−ik1z(z−z′)

(4.3.5)
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Notice that here the observation point is restricted to always be below the source location
(which is on the surface). Only under this condition the spectral expansion of (4.3.5) is
valid. The integral equation of (4.3.4) is not a surface integral equation as the observation
point is not on the boundary surface. The observation point is placed on an extension of
the boundary surface, not itself. That is why the integral equation formulation of(4.3.4)
sometimes is called Extended Boundary Condition Method (EBCM). Within EBCM, in
order to use the spectral expansion of the dyadic Green’s function, a definite direction for
radiation of the surface field is taken (for (4.3.5) it is downward) which means that counter
propagating wave are neglected. The EBCM is closely related to the Rayleigh Hypothesis
about the scattering from a surface. According to the Rayleigh hypothesis, the scattered
field from a surface can be written in terms of a linear combination of upward propagating
waves in that region. As it is clear, the properties of the surface can be in such a way that
allows for the backward wave toward the surface, like a shadowed surface and Rayleigh
hypothesis is not correct in general. However, if we put an upper limit on the slop of the
surface, then the backwards scattered wave toward the surface is unlikely or if it happens
the effect would be negligible. It can be shown that the Rayleigh hypothesis and extended
boundary condition method are equivalent formulations that results in the same answer for
scattering from the rough interfaces. However, since we consider the problem with small
height and slope, the extended boundary condition formulation would be highly dependable.

Going back to the extinction relation (4.3.4), we also need to determine the expression
of ∇×G1(r,r′). By operating ∇× on both sides of (4.3.5), utilizing that plane waves are
eigenvectors of the ∇,

∇×
{
ê(−k1z)ê(−k1z)eik⊥·(r⊥−r

′
⊥)−ik1z(z−z′)

}
=iK1×

{
ê(−k1z)ê(−k1z)eik⊥·(r⊥−r

′
⊥)−ik1z(z−z′)

}
(4.3.6)

and using the definition of the polarization unit vectors (Chapter 1) it can be written as

∇×G1(r,r′)=− 1
2(2π)2

∫
dk⊥

k1
k1z

[
−ĥ(−k1z)ê(−k1z)+ê(−k1z)ĥ(−k1z)

]
eik⊥·(r⊥−r

′
⊥)−ik1z(z−z′)

(4.3.7)
Where K1=k1xx̂+k1yŷ−k1z ẑ is the wave vector of a downward propagating wave in region
0. For the upward and downward propagating plane waves, the triplets

{
ĥ(k1z),ê(k1z),k̂1

}
and

{
ĥ(−k1z),ê(−k1z),K̂1

}
constitute a right handed orthogonal unit vectors, respectively.

Inserting the Green’s function and its derivative expansions into the extinction relation of
the incident field and noting that the plane waves with different values of k⊥ are orthogonal
and in turn independent, we arrive at

Einc(k)− 1
2
k1
k1z

ê(−k1z)ê(−k1z)·
1

(2π)2

∫
dr′⊥a1(r′⊥)e−i

(
k⊥·r′⊥−k1zf1(r′⊥)

)
(4.3.8)

− 1
2
k1
k1z

ĥ(−k1z)ĥ(−k1z)·
1

(2π)2

∫
dr′⊥a1(r′⊥)e−i

(
k⊥·r′⊥−k1zf1(r′⊥)

)
+ 1

2
k1
k1z

ĥ(−k1z)ê(−k1z)·
1

(2π)2

∫
dr′⊥b1(r′⊥)e−i

(
k⊥·r′⊥−k1zf1(r′⊥)

)
− 1

2
k1
k1z

ê(−k1z)ĥ(−k1z)·
1

(2π)2

∫
dr′⊥b1(r′⊥)e−i

(
k⊥·r′⊥−k1zf1(r′⊥)

)
=0

Here we used the fact that the polarization unit vectors ê(−kz) and ĥ(−kz) are not functions
of spatial coordinates they can be swept out of the spatial integration. To convert integrals
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to the Fourier type integrals and separating the roughness part from that of flat surface,
the factor in the integrand can be decomposed to

e−i
(
k⊥·r′⊥−k1zf1(r′⊥)

)
=e−ik⊥·r′⊥

[
eik1zf1(r′⊥)−1

]
+e−ik⊥·r′⊥ (4.3.9)

The first term vanishes for the case of flat surface. Considering a Fourier pair for the surface
fields as

A1(k⊥)= 1
(2π)2

∫
dr′⊥a1(r′⊥)e−ik⊥·r′⊥ (4.3.10)

a1(r′⊥)=
∫

dk′⊥A1(k′⊥)eik
′
⊥·r′⊥

and inserting Fourier transform of the fields in the extinction relation of (4.3.8), it can be
written as

Einc(k)− 1
2
k1
k1z

ê(−k1z)ê(−k1z)·
{
A1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)A1(k′⊥)

}
(4.3.11)

− 1
2
k1
k1z

ĥ(−k1z)ĥ(−k1z)·
{
A1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)A1(k′⊥)

}
+ 1

2
k1
k1z

ĥ(−k1z)ê(−k1z)·
{
B1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)B1(k′⊥)

}
− 1

2
k1
k1z

ê(−k1z)ĥ(−k1z)·
{
B1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)B1(k′⊥)

}
=0

Here, the kernel of integral equation I−11(k⊥;k′⊥) is the scattering potential (in conjunc-
tion with the Lippmann-Schwinger equations in quantum scattering) experienced by the
downward propagating wave in region 1 in scattering from the first surface and is defined
as

I−11(k⊥;k′⊥)= 1
(2π)2

∫
dr′⊥e

−i
[
(kx−k′x)x′+(ky−k′y)y′

][
eik1zf1(r′⊥)−1

]
(4.3.12)

The first subscript shows it is related to the wave propagating (wavenumber) in region 1
and second one stands for the first rough surface. the minus sign shows that it is responsible
for a downward propagating wave (respect to z).Note that if interface z=f1(x,y) is a flat
surface at z=0, the scattering potential is equal to zero.

Equation 4.3.11 is a vector equation for vector unknowns A1 and B1. However, it cannot
be solved directly in R3 as it contains only two independent equation. Although unknown
surface fields have a representation in 3 dimension, they are really 2D objects. Therefore,
solving (4.3.11) directly in R3 is not possible. We can obtain the scalar components by pro-
jecting the equation on the unit vectors ê(−k1z) and ĥ(−k1z). For TE and TM components
of the extinction equation, (4.3.11) should be pre-multiplied by polarization unit vectors to
get two scalar integral equations,

ê(−k1z)·Ẽinc(k⊥)− 1
2
k1
k1z

ê(−k1z)·
{
A1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)A1(k′⊥)

}
(4.3.13)

− 1
2
k1
k1z

ĥ(−k1z)·
{
B1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)B1(k′⊥)

}
=0
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ĥ(−k1z)·Ẽinc(k⊥)− 1
2
k1
k1z

ĥ(−k1z)·
{
A1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)A1(k′⊥)

}
(4.3.14)

+ 1
2
k1
k1z

ê(−k1z)·
{
B1(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)B1(k′⊥)

}
=0

In order to extract scalar components of the surface fields, we can use another right handed
set of unit vector in the spectral domain

{
p̂(k⊥),q̂(k⊥),ẑ

}
that are defined at any point

k⊥=(kx,ky) as

p̂(k⊥)= kxx̂+kyŷ
k⊥

(4.3.15)

p̂(k⊥)=−kyx̂+kxŷ
k⊥

Inserting a unit dyad I=p̂(k⊥)p̂(k⊥)+q̂(k⊥)q̂(k⊥)+ẑẑ between the dot products results in
a set of scalar integral equations for scalar surface fields unknowns,

ê(−k1z)·Ẽinc(k⊥)− 1
2
k1
k1z

{
A1q(k⊥)+

∫
dk′⊥I−11(k⊥;k′⊥)ê(−k1z)·p̂(k

′
⊥)A1p(k

′
⊥) (4.3.16)

+
∫

dk′⊥I−11(k⊥;k′⊥)ê(−k1z)·q̂(k
′
⊥)A1q(k

′
⊥)
}

− 1
2
k1
k1z

{
k1z
k1
B1p(k⊥)+ kρ

k1
B1z(k⊥)

+
∫

dk′⊥I−11(k⊥;k′⊥)ĥ(−k1z)·p̂(k
′
⊥)B1p(k

′
⊥)

+
∫

dk′⊥I−11(k⊥;k′⊥)ĥ(−k1z)·q̂(k
′
⊥)B1q(k

′
⊥)

+
∫

dk′⊥I−11(k⊥;k′⊥)ĥ(−k1z)·ẑ B1z(k
′
⊥)
}

=0

ĥ(−k1z)·Ẽinc(k⊥)− 1
2
k1
k1z

{
k1z
k1
A1p(k⊥)+ kρ

k1
A1z(k⊥) (4.3.17)

+
∫

dk′⊥I−11(k⊥;k′⊥)ĥ(−k1z)·p̂(k
′
⊥)A1p(k

′
⊥)

+
∫

dk′⊥I−11(k⊥;k′⊥)ĥ(−k1z)·q̂(k
′
⊥)A1q(k

′
⊥)

+
∫

dk′⊥I−11(k⊥;k′⊥)ĥ(−k1z)·ẑ A1z(k
′
⊥)
}

+ 1
2
k1
k1z

{
B1q(kx,ky)+

∫
dk′⊥I−11(k⊥;k′⊥)ê(−k1z)·p̂(k

′
⊥)B1p(k

′
⊥)

+
∫

dk′⊥I−11(k⊥;k′⊥)ê(−k1z)·q̂(k
′
⊥)B1q(k

′
⊥)
}

=0

Notice that the surface field vectors A and B are essentially 2 dimensional objects in the
coordinate system that is attached to the surface and changing from a point to others.
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However, here we used three components to describe them in another coordinate system
but it is still a 2 dimensional object. Therefore, all three components cannot be independent
and this is indeed the case. Since these are tangential surface fields, n̂1 ·A1=n̂1 ·B1=0 and
this provides another description to the extinction equations to have a consistent system.
Equivalently, one may use the orthogonality condition for the spatial fields n̂1 ·a1(r⊥)=
n̂1 ·b1(r⊥)=0 to write

ẑ−∇⊥f1(r⊥)√
1+|∇⊥f1|2

·a1(r)=0 (4.3.18)

or

a1(r⊥)·ẑ=∇⊥f1(r⊥)·a1(r⊥) (4.3.19)

that yields the z-component in terms of the transverse components of the surface fields.
Therefore, each surface field vector brings two scalar unknowns into the system of equations.
Equation. 4.3.19 can be transformed to the spectral domain to get

A1(k⊥)·ẑ=
∫

dk⊥i(k⊥−k
′
⊥)·A1(k′⊥)F1(k⊥−k

′
⊥) (4.3.20)

where, F1(k⊥) is the Fourier transform of the boundary surface.

4.3.2 Extinction of Upward Propagating Wave in Region m

Similar to the extinction of the wave in region 1, the extinction theorem for the wave
propagating in region m can be written as

0=−
∮
∂Vm

dS′
{
ikmηmGm(r,r′)·

[
n̂′×Hm(r′)

]
+∇×Gm(r′,r)·

[
n̂′×Em(r′)

]}
(4.3.21)

=−
∫
Sm−1

dS′
{
ikmηmGm(r,r′)·

[
n̂′m−1×Hm(r′)

]
+∇×Gm(r′,r)·

[
n̂′m−1×Em(r′)

]}
+
∫
Sm

dS′
{
ikmηmGm(r,r′)·

[
n̂′m×Hm(r′)

]
+∇×Gm(r′,r)·

[
n̂′m×Em(r′)

]}

Here, Gm is the dyadic Green’s function in region m, Sm and Sm−1 are the lower and upper
boundary surfaces of region m and n̂m is the unit normal to the surface Sm that has a
positive component along z. Over the boundary at z=−dm−1+fm−1(x,y), we can define
the surface fields in terms of region m−1 fields (surface fields are continuous across the
boundary)

dS′ n̂′m×ηm−1Hm(r′)=dS′ηm−1n̂
′
m−1×Hm−1(r′)=dx′dy′am−1(x′,y′) (4.3.22)

dS′n̂′m×Em(r′)=dS′n̂′m−1×Em−1(r′)=dx′dy′bm−1(x′,y′)

and for second boundary of z=−dm+fm(x,y) we use region m fields to define the surface
field variables as

dS′ n̂′m×ηmHm(r′)=dx′dy′am(x′,y′) (4.3.23)
dS′n̂′m×Em(r′)=dx′dy′bm(x′,y′)
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Note that unit normal vectors for the upper and lower boundaries are different but we
include their differences as a part of unknown surface fields. Also for Non-magnetic material
case kη=kmηm=km−1ηm−1=ωµ, so that the integral equation (4.3.21) becomes

0=−
∫
Sm−1

dr′⊥
{
ikm−1Gm(r,r′)·am−1(r′⊥)

]
+∇×Gm(r′,r)·bm−1(r′⊥)

}
(4.3.24)

+
∫
Sm

dr′⊥
{
ikmGm(r,r′)·am(r′⊥)+∇×Gm(r′,r)·bm(r′⊥)

}
For the wave that goes up to the upper regions, i.e. the observation point placed in the
upper regions always z>z′ and we can expand the dyadic Green’s function in region m as

Gm(r,r′)= i

2(2π)2

∫ 1
kmz

dk⊥
[
ê(kmz)ê(kmz)+ĥ(kmz)ĥ(kmz)

]
eik⊥.(r⊥−r

′
⊥)+ikmz(z−z′)

(4.3.25)
Substituting the Green’s function and its derivative into the integral equation (4.3.24),
utilizing independence of the plane waves at different points, and introducing the Fourier
transform of the surface fields, the integral equation can be written as

+ 1
2
km−1
kmz

eikmzdm−1
[
ê(kmz)ê(kmz)

]
·
{
Am−1(k⊥)+

∫
dk′⊥I+

m,m−1(k⊥;k′⊥)Am−1(k′⊥)
}

+ 1
2
km−1
kmz

eikmzdm−1
[
ĥ(kmz)ĥ(kmz)

]
·
{
Am−1(k⊥)+

∫
dk′⊥I+

m,m−1(k⊥;k′⊥)Am−1(k′⊥)
}

+ 1
2
km
kmz

eikmzdm−1
[
−ĥ(kmz)ê(kmz)

]
·
{
Bm−1(k⊥)+

∫
dk′⊥I+

m,m−1(k⊥;k′⊥)Bm−1(k′⊥)
}

+ 1
2
km
kmz

eikmzdm−1
[
ê(kmz)ĥ(kmz)

]
·
{
Bm−1(k⊥)+

∫
dk′⊥I+

m,m−1(k⊥;k′⊥)Bm−1(k′⊥)
}

− 1
2
km
kmz

eikmzdm
[
ê(kmz)ê(kmz)

]
·
{
Am(k⊥)+

∫
dk′⊥I+

mm(k⊥;k′⊥)Am(k′⊥)
}

− 1
2
km
kmz

eikmzdm
[
ĥ(kmz)ĥ(kmz)

]
·
{
Am(k⊥)+

∫
dk′⊥I+

mm(k⊥;k′⊥)Am(k′⊥)
}

− 1
2
km
kmz

eikmzdm
[
−ĥ(kmz)ê(kmz)

]
·
{
Bm(k⊥)+

∫
dk′⊥I+

mm(k⊥;k′⊥)Bm(k′⊥)
}

− 1
2
km
kmz

eikmzdm
[
ê(kmz)ĥ(kmz)

]
·
{
Bm(k⊥)+

∫
dk′⊥I+

mm(k⊥;k′⊥)Bm(k′⊥)
}

=0 (4.3.26)

Where different scattering potentials for presence of roughness at (m−1) and m-th bound-
ary are defined through,

I+
mm(k⊥;k′⊥)= 1

(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
e−ikmzfm(r′⊥)−1

]
(4.3.27)

I+
m,m−1(k⊥;k′⊥)= 1

(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
e−ikmzfm−1(r′⊥)−1

]
The first subscript stands for wave propagating in region m (with wavenumber km) and
second one label the boundary (m−1 for the upper surface and m for the lower surface),
and plus sign is also for upward propagating wave. Similar to the region1 case, (4.3.26) can
be projected over the TE and TM polarization unit vectors in region m to get two sets of
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scalar equations but still for vector unknowns.

+ 1
2
km−1
kmz

eikmzdm−1
{
ê(kmz)·Am−1(k⊥)+

∫
dk′⊥ê(kmz)·Am−1(k′⊥)I+

m,m−1(k⊥;k′⊥)
}

+ 1
2
km
kmz

eikmzdm−1
{
ĥ(kmz)·Bm−1(k⊥)+

∫
dk′⊥ĥ(kmz)·Bm−1(k′⊥)I+

m,m−1(k⊥;k′⊥)
}

− 1
2
km
kmz

eikmzdm
{
ê(kmz)·Am(k⊥)+

∫
dk′⊥ê(kmz)·Am(k′⊥)I+

mm(k⊥;k′⊥)
}

− 1
2
km
kmz

eikmzdm
{
ĥ(kmz)·Bm(k⊥)+

∫
dk′⊥ĥ(kmz)·Bm(k′⊥)I+

mm(k⊥;k′⊥)
}

=0 (4.3.28)

+ 1
2
km−1
kmz

eikmzdm−1
{
ĥ(kmz)·Am−1(k⊥)+

∫
dk′⊥ĥ(kmz)·Am−1(k′⊥)I+

m,m−1(k⊥;k′⊥)
}

− 1
2
km
kmz

eikmzdm−1
{
ê(kmz)·Bm−1(k⊥)+

∫
dk′⊥ê(kmz)·Bm−1(k′⊥)I+

m,m−1(k⊥;k′⊥)
}

− 1
2
km
kmz

eikmzdm
{
ĥ(kmz)·Am(k⊥)+

∫
dk′⊥ĥ(kmz)·Am(k′⊥)I+

mm(k⊥;k′⊥)
}

+ 1
2
km
kmz

eikmzdm
{
ê(kmz)·Bm(k⊥)+

∫
dk′⊥ê(kmz)·Bm(k′⊥)I+

mm(k⊥;k′⊥)
}

=0 (4.3.29)

In addition, expansion of the surface field in terms of the pq unit vectors provides the scalar
equations for scalar unknowns.

4.3.3 Extinction of Downward Propagating Wave in Region m

The extinction relation here is the same as the case of Downward propagating wave in
region m of (4.3.21). The only difference is that here the observation point is placed in
below regions such that always z<z′ where z′ is the z-component of the location of the
surface source reside on both surfaces Sm and Sm−1. The dyadic Green’s function can be
expanded in spectral domain as a superposition of downward propagating plane waves

Gm(r,r′)= i

2(2π)2

∫ 1
kmz

dk⊥
[
ê(−kmz)ê(−kmz)+ĥ(−kmz)ĥ(−kmz)

]
eik⊥.(r⊥−r

′
⊥)−ikmz(z−z′)

(4.3.30)
Following similar procedure as upward propagating case, we can obtain TE and TM scalar
integral equations for the surface fields. the TE part of the integral equation reads,

+ 1
2
km−1
kmz

e−ikmzdm−1 ê(−kmz)·
{
Am−1(k⊥)+

∫
dk′⊥I−m,m−1(k⊥;k′⊥)Am−1(k′⊥)

}
+ 1

2
km
kmz

e−ikmzdm−1 ĥ(−kmz)·
{
Bm−1(k⊥)+

∫
dk′⊥I−m,m−1(k⊥;k′⊥)Bm−1(k′⊥)

}
− 1

2
km
kmz

e−ikmzdm ê(−kmz)·
{
Am(k⊥)+

∫
dk′⊥I−mm(k⊥;k′⊥)Am(k′⊥)

}
− 1

2
km
kmz

e−ikmzdm ĥ(−kmz)·
{
Bm(k⊥)+

∫
dk′⊥I−mm(k⊥;k′⊥)Bm(k′⊥)

}
=0 (4.3.31)
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whereas for TM part,

+ 1
2
km−1
kmz

e−ikmzdm−1 ĥ(−kmz)·
{
Am−1(k⊥)+

∫
dk′⊥I−m,m−1(k⊥;k′⊥)Am−1(k′⊥)

}
− 1

2
km
kmz

e−ikmzdm−1 ê(−kmz)·
{
Bm−1(k⊥)+

∫
dk′⊥I−m,m−1(k⊥;k′⊥)Bm−1(k′⊥)

}
− 1

2
km
kmz

e−ikmzdm ĥ(−kmz)·
{
Am(k⊥)+

∫
dk′⊥I−mm(k⊥;k′⊥)Am(k′⊥)

}
+ 1

2
km
kmz

e−ikmzdm ê(−kmz)·
{
Bm(k⊥)+

∫
dk′⊥I−mm(k⊥;k′⊥)Bm(k′⊥)

}
=0 (4.3.32)

Here, the relevant scattering potentials are I−m,m−1(k⊥;k′⊥) and I−m,m(k⊥;k′⊥) which are
defined through,

I−m,m−1(k⊥;k′⊥)= 1
(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
eikmzfm−1(r′⊥)−1

]
(4.3.33)

I−m,m(k⊥;k′⊥)= 1
(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
eikmzfm(r′⊥)−1

]
4.3.4 Extinction of Upward Propagating Wave in Region N

The statement of the extinction theorem applied to the last half space is given by (the
minus sign is due to the way of selecting the normal vector pointing upward over the last
interface)

−
∫
∂VN

dS′
{
ikNηNGN (r,r′)·

[
n̂′N×HN (r′)

]
(4.3.34)

+∇×GN (r,r′)·
[
n̂′N×EN (r′)

]}
=
{
EN (r) r∈region N
0 r 6∈region N

where ∂VN is the last rough boundary described with equation z=−dN−1+fN−1(x,y). In
order maintain number of unknown surface fields such that (4.3.34) does not introduce a
new surface field variable, we define surface fields in terms of region N−1 fields and noting
that for non-magnetic mediums kNηN=kN−1ηN−1, on the last boundary

dS′ n̂′N×ηN−1HN−1(r′)=dx′dy′aN−1(x′,y′) (4.3.35)
dS′ n̂′N×EN−1(r′)=dx′dy′bN−1(x′,y′)

and if the observation point is placed in upper regions such that z>z′ is always true, the
integral equation becomes∫

∂VN

dr′⊥
{
ikN−1GN (r,r′)·aN−1(r′⊥)+∇×GN (r,r′)·bN−1(r′⊥)

}
=0, r 6∈region N (4.3.36)

Given this condition the Green’s function of the last layer can be spectrally expanded as

GN (r,r′)= i

2(2π)2

∫ 1
kNz

dk⊥
[
ê(kNz)ê(kNz)+ĥ(kNz)ĥ(kNz)

]
eik⊥(r⊥−r′⊥)+ikNz(z−z′)

(4.3.37)
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Following the same procedure as before, the set of TE and TM integral equations becomes,

1
2
kN−1
kNz

{
ê(kNz)·AN−1(k⊥)+

∫
dk′⊥I+

N,N−1(k⊥;k′⊥)ê(kNz)·AN−1(k′⊥)
}

(4.3.38)

+ 1
2
kN
kNz

{
ĥ(kNz)·BN−1(k⊥)+

∫
dk′⊥I+

N,N−1(k⊥;k′⊥)ĥ(kNz)·BN−1(k′⊥)
}

=0

+ 1
2
kN−1
kNz

{
ĥ(kNz)·AN−1(k⊥)+

∫
dk′⊥I+

N,N−1(k⊥;k′⊥)ĥ(kNz)·AN−1(k′⊥)
}

(4.3.39)

− 1
2
kN
kNz

{
ê(kNz)·BN−1(k⊥)+

∫
dk′⊥I+

N,N−1(k⊥;k′⊥)ê(kNz)·BN−1(k′⊥)
}

=0

where the scattering potential I+
N,N−1(k⊥;k′⊥) for upward propagating wave in region N

that scattered from the last boundary is defined as

I+
N,N−1(k⊥;k′⊥)= 1

(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
e−ikNzfN−1(r′⊥)−1

]
(4.3.40)

4.4 Scattered and Transmitted Fields
Once we have the surface field quantities, it is possible to compute the scattered field into
region 0. Statement of the Equivalent principle (Extinction theorem) for the first boundary
reads

Einc(r)+
∫
S1

dS′
{
ik1η1G1(r,r′)·

[
n̂′1×H1(r′)

]
+∇×G1(r,r′)·

[
n̂′1×E1(r′)

]}
=E1(r) (4.4.1)

Therefore, the scattered field expression in terms of surface fields a1(r′⊥) and b1(r′⊥) that
are defined in (4.3.3) is given by

Es(r)=
∫
S1

dS′
{
ik1G1(r,r′)·a1(r′⊥)+∇×G1(r,r′)·b1(r′⊥)

}
, z>f1(x,y) (4.4.2)

This is the exact expression of the scattered field given the exact values for the surface fields.
However, here again we apply the extended boundary condition to the integral equation of
(4.4.2) by letting z resides on a location that is always above the actual interface profile.
Here, it will be clear that the idea of the extended boundary condition is the same as the
Rayleigh hypothesis where the starting point ins considering an expansion for the scattered
field in terms of the upward propagating waves in region 1. Utilizing the extended boundary
condition guarantees that z>z′ and as a consequence it allows to expand the dyadic Green’s
function in term of the plane waves with definite propagation direction (which is upward
here) as

G1(r,r′)= i

2(2π)2

∫
dk⊥

1
k1z

[
ê(k1z)ê(k1z)+ĥ(k1z)ĥ(k1z)

]
eik⊥·(r⊥−r

′
⊥)+ik1z(z−z′) (4.4.3)
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Substituting the Green’s function in the scattered field expression gives

Es(r)=− 1
2(2π)2

∫
dr′⊥

∫
dk⊥

k1
k1z

ê(k1z)ê(k1z)·a1(x′,y′)ei(k⊥·r⊥+k1zz)e−i
(
k⊥·r′⊥+k1zf1(r′⊥)

)
(4.4.4)

− 1
2(2π)2

∫
dr′⊥

∫
dk⊥

k1
k1z

ĥ(k1z)ĥ(k1z)·a1(r′⊥)ei(k⊥·r⊥+k1zz)e−i
(
k⊥·r′⊥+k1zf1(r′⊥)

)
+ 1

2(2π)2

∫
dr′⊥

∫
dk⊥

k1
k1z

ĥ(k1z)ê(k1z)·b1(r′⊥)ei(k⊥·r⊥+k1zz)e−i
(
k⊥·r′⊥+k1zf1(r′⊥)

)
− 1

2(2π)2

∫
dr′⊥

∫
dk⊥

k1
k1z

ê(k1z)ĥ(k1z)·b1(r′⊥)ei(k⊥·r⊥+k1zz)e−i
(
k⊥·r′⊥+k1zf1(r′⊥)

)
The scattered field in (4.4.4) is a superposition of upward propagating waves in region 1
[75] as

Es(r)=
∫

dk⊥S(k⊥)eik⊥·r⊥eik1zz (4.4.5)

This is the starting point of the Rayleigh hypothesis that automatically comes out of ex-
tended boundary condition approach. Using the Rayleigh hypothesis, the field in each
region will be expanded in terms of propagating waves (upward and downward) and then
they ill be forced to satisfy the border conditions. Therefore, although the extended bound-
ary condition integral equation is derived more rigorously, the assumption of the Rayleigh
hypothesis coincides with the integral equation approach.

Changing order of spatial and spectral integrations and using spectral incident field as
well as inserting Fourier transform of the surface fields into (4.4.4), the spectral represen-
tation of the scattered field becomes

Es(k)=− 1
2
k1
k1z

ê(k1z)ê(k1z)·
{
A1(k⊥)+

∫
dk′⊥I+

11(k⊥;k′⊥)A1(k′⊥)
}

(4.4.6)

− 1
2
k1
k1z

ĥ(k1z)ĥ(k1z)·
{
A1(k⊥)+

∫
dk′⊥I+

11(k⊥;k′⊥)A1(k′⊥)
}

+ 1
2
k1
k1z

ĥ(k1z)ê(k1z)·
{
B1(k⊥)+

∫
dk′⊥I+

11(k⊥;k′⊥)B1(k′⊥)
}

− 1
2
k1
k1z

ê(k1z)ĥ(k1z)·
{
B1(k⊥)+

∫
dk′⊥I+

11(k⊥;k′⊥)B1(k′⊥)
}

where the scattering potential for the scattered wave is defined as

I+
11(k⊥;k′⊥)= 1

(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
e−ik1zf1(r′⊥)−1

]
(4.4.7)

In accordance with the surface field solutions, the scattered field can be expressed through
its TE/TM decomposition and in terms of the scalar components of the surface fields.
Similarly, for transmitted field into region N , the equivalence principle can be applied to
the last half space to get the transmitted field as

Et(r)=−
∫
SN−1

dr′⊥
{
ikN−1GN (r,r′)·aN−1(r′⊥)+∇×GN (r,r′)·bN−1(r′⊥)

}
, r∈VN (4.4.8)
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This is the exact transmitted field given that the surface fields are computed exactly. How-
ever, if we assume that the observation point placed in region N such that always z<z′,
we can use a unidirectional expansion of the dyadic Green’s function in terms of downward
propagating waves

GN (r,r′)= i

2(2π)2

∫ 1
kNz

dk⊥
[
ê(−kNz)ê(−kNz)+ĥ(−kNz)ĥ(−kNz)

]
eik⊥·(r⊥−r

′
⊥)−ikNz(z−z′)

(4.4.9)
Therefore, the spectral component of the transmitted field into region N can be obtained
in terms of the Fourier transform of the surface fields as

Ẽt(k⊥)= 1
2
kN−1
kNz

e−ikNzdN−1
[
ê(−kNz)ê(−kNz)

]
·
{
AN−1(k⊥)+

∫
dk′⊥AN−1(k′⊥)I−N,N−1

}
+ 1

2
kN−1
kNz

e−ikNzdN−1
[
ĥ(−kNz)ĥ(−kNz)

]
·
{
AN−1(k⊥)+

∫
dk′⊥AN−1(k′⊥)I−N,N−1(k⊥;k′⊥)

}
+ 1

2
kN
kNz

e−ikNzdN−1
[
−ĥ(−kNz)ê(−kNz)

]
·
{
BN−1(k⊥)+

∫
dk′⊥BN−1(k′⊥)I−N,N−1(k⊥;k′⊥)

}
+ 1

2
kN
kNz

e−ikNzdN−1
[
ê(−kNz)ĥ(−kNz)

]
·
{
BN−1(k⊥)+

∫
dk′⊥BN−1(k′⊥)I−N,N−1(k⊥;k′⊥)

}
where the scattering potential for the transmitted field in defined as

I−N,N−1(k⊥;k′⊥)= 1
(2π)2

∫
dr′⊥e−i(k⊥−k

′
⊥)·r′⊥

[
e+ikNzfN−1(r′⊥)−1

]
(4.4.10)

The TE component of transmitted field can be obtained by projection of the transmitted
field on the TE polarization unit vectors.

4.5 Surface Fields Solution
From the extended boundary condition integral equations of (4.3.11), (4.3.26), (4.3.31),
(4.3.32), (4.3.38), and (4.3.39) we have a system of integral equations to be solved for the
surface fields. There are N−1 interfaces with two vector surface currents A and B on
each interface that results in 2(N−1) vector unknowns. The vector surface fields are two
dimensional objects and therefore number of scalar unknowns becomes 4(N−1). On the
other hand, for 2≤m≤N−1, the extinction relation of the middle layers provide us with
2(N−2) vector integral equations and the first and last layers also bring two additional vec-
tor equations that results in 2(N−1) vector equation that contain 4(N−1) scalar equations
(TE and TM). Overall the system of boundary integral equations s consistent and ready to
solve. Again, notice that these are the extended boundary condition integral equation to
be applied to the surfaces that have a maximum acceptable slope.

The vector surface fields belong to the tangent space of the rough boundary, i.e. for a
general interface labeled by j,

n̂j(r)·aj(r⊥)=n̂j(r)·bj(r⊥)=0 ,j=0,1,2,...N−1 (4.5.1)

where the normal to the boundary is related to the surface profile through,

n̂j(r)= ẑ−∇fj(r⊥)√
1+||∇fj(r⊥)||2

(4.5.2)
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Therefore, z-component of the surface field can be obtained from the transverse component
through,

aj,z(r⊥)=∇fj(r⊥)·aj(r⊥) (4.5.3)

It can be written in spectral domain by a convolution integral of

Aj,z(k⊥)=
∫

dk′⊥iFj(k⊥−k
′
⊥)(k⊥−k

′
⊥)·Aj⊥(k′⊥) (4.5.4)

4.5.1 Small Height and Slope Approximations

The Small Perturbation Method (SPM) is a perturbative solution of the boundary integral
equations obtained in 4.3. Perturbation parameter is the surface height which is considered
to be smaller than the operational wavelength λ. When the interfaces are considered to
be random rough surfaces, the height would be characterized by the statistics of the sur-
face processes. Here, we consider the interfaces to be a Gaussian processes with a given
autocorrelation function. The autocorrelation function is defined through〈

f(r⊥)f(r′⊥)
〉
=h2C(r⊥−r′⊥) (4.5.5)

Here, h is the RMS height of the surface and C(r⊥) is the normalized and dimensionless
correlation function such that C(0)=1. The surface process is assumed to be a stationary
process in a wide sense. The small perturbation method assumes that in general |kh|�1
for all of the layers. More specifically, the approximation to be made is |kjzfn(r⊥)|�1 for
n=j,j+1 and all r⊥. Given that |kh| is a small parameter, the solution can be expanded
in terms of different orders as

Aj=
∞∑
m=0

A
(m)
j =A(0)

j +A(1)
j +A(2)

j +··· (4.5.6)

where different orders are related through A(m)∝A(m−1)|kh|. This expansion is convergent
if the perturbation parameter |kh| is really smaller than unity and series would reach its
value using a few terms. As |kh| becomes close to unity, the convergence slows down and
the solution becomes divergent. It is important to note that the perturbation series is an
alternative series such that by adding one term it may overshoot or undershoot the final
result. After considering a perturbation series for all of the surface field unknowns, terms
of the same order can be collected on both sides. Starting from the zeroth order solution,
we can continue o construct higher order terms iteratively.Small height is not the only
approximation in the SPM as it uses Small Slope Approximation as well. The small slope
approximation enters through, ∣∣∣∣∣∣∇fj(r⊥)

∣∣∣∣∣∣�1 (4.5.7)

for all values of j. Therefore, if we consider perturbation series Aj(k⊥)=
N∑
m=0

A
(m)
j (k⊥) for

the surface fields, z-component of the surface fields is one order smaller than the transverse
part, i.e.

A
(m)
j,z (k⊥)=

∫
dk′⊥iFj(k⊥−k

′
⊥)(k⊥−k

′
⊥)·A(m−1)

j⊥ (k′⊥) (4.5.8)

Computation of different orders of perturbation becomes more complicated for higher orders
of solution. Usually the SPM would be useful if the perturbation parameter is small enough
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that series converges with considering up to the second order of perturbation which is called
SPM2. Different orders of the surface field will be computed in the next part.

4.5.2 Zeroth order Solution

For zeroth order solution is independent of surface roughness and therefore Fj(k⊥)=0 within
the zeroth order solution. The zeroth order of the surface fields is one order smaller than
the transverse part and therefore z-components of the fields vanishes within the zeroth
order. Also, the scattering potentials are defined in such a way that they vanish for the
flat surface case. TE and TM part of equations are isolated and can be solved separately.
Balancing the integral equations up to the zeroth order gives the following equation for the
TE part and after simplifying we obtain,

ê(−k1z)·Ẽinc(k)− 1
2
k1
k1z

A
(0)
1,q(k⊥)− 1

2B
(0)
1,p(k⊥)=0

km−1
km

A
(0)
m−1,q(k⊥)− kmz

km
B

(0)
m−1,p(k⊥)=eikmzδmA(0)

m,q(k⊥)−eikmzδm kmz
km

B(0)
m,p(k⊥)

km−1
km

A
(0)
m−1,q(k⊥)+ kmz

km
B

(0)
m−1,p(k⊥)=e−ikmzδmA(0)

m,q(k⊥)+e−ikmzδm kmz
km

B(0)
m,p(k⊥)

kN−1
kN

A
(0)
N−1,q(k⊥)− kNz

kN
B

(0)
N−1,p(k⊥)=0

Here, δm=dm−dm−1 ,m=2,3,···N−1. Notice that the TE field variables are A(0)
q and

B
(0)
p . The extinction relations of the middle layers can be casted into a propagation matrix

type of equations as

km−1
km

[
1 − kmz

km−1

1 kmz
km−1

][
A

(0)
m−1,q

B
(0)
m−1,p

]
=
[
eiφm 0

0 e−iφm

][
1 −kmz

km
1 kmz

km

][
A

(0)
m,q

B
(0)
m,p

]
(4.5.9)

where the phase factor φm is the phase delay in propagation through the region m and is
defined as φm=kmzδm. The surface fields of region m can be related to that of region m−1
through,[

A
(0)
m,q

B
(0)
m,p

]
= km−1

km

[
1 −kmz

km
1 kmz

km

]−1[
e−iφm 0

0 eiφm

][
1 − kmz

km−1

1 kmz
km−1

][
A

(0)
m−1,q

B
(0)
m−1,p

]
(4.5.10)

By defining a propagation matrix P
[0,e]
m that is responsible for propagation of the surface

fields from the region m−1 to region m as[
A

(0)
m,q

B
(0)
m,p

]
=P

[0,e]
m

[
A

(0)
m−1,q

B
(0)
m−1,p

]
(4.5.11)

The surface fields on the last boundary can be related to the surface fields on the first
boundary recursively, [

A
(0)
N−1,q

B
(0)
N−1,p

]
=
N−1∏
j=2

P
[0,e]
j

[
A

(0)
1q

B
(0)
1p

]
=P

[0,e]
[
A

(0)
1q

B
(0)
1p

]
(4.5.12)
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where, P
[0,e]

is the total propagation matrix of the zeroth order TE fields from the first
to the last surface. Also the extinction of the wave in two half spaces, can be combined
to the recursive relation between the first and last interfaces to get a consistent system of
equations of

1
2
k1
k1z

1
2 0 0

0 0 kN−1
kNz

−1
P

[0,e]
11 P

[0,e]
12 −1 0

P
[0,e]
21 P

[0,e]
22 0 −1



A

(0)
1q

B
(0)
1p

A
(0)
N−1,q

B
(0)
N−1,p

=


1
0
0
0

ê(−k1z)·êiδ(k⊥−ki⊥) (4.5.13)

Similarly, collecting the terms up to the zeroth order of surface roughness in TM set of
equations, yields,

ĥ(−k1z)·Ẽinc(k)− 1
2A

(0)
1,p(k⊥)+ 1

2
k1
k1z

B
(0)
1,q (k⊥)=0

+ 1
2
km−1
kmz

eikmzdm−1
{
− kmz
km

A
(0)
m−1,p(k⊥)

}
− 1

2
km
kmz

eikmzdm−1B
(0)
m−1,q(k⊥)

− 1
2
km
kmz

eikmzdm
{
− kmz
km

A(0)
m,p(k⊥)

}
+ 1

2
km
kmz

eikmzdmB(0)
m,q(k⊥)=0

+ 1
2
km−1
kmz

e−ikmzdm−1
{kmz
km

A
(0)
m−1,p(k⊥)

}
− 1

2
km
kmz

e−ikmzdm−1B
(0)
m−1,q(k⊥)

− 1
2
km
kmz

e−ikmzdm
{kmz
km

A(0)
m,p(k⊥)

}
+ 1

2
km
kmz

e−ikmzdmB(0)
m,q(k⊥)=0

+ 1
2
kN−1
kNz

eikNzdN−1
{
− kNz
kN

A
(0)
N−1,p(k⊥)

}
− 1

2
kN
kNz

eikNzdN−1B
(0)
N−1,q(k⊥)=0

From extinction relation of middle layers,km−1kmz
k2
m

1
km−1kmz

k2
m

−1

[A(0)
m−1,p

B
(0)
m−1,q

]
=
[
eiφm 0

0 e−iφm

][
kmz
km

1
kmz
km

−1

][
A

(0)
m,p

B
(0)
m,q

]
(4.5.14)

a propagation matrix for the surface fields of TM set can be obtained as[
A

(0)
m,p

B
(0)
m,q

]
=
[
kmz
km

1
kmz
km

−1

]−1[
e−iφm 0

0 eiφm

]km−1kmz
k2
m

1
km−1kmz

k2
m

−1

[A(0)
m−1,p

B
(0)
m−1,q

]
(4.5.15)

or, [
A

(0)
m,p

B
(0)
m,q

]
=P

[0,h]
m

[
A

(0)
m−1,p

B
(0)
m−1,q

]
(4.5.16)

where

P
[0,h]
m =

[
kmz
km

1
kmz
km

−1

]−1[
e−iφm 0

0 eiφm

]km−1kmz
k2
m

1
km−1kmz

k2
m

−1

 (4.5.17)
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that can be used to connect the first and last surface fields together through[
A

(0)
N−1,p

B
(0)
N−1,q

]
=
N−1∏
j=2

P
[0,h]
j

[
A

(0)
1p

B
(0)
1q

]
=P

[0,h]
[
A

(0)
1p

B
(0)
1q

]
(4.5.18)

where P
[0,h]

is the total propagation matrix from the first surface fields to the last one.
Using the two half spaces relation, a consistent system of equation for the surface fields will
be obtained as

1
2 −1

2
k1
k1z

0 0
0 0 kN−1

kN
kNz
kN

1
P

[0,h]
11 P

[0,h]
12 −1 0

P
[0,h]
21 P

[0,h]
22 0 −1



A

(0)
1p

B
(0)
1q

A
(0)
N−1,p

B
(0)
N−1,q

=


1
0
0
0

ĥ(−k1z)·êiδ(k⊥−ki⊥) (4.5.19)

Note that due to the presence of the delta-function on the right hand side of (4.5.19), all of
spectral quantities should be evaluated at k⊥=ki⊥. The surface fields on the intermediate
layers can be found directly by applying the propagation matrices as[

A
(0)
m,q

B
(0)
m,p

]
=

m∏
j=2

P
[0,e]
j

[
A

(0)
1q

B
(0)
1p

]
(4.5.20)

[
A

(0)
m,p

B
(0)
m,q

]
=

m∏
j=2

P
[0,h]
j

[
A

(0)
1p

B
(0)
1q

]

4.5.3 Zeroth Order Scattered and Transmitted Field

Since the zeroth order surface fields are specular at k⊥=ki⊥, we defines the zeroth order
surface fields amplitudes through,

A(0)
mα=a(0)

mαδ(k⊥−ki⊥) (4.5.21)

then, the scattered field can be obtained by balancing the scattered field integral of (4.4.2)
to find the scattered field as

E
(0)
s (k)=

[
S(0)
e ê(k1z)+S(0)

h ĥ(k1z)
]
δ(k⊥−ki⊥) (4.5.22)

where

S(0)
e =−1

2
k1
k1iz

a
(0)
1q + 1

2b
(0)
1p (4.5.23)

S
(0)
h =+1

2a
(0)
1p + 1

2
k1
k1iz

b
(0)
1q

The scattered field representation in the spatial domain can be obtained as

E
(0)
s (r)=

∫
dk⊥Ẽs(k)eik1·r=eik1i·r

[
S(0)
e ê(k1iz)+S(0)

h ĥ(k1iz)
]

(4.5.24)
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with associated magnetics field of

H
(0)
s (r)= 1

η1
eik1i·r

[
−S(0)

e ĥ(k1iz)+S(0)
h ê(k1iz)

]
(4.5.25)

that results in the scattered power density of

S
(0)
s ·ẑ=1

2Re
[
E

(0)
s (r)×H(0)∗

s (r)
]
·ẑ= 1

2k1η1

[
|S(0)
e |2+|S(0)

h |
2
]
Re(k1iz) (4.5.26)

Similarly for the transmitted field into region N ,

Ẽ
(0)
t (k⊥)=e−ikNzdN−1

[
T (0)
e ê(−kNz)+T (0)

h ĥ(−kNz)
]
δ(k⊥−ki⊥) (4.5.27)

where,

T (0)
e = 1

2

[
kN−1
kNiz

a
(0)
N−1,q+b

(0)
N−1,p

]
(4.5.28)

T
(0)
h = 1

2

[
kN−1
kN

a
(0)
N−1,p−

kN
kNiz

b
(0)
N−1,q(k⊥)

]
Converting to the spatial domain gives

E
(0)
t (r)=e−ikNizdN−1eiKNi·r

[
T (0)
e ê(−kNiz)+T (0)

h ĥ(−kNiz)
]

(4.5.29)

and corresponding magnetic field of

H
(0)
t (r)= 1

ηN
e−ikNizdN−1eiKNi·r

[
−T (0)

e ĥ(−kNiz)+T (0)
h ê(−kNiz)

]
(4.5.30)

that yield the following power density for the transmitted field,

S
(0)
t ·(−ẑ)=1

2Re
[
E

(0)
t (r)×H(0)∗

t (r)
]
·(−ẑ)= 1

2Re
[ k∗Niz
k∗Nη

∗
N

|T (0)
e |2+ kNiz

kNη∗N
|T (0)
h |

2
]

(4.5.31)

Notice that the zeroth order scattered and transmitted fields are deterministic quantities
and independent of the surface roughness.

4.5.4 First Order Solution

For convenience in later calculations, lets define the zeroth order surface field amplitudes
u

(0)
α (k⊥i) as

U (0)
α (k⊥)=u(0)

α (k⊥i)δ(k⊥−k⊥i) (4.5.32)

where U∈
{
Ai,Bi

}
and α∈

{
p,q
}
. Balancing the extinction integral equations up to the first

order of surface roughness, using the first order approximation of the scattering potentials
of

I
−(1)
11 (k⊥;k′⊥)=ik1zF1(k⊥−k

′
⊥) (4.5.33)

I
±(1)
m,m−1(k⊥;k′⊥)=∓ikmzFm−1(k⊥−k

′
⊥)

I±(1)
mm (k⊥;k′⊥)=∓ikmzFm(k⊥−k

′
⊥)

I
+(1)
N,N−1(k⊥;k′⊥)=−ikNzFN−1(k⊥−k

′
⊥)
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and expression of the z-component of the fields in terms of the transverse part,

A
(1)
j,z (k⊥)=iFj(k⊥−ki⊥)(k⊥−ki⊥)·a(0)

j (4.5.34)

B
(1)
j,z (k⊥)=iFj(k⊥−ki⊥)(k⊥−ki⊥)·b(0)

j

it reveals that the first order surface fields are proportional to the spectrum of the interface
profiles. By this token, lets define the new surface field variables Ã(1)

j by

A
(1)
j (k⊥)=iFj(k⊥−ki⊥)Ã(1)

j (k⊥) (4.5.35)
The TE part of the extinction equations in terms of the new surface field variables become,

− 1
2
k1
k1z

{
Ã

(1)
1q (k⊥)+k1z ê(−k1z)·a(0)

1

}
(4.5.36)

− 1
2
k1
k1z

{
k1z
k1
B̃

(1)
1p (k⊥)+ kρ

k1
(k⊥−ki⊥)·b(0)

1 +k1zĥ(−k1z)·b
(0)
1

}
=0

+ 1
2
km−1
kmz

eikmzdm−1
{
Ã

(1)
m−1,q(k⊥)−kmz ê(kmz)·a(0)

m−1

}
Fm−1

+ 1
2
km
kmz

eikmzdm−1
{
− kmz
km

B̃
(1)
m−1,p(k⊥)+ kρ

km
(k⊥−ki⊥)·b(0)

m−1−kmzĥ(kmz)·b
(0)
m−1

}
Fm−1

− 1
2
km
kmz

eikmzdm
{
Ã(1)
m,q(k⊥)−kmz ê(kmz)·a(0)

m (k′⊥)
}
Fm

− 1
2
km
kmz

eikmzdm
{
− kmz
km

B̃(1)
m,p(k⊥)+ kρ

km
(k⊥−ki⊥)·b(0)

m −kmzĥ(kmz)·b
(0)
m

}
Fm=0

+ 1
2
km−1
kmz

e−ikmzdm−1
{
Ã

(1)
m−1,q(k⊥)+kmz ê(−kmz)·a(0)

m−1

}
Fm−1

+ 1
2
km
kmz

e−ikmzdm−1
{kmz
km

B̃
(1)
m−1,p(k⊥)+ kρ

km
(k⊥−ki⊥)·b(0)

m−1+kmzĥ(−kmz)·b
(0)
m−1(k′⊥)

}
Fm−1

− 1
2
km
kmz

e−ikmzdm
{
Ã(1)
m,q(k⊥)+kmz ê(−kmz)·a(0)

m

}
Fm

− 1
2
km
kmz

e−ikmzdm
{kmz
km

B̃(1)
m,p(k⊥)+ kρ

km
(k⊥−ki⊥)·b(0)

m +kmzĥ(−kmz)·b
(0)
m

}
Fm=0

+ 1
2
kN−1
kNz

eikNzdN−1
{
Ã

(1)
N−1,q(k⊥)−kNz ê(kNz)·a(0)

N−1

}
+ 1

2
kN
kNz

eikNzdN−1
{
− kNz
kN

B̃
(1)
N−1,p(k⊥)+ kρ

kN
(k⊥−ki⊥)·b(0)

N−1−kNzĥ(kNz)·b
(0)
N−1

}
=0

From the middle layers relation for 2≤m≤N−1, surface field over adjacent interfaces can
be connected by

Fm−1

[
km−1
km

−kmz
km

km−1
km

+kmz
km

][
Ã

(1)
m−1,q

B̃
(1)
m−1,p

]
+Fm−1

[
u1e+
m

u1e−
m

]
(4.5.37)

=Fm

[
eiφm 0

0 e−iφm

][
1 −kmz

km
1 +kmz

km

][
Ã

(1)
m,q

B̃
(1)
m,p

]
+Fm

[
c1e+
m

c1e−
m

]
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where δm=dm−dm−1, φm=kmzδm, and

u1e+
m =−km−1

km
kmz ê(kmz)·a(0)

m−1+
[ kρ
km

(k⊥−ki⊥)−kmzĥ(kmz)
]
·b(0)
m−1 (4.5.38)

u1e−
m = km−1

km
kmz ê(−kmz)·a(0)

m−1+
[ kρ
km

(k⊥−ki⊥)+kmzĥ(−kmz)
]
·b(0)
m−1

and

c1e+
m =eiφm

{
−kmz ê(kmz)·a(0)

m +
[ kρ
km

(k⊥−ki⊥)−kmzĥ(kmz)
]
·b(0)
m

}
(4.5.39)

c1e−
m =e−iφm

{
kmz ê(−kmz)·a(0)

m +
[ kρ
km

(k⊥−ki⊥)+kmzĥ(−kmz)
]
·b(0)
m

}
The matrix relation (4.5.37) can be used to explicitly express the surface fields on the m-th
interface as

Fm

[
Ã

(1)
m,q

B̃
(1)
m,p

]
=P

[1e]
m,m−1Fm−1

[
Ã

(1)
m−1,q

B̃
(1)
m−1,p

]
+U [1e]

m Fm−1+C [1e]
m Fm (4.5.40)

where,

P
[1e]
m,m−1=

[
1 −kmz

km
1 +kmz

km

]−1[
e−iφm 0

0 eiφm

][
km−1
km

−kmz
km

km−1
km

+kmz
km

]
(4.5.41)

C
[1e]
m =−

[
1 −kmz

km
1 +kmz

km

]−1[
e−iφm 0

0 eiφm

][
c1e+
m

c1e−
m

]

U
[1e]
m =

[
1 −kmz

km
1 +kmz

km

]−1[
e−iφm 0

0 eiφm

][
u1e+
m

u1e−
m

]

Equation. 4.5.40 can be used to recursively connect interface by interface to eventually
have a relationship between the first and the last interface surface fields. This relation can
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be found by induction and it is given by

FN−1

[
Ã

(1)
N−1,q

B̃
(1)
N−1,p

]
=
N−1∏
j=2

P
[1e]
j,j−1F1

[
Ã

(1)
1,q

B̃
(1)
1,p

]
(4.5.42)

+
N−1∏
j=3

P
[1e]
j,j−1U

[1e]
2 F1

+
N−1∏
j=4

P
[1e]
j,j−1

(
U

[1e]
3 +P

[1e]
3,2 C

[1e]
2

)
F2

+
N−1∏
j=5

P
[1e]
j,j−1

(
U

[1e]
4 +P

[1e]
4,3 C

[1e]
3

)
F3

+
N−1∏
j=6

P
[1e]
j,j−1

(
U

[1e]
5 +P

[1e]
5,4 C

[1e]
4

)
F4

...

+
N−1∏
j=N−1

P
[1e]
j,j−1

(
U

[1e]
N−2+P

[1e]
N−2,N−3C

[1e]
N−3

)
FN−3

+
(
U

[1e]
N−1+P

[1e]
N−1,N−2U

[1e]
N−2

)
FN−2

+C [1e]
N−1FN−1

By taking total propagation matrix corresponds to the flat interfaces between the first and
last layers as

P
[1e]

=
N−1∏
j=2

P
[1e]
j,j−1 (4.5.43)

which results in,

FN−1

[
Ã

(1)
N−1,q

B̃
(1)
N−1,p

]
−P

[1e]
F1

[
Ã

(1)
1,q

B̃
(1)
1,p

]
=R[1e] (4.5.44)
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where,

R
[1e]=+

N−1∏
j=3

P
[1e]
j,j−1U

[1e]
2 F1 (4.5.45)

+
N−1∏
j=4

P
[1e]
j,j−1

(
U

[1e]
3 +P

[1e]
3,2 C

[1e]
2

)
F2

+
N−1∏
j=5

P
[1e]
j,j−1

(
U

[1e]
4 +P

[1e]
4,3 C

[1e]
3

)
F3

+
N−1∏
j=6

P
[1e]
j,j−1

(
U

[1e]
5 +P

[1e]
5,4 C

[1e]
4

)
F4

...

+
N−1∏
j=N−1

P
[1e]
j,j−1

(
U

[1e]
N−2+P

[1e]
N−2,N−3C

[1e]
N−3

)
FN−3

+
(
U

[1e]
N−1+P

[1e]
N−1,N−2U

[1e]
N−2

)
FN−2

+C [1e]
N−1FN−1

In addition, from extinction relation of two half spaces,

Ã
(1)
1q (k⊥)+ k1z

k1
B̃

(1)
1p (k⊥)+C [1e]

12 =0 (4.5.46)

kN−1
kN

Ã
(1)
N−1,q(k⊥)− kNz

kN
B̃

(1)
N−1,p(k⊥)+C [1e]

N,N−1=0

where,

C
[1e]
12 =k1z ê(−k1z)·a(0)

1 +
[kρ
k1

(k⊥−ki⊥)+k1zĥ(−k1z)
]
·b(0)

1 (4.5.47)

C
[1e]
N,N−1=−kN−1

kN
kNz ê(kNz)·a(0)

N−1+
[ kρ
kN

(k⊥−ki⊥)−kNzĥ(kNz)
]
·b(0)
N−1

The matrix equation (4.5.44) together with external half spaces relation of (4.5.46) provides
sufficient information to solve for the unknown first order TE surface fields. Similarly, for
TM part of the first order extinction equations,

− 1
2
k1
k1z

{
k1z
k1
Ã

(1)
1p (k⊥)+ kρ

k1
(k⊥−ki⊥)·a(0)

1 +k1zĥ(−k1z)·a(0)
1

}
(4.5.48)

+ 1
2
k1
k1z

{
B̃

(1)
1q (kx,ky)+k1z ê(−k1z)·b

(0)
1

}
=0
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+ 1
2
km−1
kmz

eikmzdm−1
{
− kmz
km

Ã
(1)
m−1,p(k⊥)+ kρ

km
(k⊥−ki⊥)·a(0)

m−1−kmzĥ(kmz)·a(0)
m−1

}
Fm−1

(4.5.49)

− 1
2
km
kmz

eikmzdm−1
{
B̃

(1)
m−1,q(k⊥)−kmz ê(kmz)·b

(0)
m−1

}
Fm−1

− 1
2
km
kmz

eikmzdm
{
− kmz
km

Ã(1)
m,p(k⊥)+ kρ

km
(k⊥−ki⊥)·a(0)

m −kmzĥ(kmz)·a(0)
m

}
Fm

+ 1
2
km
kmz

eikmzdm
{
B̃(1)
m,q(k⊥)−kmz ê(kmz)·b

(0)
m

}
Fm=0

+ 1
2
km−1
kmz

e−ikmzdm−1
{kmz
km

Ã
(1)
m−1,p(k⊥)+ kρ

km
(k⊥−ki⊥)·a(0)

m−1+kmzĥ(−kmz)·a(0)
m−1

}
Fm−1

(4.5.50)

− 1
2
km
kmz

e−ikmzdm−1
{
B̃

(1)
m−1,q(k⊥)+kmz ê(−kmz)·b

(0)
m−1

}
Fm−1

− 1
2
km
kmz

e−ikmzdm
{kmz
km

Ã(1)
m,p(k⊥)+ kρ

km
(k⊥−ki⊥)·a(0)

m +kmzĥ(−kmz)·a(0)
m

}
Fm

+ 1
2
km
kmz

e−ikmzdm
{
B̃(1)
m,q(k⊥)+kmz ê(−kmz)·b

(0)
m

}
Fm=0

+ 1
2
kN−1
kNz

eikNzdN−1
{
− kNz
kN

Ã
(1)
N−1,p(k⊥)+ kρ

kN
(k⊥−ki⊥)·a(0)

N−1−kNzĥ(kNz)·a(0)
N−1

}
(4.5.51)

− 1
2
kN
kNz

eikNzdN−1
{
B̃

(1)
N−1,q(k⊥)−kNz ê(kNz)·b

(0)
N−1

}
=0

The middle layers extinction relations (4.5.49), and (4.5.50) can be written as a matrix
equation between surface fields of interface m and m−1 as[

−km−1
km

kmz
km

−1
+km−1

km
kmz
km

−1

]
Fm−1

[
Ã

(1)
m−1,p

B̃
(1)
m−1,q

]
+Fm−1

[
u1h+
m

u1h−
m

]

=
[
eiφm 0

0 e−iφm

][
−kmz

km
−1

kmz
km

−1

]
Fm

[
Ã

(1)
m,p

B̃
(1)
m,q

]
+Fm

[
c1h+
m

c1h−
m

]

where

u1h+
m = km−1

km

[ kρ
km

(k⊥−ki⊥)−kmzĥ(kmz)
]
·a(0)
m−1+kmz ê(kmz)·b

(0)
m−1 (4.5.52)

u1h−
m = km−1

km

[ kρ
km

(k⊥−ki⊥)+kmzĥ(−kmz)
]
·a(0)
m−1−kmz ê(−kmz)·b

(0)
m−1

and

c1h+
m =eiφm

([ kρ
km

(k⊥−ki⊥)−kmzĥ(kmz)
]
·a(0)
m +kmz ê(kmz)·b

(0)
m

)
(4.5.53)

c1h−
m =e−iφm

([ kρ
km

(k⊥−ki⊥)+kmzĥ(−kmz)
]
·a(0)
m −kmz ê(−kmz)·b

(0)
m

)
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or by collecting the matrices involved into one matrix

Fm

[
Ã

(1)
m,p

B̃
(1)
m,q

]
=P

[1h]
m,m−1Fm−1

[
Ã

(1)
m−1,p

B̃
(1)
m−1,q

]
+U1h

m Fm−1+C1h
m Fm (4.5.54)

where TM propagation matrix P
[1h]
m,m−1 and vectors U1h

m and C1h
m are defined through,

P
[1h]
m,m−1=

[
−kmz

km
−1

kmz
km

−1

]−1[
e−iφm 0

0 eiφm

][
−km−1

km
kmz
km

−1
+km−1

km
kmz
km

−1

]
(4.5.55)

U
1h
m =

[
−kmz

km
−1

kmz
km

−1

]−1[
e−iφm 0

0 eiφm

][
u1h+
m

u1h−
m

]

C
1h
m =−

[
−kmz

km
−1

kmz
km

−1

]−1[
e−iφm 0

0 eiφm

][
c1h+
m

c1h−
m

]
The propagation relation (4.5.54) connects the surface fields over the interface m to that
of interface m−1. From that, the first and last interface surface fields can be connected
through a linear relation that can be obtained by induction (similar to the TE case) as

FN−1

[
Ã

(1)
N−1,p

B̃
(1)
N−1,q

]
−P

[1h]
F1

[
Ã

(1)
1,p

B̃
(1)
1,q

]
=R[1h]

where, the vector R[1h] which contained the roughness effect is defined by

R
[1h]=

N−1∏
j=3

P
[1h]
j,j−1U

[1h]
2 F1 (4.5.56)

+
N−1∏
j=4

P
[1h]
j,j−1

(
U

[1h]
3 +P[1h]

3,2 C
[1h]
2

)
F2

+
N−1∏
j=5

P
[1h]
j,j−1

(
U

[1h]
4 +P[1h]

4,3 C
[1h]
3

)
F3

+
N−1∏
j=6

P
[1h]
j,j−1

(
U

[1h]
5 +P[1h]

5,4 C
[1h]
4

)
F4

...

+
N−1∏
j=N−1

P
[1h]
j,j−1

(
U

[1h]
N−2+P[1h]

N−2,N−3C
[1h]
N−3

)
FN−3

+
(
U

[1h]
N−1+P

[1h]
N−1,N−2C

[1h]
N−2

)
FN−2

+C [1h]
N−1FN−1

also from both ends extinction theorems we have

−k1z
k1
Ã

(1)
1p (k⊥)+B̃(1)

1q (k⊥)+C [1h]
12 =0 (4.5.57)

−kNz
kN

Ã
(1)
N−1,p(k⊥)−B̃(1)

N−1,q(k⊥)+C [1h]
N,N−1=0
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where

C
[1h]
12 =−

[kρ
k1

(k⊥−ki⊥)+k1zĥ(−k1z)
]
·a(0)

1 +k1z ê(−k1z)·b
(0)
1 (4.5.58)

C
[1h]
N,N−1=

[ kρ
kN

(k⊥−ki⊥)−kNzĥ(kNz)·
]
a

(0)
N−1+kNz ê(kNz)·b

(0)
N−1

Therefore, a complete set of equations for the TM part of the surface field can be written
as 

−k1z
k1

1 0 0
0 0 −kNz

kN
−1

−P [1h]
11 −P [1h]

12 1 0
−P [1h]

21 −P [1h]
22 0 1




F1Ã
(1)
1p

F1B̃
(1)
1q

FN−1Ã
(1)
N−1,p

FN−1B̃
(1)
N−1,q

=

 −F1C
[1h]
12

−FN−1C
[1h]
N,N−1

R[1h]

 (4.5.59)

As an aside, from the linear system of (4.5.59), since the vector R[1h] linearly depends
on all of the surfaces spectrum, the surface fields do depend linearly of all of the surfaces
spectrum.
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4.5.5 First Order Scattered and Transmitted Field

The scattered field can be computed using the equivalence principle applied to the region 1
with known surface fields. Balancing the TE scattered field expression up to the first order
nd using the first order approximation of the scattering potential for the scattered field as

I
+(1)
11 (k⊥,k

′
⊥)=−ik1zF1(k⊥−k

′
⊥) (4.5.60)

we arrive at,

−2k1z
k1
ê(k1z)·Ẽ

(1)
s (k)=iF1(k⊥−k⊥i)

{
Ã

(1)
1q (k⊥)−k1z ê(k1z)·a(0)

1 (4.5.61)

− k1z
k1
B̃

(1)
1p (k⊥)+

(
kρ
k1

(k⊥−k⊥i)−k1zĥ(k1z)
)
·b(0)

1

}
(4.5.62)

This expression can be further simplified if we use the extinction relation of the downward
propagating wave in region 1 of (4.5.36) as

Ã
(1)
1q (k⊥)+ k1z

k1
B̃

(1)
1p (k⊥)+k1z ê(−k1z)·a(0)

1 +
(
kρ
k1

(k⊥−k⊥i)+k1zĥ(−k1z)
)
·b(0)

1 =0 (4.5.63)

which is essentially similar to the expression of the scattered field except it is a rela-
tion for a downward propagating field. Manipulating the signs by make a sign flip in the
arguments of polarization unit vectors to be matched with scattered field and utilizing that

ĥ(−k1z)·T=−ĥ(k1z)·T (4.5.64)

where T is transverse vector such that T ·ẑ=0 and

ê(−k1z)=ê(k1z) (4.5.65)

(4.5.63) results in,

Ã
(1)
1q (k⊥)+k1z ê(k1z)·a(0)

1 +
(
kρ
k1

(k⊥−k⊥i)−k1zĥ(k1z)
)
·b(0)

1 =−k1z
k1
B̃

(1)
1p (k⊥) (4.5.66)

that upon substitution in the scattered field expression results in a great simplification that
leads to a factor of 2 to get

ê(k1z)·Ẽ
(1)
s (k)=−iF1(k⊥−k⊥i)

k1
k1z

{
Ã

(1)
1q (k⊥)+

(
kρ
k1

(k⊥−k⊥i)−k1zĥ(k1z)
)
·b(0)

1

}
Using TE surface fields solution, the solution of the first boundary surface fields is a linear
combination of all of the surfaces spectra as

F1(k⊥−k⊥i)Ã
(1)
1q (k⊥)=Ã(1)

1q,F1F1(k⊥−k⊥i)+
∑
j 6=1

Ã
(1)
q,Fj

Fj(k⊥−k⊥i) (4.5.67)

Therefore, the first order TE scattered field has N−1 spectral components in terms of
individual interfaces

ê(kz)·E
(1)
s (k)=

N−1∑
j=1

S
(1)
e,Fj

(k⊥)Fj(k⊥−k⊥i) (4.5.68)
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where contribution of each interface in the scattered field is given by

S
(1)
e,Fj

(k⊥)=


− ik1
k1z

[
Ã

(1)
1q,F1

(k⊥)+
(
kρ
k1

(k⊥−k⊥i)−k1zĥ(k1z)
)
·b(0)

1

]
j=1

− ik1
k1z

Ã
(1)
1q,Fj (k⊥) j 6=1

(4.5.69)

Similarly, the first order TM scattered field can be obtained as

ĥ(kz)·E
(1)
s (k)=

N−1∑
j=1

S
(1)
h,Fj

(k⊥)Fj(k⊥−k⊥i) (4.5.70)

where

S
(1)
h,Fj

(k⊥)=



ik1
k1z

[
B̃

(1)
1q,F1
−
(kρ
k1

(k⊥−k⊥i)−k1zĥ(k1z)
)
·a(0)

1

]
j=1

ik1
k1z

B̃
(1)
1q,Fj j 6=1

(4.5.71)

Therefore, total first order scattered field can be written as

E
(1)
s (k⊥)=

N−1∑
j=1

Fj(k⊥−k⊥i)
[
S

(1)
e,Fj

(k⊥)ê(kz)+S(1)
h,Fj

(k⊥)ĥ(kz)
]

(4.5.72)

Notice that the first order scattered field is linearly related to the surface spectra. Therefore,
one may obtain the first order solution of the scattered field by considering a layered media
with only one rough interface at a time and the rest of the interfaces to be flat to find
contribution of each rough surface and add them up to get the final result. However, this
would not be the case for higher orders of solution. Converting the scattered field to spatial
domain representation,

E
(1)
s (r)=

∫
dk⊥Ẽ

(1)
s (k⊥)eik·r (4.5.73)

=
N−1∑
j=1

∫
dk⊥eik·rFj(k⊥−k⊥i)

[
S

(1)
e,Fj

(k⊥)ê(kz)+S(1)
h,Fj

(k⊥)ĥ(kz)
]

Equation (4.5.73) shows that the first order scattered and transmitted fields have a non-zero
bandwidth in the spectral domain, which means scattered and transmitted fields involve
continuous spectrum of plane waves in different directions.

Also it is worth to note that the spectrum of the scattered field (4.5.73) is filtered by the
surface spectrum Fj(k⊥). In other words, the scattered field from a random rough surface
in a special directions does exist if the surface spectrum can provide a non-zero amplitude
at that spectral frequency.

Another observation is that every rough interfaces has its own contribution to the scat-
tered field that is true in the light of linearity of the problem. For zero mean processes,
averaging over ensemble of Gaussian random surfaces give zero and therefore the first order
scattered field has zero mean

〈E(1)
s (r)〉=0 (4.5.74)
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So the first order fields are totally random. we will use higher order moments of first order
fields solution in section 4.6. The second order averaged scattered field and transmitted
field can be computed as (in section 4.6 we will see why we are interested in the average
of second order scattered field). For the first order transmitted field, following a similar
procedure as the scattered field we obtain

E
(1)
t (k⊥)=

N−1∑
j=1

Fj(k⊥−k⊥i)
[
T

(1)
e,Fj

(k⊥)ê(−kNz)+T (1)
h,Fj

(k⊥)ĥ(−kNz)
]

(4.5.75)

where, each interface roughness contributes to the first order TE and TM transmitted field
through

T
(1)
e,Fj

(k⊥)=



ikN
kNz

[
kN−1
kN

Ã
(1)
N−1,q,F1

(k⊥)+
(
kρ
kN

(k⊥−k⊥i)+kNzĥ(−kNz)
)
·b(0)
N−1

]
j=1

ikN−1
kNz

Ã
(1)
N−1,q,Fj (k⊥) j 6=1

(4.5.76)

T
(1)
h,Fj

(k⊥)=



ikN
kNz

[
kN−1
kN

( kρ
kN

(k⊥−k⊥i)+kNzĥ(−kNz)
)
·a(0)
N−1−B̃

(1)
N−1,q,F1

]
j=1

− ikN
kNz

B̃
(1)
N−1,q,Fj j 6=1

(4.5.77)

The transmitted field representation in spatial domain can be obtained from (4.5.75) by a
superposition integral as

E
(1)
t (r)=

∫
dk⊥E

(1)
t (k)eik⊥·r⊥−ikNzz

=
N−1∑
j=1

∫
dk⊥eik⊥·r⊥−ikNzzFj(k⊥−k⊥i)

[
T

(1)
e,Fj

(k⊥)ê(−kNz)+T (1)
h,Fj

(k⊥)ĥ(−kNz)
]

4.5.6 Second Order Solution

The second order solution is proportional to the interfaces spectra in a quadratic fashion
and includes multiple scattering processes up to the second order within the solution. The
transverse component of the surface fields are second order in the surface roughness pa-
rameter. Since the z-component of the fields are an order lower that the traverse fields, it
would be from the first order within the second order solution and it can be expressed in
terms of the first order solution as

Q
(2)
j,z (k⊥)=

∫
dk′⊥iFj(k⊥−k

′
⊥)(k⊥−k

′
⊥)·Q(1)

j,⊥(k′⊥) (4.5.78)

and using the first order tilde fields solution Q̃
(1)
j,⊥, it can be written as

Q
(2)
j,z (k⊥)=−

∫
dk′⊥Fj(k⊥−k

′
⊥)Fj(k

′
⊥−k⊥i)(k⊥−k

′
⊥)·Q̃

(1)
j,⊥(k′⊥) (4.5.79)

94



where Q can be an electric or magnetic surface field. For the second order solution the
first and second order approximations of the scattering potentials are required. Within the
second order approximation,

I
±(2)
11 (k⊥;k′⊥)=−1

2k
2
1zF

(2)
1 (k⊥−k

′
⊥) (4.5.80)

I
±(2)
m,m−1(k⊥;k′⊥)=−1

2k
2
mzF

(2)
m−1(k⊥−k

′
⊥)

I±(2)
mm (k⊥;k′⊥)=−1

2k
2
mzF

(2)
m (k⊥−k

′
⊥)

I
±(2)
N,N−1(k⊥;k′⊥)=−1

2k
2
NzF

(2)
N−1(k⊥−k

′
⊥)

where F (2)=F ?F and ? denotes 2D convolution. Balancing the extinction relations (4.3.11),
(4.3.26), (4.3.31), (4.3.32), (4.3.38), and (4.3.39) up to the second order on both sides,
inserting the zeroth and first order solutions of the surface field and scattering potentials,
and lengthy simplifications, we arrive at the following relation between the TE part of the
surface fields,

A
(2)
1q (k⊥)+ k1z

k1
B

(2)
1p (k⊥)− 1

2k
2
1z

[
ê(−k1z)·a(0)

1 +ĥ(−k1z)·b
(0)
1

]
F

(2)
1 (k⊥−ki⊥) (4.5.81)

+
∫

dk′⊥ (−)k1z ê(−k1z)·Ã
(1)
1 (k′⊥)F1(k⊥−k

′
⊥)F1(k′⊥−ki⊥)

− kρ
k1

∫
dk′⊥F1(k⊥−k

′
⊥)F1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
1,⊥(k′⊥)

+
∫

dk′⊥(−)k1zĥ(−k1z)·B̃
(1)
1 (k′⊥)F1(k⊥−k

′
⊥)F1(k′⊥−ki⊥)=0

+ km−1
km

{
A

(2)
m−1,q(k⊥)− 1

2k
2
mzF

(2)
m−1(k⊥−ki⊥)ê(kmz)·a(0)

m−1 (4.5.82)

+
∫

dk′⊥kmz ê(kmz)·Ã
(1)
m−1(k′⊥)Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−ki⊥)

}
− kmz
km

B
(2)
m−1,p(k⊥)− kρ

km

∫
dk′⊥Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
m−1,⊥(k′⊥)

− 1
2k

2
mzF

(2)
m−1(k⊥−ki⊥)ĥ(kmz)·b

(0)
m−1

+
∫

dk′⊥kmzĥ(kmz)·B̃
(1)
m−1(k′⊥)Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−ki⊥)

−eiφm
{
A(2)
m,q(k⊥)− 1

2k
2
mzF

(2)
m (k⊥−ki⊥)ê(kmz)·a(0)

m

+
∫

dk′⊥kmz ê(kmz)·Ã
(1)
m (k′⊥)Fm(k⊥−k

′
⊥)Fm(k′⊥−ki⊥)

}
−eiφm

{
− kmz
km

B(2)
m,p(k⊥)− kρ

km

∫
dk′⊥Fm(k⊥−k

′
⊥)Fm(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
m,⊥(k′⊥)

− 1
2k

2
mzF

(2)
m (k⊥−ki⊥)ĥ(kmz)·b

(0)
m

+
∫

dk′⊥kmzĥ(kmz)·B̃
(1)
m (k′⊥)Fm(k⊥−k

′
⊥)Fm(k′⊥−ki⊥)

}
=0

95



+ km−1
km

{
A

(2)
m−1,q(k⊥)− 1

2k
2
mzF

(2)
m−1(k⊥−ki⊥)ê(−kmz)·a(0)

m−1 (4.5.83)

+
∫

dk′⊥(−)kmz ê(−kmz)·Ã
(1)
m−1(k′⊥)Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−ki⊥)

}
+ kmz
km

B
(2)
m−1,p(k⊥)− kρ

km

∫
dk′⊥Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
m−1,⊥(k′⊥)

− 1
2k

2
mzF

(2)
m−1(k⊥−ki⊥)ĥ(−kmz)·b

(0)
m−1

+
∫

dk′⊥(−)kmzĥ(−kmz)·B̃
(1)
m−1(k′⊥)Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−ki⊥)

−e−iφm
{
A(2)
m,q(k⊥)− 1

2k
2
mzF

(2)
m (k⊥−ki⊥)ê(−kmz)·a(0)

m

+
∫

dk′⊥(−)kmz ê(−kmz)·Ã
(1)
m (k′⊥)Fm(k⊥−k

′
⊥)Fm(k′⊥−ki⊥)

}
−e−iφm

{
kmz
km

B(2)
m,p(k⊥)− kρ

km

∫
dk′⊥Fm(k⊥−k

′
⊥)Fm(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
m,⊥(k′⊥)

− 1
2k

2
mzF

(2)
m (k⊥−ki⊥)ĥ(−kmz)·b

(0)
m

+
∫

dk′⊥(−)kmzĥ(−kmz)·B̃
(1)
m (k′⊥)Fm(k⊥−k

′
⊥)Fm(k′⊥−ki⊥)

}
=0

kN−1
kN

{
A

(2)
N−1,q(k⊥)− 1

2k
2
NzF

(2)
N−1(k⊥−ki⊥)ê(kNz)·a(0)

N−1 (4.5.84)

+
∫

dk′⊥kNz ê(kNz)·Ã
(1)
N−1(k′⊥)FN−1(k⊥−k

′
⊥)FN−1(k′⊥−k⊥i)

}
− kNz
kN

B
(2)
N−1,p(k⊥)− kρ

kN

∫
dk′⊥FN−1(k⊥−k

′
⊥)FN−1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
N−1,⊥(k′⊥)

− 1
2k

2
NzF

(2)
N−1(k⊥−ki⊥)ĥ(kNz)·b

(0)
N−1

+
∫

dk′⊥kNzĥ(kNz)·B̃
(1)
N−1(k′⊥)FN−1(k⊥−k

′
⊥)FN−1(k′⊥−k⊥i)=0

From the extinction relations (4.5.82) and (4.5.83), a propagation matrix relation between
the adjacent layers surface fields can be obtained as[

eiφm 0
0 e−iφm

][
1 −kmz

km
1 kmz

km

][
A

(2)
m,q

B
(2)
m,p

]
=
[
km−1
km

−kmz
km

km−1
km

kmz
km

][
A

(2)
m−1,q

B
(2)
m−1,p

]
+
[
u2e+
m

u2e−
m

]
−
[
c2e+
m

c2e−
m

]
(4.5.85)
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where the coefficients c2e±
m and u2e±

m are purely proportional to the surface roughness of
interfaces and are defined by

u2e±
m = km−1

km

{
− 1

2k
2
mzF

(2)
m−1(k⊥−ki⊥)ê(±kmz)·a(0)

m−1 (4.5.86)

±
∫

dk′⊥kmz ê(±kmz)·Ã
(1)
m−1(k′⊥)Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−ki⊥)

}
− kρ
km

∫
dk′⊥Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
m−1,⊥(k′⊥)

− 1
2k

2
mzF

(2)
m−1(k⊥−ki⊥)ĥ(±kmz)·b

(0)
m−1

±
∫

dk′⊥kmzĥ(kmz)·B̃
(1)
m−1(k′⊥)Fm−1(k⊥−k

′
⊥)Fm−1(k′⊥−ki⊥)

and

c2e±
m =+eiφm

{
− 1

2k
2
mzF

(2)
m (k⊥−ki⊥)ê(kmz)·a(0)

m (4.5.87)

±
∫

dk′⊥kmz ê(±kmz)·Ã
(1)
m (k′⊥)Fm(k⊥−k

′
⊥)Fm(k′⊥−ki⊥)

− kρ
km

∫
dk′⊥Fm(k⊥−k

′
⊥)Fm(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
m,⊥(k′⊥)

− 1
2k

2
mzF

(2)
m (k⊥−ki⊥)ĥ(kmz)·b

(0)
m

±
∫

dk′⊥kmzĥ(±kmz)·B̃
(1)
m (k′⊥)Fm(k⊥−k

′
⊥)Fm(k′⊥−ki⊥)

}

By defining the propagation matrix of the flat surface media P
[2e]
m,m−1 and vector functions

U
[2e]
m and C [2e]

m which are responsible for the roughness of the m-th interface as

P
[2e]
m,m−1=+

[
1 −kmz

km
1 kmz

km

]−1[
e−iφm 0

0 eiφm

][
km−1
km

−kmz
km

km−1
km

kmz
km

]
(4.5.88)

U
[2e]
m =+

[
1 −kmz

km
1 kmz

km

]−1[
e−iφm 0

0 eiφm

][
u2e+
m

u2e−
m

]

C
[2e]
m =−

[
1 −kmz

km
1 kmz

km

]−1[
e−iφm 0

0 eiφm

][
c2e+
m

c2e−
m

]

(4.5.85) can be written as,[
A

(2)
m,q

B
(2)
m,p

]
=P

[2e]
m,m−1

[
A

(2)
m−1,q

B
(2)
m−1,p

]
+U [2e]

m +C [2e]
m (4.5.89)

For the second order solution of the surface fields, different quadratic forms of the sur-
face spectra will appear in the solution which make the solution looks more complicated.
However, as it will be discussed later[], we are only interested in the average of the second
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order field (not itself in general). Therefore, taking statistical average of the unknowns be-
fore solving the linear system results in a great simplifications. If we assume uncorrelated
surfaces, the surface roughness spectral functions simplify to

u2e±
m =−1

2k
2
mzF

(2)
m−1(k⊥−ki⊥)

[
km−1
km

ê(±kmz)·a(0)
m−1+ĥ(±kmz)·b

(0)
m−1

]
(4.5.90)

+
∫

dk′⊥Fm−1(k⊥−k
′
⊥)Fm−1(k′⊥−ki⊥)

[
± km−1

km
kmz ê(±kmz)·Ã

(1)
m−1,Fm−1(k′⊥)

− kρ
km

(k⊥−k
′
⊥)·B̃

(1)
m−1,⊥,Fm−1(k′⊥)±kmzĥ(±kmz)·B̃

(1)
m−1,Fm−1(k′⊥)

]

c2e±
m =eiφm

{
− 1

2k
2
mzF

(2)
m (k⊥−ki⊥)

[
ê(±kmz)·a(0)

m +ĥ(±kmz)·b
(0)
m

]
+
∫

dk′⊥Fm(k⊥−k
′
⊥)Fm(k′⊥−ki⊥)

[
±kmz ê(±kmz)·Ã

(1)
m,Fm(k′⊥)

− kρ
km

(k⊥−k
′
⊥)·B̃

(1)
m,⊥,Fm(k′⊥)±kmzĥ(±kmz)·B̃

(1)
m,Fm(k′⊥)

]}
Now note that surface fields amplitudes Ãm,Fj are deterministic functions, statistical

average pass through and noting that for stationary process of the interfaces, second order
moments of the surface are given by

〈F (2)
j (k⊥−k⊥i)〉=δ(k⊥−k⊥i)

∫
dk′⊥Wj(k

′
⊥−k⊥i) (4.5.91)

〈Fj(k⊥−k
′
⊥)Fj(k

′
⊥−k⊥i)〉=δ(k⊥−k⊥i)Wj(k

′
⊥−k⊥i)

and therefore, the averaged roughness terms can be simplified to

〈u2e±
m 〉=δ(k⊥−k⊥i)

∫
dk′⊥Wm−1(k′⊥−k⊥i)

{
− 1

2k
2
mz

[
km−1
km

ê(±kmz)·a(0)
m−1 (4.5.92)

+ĥ(±kmz)·b
(0)
m−1

]
+
[
± km−1

km
kmz ê(±kmz)·Ã

(1)
m−1,Fm−1(k′⊥)

− kρ
km

(k⊥−k
′
⊥)·B̃

(1)
m−1,⊥,Fm−1(k′⊥)±kmzĥ(±kmz)·B̃

(1)
m−1,Fm−1(k′⊥)

]}

〈c2e±
m 〉=δ(k⊥−k⊥i)

∫
dk′⊥Wm(k′⊥−k⊥i)eiφm

{
− 1

2k
2
mz

[
ê(±kmz)·a(0)

m

+ĥ(±kmz)·b
(0)
m

]
+
[
±kmz ê(±kmz)·Ã

(1)
m,Fm(k′⊥)

− kρ
km

(k⊥−k
′
⊥)·B̃

(1)
m,⊥,Fm(k′⊥)±kmzĥ(±kmz)·B̃

(1)
m,Fm(k′⊥)

]}
Therefore, propagation relation of the mean field between adjacent layers is given by[

〈A(2)
m,q〉

〈B(2)
m,p〉

]
=P

[2e]
m,m−1

[
〈A(2)

m−1,q〉
〈B(2)

m−1,p〉

]
+〈U [2e]

m 〉+〈C
[2e]
m 〉 (4.5.93)
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Using this relation between the adjacent surface fields, surface fields on the last layers can
be related to those of the first interface through a recursive relation that can be obtained
for an arbitrary N by induction,[

〈A(2)
N−1,q〉

〈B(2)
N−1,p〉

]
=P

[2e]
[
〈A(2)

1,q〉
〈B(2)

1,p〉

]
(4.5.94)

+
N−1∏
j=3

P
[2e]
j,j−1

(
〈U [2e]

2 〉+〈C
[2e]
2 〉

)

+
N−1∏
j=4

P
[2e]
j,j−1

(
〈U [2e]

3 〉+〈C
[2e]
3 〉

)
...

+
N−1∏
j=N−1

P
[2e]
j,j−1

(
〈U [2e]

N−2〉+〈C
[2e]
N−2〉

)
+〈U [2e]

N−1〉+〈C
[2e]
N−1〉

where P
[2e]

=
∏N−1
j=2 P

[2e]
j,j−1. Upon redefining the averaged vectors functions 〈C [2e]

m 〉 and
〈U [2e]

m 〉 through

〈U [2e]
m 〉=δ(k⊥−k⊥i)

∫
dk′⊥Wm−1(k′⊥−k⊥i)Ũ

[2e]
m (k′⊥) (4.5.95)

〈C [2e]
m 〉=δ(k⊥−k⊥i)

∫
dk′⊥Wm(k′⊥−k⊥i)C̃

[2e]
m (k′⊥)

the relation between mean surface fields of the first and last interface can be written as[
〈A(2)

N−1,q〉
〈B(2)

N−1,p〉

]
−P

[2e]
[
〈A(2)

1,q〉
〈B(2)

1,p〉

]
=δ(k⊥−k⊥i)

∫
dk′⊥R

[2e](k′⊥)

where R[2e](k′⊥) is defined by

R
[2e](k′⊥)=+

N−1∏
j=3

P
[2e]
j,j−1

(
Ũ

[2e]
2 (k′⊥)W1(k′⊥−k⊥i)+C̃

[2e]
2 (k′⊥)W2(k′⊥−k⊥i)

)
(4.5.96)

+
N−1∏
j=4

P
[2e]
j,j−1

(
Ũ

[2e]
3 (k′⊥)W2(k′⊥−k⊥i)+C̃

[2e]
3 (k′⊥)W3(k′⊥−k⊥i)

)
...

+
N−1∏
j=N−1

P
[2e]
j,j−1

(
Ũ

[2e]
N−2(k′⊥)WN−3(k′⊥−k⊥i)+C̃

[2e]
N−2(k′⊥)WN−2(k′⊥−k⊥i)

)

+Ũ
[2e]
N−1(k′⊥)WN−2(k′⊥−k⊥i)+C̃

[2e]
N−1(k′⊥)WN−1(k′⊥−k⊥i)
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On the other hand, two mean fields are also related together through the extinction relation
of the first and last half spaces that upon taking statistical average yields,

〈A(2)
1q 〉+

k1z
k1
〈B(2)

1p 〉+δ(k⊥−k⊥i)
∫

dk′⊥W1(k′⊥−k⊥i)C̃
[2e]
12 (k′⊥)=0

(4.5.97)
kN−1
kN
〈A(2)

N−1,q〉−
kNz
kN
〈B(2)

N−1,p〉+δ(k⊥−k⊥i)
∫

dk′⊥WN−1(k′⊥−k⊥i)C̃
[2e]
N,N−1(k′⊥)=0

where the scalar spectral functions C̃ [2e]
12 and C̃ [2e]

N,N−1 are defined through,

C̃
[2e]
12 (k′⊥)=− 1

2k
2
1z

[
ê(−k1z)·a(0)

1 +ĥ(−k1z)·b
(0)
1

]
(4.5.98)

−k1z ê(−k1z)·Ã
(1)
1,F1(k′⊥)−

(
kρ
k1

(k⊥−k
′
⊥)+k1zĥ(−k1z)

)
·B̃

(1)
1,F1(k′⊥)

C̃
[2e]
N,N−1(k′⊥)=

{
− 1

2k
2
Nz

(
kN−1
kN

ê(kNz)·a(0)
N−1+ĥ(kNz)·b

(0)
N−1

)
+ kN−1

kN
kNz ê(kNz)·Ã

(1)
N−1,FN−1(k′⊥)

−
(
kρ
kN

(k⊥−k
′
⊥)−kNzĥ(kNz)

)
·B̃

(1)
N−1,FN−1(k′⊥)

}
Therefore complete system of equations for the mean second order surface fields can be
obtained as

1 k1z
k1

0 0
0 0 kN−1

kN
−kNz

kN

−P [2e]
11 −P [2e]

12 1 0
−P [2e]

21 −P [2e]
22 0 1



〈A(2)

1q 〉
〈B(2)

1p 〉
〈A(2)

N−1,q〉
〈B(2)

N−1,p〉

=δ(k⊥−k⊥i)
∫

dk′⊥

 −C̃ [2e]
12 W1

−C̃ [2e]
N,N−1WN−1
R̃2e


(4.5.99)

Since the right hand side of (4.5.99) has a delta function times a spectral integration of
some functions, the individual solutions has the same for as the right hand side. Therefore,
second order mean field exists in the specular spectral point. Calculation of TM field is
also similar to the TE case. For TM part, the propagation matrix P

[2h]
m,m−1 and roughness

vectors U [2h]
m and C [2h]

m are defined as

P
[2h]
m,m−1=

[
−kmz

km
−1

kmz
km

−1

]−1[
e−iφm 0

0 eiφm

][
−km−1

km
kmz
km

−1
+km−1

km
kmz
km

−1

]
(4.5.100)

U
[2h]
m =

[
−kmz

km
−1

kmz
km

−1

]−1[
e−iφm 0

0 eiφm

][
u2h+
m

u2h−
m

]

C
[2h]
m =−

[
−kmz

km
−1

kmz
km

−1

]−1[
e−iφm 0

0 eiφm

][
c2h+
m

c2h−
m

]
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By taking the statistical average of the surface fields, the average of the spectral functions
〈u2h±
m 〉 and 〈c2h±

m 〉 can be obtained as

〈u2h+
m 〉=δ(k⊥−k⊥i)

∫
dk′⊥Wm−1(k′⊥−k⊥i)

{
− 1

2k
2
mz

[
km−1
km

ĥ(±kmz)·a(0)
m−1 (4.5.101)

−ê(±kmz)·b
(0)
m−1

]
+
[
− km−1

km

kρ
km

(k⊥−k
′
⊥)·Ã

(1)
m−1,Fm−1(k′⊥)

± km−1
km

kmzĥ(±kmz)·Ã
(1)
m−1,Fm−1(k′⊥)∓kmz ê(±kmz)·B̃

(1)
m−1,Fm−1(k′⊥)

]}

〈c2h±
m 〉=δ(k⊥−k⊥i)

∫
dk′⊥Wm(k′⊥−k⊥i)eiφm

{
− 1

2k
2
mz

[
ĥ(±kmz)·a(0)

m

−ê(±kmz)·b
(0)
m

]
+
[
− kρ
km

(k⊥−k
′
⊥)·Ã

(1)
m,Fm(k′⊥)

±kmzĥ(±kmz)·Ã
(1)
m,Fm(k′⊥)∓kmz ê(±kmz)·B̃

(1)
m,Fm(k′⊥)

]}

The linear system of equations or the second order mean fields can be obtained as
−k1z

k1
1 0 0

0 0 −kN−1
kN

kNz
kN

−1
−P [2h]

11 −P [2h]
12 1 0

−P [2h]
21 −P [2h]

22 0 1



〈A(2)

1p 〉
〈B(2)

1q 〉
〈A(2)

N−1,p〉
〈B(2)

N−1,q〉

=δ(k⊥−k⊥i)
∫

dk′⊥

 −W1C̃
[2h]
12

−WN−1C̃
[2h]
N,N−1

R̃2h


(4.5.102)

where,

〈C̃ [2h]
12 〉=−

1
2k

2
1z

[
ê(−k1z)·b

(0)
1 −ĥ(−k1z)·a(0)

1

]
(4.5.103)

+
(
kρ
k1

(k⊥−k
′
⊥)+k1zĥ(−k1z)

)
·Ã

(1)
1 (k′⊥)−k1z ê(−k1z)·B̃

(1)
1 (k′⊥)

〈C̃ [2h]
N,N−1〉=−

1
2k

2
Nz

[
kN−1
kN

ĥ(kNz)·a(0)
N−1−ê(kNz)·b

(0)
N−1

]
− kN−1

kN

(
kρ
kN

(k⊥−k
′
⊥)−kNzĥ(kNz)

)
·Ã

(1)
N−1(k′⊥)−kNz ê(kNz)·B̃

(1)
N−1(k′⊥)

]

4.5.7 Second Order Scattered and Transmitted Fields

Once the second order surface fields are known by solving the linear system or the mean
fields we are in position to evaluate mean scattered field into region 1 by applying the
equivalence principle to region 1 up to the second order of surface height. Balancing the
TE scattered field expression and inserting the zeroth and first order solution of the surface
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fields and approximations of the scattering potential of the scattered field we arrive at

−2k1z
k1
ê(k1z)·Ẽ

(2)
s (k)=A(2)

1q (k⊥)− k1z
k1
B

(2)
1p (k⊥)− 1

2k
2
1zF

(2)
1 (k⊥−k⊥i)ê(k1z)·a(0)

1 (4.5.104)

+
∫

dk′⊥ k1zF1(k⊥−k
′
⊥)F1(k′⊥−k⊥i)ê(k1z)·Ã

(1)
1 (k′⊥)

− kρ
k1

∫
dk′⊥F1(k⊥−k

′
⊥)F1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
1 (k′⊥)

− 1
2k

2
1zF

(2)
1 (k⊥−k⊥i)ĥ(k1z)·b

(0)
1

+
∫

dk′⊥ k1zF1(k⊥−k
′
⊥)F1(k′⊥−k⊥i)ĥ(k1z)·B̃

(1)
1 (k′⊥)

The expression of the TE scattered field can be greatly simplified using the TE part of the
second order extinction relation and utilizing symmetry properties of the polarization unit
vectors. From the second order TE extinction relation of the surface fields in region 1 of
(4.5.81) we have

A(2)
q (k⊥)− 1

2k
2
zF

(2)(k⊥−k⊥i)ê(−kz)·a(0)

+
∫

dk′⊥ (−)kzF (k⊥−k
′
⊥)F (k′⊥−k⊥i)ê(−kz)·Ã

(1)
(k′⊥)

+ kz
k
B(2)
p (k⊥)− kρ

k

∫
dk′⊥F (k⊥−k

′
⊥)F (k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
⊥ (k′⊥)

− 1
2k

2
zF

(2)(k⊥−k⊥i)ĥ(−kz)·b
(0)

+
∫

dk′⊥(−)kzF (k⊥−k
′
⊥)F (k′⊥−k⊥i)ĥ(−kz)·B̃

(1)
(k′⊥)=0

This is the extinction of downward propagating wave in region 1. Changing the sign of the
arguments of the polarization unit vectors according to the scattered field (transverse and
z-components behave differently) we obtain,

−k1z
k1
B

(2)
1p (k⊥)=A(2)

1q (k⊥)− 1
2k

2
1zF

(2)
1 (k⊥−k⊥i)

(
ê(k1z)·a(0)

1 −ĥ(k1z)·b
(0)
1

)
(4.5.105)

+
∫

dk′⊥ (−)k1zF1(k⊥−k
′
⊥)F1(k′⊥−k⊥i)ê(k1z)·Ã

(1)
1 (k′⊥)

− kρ
k1

∫
dk′⊥F1(k⊥−k

′
⊥)F1(k′⊥−k⊥i)(k⊥−k

′
⊥)·B̃

(1)
1⊥(k′⊥)

+
∫

dk′⊥k1zF1(k⊥−k
′
⊥)F1(k′⊥−k⊥i)ĥ(k1z)·B̃

(1)
1⊥(k′⊥)

−
∫

dk′⊥k1zF1(k⊥−k
′
⊥)F1(k′⊥−k⊥i)ĥ(k1z)·ẑB̃(1)

1z (k′⊥)

Upon substituting (4.5.105) into the scattered field expression, lots of cancellations occurs
and it yields,

−k1z
k1
ê(k1z)·Ẽ

(2)
s (k)=A(2)

1q (k⊥)− 1
2k

2
1zF

(2)
1 (k⊥−k⊥i)ê(k1z)·a(0)

1

+
∫

dk′⊥F1(k⊥−k
′
⊥)F1(k′⊥−k⊥i)

[
k1zĥ(k1z)−

kρ
k1

(k⊥−k
′
⊥)
]
·B̃

(1)
1⊥(k′⊥)

102



From the first order solution of the surface fields, every component of the surface fields
constitutes from the contributions of rough interfaces spectra. However, assuming uncor-
related interfaces, only correlated component of the surface field we gives a non-zero mean
scattered field. Therefore, TE polarized mean scattered field can be written as

ê(k1z)·〈Ẽ
(2)
s (k)〉=δ(k⊥−k⊥i)

∫
dk′⊥

N−1∑
j=1

S
(2)
e,Wj

(k′⊥,ki⊥)Wj(k
′
⊥−k⊥i) (4.5.106)

where for j=1,

S
(2)
e,W1

(k′⊥,ki⊥)=− k1
k1z

[
− 1

2k
2
1z ê(k1z)·a(0)

1 +
(
k1zĥ(k1z)−

kρ
k1

(k⊥−k
′
⊥)
)
·B̃

(1)
1⊥,F1(k′⊥)

+Ã(2)
1q,W1

(k⊥)
]

(4.5.107)

and for j 6=1,

S
(2)
e,Wj

(k′⊥,ki⊥)=− k1
k1z

Ã
(2)
1q,Wj

(k⊥) , j=2,3,...,N−1 (4.5.108)

Notice that all of the surface fields orders (0,1,2) contribute to the second order scattered
field. Following a similar procedure for the TM scattered mean field, we obtain

ĥ(k1z)·〈Ẽ
(2)
s (k)〉=δ(k⊥−k⊥i)

∫
dk′⊥

N−1∑
j=1

S
(2)
h,Wj

(k′⊥,ki⊥)Wj(k
′
⊥−k⊥i) (4.5.109)

where different interfaces contribution in the second order mean TM scattered field ampli-
tudes are given by

S
(2)
h,W1

(k′⊥,ki⊥)= k1
k1z

[(
kρ
k1

(k⊥−k
′
⊥)−k1zĥ(k1z)

)
·Ã

(1)
1⊥,F1(k′⊥) (4.5.110)

− 1
2k

2
1z ê(k1z)·b

(0)
1 +B̃(2)

1q,W1
(k⊥)

]

and,

S
(2)
h,Wj

(k′⊥,ki⊥)= k1
k1z

B̃
(2)
1q,Wj

(k⊥) , j=2,3,...,N−1

In general, the second order scattered field representation in the spectral domain can be
written as

〈Ẽ
(2)
s (k)〉=δ(k⊥−k⊥i)

N−1∑
j=1

∫
dk′⊥

[
S

(2)
e,Wj

(k′⊥,ki⊥)ê(kiz)+S(2)
h,Wj

(k′⊥,ki⊥)ĥ(kiz)
]
Wj

(4.5.111)

or in the spatial domain,

〈E(2)
s (r)〉=eiki⊥·r⊥+ikizz

N−1∑
j=1

∫
dk′⊥

[
S

(2)
e,Wj

(k′⊥,ki⊥)ê(kiz)+S(2)
h,Wj

(k′⊥,ki⊥)ĥ(kiz)
]
Wj

(4.5.112)

103



Notice that the mean scattered field is propagating in the specular direction corresponds
to the incident direction. The second order mean field solution does not have depolarized
component in the scattered field. The integration over k′⊥ here should not misinterpreted
as different directions in space that corresponds to an incoherent wave. The integration
here s over the intermediate scattering directions that result in the mean field in direction
k⊥=ki⊥. Similarly, mean second order transmitted field into region N can be obtained as

〈E(2)
t (k)〉=δ(ki⊥−k⊥i)

N−1∑
j=1

∫
dk′⊥Wj(k

′
⊥−k⊥i)

[
T

(2)
e,Wj

(k′⊥,ki⊥)ê(−kNiz) (4.5.113)

+T (2)
h,Wj

(k′⊥,ki⊥)ĥ(−kNiz)
]

where contribution of the last interface (j=N−1) to the TM and TE transmitted mean
field are given by

T
(2)
h,WN−1

(k′⊥,ki⊥)= kN
kNiz

{
−B̃(2)

N−1,q,WN−1
(k′⊥,ki⊥)+ 1

2k
2
Niz ê(−kNiz)·b

(0)
N−1 (4.5.114)

− kN−1
kN

(
kiρ
kN

(ki⊥−k
′
⊥)+kNizĥ(−kNiz)

)
·Ã

(1)
N−1,⊥,FN−1(k′⊥)

}
T

(2)
e,WN−1

(k′⊥,ki⊥)= kN
kNiz

{
kN−1
kN

Ã
(2)
N−1,q,WN−1

(k′⊥)− 1
2
kN−1
kN

k2
Niz ê(−kNiz)·a

(0)
N−1

−
(
kiρ
kN

(ki⊥−k
′
⊥)+kNizĥ(−kNiz)

)
·B̃

(1)
N−1,⊥,FN−1(k′⊥)

}
and for other interfaces (j 6=N−1),

T
(2)
h,WN−1

(k′⊥,ki⊥)=− kN
kNiz

B̃
(2)
N−1,q,Wj

(k′⊥) (4.5.115)

T
(2)
e,Wj

(k′⊥,ki⊥)= kN−1
kNiz

Ã
(2)
N−1,q,Wj

(k′⊥)

The transmitted mean field can be converted to the spatial domain by inverse Fourier
transform of

〈E(2)
t (r)〉=

∫
dk⊥〈Ẽ

(2)
t (k)〉eik⊥·r⊥−ikNzz (4.5.116)

=eiki⊥·r⊥−ikNizz
N−1∑
j=1

∫
dk′⊥Wj(k

′
⊥−k⊥i)

[
T

(2)
e,Wj

(k′⊥,ki⊥)ê(−kNiz)

+T (2)
h,Wj

(k′⊥,ki⊥)ĥ(−kNiz)
]

4.6 Scattered and Transmitted Power
The power density associated with the electromagnetic wave is carried by electric and
magnetic fields that quantifies by the Poynting vector S

S= 1
2Re

(
E×H∗

)
(4.6.1)
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where the real (time averaged) power is considered here. The power can be associated to
the different orders of the electric field and magnetic field. Since electromagnetic fields
are random quantities for the problem of interest, statistical average of power density is a
proper quantity. Also, the power flow normal to the direction of the mean surface profile
will be computed. Within SPM2 solution,

〈S〉= 1
2Re

〈(
E

(0)+E(1)+E(2)
)
×
(
H

(0)+H(1)+H(2)
)∗〉

(4.6.2)

= 1
2Re

{
E

(0)×H(0)∗+E(0)×〈H(1)∗〉+E(0)×〈H(2)∗〉

+〈E(1)〉×H(0)∗+〈E(1)×H(1)∗〉+〈E(2)〉×H(0)∗
}

The first term in (4.6.2) is Re〈E(0)
s ×H

(0)∗
s 〉 which reduces to Re

[
E

(0)
s ×H

(0)∗
s

]
since the

zeroth order solution is deterministic. It is exactly the reflected power from a layered
medium with flat interfaces. Note that this term is the zeroth order term in the scattered
power. The interaction of the zeroth order electric field with the first order magnetic
field does not contribute to the average power transfer since the first order fields are zero
mean processes, 〈E(1)

s ×H
(0)∗
s 〉=〈E(0)

s ×H
(1)∗
s 〉=0. Thus there is no first order term in the

scattered power; the first correction to the scattered power is at second order. Another
term is 〈E(1)

s ×H
(1)∗
s 〉, a product of two first order fields so it is a second order term in

scattered power, and is non-zero. As mentioned earlier, first order scattered fields are
incoherent; this term represents the second order incoherent power. This incoherent power
is not concentrated in the specular direction, but rather exists in multiple scattered field
directions. Another second order term in (4.6.2) is Re〈E(2)

s ×H
(0)∗
s 〉=Re

[
〈E(2)

s 〉×H
(0)∗
s

]
,

which coincides with the term Re〈E(2)
s ×H

(0)∗
s 〉 in (4.6.2) . Since the averaged second order

scattered field exists only in the specular direction (the same as zeroth order reflected field)
this term called the coherent reflected power correction. The coherent scattered power (up
to 2nd order) has two components, one is the zeroth order power and the coherent reflected
power correction that comes from the average second order field. In (4.6.2), last term
Re〈E(2)

s ×H
(2)∗
s 〉 is of order of 4 that contributes to the higher order corrections. In the

following discussion we will consider only second order corrections to the scattered and
transmitted power. Therefore, to second order we have

〈S〉= 1
2Re

{
E

(0)×H(0)∗+2〈E(2)〉×H(0)∗+〈E(1)×H(1)∗〉
}

(4.6.3)

The second order mean scattered field is in the specular direction similar to the zeroth order
fields. The first two terms in the power expansion of (4.6.3) are coherent power terms while
the third term as we will see is proportional to the variance of the electric field and it is an
incoherent power that on average has a distribution over all possible directions.

4.6.1 Coherent Scattered and Transmitted Powers

The coherent scattered power density that flows in +ẑ direction has two components. One
is the zeroth order power term that corresponds to the flat surface case, and another
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component is the power carried by the zeroth order electric and second order magnetic field
(and vice versa)

〈S(2)
s ·ẑ〉coh= 1

2Re
〈
E

(0)
s (r)×H(2)∗

s (r)+E(2)
s (r)×H(0)∗

s (r)
〉
·ẑ (4.6.4)

or,

〈S(2)
s ·ẑ〉coh=Re

〈
E

(2)
s (r)×H(0)∗

s (r)
〉
·ẑ=Re

(〈
E

(2)
s (r)

〉
×H(0)∗

s (r)·ẑ
)

(4.6.5)

Using the second order expansion of the scattered field, the second order coherent power
density of the TE and TM channels can be obtained as

〈S(2)e
s ·ẑ〉coh= k1iz

k1η1

∫
dk′⊥

N−1∑
j=1

Re
[
S(0)∗
e S

(2)
e,Wj

(k′⊥,ki⊥)
]
Wj(k

′
⊥−k⊥i) (4.6.6)

〈S(2)h
s ·ẑ〉coh= k1iz

k1η1

∫
dk′⊥

N−1∑
j=1

Re
[
S

(0)∗
h S

(2)
h,Wj

(k′⊥,ki⊥)
]
Wj(k

′
⊥−k⊥i)

where the zeroth order solution is taken to be

E
(0)
s (r)=eik⊥·r⊥+ik1izz

[
S(0)
e ê(k1iz)+S(0)

h ĥ(k1iz)
]

(4.6.7)

H
(0)
s (r)= 1

η1
eik⊥·r⊥+ik1izz

[
−S(0)

e ĥ(k1iz)+S(0)
h ê(k1iz)

]
Note that the coherent power density does not include cross polarized component. Similarly,
for the transmitted coherent power density into region N ,

〈S(2)e
t ·(−ẑ)〉coh=

∫
dk′⊥

N−1∑
j=1

Wj(k
′
⊥−k⊥i)Re

[ 1
η∗N

T
(2)
e,Wj

(k′⊥,ki⊥)T (0)∗
e

(kNiz
kN

)∗]
(4.6.8)

〈S(2)h
t ·(−ẑ)〉coh=

∫
dk′⊥

N−1∑
j=1

Wj(k
′
⊥−k⊥i)Re

[ 1
η∗N

T
(2)
h,Wj

(k′⊥,ki⊥)T (0)∗
h

(kNiz
kN

)]
given the zeroth order transmitted electric and magnetic fields of,

E
(0)
t (r)=eiKNi·r

[
T (0)
e ê(−kNiz)+T (0)

h ĥ(−kNiz)
]

(4.6.9)

H
(0)
t (r)= 1

ηN
eiKNi·r

[
−T (0)

e ĥ(−kNiz)+T (0)
h ê(−kNiz)

]
It is possible to define the coherent power spectral coefficients Scoh

s,j and Scoh
t,j for the scattered

and transmitted coherent powers (to be used in the next section) as

〈Scoh
s ·ẑ〉=

N−1∑
j=1

∫
dk⊥Wj(k⊥−k⊥i)Scoh

s,j (k⊥) (4.6.10)

〈Scoh
t ·ẑ〉=

N−1∑
j=1

∫
dk⊥Wj(k⊥−k⊥i)Scoh

t,j (k⊥)

such that sum of spectral integration of the power spectral coefficients times the power
spectral densities of the interfaces results in the corresponding power density.
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4.6.2 Incoherent Scattered and Transmitted Power

Last term in the power expansion of (4.6.3) corresponds to the power carried by the first
order electric and magnetic fields. However, the first order fields are zero mean but average
of its square is not necessarily zero and is the second order moment of the scattered field.
Since the first order scattered electric field is proportional to the surface spectrum, and for
uncorrelated stationary surface profiles

〈Fi(k⊥−k⊥i)Fj(k
′
⊥−k⊥i)〉=δijδ(k⊥−k

′
⊥)W (k⊥−k⊥i) (4.6.11)

while for complex conjugated correlation,

〈Fi(k⊥−k⊥i)F ∗j (k′⊥−k⊥i)〉=δijδ(k⊥+k′⊥)W (k⊥−k⊥i) (4.6.12)

From the first order scattered field expression, the incoherent power can be computed as

〈Sinc
s ·ẑ〉=

1
2kηRe

N−1∑
j=1

∫
dk⊥ei(kz−k

∗
z)zWj(k⊥−k⊥i)

{∣∣∣S(1)
e,Fj

(k⊥)
∣∣∣2k∗1z+

∣∣∣S(1)
h,Fj

(k⊥)
∣∣∣2k1z

}
(4.6.13)

Notice that the polarization unit vector ê(k1z) is always a real vector (even for a lossy
medium) but ĥ(k1z) can be complex in general (even for a lossless medium).

ĥ(k1z)=−k1z
k1
p̂(k⊥)+ kρ

k1
ẑ (4.6.14)

ĥ∗(k1z)=−k
∗
1z
k1
p̂(k⊥)+ kρ

k1
ẑ

so,
ĥ(k1z)×ĥ∗(k1z)=−kρ

k2
1

(k1z−k∗1z)p̂(k⊥)×ẑ (4.6.15)

which does not have z component. Also, ê(k1z)×ĥ∗(k1z)=−k̂∗. Since propagating waves
exist only when |k⊥|≤k1 then for lossless region 1,

k1z=k∗1z , |k⊥|≤k1 (4.6.16)

and therefore,

〈Sinc
s ·ẑ〉=

1
2kη

N−1∑
j=1

∫
|k⊥|≤k1

dk⊥k1zWj(k⊥−k⊥i)
{∣∣∣S(1)

e,Fj
(k⊥)

∣∣∣2+
∣∣∣S(1)
h,Fj

(k⊥)
∣∣∣2} (4.6.17)

Similarly for the incoherent transmitted field we have

〈Sinc
t ·(−ẑ)〉=

1
2

N−1∑
j=1

∫
dk⊥Wj(k⊥−k⊥i)Re

{
k∗2z
η∗2k
∗
2

∣∣∣T (1)
e,F (k⊥)

∣∣∣2+ k2z
k2η∗2

∣∣∣T (1)
h,F (k⊥)

∣∣∣2} (4.6.18)

Note that in (4.6.18), the integrations are carried out over the propagating part of the spec-
trum since Rek1z=0 when |k⊥|>k1. Thus, evanescent waves do not contribute to incoherent
scattered power. On the other hand, for a general structure consisting of lossy materials,
evanescent waves may contribute to the incoherent transmitted power. However, for the
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lossless case, the transmitted power comes from only propagating part of the spectrum in
region N. For the next section, we can define the incoherent power spectral coefficients S inc

s,j

and S inc
t,j for the incident and transmitted incoherent powers as

〈Sinc
s ·ẑ〉=

N−1∑
j=1

∫
dk⊥Wj(k⊥−k⊥i)S inc

s,j (k⊥) (4.6.19)

〈Sinc
t ·ẑ〉=

N−1∑
j=1

∫
dk⊥Wj(k⊥−k⊥i)S inc

t,j (k⊥)

such that sum of spectral integration of the power spectral coefficients times the power
spectral densities of the interfaces results in the power density.

4.7 Strong Statement of Energy Conservation
It is well known that for a single rough surface, the second order perturbation theory obeys
energy conservation [3]. This has typically been shown in the past by specifying the power
spectral density, as for example a Gaussian or power law spectrum, and then performing
numerical integrations over dkx and dky to obtain the total reflectivity and transmissivity.
For lossless media, the sum of the reflectivity and transmissivity is then shown to be unity,
verifying energy conservation. In this section, we show that energy conservation in the
SPM can also be shown through a “strong” condition in which it is not necessary to specify
the spectral densities of any of the rough interfaces. The strong condition shows that
the kernel function multiplying the spectral density of each rough interface obeys energy
conservation for each value of kx and ky. Numerical examples are shown for the case of a
multi-layered medium with 50 rough interfaces to illustrate this condition. Note that the
fact that the SPM2 conserves energy does not necessarily imply that its predictions of the
reflected and transmitted powers are accurate. It has been shown in the literature that for
the single interface case, the SPM2 prediction of emission fortuitously is a small surface
slope, rather than small height, expansion. This greatly expands the domain of applicability
of the method. However for the case of multiple layers, the fortuitous cancellation of height
dependent terms is not obtained, so that the SPM2 prediction of total reflected powers
should be expected to be applicable only in the limit of small interface heights compared to
the electromagnetic wavelength. Energy conservation implies that for a lossless structure,
the total scattered power (incoherent plus coherent part) emerging in the ẑ direction plus
the total transmitted power in region N emerging in the (−ẑ) direction should be equal to
the incident power impinging in the (−ẑ) direction.[

S
(0)
s +〈S(2),coh

s +S(2),inc
s 〉

]
·ẑ

+
[
S

(0)
t +〈S(2),coh

t +S(2),inc
t 〉

]
·(−ẑ)=Si ·(−ẑ) (4.7.1)

where Si is complex Poynting vector associated with the incident field. We know that the
zeroth order solution is the exact solution of the problem when there is no roughness (flat
boundaries), and therefore obeys energy conservation. This means

S
(0)
s ·ẑ+S(0)

t ·(−ẑ)=Si ·(−ẑ) (4.7.2)
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Using (4.7.2) in (4.7.1), the SPM2 solution conserves energy if

〈S(2),coh
s +S(2),inc

s 〉·ẑ+〈S(2),coh
t +S(2),inc

t 〉·(−ẑ)=0 (4.7.3)

Utilizing the power spectral coefficients (the kernel functions) energy is conserved if

N−1∑
j=1

∫
dk⊥Wj(k⊥−ki⊥)

[
S(2),inc
s,j (k⊥)+S(2),coh

s,j (k⊥)

+S(2),inc
t,j (k⊥)+S(2),coh

t,j (k⊥)
]
=0 (4.7.4)

In this equation, there are (a) a summation over all the roughness interfaces with each term
in the summation a product of the spectral intensity of that interface and its corresponding
kernel function, and (b) integrations over kx and ky. The usual process of showing energy
conservation is to specify the spectral intensity of each interface followed by examination
of the results of the double integrations over kx and ky. This process is not necessary
because energy conservation is satisfied for any arbitrary values of the surface power spectral
densities. More precisely, since the Wj ’s are independent functions, the coefficients of Wj

in the summand should be identically zero:∫
dk⊥Wj(k⊥−ki⊥)

[
S(2),inc
s,j (k⊥)+S(2),coh

s,j (k⊥)+S(2),inc
t,j (k⊥)+S(2),coh

t,j (k⊥)
]
=0 , ∀j

(4.7.5)

Since expression (4.7.5) holds for arbitrary functions Wj , we must have

S(2),inc
s,j (k⊥)+S(2),coh

s,j (k⊥)+S(2),inc
t,j (k⊥)+S(2),coh

t,j (k⊥)=0, ∀j&∀k⊥ (4.7.6)

Equation (4.7.6) for all possible values of j and k⊥ is the final “strong” condition of en-
ergy conservation. To illustrate SPM2 energy conservation, consider 50 layer structure
with rough interfaces that is illuminated with a plane wave at normal incident angle. For
permittivity and mean position of the layers we consider one realization of Gaussian cor-
related density fluctuations given in [41] and is depicted in Figure 4.2. Figure 4.3 plots for
ky=0 the power spectral coefficients of W1(k⊥−ki⊥) for the TE (right graph) and TM (left
graph) plane wave excitations. Each graph contains 4 curves to account for the coherent
and incoherent scattered and transmitted power spectral coefficients. These contributions
are shown to sum up to zero for each kx and ky as expected, demonstrating (4.7.6) for
j=1. Figures 4.4 and 4.5 provide similar illustrations for the contributions of W25 and
W50 respectively. Additional results not shown again verified energy conservation for the
contributions of all of the medium interfaces.

4.8 Application 1: Brightness Temperature of Antarctic ice
sheets

For a objects at physical temperature T0, the emissivity eβ is given by

eβ=Tβ
T0

(4.8.1)
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Figure 4.2: One realization of dielectric constants and corresponding mean posi-
tion of the layers. z>0 corresponds to the first region (air).
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Figure 4.3: Power spectral coefficients of W1(k⊥−ki⊥) as a function of kx for
profile ky=0 for 50 layer medium with permittivities and mean interface locations
given by Figure 4.2. Right hand side and left hand side figures correspond to TE

and TM excitation respectively.
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Figure 4.5: Power spectral coefficients of W50(k⊥−ki⊥) as a function of kx for
profile ky=0 for 50 layer medium with permittivities and mean interface locations
given by Figure 4.2. Right hand side and left hand side figures correspond to TE

and TM excitation respectively.

where Tβ is the β−polarized brightness temperature of the object with (β=H,V ). From
reciprocity and for objects in thermal equilibrium, the emissivity of an object coincides with
its absorptivity (the portion of power absorbed by the object). The emissivity of an object
can then be computed from knowledge of the fraction of the incident power absorbed by
the object. Since the sum of scattered and transmitted power is the total incident power,
we can relate the emissivity of an object to its reflectivity as

eβ=tβ=1−rβ (4.8.2)

In the Antarctic ice sheet , there are hundreds of layers of snow/ice with varying densi-
ties due to the accumulation pattern of falling snow. These density variations give rise
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to the varying dielectric constants of the layers. Each interface is characterized by weak
dielectric contrasts on either side of the rough interface. Although the contrast is weak,
the total reflection by hundreds of interfaces causes a significant increase in reflectivity
and a corresponding decrease in emissivity. The problem was analyzed previously with a
multilayer model of flat interfaces [41]. Comparisons of the predictions of the flat surface
model with 1.4 GHz microwave radiometer measurements of the Antarctic ice sheet showed
that a reasonable match between model and measurement could be achieved for near nadir
measurements in both polarizations, and for vertically polarized measurements at a variety
of observation angles. However, the model was found to under-predict the measured data
in horizontal polarization at larger incidence angles. In this section, we illustrate the appli-
cation of the Multilayer SPM2 by including the effects of rough surfaces. A key question is
whether the inclusion of surface roughness can increase the prediction of horizontally po-
larized brightness temperatures at larger incidence angles while leaving vertically polarized
predictions relatively unaffected. A model for the Antarctic ice sheet is complicated and
can contains up to thousands of layers. For this initial examination, we consider only a 20
layer structure to find the effect of roughness on the predicted brightness temperatures. We
assume a Gaussian correlation function with RMS height h=1.5 cm and correlation length
l=25 cm for all rough interfaces (note that this should satisfy the small height assumption
at 1.4 GHz). All layers are assumed to have physical temperature T0=228 K. In reality,
the temperature of the Antarctic ice sheet varies with depth, but again we seek only an ini-
tial evaluation of the effect of surface roughness in this study. Monte Carlo simulations are
used to generate random permittivities for each layer based on damped Gaussian correlated
density fluctuation characterized by auto-covariance ∆2=(0.18g/cm3)2, correlation length
l=10cm, and damping factor α=3m (see [41]). For each random permittivity profile, we
apply the SPM2 to calculate the emissivity. This is then repeated for realizations of the
random permittivity. Note that this problem has 2 random processes involved, the random
permittivity process, and the random roughness process. The Monte Carlo simulation is
performed only over the permittivity process, because the SPM2 formulation has already
analytically evaluated the ensemble average over surface roughness. The computation re-
mains intensive as we need to average over O(1000) permittivity realizations, and for each
realization , we need to compute all spectral coefficients over a finely discretized 2D kx and
ky grid. Note that the ensemble average over the random permittivities can be performed
again inside the integration over kx and ky by averaging the S spectral functions over per-
mittivity realizations. Figure 4.6 plots the simulated ice sheet brightness temperatures for
the multilayer flat surface model and the multilayer rough surface model, both of which are
averaged over 400 permittivity realizations. The results confirm that considering rough-
ness effects can increase H-pol brightness temperatures at large observation angles while
leaving V-pol brightness temperatures relatively unaffected. Further work is in process to
model the rough surface effects on ice sheet emissions more realistically for comparison with
radiometer measurements.

4.9 Application 2: photonic crystal of periodically alternat-
ing permittivities

Consider a photonic crystal of periodically alternating permittivities of larger dielectric
contrast (Figure 4.8) that contains 50 independent Gaussian random rough interfaces. (i.e.
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Figure 4.6: Brightness temperature of Antarctic ice sheets. Comparison of phys-
ical model based on Multilayer structure for both flat and rough interfaces. Con-
sidering roughness increases H-pol brightness temperatures while leaving V-pol

brightness temperatures relatively unaffected.

it is not perfect periodic structure). In Figure 4.8, 20% of each period is filled by εr=8.9 and
the background is air. The band diagram of the corresponding infinite periodic structure
with flat interfaces is shown in Figure 4.7; these results were calculated using a plane wave
expansion approach [65, 76, 77]. In reality, all physical surfaces have roughness, which
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Figure 4.7: The band diagram of infinite photonic crystal of Figure 4.8 with flat
interfaces.

could also be viewed as impurities in the crystal. In what follows, two particular case of
the excitations one at the stop band and another at the pass band of the ideal structure
with flat boundaries is simulated. Figure 4.9 shows the power spectral coefficients ofW1 for
a normally incident plane wave excitation at normalized frequency of 1 ( which lies in the
band gap of BG3 in Figure 4.7 shown by the dotted line), where the period of the structure is
a=1 (Left and right plot correspond to TE and TM excitations respectively). The coherent
transmitted spectral coefficient of W1 is zero while the incoherent transmitted spectral
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coefficient is non zero, indicating an imperfection in the periodic structure. The presence
of rough surfaces at the boundaries cause leakage of the incoherent power (in all directions)
to the structure. Figure 4.10 shows the spectral coefficients of W50. It can be seen that
for excitations in the band gap, the last rough interface has negligible contribution to the
transmitted power compared to the upper rough interfaces. The contribution of the j-th
rough interface to the incoherent transmitted power (that is S(2),inc

t,j ) decays rapidly with
increasing j. More generally, the transmitted and scattered power spectral coefficients again
sum up to zero exactly for all Wj ’s and for all points k⊥, again confirming SPM2 energy
conservation. Note that for this structure that contains high contrast dielectric variation
between adjacent layers, energy is conserved exactly by means of the strong condition (4.7.6)
that shows SPM2 solution conserves energy not only for small dielectric contrast between
adjacent layers but also for the case of larger dielectric contrasts. For excitations in the
pass band regions, consider a normally incident plane wave at normalized frequency of 0.2.
Figure 4.11 and 4.12 show the power spectral coefficients ofW1 andW50 respectively for TE
and TM excitations. Note that in contrast to the previous case of excitations in the stop
region, in the pass band regions the contribution of each rough interface to the transmitted
power (including incoherent and coherent) does not show rapid decay with j.

Figure 4.8: photonic crystal of periodically alternating permittivities with rough
interfaces. Period of the structure is a and 20% of each period filled with εr=8.9

and the background is air.

4.10 Conclusions
In this chapter, we have derived a “strong” condition of energy conservation for the SPM2
with a large number of rough interfaces in a layered medium. The SPM2 kernel functions
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Figure 4.9: Power spectral coefficient of W1 for the photonic crystal of Figure 4.8
as a function of kx for ky=0. Excitation is at the band gap BG3 and normalized
frequency of 1 (Figure 4.7). Left (Right) plot corresponds to TE (TM) excitation.
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Figure 4.10: Power spectral coefficient of W50 for the photonic crystal of Figure
4.8 as a function of kx for ky=0. Excitation is at the band gap BG3 and normalized
frequency of 1 (Figure 4.7). Left (Right) plot corresponds to TE (TM) excitation.

for the coherent and incoherent reflected and transmitted powers obey energy conservation
irrespective of the roughness statistics. The SPM2 is therefore a useful method for com-
puting layered rough medium emission in cases where there are a large number of rough
interfaces characterized by small roughness for each interface. Applications of the method
are in remote sensing and imaging, and in microwave, photonic, and photonic devices. Ini-
tial examples indicating the application of the approach to the prediction of layered medium
brightness temperatures and to transmission in photonic crystals were also shown.
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Figure 4.11: Power spectral coefficient ofW1 for the photonic crystal of Figure 4.8
as a function of kx for ky=0. Excitation is at the bottom pass band at normalized
frequency of 0.2 (Figure 4.7). Left (Right) plot corresponds to TE (TM) excitation.
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Figure 4.12: Power spectral coefficient ofW50 for the photonic crystal of Figure 4.8
as a function of kx for ky=0. Excitation is at the bottom pass band at normalized
frequency of 0.2 (Figure 4.7). Left (Right) plot corresponds to TE (TM) excitation.
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Chapter 5

Scattering From 3D Layered Media
with Periodic Random Rough
interfaces, T -matrix Approach

5.1 Introduction
Scattering of electromagnetic waves from layered media with random rough interfaces has
many applications in science and engineering [49, 70–72]. In particular, we are interested in
multi-layered media with rough interfaces as a forward model of microwave remote sensing
of ice sheets in the Arctic and Antarctica where snow accumulation causes multi-layer
fluctuations of permittivity [41, 78, 79]. There are two types of randomness in this problem,
a randomness in the rough interfaces and a randomness in the dielectric profile of the
layered medium. A variety of techniques have been proposed to solve this problem that
can generally be categorized into analytical, semi-analytical, and numerical approaches.
Analytical methods are applicable only under certain approximations. For instance, the
Small Perturbation Method (SPM) [29, 34, 38, 80? , 81] provides a closed form solution
for the mean and variance of scattered field from a layered medium with random rough
interfaces. The SPM2 is a low frequency approximation and is valid only for surfaces
with electromagnetically small heights [35, 82]. Numerical methods such as the Method
of Moments (MoM) and the Finite Element Method (FEM) are computationally intensive
compared to the SPM for such a problem. Specially these methods are not suitable for
the case of small dielectric contrast between layers, as the effect of small contrast between
layers can fall beneath the discretization noise level.

For the case of layered media including random rough interfaces with small height,
the SPM is the most favorable solution as it provides analytical expressions and more
importantly, statistical averaging of the fields over surface randomness is included in the
solution. However, it is shown that for the case of fluctuating permittivity in the layered
media, which is the case in modeling slightly lossy layered random media, the SPM2 suffers
from the presence of the waveguide modes in the spectral solution of the fields [79, 83].
Physically, in the presence of roughness, there are no waveguide modes, since waves can
escape through the rough interface. However the SPM utilizes the zeroth order solution as
the starting point of its iteration, and the zeroth order solution contains poles representing
dielectric waveguide modes. The presence of these poles in the SPM2 can be treated
using the Sommerfeld Integration Path (SIP) to find the total scattered and transmitted
power (but not the bistatic pattern itself) [84]. However, there are situations (which are
unavoidable for layered media with a fluctuating slightly lossy permittivity) where the
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SPM2 solution results in a singular bistatic scattering pattern. Also, in the case of a
random dielectric profile, the pole locations in the scattering pattern will change from one
realization to the next. Although finding and working with such bistatic patterns is possible,
it requires a very high level of accuracy to correctly capture the pole contributions.

To address these issues, we have developed a 3D T -Matrix solution for an arbitrary
number of interfaces, surface profile functions, and dielectric profiles that provides a robust
solution without the limitations of the SPM2. A T-matrix solution for layered media
with 1D surfaces has been studied previously [85], but the 1D model does not include
depolarization effects that in some situations are important [86]. One of the disadvantages of
the T -Matrix method (and any other approach rather than analytical approaches) compared
to the SPM is that a Monte Carlo simulation over interface realizations is necessary to obtain
the mean and variance of the fields. From computational perspective, the T-matrix method
has the advantage that its solution satisfies power conservation to a degree of accuracy that
is not obtainable in other numerical approaches.

Figure 5.1: Geometry of the Layered media which is periodic along x and y
directions with period of Lx, and Ly, respectively.

5.2 3D Periodic Green’s function
Using Bloch theorem, it turns out that for the scattering problem from a surface which is
periodic in two directions x and y with corresponding periods Lx and Ly, we can condensate
the spatial integration over the infinite surface into just one period if we replace the free
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space Green’s function G(r,r′) with

Gp(r,r′)=
∑
a

G(r;r′+a)eiki·a (5.2.1)

where a=mLxx̂+nLyŷ is location of all lattice sites for (m,n∈Z) This is just separating
the so-called array factor of the elements (within the cells) from the scattering properties
of a single lattice site. Therefore, the periodic Green’s function accounts for the repetition
of empty lattices. In order to perform the summation we can either use the plane wave
expansion of the Green’s function or a spatial representation of the free space Green’s
function. Starting from the wave equation for 3D scalar Green’s function of free space

(∇2+k2
0)G(r,r′)=−δ(r−r′) (5.2.2)

where k0 is free space wavenumber. The solution of (5.2.2) can be obtained in spherical co-
ordinate as G(r,r′)=exp(ik0|r−r′|)/4π|r−r′|. Upon inserting this solution in the expansion
of the periodic Green’s function (5.2.1),

Gp(r,r′)=
∑
m,n

eikRmn

4πRmn
(5.2.3)

where, Rmn=|r−r′−mLxx̂−nLyŷ|. The series of (5.2.3) is a slowly convergent series, it is
not an absolutely convergent series and computation of the periodic Green’s function with
(5.2.3) requires including large number of terms in the summation to get convergent results.
If the medium of interest (background medium) is lossy with tangible amount of loss, then
(5.2.3) is an exponentially convergent series and it provides a fast way of computing the
periodic Green’s function. However, this is not always the case and the spatial expansion
is not a good candidate. Fourier expanding the Green’s function in (5.2.2) results in the
following spectral representation.

G(r,r′)=
∫ dk

(2π)3
1

k2
0−k2 e

ik·(r−r′) (5.2.4)

where k=|k|. This integral is not well defined unless for lossy medium to get the radiation
poles off the real k axis. For the lossless medium one can consider small amount of loss to
move the poles from the real axis or use Sommerfeld integration path instead of real line.
Both approaches result in the same answer. Evaluating the spectral integral over kz results
in

G(r,r′)= i

2

∫ dk⊥
(2π)2

1
kz
eik⊥·(ρ−ρ

′)+ikz |z−z′| (5.2.5)

This is a plane wave representation of the scalar Green’s function. Inserting this represen-
tation into the periodic Green’s function summation and rearranging terms yields,

Gp(r,r′)= i

2

∫ dk⊥
(2π)2

1
kz
eik⊥·(ρ−ρ

′)+ikz |z−z′|
∑
m,n

ei(kix−kx)mLx+i(kiy−ky)nLy (5.2.6)

In order to evaluate summations in the periodic Green’s function we use the Fourier series
expansion of the impulse train. For impulse train of period L given by p(x)=

∑
nδ(x−nL),

all of the Fourier components are equal to 1/L and thus,

p(x)= 1
L

∞∑
n=−∞

ei
2nπ
L
x=

∞∑
n=−∞

δ(x−nL) (5.2.7)
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By changing L to 2π/L in this expression, the summation over m,n can be written as

∑
m,n

ei(kix−kx)mLx+i(kiy−ky)nLy= (2π)2

LxLy

∞∑
n=−∞

δ

(
kx−kix−

2nπ
Lx

) ∞∑
m=−∞

δ

(
ky−kiy−

2mπ
Ly

)
(5.2.8)

Therefore, the periodic Green’s function expression simplifies to

Gp(r,r′)= i

2LxLy

∑
m,n

1
kmnz

eik
mn
⊥ ·(ρ−ρ′)+ikmnz |z−z′| (5.2.9)

where

k
mn
⊥ =

(
kix+ 2mπ

Lx

)
x̂+

(
kiy+ 2nπ

Ly

)
ŷ (5.2.10)

is the transverse wave vector of the mn-th Bloch modes and
(
kmnz

)2=k2
0−
(
kmn⊥

)2. Note
that the Bloch wave numbers kmn are only dependent of the lattice period and the incident
excitation wave vector.

5.3 Periodic Dyadic Green’s function
Since the relation of the free space and periodic Green’s function (5.2.1)is linear, the periodic
dyadic Green’s function Gp(r,r′) can be obtained from

Gp(r,r′)=
[
I+∇∇

k2
0

]
Gp(r,r′) (5.3.1)

However, periodic scalar Green’s function is written in terms of the upward and downward
going plane waves (Bloch modes) which are eigen-functions of ∇ operator.

Gp(r,r′)= i

2LxLy

∑
m,n

1
kmnz


eik

mn
+ ·(r−r′) ,z>z′

eik
mn
− ·(r−r′) ,z<z′

(5.3.2)

where kmn± =kmn⊥ ±kmnz ẑ and kmn⊥ is the transverse Bloch wave number. Then, expression
of the dyadic Green’s function can be obtained as

Gp(r,r′)= i

2LxLy

∑
m,n

1
kmnz



[
I− k

mn
+ k

mn
+

k2
0

]
eik

mn
+ ·(r−r′) ,z>z′

[
I− k

mn
− k

mn
−

k2
0

]
eik

mn
− ·(r−r′) ,z<z′

(5.3.3)

For each upward and downward Floquet mode we can define an orthonormal coordinate
system in the spectral space through,

êmn± =
k
mn
± ×ẑ
|kmn± ×ẑ|

= 1
kmn⊥

(
kny x̂−kmx ŷ

)
(5.3.4)

ĥmn± =êmn± ×k̂mn± =∓ kmnz
kkmn⊥

(
kmx x̂+kny ŷ

)
+ kmn⊥

k
ẑ
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Therefore triplet of (ĥmn± ,êmn± ,k̂mn± ) form a right handed system for each mode. Using this
coordinate unit vectors we can write the periodic dyadic Green’s function as

Gp(r,r′)= i

2LxLy

∑
m,n

1
kmnz


[
êmn+ êmn+ +ĥmn+ ĥmn+

]
eik

mn
+ ·(r−r′) ,z>z′

[
êmn− êmn− +ĥmn− ĥmn−

]
eik

mn
− ·(r−r′) ,z<z′

(5.3.5)

5.4 Electric Field Integral Equation

5.4.1 Extinction of the Incident Field

Governing equation of the surface electric and magnetic fields over boundary of a homoge-
neous medium for arbitrary boundary surface f1(x,y) can be obtained from the Extinction
theorem as

Einc(r)+
∫
S

dS′
{
ik1η1G1(r,r′)·

[
n̂1×H1(r′)

]
+∇×G1(r,r′)·

[
n̂1×E1(r′)

]}
=
{

0 z<f1

E1(r) z>f1

Here, E1(r) is the electric field in the region 1 (topmost medium), n̂1 is the local upward
normal to the surface, and k1 is the wavenumber in region 1. The surface integral is over
the infinite surface S, while for a periodic surface, according to the Bloch theorem, surface
fields have the same periodicity as the structure except the progressive phase shift related to
the incident field. Now, the surface S can be treated as an array of surfaces with dimension
Lx×Ly and add their responses. This is exactly done by introducing the periodic Green’s
function into the picture. Using the periodic dyadic Green’s function of region 1, G1p(r,r′),
we can condensate the spatial integral over the infinite surface into a single cell∫

Sj

dS′Gj(r;r′)[·]=
∫

cell
dS′Gjp(r;r′)[·] (5.4.1)

The periodic Green’s function includes the contributions of all radiators (scatterers) at
different lattice sites.

Einc+
∫

cell
dS′

{
ik1η1G1p(r,r′)·

[
n̂1×H1(r′)

]
+∇×G1p(r,r′)·

[
n̂1×E1(r′)

]}
=
{

0 z<f1

E1(r) z>f1
(5.4.2)

Now, the observation point will be considered to be completely below the interface
z′=f1(x′,y′) such for all of the points on the surface z<z′. This boundary that in not the
actual boundary of the scatterer is known as the Extended Boundary. Upon defining the
normalized surface fields a1(r) and b1(r) on the boundary surface to absorb the unit normal
and surface measure on the boundary as

dS n̂1×η1H1(r)=a1(r)d2r (5.4.3)
dS n̂1×E1(r)=b1(r)d2r

the extinction relation of the incident electric field will be obtained as

Einc(r)+
∫

cell
d2r′

{
ik1G

<

1p(r,r′)·a1(r′)+∇×G
<

1p(r,r′)·b1(r′)
}

=0 ,z<min f1(x,y) (5.4.4)
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where G
<

1p(r,r′) is designated for periodic Green’s function of region 1 when z<z′. For the
plane wave expansion of the dyadic Green’s function under the condition z<minf1(x,y) we
have

G
<

1p(r,r′)= i

2LxLy

∑
m,n

1
kmn1z

[
êmn1− ê

mn
1− +ĥmn1− ĥ

mn
1−

]
eik

mn
1− ·(r−r′) (5.4.5)

∇×G
<

1p(r,r′)=− k1
2LxLy

∑
m,n

1
kmn1z

[
êmn1− ĥ

mn
1− −ĥmn1− ê

mn
1−

]
eik

mn
1− ·(r−r′)

Notice that by choosing the observation point somewhere that satisfies z<minf1(x,y), the
spectral expansion of the Green’s function in terms of only downward propagating waves
is possible. By this assumption we are neglecting propagation of the upward going waves
in the extinction relation of (5.3.5). This assumption fails if the surface shape is such
that allows for backward waves. Generally, if the slope of the surface is below an upper
bound then, neglecting backward waves does not introduce any problem. However, if the
surface has a large slope that allows presence of backward waves toward the surface, then it
creates problems in determining surface fields as the surface fields cannot satisfy the proper
boundary conditions. This assumption is known as Extended Boundary Condition Method
which is essentially the same as the Rayleigh Hypothesis where later assumes the scattered
field to be a superposition of only upward propagating waves. Substituting the periodic
Green’s function in the extinction equation of the incident field yields

Einc(r)−
k1

2LxLy

∑
m,n

1
kmn1z

[
êmn1− ê

mn
1− +ĥmn1− ĥ

mn
1−

]
·
∫

cell
d2r′eik

mn
1− ·(r−r′)a1(r′) (5.4.6)

− k1
2LxLy

∑
m,n

1
kmn1z

[
êmn1− ĥ

mn
1− −ĥmn1− ê

mn
1−

]
·
∫

cell
d2r′eik

mn
1− ·(r−r′)b1(r′)=0

This is the same as the extinction relation for an infinitely large surface that is obtained
in Chap. 3. The transition from a system with a continuous spectrum to the correspond-
ing discrete system with periodic boundary conditions can also be done using the general
transformation between the discrete and continuous counterparts [87, 88]∫ d2k

(2π)2 [·]� 1
LxLy

∑
m,n

[·] (5.4.7)

Using this transformation, we can write the periodic dyadic Green’s function directly from
dyadic Green’s function for non-periodic case. The summations in (5.4.6) can be written
as a linear combination of downward going Bloch modes in region 1

Einc(r)+
∑
m,n

D
1,1
mne

ik
mn
1− ·r=0 (5.4.8)

where the amplitude of modes is given by,

D
1,1
mn=− k1

2LxLy
1
kmn1z

{[
êmn1− ê

mn
1− +ĥmn1− ĥ

mn
1−

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥+ikmn1z f1(r′⊥)a1(r′) (5.4.9)

+
[
êmn1− ĥ

mn
1− −ĥmn1− ê

mn
1−

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥+ikmn1z f1(r′⊥)b1(r′)

}
For an incident downward propagating plane wave of unit amplitude Einc(r)=êieiki·r, it
aligns with the direction of the zeroth order Bloch mode (m,n)=(0,0). Considering orthog-
onality of the Bloch modes, D1,1

mn=0 for all values of m, and n except D1,1
00 =−êi.
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5.4.2 Extinction of Field Propagating in Region j

The extinction of the wave that propagates in region j mandates that the propagation of
the surface currents on the boundary of region j using region j Green’s function vanishes
for observation points outside region j. Mathematically,

0=−
∮
∂Vj

dS′
{
ikjηjGj(r,r′)·

[
n̂′×Hj(r′)

]
+∇×Gj(r′,r)·

[
n̂′×Ej(r′)

]}
(5.4.10)

=−
∫
Sj−1

dS′
{
ikjηjGj(r,r′)·

[
n̂′j−1×Hj(r′)

]
+∇×Gj(r′,r)·

[
n̂′j−1×Ej(r′)

]}
+
∫
Sj

dS′
{
ikjηjGj(r,r′)·

[
n̂′j×Hj(r′)

]
+∇×Gj(r′,r)·

[
n̂′j×Ej(r′)

]}
For the upper boundary at z=−dj−1+fj−1(r⊥), we can define surface fields based on region
j−1 fields (surface fields are continuous across the boundary) as

dS′ n̂′j×ηj−1Hj(r′)=dS′ηj−1n̂
′
j−1×Hj−1(r′)=d2r′⊥aj−1(r′⊥) (5.4.11)

dS′n̂′j×Ej(r′)=dS′n̂′j−1×Ej−1(r′)=d2r′⊥bj−1(r′⊥)

and for second boundary z=−dj+fj(r⊥) we use fields of region j to define surface fields,

dS′ n̂′j×ηjHj(r′)=d2r′⊥aj(r′⊥) (5.4.12)
dS′n̂′j×Ej(r′)=d2r′⊥bj(r′⊥)

Note that normal vectors for upper and lower boundaries are different functions of position
but we have absorbed their difference in unknown surface fields. For a Non-magnetic
material case kη=kjηj=kj−1ηj−1=ωµ, such that the surface field integral equation with
observation point outside the region j becomes,

0=−
∫
z=−dj−1+fj−1(r⊥)

dr′⊥
{
ikj−1Gj(r,r′)·aj−1(r′⊥)

]
+∇×Gj(r′,r)·bj−1(r′⊥)

}
(5.4.13)

+
∫
z=−dj+fj(r⊥)

dr′⊥
{
ikjGj(r,r′)·aj(r′⊥)+∇×Gj(r′,r)·bj(r′⊥)

}
Assuming the observation point is placed in the upper regions, and more over, over the
extended boundary of z=maxfj−1, in this case always z>z′ and we can expand dyadic
periodic Green’s function of region j as

G
>

jp(r,r′)= i

2LxLy

∑
m,n

1
kmnjz

[
êmnj+ ê

mn
j+ +ĥmnj+ ĥmnj+

]
eik

mn
j+ ·(r−r′) (5.4.14)

∇×G
>

jp(r,r′)=− kj
2LxLy

∑
m,n

1
kmnjz

[
êmnj+ ĥ

mn
j+ −ĥmnj+ êmnj+

]
eik

mn
j+ ·(r−r′)

and noting that the spatial integrals are over a single cell, in accordance with introducing
the periodic Green’s function, we arrive at the following relation between the surface fields
over the adjacent boundaries j and j−1∑

mn

U
j,j−1
mn eik

mn
j+ ·r=U j,jmneik

mn
j+ ·r (5.4.15)
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where the amplitude of the upward propagating Bloch modes propagating in region j and
originated from the j−1 and j-th boundaries are given by

U
j,j−1
mn = 1

kmnjz
eik

mn
jz dj−1

{
kj−1
kj

[
êmnj+ ê

mn
j+ +ĥmnj+ ĥmnj+

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥−ik

mn
jz fj−1(r′⊥)aj−1(r′⊥)

+
[
êmnj+ ĥ

mn
j+ −ĥmnj+ êmnj+

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥−ik

mn
jz fj−1(r′⊥)bj−1(r′⊥)

}
,

U
j,j
mn= 1

kmnjz
eik

mn
jz dj

{[
êmnj+ ê

mn
j+ +ĥmnj+ ĥmnj+

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥−ik

mn
jz fj(r′⊥)aj(r′⊥)

+
[
êmnj+ ĥ

mn
j+ −ĥmnj+ êmnj+

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥−ik

mn
jz fj(r′⊥)bj(r′⊥)

}
and also from orthogonality of spatial harmonics

U
j,j−1
mn =U j,jmn (5.4.16)

Similarly, we can obtain another independent integral equation for extinction of the
downward propagating wave in region j. Placing the observation point on the extended
boundary of

z=min
r⊥

{
−dj+fj(r⊥)

}
(5.4.17)

ensures that always z<z′ an the dyadic periodic Green’s function of region j can be ex-
panded in terms of only downward propagating plane waves as

G
<

jp(r,r′)= i

2LxLy

∑
m,n

1
kmnjz

[
êmnj− ê

mn
j− +ĥmnj− ĥmnj−

]
eik

mn
j− ·(r−r′) (5.4.18)

∇×G
<

jp(r,r′)=− kj
2LxLy

∑
m,n

1
kmnjz

[
êmnj− ĥ

mn
j− −ĥmnj− êmnj−

]
eik

mn
j− ·(r−r′)

By inserting spectral expansion of (5.4.18) into extinction relation of (5.4.13), it can be
written as a relation between the downward propagating waves in region j that are origi-
nated from j−1 and j-th surface boundary, as∑

m,n

D
j,j−1
mn eik

mn
j− ·r=

∑
m,n

D
j,j
mne

ik
mn
j− ·r (5.4.19)

where the amplitude of the Bloch modes are given by

D
j,j−1
mn = 1

kmnjz
e−ik

mn
jz dj−1

{
kj−1
kj

[
êmnj− ê

mn
j− +ĥmnj− ĥmnj−

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥+ikmnjz fj−1(r′⊥)aj−1(r′⊥)

(5.4.20)

+
[
êmnj− ĥ

mn
j− −ĥmnj− êmnj−

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥+ikmnjz fj−1(r′⊥)bj−1(r′⊥)

}

D
j,j
mn= 1

kmnjz
e−ik

mn
jz dj

{[
êmnj− ê

mn
j− +ĥmnj− ĥmnj−

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥+ikmnjz fj(r′⊥)aj(r′⊥)

+
[
êmnj− ĥ

mn
j− −ĥmnj− êmnj−

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥+ikmnjz fj(r′⊥)bj(r′⊥)

}
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Note that the spatial integrals are performed over the primitive cell in accordance with
introduction of the periodic Green’s function. From the orthogonality of spatial harmonics
over a cell, (5.4.19) yields the following propagation relation between adjacent surface fields

D
j,j−1
mn =Dj,j

mn. (5.4.21)

5.4.3 Extinction of Field Propagating in Region j

Similarly, application of the extinction theorem to region N results in

−
∫
S

dS′
{
ikNηNGN (r,r′)·

[
n̂′N×HN (r′)

]
(5.4.22)

+∇×GN (r′,r)·
[
n̂′N×EN (r′)

]}
=
{

0 z>−dN−1+fN−1(r⊥)
EN (r) z<−dN−1+fN−1(r⊥)

where EN and HN are electric and magnetic fields in region N and GN is the free space
dyadic Green’s function with the wave number kN=ω√µNεN . Utilizing continuity of the
surface electric and magnetic fields over the boundary, we can substitute fields in region N
with those of region N−1. For non-magnetic materials kN−1ηN−1=kNηN and

kNaN (r)=kN−1aN−1(r) (5.4.23)
bN (r)=bN−1(r)

Following the same procedure and replacing the Green’s function with periodic Green’s
function and putting the observation point in region N−1, we have∫

cell
d2r′

{
ikN−1G

>

N−1,p(r,r′)·aN−1(r′)+∇×G
>

N−1,p(r′,r)·bN−1(r′)
}

=0 (5.4.24)

Here,

G
>

Np(r,r′)= i

2LxLy

∑
m,n

1
kmnNz

[
êmnN+ê

mn
N++ĥmnN+ĥ

mn
N+

]
eik

mn
N+·(r−r′) (5.4.25)

∇×G
>

Np(r,r′)=− kN
2LxLy

∑
m,n

1
kmnNz

[
êmnN+ĥ

mn
N+−ĥmnN+ê

mn
N+

]
eik

mn
N+·(r−r′)

Notice that (5.4.24) is an exact integral equation for the surface fields. However, to be
able to use the unidirectional plane wave expansions of the dyadic Green’s function, the
observation point should be placed on the extended boundary rather than the boundary
itself. Substituting the periodic Green’s function expressions in the extinction relation we
arrive at the mode expansion in terms of the upward propagating modes in region N∑

m,n

U
N,N−1
mn eik

mn
N+·r=0 (5.4.26)

where the vector amplitude UNmn is given by

U
N,N−1
mn = kN−1

kN

[
êmnN+ê

mn
N++ĥmnN+ĥ

mn
N+

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥−ik

mn
Nz fN−1(r′⊥)aN−1(r′) (5.4.27)

+
[
êmnN+ĥ

mn
N+−ĥmnN+ê

mn
N+

]
·
∫

cell
d2r′e−ik

mn
⊥ ·r′⊥−ik

mn
Nz fN−1(r′⊥)bN−1(r′)
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5.5 Surface Fields Solution
Recalling that the surface fields exist over the boundary surfaces i.e. n̂j ·aj(r⊥)=n̂j ·bj(r⊥)=
0 we have ajz(r⊥)=∇⊥fj ·aj⊥(r⊥) and therefore surface fields can be written in terms of
its transverse component as

aj(r⊥)=aj⊥(r⊥)+∇⊥fj ·aj⊥(r⊥)ẑ (5.5.1)

Now the vector unknowns contains two scalar variables. In order to convert the system of
integral equations to a solvable system of equation, we use the reciprocal lattice vectors of
the surface to expand vector surface fields which have the same periodicity as

aj⊥(r)=
∑
pq

αjpqe
ik
pq
⊥ ·r⊥=

∑
pq

αjpqe
i(kpxx+kqyy)

bj⊥(r)=
∑
pq

β
j
pqe

ik
pq
⊥ ·r⊥=

∑
pq

β
j
pqe

i(kpxx+kqyy) (5.5.2)

The Fourier series expansion of the transverse surface fields is based on the periodicity
of the field quantities with the same period as the surface which is justified by the Bloch
theorem. Inserting the transverse part of the surface fields into the complete expression of
the surface fields (5.4.24) yields,

aj(r⊥)=
∑
pq

[
αjpq+∇⊥fj ·αjpq ẑ

]
eik

pq
⊥ ·r⊥ (5.5.3)

bj(r⊥)=
∑
pq

[
β
j
pq+∇⊥fj ·β

j
pq ẑ
]
eik

pq
⊥ ·r⊥

Substituting the surface field expression in extinction relations in terms of the vector coef-
ficients Dmn and Umn, results in

D
1,1
mn=− k1

2LxLy
1
kmn1z

∑
pq

{[
êmn1− ê

mn
1− +ĥmn1− ĥ

mn
1−

]
·
[
α1
pq−

1
kmn1z

(kpq⊥ −k
mn
⊥ )·α1

pq ẑ
]

(5.5.4)

+
[
êmn1− ĥ

mn
1− −ĥmn1− ê

mn
1−

]
·
[
β

1
pq−

1
kmn1z

(kpq⊥ −k
mn
⊥ )·β1

pq ẑ
]}
Ipq−mn [1,1]

U
j,j−1
mn = 1

kmnjz
eik

mn
jz dm−1

∑
pq

{
kj−1
kj

[
êmnj+ ê

mn
j+ +ĥmnj+ ĥmnj+

]
·
[
αj−1
pq + 1

kmnjz
(kpq⊥ −k

mn
⊥ )·αj−1

pq ẑ
]

+
[
êmnj+ ĥ

mn
j+ −ĥmnj+ êmnj+

]
·
[
β
j−1
pq + 1

kmnjz
(kpq⊥ −k

mn
⊥ )·βj−1

pq ẑ
]}
Ipq+mn [j,j−1]

U
j,j
mn= 1

kmnjz
eik

mn
jz dm

∑
pq

{[
êmnj+ ê

mn
j+ +ĥmnj+ ĥmnj+

]
·
[
αjpq+

1
kmnjz

(kpq⊥ −k
mn
⊥ )·αjpq ẑ

]
+
[
êmnj+ ĥ

mn
j+ −ĥmnj+ êmnj+

]
·
[
β
j
pq+

1
kmnjz

(kpq⊥ −k
mn
⊥ )·βjpq ẑ

]}
Ipq+mn [j,j]
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D
j,j−1
mn = 1

kmnjz
e−ik

mn
jz dm−1

∑
pq

{
kj−1
kj

[
êmnj− ê

mn
j− +ĥmnj− ĥmnj−

]
·
[
αj−1
pq −

1
kmnjz

(kpq⊥ −k
mn
⊥ )·αj−1

pq ẑ
]

+
[
êmnj− ĥ

mn
j− −ĥmnj− êmnj−

]
·
[
β
j−1
pq −

1
kmnjz

(kpq⊥ −k
mn
⊥ )·βj−1

pq ẑ
]}
Ipq−mn [j,j−1]

D
j,j
mn= 1

kmnjz
e−ik

mn
jz dm

∑
pq

{[
êmnj− ê

mn
j− +ĥmnj− ĥmnj−

]
·
[
αjpq−

1
kmnjz

(kpq⊥ −k
mn
⊥ )·αjpq ẑ

]
+
[
êmnj− ĥ

mn
j− −ĥmnj− êmnj−

]
·
[
β
j
pq−

1
kmnjz

(kpq⊥ −k
mn
⊥ )·βjpq ẑ

]}
Ipq−mn [j,j]

U
N,N−1
mn =

∑
pq

{
kN−1
kN

[
êmnN+ê

mn
N++ĥmnN+ĥ

mn
N+

]
·
[
αN−1
pq + 1

kmnNz
(kpq⊥ −k

mn
⊥ )·αN−1

pq ẑ
]

+
[
êmnN+ĥ

mn
N+−ĥmnN+ê

mn
N+

]
·
[
β
N−1
pq + 1

kmnNz
(kpq⊥ −k

mn
⊥ )·βN−1

pq ẑ
]}
Ipq+mn [N,N−1]

(5.5.5)

where, the gradient term from the z component of the surface fields in the integrand is
simplified using by part integration and taking advantage of periodic boundary condition.
Also the integrals Ipq±mn [j,j−1] and Ipq±mn [j,j] which correspond to the scattering potential of
the rough boundaries are defined as

Ipq±mn [j,j−1]=
∫

cell
d2r′ei(k

pq
⊥ −k

mn
⊥ )·r′⊥∓ik

mn
jz fj−1(r′⊥) (5.5.6)

Ipq±mn [j,j]=
∫

cell
d2r′ei(k

pq
⊥ −k

mn
⊥ )·r′⊥∓ik

mn
jz fj(r′⊥)

The involved matrices in the above equations are not full rank (rank of 2 in 3 dimensional
space) and therefore can not be inverted in this form. Upon projecting the Bloch coefficients
on the corresponding unit polarization vectors, the scalar equations will be obtained. From
the extinction relation of the middle layers 2≤j≤N−1 as U j,j−1

mn =U j,jmn, and D
j,j−1
mn =Dj,j

mn

the following scalar equations for the transverse component of the surface fields are obtained
as

∑
pq

{
kj−1
kj

êmnj+ ·αj−1
pq +ĥmnj+ ·β

j−1
pq + 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·βj−1

pq

}
Ipq+mn [j,j−1]

=eik
mn
jz ∆j

∑
pq

{
êmnj+ ·αjpq+ĥmnj+ ·β

j
pq+

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·βjpq

}
Ipq+mn [j,j]

∑
pq

{
kj−1
kj

(
ĥmnj+ ·αj−1

pq + 1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·αj−1

pq

)
−êmnj+ ·β

j−1
pq

}
Ipq+mn [j,j−1]

=eik
mn
jz ∆j

∑
pq

{
ĥmnj+ ·αjpq+

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·αjpq−êmnj+ ·β

j
pq

}
Ipq+mn [j,j]
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∑
pq

{
kj−1
kj

êmnj− ·αj−1
pq +ĥmnj− ·β

j−1
pq −

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·βj−1

pq

}
Ipq−mn [j,j−1]

=e−ik
mn
jz ∆j

∑
pq

{
êmnj− ·αjpq+ĥmnj− ·β

j
pq−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·βjpq

}
Ipq−mn [j,j]

∑
pq

{
kj−1
kj

(
ĥmnj− ·αj−1

pq −
1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·αj−1

pq

)
−êmnj− ·β

j−1
pq

}
Ipq−mn [j,j−1]

=e−ik
mn
jz ∆j

∑
pq

{
ĥmnj− ·αjpq−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·αjpq−êmnj− ·β

j
pq

}
Ipq−mn [j,j]

Here ∆j=dj−dj−1. Expanding the unknown surface fields Fourier coefficients α and β in
terms of orthogonal unit vectors û and v̂ (that are spanning xy plane) as

αjpq=αjupq û+αjvpqv̂ (5.5.7)

β
j
pq=βjupq û+βjvpq v̂

the propagation relation between Fourier coefficients of the adjacent layers surface fields
can be written in a matrix form as

F
j

mn,pqS
j
pq=E

j−1
mn,pqS

j−1
pq (5.5.8)

where the surface field vector Sjpq=
[
αjupq ,α

jv
pq,β

ju
pq ,β

jv
pq

]T is the Fourier component of the
surface fields on the j-th interface (a summation over pq is assumed) and individual mode
propagation matrices F

j

mn,pq,E
j−1
mn,pq are given by the components

Ej−1
mn,pq[11]=

{
kj−1
kj

êmnj+ ·û
}
Ipq+mn [j,j−1] (5.5.9)

Ej−1
mn,pq[12]=

{
kj−1
kj

êmnj+ ·v̂
}
Ipq+mn [j,j−1]

Ej−1
mn,pq[13]=

{
ĥmnj+ ·û+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

}
Ipq+mn [j,j−1]

Ej−1
mn,pq[14]=

{
ĥmnj+ ·v̂+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

}
Ipq+mn [j,j−1]

F jmn,pq[11]=eik
mn
jz ∆j

{
êmnj+ ·û

}
Ipq+mn [j,j]

F jmn,pq[12]=eik
mn
jz ∆j

{
êmnj+ ·v̂

}
Ipq+mn [j,j]

F jmn,pq[13]=eik
mn
jz ∆j

{
ĥmnj+ ·û+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

}
Ipq+mn [j,j]

F jmn,pq[14]=eik
mn
jz ∆j

{
ĥmnj+ ·v̂+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

}
Ipq+mn [j,j]
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F jmn,pq[21]=eik
mn
jz ∆j

{
ĥmnj+ ·û+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

}
Ipq+mn [j,j] (5.5.10)

F jmn,pq[22]=eik
mn
jz ∆j

{
ĥmnj+ ·v̂+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

}
Ipq+mn [j,j]

F jmn,pq[23]=eik
mn
jz ∆j

{
−êmnj+ ·û

}
Ipq+mn [j,j]

F jmn,pq[24]=eik
mn
jz ∆j

{
−êmnj+ ·v̂

}
Ipq+mn [j,j]

Ej−1
mn,pq[21]=

{
kj−1
kj

(
ĥmnj+ ·û+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

)}
Ipq+mn [j,j−1] (5.5.11)

Ej−1
mn,pq[22]=

{
kj−1
kj

(
ĥmnj+ ·v̂+ 1

kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

)}
Ipq+mn [j,j−1]

Ej−1
mn,pq[23]=

{
−êmnj+ ·û

}
Ipq+mn [j,j−1]

Ej−1
mn,pq[24]=

{
−êmnj+ ·v̂

}
Ipq+mn [j,j−1]

F jmn,pq[31]=e−ik
mn
jz ∆j

{
êmnj− ·û

}
Ipq−mn [j,j] (5.5.12)

F jmn,pq[32]=e−ik
mn
jz ∆j

{
êmnj− ·v̂

}
Ipq−mn [j,j]

F jmn,pq[33]=e−ik
mn
jz ∆j

{
ĥmnj− ·û−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

}
Ipq−mn [j,j]

F jmn,pq[34]=e−ik
mn
jz ∆j

{
ĥmnj− ·v̂−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

}
Ipq−mn [j,j]

Ej−1
mn,pq[31]=

{
kj−1
kj

êmnj− ·û
}
Ipq−mn [j,j−1] (5.5.13)

Ej−1
mn,pq[32]=

{
kj−1
kj

êmnj− ·v̂
}
Ipq−mn [j,j−1]

Ej−1
mn,pq[33]=

{
ĥmnj− ·û−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

}
Ipq−mn [j,j−1]

Ej−1
mn,pq[34]=

{
ĥmnj− ·v̂−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

}
Ipq−mn [j,j−1]
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F jmn,pq[41]=e−ik
mn
jz ∆j

{
ĥmnj− ·û−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

}
Ipq−mn [j,j] (5.5.14)

F jmn,pq[42]=e−ik
mn
jz ∆j

{
ĥmnj− ·v̂−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

}
Ipq−mn [j,j]

F jmn,pq[43]=e−ik
mn
jz ∆j

{
−êmnj− ·û

}
Ipq−mn [j,j]

F jmn,pq[44]=e−ik
mn
jz ∆j

{
−êmnj− ·v̂

}
Ipq−mn [j,j]

Ej−1
mn,pq[41]=

{
kj−1
kj

(
ĥmnj− ·û−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·û

)}
Ipq−mn [j,j−1]

Ej−1
mn,pq[42]=

{
kj−1
kj

(
ĥmnj− ·v̂−

1
kmnjz

kmn⊥
kj

(kpq⊥ −k
mn
⊥ )·v̂

)}
Ipq−mn [j,j−1]

Ej−1
mn,pq[43]=

{
−êmnj− ·û

}
Ipq−mn [j,j−1]

Ej−1
mn,pq[44]=

{
−êmnj− ·v̂

}
Ipq−mn [j,j−1]

Using the propagation matrix formalism, the surface fields on the last boundary can be
related to those of the first boundary through,

S
N−1
pq =

(
F
N−1
mn,pq

)−1
E
N−2
mn,pq

(
F
N−2
mn,pq

)−1
E
N−3
mn,pq ···

(
F

2
mn,pq

)−1
E

1
mn,pqS

1
pq (5.5.15)

:=DS1
pq

Also from the extinction of incident field in region 1 we have

P
1
mn,pqS

1
pq=

[
êmn1− ·D

1,1
mn

ĥmn1− ·D
1,1
mn

]
(5.5.16)

where the 2×4 mode matrix P
1
mn,pq is given by its components as

P
1
mn,pq[11]=− k1

2LxLy
1
kmn1z

{
êmn1− ·û

}
Ipq−mn [1,1] (5.5.17)

P
1
mn,pq[12]=− k1

2LxLy
1
kmn1z

{
êmn1− ·v̂

}
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Similarly, from the extinction of the wave in the last region,
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where
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Putting ll of the extinction relations together, the system of equations to determine the
Fourier coefficients of the surface fields on the first and last boundary is given byP
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 (5.5.21)

Once the Fourier coefficients of the surface fields on the first and last boundaries are de-
termined through (5.5.21), the surface field on the other boundaries can be determined by
using the propagation matrices.
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5.6 Scattered Field
From the equivalence principle applied to region 1, for observation points in region 1 total
electric field can be written as

Einc(r)+
∫
S

dS′
{
ik1η1G1(r,r′)·

[
n̂1×H1(r′)

]
+∇×G1(r,r′)·

[
n̂1×E1(r′)

]}
=E1(r) (5.6.1)

The second term is the scattered field and upon using the periodic dyadic Green’s function
spatial integrals become condensate to the primitive cell and

Es(r)=
∫

cell
d2r′

{
ik1G

>

1p(r,r′)·a1(r′)+∇×G
>

1p(r,r′)·b1(r′)
}

(5.6.2)

Upon considering the scattered field outside of the extended boundary at z=maxf1(r⊥),
the dyadic Green’s function can be expanded as

G
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Substituting the periodic Green’s function into the scattered field expression, results in an
expansion of the scattered field in terms of upward propagating Bloch waves in region 1

Es(r)=
∑
m,n

Smne
ik
mn
1+ ·r (5.6.5)

where
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Notice that (5.6.5) predict the scattered field to be expandable only in terms of the upward
propagating waves (irrespective of whatever the surface profiles are) which is not generally
true. one can imagine a surface that has such a curvature that allows backward propagating
waves toward the surface. On the other side. the scattered field computed here is valid
at points beyond the extended boundary and seems that the situation of the backward
wave does not happen. However, the surface field are computed by the same assumption
(extended boundary condition) and for a surface profile with large slopes, considered ex-
pansions cannot truly satisfy the boundary conditions and this would cause instability in
the computation of the surface fields.

Using solution of surface field from extinction equation and substituting in relation of
vector coefficient Smn, we have
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1+ −ĥmn1+ ê
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The term which consists of the gradient of the surface is integrated by part. The scattering
potential integral for the scattered field from the first boundary in region 1 is defined as

Ipq+mn [1,1]=
∫

cell
d2r′ei(k

pq
⊥ −k

mn
⊥ )·r′⊥−ik

mn
1z f1(r′⊥) (5.6.9)

Smn’s are the scattered electric field vector amplitude of Bloch modes labeled by (m,n).

5.7 Transmitted Field
Similar to the scattered field case, the transmitted field into the region 1 can be find using
equivalence principle applied to region N as following

Et(r)=−
∫

cell
d2r′

{
ikN−1G

<

Np(r,r′)·aN−1(r′)+∇×G
<

Np(r′,r)·bN−1(r′)
}

where we have expressed surface fields in terms of region N−1 fields. Assuming observation
point to be in region N and upon insertion of the Green’s function into transmitted field
relation, it turns out that the transmitted field can be expanded in terms of the downward
propagating waves in region N

Et(r)=
∑
m,n

Tmne
ik
mn
N−·r (5.7.1)

where amplitude of the transmitted Bloch modes is given by

Tmn= kN−1
2LxLy

1
kmnNz

[
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Inserting the Fourier series representation of the surface fields into the equations and sim-
plifying the integrals of the gradient of surface profile by a by part integration, we arrive
at
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where

Ipq−mn [N,N−1]=
∫

cell
d2r′ei(k

pq
⊥ −k

mn
⊥ )·r′⊥+ikmnNz fN−1(r′⊥) (5.7.3)

Now we have the amplitude and polarization of each transmitted mode into region 1. Notice
that the scattered field is evaluated from previously known surface fields and it does not
require solving boundary value problems.
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5.8 Scattered and Transmitted Power
For the scattered field in region 1 of Es(r)=

∑
m,nSmne

ik
mn
1+ ·r, associated magnetic field can

be computed as

Hs(r)= 1
η1

∑
m,n

(
k̂mn1+ ×Smn

)
eik

mn
1+ ·r (5.8.1)

Then, the complex poynting vector associated with scattered field is

Ss(r)= 1
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∗
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Since Bloch modes are mutually orthogonal over surface of a cell, cross terms in the poynting
vector do not contribute in the total scattered power. The complex scattered power in z
direction can be computed by integrating Ss over a cell
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whereas from orthogonality of the Bloch modes,∫
d2r⊥ e

i(kmn⊥ −k
pq
⊥ )·r⊥=LxLyδmpδnq (5.8.4)

that results in
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If we are interested in lossless condition for region 0, then real power corresponds to the
propagating modes only and then

Re
[
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]
=LxLy
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∑
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(
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)
|Smn|2 (5.8.6)

Similarly, for the transmitted power in (−ẑ) direction we have

Re
[
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]
=LxLy

2
∑
m,n
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kmnNz
kNηN

)
|Tmn|2 (5.8.7)

The incident power associated with the incident plane wave in (−ẑ) direction can be ob-
tained as

Pinc=
∫

cell
dr⊥

1
2η1

cosθi=
LxLy
2η1

cosθi (5.8.8)

Henceforth, the reflectivity and transmissivity of the surface can be computed as

R=
∑
m,n
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kmn1z
kiz

)
|Smn|2 (5.8.9)
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∑
m,n
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(
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)
|Tmn|2

134



5.9 Numerical Results and Comparison with SPM2 Solution
In order to verify the accuracy of the 3D T -Matrix method for a multi-layer case, we
consider a lossless layered medium with dielectric constants given by εr=(1,1.5,2,3,2) from
the top, respectively. The interfaces are located at mean values of d=−(0,0.3,0.7,0.9)λ1
where λ1 is the wavelength in region 1 (the top half space). Parameters of the Gaussian
rough interfaces include RMS height of hrms=0.03λ1, correlation length of `=λ1 which is
considered the same for all of 4 uncorrelated and isotropic interfaces. The SPM2 solution is
expected to be valid in this small RMS height regime [35]. We consider a periodic random
surface of dimensions Lx=Ly=5λ1�` in the T -matrix as well as SPM2 solution. In order to
reach convergence, we average over 300 realizations of the surfaces (4 independent surfaces).
It should be noted that this structure supports guided modes, and as a result the SPM2
power spectral kernels are singular and need to be treated carefully by the SIP [79, 84].

Figure 5.2 compares the v and h channel emissivities of the structure obtained by the
SPM2 applied to a periodic surface of 5λ1×5λ1, and the T -matrix with that of flat surfaces.
The maximum difference between the emissivities obtained by the two methods is always
below 0.002 (corresponds to the relative error of less than 0.22%) for any polarization and
observation angle. This represents a good agreement between the SPM2 and T -Matrix
approaches in the small height regime [89, 90].
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Figure 5.2: Emissivity of 5 layer structure of section 5.9 with rms height of
h=0.03λ1 for horizontal (h) and vertical (v) polarizations vs observation angle
(θi) obtained by the T -Matrix and periodic SPM2 compared to the flat surfaces

response.

An important question regarding the implementation of the T -matrix method is how
many modes should be included in Eq. (5.2.1). As one includes more evanescent modes,
the condition number of the matrices in Eq. (??) becomes worse and after some point the
solution is not possible. Although direct inversion has been used for all of the examples in
this paper, ill-conditioned matrices involved in the problem can lead to divergent iterative
procedure or numerical break-down in the case of direct inversion (for larger problem in
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terms of included modes). This situation is more critical for larger RMS height when in-
clusion of more evanescent modes is necessary to account for the fields inside the grooves.
In addition, for the case of large permittivity contrast between layers, capturing the prop-
agating modes inside a high permittivity layer is required simultaneously with including
more evanescent modes in layers with lower permittivity. This can be accounted as a limi-
tation for the T -matrix method in the layered media scenario with high dielectric contrast
between layers. A measure of the degree of accuracy of a solution is energy conservation.
Although it cannot guarantee the correct solution, it is a necessary condition for a solu-
tion to be correct. Thus, we can increase the number of modes and monitor the energy
conservation in the solution. For the cases where higher order evanescent modes must be
included, preconditioning of matrices in Eq. (??) may be needed [85, 91, 92].

For the computation of emissivity in 5.2, the number of included modes in each direction
is 13. The energy conservation criteria in this case is 1±10−4 which corresponds to error of
0.01%. During the Monte Carlo simulation over surfaces realizations it is necessary to be
careful about adjacent interface intersections. Such cases violate the problem formulation
assumptions in Eq. (5.2.2). The distance between the mean level of the interfaces considered
above make this unlikely but not impossible. When running the simulation, cases having
intersections between interfaces are discarded and excluded from further consideration.

For comparison of computational cost, the SPM which is an analytic solution, does
not require intensive computations. On the other hand, a typical MoM solution does
require more surface unknowns. For example, in the above problem of 4 surfaces of area
5λ1×5λ1 using discretization rule of 10 points/λ the number of unknowns would be N=
50×50×εr×8≈40,000 just for one surface (last factor takes the polarization, and the electric
and magnetic currents into account) and 160,000 for all 4 surfaces, while the T -matrix
number of unknowns is around N=1300. Considering the orders of magnitudes difference
in the number of unknowns, the T−matrix has lower cost than the MoM. Also, for such
a slight dielectric contrast between the adjacent layers, the MoM solution suffers from
the discretization noise such that energy conservation criteria would not be satisfactory.
On the other hand, there are situations that the T−matrix as formulated in this paper
does not work at all due to extremely ill-conditioned matrices. For example, in the sub
wavelength periods or very high amplitude of the surface, the T−matrix solution break
down numerically. For a sub wavelength structure, one can utilize the effective medium
approximation or use the MoM solution.

In order to show the T -matrix solution in large RMS height regime, consider the same
medium as discussed above with Gaussian surfaces of RMS height 0.08λ1(kmaxhrmsu0.5)
which is out of the validity region of the SPM2. Also, the mean level of the interfaces
is chosen to be at d=−(0,0.6,1.4,2)λ1 to reduce possible interface intersections. Here the
total number of included modes is 17×17=289, which leads to satisfaction of the energy
conservation criteria to better than 0.1%. Figure 5.3 plots h and v channel emissivities of the
structure obtained by the T -matrix and SPM2 compare to the flat surface case. As opposed
to the small height example of Fig. 5.2, where the roughness increases the emission of the
surface, here the presence of roughness cause a reduction in emission at observation angles
less than 40◦. The reason behind this is the structure with flat interfaces for this medium
configuration is near the resonance condition. The presence of roughness then reduces
transmission. For observation near grazing, the SPM2 solution for emissivity becomes close
to the T -matrix for both polarizations.

136



Observation angle θi(deg)

0 20 40 60 80

E
m
is
si
v
it
y

0.6

0.7

0.8

0.9

1

T-Matrix (h)

SPM2 (h)

Flat surfaces (h)

T-Matrix (v)

SPM2 (v)

Flat surfaces (v)

Figure 5.3: Emissivity of 5 layer structure of section 5.9 with rms height of
h=0.08λ1 for horizontal (h) and vertical (v) polarizations vs observation angle
(θi) obtained by the T -Matrix and periodic SPM2 compared to the flat surfaces

response.

5.9.1 Bistatic Scattering Pattern

For a continuum spectrum of scattered waves, the bistatic scattering pattern σs is defined
as

Pαβs =
∫

(2π)
dΩsσ

αβ
s (Ωs,Ωi) (5.9.1)

where Pαβs is α−polarized normalized scattered power when the surface is illuminated by
a β−polarized incident field. For the set of discrete modes in the T -matrix, the normalized
scattered power can be obtained by Eq. (5.4.6). In order to make a connection between
these two cases when Lx,Ly�λ, note that for discrete modes,

∆kmx= 2π∆m
Lx

(5.9.2)

and one can approximate dkx≈2π/Lx to go from discrete to continuum limit, or directly
using the connection between discrete and continuous counterparts

1
LxLy

∑
m,n

⇔
∫ d2k⊥

(2π)2 =
( k

2π
)2∫

dΩscosθs (5.9.3)

to find the incoherent reflectivity pattern as

σs(Ωs,Ωi)= k2LxLy
(2π)2

cos2θs
cosθi

|Smn|2 (5.9.4)

Here, kx=k1sinθscosφs and ky=k1sinθssinφs are the Floquet wavenumber components for
the scattered field given by Eq. (??). The relation between mode number (m,n) and
scattering direction (θs,φs) can be written as tanφs=kny/kmx and k2

1 sin2θs=k2
mx+k2

ny.
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Note that the presence of the factor cos2θs mandates that σs→0 for θs→±π/2 which
corresponds to the perimeter of the hemispheric plots (Fig. 5.4). However, due to the
limited spatial resolution of the solution, θs=±π/2 may not be achievable exactly over the
(θs,φs) grid for a given period of the surface.

Figure 5.4 and 5.5, compares co-polarized σhhs and cross-polarized σvhs bistatic reflec-
tivity of the structure described in Section 5.9 with RMS height of 0.03λ1, obtained by
the T -matrix and periodic SPM2, respectively. In order to increase the resolution of pat-
terns, we consider interfaces of dimension 7λ×7λ and total number of 25×25 modes which
leads to satisfaction of power conservation criteria better than 10−4. The incident field is
an h-polarized (TE) plane wave at θi=40◦ (with respect to the −z direction) and φi=0◦.
The responses show good agreement in the forward scattering portion of the hemisphere,
while more significant differences occur in the backscatter direction. The T -matrix method
predicts higher reflectivity near backscattering direction while SPM2 concentrates more
reflection near the forward scattering direction. In order to make a comparison between

Figure 5.4: Co-polarized reflectivity pattern σhhs of the 5 layer structure described
in section 5.9 for a TE-polarized incident field at θi=40◦, φi=0◦ obtained by the

T -matrix (left) and SPM2 (right).

SPM2 and T -matrix for the case of anisotropic surfaces, we consider all of the interfaces
for the structure in 5.9 to be a Gaussian surface with correlation length along x and y
directions given by `x=2λ1, and `y=λ1, respectively with RMS height of h=0.03λ1. Here,
as opposed to the case of isotropic surface where the scattering pattern is independent of
polar angle of incident φi, scattering pattern depends on φi as well as θi.

Figures. 5.6 and 5.7 compare the co-polarized and cross-polarized scattering pattern of
the anisotropic surface for TE-polarized incident field at θi=40◦ and φi=0. SPM2 results
in a very close pattern to that of T -matrix around the forward scattering portion of the
hemisphere (although SPM2 gives 2 dB higher value at specular peak for co-pol) while
it yields lower reflectivity (≈60 dB lower) in backscattering portion of the hemisphere.
Also, Figs. 5.8 and 5.9 compare the co-polarized and cross-polarized scattering pattern
of the anisotropic surface for TE-polarized incident field at θi=40◦ and φi=90◦. The
differences between both patterns are similar to that of φi=0. The present discrepancy
in the backscattering portion of the hemispheric plot of reflectivity pattern between the
SPM and the T -matrix solution can be explained as follows. In the the second order SPM,
the reflectivity patten is proportional to the second moment of the surface (second order
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Figure 5.5: Cross-polarized reflectivity pattern σvhs of the 5 layer structure de-
scribed in section 5.9 for a TE-polarized (h−pol) incident field at θi=40◦, φi=0◦

obtained by T -matrix (left) and SPM2 (right).

multiple scattering) while in actuality, the scattering process involves infinite orders of
multiple scattering. Although in the perturbation solution the contribution of higher order
terms decays with the powers of small roughness parameter, inclusion of higher order terms
will broaden the spectrum of the scattered field. The T -matrix which in principle contains
all orders of multiple scattering, yields more reflectivity than SPM2 in the backscattering
direction.

Figure 5.6: Co-polarized reflectivity pattern σhhs of the 5 layer structure includ-
ing anisotropic interfaces (`x=2`y=2λ1, hrms=0.03λ1) for a TE-polarized (h−pol)
incident field at θi=40◦, φi=0◦ obtained by the T -matrix (left) and SPM2 (right).

5.10 Conclusion
The problem of 3D electromagnetic scattering from a layered medium having 2D random
rough interfaces was address in this paper using a T-matrix approach. The formulation
is based on solving the coupled integral equation with a periodic Green’s function kernel
using the Floquet mode expansion. Comparison of the T-matrix results with the SPM2
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Figure 5.7: Cross-polarized reflectivity pattern σvhs of the 5 layer structure includ-
ing anisotropic interfaces (`x=2`y=2λ1, hrms=0.03λ1) for a TE-polarized (h−pol)
incident field at θi=40◦, φi=0◦ obtained by the T -matrix (left) and SPM2 (right).

Figure 5.8: Co-polarized reflectivity pattern σhhs of the 5 layer structure includ-
ing anisotropic interfaces (`x=2`y=2λ1, hrms=0.03λ1) for a TE-polarized (h−pol)
incident field at θi=40◦, φi=90◦ obtained by the T -matrix (left) and SPM2 (right).

is done for a 5 layered medium within the small height regime through the emissivity and
co-polarized/cross-polarized bistatic reflectivity. The comparison shows a good agreement
between the T-matrix and SPM2 methods in appropriate limits, and the ability of the
T-matrix method to extend the computations beyond the limits of the SPM2. Also, the
comparison of methods in the case of anisotropic surfaces show a close results near the
forward scattering direction while there are significant differences near the backscattering
direction.
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Figure 5.9: Cross-polarized reflectivity pattern σvhs (θs,φs) of the 5 layer structure
including anisotropic interfaces (`x=2`y=2λ1, hrms=0.03λ1) for a TE-polarized
(h−pol) incident field at θi=40◦, φi=90◦ obtained by the T -matrix (left) and

SPM2 (right).

5.10.1 Special Case: Sinusoidal Periodic Surface

For the case of separable periodic surface where f(x,y)=h(x)+g(y) the potential integrals
of Ipqmn can be separated into one dimensional integrals,

Ipqmn=
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cell
d2r′ei(k

pq
⊥ −k

mn
⊥ )·r′⊥+ikmnz f(r′⊥) (5.10.1)

=
∫
Lx

dx′
∫
Ly

dy′ei(k
p
x−kmx )x′ei(k

q
y−kny )y′eik

mn
z h(x)eik

mn
z g(y)

=Impx Inqy

where typical one dimensional integrals of the form

Impx =
∫
Lx

dx′ei(k
p
x−kmx )x′eik

mn
z h(x) (5.10.2)

which is the Fourier transform of the exp
[
ikmnz h(x)

]
evaluated at kx=kpx−kmx . This integral

can be computed in closed form for a sinusoidal surface of f(x)=Acos(2πx/Lx). For this
surface,

Impx =
∫
Lx

dx′ei(p−m)2πx′/Lxeik
mn
z Acos(2πx/Lx) (5.10.3)

=
∫ 2π

0
dθei(p−m)θeik

mn
z Acosθ

This is an integral of the form,

I=
∫ 2π

0
dθ eimθe±iαcosθ , α∈C,m∈Z (5.10.4)

Form the integral representation of Bessel function of the first kind we have [93]

Jm(α)= 1
2π

∫ 2π

0
dθeiαsinθ−imθ (5.10.5)
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changing dummy variable according to θ→π/2−θ we have

2πJm(α)eimπ/2=
∫ 2π

0
dθeiαcosθ+imθ (5.10.6)
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Chapter 6

Small Perturbation Method in
Resonance Condition

6.1 Introduction
The small perturbation method has been studied for random rough surface scattering ex-
tensively [24, 29–39]. Recently, the method has been studied for multi-layered random
rough surfaces [24, 30, 34] as an analytical method which has advantages over numerical
methods for multiple rough interfaces. As the number of layers increases, Numerical meth-
ods become costly in CPU and memory. An application of the multi-layered medium is
microwave remote sensing of ice sheets in the Arctic and Antarctica, where the snow layers
have multi-layering of fluctuations of permittivity due to the snow accumulation patterns
as well as rough interfaces between layers [41].

The small perturbation method must be carried out to the second order[24] for energy
conservation in emissivity calculations. In carrying out the Small Perturbation Method,
the higher order field is expressed in terms of a convolution of the layered medium Green’s
function with the lower order field, where the convolution is performed in the spectral do-
main. To calculate the emissivity, the energy is decomposed into the incoherent intensity
and the coherent intensity followed by the spectral integration. In the incoherent intensity,
integration is to be carried out over the visible radiation spectrum. However, In the coher-
ent intensity, integration is to be carried out over the entire k domain spectrum. In the
case of a 1D rough surface with z as the vertical direction and x the horizontal direction
(symmetry along y direction), the spectral domain integrations that appear in the coherent
and incoherent intensities are continuous integrals over kx. However, in a layered dielectric
structure, when a dielectric layer has higher dielectric constant than its surrounding media,
discrete waveguide modes exist. Mathematically, the waveguide modes correspond to the
poles in the Green’s function, and lie on the real kx axis or close to the real kx axis for loss-
less and slightly lossy dielectric, respectively. In a multi-layered medium, it also becomes
difficult to determine the location of these poles to set up an appropriate numerical integra-
tion grid. The existence of waveguide modes presents a difficulty for the implementation of
the second order small perturbation method.

The case of waveguide modes in layered media has been addressed in the past for the
higher orders of interaction [94–96]. In [94, 96], authors show that the waveguide modes can
appear in the propagating part of the spectrum (Satellite Peaks) as a results of higher order
of surface interaction. However, in second order perturbation waveguide poles are located
in the evanescent part of the spectrum. In the case of random permittivity profile, when
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SPM2 solution always has such singularities, we present a numerical approach to resolve
the case of singular integrand appearing in power calculations of SPM2.

In this paper, we consider the second order small perturbation method for a layered
geometry when the permittivity profile allows the existence of waveguide modes. Our
proposed solution is analytical continuation of the integrands to the complex plane and use
the Sommerfeld integration path (SIP) [97–99] to avoid possible poles on the real kx axis.
Another advantage of using the SIP is that the pole locations do not need to be known to
perform the integrations. The SIP is applied to the cases of lossy dielectrics, monotonic
permittivity profiles, and permittivity profiles which support guided modes to show its
robustness. It is also shown that the use of the Sommerfeld path presents no additional
increase in CPU time versus integration over the real kx axis. We also compare the results
with the T-matrix (Extended Boundary Condition) method [50] showing good agreement
between our SPM2 alternative and the T-matrix method. The good agreement confirms
the correctness of the method of the SIP in the presence of guided modes. The outline of
the paper is as follows: In section 6.2, the formulation of SPM2 for a two layered media
with random rough interfaces is derived in details using compact operator notations. This
will help to explain the origin of the main problem which is singular behavior of SPM2
kernel functions. Then, we briefly discuss obtaining scattered field and scattered power
in terms of surface fields. In section 6.4 the origin of pole singularities will be identified
and an appropriate alternative path is introduced. Section 6.5 is dedicated to compare
the SIP alternative to the T-matrix method. In the last section, comparison of the SIP
alternative and the T-matrix method is given for the case of arbitrary number of layers
with non-monotonic permittivity changes.

Figure 6.1: A dielectric slab sandwiched between to dielectric half spaces.

6.2 Problem Formulation
The small perturbation solution for the scattering of electromagnetic waves from multi-
layer media with rough interfaces has been studied in detail in [24]. Here we formulate the
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problem of a dielectric slab with two one-dimensional randomly rough surfaces, sandwiched
between two semi-infinite dielectric media using a compact operator form which is more
suitable for detection of the poles (Fig. 6.1). The formulation is based on the extinction
theorem [3] and obtaining coupled surface integral equations for the surface fields on the
interfaces. Application of the extinction theorem statement for region 0 in Fig. 6.1, results
in

0=ψi(kx)− i

2kz

[
A0(kx)−ikzB0(kx)+

∫
dk′xI−00(kx,k′x)

{
A0(k′x)−B0(k′x)ik

2−kxk′x
kz

}]
(6.2.1)

Here, ψi(kx) is the incident field (ψi=Eiy and ψi=Hiy for TE and TM polarizations, re-
spectively) and A(kx) and B(kx) are spectral components of the surface magnetic and
electric fields. On the first boundary, surface fields are defined as a(x)dx=dln̂·∇E0y and
b(x)=E0y(x) and related to the spectral fields by

a0(x′)=
∫

dk′xA0(k′x)eik′xx′ (6.2.2)

b0(x′)=
∫

dk′xB0(k′x)eik′xx′

Also in (6.2.1), I−00(kx,k′x) is the scattering potential due to the roughness of the first
boundary described by z=f0(x) which is seen by downward propagating wave in the region
0 and is defined as

I−00(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
eikzf0(x′)−1

]
(6.2.3)

Similarly, defining the surface fields a1(x) and b1(x) on the other boundary characterized
by z=f1(x)−d and then applying the extinction theorem to region 1 and region 2, we can
write an integral equation describing all of the surface unknowns in the spectral domain as

G0(kx)ψ(kx)+
∫

dk′x S(kx,k′x)ψ(k′x)=ψi(kx,kix) (6.2.4)

Here ψ(kx)=[A0(kx),B0(kx),A1(kx),B1(kx)]T is the unknown surface field column vector
and

G0(kx)=


− i

2kz −1
2 0 0

γ01 ik1z −eik1zd −ik1ze
ik1zd

γ01 −ik1z −e−ik1zd ik1ze
−ik1zd

0 0 γ12 ik2z

 (6.2.5)

is the propagator of the surface fields represented in the spectral domain corresponding
to propagation of the fields inside the same layered media with flat interfaces. Also, the
γij ’s are constant coefficients (coming from application of boundary conditions) which are
γij=µi/µj and γij=εi/εj for TE and TM polarizations respectively. The presence of rough
interfaces are described by the scattering operator S(kx,k′x),

S(kx,k′x)=


− i

2kz I
−
00 −k2−kxk′x

2k2
z

I−00 0 0
γ01I

+
10 i

k2
1−kxk

′
x

k1z
I+

10 −eik1zdI+
11 −eik1zdi

k2
1−kxk

′
x

k1z
I+

11

γ01I
−
10 −ik

2
1−kxk

′
x

k1z
I−10 −e−ik1zdI−11 e−ik1zdi

k2
1−kxk

′
x

k1z
I−11

0 0 γ12I
+
21 i

k2
2−kxk

′
x

k2z
I+

21

 (6.2.6)
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which is responsible for all orders of multiple scattering from each surface and also mu-
tual interaction between the two boundaries. The scattering potential I±mn(kx,k′x) has the
following form

I±mn(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
e∓ikmzfn(x′)−1

]
(6.2.7)

The integral equation of the surface fields can be cast into an operator equation (Lippmann-
Schwinger equation) of the form,

G0ψ+Sψ=ψi (6.2.8)

where S is the integral operator of the rough surface scattering. For small height where
||G0||�||S||, a formal solution can be obtained as

ψ=G−1
0

∞∑
n=0

[
−G−1

0 S
]n
ψi (6.2.9)

G−1
0 appears in all perturbation orders of the solution. As we will see, G0 is singular

at the internal resonance frequency kx that corresponds to the guided waves inside the
dielectric slab with flat interfaces. At those values of kx, G0 is not invertible and make all
of the perturbation orders of the solution singular. However, the solution to the Lippmann-
Schwinger equation requires inversion of (G0+S) to obtain,

ψ=(G0+S)−1ψi (6.2.10)

Even if G0 is not an invertible operator at internal resonance frequencies, for a random
interface, the operator G0+S is invertible with probability of 1. Therefore, the singularities
in the solution is artificial and consequence of the iterative solution.

6.2.1 Perturbation solution of Surface field

In order to solve for the surface field ψ(kx) we express it as a perturbation series

ψ(kx)=ψ(0)(kx)+ψ(1)(kx)+ψ(2)(kx)+··· (6.2.11)

and then iterate solution to find higher order surface fields.

Zeroth order solution

The zeroth order solution corresponds to the case of flat interfaces. The scattering potentials
have been defined in such a way that they have no contribution to the zeroth order solution.
In fact, if the waveguide modes exist for a particular configuration, they cannot be excited
by an incident plane wave. Only a local source or perturbation such as a rough interface
can excite the modes. The scattering operator kernel is zero up to the zeroth order

S
(0)

(kx,k′x)=0 (6.2.12)
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Thus, the zeroth order surface fields ψ(0)(kx) can be obtained easily from

G0(kx)ψ(0)(kx)=ψi(kx,kix)=−δ(kx−kix)
[
1 0 0 0

]T
(6.2.13)

Since the right hand side is non zero only for kx=kix, equation (6.2.13) has a unique
solution, if

∣∣∣G0(kix)
∣∣∣ 6=0

ψ
(0)(kx)=−δ(kx−kix)G

−1
0 (kix)ψi (6.2.14)

Here we need to find how
∣∣∣G0(kix)

∣∣∣ behaves in order to examine the validity of solu-
tion(6.2.14). We will come back to this issue later in section (6.4).

First order solution

Balancing the integral equation of the surface fields to the first order we have (G0 is non-
perturbative )

G0(kx)ψ(1)(kx)+
∫

dk′x S
(1)

(kx,k′x)ψ(0)(k′x)=0 (6.2.15)

Using the zeroth order solution we have

G0(kx)ψ(1)(kx)−S
(1)

(kx,kix)G
−1
0 (kix)ψi=0 (6.2.16)

Now, if
∣∣∣G0(kx)

∣∣∣ 6=0 at a desired value of kx, we can invert it to find

ψ
(1)(kx)=G

−1
0 (kx)S

(1)
(kx,kix)G

−1
0 (kix)ψi (6.2.17)

However we will show that (see section 6.4) at a resonance condition when the permittivity
of the slab (ε1) is larger than the surrounding medium (ε0<ε1>ε2), G0(kx) is not invertible
at the guided mode’s cutoff frequency kgx, resulting in pole singularities in the spectral
surface fields solution.

Second order solution

Balancing the integral equation of the surface fields to the second order results in

G0(kx)ψ(2)(kx)+
∫

dk′x S
(2)

(kx,k′x)ψ(0)(k′x)+
∫

dk′x S
(1)

(kx,k′x)ψ(1)(k′x)=0 (6.2.18)

By substituting the zeroth order solution we have

G0(kx)ψ(2)(kx)−S
(2)

(kx,kix)G
−1
0 (kix)ψi+

∫
dk′x S

(1)
(kx,k′x)ψ(1)(k′x)=0 (6.2.19)

Now if G0(kx) is invertible, we can solve for second order fields as

ψ
(2)(kx)=G

−1
0 (kx)S

(2)
(kx,kix)G

−1
0 (kix)ψi−G

−1
0 (kx)

∫
dk′x S

(1)
(kx,k′x)ψ(1)(k′x) (6.2.20)

Also substituting the first order surface fields of ψ(1)(kx), we obtain the second order solution
as

ψ
(2)(kx)=G

−1
0 (kx)S

(2)
(kx,kix)G

−1
0 (kix)ψi

−G
−1
0 (kx)

∫
dk′x S

(1)
(kx,k′x)G

−1
0 (k′x)S

(1)
(k′x,kix)G

−1
0 (kix)ψi (6.2.21)
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6.3 Scattered and transmitted field
Using the spectral domain version of the equivalence principle applied to region 0 in Fig.
6.1, we can find the scattered field in region 0 as

ψs(kx)=− i

2kz

[
A0(kx)+ikzB0(kx)+

∫
dk′xI+

00(kx,k′x)
{
A0(k′x)+B0(k′x)ik

2−kxk′x
kz

}]
(6.3.1)

Here, ψs=Esy and ψs=Hsy for TE and TM polarizations, respectively. The surface fields
solution A0(kx) and B0(kx) are known up to the second order from the extinction equations.
The scattering potential due to roughness of the first boundary experienced by the upward
going wave in region 0 is

I+
00(kx,k′x)= 1

2π

∫
dx′e−i(kx−k′x)x′

[
e−ikzf0(x′)−1

]
(6.3.2)

Similarly, the scattered field into region 2 (which is the transmitted field) can be obtained
as

ψt(kx)= i

2k2z
e−ik2zd

[
γ12A1(kx)−ik2zB1(kx)+

∫
dk′xI−21(kx,k′x)

{
γ12A1(k′x) (6.3.3)

−B1(k′x)ik
2
2−kxk′x
k2z

}]
in terms of surface fields A1(kx) and B1(kx) which are defined on the second boundary.
I−21(kx,k′x) is the potential due to roughness of the second surface experienced by the down-
ward traveling wave in region 2 and is given by

I−21(kx,k′x)= 1
2π

∫
dx′e−i(kx−k′x)x′

[
e+ik2zf1(x′)−1

]
(6.3.4)

If we define the scattered field column vector

ψs(kx)=
[
ψs(kx)
ψt(kx)

]
(6.3.5)

we can write relations (6.3.1) and (6.3.3) in a compact form

ψs(kx)=G
0
s(kx)ψ(kx)+

∫
dk′x Ss(kx,k′x)ψ(k′x) (6.3.6)

where G
0
s(kx) is the propagator of the scattered field in the layered media with flat interfaces

and is given by

G
0
s(kx)=

[
− i

2kz
1
2 0 0

0 0 i
2k2z

e−ik2zdγ12
1
2e
−ik2zd

]
(6.3.7)

Ss(kx,k′x) is the scattering operator corresponding to the scattered field

Ss(kx,k′x)=

− i
2kz I

+
00

k2−kxk′x
2k2
z

I+
00 0 0

0 0 i
2k2z

e−ik2zdγ12I
−
21 e−ik2zd k

2
2−kxk

′
x

2k2
2z

I−21

 (6.3.8)

Now, we just need to insert the surface field solution into the governing relation of the
scattered field (6.3.6)to find different orders of scattered fields.
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6.3.1 Zeroth order scattered field

Balancing (6.3.6) up to the zeroth order, gives

ψ
(0)
s (kx)=G

0
s(kx)ψ(0)(kx) (6.3.9)

Substituting the zeroth order solution of the surface fields 6.2.14 into (6.3.9) results in

ψ
(0)
s (kx)=−δ(kx−kix)G

0
s(kix)G

−1
0 (kix)ψi (6.3.10)

6.3.2 First order scattered field

Up to the first order of perturbation, the scattered field is

ψ
(1)
s (kx)=G

0
s(kx)ψ(1)(kx)+

∫
dk′x S

(1)
s (kx,k′x)ψ(0)(k′x) (6.3.11)

Using the zeroth and first order solution of the surface fields (6.2.14) and (6.2.17) we arrive
at

ψ
(1)
s (kx)=G

0
s(kx)G

−1
0 (kx)S

(1)
(kx,kix)G

−1
0 (kix)ψi−S

(1)
s (kx,kix)G

−1
0 (kix)ψi (6.3.12)

Now, we can split the scattering operators S
(1)

and S
(1)
s into two parts, one corresponds to

the effect of roughness due to the first boundary S
(1)
F0 and the other due to the presence of

the second boundary S
(1)
F1 . For S

(1)
s (kx,kix), we can write it as

S
(1)
s (kx,kix)=S

(1)
s,F0(kx,kix)F0(kx−kix)+S

(1)
s,F1(kx,kix)F1(kx−kix) (6.3.13)

Here

S
(1)
s,F0(kx,kix)=

[
−1

2 −ik2−kxkix
2kz 0 0

0 0 0 0

]
(6.3.14)

S
(1)
s,F1(kx,kix)=

[
0 0 0 0
0 0 −1

2e
−ik2zdγ12 e−ik2zdi

k2
2−kxkix

2k2z

]
(6.3.15)

and Fj(kx) is the Fourier Transform of the j−th surface boundary fj(x). Using this sep-
aration, we can divide the first order scattered field into contributions from each rough
interface,

ψ
(1)
s (kx)=ψ(1)

s,F0(kx)F0(kx−kix)+ψ(1)
s,F1(kx)F1(kx−kix) (6.3.16)

where

ψ
(1)
s,Fj (kx)=

[
G

0
s(kx)G

−1
0 (kx)S

(1)
Fj (kx,kix)−S

(1)
s,Fj (kx,kix)

]
G
−1
0 (kix)ψi ,j=0,1 (6.3.17)
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6.3.3 Second order scattered field

Balancing (6.3.6) up to the second order of perturbation yields the second order scattered
field in terms of different orders (0, 1, 2) of the surface field solution as

ψ
(2)
s (kx)=G

0
s(kx)ψ(2)(kx)+

∫
dk′x S

(2)
s (kx,k′x)ψ(0)(k′x)+

∫
dk′x S

(1)
s (kx,k′x)ψ(1)(k′x) (6.3.18)

Using the zeroth and first order surface fields solution of (6.2.14) and (6.2.17) we have

ψ
(2)
s (kx)=G

0
s(kx)ψ(2)(kx)−S

(2)
s (kx,kix)G

−1
0 (kix)ψi (6.3.19)

+
∫

dk′x S
(1)
s (kx,k′x)G

−1
0 (k′x)S

(1)
(k′x,kix)G

−1
0 (kix)ψi

Similar to the decomposition of the first order scattering operator in (6.3.13), the second
order scattering operator is written as

S
(2)
s (kx,kix)=S

(2)
s,F0(kx,kix)F (2)

0 (kx−kix)+S
(2)
s,F1(kx,kix)F (2)

1 (kx−kix) (6.3.20)

F
(2)
j (kx−kix) is the convolution of the j-th surface spectrum Fj with itself, which is eval-

uated at kx−kix. The marginal second order scattering operators corresponding to the
scattered field are given by

S
(2)
s,F0(kx,kix)= 1

2

[
ikz
2 −k2−kxkix

2 0 0
0 0 0 0

]
(6.3.21)

S
(2)
s,F1(kx,kix)= 1

2

[
0 0 0 0
0 0 − ik2z

2 e−ik2zdγ12 −e−ik2zd k
2
2−kxkix

2

]

Thus, the second order scattered field becomes

ψ
(2)
s (kx)=G

0
s(kx)ψ(2)(kx)−F (2)

0 (kx−kix)S
(2)
s,F0(kx,kix)G

−1
0 (kix)ψi

−F (2)
1 (kx−kix)S

(2)
s,F1(kx,kix)G

−1
0 (kix)ψi

+
∫

dk′x F0(kx−k′x)F0(k′x−kix)S
(1)
s,F0(kx,k′x)G

−1
0 (k′x)S

(1)
F0 (k′x,kix)G

−1
0 (kix)ψi

+
∫

dk′x F0(kx−k′x)F1(k′x−kix)S
(1)
s,F0(kx,k′x)G

−1
0 (k′x)S

(1)
F1 (k′x,kix)G

−1
0 (kix)ψi

+
∫

dk′x F1(kx−k′x)F0(k′x−kix)S
(1)
s,F1(kx,k′x)G

−1
0 (k′x)S

(1)
F0 (k′x,kix)G

−1
0 (kix)ψi

+
∫

dk′x F1(kx−k′x)F1(k′x−kix)S
(1)
s,F1(kx,k′x)G

−1
0 (k′x)S

(1)
F1 (k′x,kix)G

−1
0 (kix)ψi

(6.3.22)

Before proceeding further, we take the statistical average of the scattered field. The mean
field expression can be derived with less effort, since averaging of statistical expressions in
the scattered field can be simplified greatly using

〈F (2)(kx−kix)〉=δ(kx−kix)
∫

dk′xW (k′x−kix)

〈F (kx−k′x)F (k′x−kix)〉=δ(kx−kix)W (k′x−kix) (6.3.23)
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The only assumption made in deriving (6.3.23) is that the surface processes are as-
sumed to be stationary. The second order spectral mean scattered field 〈ψ(2)

s (kx)〉 can be
decomposed into linear contributions from each boundary, that is

〈ψ(2)
s (kx)〉=δ(kx−kix)

∫
dk′x

[
〈ψ(2)

s 〉W0W0(k′x−kix)+〈ψ(2)
s 〉W1W1(k′x−kix)

]
(6.3.24)

where

〈ψ(2)
s 〉W0 =

{
G

0
s(kix)G

−1
0 (kix)

[
S

(2)
F0 (kix,kix)−S

(1)
F0 (kix,k′x)G

−1
0 (k′x)S

(1)
F0 (k′x,kix)

]
(6.3.25)

−S
(2)
s,F0(kix,kix)+S

(1)
s,F0(kix,k′x)G

−1
0 (k′x)S

(1)
F0 (k′x,kix)

}
G
−1
0 (kix)ψi

〈ψ(2)
s 〉W1 =

{
G

0
s(kix)G

−1
0 (kix)

[
S

(2)
F1 (kix,kix)−S

(1)
F1 (kix,k′x)G

−1
0 (k′x)S

(1)
F1 (k′x,kix)

]
(6.3.26)

−S
(2)
s,F1(kix,kix)+S

(1)
s,F1(kix,k′x)G

−1
0 (k′x)S

(1)
F1 (k′x,kix)

}
G
−1
0 (kix)ψi

Here we assume that the two surface processes f0(x) and f1(x) are uncorrelated.

6.3.4 Scattered and transmitted power

The scattered field in region 0 can be written in spatial coordinates as

ψs(r)=
∫

dkxψs(kx)eikxx+ikzz (6.3.27)

For different orders of the scattered field we have

ψ(0)
s (r)=ψ(0)

s (kix)eikix+ikizz (6.3.28)

ψ(1)
s (r)=

∫
dkxeikxx+ikzz

[
ψ

(1)
s,F0

(kx)F0(kx−kix)+ψ(1)
s,F1

(kx)F1(kx−kix)
]

〈ψ(2)
s (r)〉=eikix+ikiz

∫
dk′x

[
〈ψ(2)

s 〉W0W0(k′x−kix)+〈ψ(2)
s 〉W1W1(k′x−kix)

]
Here ψs=Esy is the y−component of the electric field associated with the scattered wave
for TE polarized incident field. The case of TM-polarized excitation can be obtained using
duality principle The mean scattered power density can be expressed in terms of the electric
field as

〈Ss ·ẑ〉=−
1
2Im

[ 1
kη

〈
Esy

∂E∗sy
∂z

〉]
(6.3.29)

Noting that the first order scattered field has zero mean, the coherent power density flowing
upward can be written as

〈Ss ·ẑ〉coh= 1
2Re

[
kiz
kη

(
|E(0)

sy |2+2〈E(2)
sy 〉E(0)∗

sy

)]
(6.3.30)
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then we can decompose the coherent scattered power into zeroth order and second order
parts

〈Ss ·ẑ〉(0)
coh= 1

2Re
[
kiz
kη
|E(0)

sy |2
]

(6.3.31)

〈Ss ·ẑ〉(2)
coh=Re

[
kiz
kη
〈E(2)

sy 〉E(0)∗
sy

]
The zeroth order scattered power is the power scattered by the same structure with flat
boundaries. Using the second order mean scattered field 6.3.24 we have the coherent mean
power density in ẑ direction as

〈Ss ·ẑ〉(2)
coh=

∫
dk′xRe

[
kiz
kη
ψ(0)∗
s (kix)

[
〈ψ(2)

s 〉W0W0(k′x−kix)+〈ψ(2)
s 〉W1W1(k′x−kix)

]]
=
∑
j=0,1

∫
dk′xΦcoh

s,j (k′x)Wj(k′x−kix) (6.3.32)

where we call Φcoh
s,j (k′x), the j−th surface coherent scattered power spectral coefficient. The

incoherent power originates from the first order scattered field

〈Ss ·ẑ〉incoh=−1
2Im

[ 1
kη

〈
E(1)
sy

∂E
(1)∗
sy

∂z

〉]
= 1

2Re
[
kz
kη

〈
E(1)
sy E

(1)∗
sy

〉]
(6.3.33)

However, assuming uncorrelated surface processes, we have

〈ψ(1)
s (r)ψ(1)∗

s (r)〉=
∫

dkx
[
|ψ(1)
s,F0

(kx)|2W0(kx−kix)+|ψ(1)
s,F1

(kx)|2W1(kx−kix)
]

(6.3.34)

Therefore, the incoherent power density flowing in the z direction can be written in terms
of surface spectra

〈Ss ·ẑ〉incoh= 1
2kη

∫
dkxRe(kz)

[
|ψ(1)
s,F0

(kx)|2W0(kx−kix)+|ψ(1)
s,F1

(kx)|2W1(kx−kix)
]

(6.3.35)

and the transmitted power can be computed similarly. The connection between the spectral
and spatial representation of the transmitted field into region 2 is as follows

ψt(r)=
∫

dkxψt(kx)eikxx−ik2zz (6.3.36)

Following the same procedure as the scattered field, we have similar expression for the
coherent and incoherent transmitted power densities along (−ẑ) direction

〈St ·ẑ〉(2)
coh=

∫
dk′xRe

[
k2iz
k2η2

ψ
(0)∗
t (kix)

[
〈ψ(2)

t 〉W0W0(k′x−kix)+〈ψ(2)
t 〉W1W1(k′x−kix)

]]
(6.3.37)

〈St ·(−ẑ)〉incoh= 1
2kη

∫
dkxRe(k2z)

[
|ψ(1)
t,F0

(kx)|2W0(kx−kix)+|ψ(1)
t,F1

(kx)|2W1(kx−kix)
]

(6.3.38)
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6.4 Waveguide modes and Sommerfeld integration path
In the case of resonance condition, when ε0<ε1>ε2, layered media can support guided
modes at specific spectral frequencies kgx for which

∣∣∣G0(kgx)
∣∣∣=0. Surface field quantities

which are governed by G0(kx), will have pole singularities at kx=kgx. The determinant of
the flat surface layered media propagator G0(kx) can be evaluated as

|G0(kx)|=−i
kz
e−ik1zd(γ01kz+k1z)(γ12k1z+k2z)

[
1+R01(kx)R12(kx)e2ik1zd

]
(6.4.1)

where k2
jz+k2

x=k2
j and

R01(kx)= γ01kz−k1z
γ01kz+k1z

(6.4.2)

R12(kx)= γ12k1z−k2z
γ12k1z+k2z

are electric field reflection coefficients from the two interfaces (assuming unbounded media).
Also, γij=εj/εi for TM polarization and γij=µj/µi for a TE polarized wave. For simplicity,
consider the case of TE polarized incident field and non-magnetic media. In this scenario,
we do not have any depolarization and all of the field quantities preserve the incident
polarization. In this case the determinant of G0(kx) becomes

|G0(kx)|=−i
kz
e−ik1zd(kz+k1z)(k1z+k2z)

[
1+R01(kx)R12(kx)e2ik1zd

]
(6.4.3)

The terms (kz+k1z) and (k1z+k2z) cannot be zero for distinct media (also, for the case of
same media it will cancel out by the denominator). The only terms that can produce poles
(eigenvalues of the propagator) comes from the expression

N(kx)=1+R01(kx)R12(kx)e2ik1zd (6.4.4)

For the lossless case and under guidance condition, N(kx) has real zeros at kx=kgx that
will translate to real poles in the surface field solutions. These poles manifest themselves
in both the first and second order surface fields.

In this situation, using the conventional definition of Fourier integrals to come back from
spectral space to spatial space is illegal from a mathematical point of view. Computing the
spectral integral over the real line contains only the principal value integral, and exact value
of the integral is indefinite. Also from a physical point of view, singular behaviors should
be investigated. On the other hand, a principal value integral has its own difficulties. First,
we need to know the location of the poles which requires solving a nonlinear equation which
is a time consuming task for real problems of random media with a large number of layers
and ensemble of physical parameters, and second, when we know the poles’ locations, it is
necessary to use a dense numerical integration grid near the poles to capture the principal
value integral correctly.

Instead of using spectral integrals over the real line, we will use the notion of analytic
continuation of integrands and deform the path of integration into a Sommerfeld path
alternative. This ensures definite values for the integrals and meaningful quantities in the
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spectral domain. Therefore we need to formulate the problem by changing spectral integrals
as ∫

R
dkx=⇒

∫
SIP

dkx (6.4.5)

In order to find the correct perturbed path of integration, or the Sommerfeld path of
integration (SIP), we need to insert a small amount of loss such that propagating waves
satisfy the radiation condition at infinity correctly. Then as the loss tends to zero we can
identify the correct path of integration. Note that the SIP should work for a small loss
condition, so this is our selection rule. In Fig. 6.2, with a small amount of loss, poles reside
in the first quadrant (and also in the third quadrant). So for the lossless case, poles in the
first quadrant merge to the real axis from the upper half plane. So, the appropriate SIP is
passing through the second and fourth quadrants. Note also that branch cuts (compatible
with the radiation condition) for a lossy problem start from the poles in the upper half
plane and converge to the real axis. By this selection we avoid crossing any branch cuts.

k0
x

k00
x

kmin kmax

+ +

+ +
Lossy poles

SIP
k0

x

k00
x

kmin kmax

+ +

+ +
Lossy poles

SIP

Figure 6.2: Appropriate Sommerfeld path of integration for the case of lossless
layered dielectric media. SIP is chosen such that it does not pass over the poles or

branch cuts of kjz (j=0,1,2).

6.4.1 Sommerfeld Integration Path: Numerical Examples

In order to illustrate the concept, consider the special case of two layered media with lossless
materials given by ε0=ε0, ε1=4ε0 and ε2=2ε0 with separation of layers d=0.7λ0 which can
support a guided mode (λ0 is free space wavelength). In this case we can find zeros of N(kx)
numerically at kx=1.684k0 and kx=1.923k0. Both of the guided modes are evanescent in
the z direction in the upper and lower regions. For incoherent scattered and transmitted
intensities, the averaged propagating power density (real part of the poynting vector) of
Eqs. (6.3.35) and (6.3.38) are limited to the propagating part of the spectrum (because
of Re(kz) and Re(k2z) factors). In other words, the incoherent power spectral coefficients
(Φincoh

s/t,j (kx)) are only non-zero when |kx|≤k0 and |kx|<k2 for reflected and transmitted
power respectively. Thus, the poles at the eigen-mode frequencies (kgx) do not appear in
the incoherent part. This will happen only in the lossless case when kjz=

√
k2
j−k2

x is purely
imaginary in the evanescent part of the spectrum (|kx|>kj).

This is not the case with coherent intensities. Coherent intensities are not limited to
propagating waves and they are non-zero over the whole spectrum. Therefore, we are faced
with the guided modes singularities in the coherent part of the spectrum. In order to capture
the total coherent power, theoretically, we need to integrate the coherent power spectral
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coefficients up to infinity, but in practice, all of the surfaces are band limited in roughness
and we only need to do integration over the spectrum up to some point (kx,max). Here we
have two cases; 1 - The power spectral density of the surfacesWj(kx), are very band-limited
and decay quickly with increasing kx (very gentle surfaces with large correlation length).
In this case we can put an appropriate cutoff for spectral quantities under the integrand
(kx,max≤k0) and we are not worried about the poles which are always in the evanescent
part of the spectrum. 2 - The power spectral densities of the surfaces do not decay rapidly
enough (very rough surfaces with fast variations or small correlation length), so it may
be necessary to continue integrating the coherent intensities to get a convergent result
(kx,max>k0). In this case the presence of the poles causes serious numerical problems in
evaluating the spectral integrals [100, 101]. Figure 6.3, plots for power spectral coefficients
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Figure 6.3: Coherent power spectral density of the first surface, for coherent
scattered and transmitted power densities which are evaluated over the real kx
axis. Physical parameters are ε0=ε0,ε1=2ε0,ε2=4ε0 and average distance between
the surfaces is 0.7λ0 for the case of normal incidence. Coherent kernel functions

Φcoh
s/t,j(kx), have no singularity in this case of monotonic dielectric variation.

of a two layer media with dielectric constant of (1,2,4) from top to bottom for normal
incidence. Note that for the case of monotonic changes in permittivity, the coherent power
spectral coefficients are smooth functions of kx. On the other hand, Fig.6.4, plots the
coherent power spectral coefficients of the first surface over the real line compared to the
corresponding values over the SIP for dielectric constants of (1,4,2) from top to bottom.
The integrands along the SIP are very gentle so the integrals can be computed accurately by
a relatively coarse numerical integration grid. The price we pay is that we need to increase
the integration interval over the SIP to get convergent results. On the other hand, in this
way mesh refinement near poles is not necessary and a uniform grid works over the SIP.
Choosing the parameters of the Sommerfeld path accordingly, one can greatly facilitate
computation of spectral integrals.

Similarly, Fig. 6.5, plots the second surface power spectral coefficients over the real line
and the SIP.
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Figure 6.4: Coherent power spectral density of the first surface, for coherent
scattered and transmitted power densities. Physical parameters are given in 6.4.1.
Solid lines are power spectral densities evaluated over the real line which have sin-
gularities and cannot be integrated easily, while, dotted lines are the corresponding
functions evaluated over the SIP. Variation of integrands is very gentle over the SIP

compared to real line.
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Figure 6.5: Coherent power spectral density of the second surface, for scattered
and transmitted power. Physical parameters are given in 6.4.1. Solid lines, are
power spectral densities evaluated over the real line which have singularities and
cannot be integrated easily, while the dotted lines are the corresponding functions
evaluated over the SIP. Variation of integrands is very gentle over the SIP compared

to the real line.

6.4.2 SIP Implementation

Figure 6.6 shows a practical implementation of the SIP in the complex kx-plane. Here, we
need to choose appropriate values for the real cutoff wavenumber k′x,max and the maximum
deviation of path from the real axis k′′x,max. The former is determined by how rapidly the
power spectral densities of the surfacesWj(kx) attenuate along the k′x axis. For the latter, in
principle we can go up (down) the imaginary axis as high as we want. However, for practical
cases taking k′′x,max in the order of 1/d (d is the separation between the interfaces) results
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in smooth kernel functions. Taking k′′x,max very large requires a larger integration domain
k′x,max to obtain convergent results. We need also to choose the discretization resolution

k′′x,max

k′x

k′′x

−k′′x,max

k′x,max

−k′x,max

Figure 6.6: SIP in the complex kx-plane.

along the real and imaginary axes. Since we do not use the pole locations, we can use a
uniform numerical quadrature along the real kx axis with the grid spacing of ∆k′x. However
For a uniform quadrature, the error term is negligible if

∆k′x�k′′x,max (6.4.6)

For the examples in 6.4.1, we have used k′′x,max= 0.2
d and k′x,max=2max

[
k0,k1,k2

]
. Also

discretization steps along the real axis are chosen to be ∆k′x=0.2k′′x,max. The cost for doing
the spectral integral in the presence of guided modes using the SIP is not more than required
in the regular case (which is the real line spectral integration).

6.5 Comparison with the T-matrix method
The T-Matrix method (also known as extended boundary condition method) is another
powerful approach to compute electromagnetic scattering from random surfaces[50] . If the
surface of interest is periodic, we can use Bloch modes as an expansion function for the
surface fields. In this way, from the spectral point of view, there are only discrete values
of propagation constants for the scattered and transmitted fields. For a sufficiently large
period of the surface, the number of propagating Floquet modes becomes so large that it
can be considered realistically as a continuous solution of an infinite surface. Thus, for
large period surfaces, the T-Matrix solution coincides with the solution for an infinite sur-
face problem. Apart from considering the finite period for the surfaces instead of infinite
surfaces, the T-Matrix method has no approximation. In principle, it works for any sur-
face height, correlation length and any dielectric constants, however, in practice it suffers
from numerical issues for some cases (large RMS height, small correlation length and high
dielectric contrast) and needs to be regularized.

For the first comparison, consider layered media with physical parameters of ε0=ε0,
ε1=2ε0 and ε2=4ε0 which is the case that cannot support guided modes. Boundary sur-
faces are considered to be Gaussian correlated, Gaussian random processes with statistical
parameters given by hrms=0.03λ0 and correlation length of l=λ0 where λ0 is the free space
wavelength. For the T-matrix method we have generated an ensemble of Gaussian periodic
random surfaces with Gaussian correlation function. It turns out that for the given phys-
ical parameters for the two layered structure, the solution converges after averaging over
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≈50 realizations. In order to simulate an infinite surface, the period of the surface L is
selected as L=20λ0). Each realization of the surface is characterized by 1024 samples (≈
51 samples/λ0) for highly accurate computation of integrals. Figure 6.7, compares emissiv-

observation angle (deg)
0 10 20 30 40 50 60 70 80

E
m
is
si
v
it
y

0.75

0.8

0.85

0.9

0.95

1
T-Matrix
SPM2 (SIP)
Flat surface

Figure 6.7: Emissivity of two layer media with permittivities of ε0=ε0, ε1=2ε0
and ε2=4ε0 as a function of observation angle. Distance between two half spaces
(region 1 thickness) is considered to be d=0.7λ0. For this case where there is no
supported guided mode inside the media, SPM2 results coincide with T-Matrix
method solution. The dotted line corresponds to the flat boundary limit (presence
of roughness smooths out coherence effect due to reflections from boundaries).

ity versus observation angle obtained by integrating SPM2 kernels over the SIP with the
T-Matrix method solution and the case of zero RMS height (flat surfaces) for the regular
case where there are no guided modes in the structure (permittivities are ε0,2ε0,4ε0 from
top). In this case, integrating over the SIP for SPM2 kernels gives the same results as the
real line integration. For the regular cases (where no mode is supported within the slab),
SPM2 kernel functions are smooth and integration over SIP and real line exactly coincide
each other. We may conclude that for the regular case the SIP is a valid path of integration
and results in correct evaluation of the spectral integrals. Comparison with flat surface
emissivity also shows the level of accuracy of SPM2 in including the roughness effect.

As a second example, we consider the case where we encounter guided mode pole in
the structure. In order to see how the SIP works in this case, consider the previous con-
figuration with region 1 and 2 interchanged, i.e. ε0=ε0, ε1=4ε0 and ε2=2ε0, with other
physical parameters kept fixed. Here, this structure can support guided mode, and we
have pole singularities in the kernel functions of scattered and transmitted powers. Figure
6.8, compares the T-Matrix solution of emissivity versus observation angle, with 1) SPM2
kernel functions integrated over an appropriate SIP , 2) SPM2 kernels integrated over the
real line with 100 times finer grid, and 3) zero roughness limit (flat surfaces). Note that
in both cases of real line and SIP integration, we did not use the location of the poles. As
can be seen from Figs.6.7 and 6.8, the SIP not only works for the regular case, but also
is successful in the presence of guided modes, while the real line integral yields erroneous
predictions. This indicates that pole singularities can be avoided with only a moderate
impact on the integration approach, while continued use of the real line even with very fine
resolution remains problematic.
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Figure 6.8: Emissivity of two layer media with permittivities of ε0=ε0, ε1=4ε0
and ε2=2ε0 as a function of observation angle. Distance between two half spaces
(thickness of region 1 ) is considered to be d=0.7λ0. For this case where there are
supported guided modes inside the media, emissivity obtained by integrating SPM2
power kernels over the SIP are in very good agreement with the T-Matrix method
solution. Dashed line is corresponding to SPM2 integrated kernel functions over
the real line with 100 times finer uniform grid. Real line integration despite 100

times higher computational cost results in non-physical results.

6.6 Extension to arbitrary number of Layers
Generalizing the approach to the multi-layer case is straightforward. In this case the integral
equations which are related to the extinction of waves in the interior layers are homogeneous
[24]. Then, homogeneous integral equations can be cast into recursive ladder propagation
matrices for the surface fields over the rough boundaries. We do not repeat the procedure
here and refer the reader to [24] for a detailed formulation of the problem using ladder
operators.

In order to show the validity of the Sommerfeld alternative in multi-mode conditions in a
multi-layer medium, consider a stack of 5 media separated by 4 random rough surfaces. We
select the permittivity of the layers such that the structure supports guided modes. In this
example permittivity of the layers is considered to be ε0=ε0,ε1=3ε0,ε2=2ε0,ε3=4ε0 and ε4=
2ε0. Separation distances between the mean positions of interfaces are d1=0.3λ0,d2=0.7λ0
and d3=0.8λ0. The T-matrix solution for this case which includes 4 uncorrelated surface
processes (all of them Gaussian correlated with RMS height of h=0.03λ0 and correlation
length of l=1λ0), requiring averaging over a larger number of realizations compared to the
2 layers case. Here, we used an ensemble of 200 realizations (each realization contains 4
uncorrelated surface boundaries) for the emissivity response to converge.

Figure 6.9 plots the emissivity of the 5 layer structure (with given physical parameters
above) obtained by the SIP alternative in comparison with the T-matrix solution and zero
RMS height (flat surface) limit. The differences between the flat interface case and rough
interfaces are larger in this case compared to just two layers. This also shows that the SIP
can capture the impact of multi-layer roughness.
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Figure 6.9: Emissivity of a 5 layer media with permittivities of (1,3,2,4,2)ε0 from
top to bottom, as a function of observation angle. Separations between the mean
positions of interfaces are d1=0.3λ0,d2=0.7λ0 and d3=0.8λ0. For this case where
there are many supported guided modes inside the media, emissivity obtained by
integrating SPM2 power kernels over the SIP are in very good agreement with the
T-Matrix method solution. Dashed line corresponds to the flat boundaries limit.

6.7 Conclusion
The application of SPM2 to multi-layer lossless structures (or with small amount of loss)
with non-monotonic permittivity profiles, results in pole singularities in the integrands of
the scattered power densities. It has been shown that we can compute power integrals
very accurately at low cost using the Sommerfeld integration path alternative. The validity
of the SIP approach for both monotonic and non-monotonic cases has been confirmed by
comparing with the T-matrix method.
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Chapter 7

Partially Coherent Cascading
Scheme for Random Layered
Media With Rough Interfaces

7.1 Introduction
Scattering of electromagnetic waves from layered media with random rough interfaces is
an important problem in many applications in broad areas of science and engineering.
The problem of scattering from rough interfaces has been studied extensively in physical
modeling for remote sensing of the natural objects [102–106]. In particular, we are interested
in multi-layered media with rough interfaces as a model for the microwave remote sensing
of ice sheets in the Arctic and Antarctica [41, 78, 81, 84, 107, 108]. An ice sheet can be
represented as a layered medium in which the permittivity (as well as the thickness) of
a layer is a fluctuating function of depth due to the accumulation patterns of snow [41].
An additional statistical factor in the problem is presence of surface roughness at layer
boundaries.

For a given dielectric constant profile in depth (z), the computation of electromagnetic
wave scattering and emission can be solved in variety of ways [25, 30–32, 34, 38, 50, 80,
85, 109, 110]. However, in order to calculate the averaged quantities we need to run a
Monte-Carlo simulation over realizations of the surface profiles. If the specifications of the
problem are such that the Small Perturbation Method (SPM) [25, 35] is applicable, an
analytical solution for the mean and variance of the fields is available that eliminates the
need for Monte Carlo simulations [80].

Because the dielectric constant along z is also random, a Monte-Carlo simulation over
dielectric profile realizations is also required. Assuming that the number of layers (N) in the
problem is very large, the number of required realizations to obtain a convergent solution
can also be large (see ??). Coherence properties of electromagnetic waves propagating in
a random and turbulent atmosphere have been studied extensively [111–114]. The decay
of coherence shown in these references suggests a method for enhancing efficiency in the
computational of scattered fields [41]. In particular, if the dielectric profile has a finite
correlation length along z, a wave propagating inside the layered medium will lose its
phase coherency after traveling a distance of approximately the correlation length of the
permittivity random process ε(z). If the layered medium is therefore divided into blocks
(Fig.7.1), each having a length larger than the correlation length of ε(z), the fields within
each block have some degree of coherency, and phase should be taken into account in
the determination of the electromagnetic fields. However, it should also be reasonable to
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model the fields in distinct blocks as having no phase relationships, so that the intensities,
rather than fields, of adjacent blocks can be combined. Because Monte Carlo simulations
of electromagnetic scattering or emission for a block having a smaller number of layers are
known to converge more rapidly than those for a larger number of layers, this combined
coherent-incoherent approach greatly reduces the number of required realizations to reach
convergence. The cascading scheme for adjacent blocks can be developed based on power
conservation arguments in two polarizations (e or TE, and h or TM).

In Section 7.2, a detailed definition of the problem is given, and Section 7.3 is dedicated
to the scattering parameters within a block. In the next section, the method for cascading
the intensities of two blocks is derived based on power conservation, and in Section 7.5
parameters of the equivalent block are extracted from the cascading equations. In the
last section, the partially coherent developed is validated through numerical comparison
between the coherent solution and an incoherent cascading of two blocks.

Figure 7.1: Two blocks of layered media with rough interfaces.

7.2 Problem statement
Consider the layered medium depicted in Fig. 7.1 in which the rough interfaces between
layers are described as stationary and independent Gaussian processes having specified
correlation functions; note that coordinate z becomes more negative at greater depths
within the ice sheet. The permittivity profile is also a stochastic process ε(z) that is
considered to be a Gaussian process with a Gaussian correlation function (other correlation
function descriptions can also be used as long as they vanish for large separations). This
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model can be considered a representation of an ice sheet. The ice sheet density (and
associated permittivity) fluctuates in such a model [41] because of accumulation patterns
of snowfall that contribute to the development of the ice sheet. For ice sheets, density
fluctuations are expected to be smaller at greater depths where the pressure is higher; the
variance of the permittivity can therefore be described as a damped Gaussian function
along z. At coordinate z=−H (below the ice sheet surface) the permittivity has an average
of ε(z) and a damped fluctuating part of δε(z)ez/α where

〈δε(z′)δε(z′−z)〉=∆2e−z
2/`2ε (7.2.1)

Here, α is the damping factor of the fluctuating part and ∆2 and `ε are the variance
scale factor and correlation length of the permittivity profile, respectively. For a wave
propagating between two points at distance s�`ε, the permittivity is basically uncorrelated
after this distance, and the wave acquires a random phase. When the phase becomes
random, all the interference phenomena on average become zero, so that keeping track
of the phase of the wave through the whole structure is unnecessary. If the structure is
therefore divided into blocks with length s�`ε and the problem within a block solved
coherently, we can cascade the intensities of adjacent blocks to obtain a solution for the
entire layered medium. This idea has been implemented for the case of layered media
with flat interfaces in [41], but the cost of averaging over dielectric realizations increases
considerably when the interfaces have roughness.

7.3 Full Wave Solution within a Block
Consider a block of the layered medium of thickness LB which contains NB layers having
rough interfaces. The electromagnetic response of this block can be characterized by its
reflectivity and transmissivity pattern functions γαβ(θs,φs;θi,φi) and ξαβ(θs,φs;θi,φi) which
are defined in terms of the corresponding vertical power flux densities as

〈Sαs ·ẑ〉
S
β
i ·(−ẑ)

=
∫

(2π)+
dΩs γαβ(θs,φs;θi,φi) (7.3.1)

〈Sαt ·(−ẑ)〉
S
β
i ·(−ẑ)

=
∫

(2π)−
dΩt ξαβ(θt,φt;θi,φi) (7.3.2)

Here, β and α are the source and response polarizations, and γαβ and ξαβ are the reflectivity
and transmissivity of the block, respectively. The bracket 〈·〉 denotes a statistical average
over an ensemble of interface realizations.

7.3.1 Coherent Power

Coherent power contains zeroth order and second order terms. The zeroth order power
does not depend on the statistic of the surfaces. However, the second order power term
does. From the SPM2 solution of the coherent scattered power density,

〈S(2)e
s ·ẑ〉coh= k1iz

k1η1

∫
dk′⊥

N−1∑
j=1

Wj(k
′
⊥−ki⊥)Re

[
S(0)∗
e S

(2)
e,Wj

(k′⊥,ki⊥)
]

(7.3.3)

〈S(2)h
s ·ẑ〉coh= k1iz

k1η1

∫
dk′⊥

N−1∑
j=1

Wj(k
′
⊥−ki⊥)Re

[
S

(0)∗
h S

(2)
h,Wj

(k′⊥,ki⊥)
]
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From knowledge about the behavior of the power spectral coefficients, the dependence on
azimuth angle is smooth. Therefore, in order to perform numerical integration, let us change
spectral variable to spherical coordinates

k′x=k1sinθ′kcosφ′k (7.3.4)
k′y=k1sinθ′k sinφ′k

then k1z=k1cosθk. Also Jacobian of the transformation is

dk′⊥=dk′xdk′y=k2
1 sinθ′kcosθ′kdθ′kdφ′k=k2

1 cosθ′kdΩ′k (7.3.5)

As a result,

〈S(2)e
s ·ẑ〉coh= cosθi

η1

∫
k2

1 cosθ′kdΩ′k
N−1∑
j=1

Wj(θ′k,φ′k)Re
[
S(0)∗
e S

(2)
e,Wj

(θ′k,φ′k)
]

(7.3.6)

〈S(2)h
s ·ẑ〉coh= cosθi

η1

∫
k2

1 cosθ′kdΩ′k
N−1∑
j=1

Wj(θ′k,φ′k)Re
[
S

(0)∗
h S

(2)
h,Wj

(θ′k,φ′k)
]

On the other hand for incident power we have Sβi ·(−ẑ)=1/2η1cosθi. Therefore, normalized
coherent reflectivity becomes

〈S(2)e
s ·ẑ〉coh

S
β
i ·(−ẑ)

=2k2
1

∫
dΩ′k cosθ′k

N−1∑
j=1

Wj(θ′k,φ′k)Re
[
S(0)∗
e S

(2)
e,Wj

(θ′k,φ′k)
]

(7.3.7)

〈S(2)h
s ·ẑ〉coh

S
β
i ·(−ẑ)

=2k2
1

∫
dΩ′k cosθ′k

N−1∑
j=1

Wj(θ′k,φ′k)Re
[
S

(0)∗
h S

(2)
h,Wj

(θ′k,φ′k)
]

Similarly for the transmitted power through the block, we can take

k′x=kN sinθ′kcosφ′k (7.3.8)
k′y=kN sinθ′k sinφ′k

Also Jacobian of the transformation is given by

dk′⊥=dk′xdk′y=k2
N sinθ′kcosθ′kdθ′kdφ′k=k2

N cosθ′kdΩ′k (7.3.9)

Assuming real permittivity for last layer (connecting layer),
(
kNiz
kNηN

)∗
is real and we have

〈S(2)e
t ·(−ẑ)〉coh

S
β
i ·(−ẑ)

=2η1cosθNi
ηN cosθi

k2
N

∫
dΩ′k cosθ′k

N−1∑
j=1

Wj(θ′k,φ′k)Re
[
T

(2)
e,Wj

(θ′k,φ′k)T (0)∗
e

]
(7.3.10)

〈S(2)h
t ·(−ẑ)〉coh

S
β
i ·(−ẑ)

=2η1cosθNi
ηN cosθi

k2
N

∫
dΩ′k cosθ′k

N−1∑
j=1

Wj(θ′k,φ′k)Re
[
T

(2)
h,Wj

(θ′k,φ′k)T
(0)∗
h

]

There is no depolarization effect in the coherent powers as it is proportional to the zeroth
and second order fields that have no depolarization. In order to find the coherent reflectivity
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and transmissivity functions, total coherent power density is normalized to the incident
power density to get,

〈S(2)α
s ·ẑ〉coh

S
β
i ·(−ẑ)

+ 〈S
(0)α
s ·ẑ〉coh

S
β
i ·(−ẑ)

=
∫

(2π)
dΩs γ

coh
αβ (θs,φs;θi,φi) (7.3.11)

〈S(2)α
t ·(−ẑ)〉coh

S
β
i ·(−ẑ)

+ 〈S
(0)α
t ·(−ẑ)〉coh

S
β
i ·(−ẑ)

=
∫

(2π)
dΩt ξ

coh
αβ (θt,φt;θi,φi)

Since the coherent power exists only in the specular direction (it is characterized by a
number) and is concentrated in one direction, we have

γcoh
αβ (θs,φs;θi,φi)=δαβδ(φs−φi)δ(cosθs−cosθi) (7.3.12)

×
[
r(0)
α +2k2

1

∫
dΩ′k cosθ′k

N−1∑
j=1

Wj(θ′k,φ′k)Re
[
S(0)∗
e S

(2)
e,Wj

(θ′k,φ′k)
]]

and for coherent transmissivity function,

ξcoh
αβ (θt,φt;θi,φi)=δαβδ(φt−φi)δ(cosθt−cosθit) (7.3.13)

×
[
t(0)
α +2η1cosθNi

ηN cosθi
k2
N

∫
dΩ′k cosθ′k

N−1∑
j=1

Wj(θ′k,φ′k)Re
[
T

(2)
α,Wj

(θ′k,φ′k)T (0)∗
α

]]

Notice that here, the angles (θ′k,φ′k) are not observable angles. In fact these angles corre-
spond to the intermediate scattering processes that results in the second order field (which
is of the second order of multiple scattering).

7.3.2 Incoherent power

From the SPM2 solution of the layered media, the incoherent scattered and transmitted
power densities are calculated as

〈S(2)
s ·ẑ〉inc= 1

2k1η1

∫
dk⊥Re(k1z)

{
N−1∑
j=1

[∣∣∣S(1)
e,Fj

(k⊥)
∣∣∣2+

∣∣∣S(1)
h,Fj

(k⊥)
∣∣∣2]Wj(k⊥−ki⊥)

}

〈S(2)
t ·(−ẑ)〉inc=Re 1

2η∗N

∫
dk⊥

{
N−1∑
j=1

[
k∗Nz
k∗N

∣∣∣T (1)
e,Fj

(k⊥)
∣∣∣2+ kNz

kN

∣∣∣T (1)
h,Fj

(k⊥)
∣∣∣2]Wj(k⊥−ki⊥)

}

Notice that the incoherent power densities include cross polarized intensities for given po-
larization of incident field. For lossless connecting media, where k1, and kN are real,only
propagating part of the spectrum contributes to the incoherent power densities which is
|k⊥|≤k1 for scattered power and |k⊥|≤kN for the transmitted power. Therefore, the spec-
tral integrals can be truncated just over the propagation band to yield

〈S(2)
s ·ẑ〉inc= 1

2k1η1

∫
|k⊥|≤k1

dk⊥Re(k1z)
{
N−1∑
j=1

[∣∣∣S(1)
e,Fj

∣∣∣2+
∣∣∣S(1)
h,Fj

∣∣∣2]Wj(k⊥−ki⊥)
}
(7.3.14)

〈S(2)
t ·(−ẑ)〉inc=Re 1

2η∗N

∫
|k⊥|≤kN

dk⊥

{
N−1∑
j=1

[
k∗Nz
k∗N

∣∣∣T (1)
e,Fj

∣∣∣2+ kNz
kN

∣∣∣T (1)
h,Fj

∣∣∣2]Wj(k⊥−ki⊥)
}
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For the scattered power density upon change of the spectral integrations to the spherical
coordinate it can be written as

〈S(2)
s ·ẑ〉inc= k2

1
2η1

∫ π/2

0
dθk sinθk

∫ 2π

0
dφkcos2θk (7.3.15)

×
{
N−1∑
j=1

[∣∣∣S(1)
e,Fj

(θk,φk)
∣∣∣2+

∣∣∣S(1)
h,Fj

(θk,φk)
∣∣∣2]Wj(θk,φk)

}

Also the incident power density is given by Si ·(−ẑ)= 1
2η1

cosθi, therefore the total incoherent
reflectivity of the structure becomes

〈S(2)
s ·ẑ〉inc

Si ·(−ẑ)
=
∫ π/2

0
dθk sinθk

∫ 2π

0
dφk

k2
1 cos2θk
cosθi

(7.3.16)

×
{
N−1∑
j=1

[∣∣∣S(1)
e,Fj

(θk,φk)
∣∣∣2+

∣∣∣S(1)
h,Fj

(θk,φk)
∣∣∣2]Wj(θk,φk)

}

If we define bistatic reflectivity (differential reflectivity) as

〈S(2)α
s ·ẑ〉inc

S
β
i ·(−ẑ)

=
∫

(2π)+
dΩs γ

inc
αβ (θs,φs;θi,φi) (7.3.17)

then

γinc
eα (θs,φs;θi,φi)= k2

1 cos2θs
cosθi

N−1∑
j=1

∣∣∣S(1)
eα,Fj

(θs,φs;θi,φi)
∣∣∣2Wj(θs,φs) (7.3.18)

γinc
hα (θs,φs;π−θi,φi)= k2

1 cos2θs
cosθi

N−1∑
j=1

∣∣∣S(1)
hα,Fj

(θs,φs;θi,φi)
∣∣∣2Wj(θs,φs)

Similar to the incoherent reflectivity, the incoherent transmissivity can be defined in a
similar way,

〈S(2)
t ·(−ẑ)〉inc= k2

N

2ηN

∫ π/2

0
dθk sinθk

∫ 2π

0
dφk cos2θk

N−1∑
j=1

Wj(θk,φk)
[∣∣∣T (1)

e,Fj

∣∣∣2+
∣∣∣T (1)
h,Fj

∣∣∣2]

If we define bistatic transmissivity through

〈S(2)α
t ·(−ẑ)〉inc

S
β
i ·(−ẑ)

=
∫

(2π)−
dΩt ξ

inc
αβ (θt,φt;θi,φi) (7.3.19)

it yields

ξinc
eα (θt,φt;θi,φi)= η1

ηN

k2
N cos2θt
cosθi

N−1∑
j=1

Wj(θt,φt)
∣∣∣T (1)
eα,Fj

(θt,φt;θi,φi)
∣∣∣2 (7.3.20)

ξinc
hα (θt,φt;θi,φi)= η1

ηN

k2
N cos2θt
cosθi

N−1∑
j=1

Wj(θt,φt)
∣∣∣T (1)
hα,Fj

(θt,φt;θi,φi)
∣∣∣2
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Here, the coherent and incoherent responses are solutions of Maxwell’s equations that
originally account for the phase of the fields correctly; if the SPM solution is used, the
physical parameters should fall into validity region of SPM. However, any exact solution
for a block parameters can also be used as the approach does not rely on the SPM [3, 45].

Under an isotropic correlation function assumption for passive emission from the lay-
ered media, the intensity inside the layered media does not depends on φ. Also in this
situation the reflectivity and transmissivity of each block depends on φi and φs through
their difference only φs−φi, and we can do the integration over φs to redefine the reduced
reflectivity (and transmissivity) of the block γαβ1u (θs,θi) which is independent of azimuth
angles as

γαβ1u (θs,θi)=
∫ 2π

0
dφs γαβ1u (θs,θi;φs−φi) (7.3.21)

As a result, the reflectivity of the first block when it is excited from the top can be written
as

γαβ1u (µs,µi)=γα,coh
1u δαβδ(µs−µi)+γαβ,inc

1u (µs,µi)
(7.3.22)

Here, µi,s=cosθi,s. Following these procedures, all other scattering functions can similarly
be cast into the same form as Eq. 7.3.22. If the problem is not isotropic or we are interested
in active remote sensing (response due to an excitation at given incident angle θi,φi), the
dependence of scattering functions on φi and φs should be preserved.

7.4 Incoherent Connection of Blocks
Processes representing the reflection and transmission of intensity between two blocks are
depicted in Fig. 7.2. Assuming a β− polarized intensity impinging on the first block in
direction θi, we have a diffuse upward scattered intensity Is(θs) back into the top medium
of block 1 and a transmitted intensity It(θt) down to bottom of the block 2. Between
blocks there exist overall upward and downward going α−polarized intensities in direction
θ denoted by Iαu (θ) and Iαd (θ). If we can solve for the scattered and transmitted intensi-
ties In the presence of two blocks (Iαs and Iαt in Fig. 7.2), then the reflectivity γ̃αβu and
transmissivity ξ̃αβu of the equivalent block when it is excited from the top (u) would be

γ̃αβu (θs,θi)= Iαs (θs)
Iβi (θi)

, ξ̃αβu (θt,θi)= Iαt (θt)
Iβi (θi)

(7.4.1)

In order to connect the intensities, the reflectivity and transmissivity of each block when
the block is excited from the top as well as bottom is required (Fig. 7.2). When block 1 is
excited from the top region, relevant scattering functions are γαβ1,u and ξαβ1,u and obtained by
the coherent solution of block 1. By invoking energy conservation, the different intensities
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Figure 7.2: Incoherent connection of two blocks through the intensities. Overall
upward and downward intensities in between blocks are Iαu (θ) and Iαd (θ), respec-

tively.

are related through

Iαs (µ)=
∑
β

∫ 1

0
dµ′
[
ξαβ1d (µ,µ′)Iβu (µ′)+γαβ1u (µ,µ′)Iβi (µ′)

]
Iαd (µ)=

∑
β

∫ 1

0
dµ′
[
ξαβ1u (µ,µ′)Iβi (µ′)+γαβ1d (µ,µ′)Iβu (µ′)

]
Iαu (µ)=

∑
β

∫ 1

0
dµ′ γαβ2u (µ,µ′)Iβd (µ′)

Iαt (µ)=
∑
β

∫ 1

0
dµ′ ξαβ2u (µ,µ′)Iβd (µ′) (7.4.2)

The system of equations (7.4.2) provides a direct determination of the coupling intensities
on the left hand side given the intensities determined from a single block solution on the
right hand side. Therefore the quantities on the left are directly determined from those on
the right. For example, from Eq. 7.4.2, the total scattered α-polarized intensity is a result
of direct reflection of the incident intensity plus the transmission of upward going intensity
Iβu through block 1 (from its bottom) by ξαβ1d .
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The energy conservation relations of Eqs. 7.4.2 constitute a system of coupled integral
equations for Id and Iu. By eliminating Iu we have

Iαd (µ)=
∑
β

∫ 1

0
dµ′ξαβ1u (µ,µ′)Iβi (µ′) (7.4.3)

+
∑
β,η

∫ 1

0
dµ′

∫ 1

0
dµ′′γαβ1d (µ,µ′)γβη2u (µ′,µ′′)Iηd (µ′′)

The intermediate intensities Iu and Id satisfy the multiple scattering equation Eq. 7.4.3.
In order to solve it, we decompose each intensity in the problem into three terms, I(µ)=
I(0)(µ)+I(1)(µ)+I(2)(µ) where the superscript shows total number of non-specular reflec-
tions and/or transmissions. The term with the (0) superscript corresponds to specular inten-
sities that are related to specular reflection and transmission of the incident intensity from
the boundaries of blocks. The first order intensity (1) contains just one bistatic (incoherent)
reflection/transmission combined with specular reflection or transmission from other bound-
aries. The second order term (2) is a consequence of one bistatic reflection/transmission
followed by another bistatic reflection/transmission. This expansion accounts for diffuse
scattering up to the second order of diffuse multiple scattering and other higher order
mechanisms can be neglected (as these are very small for the perturbative case). The sys-
tem of Eq. 7.4.2 can then be solved for Iu and Id by balancing orders of multiple scattering
(collecting terms of the same order of diffuse scattering). Once the intermediate intensities
are found, the reflected and transmitted intensities can be evaluated by the first and last
relations of Eq. 7.4.2.

7.4.1 Zeroth Order Intensities

The zeroth order intensity is result of specular reflection at all of the boundaries. Balancing
Eqs. (7.4.3) up to the zeroth order and noting that Iαi (µ)=Iiδ(µ−µi), all the intensities
become specular and

I(0)α
s (µs)=ξα,coh

1d (µs,µI)I(0)α
u (µI)+γα,coh

1u (µs,µi)Iαi (µi) (7.4.4)

I
(0)α
d (µI)=ξα,coh

1u (µI ,µi)Iαi +γα,coh
1d (µI ,µI)I(0)α

u (µI)

I(0)α
u (µI)=γα,coh

2u (µI ,µI)I(0)α
d (µI)

I
(0)α
t (µt)=ξα,coh

2u (µt,µI)I(0)α
d (µI)

where µI=cosθI and θI is the specular direction of propagation in the intermediate layer
which is phased matched to the incident intensity in the direction θi. From now on, when
the argument of the coherent reflection/transmission is not mentioned explicitly, it is under-
stood that it is evaluated in the corresponding specular direction. Note that the coherent
reflection coefficients here include the reflection coefficient corrections due to the roughness
of the blocks. Solving for the zeroth order intermediate intensities

I
(0)α
d (µI)= ξα,coh

1u (µI ,µi)
Dα(µI)

Iαi (µi) (7.4.5)

I(0)α
u (µI)= γα,coh

2u (µI ,µI)ξα,coh
1u (µI ,µi)

Dα(µI)
Iαi (µi) (7.4.6)
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Here, Dα(µI)=1−γα,coh
1d (µI ,µI)γα,coh

2u (µI ,µI) and is responsible for multiple reflections be-
tween the blocks.Then, the zeroth order reflected and transmitted intensities are given by

I(0)α
s =

[
ξα,coh

1d
γα,coh

2u ξα,coh
1u

Dα
+γα,coh

1u

]
Iαi (7.4.7)

I
(0)α
t =ξα,coh

2u
ξα,coh

1u
Dα

Iαi

This is identical to the traditional multi-layer Radiative Transfer solution [115].

7.4.2 First order intensities

Balancing (7.4.2) up to the first order terms for a general direction of µ, we obtain

I
(1)α
d (µ)=

∑
β

∫ 1

0
dµ′
[
γαβ,inc

1d (µ,µ′)I(0)β
u (µ′)+γα,coh

1d (µ,µ′)I(1)α
u (µ′)+ξαβ,inc

1u (µ,µ′)Iβi (µ′)
]

(7.4.8)

I(1)α
u (µ)=

∑
β

∫ 1

0
dµ′

[
γαβ,inc

2u (µ,µ′)I(0)β
d (µ′)+γα,coh

2u (µ,µ′)I(1)α
d (µ′)

]
Using the fact that all of the zeroth order intensities are specular, the integrations can be
performed to obtain

I(1)α
u (µ)=

∑
β

{
γαβ,inc

2u (µ,µI)
ξβ,coh

1u
Dβ(µI)

+ γα,coh
2u (µ,µ)
Dα(µ)

[
ξαβ,inc

1u (µ,µi)+ ξβ,coh
1u

Dβ(µI)
(
γβ,coh

2u (7.4.9)

×γαβ,inc
1d (µ,µI)+γα,coh

1d (µ,µ)γαβ,inc
2u (µ,µI)

) ]}
Iβ0

I
(1)α
d (µ)= 1

Dα(µ)
∑
β

[
ξαβ,inc

1u (µ,µi)+ ξβ,coh
1u

Dβ(µI)
(
γβ,coh

2u γαβ,inc
1d (µ,µI)

+γα,coh
1d (µ,µ)γαβ,inc

2u (µ,µI)
) ]

Iβ0

Inserting the first order intermediate intensities and balancing the scattered and transmitted
intensity expression of Eq. 7.4.2 to the first order of multiple scattering gives

I(1)α
s (µ)=

∑
β

[
γαβ,inc

1u (µ,µi)+ξαβ,inc
1d (µ,µI)

ξβ,coh
1u γβ,coh

2u
Dβ

+ξα,coh
1d (µ)

{
γαβ,inc

2u (µ,µI)
ξβ,coh

1u
Dβ

+ γα,coh
2u (µ)
Dα(µ)

[
ξαβ,inc

1u (µ,µi)+ ξβ,coh
1u
Dβ

(
γβ,coh

2u γαβ,inc
1d (µ,µI)

+γα,coh
1d (µ)γαβ,inc

2u (µ,µI)
) ]}]

Iβ0 (7.4.10)

I
(1)α
t (µ)=

∑
β

[
ξαβ,inc

2u (µ,µI)
ξβ,coh

1u
Dβ

+ ξα,coh
2u (µ)
Dα(µ)

{
ξαβ,inc

1u (µ,µi)

+ ξβ,coh
1u
Dβ

(
γβ,coh

2u γαβ,inc
1d (µ,µI)+γα,coh

1d (µ)γαβ,inc
2u (µ,µI)

) }]
Iβ0 (7.4.11)
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Several mechanism of scattering involving combinations of coherent/incoherent scattering
and transmission of intensity at the boundaries of the two blocks are apparent in these
results, including 1- Diffuse scattering of the incident intensity by γαβ,inc

1u (µ,µI); 2- Specu-
lar transmission through block 1 ξβ,coh

1u followed by another specular reflection off block 2
γβ,coh

2u and finally, diffuse transmission through block 1 to the direction µ by ξαβ,inc
1d (µ,µI);

3- Specular transmission through block 1 ξβ,coh
1u , diffuse reflection off block 2 γαβ,inc

2u (µ,µI)
followed by a specular transmission in direction µ to the top region ξα,coh

1d (µ); 4- Diffuse
transmission through block 1 by ξαβ,inc

1u (µ,µi) , followed by specular reflection off block 2
ξα,coh

2u (µ) and another specular transmission to the top region ξα,coh
1d (µ); 5- Specular trans-

mission through block 1 ξβ,coh
1u , then a specular reflection off block 2 γβcoh

2u then a diffuse
reflection off the bottom of block 1 γαβ,inc

1d (µ,µI), followed by another specular reflection
from block 2 γα,coh

2u (µ) and finally, specular transmission through block 1 to the top region
ξα,coh

1d (µ); 6- The same process as 5 but here the intensity is reflected incoherently from
block 2.

7.4.3 Second Order Intensities

Balancing Eq. 7.4.2 for the intermediate intensities Iu and Id up to the second order of
multiple scattering and substituting the specular scattering solution (zeroth order) we arrive
at

I
(2)α
d (µ)= 1

Dα(µ)
∑
β

∫ 1

0
dµ′
[
γαβ,inc

1d (µ,µ′)I(1)β
u (µ′)

+γα,coh
1d (µ,µ)γαβ,inc

2u (µ,µ′)I(1)β
d (µ′)

]
(7.4.12)

I(2)α
u (µ)= 1

Dα(µ)
∑
β

∫ 1

0
dµ′
[
γαβ,inc

2u (µ,µ′)I(1)β
d (µ′)

+γα,coh
2u (µ,µ)γαβ,inc

1d (µ,µ′)I(1)β
u (µ′)

]
(7.4.13)

Since the incident intensity does not enter into the second order multiple scattering di-
rectly, the second order equation of the intermediate intensities is symmetric under the
transformation (u↔d) and (block 1↔block 2). The first order solution is known and it
is not required to explicitly find I(2)α

u (µ) and I(2)α
d (µ). Instead the second order scattered

intensity can be written in terms of the first order intermediate intensities,

I(2)α
s (µ)=

∑
β

∫ 1

0
dµ′ ξαβ,inc

1d (µ,µ′)I(1)β
u (µ′) (7.4.14)

+ ξα,coh
1d (µ)
Dα(µ)

∑
β

∫ 1

0
dµ′
[
γαβ,inc

2u (µ,µ′)I(1)β
d (µ′)+γα,coh

2u (µ)γαβ,inc
1d (µ,µ′)I(1)β

u (µ′)
]
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and for the second order transmitted intensity

I
(2)α
t (µ)=

∑
β

∫ 1

0
dµ′ ξαβ,inc

2u (µ,µ′)I(1)β
d (µ′) (7.4.15)

+ ξα,coh
2u (µ)
Dα(µ)

∑
β

∫ 1

0
dµ′
[
γαβ,inc

1d (µ,µ′)I(1)β
u (µ′)+γα,coh

1d (µ)γαβ,inc
2u (µ,µ′)I(1)β

d (µ′)
]

7.5 Equivalent Block parameters
After finding all scattered and transmitted intensities up to the second order, we can find
the equivalent reflectivity and transmissivity of the combination of the two blocks.

7.5.1 Coherent Reflection and Transmission

By the way that the intensities are decomposed into different orders, only the zeroth order
intensity is concentrated in the specular direction. Thus for the combination of two blocks,
the overall reflectivity γ̃α,coh

u and transmissivity ξ̃α,coh
u when excited from the top can be

found as

γ̃α,coh
u = I

(0)α
s

Iα0
=ξα,coh

1d
ξα,coh

1u γα,coh
2u

1−γα,coh
1d γα,coh

2u
+γα,coh

1u (7.5.1)

ξ̃α,coh
u = I

(0)α
t

Iα0
=ξα,coh

2u
ξα,coh

1u

1−γα,coh
1d γα,coh

2u

at zeroth order. Here all the single block coherent responses should be evaluated at the
corresponding specular direction. In order to find equivalent coherent parameters when the
combined block is excited from the bottom, γ̃α,coh

d and ξ̃α,coh
d , we can make the changes

1u⇐⇒2d and 2u⇐⇒1d in the top excited parameters to obtain

γ̃α,coh
d =ξα,coh

2u
ξα,coh

2d γα,coh
1d

1−γα,coh
1d γα,coh

2u
+γα,coh

2d (7.5.2)

ξ̃α,coh
d =ξα,coh

1d
ξα,coh

2d
1−γα,coh

1d γα,coh
2u

Note that reciprocity mandates that ξ1d=ξ1u and ξ2d=ξ2u and for the equivalent block
results ξ̃α,coh

d =ξ̃α,coh
u ; this means that combined response satisfies reciprocity.

7.5.2 Incoherent Reflection and Transmission

Bistatic (diffuse) reflection and transmission are included in the first and second order
intensity terms. Therefore the incoherent response of the equivalent block is

γ̃αβ,inc
u (µ,µi)= I

(1)α
s (µ)+I(2)α

s (µ)
Iβ0 (µi)

(7.5.3)

ξ̃αβ,inc
u (µ,µi)= I

(1)α
t (µ)+I(2)α

t (µ)
Iβ0 (µi)
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In order to obtain the downward terms γ̃αβ,inc
d (µ,µi) and ξ̃αβ,inc

d (µ,µi) for the combined
block, it suffices to change 1u⇐⇒2d and 2u⇐⇒1d in the expressions for the intensities.

7.6 Numerical Validation
Now, in order to implement the partially coherent approach for the rough layered media,
consider two blocks, each of which includesNB=32 layers (for each block the top and bottom
half spaces are vacuum) with an average block length of LB≈15λi and a Gaussian dielectric
profile along z where λi is the free space wavelength. Parameters of the permittivity process
are given by correlation length `ε=λi�LB, variance scaling factor ∆=0.1, damping factor
α=30λi , and average dielectric constant of εr=1.7 for the given process in Eq. 7.2.1. A
realization of the dielectric constant profile of the first block is depicted in Fig. 7.3.

Figure 7.3: A realization of the dielectric constant profile of the first block.

Each rough interface is a Gaussian process f(x,y) with correlation length of `s=1.5λi
and RMS height of hs=0.03λi. For the coherent solution of each block, the SPM2 is used
as a full wave solution because the surface roughness satisfies the SPM criteria [25, 35].
The block reflectivities and transmissivities obtained by the SPM enter into the cascading
procedure of Sec. 7.4. A detailed derivation of the SPM for a layered medium can be found
in [80].

In order to evaluate the performance of the partially coherent cascading approach, we
compare the incoherently combined solution of two blocks of 32 layers with the coherent
response of the concatenated structure with 63 layers (two vacuum half spaces of the two
blocks are merged together). A Monte-Carlo simulation over dielectric profiles is performed
over 100 realizations for each block of 30 layers; for the concatenated block of 62 layers 900
realizations were used to reach the same level of convergence.

Figure 7.4 plots the specular reflectivity of the structure obtained by the full wave (co-
herent) solution of the structure versus the result of partially coherent cascading of the two
blocks. Also the response of the media when all of the interfaces are flat is indicated in Fig.
7.4 that shows significance of surface roughness contribution in the specular reflectivities.
The partially coherent cascading approach is in good agreement with the full wave solution
for both polarizations. The difference between specular reflectivity obtained by partially
coherent and the full wave solution (absolute error) is always less than −20 dB and is shown
in Fig. 7.5. The small difference between two approaches is due to the residual randomness
as well as the approximation made in neglecting the phase.
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Figure 7.4: Specular reflectivity (γh,coh
u ) of the cascaded block with partially

coherent approach (P.C) compared to coherent solution of reflectivity (C) versus
incident angle when it is excited from the top for TE (e) and TM (h) polarizations.

Figure 7.5: Absolute error in the specular reflectivity γh,coh
u of the cascaded block

obtained by the partially coherent approach versus incident angle when the struc-
ture is excited from the top for TE (e) and TM (h) polarizations.

Figures 7.6, and 7.7 compare co-polarized γee,inc
u (θs,θi) and cross-polarized γhe,inc

u (θs,θi)
bistatic reflectivity of the structure in dB obtained by the two methods (right: Partially
coherent, left: Full wave) when excited from the top with a e-polarized (TE) plane wave in
the direction θi. Figures, 7.8, and 7.9 similarly compare co-polarized and cross-polarized
responses in dB for h-polarized (TM) excitation.

The greatest discrepancy between the full wave and partially coherent bistatic solutions
is observed for the co-polarized response of γee,inc

u (θs,θi). The difference of partially coherent
approach and the exact solution for TE bistatic co-polarized reflectivity is shown in Fig.
7.10 in dB. The absolute error in the pattern is approximately always less than -20 dB over
all incident and scattered angles.

Regarding the computational cost, full wave solution for 63 layers approximately takes
8 times more CPU time than a block of length 32 layers. Including the fact that we need
to solve for both top and bottom excitations for each block to cascade them, this gives a
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Figure 7.6: Bistatic (incoherent) co-polarized reflectivity γee,inc
u (θs,θi) of the

structure as a function of incident and scattered angles when it is excited by
TE-polarized plane wave from the top. Cascaded block with partially coherent

approach on the right compared to coherent solution on the left side.

Figure 7.7: Bistatic (incoherent) cross-polarized reflectivity γhe,inc
u (θs,θi) of the

structure as a function of incident and scattered angles when it is excited by TE-
polarized plane wave from the top. Cascaded block with partially coherent approach

on the right compared to coherent solution on the left side.

factor of two in CPU time in favor of partially coherent approach for a single realization
computation. Considering the required number of realizations to get convergent solution,
the full wave solution is averaged over 900 realizations while partially coherent requires
2×100 realizations to converge (accounting for the top/bottom excitations separately).
This also gives a factor of 3.5 in CPU time and totally there is a factor of 7 reduction in
CPU time by using the partially coherent scheme for this particular example. For larger
problems the difference in CPU time between the full wave and partially coherent cascading
approach grows much faster [79, 116, 117].

Comparison of the bistatic and specular reflectivities shows that the partially coherent
approach is applicable as a substitution for the full wave response with a lower computa-
tional cost and the same level of accuracy. It is worth mentioning that although the energy
conservation relation (7.4.2) is used to connect the block responses, the method can be
applied to lossy layered media as well, as long as the connecting layer between the blocks
is lossless (this is where the energy conservation is invoked). In addition, this method can
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Figure 7.8: Bistatic (incoherent) co-polarized reflectivity γhh,inc
u (θs,θi) of the

structure as a function of incident and scattered angles when it is excited by
TM-polarized plane wave from the top. Cascaded block with partially coherent

approach on the right compared to coherent solution on the left side.

Figure 7.9: Bistatic (incoherent) cross-polarized reflectivity γeh,inc
u (θs,θi) of the

structure as a function of incident and scattered angles when it is excited by TM-
polarized plane wave from the top. Cascaded block with partially coherent approach

on the right compared to coherent solution on the left side.

be recursively used to find the response of an arbitrary number of blocks.

7.7 Conclusion
The results of this chapter show that for the case of a layered medium in presence of
randomness in the permittivity, the layered medium can be separated into blocks having
lengths on the order of multiple correlation length of the permittivity random process.
Solutions for the scattering and emission can then be performed by incoherently cascading
the intensities of blocks without losing accuracy. This approach is efficient in the case of
a layered media with large number of layers that possess fluctuating permittivity or other
kind of randomness.
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Figure 7.10: Absolute error in the bistatic (incoherent) co-polarized reflectivity
γee,inc
u (θs,θi) of the structure as a function of incident and scattered angles when

it is excited by TE-polarized plane wave from the top, in dB.
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Chapter 8

Fast and Broadband Computation
of Green’s Function in Cavity
Resonator of Irregular Shape

Using Imaginary Wave Number
Extraction Technique

8.1 Introduction
The Green’s function is a fundamental tool in analysis of every physical system and it
provides an in depth insight to the dynamical behavior of the system. Based on this,
obtaining the Green’s function for a given system is as difficult as solving the problem
directly. However, since the Green’s function can determine response of the system to an
arbitrary excitation it contains more informations about the system than the solution of the
dynamical variable like the wave function. The Green’s function is the collective response
of all the resonant wave function in a unique way such that it is closely related to the spatial
distribution of the density of states.

In particular, Green’s function are important in electromagnetics as it provides the
response for an arbitrary distribution of source. They are also useful for formulating the
integral equations for various boundary value problems. Commonly used Green’s functions
include free space Green’s functions, periodic Green’s functions for empty periodic lattices,
and Green’s functions of regular geometry such as a sphere or cylinder, Green’s functions
of layered media, etc [118–121].

Recently we developed techniques of broad band Green’s functions with low wavenumber
extractions (BBGFL) that calculate Green’s functions for more general irregular geometry
and for periodic structures including the scatterers [122, 122].

For 2D waveguide and cavity problems, the essence of the BBGFL technique consists
of 3 major steps. The first step is to start with the rectangular waveguide broadband
Green’s function. The hybrid representation of the rectangular waveguide Green’s function
consists of the sum of a low wavenumber extraction to accelerate the convergence of the
modal expansion and the sum of modal terms, requiring much smaller number of modes to
converge. In step 2, using the hybrid representation of the rectangular Greens function in a
surface integral equation of irregular waveguide, a linear eigenvalue problem is formulated
that rapidly calculate the modes of the irregular shaped waveguide. The modal functions of
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the irregular shaped waveguide have a hybrid representation of the summation of boundary
contributions and the modal expansions of the rectangular waveguide wave functions. The
hybrid representation requires less number of modes in the modal expansion. In step 3, the
Green’s functions of irregular shaped waveguide are expressed as a hybrid representation
of summation of a low wavenumber extraction part plus a spectral expansions in terms of
the irregular shaped waveguide modes.

In this paper, the BBGFL technique is extended to 3D problems for the first time for
irregular shaped cavity. In addition, instead of using low real wavenumber extraction, an
imaginary wavenumber extraction is applied which is computationally more efficient and is
also robust.

The Green’s function of an irregular cavity resonator with perfect electric walls is stud-
ied. This irregularity in the geometry can be anything in general (defect in the surface
boundary, loaded cavity etc.) In some cases, specially in designs, the behavior of the sys-
tem response over a wide bandwidth is desired. This Green’s function has many applications
in designing the micro cavities [123], and irregular shaped quantum well [124, 125] where
the density of surface states and spontaneous emission can be controlled by designing the
Green’s function.

The proposed method in this paper can provides the Green’s function of the irregular
cavity over a wide band of frequency with lower computational cost compare to the con-
ventional approaches. In addition, this semi-analytical solution provides deeper insight and
is better suited for manipulations and designs.

The method is based on a hybrid spatial-spectral eigen-function expansion with imag-
inary wave number extraction. The extraction at imaginary wave number captures the
singularity of the Green’s function such that the rest would have a regular characteristics
even at the source location. In order to find the eigen-modes of the irregular cavity, a linear
eigenvalue problem will be formulated that gives a hybrid spatial-spectral representation
of the eigen-functions. The main point here is that this eigenvalue problem is linear (the
involved operators are not function of eigenvalues). The method has been applied to va-
riety of structure like Green’s function in a waveguides with arbitrary cross section [126],
Green’s function for the photonic crystals and metamaterials including the scatterers (and
also defects) [127, 128] where the Green’s function is expressed in terms of the accelerated
photonic bands eigen-functions.

Previously, people used different kinds of extractions. The BIRME method [129–131]
uses the extraction of the static Green’s function to accelerate convergence of eigen-function
expansion; instead, the BBGFL [122, 132] uses extraction of the Green’s function at a low
but non-zero wave number kL to accelerate the convergence. It will be shown that the
extraction of the Green’s function at an imaginary wave number is superior to both DC
and low wave number extractions.

8.2 Broadband Green’s Function

8.2.1 Eigenfunction expansion of the Green’s function

Consider the wave equation operator L=∇2 acting on Hilbert space V with prescribed
boundary conditions on L such that L is a self-adjoint (Hermitian) operator in V . For ex-
ample radiation condition at infinity for unbounded space or Dirichlet/Neumann boundaries
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for finite spaces make L Hermitian. The eigen-value equation reads

∇2ψn=−k2
nψn (8.2.1)

Here, ψ is eigenfunction and −k2 is corresponding eigenvalue (since ∇2 is a negative definite
operator, the eigenvalues are chosen with an extra minus sign). According to the Storm-
Liouvill theorem, eigenfunctions of this Hermitian operator are orthogonal with respect to
the following inner product on V ,

〈ψm,ψn〉=
∫
V

drψ∗m(r)ψn(r)=δmn (8.2.2)

where we assumed that the eigenfunctions are normalized.The label n here can be discrete
or continuous, in case of continuous label, δmn should change into δ(m−n). These eigen-
functions can be used to expand functions within V into Fourier-type expansions. If the
delta function can be expanded in terms of the eigenfunctions, then any other function f(r)
in V can be written in terms of the delta function

f(r)=
∫

dr′f(r′)δ(r−r′) (8.2.3)

So expanding the delta function is enough to expand any other function (which is more
well-behaved than delta function). Consider the following expansion for the delta function,

δ(r−r′)=
∑
n

Cnψn(r) (8.2.4)

Upon using orthogonality of the eigenfunctions, it yields

δ(r−r′)=
∑
n

ψn(r)ψ∗n(r′) (8.2.5)

Now, consider the scalar Green’s function defined by

(∇2+k2
0)G(r,r′)=−δ(r−r′) (8.2.6)

where k0=ω√µε is the wave number in the medium. By expanding the Green’s function
in terms of the eigenfunctions we find that

G(r,r′)=
∑
n

1
k2
n−k2

0
ψn(r)ψ∗n(r′) (8.2.7)

This expansion of the Green’s function is called broad band because the dependence on the
excitation frequency is simply in the denominator. The eigenfunctions and eigenvalues do
not depend on the frequency or k. For the case of free space, one choice of the eigenfunctions
are normalized plane waves

ψk(r)= 1
(2π)3/2 e

ik·r (8.2.8)

and the Green’s function expansion becomes [? ]

G(r,r′)= 1
(2π)3

∫
d3k

1
k2−k2

0
eik·(r−r

′) (8.2.9)

An important note here is that, even for a lossy medium this expansion is valid. Here we are
using the eigenfunction of −∇2 which is independent of the medium and physical properties.
For lossy medium, the operator −∇2−k2 is no longer Hermitian and the eigenfunction
overlap on each other as a result of spectral broadening, but herein we are taking the
advantage of ∇2 eigenfunctions which are always mutually orthogonal.
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8.2.2 Accelerating the Summation of eigenfunctions

Although the expansion of the Green’s function is desired because of simple dependence on
the frequency of excitation, the summation converges slowly.

G(r,r′)=
∑
α

1
k2
n−k2

0
ψα(r)ψ∗α(r′)≈

∑
α

1
k2
α−k2

0
(8.2.10)

it converges like O(k−2
α ) in amplitude. In the case of continuous spectrum in lossless free

space

G(r,r′)= 1
(2π)3

∫
d3k

1
k2−k2

0
eik·(r−r

′)≤ 1
(2π)3

∫
dk k2

k2−k2
0

(8.2.11)

The series of (8.2.10) is only conditionally convergent for a 3 dimensional problem since the
summation

∑
α(k2

α−k2
0)−1 is a divergent series (only for 1D the modal series is absolutely

convergent). Therefore no error bound can be found for the convergence of (8.2.10) and in
practice it cannot be used to compute the Green’s function. In addition, since the Green’s
function has a discontinuous derivative at the source point, a well known Gibbs phenomena
will happen in the summation near the source region.

However, the expansion of (8.2.10) is interesting as it depends on the frequency of exci-
tation only through the denominator (the eigenfunctions do not depend on the excitation).
If the eigenfunctions and resonant frequencies are known, in principle, the Green’s function
can be obtained over all frequency ranges by a simple calculation but poor convergence
is still a serious problem. Thus we call this eigenfunction expansion as the Broadband
Green’s function which is not practical as given by (8.2.10), unless the convergence can be
accelerated.

In order to increase the convergence rate of Eq. 8.4.3, the Green’s function at an
imaginary wave number k=iξ can be extracted from the original expansion. With the
imaginary wave number extraction, the convergence of the regular shaped cavity Green’s
function expansion can be accelerated to the 4th order (the summand is proportional to
k−4
α , asymptotically) and providing a hybrid representation

GΩ(r,r′;k)=GΩ(r,r′;iξ)+
MΩ∑
α=1

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
ψα(r)ψ∗α(r′) (8.2.12)

where the series is truncated at α=MΩ. The series in (8.2.12) is absolutely convergent
even at r=r′. The singular part of the Green’s function is contained completely in the
GΩ(r,r′,iξ). The summation now converges much faster than the original modal summation
of (8.2.10) to the cost of computing GΩ(r,r′,iξ). We call this form as the Hybrid Spatial-
Spectral representation as the fist and second terms are expressed in spatial and spectral
domain, respectively. In general, the part of computing the Green’s function at an imaginary
wave number is not a time consuming task for several reasons. 1) It is only a one-time setup
as it should be computed only one time in a broadband solution that potentially can have
many frequency points, 2) At an imaginary wave number, oscillations will be replaced with
exponential decay and all the numerical procedures are relaxed compared to the case of
real frequency. The interaction matrices involved in the numerical methods (such as MoM)
become real and sparse (banded). In addition, the numerical grid can be coarser for an
imaginary wave number, 3) For some regular geometries (including rectangular) calculation
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of GΩ(r,r′,iξ) can be done extremely fast by utilizing image sources to satisfy the boundary
condition on the cavity walls. Method of images to compute GΩ(r,r′,iξ) is briefly discussed
in the next section.

G(r,r′,k)=G(r,r′,iξ)+
∑
α

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
ψα(r)ψ∗α(r′) (8.2.13)

We can move further to accelerate the eigenfunction expansion to the higher orders. Re-
peating the technique in Eq. (8.2.12) one more time yields

GΩ(r,r′,k)=GΩ(r,r′,iξ)− k
2+ξ2

2ξ
∂

∂ξ
GΩ(r,r′,iξ)

+(k2+ξ2)2
MΩ∑
α=1

ψα(r)ψ∗α(r′)
(k2
α+ξ2)2(k2

α−k2) (8.2.14)

This expansion is of 6th order in convergence with respect to kα. Computing the imagi-
nary wave number derivative of ∂ξGΩ(r,r′,iξ) has the same procedure as GΩ(r,r′,iξ). The
procedure of extraction can be continued to an arbitrary order (even order) of convergence
at a cost of computing the higher order derivatives of the G(r,r′;iξ).

In order to show how the accelerated expansion facilitates computation of GΩ(r,r′;k),
we compare the 6th order expansion of (8.2.12) with the original expansion of (8.2.10)
for the rectangular cavity of dimensions Lx=Ly=Lz=L at the excitation frequency corre-
sponds to λ=0.93L. The imaginary wave number extraction is done at ξ=2/L (Selecting
the imaginary wave number will be discussed later in Sec. 8.9). The Green’s function
is computed for the source located at r′=(Lx/4,Ly/4,Lz/4) over the plane of z=0.45Lz
(near the upper wall) inside the cavity. The original 2nd order expansion is evaluated by
truncating the summation at MΩ=3003=2.7×107 in Eq. 8.2.10 while MΩ=63 terms are
used in the 6th order expansion of Eq. 8.2.14. The absolute value of the Green’s function
obtained by 6th order expansion is plotted in Fig. 8.1 in logarithmic scale.

Figure 8.1: Scalar 3D Green’s function inside a resonator of dimensions Lx=Ly=
Lz=L at wave length λ≈0.93Lx computed by the accelerated 6th order formula
using 63 terms, in dB scale for r′=(Lx/4,Ly/4,Lz/4) and r=(x,y,z=0.45Lz).

Figure. 8.2 also compare the Green’s function obtained by 6th order and conventional
2nd order expansions. The maximum relative error is around −60 dB.

Regarding the comparison of CPU time of two summations, 6th order extracted sum
(including calculation of GΩ(r,r′;iξ)) takes about 0.6 CPU-ms while regular spectral 2nd
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Figure 8.2: Absolute error of Green’s function calculated by 6th order expansion
using 6 modes in each direction respect to the 2nd order spectral expansion using

300 modes in each direction, in dB

expansion requires 2100 CPU-ms for computing the Green’s function of the rectangular
cavity per observation point, which is a factor of around 3500 in computation time.

Even computation of the regular shaped Green’s function inside the cavity is useful in
the potential formulation of the vector electromagnetic scattering formulation of some other
irregular shaped variations of the rectangular cavity like loaded cavity [133] which will be
discussed in the Appendix B.

8.3 Method of Images
The Green’s function, which is the response of a point source inside a rectangular cavity can
be calculated using the Image theorem. The hard boundaries of the cavity can be replaced
by configuration of sources outside of the cavity (region of interest) to achieve required
boundary conditions on the walls.

8.3.1 One Dimensional Green’s function and Images

For a parallel plate structure, with a point source at r0, the Green’s function can be
expanded in terms of plane wave in y and z directions,

G(r,r′)=
∫ dky

2π

∫ dkz
2π g(x,x′,kx)eiky(y−y′)+ikz(z−z′) (8.3.1)

where the reduced g(x,x′,kx) satisfies(
d2

dx2 +k2
x

)
g(x,x′,kx)=−δ(x−x′) (8.3.2)

Subject to boundary conditions g(x=0,a,x′)=0. This can be directly solved in a compact
form.

g(x,x′,kx)=


Asinkx(a−x), x>x′

Bsinkxx, x<x′
(8.3.3)
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where A and B are spatially constant. Continuity of the solution at x=x′ requires

Asinkx(a−x′)−Bsinkxx′=0 (8.3.4)

Discontinuity of the derivative of the Green’s function at x=x′ also gives

Acoskx(a−x′)+Bcoskxx′=
1
kx

(8.3.5)

Solving for A and B gives

g(x,x′,kx)= 1
kxsin(kxa)


sinkx(a−x)sinkxx′, x>x′

sinkxxsinkx(a−x′), x<x′
(8.3.6)

The Green’s function has poles at the resonant frequencies of the structure kxa=nπ. In
order to directly solve for the reduced Green’s function, it can be equivalently expanded in
terms of the eigenfunctions between the plates

g(x,x′,kx)=
∑
n

Ansinknxx (8.3.7)

where knx=nπ/a. Upon expansion of the delta function in term of the same functions and
substitution in one-dimensional wave equation,

g(x,x′,kx)= 2
a

∑
n

sinknxx sinknxx′

k2
x−k2

nx

(8.3.8)

The two solutions of the reduced Green’s function are the same

2
a

∑
n

sinknxx sinknxx′

k2
x−k2

nx

= 1
kxsin(kxa) sinkx(a−x>)sinkxx< (8.3.9)

where x>=x,x<=x′ when x>x′ and vice versa. Notice that the reduced Green’s function
g(x,x′,kx) is the field generated by a charge sheet of constant density at x=x′ between the
parallel plates. Equation (8.3.9) is a summation identity that can be used to change the
representation of the Green’s function. Therefore, the complete Green’s function becomes

G(r,r′)= 2
a

∑
n

∫ dky
2π

∫ dkz
2π e

iky(y−y′)+ikz(z−z′) sinknxx sinknxx′

k2
x−k2

nx

(8.3.10)

One of the spectral integration can be performed due to the pole at resonance frequency
kx=knx. In order to perform the kz integral, there would be a pole at knz=k2−k2

nx−k2
y

and another at complex conjugate place. Assuming infinitesimal physical loss (Im(k)>0),
for z>z′ we can close the contour of integration in complex kz-plane upward

G(r,r′)= i

a

∑
n

∫ dky
2π e

iky(y−y′)+iknz(z−z′) sinknxx sinknxx′

2knz
(8.3.11)

where k2
nz=k2−k2

nx−k2
y.
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One Dimensional Images

On the other side, 1D free Green’s function (radiation of sheet of charge in free space) is
solution of the one dimensional wave equation Eq. 8.3.2 with radiation boundary condition
at infinity that gives

G0(x,x′)= i

2kx
eikx|x−x

′| (8.3.12)

Each image charge, which is shown by dots (but they are charge sheets) will radiate with
G0(x,x′) such that collective response will construct G(x,x′,kx). In order to construct
the Dirichlet boundary condition on the plates, image charges placed one by one to make
the wave function vanishes on both plates. The locations of actual charge Q is given by
r′=(x′,y′,z′). The image charges with positive charge +Q (red dots) should be placed at
r′′=(x′′,y′,z′) where

b
b

b
b

b

b

b

L x′Q

x

y

Figure 8.3: Images of point charge Q between parallel plates.

x′′=2L+x′,−2L+x′,4L+x′,−4L+x′,···=(2n)L+x′ (8.3.13)

This set include the real charge itself. In addition, negative charges of −Q (blue dots)
should be placed at

x′′=L−x′,−L−x′,3L−x′,−3L−x′,···=(2n+1)L−x′ (8.3.14)

and n∈Z. The Green function g(x,x′,kx) that satisfies the Dirichlet boundary on the plates
is the collective response of individual unit image sources

G(x,x′,kx)=
∑
n+
G0(x,x′′n,kx)−

∑
n−
G0(x,x′′n,kx)

=
∑
n

G0
(
x,2nL+x′,kx

)
−
∑
n

G0
(
x,(2n+1)L−x′,kx

)
=
∑
n

(−1)2nG0
(
x,2nL+(−1)2nx′

)
+
∑
n

(−1)2n+1G0
(
x,(2n+1)L+(−1)2n+1x′

)

185



Now we can combine the indices and write

G(r,r′;kx)=
∑
n

(−1)nG0
(
x,nL+(−1)nx′;kx

)
(8.3.15)

Since,

G0(x,x′;kx)= i

2kx
eikx|x−x

′| (8.3.16)

This expansion does not converge at all for lossless media while the spectral expansion of the
Green’s function is absolutely convergent. However, in a lossy medium or for an imaginary
wave number, image charges expansion converges rapidly. For an imaginary wavenumber
kx=iξx and taking xn=nL+(−1)nx′ we have

G(x,x′;iξx)=
∑
n

(−1)n 1
2ξx

e−ξx|x−xn| (8.3.17)

which is rapidly convergent with respect to the number of included images. The image
expansion is compared to the spectral expansion of

G(x,x′,kx)= 2
L

∑
n

sinknxx sinknxx′

k2
x−k2

nx

(8.3.18)

for imaginary wave number ξ=2π for plates separated by normalized distance Lx=1 (ar-
bitrary unit) in Fig. 8.4. The source is located at x′=Lx/4 and the Green’s function is
plotted as a function of x. Modal summation of Eq. 8.3.18 is summed over 100 modes as
a reference. The response of the source itself without considering any image source (Image
N=0) as well as Green’s function obtained by including just one image charge is plotted.
The Green’s function calculated by inclusion of just one image is exactly the same as modal
summation with 100 terms.

Figure 8.4: The 1D Green’s function between parallel PEC plates calculated by
modal summation (100 modes) and image method for an imaginary wave number

ξx=2π.
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Figure 8.5: Images of point charge Q between parallel plates.

8.3.2 Two Dimensional Images

For unit point source inside a rectangular waveguide, the Green’s function can be obtained
by considering image charges to be able to remove the boundaries. In fact the finite, and
constraint problem of fields in the waveguide can be transformed into infinite unconstrained
problem of radiation from image charges that produces the Dirichlet boundary condition
on the walls. The array of image charges constitute a pseudo-periodic array of sources.
The positive unit charge Q(x′,y′) inside the waveguide is represented by a red point in Fig.
8.5. The image charges to make the wave function zero on the side walls of the wave guide
include bunch of positive (red) and negative charges (blue). For y=y′ (the central row),
the location of positive image charges is given by

x′′=2mLx+x′ (8.3.19)

where m∈Z. Note that this also includes the real unit charge in addition to the image
charges as they will be treated in the same way. Additionally, negative charges of −Q (blue
dots) should be placed at

x′′=(2m+1)Lx−x′ (8.3.20)

At y=Ly−y′, location of positive and negative charges are reversed, i.e. positive charges
are located at x′′=(2m+1)Lx−x′ and negative charges at x′′=(2m)Lx+x′. In general, the
location of positive charges is given by

(x′′,y′′)=
(
2mLx+x′,2nLy+y′

)
,
(
(2m+1)Lx−x′,(2n+1)Ly−y′

)
(8.3.21)

and for negative image charges

(x′′,y′′)=
(
(2m+1)Lx−x′,2nLy+y′

)
,
(
2mLx+x′,(2n+1)Ly−y′

)
(8.3.22)
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The collective response of the image charges as well as actual charge Q leads to the 2D
Green’s function of

G(ρ,ρ′;kρ)=
∑
n+
G0(ρ,ρ′′n;kρ)−

∑
n−
G0(ρ,ρ′′n;kρ) (8.3.23)

=
∑
n,m

G0
(
ρ;2mLx+x′,2nLy+y′;kρ

)
+
∑
n,m

G0
(
ρ;(2m+1)Lx−x′,(2n+1)Ly−y′;kρ

)
−
∑
n,m

G0
(
ρ;(2m+1)Lx−x′,2nLy+y′;kρ

)
−
∑
n,m

G0
(
ρ;2mLx+x′,(2n+1)Ly−y′;kρ

)
Here, G0(ρ,ρ′;kρ) is Green’s function of a 2D free radiator with 2D wave number kρ in space
which is given by

G0(ρ,ρ′;kρ)= i

4H
(1)
0

(
kρ|ρ−ρ′|

)
(8.3.24)

Three dimensional Green’s function G0(r,r′) for a point source radiator can be constructed
for a 2D problem by a Fourier transform

G0(r,r′)=
∫ dkz

2π G0(ρ,ρ′;kρ)eikz(z−z′) (8.3.25)

The image expansion (8.3.23) can be simplified to

G(ρ,ρ′;kρ)=
∑
n,m

(−1)n+mG0
(
ρ;mLx+(−1)mx′,nLy+(−1)ny′

)
(8.3.26)

On the other side using the eigenfunction expansion we can derive a spectral expression for
2D Green’s function. The result is

G(ρ,ρ′;kρ)= 4
LxLy

∑
m,n

sinkmx
(
x+ Lx

2

)
sinkmx

(
x′+ Lx

2

)
sinkny

(
y+ Ly

2

)
sinkny

(
y′+ Ly

2

)
k2
ρ−(k2

mx+k2
ny)

(8.3.27)

These two results are identical. The image expansion convergence is very poor for a lossless
medium as the Hankel function for large distances decays like (kρρ)−1/2. However, con-
vergence rate of spectral expansion is independent of loss of the medium but the image
expression which is in spatial domain depends on the propagation constant of the medium
exponentially. In the case of lossy medium or at imaginary wave numbers, the spatial ex-
pansion converges rapidly while spectral expansion still converges poorly. For an imaginary
wavenumber kρ=iξρ, and taking ρmn=(mLx+(−1)mx′,nLy+(−1)ny′) the image expression
becomes

G(ρ,ρ′;iξρ)= i

4
∑
n,m

(−1)n+mH
(1)
0

(
iξρ|ρ−ρmn|

)
(8.3.28)

= 1
2π
∑
n,m

(−1)n+mK0
(
ξρ|ρ−ρmn|

)
which converges exponentially with number of images (distance). In order to evaluate
performance of the image summation method for 2D Green’s function, Fig. 8.6 plots the 2D
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Green’s function inside a rectangular waveguide of dimensions Lx=Ly=1 (arbitrary units)
at imaginary wavenumber kρ=2πi. The 2D point source is located at (x′,y′)=(Lx/4,Ly/4)
and the response is plotted along x for y=Ly/3. Modal summation is performed over 100
terms in each dimension (104 total terms). The images summation is also plotted for no
image (the source itself, N=0) as well as including one cluster of 3 images. This shows that
inclusion of just 3 image charges is enough to get convergent result by method of images
while modal summation requires intensive computation. As the imaginary wave number
becomes smaller in magnitude, the response would have a longer range and including higher
number of image responses is required.

Figure 8.6: The 2D Green’s function inside a rectangular waveguide calculated by
modal summation (1002 modes) and image method for an imaginary wave number

ξ=2π.

8.3.3 Three Dimensional Image Charges

For the case of rectangular cavity, image charges should be placed in three dimensions and
the Green’s function of a point source inside the cavity with PEC walls can be obtained
with the same token as

G(r,r′)=
∑
n,m,p

(−1)n+m+pG0
(
r;mLx+(−1)mx′,nLy+(−1)ny′,pLz+(−1)pz′

)
(8.3.29)

Here, G0
(
r,r′) is Green’s function of free point radiator

G0
(
r,r′)= eik|r−r

′|

4π|r−r′| (8.3.30)

and G
(
r,r′) is the Green’s function of point source inside the cavity that satisfies the

Dirichlet boundary condition. On the other hand, the spectral expansion of the Green’s
function inside the cavity is

G(r,r′)=
∑
α

1
k2
α−k2ψα(r)ψ∗α(r′) (8.3.31)

where,

ψα(r)=
√

8
LxLyLz

sinmπ
Lx

(
x+Lx

2

)
sinnπ

Ly

(
y+Ly

2

)
sin pπ

Lz

(
z+Lz

2

)
(8.3.32)
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The Image expansion do converge for 3D lossless case in contrast to 1D (does not converge)
and 2D (very slow convergence) as the image response decays with 1/R. On the other hand,
spectral expansion is poorly convergent. In fact the triple summation∑

m,n,p

1
m2+n2+p2 (8.3.33)

is strictly divergent and even an error bound cannot be achieved for the partial summations.
Therefore, for the lossless case image expression converges better than spectral expansion.
However, for lossy media or for an imaginary wavenumber, the image expansion converges
rapidly with including a few image sources. For an imaginary wavenumber k=iξ and taking
rmnp=

(
mLx+(−1)mx′,nLy+(−1)ny′,pLz+(−1)pz′

)
G(r,r′,iξ)= 1

4π
∑
n,m,p

(−1)n+m+p e
−ξ|r−rmnp|

|r−rmnp|
(8.3.34)

which decays very fast with number of images. Fig. 8.7 plots the 3D Green’s function inside
a rectangular cavity of dimensions Lx=Ly=Lz=1 (arbitrary units) at imaginary wavenum-
ber k=iξ. The point source is located at (x′,y′,z′)=(Lx/4,Ly/4,Lz/4) and the response is
plotted along x for y=z=Ly/3. The modal summation is performed over 100 terms in each
dimension (106 total terms). The images summation is also plotted with inclusion of no
image (the source itself, N=0) as well as including one cluster of 7 image charges around
the primitive cell. The comparison shows that inclusion of just 7 image charges is enough
to get convergent result by method of images while modal summation requires intensive
computation. As the imaginary wave number becomes smaller in magnitude, the response
would have a longer range and including higher number of image responses is required. In

Figure 8.7: The 3D Green’s function inside a rectangular cavity calculated by
modal summation (1003 modes) and image method for an imaginary wave number

ξ=2π.

addition to the Green’s function at imaginary wave number, the wave number derivative of
the the Green’s function is also require for 6th order convergence formulation. Using the
image expression

∂

∂ξ
G(r,r′,iξ)=− 1

4π
∑
n,m,p

(−1)n+m+pe−ξ|r−rmnp| (8.3.35)

which is also exponentially convergent as a function of images positions.
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8.4 Green’s Function of the Regular Shape Cavity
The regular shaped cavity should be exactly solvable is one of the orthogonal coordinate
systems. In a rectangular coordinate system, the eigen -functions of the wave equation for
a perfect conductor rectangular cavity is given by

ψα(r)=Asinmπ
Lx

(
x+Lx

2

)
sinnπ

Ly

(
y+Ly

2

)
sin pπ

Lz

(
z+Lz

2

)
(8.4.1)

where the coordinates are defined such that −Lj/2≤rj≤Lj/2. Normalization constant A
can be found to be A=

√
8/V where V is the volume of the cavity. The eigenvalues of the

wave equation are labeled by discrete index α=(m,n,p) and given by k2
α where

k2
α=
(
mπ

Lx

)2
+
(
nπ

Ly

)2

+
(
pπ

Lz

)2
(8.4.2)

The eigenfunction expansion of the Green function inside the cavity reads

GΩ(r,r′)=
∑
α

1
k2
α−k2

0
ψα(r)ψ∗α(r′) (8.4.3)

With the imaginary wave number extraction, the convergence of the regular shape Green’s
function expansion can be accelerated

GΩ(r,r′,k)=GΩ(r,r′,iξ)− k
2+ξ2

2ξ
∂

∂ξ
GΩ(r,r′,iξ)+(k2+ξ2)2∑

α

ψα(r)ψ∗α(r′)
(k2
α+ξ2)2(k2

α−k2) (8.4.4)

For the imaginary wave number, the first two terms can be calculated rapidly by using
images sources,

GΩ(r,r′,iξ)=
∑
α

1
k2
α+ξ2ψα(r)ψ∗α(r′) (8.4.5)

= 1
4π

∑
n,m,p

(−1)n+m+p e
−ξ|r−rmnp|

|r−rmnp|

and for the imaginary wave number derivative of the the Green’s function

∂

∂ξ
GΩ(r,r′,iξ)=

∑
α

−2ξ
(k2
α+ξ2)2ψα(r)ψ∗α(r′) (8.4.6)

=− 1
4π

∑
n,m,p

(−1)n+m+pe−ξ|r−rmnp|

Consider an empty cavity of dimensions Lx=Ly=Lz=L at wavelength that λ≈1.08L. The
source point is located at x′=y′=z′=L/4 (the origin of the coordinate system at the center
of cavity).

Here, the Green’s function inside the rectangular cavity is computed by direct modal
summation without any extraction of Eq. (8.4.3) and also using the accelerated 6th order
formula of the Eq. (8.4.4) utilizing the image sources.

Figure 8.8 plots the Green function on the plane z=Lz/3 for a source located at x′=y′=
z′=L/4 obtained by accelerated 6th order formula in a linear scale. The imaginary wave

191



number is chosen to be ξ=k/π and total number of used image sources is 23. Also, in the
6th order expansion 6 terms are used in each direction (total number of terms: 63). Figure.
8.9 also plots the Green’s function in dB scale. In order to compare with a benchmark
solution, the direct eigenfunction summation of Eq. (8.4.3) has been used with 300 terms
in each direction (total of 2.7×107 terms in the summation) to obtain convergence up to
10−4 over all the points of observation plane. Figure. 8.10 compares plots the absolute error
of the accelerated 6th order expression compared to the benchmark in dBm−1 scale. The
absolute error is always less than 45 dB which is below the accuracy of direct expansion.

Figure 8.8: Scalar 3D Green’s function inside a resonator of dimensions Lx=Ly=
Lz at wave length λ≈0.93Lx computed by the accelerated 6th order formula using

63 terms.

Figure 8.9: Scalar 3D Green’s function inside a resonator of dimensions Lx=Ly=
Lz at wave length λ≈0.93Lx computed by the accelerated 6th order formula using

63 terms, in dB scale (dBm−1)

Regarding the comparison of CPU time, 6th order extracted sum takes 0.6 CPU-ms
while regular spectral expansion requires 2.1 CPU-s for computing the Green’s function of
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Figure 8.10: Absolute error of Green’s function calculated by 6th order expansion
using 6 modes in each direction respect to the direct modal expansion using 300

modes in each direction in dBm−1

the rectangular cavity per observation point, which is a factor of around 3500 in computation
time.

8.4.1 MoM to find GΩ(r,r′′;k) using G0 and comparison with 6th order
expansion

The regular shaped cavity Green’s function of GΩ(r,r′′;k) satisfies the wave equation of

(∇2+k2)GΩ(r,r′′;k)=−δ(r−r′′) , G(r∈∂Ω,r′′,k)=0 (8.4.7)

On the other side, the free space Green’s function G0(r,r′,k) also satisfies

(∇2+k2)G0(r,r′;k)=−δ(r−r′) , (8.4.8)

subject to the radiation condition at infinity. Upon multiplying byG0(r,r′;k) andGΩ(r,r′′;k),
respectively and integrating the subtraction of both equation over the volume of Ω we have∫

Ω
d3r

[
GΩ(r,r′′;k)∇2G0(r,r′;k)−G0(r,r′;k)∇2GΩ(r,r′′;k)

]
(8.4.9)

=


G0(r′′,r′;k)−GΩ(r′,r′′;k) if:r′,r′′∈Ω
G0(r′′,r′;k) if:r′∈Ω,r′′ /∈Ω
−GΩ(r′,r′′;k) if:r′′∈Ω,r′ /∈Ω
0 if:r′,r′′ /∈Ω

Converting the volume integration into surface integral over the boundary of the cavity and
utilizing that GΩ(r,r′′;k) vanishes on ∂Ω, results in

−
∮
∂Ω

dSG0(r,r′;k)n̂·∇GΩ(r,r′′;k)=


G0(r′′,r′;k)−GΩ(r′,r′′;k) if:r′,r′′∈Ω
G0(r′′,r′;k) if:r′∈Ω,r′′ /∈Ω
−GΩ(r′,r′′;k) if:r′′∈Ω,r′ /∈Ω
0 if:r′,r′′ /∈Ω

(8.4.10)
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Upon letting r′→∂Ω and interchanging r and r′ we have∫
∂Ω

dS′G0(r,r′;k)n̂′ ·∇′GΩ(r′,r′′;k)=−G0(r′′,r;k) (8.4.11)

Taking the unknown surface current density J(r′,r′′;k)=n̂′ ·∇′GΩ(r′,r′′;k) we have∫
∂Ω

dS′G0(r,r′;k)J(r′,r′′;k)=−G0(r,r′′;k) (8.4.12)

By expanding surface current in terms of local pulse basis functions as J=
∑
n1/∆SnJnPn(rn),

over the elements ∂Ω=
∑
nσn the matrix equation is given by Z ·J=b where

Zm,n= 1
∆Sn

∫
σn

dS′G0(rm,r′;k) (8.4.13)

bm=−G0(rm,r′′;k)

For non self patch elements (m 6=n),

Zm,n=G0(rm,rn;k) (8.4.14)

For self patch, the integrand is singular. We replace the patch area of σm with a circle of
radius Rm that gives the same area as σm

Zsing
m,m= 1

4π
1

∆Sm

∫
C

dS e
ikr

r
(8.4.15)

= 1
2

1
∆Sm

∫ Rm

0
dρeikρ

=− 1
2ik

1
∆Sm

[
1−eikRm

]
= i

2k
1

∆Sm

[
1−eik

√
∆Sm/π

]
After finding the surface current J(r′,r′′;k), the Green’s function can be obtained at any
pair of points (r,r′′) by the equivalence principle of Eq. 8.4.10 as

GΩ(r,r′′;k)=G0(r,r′′;k)+
∫
∂Ω

dS′G0(r,r′;k)J(r′,r′′;k) (8.4.16)

and in term of discretized surface current

GΩ(r,r′′;k)=G0(r,r′′;k)+
∑
n

1
∆Sn

Jn

∫
σn

dS′G0(r,r′;k) (8.4.17)

If observation point r is not on the boundary, then

GΩ(r,r′′;k)=G0(r,r′′;k)+
∑
n

JnG0(r,rn;k) (8.4.18)

If the observation point coincide with the boundary surface element m, then

GΩ(r,r′′;k)=G0(r,r′′;k)+
∑
n6=m

1
∆Sn

Jn

∫
σn

dS′G0(r,r′;k)+ i

2k
Jm

∆Sm

[
1−eik

√
∆Sm/π

]
(8.4.19)

Figure 8.11 plots the Green’s function of rectangular cavity of size Lx=Ly=Lz=L for
the source point at x′=y′=z′=L/4 at frequency corresponds to λ=0.93L on the plane of
z=Lz/3 computed by MoM over the walls of the rectangular cavity using G0(r,r′;k) as
propagator of the SIE.
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Figure 8.11: Scalar 3D Green’s function inside a resonator of dimensions Lx=
Ly=Lz=L at wave length λ≈0.93Lx computed by the MoM over boundary of the

rectangular cavity using G0(r,r′,k)

Figure 8.12: Absolute difference between MoM and 6th order spectral expansion
for the scalar 3D Green’s function inside a resonator of dimensions Lx=Ly=Lz=L

at wave length λ≈0.93Lx in dB.

8.5 Irregular Shape Cavity, Imaginary Wavenumber Extrac-
tion

Consider an irregular shaped cavity S. The procedure of constructing the Green’s function
of irregular shaped cavity GS(r,r′;k) is represented in the chart Fig. 8.13. Step 1 includes
the hybrid representation of GΩ(r,r′;k) which has been completed in the previous section.
In the second step , the hybrid GΩ(r,r′;k) is inserted into a surface integral equation of the
irregular shaped cavity (described in sec. ??) that yields a linear eigenvalue problem for
the eigenvalue qβ and the mode functions φβ(r) where for the cavity S. The solution of
φβ(r) is a hybrid summation of the surface integral contribution and the modal expansion
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GΩ(r, r′; iξ)

GΩ(r, r′; k) GS(r, r′; k)

GS(r, r′; iξ)

SIE

Linear
Eigenvalue
Problem

Normalization

Spurious modes

Rejection

φβ(r)

qβ

Jβ
n (r)

Hybrid GΩ Hybrid φβ(r) Hybrid GS

Figure 8.13: Procedure of construction of the irregular shaped cavity Green’s
function GS(r,r′;k).

in terms of ψα(r) of the rectangular cavity. In the last step GS(r,r′;k) is constructed using
a hybrid representation of summation of imaginary wavenumber extraction GS(r,r′;k) and
the modal expansion in terms of φβ(r). This procedure will be described step by step here
and in the next sections.

Here, in order to show the procedure of treating an irregular shaped cavity, we consider
a rectangular cavity with a V-Groove of Fig. 8.14 as an example. Let’s call the interior
volume and the boundary surface of the cavity of the irregular shape S and ∂S, respectively.
. All of the steps and logics can be applied equivalently to the other geometries as well.
The resonant wave function φα(r) with resonant wave number qα (In order to distinguish

α

2

Lx

Lz

h

w

Ly

Figure 8.14: A rectangular cavity with a V-Groove.

between regular and irregular geometries, we will use this notation) inside the cavity satisfies
the eigenvalue equation of

(∇2+q2
α)φα(r)=0 (8.5.1)

The eigenvalues qα and eigenfunctions φα(r) are functions of geometrical parameters but
not the excitation frequency and are not known yet. The Green ’s function at the excitation
frequency ω that corresponds to excitation wave number k=ω√µε inside the cavity, can be
expanded in terms of the resonant modes as

GS(r,r′;k)=
∑
α

1
q2
α−k2φα(r)φ∗α(r′) (8.5.2)
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Note that the resonant mode function φα(r) does not depend on the frequency and this
representation has a simple dependence on the excitation frequency. The problem with this
expansion is that similar to the case of rectangular cavity, required number of terms to get
a convergent Green’s function with acceptable level of accuracy is large. Conventional way
is to use the numerical methods like MoM to find the modes but computation cost would
be expensive to solve for many modes. In particular, these numerical methods require a
non-linear search to find the eigenvalues. Therefore, computing the Green’s function using
the modal expansion by computing the eigenfunctions directly is also computationally ex-
pensive. The spectral summation can be accelerated by Imaginary wave number extraction
(similar to the rectangular cavity) to the 6th order convergence as

GS(r,r′;k)=GS(r,r′;iξ)− k
2+ξ2

2ξ
∂

∂ξ
G(r,r′;iξ)

+(k2+ξ2)2∑
β

φβ(r)φ∗β(r′)
(q2
β+ξ2)2(q2

β−k2)
(8.5.3)

If the extracted terms can be determined with a low cost procedure, then at least this
expansion would converge much faster (6th order instead of 2nd order). On the other
hand, cost of computing the Green’s function at imaginary wave number is lower than the
computing the Green’s function at a real wavenumber (reasons are mentioned in Sec. ??
). Furthermore, for a broad band solution, the extracted terms need to be computed only
one time at a fixed imaginary wave number k=iξ.

The point of interest in the modal expansion is the broadband characteristic which is
the simple dependence on the frequency through the denominator. However, it is important
to find the resonant modes in a way that is independent of the excitation frequency. For
example, one may use conventional MoM to find the resonant wave function φβ(r) and
sums up the spectral expansion. However, finding the resonant modes requires a fine sweep
over frequency and in addition searching process is non-linear. Given these difficulties to
find the mode functions, direct MoM solution for the Green’s function at each frequency
point is a more efficient approach.

In order to circumvent the required non-linear search and fine sweep over frequency to
find the eigenvalues and eigenfunctions, a hybrid spatial-spectral linear eigenvalue problem
will be developed in the next section.

8.6 Linear Eigenvalue Equation

8.6.1 Surface Integral Equation for The Resonant Modes

The resonant wave function φ(r) inside the irregular cavity satisfies the homogeneous wave
equation

(∇2+k2)φ(r)=0 , φ(r∈S)=0 (8.6.1)

subject to Dirichlet boundary condition φ(r)=0 for r∈S. On the other side the Green’s
function at wave number k in the corresponding regular shaped cavity GΩ(r,r′) satisfies the
inhomogeneous wave equation subject to boundary condition GΩ(r,r′)=0 for r∈∂Ω where
∂Ω is the boundary surface of the regular shaped (rectangular here) cavity,

(∇2+k2)GΩ(r,r′)=−δ(r−r′) , GΩ(r∈∂Ω,r′)=0 (8.6.2)
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Upon multiplying Eq. (8.6.1) and Eq. (8.6.2) by GΩ(r,r′) and φ(r), respectively and
integrating the subtraction of both equation over the volume of V we have

∫
V

d3r

[
GΩ(r,r′)∇2φ(r)−φ(r)∇2GΩ(r,r′)

]
=
{
φ(r′) if:r′∈V
0 if:r′ /∈V

(8.6.3)

Utilizing the Green’s identity, volumetric integral can be converted into a surface integral
over S,

∮
S

dS
[
GΩ(r,r′)n̂·∇φ(r)−φ(r)n̂·∇GΩ(r,r′)

]
=
{
φ(r′) if:r′∈V
0 if:r′ /∈V

(8.6.4)

Now, the resonant wave function φ(r) vanishes on the surface of the cavity and interchanging
primed and unprimed coordinate

∮
S

dS′ GΩ(r,r′)n̂′ ·∇′φ(r′)=
{
φ(r) if:r∈V
0 if:r /∈V

(8.6.5)

The irregular cavity boundary S can be decomposed into S=SΩ+σ where SΩ is the part of
S that overlap with ∂Ω. The boundary surface σ for the cavity of Fig. 8.14 is depicted in
Fig. 8.15. Since GΩ(r,r′) vanishes on ∂Ω and in particular on SΩ, the only non-zero part
of the surface integral is

∫
σ

dS′ GΩ(r,r′)n̂′ ·∇′φ(r′)=
{
φ(r) if:r∈V
0 if:r /∈V

(8.6.6)

Upon placing the observation point on the surface of the cavity and taking J(r′)=n̂′ ·∇′φ(r′)
we have the surface integral equation∫

σ
dS′ GΩ(r,r′)J(r′)=0 (8.6.7)

Notice that this is an integral equation counterpart of the differential eigenvalue equation
of Eq. 8.6.1 and solutions are resonant wave functions φα(r) with corresponding eigenvalue
of q2

α.

8.6.2 Linear Eigen-value Equation Using The 4th Order Spectral Sum-
mation

The regular cavity Green’s function GΩ(r,r′;k) at excitation wave number k can be written
in terms of an accelerated modal expansion of

GΩ(r,r′,k)=GΩ(r,r′,iξ)+
MΩ∑
α=1

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
ψα(r)ψ∗α(r′) (8.6.8)

Here, kα and ψα(r) are resonant frequencies and wave functions of the regular shaped
cavity (rectangular), respectively. The summation is truncated atMΩ such that the Green’s
function of the rectangular cavity is computed with desired level of accuracy. The Green’s
function at imaginary wave number is also calculated accurately with few terms in the
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Figure 8.15: Boundary surface σ, the part of cavity surface which is not common
with the corresponding regular shape cavity

image source expansion. Using the extracted expansion of Eq. 8.6.8 in the surface integral
equation of Eq. 8.6.7 we have

∫
σ

dS′GΩ(r,r′,iξ)J(r′)+
MΩ∑
α=1

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
ψα(r)

∫
σ

dS′ψ∗α(r′)J(r′)=0 (8.6.9)

Defining the projection of the surface current J(r) on the ψ∗α(r) together with frequency
dependent terms as

cα= k2+ξ2

k2
α−k2

∫
σ

dS′ψ∗α(r′)J(r′) (8.6.10)

the SIE becomes,

∫
σ

dS′GΩ(r,r′,iξ)J(r′)+
MΩ∑
α=1

1
k2
α+ξ2ψα(r)cα=0 (8.6.11)

The surface current J(r) can be discretized on the boundary surface σ using a set of basis
functions as

J(r)=
∑
n

1
∆Sn

JnPn(r) (8.6.12)

Here, n is a two dimensional index of the basis functions on the surface σ and ∆Sn is
the area of the n-th element. If we assume local pulse basis functions over the cell of σn
and total number of the patches on σ is Nσ

∑
n

1
∆Sn

Jn

∫
σn

dS′GΩ(r,r′,iξ)+
MΩ∑
α=1

1
k2
α+ξ2ψα(r)cα=0 (8.6.13)

Now, using the delta function at rm to test the integral equation we have

∑
n

Zm,nJn+
MΩ∑
α=1

Rm,αcα=0 (8.6.14)
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or in the matrix form Z ·J+R·c=0. Here, the MoM impedance matrix elements Zm,n and
hybrid MoM-Modal matrix element Rm,α are given by

Zm,n= 1
∆Sn

∫
σn

dS′GΩ(rm,r′,iξ)

Rm,α= 1
k2
α+ξ2ψα(rm) (8.6.15)

On the other side, the modal coefficients cα can be discretized by the MoM scheme to give

cα= k2+ξ2

k2
α−k2

∑
n

Jnψ
∗
α(rn) (8.6.16)

= (k2+ξ2)(k2
α+ξ2)

k2
α−k2

∑
n

JnR
∗
n,α (8.6.17)

Where we have used definition of Rn,α in Eq. 8.6.15 and the fact that ξ2 and k2
α are real

quantities. Rearranging the terms∑
n

JnR
∗
n,α=cα

[ 1
k2+ξ2−

1
k2
α+ξ2

]
(8.6.18)

Upon defining a diagonal matrix D with Dαα=(k2
α+ξ2)−1 and taking λ=(k2+ξ2)−1 we

have

R
†
·J+D ·c=λc (8.6.19)

Using Z ·J+R·c=0 to eliminate J by substituting J=−Z
−1
·R·c we have the linear eigen-

value equation of (
D−R

†
·Z
−1
·R
)
·c=λc (8.6.20)

This is the linear eigenvalue equation, where the eigenvalues determine the resonant
wave number k=qα and the eigenvectors c provides the projection coefficients of the resonant
surface current J(r) on the regular (rectangular) cavity wave functions ψα(r). In order to
construct the Green’s function of the irregular shaped cavity, eigenmodes of the cavity
are required. The resonant wave functions φβ(r) inside the cavity can be found by the
equivalence principle of Eq. 8.6.6 where r∈V∫

σ
dS′ GΩ(r,r′,k=qβ)Jβ(r′)=φβ(r) (8.6.21)

Using the extracted expansion of the Green’s function GΩ(r,r′,qβ)

φβ(r)=
∑
n

Jβn
1

∆Sn

∫
σn

dS′GΩ(r,r′,iξ)+
MΩ∑
α=1

1
k2
α+ξ2ψα(r)cβα (8.6.22)

where,

cβα=
q2
β+ξ2

k2
α−q2

β

∑
n

Jβnψ
∗
α(rn) (8.6.23)

cβα is the β-th eigenvector of the linear eigenvalue system of Eq. 8.6.20. Now, the wave
functions φβ(r) are known by Eq. 8.6.22.
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8.6.3 Normalization of the Modes

The resonant wave functions φβ(r) are related to the eigenvectors of the eigenvalue system
of (8.6.20) and are known. However the wave functions obtained by (8.6.22) are arbitrary
up to a multiplicative constant while in all of the spectral expansions of the Green’s function
it is assumed that the resonant wave functions are normalized with respect to the inner
product induced by the wave equation. In order to use the spectral expansion of the
Green’s function, the wave functions φβ(r) should be normalized over the volume of the
cavity according to ∫

V
d3r

∣∣∣φβ(r)
∣∣∣2=1 , ∀β

Normalizing the modes using this volume integration for each mode is a computationally
expensive task. Instead each wave function φβ can be expanded in terms of the regular
shaped cavity wave functions ψα as they form a complete basis functions in S⊆Ω

φβ(r)=
∞∑
α=1

dβαψα(r)

Taking into account that
{
ψα(r)

}
α
constitute an orthonormal set, normalization of the

φβ(r) requires that

∑
α

∣∣∣dβα∣∣∣2=1

d is the transformation matrix between two orthonormal sets {φβ}β, and {ψα}α and there-
fore it should be a unitary transformation. Requirement of orthogonality of the columns
of d is always granted as {φβ(r)}β is an orthogonal set (for a lossless cavity). The trans-
formation coefficients of dβα can be read from Eq. 8.6.22. Since we need to compute |dβα|2,
substituting the conventional 2nd order spectral expansion of (8.4.3) into (8.6.22) results
in the 4th order convergence in computation of |dβα|2 with respect to the mode number α.

φβ(r)=
∞∑
α=1

∑
n

Jβn
1

k2
α+ξ2ψα(r)ψ∗α(rn)+

MΩ∑
α=1

1
k2
α+ξ2ψα(r)cβα

which results in

dβα= 1
k2
α+ξ2

(∑
n

Jβnψ
∗
α(rn)+cβα

)

or

dβα=



1
k2
α+ξ2

(
k2
α−q2

β

q2
β+ξ2 +1

)
cβα, 1≤α≤MΩ

1
k2
α+ξ2

∑
n

Jβnψ
∗
α(rn), α>MΩ
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After finding the transformation coefficients dβα all of the surface currents Jβ(r) and wave
functions φβ(r) should be renormalized to

√
Lβ where

Lβ=
∞∑
α=1

∣∣∣dβα∣∣∣2
8.6.4 Spurious Modes

The solution to the surface integral equation of (8.6.7), provides the resonant surface cur-
rents inside the irregular cavity of volume V . However, the resonant surface current of the
complementary cavity of Fig. 8.16, Jc(r) satisfies the same SIE as J(r) of the cavity of Fig.
8.14 does, ∫

σ
dS′ GΩ(r,r′)Jc(r′)=0 (8.6.24)

σ

...

...
...

∂Ω

Figure 8.16: Complementary cavity with respect to the regular cavity bounded
by ∂Ω.

Although the complementary cavity surface current Jc(r), satisfies the same surface
integral equation as the surface current of the desired cavity, those are spurious solutions
of the SIE.

The complementary cavity modes are not the only spurious solutions. A linear combi-
nation of cavity modes and complementary cavity modes is also an spurious mode. Figure.
8.17 shows a high order spurious mode that is linear combination of desired and comple-
mentary modes. Since the complementary cavity is smaller than the cavity itself, spurious
modes appear among the high frequency modes.

In order to distinguish between real and spurious solutions, the extinction theorem for
the cavity wave function can be used,∫

σ
dS′ GΩ(r,r′)n̂′ ·∇′φ(r′)=

{
φ(r) if:r∈V
0 if:r /∈V

(8.6.25)

The surface current that is related to the resonant wave functions of the desired cavity
φ(r) will produce zero field outside of the cavity (r /∈V ). By evaluating the wave function
at some sample points outside of the cavity we can throw away the spurious wave functions
which have non-zero value outside the cavity.

8.7 MoM to find G(r,r′;iξ)
After finding the resonant wave functions and wave numbers φβ and qβ, we can directly
plug them into the original spectral expansion of the second order convergence. However,
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Figure 8.17: A spurious solution of the eigenfunction φβ(r) of the irregular shaped
cavity over y=0 plane. The wave function does not vanish outside of the cavity in

the groove region.

the convergence is slow and in order to take the advantages of the fourth order expansion
of G(r,r′;iξ) for the irregular shaped cavity which is given by

G(r,r′;k)=G(r,r′;iξ)+
∑
β

[
k2+ξ2

(q2
β−k2)(q2

β+ξ2)

]
φβ(r)φ∗β(r′) (8.7.1)

we need to find the Green’s function of the irregular cavity at imaginary wave number ξ.
Basically one may want to find the Green’s function inside the cavity without going to
the process of eigenfunction expansion and accelerating convergence of the summations.
However, there are several reasons that applying MoM directly to find the Green’s function
is not efficient. First, at imaginary wave number, the matrix equations are very well behaved
and sparse as the interaction is exponentially damped. Second, for a wide band solution
(different k’s), G(r,r′;iξ) should be computed only one time at the imaginary wave number
ξ. The regular cavity Green’s function GΩ(r,r′;iξ) satisfies the inhomogeneous equation of

(∇2−ξ2)GΩ(r,r′;iξ)=−δ(r−r′) , GΩ(r∈∂Ω,r′)=0 (8.7.2)

The irregular cavity Green’s function at imaginary wave number of G(r,r′′;iξ) also satisfies
the inhomogeneous equation of

(∇2−ξ2)G(r,r′′;iξ)=−δ(r−r′′) , G(r∈S,r′′,iξ)=0 (8.7.3)

Upon multiplying Eq. (8.7.2) and Eq. (8.7.3) by G(r,r′;iξ) and GΩ(r,r′;iξ), respectively
and integrating the subtraction of both equation over the volume of V we have∫

V
d3r

[
GΩ(r,r′;iξ)∇2G(r,r′′;iξ)−G(r,r′′;iξ)∇2GΩ(r,r′;iξ)

]
(8.7.4)

=


G(r′,r′′;iξ)−GΩ(r′′,r′;iξ) if:r′,r′′∈V
G(r′,r′′;iξ) if:r′∈V,r′′ /∈V
−GΩ(r′,r′′;iξ) if:r′′∈V,r′ /∈V
0 if:r′,r′′ /∈V
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Converting the volume integration into surface integral over the boundary of the cavity and
utilizing that G(r,r′′;iξ) vanishes on S and GΩ(r,r′;iξ) also vanishes on S−σ,

∫
σ

dSGΩ(r,r′;iξ)n̂·∇G(r,r′′;iξ)=


G(r′,r′′;iξ)−GΩ(r′′,r′;iξ) if:r′,r′′∈V
G(r′,r′′;iξ) if:r′∈V,r′′ /∈V
−GΩ(r′,r′′;iξ) if:r′′∈V,r′ /∈V
0 if:r′,r′′ /∈V

(8.7.5)

Upon letting r′→S and interchanging r and r′ we have∫
σ

dS′GΩ(r,r′;iξ)n̂′ ·∇′G(r′,r′′;iξ)=−GΩ(r,r′′;iξ) (8.7.6)

Taking the unknown surface current density J(r′,r′′;iξ)=n̂′ ·∇′G(r′,r′′;iξ) we have∫
σ

dS′GΩ(r,r′;iξ)J(r′,r′′;iξ)=−GΩ(r,r′′;iξ) (8.7.7)

By expanding surface current in terms of local pulse basis functions as J=
∑
n1/∆SnJnPn(rn),

the matrix equation is Z ·J=b where

Zm,n= 1
∆Sn

∫
σn

dS′GΩ(rm,r′;iξ) (8.7.8)

bm=−GΩ(rm,r′′;iξ)

After finding the surface current J(r′,r′′;iξ), the Green’s function can be obtained at any
pair of points (r,r′′) by the equivalence principle of Eq. 8.7.5 as

G(r,r′′;iξ)=GΩ(r,r′′;iξ)+
∫
σ

dS′GΩ(r,r′;iξ)n̂′ ·∇′G(r′,r′′;iξ) (8.7.9)

The matrix equation obtained by MoM is sparse and very well behaved. The interaction at
imaginary wave number is exponentially damped and the impedance matrix is banded. In
addition resonance does not occur at imaginary wave number and the system of equations
has a very low condition number.

Impedance matrix elements

For the problem of finding the Green’s function at imaginary wave number iξ we need to
compute the impedance matrix of

Zm,n= 1
∆Sn

∫
σn

dS′GΩ(rm,r′;iξ) (8.7.10)

Since GΩ(rm,r′;iξ) decays exponentially by distance and it is pretty uniform over a cell,
non-self patch elements m 6=n can be evaluated by center point approximation

Zm,n=GΩ(rm,rn;iξ) (8.7.11)

for the self patch elements, using the image expansion

GΩ(r,r′,iξ)= 1
4π

∑
n,m,p

(−1)n+m+p e
−ξ|r−rmnp|

|r−rmnp|
(8.7.12)
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This expansion contains the contribution from the real source corresponds to (m,n,p)=
(0,0,0) and images charges. The only singular term is the contribution of the real source

Zm,m= 1
4π

∑
m,n,p

(m,n,p 6=(0,0,0)

(−1)n+m+p e
−ξ|rm−rmnp|

|rm−rmnp|
+ 1

4π
1

∆Sm

∫
σm

dS′ e
−ξ|rm−r′|

|rm−r′|
(8.7.13)

In order to calculate the surface integral, we approximate the surface element σn (it can be
any shape) with a circle centered at rm with the same area as σn. The radius of this circle
would be Rm=

√
∆Sm/π. As long as the area of discretization element are small this is a

valid approximation. Near the mth patch, r′=rm+r and

Zsing
m,m= 1

4π
1

∆Sm

∫
C

dS e
−ξr

r
(8.7.14)

= 1
2

1
∆Sm

∫ Rm

0
dρe−ξρ

= 1
2ξ

1
∆Sm

[
1−e−ξRm

]
= 1

2ξ
1

∆Sm

[
1−e−ξ

√
∆Sm/π

]
Therefore, total self patch elements become

Zm,m= 1
4π

∑
m,n,p

(m,n,p 6=(0,0,0)

(−1)n+m+p e
−ξ|rm−r

(m)
mnp|

|rm−r(m)
mnp|

+ 1
2ξ

1
∆Sm

[
1−e−ξ

√
∆Sm/π

]
(8.7.15)

and for non-self patch elements

Zm,n= 1
4π

∑
m,n,p

(−1)n+m+p e
−ξ|rm−r

(n)
mnp|

|rn−r(n)
mnp|

(8.7.16)

where r(n)
mnp’s are position of images source when the real source is located at r=rn.

8.7.1 Additional MoM to find ∂

∂ξ
G(r,r′;iξ)

Notice that the wavenumber derivative of the Green’s function is independent of the value of
the Green’s function and requires a new SIE to be solved. The Green’s function G(r,r′′;iξ)
at imaginary wave number iξ is related to the regular Green’s function GΩ(r,r′′;iξ) through

G(r,r′′;iξ)=GΩ(r,r′′;iξ)+
∫
σ

dS′GΩ(r,r′;iξ)n̂′ ·∇′G(r′,r′′;iξ) (8.7.17)

Applying the wavenumber derivative yields

∂

∂ξ
G(r,r′′;iξ)= ∂

∂ξ
GΩ(r,r′′;iξ)+

∫
σ

dS′ ∂
∂ξ
GΩ(r,r′;iξ)n̂′ ·∇′G(r′,r′′;iξ) (8.7.18)

+
∫
σ

dS′GΩ(r,r′;iξ)n̂′ ·∇′ ∂
∂ξ
G(r′,r′′;iξ)
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Assuming we know the surface current n̂′ ·∇′G(r′,r′′;iξ) from the MoM solution in the
previous section, it is not trivial that how it depends on he wave number to find

∂

∂ξ
n̂′ ·∇′G(r′,r′′;iξ) (8.7.19)

from that. We can set up another MoM to find this new quantity. Taking derivative of the
SIE with respect to wave number ξ yields∫
σ

dS′ ∂
∂ξ
GΩ(r,r′;iξ)n̂′ ·∇′G(r′,r′′;iξ)+

∫
σ

dS′GΩ(r,r′;iξ)n̂′ ·∇′ ∂
∂ξ
G(r′,r′′;iξ)=− ∂

∂ξ
GΩ(r,r′′;iξ)

(8.7.20)

The wave number derivative of the GΩ(r,r′′;iξ) can be easily calculated. Taking the sur-
face current J(r′,r′′;iξ)=n̂′ ·∇′G(r′,r′′;iξ) (which is now known by the previous MoM) and
Jξ(r′,r′′;iξ)=n̂′ ·∇′∂ξG(r′,r′′;iξ) we have the following matrix equation,

Zξ ·J+Z ·Jξ=bξ (8.7.21)

that gives

Jξ=Z
−1
·
(
bξ−Zξ ·J

)
(8.7.22)

where,

Zm,n= 1
∆Sn

∫
σn

dS′GΩ(rm,r′;iξ) (8.7.23)

Zξ,m,n= 1
∆Sn

∫
σn

dS′ ∂
∂ξ
GΩ(rm,r′;iξ)

bξ,m=− ∂

∂ξ
GΩ(rm,r′′;iξ)

All of the impedance matrix elements can be calculated fast and analytically. Note that the
wave number derivative of the Green’s function is regular every where (even at the source
point) for the GΩ(rm,r′′;iξ). We need this additional MoM to use the 6th order spectral
expansion for the G(r′,r′′;k).

8.8 Benchmark: Surface Integral Equation formulation of
total Green’s function

In order to verify the proposed approach, we compare the results with the benchmark
solution using the usual approach of the SIE (pure MoM). The MoM solution will be used
as the measure of the efficiency and accuracy of the proposed method. The MoM should
be setup for one frequency at a time.

8.8.1 Irregular cavity Green’s function by direct MoM using G0(r,r′;k)
The irregular shaped cavity Green’s function of G(r,r′′;k) satisfies the wave equation of

(∇2+k2)G(r,r′′;k)=−δ(r−r′′) , G(r∈S,r′′,k)=0 (8.8.1)
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On the other side, the free space Green’s function G0(r,r′,k) also satisfies

(∇2+k2)G0(r,r′;k)=−δ(r−r′) , (8.8.2)

Subject to the radiation condition at infinity. Upon multiplying byG0(r,r′;k) andG(r,r′′;k),
respectively and integrating the subtraction of both equation over the volume of V , con-
verting the volume integration into surface integral over the boundary of the cavity and
utilizing that G(r,r′′;k) vanishes on S, it gives,

−
∮
S

dSG0(r,r′;k)n̂·∇G(r,r′′;k)=


G0(r′′,r′;k)−G(r′,r′′;k) if:r′,r′′∈V
G0(r′′,r′;k) if:r′∈V,r′′ /∈V
−G(r′,r′′;k) if:r′′∈V,r′ /∈V
0 if:r′,r′′ /∈V

(8.8.3)

Upon letting r′→S and interchanging r and r′ we have∮
S

dS′G0(r,r′;k)n̂′ ·∇′G(r′,r′′;k)=−G0(r′′,r;k) (8.8.4)

Taking the unknown surface current density J(r′,r′′;k)=n̂′ ·∇′G(r′,r′′;k) we have∮
S

dS′G0(r,r′;k)J(r′,r′′;k)=−G0(r,r′′;k) (8.8.5)

By expanding surface current in terms of local pulse basis functions as J=
∑
n1/∆SnJnPn(rn),

over the elements ∂Ω=
∑
nσn the matrix equation is Z ·J=b where

Zm,n= 1
∆Sn

∫
σn

dS′G0(rm,r′;k) (8.8.6)

bm=−G0(rm,r′′;k)

Figure 8.18: Discretization points on the irregular shaped cavity.
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After finding the surface current J(r′,r′′;k), the Green’s function can be obtained at
any pair of points (r,r′′) by the equivalence principle of Eq. 8.7.5 as

G(r,r′′;k)=G0(r,r′′;k)+
∮
S

dS′G0(r,r′;k)J(r′,r′′;k) (8.8.7)

and in term of discretized surface current

G(r,r′′;k)=G0(r,r′′;k)+
∑
n

1
∆Sn

Jn

∫
σn

dS′G0(r,r′;k) (8.8.8)

If observation point r is not on the boundary patch σn, then

G(r,r′′;k)=G0(r,r′′;k)+
∑
n

JnG0(r,rn;k) (8.8.9)

If the observation point coincide with the boundary surface element m, then

G(r,r′′;k)=G0(r,r′′;k)+
∑
n6=m

1
∆Sn

Jn

∫
σn

dS′G0(r,r′;k)+ i

2k
Jm

∆Sm

[
1−eik

√
∆Sm/π

]
(8.8.10)

8.8.2 Irregular cavity Green’s function by MoM using GΩ(r,r′;k)
The regular cavity Green’s function GΩ(r,r′;iξ) satisfies the inhomogeneous equation of

(∇2+k2)GΩ(r,r′;iξ)=−δ(r−r′) , GΩ(r∈∂Ω,r′)=0 (8.8.11)

The irregular cavity Green’s function of G(r,r′′;k) also satisfies the inhomogeneous equation
of

(∇2+k2)G(r,r′′;k)=−δ(r−r′′) , G(r∈S,r′′,k)=0 (8.8.12)

Upon multiplying Eq. (8.8.11) and Eq. (8.8.12) by G(r,r′;k) and GΩ(r,r′;k), respectively
and integrating the subtraction of both equation over the volume of V , and converting the
volume integration into surface integral over the boundary of the cavity and utilizing that
G(r,r′′;k) vanishes on S and GΩ(r,r′;k) also vanishes on S−σ,

∫
σ

dSGΩ(r,r′;k)n̂·∇G(r,r′′;k)=


G(r′,r′′;k)−GΩ(r′′,r′;k) if:r′,r′′∈V
G(r′,r′′;k) if:r′∈V,r′′ /∈V
−GΩ(r′,r′′;k) if:r′′∈V,r′ /∈V
0 if:r′,r′′ /∈V

(8.8.13)

Upon letting r′→S and interchanging r and r′ we have∫
σ

dS′GΩ(r,r′;k)n̂′ ·∇′G(r′,r′′;k)=−GΩ(r,r′′;k) (8.8.14)

Taking the unknown surface current density J(r′,r′′;k)=n̂′ ·∇′G(r′,r′′;k) we have∫
σ

dS′GΩ(r,r′;k)J(r′,r′′;k)=−GΩ(r,r′′;k) (8.8.15)
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By expanding surface current in terms of local pulse basis functions as J=
∑
n1/∆SnJnPn(rn),

the matrix equation is Z ·J=b where

Zm,n= 1
∆Sn

∫
σn

dS′GΩ(rm,r′;k) (8.8.16)

bm=−GΩ(rm,r′′;k) (8.8.17)

After finding the surface current J(r′,r′′;k), the Green’s function can be obtained at any
pair of points (r,r′′) by the equivalence principle of Eq. 8.8.13 as

G(r,r′′;k)=GΩ(r,r′′;k)+
∫
σ

dS′GΩ(r,r′;k)n̂′ ·∇′G(r′,r′′;k) (8.8.18)

Impedance matrix elements

For the problem of finding the Green’s function wave number k we need to compute the
impedance matrix of

Zm,n= 1
∆Sn

∫
σn

dS′GΩ(rm,r′;k) (8.8.19)

Since GΩ(rm,r′;k) decays exponentially by distance and it is pretty uniform over a cell,
non-self patch elements m 6=n can be evaluated by center point approximation

Zm,n=GΩ(rm,rn;k) (8.8.20)

Using the 6th order spectral expansion,

GΩ(r,r′,k)=GΩ(r,r′,iξ)− k
2+ξ2

2ξ
∂

∂ξ
GΩ(r,r′,iξ)+(k2+ξ2)2∑

α

ψα(r)ψ∗α(r′)
(k2
α+ξ2)2(k2

α−k2) (8.8.21)

It can be observed that singularity at the source point contained in the first term (the
imaginary wave number derivative is regular at r=r′) and the last term cannot rise in a
singularity at the source point. Assuming |ψα(r)|≤M (for rectangular cavity M=

√
8/V )

and k 6=kα, at the source point r=r′ the last term would be a convergent series,
∑
α

ψα(r)ψ∗α(r)
(k2
α+ξ2)2(k2

α−k2)≤M
2∑
α

1
(k2
α+ξ2)2|k2

α−k2|
<∞ (8.8.22)

as for large values of α, the tail is convergent. The singular term GΩ(r,r′,iξ) is computed
using image expansion. The self patch impedance element would be

Zm,m= 1
∆Sm

∫
σm

dS′GΩ(rm,r′,iξ)−
k2+ξ2

2ξ
∂

∂ξ
GΩ(rm,rm,iξ)+(k2+ξ2)2∑

α

ψα(rm)ψ∗α(rm)
(k2
α+ξ2)2(k2

α−k2)
(8.8.23)

The Green’s function imaginary wave number GΩ(r,r′,iξ) is expressed in terms of image
expansion

GΩ(r,r′,iξ)= 1
4π

∑
n,m,p

(−1)n+m+p e
−ξ|r−rmnp|

|r−rmnp|
(8.8.24)
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This expansion contains the contribution from the real source corresponds to (m,n,p)=
(0,0,0) and images charges. The only singular term is the contribution of the real source

1
∆Sm

∫
σm

dS′GΩ(rm,r′,iξ)= 1
4π

∑
m,n,p

(m,n,p)6=(0,0,0)

(−1)n+m+p e
−ξ|rm−rmnp|

|rm−rmnp|
+ 1

4π
1

∆Sm

∫
σm

dS′ e
−ξ|rm−r′|

|rm−r′|

(8.8.25)

Therefore, total self patch elements become

Zm,m= 1
4π

∑
m,n,p

(m,n,p 6=(0,0,0)

(−1)n+m+p e
−ξ|rm−r

(m)
mnp|

|rm−r(m)
mnp|

+ 1
2ξ

1
∆Sm

[
1−e−ξ

√
∆Sm/π

]
(8.8.26)

− k
2+ξ2

2ξ
∂

∂ξ
GΩ(rm,rm,iξ)+(k2+ξ2)2∑

α

ψα(rm)ψ∗α(rm)
(k2
α+ξ2)2(k2

α−k2) (8.8.27)

where r(m)
mnp’s are position of images source when the real source is located at r=rm.

8.9 Choosing the Imaginary Wave Number ξ
The imaginary wave number ξ appears in two positions in the 6th order spectral expansion
of (8.5.3). One is inside GS(r,r′;iξ) and its derivative and the other one is in the summation
as a factor of

Fξ=
(k2+ξ2)2

(q2
α+ξ2)2 .

The effect of ξ in the Green’s function GS(r,r′;iξ) is that higher value of ξ corresponds to
shorter range of interaction and vice versa. For a short range interaction, computation of
the Green’s function is easier (the matrices are extremely sparse/number of image charges
are very small in computation of GΩ ) As ξ increases, the contribution of the extraction
terms decrease and in the limit of ξ→∞, Fξ→1 and we recover the original second order
spectral expansion. Therefore as ξ increases, number of included modes in the 6th order
spectral summation should increases accordingly.

In the limit of small ξ, imaginary wave number interactions are long range. If ξ�k,qα,
the pre-factor Fξ tends to the factor of (k/qα)4 that guarantee the 6th order convergence
of the spectral expansion. However, for small ξ, calculation of the extracted terms is
computationally more expensive because of long range interaction (in particular, in the
image expansion, number of required image sources to get convergent response increases).
The extracted term GS(r,r′;iξ) mostly contributes in the source region as it is a short range
propagator. The wave number derivative ∂ξGS(r,r′;iξ) has a longer range than GS(r,r′;iξ)
itself but still is localized around the source region while the modal summation contains
standing waves that can be present everywhere.

Therefore, choosing the imaginary wave number ξ is also dependent on the physical size
of the problem (excitation frequency).
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Table 8.1: Resonant wave numbers of the rectangular (kα) and grooved (qα)
cavities. Degeneracies are elevated by the broken symmetry of the cavity.

α 1 2 3 4 5 5 7
qαL 5.78 7.75 7.94 8.47 9.47 9.57 10.07
kαL 5.44 7.69 7.69 7.69 9.42 9.42 9.42

8.10 Numerical Example
In order to demonstrate the performance of the proposed method, the Green’s function
solution is compared with MoM solution for the grooved cavity of Fig. 8.14. The parameters
of the cavity is given by Lx=Ly=Lz=L, H=L/4, α=60◦ and the source is located at
r′=L/4(1,1,1). For the extraction, we have selected ξ=2/L. We study the Green’s function
at several exciting wavelengths.

In order to calculate the broadband Green’s function using the hybrid method, we need
to select a discretization grid of the boundary surface (for the spatial part) and a truncation
number (MΩ) for the number of included spectral modes in the hybrid formulation. The
hybrid formulation is set up with N=600 unknowns on the whole surface of the cavity
(100 points on the surface σ for the hybrid eigenvalue problem) and inclusion of MΩ=103

spectral modes for the hybrid formulation.
On the other side, for the MoM solution, the computation grid size is strongly dependent

on the frequency. For example, at λ=0.93L, MoM solution requires at least 2400 unknowns
on the surface of the cavity to produces accurate results. This is more than the rule of
thumb value of (10pts/λ) as resonance modes are involved here.

The first comparison is for exciting wavelength of λ=0.93L. The Green’s function
obtained by hybrid spatial-spectral formulation on the plane of z=0 is plotted in Fig. 8.19
(upper graph) together with the response obtained by MoM as a benchmark (lower graph).
The two responses coincide each other with absolute error of less than −32 dB over all
points of the observation grid. The absolute difference between two methods is plotted
in Fig. 8.20 in logarithmic scale. The error can be reduced arbitrarily by increasing the
number of included modes since the singularity in the source region is entirely captured in
the imaginary wave number part.

The computational cost of the proposed method is comparable with that of single fre-
quency MoM for λ=0.93L while the hybrid method has absolute error of less than −20 over
the continuous band from DC to λ=0.23L. Another advantage of spatial-spectral method
is that it provides an analytical solution of the Green’s function (apart from imaginary
extractions which is constant over the frequency band) inside the cavity that can provides
design insights.

The next comparison is for the exciting wavelength of λ=0.43L. Now the volume
of the cavity is larger than 8λ3 which requires large number of surface unknowns. The
solution using hybrid method is the same as previous example by only changing the value
of k in the last summation of (8.5.3). However, MoM solution requires more than 104

unknown on the surface of the cavity to get the accurate results [134, 135]. The Green’s
function at this frequency obtained by hybrid and MoM method is depicted in Fig. 8.21
and corresponding absolute error of the hybrid method with respect to the MoM is shown

211



Figure 8.19: The Green’s function GS(r,r′) at excitation wavelength λ=0.93L for
a point source at r′=L/4(1,1,1) obtained by proposed method (top) against MoM

solution (Bottom).

Figure 8.20: Absolute error in computation of the Green’s function GS(r,r′) at
excitation wavelength λ=0.93L for a point source at r′=L/4(1,1,1) respect to MoM

solution.

in Fig. 8.22. As the last numerical example, Fig. 8.23 plot the Green’s function observed
on the line of r=(x,0,z=0.45L) with the source located at r′=(1,1,1)L/4 for a decade
of bandwidth (0.4≤λ/L≤4) computed by the hybrid method. The frequency points are
chosen to not coincide exactly with the resonant frequencies. Notice that obtaining this
broadband response does not requires additional computations.
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Figure 8.21: The Green’s function GS(r,r′) at excitation wavelength λ=0.43L for
a point source at r′=L/4(1,1,1) obtained by proposed method (top) against MoM

solution (Bottom).

Figure 8.22: Absolute error in computation of the Green’s function GS(r,r′) at
excitation wavelength λ=0.43L for a point source at r′=L/4(1,1,1) with respect

to the MoM solution.

8.11 Finite element methods
Similar to the proposed method, the finite element methods are able to compute all of the
resonant wave number and eigenmodes linearly. For the wave equation of (∇2+k2)ψ=0
results in linear system of type A·x=k2x. However, the proposed method has several ad-
vantages over finite element methods. The first advantage is that finite element method
required volumetric discretization of the domain while the imaginary frequency surface in-
tegral equation formulate the problem in terms of surface unknowns that leads to additional
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Figure 8.23: Broadband response of the Green’s function for r=(x,0,z=0.45L)
over a decade of bandwidth. Spectral lines are close to the resonant wavelengths.

factor of N (typical number of unknown in one dimension) in number of unknowns.
The second advantage which is really sparkling is that in order to obtain the eigenmodes

with finite element methods, the volumetric discretization size should be fine enough to cap-
ture the variation of modes. For high order modes this would impose a proportionally fine
discretization of computational grid. However, the imaginary frequency surface integral
equation is formulated for a fixed value of imaginary wavenumber k=iξ regardless of band-
width of interest. Therefore high order modes are computed using the discretization as low
order modes and because of imaginary wave number interaction the interaction matrices
are sparse.

In order to realize this, consider a cubic cavity of size (1λ)3 and assume that desired
accuracy of computation of Green’s function achieves with inclusion of 1000 modes in the
6th order expansion. For the imaginary wavenumber surface integral equation approach
total number of unknowns on the surface would be (600) by taking ξ=1/λ and assuming
10 pts/wavelength. However, for the finite element approach, in order to capture highest
mode (corresponding to wavelength λ/10), number of volumetric unknowns would be 106.
For higher index of modes this will increase in power law.
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Chapter 9

Fast and Broadband Computation
of Dyadic Green’s Function in

Cavity Resonator Using Imaginary
Wave Number Extraction

Technique

9.1 Introduction
The Green’s function is a fundamental tool in the analysis of every physical system and
it provides an in-depth insight into the dynamical behavior of the system. Based on this,
obtaining the Green’s function for a given system is as difficult as solving the problem
directly. However, since the Green’s function can determine the response of the system to
an arbitrary excitation it contains more information about the system than the solution
of the dynamical variable like the wave function. The Green’s function is the collective
response of all the resonant wave functions in a unique way such that it is closely related
to the spatial distribution of the density of states.

In particular, Green’s function is of importance as it provides the response for an arbi-
trary distribution of the source. They are also useful for formulating the integral equations
for various boundary value problems. Commonly used Green’s functions include free-space
Green’s functions, periodic Green’s functions for empty periodic lattices, and Green’s func-
tions of regular geometry such as a sphere or cylinder, Green’s functions of layered media,
etc [118–121].

The Green’s function inside the cavity is also studied extensively [136–139]. In general
for a cavity of regular shape (rectangular, cylindrical, ...), an expression for the Green’s
function can be found by either a spatial sum in terms of image sources [136] or a spectral
sum in terms of the eigen-modes. Both of the pure spatial and spectral methods have slow
convergence in terms of the number of included images/modes. While the spatial expansion
can capture the singularity in the source region well, it has a slow convergence for the obser-
vation points far from the source. On the other side, spectral expansion does not converge
in the proximity of the source as a consequence of the singular behavior of the Green’s
function. The famous Ewald’s technique is about to obtain a hybrid spectral-spatial sum-
mation that has an exponential convergence rate [140–143] which is a successful technique
of taking advantage of both spectral and spatial expansions. Another method based on
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the Chebyshev polynomial approximation is reported [133] that provides an efficient way
of evaluation of the Green’s function in the rectangular cavity.

However, all of the mentioned methods are implemented for computation of the Green’s
function at a single frequency such that obtaining a broadband response required a fre-
quency sweep. For the cavity Green’s function, there are lots of resonance modes that
require a fine frequency sweep to capture the resonances correctly. In this paper, a new
approach of obtaining the dyadic Green’s function inside the cavity based on imaginary
wavenumber extraction is presented. The proposed approach can be used to evaluate the
vector potential and electric field dyadic Green’s function inside the rectangular cavity
rapidly and over a broad range of frequency. This technique is previously applied to a
variety of geometries including the Green’s function of irregular shape waveguide [132],
periodic structure including scatterers (photonic crystals) [126–128, 144], radiation from
circuit boards [145], and scalar Green’s function inside the cavity to capture the wideband
behavior including the resonances. All prior published works are for the 2D case. In this
paper, we treat the Dyadic Green’s functions of the 3D cavity.

The method is a hybrid spatial-spectral method and from this point of view is similar
to the Ewald method. For a given level of accuracy and even for response at one frequency,
it can be faster than the Ewald method and it provides a broadband response over decades
of bandwidth with an only one-time evaluation of the modes. The idea of extraction from
the Green’s function has been used and studied before. The BIRME method [129–131]
is proposed with utilizing extraction of the corresponding static Green’s function from
itself to accelerate the spectral expansion. The BBGFL (broadband Green’s function with
low wavenumber extraction) method [122, 132] also uses the extraction of the Green’s
function at some low (close to DC but not necessarily DC) wave number. However, the
imaginary wavenumber extraction is a superior approach as the extracted terms can be
rapidly computed.

The logic behind the extraction techniques is separating the singular part of the Green’s
function and compute it by a different method (spatial series with an exponential conver-
gence). The reduced Green’s function after extraction, which represents a smooth function
(it is regular even at the source point) will have a better convergence rate as it can be
constructed by low-frequency spatial modes, in principle.

This paper has two main parts. The first part is devoted to the vector potential dyadic
Green’s function of the rectangular cavity. The different spatial and spectral representations
are discussed in sec. 9.2. Several numerical examples has been brought to compare the
accuracy of the proposed method and comparison of computation cost against the Ewald
method. A broadband computation of the vector potential dyadic Green’s function over
two decades of bandwidth with 1000 resonant modes is also shown. In sec. 9.3, the electric
field dyadic Green’s function is studied. Spectral representation of the electric field dyadic
Green’s function is derived and imaginary wavenumber extraction is applied. Singularity
of the dyadic Green’s function is extracted in terms of static Green’s function. A numerical
example of evaluation of the dyadic Green’s function with the proposed method is provided.
Finally, a broadband evaluation of the electric field dyadic Green’s function is performed
in the last section.
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9.2 Vector Potential Dyadic Green’s Function
Under the Lorentz gauge, the vector potential A(r) satisfies the vector Helmholtz equation
of

∇2A(r)+k2A(r)=−µJ(r) (9.2.1)

while the scalar potential satisfies

∇2φ(r)+k2φ(r)=−1
ε
ρ(r). (9.2.2)

The electric field in terms of the potentials is expressed as E(r)=iωA(r)−∇φ(r) where
e−iωt time dependence convention is used for harmonic fields throughout the text. On
the surface of the cavity, tangential component of the electric field must vanish, i.e. n̂×[
iωA(r)−∇φ(r)

]
=0. This imposes a boundary condition on both scalar and vector poten-

tials, simultaneously. One choice is considering decoupled boundary conditions for vector
and scalar potentials as n̂×A=0 and n̂×∇φ=0. The scalar potential itself also vanishes on
the surface of the cavity and within the Lorenz gauge ∇·A=iωµεφ and thus ∇·A=0 on the
cavity surface. These are the boundary conditions to be satisfied by the vector potential
and are less stronger than the general requirement of n̂×

[
iωA(r)−∇φ(r)

]
=0 over the walls

of the cavity [146–151].
In order to integrate the wave equation of the vector potential , the vector potential

dyadic Green’s function GA(r,r′) can be introduced such that,

∇2GA(r,r′)+k2GA(r,r′)=−Iδ(r−r′) (9.2.3)

subject to the conditions n̂×GA=0 and ∇·GA=0 on the boundary of the cavity. Upon
using the Green’s identity for A and GA, the vector potential can be written in terms of
the current source as

A(r)=µ
∫

dr′GA(r,r′)·J(r′) (9.2.4)

The electric field can be obtained in terms of potentials (in Lorenz gauge) as

E(r)=iωA(r)− 1
iωµε

∇∇·A(r) (9.2.5)

=iωµ
[
I+∇∇

k2

]
·
∫

dr′GA(r,r′)·J(r′)

Now, the electric field dyadic Green’s function can be identified as

G(r,r′)=
[
I+∇∇

k2

]
·GA(r,r′). (9.2.6)

Notice that in (9.2.5), the differential operator ∇∇ is supposed to operate on the result of
the vector potential integration, but in order to get (9.2.6), order of the differentiation and
integration operators are exchanged. If the vector potential integrand does not have second
order derivative (around source point where GA is singular), exchanging the differentiation
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and integration operators introduces a higher order singularity that has been studied exten-
sively [152–155]. Note that the vector potential dyadic Green’s function for a rectangular
cavity is a diagonal dyadic, i.e.

GA=GxxA x̂x̂+GyyA ŷŷ+GzzA ẑẑ (9.2.7)

The vector potential dyadic Green’s function and scalar Green’s function are related through
the gauge condition that is necessary for potentials to uniquely deliver the electromagnetic
fields.

9.2.1 Image Expansion of the Vector Potential Dyadic Green’s Function

Each component of the vector potential dyadic Green’s function satisfies the scalar wave
equation of,

∇2GjA(r,r′)+k2GjA(r,r′)=−δ(r−r′) (9.2.8)

which is identical to the free space Green’s function. The required boundary condition to
be satisfied by GxxA is the Dirichlet on the sidewalls and the Neumann on the end caps (with
respect to x direction). The collective response of the image sources with proper amplitude
and location will produce the required boundary condition for different components of GA
as

GjA(r,r′)=
∑
n,m,p

(−1)m+n+p+sjG0
(
r;rmnp(r′)

)
(9.2.9)

where sj=m for j=x and rmnp(r′)=
(
mLx+(−1)mx′,nLy+(−1)ny′,pLz+(−1)pz′

)
repre-

sents the location of the image charges. The spatial expansion of (9.2.9) has a poor con-
vergence and many terms should be included in the summation to get a convergent result.

9.2.2 Spectral Expansion With Imaginary Wave Number Extraction

Since the vector potential Green’s function should satisfy the Dirichlet and Neumann con-
ditions on the sidewalls and end caps, respectively, the eigenfunctions of the wave equation
that satisfy the required boundary condition are of the form,

ψxmnp(r)=

√
4(2−δm)

V
cosmπ

Lx

(
x+Lx

2

)
sinnπ

Ly

(
y+Ly

2

)
sin pπ

Lz

(
z+Lz

2

)
(9.2.10)

ψymnp(r)=

√
4(2−δn)

V
sinmπ

Lx

(
x+Lx

2

)
cosnπ

Ly

(
y+Ly

2

)
sin pπ

Lz

(
z+Lz

2

)

ψzmnp(r)=

√
4(2−δp)

V
sinmπ

Lx

(
x+Lx

2

)
sinnπ

Ly

(
y+Ly

2

)
cos pπ

Lz

(
z+Lz

2

)
where ψxmnp is an eigenfunction of the wave equation that satisfies appropriate boundary
conditions of GxxA on the cavity walls. One may verify that the required boundary condi-
tions of n̂×GA=0, and ∇·GA=0 is satisfied by these eigen-solutions. Also, the modes are
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normalized such that each component of the vector potential dyadic Green’s function can
be written as

GjA(r,r′)=
∑
α

1
k2
α−k2ψ

j
α(r)ψj∗α (r′) (9.2.11)

Although this expansion of the Green’s function is desired because of simple dependence
on the frequency of excitation, the summation converges slowly.

GjA(r,r′)=
∑
α

1
k2
α−k2

0
ψα(r)ψ∗α(r′)≈

∑
α

1
k2
α−k2

0
(9.2.12)

In the case of continuous spectrum in lossless free space,

GjA(r,r′)= 1
(2π)3

∫
d3k

1
k2−k2

0
eik·(r−r

′)≤ 1
(2π)3

∫
dk k2

k2−k2
0
→∞ (9.2.13)

which shows that the summation is not absolutely convergent and has very poor conver-
gence, mainly due to the singularity (sharp variations) of the Green’s function. If we can
somehow separate the singular part of the Green’s function, then the leftover should have
a better convergence rate. Assume that we extract the Green’s function at another wave
number k=kL from the desired Green’s function. Since the eigenfunctions do not depend
on the frequency of excitation, the expression reads

GjA(r,r′,k)−GjA(r,r′,kL)=
∑
α

[ 1
k2
α−k2−

1
k2
α−k2

L

]
ψjα(r)ψj∗α (r′) (9.2.14)

=
∑
α

[
k2−k2

L

(k2
α−k2)(k2

α−k2
L)

]
ψjα(r)ψj∗α (r′)

or

GjA(r,r′,k)=GjA(r,r′,kL)+
∑
α

[
k2−k2

L

(k2
α−k2)(k2

α−k2
L)

]
ψjα(r)ψj∗α (r′) (9.2.15)

If we are able to compute the Green’s function at single wave number kL, then the Green’s
function at any other wavenumber k will be calculated through the spectral summation
where the summand decreases as O(k−4

α ) which is of fourth-order instead of O(k−2
α ). Now,

if we take kL=iξ, an imaginary number, the extracted term which is the Green’s function
at imaginary wave number, is very well behaved (exponentially decaying with distance) and
can be easily computed by spatial domain series (see appendix A),

GjA(r,r′,k)=GjA(r,r′,iξ)+
∑
α

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
ψjα(r)ψj∗α (r′) (9.2.16)

We can proceed to further accelerate the spectral summation. The frequency dependent
factor in the summand of (9.2.16) can be factorized as[

k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
= k2+ξ2

(k2
α+ξ2)

[ 1
k2
α−k2−

1
k2
α+ξ2

]
+ k2+ξ2

(k2
α+ξ2)(k2

α+ξ2) (9.2.17)

= (k2+ξ2)2

(k2
α+ξ2)2(k2

α−k2) + k2+ξ2

(k2
α+ξ2)2
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where the last term can be written as

k2+ξ2

(k2
α+ξ2)2 = k2+ξ2

−2ξ
∂

∂ξ

1
(k2
α+ξ2) (9.2.18)

which is proportional to the spectral coefficient of the Green’s function expansion of (9.2.11)
for k=iξ. Therefore,

GjA(r,r′,k)=GjA(r,r′,iξ)− k
2+ξ2

2ξ
∂

∂ξ
GjA(r,r′,iξ)+(k2+ξ2)2∑

α

ψjα(r)ψj∗α (r′)
(k2
α+ξ2)2(k2

α−k2) (9.2.19)

This expansion is of the sixth order of convergence and converges with the inclusion of the
few terms in the summation. Now, the spectral series in terms of eigenmodes converges
much faster than the conventional eigenmode expansion of (9.2.11). There is an overall
computational gain if the extracted terms Gj(r,r′;iξ) and ∂ξG

j(r,r′;iξ) at the imaginary
wavenumber can be computed rapidly. The extracted terms can be computed by the image
series which has an exponential convergence for imaginary wave numbers.

GjA(r,r′,iξ)=
∑
α

1
k2
α+ξ2ψ

j
α(r)ψj∗α (r′) (9.2.20)

= 1
4π

∑
n,m,p

(−1)n+m+p+sj e
−ξ|r−rmnp|

|r−rmnp|

where sj=m if j=x and so on. Similarly, for the imaginary wave number derivative of the
the Green’s function

∂

∂ξ
GjA(r,r′,iξ)=

∑
α

−2ξ
(k2
α+ξ2)2ψ

j
α(r)ψj∗α (r′) (9.2.21)

=− 1
4π

∑
n,m,p

(−1)n+m+p+sje−ξ|r−rmnp|

Note that for a wideband computation of the Green’s function, the imaginary wavenumber
extracted terms of (9.2.20), and (9.2.21) should be computed one time irrespective of the
desired frequency bandwidth.

9.2.3 Ewald Summation Technique

The Ewald summation technique has been applied to the vector potential dyadic Green’s
function of the rectangular cavity [136, 137, 140, 141]. The derivation of the Ewald sum-
mation for the rectangular cavity here, closely follows that of [141] and center of coordinate
system is shifted such that 0≤xj≤Lj . From the image expansion of the vector potential
dyadic Green’s function GxxA we have

GxxA (r,r′)=
∑
n,m,p

(−1)n+p e
ikRmnp

4πRmnp
(9.2.22)

where Rmnp=|r−rmnp| and rmnp is the location of image sources. The location of images
dipoles constitute a periodic lattice in space with periods 2Lx,2Ly, and 2Lz in x, y, and z
directions, respectively and each lattice site is occupied by a cluster of 8 dipoles. The series
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of (9.2.22) does not reflect the periodicity of the problem explicitly. Instead, we can write
the image expansion in terms of the response of a dipole cluster around the given lattice
site. Within the primitive cell, upon defining

Xr=x−(−1)rx′

Ys=y−(−1)sy′

Zt=z−(−1)tz′

where r,s,t∈{0,1}, and the distance between the image sources and the observation point
can be written as

Rmnp,rst=
√

(Xr+2mLx)2+(Ys+2nLy)2+(Zt+2pLz)2 (9.2.23)

thus, the Green’s function takes the form of

GxxA (r,r′;E)=
∑
n,m,p

∑
r,s,t

(−1)s+t e
ikRmnp,rst

4πRmnp,rst
(9.2.24)

This representation is equivalent to the original representation of (9.2.22). Following the
Ewald approach, the Green’s function is decomposed to two parts utilizing the error erf(x)
and the complementary error functions erfc(x) that satisfy erf(x)+erfc(x)=1 (for any num-
ber x),

GxxA1(r,r′;E)=
∑
n,m,p

∑
r,s,t

(−1)s+t e
ikRmnp,rst

4πRmnp,rst
erfc(ERmnp,rst) (9.2.25)

GxxA2(r,r′;E)=
∑
n,m,p

∑
r,s,t

(−1)s+t e
ikRmnp,rst

4πRmnp,rst
erf(ERmnp,rst)

Here, E is a free parameter (with the dimension of wave number) that controls the share
of each summation in (9.2.25). Since erfc(x)→0 as x→∞ exponentially, the first series is
exponentially convergent. However, the second part is not affected by the error function at
long distances and has a slow convergence. Using the Poisson summation formula of,∑

mnp

f(αm,βn,γp)= 1
αβγ

∑
mnp

F

(2πm
α

,
2πn
β
,
2πp
γ

)
(9.2.26)

where F (k) is the Fourier transform of the function f(r), the second series can be trans-
formed to a spectral sum of

GxxA2(r,r′;E)= 1
8V

∑
n,m,p

∑
r,s,t

(−1)s+t
∫

dr̃e−i(kxmx̃+kynỹ+kzpz̃) e
ikRrst

4πRrst
erf(ERrst) (9.2.27)

where Rrst=
√

(Xr+x̃)2+(Ys+ỹ)2+(Zt+z̃)2 and kxm=mπ/Lx and so on. This integral can
be computed analytically. First, let’s shift the variables to get

GxxA2(r,r′;E)= 1
8V

∑
n,m,p

∑
r,s,t

(−1)s+tei(kxmXr+kynYs+kzpZt)
∫

dre−i(kxmx+kyny+kzpz) e
ik|r|

4π|r|erf(E|r|)

(9.2.28)
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Now, since the integrand is only function of |r|, upon switching to the Spherical coordinate
with z axis toward the direction of (kmx,kny,kpz) the integral becomes,

I=
∫

dre−i(kxmx+kyny+kzpz) e
ik|r|

4π|r|erf(E|r|) (9.2.29)

=
∫ ∞

0
dr
∫ π

0
dθr2sinθe−ikmnprcosθ e

ikr

2r erf(Er)

= 2E
kmnp

√
π

∫ ∞
0

dreikr 1
2i

[
eikmnpr−e−ikmnpr

]∫ r

0
dte−E2t2

The Fourier Transform of the function e−E2r2 can be easily computed and from that, the
Fourier transform of its integral can be found as∫ ∞

0
dreikr

∫ r

0
dte−E2t2 = i

√
π

2kE e
−k2/4E2 (9.2.30)

Therefore,

I(kmnp,E)= 1
2kmnp

[ 1
k+kmnp

e−(k+kmnp)2/4E2− 1
k−kmnp

e−(k−kmnp)2/4E2
]

(9.2.31)

which has an exponential decay as a function of summation variables m,n,p. Therefore the
second part of the Green’s function becomes

GxxA2(r,r′;E)= 1
8V

∑
n,m,p

∑
r,s,t

(−1)s+tei(kxmXr+kynYs+kzpZt)I(kmnp,E) (9.2.32)

This is an expansion in terms of the propagating waves which can be transformed to standing
waves through,∑

r

eikxmXr+
∑
r

e−ikxmXr=eikxm(x−x′)+eikxm(x+x′)+e−ikxm(x−x′)+e−ikxm(x+x′) (9.2.33)

=2coskmx(x−x′)+2coskmx(x+x′)=4coskmxxcoskmxx′

except m=0 term which is simply equals to 2. The other terms can be treated similarly
and finally,

GxxA2(r,r′;E)=
∑
n,m,p

ψxmnp(r)ψxmnp(r′)I(kmnp,E) (9.2.34)

where ψxmnp is the eigenfunction of wave equation that satisfies boundary condition of GxxA
over the cavity walls. The Ewald spectral summation is exactly the same as the conventional
spectral expansion weighted by the spectral coefficient I(kmnp,E). In the limit that E→0,
I→0 and we recover pure spatial expansion (image expansion). On the other hand, when
E→∞, I becomes (k2

mnp−k2)−1 and the spectral expansion of the Green’s function is
recovered.

As E increases, the convergence of the spatial series improves while it slows down for
the spectral series. We can find the value of E that provides equal asymptotic convergence
rates for both parts. An optimum selection of E is given in the literature [141] as

Eo=
√
π

2 3√V
(9.2.35)

that will be used in the future computations.
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9.2.4 Numerical Validation

The Ewald technique provides an exponentially convergent series that results in highly
accurate results. In this section, we use Ewald method with a relatively large number of
included terms as a benchmark solution.

Consider an empty cavity of dimensions Lx=Ly=Lz=L with perfect conductor walls.
The source dipole is located at r′=(Lx/4,Ly/4,Lz/4).

In the first comparison, The excitation wavelength is selected to be λ=0.93L. The
Green’s function obtained by the imaginary extraction approach will be compared to that
of Ewald summation for two settings; one is when acceptable maximum relative error is 10−5

and the other comparison is done when a highly accurate results with maximum relative
error of 10−8 within the given observation grid, is required. With a fixed level of error,
two approaches compare through the computation cost (All of the numerical routines are
written by the same programmer and computed on the same machine). In [141], the Ewald
technique was illustrated for a rectangular cavity with L=0.3λ.

First Comparison: Moderate Accuracy

Figure. 9.1 shows the xx component of vector potential dyadic Green’s function over the
plane of z=0 inside the cavity computed by the 6th order convergent summation with imag-
inary wavenumber extraction. The maximum relative error with respect to the benchmark
is less than 10−5 for all of the observation grid points. This result is obtained by including
10 modes (in each direction) in the 6th order summation and 5 clusters of image dipoles
to compute the extracted terms with the computational time per observation point of 0.55
msec-CPU.

Figure 9.1: Vector potential Green’s function GxxA calculated by 6th order con-
vergent spectral expansion, using 6 modes in each direction and ξ=2/L.

In order to obtain the same level of accuracy, the Ewald method is also evaluated to reach
a relative error of 10−5. The CPU time for this method is 0.76 msec-CPU for evaluation of
the dyadic Green’s function at one point.

Figure. 9.2 plots the relative error of the 6th order method and Ewald method against
the benchmark in dB.
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(a) 6th order Imaginary extraction (b) Ewald method

Figure 9.2: Relative error of 6th order convergent series and Ewald method against
the benchmark.

Table 9.1: Computation cost of 6th order imaginary extraction technique against
the Ewald method for different accuracies.

Accuracy Computation cost per point (CPU-msec)

10−5
Ewald 0.76

6th 0.55

10−8
Ewald 1.7

6th 8.2

Second Comparison: Highly Accurate Results

In this part, we set the acceptable error to 10−8 to compare the performance of two ap-
proaches. It is clear that the Ewald method performs better if a highly accurate result
is desired. The convergence rate of the Ewald method is exponential while the imaginary
extraction technique provides 6th order power-law convergence. In order to achieve the
desired accuracy, the computation cost of the Ewald and imaginary extraction techniques
are 1.7 and 8.2 msec-CPU per point, respectively. Therefore, if a very accurate value of
the Green’s function is required, the Ewald sum is superior from the computational cost
standpoint.

However, the comparison of the results in Tab.9.1 is shown for a single frequency cal-
culation. If a broadband solution of the dyadic Green’s function is required, a very fine
frequency sweep should be performed to capture individual resonance lines of the cavity
(the resonance lines are closely spaced for a 3-dimensional cavity) that in turn leads to a
large number of evaluations of the Green’s function for different frequencies. For example,
in order to find the Green’s function of the cavity of dimension L3 for excitation wavelengths
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λ from very long λ�L to as small as λ/L=0.2, there are thousands of resonances. Ac-
counting a few numbers of frequency points to capture a resonance in the Green’s function
correctly, the number of required frequency points would be several thousand. However,
such a response can be obtained by a single run of the imaginary extraction. For the com-
putational comparison of this wideband example (given required accuracy of 10−5), the
expected cost of Ewald method is about 10,000×0.76 CPU.msec while for the imaginary
extraction method it only takes 10 CPU.msec including the computation cost for a simple
loop over frequency to evaluate the spectral coefficients.

Figure 9.3 plots the broadband Green’s function for excitation wavelength 0.05≤λ/L≤5
which is 2 decades of bandwidth obtained by imaginary wavenumber extraction technique
with only one evaluation of the eigenmodes. The Green’s function is shown over the line
x=z=0 as a function of L/λ for 130 frequency samples. The exact resonant frequencies
are avoided as much as possible in plotting the broadband Green’s function for a lossless
cavity.

Figure 9.3: Vector potential Green’s function GxxA (0,y,0;λ) calculated by the 6th
order convergent spectral expansion over two decades of bandwidth.

9.3 Electric Field Dyadic Green’s Function
Given that we have the expression for the vector potential dyadic Green’s function, one
may calculate the electric field dyadic Green’s function through Eq.(9.2.6). However, it is
more insightful to begin with the electric field dyadic Green’s function directly to have a
better treatment of its singular behavior in the near field region. The electric field Green’s
function G(r,r′) inside the cavity satisfies the vector wave equation of

∇×∇×G(r,r′)−k2
0G(r,r′)=Iδ(r−r′) (9.3.1)

subject to the Dirichlet boundary condition n̂×G(r∈∂V,r′)=0. If we are able to find the
vector eigenfunctions Fα(r) that satisfy the homogeneous vector wave equation with eigen-
wavenumber kα subject to the same type of boundary condition as imposed on the Green’s
function, i.e. n̂×Fα(r∈∂V )=0 such that,

∇×∇×Fα(r)−k2
αFα(r)=0 (9.3.2)
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then, an eigenmode expansion can be developed for the dyadic Green’s function that satis-
fies the inhomogeneous vector wave equation. The vector eigenfunctions, which correspond
to the Hermitian operator ∇×∇×−k2 (for real values of k2 and given boundary condi-
tions) constitute a complete and orthogonal basis that spans vector fields in the space that
follow the same type of boundary conditions. The idea of completeness can be extended
to include generalized functions as well. An eigenfunction expansion of the delta function
(which satisfies the corresponding boundary condition on the wave equation operator) can
be obtained as

Iδ(r−r′)=
∑
α

Fα(r)Fα(r′) (9.3.3)

where, it is assumed that the vector eigenfunctions are normalized according to∫
V

d3rFα(r)·F ∗β(r)=δαβ (9.3.4)

Upon expanding the dyadic Green’s function in terms of vector eigenfunctions and substi-
tuting in the inhomogeneous vector wave equation of the dyadic Green’s function we arrive
at the similar expansion as the scalar case,

G(r,r′)=
∑
α

1
k2
α−k2

0
Fα(r)Fα(r′) (9.3.5)

It is straight forward to verify that the following vector wave functions satisfy the homoge-
neous vector wave equation as well as the electric field boundary condition on the walls of
the cavity.

Mα(r)=∇×
(
ẑψMα (r)

)
Nα(r)= 1

kα
∇×∇×

(
ẑψNα (r)

)
Lα(r)=∇

(
ψLα(r)

)
where,

ψMα (r)=
√

8
V

cosmπ
Lx

(
x+Lx

2

)
cosnπ

Ly

(
y+Ly

2

)
sin pπ

Lz

(
z+Lz

2

)
(9.3.6)

ψNα (r)=
√

8
V

sinmπ
Lx

(
x+Lx

2

)
sinnπ

Ly

(
y+Ly

2

)
cos pπ

Lz

(
z+Lz

2

)
ψLα(r)=

√
8
V

sinmπ
Lx

(
x+Lx

2

)
sinnπ

Ly

(
y+Ly

2

)
sin pπ

Lz

(
z+Lz

2

)
The transverse wave functions Mα and Nα are divergence free and with corresponding
eigenvalues of

k2
α=
(
mπ

Lx

)2
+
(
nπ

Ly

)2
+
(
pπ

Lz

)2
(9.3.7)
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The longitudinal wave functions Lα are curl-free and span the degenerate eigenspace corre-
sponding to the eigenvalue of k=0. Inclusion of the longitudinal wave functions are critical
in the computation of the Green’s function in the source region [156] and beyond that (as
will be shown later). If we assume normalized eigenfunctions over the volume of the cavity,
the dyadic Green’s function can be written as

G(r,r′)=− 1
k2

0

∑
α

Lα(r)Lα(r′)+
∑
α

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

k2
α−k2

0

]
(9.3.8)

Note that the vector wave functions are assumed to be normalized here.

9.3.1 Normalization of Vector Modes

By taking kx=mπ/Lx,ky=nπ/Ly,kz=pπ/Lz and shifting the center of coordinate system
for convenience we have,

Mα ·Mα=
(
∇ψMα ×ẑ

)
·
(
∇ψMα ×ẑ

)
=−ẑ ·

[
∇ψMα ×

(
∇ψMα ×ẑ

)]
(9.3.9)

=
[
|∇ψMα |2−|∇ψMα ·ẑ|2

]
= 8
V

sin2kzz

[
k2
xsin2kxxcos2kyy+k2

y cos2kxxsin2kyy

]
Therefore, ∫

V
drMα ·Mα=k2

αρεmεnεp (9.3.10)

where εn=1+δn and k2
αρ=(k2

x+k2
y). Similarly,∫
V

drNα ·Nα=k2
αρεmεnεp (9.3.11)

and for longitudinal wave functions,∫
V

drLα ·Lα=k2
αεmεnεp. (9.3.12)

The dyadic Green’s function in terms of unnormalized vector wave functions M,N , and L
becomes

G(r,r′)=− 1
k2

0

∑
α

1
εmεnεp

1
k2
α

Lα(r)Lα(r′)+
∑
α

1
εmεnεp

1
k2
αρ

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

k2
α−k2

0

]
(9.3.13)

9.3.2 Singularity Extraction

In order to extract the singularity of the dyadic Green’s function, let’s consider the asymp-
totic behavior of each terms as α→∞. For Lα term,

lim
α→∞

1
k2
α

∣∣∣Lα(r)Lα(r′)
∣∣∣= lim

α→∞
1
k2
α

∣∣∣∇(ψα(r)
)
∇′
(
ψα(r′)

)∣∣∣=O(1) (9.3.14)
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which tends to a constant, but for Mα and Nα terms,

lim
α→∞

∣∣∣∣∣ 1
k2
αρ

Mα(r)Mα(r′)
k2
α−k2

0

∣∣∣∣∣≈O
( 1
k2
α

)
(9.3.15)

lim
α→∞

∣∣∣∣∣ 1
k2
αρ

Nα(r)Nα(r′)
k2
α−k2

0

∣∣∣∣∣≈O
( 1
k2
α

)
The first term does not represent a convergent series. Since the asymptotic spectral behav-
ior tends to a constant value, it contains a delta function singularity in the spatial domain
(which is known as the singularity of the dyadic Green’s function [152–155]). For the free
space dyadic Green’s function expansion in terms of continuous spectrum of eigenfunctions,
after evaluating one of the spectral integrations by contour integration technique, contri-
bution of the LL term includes a delta function singularity and an static pole term that
exactly cancels the static pole hat arise from the NN term [119, 121]. Therefore, the net
contribution of the LL term is just a delta function singularity at the source point. How-
ever, for the cavity Green’s function where the modes are discrete, the LL term similarly
contains a delta function singularity at the source point and a static contribution that
extends beyond the source point. The static pole does not appear hear either for LL or
NN as a consequence of the discrete spectrum. Noting that ψLα=ψα is an eigenfunction
of the scalar potential wave equation, the summation in the LL part of the dyadic Green’s
function can be decomposed into two parts, one with all the indices non-zero and the other
contains at least one zero index,

G(r,r′)
∣∣∣∣
LL

=− 1
k2

0

∑
m,n,p 6=0

1
k2
α−02∇∇

′ψα(r)ψα(r′)− 1
k2

0

∑
m,n,p
mnp=0

1
k2
α−02∇∇

′ψα(r)ψα(r′) 1
εmεnεp

(9.3.16)

The second term is identically zero. By interchanging the summation and differential op-
erators in the first summation symbolically (the singularity should be taken care of) as

G(r,r′)
∣∣∣∣
LL

=− 1
k2

0
∇∇′

∑
m,n,p 6=0

1
k2
α−02ψα(r)ψα(r′)= 1

k2
0
GL(r,r′) (9.3.17)

where,

GL(r,r′)=−∇∇′Gφ(r,r′;k=0) (9.3.18)

that corresponds to the derivative of the scalar Green’s function Gφ(r,r′) of the cavity at
DC. Notice that GL is a frequency-independent part of the dyadic Green’s function G.
Using the image expansion of the scalar Green’s function of the cavity

Gφ(r,r′;k=0)= 1
4π

∑
n,m,p

(−1)n+m+p 1
|r−rmnp(r′)|

(9.3.19)

where rmnp(r′) is the position of image sources. Taking Rmnp=r−rmnp(r′), then the x-
component of the posterior part of GL for r 6=r′ becomes

GL(r,r′)·x̂= 1
4π

∑
m,n,p

(−1)n+p 1
R3
mnp

(
3R̂mnpR̂mnp−I

)
·x̂ (9.3.20)
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while for the y-component of the posterior part, (−1)m+p should be replaced in the sum-
mand and so on. This series converges much better than the image expansion of the dynamic
dyadic Green’s function. The image expansion of the dynamic dyadic Green’s function is
proportional to R−1

mnp while the DC part converges as R−3
mnp versus the number of included

images. This term captures the near field singularity of the dyadic Green’s function in the
source region. All in all, the dyadic Green’s function for r 6=r′ (apart from a delta function
singularity at r=r′) can be written as

G(r,r′;k0)= 1
k2

0
GL(r,r′)+

∑
α

1
k2
αρ

1
εmεnεp

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

k2
α−k2

0

]
(9.3.21)

In addition, a delta function singularity is buried in the definition ofGL=−∇∇′Gφ(r,r′;k=
0) at r=r′. If we consider the image expansion of (9.3.19), singularity comes from the ex-
citing dipole term m=n=p=0. Therefore, the delta function singularity would be the same
as free space case. For r sufficiently close to r′, the singular part G

sing
L can be written as

G
sing
L (r,r′)=−∇∇′ 1

4π|r−r′|=
1

4π∇∇
1

|r−r′|
(9.3.22)

Applying the trace to both sides of (9.3.22) and noting that Tr ∇∇=∇2, it yields
Tr G

sing
L =−δ(r−r′). Since there is no preference between different directions near the

source, G
sing
L =−1/3Iδ(r−r′) and the complete expansion of the dyadic Green’s function

that is valid everywhere reads,

G(r,r′;k0)=− 1
3k2

0
Iδ(r−r′)+ 1

k2
0
GL(r,r′)+

∑
α

1
k2
αρ

1
εmεnεp

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

k2
α−k2

0

]
(9.3.23)

9.3.3 Spectral Summation Acceleration

Following the imaginary wave number extraction of Eq. (9.2.14) and upon subtracting the
dyadic Green’s function at the imaginary wave number of k=iξ from itself yields,

G(r,r′;k)=G(r,r′;iξ)+
( 1
k2 + 1

ξ2

)
GL(r,r′) (9.3.24)

+
∑
α

1
k2
αρεα

k2+ξ2

(k2
α−k2)(k2

α+ξ2)

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

]
The DC term does not add any computational effort as it is frequency independent

term. In (9.3.24), The imaginary wavenumber extracted term G(r,r′;iξ) will be computed
by the image expansion which converges very fast in terms of included images (see Appendix
A). The second term GL will be computed by the static image expansion (9.3.20) which
converges much faster than dynamic image expansion. The modal series is now accelerated
to the fourth-order of convergence with respect to α. We can proceed to further accelerate
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the summation by following the same procedure as the vector potential Green’s function,

G(r,r′;k)=G(r,r′;iξ)− k
2+ξ2

2ξ
∂

∂ξ
G(r,r′;iξ)+

( 1
k2 + 1

ξ2

)
GL(r,r′)+ k2+ξ2

2ξ
∂

∂ξ

(−1
ξ2

)
GL(r,r′)

+
∑
α

1
k2
αρεα

(k2+ξ2)2

(k2
α+ξ2)2(k2

α−k2)

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

]
(9.3.25)

Again, since GL(r,r′) is frequency independent, it leads to a great simplification of the
terms,

G(r,r′;k)=G(r,r′;iξ)− k
2+ξ2

2ξ
∂

∂ξ
G(r,r′;iξ)+ (k2+ξ2)2

k2ξ4 GL(r,r′)

+
∑
α

1
k2
αρεα

(k2+ξ2)2

(k2
α+ξ2)2(k2

α−k2)

[
Mα(r)Mα(r′)+Nα(r)Nα(r′)

]
This is the 6th order convergent spectral expansion of the dyadic Green’s function of the
rectangular cavity. It only remains to compute the imaginary wavenumber derivative of
the dyadic Green’s function. The image expansion of the dyadic Green’s function of the
rectangular cavity that is given in the appendix A can be used to find ∂ξG(r,r′;iξ). Note
that for a wideband solution, the extracted terms with imaginary wavenumber as well as
the static term GL should be evaluated only one time for a broadband frequency sweep.

Figure 9.4 plots the xx component of the electric field dyadic Green’s function of the
cavity over the plane z=0 inside the cavity for the exciting wavelength of λ=0.93L. The
source point and physical parameters are the same as the vector potential case in sec.9.2.4.
A wideband evaluation of Gxx is depicted in Fig. 9.5 with the observation points on the
line z=x=0 in the cavity and the exciting wavelength in the range of 0.05≤λ/L≤5. Notice
that the difference between the vector potential GA and electric field G dyadic Green’s
functions is dominant at low frequencies (near field). At high frequencies,

G(r,r′)=
[
I+∇∇

k2

]
·GA(r,r′)≈GA(r,r′) (9.3.26)

The difference between two dyadic Green’s function is more pronounced around the
source region where the electric field dyadic Green’s function is hyper singular (∝1/R3).

9.3.4 Image Expansion of the Dyadic Green’s Function

The free space Green’s function G0(r,r′;k) at wavenumber k that satisfies the vector wave
equation of (

∇×∇×−k2
)
G0(r,r′;k)=Iδ(r−r′) (9.3.27)

subject to the radiation boundary condition at infinity, for r 6=r′ can be directly obtained
by differentiating the scalar Green’s function as

G0(r,r′;k)=
[( 3

k2R2−
3i
kR
−1
)
R̂R̂+

(
− 1
k2R2 + i

kR
+1
)
I

]
G0(R;k) (9.3.28)
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Figure 9.4: Electric field dyadic Green’s function Gxx(x,y,0) calculated by 6th
order convergent spectral expansion for exciting wave length of λ=0.93L

Figure 9.5: Electric field dyadic Green’s function Gxx(0,y,0;λ) calculated by 6th
order convergent spectral expansion over two decades of bandwidth.

where, G0(R;k)=eikR/4πR is the scalar free space Green’s function and R=|r−r′|. In order
to obtain the cavity Green’s function that satisfies the Dirichlet boundary condition on the
walls, image sources should be placed all around the world in order to produce the response
with vanishing tangential component over the walls. Once the boundary conditions are
satisfied, presence of the walls does not have any additional effect on the fields and they
can be removed. Figure. 9.6 shows a 2D profile (xy plane) of the images dipoles around a
cross-section of the cavity for a x-directed dipole in the cavity. Changing color from blue
to red shows a flip in the sign of the dipole. For a x− directed dipole with unit amplitude,
the collective response of all the dipoles in Fig. 9.6 including the main dipole inside the
cavity would be

G⊥(r,r′)·x̂=
∑
mn

(−1)nG0
(
r;mLx+(−1)mx′,nLy+(−1)ny′,z′

)
·x̂

Here, G⊥(r,r′)·x̂ is the collective response of the image dipoles for a plane perpendicular
to z and the source dipole is located at (x′,y′,z′) inside the cavity and (mLx+(−1)mx′,nLy+
(−1)ny′,z′) is the location of the image dipoles for 2D profile of Fig. 9.6 and G0 is the free
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Ly

Lx

J(r′)

Figure 9.6: A profile of the images dipoles for a x−directed dipole current J in
the cavity with PEC walls. change of color corresponds to a sign flip in the dipole

moments.

space dyadic Green’s function. Taking the other two walls into account, yields,

G(r,r′)·x̂=
∑
p

(−1)pG⊥(r,r′′p)·x̂ (9.3.29)

=
∑
m,n,p

(−1)n+pG0
(
r;mLx+(−1)mx′,nLy+(−1)ny′,pLz+(−1)pz′

)
·x̂

This expansion for real values of k has a good convergence in the near field region but far
from the source, it has a very slow convergence rate that makes it not an attractive way of
computing the cavity Green’s function. However, for an imaginary wavenumber k=iξ, it
has an exponential convergence rate. In this case, the free space dyadic Green’s function
becomes

G0(r,r′;iξ)=
[
−
( 3
Q2 + 3

Q
+1
)
R̂R̂+

( 1
Q2 + 1

Q
+1
)
I

]
ξe−Q

4πQ (9.3.30)

whereQ=ξR and R is the distance between the source and observation points. Similarly, for
the wavenumber derivative of the dyadic Green’s function, the image expansion of (9.3.29)
can be evaluated with considering

∂

∂ξ
G0(r,r′;iξ)= e−Q

4π

([( 6
Q3 + 6

Q2 + 3
Q

+1
)
R̂R̂−

( 2
Q3 + 2

Q2 + 1
Q

+1
)
I

])
(9.3.31)

that still is exponentially convergent.
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9.4 Vector Potential Dyadic Green’s Function For Cavity of
Irregular Shape

The vector potential A(r) satisfies the wave equation of

(∇2+k2)A(r)=−µJ(r) (9.4.1)

inside the cavity subject to boundary condition of n̂×A=0, and ∇·A=0 over the walls
of the cavity. The free space Green’s function for integration of the vector potential can be
defined as

(∇2+k2)G0(r,r′)=−Iδ(r−r′) (9.4.2)

such that in the free scatterer case,

A(r)=µ
∫

dr′G0(r,r′)·J(r′) (9.4.3)

or using the scalar Green’s function G0(r,r′) it can be conventionally be written equiv-
alently as

A(r)=µ
∫

dr′G0(r,r′)J(r′) (9.4.4)

In order to construct the full Green’s function of the vector potential wave equation,
the vector wave equation can be rearranged in terms of its divergence for later ease,

∇×∇×A(r)−∇∇·A(r)−k2A(r)=µJ(r) (9.4.5)

Corresponding dyadic Green’s function that satisfies the same type of boundary condi-
tion can be defined in the same way as

∇×∇×GA(r,r′)−∇∇·GA(r,r′)−k2GA(r,r′)=Iδ(r−r′) (9.4.6)

We do not assume any Specific boundary condition on GA for now. The free Green’s
function G0 also can be written in the same form

∇×∇×G0(r,r′)−∇∇·G0(r,r′)−k2G0(r,r′)=Iδ(r−r′) (9.4.7)

Where G0=IG0 and G0 is the scalar Green’s function. The surface integral equation
for A can be obtained by post multiplying the dyadic Green’s function with an arbitrary
unit vector to get GA=GA(r,r′)·α. Upon multiplying (9.4.6) by A(r) from the left and
(9.4.5) by GA(r,r′) from the left side, and subtracting the results, we have
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∇×∇×A(r)·GA(r,r′)−A(r)·∇×∇×GA(r,r′)−
(
∇∇·A(r)

)
·GA(r,r′)+A(r)·

(
∇∇·GA(r,r′)

)
=µJ(r)·GA(r,r′)−A(r)·α̂δ(r−r′) (9.4.8)

The first two terms can be combined together to get (we always arrange vectors such
that GA stays on the right hand side of the expressions to be able to remove the arbitrary
unit vector α̂ later)

I1=∇×∇×A(r)·GA(r,r′)−A(r)·∇×∇×GA(r,r′) (9.4.9)

=
[
∇·
(
(∇×A)×GA

)
+∇×A·∇×GA

]
−
[
−∇·

(
A×∇×GA

)
+∇×A·∇×GA

]
=∇·

[
∇×A×GA+A×∇×GA

]
and for the second two terms,

I2=A·
(
∇∇·GA

)
−
(
∇∇·A

)
·GA (9.4.10)

=
[
∇·
(
A∇·GA

)
−∇·A∇·GA

]
−
[
∇·
(
∇·AGA

)
−∇·A−∇·GA

]
=∇·

[
A∇·GA−∇·AGA

]
Integrating over the volume of the enclosure, V , and converting the volume integral to

the surface integrals over the boundary surface, we arrive at

∫
∂V

dS n̂·
[
∇×A(r)×GA(r,r′)+A(r)×∇×GA(r,r′)

]
(9.4.11)

+
∫
∂V

dS n̂·
[
A(r)∇·GA(r,r′)−∇·A(r)GA(r,r′)

]
=
∫
V

dr µJ(r)·GA(r,r′)+
{
−A(r′)·α̂ r′∈V
0 r′ /∈V

The first integral can be altered to depends on the tangential surface field variables by
permutations,

∫
∂V

dS
[(
n̂×∇×A(r)

)
·GA(r,r′)+

(
n̂×A(r)

)
·∇×GA(r,r′)

]
(9.4.12)

+
∫
∂V

dS n̂·
[
A(r)∇·GA(r,r′)−∇·A(r)GA(r,r′)

]
=
∫
V

dr µJ(r)·GA(r,r′)+
{
−A(r′)·α̂ r′∈V
0 r′ /∈V

Swapping the primed and unprimed coordinates gives

∫
∂V

dS′
[(
n̂′×∇′×A(r′)

)
·GA(r′,r)+

(
n̂′×A(r′)

)
·∇′×GA(r′,r)

]
(9.4.13)

+
∫
∂V

dS n̂′ ·
[
A(r′)∇′ ·GA(r′,r)−∇·A(r′)GA(r′,r)

]
=
∫
V

dr′ µJ(r′)·GA(r′,r)+
{
−A(r)·α̂ r∈V
0 r /∈V
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Now, the Green’s function has been kept on the right most position in the equations,
we can remove the post factor of α̂ to get

∫
∂V

dS′
[(
n̂′×∇′×A(r′)

)
·GA(r′,r)+

(
n̂′×A(r′)

)
·∇′×GA(r′,r)

]
(9.4.14)

+
∫
∂V

dS n̂′ ·
[
A(r′)∇′ ·GA(r′,r)−∇·A(r′)GA(r′,r)

]
=
∫
V

dr′ µJ(r′)·GA(r′,r)+
{
−A(r) r∈V
0 r /∈V

This is the general Extinction theorem for the vector potential using a general vector
potential Green’s function GA that can satisfies any boundary condition. Similarly, it can
be extended to SIE for the vector potential Green’s function itself. Assuming GA(r,r′′) to
be the vector potential dyadic Green’s function inside the enclosure, the vector potential
due to the current source J(r)=α̂δ(r−r′′) gives GA(r,r′′)·α̂. If we use the propagator of
the vector potential integral equation as G

p

A(r,r′) to formulate the SIE we arrive at,

∫
∂V

dS′
[(
n̂′×∇′×GA(r′,r′′)·α̂

)
·G

p

A(r′,r)+
(
n̂′×GA(r′,r′′)·α̂

)
·∇′×G

p

A(r′,r)
]

(9.4.15)

+
∫
∂V

dS n̂′ ·
[
GA(r′,r′′)·α̂∇′ ·G

p

A(r′,r)−∇·GA(r′,r′′)·α̂G
p

A(r′,r)
]

=α̂·G
p

A(r,r′′)+
{
−GA(r,r′′)·α̂ r∈V
0 r /∈V

Different choices may be made for the propagator of the SIE to solve for the vector
potential dyadic Green’s function GA. For the problem of the vector potential inside the
cavity of perfect conductor walls, n̂×GA and ∇·GA vanish on the surface of the cavity and
it reduces to

∫
∂V

dS′
[(
n̂′×∇′×GA(r′,r′′)·α̂

)
·G

p

A(r′,r)+n̂′ ·GA(r′,r′′)·α̂∇′ ·G
p

A(r′,r)
]

(9.4.16)

=α̂·G
p

A(r,r′′)+
{
−GA(r,r′′)·α̂ r∈V
0 r /∈V

Taking the surface field unknowns as

J
α(r′)=n̂′×∇′×GA(r′,r′′)·α̂ (9.4.17)

σα(r′)=n̂′ ·GA(r′,r′′)·α̂

where Jα, and σα represent the tangential magnetic field and surface charge density
over the surface of the cavity, respectively, the SIE becomes,

∫
∂V

dS′
[
J
α(r′)·G

p

A(r′,r)+σα(r′)∇′ ·G
p

A(r′,r)
]
=α̂·G

p

A(r,r′′)+
{
−GA(r,r′′)·α̂ r∈V
0 r /∈V

(9.4.18)
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Mapping the tangential component of the integral equation to the surface of the cavity
and utilizing the boundary conditions,

n̂×
∫
∂V

dS′
[
J
α(r′)·G

p

A(r′,r)+σα(r′)∇′ ·G
p

A(r′,r)
]
=n̂×G

p

A(r,r′′)·α̂ (9.4.19)

We need to map the normal component of the integral equation to the surface as well
to get enough number of equations for two unknown surface fields,

∫
∂V

dS′
[
J
α(r′)·G

p

A(r′,r)·n̂+σα(r′)∇′ ·G
p

A(r′,r)·n̂
]
=n̂·G

p

A(r,r′′)·α̂+
{
−σα(r) r∈V
0 r /∈V

(9.4.20)

where we have assumed that G
p

A is a symmetric dyadic, G
p

A(r,r′)=
[
G
p

A(r,r′)
]T. Noting

that the second term of the integrand is singular and have a different value depending
on r→∂S±, such that the right hand side value does not depend on whether the integral
equation is mapped on ∂S+ or ∂S+. In terms of principal value integrals,

P
∫
∂V

dS′
[
J
α(r′)·G

p

A(r′,r)·n̂+σα(r′)∇′ ·G
p

A(r′,r)·n̂
]
=n̂·G

p

A(r,r′′)·α̂− 1
2σ

α(r) (9.4.21)

9.4.1 SIE for GA with G0 as a propagator

If we take G
p

A(r,r′)=G0(r,r′)=IG0(r,r′), where G0(r,r′) is the free space scalar Green’s
function, G0(r,r′)=G

T
0 (r,r′). Furthermore, ∇′ ·G0(r′,r)=∇′G0(r′,r) and the surface inte-

gral equations become

n̂×
∫
∂S

dS′
{
G0(r,r′)Jα(r′)+∇′G0(r,r′)σα(r′)

}
=n̂×G0(r,r′′) (9.4.22)

P
∫
∂S

dS′
{
G0(r,r′)n̂·Jα(r′)+n̂·∇′G0(r,r′)σα(r′)

}
=n̂·G0(r,r′′)·α̂− 1

2σ
α(r)

Expanding the unknown field over the walls of the cavity as

J
α(r′)=

NJ∑
n′=1

Jαn′fn′(r′) (9.4.23)

σα(r′)=
Mσ∑
m′=1

σαm′Pm′(r′)

where fn(r′) is a linear RWG basis function attached to the n-th edge of the triangulation
and is defined as
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fn(r)=


Ln

2A+
n
ρ+
n (r) ,r∈T+

n

Ln

2A−n
ρ−n (r) ,r∈T−n

(9.4.24)

where Ln is the length of n-th edge and A±n are area of triangles with common edge n.
The vectors ρ±n (r) in T±n are defined as

ρ+
n (r)=v+

n −r, r∈T+
n (9.4.25)

ρ−n (r)=r−v−n , r∈T−n

Ln

O

b

v−n

ρ −
n (r)

r

v+n

b

b

T+
n

T−
n

b

Figure 9.7: RWG basis function on the n-th edge.

Notice, given that r is on the surface of the object, fn(r) is always in the tangent
space of the object. If we use RWG function to test the SIE, it automatically picks up the
tangential component.

In addition Pn(r) is a pedestal scalar basis function over the n-th triangle. Inserting
the expansion of unknown fields into the set of SIEs we have

n̂×
NJ∑
n′=1

Jαn′

∫
T±
n′

dS′G0(r,r′)fn′(r′)+n̂×
Mσ∑
m′=1

σαm′

∫
Tm′
∇′G0(r,r′)Pm′(r′)=n̂×G0(r,r′′)

(9.4.26)
NJ∑
n′=1

Jαn′

∫
T±
n′

dS′G0(r,r′)n̂·fn′(r′)+
Mσ∑
m′=1

σαm′

∫
Tm′

dS′n̂·∇′G0(r,r′)Pm′(r′)=n̂·G0(r,r′′)·α̂− 1
2σ

α(r)

In order to test the SIE, we will test the vector SIE with RWG basis functions and the
scalar SIE with pedestal basis Pm′ .

NJ∑
n=1

Jαn′

∫
T±
n′

dS′
∫
T±n

dSG0(r,r′)fn(r)·fn′(r′)+
Mσ∑
m′=1

σαm′

∫
Tm′

dS′
∫
T±n

dSfn(r)·∇′G0(r,r′)Pm′(r′)

=
∫
T±n

dSfn(r)·G0(r,r′′)·α̂ (9.4.27)
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NJ∑
n′=1

Jαn′

∫
T±
n′

dS′
∫
Tm

dSPm(r)G0(r,r′)n̂·fn′(r′)+
Mσ∑
m′=1

σαm′

∫
Tm′

dS′
∫
Tm

dSPm(r)n̂·∇′G0(r,r′)Pm′(r′)

=
∫
Tm

dSPm(r)n̂·G0(r,r′′)·α̂− 1
2σ

α(r) (9.4.28)

Or in the matrix form,

ZJJ ·J+ZJσ ·σ=bJ (9.4.29)

ZσJ ·σ+Zσσ ·σ=bσ
where, the impedance matrix elements are given by

[ZJJ ]n,n′=
∫
T±
n′

dS′
∫
T±n

dSG0(r,r′)fn(r)·fn′(r′) (9.4.30)

[ZJσ]n,m′=
∫
Tm′

dS′
∫
T±n

dSfn(r)·∇′G0(r,r′)Pm′(r′)

[ZσJ ]m,n′=
∫
T±
n′

dS′
∫
Tm

dSPm(r)G0(r,r′)n̂m ·fn′(r′)

[Zσσ]m,m′=
∫
Tm′

dS′
∫
Tm

dSPm(r)
[
n̂m ·∇′G0(r,r′)+ 1

2δ(r−r
′)
]
Pm′(r′)

and,

[bJ ]n=
∫
T±n

dSfn(r)·G0(r,r′′)·α̂ (9.4.31)

[bσ]m=
∫
Tm

dSPm(r)n̂·G0(r,r′′)·α̂

Once the surface field variables are obtained from the SIE, the vector potential dyadic
Green’s function can be evaluated through the extinction theorem of (9.4.18)

GA(r,r′′)·α=G0(r,r′′)·α−
∫
∂S

dS′
{
G0(r,r′)Jα(r′,r′′)+∇′G0(r,r′) σα(r′,r′′)

}
(9.4.32)

=G0(r,r′′)·α−
∫
∂S

dS′
{
G0(r,r′)Jα(r′,r′′)−∇G0(r,r′) σα(r′,r′′)

}
substituting the expansion of the surface fields into the dyadic Green’s function

GA(r,r′′)·α=G0(r,r′′)·α−
∑
n

Jαn

∫
T±n

dS′G0(r,r′)fn(r′)+
∑
m

σαm

∫
Tm
∇G0(r,r′)Pm(r)

(9.4.33)
For the βα− component of the vector potential Green’s function,

β̂ ·GA(r,r′′)·α=β̂ ·G0(r,r′′)·α−
∑
n

Jαn

∫
T±n

dS′G0(r,r′)β̂ ·fn(r′)+
∑
m

σαm

∫
Tm
β̂ ·∇G0(r,r′)Pm(r)

(9.4.34)
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Impedance Matrix Elements

The impedance matrix elements can be separated into singular and extracted parts through
Z=Z

e
+Z

s
where, the scalar Green’s function can be factorized as

G0(r,r′)=
[
G0(r,r′)−S(r,r′)

]
+S(r,r′) (9.4.35)

and

S(r,r′)= 1
4π

[ 1
|r−r′|

− k
2

2 |r−r
′|
]

(9.4.36)

Extraction of the first term involved in S regularizes the Green’s function at source
point. However, the extracted Green’s function is not differentiable at source point and
numerical integration requires higher order quadratures. More importantly, for numerical
integrations involving the gradient of the Green’s function, the second order extraction is
essential. Figure. 9.8 shows the extracted Green’s function near the source region resulted
from the first and second order extractions.

Figure 9.8: First and second order extracted scalar Green’s function for the source
at origin.

Figure. 9.9 plots x-component of the gradient of the scalar Green’s function for a
source located at the origin. Second order extraction results in a smooth behavior around
the source point even for the gradient of Green’s function.

Upon decomposition of the Green’s function, the extracted impedance elements can be
written as

[ZeJJ ]n,n′=
∫
T±
n′

dS′
∫
T±n

dSG0,ext(r,r′)fn(r)·fn′(r′) (9.4.37)

[ZeJσ]n,m′=
1
Am′

∫
Tm′

dS′
∫
T±n

dSfn(r)·∇′G0,ext(r,r′)

[ZeσJ ]m,n′=
1
Am

∫
T±
n′

dS′
∫
Tm

dSG0,ext(r,r′)n̂m ·fn′(r′)

[Zeσσ]m,m′=
1

AmAm′
P
∫
Tm′

dS′
∫
Tm

dS n̂m ·∇′G0,ext(r,r′)
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Figure 9.9: First and second order extraction of x-derivative scalar Green’s func-
tion for the source at origin.

The second term can be integrated by part to give

[ZeJσ]n,m′=−
1
Am′

∫
Tm′

dS′
∫
T±n

dSfn(r)·∇G0,ext(r,r′) (9.4.38)

=∓ Ln

A±nAm′

∫
Tm′

dS′
∫
T±n

dSG0,ext(r,r′)

Note that the integral in the last impedance elements is a principal value integral and
total diagonal contribution is associated with the singularity term [Zσσ]m,m′=1/(2Am) for
m=m′. The principal value integral is not singular away from the source point (which is
excluded) it would be beneficial to still do the extraction for near terms. On the other
hand, singular impedance elements can be written as

[ZsJJ ]n,n′=
∫
T±
n′

dS′
∫
T±n

dSS(r,r′)fn(r)·fn′(r′) (9.4.39)

[ZsJσ]n,m′=
1
Am′

∫
Tm′

dS′
∫
T±n

dSfn(r)·∇′S(r,r′)

[ZsσJ ]m,n′=
1
Am

∫
T±
n′

dS′
∫
Tm

dSS(r,r′)n̂m ·fn′(r′)

[Zsσσ]m,m′=
1

AmAm′
P
∫
Tm′

dS′
∫
Tm

dS n̂m ·∇′S(r,r′)

The second line impedance elements can be simplified thanks to the symmetry of S(r,r′).
For Z

s

Jσ we have

[ZsJσ]n,m′=−
1
Am′

∫
Tm′

dS′
∫
T±n

dSfn(r)·∇S(r,r′) (9.4.40)

while the integral over T±n can be simplified as
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∫
T±n

dSfn(r)·∇S(r,r′)=
∮
∂T±n

dl n̂±∂ ·fn(r)S(r,r′)−
∫
T±n

dS∇·fn(r)S(r,r′) (9.4.41)

=± Ln
A±n

∫
T±n

dSS(r,r′)

Therefore, the singular part of the impedance matrix elements can be expressed as

[ZsJJ ]n,n′=
LnLn′

4A±nA±n′

∫
T±
n′

dS′
∫
T±n

dSS(r,r′)ρn(r)·ρn′(r′) (9.4.42)

[ZsJσ]n,m′=∓
Ln

Am′A
±
n

∫
Tm′

dS′
∫
T±n

dSS(r,r′)

[ZsσJ ]m,n′=
Ln′

2AmA±n′

∫
T±
n′

dS′
∫
Tm

dSS(r,r′)n̂m ·ρn′(r′)

[Zsσσ]m,m′=−
1

AmAm′
P
∫
Tm′

dS′
∫
Tm

dS n̂m ·∇S(r,r′)

The inner integrals can be computed analytically []. After performing one integration,
the outer integral would be a regular function and a low order quadrature can be used to
compute the second integral over triangles.
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9.4.2 SIE for GA with G
Ω
A as a propagator

If we take G
p

A(r,r′)=G
Ω
A(r,r′), which is the vector potential dyadic Green’s function of the

regular cavity (rectangular), the surface integral equations become,

n̂×
∫
σ

dS′
{
G

Ω
A(r,r′)·Jα(r′)+∇′ ·G

Ω
A(r,r′)σα(r′)

}
=n̂×G

Ω
A(r,r′′)·α̂ (9.4.43)∫

σ
dS′

{
n̂·G

Ω
A(r,r′)·Jα(r′)+n̂·

[
∇′ ·G

Ω
A(r,r′)

]
σα(r′)

}
=n̂·G

Ω
A(r,r′′)·α̂− 1

2σ
α(r)

where the surface integrals are reduced to the surface σ=∂S−∂S∩∂Ω using the bound-
ary conditions imposed on G

Ω
A. Expanding the unknown fields over the surface σ and

following the same procedure we obtain the matrix form of,

ZJJ ·J+ZJσ ·σ=bJ (9.4.44)

ZσJ ·σ+Zσσ ·σ=bσ

where,

[ZJJ ]n,n′=
∫
T±
n′

dS′
∫
T±n

dSfn(r)·G
Ω
A(r,r′)·fn′(r′) (9.4.45)

[ZJσ]n,m′=
∫
Tm′

dS′
∫
T±n

dSfn(r)·
[
∇′ ·G

Ω
A(r,r′)

]
Pm′(r′)

[ZσJ ]m,n′=
∫
T±
n′

dS′
∫
Tm

dSPm(r)n̂m ·G
Ω
A(r,r′)·fn′(r′)

[Zσσ]m,m′=
∫
Tm′

dS′
∫
Tm

dSPm(r)
[
n̂m ·

[
∇′ ·G

Ω
A(r,r′)

]
+ 1

2δ(r−r
′)
]
Pm′(r′)

and

[bJ ]n=
∫
T±n

dSfn(r)·G
Ω
A(r,r′′)·α̂ (9.4.46)

[bσ]m=
∫
Tm

dSPm(r)n̂m ·G
Ω
A(r,r′′)·α̂

Once the surface field variables are obtained from the SIE, the vector potential dyadic
Green’s function can be evaluated as

GA(r,r′′)·α=G
Ω
A(r,r′)·α−

∑
n

Jαn

∫
T±n

dS′G
Ω
A(r,r′)·fn(r′)−

∑
m

σαm

∫
Tm

dS′∇′ ·G
Ω
A(r,r′)Pm(r′)

(9.4.47)

In addition to the Green’s function itself, its imaginary wavenumber derivative is also
required for the spectral expansion acceleration.
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9.5 Impedance elements: Spectral and spatial expansion of
the Green’s function

Assuming the following expression for the vector potential Green’s function of the regular
geometry,

G
Ω
A(r,r′;k)=G

Ω
A(r,r′;iξ)+

∑
α

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
Aα(r)A∗α(r′) (9.5.1)

in order to find the impedance matrix elements we need to evaluate ∇′ ·G
Ω
A(r,r′). Also,

for the near field terms, the singularity of the dyadic Green’s function need to be ex-
tracted before applying the quadrature. For the divergence of the Green’s function, since
the eigenfunctions are real (Hermitian boundaries), the Green’s function is symmetric
G

Ω
A(r,r′;k)=G

Ω
A(r′,r;k) and

[
G

Ω
A

]T=G
Ω
A, and therefore reciprocal.

The first term in the above expansion is calculated by the image expansion in our
framework. For its x-component,

GxxA (r,r′;k)=
∑
n,m,p

(−1)n+p e
ikRmnp

4πRmnp
(9.5.2)

where Rmnp=|r−rmnp| and rmnp=
(
mLx+(−1)mx′,nLy+(−1)ny′,pLz+(−1)pz′

)
is the

location of image sources. For a rectangular cavity, G
Ω
A=GxxA x̂x̂+GyyA ŷŷ+GzzA ẑẑ and

∇′ ·G
Ω
A(r,r′)= ∂

∂x′
GxxA x̂+ ∂

∂y′
GyyA ŷ+ ∂

∂z′
GzzA ẑ (9.5.3)

According to image expansion, for the x-component of divergence of the Green’s function

∂

∂x′
GxxA (r,r′;k)=

∑
n,m,p

(−1)n+p e
ikRmnp

4πRmnp

(
ik− 1

Rmnp

)
∂Rmnp
∂x′

(9.5.4)

=
∑
n,m,p

(−1)n+p+m+1 e
ikRmnp

4πRmnp

(
ik− 1

Rmnp

)
x−xmnp
Rmnp

and therefore, for imaginary wavenumber k=iξ

∇′ ·G
Ω
A(r,r′,iξ)=

∑
n,m,p

(−1)n+p+m e
−ξRmnp

4πRmnp

(
ξ+ 1

Rmnp

)
Rmnp
Rmnp

(9.5.5)

which is rapidly convergent (and singular in source region). The near field singularity
of the Green’s function is contained entirely in the imaginary wave number part. In order
to identify the type of singularity of G

Ω
A, using the image expansion, the only singular term

when r is close to r′ comes from the actual source term (m=n=p=0). Therefore, in near
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field regions, G
Ω
A≈G0=IG0, where G0 is the scalar Green’s function. Therefore, second

order order singularity extraction or the vector potential Green’s function would be

G
Ω
A(r,r′;k)=

[
G

Ω
A(r,r′;k)−IS(r,r′)

]
+IS(r,r′) (9.5.6)

=G
Ω
A,ext(r,r′;k)+IS(r,r′)

where

S(r,r′)= 1
4π

[ 1
|r−r′|

− k
2

2 |r−r
′|
]

(9.5.7)

This choice of extraction makes the extracted Green’s function G
Ω
A,ext(r,r′;k) to be

smooth (with continuous first derivative) everywhere. Similarly, for the divergence of the
Green’s function, the same extraction technique gives

∇′ ·G
Ω
A(r,r′;k)=∇′ ·G

Ω
A,ext(r,r′;k)−∇S(r,r′) (9.5.8)

Figure. 9.10 shows x-component of the rectangular cavity Green’s function and its
divergence after the first order extraction (with source located at the origin). Divergence
of the extracted Green’s function is discontinuous at the source location. Using the second
order extraction, divergence of Green’s function becomes continuous as it is shown on Fig.
9.11. Note that the rectangular cavity Green’s function has a smoother behavior near the
source region compared to the free space propagator.

Figure 9.10: x-component of the rectangular cavity Green’s function and its di-
vergence after the first order extraction (source at the origin). Divergence of the

extracted Green’s function is discontinuous at the source location.

Based on this extraction scheme, the impedance elements can be separated into singular
and extracted parts as Z=Z

e
+Z

s
, where
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Figure 9.11: x-component of the rectangular cavity Green’s function and its di-
vergence after the second order extraction (source at the origin). Divergence of the

extracted Green’s function is now continuous at the source location.

[ZeJJ ]n,n′=
LnLn′

4A±nA±n′

∫
T±
n′

dS′
∫
T±n

dSρn(r)·G
Ω
A,ext(r,r′)·ρn′(r′) (9.5.9)

[ZeJσ]n,m′=
Ln

2A±nAm′

∫
Tm′

dS′
∫
T±n

dSρn(r)·
[
∇′ ·G

Ω
A,ext(r,r′)

]
[ZeσJ ]m,n′=

Ln′

2An′Am

∫
T±
n′

dS′
∫
Tm

dSn̂m ·G
Ω
A,ext(r,r′)·ρn′(r′)

[Zeσσ]m,m′=
1

AmAm′

∫
Tm′

dS′P
∫
Tm

dSn̂m ·
[
∇′ ·G

Ω
A,ext(r,r′)

]
Note that the last integral is a principal value integral and form=m′ element, [Zσσ]m,m′=

1/(2Am).
For the singular impedance terms

[ZsJJ ]n,n′=
LnLn′

4A±nA±n′

∫
T±
n′

dS′
∫
T±n

dSρn(r)·ρn′(r′)S(r,r′) (9.5.10)

[ZsJσ]n,m′=−
Ln

2A±nAm′

∫
Tm′

dS′
∫
T±n

dSρn(r)·∇S(r,r′)

[ZsσJ ]m,n′=
Ln′

2An′Am

∫
T±
n′

dS′
∫
Tm

dSn̂m ·ρn′(r′)S(r,r′)

[Zsσσ]m,m′=−
1

AmAm′

∫
Tm′

dS′P
∫
Tm

dSn̂m ·∇S(r,r′)

The second term can be integrated by part

[ZsJσ]n,m′=−
Ln

2A±nAm′

∫
Tm′

dS′
∫
T±n

dSρn(r)·∇S(r,r′) (9.5.11)

= Ln

2A±nAm′

∫
Tm′

dS′
∫
T±n

dS∇·ρn(r)S(r,r′)

=∓ Ln

A±nAm′

∫
Tm′

dS′
∫
T±n

dSS(r,r′)
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9.6 Vector potential vector modes
The vector potential A under the Lorenz gauge satisfies the inhomogeneous wave equation
of

(∇2+k2)A(r)=−µJ(r) (9.6.1)

subject to the boundary condition of n̂×A=0 and ∇·A=0 on the boundary of the
cavity. The natural solution of the vector potential corresponds to the homogeneous wave
equation of

(∇2+k2)A(r)=0 (9.6.2)

where A(r) is the vector potential mode inside the cavity which is subject to the boundary
conditions of n̂×A=0 and ∇·A=0 over the walls of cavity. The eigenvalue k2 is the
resonant wave number inside the cavity for the vector potential. The wave equation of
(9.6.2) alternatively can be rewritten as

∇×∇×A(r)−∇∇·A(r)−k2A(r)=0 (9.6.3)

In order to formulate the surface integral equation for the mode functions A(r), we can
use the vector potential Green’s function in free space G0(r,r′)=IG0(r,r′) to formulate the
integral equation for the resonant modes,

∇×∇×G0(r,r′)−∇∇·G0(r,r′′)−k2G0(r,r′)=Iδ(r−r′) (9.6.4)

where G0 is the scalar Green’s function of free space. Another option is to use the
vector potential Green’s function of the corresponding regular cavity G

Ω
A(r,r′′)(which is

rectangular cavity here) that satisfies the same vector wave equation, namely,

∇×∇×G
Ω
A(r,r′)−∇∇·G

Ω
A(r,r′′)−k2G

Ω
A(r,r′)=Iδ(r−r′) (9.6.5)

which satisfies the boundary conditions of n̂×G
Ω
A=0 and ∇·G

Ω
A=0 on the surface of

the regular cavity, ∂Ω. Using the extinction theorem obtained from (9.6.5) and (9.6.3),
and utilizing the boundary conditions on the vector potential mode A(r) inside the cavity
yields,

∮
∂S

dS′
{
G

Ω
A(r,r′)·

[
n̂′×∇′×A(r′)

]
+n̂′ ·A(r′)∇′ ·G

Ω
A(r,r′)

}
=
{
−A(r) r∈S
0 r /∈S

(9.6.6)

Mapping the tangential component of the integral equation over the surface and using
the boundary conditions of G

Ω
A over ∂Ω
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n̂×
∫
σ

dS′
{
G

Ω
A(r,r′)·J(r)+∇′ ·G

Ω
A(r,r′)σ(r′)

}
=0 (9.6.7)

where σ(r′)=n̂′ ·A(r′), and J(r′)=n̂′×∇′×A(r′) are the resonant surface charge and
current densities over the walls of the cavity. The surface area σ, is the uncommon part of
the irregular cavity surface ∂S and the regular cavity surface ∂Ω, i.e. σ=∂S−∂S∩∂Ω.

In addition, mapping the normal component of the integral equation to the surface of
the cavity provide us with another SIE,

∮
∂S

dS′
{
n̂·G

Ω
A(r,r′)·J(r′)+n̂·

[
∇′ ·G

Ω
A(r,r′)

]
σ(r′)

}
=
{
−σ(r) r∈S
0 r /∈S

(9.6.8)

However it seems that the SIE depends on whether r goes to the surface from the interior or
exterior region but it does not. The near field singular kernel of n̂·

[
∇′ ·G

Ω
A(r,r′)

]
essentially

has the same type of singularity as the free system n̂·
[
∇′ ·G0(r,r′)

]
=−n̂·∇G0(r,r′), which is

know to produce a discontinuity in the surface integral of (9.6.8) that elevates the apparent
ambiguity in the course of testing procedure. Therefore, for the principal value integral,

P
∮
∂S

dS′
{
n̂·G

Ω
A(r,r′)·J(r′)+n̂·

[
∇′ ·G

Ω
A(r,r′)

]
σ(r′)

}
=−1

2σ(r) (9.6.9)

This time, since J is a tangential vector and G
Ω
A(r,r′) is a symmetric dyad, the first

term vanishes over ∂Ω as t̂·G
Ω
A(r,r′)=G

Ω
A(r,r′)· t̂=0, where t̂ is a tangential vector to the

surface at r′. The second term also vanishes over ∂Ω and we arrive at

P
∫
σ

dS′
{
n̂·G

Ω
A(r,r′)·J(r′)+n̂·

[
∇′ ·G

Ω
A(r,r′)

]
σ(r′)

}
=−1

2σ(r) (9.6.10)

Therefore, the set of SIE’s to be solved to find the vector potential mode functions are
given by

n̂×
∫
σ

dS′
{
G

Ω
A(r,r′)·J(r′)+∇′ ·G

Ω
A(r,r′)σ(r′)

}
=0 (9.6.11)

P
∫
σ

dS′
{
n̂·G

Ω
A(r,r′)·J(r′)+n̂·

[
∇′ ·G

Ω
A(r,r′)

]
σ(r′)

}
=−1

2σ(r)

Once the surface current J(r) and surface charge density σ(r) are in hand, the mode
functions can be obtained from the extinction theorem of

∫
σ

dS′
{
G

Ω
A(r,r′)·J(r′)+∇′ ·G

Ω
A(r′,r)σ(r′)

}
=
{
−A(r) r∈S
0 r /∈S

(9.6.12)
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9.7 Linear Eigenvalue Problem

The vector potential dyadic Green’s function of the regular shape cavity G
Ω
A can be written

in terms of a hybrid spectral spatial expansion of

G
Ω
A(r,r′;k)=G

Ω
A(r,r′;iξ)+

∑
α

3∑
j=1

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
Aα,j(r)A

∗
α,j(r′) (9.7.1)

where Aα,j is a vector mode of the vector potential in the cavity of the regular shape
and k2

α is the corresponding eigenvalue which are known. More specifically,

(∇2+k2
α)Aα,j(r)=0 (9.7.2)

where the eigenfunctions of the regular cavity for given eigenvalue of k2
α includes 3

different eigenfunctions in different directions,

Aα,x(r)=ψxα(r)x̂ (9.7.3)

and so on, which satisfy the boundary conditions of n̂×Aα=0 and ∇·Aα=0 on the
surface of cavity (∂Ω). In what follows, we assume that for a given index α there are
three different eigenfunctions. Using this expansion in the surface integral equations for
the irregular cavity modes, we have

n̂×
{∫

σ
dS′

{
G

Ω
A(r,r′;iξ)·J(r′)+∇′ ·G

Ω
A(r,r′,iξ)σ(r′)

}
(9.7.4)

+
∑
α

3∑
j=1

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
Aαj(r)

∫
σ

dS′
(
Aαj(r′)·J(r′)+∇′ ·Aαj(r′)σ(r′)

)}
=0

P
∫
σ

dS′
{
n̂·G

Ω
A(r,r′;iξ)·J(r′)+n̂·

[
∇′ ·G

Ω
A(r,r′;iξ)

]
σ(r′)

}
(9.7.5)

+
∑
α

3∑
j=1

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
n̂·Aαj(r)

∫
σ

dS′
{
Aαj(r′)·J(r′)+∇′ ·Aαj(r′)σ(r′)

}
=−1

2σ(r)

Upon expanding the surface fields in terms of the local basis functions as

J(r′)=
∑
n′

Jn′fn′(r′) (9.7.6)

σ(r′)=
∑
m′

σm′Pm′(r′)

where, fn is the linear RWG basis function over the n-th edge and Pm is a pulse over
the triangle Tm, the SIE can be written as

248



n̂×
{∑

n′

Jn′
∫
T±
n′

dS′G
Ω
A(r,r′;iξ)·fn′(r′)+

∑
m′

σm′
∫
Tm′

dS′∇′ ·G
Ω
A(r,r′,iξ)Pm′(r′) (9.7.7)

+
∑
α

∑
j

cJαj+cσαj
(k2
α+ξ2)Aαj(r)

}
=0

∑
n′

Jn′
∫
T±
n′

dS′n̂·G
Ω
A(r,r′;iξ)·fn′(r′)+

∑
m′

σm′
∫
Tm′

dS′n̂·
[
∇′ ·G

Ω
A(r,r′;iξ)

]
Pm′(r′) (9.7.8)

+
∑
α

∑
j

cJαj+cσαj
(k2
α+ξ2) n̂·Aαj(r)=−1

2σ(r)

where,

cJαj=
k2+ξ2

(k2
α−k2)

∫
σ

dS′Aαj(r′)·J(r′) (9.7.9)

cσαj=
k2+ξ2

(k2
α−k2)

∫
σ

dS′∇′ ·Aαj(r′)σ(r′)

We use the RWG basis function to test the vector SIE (first) and pulse basis functions
to test the second SIE.

∑
n′

Jn′
∫
T±
n′

dS′
∫
T±n

dSfn(r)·G
Ω
A(r,r′;iξ)·fn′(r′)

+
∑
m′

σm′
∫
T±n

dS
∫
Tm′

dS′fn(r)·
(
∇′ ·G

Ω
A(r,r′;iξ)

)
Pm′(r′)

+
∑
α

∑
j

cJαj+cσαj
(k2
α+ξ2)

∫
T±n

dSfn(r)·Aαj(r)=0

∑
n′

Jn′
∫
T±
n′

dS′
∫
Tm

dSPm(r)n̂·G
Ω
A(r,r′;iξ)·fn′(r′)

+
∑
m′

σm′
∫
Tm′

dS′
∫
Tm

dSPm(r)n̂·
[
∇′ ·G

Ω
A(r,r′;iξ)

]
Pm′(r′)

+
∑
α

∑
j

cJαj+cσαj
(k2
α+ξ2)

∫
Tm

dSPm(r)n̂·Aαj(r)=−1
2σ(r)

That can be written in the matrix form of

Z
JJ
·J+Z

Jσ
·σ+R·(cJ+cσ)=0 (9.7.10)

Z
σJ
·J+Z

σσ
·σ+Q·(cJ+cσ)=0
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or

ZJJ Z
Jσ

Z
σJ

Z
σσ

·[J
σ

]
+
[
R R

Q Q

]
·
[
cJ

cσ

]
=0 (9.7.11)

where the impedance matrix elements are given by

[ZJJ ]n,n′=
∫
T±n

dS
∫
T±
n′

dS′fn(r)·G
Ω
A(r,r′;iξ)·fn′(r′) (9.7.12)

[ZJσ]n,m′=
∫
T±n

dS
∫
Tm′

dS′fn(r)·
(
∇′ ·G

Ω
A(r,r′;iξ)

)
Pm′(r′)

[ZσJ ]m,n′=
∫
Tm

dS
∫
T±
n′

dS′Pm(r)n̂m ·G
Ω
A(r,r′;iξ)·fn′(r′)

[Zσσ]m,m′=
∫
Tm

dS
∫
Tm′

dS′Pm(r)n̂m ·
[
∇′ ·G

Ω
A(r,r′;iξ)+ 1

2δ(r−r
′)
]
Pm′(r′)

and

[R]nαj=
1

(k2
α+ξ2)

∫
T±n

dSfn(r)·Aαj(r) (9.7.13)

[Q]mαj=
1

(k2
α+ξ2)

∫
Tm

dSPm(r)n̂m ·Aαj(r)

On the other hand, from the expression of cJ and cσ we have

cJαj=
k2+ξ2

(k2
α−k2)

∑
n′

Jn′
∫
T±
n′

dS′Aαj(r′)·fn′(r′) (9.7.14)

cσαj=
k2+ξ2

(k2
α−k2)

∑
m′

σm′
∫
Tm′

dS′∇′ ·Aαj(r′)Pm′(r′)

Upon defining a new quantity

[S]m′,αj=
1

(k2
α+ξ2)

∫
Tm′

dS′∇′ ·Aαj(r′)Pm′(r′) (9.7.15)

the expression of cJαj and cσαj can be rearranged as

∑
n′

Jn′Rn′,αj=
(k2
α−k2)

(k2
α+ξ2)(k2+ξ2)c

J
αj=

[ 1
(k2+ξ2)−

1
(k2
α+ξ2)

]
cJαj (9.7.16)

∑
m′

σm′Sm′,αj=
(k2
α−k2)

(k2
α+ξ2)(k2+ξ2)c

σ
αj=

[ 1
(k2+ξ2)−

1
(k2
α+ξ2)

]
cσαj

By taking Dαα=(k2
α+ξ2)−1 and λ=(k2+ξ2)−1 it can be written as
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R
†
·J+D·cJ=λcJ (9.7.17)

S
†
·σ+D ·cσ=λcσ

or

R† 0
0 S

†

[J
σ

]
+
[
D 0
0 D

][
cJ

cσ

]
=λ

[
cJ

cσ

]
(9.7.18)

where we have combined two indices j and α to be represented by α. From the SIE,

[
J
σ

]
=−

ZJJ Z
Jσ

Z
σJ

Z
σσ

−1

·
[
R R

Q Q

]
·
[
cJ

cσ

]
(9.7.19)

and eigenvalue problem takes the following form

−

R† 0
0 S

†

ZJJ Z
Jσ

Z
σJ

Z
σσ

−1

·
[
R R

Q Q

]
·
[
cJ

cσ

]
+
[
D 0
0 D

][
cJ

cσ

]
=λ

[
cJ

cσ

]
(9.7.20)

or

P ·c=λc (9.7.21)

where

P=−

R† 0
0 S

†

ZJJ Z
Jσ

Z
σJ

Z
σσ

−1

·
[
R R

Q Q

]
+
[
D 0
0 D

]
(9.7.22)

The eigenvalues provides the resonant wave numbers of the irregular cavity, namely qβ

λ= 1
q2
β+ξ2 (9.7.23)

and the eigenvectors provides the projection coefficient of the corresponding resonant
vector mode Aβ over the regular cavity modes Aα. For the resonant mode Aβ,

−Aβ(r)=
∫
∂S

dS′
{
G

Ω
A(r,r′)·Jβ(r′)+∇′ ·G

Ω
A(r,r′)σβ(r′)

}
(9.7.24)

Using the hybrid expansion of G
Ω
A we have
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−Aβ(r)=
∫
∂S

dS′
{
G

Ω
A(r,r′;iξ)·Jβ(r′)+∇′ ·G

Ω
A(r,r′,iξ)σβ(r′)

}
(9.7.25)

+
∑
α

∑
j

[
k2+ξ2

(k2
α−k2)(k2

α+ξ2)

]
Aαj(r)

∫
∂S

dS′
{
Aαj(r′)·J

β(r′)+∇′ ·Aαj(r′)σβ(r′)
}

or

−Aβ(r)=
∑
n′

Jβn′

∫
T±
n′

dS′G
Ω
A(r,r′;iξ)·fn′(r′)+

∑
m′

σβm′

∫
Tm′

dS′∇′ ·G
Ω
A(r,r′,iξ)Pm′(r′)

}
(9.7.26)

+
∑
α

∑
j

1
(k2
α+ξ2)Aαj(r)(c

Jβ
αj +cσβαj )

where projection of the irregular cavity’s resonant surface fields on the regular cavity
resonant modes are given by

cJβαj =
q2
β+ξ2

(k2
α−q2

β)
∑
n′

Jβn′

∫
T±
n′

dS′Aαj(r′)·fn′(r′) (9.7.27)

cσβαj =
q2
β+ξ2

(k2
α−q2

β)
∑
m′

σβm′

∫
Tm′

dS′∇′ ·Aαj(r′)Pm′(r′)

cβαj is the β-th eigenvector of the linear eigenvalue system of (9.7.22). The resonant
surface fields corresponding to the β-th mode can be obtained via

[
J
σ

]
=−

ZJJ Z
Jσ

Z
σJ

Z
σσ

−1

·
[
R R

Q Q

]
·
[
cJ

cσ

]
(9.7.28)

The wave functions Aβ are known through (9.7.26). However, the wave functions ob-
tained by (9.7.26) are arbitrary up to a multiplicative constant. In order to use the spectral
expansion of the Green’s function, the wave functions Aβ should be normalized over the
volume of the cavity according to

∫
S

d3r Aβ(r)·Aβ(r)=1 ,∀β (9.7.29)

Normalizing the mode using this volume integration for each mode is a computationally
expensive task. Instead each wave function Aβ(r) can be expanded in terms of the regular
shaped cavity wave functions Aα(r) as they form a complete set of functions inside S⊆Ω

Aβ(r)=
∑
α

dβαAα(r) (9.7.30)

252



Taking into account that
{
Aα
}
α
is an orthonormal set, dβα is a unitary transformation

and therefore,

∑
α

|dβα|2=1 , ∀β (9.7.31)

The matrix coefficients dβα can be read from

−Aβ(r)=
∑
n′

Jβn′

∫
T±
n′

dS′G
Ω
A(r,r′;iξ)·fn′(r′)+

∑
m′

σβm′

∫
Tm′

dS′∇′ ·G
Ω
A(r,r′,iξ)Pm′(r′)

(9.7.32)

+
∑
α

1
(k2
α+ξ2)Aα(r)(cJβα +cσβα )

Inserting the expression of the regular dyadic Green’s function at imaginary wavenumber
of k=iξ (second order form)

−Aβ(r)=
∑
α

1
k2
α+ξ2Aα(r)

{∑
n′

Jβn′

∫
T±
n′

dS′Aα(r′)·fn′(r′)+
∑
m′

σβm′

∫
Tm′

dS′∇′ ·Aα(r′)Pm′(r′)

(9.7.33)

+(cJβα +cσβα )
}

Now, for the mode numbers 1≤α≤MΩ,

dβα=− 1
k2
α+ξ2

[
1+

(k2
α−q2

β)
q2
β+ξ2

]
(cJβα +cσβα ) (9.7.34)

and for α>MΩ, cβα does not contribute (is not defined) and

dβα=− 1
k2
α+ξ2

{∑
n′

Jβn′

∫
T±
n′

dS′Aα(r′)·fn′(r′)+
∑
m′

σβm′

∫
Tm′

dS′∇′ ·Aα(r′)Pm′(r′) (9.7.35)

+(cJβα +cσβα )
}

Once the coefficients dβα are known, the wave function Aβ can be normalized by
√
Lβ

where,

Lβ=
∑
α

|dβα|2 (9.7.36)
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Chapter 10

Casimir Self stress on Perfect
Conductor Cylinder: A

Semi-classical Electromagnetism
Approach

10.1 Introduction
The Casimir stress on an object originated in the zero-point fluctuation of the quantum
fields resulting from the nontrivial vacuum state of the quantum fields. In particular, chang-
ing vacuum energy can be happened as a result of external conditions, such as boundaries
by introducing an object, background potentials, and curved space. The zero-point energy
is an infinite quantity, physicists often discard the zero-point energy by redefining the en-
ergy reference point using normal ordering. It would be incorrect, however, to neglect the
infinite zero-point energy found in the presence of material boundaries, for example, paral-
lel metallic planes. The Casimir effect is fundamental because it is a manifestation of the
zero-point fluctuations of the fields, which may have observable effects on all scales, from
cosmological to nuclear. The Casimir effect has also been studied with the aid of source
theory and radiative reaction, without any explicit reference to the zero-point energy fluc-
tuations [157, 158]. The Casimir effect manifests itself in different area of physics including
quantum electrodynamics, Cosmology,condensed matter (elucidation of the physical origin
of sonoluminescence) theory of hadrons and so on.

Different methods are used for the Casimir effect calculations: the Green function for-
malism [159], stress-tensor method [160], multiple scattering expansion [161], zeta function
regularization technique[162], heat-kernel series [163], direct mode summation with contour
integration [164, 165], and numerical methods that is proposed for Casimir interaction be-
tween two arbitrary 3D objects [166]. In all the above-mentioned methods of computation
of the Casimir effect, a vague point is the procedure of treatment of the divergences that
appears in the formulations, where lack of a mathematically rigorous way of dealing with
the infinite quantities apparently leads to different results in some cases [167]. On the
other side, the numerical method in [166] developed to regularize the zero-point energy by
normalizing the energy by that of separated objects that does not work for the self-stress
calculations.

The Casimir self-stress on a cylindrical shell has been studied in 1981 by DeRaad and
Milton [168] by the introduction of a frequency cutoff that vanishes rapidly enough to
regularize the stress, but the final result is independent of the cutoff. Later on, a method
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based on the mode by mode summation technique [169] proposed to obtain the zero-point
energy and they used the Zeta function to regularize the energy for perfect conductor case
and also the case with a uniform speed of light inside and outside of the cylinder. They
examined the zero-point energy for a dilute dielectric limit (uniform speed of light) by
perturbation and reported vanishingly small stress on a dilute dielectric tube [169] to the
first order. The local and global Casimir energies for a semitransparent cylindrical shell
is also studied for different strengths of the coupling [169] and for uniform speed of light
inside and outside in [170] using the same approach as [168].

In this paper, we use a classical electrodynamic framework along with the fluctuation-
dissipation theorem [171] to compute Casimir self-stress on a cylindrical shell similar to the
original Lifshitz’s approach [172]. The Dyadic Green’s function formulation is obtained for
a general dielectric cylinder but the stress calculation is performed for the perfect conductor
case only. The main advantage of the semi-classical approach is to utilize mature classical
electrodynamic resources and thinkings.

Invoking the superposition, one can decompose the Dyadic Green’s function of the
problem into two parts, free and scattered parts. The free part satisfies the source condition
but not the boundary conditions. All of the electromagnetic properties of the medium are
contained in the scattered part as the free part is a universal component of all propagators.
One way of regularizing the zero-point energy is to remove the free part of the Green’s
function and work only with the scattered part. The free part of the Green’s function
is a hypersingular function at the source (where the stress is calculated on the body of
the object) while the scattered part shows smoother behavior around the source (it is
continuous with continuous derivative around the source while the free part is not), given
that the physical parameters are smooth enough. For the planar geometry of parallel plates,
the zero-point energy becomes regularized by removing the free part of the Green’s function
[15, 173]. However, as it is shown in this paper, subtraction of the background propagator
in the cylindrical geometry does not remove the divergences in the stress tensor completely.
The geometries with curved surfaces or intersecting planes introduce certain problems in
the computation of vacuum energy [160, 161] as Curved surfaces alter the local density of
modes and the vacuum energy in the region near the surface and the case of cylindrical
geometry is more subtle that spherical or planar geometries [168]. In general, the change
in mode density from the free-field case that occurs near the surface varies as the inverse
of the radius of curvature [161].

The organization of the paper is as follows: The dyadic Green’s function of the dielectric
cylinder in terms of cylindrical waves are derived with details in the first section. The
Green’s function when the source is located outside of the cylinder is obtained based on
the reciprocity from that of the source within the cylinder. Next, Maxwell’s stress tensor
is computed over the surface of the perfect conductor cylinder and frequency integrals are
evaluated over imaginary frequencies using the Wick’s rotation. In the last section, uniform
asymptotic expansion is used to extract the reminding divergence in the stress expression
and a value is assigned to this divergence with the help of zeta function.
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10.2 Vector wave functions and free Cylindrical Dyadic Green’s
function

The vector wave functions can be obtained from the scalar eigen functions of the scalar
wave equation. For a homogeneous wave equation of (∇2+k2)ψ(r)=0, the solutions that
are finite at the origin have the form

ψn(r)=Jn(kρρ)eikzzeinφ (10.2.1)

where k2=k2
ρ+k2

z is the eigenvalue of the problem in free space. Since the problem is
extended to infinity in both z and ρ directions, the wave number in these directions kρ,kz
are continuous variables and a complete solution of the scalar wave equation can be written
in the form of

ψ(r)=
∞∑

n=−∞

∫ ∞
−∞

dkz
∫ ∞

0
dkρAn(kρ,kz)Jn(kρρ)eikzzeinφ (10.2.2)

Orthogonality of partial wave functions eikzz is the origin of the Fourier transform,∫ ∞
−∞

dz eikzze−ik′zz=2πδ(kz−k′z) (10.2.3)

and orthogonality of the Bessel functions results in Hankel transform of∫ ∞
0
ρdρ Jn(kρρ)Jn(k′ρρ)=

δ(kρ−k′ρ)
kρ

(10.2.4)

The vector wave functions can be constructed from the scalar wave function ψ(r) by

L(r):=∇ψ(r) (10.2.5)

M(r):=∇×
(
ẑψ(r)

)
N(r):= 1

k
∇×∇×

(
ẑψ(r)

)
where the vector wave function are constructed by using the constant pilot vector ẑ. This
choice results in wave functions with definite polarization states with respect to z direction,
namely TE and TM polarization defined with respect to z direction. The vector wave
functions M(r) and N(r) formally satisfy the homogeneous vector wave equation.

∇×∇×
{
M(r)
N(r)

}
−k2

{
M(r)
N(r)

}
=0 (10.2.6)

For instance, substituting M into the vector wave equation yields

∇×
[
∇×∇×

(
ẑψ(r)

)
−k2

(
ẑψ(r)

)]
=∇×F (10.2.7)

where,

F=∇×∇×
(
ẑψ(r)

)
−k2

(
ẑψ(r)

)
(10.2.8)

=∇∇·
(
ẑψ(r)

)
−ẑ(∇2+k2)ψ(r)
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The first term is a gradient with zero curl and second term vanish from the scalar wave
equation. N also satisfies the vector wave equation by a similar reasoning. The transverse
wave functions M,N are related to each other by a curl,

∇×N= 1
k
∇×∇×M (10.2.9)

=kM

therefore,

M= 1
k
∇×N (10.2.10)

N= 1
k
∇×M

This also shows that both M and N wave functions are divergence free. They are neither
enough for expansion of the electric field nor the dyadic Green’s function of the electric
field. From the vector wave equation for the electric field reads −k2∇·E(r)=iωµ∇·J(r)
which does not vanish in the source region. Therefore, the transverse wave functions are
not complete for description of the electric field everywhere. In order to be able to have a
complete expansion of the electric field, we need another wave function that at lease has
a non-zero divergence. The vector wave function L(r):=∇ψ(r) has this property. It is an
eigenfunction of the wave equation with eigenvalue k=0.

10.2.1 Orthogonality relations

Before finding the orthogonality relation between the vector wave functions, lets find the
explicit expression of the vector wave functions. Explicit expression of Different Cylindrical
vector wave functions read,

Ln(r)=ρ̂dJn(kρρ)
dρ eikzzeinφ+φ̂ in

ρ
Jn(kρρ)eikzzeinφ+ẑikzJn(kρρ)eikzzeinφ (10.2.11)

Mn(r)=−φ̂dJn(kρρ)
dρ eikzzeinφ+ρ̂ in

ρ
Jn(kρρ)eikzzeinφ

Nn(r)=ρ̂ ikz
k

dJn(kρρ)
dρ eikzzeinφ−φ̂kz

k

n

ρ
Jn(kρρ)eikzzeinφ+ẑ

k2
ρ

k
Jn(kρρ)eikzzeinφ

If we consider the eigenvalues of the problem as kz, and kρ, the orthogonality between
Fn(r;kρ,kz) and F ′n(r;k′ρ,k′z) (eigenfunction corresponding with different eigenvalues) can
be constructed as∫

d3r Fn(r;kρ,kz)·F ′−m(r;−k′ρ,−k′z)∝δ(kz−k′z)δ(kρ−k′ρ)δnm (10.2.12)

Notice that all of the harmonics number n for the same kz and kρ constitute a degenerate
eigen-space. We expect the presence of delta functions according to the Sturm-Liouville
theory and the delta function is continuous since the kρ and kz spectrum are continuous.
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Orthogonality of L functions

Since, J−n(−x)=Jn(x) and Ln(r;kρ,kz)·L−n′(r;−k′ρ,−k′z)∝ei(n−n
′)φ, integration over φ re-

sults in∫
2π

dφLn(r;kρ,kz)·L−n(r;−k′ρ,−k′z)=2π
[dJn(kρρ)

dρ
dJn(k′ρρ)

dρ (10.2.13)

+
[
kzk
′
z+
(
n

ρ

)2]
Jn(kρρ)Jn(k′ρρ)

]
ei(kz−k

′
z)z

We can express the Bessel function derivatives in terms of neighbor orders Bessel functions
through

dJn(ξ)
dξ = 1

2
[
Jn+1(ξ)−Jn−1(ξ)

]
(10.2.14)

on the other hand different orders can be related by

Jn(ξ)= ξ

2n
[
Jn+1(ξ)+Jn−1(ξ)

]
(10.2.15)

Therefore,∫
2π

dφLn(r;kρ,kz)·L−n(r;−k′ρ,−k′z)=2π
[
kρk
′
ρ

2
[
Jn+1(kρρ)Jn+1(k′ρρ)+Jn−1(kρρ)Jn−1(k′ρρ)

]
(10.2.16)

+kzk′zJn(kρρ)Jn(k′ρρ)
]
ei(kz−k

′
z)z

Integration over z also can be done easily and it gives a delta function of δ(kz−k′z). Using
representation of delta function in terms of Bessel functions∫

ρdρJn(kρρ)Jn(k′ρρ)=
δ(kρ−k′ρ)

kρ
(10.2.17)

we arrive at,∫
d3rLn(r;kρ,kz)·L−n(r;−k′ρ,−k′z)= k2

kρ
(2π)2δ(kz−k′z)δ(kρ−k′ρ) (10.2.18)

For different wave numbers n in φ direction, the wave functions are orthogonal∫
2π

dφei(n−n′)φ=2πδnn′ (10.2.19)

The constraint of integer wave number n in φ direction is the consequence of invoking single
value constraint on the wave function. For geometries which φ cannot go over itself (2π
period), n can be a real number in general but the wave functions are still orthogonal.
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Orthogonality of M functions

Following a similar procedure and using the identities of the Bessel functions, we obtain∫
2π

dφMn(r;kρ,kz)·M−n(r;−k′ρ,−k′z)=
[dJn(kρρ)

dρ
dJn(k′ρρ)

dρ +
(
n

ρ

)2
Jn(kρρ)Jn(k′ρρ)

]
2πei(kz−k′z)z

(10.2.20)

=
kρk
′
ρ

2
[
Jn+1(kρρ)Jn+1(k′ρρ)+Jn−1(kρρ)Jn−1(k′ρρ)

]
2πei(kz−k′z)z

Therefore,∫
d3rMn(r;kρ,kz)·M−n′(r;−k′ρ,−k′z)=kρ(2π)2δ(kρ−k′ρ)δ(kz−k′z)δnn′ (10.2.21)

Similarly, for N functions,∫
d3rNn(r;kρ,kz)·N−n′(r;−k′ρ,−k′z)=kρ(2π)2δ(kz−k′z)δ(kρ−k′ρ)δnn′ (10.2.22)

Mutual Orthogonality of L, M , and N

For different index of n, all of the vector wave functions are mutually orthogonal and this
is clear from the φ dependent part. Therefore, it suffice to show the orthogonality of wave
functions for the same index of n. For orthogonality of the L and N we have∫

dφLn(r;kρ,kz)·N−n(r;−kρ,−kz)=
[
− ik

′
z

k

dJn(kρρ)
dρ

dJn(k′ρρ)
dρ − ik

′
z

k

(n
ρ

)2
Jn(kρρ)Jn(k′ρρ)

(10.2.23)

+
ikzk

′2
ρ

k
Jn(kρρ)Jn(k′ρρ)

]
(2π)ei(kz−k′z)z

Using Bessel functions identities, it can be written as∫
dφLn(r;kρ,kz)·N−n(r;−kρ,−kz)=

[
− ik

′
z

k

kρk
′
ρ

2
[
Jn+1(kρρ)Jn+1(k′ρρ)+Jn−1(kρρ)Jn−1(k′ρρ)

]
(10.2.24)

+
ikzk

′2
ρ

k
Jn(kρρ)Jn(k′ρρ)

]
(2π)ei(kz−k′z)z

Integrating over whole space gives∫
d3rLn(r;kρ,kz)·N−n(r;−kρ,−kz)=

[
−
ikzk

2
ρ

k
+
ikzk

′2
ρ

k

]
(2π)δ(kz−k′z)

1
kρ
δ(kρ−k′ρ)=0

(10.2.25)

10.3 Free space dyadic Green’s function expansion

The dyadic Green’s function G(r,r′) corresponding to the electric field that satisfies the
vector wave equation of

∇×∇×E(r)−k2
0E(r)=iωµJ(r) (10.3.1)
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will satisfy the same vector wave equation with unit source of

∇×∇×G(r,r′)−k2
0G(r,r′)=Iδ(r−r′) (10.3.2)

Here, k0=ω√µ0ε0 is the wave number in the background medium which is unbounded free
space. In order to solve for the dyadic Green’s function, we use the completeness of the
vector cylindrical wave functions and expand the dyadic Green’s function in terms of vector
wave functions,

G(r,r′)=
∑
σ

∫ ∞
−∞

dkz
∫ ∞

0
dkρ

[
Mσ(r;kρ,kz)Aσ(kρ,kz)+Nσ(r;kρ,kz)Bσ(kρ,kz) (10.3.3)

+Lσ(r;kρ,kz)Cσ(kρ,kz)
]

Substituting this expression into the vector wave equation of Green’s function we arrive at

Iδ(r−r′)=
∑
σ

∫ ∞
−∞

dkz
∫ ∞

0
dkρ

[
(k2−k2

0)Mσ(r;kρ,kz)Aσ(kρ,kz) (10.3.4)

+(k2−k2
0)Nσ(r;kρ,kz)Bσ(kρ,kz)−k2

0Lσ(r;kρ,kz)Cσ(kρ,kz)
]

In order to find the generalized vector Fourier coefficients, for instance Aσ(kρ,kz), we can
multiply both sides by M−σ′(r;−k′ρ,−k′z) and integrate over the whole space. Upon using
the orthogonality of the vector wave functions

Aσ(kρ,kz)= 1
(2π)2

M−σ(r′;−kρ,−kz)
kρ(k2−k2

0)
(10.3.5)

Similarly,

Bσ(kρ,kz)= 1
(2π)2

N−σ(r′;−kρ,−kz)
kρ(k2−k2

0)
(10.3.6)

Cσ(kρ,kz)=− 1
(2π)2kρ

L−σ(r′;−kρ,−kz)
k2k2

0

Then the complete expression of the dyadic Green’s function in terms of the cylindrical
vector wave functions can be obtained as

G(r,r′)=
∞∑

n=−∞

1
(2π)2

∫ ∞
−∞

dkz
∫ ∞

0
dkρ

[
Mn(r;kρ,kz)M−n(r′;−kρ,−kz)

kρ(k2−k2
0)

(10.3.7)

+Nn(r;kρ,kz)N−n(r′;−kρ,−kz)
kρ(k2−k2

0)
−kρ

Ln(r;kρ,kz)L−n(r′;−kρ,−kz)
k2k2

0

]
Here k2=k2

ρ+k2
z and there is no constraint on it. Until now, the vector wave functions with

wave number k are not actual wave propagating in the medium. We can make it actual
waves in the medium by mandating k=k0, but this cannot be done directly because of the
presence of the poles at k=±k0 in the dyadic Green’s function. In order to convert the
expansion into a mode expansion (where M , N , and L functions are actual propagating
fields) we can perform the integration over kz to find mode propagating in z direction (with
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explicit dependence on z). Equivalently, we can perform integration over kρ to find the
mode expansion in ρ direction. Since later on we are interested in the Green’s function
for medium which has discontinuity in the ρ direction, it is preferable to have modes with
explicit dependence on ρ rather than z.

The terms involved in the spectral integrand include

Ln(r;kρ,kz)L−n(r′;−kρ,−kz)=∇∇′ψn(r;kρ,kz)ψ−n(r′;−kρ,−kz) (10.3.8)
Mn(r;kρ,kz)M−n(r′;−kρ,−kz)=(∇×ẑ)(∇′×ẑ)ψn(r;kρ,kz)ψ−n(r′;−kρ,−kz)

Nn(r;kρ,kz)N−n(r′;−kρ,−kz)= 1
k2 (∇×∇×ẑ)(∇′×∇′×ẑ)ψn(r;kρ,kz)ψ−n(r′;−kρ,−kz)

Here the scalar wave function is considered to be ψn(r;kρ,kz)=Jn(kρρ)eikzzeinφ. In order to
write the dyadic Green’s function as a cylindrical mode expansion with explicit dependence
on ρ, we change the order of integration over kρ and spatial derivatives. The integrals
involve in this computation are of three forms,

IM=
∫ ∞

0
dkρ

Jn(kρρ)Jn(kρρ′)
kρ(k2−k2

0)
(10.3.9)

IN=
∫ ∞

0
dkρ

Jn(kρρ)Jn(kρρ′)
k2kρ(k2−k2

0)

IL=
∫ ∞

0
dkρkρ

Jn(kρρ)Jn(kρρ′)
k2k2

0

In order to use the complex integration techniques, we need to convert the integrations to
integrals over the whole real line (−∞ to ∞). Using the definition of Hankel functions,

Jn(ξ)=Re
[
H(1)
n (ξ)

]
= 1

2
(
H(1)
n (ξ)+H(2)

n (ξ)
)

(10.3.10)

Note that the Bessel function of Jn(ξ) is regular at the origin (when n 6=0) while Hankel
functions H(1,2)

n (ξ) have logarithmic singularity at the origin. The decomposition of Bessel
functions in terms of Hankel functions will introduce a singularity at the origin which we
should take care of that. In order to do so, we take the lower limit of the integral from δ
instead of zero in a limiting process, i.e.

IM= 1
2 lim
δ→0

∫ ∞
δ

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
+ 1

2 lim
δ→0

∫ ∞
δ

dkρ
Jn(kρρ)H(2)

n (kρρ′)
kρ(k2−k2

0)
(10.3.11)

For real wavenumber kρ, H(1)
n (kρρ) represents the outgoing wave that satisfies the radiation

condition while H
(2)
n (kρρ) is an incoming wave toward the origin and does not fit the

radiation condition. Using the reflection formula for Bessel and Hankel functions [93],

Jn(e−iπξ)=(−1)nJn(ξ) (10.3.12)
H(2)
n (e−iπξ)=−(−1)nH(1)

n (ξ)

and letting kρ=e−iπkρ in the second integral

IM= 1
2 lim
δ→0

∫ ∞
δ

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
+ 1

2 lim
δ→0

∫ δ

−∞
dkρ

Jn(kρρ)H(1)
n (kρρ′)

kρ(k2−k2
0)

(10.3.13)

= 1
2PV[0]

∫ ∞
−∞

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
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This is a principal valve integral with respect to the present singularity of the Hankel func-

C∞

Cr

Re
[
kρ
]

Im
[
kρ
]

⊗
⊗

k̃ρ

−k̃ρ

C0

Figure 10.1: Contour of integration in kρ plane.

tion at the origin at it is not ready to be converted to a complex integral. The contribution
of this singularity can be found and add to the principal value integral to come up with a
complete complex contour integral. Using small argument expansion of Bessel functions,

Jn(ξ)≈ 1
n!

(
ξ

2

)n
(10.3.14)

and for n 6=0

H(1)
n (ξ)≈−i(n−1)!

π

(2
ξ

)n
(10.3.15)

then for |kρρ|�1,|kρρ′|�1 we have

Jn(kρρ)H(1)
n (kρρ′)= i

nπ

(
ρ

ρ′

)n
(10.3.16)

The contribution of the simple pole at the origin can be computed using Residue theorem,

I0= 1
2

∫
C0

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
=−πiRes(kρ=0) (10.3.17)

The minus sign accounts for clockwise path of integration near the origin and the pole
contribution is divided by two because of half a circle path. Then,

Res(kρ=0)= lim
kρ→0

1
2
Jn(kρρ)H(1)

n (kρρ′)
(k2−k2

0)
= 1

(k2
z−k2

0)
i

2nπ

(
ρ

ρ′

)n
(10.3.18)

If we take k̃2
ρ=k2

0−k2
z then,

I0= 1
2

∫
C0

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
= 1
k̃2
ρ

1
2n

(
ρ

ρ′

)n
(10.3.19)

So the principal value integral can be converted into an integral over continuous contour of
C=Cr+C0 if we subtract the contribution of C0

IM= 1
2

∫
C

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
−I0 (10.3.20)
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In order to enclose contour at infinity note that from large argument asymptotic expansion,

Jn(kρρ)∝eikρρ+e−ikρρ (10.3.21)
H(1)
n (kρρ′)∝eikρρ

′

Therefore, when kρ→∞,

Jn(kρρ)H(1)
n (kρρ′)∝Aeikρ(ρ′+ρ)+Beikρ(ρ′−ρ) (10.3.22)

For ρ′>ρ we can enclose the contour at infinity in upper half plane and the integral over
C∞ has no contribution in this way. Now,

IM= 1
2

∮
C+C∞

dkρ
Jn(kρρ)H(1)

n (kρρ′)
kρ(k2−k2

0)
−I0 (10.3.23)

The integrand has two simple poles at kρ=±
√
k2

0−k2
z=±k̃ρ and one of them is located

inside the contour (small loss in conjunction with radiation condition will pull the poles off
the real axis). By the Residue theorem

IM=πiJn(k̃ρρ)H(1)
n (k̃ρρ′)

2k̃2
ρ

−I0 , ρ<ρ′ (10.3.24)

For the case of ρ>ρ′ we can enclose the contour in lower half plane and in general

IM=πiJn(k̃ρρ<)H(1)
n (k̃ρρ>)

2k̃2
ρ

− 1
k̃2
ρ

1
2n

(
ρ<
ρ>

)n
(10.3.25)

Similarly [119, 121],

IN= πi

2k̃2
ρk

2
0
Jn(k̃ρρ<)H(1)

n (k̃ρρ>)+ πi

2k2
zk

2
0
Jn(ikzρ<)H(1)

n (ikzρ>)− 1
k̃2
ρk

2
z

1
2n

(
ρ<
ρ>

)n
(10.3.26)

IL= πi

2k2
0
Jn(ikzρ<)H(1)

n (ikzρ>)

The result of IL is static in nature and comes from the presence of the term 1/k2 (pole at
the origin). This static term will cancel the second term in the IN expression except for
a delta function singularity. The last terms in the IM and IN also cancel each other such
that the free dyadic Green’s function can be written as

G(r,r′)=
∞∑

n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2
ρ

[
Mn(r;kz)M−n(r′;−kz)+Nn(r;kz)N−n(r′;−kz)

]
− ρ̂ρ̂
k2

0
δ(r−r′)

(10.3.27)

Now, for each mode with specified kz, kρ is fixed and its equal to kρ=
√
k2

0−k2
z . Also

note that between ρ and ρ′ whichever is larger should be constructed with the Hankel
function.
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Singularity of the dyadic Green’s function

If we examine the integrands of the dyadic Green’s functions with respect to kρ (First
evaluated the kρ spectral integral and then kz integral)

G(r,r′)=
∞∑

n=−∞

1
(2π)2

∫ ∞
−∞

dkz
∫ ∞

0
dkρ

[
Mn(r;kρ,kz)M−n(r′;−kρ,−kz)

kρ(k2−k2
0)

(10.3.28)

+Nn(r;kρ,kz)N−n(r′;−kρ,−kz)
kρ(k2−k2

0)
−kρ

Ln(r;kρ,kz)L−n(r′;−kρ,−kz)
k2k2

0

]
As kρ→∞, we expect that the term that contains Delta function to have a constant spectral
content. By taking

IM=
∫ ∞

0
dkρ

Jn(kρρ)Jn(kρρ′)
kρ(k2−k2

0)
(10.3.29)

IN=
∫ ∞

0
dkρ

Jn(kρρ)Jn(kρρ′)
k2kρ(k2−k2

0)

IL=
∫ ∞

0
dkρkρ

Jn(kρρ)Jn(kρρ′)
k2k2

0

the differential operators involved in the vector wave functions in the limit of kρ→∞ are
equivalent to [121]

(∇×z)(∇′×z)≈φ̂φ̂ ∂
∂ρ

∂

∂ρ′
≈φ̂φ̂ k2

ρ (10.3.30)

(∇×(∇×z))(∇′×(∇′×z))≈ẑẑ ∂
2

∂ρ2
∂2

∂ρ′2
≈ẑẑ k4

ρ

∇∇′≈ρ̂ρ̂ ∂
∂ρ

∂

∂ρ′
≈ρ̂ρ̂ k2

ρ

Observing this asymptotic expansions, theM andN function integrals in the dyadic Green’s
function expansion do not have singularity in kρ integral evaluation. For the L term, the
integrand does not vanish at kρ→∞. So this term would have a delta singular term. The
integral of IL has been computed in the previous section as

IL= πi

2k2
0
Jn(ikzρ<)H(1)

n (ikzρ>) (10.3.31)

This is not a differentiable function of ρ and ρ′ near ρ=ρ′ that cause the singular behavior.
The singular part of the Green’s function becomes

GSing(r,r′)=− πi

2k2
0

∞∑
n=−∞

1
(2π)2

∫ ∞
−∞

dkz∇∇′
[
Jn(ikzρ<)H(1)

n (ikzρ>)eikz(z−z′)ein(φ−φ′)
]

(10.3.32)

But the singularity appears only in ρ̂ρ̂ component

GSing(r,r′)=−ρ̂ρ̂ πi
2k2

0

∞∑
n=−∞

1
(2π)2 e

in(φ−φ′)
∫ ∞
−∞

dkzeikz(z−z′) ∂

∂ρ

∂

∂ρ′

[
Jn(ikzρ<)H(1)

n (ikzρ>)
]

(10.3.33)
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Assume a constant source point ρ′. When ρ>ρ′

∂

∂ρ

[
Jn(ikzρ<)H(1)

n (ikzρ>)
]
= ∂

∂ρ

[
Jn(ikzρ′)H(1)

n (ikzρ)
]
=Jn(ikzρ′)

dH(1)
n (ikzρ)

dρ (10.3.34)

but when ρ<ρ′

∂

∂ρ

[
Jn(ikzρ<)H(1)

n (ikzρ>)
]
= ∂

∂ρ

[
Jn(ikzρ)H(1)

n (ikzρ′)
]
= dJn(ikzρ)

dρ H(1)
n (ikzρ′) (10.3.35)

The step change in the first derivative near ρ=ρ′ is

∆=Jn(ikzρ)dH(1)
n (ikzρ)

dρ −dJn(ikzρ)
dρ H(1)

n (ikzρ)= 2i
πρ

(10.3.36)

where the Wronskian determinant has been used in the last equality. The second derivative
with respect to ρ gives a delta function of amplitude ∆, but second derivative with respect
to ρ′ gives delta function with amplitude of −∆. So

GSing(r,r′)=−ρ̂ρ̂ πi
2k2

0

∞∑
n=−∞

1
(2π)2 e

in(φ−φ′)
∫ ∞
−∞

dkzeikz(z−z′)
(
− 2i
πρ

)
δ(ρ−ρ′) (10.3.37)

=−ρ̂ρ̂ 1
k2

0

δ(ρ−ρ′)
ρ

δ(z−z′)δ(φ−φ′)=− ρ̂ρ̂
k2

0
δ(r−r′)

10.3.1 Dielectric cylinder dyadic Green’s function

Now we have constructed the free space dyadic Green’s function in the cylindrical coordi-
nate, and it is possible to find the Green’s function for the dielectric cylinder. Assuming the
source is located inside the cylinder (r≤a), then the objective is to find dyadic Green’s func-
tions of G

[11]
(r,r′) and G

[21]
(r,r′) for observation points inside and outside of the cylinder.

Taking the linearity of the problem into account, we can construct the Green’s functions

ε1

ε2

x

y

z

b

∞

∞

a

Figure 10.2: Geometry of the dielectric cylinder.

by superposition. If the space were to filled with ε1 everywhere, then G
[11]

(r,r′)=G1(r,r′)
which is free space dyadic Green’s function. Presence of the cylindrical boundary will cause
reflections off the boundary into medium 1 as well as the field generated in the absence of
the boundary. So, the free space Green’s function should be corrected by a scattering part
G

[11]
S (r,r′) such that

G
[11]

(r,r′)=G1(r,r′)+G
[11]
S (r,r′) (10.3.38)
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and the Green’s function of G
[21]

(r,r′) is consequence of transmission of the field through
the boundary. It contains only scattering part and not the free space part,

G
[21]

(r,r′)=G
[21]
S (r,r′) (10.3.39)

In order to distinguish between the vector wave functions that are constructed from Bessel
function and Hankel functions we will write the latter by a plus sign like M+ and N

+.
Therefore, free space Green’s function in region 1 is

G1(r,r′)=
∞∑

n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

1ρ


M

+
1n(r;kz)M1,−n(r′;−kz)+N+

1n(r;kz)N1,−n(r′;−kz)

M1n(r;kz)M
+
1,−n(r′;−kz)+N1n(r;kz)N

+
1,−n(r′;−kz)

− ρ̂ρ̂
k2

1
δ(r−r′)

For the scattered part of the Green’s function G
[11]
S (r,r′) (that is valid for ρ>ρ′) we consider

the most general expansion that can match the boundary condition everywhere in primed
coordinate (same dependence on the source coordinates as the exciting field)

G
[11]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

1ρ

[(
A(11)
n M1n(r;kz)+B(11)

n N1n(r;kz)
)
M1,−n(r′;−kz)

(10.3.40)

+
(
C(11)
n N1n(r;kz)+D(11)

n M1n(r;kz)
)
N1,n(r′;−kz)

]

The posterior part of the G
[11]
S (r,r′) comes in accordance with the primary Green’s function

G1(r,r′) to match the boundary condition at the interface (which is ρ>ρ′ relation). Also
anterior part should not contain any Hankel function as it is going to be evaluated inside
the cylinder anywhere. Also, reflected wave contains depolarized component as it is the
case for a dielectric cylinder. For G

[21]
S (r,r′) we also take the following expression

G
[21]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

1ρ

[(
A(21)
n M

+
2n(r;kz)+B(21)

n N
+
2n(r;kz)

)
M1,−n(r′;−kz)

(10.3.41)

+
(
C(21)
n N

+
2n(r;kz)+D(21)

n M
+
2n(r;kz)

)
N1,−n(r′;−kz)

]
Again, the posterior part exactly follows the primary field to satisfies the boundary con-
dition. Anterior art of the dyad is also consider that the co-polarize and cross polarized
transmitted field should satisfy the radiation condition at infinity, and thats why they
are taken wave function generated with Hankel function. It is clear that anterior part of
G

[21]
S (r,r′) is a wave that propagate in region 2 so the wave function written in the region

2.
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10.3.2 Boundary conditions

The boundary condition on the posterior part of the dyadic Green’s function has been
applied in construction. On the other hand, the anterior part is the electric field within the
observation medium

E
(j)(r)=iωµ

∫
d3r′G

[j1]
(r,r′)·J(r′) (10.3.42)

and the magnetic field is give by

H
(j)(r)= 1

iωµ
∇×E(j)(r)=

∫
d3r′∇×G

[j1]
(r,r′)·J(r′) (10.3.43)

and thus G
[j1]

(r,r′) should satisfy the electric field boundary condition across the inter-
face. Taking the normal to the interface as n̂=ρ̂, then continuity of tangential electric and
magnetic fields at ρ=a mandate that

ρ̂×
([
G1(r,r′)+G

[11]
S (r,r′)

]
=G

[21]
S (r,r′)

)
(10.3.44)

ρ̂×∇×
([
G1(r,r′)+G

[11]
S (r,r′)

]
=G

[21]
S (r,r′)

)
Here, we consider non-magnetic materials. Defining the spectral components of the different
dyadic Green’s functions as

G(r,r′)=
∞∑

n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

1ρ
G̃n(r,r′;kz) (10.3.45)

the boundary conditions will be translated to the corresponding constraint on the spectral
components by virtue of the linearity.

ρ̂×
[
A(11)
n M1n(r)+B(11)

n N1n(r)+M+
1n(r)=A(21)

n M
+
2n(r)+B(21)

n N
+
2n(r)

]
(10.3.46)

ρ̂×
[
C(11)
n N1n(r)+D(11)

n M1n(r)+N+
1n(r)=C(21)

n N
+
2n(r)+D(21)

n M
+
2n(r)

]

ρ̂×k1
[
A(11)
n N1n(r)+B(11)

n M1n(r)+N+
1n(r)

]
=ρ̂×k2

[
A(21)
n N

+
2n(r)+B(21)

n M
+
2n(r)

]
(10.3.47)

ρ̂×k1
[
C(11)
n M1n(r)+D(11)

n N1n(r)+M+
1n(r)

]
=ρ̂×k2

[
C(21)
n M

+
2n(r)+D(21)

n N
+
2n(r)

]
where

N j(r)= 1
kj
∇×M j(r) (10.3.48)

M j(r)= 1
kj
∇×N j(r)
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is used to replace the derivatives. The terms that contains derivatives should be evaluated
at the interface ρ=a after differentiation. The boundary equations can be separated into
two parts and expressed in the matrix form as

M1


A

(11)
n

B
(11)
n

A
(21)
n

B
(21)
n

=


−dH(1)

n (k1ρρ)
dρ

−nkz
a H

(1)
n (k1ρa)
0

−k2
1ρH

(1)
n (k1ρa)

 (10.3.49)

and

M1


D

(11)
n

C
(11)
n

D
(21)
n

C
(21)
n

=


−nkz
k1a

H
(1)
n (k1ρa)

−k1
dH(1)

n (k1ρρ)
dρ

−k2
1ρ
k1
H

(1)
n (k1ρa)
0

 (10.3.50)

where,

M1=



dJn(k1ρρ)
dρ

nkz
k1a

Jn(k1ρa) −dH(1)
n (k2ρρ)

dρ −nkz
k2a

H
(1)
n (k2ρa)

nkz
a Jn(k1ρa) k1

dJn(k1ρρ)
dρ −nkz

a H
(1)
n (k2ρa) −k2

dH(1)
n (k2ρρ)

dρ

0 k2
1ρ
k1
Jn(k1ρa) 0 −k2

2ρ
k2
H

(1)
n (k2ρa)

k2
1ρJn(k1ρa) 0 −k2

2ρH
(1)
n (k2ρa) 0

 (10.3.51)

10.4 Dyadic Green’s function when source is outside of the
cylinder

Assuming the source is located outside of the cylinder (r≥a), then the objective is to find
dyadic Green’s functions of G

[22]
(r,r′) and G

[12]
(r,r′) for observation points inside and

outside of the cylinder. Taking the linearity of the problem into account, we can construct

ε1

ε2

x

y

z

b

∞

∞

a

Figure 10.3: Geometry of the dielectric cylinder.

the Green’s functions by superposition. If the space were to filled with ε2 everywhere, then
G

[22]
(r,r′)=G2(r,r′) which is free space dyadic Green’s function. Presence of the cylindrical

boundary will cause reflections off the boundary into medium 2 as well as the field generated
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in the absence of the boundary. So, the free space Green’s function should be corrected by
a scattering part G

[22]
S (r,r′) such that

G
[22]

(r,r′)=G2(r,r′)+G
[22]
S (r,r′) (10.4.1)

and the Green’s function of G
[12]

(r,r′) is consequence of transmission of the field through
the boundary. It contains only scattering part and not the free space part,

G
[12]

(r,r′)=G
[12]
S (r,r′) (10.4.2)

In order to distinguish between the vector wave functions that are constructed from Bessel
function and Hankel functions we will write the latter by a plus sign like M+ and N

+.
Therefore, free space Green’s function in region 1 is

G2(r,r′)=
∞∑

n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

2ρ


M

+
2n(r;kz)M2,−n(r′;−kz)+N+

2n(r;kz)N2,−n(r′;−kz)

M2n(r;kz)M
+
2,−n(r′;−kz)+N2n(r;kz)N

+
2,−n(r′;−kz)

− ρ̂ρ̂
k2

2
δ(r−r′)

where the top relation corresponds to ρ>ρ′ case. For the scattered part of the Green’s
function G

[22]
S (r,r′) we consider the most general expansion that can match the boundary

condition everywhere in primed coordinate (same dependence on the source coordinates as
the exciting field)

G
[22]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

2ρ

[(
A(22)
n M

+
2n(r;kz)+B(22)

n N
+
2n(r;kz)

)
M

+
2,−n(r′;−kz)

(10.4.3)

+
(
C(22)
n N

+
2n(r;kz)+D(22)

n M
+
2n(r;kz)

)
N

+
2,n(r′;−kz)

]
(10.4.4)

The posterior part of the G
[22]
S (r,r′) comes in accordance with the primary Green’s function

G2(r,r′) to match the boundary condition at the interface (which is ρ<ρ′ relation). Also
anterior part is constructed by Hankel functions to satisfies the radiation condition at
infinity. Also, reflected wave contains depolarized component as it is the case for a dielectric
cylinder. For G

[12]
S (r,r′) we also take the following expression

G
[12]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

2ρ

[(
A(12)
n M1n(r;kz)+B(12)

n N1n(r;kz)
)
M

+
2,−n(r′;−kz)

(10.4.5)

+
(
C(12)
n N1n(r;kz)+D(12)

n M1n(r;kz)
)
N

+
2,−n(r′;−kz)

]
(10.4.6)

Again, the posterior part exactly follows the primary field to satisfies the boundary con-
dition. Anterior art of the dyad is also consider that the co-polarize and cross polarized
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transmitted field should be regular at the origin, and thats why they are taken wave func-
tion generated with Bessel function. It is clear that anterior part of G

[12]
S (r,r′) is a wave

that propagate in region 1 so the wave functions in the anterior part are written using wave
propagating in the region 1.

10.4.1 Boundary conditions

The boundary condition on the posterior part of the dyadic Green’s function has been
applied in construction. On the other hand, the anterior part is the electric field within the
observation medium

E
(j)(r)=iωµ

∫
d3r′G

[j2]
(r,r′)·J(r′) (10.4.7)

and the magnetic field is

H
(j)(r)= 1

iωµ
∇×E(j)(r)=

∫
d3r′∇×G

[j2]
(r,r′)·J(r′) (10.4.8)

and thus G
[j2]

(r,r′) should satisfy the electric field boundary condition across the interface.
Following the same procedure as interior problem, the Green’s function coefficients can be
obtained from,

M2


A

(22)
n

B
(22)
n

A
(12)
n

B
(12)
n

=


−dJn(k2ρρ)

dρ
−nkz

a Jn(k2ρa)
0

−k2
2ρJn(k2ρa)

 (10.4.9)

and,

M2


D

(22)
n

C
(22)
n

D
(12)
n

C
(12)
n

=


−nkz
k2a

Jn(k2ρa)
−k2

dJn(k2ρρ)
dρ

−k2
2ρ
k2
Jn(k2ρa)
0

 (10.4.10)

where,

M2=



dH(1)
n (k2ρρ)

dρ
nkz
k2a

H
(1)
n (k2ρa) −dJn(k1ρρ)

dρ −nkz
k1a

Jn(k1ρa)
nkz
a H

(1)
n (k2ρa) k2

dH(1)
n (k2ρρ)

dρ −nkz
a Jn(k1ρa) −k1

dJn(k1ρρ)
dρ

0 k2
2ρ
k2
H

(1)
n (k2ρa) 0 −k2

1ρ
k1
Jn(k1ρa)

k2
2ρH

(1)
n (k2ρa) 0 −k2

1ρJn(k1ρa) 0

 (10.4.11)

The solution to this system of equations can be obtained from the problem of source inside
the cylinder with 1→2 and Bessel functions become Hankel functions. The matrices M1
and M2 has the same form except exchanging the medium (1↔2) and transforming the
Hankel function to Bessel function and vice versa which is manifestation of the Reciprocity.
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10.5 Casimir Force calculation using the scattered wave Green’s
function

By adding the polarization source P (which arise from the fluctuating electromagnetic
fields everywhere even at vacuum and zero temperature) to the Maxwell’s equations, one
can solve for the excited fields in the medium and then find the desired stress on the object
of interest.

∇×E=iωµH (10.5.1)
∇×H=−iωεE−iωP

However, it can be shown that evaluation of Maxwell’s stress tensor is possible without
finding the fields in the medium explicitly. Instead of finding electromagnetic field in the
medium, it is possible to introduce boundary condition of the problem into the scenario
through the Green’s function of the corresponding problem. This is not strange as the
Green’s function contains all details of the physical problem. This method has the advantage
of separating statistical properties of the fluctuating sources from deterministic procedure
of solving a boundary value problem to find the Green’s function.

Vector wave equation for electric field with fluctuating polarization P as a source is
given by

∇×∇×E−ω2µεE=ω2µP (10.5.2)

In order to solve wave equation, we introduce corresponding dyadic Green’s function G(r,r′)
which satisfies the same vector wave equation

∇×∇×G(r,r′)−ω2µεG(r,r′)=Iδ(r−r′) (10.5.3)

Also G(r,r′) satisfies the same boundary condition as the electric field. With this informa-
tions, we can find the electric field directly with the help of dyadic Green’s function

E(r)=ω2µ

∫
dr′G(r,r′)·P (r′) (10.5.4)

The power spectral density of the electric field can be obtained as〈
E(r,ω)E(r′,ω′)∗

〉
=(ω2µ)(ω′2µ)

∫
ds′
∫

dsG(r,s,ω)·
〈
P (s)P (s′)∗

〉
·G
∗
(s′,r′,ω′) (10.5.5)

Upon using the Rytov relation for the power spectral density of the noise polarization
[171, 172], 〈

P (s)P (s′)∗
〉

= ~ε0
π

coth
( ~ω

2kBT

)
Imε(s,ω)δ(s−s′)δ(ω−ω′)I (10.5.6)

we have〈
E(r,ω)E(r′,ω)∗

〉
=(ω2µ)2~ε0

π
coth

( ~ω
2kBT

)∫
ds Imε(s,ω)G(r,s,ω)·G

∗
(s,r′,ω′)δ(ω−ω′)

(10.5.7)

271



Using the complex reciprocity relation of Chapter 1, the dyadic Green’s function G satisfies
the following integral equation∫

ds (ω2µ0ε0)Imε(s,ω)G(r,s,ω)·G
∗
(s,r′,ω′)=Im G(r,r′,ω) (10.5.8)

Therefore, the power spectral density of the electric field can be simplified to〈
E(r,ω)E(r′,ω′)∗

〉
=(ω2µ)~

π
coth

( ~ω
2kBT

)
ImG(r,r′,ω)δ(ω−ω′) (10.5.9)

Similarly, contribution of the magnetic field into the stress tensor can be characterized by
the power spectral density of the magnetic field which can be obtained from the Maxwell’s
equations,〈

H(r,ω)H(r′,ω′)∗
〉

= ~
πµ

coth
( ~ω

2kBT

)
δ(ω−ω′)∇×ImG(r,r′,ω)×∇′ (10.5.10)

The averaged time domain expressions for the real fields at t=0 (for stationary field pro-
cesses) can be obtained as〈

E(r)E(r′)
〉

=µ~
π

∫ ∞
0

dω ω2coth
( ~ω

2kBT

)
ImG(r,r′,ω) (10.5.11)〈

H(r)H(r′)
〉

= ~
µπ

∫ ∞
0

dω coth
( ~ω

2kBT

)
∇×ImG(r,r′,ω)×∇′

Based on the linearity of the problem, the Green’s function can be always decomposed to
a bulk part G

(0)
(r,r′) which is responsible for radiation in free space (solution of inho-

mogeneous wave equation subject to radiation condition), and an scattered part G
(s)

(r,r′)
which is solution of homogeneous wave equation (divergence free part) and is required for
satisfaction of border conditions of the full Green’s function. As it can be seen from the
construction of the total Green’s function by superposition approach, the free part does not
depends in the geometry of the problem and corresponds to the zero point energy of the
background. This term does not contribute to the self stress on the body of interest (virtual
work is identically zero). On the other side, although the stress is a quadratic function of
the field amplitude, it depends on the Green’s function through a linear relation that allows
us to remove the bulk contribution without changing the stress. Although removing the
free Green’s function contribution completely removes the divergence in the Casimir stress
in the planar case, it will be shown that after subtraction of bulk response in cylindrical
geometry, the Casimir stress is still divergent and need additional treatments.

〈T (r)〉=ε〈E(r)E(r)〉+µ〈H(r)H(r)〉− 1
2I
[
ε〈E(r)·E(r)〉+µ〈H(r)·H(r)〉

]
(10.5.12)

Since Tr
(
E(r)E(r)

)
=E(r)·E(r), the stress tensor can be written as

〈T (r)〉= lim
r→r′

[
Q(r,r′)− 1

2TrQ(r,r′)
]

(10.5.13)
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where

Q(r,r′)= ~
π

∫ ∞
0

dω
[
ω2

c2 ImG
s
(r,r′)+∇×ImG

s
(r,r′)×∇′

]
(10.5.14)

The integration over the frequency can be deformed to the imaginary axis by virtue of
analyticity of the retarded Green’s function over the upper half plane of ω−plane. For the
first term,∫ ∞

0
dω ω2ImG

s
(r,r′)= 1

2i

∫ ∞
0

dω ω2
[
G
s
(r,r′;ω)−G

s∗
(r,r′;ω)

]
(10.5.15)

= 1
2i

∫ ∞
0

dω ω2
[
G
s
(r,r′;ω)−G

s
(r,r′;−ω)

]
= 1

2i

∫ ∞
0

dω ω2G
s
(r,r′;ω)− 1

2i

∫ ∞
0

dω ω2G
s
(r,r′;−ω)

where we have used the Hermitian property of the Green’s functionG
s∗

(r,r′;ω)=G
s
(r,r′;−ω)

(which corresponds to a real function in time domain). Changing the integration variable
ω→−ω in the second integral,∫ ∞

0
dω ω2ImG

s
(r,r′)= 1

2i

∫ ∞
0

dω ω2G
s
(r,r′;ω)+ 1

2i

∫ −∞
0

dω ω2G
s
(r,r′;ω) (10.5.16)

= 1
2i

(∫ ∞
0

+
∫ −∞

0

)
dω ω2G

s
(r,r′;ω)

Now, according to the Causality principle for the retarded Green’s function G(r,r′;t,t′), we
should have [12, 174]

G(r,r′;t,t′)=0 for t<t′ (10.5.17)

Herein, t, and t′ refer to the observation and excitation times, respectively. The Green’s
function G(r,r′;t,t′) is stationary in time and depends on t and t′ through t−t′ and is
related to it’s frequency domain counterpart by

G(r,r′;t,t′)=
∫

dω G(r,r′;ω)e−iω(t−t′) (10.5.18)

The asymptotic behavior of the Green’s function as ω→∞ can be obtained from the vector
wave equation

∇×∇×G(r,r′;ω)−ω2µεG(r,r′;ω)=Iδ(r−r′) (10.5.19)

thus,

G(r,r′;ω)≈− c
2

ω2 Iδ(r−r
′) as ω→∞ (10.5.20)

The singularity only happens for the primary part of the Green’s function and the scattering
part is always regular at r=r′. With the knowledge of this asymptotic behavior, the dyadic
Green’s function satisfies the Jordan’s lemma on a path at infinity and the inverse Fourier
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transform over real axis can be written in terms of a contour integral over upper half plane of
the complex ω-plane. Then, it shows that for t<t′, the following complex integral vanishes,∫

C+
dωG(r,r′;ω)e−iω(t−t′)=0 (10.5.21)

where C+ is a contour that include the real ω axis and closes in the upper half plane on ω
at infinity. This result also shows that the dyadic Green’s function G(r,r′;ω) does not have
any singularity in the upper half plane of the complex ω plane. Therefore, it is possible to

Im(ω)

Re (ω)

Figure 10.4: Deformation of contour of integration in the complex ω-plane

deform the contour of integration from real axis to the imaginary axis without crossing any
singularity. Taking ω=iζ over the imaginary axis of the complex ω-plane, we have∫ ∞

0
dω ω2ImG

s
(r,r′;ω)=−

∫
dζ ζ2G

s
(r,r′;iζ) (10.5.22)

Similarly,∫ ∞
0

dω ImG
s
(r,r′;ω)= 1

2i

∫ ∞
0

dω G
s
(r,r′;ω)+ 1

2i

∫ −∞
0

dω G
s
(r,r′;ω) (10.5.23)

= 1
2i

(∫ ∞
0

+
∫ −∞

0

)
dω G

s
(r,r′;ω)

After a wick’s rotation ω=iζ in Fig. 10.4 for both semi infinite contours we have∫ ∞
0

dω ImG
s
(r,r′;ω)= 1

2i

(∫ ∞
0

+
∫ ∞

0

)
idζ G

s
(r,r′;iζ)=

∫ ∞
0

dζ G
s
(r,r′;iζ) (10.5.24)

and then upon applying curls from both sides we arrive at∫ ∞
0

dω ∇×ImG
s
(r,r′;ω)×∇′=

∫ ∞
0

dζ ∇×G
s
(r,r′;iζ)×∇′ (10.5.25)

The stress tensor can be expressed as

T= lim
r→r′

[
Q(r,r′)− 1

2TrQ(r,r′)
]

(10.5.26)

where

Q= ~
π

∫ ∞
0

dζ
[
− ζ

2

c2G
s
(r,r′;iζ)+∇×G

s
(r,r′;iζ)×∇′

]
(10.5.27)
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10.6 Calculating the Stress Tensor

10.6.1 Stress contribution from fields inside the cylinder

The scattering part of the dyadic Green’s function for source and observation points inside
a finite cylinder of radius a has been derived as

G
[11]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

1ρ

[(
A(11)
n M1n(r;kz)+B(11)

n N1n(r;kz)
)
M1,−n(r′;−kz)

(10.6.1)

+
(
C(11)
n N1n(r;kz)+D(11)

n M1n(r;kz)
)
N1,−n(r′;−kz)

]
or using the spectral component of the dyadic Green’s function

G
[11]
S,n(r,r′;kz)=

(
A(11)
n M1n(r;kz)+B(11)

n N1n(r;kz)
)
M1,−n(r′;−kz) (10.6.2)

+
(
C(11)
n N1n(r;kz)+D(11)

n M1n(r;kz)
)
N1,−n(r′;−kz)

where the spatial domain counterpart can be written as

G
[11]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

1ρ
G

[11]
S,n(r,r′;kz) (10.6.3)

For the propagator of the magnetic field, if we define the scattering dyadic Green’s function
of K

[11]
S (r,r′) as

K
[11]
S (r,r′)= 1

k2
1
∇×G

[11]
S (r,r′)×∇′ (10.6.4)

then, the spectral components of the K can be obtained as

K
[11]
S,n(r,r′;kz)=

(
A(11)
n N1n(r;kz)+B(11)

n M1n(r;kz)
)
N1,−n(r′;−kz) (10.6.5)

+
(
C(11)
n M1n(r;kz)+D(11)

n N1n(r;kz)
)
M1,−n(r′;−kz)

In order to calculate the ρ̂ρ̂ component of the stress tensor, we use the cylindrical coordinate
unit vectors ρ̂,φ̂,ẑ to expand the components of the dyadic Green’s function and find the
trace. Because we are interested in the ρρ component of the stress tensor Tρρ,

ρ̂·G
[11]
S,n(r,r′;kz)·ρ̂=

(
A(11)
n Mρ

1n(r;kz)+B(11)
n Nρ

1n(r;kz)
)
Mρ

1,−n(r′;−kz) (10.6.6)

+
(
C(11)
n Nρ

1n(r;kz)+D(11)
n Mρ

1n(r;kz)
)
N
ρ
1,−n(r′;−kz)
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And also the trace of the electric field dyadic Green’s function is given by

Tr G
[11]
S,n(r,r′;kz)=A(11)

n

[
Mρ

1nM
ρ
1,−n+Mφ

1nM
φ
1,−n+M z

1nM
z
1,−n

]
+B(11)

n

[
Nρ

1nM
ρ
1,−n+Nφ

1nM
φ
1,−n

+N z
1n(r)M z

1,−n

]
+C(11)

n

[
Nρ

1nN
ρ
1,−n+Nφ

1nN
φ
1,−n+N z

1nN
z
1,−n

]
+D(11)

n

[
Mρ

1nN
ρ
1,−n+Mφ

1nN
φ
1,−n+M z

1nN
z
1,−n

]
then,

ρ̂·G
[11]
S,n(r,r′;kz)·ρ̂−

1
2Tr G

[11]
S,n(r,r′;kz)

= 1
2

(
A(11)
n

[
Mρ

1nM
ρ
1,−n−M

φ
1nM

φ
1,−n−M

z
1nM

z
1,−n

]
+B(11)

n

[
Nρ

1nM
ρ
1,−n

−Nφ
1nM

φ
1,−n−N

z
1n(r)M z

1,−n

]
+C(11)

n

[
Nρ

1nN
ρ
1,−n−N

φ
1nN

φ
1,−n−N

z
1nN

z
1,−n

]
+D(11)

n

[
Mρ

1nN
ρ
1,−n−M

φ
1nN

φ
1,−n−M z

1nN
z
1,−n

])
=:QE

where QE is the electric field contribution to the stress tensor. Similarly, for K we have,

ρ̂·K
[11]
S,n(r,r′;kz)·ρ̂−

1
2Tr K

[11]
S,n(r,r′;kz)

= 1
2

(
A(11)
n

[
Nρ

1nN
ρ
1,−n−N
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1nN
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z
1nN

z
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]
+B(11)

n

[
Mρ

1nN
ρ
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φ
1nN

φ
1,−n

−M z
1n(r)N z
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]
+C(11)
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]
+D(11)

n

[
Nρ

1nM
ρ
1,−n−N

φ
1nM

φ
1,−n−N z

1nM
z
1,−n

])
=:QH

and QH is the magnetic field contribution to the stress tensor. Using components of the
vector wave functions, and by taking r=r′, we would have[

Nρ
1nN

ρ
1,−n−N

φ
1nN

φ
1,−n−N

z
1nN

z
1,−n

]
=
(
k2
z

k2

[dJn(kρρ)
dρ

]2
−n

2k2
z

k2ρ2 [Jn(kρρ)]2−
k4
ρ

k2 [Jn(kρρ)]2
)

[
Mρ

1nM
ρ
1,−n−M

φ
1nM

φ
1,−n−M

z
1nM

z
1,−n

]
=
(
n2

ρ2 [Jn(kρρ)]2−
[dJn(kρρ)

dρ

]2)
[
Mρ

1nN
ρ
1,−n−M

φ
1nN

φ
1,−n−M

z
1nN

z
1,−n

]
=nkz
kρ

Jn(kρρ)dJ−n(kρρ)
dρ −nkz

kρ
J−n(kρρ)dJn(kρρ)

dρ =0[
Nρ

1nM
ρ
1,−n−N

φ
1nM

φ
1,−n−N z

1nM
z
1,−n

]
=nkz
kρ

J−n(kρρ)dJn(kρρ)
dρ −nkz

kρ
Jn(kρρ)dJ−n(kρρ)

dρ =0
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Then using vanishing components, the ρρ component of the stress tensor arose from the
fields inside the cylinder depends can be expressed as

Tρρ=− i~
8π2c2

∫ ∞
0

dζ ζ2
∞∑

n=−∞

∫ ∞
−∞

dkz
1
k2

1ρ

[
QE(iζ)+QH(iζ)

]
(10.6.7)

where the total contribution of the electric and magnetic field is given by

QTotal(ω)=QE+QH (10.6.8)

= 1
2
(
A(11)
n +C(11)

n

){[
Nρ

1nN
ρ
1,−n−N

φ
1nN

φ
1,−n−N

z
1nN

z
1,−n

]

+
[
Mρ

1nM
ρ
1,−n−M

φ
1nM

φ
1,−n−M

z
1nM

z
1,−n

]}

Noting that the integrand of the stress depends on kz through a quadratic form, then the
integral can be simplified to

Tρρ=− i~
4π2c2

∫ ∞
0

dζ ζ2
∞∑

n=−∞

∫ ∞
0

dkz
1
k2

1ρ

[
QE(iζ)+QH(iζ)

]
(10.6.9)

10.6.2 Perfect conductor limit ε2→∞

In the limit of the perfect conductor in the region 2

ξ2=k2ρa=a
√
k2

2−k2
z (10.6.10)

ξ1=k1ρa=a
√
k2

1−k2
z

Then ξ1/ξ2→0 for any finite value of kz. Also,

ξ1k
2
2

ξ2k2
1
→ k2

2
k2

1

ξ1
k2a

=k2
k1ρ
k2

1
→∞ (10.6.11)

and

ξ2
1k2
ξ2

2k1
→
k2

1ρk2

k2
2k1

=
k2

1ρ
k2k1

→0 (10.6.12)

Using asymptotic forms of the Hankel function for large arguments we obtain,

C(11)
n =−H

(1)
n (ξ1)
Jn(ξ1) (10.6.13)

A(11)
n =−H

′(1)
n (ξ1)
J ′n(ξ1)

The coefficients Bn and Dn in the limit of k2→∞ become zero. Total contribution of the
electric and magnetic field inside the cylinder in the radial stress can be written as

Tρρ=− i~
4π2c2

∫ ∞
0

dζ ζ2
∞∑

n=−∞

∫ ∞
0

dkz
1
k2

1ρ
QTotal(ω) (10.6.14)
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QTotal(ω)=−1
2

(
H

(1)
n (ξ1)
Jn(ξ1) +H

′(1)
n (ξ1)
J ′n(ξ1)

)
k2

1ρ
k2

1

{
−k2

1ρ

[
dJn(k1ρρ)
k1ρdρ

]2

+
(
n2

ρ2 −k
2
1ρ

)
J2
n(k1ρρ)

}
(10.6.15)

10.6.3 Imaginary Frequency

The dyadic Green’s function is analytic over the complex ω−plane and by applying a wick
rotation we can write the frequency integral over ω as an integral over the imaginary axis
of ω=iζ where,

k2=ω2µε=−ζ
2

c2 (10.6.16)

and also under transformation, kρ becomes,

kρ=
√
k2−k2

z=

√
−ζ

2

c2 −k
2
z=±i

√
ζ2

c2 +k2
z (10.6.17)

and as a result, all of the Bessel and Hankel functions becomes the modified Bessel and
modified Hankel functions, respectively. The sign of kρ should be selected in accordance
with the radiation boundary condition. The outgoing cylindrical waves are proportional to

H(1)
n (kρρ)∝eikρρ , as ρ→∞ (10.6.18)

Then radiation condition mandates that Im(kρ)>0 and thus,

kρ=i

√
ζ2

c2 +k2
z (10.6.19)

On the other hand using the relation between the Bessel and modified Bessel functions

Jn(iξ)=inIn(ξ) (10.6.20)

H(1)
n (iξ)= 2

π
(−i)n+1Kn(ξ)

Here, In(ξ) andKn(ξ) are modified Bessel function of the first and second kind, respectively.
For derivative of the modified Bessel functions,

J ′n(iξ)=in−1I ′n(ξ) (10.6.21)

H
′(1)
n (iξ)= 2

π
(−i)n+2K ′n(ξ)

then the ratio of the Bessel and Hankel functions for imaginary frequencies will give addi-
tional factor of i!

H
(1)
n (iξ)
Jn(iξ) =−i 2

π
(−1)nKn(ξ)

In(ξ) (10.6.22)

H
′(1)
n (iξ)
J ′n(iξ) =−i 2

π
(−1)nK

′
n(ξ)
I ′n(ξ)
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and thus the overall result of the stress is real as expected. For an imaginary frequency k1ρ
is pure imaginary and taking k1ρa=iξ we have

k2
1ρa

2=−ξ2 (10.6.23)

and the stress integral can be rewritten as

Tρρ=− ~
4π3a2

∫ ∞
0

dζ
∞∑

n=−∞
(−1)n

∫ ∞
0

dkz
(
Kn(ξ)
In(ξ) +K ′n(ξ)

I ′n(ξ)

){
ξ2[J ′n(iξ)

]2+
(
n2+ξ2

)
J2
n(iξ)

}
(10.6.24)

Now, since the integrand only depends on kz and ζ through the quadratic form of ξ=
a
√
k2
z+κ2, lets take κ=ζ/c and make the following change of variables

κa=ξcosα (10.6.25)
kza=ξsinα

here, 0≤ξ<∞ and 0≤α≤π/2 and the integral becomes∫ ∞
0

dζ
∫ ∞

0
dkz= c

a2

∫ ∞
0

d(κa)
∫ ∞

0
d(kza)= c

a2

∫ ∞
0

dξξ
∫ π/2

0
dα= πc

2a2

∫ ∞
0

dξξ (10.6.26)

as the integrand does not depend on α. With this definition

k2
1 =ω2

c2 =−ζ
2

c2 =−κ2 (10.6.27)

Therefore, the self stress becomes

Tρρ=− ~c
8π2a4

∞∑
n=−∞

∫ ∞
0

dξ ξ
(
Kn(ξ)
In(ξ) +K ′n(ξ)

I ′n(ξ)

){
−ξ2I ′n

2(ξ)+
(
n2+ξ2

)
I2
n(ξ)

}
(10.6.28)

The integral is independent of physical dimension a and the pre-factor correctly has dimen-
sion of the mechanical pressure.

10.6.4 Stress contribution from fields outside the cylinder

For the stress calculations outside of the cylinder, the relevant Green’s function is G
[22]
S (r,r′)

that should be inserted into the stress expressions.

G
[22]
S (r,r′)=

∞∑
n=−∞

i

8π

∫ ∞
−∞

dkz
1
k2

2ρ

[(
A(22)
n M

+
2n(r;kz)+B(22)

n N
+
2n(r;kz)

)
M

+
2,−n(r′;−kz)

(10.6.29)

+
(
C(22)
n N

+
2n(r;kz)+D(22)

n M
+
2n(r;kz)

)
N

+
2,n(r′;−kz)

]
However, in order to obtain contribution of the fields outside of cylinder it suffice to replace
all of the Hankel functions with Bessel function and vice versa in the inside contribution,

T out
ρρ =− ~c

8π2a4

∞∑
n=−∞

∫ ∞
0

dξ ξ
(
In(ξ)
Kn(ξ) + I ′n(ξ)

K ′n(ξ)

){
−ξ2[K ′n(ξ)

]2+
(
n2+ξ2

)
K2
n(ξ)

}
(10.6.30)

Here, we have taken k2=k1=k which corresponds to the stress on a conductor shell in the
free space.
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10.6.5 Asymptotic expansion of the integrand

From the asymptotic expansion of modified Bessel and Hankel function for large arguments
for a fixed value of n,

In(ξ)≈ eξ√
2πξ

[
1−µ−1

8ξ

]
(10.6.31)

Kn(ξ)≈
√
π

2ξ e
−ξ
[
1+µ−1

8ξ

]
and for derivative of the modified Bessel function,

I ′n(ξ)≈ eξ√
2πξ

[
1−µ+3

8ξ

]
(10.6.32)

K ′n(ξ)≈−
√
π

2ξ e
−ξ
[
1+µ+3

8ξ

]
For the inside stress integrand, as ξ→∞ we have

Kn(ξ)
In(ξ) +K ′n(ξ)

I ′n(ξ) ≈2π(∆−δ)e−2ξ≈−π
ξ
e−2ξ (10.6.33)

where δ=(µ+3)/8ξ and ∆=(µ−1)/8ξ and thus δ−∆=1/2ξ. In addition,{
−ξ2I ′n

2(ξ)+
(
n2+ξ2

)
I2
n(ξ)

}
≈ξ2

[
−I ′n

2(ξ)+I2
n(ξ)

]
≈ 2
π
ξeξ(δ−∆)= 1

2πe
2ξ (10.6.34)

and the integrand of the stress from field inside of the cylinder for a fixed value of n
asymptotes to

T in
ξ→∞=−1/2 (10.6.35)

Similarly, for the outside stress integrand, as ξ→∞ we have

T out
ξ→∞=−1/2 (10.6.36)

Each of the contributions into the stress tensor results in a divergent values, just con-
sidering the frequency integral (sum over harmonics intensify the divergence).

10.7 Total stress on the Cylindrical shell
Total stress exerted on the perfect conductor shell is the difference of pressure from the
fields inside and outside of the cylinder. Consider the Cylindrical shell depicted in Fig.
10.5. For an object with boundary surface of S, total electromagnetic force can be written
as

F
Net=

∮
S

dS T ·n̂ (10.7.1)
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n̂outn̂in

Figure 10.5: Normal to the cylinder

where T is the Maxwell stress tensor and n̂ is the normal to the body of object. Assuming
we have the stress tensor inside and outside of the cylinder, the surface S would be total
interior and exterior surfaces of the shell and the net normal pressure (Force per unit area)
is given by

TNet
ρρ =ρ̂·

(
T

in
·n̂in+T

out
·n̂out

)
=−

(
T in
ρρ−T out

ρρ

)
(10.7.2)

TNet
ρρ = ~c

8π2a4

∞∑
n=−∞

FNet
n (10.7.3)

where,
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∫ ∞
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The first term can be simplified as
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Similarly, the second term can be written as(
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Therefore,

F net
n =

∫ ∞
0

dξ ξ3(I2
nK
′
n

2−K2
nI
′
n

2)
( 1
InKn

+ 1
I ′nK
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∫ ∞
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dξ ξ(I2
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2−K2
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( 1
I ′nK
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n

)
(10.7.7)

Now, for fixed n, the asymptotic behavior of the integrand vanishes up to the first order.
In other words, two partial stresses from inside and outside fields regularize the total stress
but as will be shown the stress expression is still divergent. In addition, the asymptotic
behavior of the Bessel function for large argument and fixed order is not useful here as the
summation index can be also large. Therefore we need to extract the divergence of the
stress that is valid for all the ranges of the argument ξ for large values of n. This is where
the uniform asymptotic expansion proves useful.

10.8 Uniform asymptotic expansion
In order to evaluate the asymptotic behavior of the stress integrals, one may want to use
the asymptote of the Bessel function as ξ→∞ for a fixed value of n. However, this is
not valid when n goes to infinity. Another alternative is considering the asymptote of the
Bessel functions when n→∞ but this is not valid for all ranges of ξ. When, n→∞, these
expansion hold uniformly with respect to x [93],

In(nx)= 1√
2πn

enη

(1+x2)1/4

(
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∑
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)
(10.8.1)
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√
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and for their derivatives
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x
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(10.8.2)
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√
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∑
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Here,

η=
√

1+x2+ln x
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√

1+x2
(10.8.3)

t= 1√
1+x2
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For square of the Bessel functions, up to the first order of the uniform expansion we have

I2
n(nx)= 1

2πn
e2nη

(1+x2)1/2

(
1+2u1/n

)
(10.8.4)

I ′n
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)
Then for n→∞, leading order approximation reads
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)
Taking ξ=ny in the expression of stress summand F net

n , the stress integrand would be ready
for application of uniform expansions.
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∫ ∞
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InKn
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n

}
(10.8.8)

Now, the argument of the Bessel functions is ny and we can use the uniform expansions
here,
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(10.8.10)
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therefore, the asymptotic expansion of the integrand would be

Fn(n→∞)=−2
∫ ∞

0
dy y(1+y2)1/2

[
2(v2−u2)+(u2

1−v2
1)
]
(v1−u1) (10.8.11)

Note that u and v are functions of y. If t=1/
√

1+y2

u1(t)= 3t−5t3

24 (10.8.12)

u2(t)= 81t2−462t4+385t6

1152

v1(t)=−9t+7t3

24 (10.8.13)

v2(t)=−135t2+594t4−455t6

1152
Therefore, [
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1−v2

1)
]
(v1−u1)= 1

4 t
3(t2−1)(−1+4t2−3t4) (10.8.14)

Taking into account that t2=1/(1+y2), gives
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∫ ∞
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∫ ∞
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F∞

]
(10.8.16)

The last term is infinite. We can assign a finite value to this summation by Zeta function
regularization

∞∑
n=−∞

F∞=F∞
∞∑
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n0 (10.8.17)
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− 1
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For s>0 the integral is convergent and by taking 1+y2=t2
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∫ ∞
1

dt
[
− 5
t3

+ 7
t5
− 3
t7

]
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4 (10.8.19)

therefore,
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∫ ∞
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∞∑
n=−∞
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=−1
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4

][
2ζ ′(s)s

]
=−ζ ′(0)= 1

2 ln(2π)

where the second equality is result of formal definition of the derivative of the Zeta function
at s=0. As s→0

ζ ′(s)= ζ(s)−ζ(0)
s

(10.8.22)

using ζ(0)=−1/2 we have 2ζ(s)+1=2ζ ′(s)s.
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ρρ = ~c

8π2a4

[ ∞∑
n=−∞

(
FNet
n −F∞

)
+ 1

2 ln(2π)
]

(10.8.23)

= ~c
8π2a4

[ ∞∑
n=−∞

F̃n+ 1
2 ln(2π)

]

Where F̃n is the renormalized stress term.

F̃n=
∫ ∞

0
dξ ξ3(I2

nK
′
n

2−K2
nI
′
n

2)
( 1
InKn

+ 1
I ′nK

′
n

)
+n2

∫ ∞
0

dξ ξ(I2
nK
′
n

2−K2
nI
′
n

2)
( 1
I ′nK

′
n

)
(10.8.24)

+ 1
2

∫ ∞
0

dy y
5(y2−2)
(1+y2)4

For n 6=0 we should change back to y=ξ/n in the last added integral that results in

F̃n6=0=
∫ ∞

0
dξ ξ3(I2

nK
′
n

2−K2
nI
′
n

2)
( 1
InKn

+ 1
I ′nK

′
n

)
+n2

∫ ∞
0

dξ ξ(I2
nK
′
n

2−K2
nI
′
n

2)
( 1
I ′nK

′
n

)
(10.8.25)

+ 1
2

∫ ∞
0

dξ ξ
5(ξ2−2n2)
(n2+ξ2)4

F̃n6=0=
∫ ∞

0
dξ
{
ξ(I2

nK
′
n

2−K2
nI
′
n

2)
[
ξ2
( 1
InKn

+ 1
I ′nK

′
n

)
+n2

( 1
I ′nK

′
n

)]
+ ξ5(ξ2−2n2)

2(n2+ξ2)4

}
(10.8.26)
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Figure 10.6: Zeroth harmonic to the stress contribution

ξ
0 5 10 15 20

F̃
n
(ξ
)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

n = 1

n = 2

n = 3

n = 4

Figure 10.7: First four harmonic contribution to the stress

F̃n=0=
∫ ∞

0
dξ
{
ξ(I2

nK
′
n

2−K2
nI
′
n

2)
[
ξ2
( 1
InKn

+ 1
I ′nK

′
n

)
+n2

( 1
I ′nK

′
n

)]
+ ξ5(ξ2−2)

2(1+ξ2)4

}
(10.8.27)

The total stress on the cylinder is

TNet
ρρ = ~c

8π2a4

[
F̃0+2

∞∑
n=1

F̃n+ 1
2 ln(2π)

]
(10.8.28)

Numerical integration gives

F̃0=8π(−0.051857)

2
∞∑
n=1

F̃n=8π(0.001744)
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Therefore, total stress would be

Tρρ= ~c
πa4

(
−0.051857+0.001744+ 1

16π ln(2π)
)

= ~c
πa4 (−0.01355) (10.8.29)

which is the same as Milton’s result [159, 168].
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Appendix A: Scalar Green’s
Function in Different Dimensions

For a 3 dimensional problem that involve the 3D wave equation operator, like determining
the scalar potential φ(r) in terms of the given source function (charge density) of S(r) that
follows

(∇2+k2)φ(r)=−S(r) (.0.30)

subject to radiation condition at infinity. In order to find the potential everywhere for an
arbitrary source function, the Green’s function G3D(r,r′) of the wave equation operator
(∇2+k2) with unit source can be solved in spherical coordinate to yield the closed form
solution of

G3D(r,r′)= eik|r−r
′|

4π|r−r′| (.0.31)

and the solution of the scalar potential for given forcing function can be obtained as

φ(r)=
∫

d3r′G3D(r,r′)S(r′) (.0.32)

The 3D scalar Green’s function of (.0.31), represent a spherical wave emanating from the
point source. Now, if we assume that the charge density S(r) is uniform along a direction
in space (say z) and depends only on ρ, where r=(ρ,z), then, the scalar potential can be
written as

φ(r)=
∫

d2ρ′S(ρ′)
[ ∞∫
−∞

dz′G3D(r,r′)
]

(.0.33)

According to reciprocity, the Green’s function is symmetric under z↔z′ and the integration
can be perform over z, equally. In order to evaluate the integration over z, introducing
Fourier transform pair of

G(z−z′;ρ,ρ′)=
∫ dkz

2π G(kz;ρ,ρ′)eikz(z−z′) (.0.34)

G(kz;ρ,ρ′)=
∫

dzG(z−z′;ρ,ρ′)e−ikz(z−z′)

and substituting in the scalar wave equation for the Green’s function, it yields

(∇2
ρ+k2

ρ)G(kz;ρ,ρ′)=−δ(ρ−ρ′) (.0.35)

where k2
ρ=k2−k2

z , and the differential equation can be solved directly in the cylindrical
coordinate and accepts the solution of

G(kz;ρ,ρ′)= i

4H
(1)
0

(
kρ|ρ−ρ′|

)
(.0.36)
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Which is the solution of 2D wave equation with unit source subject to the Sommerfeld
radiation condition. Upon evaluating the Fourier transform of (.0.52) at kz=0 it yields the
expression of the desired integral. Therefore,

i

4H
(1)
0

(
k|ρ−ρ′|

)
:=G2D(ρ,ρ′)=

∞∫
−∞

dz′G3D(r,r′) (.0.37)

Therefore, the wave function associated with the source S(ρ) that does not depend on z
can be written as

φ(ρ)=
∫

d2ρ′G2D(ρ,ρ′)S(ρ′) (.0.38)

That also shows that the field does not depends on z as well.This source function is de-
scription of a line charge along z and the 2D Green’s function describes a cylindrical wave
emanating from the axis of the charge density. Now, if we assume that the source function
is only function of one variable, say x, then the potential can be computed as

φ(x)=
∞∫
−∞

dx′S(x′)
[ ∞∫
−∞

dy′G2D(ρ,ρ′)
]

(.0.39)

Following the same procedure to compute the integral of the 2D Green’s function with re-
spect to y′, the Fourier transform of the 2D Green’s function with respect to y, G2D(ky;x,x′)
satisfies, (

d2

dx2 +k2
x

)
G2D(ky;x,x′)=−δ(x−x′) (.0.40)

Subject to radiation condition and here, k2
x=k2−k2

y. The solution can be obtained by
solving the differential equation directly,

G2D(ky;x,x′)= i

2kx
eikx|x−x

′| (.0.41)

By taking ky=0 in the Fourier transform the integral with respect to y′ can be computed
as

∞∫
−∞

dy′G2D(ρ,ρ′):=G1D(x,x′)= i

2ke
ik|x−x′| (.0.42)

which is defined as one dimensional Green’s function. The source that is independent of the
y,z describe a sheet of charge and (.0.42) simply predict its radiation as one dimensional
upward and downward propagating Cartesian plane waves away from the sheet.

Putting everything together, we have the following identity between Green’s functions
in various dimensions,

i

2ke
ik|x−x′|=

∞∫
−∞

dy i4H
(1)
0

(
kρ|ρ−ρ′|

)
=
∞∫
−∞

dy
∞∫
−∞

dz e
ik|r−r′|

4π|r−r′| (.0.43)
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Appendix B: Spectral Expansion of
Dyadic Green’s Function

Plane Wave Expansion of the Scalar Free Green’s Function
Let’s first consider the free scalar Green’s function G(r,r′) that satisfies the scalar wave
equation, can be expanded as a sum of Cartesian plane wave by a 3D Fourier integral
representation

G(r,r′)=
∫ d3k

(2π)3 eik·rG(k) (.0.44)

Substituting this expansion into the wave equation (∇2+k2
0)G(r,r′)=−δ(r−r′) and us-

ing the completeness relation of plane waves as

δ(r−r′)=
∫ d3k

(2π)3 eik·(r−r
′) (.0.45)

yields the spectral content of the Green’s function as

G(r,r′)=
∫ d3k

(2π)3
eik·(r−r

′)

k2−k2
0

(.0.46)

Here, k2=k ·k and k is an arbitrary vector in the spectral space and therefore eik·r is not
necessarily a plane wave propagating in space as it does not satisfy the dispersion relation
of the free space k ·k=ω2µε in general. However, the poles in the integrand corresponds to
a propagating mode with k=k0. In general wave vector k has 3D degrees of freedom but
in order to have a wave that is consistent with the Maxwell’s equations, k should be on
the dispersion sphere. This would reduce the degrees of freedom in a plane wave to 2. By
integration over one of dimensions, say kz which consists of the following integral

I=
∞∫
−∞

dkz
eikz(z−z′)

k2
z−k2

p

,k2
p=k2

0−k2
x−k2

y (.0.47)

the additional degree of freedom can be removed. The integral I can be evaluated by
complex integration over a contour that includes the real line in the complex kz−plane.
Noting that if Im(kz)=0 the integral is undefined over the real axis. So, In order to ensure
the radiation condition, we assume that there is small amount of loss in medium for the
purpose of integration (After integration we allow the medium be lossless). The radiation
condition mandates that Im(kz)>0 in order to have finite field quantities as z→∞.

For z>z′, proper contour of integration γu is depicted in Fig. 8. The integrand over
the semicircle in the upper half plane goes to zero when z>z′ as the semicircle radius goes
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to infinity. Choosing the proper contour make the integrand to be ready for application of
the Jordan’s lemma (The integral over the semi-circle at infinity is zero)

×

×

kz = kp

kz = −kp

γu

γl

Re(kz)

Im(kz)

Figure 8: Proper contour of integration on complex kz plane. For z>z′ (z<z′)
the integrand satisfies the radiation condition on γu (γl).

The integrand has only one singular point at kz=k within the contour of integration.
Using the Residue theorem , for z>z′ we have [60],

I=
∞∫
−∞

dkz
eikz(z−z′)

k2
z−k2

p

=
∮
γu

dkz
eikz(z−z′)

k2
z−k2

p

=2πie
ikp(z−z′)

2kp
(.0.48)

Similarly, for z<z′, the proper contour of integration is γl that results in

I=
∞∫
−∞

dkz
eikz(z−z′)

k2
z−k2

p

=
∮
γl

dkz
eikz(z−z′)

k2
z−k2

p

=2πie
−ikp(z−z′)

−2kp
×(−1)=2πie

−ikp(z−z′)

2kp
(.0.49)

Recent results can be combined in a more compact form
∞∫
−∞

dkz
eikz(z−z′)

k2
z−k2

p

=2πie
ikp|z−z′|

2kp
(.0.50)

Note that kz is not an independent variable anymore. Replacing kp with kz and remem-
bering that kz=(k2

0−k2
x−k2

y)1/2,

G(r,r′)= i

2

∫ d2k⊥
(2π)2 eik⊥·(r⊥−r

′
⊥) e

ikz |z−z′|

kz
(.0.51)

This is the plane wave expansion of the scalar Green’s function in term of scalar plane
waves with definite wave number along z direction.
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Plane Wave Expansion of the Dyadic Green’s Function
The dyadic Green’s function in free space can be obtained from the scalar Green’s function
through,

G(r,r′)=
[
I+∇∇

k2
0

]
G(r,r′) (.0.52)

Notice that the relation (.0.52) is only valid for determination of the free space dyadic
Green’s function from the scalar one. For bounded regions, although (.0.52) satisfies the
vector wave equation, it may not satisfy the border conditions of the electric field. In order
to obtain such representation for dyadic Green’s function of free space, ∇∇= x̂ix̂j∂i∂j
should operate on G(r−r′). However,due to the presence of |z−z′| function in the exponent
of the integrand, which is not a differentiable function, there would be a discontinuity at
z=z′ (source point) in the first derivative of G(r−r′), i.e ∂zg(r−r),

∂

∂z
G(r−r)=−1

2sgn(z−z′)
∫ d2k⊥

(2π)2 eik⊥·(r⊥−r
′
⊥)eikz |z−z

′| (.0.53)

where sgn(·) is the sign function. This is always the case for the Green’s function in the
source region that the second derivative is singular. As a consequence, ∂2

zG(r−r′) has a
delta function singularity at z=z′. Taking the second derivative gives with respect to z
yields

∂2

∂z2 g(r,r′)=−1
2

[
∂

∂z
sgn(z−z′)

]∫ d2k⊥
(2π)2 eik⊥·(r⊥−r

′
⊥)eikz |z−z

′|

− i2sgn(z−z′)2
∫ d2k⊥

(2π)2 kze
ik⊥·(r⊥−r′⊥)eikz |z−z

′|

Here, sgn(z−z′)2=1 and ∂zsgn(z−z′)=2δ(z−z′). The second term is regular and the
singular part of the dyadic Green’s function is given by

GSingular= ẑẑ

k2
0

∂2g(r−r′)
∂z2 =− ẑẑ

k2
0
δ(z−z′)

∫ d2k⊥
(2π)2 eik⊥·(r⊥−r

′
⊥)=− ẑẑ

k2
0
δ(r−r′) (.0.54)

The singular part of the dyadic Green’s function found to be proportional to ẑẑ. This
is the direct consequence of performing the kz spectral integral first that resulted in plane
waves with definite wave number along z direction. Now, the singularity is extracted and
we can perform differentiation without being worried about singularity at the source point.
Since the plane waves are eigenfunction of ∇, operation of ∇ on the eigenfunctions can be
replaced by its eigenvalue ik. Therefore,

G
≷

(r,r′)=− ẑẑ
k2

0
δ(r−r′)+ i

2

∫ d2k⊥
(2π)2

1
kz

[
I−k̂±k̂±

]
eik
±·(r−r′) (.0.55)

Where the upward/downward propagating wave vectors are defined as k±=kxx̂+kyŷ±
kz ẑ.

The Dirac delta function term is known as the singularity of the Green’s function and
and it is important in calculating the fields in the source region. It is closely related to the
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hyper-singularity of the dyadic Green’s function and principal value exclusion volume in
the spatial domain. With a spectral expansion of the dyadic Green’s function, the singular
part comes out as according to the spectral expansion that is used. The dyad I−k̂±k̂± is
a transverse dyad (with respect to propagation direction). We can define horizontal (TE)
and vertical (TM) polarizations unit vector for specific propagation direction k̂ as follows

ê(±kz)= k̂±×ẑ
|k̂×ẑ|

= kyx̂−kxŷ√
k2
x+k2

y

= 1
kρ

(kyx̂−kxŷ)

ĥ(±kz)=ê(±kz)×k̂±=∓ kz
kkρ

(kyx̂+kyŷ)+ kρ
k
ẑ

Note that ê(kz) does not depend on kz, hence ê(−kz)=ê(kz). These unit vectors are natural
as if the electric field is polarized along ê(kz) and the wave is propagating along k+, then
ĥ(kz) would show the direction of magnetic field. A complete set of orthonormal vectors(
ĥ,ê,k̂

)
, can be used to expand the unit dyad,

I−k̂±k̂±=ĥ(±kz)ĥ(±kz)+ê(±kz)ê(±kz) (.0.56)

Substitution recent representation into (.0.55) gives [60]

G(r,r′)=− ẑẑ
k2

0
δ(r−r′)+ i

2(2π)2

∫
d2k⊥

1
kz


[
ĥ(+kz)ĥ(+kz)+ê(+kz)ê(+kz)

]
eik

+·(r−r′) z>z′

[
ĥ(−kz)ĥ(−kz)+ê(−kz)ê(−kz)

]
eik
−·(r−r′) z<z′

(.0.57)
This is complete expansion of the free dyadic Green’s function in terms of the polarized

plane waves.
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Appendix C: Extinction Theorem

The Extinction theorem is the basis of the integral equation formalism for electromagnetic
scattering and propagation in terms of equivalent surface fields. Assume a homogeneous
scatterer with material properties of µ1,ε1 that occupies region V1 of space as depicted in
Fig. 9. The scatterer is illuminated by a current element J(r) with support in the region
V . Here, the entire space is decompose to V1 and V such that, V1∪V =R3.

V1

µ1, ε1

µ, ε

E1, H1

E,H

S∞

n̂

n̂∞

J(r)

Figure 9: The scatterer in the background medium which is illuminated by the
current source J(r).

Assume that the solution of the Maxwell’s equations in both regions are given by (E,H)
and (E1,H1). Outside of the scatterer in region V , the electric field E(r) satisfies the vector
wave equation with wavenumber k as

∇×∇×E(r)−k2E(r)=iωµJ(r) (.0.58)

where k2=ω2µε. Free dyadic Green’s function with wave number k also satisfies the
wave equation of the same kind,

∇×∇×G(r,r′)−k2G(r,r′)=Iδ(r−r′) (.0.59)

subject to the radiation condition at infinity. Multiplying Eq.(.0.58) by G(r,r′) from
right hand side and Eq.(.0.59) by E(r) from left hand side and upon subtracting those and
integrating the result over volume V we arrive at,
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∫
V

d3r

[
∇×∇×E(r)·G(r,r′)−E(r)·∇×∇×G(r,r′)

]
(.0.60)

=iωµ
∫
V

d3rJ(r)·G(r,r′)−
{
E(r′) r′∈V
0 r′ /∈V

The first term on the right hand side is the electric field radiated from the source J(r)
in free space and is independent of the boundaries. Let’s call it the incident field Einc,

Einc(r′)=iωµ
∫
V

d3rJ(r)·G(r,r′)=iωµ
∫
V

d3rG(r′,r)·J(r) (.0.61)

where the reciprocity relation of the free dyadic Green’s function is used. If we perform
integration by part on the second term in the bracket twice with the help of vector identity
∇·(A×B)=B ·∇×A−A·∇×B, (.0.60) can be written as

Einc(r′)−
∮
∂V

dSn̂·
[
E(r)×∇×G(r,r′)+∇×E(r)×G(r,r′)

]
=
{
E(r′) r′∈V
0 r′ /∈V

(.0.62)

Here, n̂ is the unit normal on the surface of volume V that points out of V . Now, the
closed boundary of V contains two surfaces; one is ∂V1 and the other surface is a surface
at infinitely S∞ that entirely encompass V , as depicted in Fig. 9. Because all the sources
are localized inside the volume V , the radiation condition mandates that fields decay faster
than 1/r as r→∞ and therefore,

∮
S∞

dSn̂∞ ·
[
E(r)×∇×G(r,r′)+∇×E(r)×G(r,r′)

]
=0 (.0.63)

(There is another way of incorporating the incident field by assuming that the source of
incident field is infinitely far away, and starting with homogeneous wave equation for the
electric field. In this case, by assuming the scatterer to disappear, the boundary integral
over C∞ yields the incident field.) Therefore,

Einc(r′)+
∮
∂V1

dSn̂·
[
E(r)×∇×G(r,r′)+∇×E(r)×G(r,r′)

]
=
{
E(r′) r′∈V
0 r′ /∈V

(.0.64)

Here the normal n̂ points out out of the scatterer (is opposite to the normal vector in
the Gauss’s theorem). Using the Maxwell’s equations to insert in the magnetic field gives,

Einc(r′)+
∮
∂V1

dSn̂·
[
E(r)×∇×G(r,r′)+iωµH(r)×G(r,r′)

]
=
{
E(r′) r′∈V
0 r′ /∈V

(.0.65)

Permutation of the triple products in the bracket reveal electric and magnetic surface
current terms,
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n̂·E(r)×∇×G(r,r′)=
[
n̂×E(r)

]
·∇×G(r,r′) (.0.66)

n̂·H(r)×G(r,r′)=
[
n̂×H(r)

]
·G(r,r′)

Note that all the operations should be performed on the anterior part of the Green’s
function and it should always stay on the right hand side of the terms. Substituting the
surface currents back to the integral equation of Eq. .0.65 and interchanging the prin=med
and unprimed coordinates, we arrive at

Einc(r)+
∮
∂V1

dS′
{[
n̂′×E(r′)

]
·∇′×G(r′,r) (.0.67)

+iωµ
[
n̂′×H(r′)

]
·G(r′,r)

}
=
{
E(r) r∈V
0 r /∈V

Using the reciprocity of the free space Green’s function G(r,r′)=G
T

(r′,r) and,

∇′×G(r′,r)=∇′g(r′,r)×I=−∇g(r′,r)×I (.0.68)

and also noting that any dyadic of the form A×I is antisymmetric, we have

[
∇′×G(r′,r)

]T
=∇g(r′,r)×I=∇g(r,r′)×I=∇×G(r,r′) (.0.69)

Utilizing these symmetry relations in the integral equation of Eq. (.0.67) yields

Einc(r)+
∮
∂V1

dS′
{
∇×G(r,r′)·

[
n̂′×E(r′)

]
(.0.70)

+iωµG(r,r′)·
[
n̂′×H(r′)

]}
=
{
E(r) r∈V
0 r /∈V

This is the statement of the Extinction theorem. The surface fields n̂′×E(r′) and
n̂′×H(r′) on the surface of the scatterer are unknown, but extinction theorem provides an
integral equation for the surface fields on the scatterer. If the surface fields on the scatterer
are known (After solving the integral equation on the surface of the scatterer) upper relation
of Eq. (.0.70) can be used to propagate the surface fields by the exterior region Green’s
function G(r,r′) to find the scattered field everywhere r∈V . For r∈V the scattered field is

Es(r)=
∮
∂V1

dS′
{
∇×G(r,r′)·

[
n̂′×E(r′)

]
+iωµG(r,r′)·

[
n̂′×H(r′)

]}
(.0.71)

where the total field in V is written as E(r)=Einc(r)+Es(r). However, If the Green’s
function of exterior medium G(r,r′) will be used to propagate the surface field on the object

296



to point r∈V1 inside of the scatterer, resulted field would exactly cancel the incident field
or extincts the incident field. The integral equation Eq. (.0.70) is called the Extinction
theorem based on this observation. Sometimes the lower relation of (.0.70) is called the
Equivalence Principle or Huygens Principle [60, 175].

Although the total field inside the scatterer is not zero, the wave with number k cannot
be present in the scatterer with wavenumber k1. This fact can be viewed from a different
perspective; incident field with wave number k will propagate with wave number k in the
scatterer. A scattered field with wave number k will be excited inside the scatterer to
exactly extinguish the presence of incident field. In order to get the correct field (E1,H1)
inside the scatterer, G1(r,r′) should be used to propagate the surface fields.

Before moving forward, It is interesting to consider the case when there is no scatterer
in the medium. In this case the medium is homogeneous everywhere. Imagine an arbitrary
volume V1 with closed surface ∂V1 in space and apply the Extinction theorem. Herein, the
total electric field everywhere is the incident field Einc(r) and,

∮
∂V1

dS′
{
∇×G(r,r′)·

[
n̂′×Einc(r′)

]
(.0.72)

+iωµG(r,r′)·
[
n̂′×H inc(r′)

]}
=
{

0 r /∈V1

−Einc(r) r∈V1

Propagation of the surface fields n̂′×Einc(r′) and n̂′×H inc(r′) over an arbitrary and
imaginary closed surface in the homogeneous medium results zero field outside and −Einc(r)
inside the imaginary surface.

Conclusion:

The Extinction theorem can be written for the scattered surface fields n̂×Es(r) and
n̂×Hs(r) instead of total fields as

∮
∂V1

dS′
{
∇×G(r,r′)·

[
n̂′×Es(r′)

]
+iωµG(r,r′)·

[
n̂′×Hs(r′)

]}
=
{
Es(r) r∈V
0 r /∈V

(.0.73)

Another version of the Extinction can be find by considering the fields inside the scat-
terer. The electric field E1(r) inside the scatterer satisfies the homogeneous vector wave
equation with wavenumber k1=ω√µ1ε1

∇×∇×E1(r)−k2
1E1(r)=0 (.0.74)

Here it is assumed that there is no impressed source of the electromagnetic fields inside
the scatterer. Free dyadic Green’s function inside the scatterer also satisfies the wave
equation of the same kind with wavenumber k1 and unit source,

∇×∇×G1(r,r′)−k2
1G1(r,r′)=Iδ(r−r′) (.0.75)
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Following the same procedure as exterior region (but integrating over the volume of the
scatterer) we will arrive at

−
∮
∂V1

dS′
{
∇×G1(r,r′)·

[
n̂′×E1(r′)

]
+iωµG1(r,r′)·

[
n̂′×H1(r′)

]}
=
{
E1(r) r∈V1

0 r /∈V1
(.0.76)

The minus sign appears here as the result of change in the direction of normal vector.
The Extinction theorem applied to the volume of the scatterer reveals that propagation
of the surface fields over the boundary with the scatterer’s Green’s function G1(r,r′) into
the scatterer, gives the field inside the scatterer E1. However, if the surface fields will be
propagated outside of the scatterer with G1(r,r′) the results is null, while if instead G(r,r′)
will be used as a propagator, the result is the scattered field.
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