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Abstract

This dissertation concerns the theoretical, algorithmic, and practical aspects of solving op-

timal control problems (OCPs) in real-time. The topic is motivated by Model Predictive

Control (MPC), a powerful control technique for constrained, nonlinear systems that com-

putes control actions by solving a parameterized OCP at each sampling instant. To suc-

cessfully implement MPC, these parameterized OCPs need to be solved in real-time. This

is a significant challenge for systems with fast dynamics and/or limited onboard computing

power and is often the largest barrier to the deployment of MPC controllers. The contribu-

tions of this dissertation are as follows.

First, I present a system theoretic analysis of Time-distributed Optimization (TDO) in

Model Predictive Control. When implemented using TDO, an MPC controller distributed

optimization iterates over time by maintaining a running solution estimate for the optimal

control problem and updating it at each sampling instant. The resulting controller can

be viewed as a dynamic compensator which is placed in closed-loop with the plant. The

resulting coupled plant-optimizer system is analyzed using input-to-state stability concepts

and sufficient conditions for stability and constraint satisfaction are derived. When applied

to time distributed sequential quadratic programming, the framework significantly extends

the existing theoretical analysis for the real-time iteration scheme. Numerical simulations

are presented that demonstrate the effectiveness of the scheme.

Second, I present the Proximally Stabilized Fischer-Burmeister (FBstab) algorithm for

convex quadratic programming. FBstab is a novel algorithm that synergistically combines

the proximal point algorithm with a primal-dual semismooth Newton-type method. FB-

xii



stab is numerically robust, easy to warmstart, handles degenerate primal-dual solutions,

detects infeasibility/unboundedness and requires only that the Hessian matrix be positive

semidefinite. The chapter outlines the algorithm, provides convergence and convergence

rate proofs, and reports some numerical results from model predictive control benchmarks

and from the Maros-Meszaros test set. Overall, FBstab shown to be is competitive with

state of the art methods and to be especially promising for model predictive control and

other parameterized problems.

Finally, I present an experimental application of some of the approaches from the first

two chapters: Emissions oriented supervisory model predictive control (SMPC) of a diesel

engine. The control objective is to reduce engine-out cumulative NOx and total hydrocar-

bon (THC) emissions. This is accomplished using an MPC controller which minimizes

deviation from optimal setpoints, subject to combustion quality constraints, by coordinat-

ing the fuel input and the EGR rate target provided to an inner-loop airpath controller.

The SMPC controller is implemented using TDO and a variant of FBstab which allows

us to achieve sub-millisecond controller execution times. We experimentally demonstrate

10−15% cumulative emissions reductions over the Worldwide Harmonized Light Vehicles

Test Cycle (WLTC) drivecycle.

xiii



CHAPTER 1

Introduction

All systems are constrained. For example, aircraft are subject to angle-of-attack constraints
to prevent stall, chemical reactors must limit temperatures and pressures to ensure safe
operation, autonomous vehicles must avoid obstacles, and electric motors have torque and
power limits. In the past, it was often sufficient to handle constraints and nonlinearities
through conservative control design and linearization. However, as control systems are
become more complex, and as systems are pushed closer and closer to their limits in search
of e.g., faster performance, lower emissions, higher efficiency, lower cost and smaller sizes,
addressing constraints and nonlinearities “head on” is becoming increasingly necessary.

At the same time, many engineered systems are being developed to operate with in-
creasing levels of autonomy. For instance, aerial drones are being used for everything
from package delivery to fire fighting to surveillance, almost all major car manufacturers
have active autonomous vehicle programs, and collaborative robots are being developed
for applications in eldercare, warehouse logistics, manufacturing, and surgery. Success-
fully deploying these autonomous systems will require advances in sensing, perception,
decision making, human robot interaction, learning, and control. In particular, they will
need to be able to perform highly dynamic maneuvers with little to no human intervention
while accounting for nonlinearities, disturbances, and constraints.

Online optimization is a powerful paradigm for approaching these challenges. It can
enable engineered systems to consider complex performance metrics, constraints, and non-
linearities all while incorporating feedback to improve robustness. However, solving op-
timization problems reliably, in real-time, using limited onboard computing resources is a
difficult undertaking. This dissertation presents recent developments in real-time optimiza-
tion of dynamical systems. Specifically, it focuses on reducing the computational burden
of Model Predictive Control (MPC), an optimization based control methodology, to help
enable its application to systems with pronounced nonlinear dynamics, fast sampling rates,
and limited available onboard computing power.

1



1.1 Model Predictive Control

MPC [1–3] is a control methodology wherein a feedback law is defined implicitly as the
solution of a finite horizon Optimal Control Problem (OCP). In this thesis, we focus on
deterministic, discrete time, but often nonlinear, systems.

Plant
𝑥"#$ = 𝑓(𝑥", 𝑢")Optimization

min
.
𝜙 𝜇, 𝑥

Prediction
𝜉"#$ = 𝑓2(𝜉", 𝜇")

Model Predictive Control 𝑢

𝑥

Figure 1.1: A model predictive controller in closed-loop with a plant.

The essential idea behind MPC is as follows. First, a model of the system is derived,
typically of the form

xk+1 = fp(xk, uk), (1.1)

where k ∈ Z+ denotes the discrete time instant, x ∈ X ⊆ Rn is the system state, u ∈ U ⊆
Rm is the control input and fp : Rn × Rm → Rn is the prediction model1. The state and
control inputs are subject to the constraints (x, u) ∈ Z ⊆ X × U . Next, an OCP over a
prediction horizon if formulated, a common form is

min.
ξ,µ

φ(ξ, µ) = Vf (ξN) +
N−1∑
i=0

l(ξi, µi), (1.2a)

s.t. ξi+1 = fp(ξi, µi, 0), i ∈ Z[0,N−1], (1.2b)

ξ0 = x, (1.2c)

(ξi, µi) ∈ Z, i ∈ Z[0,N−1], (1.2d)

ξN ∈ Xf . (1.2e)

where N ∈ Z++ is the horizon length, Xf ⊆ X is the terminal state constraint which is
typically used to guarantee stability, ξ = (ξ0, ξ1, . . . , ξN) is the state sequence, and µ =

1See Chapter 2 for notation.

2



(µ0, µ1, . . . , µN−1) is the control sequence. Note that the OCP (1.2) is parameterized by
the measured system state x. This parameterization leads to an implicitly defined state
feedback law which is placed in closed-loop with the plant as illustrated in Figure 1.1.

Control constraint

k k+1

Control horizon

k+nc k+np

Prediction horizon

k-1

Past Future

Output constraint

Target, yref
Measured output, yk

Predicted output, yk+np|k-1

Past input, uk-1

Predicted input, uk+np|k-1

Predicted output, yk+np|k

Predicted input, uk+np|k

Figure 1.2: Illustration of the MPC process at time k. An optimization algorithm is used
to pick a sequence of control actions over the N step prediction horizon to minimize the
predicted cost. The first input of the sequence is applied to the plant and the process is
repeated at time k + 1.

Then, online, the control action at sampling instant k is computed by solving (1.2),
which yields a solution (ξ∗(xk), µ

∗(xk)), where xk is the measured/estimated state at time
k, and µ∗0(xk) is applied to the system. The process is then repeated at the next timestep
using the new measurement xk+1, the incorporation of the new measurement introduces
feedback. The process is illustrated graphically in Figure 1.2.

MPC is a general and powerful methodology that is able to handle input and output
constraints, nonlinearities, and highly coupled Multiple Input Multiple Output (MIMO)
systems. In practice, it is often the only option for achieving high-performance control
in a systematic way, especially for nonlinear and/or constrained systems. This makes it
attractive for industrial practitioners, who are continually under pressure to make their
systems more efficient, lighter, cheaper, safer, and so on. Indeed, a recent survey by the
International Federation of Automatic Control (IFAC) [4] concluded that MPC is second
only to proportional-integral-derivative (PID) control in industrial adoption. Moreover, the
MPC is a key enabling technology for autonomy, allowing systems to generate trajectories
that satisfy constraints and optimize specified performance metrics “on the fly”.

In addition to its practical applicability, MPC is supported by an extensive theoretical
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literature. The control community has extensively studied the stability properties of MPC
see e.g., [5–7] and the references therein. Moreover, other critical qualitative properties
such as robustness [8–11], integral action [12, 13], and suboptimality [14–16] have also
been extensively studied. There are a variety of textbooks and monographs available that
provide a good introduction to MPC, see e.g., [1–3, 17, 18].

Despite its many virtues, MPC has two major drawbacks:

1. MPC requires a model of the system for use in prediction, and the performance of
the closed-loop system depends on the quality of the model. Moreover, such models
need to be simple enough to be readily incorporated into an optimization routine if
they are to be used in practice.

2. Computing control actions means solving a (possibly non-convex) OCP at every sam-
pling instance.

The difficulty of obtaining prediction models depends entirely on the application. For ex-
ample, relatively high quality physics based models are available in many spacecraft and
vehicle dynamics applications whereas the diesel engine controller presented in Chapter 5
extensively uses identified models. Other applications, such as very flexible aircraft or hu-
manoid robots, require complex models such as partial differential equations (or nonlinear
finite element approximations of them) or hybrid dynamics, which greatly complicates the
application of MPC to these systems.

The second challenge is often the greatest hurdle to practical deployment. In some
situations, it is possible to presolve the optimization problem offline using multiparametric
programming, this technique is commonly known as Explicit MPC [19–23]. However, such
approaches are not applicable to all types of MPC formulations and tend to scale badly with
the dimension of the state space and the number of constraints. Thus, it is usually necessary
to solve the OCP online using an embedded optimization routine. This dissertation focuses
on accelerating these embedded optimizers, specifically it explores algorithmic ideas2 for
reducing the computational cost associated with solving the OCP online.

1.2 Contributions and Outline

The objective of this thesis is to help enable the implementation of MPC for nonlinear,
constrained systems with pronounced nonlinear dynamics, fast sampling rates, and limited

2Other ways to reduce the computational footprint of MPC, such as bespoke hardware [24, 25], symbolic
optimization [26], and code optimization [27] etc., are important but outside the scope of this thesis.
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onboard computing power. The key idea is that implementing MPC leads to a sequence

of related OCPs (rather than isolated optimization problems) and that a (possibly approxi-
mate) solution from a previous sampling instant can be passed to the real-time optimization
algorithm to reduce the computational burden at the next. This practice is widespread and
is commonly known as “warmstarting” (or sometimes “hotstarting”) the optimization al-
gorithm. The idea that this technique can be used to distribution computational load over
time is an important part of this dissertation.

This dissertation is composed of three main chapters (Chapters 3 - 5). Each chapter
is based on a manuscript which has been submitted to or accepted by a peer reviewed
scientific journal. Chapter 3 explores the systems theoretic consequences of warmstarting,
Chapter 4 presents a novel optimization algorithm designed with warmstarting in mind,
and Chapter 5 demonstrates how the material from the first two chapters can be applied to
make an impact in the real-world through the application of MPC to diesel engine emissions
reduction. More specifically, the contributions of Chapters 3 - 5 are as follows3:

1. Chapter 3 is based on the material in [28] and contains an analysis of Time-distributed
Optimization (TDO) in MPC. In TDO, a running solution estimate is incrementally
improved at each iteration using a warmstarted optimization algorithm. This allows
us to distribute optimization iterations over time, greatly reducing the overall com-
putational footprint of the controller. However it also introduces the dynamics of the
optimizer into the closed-loop system, greatly complicating analysis. In Chapter 3
we present a framework for studying TDO from a systems theoretic perspective. In
the chapter, we analyze TDO applied to a broad class of MPC formulations and op-
timization algorithms and show that, under appropriate assumptions, we can recover
the stability, robustness, and constraint satisfaction of the optimal MPC feedback law
using a finite amount of computational resources. In particular, the analysis signifi-
cantly extends existing literature on the topic by considering inequality constraints,
explicitly studying robustness properties, and analyzing how the availability of com-
putational resources affects closed-loop performance.

2. Chapter 4 is based on [29] and details the development of a novel algorithm for solv-
ing quadratic programs (QPs). The proximally stabilized Fischer-Burmeister method
(FBstab) is a stabilized semismooth Newton-type method that can exploit sparsity
and be easily warmstarted. It can also detect primal and/or dual infeasibility over the
course of its iterations. In the chapter we outline the method, perform a convergence
analysis, and present extensive numerical benchmarking results.

3A detailed literature review and introduction section is provided in each chapter.
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3. Chapter 5 is based on [30] and details the design and experimental validation of a
supervisory emissions oriented model predictive controller for a Diesel Engine Air-
path (DAP). The DAP is a highly nonlinear, constrained MIMO system; the control
objective is to reduce Oxides of Nitrogen (NOx) and Particulate Matter (PM) emis-
sions while limiting smoke and maintaining drivability. We show that, using a in-
ner/outer loop architecture that includes both a supervisory and nonlinear MPC con-
trollers, it is possible to reduce emissions compared to the mass production controller
and to overcome the associated computational challenges using TDO and a version
of FBstab. Chapter 5 focuses on the Supervisory Model Predictive Control (SMPC)
module which was primarily my work. The NMPC module is an extension of Mike
Huang’s dissertation research [31] and was primarily developed by Mike Huang and
Shinhoon Kim at Toyota Motor North America Research & Development.

This dissertations draws heavily from a variety of mathematical disciplines, including
systems theory, optimization, and numerical analysis. In particular, it makes extensive use
of concepts and results from set-valued variational analysis [32]. In Chapter 3 we study the
feedback interconnection of an a parameterized optimization algorithm and the physical
plant arising in time-distributed optimization. Generalized equations and their associated
regularity conditions and implicit function theorems [33, 34], are invaluable tools for an-
alyzing the parameterized optimization problems that arise in MPC and allow us to char-
acterize the behaviour of solutions as the parameter varies, i.e., as the state of the physical
system evolves. Moreover, the solver in Chapter 4, FBstab, is based around two varia-
tional analysis concepts, the proximal point method for monotone inclusions and Newton’s
method for non-smooth equations [35] using set-valued generalized Jacobians [36]. Syn-
ergistically combining these two methods leads to a method that is effective on sparse and
parameterized problems, e.g., those arising from time-distributed optimization in MPC.
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CHAPTER 2

Mathematical Preliminaries

This dissertation draws from several branches of mathematics, notably dynamical systems
theory, mathematical optimization, real analysis, linear algebra, and variational analysis.
This chapter summarizes some concepts and notations that will be useful in subsequent
chapters.

2.1 Notation

We denote by Z+(+) the non-negative (positive) integers and by R+(+) the non-negative
(positive) reals. We use In to denote the identity matrix of size n × n, the subscript will
be omitted if the dimension is clear from context. We use id : R → R to denote the
identity function. For a vector, || · || denotes the Euclidean or 2-norm. If A is a matrix
then Ai is its ith row and ||A|| is understood to be the induced 2-norm. If I is an index
set, |I| is its cardinality and AI denotes the row wise concatenation of Ai, ∀i ∈ I. For
two vectors, (a, b) denotes vertical concatenation. We denote the unit ball centered at x
by B(x), it is understood that B = B(0). If X is a closed neighbourhood of the origin,
we denote its radius by rad X, i.e., the largest r > 0 such that {x | ||x|| ≤ r} ⊆ X . Set
addition/subtraction is defined as

A±B = {y | y = a± b, a ∈ A, b ∈ B},

we use \ to denote the set difference operation.

For a point x∗ ∈ Rn, a function F : Rn → Rm and a function φ : Rn → R+ we say
that F (x) = O(φ(x)) as x → x∗ if there exists c > 0 such that ||F (x)|| ≤ cφ(x) for all x
sufficiently close to x∗ and that F (x) = o(φ(x)) if for every ε > 0, ||F (x)|| ≤ εφ(x) for
all x sufficiently close to x∗. Analogously, for sequences {xk} ⊂ Rn and {rk} ⊂ R+ we
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say that xk = O(rk) as k → ∞ if ∃c > 0 such that ||xk|| ≤ crk for all k sufficiently large
and xk = o(rk) if ||xk|| ≤ εrk for all ε > 0 for all k sufficiently large.

We say a sequence {xk} ⊂ Rn converges if there exists some x∗ ∈ Rn such that
limk→∞ xk = x∗. The sequence converges q-linearly if there exists η ∈ (0, 1) such that

lim
k→∞

||xk+1 − x∗||
||xk − x∗||

= η, (2.1)

the sequence is said to converge q-superlinerly if

||xk+1 − x∗|| = o(||xk − x∗||) or ||xk+1 − x∗|| = O(||xk − x∗||q), (2.2)

for some q ∈ (1, 2) and q-quadratically if

||xk+1 − x∗|| = O(||xk − x∗||2). (2.3)

2.2 Dynamical Systems

Consider a discrete time dynamical system

xk+1 = g(xk, uk), (2.4)

governed by a Lipschitz continuous vector field g : Rn × Rm → Rn. Given an initial state
x0 ∈ Rn, and an input sequence u : Z+ → Rm we denote its solution by x(k, x0,u). For
u : Z+ → Rm we let ||u|| = sup{||uk|| : k ∈ Z+}. We use lim as shorthand for lim sup.

Recall that a function γ : R+ → R+ is said to be of class K if it is continuous, strictly
increasing and γ(0) = 0. If it is also unbounded, then γ ∈ K∞. A function β : R+×R+ →
R+ is said to be of class KL if β(·, s) ∈ K for each fixed s ≥ 0 and β(r, s)→ 0 as s→∞
for fixed r ≥ 0. If γ1, γ2 : R → R, we denote their composition by γ1 ◦ γ2. We will also
make use of the following robust stability and invariance concepts.

Definition 2.1 (Local Input-to-state Stability [37]). A system (2.4) is said to be Locally

Input-to-State Stable (LISS) if there exists ε > 0, β ∈ KL, and γ ∈ K such that, ∀k ∈ Z+,

||x(k, x0,u)|| ≤ max{β(||x0||, k), γ(||u||)}, (2.5)

provided ||x0|| ≤ ε and ||u|| ≤ ε.

Definition 2.2 (Asymptotic gain [38]). Consider system (2.4), we say that it has an asymp-
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totic gain if there exists some γ ∈ K such that

lim
k→∞
||x(k, x0,u)|| ≤ γ

(
lim
k→∞
||uk||

)
, (2.6)

for all x0 ∈ Rnx .

Definition 2.3 (RPI set). Consider the system xk+1 = h(xk, uk, dk) which is subject to the

constraint (x, u) ∈ Z , where h : Rn × Rm × Rl → Rn, and d ∈ D ⊆ Rl is a disturbance.

Suppose the system is being controlled by the feedback law κ : Rn → Rm so that

xk+1 = h(xk, κ(xk), dk). (2.7)

A set Ω ⊆ Rn is a Robust Positively Invariant (RPI) set for system (2.7) if h(x, κ(x), d) ∈ Ω

for all x ∈ Ω, d ∈ D. In addition, if Ω ⊆ {x | (x, κ(x)) ∈ Z}, then Ω is called an

admissible RPI set.

2.3 Variational Analysis

We use the notation Φ : Rn ⇒ Rm to denote set-valued mappings1, which are mathematical
objects which associate each point in their domains with a set. A set-valued mapping can
be associated with its graph

gph Φ = {(x, y) ∈ Rn × Rm | y ∈ Φ(x)}, (2.8)

we denote is domain by dom Φ = {x ∈ Rn | Φ(x) 6= ∅} and its range by rng F = {y ∈
Rm | y ∈ Φ(x) for any x ∈ Rn}. A set-valued mapping always has a well defined inverse
which is given by Φ−1(y) = {x | y ∈ Φ(x)} and is in general set-valued. If a set-valued
mapping assigns a single element at a point x then F is (locally) a function and we write
Φ(x) = y which is equivalent to Φ(x) = {y}.

In this dissertation, we make extensive use of one mapping in particular which is the
normal cone mapping of a closed, convex set C defined as

NC(v) =

{y | yT (w − v) ≤ 0,∀w ∈ C}, if v ∈ C,

∅ else.
(2.9)

This mapping is trivial in the interior of C and can be roughly conceptualized as the set of

1Also known as a point-to-set mapping, correspondence, relation, or multifunction
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all “outwards” pointing vectors on the boundary of C. Some normal cones are illustrated
in Figure 2.1.

𝒩!(𝑥)

𝒩!(𝑦)

𝒩"(𝑧)
𝐶

𝐷
𝑧

𝑦

𝑥

Figure 2.1: Normal cone mappings for several convex sets.

The normal cone mapping is related to the indicator function of C,

IC(v) =

0 if v ∈ C

∞ else,
(2.10)

through the convex subdifferential operator2, i.e., NC = ∂IC . We also make extensive use
of

N+(v) =

{y | yT (w − v) ≤ 0,∀w ≥ 0}, if v ≥ 0,

∅ else,
(2.11)

the normal cone mapping of the non-negative orthant. See e.g., [33] or [32] for more
information on set-valued mappings.

2.3.1 Generalized Equations

Given F : Rn → Rm and Φ : Rn ⇒ Rm, a Generalized Equation (GE) is a structured
inclusion of the form

F (x) + Φ(x) 3 0, (2.12)

2See e.g. [39] for more details on subdifferentials of convex functions
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where F is the single-valued “base mapping” and Φ is the multi-valued “field”. Solving
the GE involves finding elements of the set (F + Φ)−1(0). We often encounter structured
GEs of the form

F (x) +NC(x) 3 0. (2.13)

This is known as a Variational Inequality (VI) and is equivalent to the problem of finding
x ∈ C such that

〈F (x), x− x′〉 ≥ 0, ∀x′ ∈ C. (2.14)

This property links VIs with the complementarity conditions that commonly arise in con-
strained optimization. The following provides a useful notion of regularity for GEs:

Definition 2.4 (Strong Regularity [40]). A set-valued mapping Φ : Rn ⇒ Rn is said to be

strongly regular at x for y if y ∈ Φ(x) and there exist neighborhoods U of x and V of y

such that the truncated inverse mapping Φ̃−1 : V 7→ Φ−1(V ) ∩ U is single-valued, i.e., a

function, and is Lipschitz continuous on V .

Strong regularity reduces to non-singularity of the Jacobian matrix if Φ is a continuously
differentiable function.

We also commonly encounter parameterized GEs of the form

F (x, p) + Φ(x) 3 0, (2.15)

where p ∈ Rl is a parameter, Φ : Rn ⇒ Rn, and F : Rn × Rl → Rn, in the context of
parameterized optimization. The solution mapping of (2.15) is

S(p) = {x | F (x, p) + Φ(x) 3 0}, (2.16)

and is itself a set-valued mapping. The following implicit function type theorem connects
the notion of strong regularity with the properties of the solution mapping.

Theorem 2.1. [41, Theorem 1.24] Let Φ : Rn ⇒ Rn and suppose F : Rn × Rl → Rn

is Lipschitz continuous. Moreover assume that ∇xF is well defined in a neighbourhood of

(x̄, p̄), is continuous at (x̄, p̄), and that x̄ is a strongly regular solution of (2.15) at p̄. Then

there exists neighbourhoods U of x̄ and V of p̄ such that there exists a restriction of the

solution mapping (2.16), denoted by s : V → U , that is a Lipschitz continuous function at

p̄ and satisfies

s(p)− x̄ = O(||F (x̄, p)− F (x̄, p̄)||), (2.17)

as p→ p̄.
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2.3.2 Monotone Operators and the Proximal Point Algorithm

A set-valued mapping T : D ⇒ Rn is said to be monotone if

〈x− y, u− v〉 ≥ 0, ∀ u ∈ T (x), v ∈ T (y), x, y ∈ D, (2.18)

where D = dom T ⊆ Rn. In addition, if gph T is not properly contained in the graph of
any other monotone operator then T is said to be maximal [42]. If

〈x− y, u− v〉 ≥ m||x− y||2, ∀ u ∈ T (x), v ∈ T (y), x, y ∈ D, (2.19)

then T is strongly monotone with monotonicity constant m > 0. Inverses of strongly
monotone operators are Lipschitz continuous functions with constant m−1. Notable exam-
ples of monotone operators are subdifferential mappings for convex functions, projections
operators for convex sets, and normal cone mappings. See [39] for a primer on monotone
operators.

The proximal point algorithm (PPA) [42] can be used to find zeros of maximal mono-
tone operators. This algorithm generates a sequence {xk} by the rule

xk+1 = Pk(xk), Pk = (I + σ−1
k T )−1, (2.20)

where σk is a sequence of positive numbers. Evaluating Pk is equivalent to solving

T (xk+1) + σ(xk+1 − xk) 3 0. (2.21)

Since T is monotone T + σI is strongly monotone for any σ > 0 and thus the proximal
operator Pk is single valued and well defined for all x ∈ dom T . For an arbitrary maximal
monotone operator the proximal point algorithm converges to an element of the set T−1(0)

if it is nonempty. The {σk} sequence acts as regularization parameters, the larger they
are the easier it is to evaluate the proximal operator but the slower the overall algorithm
converges. One of the main advantages of the PPA is that {σk} need not go to zero. Because
of this methods based on the PPA are usually numerically robust.

The proximal point algorithm also allows for approximate evaluation of Pk. It was
shown in [42] that the proximal point algorithm can tolerate errors which satisfy the fol-
lowing condition

||xk+1 − Pk(xk)|| ≤ δkσk,
∞∑
k=0

δk <∞. (2.22)

See [43] and the references therein for more information on proximal methods.
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2.3.3 Generalized Differentiation

Suppose a function G : Rn → Rm is locally Lipschitz on a set U ⊆ Rn, so that G is dif-
ferentiable almost everywhere on U by Rademacher’s theorem [44]. Clarke’s generalized
Jacobian [36] is defined as

∂G(x) = co {J ∈ Rm×n | ∃{xk} ⊂ DG : {xk} → x, {∇G(xk)} → J}, (2.23)

whereDG is the dense set of points whereG is differentiable, and co (·) denotes the convex
hull. The C-subdifferential [45] is defined as

∂̄G = ∂G1 × ∂G2 × ...× ∂Gm, (2.24)

where ∂Gi are the generalized Jacobians of the components mappings of G. Note that each
element of ∂Gi is a row vector. The C-subdifferential is used in [46, 47] and possesses
many of the useful properties of the generalized Jacobian while being easier to compute
and characterize.

A function G : Rn 7→ Rm is said to be semismooth [35] at x ∈ Rn if G is locally
Lipschitz at x, directionally differentiable in every direction and the estimate

sup
J∈∂G(x+ξ)

||G(x+ ξ)−G(x)− Jξ|| = o(||ξ||), (2.25)

holds. If o(||ξ||) is replaced with O(||ξ||2) in (2.25) then G is said to be strongly semis-
mooth at x. The generalized Jacobian and the C-subdifferential can be used to construct
Newton-type methods for semismooth systems of nonlinear equations [35, 45]. The fol-
lowing Newton-type method,

xk+1 = xk − V −1G(xk), V ∈ ∂G(xk), (2.26)

is locally superlinearly convergent to roots of G which satisfy some regularity properties
[35, 48]. Similar results are available using the C-subdifferential [45, 47].
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2.4 Parameterized Optimization

Optimization problems of the following form

min.
w

J(w, p) (2.27a)

s.t. g(w, p) = 0, (2.27b)

h(w, p) ≤ 0, (2.27c)

where w ∈ Rn and the functions J : Rn×Rl → R, g : Rn×Rl → Rm, and h : Rn×Rl →
Rq, are twice continuously differentiable in their first argument and Lipschitz continuous
in the second, are commonly known and parameterized nonlinear programs (PNLPs). The
Lagrangian function associated with (2.27) is

L(w, λ, v, p) = J(w, p) + λTg(w, p) + vTh(w, p), (2.28)

where λ ∈ Rm and v ∈ Rq are the dual variables (or Lagrange multipliers) associated with
the equality and inequality constraints, respectively.

The Karush-Kuhn-Tucker (KKT) conditions for (2.27) are

∇wL(w, λ, v, p) = 0, (2.29a)

g(w, p) = 0, (2.29b)

h(w, p) ≤ 0, v ≥ 0, h(w, p)� v = 0, (2.29c)

where � denotes the elementwise product. The KKT conditions are necessary for opti-
mality under an appropriate Constraint Qualification (CQ). In this dissertation, we use the
Linear Independence Constraint Qualification (LICQ) which is defined below.

Definition 2.5 (LICQ). The Linear Independence Constraint Qualification (LICQ) is said

to hold at (w̄, p̄) if

rank

[
∇wg(w̄, p̄)

[∇wh(w̄, p̄)]A(w̄,p̄)

]
= m+ |A(w̄, p̄)|,

whereA(w, p) = {i ∈ {1, ..., q} | hi(w, p) = 0} is the set of active constraint indices and

m is the number of equality constraints.

We also need a suitable sufficient condition for some of the subsequent developments.
For this we use the following Strong Second Order Sufficient Condition (SSOSC).
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Definition 2.6 (SSOSC). Consider a point (w̄, λ̄, v̄, p̄) that satisfies the KKT conditions

(2.29) and the LICQ. If, in addition, the following condition holds

yT∇2
wL(w̄, λ̄, v̄, p̄)y > 0, ∀y ∈ K+(w̄, v̄, p̄) \ {0},

where

K+(w, v, p) = {y ∈ Rn | ∇wg(w̄, p̄)y = 0, [∇wh(w̄)]iy = 0 ∀i ∈ A+(w, v, p)},

and A+(w, v, p) = A(w, p) ∩ {i | vi > 0}, then the point (w̄, λ̄, v̄, p̄) is said to satisfy the

Strong Second Order Sufficient Condition.

Taken together the LICQ and SSOSC imply that a point (w̄, p̄) is (locally) optimal for
(2.27) and that the associated multipliers satisfying (2.29) are unique, see e.g., [41, 49].

Its possible to rewrite the KKT conditions as a GE by exploiting that

v ≥ 0, h(w, p) ≤ 0 =⇒ (h(w, p)� v = 0⇔ h(w, p)Tv = 0). (2.30)

Using this equivalence and the definition of the normal cone mapping we have that

− h(w, p) +N+(v) 3 0⇔ −h(w, p) ≥ 0, v ≥ 0, h(w, p)Tv = 0 (2.31)

so we can rewrite (2.29) as∇wL(w, λ, v, p)

−g(w, p)

−h(w, p)

+

 0

0

N+(v)

 3 0 (2.32a)

whereN+ denotes the normal cone mapping of the nonnegative orthant. This can be written
in the standard compact form

F (z, p) +NK(z) 3 0, (2.33)

by defining

F (z, p) =

∇wL(w, λ, v, p)

−g(w, p)

−h(w, p)

 , z =

wλ
v

 , (2.34)
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andK = Rn×Rm×Rq
+. Thus KKT points can be characterized using the solution mapping

S(p) = {z | F (z, p) +NK(z) 3 0}, (2.35)

i.e., all KKT points satisfy z ∈ S(p) or equivalently (z, p) ∈ gph S. Unsurprisingly, there
is also a relationship between the LICQ and SSOSC and the regularity properties of (2.32)
that is summarized in the following theorem.

Theorem 2.2. [41, Prop 1.27, 1.28] Consider a parameterized nonlinear program of the

form (2.27) and let S(p) be the solution mapping of its KKT conditions (2.29). A point

(z̄, p̄) ∈ gph S is strongly regular if it satisfies the LICQ and the SSOSC. Moreover, if w̄ is

a local minimizer of (2.27), the LICQ and SSOSC are necessary for strong regularity.

See [49] or [41] more more information on (parameterized) optimization.
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CHAPTER 3

Time-distributed Optimization for Real-time
Model Predictive Control

3.1 Introduction

Model Predictive Control is a widely used constrained control technique that defines a
feedback control law as the solution of a receding horizon optimal control problem (OCP).
The need to repeatedly and reliably solve this constrained, potentially non-convex, OCP in
real-time is often the the most significant challenge when implementing MPC in practice.
While the development of robust and efficient quadratic and convex programming solvers,
see e.g., [50–53] and Chapter 4, has enabled the application of linear-quadratic MPC to
a wide variety of systems, the application of MPC to systems with limited onboard com-
puting power, fast sampling rates, and/or pronounced nonlinear dynamics remains an open
problem.

One approach for reducing the computational cost of MPC is time-distributed optimiza-
tion (TDO). When using TDO, rather than accurately solving the OCP at each sampling
instant, the controller maintains a guess of the optimal solution and improves it at each
timestep using a finite number of iterations of an optimization algorithm, thus distributing
iterations over time. TDO can be interpreted as a dynamic compensator that maintains a
solution estimate as an internal state, the dynamics of which are defined by the optimizer
iterations. As illustrated in Figure 3.1, this interpretation differs from “ideal”, or “optimal”
MPC which is an implicitly defined static feedback law.

There are a variety of TDO variants proposed in the literature. The stability of input
constrained TDO controllers using linearly convergent optimization algorithms are stud-
ied in [54]. Unconstrained suboptimal NMPC without terminal conditions is considered
in [55]. A fixed point scheme for input constrained MPC of sampled data input affine sys-
tems is proposed in [56], a gradient based dynamic programming approach is considered
in [57], a proximal gradient method for linear input-constrained MPC is studied in [58], and
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Figure 3.1: A comparison of suboptimal MPC with TDO and optimal MPC. The κ operator
represents the optimal MPC feedback law, the T` operator represents ` iterations of an
optimization algorithm, and Ξ is a selection matrix that extracts the control action. One can
roughly identify κ(x) = ΞT∞(z0, x) for any z0 for which T converges.

a continuous time gradient flow based approach is described in [59]. These methods use
some combination of shifting terminal control updates and first order optimization meth-
ods. In [15, 16], a generic suboptimal MPC scheme is considered and sufficient conditions
on the warmstart for robust stability are derived; the optimization algorithm is not speci-
fied and its convergence is not considered. The robustness of MPC to disturbances arising
from incomplete optimizations is considered in [60,61] and conditions for complexity cer-
tification of suboptimal state constrained linear MPC are presented in [62]. However, the
treatment of the optimizer itself as a dynamic system was not pursued.

An alternative to gradient based approaches are second order methods. In particu-
lar, Time Distributed Sequential Quadratic Programming (TD-SQP) methods are attrac-
tive since they can be implemented using existing Quadratic Programming (QP) solvers.
The fundamental idea behind a TD-SQP based model predictive controller is to apply
a finite number of SQP iterations at each sampling instant and to warmstart the itera-
tions with the solution estimate from the previous sampling instant. A popular variant
of TD-SQP is the Real-Time Iteration (RTI) scheme [63] which uses a Gauss-Newton Hes-
sian approximation and performs a single SQP iteration per sampling instant. The RTI
scheme has been successfully applied to a variety of applications including engines [64,65],
kites [66], cranes [67], ground vehicles [68], race cars [69], distillation columns [70] and
wind turbines [71]. Software for implementing the RTI scheme is provided by the ACADO
toolkit [72] and its successor acados [73]. Despite its widespread success, formal sta-
bility guarantees for the RTI scheme have only been provided in the absence of inequality
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constraints [74].
It should be noted that TDO is distinct from so-called suboptimal solution tracking, sen-

sitivity, or running methods, see e.g., [60,75–79], which are tailored numerical methods for
tracking the solutions of parameterized nonlinear programs/generalized equations. These
methods are typically used to accelerate or replace existing nonlinear programming solvers
to reduce computation times, which is different from considering the dynamic interactions
between the plant and the optimizer. Some of them, e.g., [60], consider robust stability by
treating suboptimality as a bounded disturbance. This differs from our approach where we
treat suboptimality as the output of a dynamic system which is coupled with the closed-loop
plant.

We begin by presenting a system theoretic framework for analyzing a broad class of
TDO algorithms. Specifically, the framework applies to any MPC feedback law that is Lo-
cally Input-to-State Stable (LISS) combined with any optimization algorithm whose con-
vergence rate is at least locally q-linear. We establish the existence of a joint region of
attraction for the state and solution estimate, i.e., we show that if the initial state is suf-
ficiently close to the origin and if the initial solution estimate is sufficiently accurate, the
state will converge to the origin and the estimate will converge to the optimal solution. Fur-
ther, we analyze the effect of performing more iterations, establish robustness properties,
and show that, if the initial solution guess is within the convergence basin of the optimiza-
tion method, TDO can recover the robust region of attraction of optimal MPC with a finite
number of iterations.

Next, we specialize our theoretical framework to the RTI scheme. The existing analysis
of the RTI scheme [74] is limited to a nominal MPC controller with a terminal equality
constraint and does not take state and input inequality constraints into account. Our anal-
ysis extends that in [74] as follows: (i) We explicitly consider inequality constraints and
relax the terminal state constraint to a terminal set constraint; (ii) We explicitly consider the
robustness properties of the RTI scheme by establishing LISS of the closed-loop system;
(iii) We analyze the effect of the number of SQP iterations performed at each sampling in-
stant and establish sufficient conditions for robust constraint satisfaction. We also provide
a proof which extends the classical preconditioned fixed-point type analysis of Newton’s
method, see [80, Section 5.4.2], to the setting of generalized equations and establish con-
ditions under which discrete time optimal control problems with polyhedral constraints
are strongly regular. The latter property is important since it is a sufficient condition for
Lipschitz continuity of the optimal value function and thus for robust stability.

TDO is closely related to the practice of warmstarting optimization algorithms. Indeed,
TDO can be understood as the combination of warmstarting, i.e., using the solution of
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the previous OCP as a starting point when solving the current one, and truncating, i.e.,
limiting the number iterations, a real-time optimization algorithm. As a result, the material
in this Chapter can be interpreted as a systems theoretic analysis of the consequences of
warmstarting and truncation on the closed-loop system.

The layout of the chapter is as follows. We start by describing the problem setting and
the class of optimization algorithms we consider in Sections 3.2 and 3.3. Then, we estab-
lish the ISS properties of the optimization algorithms and of the coupled plant-optimizer
system in Sections 3.4 and 3.5. Next, we discuss the strong regularity assumption in Sec-
tion 3.6, we discuss relevant SQP methods in Section 3.7, and we illustrate how they fit
into our optimization framework in Section 3.8. Finally, we present simulation results in
Section 3.9.

3.2 Problem Setting and Control Strategy

Consider the following discrete time system,

xk+1 = fd(xk, uk, dk), (3.1)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu and dk ∈ D ⊂ Rnd denote the state, input, and
disturbance. Throughout the chapter we assume full state feedback and that the following
assumption holds.

Assumption 3.1. The function fd in (3.1) is twice continuously differentiable in its first two

arguments, Lipschitz continuous in the third, and fd(0, 0, 0) = 0. Moreover, the sets X , U
and D are compact and contain the origin.

We wish to control (3.1) using MPC and thus consider an OCP of the following form,

min.
ξ,µ

φ(ξ, µ) = Vf (ξN) +
N−1∑
i=0

l(ξi, µi), (3.2a)

s.t. ξ0 = x, ξN ∈ Xf , (3.2b)

ξi+1 = fd(ξi, µi, 0), i = 0, . . . , N − 1, (3.2c)

(ξi, µi) ∈ Z, i = 0, . . . , N − 1. (3.2d)

where N ∈ Z++ is the horizon length, Z ⊆ X × U represents the constraints, Xf ⊆ X
is the set defining the terminal state constraint, ξ = (ξ0, ξ1, . . . , ξN) is the state sequence,
and µ = (µ0, µ1, . . . , µN−1) is the control sequence. The OCP (3.2) is parameterized by
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the measured system state x. We impose the following conditions on (3.2) to ensure that it
is well posed and can be used to construct a stabilizing control law for (3.1).

Assumption 3.2. All functions in (3.2) are twice continuously differentiable in their argu-

ments and their second derivatives are Lipschitz continuous.

Assumption 3.3. The stage cost satisfies l(0, 0) = 0, and there exists αl ∈ K∞ such that

αl(||x||) ≤ l(x, u) for all (x, u) ∈ Z . The terminal set Xf is a subset of X , contains

the origin in its interior, and is an admissible control invariant set for (3.1), i.e., for all

x ∈ Xf there exists u such that fd(x, u, 0) ∈ Xf and (x, u) ∈ Z . Vf is a Control Lyapunov

Function for (3.1) with d = 0, such that,

min
u
{Vf (x+)− Vf (x) + l(x, u) | (x, u) ∈ Z, x+ ∈ Xf} ≤ 0,

for all x ∈ Xf , where x+ = fd(x, u, 0).

Denote by
Γ = {x ∈ X | (3.2) is feasible}, (3.3)

the set of feasible parameters. Under Assumptions 3.1 and 3.2, the set Γ is compact and,
for all x ∈ Γ, a minimum of (3.2) exists by the Weierstrass theorem. The ideal/optimal
MPC feedback policy is then

κ(x) = µ∗0(x), (3.4)

where µ∗(x) is a global minimizer of (3.2). To address the effects of incomplete optimiza-
tion, we consider the perturbed closed loop system

xk+1 = f(xk,∆uk, dk) := fd(xk, κ(xk) + ∆uk, dk), (3.5)

where the control signal is corrupted by an additive disturbance that represents suboptimal-
ity caused by incomplete optimization, i.e., uk = κ(xk) + ∆uk. The following theorem
summarizes the LISS properties of nominal MPC.

Theorem 3.1. [10, Theorem 4] Let Assumptions 3.1 - 3.3 hold and suppose that φ∗(x),

the optimal value function for (3.2), is uniformly continuous. Then, the closed-loop sys-

tem (3.5) is LISS with respect to (∆u, d) on a non-empty Robust Positive Invariant (RPI)

set Ω ⊆ Γ. Moreover, there exist c1, c2 > 0 such that if rad ∆U ≤ c1 and rad D ≤ c2, then

Ω is an admissible RPI set for (3.5).

In this chapter, we consider the situation where not enough computational resources are
available to accurately solve (3.2) at each sampling instant. Instead we will approximately
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track solution trajectories of (3.2) as the measured state x in (3.2b) varies over time. To
track the solution trajectories, we use an appropriate iterative optimization algorithm, e.g.
SQP, which is warmstarted at time instance tk with the approximate solution from tk−1. In
this way we construct a dynamic system,

zk = T`(zk−1, xk), (3.6)

where z is an estimate of the primal-dual solution of (3.2) and T` represents a fixed number
of optimizer iterations (T` is formally defined in (3.10)). This leads to the interconnected
system illustrated in Figure 3.1. The objective of this chapter is to analyze the interconnec-
tion between the plant and the dynamic controller from a systems theoretic perspective.

Remark 3.1. We focus on a common nominal MPC formulation for the sake of clarity.

However, our analysis is applicable to any MPC formulation for which it is possible to

prove LISS e.g., formulations that employ exact penalty functions [81] or robust MPC for-

mulations [10]. Moreover, note that in (3.4) the MPC feedback law is defined using a global

optimum of (3.2). This requirement is not intrinsic to our analysis but rather an artifact

of the specific MPC formulation. Our analysis is performed relative to a nominal “ideal”

MPC feedback law. If the nominal feedback law is input-to-state stable our analysis is

applicable regardless of whether the nominal feedback law is globally optimal or not.

3.3 Optimization Framework

In this section, we describe the class of optimization algorithms considered in this chapter.
We start in an abstract setting to clarify which properties are essential to our analysis. Later
in Sections 3.7 and 3.8 we will illustrate how SQP fits into this framework.

Suppose that the first order necessary conditions for (3.2) can be written as a parame-
terized Generalized Equation (GE) of the form

F (z, x) +NK(z) 3 0, (3.7)

where NK : Rn ⇒ Rn is the normal cone mapping of a closed, convex set K ⊆ Rn,
F : Rn × Γ → Rn is a function, z ∈ Rn is the optimization variable and x ∈ Γ is the
parameter. Its solution mapping is

S(x) = {z | F (z, x) +NK(z) 3 0}, (3.8)

which can be set valued. The necessary conditions (3.7) may be satisfied at saddle points,
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local maxima, and local minima. To account for this we perform a local analysis that allows
us to exclude saddle points and local maxima.

Many optimization algorithms are designed to “solve” necessary conditions. We thus
associate (3.7) with an iterative optimization algorithm of the form

zi+1 = T (zi, x, i), (3.9)

where T : Rn × Γ × Z+ → Rn. Multiple iterations of the algorithm can be represented
by the action of the function T`(z, x) : Rn × Γ → Rn which is defined recursively by the
sequence

T`(z, x) = T (T`−1(z, x, `− 1), x, `), (3.10)

where ` ∈ Z++ is the number of iterations per sampling instant and T0(z, x) := z.

Remark 3.2. The optimality conditions for (3.2) can be written in multiple forms depend-

ing on the choice of (3.7) and (3.9). For example, ξ can either be treated as a decision

variable or a function of µ. As a result, the definition of z is not unique and is chosen by

the designer of the optimization algorithm. Specifically, the vector z always includes the

control sequence, but may also include the state sequence and/or the Lagrange multipliers

associated with equality (dynamic) or inequality constraints.

In our framework, we consider algorithms that converge at least q-linearly for a fixed
parameter x. The following definition formalizes this notion.

Definition 3.1 (At least q-linear convergence). For any x ∈ Γ and z∗ ∈ S(x) an optimiza-

tion algorithm T converges to z∗ if there exists ε > 0 such that

lim
`→∞
T`(z, x) = z∗ (3.11)

for all z ∈ εB(z∗). If there exists η > 0 and q ≥ 1 such that

||T`(z, x)− z∗|| ≤ η||T`−1(z, x)− z∗||q, (3.12)

for all ` > 0 and ηεq−1 < 1 then T is said to converge at least q-linearly over Γ.

Next we consider the regularity properties of the solution mapping (3.8). Our main reg-
ularity assumption is pointwise strong regularity, it establishes that any solution trajectories
are Lipschitz continuous.

Assumption 3.4. All points (z, x) satisfying z ∈ S(x) that correspond to minimizers are

strongly regular for all x ∈ Γ.
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We discuss conditions for strong regularity for specific instances of (3.7) in Section 3.6.
The following theorem shows that Assumption 3.4 ensures that the notion of tracking a

local solution trajectory is well defined.

Theorem 3.2. [34] Let the parameter x ∈ Γ be a Lipschitz continuous function of t ≥ 0.

Then each solution trajectory z(t) ∈ S(x(t)) is isolated and Lipschitz continuous.

A local optimization algorithm, such as SQP, can be used to track a specific “isolated
branch” of the solution mapping. The branch is implicitly selected through the choice of
initial guess supplied to the algorithm. Some MPC formulations require global optima
while some do not, as discussed in Remark 3.1. In practice, local methods like SQP are
often used regardless due to the prohibitive computational complexity of global methods.

Remark 3.3. To summarize, an algorithm/optimality condition pair fits in our framework

if:

• The optimality conditions can be written in the form (3.7) and satisfy Assumption 3.4.

• The algorithm can be written in the form (3.9).

• The algorithm is at least q-linearly convergent.

3.4 Input-to-state Stability of TDO

Consider the application of TDO to problem (3.2). In a real-time setting it is only possible
to perform a finite number of iterations per sampling instant, which we denote by ` ∈ Z++.
If we also warmstart the optimizer with the solution from the previous sampling instant,
the optimizer can be viewed as a dynamical system of the form,

zk = T`(zk−1, xk), (3.13a)

uk = Ξzk, (3.13b)

where Ξ is a surjective matrix that selects µ0 from the solution estimate, i.e., κ(x) = Ξs̄(x)

where
s̄(x) ∈ S(x), (3.14)

is an isolated single valued restriction1 of S (this is possible due to Theorem 3.2).

1Our analysis is performed relative to the ideal feedback law κ(x) = Ξs̄(x). Any choice of the restriction
s̄ that renders the origin of the closed loop system (3.5) LISS is admissible.
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In this section, we establish conditions under which (3.13) is LISS. We consider the
associated error system,

ek+1 = G`(ek, xk,∆xk), (3.15a)

∆uk = Ξek, (3.15b)

where ek = zk− s̄(xk), and ∆xk = xk+1−xk. The error system dynamics can be explicitly
constructed as follows

G`(ek, xk,∆xk) = T`(ek + s̄(xk), xk + ∆xk)− s̄(xk + ∆xk). (3.16)

Lemma 3.1. Consider (3.13) and its error system (3.15) and suppose that T is at least

q-linearly convergent. Further, let Assumption 3.4 hold. Then, there exists a, θ : Z++ →
R++, such that the error satisfies

||ek+1|| ≤ a(`)||ek||+ θ(`)||∆xk||, (3.17)

subject to the restriction

||ek||+ b||∆xk|| ≤ ε, (3.18)

where ε is the convergence radius in Definition 3.1 and b is the Lipschitz constant of s̄ over

Γ. Further, a(`) ∈ (0, 1) and both a(`)→ 0 and θ(`)→ 0 monotonically as `→∞.

Proof. If zk+1 = T`(zk, x) for some fixed x then the error bound (3.12) implies that

||zk+1 − s̄(x)|| ≤ ηα(`)||zk − s̄(x)||q` , (3.19)

for all zk ∈ εB(s̄(x)), d where α(`) =
∑`−1

i=0 q
i. Now consider any xk+1, xk ∈ Γ and let

zk+1 = T`(zk, xk+1). Then, applying (3.19) with x = xk+1, we obtain that

||zk+1−s̄(xk+1)|| ≤ ηα(`)||zk − s̄(xk+1)||q` ,

||ek+1|| ≤ ηα(`)||zk − s̄(xk+1)||q` ,

≤ ηα(`)||[zk − s̄(xk)]− [s̄(xk+1)− s̄(xk)]||q
`

,

≤ ηα(`)(||ek||+ b||∆xk||)q
`

,

where we have used that s̄ is Lipschitz on Γ with constant b by Assumption 3.4. Recall
that ε denotes the convergence radius of T in Γ. A sufficient condition for the restriction
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zk ∈ εB(s̄(xk+1)) is then

||ek||+ b||∆xk|| ≤ ε,

=⇒ ||[zk − s̄(xk)]||+ ||[s̄(xk+1)− s̄(xk)]|| ≤ ε,

=⇒ ||[zk − s̄(xk)]− [s̄(xk+1)− s̄(xk)]|| ≤ ε,

=⇒ ||zk − s̄(xk+1)|| ≤ ε.

Continuing and imposing ||ek||+ b||∆xk|| ≤ ε, it follows that

||ek+1|| ≤ ηα(`)εq
`−1(||ek||+ b||∆xk||). (3.20)

If q = 1, then ηα(`)εq
`−1 = η` since α(`) =

∑`−1
i=0 q

i = ` and εq`−1 = ε0 = 1. Otherwise,
note that

ηα(`)εq
`−1 = η

q`−1
q−1 εq

`−1 = (ηεq−1)
q`−1
q−1 , (3.21)

where we used that, for q > 1,

α(`) =
`−1∑
i=0

qi =
q` − 1

q − 1
. (3.22)

Thus,

||ek+1|| ≤ ηα(`)εq
`−1(||ek||+ b||∆xk||), (3.23)

≤ a(`)||ek||+ θ(`)||∆xk||, (3.24)

where

a(`) =

η` if q = 1,

(ηεq−1)
q`−1
q−1 if q > 1,

(3.25)

and θ(`) = b a(`). Since q ≥ 1 and ηεq−1 < 1 by assumption, a(`) ∈ (0, 1), the functions
a and θ are monotonically decreasing and a(`), θ(`)→ 0 as `→∞.

The following Theorem establishes the LISS properties of the error system.

Theorem 3.3. Consider (3.13) and its error system (3.15) and suppose that T is at least

q-linearly convergent. Further, let Assumption 3.4 hold. Then, there exists τ : Z++ → R++

such that the system is LISS if ||e0|| ≤ 0.5ε and ||∆x|| ≤ τ(`)ε, where τ(`) = 0.5 (σ(`) +

b)−1, σ(`) = ba(`)/(1 − a(`)) and ε, b and a are as defined in Lemma 3.1. Further, the
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asymptotic gain of (3.15) is of the form

γ`(s) = 2σ(`)s1 + 0 · s2 (3.26)

where s1 and s2 correspond to the ∆x and x inputs, respectively, and σ(`)→ 0 monotoni-

cally as `→∞.

Proof. Given Lemma 3.1, if (3.18) holds for all time instants leading up to k−1, it follows
by direct computation (see e.g. [38, Example 3.4]) that

||ek|| ≤ a(`)k||e0||+ θ(`)
k∑
j=0

a(`)k−j||∆xj||, (3.27a)

≤ a(`)k||e0||+ σ(`)||∆x||, (3.27b)

where σ(`) = θ(`)/(1−a(`)). To ensure that (3.18) holds, we first consider the case k = 0

and note that2

||e0||+ b||∆x0|| ≤ max{2||e0||, 2b||∆x||}, (3.28)

≤ max{ε, ε · b/(σ(`) + b)} = ε. (3.29)

Next, assuming (3.18) holds for k − 1 and recalling that a(`) < 1, we can apply (3.27) at
iteration k to show that

||ek||+ b||∆xk|| ≤ a(`)k||e0||+ σ(`)||∆x||+ b||∆xk||,

≤ a(`)k||e0||+ (σ(`) + b)||∆x||,

≤ max{2a(`)k||e0||, 2(σ(`) + b)||∆x||},

≤ max{ε, ε} = ε,

thus ensuring that (3.18) also holds at k due to the restriction ||e0|| ≤ 0.5ε and ||∆x|| ≤
τ(`)ε. Since (3.27) recursively enforces its restrictions, we obtain

||ek|| ≤ max{2a(`)k||e0||, 2σ(`)||∆x||}, (3.30)

which directly establishes LISS with β`(s, k) = 2a(`)ks and γ`(||(∆x,x)||) = 2σ(`)||∆x||+
0 · ||x||. The remaining claims follow from the expression σ(`) = θ(`)/(1 − a(`)) since
a(`), θ(`)→ 0 monotonically as `→∞.

2Recall that a+ b ≤ max(2a, 2b) for any two scalars.
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3.5 LISS Properties of Suboptimal MPC

𝑥!"# = 𝑓 𝑥! , Δ𝑢! , 𝑑!
Δ𝑥! = ℎ(𝑥! , Δ𝑢! , 𝑑!)

𝑒!"# = 𝒢ℓ(𝑒! , 𝑥! , Δ𝑥!)
𝑑! = Ξ 𝑒!

Δ𝑥
𝑥Δ𝑢

𝑑

Figure 3.2: The coupled plant-optimizer error system.

Theorem 3.3 establishes sufficient conditions under which an at least q-linearly conver-
gent optimizer, viewed as a dynamic system, is LISS. It also establishes that the asymptotic
gain of (3.15) can be made arbitrarily small by increasing the number of iterations. Since
the closed-loop system (3.5) is itself LISS, we can derive sufficient conditions under which
the coupled system, as shown in Figure 3.2, is LISS with respect to the disturbance input d.

Theorem 3.4. Consider the dynamical systems

Σ1 :

 xk+1 = f(xk,∆uk, dk),

∆xk = h(xk,∆uk, dk),
(3.31a)

Σ2 :

 ek+1 = G`(ek, xk,∆xk),

∆uk = Ξek
(3.31b)

where h(x,∆u, d) = f(x,∆u, d) − x and f is defined in (3.5). Let the optimization algo-

rithm used to construct G` satisfy (3.12) and let Assumptions 3.1 - 3.4 hold. Then, there
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exists `∗ > 0 such that if ` ≥ `∗ the interconnected system (3.31) is LISS with respect to the

input d.

Proof. Under Assumptions 3.1 - 3.4, Theorem 3.1 holds3. Thus system Σ1 is LISS, mean-
ing that there exist asymptotic gains γ1, γ2 ∈ K such that

lim
k→∞
||xk|| ≤ γ1

(
lim
k→∞
||∆uk||

)
+ γ2

(
lim
k→∞
||dk||

)
, (3.32)

for suitably restricted dk ∈ D and ∆uk ∈ ∆U . Let L denote the Lipschitz constant of h,
then

||∆xk|| ≤ L||xk||+ L||∆uk||+ L||dk||, (3.33)

combining this with (3.32) we obtain that

lim
k→∞
||∆xk|| ≤ γ3

(
lim
k→∞
||∆uk||

)
+ γ4

(
lim
k→∞
||dk||

)
, (3.34)

where γ3 = L · (γ1 +id), and γ4 = L · (γ2 +id). Similarly, due to Theorem 3.3, there exists
ε > 0 and positive functions σ and τ such that

lim
k→∞
||ek|| ≤ σ(`) lim

k→∞
||∆xk||, (3.35)

provided ||∆x|| ≤ τ(`)ε. Therefore, it follows from (3.31b) that

lim
k→∞
||∆uk|| ≤ ||Ξ|| lim

k→∞
||ek|| ≤ σ(`)||Ξ|| lim

k→∞
||∆xk||. (3.36)

Combining (3.36) with (3.34) we obtain that

lim
k→∞
||∆uk|| ≤ σ(`)||Ξ||γ3

(
lim
k→∞
||∆uk||

)
+ σ(`)||Ξ||γ4

(
lim
k→∞
||dk||

)
. (3.37)

Thus, if the contraction property

||Ξ||σ(`)γ3(s) ≤ s (3.38)

is satisfied for all s ∈ [0, rad ∆U ], (3.31) is LISS with suitable restrictions on the initial
state and on the disturbance d, as detailed in [82, Theorem 2]. Note that, since ∆u = Ξe,
we have rad ∆U ≤ Ξε where ε is the convergence radius of the optimizer defined in
Theorem 3.3. Since σ(`)→ 0 monotonically as `→∞, the existence of `∗ <∞ such that
(3.38) is satisfied follows from the finiteness of γ3, rad ∆U , and ||Ξ||.

3Recall that Assumption 3.4 is sufficient for Lipschitz continuity of the optimal value function φ∗(x).
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Theorem 3.4 establishes conditions under which the interconnected plant-optimizer
system is LISS. However, this result does not provide any information about the set of
admissible initial conditions and does not consider constraint satisfaction. By noting that
the ideal MPC feedback law admits a robust positively invariant set, we can extend our
result by deriving sufficient conditions for constraint satisfaction.

Theorem 3.5. Suppose that the assumptions of Theorem 3.4 hold so the interconnected sys-

tem (3.31) is LISS. Let Ω denote the admissible RPI set in Theorem 3.1, let γ`(s) = 2σ(`)s

denote the asymptotic gain of (3.15), and let (xk, ek) = (x(k, x0,d), e(k, e0,d)) denote

the closed-loop trajectory of (3.31) for some initial condition (x0, e0) and disturbance se-

quence d. Then, if the disturbances are sufficiently small, there exists ¯̀ ≥ `∗ and δ > 0

such that, if ||e0|| ≤ δ and x0 ∈ Ω, then xk ∈ Ω for all k ≥ 0.

Proof. Due to Theorem 3.1, given a sufficiently small disturbance set D, there exists a
neighbourhood of the origin ∆U such that, if ∆uk ∈ ∆U , ∀k ≥ 0 and x0 ∈ Ω, then
xk ∈ Ω, ∀k ≥ 0. Since ∆u = Ξe for a surjective matrix Ξ, there exists ρ > 0 such that, if
||ek|| ≤ ρ, then ∆uk ∈ ∆U . Given the restriction ||∆x|| ≤ τ(`)ε and ||e0|| ≤ 0.5ε, where
τ and ε are defined in Theorem 3.3, it follows from (3.30) that ||ek|| ≤ ρ can be imposed
by enforcing ||e0|| ≤ 0.5ρ and 2σ(`)||∆x|| ≤ ρ. To enforce 2σ(`)||∆x|| ≤ ρ, we note that
the set Ω is bounded [10, Theorem 4], thus implying that ∆x ∈ ∆Ω = Ω − Ω is bounded
by

s̄ = sup
w∈∆Ω

||w|| <∞. (3.39)

Since s̄ is finite and σ(`)→ 0 monotonically as `→∞, there exists `1 such that 2σ(`1)s̄ ≤
ρ. Moreover, since s̄ is finite and τ(`)→∞ monotonically as `→∞ there exists `2 such
that s̄ ≤ τ(`2)ε. Thus, letting δ = 0.5 max{ρ, ε} and ¯̀ = max(`∗, `1, `2), it follows that
the system is LISS with restrictions on the initial conditions x0 ∈ Ω and ‖e0‖ ≤ δ, as well
as restrictions on the external disturbance d ∈ D.

Theorem 3.5 establishes that, if enough computational resources are available and the
initial solution guess is sufficiently accurate, then TDO recovers the robustness properties
of optimal MPC.

Remark 3.4. The results presented in this section are quite general: as long as the MPC

formulation is LISS, the solution mapping of the OCP is strongly regular, and the conver-

gence rate of the iterative solver is at least q-linear, Theorems 3.4 and 3.5 prove that it

is possible to achieve robust stability and constraint satisfaction by performing a limited

number of solver iterations per time step. Due to the generality of the framework, however,

the actual values we obtain for `∗ and ¯̀are likely to be conservative and would be ill-suited
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for, e.g., complexity certification as in [62], which, it should be noted, only considers the

linear case. Despite this drawback, our results significantly extend the existing analysis of

the RTI scheme [74] when our framework is applied to TD-SQP. Complexity certification

is significantly more challenging in the nonlinear case due to the nonconvexity of the OCPs

and is left to future work.

3.6 Conditions for Strong Regularity

The main results in this chapter are all predicated upon Assumption 4, that for each param-
eter value x ∈ Γ the solution mapping of the OCP is strongly regular. In this section, we
discuss some common settings and derive strong regularity conditions for each.

3.6.1 Closed Convex Constraint Sets

If the constraint sets Z and Xf in (3.2) are closed and convex, it is possible to write the
optimality conditions without introducing dual variables for the inequality constraints. In
particular, we can express (3.2) compactly as

min
w∈W

φ(w), s.t. g(w, x) = 0, (3.40)

where W = Z × Z . . . × Xf and w = (ξ0, µ0, . . . , ξN) ∈ Rp. The Lagrangian associated
with (3.40) is

L(w, λ, x) = φ(w) + λTg(w, x), (3.41)

where λ ∈ Rl are dual variables associated with the equality constraints. In the context
of optimal control these are sometimes referred to as “co-states”. The KKT conditions for
(3.40) are [33]

∇zL(z, x) +NZ(z) 3 0, (3.42)

where z = (w, λ) and Z = W × Rl. Note that (3.42) can be reduced to (3.7) by choosing
F = ∇zL and K = Z. Our framework requires that (3.42) be necessary for optimality. To
ensure this, we impose the following constraint qualification [32, Theorem 6.14]

−∇wg(w̄, x̄)Ty ∈ NW (w̄) =⇒ y = 0, (3.43)

for all (w̄, λ̄) ∈ S(x̄). The following lemma proves that (3.43) holds automatically in this
setting.

Lemma 3.2. The constraint qualification (3.43) holds at all points (z, x) ∈ Rp+l × Γ.
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Proof. The constraint qualification is implied by surjectivity of the matrix∇wg(w, x). De-
noting Ai = ∇ξfd(ξi, µi, 0), and Bi = ∇µfd(ξi, µi, 0), the surjectivity of ∇wg(w, x) be-
comes the condition that for every ξ = (ξ0, . . . , ξN) the system

x0 = ξ0, ζi+1 − Aiζi −Biνi = ξi+1, i ∈ Z[0,N−1],

has a solution. This condition clearly holds: pick an arbitrary sequence (ν0, . . . , νN−1) and
determine (ζ0, . . . , ζN) recursively.

Before stating the conditions for strong regularity, we recall the following second order
condition.

Definition 3.2 (SOSC). The Second Order Sufficient Condition (SOSC) is said to hold at

z̄ = (w̄, λ̄) ∈ S(x̄) if

yT∇2
wL(z̄, x̄)y > 0, ∀y s.t. ∇wg(w̄, x̄)y = 0. (3.44)

This SOSC reduces to the SSOSC discussed in Chapter 2 in the absence of inequality
constraints. This condition can be monitored numerically, see e.g., [49, Section 16.2].
Doing so would allow regularization to be added when necessary to ensure the SOSC holds.

3.6.1.1 Convex Control Constraints

If only convex control constraints are present, Theorem 3.6 provides sufficient conditions
for strong regularity.

Theorem 3.6. [83, Theorem 1.2] Suppose that Z = Rnx × U , where U is closed and

convex, and consider any z̄ ∈ S(x̄). If (3.44) holds, then S is strongly regular at (z̄, x̄).

As a result of Theorem 3.6, Assumption 3.4 reduces to the assumption that (3.44) holds
at all minimizers in Γ. In this scenario, any terminal set constraints would have to be
enforced through penalty functions.

3.6.1.2 Polyhedral State and Control Constraints

If the state and control constraints are convex polyhedra, the following theorem applies.
The result was previously asserted without proof in [77, Section 3.2], we provide a proof
for completeness.
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Theorem 3.7. Suppose thatW in (3.40) is polyhedral with a representationW = {w |Mw ≤
h}. Now consider a KKT point z̄ = (w̄, λ̄) ∈ S(x̄). If (3.44) holds, then S is strongly reg-

ular at (z̄, x̄).

Proof. Strong regularity of the nonlinear GE (3.42) at (z̄, x̄) follows from strong regularity
of its partial linearization [40]. This can be written as[

R GT

−G 0

][
w

λ

]
+

[
r

g

]
+NC(z) 3 0, (3.45)

where f̂ = ∇wL(z̄, x̄), R = ∇2
wL(z̄, x̄), G = ∇wg(z̄, x̄), r = f̂ − Rw̄ − GT λ̄, g = Gw̄,

Θ = {w | Gw = g, Mw ≤ h} and C = Θ × Rl. Equation (3.45) is an affine GE of the
form,

Az + a+NC(z) 3 0, (3.46)

to which we apply [33, Theorem 2E.6] to establish strong regularity of the mappingA+NC .
This requires

z ∈ E+, Az ⊥ E−, zTAz ≤ 0⇒ z = 0, (3.47)

where E+ = E − E , E− = E ∩ −E , and

E = {(w, λ) | Gw = 0,Miw ≤ 0 i ∈ A(w̄), f̂Tw = 0},

is the critical cone4 of C at z̄. Next, note that E ⊆ E+ ⊂ kerG × Rl thus, by the second
order condition, yTRy = yT∇2

wL(z̄, x)y > 0 for all y ∈ kerG. Thus

zTAz = wTRw > 0,∀w ∈ E+, (3.48)

which implies that zTAz ≤ 0 =⇒ z = 0 for all z ∈ E+. As a result, (3.47) is satisfied
and (3.42) is strongly regular.

Thus, as in the case of convex input constraints, Assumption 3.4 reduces to the condi-
tion that (3.44) holds at all minimizers in Γ.

3.6.2 Nonlinear Inequality Constraints

If the constraint sets in (3.2) can be expressed in the form Z = {(ξ, µ) | c(ξ, µ) ≤ 0}
and Xf = {ξ | cf (ξ) ≤ 0} for suitable twice continuously differentiable functions c :

4See [33, Section 2E] for more details on critical cones. We’ve simplified the expression for E using [33,
Theorem 2E.3] and (3.42).
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Rnx+nu → Rnc and cf : Rnx → Rncf , then (3.2) can be written compactly as the following
Nonlinear Program (NLP),

min.
w

φ(w), (3.49a)

s.t. g(w, x) = 0, h(w) ≤ 0, (3.49b)

where w = (ξ, µ) ∈ Rp are the decision variables. The Lagrangian associated with (3.49)
is

L(w, λ, v, x) = φ(w) + λTg(w, x) + vTh(w), (3.50)

where λ ∈ Rl and v ∈ Rm are dual variables. Its KKT conditions [41] are

∇wL(w, λ, v, x) = 0, (3.51a)

−g(w, x) = 0, (3.51b)

−h(w) +N+(v) 3 0, (3.51c)

whereN+ is the normal cone mapping of the non-negative orthant. Comparing (3.51) with
(3.7) we can identify z = (w, λ, v), K = Rp × Rl × Rm

≥0, and

F (z, x) =

∇wL(w, λ, v, x)

−g(w, x)

−h(w)

 . (3.52)

To ensure that (3.51) are necessary for optimality, as required by our framework, we impose
the LICQ (Definition 2.5) (3.49). Further, invoking Theorem 2.2, the LICQ and SSOSC
(Definition 2.6) are sufficient for strong regularity of (3.51). Thus, Assumption 3.4 reduces
to the assumption that the SSOSC and LICQ hold at all minima in Γ.

3.7 Sequential Quadratic Programming

Having identified under what conditions the solution mapping of the OCP is strongly reg-
ular, we investigate the convergence properties of two widely used SQP schemes to show
that they can be used for TDO. To this effect, note that the OCPs (3.40) and (3.49) can both
be solved using SQP. Specifically, for (3.49), given a solution estimate zi, the next iterate
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can be computed by solving the following Quadratic Program (QP)

min.
∆wi

1

2
∆wTi Bi∆wi +∇wφ(zi)

T∆wi, (3.53a)

s.t. ∇wg(wi, x)∆wi + g(wi, x) = 0, (3.53b)

∇wh(wi)∆wi + h(wi) ≤ 0, (3.53c)

where Bi approximates the Hessian of the Lagrangian ∇2
wL. Specifically, if we denote the

Lagrange multipliers associated with the equality and the inequality constraints by πi and
ηi, respectively, the SQP update for (3.49) is zi+1 = (wi + ∆wi, πi, ηi). Note that (3.53)
is fully defined by (3.40) or (3.49) except for Bi, which will depend on the specific SQP
method.

SQP applied to (3.40) is similar, the QP subproblem becomes

min.
∆wi

1

2
∆wTi Bi∆wi +∇wφ(zi)

T∆wi, (3.54a)

s.t. ∇wg(wi, x)∆wi + g(wi, x) = 0, (3.54b)

wi + ∆wi ∈ W. (3.54c)

The main changes are that the SQP update becomes zi+1 = (wi + ∆wi, πi), i.e., the in-
equality duals are removed from the iteration, and the Hessian matrix Bi must approximate
∇2
wL instead of∇2

wL.
To provide a unified formulation, we exploit that SQP can be seen as a Newton-type

process for solving GEs of the form

F (z, x) +NK(z) 3 0, (3.55)

where z ∈ Rn, x ∈ Γ, F : Rn×Γ→ Rn is continuously differentiable andNK : Rn ⇒ Rn

is the normal cone mapping for a closed, convex set K ⊆ Rn. Newton’s method applied to
(3.55) is

Hi(zi+1 − zi) + F (zi, x) +NK(zi+1) 3 0, (3.56)

where the sequence {Hi} approximates ∇zF (zi, x). Referring to the QP subproblem
(3.53), we note that

Hi =

 Bi ∇T
wg(wi, x) ∇T

wh(wi)

−∇wg(wi, x) 0 0

−∇wh(wi) 0 0

 , (3.57)
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for (3.49). To obtain the expression for (3.40) simply discard the third row and column
in (3.57). Thus, the the sequence {Hi} is fully determined by the Hessian approximation
sequence {Bi}.

Remark 3.5. In this chapter, we only consider “undamped” Newton methods, which are

intrinsically local methods. More sophisticated implementations may include various type

of regularization and/or globalization techniques such as trust regions or linesearches to

enlarge the methods region of attraction. Nevertheless, undamped Newton methods are

commonly used in practice, especially in the context of the RTI scheme, and the tools we

develop in this chapter are applicable to locally convergent algorithms. We leave the appli-

cation of our tools to globalized SQP methods to future work and refer readers to e.g., [49]

or [41], for more detailed treatments of SQP methods.

3.7.1 The Josephy-Newton (JN) method

Using the exact Hessian of the Lagrangian results in the Josephy-Newton method. The
following theorem summarizes the convergence properties of the JN method applied to
(3.55).

Theorem 3.8. [41, Theorem 3.2] Let z∗ ∈ S̄(x) for some fixed x and suppose that As-

sumption 3.2 holds and (z∗, x) is strongly regular. Let the sequence {zi} be generated by

repeatedly solving

∇zF (zi, x)(zi+1 − zi) + F (zi, x) +NK(zi+1) 3 0. (3.58)

Then, there exist η̄ = η̄(x) > 0 and ε̄ = ε̄(x) > 0 satisfying η̄ε̄ < 1, such that, if

z0 ∈ ε̄B(z∗), then {zi} is unique and converges to z∗ q-quadratically, i.e.,

||zi+1 − z∗|| ≤ η̄||zi − z∗||2. (3.59)

In general, we cannot expect ∇2
wL to be positive semidefinite even in the vicinity of a

solution. This may make solving the QP subproblems difficult and is a well known issue
in the SQP literature. A detailed discussion is outside the scope of this chapter, we refer
interested readers to e.g., [41, 49, 84].

3.7.2 The Gauss-Newton (GN) method

The Gauss-Newton method is applicable when the objective function has the form φ(w) =

||r(w)||22 for some residual function r. The Hessian of the Lagrangian is then approximated
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by
B(w) = ∇wr(w)∇wr(w)T ≈ ∇2

wL(z, x). (3.60)

For example, if φ(w) = xTQx+uTRu, the GN Hessian approximation isB = blkdiag(Q,R).
The GN method has the advantage that the Hessian approximation is guaranteed to be pos-
itive semidefinite, so the QP subproblems can be solved reliably. Because of this, the GN
method is widely used in practice, see e.g., [61, 64, 67, 71, 72, 85]. The GN approximation
error satisfies

∇2
wL(z, x)−B(w) = O(||r(w)||) +O(

m∑
i=1

||λi|| ||∇2
wgi(w, x)||), (3.61)

from which we see that the approximation error depends on the size of the residuals and on
the second derivative g which is related to the nonlinearity of the dynamics. We show in
Theorem 3.9 that it is important to approximate∇2

wL(z∗, x) where z∗ ∈ S̄(x).
The following theorem establishes sufficient conditions for q-linear convergence of the

GN method by extending the classical fixed-point type analysis of Newton’s method, see
[80, Section 5.4.2]. The nearest analysis we found in the literature is [77, Theorem 3.5]
which considers a path tracking problem rather than a fixed one.

Theorem 3.9. Fix some parameter x ∈ Γ, let z∗ ∈ S(x) and suppose that Assumptions 3.2

and 3.4 hold. Consider a sequence {zi} generated by repeatedly solving (3.56). Further,

define ei = zi−z∗ and suppose that there exist δ̄ = δ̄(x) > 0 such that ||Hi−∇F (z∗, x)|| ≤
δ̄ for all i ≥ 0. If the mapping

Ji(z) = Hiz +NK(z) (3.62)

is strongly regular for all i ≥ 0, i.e., J−1
i is a Lipschitz continuous function with Lipschitz

constant M > 0, and δ̄M < 1, then there exists ε̄ = ε̄(x) > 0, and L > 0 such that if

z0 ∈ ε̄B(z∗), then {zi} is unique, converges to z∗ q-linearly, and

||ei+1|| ≤M(δ̄ + L||ei||)||ei|| ≤ η̄||ei||, (3.63)

where η̄ = η̄(x) = M(δ̄ + Lε̄).

Proof. A solution, z∗ ∈ S̄(x), exists for every x ∈ Γ thanks to Assumption 3.4; from this
point forward we will suppress the dependencies on x in the subsequent expressions. The
GN method can be written as

zi+1 = J−1
i ◦Gi(zi) = Ti(zi), (3.64)
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where Gi(z) = Hiz − F (z); note that z∗ = Ti(z
∗) for any choice of {Hi}. First consider

Gi(zi)−Gi(z
∗) = Hi(zi − z∗)− F (zi) + F (z∗),

= [∇F (z∗)(zi − z∗)− F (zi) + F (z∗)] + [(Hi −∇F (z∗))(zi − z∗)].

Since∇F is Lipschitz (Assumption 3.2) the fundamental theorem of calculus, see e.g., [86,
Theorem 1.2.1], implies that there exist L, ε1 > 0 such that

||∇F (z∗)(zi − z∗)− F (zi) + F (z∗)|| ≤ L||zi − z∗||2,

for all zi ∈ ε1B(z∗), so, taking norms, we obtain that

||Gi(zi)−Gi(z
∗)|| ≤ L||zi − z∗||2 + δ̄||zi − z∗||.

By assumption the mapping J−1
i is Lipschitz continuous so ∆T ∗i = ||Ti(z) − Ti(z

∗)||
satisfies

∆T ∗i = ||J−1
i (Gi(zi))− J−1

i (Gi(z
∗))||, (3.65a)

≤M ||Gi(zi)−Gi(z
∗)||, (3.65b)

≤M(δ̄ + L||ei||)||ei||, (3.65c)

for all zi ∈ ε1B(z∗). Now consider the update equation

||zi+1 − z∗|| = ||Ti(zi)− z∗|| = ||Ti(zi)− Ti(z∗)||,

where we have used that z∗ = Ti(z
∗). Since Ji is strongly regular, Ti is a function and {zi}

is unique. Using (3.65) we have

||ei+1|| ≤M(δ̄ + L||ei||)||ei||, ∀ei ∈ ε1B. (3.66)

SinceMδ̄ < 1 by assumption, it is possible to pick ε̄ ∈ (0, ε1) such that η̄ = M(δ̄+Lε̄) < 1.
Then {zi} converges q-linearly to z∗ if z0 ∈ ε̄B(z∗), i.e.,

||ei+1|| ≤ η̄||ei|| ∀ei ∈ ε̄B. (3.67)

Theorem 3.9 requires thatHi be a sufficiently good approximation of∇zF (z∗) and that
the GN subproblems be strongly regular. A sufficient condition for strong regularity is that
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the QP (3.53) satisfies the LICQ and SSOSC (Theorem 2.2). In practice, strong regularity
can be achieved by a judicious choice of Hi. For example, if the Hessian approximation
is convex then it is possible to guarantee strong regularity of the subproblems by adding a
regularization term, i.e.,H ← H+δI for some small δ > 0. Then the mappingH+δI+NK
is strongly monotone, which implies strong regularity [33, Theorem 2F.6].

Remark 3.6. Theorem 3.9 just requires the Hessian approximation be sufficiently good.

One can conceive of useful approximation schemes other than the GN approximation, e.g.,

Bi = ∇2
wφ(wi) when φ is convex or Bi = ∇2

wL(z̄, x) for some fixed z̄ near z∗. These could

be used in place of the GN Hessian approximation and would result in an algorithm with

very similar theoretical properties.

3.8 Time-distributed SQP

In this section, we demonstrate that the methods described in Sections 3.6 and 3.7 satisfy
the conditions of Remark 3.3 and can therefore be used within the framework presented in
Section 3.3.

TD-SQP using the GN Hessian approximation and with ` = 1 corresponds to the RTI
scheme [63]. As such, when specialized to the RTI scheme, Theorems 3.4 and 3.5 are
a significant extension of the existing analysis [74] which does not consider inequality
constraints.

Strong Regularity Assumption: As detailed in Section 3.6.1, in the presence of con-
vex constraint sets Assumption 3.4 can be reduced to the following:

Assumption 3.5. The second order sufficient condition (3.44) holds at all minimizers in Γ.

As detailed in Section 3.6.2, in the nonlinear inequalities setting, Assumption 3.4 can
instead be ensured under the following:

Assumption 3.6. The linear independence constraint qualification (see Definition 2.5) and

strong second order sufficient condition (see Theorem 2.2) hold at all minimizers in Γ.

Algorithm Definition: Both SQP methods described in Section 3.7 are instances of the
following iterative process

Hi(zi+1 − zi) + F (zi, x) +NK(zi+1) 3 0, (3.68)

for specific choices of z, F , and K. Thus, in both cases the optimization mapping (3.9) can
be written as

T (z, x, i) = (Hi +NK)−1(Hiz − F (z, x)). (3.69)
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Convergence Rate: If the exact Hessian is used then Theorem 3.8 applies and the
method is at least q-linearly convergent with q = 2. If the GN Hessian approximation is
used then Theorem 3.9 applies under some additional assumptions regarding the accuracy
of the Hessian approximation, and the method is at least q-linearly convergent with q =

1. In both cases the definition of q-linear convergence requires that there be a uniform
convergence constant η and convergence radius ε over Γ. Under the assumption that the
functions η̄(x) and ε̄(x) in Theorems 3.8 and 3.9 are upper and lower semicontinuous,
respectively, these can be defined as ε = infx∈Γ ε̄(x) and η = supx∈Γ η̄(x). Thus, SQP fits
into the framework in Section 3.3 and can be used for time distributed optimization.

3.9 A Numerical Example

Figure 3.3 illustrates a bicycle model of a sedan. We only consider the lateral portion of the
dynamics; the longitudinal velocity s is assumed constant. The states and control inputs
are,

x = [y ψ ν ω δf δr], u = [δ̇f δ̇r], (3.70)

where y is the lateral position, ν is the lateral component of velocity, ψ is the yaw angle, ω
is the yaw rate, δf is the front steering angle, and δr is the rear steering angle.
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Figure 3.3: A diagram of the bicycle model
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The equations of motion are

ẏ = s sin(ψ) + ν cos(ψ),

ψ̇ = ω,

ν̇ = −sω +
F (αf ) cos(δf ) + F (αr) cos(δr) + Fw

m
,

ω̇ =
F (αf ) cos(δf )`f − F (αr) cos(δr)`r

Izz
,

δ̇f = δ̇f , δ̇r = δ̇r,

where

F (α) = µ 9.81 m sin (C arctan(B α)) ,

αf = δf − arctan

(
ν + `fω

s

)
,

αr = δr − arctan

(
ν − `rω

s

)
,

and Fw = 1/2ρCdA|d|d.

The tire forces are described by a Pacejka [87] model, the slip angle vs. force curve is
shown in Figure 3.4. This model is a modified version of the one presented in [88] and
roughly represents a 2017 BMW 740i. The vehicle is disturbed by normally distributed
wind gusts d with a mean velocity of 15 m/s and standard deviation of 5 m/s. We obtain
a discrete time model using a forward Euler integration scheme with a sampling period of
ts = 0.04s leading to a discrete time model of the form xk+1 = fd(xk, uk, dk). The model
parameters are summarized in Table 3.15.

The control objective is to perform a lane change maneuver. This can be achieved by
stabilizing the origin which is chosen to coincide with the center of the target lane. The
vehicle begins in the neighboring lane at the initial condition x0 = [−3.7 0 0 0 0 0]T .

5SI units are used and all angles are in radians unless otherwise noted.
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Figure 3.4: The tire force curve

The OCP is

min.
ξ,µ
||ξ30||2Qf

+
29∑
i=0

||ξi||2Q + ||µi||2R, (3.71a)

s.t. ξi+1 = fd(ξi, µi, 0), i = 0, . . . , 29, (3.71b)

ξ0 = x, Afξ30 ≤ bf , (3.71c)

xlb ≤ ξi ≤ xub, i = 1, . . . , 30, (3.71d)

ulb ≤ µi ≤ uub, i = 0, . . . , 29, (3.71e)

Table 3.1: Bicycle Model Parameters

Name Symbol Value
Mass m 2041 kg

Yaw Inertia Izz 4964 kgm2

Front, Rear CG distance `f , `r 1.56, 1.64 m
Coefficient of friction µ 0.8

Tire parameters B,C 12, 1.285
Lateral Area A 7.8 m2

Air Density ρ 1.225 kg/m2

Lateral Drag Coefficient Cd 1.5
Longitudinal Velocity s 30 m/s
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where fd is the discrete time model of the sedan. The vehicle is subject to state constraints
which keep the vehicle on the road and restrict its yaw and steering angles. The state
constraints on y, ψ, v and ω are softened using L1 exact penalty functions which are im-
plemented using slack variables in order to satisfy our smoothness assumptions. The upper
and lower bounds are

xub = [0.4 7◦ 100 100 35◦ 4◦],

xlb = −[4.7 7◦ 100 100 35◦ 4◦],

uub = [1.2 0.6], ulb = −[1.2 0.6],

and the weighting matrices are Q = I6×6, and R = I2×2. The terminal weight is obtained
by solving the discrete time algebraic Riccati equation using the linearization about the
origin. The matrices encoding the terminal set, Af and bf , are computed using the MPT3
toolbox [89]. The natural residual

π(z, x) = ||z − ΠK [z − F (z, x)]||, (3.72)

is an error bound [90], i.e., it upper and lower bounds ||z − z∗(x)||, where z∗(x) ∈ S(x),
and is commonly used as an easily computable surrogate for the error. We use it throughout
this section to measure ||z − z∗(x)||.

Figure 3.5 compares the RTI scheme [74], i.e., a TD-SQP scheme using the GN Hes-
sian approximation with ` = 1, with an LQR controller and the optimal MPC feedback
law6. The RTI feedback law successfully stabilizes the origin of the plant-optimizer sys-
tem and outperforms the LQR controller. The state error and the optimization residual both
converge to a ball about the origin, demonstrating the expected robustness due to the LISS
properties of the combined system (Theorem 3.4). The closed-loop trajectories generated
by the RTI controller are nearly indistinguishable from those from the optimal feedback law
but are an order of magnitude cheaper to compute. The RTI scheme took 0.067s on average
and 0.75s in the worst case vs. 0.65s and 3.2s for the optimal feedback law. Closed-loop
responses using the RTI controller for 15 different initial position and yaw angle combina-
tions, with all other states are initialized to zero, are shown in Figure 3.7.

Figure 3.6 compares the GN and JN methods with ` = 1 and ` = 2. In the bottom
plot of Figure 3.6 note that if ` = 2 iterations are performed, the yaw angle constraint is

6All simulations were carried out in MATLAB 2017b on a 2015 Macbook Pro with 16GB of RAM and
a 2.8GHz i7 processor. We solved quadratic programs using quadprog. The optimal MPC feedback law
was computed using fmincon with default settings. CASADI [91] was used to compute analytic derivatives
which were supplied to the optimization routines.
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satisfied exactly, even in the presence of disturbances, as predicted by Theorem 3.5. Also,
note that the residuals of the computational subsystem converge faster, for a given number
of iterations, if the JN method is used instead of the GN method. This is as expected since
the convergence rate of the SQP algorithm is faster when the exact Hessian is used.

3.10 Conclusions

In this chapter, we presented a general framework for the stability analysis of model pre-
dictive controllers implemented using time-distributed optimization. When specialized to
SQP, our result extends the existing stability analysis of the RTI scheme by explicitly con-
sidering inequality constraints, analyzing the effect of performing additional SQP itera-
tions, considering a wider class of Hessian approximations, and proving local input-to-state
stability of the closed-loop system. Future work includes analyzing the effect of the sam-
pling rate, applying our framework to globalized SQP methods, and developing numerical
methods for estimating the the asymptotic gain functions used in the analysis.
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CHAPTER 4

The Proximally Stabilized Fischer-Burmeister
Method for Convex Quadratic Programming

4.1 Introduction

Convex quadratic programs (QPs) arise in many fields including finance [92], control [93],
estimation [18], machine learning [94, 95], and signal processing [96]. They also form the
basis for sequential quadratic programming (SQP) methods [84] in nonlinear programming
and branch and bound methods [97] for mixed integer optimization. Due to their wide
applicability, there is a continuing need for increasingly fast and reliable QP solvers driven
by emerging applications in artificial intelligence, decision making, embedded systems,
and autonomy.

One of the aforementioned emerging technologies is Model Predictive Control (MPC)
[1,2], a powerful optimization based control methodology for constrained and/or nonlinear
systems. In the case of a linear prediction model, polyhedral constraints and quadratic costs
the MPC control law is defined by the solution of a quadratic program (QP). Moreover, QPs
are commonly used in methods for nonlinear MPC, e.g., in time-distributed SQP methods
as described in Section 3.8. These QPs need to be solved in real-time on embedded sys-
tems with limited computing power; warmstarting, where the solver is initialized using a
solution from the previous sampling instance, and sparsity exploitation are often necessary
to meet real-time requirements. Moreover, reliability, exception safety, robustness to early
termination, and infeasibility detection are important concerns due to the safety critical
nature of many MPC controllers.

A number of useful algorithms and packages have been developed for solving convex
QPs including: Active Set (AS) methods [98–101], Interior Point (IP) methods [52,53,102,
103], first order (FO) methods [51, 104–106], and Dual Newton (DN) methods [107, 108].
AS methods are typically very fast for small to medium problem sizes and can be easily
warmstarted using an estimate of the active constraint set. However, they do not scale well,
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since they have difficulties exploiting sparsity, and are not robust to early termination, i.e.,
intermediate iterates do not approximate the solution in a meaningful way. IP methods
are fast, efficient, robust to early termination and can solve large, sparse problems effi-
ciently using advanced linear algebra techniques. However, they are notoriously difficult
to warmstart. FO methods can be warmstarted easily, and are attractive from a certification
standpoint due to their simplicity and the availability of tight complexity bounds. How-
ever, they have slow convergence rates relative to AS, IP, and DN methods; they tend to be
most effective on small, strongly convex, or simply constrained problems. Dual Newton
methods can exploit sparsity and be warmstarted but require restrictive assumptions, e.g.,
that the QP be strongly convex and the linear independence constraint qualification (LICQ)
holds. These assumptions reduce their applicability and may cause robustness issues. Fi-
nally, primal-dual Newton-type methods, e.g., FBRS [50], retain the same warmstarting
and sparsity exploitation capabilities as DN methods but relax the strong convexity re-
quirement to the weaker strong second order sufficient condition (SSOSC), however they
still require the LICQ.

Recently, a hybrid method has been proposed that combines a first order and active set
method. QP nonnegative least squares (QPNNLS) [109] uses the proximal point algorithm
[42] to construct a sequence of regularized QP subproblems whose solutions converge to
the solution of the original problem. Each regularized QP is strictly convex and is efficiently
solved using a non-negative least squares based active set method [100]. Since proximal-
point subproblems are expensive, QPNNLS heavily exploits warmstarting to reduce the
cost of solving subsequent subproblems. Another, very recent, related method is QPALM
[110], which is based on the Augmented Lagrangian Method.

In this chapter, we propose the proximally stabilized Fischer-Burmeister method (FB-
stab). FBstab is a hybrid method in the same vein as QPNNLS, however, we employ a
primal-dual version of the proximal point algorithm (i.e., the proximal method of mul-
tipliers [111]) rather than a primal version, and solve the proximal subproblems with a
primal-dual Newton-type method. Using a Newton-type method, rather than an active set
method, allows us to solve the proximal subproblems inexactly in addition to warmstarting
them, leading to considerable computational savings. In turn, the proximal regularization
yields subproblems which automatically satisfy the regularity conditions needed to guar-
antee robustness and rapid convergence of the Newton-type method.

The contributions of this chapter are as follows: (i) We describe FBstab, a fast method
that is numerically robust, and can handle problems with degenerate solutions. Moreover,
it is easy to warmstart making it useful for SQP and parameterized problems e.g., those
arising in MPC. (ii) We provide detailed convergence and convergence rate proofs under
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only the assumption that the Hessian is positive semidefinite and a solution exists. (iii)
When a solution does not exist, we prove that FBstab can detect and certify infeasibil-
ity and unboundedness. (iv) We illustrate the performance of FBstab through numerical
examples, including experiments on embedded hardware. (v) We demonstrate that, since
the linear systems at the core of FBstab are structured similarly to some IP methods, we
can exploit existing linear algebra techniques for sparse problems. (vi) We have prepared
an open source MATLAB implementation of FBstab1 and are actively developing a C++
implementation2.

FBstab significantly extends FBRS [50] by removing the SSOSC and LICQ assump-
tions, improving its numerical robustness, and enabling infeasibility detection, while still
being easy to warmstart and retaining the ability to exploit sparsity. FBstab requires al-
most no assumptions aside from (non-strict) convexity making it robust and capable of
solving any convex QP; only IP methods based on self-dual embedding, e.g., ECOS [52],
QPNNLS [109], and the alternating direction method of multipliers (ADMM) [105,106] are
as widely applicable. Finally, the use of a primal-dual proximal point method allows FB-
stab to detect dual infeasibility, in addition to primal infeasibility, unlike QPNNLS which
can only detect primal infeasibility.

The layout of the chapter is as follows. First, we describe the algorithm in Section 4.2.
Next, we analyze its behaviour when a solution of the QP exists in in Section 4.3 and when
one does not in Section 4.4. Finally, we perform some numerical experiments illustrating
the practical performance of FBstab in Section 4.5 before ending with some concluding
remarks.

4.2 Description of the Algorithm

We consider convex QPs of the following form,

min.
w

1

2
wTHw + fTw, (4.1a)

s.t Gw = h, (4.1b)

Aw ≤ b, (4.1c)

where H ∈ Rn×n, f ∈ Rn, w ∈ Rn, G ∈ Rm×n, h ∈ Rm, A ∈ Rq×n, and b ∈ Rq. We
make no assumptions about the problem data aside from the following3.

1https://github.com/dliaomcp/fbstab-matlab.git
2https://github.com/dliaomcp/fbstab.git
3In particular, we require neither a constraint qualification (of any kind) nor existence of an interior point.
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Assumption 4.1. The Hessian matrix H is symmetric and positive semidefinite.

The Lagrangian for this problem is given by

L(w, λ, v) =
1

2
wTHw + fTw + λT (Gw − h) + vT (Aw − b),

where λ ∈ Rm and v ∈ Rq are dual variables, and its dual is

min.
w,λ,v

1

2
wTHw + bTv + hTλ, (4.2a)

s.t Hw + f +GTλ+ ATv = 0, (4.2b)

v ≥ 0. (4.2c)

We will use z = (w, λ, v) ∈ Rl to denote the primal-dual triple. The Karush-Kuhn-
Tucker (KKT) conditions for the problem are

∇wL(w, λ, v) = 0, (4.3a)

Gw = h, (4.3b)

Aw − b ≤ 0, v ≥ 0, vT (Aw − b) = 0. (4.3c)

Any vector satisfying (4.3) is called a critical point. If the feasible set

Ω = {w | Aw ≤ b, Gw = h}, (4.4)

is nonempty, then the KKT conditions are necessary and sufficient for global optimality
[112].

The main idea of the FBstab algorithm is to regularize the original problem, solve it us-
ing a semismooth Newton-type method, then use the proximal point algorithm to iteratively
refine the solution. The regularization ensures that each proximal subproblem has a unique
primal-dual solution and satisfies the regularity conditions needed to ensure fast conver-
gence of the inner Newton-type solver. It also removes the need for any constraint qual-
ifications by suitably regularizing the dual problem. Moreover, semismooth Newton-type
methods can be warmstarted and terminated early. As a result, each proximal subproblem
can be solved approximately and warmstarted with the solution of the previous one. This
makes FBstab efficient, often requiring only one to two Newton iterations to solve each
subproblem.
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4.2.1 Outer Proximal Point Iterations

The primary iterative procedure in FBstab is an instance of the proximal point algorithm
(PPA) [42, 111] which finds zeros of monotone inclusions of the form

T (z) 3 0, (4.5)

where T : H⇒ H for some Hilbert spaceH, by generating a sequence {zk} using the rule

zk+1 = Pk(zk), Pk = (I + σ−1
k T )−1, (4.6)

where {σk} are positive numbers4. If T is maximal monotone then the PPA converges to
an element of the set T−1(0) if it is nonempty [42].

The KKT conditions of (4.1) can be rewritten as the following variational inequality
(VI)

∇wL(w, λ, v) = 0, (4.7a)

h−Gw = 0, (4.7b)

b− Aw +N+(v) 3 0, (4.7c)

where N+ is the normal cone mapping of the non-negative orthant. Thus (4.7) can be
compactly expressed as,

T (z) = Kz + r +NΓ(z) 3 0, (4.8)

where Γ = Rn × Rm × Rq
≥0,

K =

 H GT AT

−G 0 0

−A 0 0

 , p =

fh
b

 , and z =

zλ
v

 . (4.9)

The outermost loop of FBstab is simply (4.6) applied to (4.8). The following proposition
shows that (4.8) is indeed maximal monotone as required by the PPA.

Proposition 4.1. The variational inequality (4.8) has the following properties: (i) It is

maximal monotone. (ii) If nonempty, its solution set, T−1(0), is closed and convex.

Proof. (i): The base mapping (4.9) is maximal monotone since it is single valued, affine
and KT + K � 0, where K is defined in (4.9). Variational inequalities of the form (4.8)

4There is significant freedom in how {σk} is chosen. This is discussed further in Section 4.2.5.
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are maximal monotone if the single valued portion F is monotone [113]. (ii): See [114].

Practical algorithms need a stopping criterion. FBstab uses the condition

||π(x)|| ≤ τa + τr(||p||+ 1) (4.10)

where p is defined in (4.9), τa ≥ 0 and τr ≥ 0 are absolute and relative tolerances, and

π(z) = z − ΠΓ [z − (Kz + p)] , (4.11)

where ΠΓ denotes euclidean projection onto Γ. The natural residual function (4.11) is a
local error bound [90, Theorem 18], i.e5., dist(x, T−1(0)) = O(||π(x)||).6

4.2.2 Inner Semismooth Newton Solver

Evaluating the proximal operator is the most computationally expensive step in the PPA
and must be done efficiently to produce a practical algorithm. To evaluate Pk(xk) we must
find an x satisfying

Tσ(z, k) = Kz + p+ σk(z − zk) +NΓ(z) 3 0. (4.12)

This is itself a variational inequality which is in general expensive to solve. However,
due to the regularization term σk(z − zk), (4.12) is guaranteed to have a unique solution
and to satisfy certain useful regularity properties (Theorem 4.1). We can exploit these
properties to construct a Newton-type method for the subproblems with a quadratic rate
of convergence (Theorem 4.2). Moreover, the PPA allows for approximate evaluation of
Pk and we warmstart the inner Newton-type solver at each iteration. Taken together, these
measures allow FBstab to evaluate the proximal operator efficiently.

The subproblem solver works by applying Newton’s method to a semismooth7reformulation
of (4.12). We construct the reformulation using a so-called nonlinear complementarity
problem (NCP) function [115]. An NCP function φ : R2 → R has the property that

φ(a1, a2) = 0 ⇔ a1 ≥ 0, a2 ≥ 0, a1a2 = 0.

5For a closed set C, dist(x,C) = inf x̄{x− x̄ | x̄ ∈ C}.
6See [41, A.2] or [49, A.2] for more details on O notation.
7See Chapter 2 for more details on semismooth functions.
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In this chapter, we use the penalized Fischer-Burmeister (PFB) function [47],

φ(a1, a2) = α

(
a1 + a2 −

√
a2

1 + a2
2

)
+ (1− α)a+

1 a
+
2 ,

where α ∈ (0, 1) is fixed and (·)+ denotes projection onto the nonnegative orthant. The
PFB function is similar to the Fischer-Burmeister [116] function but has better theoretical
and numerical properties [47]. Using this NCP function we can construct the following
mapping,

Rk(z) = R(z, zk, σk) =

∇wL(w, λ, v) + σk(w − wk)
h−Gw + σk(λ− λk)
φ(y + σk(v − vk), v)

 , y = b− Aw, (4.13a)

where the NCP function is applied elementwise.
The inner solver evaluates Pk by solving the rootfinding problem Rk(z) = 0 using

a damped semismooth Newton’s method. We use the following generalized derivative,
known as the the C-subdifferential [45],

∂̄G = ∂G1 × ∂G2 × ...× ∂GM , (4.14)

where ∂Gi are the Clarke generalized Jacobians [36] of the components mappings of G.
The inner iterative scheme8, is then

zi+1|k = zi|k − ti|kV −1Rk(zi|k), V ∈ ∂̄Rk(zi|k), (4.15)

where ti|k ∈ (0, 1] is a step length that enforces global convergence and is chosen using a
backtracking linesearch on the merit function

θk(z) =
1

2
||Rk(z)||22. (4.16)

The properties of Rk and θk are summarized in Proposition 4.2.

Proposition 4.2. The function, Rk in (4.13), and its associated merit function, θk, have the

following properties:

1) Rk is strongly semismooth on Rl.

2) R(z∗k, zk, σk) = 0 if and only if z∗k = Pk(zk). Further, z∗k is unique and exists irrespective

of the problem data.
8i and k are used for inner and outer iterations respectively.
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3) ||Rk(·)|| is a global error bound, i.e., there exists τ > 0 such that ||z−z∗k|| ≤ τ ||Rk(z)||

4) θk is continuously differentiable and, for any V ∈ ∂̄Rk(z), its gradient is ∇θk(z) =

V TRk(z).

Proof. 1) The PFB function is strongly semismooth [47, Proposition 2.1] and is composed
with affine functions to form R. Strong semismoothness of R then follows from the com-
position rules for semismooth functions, see, e.g., [41, Propositions 1.73 and 1.74].

2) The VI (4.12) is defined by the sum of a monotone and strongly monotone operator
and is thus itself strongly monotone. Strongly monotone operators always have a unique
zero [114]. The zeros of R exactly coincide with those of (4.12) by the properties of NCP
functions.

3) Let K = {z | (K + σI)z +N∞(z) 3 0} denote the “kernel” of (4.12), where K is
defined in (4.9), and N∞(x) is the normal cone of Γ∞, the recession cone of Γ. Since Γ is
a convex cone, Γ∞ = Γ. Theorem 20 of [90] states that the norm of the natural residual
function

πk(z) = z − ΠΓ [z − (Kz + p+ σk(x− xk))] , (4.17)

is a global error bound if K = {0}. Its clear that z = 0 satisfies (K + σI)z + N∞(z) 3 0

and becauseK+σI is strongly monotone the solution must be unique. Thus, applying [90,
Theorem 20] there exists τ1 > 0 such that ||z − z∗k|| ≤ τ1||πk(z)||. The equivalence of
||πk(z)|| and ||Rk(z)||, when used as an error bound, can then be established using the
same arguments as [47, Theorem 3.11]; we omit the details for brevity.

4) See [47, Theorem 3.2] or [50, Proposition 2].

The inner solver uses the following stopping condition

||Rk(z)|| ≤ εk min{1, z − zk}, (4.18)

where εk is controlled in the outer layer. How εk is chosen is discussed further in Sec-
tion 4.2.5. Next, we show that the matrix V is always invertible and thus the iteration
(4.2.2) is well defined. In particular, all elements of ∂̄Rk(z

∗), where z∗ is the root, are
non-singular which leads to quadratic convergence of (4.15).
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4.2.3 The Newton Step System

The computational core of FBstab is the Newton step system

V∆z = r, V ∈ ∂̄R(z, z̄, σ), (4.19)

which needs to be solved for ∆z for various values of z, z̄, σ and r. We begin with the
following proposition, that establishes some properties of the C-subdifferential.

Proposition 4.3. For any z, z̄ ∈ Rl, σ > 0, all V ∈ ∂̄R(z, z̄, σ) are of the form

V =

 Hσ GT AT

−G σI 0

−CA 0 D

 , (4.20)

where Hσ = H + σI , and C = diag(γj), D = diag(µj + σγj), are diagonal matrices with

entries (γj, µj) ∈ ∂φ(yj, vj).

Proof. The proof follows [47, Proposition 2.3]. By definition

∂̄R(z, z̄, σ) = ∂R1(z, z̄, σ)× ... × ∂Rl(x, z̄, σ), (4.21)

thus we need only to characterize the generalized gradients. The first two blocks are con-
tinuously differentiable so ∂Ri(z, z̄, σ) = {∇Ri(z, z̄, σ)T}, i = 1, . . . , n + m. The last
block satisfies

Vi =
[
−γi(z)Ai 0 (µi(z) + σγi(z))ei

]
, (4.22)

where ei are rows of identity, by [36, Proposition 2.1 and Theorem 2.3.9].

Explicit expressions for the generalized gradient of φ(a1, a2) are given by [47, Propo-
sition 2.1]

∂φ(a1, a2) = (γi, µi) = α(1− a1
r
, 1− a2

r
) + (1− α)(a+

2 ∂a
+
1 , a

+
1 ∂a

+
2 ) if r 6= 0

α(1− η, 1− ζ) if r = 0
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where r =
√
a2

1 + a2
2, η and ζ are arbitrary numbers satisfying η2 + ζ2 = 1, and

∂a+ ∈


{1} if a > 0

[0, 1] if a = 0

{0} if a < 0.

(4.23)

Next, we consider the regularity properties of V which are critical to the behaviour of
(4.15). Due to the stabilizing effect of the outer proximal point algorithm all elements of
∂̄R(z, z̄, σ) are nonsingular, a property we will refer to as C-regularity.

Definition 4.1. A mapping G : RN → RN is C-regular at a point x ∈ RN if it is semis-

mooth at x and all V ∈ ∂̄G(x) are non-singular.

The C-regularity ofRk guarantees that the inner iterations are globally well defined and
that the iteration (4.15) will converge at a quadratic rate to the unique solution of (4.12)
(Theorem 4.2).

Theorem 4.1 (Regularity of the C-subdifferential). R(z, zk, σ) is C-regular for any z, z̄ ∈
Rl and σ > 0.

Proof. For any V ∈ ∂̄R(z, z̄, σ), the Newton step system (4.15) has the form Hσ GT AT

−G σI 0

−CA 0 D


∆w

∆λ

∆v

 =

r1

r2

r3

 , (4.24)

where R(z, z̄, σ) = −[rT1 rT2 rT3 ]T as in (4.13). For all j ∈ {1, ...q} we have that µj ≥
0, γj ≥ 0 and (µj, γj) 6= 0. Thus Djj = µj + σγj > 0 implying D � 0. Since D � 0

we can eliminate the third row of (4.24) algebraically and negate the second leading to the
following pair of linear systems of equations[

E GT

G −σI

][
∆w

∆λ

]
=

[
r1 − ATD−1r3

−r2

]
, (4.25a)

D∆v = r3 + CA∆w. (4.25b)

The matricesE = Hσ+ATCD−1A and σI are positive definite so the block 2×2 matrix in
(4.25) is symmetric quasidefinite and thus invertible [117]. As a result, (4.24) has a unique
solution, implying that V is nonsingular.
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4.2.4 Infeasibility Detection

When either (4.1) or (4.2) is infeasible FBstab is able to detect it, allowing for a graceful
exit. This feature is also important in e.g., in branch and bound algorithms for mixed integer
QPs [97]. Recall the following infeasibility conditions.

Proposition 4.4. (Infeasibility conditions)

Dual infeasibility: Suppose there exists a vector w ∈ Rn satisfying Hw = 0, Aw ≤ 0,

Gw = 0, and fTw < 0. Then (4.2) is infeasible.

Primal infeasibility: Suppose there exits a vector (λ, v) such that GTλ + ATv = 0 and

λTh + vT+b < 0, where v+ is the projection of v onto the nonnegative orthant. Then the

feasible set of (4.1) is empty.

Proof. See e.g., [118, Proposition 1].

Any vector satisfying the conditions of Proposition 4.4 is a certificate of primal or
dual infeasibility. When the primal is feasible, dual infeasibility is the same as the primal
problem being unbounded below.

For infeasibility detection we use the proximal increment

∆z = Pk(z)− z = (∆w,∆λ,∆v). (4.26)

FBstab detects dual infeasibility using a relative tolerance τinf > 0 and the following
criteria

||H∆w||∞ ≤ τinf ||∆w||∞, (4.27)

fT∆w < 0, (4.28)

max(A∆w) ≤ 0, (4.29)

and ||G∆w||∞ ≤ τinf ||∆w||∞. (4.30)

For primal infeasibility the criteria are

||ATv +GTλ||∞ ≤ τinf (||∆v||+ ||∆λ||), and ∆vT b+ λTh < 0. (4.31)

In Section 4.4 we prove that ∆z converges to suitable certificates when either (4.1) or (4.2)
are infeasible.
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4.2.5 Summary of the Algorithm

The FBstab algorithm is summarized in Algorithms 1-4. Algorithm 1 implements the prox-
imal point algorithm as discussed in Section 4.2.1. Algorithm 3 evaluates the proximal
operator as discussed in Section 4.2.2 and Algorithm 4 checks for infeasibility as discussed
in Section 4.2.4.

There is significant freedom in how to choose the regularization sequence {σk} and
the subproblem tolerance sequence {εk}. Our choices are summarized in Algorithm 2. In
a practical implementation, it is sensible to have bounds on the subproblem solver toler-
ance ε to ensure the desired tolerance is achievable and on the regularization strength σ to
control the conditioning of (4.19). These are incorporated into FBstab through the choices
of εmax, εmin, σmax, and σmin. In exact arithmetic, Algorithm 3 will always succeed (The-
orem 4.2). However, in practice it can fail, the typical cause is inability to decrease the
merit function due to ill-conditioning in (4.19). In this case, FBstab increases the regular-
ization strength, which improves the conditioning of (4.2.3), and tries again. On the other
hand, if the EvalProx routine is successful, then both σ and ε are reduced to accelerate
convergence.

Algorithm 1 The FBstab algorithm

Inputs: σ0, τr, τa > 0, Initial guess z0 = (w0, λ0, v0)
Outputs: Primal-dual solution, z∗, or infeasibility status and certificate ∆z∗

1: procedure FBSTAB
2: z ← z0, k ← 0, ε← min(||π(z0)||, 1)
3: repeat
4: (z+,flag)← EVALPROX(z, ε, σ)
5: (σ, ε)← UPDATE(σ, ε, ||π(z+)||,flag)
6: CHECKFEASIBILITY(z+ − z)
7: if flag == success then
8: z ← z+

9: end if
10: ε← ||π(z)||, k ← k + 1
11: until ε ≤ (||p||+ 1)τr + τa . p defined in (4.9)
12: Stop: z∗ ← z is optimal
13: end procedure

Remark 4.1. Both semismooth Newton methods [116] and proximal point algorithm [42]

have been extensively studied in the literature. Our main contribution is the novel syn-

ergistic combination of the two methods with infeasibility detection techniques originally

derived for ADMM [118] to produce a method that is very general, theoretically justified,

and effective in practice.
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Algorithm 2 Tolerance and regularization updating

Inputs: σmax, σmin, εmax, εmin > 0, κσ, κε ∈ (0, 1)
1: procedure UPDATE(σ, ε, ε0,flag)
2: if flag == success then
3: σ ← σκσ, ε← min(εκε, ε0)
4: else
5: σ ← σ/κσ, ε← ε/κε
6: end if
7: σ ← Π[σmin,σmax](σ)
8: ε← Π[εmin,εmax](ε)
9: return (σ, ε)

10: end procedure

Algorithm 3 Evaluate the proximal operator

Inputs: β ∈ (0, 1), η ∈ (0, 0.5), kmax > 0
1: procedure EVALPROX(z̄, ε, σ)
2: z ← z̄, k ← 0
3: repeat
4: Compute V ∈ ∂̄R(z, z̄, σ), see Section 4.2.3
5: Solve V∆z = −R(z, z̄, σ) for ∆z
6: t← 1, k ← k + 1
7: while θ(z + t∆z) ≥ θ(z) + ηt∇θ(z) do
8: t← βt
9: end while

10: z ← z + t∆z
11: until ||R(z, z̄, σ)|| ≤ εmin{1, z − z̄} or k ≥ kmax
12: flag ← (k ≤ kmax ? success : failure)
13: return (z, flag)
14: end procedure

Remark 4.2. This method could theoretically be extended to more general smooth convex

programs. However, then the curvature of the constraint Hessians would enter into the

subproblems and we would need to maintain positivity of the dual variables during the

Newton iterations to ensure non-singularity of the generalized Jacobians. This would make

warmstarting the algorithm difficult; as a result we have elected to focus on QPs. Moreover,

due to the polyhedrality of the solution set, we are able to establish a stronger convergence

rate result for QPs than for more general convex programs (see Theorem 4.3).
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Algorithm 4 Check for infeasibility
Inputs: τinf > 0

1: procedure CHECKFEASIBILITY(∆z)
2: (∆w,∆λ,∆v)← ∆z
3: if ||H∆w||∞ ≤ τinf ||∆w||∞, fT∆w < 0,
4: max(A∆w) ≤ 0, ||G∆w||∞ ≤ τ ||∆w||∞ then
5: ∆z∗ ← (∆w,∆λ,∆v)
6: Stop: ∆w∗ certifies dual infeasibility
7: end if
8: if ||ATv +GTλ||∞ ≤ τ(||∆v||+ ||∆λ||), ∆vT b+ λTh < 0 then
9: ∆z∗ ← (∆w,∆λ,∆v)

10: Stop: (∆λ∗,∆v∗) certifies primal infeasibility
11: end if
12: end procedure

4.3 Convergence Analysis

In this section, we analyze the convergence properties of FBstab when (4.1) has a primal-
dual solution. We address the case when T−1(0) = ∅ in Section 4.4. First, we address the
convergence of the inner Newton-type solver.

Theorem 4.2 (Inner solver convergence). Consider an arbitrary but fixed iteration k of the

outer proximal point algorithm. Suppose z0 = z0|k = zk ∈ Rl and let the sequence {zi} be

generated by the EvalProx procedure in Algorithm 3. Then:

i. The sequence {zi} is well defined and converges to the unique point z∗ satisfying x∗ =

Pk(z0).

ii. The asymptotic rate of convergence is quadratic i.e.,

||z∗ − zi+1|| = O(||z∗ − zi||2) as i→∞.

Proof. See [45, 47, 119] or [50, Section VII].

Having established the convergence of the inner Newton-type solver, we can prove
convergence of the outer proximal loop and thus of FBstab.

Theorem 4.3 (Convergence of FBstab). Let z0 ∈ Rl be arbitrary, suppose T−1(0) =

(Kz + p + NΓ)−1(0) is nonempty, and let {zk} be generated by FBstab. Moreover, let

either κε < κδ or σmin > 0 and εmin = 0. Then {zk} → z∗ ∈ T−1(0) as z → ∞.
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Furthermore, the convergence rate is at least linear and if, in addition, σk → 0 as k →∞
then the convergence rate is superlinear.

Proof. FBstab is an instance of the proximal point algorithm so we can employ [120, Theo-
rem 2.1] to establish both convergence and the convergence rate. The error bound condition
needed by [120, Theorem 2.1] ((A′r) in [120]) is

dist(0, Tσ(zk+1, k)) ≤ εk min{1, ||zk+1 − zk||} (4.32)

where Tσ is defined in (4.12), and
∑∞

k=0 εk/σk < ∞. The inequality (4.32) is enforced by
construction (Line 11 of Algorithm 3) since ||Rk(z)|| is an error bound for the subproblems
by Proposition 4.2. Note that in exact arithmetic the inner solver always succeeds. Thus,
in the case where κε < κσ, we have that δk = εk/σk satisfies, δk ≤ (ε0/σ0)(κε/κσ)k,
thus κδ = κε/κσ < 1 which implies that

∑∞
0 δk < ∞. In the case where σmin > 0 and

εmin = 0, as k → ∞ we have that δk ≤ ε0(κε)
k/σmin. Since κε < 1 this implies that∑∞

0 δk <∞. It remains to show that there exists a, ε > 0 such that for all s ∈ εB

dist(z, T−1(0)) ≤ a||s||, ∀z ∈ T−1(s), (4.33)

or equivalently (see e.g., [33, Section 3D])

T−1(s) ⊆ T−1(0) + a||s||B, (4.34)

where B is the unit ball. This property actually holds globally because T (z) 3 0 is a
polyhedral variational inequality, see [33, Section 3D]. Thus we can invoke [120, Theorem
2.1] to complete the proof.

Finally, we state the following theorem which provides rigorous justification for the
subproblem warmstarting strategy employed in FBstab.

Theorem 4.4 (Lipschitz continuity of subproblems). Let the sequence {zk} be generated

by FBstab with z0 arbitrary. Then the proximal operator is Lipschitz continuous, i.e., at

any iteration k the proximal operator Pk satisfies

||Pk(zk)− Pk−1(zk−1)|| ≤ η||zk − zk−1||, (4.35)

η−1 = λmin

(
KT +K + 2σkI

2σk

)
, (4.36)
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where λmin(·) designates the smallest eigenvalue of a symmetric matrix and K is defined

in (4.9).

Proof. The variational inequality (4.12) can be written as F (z)/σk+z+NΓ(z) 3 zk which
is a parameterized variational inequality with zk as the parameter. Its strong monotonicity
constant is η > 0. The result then follows from [33, Theorem 2F.6].

Each proximal subproblem computes Pk(zk) by solving Rk(z) = 0 starting from zk as
an initial guess. Theorem 4.4 implies that eventually ||Pk(zk)−zk||will become sufficiently
small so that the quadratic convergence rate of Theorem 4.2 holds immediately and the
semismooth method converges rapidly. This happens because,

||Pk(zk)− zk|| = ||[Pk(zk)− Pk−1(zk−1)]− [zk − Pk−1(zk−1)]||,

≤ ||zk − Pk−1(zk−1)||+ ||Pk(zk)− Pk−1(zk−1)||,

≤ ||zk − Pk−1(zk−1)||+ η||zk−1 − zk−2||,

and, since the algorithm is converging, ||zk−1− zk−2|| → 0 and ||zk−Pk−1(zk−1)|| → 0 as
k →∞. We observe this behaviour in practice, typically after the first or second proximal
iteration each subsequent proximal subproblem takes only one or two Newton iterations to
converge.

4.4 Infeasibility Detection Analysis

In this section, following [118] we the behaviour of FBstab in the case where either the
QP (4.1) or its dual (4.2) are infeasible. These results are not specific to FBstab and hold
whenever the proximal point algorithm is used to solve (4.7). First we review the limiting
behaviour of the proximal point algorithm. The following lemma summarizes some results
for averaged nonexpansive operators, a class which includes the proximal operator.

Lemma 4.1. Let T : H 7→ H be an averaged nonexpansive operator over a Hilbert space

H. In addition, suppose zk is generated by zk = T k(z0), z0 ∈ H, define δzk = zk+1 − zk,
and let δz be the projection of 0 onto cl range (T − Id) where cl denotes the closure of a

set and Id denotes the identity operator. Then as k →∞ we have that:

i. 1
k
zk → δz

ii. δzk → δz
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iii. If Fix T 6= ∅ then zk → z∗ ∈ Fix T , where Fix T denotes the fixed points of T .

Proof. (i): [121, Corrolary 2]. (ii), (iii): [122, Fact 3.2] .

An immediate corollary of this is that δz in Lemma 4.1 satisfies δz = 0 if Fix T 6= ∅.
The following proposition applies Lemma 4.1 to our specific situation.

Proposition 4.5. Let the sequence {zk} = {(wk, λk, vk)} be generated by the proximal

point algorithm, suppose that σk → σ > 0 as k → ∞, εmin = 0, and define δzk = zk −
zk−1. Then there exists δz = (δw, δλ, δv) ∈ Rl such that (δwk, δλk, δvk) → (δw, δλ, δv)

as k →∞ and also satisfies the following properties:

(i) Hδw = 0,

(ii) Aδw ≤ 0,

(iii) Gδw = 0,

(iv) δv ≥ 0,

(v) fT δw = −σ||δw|| ≤ 0,

(vi) δλTh+ δvT b ≤ 0,

(vii) GT δλ+ AT δv = 0.

Proof. The proximal operator is firmly non-expansive [42] and thus averaged, see e.g.,
[123, rmk 4.34]. The convergence of δzk to δz as k → ∞ then follows from Lemma 4.1.
Note that limk→∞

1
k
δzk = 0 and limk→∞

1
k
zk = δz which we will use often in the sequel.

We begin by rewriting (4.12) in the following form:

Hwk + f +GTλk + ATvk + σδwk = 0, (4.37a)

h−Gwk + σδλk = 0, (4.37b)

〈b− Awk + σδvk, vk〉 = 0, (4.37c)

vk ≥ 0, b− Awk + σδvk ≥ 0. (4.37d)

Further, (4.37) is satisfied exactly in the limit since the condition εk → 0 as k → ∞ is
enforced by construction in Algorithm 1. We now proceed point by point.
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(i): Taking inner products, multiplying (4.37c) and (4.37b) by 1/k, taking the limit, and
applying Lemma 4.1 yields

lim
k→∞

1

k
〈b− Awk + σδvk, vk〉 = 〈−Aδw, δv〉 = 0, (4.38a)

⇒ δvTAδw = 0, (4.38b)

lim
k→∞

1

k
〈h−Gwk + σδλk, λk〉 = 〈−Gδw, δλ〉 = 0. (4.38c)

⇒ δλTGδw = 0. (4.38d)

The same procedure applied to (4.37a) yields

lim
k→∞

1

k
〈Hwk + f +GTλk + ATvk + σδwk, δw〉

= δwTHδw + δλTGδw + δvTAδw = 0, (4.39)

combining this with (4.38) we obtain that, since H � 0,

δwTHδw = 0⇒ Hδw = 0. (4.40)

(ii): Multiplying the second inequality in (4.37d) by 1/k and taking the limit yields

lim
k→∞

1

k
(b− Awk + σδvk) = −Aδw ≥ 0⇒ Aδw ≤ 0. (4.41)

(iii): Multiplying (4.37b) by 1/k and taking the limit yields

lim
k→∞

1

k
(h−Gwk + σδλk) = −Gδw = 0⇒ Gδw = 0. (4.42)

(iv): Multiplying (4.37d) by 1/k and taking the limit yields

lim
k→∞

1

k
vk = δv ≥ 0. (4.43)

(v): Taking the inner product of (4.37a) with δzk then taking the limit and applying (4.38)
and (i) yields:

lim
k→∞

〈Hzk + f +GTλk + ATvk + σδzk, δzk〉

= δzTHδz + δλTGδz + δvTAδz + fT δz + σ||δz||22
= fT δz + σ||δz||22 = 0 ⇒ fT δz = −σ||δz||22 ≤ 0. (4.44)
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(vi): Taking the inner product of (4.37c) and δvk, and taking the limit yields

lim
k→∞

〈b− Awk + σδwk, δvk〉 = bT δv − δvTAδw + σ||δv||22 = 0, (4.45)

since δvTAδw = 0 we have that

bT δv = −σ||δv||22 ≤ 0. (4.46)

Applying the same procedure to (4.37b) yields,

lim
k→∞

〈h−Gwk + σδλk, δλk〉 = hT δλ− δλGδw + σ||δλ||22 = 0, (4.47)

since δλTGδw = 0 this implies hT δλ = −σ||δλ||22, combining this with (4.46) yields

hT δλ+ bT δv = −σ(||δλ||22 + ||δv||22) ≤ 0. (4.48)

(vii): Dividing (4.37a) by k and taking the limit yields

lim
k→∞

1

k
(Hwk + f +GTλk + ATvk + σδwk) = Hδw +GT δλ+ AT δv = 0, (4.49)

applying (i) we have that Hδw = 0 so we obtain

GT δλ+ AT δv = 0, (4.50)

which completes the proof.

Armed with Proposition 4.5 and the infeasibility conditions in Proposition 4.4. we can
prove the following theorem summarizing the behaviour of FBstab when (4.1) or (4.2) is
infeasible.

Theorem 4.5 (Infeasibility Detection). Suppose that (4.1) is primal or dual infeasible, i.e.,

T−1(0) = ∅. Suppose x0 ∈ Rl is arbitrary, let the sequence of iterates {zk} = {wk, λk, vk}
be generated by FBstab with σmin > 0, εmin = 0, and define δzk = zk+1 − zk. Then

δzk → δz as k →∞ where δz = (δw, δλ, δv) satisfies the following properties:

(i) If δw 6= 0 then the dual QP (4.2) is infeasible and δw satisfies the dual infeasibility

conditions in Proposition 4.4.

(ii) If (δλ, δv) 6= 0 then the primal QP (4.1) is infeasible and (δλ, δv) satisfies the primal

infeasibility conditions in Proposition 4.4.
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(iii) If δz 6= 0 and (δλ, δv) 6= 0 then (4.1) and (4.2) are infeasible.

Proof. (i): Follows by comparing points (i), (ii), (iii), and (v), of Proposition 4.5 with
Proposition 4.4. Note that if δw 6= 0 then fT δw = −σ||δw|| < 0.

(ii): Follows by comparing points (vi), (vii), and (iv) of Proposition 4.5 with Propo-
sition 4.4. Note that since δv > 0 due to point (iv) of Proposition 4.5, the condition
bT δv+ + hT δλ < 0 simplifies to bT δv + hT δλ.

(iii): Follows from points (i) and (ii) above.

4.5 Numerical Experiments

In this section we illustrate the performance of FBstab with some numerical experiments.
In addition to general QPs of the form (4.1), we solve instances of the following optimal
control problem (OCP),

min.
ξ,µ

N∑
i=0

1

2

[
ξi

µi

]T [
Qi STi

Si Ri

][
ξi

µi

]
+

[
qi

ri

]T [
ξi

µi

]
, (4.51a)

s.t. ξ0 = x, (4.51b)

xi+1 = Aiξi +Biµi + ci, i ∈ Z[0,N−1], (4.51c)

Eiξi + Liµi + di ≤ 0, i ∈ Z[0,N ], (4.51d)

where Ai, Qi ∈ Rnx×nx , Bi, Si ∈ Rnx×nu , Ri ∈ Rnu×nu , qi, ci ∈ Rnx , ri ∈ Rnu , Ei ∈
Rnc×nx , Li ∈ Rnc×nu , di ∈ Rnc , ξi, x ∈ Rnx , ui ∈ Rnu , ξ = (ξ0, ..., ξN), and µ =

(µ0, . . . , µN). We require that [
Qi STi

Si Ri

]
� 0 ∀i ∈ Z[0,N ], (4.52)

so the problem is convex. This QP is large but sparse and is often called the simultaneous
or multiple shooting form of the MPC problem [93]. The QP is also often solved in the
so-called condensed form,

min.
µ

1

2
µTHµ+ f(x)Tµ, (4.53a)

s.t Aµ ≤ b(x), (4.53b)
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which is in the control variables only and can be derived by eliminating the state variables
ξ in (4.51) using the dynamic equations see e.g., [17, Section 2.3] or [2]. We consider three
linear MPC benchmark problems; their properties are summarized in Table 4.1.

Control of a Servo Motor [124]: The objective is to drive the motor position y1 to a
desired angular position r = 30◦ while respecting the constraint |y2,k| ≤ 78.5 Nm on the
shaft torque and the constraint |u| ≤ 220 V on the motor input voltage. The continuous
time model is

d

dt
x(t) =


0 1 0 1

−128 −2.5 6.4 0

0 0 0 1

128 0 −6.4 −10.2

x(t) +


0

0

0

1

u(t),

y(t) =

[
1 0 0 0

1282 0 −64.0 0

]
x(t),

which is discretized at 0.05 s using a zero-order hold. The tuning matrices and initial
condition are Qi = diag([103, 0, 0, 0]), Ri = 10−4, and x0 = 0. The traces of this model
in closed-loop with an MPC controller are shown in Figure 4.1, the shaft angular position
is driven to the reference while respecting the constraints on the shaft torque and input
voltage.

Control of Spacecraft Relative Motion [125]: These equations describe the radial,
along track, and across track positions ζ = [x1 x2 x3]T and velocities ζ̇ of a spacecraft
relative to a nominal circular orbit. The control objective is to drive the spacecraft to the
origin from ζ0 = −[2.8 0.01 1] km and ζ̇0 = 0. The system dynamics are given by the
Hill-Clohessy-Wiltshire (HCW) equations,

ẍ1 − 3ω2x1 − 2ωẋ2 = 0, (4.54)

ẍ2 + 2ωẋ1 = 0, (4.55)

ẍ3 + ω2x3 = 0, (4.56)

where ω = 0.0011 s−1 is the mean motion of the reference orbit. The dynamics of x =

(ζ, ζ̇) can be compactly written as ẋ = Acx. The control inputs are modelled as impulsive
thrusts which instantaneously change the velocity of the spacecraft, see [125], so that the
discrete time model is

xk+1 = A

([
ζk

ζ̇k

]
+

[
0

I

]
∆vk

)
= Axk +Buk, (4.57)
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Figure 4.1: Closed-loop response in the servo motor example.
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where u = ∆v is the instantaneous change in velocity due to the impulsive thrusters,
A = eAcτ , and τ = 30 s. The control inputs must satisfy ||uk||∞ ≤ 1 m/s. The
spacecraft velocity is constrained to satisfy ||ζ̇k||∞ ≤ 1 m/s and the tuning matrices are
Q = diag([1 1 1 0.001 0.001 0.001]) and R = I3×3. The closed-loop response of the
system is shown in Figure 4.2.
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Figure 4.2: Closed-loop response for the spacecraft relative motion example.

Control of a Copolymerization Reactor [126]: The following normalized transfer
function models the copolymerization of methyl methacrylate (MMA) and vinyl acetate
(VA) in a continuous stirred tank reactor:

0.34
0.85s+1

0.21
0.42s+1

0.25s+0.5
12s2+0.4s+1 0 6.46(0.9s+1)

0.07s2+0.3s+1

−0.41
2.41s+1

0.66
1.51s+1

−0.3
1.45s+1 0 −3.72

0.8s+1

0.3
2.54s+1

0.49
1.542+1

−0.71
1.35s+1

−0.20
2.71s+1

−4.71
0.008s2+0.41s+1

0 0 0 0 1.02
0.07s2+0.31s+1


.
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The normalized inputs are flows of monomer MMA (u1), monomer VA (u2), initiator
(u3), transfer agent (u4), and the reactor jacket temperature (u5). The normalized outputs
are the polymer production rate (y1), the mole fraction of MMA in the polymer (y2), the
molecular weight of the polymer (y3), and the reactor temperature (y4). All inputs and
outputs are relative to nominal operating conditions [126]. The model was realized in
modal form using the ss command in MATLAB and discretized using a zero-order hold
with a normalized sampling period of 0.5 (corresponding to three hours in physical time).
The resulting model has 18 states, 5 inputs and 4 outputs. The states are initially disturbed
as ξ0,i = sin(i) for i = 1, ..., 18; the control objective is to drive the outputs to the origin.
The inputs are constrained as ||uk||∞ ≤ 0.05, i.e., 5% deviation from nominal. The horizon
length is N = 70, and the weighting matrices are chosen as Q = CTC, where C is the
output matrix from the realization process, and R = 0.1I5×5. Closed-loop traces are shown
in Figure 4.3.
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Figure 4.3: Closed-loop response for the copolymerization example.
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Table 4.1: Problem data for the QPs.

Servo HCW Copoly

Number of States 4 6 18

Number of Controls 1 3 5

Number of timesteps 40 100 200

Horizon Length 30 40 80

Inequality constraints 124 492 810

Sparse Problem

Variables 155 369 1863

Equality constraints 124 246 1458

Condensed Problem

Variables 31 123 405

Hessian condition number 189 3.19× 108 1.4× 103

4.5.1 Implementation Details

We have implemented three variants of FBstab in MATLAB.

fbstab dense solves dense problems of the form (4.1) and is implemented using MAT-
LABs built-in dense linear algebra routines. It solves the Newton-step systems (4.25)
using a Cholesky factorization.

fbstab sparse solves sparse problems of the form (4.1) and is implemented using
MATLABs built-in sparse linear algebra routines. It solves the Newton-step systems
(4.25) using MA57 [127].

fbstab mpc solves problems of the form (4.51). It exploits the sparsity structure present
in (4.51) when computing products with H,G, or A and uses a Ricatti-like recursion,
similar to the one in [53], to solve (4.25) efficiently.

The default parameters are σ0 = σmax = σmin =
√
εm, ζ = 10−14, τa = 10−4, τr = 0,

τinf = 10−8, α = 0.95, β = 0.7, κε = 0.2, κσ = 0.1 εmax = 0.1, εmin = 10−12, η = 10−8,
where εm is machine precision; εm ≈ 10−16 for our implementation. We also use a non-
monotone linesearch technique [128] to improve performance without jeopardizing con-
vergence. We recommend this set of parameters for most problems and when warmstarts
are available e.g., when solving sequences of parameterized problems. The choice of the
parameter σ > 0 is important for the practical performance of the algorithm. Based on our
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numerical experience, for most problems we found a fixed value
√
εm to be large enough

to ensure the linear systems are sufficiently well conditioned without slowing convergence
of the outer loop. An investigation of the sensitivity of a related PPA based method to the
σ parameter in [109] indicates the existence of a wide range of σ values that offer good
performance. Our numerical experience indicates that this is the case for FBstab as well.

We used the following more conservative parameters for the hard Maros-Meszaros
(MM) test set: σ0 = 1000

√
εm, σmax = ε

1/4
m , σmin = 10−10, τa = 10−5, τr = 10−8,

β = 0.9 and used a monotone linesearch. Unlisted parameters are the same as in the de-
fault case. We recommend this parameter set for very difficult problems when no warmstart
is available.

Remark 4.3. In practice, we do not expect convergence to the exact solution, even in the

limit, due to the limitations of finite precision arithmetic. Instead we pick parameters that

yield fast and robust convergence to a neighbourhood of the solution set even if they only

approximately meet the requirements of Theorem 4.3. Notably, we pick εmin ≈ 0 and

σmin > 0.

4.5.2 Solver Scaling

To demonstrate that FBstab can efficiently solve sparse problems, we compared fbstab mpc

and fbstab sparsewith the external solvers: (1) quadprog (MATLAB 2017b, interior-

point-convex), (2) ECOS (Embedded Conic Solver) [52] and (3) qpOASES [98]. We also
implemented the following in MATLAB: (4) the dual active set (DAS) method [99], in-
cluding factorization updating, (5) QPNNLS (QP Nonnegative Lest Squares) [109], (6)
GPAD [51] and (7) OSQP (Operator Splitting QP) [105]. The DAS method, QPNNLS, and
qpOASES solve (4.53) and included the cost of condensing in the analysis, while all other
methods solve (4.51) directly. The MATLAB routines were converted into C code using
the mex command. We found that GPAD was not competetive; it has been omitted from
Figures 4.4 and 4.5 for clarity.

We solved the first QP, i.e., at t = 0, in the servo motor and copolymerization exam-
ples9 and measured wall clock times as the horizon was varied from N = 10 to N = 1000.
All methods were cold started at the origin, the experiments were performed on a 2015
Macbook Pro with a 2.8 GHz i7 processor and 16 GB of RAM running MATLAB 2017b.
Recorded execution times were averaged as necessary to obtain consistent timings. Fig-
ures 4.4 and 4.5 display the results. ECOS, quadprog, OSQP, and FBstab scale10 like

9The spacecraft example dynamics are unstable; the resulting condensed problems are ill-conditioned
enough at large N to make most of the methods fail.

10O scalings are determined using least-squares power fits.
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O(N). The active set methods qpOASES, QPNNLS, and DAS are efficient for small
problems but scale like O(N3). The DAS method is the quickest method for the servo
example for short horizons before being overtaken by fbstab mpc. OSQP is the fastest
method for the copolymerization example but struggles with the servo example (it always
reaches its iteration limit) showcasing the conditioning dependency typical of first order
methods. As expected, active set methods are very effective for small problems but are
quickly overtaken. FBstab is shown to be faster than several interior point methods at all
horizon lengths, fbstab mpc is faster than fbstab sparse since it is converted into
C code and compiled instead of running directly in MATLAB. Overall, FBstab scales well
as is competitive with and often superior to several established solvers.
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Figure 4.4: Solver scaling for the servo motor example.
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4.5.3 Maros-Meszaros Test Set

We also consider the Maros-Meszaros (MM) test set of hard QPs. We solved the entire test
set with fbstab sparse, and the open source solvers OSQP [105], and ECOS [52]. We
also solved the 69 problems with less than 1000 decision variables and less than 1000 con-
straints with qpOASES [98]. Larger problems were prohibitively slow because qpOASES
uses dense factorization routines.

We use FBstab’s stopping criterion to decide if a problem is solved or not, i.e., we
consider a problem solved if ||π(z∗)|| ≤ 10−4 + 10−8(||p||+ 1), where p is defined in (4.9)
and z∗ is the solver output. We used default settings except for tolerances and iteration
limits. We adjusted the tolerances for OSQP and ECOS to ensure good agreement between
our stopping criterion and each solvers internal one. The absolute and relative tolerances
for OSQP were set at 10−5 and 10−8. The absolute and relative tolerances for ECOS were
set at 10−6 and 10−8. FBstab and ECOS were allowed up to 500 Newton iterations, OSQP
was allowed 8000 (the default is 3000) iterations, and qpOASES was allowed 3000 active
set changes. FBstab was initialized from the origin, all other solvers used their default
starting points.

The results are shown in Figures 4.7 and 4.8 in the form of performance profiles [129].
Overall, fbstab sparse is extremely reliable, solving 84.7% of the problems. The ac-
tive set solver qpOASES was nearly as reliable for the small problems but slightly slower
than FBstab. OSQP and ECOS were fast when they were successful but not as reliable.
The relative slowness of fbstab sparse is expected, it is implemented in MATLAB
(MATLAB sparse matrix algebra cannot yet be automatically converted to C code) while
the other methods are implemented in C/C++. We originally designed FBstab for parame-
terized problems, such as those arising from model predictive control, and are encouraged
by its performance when exercised using the MM test set despite the lack of warmstarting
information.

Overall, the most difficult problems for FBstab tend to be those with poor scaling,
particularly when the optimal primal and dual variables are of very different magnitudes.
Investigating preprocessing or preconditioning techniques could help with this in the fu-
ture. We didn’t observe any particular difficulties with semidefinite problems. We found
that for some of the ill-conditioned problems in the MM test set that solving the first sub-
problem could be slow. Using a monotone linesearch and increasing the initial regulariza-
tion parameter improved the efficiency of the Newton-type subproblem solver during its
initial “damped” phase for the first subproblem after which good warmstarts for each sub-
sequent subproblem become available. Improving the performance of Algorithm 3 during
the “damped” Newton phase is a topic for future research.
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We note that ECOS had some numerical difficulties, this is consistent with [105].
Specifically, it has a tendency to declare ill-conditioned but feasible problems infeasible.
The authors of OSQP observed a higher success rate for OSQP [105] than we did, but
used significantly more relaxed tolerances; the default relative and absolute tolerances for
OSQP are 10−3 and it uses a different, more generous, relative stopping criterion. These
tolerances are not entirely unreasonable, given that OSQP is a first order method, but since
ECOS, FBstab, and qpOASES are second order methods we opted for a more stringent
criterion. Performing fair and general comparisons between first and second order methods
remains challenging.
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Figure 4.7: Performance profiles over all problems in the Maros-Meszaros test set with
n ≤ 1000 and m+ q ≤ 1000.

4.5.4 Benchmarking on Real-time Hardware

To investigate the performance of FBstab on embedded hardware we performed some
benchmarking on a Speedgoat Baseline Real-time Target Machine (SGTM). The SGTM
(2.0 GHz Celeron CPU, 4 GB RAM) is a rapid prototyping platform which runs a real-
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time operating system (RTOS) and is representative of an embedded computing environ-
ment. Using the RTOS allows us to obtain deterministic execution time measurements.
Moreover, we did not use any advanced factorization routines, e.g., LAPACK, so solving
ill-conditioned problems is more difficult.

We deployed fbstab mpc and fbstab dense on the SGTM. For comparison we
implemented the following in MATLAB: (1) FBRS (Fischer-Burmeister Regularized and
Smoothed) [50], (2) DAS (Dual Active Set) [99], (3) QPNNLS [109], (4) PDIP (primal-
dual IP using Mehrotra’s predictor-corrector) [49, Algorithm 14.3], (5) GPAD (accelerated
dual gradient projection) [51], and (6) accelerated ADMM [106]. Since quadprog can-
not codegenerate, ECOS and OSQP do not have Simulink interfaces, and qpOASES was
outperformed by DAS during the scaling trials all three were omitted from testing; GPAD
and ADMM were not competitive and were omitted as well. The methods were converted
into C code using Simulink Real-time (2017b). A method is deemed to have failed if it is
stalls and is unable to solve any of the QPs in the sequence to the desired precision (10−4).
Note that we have implemented LDLT and QR factorization updating for QPNNLS and
DAS to ensure a competitive comparison.

The results are shown in Table 4.2. When warmstarting is enabled, fbstab mpc is
the fastest method in the worst case for all three examples and fbstab dense is com-
petitive with the IP and AS methods, especially on the larger copolymerization example.
In terms of average execution times11 fbstab mpc and fbstab dense are dominant.
When warmstarting is disabled, the PDIP and active set methods become more competitive,
however fbstab mpc is still more efficient.

Overall, when the cost of condensing is considered, see Remark 4.4, fbstab mpc

is shown to outperform the other methods tested in terms of both maximum and average
execution time. FBstab derives significant benefit from warmstarting, this is especially
noticeable for the HCW example, and is significantly faster than fbstab dense, show-
casing the importance of specialized linear algebra routines. Further, both DAS and FBRS
fail on the ill-conditioned HCW example while their regularized versions, QPNNLS and
FBstab respectively, succeed, demonstrating the expected improved robustness due to prox-
imal regularization. FBstab is often faster than FBRS, demonstrating that the addition of
proximal regularization makes the methods more robust without a significant reduction in
speed.

Remark 4.4. The cost of condensing, i.e., of converting (4.51) to (4.53) is included in the

results reported in Table 4.2. This simulates solving e.g., trajectory tracking problems or

11Average execution times are an indicator of power consumption. This is an important metric in aerospace
applications where reduced power consumptions leads to e.g., extended range for drones.
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real-time iteration [63] subproblems. These computations can sometimes be moved offline,

in this situation the normalized cost of condensing listed in Table 4.2 should be subtracted

from each row of the last five columns. In this scenario, the DAS method is the best method

for the servo motor example.

Table 4.2: Summary of normalized Speedgoat benchmarking reporting the maximum and
average QP solutions times for each sequence. Warm and cold starting are indicated by W
and C respectively.

FBstab FBstab FBRS PDIP NNLS DAS
MPC Dense
Servo Motor, Normalization = 4.5 ms
Normalized Cost of Condensing = 1.1

MAXW 1.00 2.9 2.4 3.2 3.3 1.7
AVEW 0.2 1.4 1.4 2.1 1.8 1.3
MAXC 1.5 5.0 5.0 3.0 2.9 2.1
AVEC 0.2 1.6 1.6 2.1 1.8 1.3

Spacecraft, Normalization = 63.9 ms
Normalized Cost of Condensing = 1.5

MAXW 1.00 14.8 F 11.7 15.6 F
AVEW 0.1 3.3 F 8.3 6.5 F
MAXC 3.4 73.2 F 29.3 7.6 F
AVEC 2.2 62.8 F 25.5 3.7 F

Copolymerization, Normalization = 97.1 ms
Normalized Cost of Condensing = 76.3

MAXW 1.00 96.6 102.9 238.7 94.4 149.2
AVEW 0.4 82.5 82.6 204.2 85.8 96.2
MAXC 1.5 113.5 112.9 238.2 88.4 293.3
AVEC 0.3 83.0 82.9 205.3 85.9 101.7

4.5.5 Degenerate and Infeasible Problems

FBstab is capable of detecting both primal and dual infeasibility and handling high degen-
erate problems. Consider a double integrator, its state is ξ = (ξ1, ξ2), where ξ1 is position,
ξ2 is velocity and the control input µ is acceleration. Next consider the following optimal
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control problem

max.
ξ,µ

N∑
i=0

[
1 1

]
ξi, (4.58a)

s.t. ξ0 = [0, 0]T , ξN ∈ Xf (4.58b)

(4.58c)

ξi+1 =

[
1 1

0 1

]
ξi +

[
0

1

]
µi, i ∈ Z[0,N−1], (4.58d)

µi ∈ U , i ∈ Z[0,N ]. (4.58e)

Letting N = 4, Xf = {(ξ1, ξ2) | ξ1 = 4}, and

U =

{
µ |
[
1 −1 0

]T
µ+

[
−1 −1 0

]T
≤ 0

}
(4.59)

makes the dual of (4.58) degenerate, the constraint 0µ ≤ 0 contradicts the LICQ. When
fbstab mpc is applied to this problem, starting from the origin, it signals optimality after
7 Newton iterations and 3 proximal iterations.

Letting N = 3, Xf = {(ξ1, ξ2) | ξ1 = 4}, and U = {u | |u| ≤ 1} renders (4.58)
primal infeasible. Intuitively, the system is unable to reach its position goal in N = 3 steps
due to the acceleration limit (N = 4 is feasible). When fbstab mpc is applied to this
problem, starting from the origin, it signals primal infeasibility after 11 Newton iterations
and 2 proximal iterations.

Letting N = 3, Xf = R2, and U = {u | u ≥ 0} makes (4.58) dual infeasible, i.e.,
unbounded above. Intuitively, this occurs because the objective of (4.58) is to maximize
velocity and, since µ can be increased without bound, the cost can be made arbitrarily large
by making µ arbitrarily large. When fbstab mpc is applied to this problem, starting from
the origin, it signals dual infeasibility after 11 Newton iterations and 1 proximal iteration.

4.6 Conclusions

This chapter presents FBstab, a proximally stabilized Fischer-Burmeister method for con-
vex quadratic programming. FBstab is attractive for real-time optimization because it is
easy to code, numerically robust, easy to warmstart, can exploit sparsity, and converges or
detects infeasibility under only the assumption that the Hessian of the quadratic program
is positive semidefinite. An open source MATLAB implementation of FBstab is available
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online. Future work includes exploring the application of stabilized semismooth Newton-
type methods to nonlinear problems and continued development of an open source C++
implementation of FBstab.
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CHAPTER 5

Model Predictive Emissions Control of a Diesel
Engine Airpath

5.1 Introduction

Increasingly stringent emissions and fuel economy regulations have created a need for more
complex engine systems and sophisticated engine control strategies. Diesel engines of-
fer superior fuel economy compared to their gasoline counterparts; however sophisticated
strategies are needed to manage oxides of nitrogen (NOx ) and particulate matter (PM)
emissions to meet regulatory standards. Many modern diesels incorporate a Variable Ge-
ometry Turbocharger (VGT) to provide variable boost, and an external Exhaust Gas Recir-
culation (EGR) system to reduce emissions. However, the addition of both the turbocharger
and EGR systems into the engine design introduces strong nonlinearities and interactions,
complicating control development.

Emissions control in automotive diesels is especially challenging as, in contrast to e.g.,
marine or generator applications, load and engine speed are highly transient, leading to
frequent emissions spikes which must be managed. In particular, smoke control is strongly
coupled to torque response (drivability) and there is a strong tradeoff between transient
NOx and smoke production. Model predictive control (MPC) provides a useful framework
for managing these tradeoffs using real-time constraint enforcement. The application of
MPC to diesel engine control has been considered in references [130–136]. Commercial
software for automotive MPC development is also available [137]. In this chapter, we
present an MPC strategy for emissions management in turbocharged diesels with external
EGR and apply it to a 2.8L diesel engine.

The contributions of this chapter are as follows: We develop a novel SMPC controller
for the DAP that coordinates the EGR rate setpoint and fuel input to enforce combus-
tion quality constraints. The SMPC controller uses move blocking, symbolic tools, time-
distributed optimization, and a version of FBstab to achieve real-time feasibility despite, the
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Figure 5.1: A diagram of the diesel engine airpath.

fast sampling rate required by the engine. In addition, we demonstrate on an experimental
engine that our controller is able to outperform the current state-of-the-art industrial bench-
mark controller and, in particular, reduce engine out NOx and hydrocarbon emissions by
10− 15% relative to the benchmark. Moreover, we accomplish this using only production
sensors, meaning that our controller can be deployed on existing engines without hardware
modifications. Taken together, the material in this chapter illustrates how the algorithmic
and theoretical tools developed in Chapters 3 and 4 can be used to enable the application
of MPC to physical systems to make an impact in the real-world.

The material in this chapter is distinct from existing application domain literature; it
directly considers emissions management for a high speed automotive diesel engine using
only sensors that are available in production vehicles. Many publications only consider the
tracking of intake pressure and EGR (or mass airflow) setpoints [130–136] rather than high
level objectives such as fuel efficiency or emissions. Other works which directly consider
high level (economic) objectives either use sensors which are not available in production
vehicles [138] [139] or consider heavy duty [140], off-highway [141], or marine/generator
[139] diesel engines which are not subject to the same transient conditions as an automotive
diesel. In particular, we demonstrate visible smoke control during fast transients which is
both challenging and specific to automotive diesel applications.

The results in this chapter are the culmination of a multi-year collaborative project
between Toyota Motor North America, Toyota Motor Corporation, and the University of
Michigan. The SMPC controller is primarily my work and is an extension of the economic
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MPC controller presented in [142]. This chapter presents an updated formulation, which
removes the need for a NOx sensor, and experimental data, [142] contains only simulation
results. The controller architecture, see Figure 5.5, also includes a NMPC based inner-loop
airpath controller, which is an evolution of the work presented in [134] and [31]. A partial
history of the project and an overview of the NMPC controller development can be found
in [143], more details on the final NMPC controller can be found in [30].

Remark 5.1. It should be emphasized that, while some promising experimental results have

been reported [136], most literature on NMPC for the DAP involves only simulation studies

[134, 144, 145] due to the high computational complexity of nonlinear optimization and

the limited computational power available in engine control units. These computational

considerations also limit the complexity of OCP formulations, leading to reduced controller

performance. The theoretical and algorithmic developments presented in Chapters 3 and

4 are essential for not only allowing experimental testing to proceed, but also enabling

the use of more sophisticated OCP formulations that allowed us to design controllers that

perform well in experimental testing.

5.1.1 Layout

A model predictive controller is fundamentally based on three constituents: (i) Prediction
models used to estimate the response of the system to a control action and any associ-
ated estimators, (ii) An optimal control problem (OCP) formulation, and (iii) a method for
solving the aforementioned OCP in real-time. Section 5.2 provides some background on
engine control and describes the engine system, Section 5.3 describes the prediction mod-
els used in the supervisory controller. Section 5.4 describes the control objectives, con-
troller architecture, and the optimal control problem. Section 5.5 describes how the OCP is
solved in real-time. Section 5.6 contains experimental results and analysis demonstrating
the performance and reliability of the proposed strategy. Finally, Section 5.7 contains some
concluding remarks.

5.2 Engine Control Background

Figure 5.2 is a block diagram of a typical diesel powertrain. The driver inputs a pedal angle
command that is transformed into a fueling rate command qtrg. The engine then produces
torque which is applied to the transmission input shaft, this torque is transmitted to the
wheels after passing through the transmission and the differential. The wheel torque inter-
acts with the road and accelerates the vehicle. The engine also produces emissions which
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are heavily regulated; in modern vehicles engine exhaust gases pass through an aftertreat-
ment system, see e.g., [146] for more details, before being emitted into the atmosphere.
From the perspective of the engine there are two inputs, the fueling rate command (qtrg)
and the engine speed (Ne). The fueling rate command represents a driver acceleration de-
mand, the engine speed is determined by the powertrain; neglecting driveshaft compliance
and wheel slip, it is a function of the vehicle speed, the transmission gear ratio, and the
differential gear ratio. The outputs are the engine torque applied to the transmission input
shaft (τq), the NOx (ψNOx), and total hydrocarbon (THC) (ψTHC) concentrations, and the
exhaust gas opacity (ψOP ). More details on powertrain modelling and control can be found
in e.g., [147] or [148].

Pedal	Map Engine Transmission Vehicle	
Dynamics

After
Treatment

𝜏" 𝜏#

𝑠%&'

𝑠%&'

Tailpipe
Emissions

𝜓)*
𝜓+),
𝜓-./

𝑞123

𝑁&

Pedal	
angle

Figure 5.2: A high level diagram illustrating the architecture of a typical diesel powertrain.

A schematic of the diesel engine is shown in Figure 5.1. The engine consists of a cylin-
der block, intake and exhaust manifolds, an external EGR system, and a turbocharger. The
Manifold Air Pressure (MAP) and Mass Air Flow (MAF) sensors are used to measure the
intake manifold pressure and compressor flow respectively. The exogenous inputs to the
system are the fuel target and the engine speed. Fluid flows through the engine are con-
trolled by the EGR throttle, EGR valve and VGT. The EGR valve controls the amount of ex-
haust gas allowed to flow into the intake manifold; adding exhaust gas into the intake man-
ifold reduces peak combustion temperature in the cylinders, lowering NOx concentrations,
but can cause poor quality combustion, leading to vibration, roughness, and smoke. The
EGR throttle is used to reduce airflow into the intake manifold allowing for a higher propor-
tion of exhaust gases when it is beneficial. The VGT influences the pressure in the intake
manifold by controlling how much energy is extracted from the exhaust gases. Higher
intake manifold pressure increases air flow into the cylinders, increasing engine power.
In addition, in this work we consider the total fueling rate as a control input; an external
injection strategy is used for the rest of the fuel path control.

86



5.3 Engine Modelling

This section describes the prediction models used SMPC controller. The engine operating
condition consists of the fueling rate target qtrg and the engine speed Ne, i.e.,

ρ = [qtrg Ne]
T . (5.1)

The state vector for the supervisory controller consists of the intake pressure pim, exhaust
pressure pex, compressor mass flow rate ṁc, intake manifold burnt gas fraction F1, and
exhuast manifold burnt gas fraction F2, the control vector consists of the EGR rate target
passed to the airpath controller χtrg and the fueling rate command applied to the engine q
i.e.,

x = [pim pex ṁc F1 F2]T , and u =
[
χtrg q

]T
. (5.2)

The fueling rate q is proportional to the fuel mass flow ṁf over the engine speed, i.e.,
to ṁf/Ne, and has units of volume per stroke. The EGR rate χ is defined as the mass
flow through the EGR valve into the intake manifold ṁegr over the total mass flow into
the cyinders ṁcyl, i.e., χ = ṁegr/ṁcyl. The fueling rate applied to the engine q may be
different than the target qtrg in order to enforce combustion quality constraints. The state
vector of the supervisory controller can be partitioned into airpath and EGR loop variables,
denoted by

ζ = [pim pex ṁc]
T , and Υ = [F1 F2]T , (5.3)

respectively so that x = [ζT ΥT ]T . Throughout the chapter we will make use of a 2
dimensional grid of operating conditions,

ρ1 ρ15 · · · ρ141

ρ2 ρ16 · · ·
...

... . . . . . . ...
ρ14 · · · · · · ρ154

 =


(qtrg1 , Ne1) (qtrg1 , Ne2) · · · (qtrg1 , Ne11)

(qtrg2 , Ne1) (qtrg2 , Ne2) · · · ...
... . . . . . . ...

(qtrg14 , Ne1) · · · · · · (qtrg14 , Ne11)

 (5.4)

which are contained within the box [qtrg1 , qtrg14 ] × [Ne,1, Ne,11] and are used for scheduling
gains, targets, and model parameters. This grid was chosen so as to contain the test cycles
used for experimental validation. If the controller described in this chapter was to be used
in a production vehicle the grid would be expanded to cover the entire engine operating
region. We use a dense uniform grid for simplicity, it would be more efficient to adapt
the spacing of the gridpoints so the density is higher where the dynamics change more
rapidly. However, because we are able to gather data quickly, we found the effort required
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to implement an adaptive scheme was unnecessary. Note that having additional gridpoints
does not noticeably affect online complexity.

5.3.1 Closed-loop Airpath Modelling

The closed-loop airpath prediction model is used by the SMPC controller to estimate the
response of the inner-loop to EGR target and fueling rate commands. The model is data
driven and is identified from experimental data. We use a linear parameter varying (LPV)
model, identified using the local LPV modelling approach [149]. At each operating point
ρi, i = 1, . . . , 154, we identify a model of the form

ζ+ = Fi + Aiζ +Biu, (5.5)

where Fi ∈ R3, Ai ∈ R3×3, and Bi ∈ R3×2, using linear least squares. The final model is
of the form

ζ+ = F (ρ) + A(ρ)ζ +B(ρ)u, (5.6)

where A : R2 → R3×3, B : R2 → R3×2, and F : R2 → R3 are operating condition
dependent matrices. To construct A,B and F , we apply linear interpolation to the model
coefficients Ai, Bi, Fi for i = 1, ..., 154. Figure 5.3 illustrates a typical outcome of the
fitting process. The model quality is good over most of the operating range since the inner
loop controller tends to “linearize” the closed loop plant from the perspective of the SMPC
controller. However, care must be taken to ensure that stability of the model is enforced
during the fitting process. Instability can occur when the exhaust pressure is insensitive to
the perturbations, causing the identification procedure to attempt to capture unstable noise.
We handle this in an ad hoc manner by filtering the exhaust pressure signal and adjusting
the weighting factors used in the least squares problem. More systematic procedures will
be developed in future work. Further, to ensure correct behaviour when used online, the DC
gain of the identified EGR rate target to EGR rate transfer function must have the correct
sign. If this is not true then the identification experiment should be repeated with smaller
EGR rate target perturbations.

Remark 5.2. We have observed that the closed-loop performance of the SMPC controller

is not very sensitive to the accuracy of the closed-loop airpath model, likely because the

presence of the inner loop controller makes the closed-loop airpath dynamics relatively

benign. We were able to obtain good performance as long as the time constants of the

modelled states were of the correct order of magnitude.
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Figure 5.3: Fitting result for a local LTI model of the closed-loop airpath at Ne = 1400
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5.3.2 Burnt Gas Fraction Modelling

The burnt gas fraction (BGF) model is used by the SMPC to predict the emissions response
of the system by tracking the time evolution of the burnt gas fractions in the intake man-
ifold, F1, and exhaust manifold, F2. We use the model from [150], expressed in the form
Υ̇ = G(ζ)Υ + b(ζ)q, the BGF equations can be written as[

Ḟ1

Ḟ2

]
=

[
−(ṁegr+ṁth)

m1

ṁegr

m1
ṁcyl

m2

−(ṁcyl+ṁf )

m2

][
F1

F2

]
+

[
0

1+(A/F )E
m2

]
cqNeq, (5.7a)

where
m1 =

pimVim
RairTim

, m2 =
pexVex
RexTex

, (5.8)

cq is the constant such that ṁf = cqNeq, Rair is the gas constant of air, Rex is the gas
constant of the exhaust gas, and Vim, Vex, Tim, and Tex are the volumes and gas temperatures
of the of the intake and exhaust manifolds. The effective air-fuel ratio, denoted by (A/F )E ,
quantifies the mass of oxygen consumed per unit fuel and is calibrated as a function of
operating condition using exhaust analyzer data. The cylinder flow is estimated as a linear,
operating condition dependent function of intake pressure, i.e.,

ṁcyl = a(ρ)pim + b(ρ), (5.9)

the EGR flow is estimated as ṁegr = ṁcyl − ṁc, and the throttle flow, ṁth, is assumed to
be equal to the compressor flow. In steady state the BGF equations reduce to the following
relationship between the gas fractions and EGR rate: χ = F1/F2 = ṁegr/ṁcyl. The BGF
equations are stiff so we discretize them using the implicit Euler integration scheme [151].
Since the equations are linear in Υ the update equation can be determined analytically as

Υi+1 = (I2×2 −∆τiG(ζi, ρi))
−1(Υi + ∆τib(ζi) qi), (5.10)

where ∆τi is the integration step size. In Figure 5.4 we compare the BGF model, under
the temperature, EGR flow, and throttle flow assumptions, against measurements from a
wideband oxygen concentration sensor, situated immediately downstream of the VGT. The
model is in good agreement with the measurements; the placement of the sensor induces a
filtering effect which accounts for the error in transients.
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5.4 Control Design

The objective of diesel airpath control is to promptly supply the torque requested by the
driver, while maximizing fuel economy, respecting regulatory constraints on NOx and par-
ticulate matter (PM), and limiting visible smoke. The inputs to the system are the engine
speed, and the fueling rate target. The system outputs are split into vectors of measure-
ments, and performance variables, defined respectively as,

ym =
[
pim ṁc Ne

]T
and yp =

[
ψOP ψNOx ψTHC τq

]T
. (5.11)

The measurements, ym, are available for feedback. The performance outputs: torque, ex-
haust opacity (smoke), NOx concentration, and Total Hydrocarbon Concentration (THC),
are measured for evaluation purposes but are not available for feedback. Note that THC is
strongly correlated with particulate matter.

We concern ourselves primarily with engine-out emissions. Regulatory constraints are
on tailpipe emissions, however, reducing engine-out emissions is an important intermediate
step in meeting regulatory requirements. In addition, reduced engine-out NOx emissions
means a smaller urea selective catalytic reduction module can be used to meet the same
tailpipe emissions targets. This could allow a manufacturer to use a lighter, cheaper af-
tertreatment system which can have positive effects on overall vehicle cost and fuel econ-
omy.

5.4.1 Architecture and Control Strategy

The overall architecture of the controller is shown in Figure 5.5. The outer-loop supervisory
controller generates an EGR rate target and a fueling rate input. The fueling rate input is
applied directly to the engine while the EGR rate target is passed to the inner-loop airpath
controller. The airpath controller tracks EGR rate and intake pressure commands. The
supervisory controller does not control ptrgim which is instead obtained from a map. We chose
this architecture because the SMPC controller is focused on combustion quality control and
combustion quality is most sensitive to χ and q.

In typical engine control strategies, the EGR rate and intake pressure targets are static
functions of the operating condition, i.e., χ̄egr(ρ) : R2 → R and p̄im(ρ) : R2 → R, and are
implemented using lookup tables. These targets are obtained during engine development
and are chosen to be “optimal” in steady state. The steady state maps can be chosen based
on a variety of objectives e.g., maximizing fuel economy subject to emissions limits as
well as other constraints, e.g., maximum temperature, pressure, etc. There is a complicated
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tradeoff between fuel economy, NOx , and PM/THC emissions so determining the steady
state maps is nontrivial. A variety of methods have been investigated in the literature for
this purpose including constrained optimization techniques [152, 153], extremum seeking
[154], and model based calibration [155]; engine manufacturers and suppliers also employ
sophisticated proprietary methodologies.

We assume that these maps are provided and we focus on transient optimization, i.e.,
using MPC to shape the transient response of the system as it transitions between operating
points. The steady state maps usually neglect dynamic effects, e.g., the intake and exhaust
manifold filling dynamics, so transient shaping can have a significant impact on perfor-
mance. For example, a significant portion of cumulative emissions production occurs in
transients, see e.g., Figure 5.12, and drivability depends on the response speed of the sys-
tem to fuel commands. Moreover, we have observed that remaining as close as possible to
the steady-state targets is a very effective strategy, this is reflected in the SMPC formulation
in Section 5.4.3 which minimizes deviation of χtrg from χ̄egr and q from qtrg in a manner
similar to a reference governor [156]. We hypothesize that this is because emissions for-
mation occurs in the cylinders at a fast timescale and is essentially a quasi-static function
of the airpath states. Thus remaining near the optimal steady state targets during transient
operation is nearly optimal and provides good performance in practice (as we demonstrate
in Section 5.6). In a previous paper [142], we explored simultaneous setpoint determination
and constraint enforcement using Economic MPC. We found that, in practice, determining
optimal setpoints online was slow and lead to poor performance. This motivated our cur-
rent approach of “precomputing” the setpoints, i.e., using the predetermined setpoint maps
χ̄egr(ρ) and p̄im(ρ).

Most inner-outer loop architectures operate at different rates to minimize interactions
between the loops. The supervisory and airpath controllers operate at the same update rate
to allow the supervisory controller to respond to driver fuel requests as quickly as sup-
ported by the hardware. This minimizes delays between driver commands and the system
response leading to a more responsive vehicle. We manage the possibility of interference
between the loops by using closed-loop models that account for the inner loop controller as
the SMPC prediction models. This technique is well established in the reference governor
literature [156]. Further, it allows us to decompose constraint handling and nonlinearity
compensation/integral action and makes the architecture modular; the inner loop airpath
controller can be of any type, including e.g., PID or MPC etc. However, choice of inner
loop controller will affect the performance of the overall system so using a high perfor-
mance inner loop controller is advantageous. The results presented in this chapter all use a
nonlinear MPC controller for the airpath controller. More details on this controller can be
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Figure 5.5: A schematic of the MPC control architecture; see Section 5.3 for notation.
In this work, the supervisory controller is a supervisory MPC (SMPC) controller and the
airpath or inner-loop controller is a nonlinear MPC (NMPC) controller.

found in [31, 143] and [30].

Remark 5.3. The controller presented in this chapter does not use cylinder pressure, NOx ,

opacity, or oxygen concentration sensors for feedback. As a result, it can be implemented

using only sensors available in a standard production vehicle.

5.4.2 Estimator Design

The EGR flow is estimated using a steady state mass balance equation, ṁegr ≈ ṁcyl −
ṁc, and the cylinder flow is estimated as a function of the operating condition and intake
pressure using a static regression map. The EGR rate is calculated as χ = max(0, ṁegr

ṁcyl
).

The burnt gas fractions are obtained by propagating (5.7). The normalized fuel-air ratio is
estimated as

ψ(x, u, ρ) =
ṁf (u, ρ)

ṁcyl(pim, ρ)(1− F1)

(
A

F

)
s

, (5.12)

where (A/F )s is the stoichiometric air-fuel ratio of the fuel. The cylinder flow is a function
of pim and ρ as described in (5.9) and ṁf = cqNeq where cq > 0 is a fixed constant
that depends on the engine. Thus the fuel-air ratio is a function of the current operating
condition, and the SMPC state and control vectors i.e., φ = φ(x, u, ρ). The normalized
fuel-air ratio is strongly correlated with smoke production as shown in Figure 5.6.

The intake temperature, exhaust temperature and the exhaust pressure estimates are ob-
tained from the engine control unit (ECU). Some literature on constructing these estimators
includes [157–159].
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Figure 5.6: Correlation of the normalized fuel-air ratio with smoke.

5.4.3 Optimal Control Problem Definition

The objective of the supervisory layer is to enforce safety, and fuel-air ratio constraints to
limit smoke during transients as unobtrusively as possible. In this context, safety is ensured
by an upper bound on the fuel input and EGR rate to prevent damage to the engine. The
following optimal control problem is solved at each sampling instance for the fueling rate
and EGR target. The index i runs over the prediction horizon while the index k indicates
the sampling instance; the notation ξi|k indicates the predicted value of ξ at the ith step in
the prediction horizon at time tk.

min.
s,µ,ξ

J(s, ξ, ρk) =
N∑
i=0

l(µi|k, µi−1|k, ρk, s), (5.13a)

s.t ξi+1|k = fs(ξi|k, µi|k, ρk,∆τi), i = 0, ... , Ns − 1, (5.13b)

ξ0|k = xk, (5.13c)

φ(ξi|k, µi|k, ρk)− φl(Ne,k, ṁc,k) ≤ s, i = 0, ... , Ns − 1, (5.13d)

0 ≤ χtrgi|k ≤ χ̄egr(ρk), i = 0, ... , Ns − 1, (5.13e)

0 ≤ qi|k ≤ qtrgk , i = 0, ... , Ns − 1, (5.13f)

s ≥ 0, (5.13g)

where µ =
(
µ0|k, ... , µN−1|k

)
, and ξ =

(
ξ1|k, ..., ξN |k

)
. The OCP is parameterized by the

current state estimate xk and the current operating condition ρk. The quantity φl(Ne, ṁc) is
the fuel-air ratio limit, it corresponds to when the engine begins to produce visible smoke
and is a characteristic of the engine. It is determined experimentally during engine charac-
terization, it increases with compressor flow and decreases with engine speed. The fuel-air
ratio φ is computed using (5.12).
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5.4.3.1 Stage Cost

The stage cost function is given by

l(µ, µ̄, ρ, s) = γs(χ
trg − χ̄egr(ρ))2 + αs(q

trg − q) + βss+ ||µ− µ̄||2Rs
, (5.14)

where αs, βs, γs > 0, and Rs � 0 are weighting parameters, and reflects tracking objec-
tives for the EGR rate target and fueling rate, a penalty to soften the fuel-air ratio (FAR)
constraint to guarantee feasibility, and a damping term1. Since the cost function has no
dependence on the system outputs, the fuel command and/or EGR rate target are only mod-
ified in response to predicted constraint violation, and, as a result, the SMPC controller can
considered a hybrid between an MPC controller and a reference governor [156]. Together
with (5.13d) and (5.13g) the slack penalty term, βss, defines an `1 softened constraint on
the fuel-air ratio, which is used to limit smoke. The fuel tracking term, α(qtrg − q), which
is equivalent to αs|qtrg− q| due to (5.13f), promotes drivability. The remaining constraints,
a lower bound on χtrg and a fueling rate nonnegativity constraint in (5.13f), make the con-
trol constraint set compact. We use linear or 1-norm penalties for both the fuel tracking
and fuel-air ratio constraints because they are more robust to ill-conditioning compared to
quadratic penalties, ensuring that we are able to reliably solve (5.13) numerically.

5.4.3.2 Prediction Model

Achieving a sufficiently long prediction horizon to capture the dynamics of interest using
a uniform prediction horizon discretization requires a large number of discrete timesteps.
Unfortunately, additional timesteps introduce additional decision variables which increases
computational complexity. As a countermeasure, we implemented a non-uniform integra-
tion timestep in the prediction model. Figure 5.7 illustrated the idea. This technique is
related to move-blocking [160] and adaptive numerical integration [1]. It was introduced
in [161], which also provides stability conditions for the case of continuous time LTI sys-
tems. We use the following function to determine the timestep sizes over the prediction
horizon:

∆τi =


ts i ≤ 2,

6 · ts 2 < i ≤ 4,

40 · ts 4 < i ≤ 8.

(5.15)

The total length of the prediction horizon is approximately 1.1 sec and corresponds to
Ns = 8 steps. The sampling period of the system is approximately 8 msec. The short steps

1||x||2R = xTRx for R = RT � 0
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ensure consistency between the model and the system, the medium steps capture emissions
peaks, and the long steps capture the intake and exhaust pressure responses.

𝑢
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Δ𝜏(Δ𝜏)

𝑥

Fast	
Slow

𝑖 = 4 𝑖 = 5𝑖 = 2𝑖 = 1𝑖 = 0

𝜏

Figure 5.7: A diagram illustrating a non-uniform prediction horizon.

The prediction dynamics (5.13b) of the supervisory MPC controller are formed by com-
bining the closed-loop airpath and EGR loop models described in Sections 5.3.1 and 5.3.2.
The prediction model is thus given by,

ξi+1 = fs(ξi, µi, ρ,∆τi) =

[
ζ

Υ

]
i+1

=

[
F (ρ) + Ā(ρ,∆τi)ζi + B̄(ρ,∆τi)µi

[I2×2 −∆τiG(ζi, ρ, Tk)]
−1(Υi + ∆τibqi)

]
,

(5.16)
which is the concatenation of a downsampled version of (5.6) and (5.10). The temperatures
T = (Tim, Tex) and operating condition ρ are assumed constant over the prediction horizon.
The downsampled linear model matrices, Ā(ρ,∆τ) and B̄(ρ,∆τ) are computed as follows,

Ā(ρ,∆τ) = (A(ρ))`, B̄(ρ,∆τ) =

(
`−1∑
j=0

(A(ρ))j

)
B(ρ), (5.17)

where ` = ∆τ/ts is the downsampling factor.
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Figure 5.8: Experimental results of two tip ins (fuel step ups) at 2400 rpm using different
fuel-air ratio limits. Recall that the SMPC controller computes the fueling rate and EGR
rate target and the NMPC controller manipulates the valve, throttle, and VGT to track the
intake pressure and EGR rate targets. When we set φlim = 0.8 the opacity constraint is vi-
olated, reducing φlim to 0.7 eliminates the problem. The fuel-air ratio constraint is slightly
violated in both cases due to an unmodelled 3 step delay between the MPC controller and
the actuators. The y-axes scales have been removed to protect confidential data.

5.4.4 Illustrative Closed-loop Responses

Typical closed-loop responses under the SMPC controller are illustrated in Figure 5.8. Dur-
ing a tip-in (fuel step up) the fuel-air ratio rapidly increases as fuel is added to the system
more quickly than the airflow can be raised to compensate. This causes the controller to
predict a fuel-air ratio (FAR) constraint violation. In the responses shown, the fueling rate
is filtered and the EGR rate target undershoots its steady state value to reduce F1 and the
fuel-air ratio as quickly as possible. Figure 5.9 illustrates the importance of the supervisory
controller. Without the supervisory controller large amounts of visible smoke are produced
while the SMPC controller successfully manipulates the fueling rate and EGR rate target
to limit smoke production.
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Figure 5.9: A comparison between the MPC controller with and without the supervisory
controller. Without the supervisor massive amounts of visible smoke is produced; the opac-
ity limit is where the smoke becomes visible. Time is measured in seconds. The y-axes
scales have been removed to protect confidential data.

5.4.5 Stability and Feasibility

The SMPC controller uses some nonstandard techniques to achieve the performance re-
quired by the application. As a result, a complete a-priori stability analysis is beyond the
scope of this dissertation. However, in lieu of an a-priori stability analysis on idealized
models, we performed exhaustive simulations and hundreds of hours of bench testing to
verify stability in practice. No stability issues arose during bench testing. This is a stan-
dard approach in engine control applications, see e.g., [64, 65], likely because engines are
usually open-loop stable. However, existing theory was used to guide the design of the
controllers.

We will prove recursive feasibility and provide a stability proof for a nominal case
where ∆τi = ts, the horizon is sufficiently long, the OCP is solved exactly, and in the
absence of model mismatch. Since SMPC uses a closed loop model of the airpath controller
and engine, this nominal analysis addresses loop interactions. In this section we will use
P to denote the speed and fuel operating range of the engine. We will also denote the set
of “safe”, i.e., no misfires, surge, overpressure, etc., states by X(ρ). The set of admissible
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pairs is

Y(ρ) = {(x, u) | φ(x, u, ρ) ≤ φl(x, ρ), 0 ≤ χtrg ≤ χ̄egr, 0 ≤ q ≤ qtrg} (5.18)

and we define the set of admissible controls as U(x, ρ) = {u | (x, u) ∈ Y(ρ)}. Note that
the constraint x ∈ X(P) is handled implicitly through careful selection of χ̄egr and p̄im, i.e.,
through good calibration.

Theorem 5.1. (Feasibility) For any ρ ∈ P, x ∈ X(ρ) the set U(x, p) is nonempty, implying

that (5.13) is always feasible.

Proof. Algebraic manipulation of (5.13d) yields,

q ≤ qmax(ρ, x) = φl(ρ, x)
ṁcyl(1− F1)

Nec

(
A

F

)−1

s

, (5.19)

an explicit bound on the fuel. For any x ∈ X(ρ) the right hand side is positive thus qmax ≥ 0

and the constraint 0 ≤ q ≤ min(qmax, q
trg) is feasible. The constraint 0 ≤ χtrg ≤ χ̄egr(ρ)

is feasible by construction which completes the proof.

Theorem 5.2. (Nominal stability of SMPC) Let the following assumptions hold:

(A1) (Stability of the inner loop) For all steady state admissible ū = [χtrg q] and ρ ∈ P, the

inner-loop, with dynamics given by x+ = f(x, u, ρ), is asymptotically stable about

the corresponding equilibrium point x̄(ū, ρ) with region of attraction X(ρ).

(A2) (Asymptotic controllability) The inner-loop system is asymptotically controllable with

respect to (5.14) in the sense of [1, Assumption 6.5].

Then there exists a horizon length N∗ ∈ N and a set Xs ⊆ X such that if N ≥ N∗

and (x0, u0) ∈ Xs × R2 then the sequence {(xk, uk)} → (x̄, ū) as k → ∞ with all

(xk, uk) ∈ Y(ρ).

Proof. See appendix.

Note that Theorem 5.2 only proves the existence of a sufficiently large N∗; we have to
assume that the horizon length chosen is long enough. We employ move blocking related
techniques to increase N , see Section 5.4.3. In practice, we observed no stability issues,
lending some credence to our assumption.

The assumption (A1) is not particularly stringent, it just requires that the inner-loop
controller be stabilizing and have integral action to provide zero offset tracking. Moreover,
the engine is open-loop stable so achieving closed-loop stability isn’t challenging.
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It’s difficult to verify (A2) a-priori since obtaining a high accuracy nonlinear model
for the engine is extremely challenging. However, to support our assumption, we lin-
earized (5.16) at each operating condition in the grid defined in (5.4) and observed that
each linearized model was controllable. That is, we checked the controllability of Ai =

∇xfs(x̄i, ūi) and Bi = ∇ufs(x̄i, ūi) for all i = 1, . . . 154 where ρi is defined in (5.4),
ūi = [χ̄egr(ρi) qtrgi ] and x̄i is the steady state associated with ūi. This implies that (A2)
holds in the vicinity of each operating point see e.g., [162]. This does not imply that
(A2) holds globally but it does support that it holds in our region of interest. Further, in
Section 5.6 we present experimental results that demonstrate the robustness of the SMPC
controller a-posteriori.

5.5 Controller Implementation

Implementation of a model predictive controller requires an algorithm for (approximately)
solving the optimal control problems online. This is challenging for the DAP due to its fast
(8 msec) sampling rate and pronounced nonlinear dynamics. To overcome these challenges,
we use a combination of time-distributed sequential quadratic programming, commonly
known as the Real-time Iteration scheme, an early version of the FBstab solver known as
Fischer-Burmeister Regularized and Smoothed (FBRS) [50], and symbolic differentiation,
code optimization, and code generation techniques.

The supervisory controller OCP, (5.13), can be compactly represented as

min.
ξ,µ,s

J(µ, s, ρ), (5.20a)

s.t ξ = g(µ, x, ρ), (5.20b)

h(ξ, µ, s, x, ρ) ≤ 0, (5.20c)

where ξ, µ and s are the decision variables, x is the SMPC state estimate, ρ is the operating
condition, J is the cost function, g collects (5.13b) and (5.13c), and h collects the inequality
constraints (5.13d) - (5.13g). These functions are implemented in symbolic form using the
MAPLE computer algebra system using a custom set of symbolic tools developed as part
of the project [26].

To reduce the size of the OCP and consequently computation time, we eliminate the
equality constraints to for the so-called “condensed” OCP. Due to limitations in the sym-
bolic tools, the formation of the function ξ = g(µ, x, ρ) was impractical. The alge-
braic expressions became too complicated and could not be easily manipulated due to
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recursive composition of (5.13b). To bypass these issues, we instead linearize (5.13b)
about the points x, ρ, and µ̄ = (0, qtrgk ), leading to linearized set of equality constraints,
ξ = ∇g(x, µ̄, ρ)µ + g(x, µ̄, ρ) which are more easily formed. These were then eliminated
via substitution, using the symbolic tools, resulting in the following condensed OCP

min.
w

J(w, ρ), (5.21a)

s.t c(w, x, ρ) ≤ 0, (5.21b)

where w = (µ, s) and c(w, x, ρ) = h(∇g(x, µ̄, ρ) + g(x, µ̄, ρ), s, x, ρ).
We solve this in real-time using time-distributed SQP, which was discussed at length in

Chapter 3, using the Gauss-Newton Hessian approximation2 and with ` = 1, i.e., one SQP
iterations per timestep. Thus, to evaluate the optimization operator

zk = T`=1(zk−1, xk, ρk) (5.22)

where z = (w, λ) and λ is the dual variable associated with (5.21b), we solve the following
linear variational inequality (VI)

Hk∆w + fk +GT
k λ = 0, (5.23a)

dk −Gk∆w +N+(λ) 3 0 (5.23b)

where Hk = ∇2
wJ(wk−1, xk, ρk) � 0, fk = ∇wJ(wk−1, xk, ρk), Gk = ∇wc(wk−1, xk, ρk),

d = −c(wk−1, xk, ρk), andN+ is the normal cone mapping of the non-negative orthant, for
(∆w∗, λ∗) and set zk = (wk−1 + ∆w∗, λ∗). The VI (5.23) are the optimality conditions for
the following QP:

min.
∆w

1

2
∆wTHk∆w + fTk ∆w, (5.24a)

s.t Gk∆w ≤ dk, (5.24b)

we solve (5.24) using the FBRS method [50], which is a precursor to the FBstab method
presented in Chapter 4.

Due to the presence of slack variables in the original OCP, each QP is guaranteed to
be feasible and, due to the penalty on µi − µi−1 in the cost function, (5.14), the strong
second order sufficient conditions always hold so that (5.24) has a unique solution. Fur-

2While the exact Hessian was available to us through the symbolic tools the Gauss-Newton Hessian ap-
proximation is guranteed to be positive semidefinite, which allows us to solve the resulting QPs reliably.
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ther, the inequality constraints (5.13d)-(5.13g) in the SMPC OCP reduced to a set of (state
dependant) box constraints, see Theorem 5.1, so the LICQ holds as well. Thus we expect
its solution mapping to be strongly regular so that Assumption 3.4 holds. Moreover, we
expect the ideal feedback law to be stabilizing by Theorem 5.2 and input-to-state stability
follows from nominal stability under strong regularity of the solution mapping [10]. Thus
we expect that Theorem 3.4 is applicable since we are using Gauss-Newton SQP, see Sec-
tion 3.8. This conclusion is borne out by our experimental results, we observed that the
OCP solution error was quite stable, see e.g., the residual plots in Figure 5.11.

Remark 5.4. To guarantee finite-time execution, which is necessary for real-time imple-

mentation, the FBRS algorithm is limited to 5 Newton iterations per sampling period. FBRS

is amenable to warmstarting so each QP is warmstarted with the previous solution. This

was sufficient for convergence in almost every case, we observed no degradation of control

performance due to the iteration limit.

5.5.1 Executable Generation and Execution Time

The MPC controller was implemented on a dSPACE DS1006 rapid prototyping unit (2.6
GHz CPU clock speed) using Simulink 2010b SP2 real-time workshop. All necessary
derivatives for (5.13) were calculated using symbolic methods. The tools, collectively
referred to as the symbolic control design environment (SCDE) [26], translate symbolic
expressions into highly optimized C code (and corresponding S-function templates) which
meets the Motor Industry Software Reliability Association (MISRA) standard for embed-
ded computations [163]. Expressions for the cost, constraints, and dynamics were written
in the Maple symbolic language then processed and differentiated symbolically. The SCDE
was then used to generate S-functions for all necessary derivatives. The FBRS QP solver
was implemented in an embedded MATLAB block within Simulink.

Table 5.1: Summary problem sizes and execution times

Average Maximum Variables Constraints
execution time [µs] execution time [µs]

SMPC 530 550 17 41

Execution times on the DS1006 rapid prototyping unit are shown in Table 5.1. The
entire MPC controller takes approximately 550 µs to execute in the worst case, well below
the sampling period of 8 ms. The total size of the real-time executable file was 5547
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Figure 5.10: A portion of the WLTC with the MPC controller in closed loop with the
engine. The vehicle was able to successfully complete the drivecycle despite some fuel
limiting. The smoke is well controlled with only a few spikes reaching the edge of the
visible range. Time is measured in seconds. The y-axes scales have been removed to
protect confidential data.

KB. Note that since the number of Newton iterations performed by the SMPC QP solver
was fixed at 5 the convergence check was disabled; as a result, the average and maximum
execution times are similar.

5.5.2 Calibration of the Supervisory Controller

The supervisory controller has 4 tuning parameters, αs, βs, γs > 0 and Rs � 0, which
is a 2 by 2 matrix, and is straightforward to tune. Tunning is performed during fuel step
experiments at fixed engine speeds. The fuel deviation parameter αs is fixed to a sufficiently
large value to ensure fuel tracking, we used αs = 1. The constraint softening parameter
was set to βs = 1000, γs was set to 0.05 and Rs = diag(5, 0.1) was used.
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5.6 Results

The MPC controller was placed in closed-loop with a 2.8L diesel engine on a transient
engine dynomometer. In this section, we showcase the performance of the MPC controller;
it was run over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) and New
European Drive Cycle (NEDC) using a simulated vehicle and driver. The results are shown
in Figures 5.10 to 5.14.

A summary of the results, using the best tunings obtained during testing, is shown
in Table 5.2. Emissions performance was evaluated by estimating the cumulative mass
of NOx and THC emitted during the drivecycle, smoke was evaluated by integrating the
exhaust opacity whenever it was above the visible limit3. Drivability was evaluated using
the root mean square velocity tracking error (RMSE) between the longitudinal speed of the
simulated vehicle and its target. Relative difference is defined as

% difference =
DAP MPC− Benchmark

Benchmark
∗ 100. (5.25)

Over the WLTC the DAP MPC controller was able to significantly reduce cumulative
NOx and THC, compared to a state of the art benchmark controller. The aggressive tuning
resulted in slightly worse drivability compared to the benchmark and yielded significant
NOx and THC reductions at the cost of a small increase in smoke production. A more con-
servative tuning reduced smoke emissions compared to the benchmark but led to smaller
NOx and THC improvements; drivability was adversely affected as well.

Over the NEDC the DAP MPC controller slightly increased NOx and slightly decreased
THC. The NEDC cycle is not aggressive enough to trigger fuel limiting or cause visible
smoke. The increase in fuel consumption is not large enough to be considered significant
as the results are estimated by integrating the commanded fuel signal rather than measured
using a fuel meter. The explicit incorporation of fuel-economy into the DAP MPC con-
troller is a topic of future work.

3The visibility threshold used here is consistent with current calibration guidelines.
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Table 5.2: Summary of the results obtained using the DAP MPC controller.

WLTC aggressive WLTC conservative NEDC aggressive
tuning tuning tuning

[% difference] [% difference] [% difference]

NOx -16 -11 1.4

THC -14 -4 -2

Fuel 0.67 0.54 0.9

VRMSE 1 4 2

Smoke 24 -49 0

Figure 5.10 shows the responses when DAP MPC controller is in closed-loop with the
engine during the high load portion of the WLTC. The smoke is well controlled, only a
handful of spikes approach the boundary of the visible range.

Figure 5.11 shows a high speed portion of the WLTC. Between 165 and 170 s, the
SMPC controller predicts fuel-air ratio constraint violation and, in response, lowers the
EGR rate target and limits the fuel to enforce the constraint. As a result, the exhaust
opacity remains below the visible limit. It also shows the QP (5.24) and nonlinear OCP
(5.13) residuals. The QP residual is low showing that, thanks to warmstarting, FBRS is
capable of producing a sufficiently accurate approximate solution of the QP despite the
hard 5 iteration limit. Moreover, the stability of the OCP residual illustrates the efficacy of
TD-SQP as predicted by Theorem 3.4.

Figure 5.12 shows the response of the DAP MPC controller during an acceleration
event. As the vehicle speed increases, three gearshifts occur, each consisting of a tip out
(fuel step down) followed by a tip in (fuel step up). In response to each tip in the SMPC
controller predicts a fuel-air ratio constraint violation and reduces the EGR rate target, in
order to empty the intake manifold of burnt gas, and limits the fuel to enforce the constraint
and prevent visible smoke. The target then returns to the steady state EGR rate target
as quickly as possible to reduce NOx . The airpath controller is able to effectively track
the EGR target signal, this fast EGR rate tracking ensures that the fuel-air ratio constraint
satisfaction is accomplished primarily with valve and VGT actuation, rather than with fuel
limiting, which is important for drivability.

Figure 5.13 shows an input-output (most benchmark signals cannot be shown for con-
fidentiality reasons) comparison between the DAP MPC controller and a benchmark. The
DAP MPC controller reduces transient NOx by shrinking the spikes that occur after gearshifts.
This is possible because the SMPC controller brings the EGR rate target back to its steady
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state target quickly after a tip in by accurately calculating the fuel-air ratio response using
its prediction model.

Figure 5.14 illustrates some issues we observed with the DAP MPC controller. Firstly,
between 160 and 165 s the fuel is limited quite severely, despite the exhaust opacity being
nowhere near the visible limit. This indicates there is room for improvement in the fuel-
air ratio limit map (recall that φl = φl(Ne, ṁc)). Secondly, between 170 and 180 s the
closed-loop system becomes oscillatory which is undesirable in view of increased wear
on the actuators and oscillations in the engine torque. This occurs because the controller
“bounces” off the fuel-air ratio constraint due to mismatch between the EGR rate tracking
error predicted by the SMPC controller and the true tracking error. Future work will focus
on appropriately softening constraints and improving the quality of the EGR rate model to
alleviate bouncing, and adding a monotonicity constraint, similar to a reference governor
[156], to the fueling rate command to prevent oscillations in the engine torque.

Remark 5.5. The opacity target is the maximum opacity value allowed during steady state

calibration. The opacity limit is when smoke becomes visible, it is desirable to minimize

violation of this constraint. The smoke metric used in Table 5.2 is computed by integrating

the opacity signal whenever its higher than the limit.

5.7 Discussion

While our proposed MPC controller is promising, more development effort is necessary be-
fore it can be considered “production ready”. Here we discuss the challenges we observed
leading up to and during our experimental campaign and outline directions for continued
controller development.

5.7.1 Computational Footprint

One of the largest drawbacks of MPC is the computational footprint. Our controller uses
the real-time iteration scheme [63], a kind of time-distributed sequential quadratic pro-
gramming [28], a new QP solver [50], and symbolic code generation tools [26] to reduce
the worst case total execution time to around 715µs on a 2.6 GHz rapid prototyping unit.
Assuming a 256 MHz ECU and estimating the computation time using a clock speed scal-
ing analysis 4 we arrive at an estimate of 0.715ms · 2.6 GHz

256 MHz
= 7.26 ms which is slightly

4We have found clock scaling analyses to be sufficiently accurate for first order computation time esti-
mates due to the relative simplicity of typical ECU computational architectures.
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below the current 8 ms sampling period. This indicates that our strategy is likely to be im-
plementable in real-time on an appropriate dedicated ECU. However, ECUs must run other
modules besides the engine controller so further reductions in the CPU usage are necessary
before the controller is production ready.

Since completing the experiments, we have performed preliminary investigations into
the use of Kylov methods, specifically the conjugate gradient method [164], for inexactly
solving the linear systems arising in FBstab/FBRS [165]. We have found that significant
improvements are possible without noticeably degrading controller performance. We be-
lieve this approach could be promising for solving (5.24). Another possible avenue for
improvement is the use of optimized mathematical subroutines. Our current implementa-
tion uses symbolically generated or handwritten linear algebra and factorization routines. It
is well known that specialized routines (e.g., those provided by high performance BLAS or
LAPACK libraries) can offer much better performance; they are often optimized at an as-
sembly code level. Further, embedded BLAS libraries have recently begun to appear [27].
We believe that routines of this type for ECUs could help further reduce CPU usage. Fi-
nally, we expect ECU hardware to continue to improve over time. In particular, the in-
corporation of dedicated signal processing units into future ECUs could further reduce
computation times.

5.7.2 Performance Issues

We observed some performance issues during experimental testing. Specifically, the MPC
controller was not able to perfectly control smoke see e.g., Figure 5.10, and we observed
some undesirable oscillations in the fueling rate input, see e.g., Figure 5.14.

Typically, when using MPC, the best way to improve constraint handling is to improve
the prediction models. The least accurate portion of our prediction models is the intake
manifold burnt gas fraction F1 in (5.7). Since our experimental setup did not have an oxy-
gen sensor in the intake manifold, we were unable to directly validate our F1 predictions
and/or improve the model using data. As our smoke control approach depends directly on
F1 inaccurate predictions of F1 are the most likely cause of the performance degradation
we observed. We suspect that installing the sensor on the testbed (for modelling and val-
idation purposes only, i.e., not for use as feedback) and an associated data collection and
modelling effort could significantly improve smoke control. Moreover, as this modelling
error forced us to adopt a more conservative smoke limit, we hypothesize that this caused
the underperformance we observed on the less aggressive NEDC cycle where the conser-
vatism was not warranted. Note that the benchmark controller’s smoke control is also not

107



perfect.
Beyond improving the quality of the models, various modifications to the SMPC con-

troller formulation could be considered. For example, re-parameterizing the fueling rate
input in (5.13) as

q = k(qtrg − q−) + q− (5.26)

where k ∈ [0, 1] is the new decision variable, q− is the input applied at the previous sam-
pling instant and qtrg is the target, will force the fueling rate input to approach the target
monotonically and thus remove oscillations. Such a parameterization is often used in ref-
erence governors [156].

5.7.3 Future Perspectives

Our proposed MPC controller offers several advantages over a typical industrial PID based
engine control strategy:

• Statement of the control objective is intuitive and can be easily summarized through
the OCP formulation;

• The use of prediction models reduces the amount of conservatism needed to handle
constraints, leading to performance improvements;

• It straightforwardly handles multiple input and outputs, coupling between them, and
nonlinearities;

• It can be calibrated quickly.

It also suffers from some drawbacks:

• It requires an understanding of more advanced control engineering concepts to trou-
bleshoot issues;

• It has a higher computational footprint;

• Construction of the prediction models can be labour intensive.

Overall, we demonstrated that significant (10 − 15%) emissions reductions are possible
without hardware changes5, e.g., without adding additional sensors or actuators, and that
the challenges associated with the computational burden of MPC are not insurmountable,

5This can help manufacturers meet emissions targets without major cost increases.
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even when using nonlinear MPC. We also demonstrated various techniques such as non-
uniform prediction horizons and inner-outer loop MPC control architectures that may be
useful in a broader context.

We believe that, as emissions regulations become tighter, MPC has the potential to play
a significant role in emissions reduction efforts. However, progressing from demonstrations
to mass production would require significant amounts of effort both in terms of modelling,
controller improvement and computational footprint reduction, as outlined in the previous
two subsections. It would also require creating standardized tools for design, calibration,
simulation, modelling and deployment, a significant experimental validation campaign, and
a significantly larger team of engineers and researchers. See e.g., the acknowledgments
section in [166] which details the deployment of linear MPC in production by a major
automotive manufacturer [166].
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Figure 5.11: A close-up of a high speed potion of the WLTC with the MPC controller in
closed-loop with the engine. The supervisory layer prevents visible smoke by coordinating
the fuel input and the EGR rate. It causes the EGR rate target to undershoot the steady
state optimum, this command is tracked by the airpath controller, and limits the fueling
rate to satisfy the fuel-air ratio constraint and prevent visible smoke. The residual of the
the QP (5.24), seen as a function of time, is well controlled showcasing that FBRS is able
to exploit warmstarting to effectively solve the QP despite a tight iteration limit. Moreover,
the residual of the nonlinear OCP (5.13) is robstly stable (indeed we observe oscillations
that are caused by the measurement noise) as predicted by Theorem 3.4. Time is measured
in seconds. The y-axes scales have been removed to protect confidential data.
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Figure 5.12: A close-up of an acceleration event with the MPC controller in closed-loop
with the engine during the WLTC. During the tip ins following the gearshifts the supervi-
sory layer commands the airpath controller to quickly reduce the EGR rate and limits the
fuel to satisfy the fuel-air ratio constraint, preventing visible smoke. Time is measured in
seconds. The y-axes scales have been removed to protect confidential data.
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Figure 5.13: A comparison between the MPC and a benchmark (BM) strategy running
in closed-loop with the engine during the WLTC. The SMPC controller is able to reduce
NOx emissions compared to the benchmark strategy without causing visible smoke or in-
creasing hydrocarbon output. All signals are generated by the MPC controller unless other-
wise noted. Time is measured in seconds. The y-axes scales have been removed to protect
confidential data.
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Figure 5.14: A close-up for a hard acceleration event with the MPC controller in closed-
loop with the engine during the WLTC. The SMPC controller aggressively limits the fuel
despite the low opacity of the exhaust. Oscillation against the fuel-air ratio constraint
boundary also occurs which leads to undesirable EGR rate and torque fluctuations. Time is
measured in seconds. The y-axes scales have been removed to protect confidential data.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This dissertation has focused on improving numerical methods for model predictive con-
trol (MPC) with the goal of helping to enable the deployment of MPC on systems with
pronounced nonlinear dynamics, fast sampling rates, and limited onboard computational
resources. Specifically, it focused on the common strategy of warmstarting optimization
algorithms and the consequences of warmstarting in the context of real-time optimization
and MPC.

First, we analyzed the effect of warmstarting and truncation, i.e., time-distributed op-
timization, on the closed-loop properties of MPC. We presented a general framework for
systems theoretic analyses of model predictive controllers implemented using TDO that
covers a broad range of MPC formulations and optimization algorithms. Using this frame-
work, we showed it is possible to recover the desirable qualitative properties, namely stabil-
ity, robustness, and constraint satisfaction, of the optimal MPC feedback law using a finite
amount of computational effort. When specialized to time-distributed sequential quadratic
programming, our result significantly extends the existing stability analysis of the real-
time iteration scheme by explicitly considering inequality constraints, analyzing the effect
of performing additional SQP iterations, considering a wider class of Hessian approxima-
tions, and proving local input-to-state stability of the closed-loop system.

Second, we proposed FBstab, the proximally stabilized Fischer-Burmeister method for
convex quadratic programming. FBstab is attractive for real-time optimization because it
is easy to code, numerically robust, easy to warmstart, can exploit sparsity, and converges
or detects infeasibility under only the assumption that the Hessian of the quadratic program
is positive semidefinite. We provided convergence, rate of convergence, and infeasibil-
ity detection analyses for the method in addition to numerical experiments benchmarking
the solver. Moreover, we have released our MATLAB implementation of FBstab online
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at https://github.com/dliaomcp/fbstab-matlab.git under an permissive
open source license.

Finally, we applied some of the theoretical and algorithmic ideas developed in this
dissertation to the problem of diesel engine emissions control. The control objective is to
reduce NOx and PM emissions and enforce smoke constraints while maintaining drivability
and fuel economy. We developed a supervisory emissions-oriented model predictive con-
troller which, when used in tandem with previously developed nonlinear model predictive
airpath controller, was able to significantly reduce emissions over the WLTC drive cycle
with only small impacts on drivability. Moreover, we demonstrated that, using a combina-
tion of TDO, a version of FBstab, and advanced symbolic differentiation/codegeneration
tools, it is possible to reliably implement nonlinear MPC at a sampling rate of more than
100 Hz on a rapid prototyping system.

6.2 Future Work

Real-time Estimation and Machine Learning
The material in this dissertation focused on control, however real-time optimization is also
broadly applicable in perception and estimation. In particular, investigating TDO applied to
estimation/perception algorithms, such as receding horizon estimation, or online machine
learning methods, and analyzing the effect of suboptimality on closed-loop performance
is a promising direction for future research. Moreover, designing specialized numerical
algorithms for these optimization problems might also prove to be impactful.

Time-distributed Optimization in Sampled Data Systems
The analysis of TDO presented in Chapter 3 is entirely in discrete time. However, many
physical systems of interest are continuous time systems; in these situations MPC is typi-
cally implemented as a sampled data feedback law. Extending our analysis of TDO to the
sampled data case would allow us to consider a broader class of systems and understand
how parameters such as the sampling time, that are only present in sampled data systems,
affect the systems theoretic properties of the closed-loop system.

A C++ implementation of FBstab
We are current in the process of developing an open source (and liberally licensed) C++
implementation of FBstab. The goal is to provide a useful tool for implementing real-time
optimization on robotic and industrial platforms. The solver is under active development
and is available at: https://github.com/dliaomcp/fbstab.git. We are also
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continuously improving the solver by adding heuristics and improving the efficiency of the
linear algebra.

Improving the Diesel Engine Controller
While successful as a technology demonstration, more work is required before the DAP
MPC controller is ready to be deployed on production vehicles. The next steps include
further reducing computation time, improving the gas fraction and airpath models, re-
parameterizing the inputs to prevent fuel input oscillations, and in-vehicle testing. More-
over, the application of the same techniques to e.g., gasoline engines or heavy-duty diesel
engines (e.g., semi trucks) would also be interesting research directions.
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APPENDIX A

Proof of Theorem 5.2

Our goal is to apply [6, Theorem 1] to infer the existence of a Lyapunov function for the
closed-loop system. To show this we verify the conditions of the theorem, referred to as
(SA1-SA4) in [6]. Since the SMPC OCP has a penalty on ∆u, and is thus nonstandard, we
work with an equivalent augmented system by defining

y =

[
x
u

]
, and y+ = g(y,∆u) =

[
f(x, u)
u+ ∆u

]
, (A.1)

which is the so-called input velocity form of the original system. We seek a Lyapunov
function which proves the stability of (A.1). Note that recursive feasibility, i.e., yk ∈ Y(ρ),
is automatic thanks to Theorem 5.1. We consider each condition in turn:

(SA1) Trivially satisfied since the stage cost (5.14) is semidefinite and continuous, the
terminal cost is null.

(SA2) The OCP (5.13) is guaranteed to be feasible by construction and has a strongly
convex objective function, thus (5.13) has a solution and the infimum is achieved.

(SA3) Consider a candidate detection function W (y) = V (x) + k(u) where V (x) is a
Lyapunov function which proves asymptotic stability of the inner-loop and k(u) = l(u, 0).
Since the inner-loop is stable by assumption, a converse Lyapunov theorem, e.g., [167], can
be invoked to show the existence of V . Since V is a Lyapunov function it is bounded above
and below by classK∞ functions. In addition, k(u) is positive definite, strictly convex with
k(ū) = 0, and is Lipschitz continuous on the set, {u | 0 ≤ χtrg ≤ max

P
χ̄egr(ρ), 0 ≤

q ≤ max
P

qtrg}, with Lipschitz constant L and thus can be bounded from above by a class

K∞ function. Following the notation of [6] we define our tracking measure as σ(y) =
V (x) + k(u). Let β1(σ(y)) = η1(||x − x̄||) + η2(||u − ū||), where η1 ∈ K∞ upperbounds
V (x) and η2 ∈ K∞ upperbounds k(u). Then W (y) ≤ β1(σ(y)) and β1 ∈ K∞. Now
consider

W (g(y,∆u))−W (y)

= V (f(x, u))− V (x) + k(u+ ∆u)− k(u)

≤ V (x+)− V (x) + L||∆u||R,
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and define

α1(x) =

{
(V (x)− V (x+))/V (x), x 6= x̄,

0 x = x̄,
(A.2)

Since V is a Lyapunov function ∀x ∈ X \ {x̄}, V (x+) − V (x) < 0, V (x) > 0 and thus
α1(x) ∈ [0, 1) and V (x+) − V (x) + α1(x)V (x) = 0. Continuing, using that V (x+) −
V (x) = −α1(x)V (x) ≤ 0, we have that

W (g(y,∆u))−W (y) ≤ V (x+)− V (x) + L||∆u||R,
≤ −α1(x)V (x) + (γ1 − α1(x))k(u) + L||∆u||R,
≤ −α1(x)(V (x) + k(u)) + γ1k(u) + L||∆u||R,
≤ −α(x)β1(σ(y)) + γ1k(u) + L||∆u||R,

for any γ1 > 1 > α1(x). Since α1(x) < 1, for any γ2 > 1, α1(x)(V (x) + k(u)) ≤
γ2β1(σ(y)). Thus β2(·) = γ2β1(·) ∈ K∞ is an appropriate comparison function. The
remaining terms can be upper bounded by the function γ1l(u,∆u) + γ3

√
l(u,∆u) for

sufficiently large γ3. Thus we can take β3(·) = γ1(·) + γ3

√
(·) ∈ K∞ as the final required

comparison function. The existence of β1, β2, and β3 verifies the detectability condition [6,
Definition 1].

(SA4) Boundedness of the value function can be established using Assumption 2 (Asymp-
totic controllability) combined with [1, Lemma 6.6]. Verifying (SA1-SA4) completes the
proof.
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