
 

 

Urinary Metals and Type 2 Diabetes Mellitus 

 

by 

Xin Wang 

 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy  

(Epidemiological Science)  

in The University of Michigan  

2020 

 

 

Doctoral Committee: 

Associate Professor Sung Kyun Park, Chair 

Professor Stuart Batterman 

Professor Siobán D. Harlow 

Assistant Professor Carrie A. Karvonen-Gutierrez 

Professor Bhramar Mukherjee 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Xin Wang 

xwangsph@umich.edu  

ORCID iD: 0000-0002-0851-6605 

© Xin Wang 2020 

mailto:xwangsph@umich.edu


ii 

 

Acknowledgements 

I would like to express my gratitude first and foremost to the University of Michigan. I 

really could not have asked for a better place to undertake my doctoral studies. I could never 

have gotten this far without the help and support of my mentor, Dr. Sung Kyun Park. Dr. Park 

has been a thoughtful, dedicated, patient, and enthusiastic mentor as I became more familiar with 

environmental epidemiology, learned new methodologies, and worked through the ups and 

downs of my dissertation project. I am also incredibly fortunate to have a dissertation committee 

comprised of a generous and brilliant group of scholars. My greatest thanks go to Dr. Siobán D. 

Harlow and Dr. Carrie A. Karvonen-Gutierrez. It is because of their guidance, kindness, and 

meticulous editing, that I have become the scholar I am today. To my mentor, Dr. Bhramar 

Mukherjee, I am so, so grateful for pushing the boundaries of my research to learn new methods 

and applying my research through an interdisciplinary prespective. I would also like to thank my 

mentor, Dr. Stuart Batterman, who provided key feedback and thoughtful comments that 

improved my research. I would not have made it to Michigan were it not for the wonderful 

collection of professors who prepared me to pursue doctoral work. I have also benefited 

endlessly from my peer students and staff in the Center for Midlife Science and in the 

Department of Epidemiology. Finally, I would like to acknowledge the constant support and 

encouragement of my family, and my girlfriend Ning Ding, through all these years of doctoral 

studies.    



iii 

 

I am grateful to funding agencies for supporting my dissertation research. This 

dissertation has been funded by grants from the National Institute of Environmental Health 

Sciences (NIEHS) R01-ES026578, R01-ES026964 and P30-ES017885, and by the Center for 

Disease Control and Prevention (CDC)/National Institute for Occupational Safety and Health 

(NIOSH) grant T42-OH008455.  

The Study of Women's Health Across the Nation (SWAN) has grant support from the 

National Institutes of Health (NIH), DHHS, through the National Institute on Aging (NIA), the 

National Institute of Nursing Research (NINR) and the NIH Office of Research on Women’s 

Health (ORWH) (Grants U01NR004061; U01AG012505, U01AG012535, U01AG012531, 

U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495). The content 

of this article is solely the responsibility of the authors and does not necessarily represent the 

official views of the NIA, NINR, ORWH or the NIH. The SWAN Repository (U01AG017719). 

This publication was supported in part by the National Center for Research Resources and the 

National Center for Advancing Translational Sciences, National Institutes of Health, through 

UCSF-CTSI Grant Number UL1 RR024131. 

Clinical Centers:  University of Michigan, Ann Arbor – Siobán Harlow, PI 2011 – 

present, MaryFran Sowers, PI 1994-2011; Massachusetts General Hospital, Boston, MA – Joel 

Finkelstein, PI 1999 – present; Robert Neer, PI 1994 – 1999; Rush University, Rush University 

Medical Center, Chicago, IL – Howard Kravitz, PI 2009 – present; Lynda Powell, PI 1994 – 

2009; University of California, Davis/Kaiser – Ellen Gold, PI; University of California, Los 

Angeles – Gail Greendale, PI; Albert Einstein College of Medicine, Bronx, NY – Carol Derby, 

PI 2011 – present, Rachel Wildman, PI 2010 – 2011; Nanette Santoro, PI 2004 – 2010; 



iv 

 

University of Medicine and Dentistry – New Jersey Medical School, Newark – Gerson Weiss, PI 

1994 – 2004; and the University of Pittsburgh, Pittsburgh, PA – Karen Matthews, PI. 

NIH Program Office:  National Institute on Aging, Bethesda, MD – Chhanda Dutta 2016- 

present; Winifred Rossi 2012–2016; Sherry Sherman 1994 – 2012; Marcia Ory 1994 – 2001; 

National Institute of Nursing Research, Bethesda, MD – Program Officers. 

Central Laboratory:  University of Michigan, Ann Arbor – Daniel McConnell (Central 

Ligand Assay Satellite Services). 

SWAN Repository: University of Michigan, Ann Arbor – Siobán Harlow 2013 - Present; 

Dan McConnell 2011 - 2013; MaryFran Sowers 2000 – 2011. 

Coordinating Center:  University of Pittsburgh, Pittsburgh, PA – Maria Mori Brooks, PI 

2012 - present; Kim Sutton-Tyrrell, PI 2001 – 2012; New England Research Institutes, 

Watertown, MA - Sonja McKinlay, PI 1995 – 2001. 

Steering Committee: Susan Johnson, Current Chair 

Chris Gallagher, Former Chair  

We thank the study staff at each site and all the women who participated in SWAN. 



v 

 

Table of Contents 

Acknowledgements ii 

List of Tables vii 

List of Figures x 

Abstract xii 

Chapter I. Introduction 1 

The Public Health Problem: Type 2 Diabetes Mellitus 1 

Environmental Exposure to Metals 2 

Metal Exposures and Type 2 Diabetes Mellitus 4 

Gaps in Scientific Knowledge 20 

Specific Aims of Dissertation 21 

References 23 

Chapter II. Urinary Metals and Metal Mixtures in Midlife Women: the Study of Women’s Health 

Across the Nation (SWAN) 33 

Abstract 34 

1. Introduction 36 

2. Methods 38 

3. Results 44 

4. Discussion 48 

References 56 

Chapter III. Urinary Metals and Incident Diabetes in Midlife Women: the Study of Women’s 

Health Across the Nation (SWAN) 84 

Abstract 85 

1. Introduction 86 

2. Methods 87 

3. Results 93 

4. Discussion 95 

References 104 



vi 

 

Chapter IV. Urinary Metals and Longitudinal Glucose Homeostasis: the Study of Women’s 

Health Across the Nation (SWAN) 124 

Abstract 125 

1. Introduction 127 

2. Methods 129 

3. Results 135 

4. Discussion 138 

References 146 

Chapter V. Conclusions 161 

Summary of findings 162 

Integration of three specific aims 164 

Future Research Questions 167 

Public Health Implications 171 

Overall Conclusions 176 

References 178 



vii 

 

List of Tables 

Table I. 1. Summary of previous evidence of metal exposures on diabetes ................................ 18 

Table II. 1. Characteristics of SWAN participants providing urine samples for analysis of metals 

by race/ethnicity. ........................................................................................................................... 61 

Table II. 2. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 

95% confidence intervals of urinary metals by characteristics of the SWAN participants, 

including seafood and rice intake. ................................................................................................ 62 

Table II. 3. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 

95% confidence intervals of urinary metals in white and black women by study sites. ............... 65 

Table II. 4. Estimated cumulative odds ratio (95% confidence intervals) of being clustered into 

the “high” exposure patterna by selected determinants in backward eliminationb. ...................... 66 

Supplemental Table II. 1. Unadjusted (μg/L) and urinary creatinine adjusted (μg/g) metal 

concentrations in SWAN participants. .......................................................................................... 70 

Supplemental Table II. 2. Model adjusted least-squares geometric mean concentrationsa 

(LSGMs, μg/L) and 95% confidence intervals of urinary metals by characteristics of the SWAN 

participants. ................................................................................................................................... 72 

Supplemental Table II. 3. Model adjusted least-squares geometric mean concentrationsa 

(LSGMs, μg/L) and 95% confidence intervals of urinary metals between white and Chinese 

women within Oakland site, and between white and Japanese women within Los Angeles site. 74 

Supplemental Table II. 4. Ratios of geometric means for urinary metals from linear regression 

with backward elimination. ........................................................................................................... 75 



viii 

 

Supplemental Table II. 5. Geometric mean (GMs, μg/g) of urinary creatinine adjusted metal 

concentrations by overall exposure patterns. ................................................................................ 77 

Supplemental Table II. 6. Estimated cumulative odds ratio (95% confidence intervals) of being 

clustered into the “high” exposure patterna. .................................................................................. 78 

Supplemental Table II. 7. Model adjusted least-squares geometric mean concentrationsa 

(LSGMs, μg/L) and 95% confidence intervals of urinary metals by characteristics of the SWAN 

participants, including seafood and rice intake, adjusting for specific gravity. ............................ 79 

Table III. 1. Characteristics at the time of metal measurements according to diabetes status, the 

Study of Women’s Health Across the Nation. ............................................................................ 104 

Table III. 2. Hazard ratios for incident diabetes for two-fold increase in urinary metal 

concentrations. ............................................................................................................................ 109 

Table III. 3. Hazard ratios for incident diabetes comparing participants with urinary beryllium, 

chromium, uranium, vanadium, tungsten concentrations above the limits of detection to those 

below the limits of detection†. .................................................................................................... 110 

Supplemental Table III. 1. Medians, interquartile range, and detection rate of urinary metals, 

the Study of Women’s Health Across the Nation. ...................................................................... 117 

Supplemental Table III. 2. Hazard ratios* for incident diabetes for two-fold increase in specific 

gravity corrected-urinary metal concentrations. ......................................................................... 118 

Table IV. 1. Descriptive characteristics at the time of metal measurements. ............................ 151 

Table IV. 2. The associations of selected metals with baseline HOMA insulin resistance 

(HOMA-IR) and its annualized rate of change in adaptive elastic-net (AENET) models. ........ 152 

Table IV. 3. The associations of selected metals with baseline HOMA β-cell function (HOMA-

β) and its annualized rate of change in adaptive elastic-net (AENET) models. ......................... 153 



ix 

 

 

Supplemental Table IV. 1. Distribution of urinary metal concentrations in SWAN. .............. 156 

Supplemental Table IV. 2. Selected non-zero beta coefficients of metals for baseline HOMA 

insulin resistance (HOMA-IR) and the annualized rate of change in adaptive elastic-net 

(AENET) models. ....................................................................................................................... 157 

Supplemental Table IV. 3. Selected non-zero beta coefficients of metals for baseline HOMA β-

cell function (HOMA- β) and the annualized rate of change in adaptive elastic-net (AENET) 

models. ........................................................................................................................................ 158 



x 

 

List of Figures 

Figure I. 1. Underlying mechanisms of arsenic exposure in development of type 2 diabetes 

mellitus. ........................................................................................................................................... 7 

Figure I. 2. Underlying mechanisms of cadmium exposure in development of type 2 diabetes 

mellitus. ........................................................................................................................................... 9 

Figure I. 3. Underlying mechanisms of mercury exposure in development of type 2 diabetes 

mellitus. ......................................................................................................................................... 11 

Figure I. 4. Underlying mechanisms of nickel exposure in development of type 2 diabetes 

mellitus. ......................................................................................................................................... 14 

Figure II. 1. Spearman correlation matrix of urinary creatinine-adjusted metal concentrations. 67 

Figure II. 2. Comparisons of creatinine-adjusted median concentrations of urinary metals in 

white and black women from SWAN and NHANES 1999-2000................................................. 68 

Figure II. 3. Cluster means of the 15 standardized log-transformed urinary metals using k-means 

in the SWAN data. ........................................................................................................................ 69 

Supplemental Figure II. 1. Schematic diagram of the SWAN Multi-Pollutant Study and 

analytic sample.............................................................................................................................. 82 

Supplemental Figure II. 2. Determination of optimal number of clusters in k-means clustering.

....................................................................................................................................................... 83 

Figure III. 1. Adjusted survival curves of diabetes by two distinct exposure patterns to metal 

mixtures, adjusting for age, race/ethnicity, study sites, education, household income, body mass 



xi 

 

index, smoking status, alcohol consumption, physical activity score, menopausal status, and use 

of hormone. ................................................................................................................................. 111 

Supplemental Figure III. 1. Schematic diagram of analytic sample. ....................................... 119 

Supplemental Figure III. 2. Directed acyclic graphs illustrating selective participation in the 

SWAN multi-pollutant substudy................................................................................................. 120 

Supplemental Figure III. 3. Directed acyclic graphs illustrating selective attrition after metal 

measurements. ............................................................................................................................. 121 

Supplemental Figure III. 4. Spearman correlation matrix of metal concentrations. ................ 122 

Supplemental Figure III. 5. Cluster means of the 15 standardized log-transformed urinary 

metals using k-means clustering method. ................................................................................... 123 

Figure IV. 1. Predicted HOMA-IR over time based on non-zero predictors in AENET models 

when all urinary metal concentrations are fixed at their 25th, 50th, 75th, and 90th percentile, 

respectively. ................................................................................................................................ 154 

Figure IV. 2. Predicted HOMA-β over time based on non-zero predictors in AENET models 

when all urinary metal concentrations are fixed at their 25th, 50th, 75th, and 90th percentile, 

respectively. ................................................................................................................................ 155 

Supplemental Figure IV. 1. Schematic diagram of analytic sample. ....................................... 159 

Supplemental Figure IV. 2. Spearman correlation matrix of metal concentrations. ................ 160 
 

 

 



xii 

 

Abstract 

 

 Type 2 diabetes mellitus is a major global health concern. Most epidemiologic studies of 

diabetes risk factors to date have focused on genetics, unhealthy diets, and physical inactivity. 

The potential contributions of environmental chemicals, specifically metals, to the epidemic of 

diabetes have received less attention. The general population is exposed to a myriad of metals 

through food, drinking water and ambient air. Biological evidence suggests that exposure to 

metals may play a role in the development of diabetes. Selected metals, especially arsenic, have 

been examined in relation to diabetes risk in human populations but little is known about the role 

of other metals in diabetes risk. This dissertation examined exposures to multiple metals and 

their impacts on diabetes risk in midlife women who may experience unfavorable changes in 

glucose metabolism over menopausal transition using data from the Study of Women’s Health 

Across the Nation (SWAN). 

 In aim 1, we examined the distributions of 21 urinary metal concentrations, identified 

subgroups of women with different exposure patterns to metal mixtures, and evaluated 

associations of demographic, socioeconomic, lifestyle, dietary characteristics with each urinary 

metal, as well as with exposure patterns to metal mixtures, in 1335 SWAN participants. We 

found that Asian women, both Chinese and Japanese, had higher urinary concentrations of 

arsenic, cadmium, copper, mercury, molybdenum, lead and thallium, compared with other 

race/ethnic groups, independent of all other factors. Two distinct overall exposure patterns to 

metal mixtures- “high” vs. “low” -- were identified using the k-means clustering method. 
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Women in the “high” overall exposure pattern were more likely to be Asians, current smokers, 

and to report high intake of seafood and rice. 

In aim 2, we evaluated associations of individual metals measured in urine and overall 

exposure patterns as metal mixtures with incident diabetes over 16 years of follow-up in 1237 

SWAN participants. After multivariable adjustment, the hazard ratios (HR) (95%CI) of diabetes 

associated with each doubling increase in urinary metal concentrations were 1.24 (1.14, 1.35) for 

arsenic and 1.23 (1.08, 1.40) for lead, in Cox proportional hazards models. A doubling in urinary 

excretion of zinc was associated with higher diabetes risks (HR=1.31, 95%CI 1.11, 1.55). The 

multivariable adjusted HR of diabetes associated with the “high” exposure pattern to metal 

mixtures compared with the “low”, which were generated by k-means clustering, was 1.46 (1.11, 

1.91). 

In aim 3, we further examined associations between metal mixtures and longitudinal 

changes in insulin resistance and β-cell dysfunction, important etiopathogenic underlying 

mechanisms of diabetes, among 1262 SWAN participants. Using adaptive elastic-net models, 

urinary copper, lead, and zinc were associated with higher homeostatic model assessments for 

insulin resistance (HOMA-IR) at baseline, whereas molybdenum was associated with lower 

baseline HOMA-IR. Urinary zinc was also associated with a faster rate of increase in HOMA-IR. 

Urinary arsenic and zinc were associated with lower baseline HOMA β-cell function (HOMA-β), 

whereas cobalt was associated with higher baseline HOMA-β. Arsenic was also associated with a 

faster rate of decline in HOMA-β.  

Overall, this dissertation suggests that metal exposures differ by race/ethnicity, as well as 

by sociodemographic, lifestyle, and dietary factors, and that metal exposures may influence 

diabetes risk, possibly through effects on insulin resistance and β-cell dysfunction, even decades 
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before its onset. Future studies need to confirm these findings to strengthen the foundation of 

knowledge on environmental chemicals as risk factors of diabetes.  
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Chapter I. Introduction 

 

The Public Health Problem: Type 2 Diabetes Mellitus 

Type 2 diabetes mellitus is a metabolic disease characterized by dysregulation of 

carbohydrate, lipid and protein metabolism, and results from impaired insulin secretion, insulin 

resistance or a combination of both (DeFronzo et al. 2015). Of the three major types of diabetes, 

type 2 diabetes mellitus (hereafter called diabetes) is far more common (accounting for more 

than 90% of all cases) than either type 1 diabetes mellitus or gestational diabetes (IDF 2020). 

The burden of diabetes is increasing globally. In 2019, 463 million people worldwide (6.1%) 

were estimated to have diabetes (IDF 2020). If current trends continue, this number is expected 

to rise to 700 million by 2045 (IDF 2020). Diabetes itself also constitutes a health risk as 

diabetes patients are at high risk for both microvascular complications (including retinopathy, 

nephropathy and neuropathy) and macrovascular complications (such as cardiovascular 

comorbidities) (DeFronzo et al. 2015). Due to the skyrocketing rates and the huge health impact, 

extensive research has been conducted to identify the potential risk factors and provide strategies 

for disease prevention, amelioration, and management.  

Diabetes is caused by a combination of genetic and environmental factors (DeFronzo et 

al. 2015). Considering that genetic factors remain largely unchanged over the past several 

decades, the vertiginous rise in diabetes is more likely triggered by major changes in 

environmental factors, including increased caloric consumption combined with a decrease in 

physical activity levels (Chen et al. 2009), and a parallel upward swing in obesity prevalence 
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(Field et al. 2001; Ford et al. 1997; Renehan and Howell 2005; Sheehan and Ulchaker; WHO 

2017). Beyond those conventional risk factors, increasing and widespread exposures to 

environmental pollutants from industrial, agricultural and consumer applications, such as metals, 

may also act as a key contributor to the growing epidemics of diabetes (Franks and McCarthy 

2016). 

 

Environmental Exposure to Metals 

Metals occur naturally in the environment and are widely used in industrial, agricultural, 

and manufacturing processes. Individuals are commonly exposed to metals found in soil, water, 

air, dust, food, and consumer products (Alloway 2013; Bosch et al. 2016; Mohod and Dhote 

2013). Essential metals, which have a known physiological function and are necessary at certain 

levels in order to avoid deficiency-related health outcomes, include, for example, cobalt, copper, 

manganese, molybdenum, vanadium and zinc. In contrast, non-essential metals that have no 

known physiological functions include, for example, arsenic, barium, cadmium, cesium, 

mercury, lead, antimony, tin, and thallium. Depending on the level of exposure, both essential 

and non-essential metals may cause tissue damage and adverse health impacts (Zoroddu et al. 

2019). A remarkable reduction in environmental sources has been achieved in the US over the 

last several decades for metals with known high toxicities such as arsenic, cadmium, lead, and 

mercury (Calafat 2012); however low-to-moderate chronic exposure has been associated with 

numerous health outcomes, including cardiovascular diseases, kidney diseases, metabolic 

diseases, neurocognitive outcomes, some cancers, and mortality (Lanphear et al. 2018; 

Mohammed Abdul et al. 2015; Navas-Acien et al. 2007; Satarug et al. 2009; Zahir et al. 2005).  
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Exposure to metals is unequally distributed, and this unequal distribution is often related 

to sociodemographic factors. For example, lead body burden varies across socioeconomic and 

racial/ethnic groups (Hu et al. 1996; Theppeang et al. 2008). Exposure to arsenic, lead, cadmium, 

mercury, cesium, thallium and antimony has been observed to be a function of the poverty-

income-ratio among the US adults (Tyrrell et al. 2013). Reported differences in metal exposures 

are not likely to be fully explained by socioeconomic and racial/ethnic factors themselves; rather 

the residual differences could be explained by individual-level behaviors, lifestyles and other 

circumstances. For example, in a cohort of middle-aged-to-elderly men in the Boston area, 

higher bone lead concentrations were observed in men with fewer years of education. The 

authors suggested that the disparity might be explained by differences in home exposure to lead 

in dust and drinking water, home proximity to vehicular traffic, and/or occupational lead 

exposures (Hu et al. 1996).  

Health behaviors such as smoking and diet may contribute to the body burden of metals. 

Cadmium, chromium, and lead found in tobacco smoke can accumulate in tissues and fluids 

through smoking (Al-Bader et al. 1999; Ashraf 2012; Galażyn-Sidorczuk et al. 2008; Pääkkö et 

al. 1989). Tobacco smoking has also been suggested to be the single most important source of 

cadmium exposure in the general population (Al-Bader et al. 1999). Regular seafood intake, 

particularly fish and shellfish, may contribute to overexposure to methyl mercury, organic 

arsenic (arsenobetaine and arsenocholine), cadmium and lead (Bae et al. 2013; Burger and 

Gochfeld 2005; Castro-González and Méndez-Armenta 2008; Falcó et al. 2006; Storelli 2008). 

Rice intake has gained recent attention as a potential source of toxic inorganic arsenic exposure 

in the general population (Azizur Rahman et al. 2008; Davis et al. 2012a; Gilbert-Diamond et al. 

2011; Melkonian et al. 2013). More recently, a Western overall dietary pattern characterized by 
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high intake of processed meat, red meat, refined grains, butter, high-fat dairy products, eggs and 

French fries, was found to be associated with a greater lead body burden among middle-aged-to-

elderly men (Wang et al. 2017). One explanation for this finding could be related to high fat 

intake, which has been found to increase lead concentrations in multiple biological matrices in 

animal models, possibly through a reduced calcium absorption rate and a faster rate of turnover 

in trabecular bones, which might further contribute to enhanced bone resorption and lead 

circulation (Wang et al. 2017). 

Exposures to different metals is frequently correlated due to common environmental 

sources or similarities in metabolic pathways (Pang et al. 2016). Identification of overall 

exposure patterns is critical for evaluating the associations between metal mixtures and health 

outcomes. These issues have been recognized by the National Institute of Environmental Health 

Sciences (NIEHS), which has set understanding the field of exposures to mixtures of 

environmental chemicals as one of the goals of the 2018-2023 Strategic Plan (NIEHS 2018).  

 

Metal Exposures and Type 2 Diabetes Mellitus 

An increasing number of studies have examined the role of metal exposures in 

thedevelopment of type 2 diabetes mellitus. Arsenic has been most extensively examined and has 

been associated with diabetes in a number of human studies (Thayer et al. 2012). Other metals 

including cadmium, mercury, lead, nickel, and zinc have been examined in relation to diabetes 

but the evidence is limited and inconsistent. Evaluation of most other metals has not taken place 

and the potential underlying mechanisms are less well understood. 

1. Arsenic 
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Arsenic is a ubiquitous industrial and naturally occurring environmental toxicant. The 

principal route of exposure to arsenic for the general population is likely to be the oral route, 

primarily in food and drinking water (ATSDR 2007a). After absorption mainly through the 

gastrointestinal tract, arsenic is widely distributed in organs such as skin, lungs, liver and kidneys 

by the blood throughout the body (ATSDR 2007a). Arsenic can also accumulate in the pancreas 

and may subsequently impair insulin secretion as well as viability of the β cells (Lu et al. 2011). 

Arsenic in the human body is excreted mainly through the renal system via urine. 

Suggestive diabetogenic effects of arsenic are presented in Figure I.1. Arsenic may 

induce insulin resistance by altering gene expression of factors in inflammatory pathways, 

including NFκB, p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor-α 

(TNFα), interleukin-6 (IL-6), peroxisome proliferator activated receptor γ (PPARγ),  

phosphatidydylinositol-3-kinase (PI3K) and PI3K-dependent phosphorylation of protein kinase 

B (PKB/Akt), and affecting the insulin-stimulated glucose uptake (ISGU) in adipocytes or 

skeletal muscle cells (Le Roith and Zick 2001; Mohammed Abdul et al. 2015; Somwar et al. 

2002; Sriwijitkamol et al. 2006; Walton et al. 2004). Arsenic has the ability to induce oxidative 

stress and increase the activity of reactive oxygen species (ROS) (Jomova et al. 2011). 

Experimental studies have suggested that in the pancreas arsenic may increase amyloid 

formation, leading to apoptotic death/damage of pancreatic β cells through the generation of 

oxidative stress (Lu et al. 2011; Mukherjee et al. 2006; Yen et al. 2007). Additionally, arsenate 

(AsO3
3-, As(V)) has been found to replace phosphate in energy transfer phosphorylation 

reactions, resulting in the formation of ADP-arsenate instead of ATP (Gresser 1981). Arsenite 

(AsO2-, As(III)) has high affinity for sulfhydryl groups of proteins which has shown to inhibit 

pyruvate dehydrogenase and further impair the production of ATP by blocking the processing of 
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citric acid cycle (Petrick et al. 2001). In this way, arsenic was suggested to substitute phosphate 

and interact sulfhydryl groups, which could impair the glucose transport, interrupt the production 

of energy, and interfere with the ATP-dependent insulin secretion of β cells (Tseng 2004). 

In human studies, long-term exposure to inorganic arsenic has been reported to be 

associated with diabetes. In a meta-analysis based on data from 17 studies, a pooled relative risk 

of diabetes for the highest versus lowest category of inorganic arsenic in drinking water was 1.75 

(95% CI: 1.20, 2.54) (Wang et al. 2014). Based on epidemiologic evidence, high arsenic (≥50 

μg/L in drinking water) was considered to have “limited to sufficient” evidence of causing 

diabetes, with increased prevalence of diabetes significantly associated with chronic exposure to 

inorganic arsenic in drinking water in areas such as Taiwan and Bangladesh where arsenic 

contamination has been a historical problem (Kuo et al. 2013; Nabi et al. 2005; Rahman et al. 

1998, 1999; Thayer et al. 2012; Tsai et al. 1999; Tseng et al. 2000a, 2000b; Wang et al. 2003). 

Evidence of exposure to low to moderate arsenic (<50 μg/L in drinking water) and diabetes is 

more divergent. Urinary arsenic was associated with higher diabetes prevalence in US adults 

(Navas-Acien et al. 2008) and was associated with elevated diabetes incidence in a large cohort 

of American Indian adults (Grau-Perez et al. 2017). On the contrary, no evidence of a 

relationship between urinary arsenic and diabetes prevalence was found in a large cross-sectional 

studies in China (Li et al. 2013). More epidemiologic studies, particularly using prospective 

cohort designs, are needed to confirm this association at low-moderate levels of arsenic exposure 

(<50 μg/L in drinking water) and levels common in the US and other countries (< 10 μg/L). 
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Figure I. 1. Underlying mechanisms of arsenic exposure in development of type 2 diabetes 

mellitus. 

2. Cadmium 

Cadmium is a recognized toxicant and carcinogen. Non-occupational exposure to 

cadmium occurs mainly through tobacco smoking with each cigarette containing an average of 

1.1 μg cadmium (Al-Bader et al. 1999). For nonsmokers, secondhand smoke and food are the 

major sources of cadmium exposure (Satarug et al. 2009). Cadmium accumulation is primarily 

found in the kidney cortex after long-term exposure (Park et al. 2017). Cadmium may also 

accumulate in the liver, lung and reproductive tissues, bones, and pancreas (Lei et al. 2007; 

Satarug et al. 2009; Thompson and Bannigan 2008; Uetani et al. 2006). Findings from human 

tissue samples indicate that within the pancreas, cadmium may preferentially accumulate in islets 

(El Muayed et al. 2012). 

Suggestive diabetogenic effects of cadmium exposure are shown in Figure I.2. In both 

kidney and liver tissues, cadmium is hypothesized to disrupt gluconeogenesis by increasing the 

activity of gluconeogenic enzymes including glucose-6-phosphatase (G6Pase), fructose-1,6-
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diphosphatase (FDPase), and phosphoenolpyruvate carboxykinase (PEPCK) (Chapatwala et al. 

1982; Rajanna et al. 1984), leading to the disruption of gluconeogenesis. However, the exact 

mechanism by which cadmium alters activity of those enzymes is still unclear. Cadmium may 

impact insulin resistance; it has been observed that glucose transport activity is reduced through 

a decreasing expression of the glucose transporter (GLUT4) in adipocytes (Han et al. 2003) and 

of the sodium-glucose cotransporter 1 (SGLT1) in renal cortical cells treated with cadmium 

(Blumenthal et al. 1998). In the pancreas, cadmium can reduce insulin secretion by altering the 

ADP/ATP ratio (Ježek et al. 2012; Takebayashi et al. 2003), blocking calcium channels 

(Gavazzo et al. 2005), and breaking cell-cell adhesion in pancreas islets (Bosco et al. 2007; 

Edwards and Prozialeck 2009; Rogers et al. 2007; Wells et al. 2007); these activities impact the 

insulin release of β cells. Cadmium is also a well-known inducer of oxidative stress in a variety 

of tissues and cell types (Tinkov et al. 2017). The accumulated cadmium in pancreas islets could 

possibly cause an induced degeneration, necrosis, and weak degranulation in β cells (Demir et al. 

2006; Kurata et al. 2003; Messner et al. 2012; Wang et al. 2016) via induction of oxidative 

stress. 

Human studies of cadmium exposure and diabetes risk have yielded inconsistent results. 

Based on a total of 9 cross-sectional studies, a recent meta-analysis reported a pooled odds ratio 

of 1.02 (95% CI: 1.00, 1.05) of diabetes for the highest versus lowest concentrations of urinary 

cadmium (Li et al. 2017). Among these findings, the strongest association was observed in the 

National Health and Nutrition Examination Survey (NHANES) III.  People in the highest tertile 

of cadmium exposure were 1.45 (95% CI: 1.07, 1.97) times more likely to have diabetes 

compared to those in the lowest tertile (Schwartz et al. 2003). In a more recent study of US 

adults aged 40 and older from NHANES 2005-2010 datasets, urinary cadmium was associated 
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with a non-linear increase in the odds ratio for prediabetes (Wallia et al. 2014). In contrast, 

neither blood nor urinary cadmium was associated with incident diabetes, impaired glucose 

tolerance, blood glucose levels, insulin production, insulin resistance, or haemoglobin A1c 

(HbA1c) in a prospective cohort of elderly women in Sweden (Barregard et al. 2013). Another 

longitudinal cohort study of middle-aged-to-elderly Swedes also showed no association between 

cadmium and risk of diabetes; however an association of cadmium with a higher HbA1c in 

former and current smokers was reported (Borné et al. 2014). 

 

Figure I. 2. Underlying mechanisms of cadmium exposure in development of type 2 diabetes 

mellitus. 

 

3. Mercury 

Mercury is an ubiquitous and persistent toxicant that has elemental (metallic), inorganic, 

and organic forms (Roy et al. 2017). Exposure to metallic mercury is generally low in the general 

population, but may be significant in occupational settings (Roy et al. 2017). Nonoccupational 

exposure to inorganic mercury occurs majorly through occlusal surfaces of teeth that are filled 
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with mercury-containing amalgams (Mutter 2011) and skin lightening products with inorganic 

mercury compounds (Park and Zheng 2012). Once water has been contaminated by the direct 

release of elemental and inorganic mercury, both forms can be transformed by microorganisms 

to methylmercury (organic form) which can bioaccumulate in aquatic and terrestrial food chains 

(ATSDR 1999). General populations can be exposed to methylmercury mainly through the 

consumption of highly-contaminated large or long-lived fish species (Sundseth et al. 2017). In 

humans, blood mercury mainly reflects exposure to the dietary intake of organic mercury while 

urinary mercury mainly reflects inorganic mercury (ATSDR 1999).  

Possible mechanisms underlying mercury diabetogenic toxicity are summarized in 

Figure I.3. Inorganic mercury has been suggested to impair insulin secretion by inducing β cell 

depolarization and altering intracellular calcium homeostasis (Liu and Lin-Shiau 2002). Mercury 

has also been known to increase ROS formation and cause oxidative stress that impairs the 

function of pancreatic β cells (Chen et al. 2006a). Both inorganic and organic mercury have been 

demonstrated to cause pancreatic β cell death via the oxidative stress-induced apoptotic and 

necrotic pathways, as well as β cell dysfunction through a PI3K-activated or oxidative stress-

triggered Akt pathway (Chen et al. 2006b, 2006a, 2006d, 2006c, 2010). Inorganic mercury was 

also suggested to be linked with insulin resistance through a significant inhibition of both 

peroxisome PPARα and PPARγ mRNA expression in adipocytes(Kawakami et al. 2012).  

Epidemiological studies that have investigated the association between mercury and 

diabetes, have yielding inconsistent results. A large longitudinal study of US young adults found 

that people with high mercury exposure in young adulthood had elevated risk of diabetes and 

decreased β cell function later in life (He et al. 2013). On the contrary, mercury exposure was not 

associated with diabetes risks in both the Health Professionals Follow-up Study and the Nurses’ 
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Health Study, the two other large longitudinal studies of US adults (Mozaffarian et al. 2013). 

Associations between mercury exposure and metabolic syndrome and diabetes were evaluated in 

cross-sectional studies of the Korea National Health and Nutrition Examination Survey 

(KNHANES) with mixed  results. Among the six studies based on the different cycles of the 

KNHANES, two observed a significant association between total mercury and metabolic 

syndrome (Chung et al. 2015; Park and Seo 2016), while the other four reported no evidence of 

an association (Kim et al. 2015; Lee and Kim 2013, 2016; Moon 2014),. In the most updated 

systematic review regarding the role of mercury exposure on development of metabolic 

syndrome and diabetes, the associations based on 25 epidemiologic studies were weak to 

moderate, ranging from no association at all to an odds ratio of 7.35 (95% CI: 1.73, 31.1) when 

total mercury was measured in hair (Roy et al. 2017).  

 

Figure I. 3. Underlying mechanisms of mercury exposure in development of type 2 diabetes 

mellitus. 

 

4. Lead 
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Lead toxicity is acknowledged as a prevalent and persistent public health problem. 

Environmental exposure to lead occurs through various routes, including air, dust, paint, water, 

and food (Nordberg et al. 2014). Existing evidence on the influence of lead exposure on diabetes 

risk is limited and inconsistent: higher lead concentrations in different biological matrices were 

observed in diabetic patients compared to referents in case-control studies (Afridi et al. 2013; 

Nagaraj et al. 2009). On the contrary, no associations were found in two cross-sectional studies 

in both the US and South Korea (Menke et al. 2015; Moon 2013). One recent study in China 

found that higher blood lead concentration was associated with an increased risk of non-

alcoholic fatty liver disease, which commonly coexists with type 2 diabetes and has been 

suggested as a predictor of diabetes risk (Zhai et al. 2017). Lead is a well-known toxicant that 

can induce oxidative stress through ROS generation, where the ROS pathway has been suggested 

in the pathogenesis of diseases including diabetes (Leff et al. 2018). Lead is also thought to 

induce the insulin resistance through disruption of a variety of intracellular signaling pathways 

by interfering with calcium homeostatsis and calcium cellular uptake, and modulating activity of 

protein kinase C (Leff et al. 2018).  

 

5. Nickel 

Nickel is a hard metal that occurs naturally in the environment and is commonly used for 

electroplating, alloy production and the production of nickel-cadmium batteries (ATSDR 2005; 

Cempel et al.). General populations are exposed to nickel through various routes such as air, 

water, food and tobacco smoking (ATSDR 2005; Caruso et al. 2013). Nickel accumulates 

primarily in the kidneys and also in other organs including the lungs, liver and heart (Das et al. 
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2008; Dieter et al. 1988). Most of the absorbed nickel is excreted in the urine, regardless of the 

route of exposure (ATSDR 2005). 

Nickel has identified as a new chemical potentially linked with diabetes risk although the 

underlying mechanism is not fully elucidated (Figure I.4). Existing evidence suggests that nickel 

can increase hepatic glycolysis and pancreatic glucagon release, decrease peripheral utilization of 

glucose, induce gluconeogenesis, and impair islet function possibly through induction of 

oxidative stress as nickel can increase lipid peroxides and reduce antioxidant enzymes activities 

of superoxide dismutase, catalase and glutathione peroxidase, as well as hepatic glutathione 

concentrations (Das et al. 2001; KADOTA and KURITA 1955).  Nickel-induced glucose 

deregulation was reduced with treatment of antioxidants (Das et al. 2001). In the pancreas, nickel 

has been suggested to raise the expression of inducible nitric oxide synthase (iNOS) protein, 

followed by an increase in cyclic guanosine monophosphate (cGMP) in adrenals, brain and 

pancreas, which might lead to hyperglycaemia by stimulating endocrine secretions (Gupta et al. 

2000).  

Evidence from human studies evaluating the association between nickel and diabetes is 

limited. In a large cross-sectional study of Chinese adults, urinary nickel concentration was 

associated with higher prevalence of diabetes, higher fasting glucose, higher HbA1c, higher 

insulin levels, and increased insulin resistance (Liu et al. 2015). A case-control study from 

Turkey showed that urinary nickel concentrations were higher in people with diabetes and 

impaired fasting glucose than people without diabetes (Serdar et al. 2009). However, in another 

case-control study conducted in Italy, blood nickel concentrations in diabetes patients were lower 

than those in non-diabetic controls (Forte et al. 2013).  
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Figure I. 4. Underlying mechanisms of nickel exposure in development of type 2 diabetes 

mellitus. 

 

6. Zinc 

Unlike the aforementioned toxic metals (arsenic, cadmium, mercury, lead and nickel), 

zinc is an essential nutrient for humans that is necessary for biochemical pathways such as 

transcription, translation and cell divisions (Jansen et al. 2009). More than 300 enzymes need 

zinc for their catalytic activities (Jansen et al. 2009). Humans rely on a daily intake of dietary 

zinc to maintain health and prevent disease. In the US, the recommended dietary allowance 

(RDA) for zinc is 11 mg/day in men and 8 mg/day in women (Maret and Sandstead 2006). Zinc 

leaves the body in urine and feces (Roohani et al. 2013). Urinary concentrations of zinc reflect 

excretion of zinc in the urine (Roohani et al. 2013). 

Zinc intake has been associated with a lower risk of type 2 diabetes in women (Sun et al. 

2009; Vashum et al. 2013). In pancreatic β cells, zinc is necessary for insulin synthesis, storage 

and secretion, and accounts for the conformational integrity of insulin in its hexameric crystalline 

form (Jansen et al. 2009). Zinc transporter (ZnT8) is a key protein for the regulation of insulin 

secretion in that the alteration in its gene expression has been linked with diabetes (Wijesekara et 

al. 2010). Excessive urinary excretion of zinc was found to lead to a loss of zinc in β-cells, 

resulting in a reduced insulin secretion (Jansen et al. 2009). Certain zinc complexes showed 
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insulin-mimetic effects including reducing hyperglycemia and increasing lipogenesis in animal 

models (Jansen et al. 2009). Zinc has also been shown to improve glucose transportation in 

peripheral tissues by improving binding of insulin to its receptor through enhancing tyrosine 

kinase phosphorylation (Jansen et al. 2009). Additionally, zinc is a structural part of antioxidant 

enzymes such as superoxide dismutase that could protect insulin and β-cells from being attacked 

by free radicals (Jansen et al. 2009). On the other hand, hyperglycemia is suggested to interfere 

the active transportation of zinc back to renal cells, leading to a loss of this mineral in the urine 

(Chausmer 1998). 

 

7. Other metals 

Other metals may affect diabetes risks but evidence from human studies is limited or the 

underlying mechanisms are poorly understood. Some metals may be essential metals in which 

deficiencies contribute to diabetes development, while others could be non-essential with 

exposures linked with higher diabetes risk (Khan and Awan 2014).  

Antimony is a silvery white metal that is used in manufacturing of electronics, metal 

alloys, and as a fire-retardant in paints, ceramics, fireworks, enamels, and glass (ATSDR 2017a). 

The general population is exposed to low doses of antimony primarily through ingestion of food 

and drinking water and possibly via inhalation of particulate matters containing antimony in 

ambient air (ATSDR 2017a). Urinary antimony was positively associated with prevalence of 

diabetes in both US and Chinese adults (Feng et al. 2015; Menke et al. 2015). Antimony may 

affect diabetes risks through disruption of estrogen (Choe et al. 2003). 

Molybdenum is an essential element for humans and animals that is required for certain 

enzymes such as sulfite oxidase (Mendel and Bittner 2006). General populations are exposed to 
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molybdenum almost entirely through food, such as beans, cereal grains, leafy vegetables, 

legumes, liver, and milk, which are important sources of molybdenum in the daily diet (ATSDR 

2017b). The limited evidence of molybdenum on diabetes risk is contradictory. A potential 

beneficial effect of molybdenum on insulin sensitivity is supported by a study of mice in which 

molybdenum treatment improved glucose tolerance, replenished glycogen stores, and corrected 

lipogenic enzyme gene expression (Tanju Özcelikay et al. 1996), likely through its insulin-like 

actions (Fillat et al. 1992). On the contrary, another mechanistic study suggested that 

molybdenum could induce β-cell dysfunction and apoptosis via c-jun N-terminal kinases (JNK) 

and AMP-activated protein kinase (AMPK) activation downstream-regulated mitochondrial-

dependent and endoplasmic reticulum (ER) stress-triggered apoptosis pathways (Yang et al. 

2016). In humans, urinary molybdenum concentration was associated with higher prevalence of 

diabetes in both US and Chinese adults (Feng et al. 2015; Menke et al. 2015). 

Copper is also an essential element that is needed for multiple biological functions such 

as production of hemoglobin and maintaining the strength of the skin, blood vessels, and 

epithelial throughout the body (ATSDR 2004c). However, long-term exposure to excess copper 

through occupational hazard and environmental contamination has also been shown to induce 

oxidative damages (Gaetke and Chow 2003). Experimental research suggested the potential role 

of copper in the pathogenesis of diabetes through induction of hydrogen peroxide generation, 

leading to damage and death of pancreatic β cells (Masad et al. 2007). In a study of diabetic 

mice, the treatment of a copper chelating agent was found to reduce insulin resistance and 

ameliorate glucose intolerance (Tanaka et al. 2009). 

Magnesium is an essential macronutrient for human health (Lopez-Ridaura et al. 2004), 

but excessive high concentration of manganese may have toxic effects, particularly to the central 
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nervous systems which plays an important role in glucose homeostasis (Guilarte 2010). In a 

study comprising participants from two large prospective cohorts in the US, a magnesium 

deficiency led to an increased diabetes risks and a decrease in insulin mediated glucose uptake 

(Lopez-Ridaura et al. 2004). A double blind randomized clinical trial suggested that magnesium 

supplementation could reduce insulin resistance in non-diabetic persons (Mooren et al. 2011).  

Chromium (trivalent form) is an essential nutrient required for normal energy metabolism 

(Guidotti et al. 2008). Chromium reduces insulin resistance possibly via stimulating the insulin 

signaling pathway and metabolism by up-regulating the mRNA level of insulin receptor, 

GLUT4, glycogen synthase (GS), and uncoupling protein-3 (UCP3) in muscle cells (Qiao et al. 

2009). Chromium inhibits oxidative stress and TNFα secretion which could suppress sensitivity 

and action of insulin (Jain and Kannan 2001).  

Vanadium is also an essential nutrient, however, a functional role for vanadium in 

humans has not been established (ATSDR 2012b). Food is the primary route of exposure for the 

general population (ATSDR 2012b). An intervention study showed that the oral vanadium 

treatment improved insulin activity and lowered blood glucose levels (Soveid et al. 2013). 

Vanadium could exert its potential hypoglycemic effect through activation of signal pathways in 

GLUT translocation to plasma membrane by increasing the phosphorylation levels of various 

insulin pathway intermediaries, as well as disruption of gluconeogenesis by its inhibitory effect 

on the expression of the neoglucogenic enzymes PEPCK and G6Pase (Niu et al. 2016). 

For other metals, in a cross-sectional study investigating urine metals with diabetes in 

NHANES 1999-2010, uranium and tungsten were positively associated with higher prevalence 

of diabetes; barium was positively while cesium was negatively associated with homeostatic 

model assessments for insulin resistance (HOMA-IR) (Menke et al. 2015). In a large cross-
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sectional study of Chinese adults, urinary barium was associated with higher odds of impaired 

fasting glucose (IFG) while urinary tungsten was associated with higher fasting glucose levels 

and diabetes prevalence (Feng et al. 2015). Thallium, cobalt and tin were not associated with 

diabetes, HOMA-IR, IFG or fasting glucose in either of these two studies (Feng et al. 2015; 

Menke et al. 2015). Barium, thallium and cesium may affect diabetes risk through their link with 

obesity: higher urinary concentrations of barium and thallium while lower concentrations of 

cesium were associated with higher body mass index (BMI)/waist circumference in US adults 

(Padilla et al. 2010). The exact physiological roles of uranium, tungsten, cobalt and tin in 

diabetes are still unknown. No other studies investigating platinum, beryllium exposure and 

diabetes were located. 

Evidence of metal exposures on diabetes is summarized in Table I.1. 

Table I. 1. Summary of previous evidence of metal exposures on diabetes 
Metals Evidence 

Arsenic Insulin resistance (Le Roith and Zick 2001; Mohammed Abdul et al. 2015; Somwar et al. 2002; 

Sriwijitkamol et al. 2006; Walton et al. 2004): alteration in expression of NFκB, MAPK, PI3K, 

PKB/Akt in adipocytes and muscles 

 

Amyloid formation, apoptosis and necrosis of β cells (Lu et al. 2011; Mukherjee et al. 2006; Yen et al. 

2007): oxidative stress 

 

Impair glucose transport, metabolism and energy production (Tseng 2004): replace phosphate or interact 

with sulfhydryl groups 

 

Epidemiologic evidences: higher risk/prevalence of diabetes 

 

Cadmium Disrupt gluconeogenesis (Chapatwala et al. 1982; Rajanna et al. 1984): increase activity of G6pase, 

FDPase, PEPCK 

 

Insulin resistance(Han et al. 2003): decrease expression of GLUT4 in adipocytes 

 

Impair insulin secretion: altering ADP/ATP ratio (Ježek et al. 2012; Takebayashi et al. 2003), blocking 

calcium channel (Gavazzo et al. 2005), as well as breaking cell-cell adhesion in pancreas islets (Bosco 

et al. 2007; Edwards and Prozialeck 2009; Rogers et al. 2007; Wells et al. 2007) 

 

Degeneration, necrosis, and weak degranulation of β cells (Demir et al. 2006; Kurata et al. 2003; 

Messner et al. 2012; Wang et al. 2016): oxidative stress 

 

Epidemiologic evidences (Borné et al. 2014; Li et al. 2017): higher prevalence of diabetes but 

inconsistent 

 

Mercury Impair insulin secretion (Liu and Lin-Shiau 2002): induce β cell depolarization and alter intracellular 

calcium homeostasis 
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Apoptosis and necrosis of β cells/β cell dysfunction (Chen et al. 2006b, 2006a, 2006d, 2006c, 2010): 

PI3K-activated or oxidative stress-triggered Akt pathway 

 

Insulin resistance (Kawakami et al. 2012): inhibition of PPARα and PPARγ mRNA expression in 

adipocytes 

 

Epidemiologic evidences(Roy et al. 2017), (He et al. 2013)-(Moon 2014): inconsistent 

 

Lead Oxidative stress could be possible mechanism in the pathogenesis of diabetes (Patra et al. 2011) 

 

Epidemiologic evidences (Afridi et al. 2013)-(Moon 2013): limited and inconsistent 

 

Nickel Increase glycolysis and glucagon release/Insulin resistance/Impair islet function (Das et al. 2001; 

KADOTA and KURITA 1955; Tikare et al. 2008): oxidative stress 

 

Disrupt endocrine secretion (Gupta et al. 2000): raise expression of iNOS and cGMP  

 

Epidemiologic evidences (Kuo and Navas-Acien 2015)-(Forte et al. 2013): limited and inconsistent 

 

Zinc Necessary for insulin synthesis, storage and secretion (Jansen et al. 2009) 

 

ZnT8 is a key protein for the regulation of insulin secretion (Wijesekara et al. 2010) 

 

Antioxidant (Jansen et al. 2009): reduce oxidative stress-induced damage  

 

Epidemiologic evidences (Jayawardena et al. 2012): zinc deficiency with hyperglycemia; zinc 

supplement benefit glucose control 

 

Antimony Antimony may affect diabetes risks through disruption of estrogen (Choe et al. 2003) 

 

Epidemiologic evidences (Feng et al. 2015; Menke et al. 2015): higher prevalence of diabetes in two 

cross-sectional studies 

 

Molybdenum Beneficial effect on insulin sensitivity by improving glucose tolerance, replenished glycogen stores, and 

corrected lipogenic enzyme gene expression (Tanju Özcelikay et al. 1996) 

 

Apoptosis and necrosis of β cells/β cell dysfunction (Yang et al. 2016): possibly mitochondrial-

dependent and ER stress-triggered apoptosis pathway 

 

Epidemiologic evidences (Feng et al. 2015; Menke et al. 2015): higher prevalence of diabetes in two 

cross-sectional studies 

 

Copper Required for activity of SOD; however long-term exposure induce oxidative stress (Gaetke and Chow 

2003) 

 

Epidemiologic evidences: higher copper concentrations in diabetes patients than in healthy individuals 

(Qiu et al. 2017) 

 

Magnesium Epidemiologic evidences: magnesium deficiency increase diabetes risks in two prospective cohort 

studies(Lopez-Ridaura et al. 2004); supplement reduce insulin resistance in an RCT (Mooren et al. 

2011) 

 

Chromium Reduce insulin resistance: possibly up-regulate the mRNA level of GLUT4, GS, UCP3; inhibit 

oxidative stress and TNFα secretion 

 

Vanadium Hypoglycemic effect: possibly activate GLUT translocation, inhibit expression of PEPCK and G6Pase 

(Niu et al. 2016) 

 

Epidemiologic evidences: improve insulin activity and lower blood glucose levels in a cross-sectional 

study (Fortoul et al. 2014) 
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Barium, Cesium, 

Cobalt, Tin, 

Tungsten, 

Thallium, 

Uranium 

 

Evidence only available in two cross-sectional studies (Feng et al. 2015; Menke et al. 2015): barium, 

uranium and tungsten positively associated with diabetes prevalence, HOMA-IR, IFG or fasting 

glucose; cesium negatively associated with HOMA-IR; no association found for thallium, cobalt and tin 

 

Beryllium, 

Platinum 

 

No study can be identified 

 

Gaps in Scientific Knowledge 

While the evidence discussed above supports the role of metal exposures as potential risk 

factors for diabetes, several important challenges are still remaining. 

First, almost all previous epidemiologic studies examining associations between metals 

and diabetes have been cross-sectional. Given the cross-sectional nature which precludes the 

ability to determine temporality of metal exposures and diabetes events, reverse causality cannot 

be ruled out as an possible explanation for observed associations since chronic conditions such as 

diabetes may affect metal excretions in urine (Chaumont et al. 2012).  

Second, most previous studies have focused on only a limited number of metals, 

particularly those “priority toxic metals” including arsenic, cadmium, lead, and mercury. It is 

important not only to validate diabetic impacts of known toxicants in a well-designed cohort but 

also to explore the potential effects of other metals which have been rarely examined previously 

in human populations. 

Third, although plausible biological mechanisms have been proposed, data on underlying 

mechanisms in human studies is lacking. Molecular epidemiologic approaches using a 

continuum of events between metal exposures and incident diabetes provide opportunities for 

elucidating underlying mechanisms in human populations. For example, etiopathogenic 

mechanisms underlying type 2 diabetes mellitus involves insulin resistance and β-cell 

dysfunction (DeFronzo 2004; Kahn; 1990). Longitudinal studies allow us to assess the impact of 
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metal exposures on the changes in intermediate quantitative traits such as homeostatic model 

assessments over time, providing better pictures of potential mechanisms. 

Fourth, most previous studies have been limited to single metals, i.e., the unit of analysis 

is based on a single metal. This could be partly due to statistical challenges such as complex 

correlations among metals, confounding by correlated co-pollutants, and lack of well-established 

statistical methods to evaluate the combined effects of exposure to metal mixtures (Braun et al. 

2016; Wang et al. 2018). Quantifying the impact of exposure to metal mixtures is needed for 

better understanding the role of metal exposures in pathogenesis of diabetes. However, almost all 

previous studies have not examined the associations of metal mixtures with diabetes and its 

related intermediate quantitative traits. 

 

Specific Aims of Dissertation 

 The overall goal of this dissertation was to better understand the role of metals in the 

development of type 2 diabetes mellitus. The objectives of the present study were (1) to evaluate 

the distributions of urinary concentrations of a comprehensive list of metals and identify key 

determinants of each individual metal as well as metal mixtures; (2) to assess the associations of 

each individual metal, as well as metal mixtures, with incidence of diabetes; and (3) to examine 

whether exposures to metal mixtures affect insulin resistance and β-cell dysfunction, which help 

elucidate potential biological mechanisms linking metal exposures related to diabetes. To 

achieve this goal, I took advantage of the rich longitudinal features of the Study of Women’s 

Health Across the Nation (SWAN), a multi-site, multi-ethnic cohort of women, evaluated 

annually over 16 years since 1996, when women were 42-52 years of age. Three specific aims 

were as follows: 
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Specific aim 1: To report on measurements of 21 metals (arsenic, barium, beryllium, 

cadmium, cobalt, chromium, cesium, copper, mercury, manganese, molybdenum, nickel, lead, 

antimony, tin, thallium, uranium, vanadium, tungsten, and zinc) in urine samples collected from 

the participants of the SWAN. The objectives were (1) to examine the distributions of urinary 

concentrations of metals, (2) to identify subgroups exposed to different patterns of metals using 

the k-means clustering method, a nonparametric clustering method seeking a minimum error sum 

of squares, which could suggest specific exposure patterns of metals, and (3) to evaluate 

associations of demographic, socioeconomic, lifestyle, dietary and geographical characteristics 

with each urinary metal, as well as with exposure patterns of multiple metals, in this diverse 

population of midlife women.  

Specific aim 2: To examine the associations of urinary metal concentrations with the 

incidence of diabetes over 16 years of follow-up in the SWAN. Based on findings of the aim 1, I 

further evaluated the associations between metal mixtures captured by k-means clusters and 

incidence of diabetes. 

Specific aim 3: To evaluate associations of urinary metal concentrations with 

longitudinal changes in insulin resistance (HOMA-IR) and β-cell function (HOMA-β) over 16 

years of follow-up in the SWAN, which might be mechanisms by which metals may affect 

diabetes risks. 
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Abstract 

Background: Little is known about the extent of exposure to metals and metal mixtures among 

midlife women.  

Objectives: We assessed exposure to multiple metals in the Study of Women’s Health Across 

the Nation (SWAN), a multi-site, multi-racial/ethnic cohort of women at midlife. 

Methods: We measured urinary concentrations of 21 metals (arsenic, barium, beryllium, 

cadmium, cobalt, chromium, cesium, copper, mercury, manganese, molybdenum, nickel, lead, 

platinum, antimony, tin, thallium, uranium, vanadium, tungsten and zinc) using high-resolution 

inductively coupled plasma-mass spectrometry among 1,335 white, black, Chinese and Japanese 

women aged 45-56 years at the third SWAN annual visit (1999-2000). Least squared geometric 

mean concentrations were compared across race/ethnicity, education, financial hardship, 

smoking, secondhand smoking, seafood intake and rice intake groups. Overall exposure patterns 

of multiple metals were derived using k-means clustering method.  

Results: The percentage of women with detectable concentrations of metals ranged from 100% 

for arsenic, cesium, molybdenum and zinc, to less than 5% for platinum; 15 metals had detection 

rates of 70% or more. Asian women, both Chinese and Japanese, had higher urinary 

concentrations of arsenic, cadmium, copper, mercury, molybdenum, lead and thallium, compared 

with other race/ethnic groups, independent of sociodemographic, lifestyle, dietary, and 

geographic characteristics. Seafood and rice intake were important determinants of urinary 

arsenic, cesium, mercury, molybdenum and lead levels. Two distinct overall exposure patterns- 

“high” vs. “low” -- were identified. Women in the “high” overall exposure pattern were more 

likely to be Asians, current smokers, and to report high consumption of seafood and rice. Black 

women were less likely to have the high exposure pattern. 
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Conclusions: Metal exposure of midlife women differs by racial/ethnic, sociodemographic, 

lifestyle, dietary, and geographic characteristics. Asian women may be experiencing the highest 

exposures to multiple metals compared with other racial/ethnic groups in the United States. 



  

36 

 

1. Introduction 

Metals occur naturally in the environment and are widely used in industrial, agricultural, 

and manufacturing processes. Individuals are commonly exposed to metals found in soil, water, 

air, dust, food, and consumer products (Alloway 2013; Bosch et al. 2016; Mohod and Dhote 

2013). Arsenic, cadmium, lead and mercury are among the most toxic environmental pollutants. 

Although a remarkable reduction in environmental sources of such toxic metals has been 

achieved in the United States (U.S.) over the last several decades (Calafat 2012), low-to-

moderate chronic exposure has been associated with numerous health outcomes, including 

cardiovascular diseases, kidney diseases, metabolic diseases, neurocognitive outcomes, some 

cancers, and mortality (Lanphear et al. 2018; Mohammed Abdul et al. 2015; Navas-Acien et al. 

2007; Satarug et al. 2009; Zahir et al. 2005). Other metals, like cobalt, copper, manganese, 

molybdenum, vanadium and zinc, are necessary for multiple biochemical pathways and required 

for certain enzymes (Fraga 2005). Given the role of essential elements in human nutrition, 

deficiencies are frequently associated with diseases; excessively high concentrations of such 

metals may also have toxic effects (Fraga 2005).  

Exposure to metals is unequally distributed, and this unequal distribution is often related 

to sociodemographic, lifestyle, dietary and geographic factors. For example, lead body burden 

varies across socioeconomic and racial/ethnic groups (Hu et al. 1996; Theppeang et al. 2008). 

Exposure to arsenic, lead, cadmium, mercury, cesium, thallium and antimony has been observed 

as a function of poverty-income-ratio among the U.S. adults (Tyrrell et al. 2013). Exposures to 

arsenic, cadmium, mercury and lead with has also been linked to lifestyle factors, such as 

smoking and food/dietary intake, especially seafood and rice (Castro-González and Méndez-

Armenta 2008; Gilbert-Diamond et al. 2011; Wang et al. 2017).  
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Few studies have evaluated exposures to metals in midlife women despite the growing 

appreciation of the importance of this lifestage to health and wellbeing. The menopausal 

transition is characterized by a shift in women’s sex hormone profile owing to permanent 

changes in ovarian function which is associated with increased risk of chronic diseases, most 

notably cardio-metabolic disorders (Davis et al. 2012b; Kim 2012; Polotsky and Polotsky 2010; 

Stuenkel 2017). Exposure to toxic metals during this window of susceptibility may increase the 

risk of adverse health consequences associated with ovarian aging. For example, menopause has 

been suggested to play an important role in the mobilization of lead from bone into the 

circulation due to an increased bone turnover rate (Hernandez-Avila et al. 2000; Tsaih et al. 

2001). Bone lead stores accrued from cumulative environmental exposures for decades are the 

major endogenous source of lead (Tsaih et al. 2001). Lead exposure has been associated with 

health outcomes such as hypertension and coronary heart disease (Ding et al. 2016; Korrick et al. 

1999). To date, however, no study has examined midlife women’s metal exposure profile 

comprehensively or identified characteristics of highly exposed subpopulations. 

Exposures to different metals may be correlated due to common environmental sources or 

similarities in metabolic pathways (Pang et al. 2016). Given the complexity in the correlations, 

simultaneous exposure to multiple metals may result in effects that can depart from a simple 

summation of the effects of single metals (Park et al. 2014, 2017; Wang et al. 2018). 

Identification of overall exposure patterns is critical for evaluating the associations between 

metal mixtures and health outcomes. These issues have been recognized by the National Institute 

of Environmental Health Sciences (NIEHS), which has set understanding the field of exposures 

to mixtures of environmental chemicals as one of the goals of the 2018-2023 Strategic Plan 

(NIEHS 2018).  
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In this paper, we report on measurements of 21 metals in urine samples collected from 

the Study of Women’s Health Across the Nation (SWAN), a multi-site, multi-race/ethnic cohort 

of women aged 45-56 years at the time of urine collection. The overall objectives were (1) to 

examine the distributions of urinary concentrations of metals, (2) to identify subgroups exposed 

to different patterns of metals using the k-means clustering method, a nonparametric clustering 

method seeking a minimum error sum of squares, which could suggest specific exposure patterns 

of metals (Jain 2010), and (3) to evaluate associations of demographic, socioeconomic, lifestyle, 

dietary and geographical characteristics with each urinary metal, as well as with exposure 

patterns of multiple metals, in this diverse population of midlife women.   

2. Methods 

2.1 Study population 

Women in the present study were participants in the SWAN, an ongoing, a multi-site, 

multi-ethnic, community-based longitudinal study of the natural history of menopause designed 

to address the effect of the menopausal transition on subsequent health and to identify risk 

factors for age-related chronic diseases (Sowers et al. 2000). Between 1996 and 1997, 3,302 

women were enrolled from seven study sites, including Boston, MA; Chicago, IL; southeast 

Michigan, MI; Los Angeles, CA; Oakland, CA; Newark, NJ; and Pittsburgh, PA. Each site 

enrolled white women and women from one minority group (black women from Boston, 

Chicago, Southeast Michigan, and Pittsburgh; Chinese women from Oakland; Japanese women 

from Los Angeles; Hispanic women from Newark). Black, Chinese, Japanese, and Hispanic 

women comprised greater proportions of the SWAN population than their respective proportions 

in the general U.S population, reflecting the study design to oversample these groups (Sowers et 

al. 2000). Eligibility criteria for enrollment into the SWAN cohort included the following: age 42 
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to 52 years, intact uterus and at least one ovary, no use of exogenous hormones affecting ovarian 

function in the past 3 months, at least one menstrual period in the previous 3 months, and self-

identification with a site’s designated racial/ethnic groups. Institutional review board approval 

was obtained at each study site, and all participants provided signed informed consent at each 

study visit. 

The SWAN Multi-Pollutant Study used urine samples from the SWAN Repository 

collected during the third SWAN follow-up visit (visit 03, 1999-2000) for environmental 

exposure assessment. A subset of 1,400 SWAN participants from the five SWAN sites who 

provided urine samples to the SWAN Repository (Boston, southeast Michigan, Los Angeles, 

Oakland and Pittsburgh) were assayed for metal concentration determinations. Women from 

Chicago and Newark were excluded because urine samples were not collected in these two sites. 

This subpopulation, by design, included self-identified white, black, Chinese, and Japanese but 

not Hispanic women who were recruited exclusively from Newark. Among these five sites, 

women for whom urine samples were not available were less educated and more likely to be 

current smokers or obese than women with available urine. For this analysis, we excluded 2 

participants with insufficient urine samples such that one or more metal concentrations could not 

be determined, and 63 participants with missing information on core covariates (smoking, 

secondhand smoking, education, financial hardship, seafood intake, rice intake, and urinary 

creatinine concentrations), leaving 1,335 eligible participants (95.6%) for analysis. When 

compared to the 65 excluded women, women eligible for this analysis were similar with respect 

to age and racial distributions. An overview of our sampling procedure is illustrated in 

Supplemental Figure II.1.  

2.2 Urinary metals 
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Urine specimens were collected prior to 11 am in the morning. First morning voided 

urine was collected. Aliquoted specimens were frozen and stored in ultra-low freezers at -80 ˚C 

until they were later analyzed for the metal content. All specimens were collected and stored in 

the SWAN Repository (http://swanrepository.com/) using a systematic protocol. A total of 21 

metals including total arsenic, barium, beryllium, cadmium, cobalt, chromium, cesium, copper, 

mercury, manganese, molybdenum, nickel, lead, platinum, antimony, tin, thallium, uranium, 

vanadium, tungsten and zinc were measured in the urine samples. All the urinary metals were 

analyzed with high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) (Thermo 

Scientific iCAP RQ, Waltham, MA) by the Applied Research Center of NSF International (Ann 

Arbor, Michigan), a part of the Michigan Children’s Health Exposure Analysis Resource (M-

CHEAR) Laboratory Hub. We used the CDC method 3018.3 (CDC 2012b), with modifications 

for the expanded metals panel. All standards, quality controls (QCs), blanks, rinse solution and 

urine samples were diluted 10-fold in a diluent consisting of 2% HNO3 solution containing the 

internal standards and gold. The samples were analyzed in two analysis modes - standard 

(default) for the majority of the metals, and kinetic energy discrimination (KED) for vanadium, 

chromium, arsenic, molybdenum and cadmium. The following QC procedures was conducted in 

parallel with sample analyses: (a) second source standards and spike and surrogate recoveries 

were tested periodically; (b) linearity and drift checks were performed with each sample batch; 

and (c) metal internal standards were used on each sample. Each sample run contained a 

minimum of 4 calibration standards and a blank. The coefficients of variation were 2.4-34.8% 

for the low QC pools; 1.6-4.0% for the high QC pools; and 1.8-4.0% for the laboratory fortified 

blank. The limits of detection (LODs) of each metal were determined during the method 

validation by running a dilution matrix blank 10 times and then calculating the standard 
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deviation of the instrument response. The limit of detection was then defined by calculating three 

times the standard deviation. Metal concentrations below their LODs were assigned the LOD 

divided by the square root of 2.  

2.3 Covariates 

Sociodemographic factors including age, race/ethnicity, educational attainment, and 

financial hardship were assessed at the SWAN baseline examination (1996-1997). Race/ethnicity 

was classified into self-identified white, black, Chinese, or Japanese. Education was categorized 

as graduated from high school or less, attended some college, and graduated from 4-year college 

or higher degree. Financial hardship was derived from the question “How hard is it for you to 

pay for the very basics like food, housing, medical care and heating?” with the 3-level response 

indicating “very hard”, “somewhat hard”, and “not hard at all” (Hall et al. 2008). Lifestyle 

variables including cigarette smoking and secondhand smoking at home, work, and other social 

settings were collected at SWAN visit 03 with a self-administered questionnaire. Cigarette 

smoking was categorized as never, former, or current smoking. Total person-hours of 

secondhand smoking exposure per week was calculated and categorized as 0 hour per week, less 

than 5 hours per week and more or equal than 5 hours per week. Dietary intake was collected at 

the SWAN baseline, using a detailed semi-quantitative food frequency questionnaire (FFQ) 

adopted from Block FFQ (Block et al. 1986). The 103-food item FFQ included 4 seafood items 

(fried fish/fish sandwich, tuna fish/tuna salad, shellfish, and other fish) and 1 rice item 

(rice/dishes made with rice). For analysis, weekly seafood intake was computed by summing the 

frequency of intake for the 4 fish items. To obtain comparable numbers of participants in each 

group of food intake, we categorized seafood intake into tertiles as less than 1 time per week, 1 

to 1.9 times per week, and greater than or equal to 2 times per week. Rice intake was categorized 
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into tertiles as less than 1.5 times per week, 1.5 to 3.4 times per week, and greater than or equal 

to 3.5 times per week. Total energy intake was obtained from the FFQ based on each food intake. 

Urine creatinine was determined by the Cobas Mira analyzer (Horiba ABX, Montpellier, France) 

at SWAN visit 03 as makers of urine dilution.   

2.4 Statistical analysis 

Means and percentages of participant characteristics were calculated and examined by 

race/ethnic groups. Detection rate, geometric mean and distribution percentiles for both the 

volume-based (μg/L) and creatinine-adjusted (μg/g creatinine) concentrations of each urinary 

metal were calculated. Pairwise Spearman correlations among urinary creatinine-adjusted metal 

concentrations were calculated and presented via a correlation-matrix heat map. To compare 

metal exposure profiles in SWAN to the concentrations in the U.S. general population, median 

creatinine-adjusted concentrations of urinary metals in white and black women aged 45-56 years 

(the age range of SWAN women) from the National Health and Nutrition Examination Survey 

(NHANES) 1999-2000 were calculated. The complex survey design of NHANES was 

considered using the R ‘survey’ package. We were not able to compare metal concentrations in 

Chinese and Japanese women between SWAN and NHANES due to the limited number of Asian 

Americans included in the NHANES 1999-2000 cycle (the category “Non-Hispanic Asian” was 

not available until NHANES survey cycle 2011-2012) (CDC/NCHS 2018). 

We used analysis of covariance (ANCOVA) to examine the influence of race/ethnicity, 

education, financial hardship, smoking, secondhand smoking, seafood and rice intake on each 

natural log-transformed urinary metal concentration, given the right-skewed concentration 

distributions. This model enabled us to compare the expected least square geometric mean 

(LSGM) metal concentrations for selected determinants (e.g., across race/ethnic groups), which 
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were adjusted statistically so that participants had comparable levels of all other covariates in the 

model. To control for potential confounding, age and study sites were adjusted in all models 

(Santoro et al. 2011). All models were adjusted for urine creatinine to account for variations in 

dilution in spot urine samples (Barr et al. 2005; O’Brien et al. 2016). When seafood intake and 

rice intake were included in the model, we also adjusted for total energy intake (Willett et al. 

1997). We calculated LSGM metal concentrations across the study sites within white and black 

women respectively, to assess potential geographical differences in metal exposures. 

Geographical differences could not be evaluated within the Chinese or Japanese groups as they 

were sampled at only one site by design. We also calculated and compared the LSGM metal 

concentrations between white and Chinese women within the Oakland site, and between white 

and Japanese women within the Los Angeles site, to examine potential race/ethnic differences in 

metal exposures within these sites.  

K-means clustering was implemented to identify subgroups of SWAN participants with 

different overall exposure patterns of urinary metals. K-means clustering is a commonly used 

nonparametic clustering method partitioning quantitative variables towards different centroids 

seeking a minimum total within-cluster variation (Jain 2010). This approach creates a single 

variable with k categories as different clusters where participants within the same cluster are as 

similar as possible and participants from different clusters are as dissimilar as possible, in terms 

of the quantitative variables (i.e., urinary metal concentrations). The k-means algorithm (1) 

randomly selected k centroids in a space of urinary metals and assigned each participant to the 

closest centroid by minimizing the distance to the corresponding centroid (within-cluster sum of 

squares), and (2) updated the centroids as the average of all data points in a cluster and again 

assigned each participant to the closet centroid. Step (2) was iterated until the cluster 
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assignments stopped changing (convergence). Each cluster represents a subpopulation with a 

specific metals exposure pattern. All log-transformed urinary metals were standardized to make 

variables comparable before the k-means analysis. The number of optimal clusters (k) was 

determined based on (1) cubic clustering criterion (Warren and Sarie 1983); (2) Elbow method 

(plotting total within-cluster sum of square vs. number of clusters); and (3) average Silhouette 

method (Rousseeuw 1987).  

To identify those risk factors most strongly associated with exposure to individual metals, 

as well as to the overall exposure patterns, variable selection was performed using backward 

elimination with an initial model including race, education, financial hardship, smoking and 

secondhand smoking and a threshold of p < 0.05 for retaining the variables in linear regression 

for individual metals, and logistic regression for the overall k-means clustering exposure 

patterns, respectively. Age, study site, and total energy intake were forced into all models to 

control for confounding. Urinary creatinine was forced into all linear regression but not into the 

logistic regression models since the overall exposure patterns were derived based on the 

creatinine adjusted-metal concentrations. Regression analyses and k-means clustering were 

performed only for metals for which the detection rate was ≥ 70%.  

To examine analytical consistency and robustness of our findings, we substituted specific 

gravity for urinary creatinine to adjust for urine dilution in all regression analyses, as a sensitivity 

analysis. Specific gravity was measured using a handheld digital refractometer (ATAGO model 

PAL-10S, Tokyo, Japan) at SWAN visit 03. All analyses were conducted using R, version 3.4.0. 

 

3. Results 

3.1 Characteristics of study population 
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Table II.1 presents participants’ characteristics by racial groups and for the total study 

population. Participants had a mean age of 49.4 years, ranging from 45 to 56 years, which was 

not significantly different across the four racial groups (P = 0.12). There were significant 

differences in education, financial hardship, smoking, secondhand smoking, seafood and rice 

intake between race/ethnic groups (Ps < 0.001). Generally, black women reported the lowest 

socioeconomic status as indicated by education and financial hardship. The prevalence of current 

cigarette smokers was highest in black women and lowest in Chinese women. Black women also 

reported higher exposure to secondhand smoking than women of other race/ethnicities. Chinese 

and Japanese women consumed seafood and rice more frequently than white or black women. 

3.2 Analysis of individual metals 

The distributions of all 21 metal concentrations (μg/L urine and μg/g creatinine), LODs 

and detection rates are summarized in Supplemental Table II.1. The percentage of women with 

detectable concentrations of an individual metal ranged from 2.6 to 100%. Six metals had 

detection rates less than 70% (beryllium: 16.2%, chromium: 24.3%, platinum: 2.6%, uranium: 

33.0%, vanadium: 37.2%, tungsten: 29.6%). The median number of metals detected in SWAN 

participants was 16. Figure II.1 shows the Spearman correlation matrix of the 15 creatinine-

adjusted metal concentrations for which detection rates were greater or equal than 70%. In 

general, most metals were modestly and positively correlated with each other. Comparisons of 

creatinine-adjusted median concentrations of urinary barium, cadmium, cobalt, cesium, mercury, 

molybdenum, lead, antimony, and thallium in white and black women from SWAN and 

NHANES 1999-2000 within the same age range are displayed in Figure II.2.  

The LSGM concentrations of 15 urinary metals detectable in more than 70% of the 

participants are shown in Supplemental Table II.2, stratified by race/ethnicity, education, 
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financial hardship, smoking, and secondhand smoking status. Concentration differences for 12 

out of 15 metals were observed between race/ethnicity groups. Both Chinese and Japanese 

women had higher concentrations of arsenic, cadmium, copper, mercury, molybdenum, lead and 

thallium than white or black women. The most pronounced differences between Asian and 

white/black women were for arsenic and cadmium. For example, on average, arsenic 

concentrations were 95.9% and 121.2% higher in Chinese than in white and black women, 

respectively, while cadmium concentrations were 93.0% higher in Japanese than in white or 

black women. The highest LSGM concentrations of cobalt, cesium and nickel were also detected 

in Chinese participants. Women with higher education had lower concentrations of cadmium, 

antimony and zinc, but higher concentrations of mercury than women with less education. 

Current smoking status was positively associated with cadmium and lead and inversely 

associated with cobalt and nickel concentrations. Higher concentrations of mercury and lead 

were found also among women who had higher exposure to secondhand smoking. No significant 

differences were observed between metal concentrations and financial hardship.  

The LSGM metal concentrations are presented in Table II.2 after further adjustment for 

seafood and rice intake. Higher seafood intake was significantly associated with higher 

concentrations of arsenic, mercury, molybdenum and lead. Rice intake was also positively 

associated with arsenic, cesium and mercury concentrations. Women who consumed two or more 

seafood meals per week had 55.4% higher mean concentrations of total arsenic in urine than did 

women who reported eating seafood less than 1 time per week. For rice, those who consumed 3.5 

or more rice meals per week, on average, had 65.5% higher concentrations of urinary total 

arsenic compared with participants in the lowest category of rice intake (<1 time per week). To 

note, seafood and rice intake were only weakly correlated (Spearman correlation ρ = 0.25) (data 
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not shown). The race/ethnic differences in LSGM concentrations of arsenic, cesium, mercury 

and molybdenum were attenuated but remained significant (Ps < 0.05) after further adjusting for 

seafood and rice intake (Table II.2, Supplemental Table II.2). Similar race/ethnic differences 

in metal exposures were observed when LSGM concentrations were compared between white 

and Chinese women within the Oakland site, and between white and Japanese women within the 

Los Angeles site (Supplemental Table II.3). 

The LSGM concentrations within white and black women are presented in Table II.3, 

stratified by SWAN study sites. In both racial groups, women in Boston had the highest average 

concentrations of arsenic, cadmium, cesium, mercury and lead; and those at the Pittsburgh site 

had the highest concentrations of barium, nickel and thallium. Women in southeast Michigan had 

the lowest average concentrations of arsenic, cadmium and lead. 

After backward elimination, race/ethnicity was selected as a significant predictor for most 

metals (Supplemental Table II.4). Higher education level remained as a correlate of higher 

urinary cadmium and mercury concentrations. Being a former or current smoker was 

significantly associated with both higher cadmium and lead concentrations. Seafood intake 

remained as an independent predictor of arsenic, cadmium, cesium, mercury and lead. Rice 

intake was associated also with elevated arsenic, cesium, copper, mercury, molybdenum and 

nickel concentrations. 

3.3 Analysis of exposure patterns of metals 

Two clusters of metal exposures were derived by k-means clustering based on the cubic 

clustering criterion, Elbow method and average Silhouette method (Supplemental Figure II.2), 

which were labeled as “high” (n = 562) and “low” (n = 773) for the overall metal exposure 

patterns. Figure II.3 shows the mean of each standardized log-transformed creatinine adjusted 
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metal concentration corresponding to the high and low clusters (geometric means can be found in 

Supplemental Table II.5). Note that standardized concentrations were comparable within each 

cluster. No cluster had a particularly high or low concentration of specific metals. Odds ratios in 

the full logistic regression model are presented in Supplemental Table II.6. After backward 

elimination, being black was associated with higher odds of being clustered into the “low” 

overall exposure group, while being Chinese or Japanese, being a current smoker, and being in 

the highest category of seafood intake and rice intake were significantly (Ps < 0.05) associated 

with higher odds of being clustered into the “high” group (Table II.4).  

Use of specific gravity instead of urinary creatinine in models for urine dilution 

adjustment did not alter our findings significantly (Supplemental Table II.7). 

 

4. Discussion 

In this study, we evaluated concentrations of 21 metals in urine samples, identified two 

overall exposure patterns, and examined demographic, socioeconomic, lifestyle, and dietary 

factors associated with both individual metals and metals exposure patterns, in a large 

population-based multi-racial/ethnic, multi-site cohort of midlife women in the U.S.. Participants 

sorted into two clusters, suggesting two distinct overall exposure patterns to mixtures of multiple 

metals in the general environment. Interestingly, each exposure pattern showed homogeneous 

distributions of individual metals (standardized concentrations). This similarity could be partly 

explained by the positive correlations among most of the metals we measured in urine samples 

(Figure II.1). One recent study of profiles of environmental chemical mixture exposure among 

pregnant women using the same k-means clustering method revealed a similar exposure cluster 

in which some women were consistently exposed to high concentrations of metals (Kalloo et al. 

2018). Understanding the exposure patterns of multiple metals is an important first step before 
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evaluating the association between metal mixtures and health outcomes. Our study suggests that 

k-means clustering is a useful tool to identify exposure clusters in the population.  

We observed significant race/ethnic differences in the urinary concentrations of metals, 

i.e., higher concentrations of arsenic, cadmium, copper, mercury, molybdenum, lead, and 

thallium in Asian women. Similarly, findings in the U.S. general population for arsenic, 

cadmium, lead, and mercury suggest that Asians had the highest adjusted geometric mean 

biomarker levels of these metals in NHANES 2011-2012 (Awata et al. 2017b). However, most 

previous epidemiological studies have focused primarily on “priority toxic metals” while the 

racial/ethnic differences in metals such as copper and thallium, as well as the overall exposure 

patterns, have not been adequately captured. Some of the differences in metal concentrations 

between race/ethnic groups may be related to diet, such as higher intake of seafood and rice 

reported by Chinese and Japanese study participants. Regular seafood intake, 

particularly fish and shellfish, contributes to overexposure to methyl mercury, total arsenic, 

organic arsenic (arsenobetaine and arsenocholine), and lead (Awata et al. 2017a; Bae et al. 2013; 

Burger and Gochfeld 2005; Castro-González and Méndez-Armenta 2008; Falcó et al. 2006; 

Storelli 2008). Rice consumption has also gained recent attention as a potential source of arsenic 

exposure  (Awata et al. 2017a; Azizur Rahman et al. 2008; Davis et al. 2012a; Gilbert-Diamond 

et al. 2011; Melkonian et al. 2013). Intake of seafood and rice is an important exposure pathway 

for explaining racial/ethnic differences in, at least, arsenic and mercury. Stronger associations of 

seafood and rice intake with both arsenic and mercury were observed within the two Asian 

populations compared to other race/ethnic populations in this study (data not shown). The 

seafood intake assessment in this study was based on FFQ, adapted to include ethnic specific 

foods. However, other seafood items might not have been captured in the standard FFQ that were 
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often served in the Asian diet, such as seaweed, which might be important determinants of the 

unequal metal distributions across racial groups (Lee et al. 2012). Different metal contamination 

levels by different types of rice (i.e., white vs. brown rice) may also explain our findings, if the 

types of rice were different between high and low consumption groups (Consumer Reports 

2014). However, the FFQ used in the current study did not distinguish specific types of rice. 

Furthermore, Chinese women had even higher concentrations of cobalt, cesium and nickel than 

Japanese women. The fact that intake of seafood and rice was not different between Chinese and 

Japanese suggests that other environmental exposure sources or pathways, may differ across 

Asian populations or that different levels of unmeasured confounding are present within Asian 

subgroups. The observed differences between Asian and other race/ethnic groups could be 

confounded by geographic location as both Chinese and Japanese women were sampled only in 

California, but not at any of the Midwest or Northeast SWAN sites. One recent study conducted 

in six U.S. cities reported higher arsenic concentrations for participants in the Los Angeles 

compared to the other cities (Jones et al. 2018). However, we observed distinct race/ethnic 

differences in metal exposures when LSGM concentrations were compared between white and 

Chinese women within the Oakland site, and between white and Japanese women within the Los 

Angeles site (Supplemental Table II.3). 

Additionally, we found that geographic location was an important predictor of metal 

concentrations. White and black women in Boston had higher concentrations of arsenic, 

cadmium, cesium, mercury and lead than those at other study sites. A higher seafood intake in 

Boston could potentially account for the observed high metal concentrations. This was supported 

by the significantly higher seafood intake among white and black women at Boston site 

compared with other sites in our study population (data not shown). A possible alternative 
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explanation that should be considered is metal contamination of drinking water because of an 

aging infrastructure. For example, lead in the water supply has been attributed to dilapidated 

drinking water infrastructures, including lead jointed pipelines, end-of-life polyvinyl chloride 

pipes and household plumbing in communities with aging infrastructures (Hanna-Attisha et al. 

2016; Harvey et al. 2015). Lead exposure could also be higher due to older housing stock with 

lead-based paint another important exposure source (Aschengrau et al. 1997).  

High exposure to barium, nickel and thallium were consistently observed in both white 

and black women in Pittsburgh. Barium is commonly used in metal alloys, colorant in paints, x-

ray contrast medium, and naturally occurs in groundwater (ATSDR 2007b). Barium 

concentrations in the drinking water were around 10 times higher in regions of Kentucky, 

northern Illinois, New Mexico, and Pennsylvania in the U.S. (ATSDR 2007b). Thus drinking 

water from groundwater sources might be a common route of high exposure to barium among 

participants in Pittsburgh. Nickel is used in the manufacturing of electronics, metal alloys and 

batteries. It is released to the atmosphere by combustion of fuel oil, municipal incineration, and 

industries involved in nickel refining, steel production, and other nickel alloy production 

(ATSDR 2005). Based on the emission data in the EPA 1996 National Toxics Inventory 

database, Pennsylvania had one of the highest average concentrations of nickel in ambient air 

among the states in the U.S. (ATSDR 2005). Thallium is another toxic metal that has been 

widely used in electronics manufacturing in the U.S.. Its exposure occurs primarily from 

industrial processes such as coal-burning and smelting (Peter and Viraraghavan 2005). 

Therefore, higher urinary nickel and thallium concentrations among women at Pittsburgh might 

be attributed to inhalation of contaminated ambient air. 
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Our study found that several other characteristics are also important predictors of metal 

concentrations. The observed decreasing trend in cadmium and antimony with increasing 

education levels accords with previous findings, indicating the role of socioeconomic status in 

determination of high exposure to environmental toxicants (Tyrrell et al. 2013). However, higher 

socioeconomic status is not always associated with lower exposure to toxic metals. For example, 

higher mercury concentrations have been observed in participants with higher education levels 

because individuals of higher socioeconomic position tend to have higher regular seafood 

consumption (Awata et al. 2017b; Buchanan et al. 2015; Mortensen et al. 2014). We also 

observed significant positive associations of cigarette smoking with cadmium and lead 

concentrations, again demonstrating that cigarette smoking is one of the main sources of 

cadmium and lead in the general population (ATSDR 2012a; Hu et al. 1996; Richter et al. 2013). 

Secondhand smoking also contributed to increased urinary lead concentration, providing support 

for its role as a modifiable source of lead exposure not only in children and adolescents reported 

previously (Apostolou et al. 2012), but in midlife women.  

In this study, the creatinine-adjusted median concentrations of most metals were 

comparable to the concentrations in women of the same age range (45-56 years) from NHANES 

1999-2000. Median concentrations of molybdenum in white and black women and of mercury in 

black women in SWAN women seem to be a little bit higher than those in NHANES. Seafood 

intake was shown to be a significant source of both mercury and molybdenum in this study. 

Higher seafood consumption, especially in an area like Boston that reported the highest seafood 

intake in our analysis, might account for the high metal concentrations in SWAN participants 

compared with those in NHANES. Significantly higher LSGM concentrations of mercury and 

molybdenum were also observed among women at the Boston site compared with other sites in 
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our study (Table II.3). However, we cannot rule out other possible exposure pathways that may 

account for the observed differences. Because our understanding of sources of metal exposure 

remains incomplete, these findings prompt follow-up in a future study. 

Our study has several limitations. First, the metals we measured in this study have 

various half-lives in the human body. Urinary concentrations of metals with short half-lives such 

as arsenic, barium, cobalt, cesium, and thallium mainly reflect recent exposures (ATSDR 1992, 

2004a, 2004b, 2007b, 2007c) and may depend on the participants’ food consumption within a 

few days previous to the urine sample collection (Navas-Acien et al. 2011). In contrast, other 

metals such as cadmium are not rapidly excreted and have very long half-lives from years to 

decades (ATSDR 2012a). As health endpoints related to metals are likely affected by exposures 

over time-periods longer than a few days, information on the temporal variability of urinary 

metals concentrations, especially for those with short half-lives, is needed to characterize average 

metals exposures over time in epidemiological studies. Second, urine may not be an optimal 

biological matrix for some metals, such as lead. However, urinary lead adjusted for creatinine 

has been suggested as a good proxy for plasma lead, where plasma lead is the most 

toxicologically active lead component but is difficult to measure accurately due to the extremely 

low concentrations and possible contamination from various sources (Tsaih et al. 1999, 2001). 

Third, in our study only total arsenic concentrations were measured; arsenic speciation data were 

not available. The source and toxicity of different arsenic species vary. Major sources of 

inorganic arsenic in the general population are contaminated drinking water and rice intake 

(Gilbert-Diamond et al. 2011; Hughes et al. 2011).  Inorganic arsenic has been associated with 

adverse health outcomes such as cardiovascular disease, diabetes, and some cancers (Chen et al. 

2013; Maull et al. 2012; Meliker et al. 2010; Steinmaus et al. 2014). Seafood intake is a major 
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source of organic arsenic (Jones et al. 2016), which is generally considered to have low toxicity 

(Cullen and Reimer 1989). Arsenic speciation would improve assessment of arsenic exposures 

and associated health risks. Fourth, seafood and rice intake in this study was obtained from an 

FFQ administered at the SWAN baseline (1996-1997), whereas the urine samples were collected 

at SWAN visit 03 (1999-2000). This FFQ would not capture possible dietary changes that may 

have occured during the 3-year gap before urine sample collection although rapid diet changes 

are not very likely in this age group (Weismayer et al. 2006). Dietary assessments were self-

reported, and thus subject to recall bias. However, statistical adjustment for self-reported energy 

intake in our regression models helped to reduce the influence of response biases since 

measurement error in both energy intake and food intake estimates are correlated (Subar et al. 

2015). Finally, participants in our study were midlife women. Thus the present findings may not 

be generalizable to men or women at different lifestages.   

This study also has numerous strengths. We systematically examined a suite of 21 metals 

in urine samples in midlife women for whom scant exposure data are available. We used a data-

driven clustering approach to summarizing information of multiple environmental exposures into 

distinct metal clusters. This approach proved to be a useful tool as it identified different overall 

exposure patterns of metals and the underlying grouping of metals that may be useful for future 

evaluations of metal-mixtures health effects. Further, the wide geographical and racial/ethnic 

coverage of the SWAN participants enabled us to compare differences in biomarkers levels 

across multiple groups and increased the generalizability of our findings.  

 In conclusion, we observed marked differences in distributions of a comprehensive set of 

metals and in the overall metal exposure patterns, by race, education, smoking, secondhand 

smoking, seafood intake, rice intake and geographic sites, among midlife women from the U.S. 
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general population, as represented by participants of SWAN. Chinese and Japanese women, had 

higher urinary concentrations of arsenic, cadmium, copper, mercury, molybdenum, lead, 

thallium, compared with other race/ethnic groups. Women in the “high” overall exposure pattern 

were more likely to be Asians and less likely to be black. We confirmed that seafood intake and 

rice intake were important dietary sources of toxic metals including arsenic, lead, cadmium and 

mercury, which could also explain the observed racial differences in arsenic and mercury. 

Education, smoking, secondhand smoking and geographic sites were significant predictors of 

urinary concentrations of different sets of metals. Additional studies are needed to examine other 

potential sources and characterizations of metal exposures, to better understand racial/ethnic 

inequalities in environmental metal exposures. Further research is also needed to investigate 

whether the observed race/ethnic differences in metal exposures may contribute to differences in 

health outcomes. 
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Table II. 1. Characteristics of SWAN participants providing urine samples for analysis of metals by race/ethnicity. 
Characteristics Total population 

(n=1,335)  

White (n=675) Black (n=291) Chinese (n=170) Japanese (n=199) 

 N (%) N (%) N (%) N (%) N (%) 

Mean age (range), year 49.4 (44.9, 56.0) 49.5 (44.9, 56.0) 49.3 (45.0, 55.7) 49.7 (45.0, 55.7) 49.9 (45.0, 55.6) 

Education      

    High school or less 239 (17.9) 82 (12.2) 83 (28.5) 42 (24.7) 32 (16.1) 

    Some College 437 (32.7) 206 (30.5) 121 (41.6) 39 (22.9) 71 (35.7) 

    College and Post-graduate 659 (49.4) 387 (57.3) 87 (29.9) 89 (52.4) 96 (48.2) 

Financial hardship      

    Severe 83 (6.2) 32 (4.7) 37 (12.7) 8 (4.7) 6 (3.0) 

    Moderate 331 (24.8) 151 (22.4) 95 (32.7) 37 (21.8) 48 (24.1) 

    Minor 921 (69.0) 492 (72.9) 159 (54.6) 125 (73.5) 145 (72.9) 

Smoking status      

    Never 840 (62.9) 390 (57.8) 161 (55.3) 159 (93.5) 130 (65.3) 

    Former 360 (27.0) 227 (33.6) 72 (24.7) 9 (5.3) 52 (26.1) 

    Current 135 (10.1) 58 (8.6) 58 (19.9) 2 (1.2) 17 (8.5) 

Secondhand smoking      

    0 hour/week 681 (51.0) 309 (45.8) 109 (37.5) 135 (79.4) 128 (64.3) 

    <5 hours/week 352 (26.4) 209 (31.0) 75 (25.8) 25 (14.7) 43 (21.6) 

    ≥5 hours/week 302 (22.6) 157 (23.3) 107 (36.8) 10 (5.9) 28 (14.1) 

Seafood intake      

    <1 time/week 382 (28.6) 236 (35.0) 81 (27.8) 31 (18.2) 34 (17.1) 

    1-1.9 times/week 462 (34.6) 232 (34.4) 99 (34.0) 64 (37.7) 67 (33.7) 

    ≥2 times/week 491 (36.8) 207 (30.7) 111 (38.1) 75 (44.1) 98 (49.3) 

Rice intake      

    <1.5 times/week 470 (35.2) 318 (47.1) 137 (47.1) 7 (4.1) 8 (4.0) 

    1.5-3.4 times/week 511 (38.3) 323 (47.9) 117 (40.2) 28 (16.5) 43 (21.6) 

    ≥3.5 times/week 354 (26.5) 34 (5.0) 37 (12.7) 135 (79.4) 148 (74.4) 
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Table II. 2. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 95% confidence intervals of urinary metals by characteristics of 

the SWAN participants, including seafood and rice intake. 
LSGMs 

(μg/L)b 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Race/ethnic

ity 

               

  White 14.2 

(12.5, 

16.2) 

1.93 

(1.74, 

2.13) 

0.43 

(0.39, 

0.47) 

0.61 

(0.56, 

0.66) 

4.93 

(4.64, 

5.23) 

9.74 

(9.16, 

10.4) 

1.14 

(1.04, 

1.25) 

1.03 

(0.95, 

1.12) 

40.7 

(37.6, 

43.9) 

3.70 

(3.46, 

3.97) 

0.84 

(0.77, 

0.91) 

0.09 

(0.08, 

0.10) 

1.07 

(0.95, 

1.20) 

0.12 

(0.11, 

0.13) 

270 

(249, 

292) 

  Black 12.6 

(10.7, 

14.8) 

1.36 

(1.19, 

1.54) 

0.43 

(0.38, 

0.49) 

0.51 

(0.46, 

0.56) 

3.67 

(3.40, 

3.95) 

8.66 

(8.01, 

9.37) 

0.89 

(0.79, 

1.00) 

0.92 

(0.82, 

1.02) 

31.8 

(28.8, 

35.0) 

2.66 

(2.44, 

2.90) 

0.80 

(0.72, 

0.89) 

0.08 

(0.08, 

0.09) 

1.07 

(0.92, 

1.23) 

0.11 

(0.10, 

0.13) 

342 

(308, 

378) 

  Chinese 27.9 

(21.4, 

36.2) 

1.83 

(1.49, 

2.26) 

0.76 

(0.62, 

0.92) 

0.73 

(0.62, 

0.87) 

6.88 

(6.09, 

7.78) 

11.5 

(10.1, 

13.0) 

1.29 

(1.06, 

1.57) 

0.99 

(0.84, 

1.18) 

50.5 

(43.1, 

59.3) 

4.18 

(3.63, 

4.82) 

1.14 

(0.96, 

1.35) 

0.10 

(0.08, 

0.11) 

0.73 

(0.58, 

0.93) 

0.15 

(0.13, 

0.19) 

360 

(305, 

426) 

  Japanese 24.6 

(19.4, 

31.2) 

1.83 

(1.52, 

2.22) 

0.83 

(0.69, 

0.99) 

0.59 

(0.51, 

0.69) 

4.17 

(3.73, 

4.66) 

10.2 

(9.07, 

11.5) 

1.31 

(1.09, 

1.57) 

1.02 

(0.87, 

1.20) 

50.2 

(44.3, 

59.3) 

3.72 

(3.27, 

4.24) 

0.88 

(0.75, 

1.03) 

0.07 

(0.06, 

0.09) 

0.91 

(0.73, 

1.13) 

0.14 

(0.12, 

0.17) 

340 

(292, 

396) 

  P-value <.0001 <.0001 <.0001 0.0007 <.0001 0.003 0.0004 0.24 <.0001 <.0001 0.008 0.08 0.03 0.07 <.0001 

Education                

  ≤ High 

school 

17.7 

(15.2, 

20.6) 

1.70 

(1.51, 

1.93) 

0.62 

(0.55, 

0.69) 

0.61 

(0.55, 

0.68) 

4.87 

(4.53, 

5.24) 

10.1 

(9.34, 

10.9) 

1.01 

(0.90, 

1.13) 

1.01 

(0.91, 

1.12) 

42.4 

(38.6, 

46.6) 

3.51 

(3.23, 

3.81) 

0.90 

(0.81, 

0.99) 

0.09 

(0.08, 

0.10)  

0.87 

(0.76, 

1.00) 

0.13 

(0.11, 

0.14) 

342 

(310, 

378) 

  Some 

College 

20.0 

(17.5, 

22.9) 

1.83 

(1.64, 

2.04) 

0.61 

(0.55, 

0.68) 

0.60 

(0.55, 

0.65) 

4.70 

(4.41, 

5.01) 

9.97 

(9.33, 

10.7) 

1.21 

(1.09, 

1.33) 

0.97 

(0.88, 

1.06) 

43.7 

(40.2, 

47.5) 

3.56 

(3.31, 

3.83) 

0.90 

(0.83, 

0.99) 

0.09 

(0.08, 

0.09) 

1.01 

(0.90, 

1.15) 

0.14 

(0.13, 

0.16) 

336 

(308, 

366) 

  ≥ College 18.5 

(16.1, 

21.3) 

1.63 

(1.46, 

1.82) 

0.52 

(0.47, 

0.58) 

0.60 

(0.55, 

0.66) 

4.74 

(4.44, 

5.06) 

9.85 

(9.20, 

10.5) 

1.23 

(1.11, 

1.37) 

0.99 

(0.90, 

1.09) 

42.2 

(38.8, 

46.0) 

3.49 

(3.24, 

3.76) 

0.92 

(0.84, 

1.01) 

0.08 

(0.07, 

0.09) 

0.92 

(0.82, 

1.05) 

0.13 

(0.12, 

0.14) 

301 

(276, 

330) 

  P for trend 0.34 0.10 0.01 0.26 0.58 0.38 0.0007 0.49 0.46 0.20 0.20 0.01 0.81 0.79 0.0008 

Financial 

hardship 

              

  Severe 17.3 

(13.7, 

22.0) 

1.69 

(1.40, 

2.04) 

0.58 

(0.49, 

0.70) 

0.62 

(0.53, 

0.72) 

4.71 

(4.21, 

5.26) 

10.1 

(9.00, 

11.3) 

1.07 

(0.90, 

1.28) 

0.99 

(0.85, 

1.16) 

43.3 

(37.5, 

50.1) 

3.60 

(3.17, 

4.09) 

0.95 

(0.81, 

1.11) 

0.09 

(0.08, 

0.10) 

0.91 

(0.73, 

1.13) 

0.13 

(0.11, 

0.16) 

342 

(294, 

398) 

  Moderate 19.1 

(16.7, 

21.8) 

1.67 

(1.50, 

1.86) 

0.61 

(0.55, 

0.68) 

0.60 

(0.55, 

0.66) 

4.85 

(4.55, 

5.17) 

10.1 

(9.49, 

10.8) 

1.14 

(1.03, 

1.26) 

1.03 

(0.94, 

1.12) 

42.1 

(38.8, 

45.7) 

3.51 

(3.26, 

3.77) 

0.92 

(0.84, 

1.00) 

0.08 

(0.08, 

0.09) 

0.96 

(0.85, 

1.09) 

0.14 

(0.12, 

0.15) 

316 

(290, 

345) 

  Minor 19.9 

(17.9, 

22.0) 

1.80 

(1.66, 

1.96) 

0.55 

(0.51, 

0.60) 

0.59 

(0.56, 

0.63) 

4.76 

(4.53, 

5.00) 

9.65 

(9.18, 

10.2) 

1.22 

(1.13, 

1.32) 

0.95 

(0.89, 

1.02) 

42.9 

(40.2, 

45.7) 

3.45 

(3.26, 

3.65) 

0.86 

(0.80, 

0.92) 

0.08 

(0.08, 

0.09) 

0.93 

(0.85, 

1.02) 

0.13 

(0.12, 

0.14) 

320 

(299, 

342) 

  P for trend 0.44 0.19 0.10 0.63 0.67 0.18 0.10 0.19 0.89 0.51 0.08 0.32 0.84 0.26 0.78 

Smoking                
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LSGMs 

(μg/L)b 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

  Never 18.6 

(16.6, 

20.9) 

1.65 

(1.50, 

1.80) 

0.45 

(0.41, 

0.49) 

0.65 

(0.61, 

0.70) 

4.66 

(4.42, 

4.92) 

10.0 

(9.47, 

10.6) 

1.21 

(1.11, 

1.31) 

0.95 

(0.88, 

1.02) 

44.8 

(41.8, 

48.0) 

3.74 

(3.52, 

3.98) 

0.80 

(0.74, 

0.86) 

0.08 

(0.07, 

0.09) 

0.95 

(0.85, 

1.05) 

0.14 

(0.13, 

0.15) 

310 

(288, 

333) 

  Former 18.9 

(16.4, 

21.9) 

1.70 

(1.51, 

1.90) 

0.54 

(0.48, 

0.60) 

0.60 

(0.55, 

0.66) 

4.87 

(4.55, 

5.21) 

10.1 

(9.36, 

10.8) 

1.09 

(0.98, 

1.22) 

1.02 

(0.92, 

1.12) 

42.8 

(39.1, 

46.7) 

3.53 

(3.27, 

3.82) 

0.88 

(0.80, 

0.97) 

0.08 

(0.07, 

0.09) 

0.82 

(0.72, 

0.93) 

0.13 

(0.12, 

0.15) 

320 

(296, 

357) 

  Current 18.6 

(15.2, 

22.7) 

1.83 

(1.56, 

2.14) 

0.82 

(0.70, 

0.95) 

0.56 

(0.49, 

0.64) 

4.79 

(4.36, 

5.26) 

9.82 

(8.91, 

10.8) 

1.13 

(0.97, 

1.31) 

1.00 

(0.88, 

1.15) 

40.9 

(36.2, 

46.2) 

3.30 

(2.96, 

3.67) 

1.06 

(0.93, 

1.20) 

0.09 

(0.08, 

0.10) 

1.06 

(0.88, 

1.26) 

0.13 

(0.11, 

0.15) 

344 

(302, 

390) 

  P for trend 0.66 0.29 <.0001 0.002 0.21 0.55 0.17 0.10 0.16 0.005 <.0001 0.12 0.70 0.54 0.08 

Secondha

nd 

smoking 

              

  0 hr/wk 19.2 

(16.8, 

21.9) 

1.67 

(1.50, 

1.85) 

0.61 

(0.55, 

0.67) 

0.59 

(0.54, 

0.65) 

4.75 

(4.46, 

5.06) 

9.91 

(9.29, 

10.6) 

1.12 

(1.01, 

1.23) 

1.04 

(0.96, 

1.14) 

44.7 

(41.2, 

48.5) 

3.44 

(3.20, 

3.70) 

0.86 

(0.79, 

0.94) 

0.09 

(0.08, 

0.09) 

0.92 

(0.82, 

1.04) 

0.14 

(0.12, 

0.15) 

316 

(290, 

344) 

  <5 hrs/wk 17.8 

(15.3, 

20.9) 

1.76 

(1.56, 

1.99) 

0.56 

(0.50, 

0.63) 

0.62 

(0.57, 

0.69) 

4.73 

(4.40, 

5.08) 

10.3 

(9.60, 

11.1) 

1.14 

(1.02, 

1.28) 

0.97 

(0.88, 

1.08) 

40.7 

(37.1, 

44.7) 

3.59 

(3.31, 

3.90) 

0.92 

(0.83, 

1.02) 

0.08 

(0.07, 

0.09) 

0.95 

(0.82, 

1.08) 

0.13 

(0.11, 

0.14) 

319 

(289, 

352) 

  ≥5 hs/wk 19.3 

(16.6, 

22.3) 

1.73 

(1.54, 

1.95) 

0.59 

(0.52, 

0.65) 

0.60 

(0.55, 

0.66) 

4.83 

(4.52, 

5.18) 

9.64 

(8.98, 

10.4) 

1.17 

(1.05, 

1.31) 

0.95 

(0.86, 

1.05) 

43.0 

(39.3, 

46.9) 

3.53 

(3.26, 

3.82) 

0.94 

(0.85, 

1.03) 

0.09 

(0.08, 

0.10) 

0.94 

(0.82, 

1.07) 

0.13 

(0.12, 

0.15) 

344 

(313, 

377) 

  P for trend 0.82 0.30 0.58 0.25 0.70 0.72 0.30 0.09 0.47 0.52 0.005 0.37 0.20 0.47 0.06 

Seafood 

intake 

               

  <1 /wk 15.3 

(13.2, 

17.7) 

1.69 

(1.51, 

1.90) 

0.57 

(0.51, 

0.63) 

0.60 

(0.55, 

0.66) 

4.52 

(4.22, 

4.84) 

9.83 

(9.15, 

10.6) 

1.03 

(0.92, 

1.15) 

0.96 

(0.87, 

1.05) 

40.6 

(37.1, 

44.3) 

3.44 

(3.18, 

3.72) 

0.87 

(0.79, 

0.96) 

0.08 

(0.08, 

0.09) 

0.91 

(0.80, 

1.03) 

0.13 

(0.11, 

0.14) 

324 

(295, 

356) 

  1-1.9 /wk 17.9 

(15.7, 

20.6) 

1.64 

(1.47, 

1.82) 

0.57 

(0.51, 

0.63) 

0.60 

(0.55, 

0.65) 

4.93 

(4.62, 

5.25) 

9.76 

(9.13, 

10.4) 

1.17 

(1.05, 

1.29) 

0.97 

(0.89, 

1.06) 

43.4 

(40.0, 

47.2) 

3.49 

(3.24, 

3.75) 

0.88 

(0.81, 

0.96) 

0.08 

(0.07, 

0.09) 

1.00 

(0.89, 

1.13) 

0.13 

(0.12, 

0.15) 

328 

(301, 

358) 

   ≥2 /wk 23.8 

(20.9, 

27.2) 

1.84 

(1.66, 

2.04) 

0.62 

(0.56, 

0.69) 

0.61 

(0.56, 

0.67) 

4.87 

(4.58, 

5.18) 

10.3 

(9.67, 

11.0) 

1.24 

(1.12, 

1.37) 

1.04 

(0.96, 

1.14) 

44.4 

(40.9, 

48.2) 

3.64 

(3.39, 

3.90) 

0.97 

(0.89, 

1.06) 

0.09 

(0.08, 

0.09) 

0.90 

(0.80, 

1.01) 

0.14 

(0.13, 

0.15) 

326 

(299, 

354) 

 P for trend <.0001 0.11 0.13 0.47 0.13 0.13 0.002 0.10 0.04 0.11 0.04 0.52 0.93 0.09 0.74 

Rice intake                

  <1.5 /wk 15.8 

(13.5, 

18.4) 

1.69 

(1.49, 

1.91) 

0.56 

(0.50, 

0.63) 

0.59 

(0.54, 

0.65) 

4.59 

(4.26, 

4.94) 

9.79 

(9.08, 

10.6) 

1.04 

(0.93, 

1.17) 

0.99 

(0.89, 

1.10) 

40.9 

(37.2, 

45.0) 

3.43 

(3.15, 

3.73) 

0.88 

(0.79, 

0.97) 

0.08 

(0.07, 

0.09) 

0.87 

(0.76, 

1.00) 

0.13 

(0.11, 

0.14) 

323 

(293, 

357) 

   1.5-3.4 

/wk 

16.00 1.68 0.57 0.58 4.60 9.49 1.11 0.99 40.2 3.34 0.89 0.08 0.90 0.13 336 
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LSGMs 

(μg/L)b 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

(13.8, 

18.5) 

(1.49, 

1.89) 

(0.51, 

0.63) 

(0.52, 

0.63) 

(4.29, 

4.93) 

(8.83, 

10.2) 

(0.99, 

1.24) 

(0.90, 

1.09) 

(36.8, 

44.0) 

(3.08, 

3.61) 

(0.81, 

0.98) 

(0.07, 

0.09) 

(0.79, 

1.03) 

(0.11, 

0.14) 

(306, 

370) 

   ≥3.5 /wk 26.1 

(22.3, 

30.5) 

1.80 

(1.59, 

2.04) 

0.63 

(0.56, 

0.70) 

0.65 

(0.59, 

0.72) 

5.15 

(4.79, 

5.54) 

10.6 

(9.86, 

11.5) 

1.29 

(1.15, 

1.45) 

0.99 

(0.89, 

1.10) 

47.5 

(43.2, 

52.2) 

3.81 

(3.51, 

4.15) 

0.95 

(0.86, 

1.05) 

0.09 

(0.08, 

0.10) 

1.04 

(0.90, 

1.19) 

0.14 

(0.13, 

0.16) 

319 

(288, 

352) 

  P for trend <.0001 0.98 0.07 0.99 0.002 0.56 0.003 0.55 0.09 0.65 0.14 0.97 0.29 0.06 0.60 

a All models were adjusted for age, race, education, financial hardship, smoking, secondhand smoking, seafood intake, rice intake, total energy intake, study sites and urinary 

creatinine. 
b For values greater than 1, 3 significant figures were shown; for values less than 1, values were shown to 2 decimal places.  
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Table II. 3. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 95% confidence intervals of urinary metals in white and black 

women by study sites. 
LSGMsb,c 

(μg/L) 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

White 

(n=675) 

             

  Michigan 6.85 

(5.30, 

8.87) 

1.72 

(1.41, 

2.08) 

0.29 

(0.24, 

0.36) 

0.58 

(0.50, 

0.69) 

3.62 

(3.18, 

4.13) 

9.84 

(8.80, 

11.0) 

0.83 

(0.69, 

1.00) 

0.95 

(0.80, 

1.14) 

40.3 

(34.3, 

47.3) 

3.43 

(2.99, 

3.93) 

0.58 

(0.49, 

0.68) 

0.11 

(0.09, 

0.12) 

0.99 

(0.79, 

1.25) 

0.09 

(0.07, 

0.11) 

299 

(252, 

356) 

  Boston 15.9 

(12.5, 

20.4) 

1.56 

(1.30, 

1.87) 

0.60 

(0.50, 

0.72) 

0.52 

(0.44, 

0.61) 

5.13 

(4.53, 

5.82) 

9.57 

(8.60, 

10.7) 

1.57 

(1.31, 

1.88) 

1.37 

(1.16, 

1.62) 

30.4 

(33.8, 

45.9) 

2.81 

(2.47, 

3.20) 

1.15 

(0.98, 

1.35) 

0.09 

(0.08, 

0.11) 

1.08 

(0.87, 

1.35) 

0.12 

(0.10, 

0.15) 

231 

(195, 

272) 

  Oakland 11.6 

(8.98, 

15.0) 

1.82 

(1.50, 

2.20) 

0.37 

(0.30, 

0.45) 

0.44 

(0.37, 

0.52) 

4.90 

(4.30, 

5.58) 

8.47 

(7.58, 

9.47) 

0.78 

(0.64, 

0.94) 

1.05 

(0.89, 

1.25) 

31.6 

(27.0, 

37.1) 

3.61 

(3.15, 

4.13) 

0.71 

(0.61, 

0.84) 

0.08 

(0.07, 

0.10) 

0.92 

(0.73, 

1.16) 

0.12 

(0.10, 

0.14) 

239 

(201, 

284) 

  Los Angeles 14.0 

(11.0, 

17.7) 

1.69 

(1.42, 

2.02) 

0.32 

(0.27, 

0.39) 

0.59 

(0.51, 

0.69) 

4.81 

(4.27, 

5.43) 

9.06 

(8.17, 

10.0) 

0.93 

(0.78, 

1.11) 

0.84 

(0.72, 

0.99) 

38.1 

(32.9, 

44.2) 

4.08 

(3.60, 

4.63) 

0.68 

(0.58, 

0.79) 

0.09 

(0.08, 

0.10) 

1.04 

(0.84, 

1.29) 

0.10 

(0.08, 

0.12) 

263 

(224, 

308) 

  Pittsburgh 11.3 

(8.87, 

14.5) 

2.18 

(1.82, 

2.63) 

0.55 

(0.46, 

0.66) 

0.71 

(0.61, 

0.83) 

4.21 

(3.72, 

4.77) 

10.5 

(9.43, 

11.7) 

1.17 

(0.97, 

1.40) 

0.91 

(0.77, 

1.07) 

36.8 

(31.5, 

42.9) 

4.48 

(3.93, 

5.11) 

0.93 

(0.79, 

1.08) 

0.09 

(0.08, 

0.10) 

1.39 

(1.11, 

1.74) 

0.13 

(0.10, 

0.15) 

286 

(243, 

338) 

  P-value <.0001 0.007 <.0001 <.0001 <.0001 0.004 <.0001 <.0001 0.04 <.0001 <.0001 0.08 0.006 0.01 0.02 

Black (n=291)              

  Michigan 9.54 

(7.51, 

12.1) 

1.69 

(1.38, 

2.06) 

0.42 

(0.36, 

0.50) 

0.72 

(0.62, 

0.83) 

3.99 

(3.63, 

4.38) 

11.0 

(9.60, 

12.6) 

0.99 

(0.83, 

1.19) 

1.04 

(0.93, 

1.18) 

38.2 

(33.2, 

43.9) 

3.23 

(2.81, 

3.71) 

0.81 

(0.69, 

0.96) 

0.12 

(0.10, 

0.14) 

1.51 

(1.21, 

1.88) 

0.09 

(0.07, 

0.11) 

498 

(436, 

570) 

  Boston 18.4 

(14.1, 

24.1) 

1.29 

(1.03, 

1.62) 

0.69 

(0.57, 

0.82) 

0.54 

(0.46, 

0.64) 

4.68 

(4.22, 

5.20) 

12.3 

(10.6, 

14.4) 

1.35 

(1.10, 

1.65) 

1.35 

(1.19, 

1.55) 

42.0 

(35.9, 

49.1) 

2.45 

(2.10, 

2.87) 

1.08 

(0.90, 

1.29) 

0.09 

(0.07, 

0.11) 

1.23 

(0.96, 

1.57) 

0.14 

(0.11, 

0.19) 

429 

(370, 

499) 

  Pittsburgh 15.4 

(11.2, 

21.2) 

2.06 

(1.57, 

2.69) 

0.44 

(0.36, 

0.55) 

0.68 

(0.56, 

0.82) 

3.87 

(3.42, 

4.38) 

11.3 

(9.41, 

13.5) 

1.27 

(1.00, 

1.61) 

0.93 

(0.80, 

1.09) 

39.5 

(32.9, 

47.5) 

3.84 

(3.19, 

4.61) 

1.08 

(0.87, 

1.34) 

0.10 

(0.08, 

0.13) 

1.44 

(1.07, 

1.92) 

0.21 

(0.16, 

0.29) 

413 

(346, 

493) 

  P-value 0.0001 0.02 <.0001 0.02 0.02 0.46 0.02 0.0004 0.61 0.0003 0.009 0.06 0.40 <.0001 0.08 

a All models were adjusted for age, race, education, financial hardship, smoking, secondhand smoking, seafood intake, rice intake, total energy intake, and urinary creatinine. 
b Chinese and Japanese were not sampled in multiple sites by study design. 
c For values greater than 1, 3 significant figures were shown; for values less than 1, values were shown to 2 decimal places.  
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Table II. 4. Estimated cumulative odds ratio (95% confidence intervals) of being clustered into the “high” exposure 

patterna by selected determinants in backward eliminationb. 
Selected variablesc Odds ratio  95% CI P-valued 

Black vs. white women 0.39 0.26, 0.56 <.0001 

Chinese vs. white women 2.10 1.19, 3.69 0.01 

Japanese vs. white women 2.32 1.39, 3.90 0.001 

Former vs. never smoker 1.03 0.78, 1.37 0.84 

Current vs. never smoker 2.25 1.47, 3.44 0.0002 

Seafood intake 1-1.9 /wk vs. <1 time/wk 1.31 0.96, 1.77 0.09 

Seafood intake ≥2 vs. <1 time/wk 1.83 1.34, 2.50 0.0001 

Rice intake 1.5-3.4 /wk vs. <1.5 times/wk 1.07 0.80, 1.44 0.65 

Rice intake ≥3.5 vs. <1.5 times/wk 1.68 1.09, 2.59 0.02 
a Participants with “high” vs. “low” exposure patterns were clustered by k-means clustering method. 
b Initial model included race, education, financial hardship, smoking, secondhand smoking, seafood intake and rice intake. Age, 

study sites, and total energy intake, were forced in model selection. 
c Reference groups: race: white women; smoking: never smoker; seafood intake:  <1 time/week; rice intake: <1.5 times/week. 

d Ps <0.05 for all selected variables in backward elimination.  
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Figure II. 1. Spearman correlation matrix of urinary creatinine-adjusted metal concentrations. 

As: arsenic, Ba: barium, Cd: cadmium, Co: cobalt, Cs: cesium, Cu: copper, Hg: mercury, Mn: manganese, Mo: 

molybdenum, Ni: nickel, Pb: lead, Sb: antimony, Sn: tin, Tl: thallium, Zn: zinc.
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Figure II. 2. Comparisons of creatinine-adjusted median concentrations of urinary metals in white and black women 

from SWAN and NHANES 1999-2000. 

NHANES: National Health and Nutrition Examination Survey. Ba: barium, Cd: cadmium, Co: cobalt, Cs: cesium, 

Hg: mercury, Mo: molybdenum, Pb: lead, Sb: antimony, Tl: thallium.
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Figure II. 3. Cluster means of the 15 standardized log-transformed urinary metals using k-means in the SWAN data. 

Y-axis (cluster means) represents the mean standardized natural log-transformed urinary creatinine adjusted metal concentrations. Cluster 1: “high” overall metal 

exposure pattern; cluster 2: “low” overall metal exposure pattern. As: arsenic, Ba: barium, Cd: cadmium, Co: cobalt, Cs: cesium, Cu: copper, Hg: mercury, Mn: 

manganese, Mo: molybdenum, Ni: nickel, Pb: lead, Sb: antimony, Sn: tin, Tl: thallium, Zn: zinc. 
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Supplemental Table II. 1. Unadjusted (μg/L) and urinary creatinine adjusted (μg/g) metal concentrations in SWAN participants. 

Metals LODa % > LODb GM (GSD)c Selected percentiles 

    5th  25th  50th  75th  90th  95th  

Arsenic 0.3 100 17.11 (3.58) 2.55 6.84 15.03 38.75 94.71 151.13 

   20.23 (3.39)d 3.96 8.03 16.89 43.73 107.23 184.35 

Barium 0.1 99.5 1.72 (2.50) 0.37 0.99 1.78 2.97 5.02 7.31 

   2.04 (2.38) 0.53 1.16 2.00 3.47 5.79 8.51 

Beryllium 0.04 16.2 n.d.e < LOD < LOD < LOD < LOD 0.05 0.08 

   n.d. < LOD < LOD < LOD < LOD 0.12 0.19 

Cadmium 0.06 94.5 0.41 (2.81) < LOD 0.22 0.44 0.80 1.42 1.98 

   0.48 (2.34) < LOD 0.29 0.49 0.84 1.32 1.83 

Cobalt 0.05 99.2 0.60 (2.28) 0.15 0.37 0.62 0.95 1.70 2.27 

   0.71 (1.92) 0.27 0.46 0.67 1.05 1.68 2.30 

Chromium 0.4 24.3 n.d. < LOD < LOD < LOD < LOD 0.84 1.58 

   n.d. < LOD < LOD < LOD < LOD 1.38 2.50 

Cesium 0.01 100 4.67 (2.02) 1.51 3.03 4.73 7.32 10.44 14.06 

   5.52 (1.77) 2.51 3.97 5.32 7.50 11.03 14.20 

Copper 2.5 96.6 9.45 (2.04) 2.99 6.07 9.53 14.47 21.75 29.36 

   11.18 (1.67) 5.96 8.35 10.45 13.54 19.12 27.01 

Mercury 0.05 99.7 1.18 (2.57) 0.25 0.66 1.23 2.37 3.71 5.22 

   1.40 (2.28) 0.35 0.87 1.43 2.47 3.79 5.02 

Manganese 0.08 99.7 0.96 (2.14) 0.33 0.59 0.90 1.47 2.46 3.40 

   1.14 (2.22) 0.37 0.67 1.03 1.78 3.15 4.87 

Molybdenum 0.3 100 41.76 (2.28) 9.86 24.92 43.88 71.73 113.74 144.31 

   49.39 (1.92) 17.83 34.18 48.65 70.75 105.28 139.33 

Nickel 0.8 95.9 3.56 (2.11) 0.89 2.35 3.77 5.85 8.49 10.66 

   4.21 (1.83) 1.56 2.89 4.20 6.10 8.99 11.12 

Lead 0.1 97.8 0.76 (2.35) 0.19 0.46 0.78 1.26 2.06 2.74 

   0.90 (2.05) 0.32 0.57 0.87 1.33 2.14 2.85 

Platinum 0.05 2.6 n.d. < LOD < LOD < LOD < LOD < LOD < LOD 

   n.d. < LOD < LOD < LOD < LOD < LOD < LOD 

Antimony 0.04 78.8 0.08 (2.20) < LOD 0.04 0.08 0.13 0.21 0.30 

   0.09 (2.05) < LOD 0.06 0.09 0.14 0.21 0.30 

Tin 0.1 96.8 0.97 (3.00) 0.16 0.49 0.94 1.78 3.57 6.67 

   1.14 (2.57) 0.32 0.63 1.00 1.83 3.74 7.06 

Thallium 0.02 92.2 0.13 (2.57) < LOD 0.08 0.15 0.23 0.33 0.40 

   0.15 (2.32) < LOD 0.10 0.16 0.23 0.36 0.48 

Uranium 0.01 33.0 0.01 (1.97) < LOD < LOD < LOD 0.01 0.03 0.04 

   0.01 (2.44) < LOD < LOD < LOD 0.02 0.04 0.07 

Vanadium 0.6 37.2 0.69 (2.14) < LOD < LOD < LOD 1.05 2.39 3.42 

   0.82 (2.56) < LOD < LOD < LOD 1.45 3.13 4.41 

Tungsten 0.2 29.6 n.d. < LOD < LOD < LOD 0.23 0.43 0.64 

   n.d. < LOD < LOD < LOD 0.33 0.67 1.04 

Zinc 2 100 283 (2) 56 167 308 532 810 1033 

   335 (2) 117 228 345 503 714 927 
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a LOD: limit of detection. 
b % > LOD: detection rate 
c GM: geometric mean; GSD: geometric standard deviation 
d Italic type denotes measure in μg/g creatinine 
e n.d.: not determined  
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Supplemental Table II. 2. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 95% confidence intervals of urinary metals by characteristics of the 

SWAN participants. 

LGSMsb (μg/L) As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Race                

  White 12.3 

(10.9, 

13.8) 

1.89 

(1.73, 

2.08) 

0.42 

(0.38, 

0.46) 

0.60 

(0.55, 

0.64) 

4.75 

(4.50, 

5.02) 

9.48 

(8.96, 

10.0) 

1.07 

(0.98, 

1.17) 

1.03 

(0.95, 

1.11) 

38.8 

(36.2, 

41.7) 

3.58 

(3.36, 

3.81) 

0.82 

(0.76, 

0.88) 

0.08 

(0.07, 

0.09) 

1.02 

(0.92, 

1.13) 

0.12 

(0.11, 

0.13) 

272 

(252, 

293) 

  Black 11.5 

(9.79, 

13.5) 

1.35 

(1.19, 

1.52) 

0.42 

(0.38, 

0.47) 

0.50 

(0.45, 

0.55) 

3.58 

(3.32, 

3.85) 

8.51 

(7.88, 

9.18) 

0.85 

(0.75, 

0.95) 

0.92 

(0.83, 

1.02) 

30.7 

(27.9, 

33.8) 

2.59 

(2.38, 

2.81) 

0.79 

(0.71, 

0.88) 

0.08 

(0.07, 

0.09) 

1.03 

(0.90, 

1.19) 

0.11 

(0.10, 

0.13) 

342 

(310, 

378) 

  Chinese 37.2 

(28.9, 

48.0) 

1.92 

(1.58, 

2.34) 

0.80 

(0.67, 

0.97) 

0.77 

(0.66, 

0.91) 

7.31 

(6.50, 

8.21) 

12.1 

(10.7, 

13.6) 

1.42 

(1.18, 

1.72) 

1.01 

(0.86, 

1.19) 

54.8 

(47.1, 

63.8) 

4.44 

(3.88, 

5.07) 

1.19 

(1.01, 

1.40) 

0.10 

(0.08, 

0.12) 

0.78 

(0.63, 

0.98) 

0.16 

(0.14, 

0.20) 

353 

(302, 

414) 

  Japanese 32.1 

(25.4, 

40.5) 

1.92 

(1.61, 

2.30) 

0.87 

(0.74, 

1.03) 

0.62 

(0.54, 

0.71) 

4.38 

(3.94, 

4.88) 

10.7 

(9.59, 

12.0) 

1.42 

(1.20, 

1.68) 

1.04 

(0.90, 

1.21) 

55.1 

(47.9, 

63.3) 

3.93 

(3.47, 

4.40) 

0.92 

(0.79, 

1.07) 

0.08 

(0.07, 

0.09) 

0.96 

(0.78, 

1.17) 

0.15 

(0.13, 

0.18) 

333 

(288, 

385) 

  P-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.28 <.0001 <.0001 <.0001 0.09 0.11 0.0002 <.0001 

Education                

  ≤ High school 18.9 

(16.2, 

22.1) 

1.72 

(1.53, 

1.95) 

0.63 

(0.56, 

0.70) 

0.62 

(0.56, 

0.68) 

4.94 

(4.60, 

5.32) 

10.2 

(9.48, 

11.0) 

1.02 

(0.91, 

1.15) 

1.01 

(0.92, 

1.12) 

43.3 

(39.4, 

47.5) 

3.56 

(3.28, 

3.87) 

0.90 

(0.82, 

1.00) 

0.10 

(0.08, 

0.11) 

0.88 

(0.77, 

1.01) 

0.13 

(0.11, 

0.15) 

340 

(308, 

374) 

  Some College 21.7 

(18.9, 

24.9) 

1.87 

(1.68, 

2.08) 

0.62 

(0.56, 

0.69) 

0.61 

(0.56, 

0.66) 

4.75 

(4.46, 

5.06) 

10.1 

(9.49, 

10.8) 

1.22 

(1.11, 

1.35) 

0.98 

(0.90, 

1.07) 

44.5 

(41.0, 

48.3) 

3.61 

(3.36, 

3.88) 

0.91 

(0.84, 

1.00) 

0.09 

(0.08, 

0.10) 

1.02 

(0.90, 

1.15) 

0.14 

(0.13, 

0.16) 

333 

(305, 

362) 

  ≥ College 20.2 

(17.6, 

23.3) 

1.66 

(1.49, 

1.86) 

0.53 

(0.48, 

0.59) 

0.61 

(0.56, 

0.67) 

4.80 

(4.50, 

5.12) 

9.96 

(9.32, 

10.7) 

1.26 

(1.13, 

1.40) 

1.00 

(0.92, 

1.10) 

42.9 

(39.5, 

46.7) 

3.52 

(3.27, 

3.79) 

0.93 

(0.85, 

1.02) 

0.08 

(0.07, 

0.09) 

0.93 

(0.82, 

1.05) 

0.13 

(0.12, 

0.15) 

299 

(274, 

327) 

  P for trend 0.13 0.15 0.02 0.29 0.50 0.47 0.0004 0.38 0.55 0.22 0.14 0.01 0.81 0.69 0.0006 

Financial hardship               

  Severe 19.0 

14.9, 

24.2) 

1.74 

1.44, 

2.10) 

0.59 

(0.50, 

0.71) 

0.63 

(0.54, 

0.73) 

4.74 

(4.24, 

5.29) 

10.3 

(9.18, 

11.6) 

1.08 

(0.91, 

1.29) 

1.00 

(0.86, 

1.17) 

44.0 

(38.1,  

50.8) 

3.65 

(3.21, 

4.14) 

0.96 

(0.83, 

1.12) 

0.09 

(0.08, 

0.10) 

0.91 

(0.73, 

1.12) 

0.13 

(0.11, 

0.16) 

338 

(291, 

392) 

  Moderate 20.7 

(18.1, 

23.7) 

1.70 

(1.53, 

1.88) 

0.62 

(0.56, 

0.69) 

0.61 

(0.56, 

0.67) 

4.94 

(4.64, 

5.25) 

10.3 

(9.63, 

11.0) 

1.17 

(1.06, 

1.29) 

1.03 

(0.95, 

1.13) 

43.1 

(39.7, 

46.7) 

3.55 

(3.31, 

3.82) 

0.93 

(0.85, 

1.01) 

0.08 

(0.08, 

0.09) 

0.98 

(0.87, 

1.10) 

0.14 

(0.13, 

0.15) 

314 

(289, 

342) 

  Minor 21.1 

(19.0, 

23.5) 

1.82 

(1.68, 

2.00) 

0.56 

(0.52, 

0.61) 

0.60 

(0.56, 

0.64) 

4.82 

(4.59, 

5.06) 

9.75 

(9.27, 

10.3) 

1.25 

(1.16, 

1.35) 

0.96 

(0.90, 

1.03) 

43.6 

(40.9, 

46.4) 

3.49 

(3.30, 

3.69) 

0.87 

(0.81, 

0.93) 

0.08 

(0.08, 

0.09) 

0.94 

(0.86, 

1.03) 

0.13 

(0.12, 

0.14) 

319 

(299, 

341) 

  P for trend 0.59 0.23 0.09 0.59 0.65 0.16 0.09 0.16 0.89 0.55 0.07 0.29 0.83 0.26 0.87 

Smoking                

  Never 20.5 1.68 0.46 0.66 4.74 10.2 1.24 0.96 45.9 3.81 0.82 0.08 0.96 0.14 308 
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LGSMsb (μg/L) As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

(18.3, 

23.0) 

(1.54, 

1.83) 

(0.42, 

0.50) 

(0.62, 

0.71) 

(4.50, 

5.00) 

(9.64, 

10.7) 

(1.14, 

1.35) 

(0.89, 

1.03) 

(42.9, 

49.1) 

(3.58, 

4.04) 

(0.76, 

0.88) 

(0.07, 

0.09) 

(0.87, 

1.06) 

(0.13, 

0.15) 

(287, 

331) 

  Former 20.6 

(17.8, 

23.8) 

1.73 

(1.54, 

1.93) 

0.55 

(0.49, 

0.61) 

0.61 

(0.56, 

0.67) 

4.93 

(4.61, 

5.28) 

10.2 

(9.52, 

10.9) 

1.12 

(1.00, 

1.24) 

1.03 

(0.93, 

1.13) 

43.6 

(40.0, 

47.6) 

3.58 

(3.32, 

3.87) 

0.89 

(0.81, 

0.98) 

0.09 

(0.08, 

0.10) 

0.83 

(0.73, 

0.94) 

0.13 

(0.12, 

0.15) 

322 

(294, 

353) 

  Current 19.7 

(16.1, 

24.1) 

1.86 

(1.58, 

2.17) 

0.83 

(0.71, 

0.96) 

0.57 

(0.50, 

0.64) 

4.82 

(4.39, 

5.29) 

9.93 

(9.01, 

10.9) 

1.14 

(0.98, 

1.32) 

1.01 

(0.89, 

1.15) 

41.3 

(36.6, 

46.6) 

3.32 

(2.98, 

3.70) 

1.06 

(0.93, 

1.21) 

0.09 

(0.08, 

0.10) 

1.06 

(0.89, 

1.27) 

0.13 

(0.11, 

0.15) 

341 

(300, 

387) 

  P for trend 0.88 0.27 <.0001 0.002 0.28 0.53 0.10 0.10 0.12 0.004 <.0001 0.12 0.67 0.46 0.09 

Secondhand smoking                

  0 hr/wk 20.8 

(18.1, 

23.8) 

1.69 

(1.52, 

1.88) 

0.62 

(0.56, 

0.68) 

0.60 

(0.55, 

0.65) 

4.82 

(4.54, 

5.13) 

10.1 

(9.43, 

10.7) 

1.14 

(1.03, 

1.26) 

1.05 

(0.96, 

1.14) 

45.6 

(42.1, 

49.5) 

3.49 

(3.25, 

3.75) 

0.88 

(0.80, 

0.95) 

0.09 

(0.08, 

0.10) 

0.94 

(0.83, 

1.06) 

0.14 

(0.13, 

0.16) 

314 

(289, 

341) 

  <5 hrs/wk 19.00 

(16.3, 

22.2) 

1.79 

(1.59, 

2.02) 

0.57 

(0.50, 

0.63) 

0.63 

(0.57, 

0.69) 

4.77 

(4.45, 

5.12) 

10.5 

(9.73, 

11.3) 

1.16 

(1.03, 

1.30) 

0.98 

(0.89, 

1.09) 

41.4 

(37.7, 

45.4) 

3.63 

(3.34, 

3.94) 

0.93 

(0.84, 

1.03) 

0.08 

(0.07, 

0.09) 

0.95 

(0.83, 

1.09) 

0.13 

(0.12, 

0.15) 

317 

(288, 

349) 

  ≥5 hs/wk 21.1 

(18.2, 

24.4) 

1.77 

(1.58, 

1.99) 

0.60 

(0.53, 

0.66) 

0.61 

(0.56, 

0.67) 

4.89 

(4.58, 

5.24) 

9.79 

(9.13, 

10.5) 

1.19 

(1.07, 

1.33) 

0.96 

(0.88, 

1.06) 

43.8 

(40.1, 

47.8) 

3.57 

(3.31, 

3.86) 

0.95 

(0.87, 

1.04) 

0.09 

(0.08, 

0.10) 

0.94 

(0.83, 

1.07) 

0.13 

(0.12, 

0.15) 

340 

(311, 

373) 

  P for trend 0.89 0.19 0.62 0.21 0.53 0.67 0.04 0.10 0.43 0.53 0.005 0.32 0.24 0.41 0.06 

a All models were adjusted for age, race, education, financial hardship, smoking, secondhand smoking, study sites and urinary creatinine. 
b For values greater than 1, 3 significant figures were shown; for values less than 1, values were shown to 2 decimal places.  
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Supplemental Table II. 3. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 95% confidence intervals of urinary metals between white and 

Chinese women within Oakland site, and between white and Japanese women within Los Angeles site. 

LGSMsb,c 

(μg/L) 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Oakland (n=300)               

 White 

(n=130) 

13.9 

(9.52, 

20.4) 

1.91 

(1.38, 

2.63) 

0.46 

(0.34, 

0.62) 

0.40 

(0.31, 

0.53) 

5.32 

(4.10, 

6.91) 

7.71 

(6.27, 

9.48) 

1.12 

(0.84, 

1.48) 

0.91 

(0.68, 

1.20) 

31.6 

(25.0, 

39.9) 

3.04 

(2.49, 

3.70) 

0.71 

(0.56, 

0.89) 

0.08 

(0.07, 

0.11) 

0.72 

(0.50, 

1.02) 

0.13 

(0.11, 

0.16) 

219 

(169, 

284) 

 Chinese 

(n=170) 

32.0 

(21.0, 

48.7) 

1.89 

(1.32, 

2.70) 

0.81 

(0.59, 

1.12) 

0.46 

(0.35, 

0.62) 

7.72 

(5.78, 

10.30) 

9.32 

(7.42, 

11.7) 

1.34 

(0.98, 

1.84) 

0.83 

(0.61, 

1.14) 

39.0 

(30.2, 

50.5) 

3.84 

(3.09, 

4.78) 

0.94 

(0.72, 

1.21) 

0.09 

(0.07, 

0.11) 

0.52 

(0.35, 

0.77) 

0.17 

(0.14, 

0.22) 

297 

(223, 

396) 

 P-value <.0001 0.96 <.0001 0.28 0.003 0.06 0.17 0.55 0.06 0.01 0.01 0.82 0.06 0.01 0.01 

Los Angeles (n=353)               

 White 

(n=154) 

16.0 

(12.3, 

20.8) 

1.90 

(1.53, 

2.35) 

0.31 

(0.25, 

0.38) 

0.61 

(0.51, 

0.73) 

4.66 

(4.16, 

5.21) 

8.24 

(7.33, 

9.25) 

1.05 

(0.87, 

1.28) 

0.86 

(0.71, 

1.05) 

38.8 

(33.0, 

45.7) 

3.67 

(3.14, 

4.28) 

0.67 

(0.57, 

0.80) 

0.08 

(0.07, 

0.09) 

0.88 

(0.68, 

1.13) 

0.10 

(0.09, 

0.12) 

242 

(203, 

288) 

 Japanese 

(n=199) 

26.8 

(20.1, 

35.7) 

1.85 

(1.47, 

2.33) 

0.55 

(0.44, 

0.69) 

0.58 

(0.48, 

0.71) 

4.24 

(3.76, 

4.79) 

8.60 

(7.58, 

9.76) 

1.25 

(1.01, 

1.55) 

0.95 

(0.76, 

1.18) 

49.5 

(41.4, 

59.1) 

3.50 

(2.96, 

4.13) 

0.68 

(0.55, 

0.80) 

0.08 

(0.06, 

0.09) 

0.73 

(0.55, 

0.96) 

0.12 

(0.10, 

0.15) 

317 

(262, 

383) 

  P-value 0.0006 0.82 <.0001 0.64 0.15 0.51 0.12 0.40 0.009 0.59 0.93 0.42 0.19 0.07 0.007 

a All models were adjusted for age, education, financial hardship, smoking, secondhand smoking, seafood intake, rice intake, total energy intake, and urinary creatinine. 
b Chinese was only sampled in Oakland site and Japanese was only sampled in Los Angeles site by study design. 
c For values greater than 1, 3 significant figures were shown; for values less than 1, values were shown to 2 decimal places.  
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Supplemental Table II. 4. Ratios of geometric means for urinary metals from linear regression with backward elimination. 

Ratio 

(95% CI) 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Race                

  White 1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

 1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

  1.00 

(Ref) 

1.00 

(Ref) 

  Black 0.88 

(0.74, 

1.05) 

0.71 

(0.63, 

0.80) 

1.03 

(0.92, 

1.16) 

0.84 

(0.76, 

0.92) 

0.75 

(0.69, 

0.81) 

0.90 

(0.83, 

0.97) 

0.77 

(0.69, 

0.87) 

 0.79 

(0.71, 

0.87) 

0.72 

(0.66, 

0.78) 

0.97 

(0.87, 

1.08) 

  0.97 

(0.85, 

1.10) 

1.27 

(1.15, 

1.40) 

  Chinese 1.93 

(1.47, 

2.55) 

1.00 

(0.82, 

1.21) 

1.93 

(1.62, 

2.31) 

1.30 

(1.11, 

1.52) 

1.38 

(1.20, 

1.58) 

1.17 

(1.02, 

1.35) 

1.17 

(0.96, 

1.43) 

 1.28 

(1.09, 

1.52) 

1.15 

(1.00, 

1.32) 

1.42 

(1.21, 

1.66) 

  1.43 

(1.20, 

1.71) 

1.27 

(1.09, 

1.48) 

  Japanese 1.73 

(1.34, 

2.44) 

1.01 

(0.85, 

1.21) 

2.10 

(1.79, 

2.45) 

1.04 

(0.91, 

1.19) 

0.85 

(0.76, 

0.96) 

1.05 

(0.93, 

1.18) 

1.15 

(0.96, 

1.37) 

 1.27 

(1.09, 

1.48) 

1.01 

(0.88, 

1.15) 

1.09 

(0.95, 

1.26) 

  1.28 

(1.08, 

1.52) 

1.23 

(1.08, 

1.42) 

Education                

  ≤ High school   1.00 

(Ref) 

   1.00 

(Ref) 

        

  Some College   0.99 

(0.88, 

1.11) 

   1.21 

(1.08, 

1.36) 

        

  ≥ College   0.83 

(0.74, 

0.93) 

   1.26 

(1.12, 

1.42) 

        

Smoking                

  Never   1.00 

(Ref) 

1.00 

(Ref) 

      1.00 

(Ref) 

 1.00 

(Ref) 

  

  Former   1.19 

(1.07, 

1.31) 

0.92 

(0.85, 

1.00) 

      1.09 

(1.01, 

1.18) 

 0.90 

(0.80, 

1.01) 

  

  Current   1.82 

(1.59, 

2.09) 

0.85 

(0.76, 

0.96) 

      1.35 

(1.19, 

1.53) 

 1.13 

(0.95, 

1.35) 

  

Secondhand 

smoking 

               

  0 hr/wk            1.00 

(Ref) 

   

  <5 hrs/wk            0.92 

(0.85, 

1.01) 

   

  ≥5 hs/wk            1.09 

(1.00, 

1.20) 
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Ratio 

(95% CI) 

As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Seafood intake                

  <1 /wk 1.00 

(Ref) 

   1.00 

(Ref) 

 1.00 

(Ref) 

   1.00 

(Ref) 

    

  1-1.9 /wk 1.17 

(1.02, 

1.35) 

   1.09 

(1.03, 

1.16) 

 1.14 

(1.03, 

1.26) 

   1.01 

(0.92, 

1.11) 

    

   ≥2 /wk 1.55 

(1.35, 

1.78) 

   1.07 

(1.01, 

1.14) 

 1.21 

(1.08, 

1.36) 

   1.13 

(1.01, 

1.23) 

    

Rice intake                

  <1.5 /wk 1.00 

(Ref) 

   1.00 

(Ref) 

1.00 

(Ref) 

1.00 

(Ref) 

 1.00 

(Ref) 

1.00 

(Ref) 

     

   1.5-3.4 /wk 1.02 

(0.89, 

1.17) 

   1.00 

(0.94, 

1.06) 

0.97 

(0.92, 

1.03) 

1.06 

(0.96, 

1.17) 

 1.00 

(0.92, 

1.08) 

0.98 

(0.91, 

1.05) 

     

   ≥3.5 /wk 1.67 

(1.37, 

2.03) 

   1.13 

(1.02, 

1.24) 

1.09 

(0.99, 

1.21) 

1.23 

(1.05, 

1.44) 

 1.19 

(1.05, 

1.34) 

1.13 

(1.01, 

1.26) 

     

a P <0.05 for all selected variables in backward elimination. Age, study sites, total energy intake, and urinary creatinine were forced in model selection.  
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Supplemental Table II. 5. Geometric mean (GMs, μg/g) of urinary creatinine adjusted metal concentrations by overall exposure patterns. 

GM (GSD)a As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Low exposure 

pattern (n=773) 

13.24 

(2.75) 

1.51 

(2.19) 

0.36 

(2.14) 

0.58 

(1.84) 

4.45 

(1.65) 

9.17 

(1.50) 

1.09 

(2.27) 

0.84 

(1.88) 

41.35 

(1.85) 

3.33 

(1.71) 

0.66 

(1.80) 

0.08 

(2.00) 

1.04 

(2.47) 

0.11 

(2.16) 

305 

(1.89) 

High exposure 

pattern (n=562) 

36.43 

(3.46) 

3.10 

(2.23) 

0.72 

(2.22) 

0.95 

(1.81) 

7.45 

(1.70) 

14.69 

(1.69) 

1.98 

(2.01) 

1.73 

(2.25) 

63.38 

(1.85) 

5.84 

(1.70) 

1.39 

(1.93) 

0.12 

(1.98) 

1.31 

(2.67) 

0.22 

(2.19) 

381 

(1.89) 
a GM: geometric mean; GSD: geometric standard deviation. 
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Supplemental Table II. 6. Estimated cumulative odds ratio (95% confidence intervals) of being clustered into the “high” 

exposure patterna. 

Covariatesb Odds ratio  95% CI P-value 

Black vs. white women 0.38 0.26, 0.55 <.0001 

Chinese vs. white women 2.13 1.21, 3.77 0.009 

Japanese vs. white women 2.33 1.39, 3.92 0.001 

Some college vs. high school or less 0.91 0.62, 1.31 0.60 

College and above vs. high school or less 0.97 0.67, 1.40 0.86 

Financial hardship: moderate vs. severe 0.68 0.39, 1.19 0.17 

Financial hardship: minor vs. severe 0.63 0.37, 1.07 0.09 

Former vs. never smoker 1.03 0.77, 1.36 0.86 

Current vs. never smoker 2.02 1.29, 3.17 0.002 

Secondhand smoking <5 vs. 0 hrs/wk 1.29 0.96, 1.74 0.09 

Secondhand smoking  ≥5 vs. 0 hrs/wk 1.33 0.94, 1.89 0.10 

Seafood intake 1-1.9 /wk vs. <1 time/wk 1.32 0.97, 1.80 0.08 

Seafood intake ≥2 vs. <1 time/wk 1.82 1.33, 2.49 0.0002 

Rice intake 1.5-3.4 /wk vs. <1.5 times/wk 1.10 0.81, 1.48 0.55 

Rice intake ≥3.5 vs. <1.5 times/wk 1.73 1.12, 2.67 0.01 

Boston vs. Michigan 3.37 2.11, 5.34 <.0001 

Oakland vs. Michigan 2.65 1.52, 4.60 0.0006 

Los Angeles vs. Michigan 1.84 1.07, 3.16 0.03 

Pittsburgh vs. Michigan 3.18 1.99, 5.07 <.0001 
a Participants with “high” vs. “low” exposure patterns were clustered by k-means clustering method. 
b Reference groups: race: white women; education: ≤ high school; financial hardship: severe; smoking: never smoker; 

secondhand smoking: 0 hours/week; seafood intake:  <1 time/week; rice intake: <1.5 times/week; study sites: Michigan. Age and 

total energy intake were adjusted as continuous variables. 
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Supplemental Table II. 7. Model adjusted least-squares geometric mean concentrationsa (LSGMs, μg/L) and 95% confidence intervals of urinary metals by characteristics of the 

SWAN participants, including seafood and rice intake, adjusting for specific gravity. 

LGSMsb (μg/L) As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

Race                

  White 13.5 

(11.9, 

15.3) 

1.86 

(1.69, 

2.05) 

0.41 

(0.37, 

0.45) 

0.59 

(0.54, 

0.64) 

4.71 

(4.44, 

5.01) 

9.24 

(8.69, 

9.84) 

1.09 

(0.99, 

1.20) 

1.00 

(0.92, 

1.09) 

38.9 

(36.0, 

42.1) 

3.53 

(3.31, 

3.76) 

0.80 

(0.73, 

0.86) 

0.08 

(0.08, 

0.09) 

1.02 

(0.91, 

1.14) 

0.12 

(0.11, 

0.13) 

256 

(237, 

278) 

  Black 14.0 

(12.0, 

16.4) 

1.47 

(1.30, 

1.66) 

0.49 

(0.44, 

0.56) 

0.56 

(0.51, 

0.62) 

4.10 

(3.80, 

4.42) 

9.73 

(9.00, 

10.5) 

1.00 

(0.88, 

1.12) 

0.98 

(0.88, 

1.08) 

35.8 

(32.5, 

39.5) 

2.95 

(2.72, 

3.20) 

0.89 

(0.81, 

0.99) 

0.09 

(0.08, 

0.10) 

1.21 

(1.05, 

1.40) 

0.13 

(0.11, 

0.14) 

390 

(353, 

431) 

  Chinese 26.4 

(20.4, 

34.2) 

1.77 

(1.45, 

2.16) 

0.71 

(0.58, 

0.87) 

0.70 

(0.60, 

0.83) 

6.58 

(5.81, 

7.44) 

10.9 

(9.56, 

12.3) 

1.23 

(1.01, 

1.51) 

0.97 

(0.82, 

1.15) 

48.3 

(41.2, 

56.6) 

3.99 

(3.50, 

4.54) 

1.09 

(0.92, 

1.29) 

0.09 

(0.08, 

0.11) 

0.70 

(0.55, 

0.88) 

0.15 

(0.12, 

0.18) 

342 

(290, 

403) 

  Japanese 24.0 

(19.0, 

30.3) 

1.82 

(1.52, 

2.18) 

0.80 

(0.66, 

0.96) 

0.58 

(0.50, 

0.67) 

4.09 

(3.65, 

4.58) 

9.94 

(8.84, 

11.2) 

1.28 

(1.07, 

1.54) 

1.01 

(0.87, 

1.19) 

50.5 

(43.7, 

58.4) 

3.65 

(3.24, 

4.12) 

0.86 

(0.74, 

1.01) 

0.07 

(0.06, 

0.08) 

0.89 

(0.72, 

1.11) 

0.14 

(0.12, 

0.17) 

334 

(287, 

388) 

  P-value <.0001 0.004 <.0001 0.15 <.0001 0.08 0.13 0.94 0.0007 <.0001 0.002 0.02 0.002 0.04 <.0001 

Education                

  ≤ High school 17.1 

(14.7, 

19.9) 

1.68 

(1.49, 

1.89) 

0.60 

(0.53, 

0.68) 

0.60 

(0.55, 

0.66) 

4.76 

(4.43, 

5.13) 

9.77 

(9.07, 

10.5) 

0.98 

(0.87, 

1.11) 

1.00 

(0.90, 

1.10) 

41.6 

(37.9, 

45.7) 

3.41 

(3.16, 

3.69) 

0.87 

(0.79, 

0.96) 

0.08 

(0.08, 

0.09) 

0.86 

(0.75, 

0.98) 

0.12 

(0.11, 

0.14) 

333 

(303, 

367) 

  Some College 20.0 

(17.5, 

22.9) 

1.84 

(1.66, 

2.04) 

0.62 

(0.55, 

0.69) 

0.60 

(0.55, 

0.66) 

4.73 

(4.43, 

5.04) 

10.0 

(9.36, 

10.7) 

1.21 

(1.09, 

1.35) 

0.97 

(0.89, 

1.06) 

44.1 

(40.6, 

47.9) 

3.57 

(3.33, 

3.82) 

0.91 

(0.83, 

0.99) 

0.09 

(0.08, 

0.10) 

1.02 

(0.90, 

1.15) 

0.14 

(0.13, 

0.16) 

339 

(311, 

369) 

  ≥ College 18.8 

(16.4, 

21.6) 

1.66 

(1.49, 

1.85) 

0.53 

(0.48, 

0.59) 

0.61 

(0.56, 

0.67) 

4.83 

(4.52, 

5.16) 

10.0 

(9.34, 

10.7) 

1.26 

(1.13, 

1.40) 

1.00 

(0.91, 

1.10) 

43.2 

(39.7, 

47.1) 

3.55 

(3.31, 

3.80) 

0.94 

(0.85, 

1.02) 

0.08 

(0.07, 

0.09) 

0.94 

(0.83, 

1.07) 

0.13 

(0.12, 

0.15) 

309 

(283, 

338) 

  P for trend 0.72 0.49 0.01 0.67 0.70 0.69 0.0008 0.84 0.77 0.54 0.21 0.27 0.53 0.86 0.10 

Financial hardship               

  Severe 17.0 

(13.5, 

21.5) 

1.69 

(1.41, 

2.02) 

0.57 

(0.47, 

0.69) 

0.62 

(0.53, 

0.72) 

4.70 

(4.20, 

5.26) 

10.0 

(8.90, 

11.2) 

1.07 

(0.90, 

1.29) 

0.99 

(0.85, 

1.16) 

43.6 

(37.7, 

50.4) 

3.56 

(3.16, 

4.01) 

0.94 

(0.80, 

1.10) 

0.09 

(0.08, 

0.10) 

0.91 

(0.73, 

1.13) 

0.13 

(0.11, 

0.16) 

343 

(296, 

399) 

  Moderate 19.1 

(16.8, 

21.8) 

1.68 

(1.52, 

1.86) 

0.62 

(0.56, 

0.69) 

0.61 

(0.56, 

0.66) 

4.89 

(4.59, 

5.21) 

10.2 

(9.6, 

10.9) 

1.15 

(1.04, 

1.28) 

1.03 

(0.94, 

1.13) 

42.5 

(39.2, 

46.2) 

3.53 

(3.30, 

3.77) 

0.92 

(0.84, 

1.01) 

0.08 

(0.08, 

0.09) 

0.97 

(0.86, 

1.10) 

0.14 

(0.12, 

0.15) 

320 

(294, 

348) 

  Minor 19.7 

(17.8, 

21.8) 

1.81 

(1.67, 

1.95) 

0.55 

(0.51, 

0.60) 

0.59 

(0.55, 

0.63) 

4.73 

(4.50, 

4.97) 

9.58 

(9.11, 

10.1) 

1.21 

(1.12, 

1.32) 

0.95 

(0.89, 

1.02) 

42.7 

(40.1, 

45.5) 

3.44 

(3.26, 

3.62) 

0.85 

(0.79, 

0.91) 

0.08 

(0.07, 

0.09) 

0.93 

(0.85, 

1.02) 

0.13 

(0.12, 

0.14) 

318 

(298, 

339) 

  P for trend 0.35 0.21 0.08 0.39 0.58 0.09 0.17 0.16 0.81 0.35 0.05 0.20 0.62 0.21 0.47 

Smoking                

  Never 18.3 1.63 0.45 0.65 4.61 9.87 1.20 0.94 44.4 3.69 0.79 0.08 0.93 0.13 306 
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LGSMsb (μg/L) As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

(16.3, 

20.4) 

(1.49, 

1.78) 

(0.41, 

0.49) 

(0.60, 

0.69) 

(4.37, 

4.87) 

(9.34, 

10.4) 

(1.10, 

1.31) 

(0.87, 

1.01) 

(41.4, 

47.5) 

(3.48, 

3.90) 

(0.73, 

0.85) 

(0.07, 

0.09) 

(0.84, 

1.03) 

(0.12, 

0.15) 

(285, 

329) 

  Former 18.5 

(16.0, 

21.3) 

1.67 

(1.49, 

1.86) 

0.52 

(0.47, 

0.59) 

0.59 

(0.54, 

0.65) 

4.77 

(4.45, 

5.11) 

9.82 

(9.15, 

10.5) 

1.07 

(0.96, 

1.20) 

1.01 

(0.91, 

1.11) 

41.9 

(38.4, 

45.8) 

3.45 

(3.21, 

3.71) 

0.86 

(0.78, 

0.95) 

0.08 

(0.07, 

0.09) 

0.80 

(0.70, 

0.91) 

0.13 

(0.11, 

0.14) 

318 

(290, 

348) 

  Current 19.0 

(15.6, 

23.2) 

1.88 

(1.62, 

2.19) 

0.84 

(0.72, 

0.98) 

0.58 

(0.51, 

0.66) 

4.94 

(4.49, 

5.43) 

10.1 

(9.16, 

11.1) 

1.17 

(1.00, 

1.36) 

1.03 

(0.90, 

1.17) 

42.6 

(37.7, 

48.1) 

3.39 

(3.07, 

3.75) 

1.08 

(0.95, 

1.23) 

0.09 

(0.08, 

0.10) 

1.10 

(0.92, 

1.32) 

0.13 

(0.12, 

0.16) 

358 

(316, 

406) 

  P for trend 0.62 0.13 <.0001 0.01 0.13 0.90 0.21 0.08 0.35 0.02 <.0001 0.06 0.98 0.70 0.02 

Secondhand smoking               

  0 hr/wk 19.3 

(16.9, 

22.0) 

1.68 

(1.52, 

1.86) 

0.61 

(0.55, 

0.68) 

0.60 

(0.55, 

0.65) 

4.80 

(4.51, 

5.11) 

9.99 

(9.36, 

10.7) 

1.13 

(1.02, 

1.25) 

1.05 

(0.96, 

1.15) 

45.3 

(41.8, 

49.2) 

3.46 

(3.24, 

3.70) 

0.87 

(0.80, 

0.95) 

0.09 

(0.08, 

0.09) 

0.94 

(0.83, 

1.06) 

0.14 

(0.13, 

0.15) 

320 

(295, 

348) 

  <5 hrs/wk 17.8 

(15.3, 

20.6) 

1.78 

(1.59, 

2.00) 

0.56 

(0.50, 

0.63) 

0.63 

(0.57, 

0.69) 

4.76 

(4.43, 

5.12) 

10.4 

(9.65, 

11.2) 

1.15 

(1.02, 

1.29) 

0.98 

(0.89, 

1.08) 

41.2 

(37.6, 

45.2) 

3.61 

(3.35, 

3.90) 

0.92 

(0.84, 

1.02) 

0.08 

(0.07, 

0.09) 

0.96 

(0.84, 

1.10) 

0.13 

(0.12, 

0.14) 

322 

(293, 

355) 

  ≥5 hs/wk 18.8 

(16.3, 

21.6) 

1.71 

(1.53, 

1.91) 

0.57 

(0.51, 

0.64) 

0.59 

(0.54, 

0.64) 

4.76 

(4.44, 

5.09) 

9.43 

(8.78, 

10.1) 

1.16 

(1.04, 

1.29) 

0.94 

(0.86, 

1.04) 

42.4 

(38.8, 

46.3) 

3.45 

(3.21, 

3.71) 

0.92 

(0.83, 

1.01) 

0.09 

(0.08, 

0.10) 

0.91 

(0.80, 

1.04) 

0.13 

(0.11, 

0.14) 

339 

(309, 

371) 

  P for trend 0.62 0.45 0.40 0.96 0.74 0.35 0.43 0.02 0.11 0.75 0.17 0.79 0.75 0.17 0.23 

Seafood intake                

  <1 /wk 15.6 

(13.5, 

18.0) 

1.73 

(1.55, 

1.93) 

0.58 

(0.52, 

0.65) 

0.62 

(0.57, 

0.68) 

4.65 

(4.34, 

4.98) 

10.1 

(9.39, 

10.8) 

1.06 

(0.95, 

1.19) 

0.97 

(0.88, 

1.07) 

41.9 

(38.4, 

45.8) 

3.53 

(3.28, 

3.79) 

0.89 

(0.81, 

0.98) 

0.09 

(0.08, 

0.10) 

0.94 

(0.82, 

1.07) 

0.13 

(0.11, 

0.14) 

336 

(306, 

367) 

  1-1.9 /wk 17.7 

(15.5, 

20.3) 

1.63 

(1.47, 

1.81) 

0.56 

(0.50, 

0.62) 

0.60 

(0.55, 

0.65) 

4.89 

(4.58, 

5.21) 

9.64 

(9.02, 

10.3) 

1.16 

(1.05, 

1.29) 

0.96 

(0.88, 

1.05) 

43.2 

(39.8, 

47.0) 

3.45 

(3.22, 

3.70) 

0.87 

(0.80, 

0.95) 

0.08 

(0.07, 

0.09) 

0.99 

(0.88, 

1.12) 

0.13 

(0.12, 

0.14) 

326 

(299, 

355) 

   ≥2 /wk 23.2 

(20.4, 

26.4) 

1.81 

(1.64, 

2.00) 

0.60 

(0.54, 

0.67) 

0.60 

(0.55, 

0.65) 

4.78 

(4.49, 

5.09) 

10.1 

(9.43, 

10.7) 

1.22 

(1.10, 

1.35) 

1.04 

(0.95, 

1.13) 

43.7 

(40.3, 

47.4) 

3.55 

(3.32, 

3.79) 

0.95 

(0.87, 

1.03) 

0.08 

(0.08, 

0.09) 

0.88 

(0.78, 

1.00) 

0.14 

(0.12, 

0.15) 

319 

(294, 

347) 

 P for trend <.0001 0.39 0.57 0.55 0.48 0.98 0.02 0.18 0.41 0.86 0.21 0.66 0.29 0.23 0.30 

Rice intake                

  <1.5 /wk 16.0 

(13.7, 

18.7) 

1.72 

(1.53, 

1.94) 

0.58 

(0.51, 

0.65) 

0.61 

(0.55, 

0.67) 

4.70 

(4.37, 

5.06) 

10.0 

(9.29, 

10.8) 

1.07 

(0.95, 

1.21) 

1.01 

(0.91, 

1.11) 

42.2 

(38.4, 

46.4) 

3.50 

(3.24, 

3.79) 

0.90 

(0.81, 

0.99) 

0.09 

(0.08, 

0.09) 

0.90 

(0.78, 

1.03) 

0.13 

(0.11, 

0.14) 

334 

(303, 

368) 

   1.5-3.4 /wk 16.1 

(13.9, 

18.6) 

1.71 

(1.52, 

1.91) 

0.57 

(0.51, 

0.65) 

0.59 

(0.53, 

0.64) 

4.67 

(4.36, 

5.01) 

9.61 

(8.94, 

10.3) 

1.13 

(1.01, 

1.27) 

1.00 

(0.91, 

1.10) 

41.1 

(37.6, 

45.0) 

3.38 

(3.14, 

3.64) 

0.90 

(0.82, 

1.00) 

0.08 

(0.08, 

0.09) 

0.92 

(0.81, 

1.05) 

0.13 

(0.12, 

0.15) 

344 

(314, 

377) 

   ≥3.5 /wk 24.9 

(21.4, 

29.0) 

1.74 

(1.55, 

1.96) 

0.59 

(0.52, 

0.67) 

0.62 

(0.57, 

0.69) 

4.95 

(4.60, 

5.32) 

10.2 

(9.42, 

11.0) 

1.24 

(1.10, 

1.40) 

0.97 

(0.87, 

1.07) 

45.6 

(41.5, 

50.1) 

3.65 

(3.38, 

3.94) 

0.91 

(0.82, 

1.00) 

0.08 

(0.07, 

0.09) 

0.99 

(0.86, 

1.14) 

0.14 

(0.12, 

0.15) 

304 

(276, 

355) 
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LGSMsb (μg/L) As Ba Cd Co Cs Cu Hg Mn Mo Ni Pb Sb Sn Tl Zn 

  P for trend 0.0004 0.91 0.63 0.99 0.48 0.83 0.05 0.69 0.41 0.79 0.82 0.96 0.37 0.42 0.39 

a All models were adjusted for age, race, education, financial hardship, smoking, secondhand smoking, seafood intake, rice intake, total energy intake, study sites and specific 

gravity. 
b For values greater than 1, 3 significant figures were shown; for values less than 1, values were shown to 2 decimal places.  
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Supplemental Figure II. 1. Schematic diagram of the SWAN Multi-Pollutant Study and analytic sample. 
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Supplemental Figure II. 2. Determination of optimal number of clusters in k-means clustering. 

 (A) Cubic clustering criterion. This figure contains the cubic clustering criterion values from k=2 to k=10. Note the local maxima at k=2, indicating two is 

optimal estimate for the number of clusters. (B) Elbow method. This figure plots the total within-cluster sum of square against number of clusters (1 to 10 in our 

case). The location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number of clusters. (C) Average Silhouette method. This 

figure shows how well each participants lies within its cluster by average silhouette width. A high average silhouette width indicates a good clustering. The 

optimal number of clusters is the one that maximizes the average silhouette over a range of possible values (which from 1 to 10 in our case). 
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Abstract 

Objective: Environmental exposure to metals may play a role in the pathogenesis of diabetes, 

however, evidence from human studies is limited. We prospectively evaluated the associations of 

20 urinary metal concentrations and their mixtures with incident diabetes in the Study of 

Women’s Health Across the Nation, a multi-site, multi-ethnic cohort study of midlife women. 

Research Design and Methods: The sample included 1,237 white, black, Chinese and 

Japanese-American women, aged 45-56 years, free of diabetes at baseline (1999-2000) who were 

followed through 2016. Concentrations of 20 metals (arsenic, barium, beryllium, cadmium, 

cobalt, chromium, cesium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, 

tin, thallium, uranium, vanadium, tungsten and zinc) were measured in urine specimens using 

high-resolution inductively coupled plasma-mass spectrometry at baseline. Incident diabetes was 

identified annually. Exposure to metal mixtures were captured using k-means clustering.  

Results: After multivariable adjustment, the hazard ratios (HR) (95% CI) of diabetes associated 

with each doubling increase in urinary metal concentrations were 1.13 (1.04, 1.23) for arsenic 

and 1.22 (1.09, 1.37) for lead, in Cox proportional hazards models after controlling for multiple 

comparison. A doubling in urinary excretion of zinc was associated with higher diabetes risk 

(adjusted HR 1.47, 95% CI: 1.27, 1.70). Two distinct exposure patterns to metal mixtures- 

“high” vs. “low”-were identified. Adjusted HR of diabetes associated with “high” exposure 

pattern compared with “low” was 1.38 (1.09, 1.75).  

Conclusions: Exposure to arsenic and lead, an increase urinary excretion of zinc, as well as a 

high overall exposure to metal mixtures were associated with elevated diabetes risks. Future 

studies should further investigate the underlying mechanisms by which metals may influence 

diabetes. 
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1. Introduction 

To date, most epidemiologic studies of type 2 diabetes mellitus risk have focused on the 

potential impact of genetics, unhealthy diets, and sedentary lifestyles. The potential contributions 

of environmental toxicants to the epidemic of diabetes have received less attention. The general 

population is commonly exposed to metals through food, drinking water, and ambient air. 

Dietary intake of toxic metals has been a significant public health concern, in particular for 

populations with consumption of contaminated drinking water and/or rice (Hanna-Attisha et al. 

2016; Wang et al. 2019b). Exposure to metals may play a role in the induction or exacerbation of 

diabetes: arsenic has been associated with diabetes in a number of studies (Maull et al. 2012). A 

National Toxicology Program systematic review suggests that there is “limited to sufficient” 

evidence for an association between arsenic and diabetes in high exposure areas (≥150 μg 

arsenic/L in drinking water) but ‘insufficient’ evidence in lower exposure areas (<150 μg 

arsenic/L in drinking water) (Maull et al. 2012). Other metals including cadmium and lead have 

been examined in relation to diabetes risk but the studies have been limited, inconsistent and 

mostly cross-sectional (Li et al. 2017; Menke et al. 2015). Associations of environmental 

exposure to most other metals with diabetes have not been investigated. 

 Toxic metals such as arsenic, cadmium and lead, are well-known inducers of oxidative 

stress in a variety of tissues and cell types (Ercal et al. 2001). The accumulation of these metals 

in pancreatic islets is hypothesized to lead to impaired function and apoptotic death of β-cells via 

the induction of oxidative stress (Lu et al. 2011; Patra et al. 2011). Arsenic and cadmium have 

also been demonstrated to interfere with gene expression involving signal transduction and gene 

transcription related to insulin pathways, leading to insulin resistance (Han et al. 2003; 

Mohammed Abdul et al. 2015). On the other hand, deficiency in essential metals such as zinc 
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attributed to excessive excretion in urine has been related to dysregulation of insulin secretion 

and glucose transportation (Jansen et al. 2009). Metal exposures could also be associated with 

obesity. A recent cross-sectional study found that exposure to mixtures of metals was associated 

with BMI and waist circumference in the U.S. general population (Wang et al. 2018). These 

findings suggest a need to investigate the role of metal exposures to diabetes risk in humans, 

especially in a well characterized prospective cohort study.  

In this study, we report on the associations of 20 urinary metals with the incidence of 

diabetes over 16 years of follow-up in the Study of Women’s Health Across the Nation (SWAN), 

a multi-site, multi-ethnic prospective cohort study of midlife women. We have previously 

identified two distinct exposure patterns to metal mixtures in SWAN (Wang et al. 2019b). The 

present study was designed to further assess the role of metal mixtures in diabetes risk. 

2. Methods 

2.1 Study population 

Women in the present study were participants in SWAN, an ongoing, multi-site, multi-

ethnic, community-based longitudinal study of the natural history of menopause designed to 

address the effect of the menopausal transition on subsequent health and to identify risk factors 

for age-related chronic diseases (Sowers et al. 2000). In 1996 to 1997, 3,302 women were 

enrolled from seven study sites where white women and women from one specified minority 

group were recruited (black women from Boston, MA, Pittsburgh, PA, southeast Michigan, MI, 

and Chicago, IL; Hispanic women from Newark, NJ; Chinese women from Oakland, CA; and 

Japanese women from Los Angeles, CA). Black, Chinese, Japanese, and Hispanic women 

comprised greater proportions of the SWAN population than their respective proportions in the 
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general U.S. population, reflecting the study design to oversample these groups (Sowers et al. 

2000). Eligibility criteria for enrollment into the SWAN cohort included the following: age 42 to 

52 years, intact uterus and at least one ovary, no use of exogenous hormones affecting ovarian 

function in the past 3 months, at least one menstrual period in the previous 3 months, and self-

identification with a site’s designated racial/ethnic groups. These women returned for regular 

examinations annually, and approximately 75% of still living participants completed the 15th 

SWAN follow-up visit (2015-2016).  Institutional review board approval was obtained at each 

study site, and all participants provided signed informed consent at each study visit.  

To evaluate associations between urinary metals and risk of diabetes, we used data from 

the SWAN Multi-Pollutant Substudy (SWAN-MPS), which was initiated to examine the 

associations of multiple environmental chemicals with metabolic and reproductive health 

outcomes in midlife women (Wang et al. 2019b). This substudy used urine samples from the 

SWAN Repository collected during the third SWAN follow-up visit (1999-2000) for 

environmental exposure assessment. A subset of 1,400 SWAN participants from the five SWAN 

sites who provided urine samples to the SWAN Repository (Boston, southeast Michigan, Los 

Angeles, Oakland and Pittsburgh) were assayed for metal concentrations. Therefore, this 

substudy, by design, included self-identified white, black, Chinese, and Japanese women, but not 

Hispanic women. After excluding 82 participants with prevalent diabetes at the baseline for the 

Multi-Pollutant Substudy (1999-2000), 1,318 women in the sample were at risk of developing 

diabetes. In addition, we excluded 1 participant who provided an insufficient quantity of urine, 

and 80 participants who had no information on key covariates (education, household income, 

BMI, physical activity, and variables used in the application of the inverse probability weighting 

method), leaving a final analytic sample of 1,237 women including 11,715 observations followed 
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from 1999 to 2016.  An overview of our analytic sample is illustrated in Supplemental Figure 

III. 1. 

2.2 Diabetes ascertainment 

 Fasting serum glucose level was determined by hexokinase method (Boehringer 

Mannheim Diagnostics, Indianapolis, IN, USA). At any follow-up visit, participants with one or 

more of the following were defined as having incident diabetes: (1) fasting serum glucose level ≥ 

126 mg/dL; (2) self-reported use of insulin or oral medications for diabetes; (3) self-reported 

physician diagnosis of diabetes. The vast majority of the diabetes cases in this life stage are 

considered type 2 diabetes 

2.3 Urinary metals  

Details regarding urinary metal measurements and associated quality control procedures 

in the SWAN-MPS have been described previously (Wang et al. 2019b). Baseline concentrations 

of the following 20 metals including total arsenic, barium, beryllium, cadmium, cobalt, 

chromium, cesium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, tin, 

thallium, uranium, vanadium, tungsten, and zinc were measured in these urine samples using 

high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) (Thermo Scientific 

iCAP RQ, Waltham, MA) following the CDC method 3018.3 (CDC 2012b), with modifications 

for the expanded metals panel, by the Applied Research Center of NSF International (Ann Arbor, 

Michigan). The limits of detection (LOD) and detection rates are presented in Supplemental 

Table III. 1. Participants with metal concentration below LOD were assigned a value equal to 

LOD divided by the square root of 2. Pairwise Spearman correlations among urinary metal 

concentrations were calculated. 

2.4 Covariates  
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Sociodemographic variables including age, self-reported race/ethnicity, and education 

level, and family history of diabetes were assessed through a self-administered questionnaire at 

the SWAN baseline examination (1996-1997). At each study visit, annual household income, 

smoking status, alcohol drinking, menopausal status, and use of exogenous hormones were self-

reported. BMI was calculated as weight in kilograms divided by the square of height in meters. 

Waist circumference was measured to the nearest 0.1 cm with a measuring tape placed 

horizontally around the participant at the narrowest part of the torso. Blood pressures were 

measured twice with a minimum 2-min rest period between measures with each participant in a 

seated position according to a standardized protocol. We calculated mean of systolic blood 

pressure (SBP) by averaging up the two measures. Blood samples were taken to measure serum 

levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. Physical 

activity was measured by a total score indicating the activity levels during the previous 12 

months. Activity was assessed with a modified version of the Kaiser Physical Activity Survey 

(Sternfeld et al. 2000), which consists of 38 questions with primarily Likert-scale responses 

about physical activity in various domains, including sports/exercise, household/caregiving, and 

daily routine. Domain-specific indices were derived by averaging the ordinal responses to 

questions in each domain, resulting in values from 1 to 5. Thus, the total physical activity score 

ranged from 3 to 15 with 15 indicating the highest level of activity. Dietary seafood and rice 

intake and zinc intake from diet and supplements were collected using a detailed semi-

quantitative food frequency questionnaire (FFQ) adopted from the Block FFQ (Wang et al. 

2019b). Total energy intake was obtained from the FFQ based on each food intake. Urinary 

specific gravity was determined using a handheld digital refractometer (ATAGO model PAL-

10S, Tokyo, Japan) at the same time as metal measurements as a marker of urine dilution. 
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2.5 Statistical analysis 

Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% 

confidence intervals (CIs) of incident diabetes in relation to each metal concentration. Given the 

highly skewed distributions of urinary metal concentrations, logarithmic transformations with 

base 2 were applied to all metal concentrations so that shapes of exposure-outcome relationships 

were closer to being log-linear, and the HRs and 95% CIs were interpreted as effects of a two-

fold increase in each urinary metal concentration. For metals with low detection rate (beryllium, 

chromium, uranium, vanadium, tungsten, Supplemental Table III.1), HRs were calculated 

comparing participants with metal concentration above the LOD to those with value below the 

LOD. In our study, platinum was also measured, but most participants (98.9%) had 

concentrations below the LOD, and that metal was excluded from this analysis.  

Potential confounders were adjusted progressively in the Cox models. Initial regression 

models included adjustment for age, race/ethnicity, study site, and specific gravity (log-

transformed), while subsequent models further adjusted for education, annual household income, 

BMI and waist circumference at baseline, SBP at baseline, smoking, alcohol drinking, serum 

lipids (total cholesterol, HDL cholesterol, and triglyceride) levels at baseline, physical activity 

score, family history of diabetes, total energy intake, menopausal status, and hormone therapy 

(full model). We decided not to include time-varying BMI, waist circumference, SBP, and serum 

lipids in our primary analysis because of its role as a potential diabetes risk factor and the fact 

that it could be affected by metal exposures at baseline (Wang et al. 2018). For arsenic, cadmium 

and, mercury, we additionally adjusted for seafood and rice intake in the full model, which have 

been identified as important determinants of their urinary concentrations in our previous study 

[1]. For zinc, we additionally adjusted for total zinc intake from food and supplements in the full 
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model to better capture the potential effect of urinary zinc excretion on diabetes that is 

independent of dietary zinc intake. For other essential metals, such as copper, no dietary intake 

was adjusted due to a lack of data. Given the relatively large number of associations that were 

evaluated, we adjusted P values for multiple comparison at a false discovery rate (FDR) of 0.05 

using the Benjamini–Hochberg Method (Benjamini and Hochberg 1995). We also calculated 

HRs in relation to specific gravity-adjusted metal concentrations (urinary metal concentration × 

(1.017-1)/specific gravity -1), where 1.017 was the median level of specific gravity in our 

analytic sample, as a sensitivity analysis. 

 To quantify the differences in diabetes risks between subgroups corresponding to 

different exposure patterns to metal mixtures, a nonparametric clustering method, k-means 

clustering, was applied. Details regarding k-means clustering in identification of exposure 

patterns to metal mixtures in SWAN has been described previously (Wang et al. 2019b). Briefly, 

this approach creates a single variable with k categories representing different clusters where 

participants within the same cluster are as similar as possible and participants from different 

clusters are as dissimilar as possible, in terms of their urinary metal concentrations. K-means 

clustering was performed for the metals of which the detection rate was ≥70%. All log-

transformed specific gravity-adjusted urinary metal concentrations were standardized to make 

variables comparable before the k-means clustering. The number of optimal clusters (k) was 

determined based on cubic clustering criterion, Elbow method, and interpretability. HRs and 

95% CIs of diabetes incidence were estimated between subgroups (clusters) with different 

exposure patterns to metal mixtures using the Cox proportional hazards models. We also 

calculated survival probability of diabetes of participants in different subgroups throughout 16 

years of follow-up using adjusted survival curves recommended by Hernán (Hernán 2010) and 
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displayed results graphically. Briefly, a discrete-time hazards model with adjustment of 

confounding factors was fitted to estimate the conditional survival probability of diabetes under 

different exposure patterns to metal mixtures in a counterfactual causal framework (Hernán 

2010). 

We recognized that selection bias may have existed, as selection into the SWAN-MPS 

was potentially affected by women’s metal exposures, their related diabetes risk factors, or 

potential confounders before or at the time of enrollment. Also, selective loss to follow-up that 

occurred after the metal measurements were obtained may have biased estimates of associations 

between metals and diabetes if the likelihood of continuation in the follow-up was influenced by 

metal exposures and risk factors for diabetes. To mitigate these biases, we assigned weights to 

participants based on inverse probability weighting (IPW), to create a pseudo population 

representative of the original cohort, as well as to address informative attrition in our analyses. 

Directed acyclic graphs illustrating the potential selection bias and details of estimation of IPW 

are described in the supplementary Methods, Supplemental Figure III. 2 and Supplemental 

Figure III. 3. All analyses were conducted by SAS, version 9.4 (SAS Institute, Inc., Cary, North 

Carolina). 

3. Results 

Among 1,237 SWAN participants free of diabetes at baseline, 102 developed diabetes 

during 17,005 person-years of follow-up, with an incidence of 6.0 per 1,000 person-years. 

Women with incident diabetes were more likely to be black, from Michigan, to have higher BMI 

and lower education levels, and to be current or former smokers, and hormone users (Table III. 

1). The percentage of women with detectable concentrations of an individual metal ranged from 

15.7 to 100% (Supplemental Table III.1). Five metals had detection rates less than 70% 
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(beryllium, 15.7%; chromium, 24.3%; uranium, 33.3%; vanadium, 37.4%; tungsten, 29.0%). 

Participants with incident diabetes had higher copper, manganese, nickel, lead, tin, zinc and 

lower cesium concentrations than those without incident diabetes. Concentrations of most metals 

were modestly and positively correlated with each other (Supplemental Figure III. 4).  

 Table III. 2 summarizes the associations between urinary metal concentrations (detection 

rate ≥70%) and incident diabetes. In the initial models, significant associations were found for 

urinary tin (p=0.03) and zinc (p<0.0001). After full adjustments of covariates, HRs of diabetes 

associated with each doubling of urinary metal concentration were 1.24 (95% CI: 1.14, 1.35, 

p<0.0001) for arsenic, 1.23 (95% CI: 1.08, 1.40, p=0.002) for lead, 1.11 (95% CI:1.01, 1.22, 

p=0.04) for tin, and 1.31 (95% CI: 1.11, 1.55, p=0.001) for zinc. To adjust for multiple 

comparison, a significance level of α=0.002 was used, which corresponded to an FDR of 5% 

using the Benjamini–Hochberg Method. This adjustment for multiple comparison left only 

arsenic, lead, and zinc as significant independent predictors (p<0.002) for diabetes. No 

significant association was detected between metals with detection rate <70% and diabetes 

(Table III. 3). 

 Two distinct clusters of participants were identified based on the exposure profiles of 

metal mixtures through k-means clustering according to both the cubic clustering criterion and 

the Elbow method, which was consistent with our previous finding (Wang et al. 2019b). These 

two clusters were labeled as “high” (n=604) and “low” (n=633) for the exposure patterns. 

Participants assigned to the “high” cluster had higher overall exposures to all the metals 

compared to those classified into the “low” cluster (Supplementary Figure 5). Adjusted survival 

curves of diabetes by these two clusters are shown in Figure 1. After adjustment for potential 
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confounders, the HR for diabetes was 1.46 (95% CI:1.11, 1.91, p=0.007) for women in the 

“high” cluster compared to those in the “low” cluster in the Cox model.  

Use of specific gravity-adjusted concentrations of urinary metals instead of adjusting for 

specific gravity in the Cox models for urine dilution adjustment did not alter our findings 

significantly (Supplemental Table III.2). 

4. Discussion 

In this multi-site, multi-ethnic cohort study of women at midlife, urinary arsenic, lead, 

and zinc concentrations were associated with incidence of diabetes after adjusting for 

sociodemographic variables, lifestyle factors, BMI, menopausal status, use of hormones and 

dietary sources. These associations remained significant after further controlling for multiple 

comparisons. A metal mixtures analysis revealed that a “high” overall exposure pattern to metals 

was associated with a higher incidence of diabetes. These results suggest that exposure to metals 

may be a diabetes risk factor of environmental origin. 

Arsenic 

  We found a positive association between total arsenic in urine and incidence of diabetes. 

Inorganic arsenic is a toxicant and its common sources include drinking water and certain foods 

(e.g., rice, seafood) (Wang et al. 2019b). After absorption through the gastrointestinal tract, 

inorganic arsenic is metabolized into monomethylarsonate (MMA) and dimethylarsinate (DMA), 

which are excreted into the urine together with inorganic arsenic rapidly (Jones et al. 2016). The 

sum of inorganic arsenic, MMA, and DMA in the urine mainly reflects inorganic arsenic 

exposure (Jones et al. 2016). Epidemiologic evidence has supported a possible role of arsenic in 

diabetes. High exposure to arsenic in drinking water (≥50 µg/L) has been associated with 
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increased risks of diabetes in areas such as Taiwan and Bangladesh where historical problems of 

arsenic contamination exist (Wang et al. 2014). Association between arsenic and diabetes has 

also been reported in population with low-moderate exposure (<50 µg/L in drinking water). In 

the United States, urinary arsenic was noted to be positively associated with diabetes prevalence 

in the general population (Navas-Acien et al. 2008) and in American Indian adults (Gribble et al. 

2012). A diabetogenic effect of arsenic has been supported by mechanistic evidence. Arsenic had 

been linked with insulin resistance by altering gene expression of a variety of diabetes-related 

factors and by affecting insulin-stimulated glucose uptake in adipocytes and skeletal muscle cells 

(Mohammed Abdul et al. 2015; Walton et al. 2004). In the pancreas, arsenic may increase 

amyloid formation and apoptotic death/damage of pancreatic β cells through the generation of 

oxidative stress (Lu et al. 2011). Additionally, arsenic has been suggested to substitute phosphate 

and to interact with sulfhydryl groups, which could impair the glucose transport, interrupt the 

production of energy, and interfere with the ATP-dependent insulin secretion of β cells (Petrick 

et al. 2001).  

Lead  

We found a significant association between urinary lead concentration and incidence of 

diabetes. Bone lead stores accrued from cumulative environmental exposures for decades are the 

major endogenous source of lead (Wang et al. 2019a). Urinary lead adjusted for urine dilution 

has been found to closely reflect lead mobilized from the bone (Wang et al. 2019a). Given the 

fact that midlife women may experience an increased bone turnover rate (Hernandez-Avila et al. 

2000), the observed association could be attributed to a greater mobilization of lead from bone 

into the circulation. Existing evidence on the influence of lead exposure on diabetes risk has been 

limited and inconsistent: higher lead concentrations in different biological matrices have been 
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observed in diabetic patients compared to referents in case-control studies (Afridi et al. 2013; 

Nagaraj et al. 2009). On the contrary, no association has been found in two cross-sectional 

studies in both the U.S. and South Korea (Menke et al. 2015; Moon 2013). One recent study in 

China found that higher blood lead concentration was associated with an increased risk of non-

alcoholic fatty liver disease, which commonly coexists with type 2 diabetes and has been 

suggested as a predictor of diabetes risk (Zhai et al. 2017). Lead is a well-known toxicant that 

can induce oxidative stress through reactive oxygen species (ROS) generation, where the ROS 

pathway has been suggested in the pathogenesis of diseases including diabetes (Leff et al. 2018). 

Lead is also thought to disrupt a variety of intracellular signaling pathways by interfering with 

calcium homeostasis and calcium cellular uptake, and modulating activity of protein kinase C 

(Leff et al. 2018).  

Zinc 

 Zinc is an essential nutrient that is necessary for biochemical pathways and required by 

thousands of proteins for catalytic functions. The human body has no specialized zinc storage 

system and humans rely on a daily intake of zinc to maintain health. Zinc leaves body mainly in 

feces and urine (Jansen et al. 2009). Zinc intake has been associated with a lower risk of type 2 

diabetes in women (Vashum et al. 2013). In our study, zinc status was assessed from both zinc 

intake and urinary excretion. We observed a positive association between urinary zinc 

concentration and risk of diabetes after adjustment for zinc intake from diets and supplements, 

suggesting urinary zinc excretion independent of dietary sources as a predictor of diabetes. The 

average intake levels in our participants were greater than the recommended dietary allowance, 

which is 8 mg/day for women (Maret and Sandstead 2006). Our results suggest that women with 

excess zinc in urine may be at elevated risk of diabetes regardless of the amount of dietary zinc 
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intake. Mechanistic studies have demonstrated that zinc plays important role in the biosynthesis, 

storage, and action of insulin. In pancreatic β cells, zinc has been known to be necessary for 

insulin synthesis, storage and, secretion, and has accounted for the conformational integrity of 

insulin in its hexameric crystalline form (Jansen et al. 2009). Excessive urinary excretion of zinc 

was found to lead to a loss of zinc in β-cells, which accounted for reduced insulin secretion 

(Jansen et al. 2009). Certain zinc complexes showed an insulin-like effect including attenuating 

hyperglycemia and increasing lipogenesis in animal models (Jansen et al. 2009). Zinc has also 

been shown to enhance tyrosine kinase phosphorylation in insulin signal transduction improving 

binding of insulin to its receptor and glucose transportation (Jansen et al. 2009). Zinc is a 

structural part of antioxidant enzymes such as superoxide dismutase that could protect insulin 

and β-cells from being attacked by free radicals (Jansen et al. 2009). Despite this evidence, 

hyperglycemia, on the other hand, was suggested to interfere with the active transportation of 

zinc back to renal cells, leading to a loss of this mineral in the urine (Chausmer 1998). This 

raised the possibility that the observed association could also be explained by the increased 

urinary excretion of zinc in women who already had relatively high glucose levels at baseline. 

However, we still observed a positive association between urinary zinc and incident diabetes 

when we additionally excluded women with fasting glucose levels from 100 to 125 mg/dL 

(impaired fasting glucose) at the study baseline (data not shown). Our findings from this 

prospective study suggest that an increased urinary zinc excretion may increase diabetes risk, 

independent of dietary zinc intake. 

Other metals 

 Our data provided modest evidence for an association between tin and diabetes. Tin is 

commonly used in coatings for cans and containers, and in electrical, construction, and 
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transportation (ATSDR 2005). Environmental exposure to tin occurs through food, consumer 

products, and ambient air (ATSDR 2005). One recent study in the U.S. general population found 

that urinary tin was positively associated with diabetes prevalence, which supports our findings 

(Liu et al. 2018). Experimental research suggested the potential role of tin in glucose tolerance 

and insulin resistance through induction of hepatic inflammation and excess hepatic fat 

accumulation (Bertuloso et al. 2015). In pancreatic β cells, tin was demonstrated to interfere with 

glucose-induced insulin secretion, due to its inhibitory effect on the cellular calcium response in 

the triggering exocytosis of insulin granules (Miura and Matsui 2006).  

 Our data did not provide evidence to suggest an association between cadmium and 

diabetes. Previous studies concerning cadmium exposure and diabetes have yielded inconsistent 

results. In the most updated meta-analysis based on data from 9 cross-sectional studies, the 

pooled odds ratio of diabetes for the highest versus lowest category of urinary cadmium 

concentration was 1.02 (95% CI:1.00, 1.05) (Li et al. 2017). In contrast, neither blood nor 

urinary cadmium was associated with incident diabetes, impaired glucose tolerance, blood 

glucose levels, insulin production, insulin resistance, or hemoglobin A1c (HbA1c) level, in two 

small prospective studies in Sweden and Thailand (Barregard et al. 2013; Swaddiwudhipong et 

al. 2012). It is notable that cigarette smoking was less prevalent in our study population of 

midlife women compared to participants investigated in previous studies. Cigarette smoking has 

been found to be a major source of cadmium exposure (Wang et al. 2019b) and has been 

associated with an increased risk of developing diabetes by triggering free radicals, increasing 

inflammation, oxidative stress and dyslipidemia, and directly damaging β-cells (Śliwińska-

Mossoń and Milnerowicz 2017). However, no significant association between urinary cadmium 

concentration and diabetes was observed in never smokers, former smokers, or current smokers 
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when we stratified our analysis by smoking status (data not shown). Further investigations aimed 

at confirming the association and explaining the inconsistency between populations is warranted. 

In previous studies in U.S. adults, urinary cobalt, molybdenum, uranium and, tungsten have been 

positively associated with prevalence of diabetes (Menke et al. 2015). Urinary barium has been 

associated with higher odds of impaired fasting glucose (Feng et al. 2015) and urinary nickel has 

been associated with higher odds of prevalent diabetes, higher fasting glucose, higher HbA1c, 

higher insulin levels, and increased insulin resistance (Liu et al. 2015). A large longitudinal study 

in the U.S. young adults suggested that people with high mercury exposure in young adulthood 

may have an elevated risk of diabetes and decreased β cell function later in life (He et al. 2013). 

On the contrary, mercury exposure was not associated with diabetes risks in both the Health 

Professionals Follow-up Study and the Nurses’ Health Study, the two other large longitudinal 

studies of the U.S. adults (Mozaffarian et al. 2013). In a recent longitudinal study of Chinese 

senior adults, plasma antimony was inversely associated with diabetes incidence (Yuan et al. 

2018). Our study did not provide enough evidence to suggest associations of urinary barium, 

beryllium, cobalt, cesium, mercury, manganese, molybdenum, nickel, antimony, uranium, and 

tungsten with diabetes. The different results obtained by the present study and previous ones 

might be attributed to differences in study design, sources and duration of exposures, biomarkers 

of metals, as well as different characteristics of the study participants. 

Metal mixtures 

 Metals are widely dispersed in the environment and people could be exposed to a myriad 

of metals simultaneously throughout their lifetime. In this study, we identified two clusters of 

women with distinct metal concentration profiles, suggesting different exposure patterns to 

mixtures of metals in the environment. Our previous study using the same clustering approach 



  

101 

 

reported significant differences in sociodemographic, lifestyle, and dietary characteristics 

between women with different exposure profiles (Wang et al. 2019b). In the present study, 

higher overall exposure to metal mixtures was associated with an increased risk of diabetes after 

adjustment for all these factors, suggesting a potential role for exposure to metal mixtures in 

diabetes. Notably, each exposure pattern showed homogeneous distributions of individual metals 

(standardized concentrations). No patterns had particularly high or low concentrations of specific 

metals including arsenic, lead, and zinc, of which associations with diabetes were identified 

individually. This indicates that there may be other components of metal mixtures distinct from 

arsenic, lead, and zinc that affect diabetes risk but may not be adequately captured by the single-

pollutant approach possibly due to relatively small or non-linear effects. It should be 

acknowledged that the associations between the exposure to metal mixtures represented by k-

means clusters and diabetes risk do not provide an insight into which metals were responsible for 

these associations or allow for dose-response characterization. Ultimately, future research 

adopting advanced statistical approaches is needed to quantify the diabetogenic impact of 

exposure to metal mixtures with high degrees of correlation while disentangling the potential 

low-dose, non-linear effects, and metal-metal interactions. 

Strengths and limitations 

The primary strength of our study is that diabetes status, as well as other potential 

confounding factors including sociodemographic factors, lifestyle factors, and metabolic 

quantitative traits, were assessed annually or bi-annually over 16 years follow-up.  The 

prospective design minimized the possibility of reverse causation. The ethnically diverse 

population, as well as comparable metals concentrations in the SWAN cohort compared to 

women of the same age in the U.S. general population also increases the generalizability of our 
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findings (Wang et al. 2019b). Another advantage is that we systematically examined a suite of 20 

metals in urine samples with high-quality laboratory methods. To the best of our knowledge, the 

associations between most of the metals included in our study and diabetes have never been 

investigated in a prospective cohort study.  

Our study also has several limitations. First, metals included in the current analysis have 

very different half-lives in the human body. Urinary concentrations of metals with short half-

lives such as arsenic mainly reflect recent exposures (ATSDR 2007). In contrast, metals such as 

cadmium are not rapidly excreted and have half-lives of years to decades. Therefore, diabetes 

risk is likely impacted by metal exposures over time-periods longer than a few days, information 

on the temporal variability of urinary metals concentrations, especially for those with short half-

lives, is needed to characterize cumulative metal exposures. Second, we measured all metal 

concentrations in urine and urine may not be an optimal biological matrix for some metals, such 

as lead (Ding et al. 2016, 2018). Our future study could be improved with assessments of metal 

concentrations in other biological matrices including whole blood, serum, and bone. Third, in our 

study, only total arsenic concentration was measured in urine sample, and data on arsenic 

speciation was not available. The source and toxicity of different arsenic species vary. The 

principal sources of exposure to inorganic arsenic for the general population are contaminated 

drinking water and rice intake. Exposure to inorganic arsenic has been associated with increased 

diabetes risk. In contrast, fish intake is a major source of organic arsenic, which is generally 

considered to have low toxicity and a small impact on diabetes risk (ATSDR 2007; Navas-Acien 

et al. 2008; Thayer et al. 2012). Arsenic metabolites may also influence diabetes that a lower 

proportion of urinary MMA relative to urinary DMA was associated with an increased incidence 

of diabetes in a recent prospective cohort study (Kuo et al. 2015). In future studies, arsenic 
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speciation will be critical to providing a better understanding of arsenic exposures and associated 

health risks. Fourth, in this study, urinary zinc was adjusted for dietary intake of zinc and zinc 

supplements in the regression analysis to better capture renal clearance and excretion of zinc. 

However, the dietary intake of other essential metals was not measured, and we were unable to 

distinguish between the metals from dietary sources and the metals from internal sources. Fifth, 

the use of fasting glucose to determine incident diabetes may have missed some cases who 

would have been considered to have diabetes based on other tests such as HbA1c test and oral 

glucose tolerance test. However, the use of self-reported physician diagnosis and antidiabetic 

medication use in diabetes ascertainment reduces the possibility of misclassification. Finally, our 

results may be subject to selection bias at enrollment into the SWAN-MPS for selective attrition 

during follow-up. To minimize the possibility of bias in effect estimates, we assigned weights to 

participants at each follow-up visit using an inverse probability weighting approach.  

 In conclusion, this prospective cohort study provides evidence of positive associations of 

urinary concentrations of arsenic and lead, an increase urinary excretion of zinc, as well as a high 

overall exposure to metal mixtures with the risk of diabetes among midlife women. Our findings 

may have important public health implications as increasing and widespread exposure to 

environmental toxicants and their mixtures may be a key contributor to the worldwide epidemics 

of type 2 diabetes. Our findings also provide impetus to further investigate the underlying 

mechanisms by which metals and their mixtures may influence diabetes risk. 
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Table III. 1. Characteristics at the time of metal measurements according to diabetes status, the Study of Women’s Health 

Across the Nation. 

 No diabetes (n=1,135) Diabetes (n=102) 

Age (years)a 49.5 (47.4, 51.6) 50.0 (47.7, 52.2) 

Race/ethnicity   

    White 601 (53.0) 39 (38.2) 

    Black 202 (17.8) 35 (34.1) 

    Chinese 150 (13.2) 14 (13.7) 

    Japanese 182 (16.0) 14 (13.7) 

Study site   

    Michigan 172 (15.2) 33 (32.4) 

    Boston 187 (16.5) 7 (6.9) 

    Oakland 263 (23.2) 20 (19.6) 

    Los Angeles 327 (28.8) 19 (18.6) 

    Pittsburgh 186 (16.4) 23 (22.6) 

Body mass index (kg/m2) 25.3 (22.2, 30.0) 31.6 (26.9, 37.3) 

Waist circumference (cm) 80.6 (72.9, 91.2) 92.3 (82.3, 108.3) 

Education   

    High school or less 189 (16.7) 20 (19.6) 

    Some College 343 (30.2) 43 (42.2) 

    College and above 603 (53.1) 39 (38.2) 

Household income   

    Less than $19,999 55 (5.0) 10 (0.10) 

    $20,000 to 49,999 282 (25.8) 26 (0.25) 

    $50,000 to 99,999 447 (40.9) 47 (0.46) 

    $100,000 or more 309 (28.3) 19 (0.19) 

Smoking status   

    Never 737 (64.9) 58 (56.9) 

    Former 299 (26.3) 29 (28.4) 

    Current 99 (8.7) 15 (14.7) 

Alcohol consumption   

    Infrequent 573 (50.5) 63 (61.8) 

    Moderate 271 (23.9) 25 (24.5) 

    Heavy 291 (25.6) 14 (13.7) 

Physical activity score 8.0 (6.7, 9.1) 7.4 (6.6, 8.5) 

Menopausal status   

    Pre-menopausal 796 (70.1) 64 (62.8) 

    Post-menopausal 162 (14.3) 18 (17.6) 

    Unknownb 177 (15.6) 20 (19.6) 

Family history of diabetes   

    Yes 367 (32.3) 55 (53.9) 

    No 418 (36.8) 25 (24.5) 

    Unknown 350 (30.8) 22 (21.6) 

Hormone therapy 230 (20.3) 28 (27.5) 

Systolic blood pressure (mmHg) 110.0 (1.01.0, 120.0) 120.0 (109.0, 128.0) 

Total cholesterol (mg/dL) 197.0 (175.0, 219.0) 190.0 (172.0, 217.0) 

HDL cholesterol (mg/dL) 61.0 (51.0, 72.0) 52.0 (45.0, 60.0) 

Triglyceride (mg/dL) 94.0 (71.0, 135.0) 137.5 (93.0, 195.0) 

Dietary seafood intake (times/week) 1.4 (0.8, 2.5) 1.5 (0.8, 2.8) 

Dietary rice intake (times/week) 2.0 (1.0, 5.5) 2.0 (0.6, 5.5) 

Total zinc intake (mg/day) 11.0 (7.6, 20.5) 11.4 (8.5, 21.5) 

Total energy intake (kCal) 1661 (1324, 2110) 1950 (1475, 2440) 

Note: DM, diabetes mellitus; HDL, high-density lipoprotein. 
a Data are median (interquartile range) or n (%).  
b Menopausal status unknown due to hormone therapy or hysterectomy. 
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Table III. 2. Hazard ratios for incident diabetes for two-fold increase in urinary metal concentrations. 

Metals Initial modela Full Modelb 

 HR (95% CI) P-value HR (95% CI) P-valuec 

Arsenic 1.06 (0.98, 1.15) 0.13 1.24 (1.14, 1.35) <0.0001 

Barium 0.98 (0.88, 1.09) 0.70 0.99 (0.87, 1.12) 0.83 

Cadmium 1.00 (0.90, 1.10) 0.92 0.96 (0.86, 1.07) 0.47 

Cobalt 0.97 (0.85, 1.10) 0.60 1.00 (0.87, 1.14) 0.98 

Cesium 1.12 (0.92, 1.37) 0.25 1.23 (1.00, 1.51) 0.05 

Copper 1.06 (0.91, 1.23) 0.47 0.96 (0.82, 1.14) 0.66 

Mercury 0.83 (0.75, 0.92) 0.03 0.92 (0.83, 1.03) 0.14 

Manganese 1.14 (0.94, 1.37) 0.18 1.10 (0.89, 1.35) 0.38 

Molybdenum 0.93 (0.81, 1.07) 0.29 1.05 (0.90, 1.22) 0.56 

Nickel 1.08 (0.93, 1.25) 0.33 1.15 (0.98, 1.35) 0.10 

Lead 1.12 (0.99, 1.27) 0.07 1.23 (1.08, 1.40) 0.002 

Antimony 1.03 (0.91, 1.17) 0.61 1.04 (0.91, 1.20) 0.55 

Tin 1.10 (1.01, 1.20) 0.03 1.11 (1.01, 1.22) 0.04 

Thallium 1.05 (0.95, 1.16) 0.38 1.04 (0.92, 1.16) 0.54 

Zinc 1.48 (1.27, 1.74) <0.0001 1.31 (1.11, 1.55) 0.001 

Note: all models were constructed by Cox proportional hazards model.  
a Initial model: adjustment for age, race/ethnicity, study sites, and specific gravity (log-transformed). 

b Full model: initial model with additional adjustment for education, household income, body mass index, waist circumference, 

smoking status, alcohol consumption, physical activity score, systolic blood pressure, total cholesterol level, high-density 

lipoprotein cholesterol level, triglyceride level, family history of diabetes, total energy intake, menopausal status, and use of 

hormone. In full model, seafood and rice intake was additionally adjusted for arsenic, cadmium, and mercury models; zinc intake 

from diets and supplements was additionally adjusted for zinc model. 
c Significance level α=0.002 corresponding to a false discovery rate of 0.05 using the Benjamini–Hochberg Method. 
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Table III. 3. Hazard ratios for incident diabetes comparing participants with urinary beryllium, chromium, uranium, vanadium, 

tungsten concentrations above the limits of detection to those below the limits of detection. 

Metals Initial modela Full modelb 

 HR (95% CI) P-value HR  (95% CI) P-value 

Beryllium 1.03 (0.74, 1.41) 0.86 1.00 (0.70, 1.40) 0.99 

Chromium 0.77 (0.55, 1.06) 0.11 0.71 (0.50, 1.01) 0.06 

Uranium 0.84 (0.61, 1.14) 0.27 0.99 (0.70, 1.40) 0.96 

Vanadium 0.85 (0.64, 1.12) 0.24 0.77 (0.57, 1.04) 0.09 

Tungsten 1.02 (0.73, 1.40) 0.92 1.14 (0.83, 1.60) 0.63 

Note: all models were constructed by Cox proportional hazards model. Detection rate: beryllium, 15.7%; chromium, 24.3%; 

uranium, 33.5%; vanadium, 37.3%; tungsten, 29.2%. 
a Initial model: adjustment for age, race/ethnicity, study sites, and specific gravity (log-transformed). 

b Full model: initial model with additional adjustment for education, household income, body mass index, waist circumference, 

smoking status, alcohol consumption, physical activity score, systolic blood pressure, total cholesterol level, high-density 

lipoprotein cholesterol level, triglyceride level, family history of diabetes, total energy intake, menopausal status, and use of 

hormone.  
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Figure III. 1. Adjusted survival curves of diabetes by two distinct exposure patterns to metal mixtures, adjusting for 

age, race/ethnicity, study sites, education, household income, body mass index, waist circumference, smoking status, 

alcohol consumption, physical activity score, systolic blood pressure, total cholesterol level, high-density lipoprotein 

cholesterol level, triglyceride level, family history of diabetes, total energy intake, menopausal status, use of 

hormone, dietary intake of seafood and rice, and zinc intake from diets and supplements.
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Supplementary Methods 

 In our study, selection bias may exist, as selection into SWAN the Multi-Pollutant 

Substudy were probably affected by metal exposures, their related diabetes risk factors, or 

potential confounders before or at the time of enrollment. On the other hand, selective loss to 

follow-up or other forms of attrition that occur after metal measurements may also bias estimates 

of associations between metals and diabetes if continuation in the follow-up is influenced by 

metal exposures and risk factors of diabetes. We addressed these two types of bias by using the 

inverse probability weighting (IPW). 

Selective participation in the SWAN multi-pollutant substudy 

 We used Repository samples available from the third SWAN follow-up visit (visit 03, 

1999-2000) for metal measurements in our analysis. Women enrolled in SWAN were between 

the age of 42 to 52 years at the SWAN baseline (visit 00, 1996-1997), which marked a time of 

increased risk for diabetes (Kim 2012). Some of women who were at high risk of diabetes at the 

SWAN baseline have been censored before visit 03. Thus, participants susceptible to developing 

diabetes at the time of metal measurements were possibly different from the source population. 

On the other hand, at visit 03, only a subpopulation with 1,400 SWAN participants, but not all 

participants remained in the cohort had urine samples stored in the SWAN Biorepository assayed 

for metal concentration determinations. In this way, the analysis based on these 1,400 

participants is likely to be susceptible to bias attributable to the selective participation in the 

substudy as shown in the directed acyclic graphs (DAG) (supplementary Figure 2). 

 In the supplementary Figure 2, DM represents incidence of diabetes. E0 and E3 

represent measures of urinary metals at SWAN baseline (visit 00) and third follow-up visit (visit 

03). We measure metals only at visit 03, so E0 is unobserved. Considering the environmental 
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exposure to metals at one time point is often reasonably correlated with the exposure at other 

time points, we consider an effect emanating from E0 to E3 and terminating in DM to represent a 

causal effect of metals on diabetes for the purposes of identifying potential bias in our DAG. RF 

represents metal induced health effects which may affect continuation in the SWAN up to visit 

03, substudy participation, and diabetes. L represents both time-fixed and time-varying 

covariates which may influence both diabetes risks and selection. S3 with a box drawn around 

represents remaining uncensored and free of diabetes up to visit 03. SU with a box drawn around 

represents urinary metals substudy participation. Selection bias can be found in the DAG. For 

example, conditioning on SU opens the path RF3 →SU←L3, introducing an association between 

E3 and DM (E3→RF3 →SU←L3 →DM) which is not causal. At the same time, conditioning on 

SU blocks some of the association that goes from E3 to diabetes through RF3, because 

conditioning on SU partially conditions on RF3. 

 IPW was used to alleviate the potential bias resulting from the selection into the SWAN 

multi-pollutant substudy (Hernán et al. 2004). IPW uses information available for participants 

with and without metal measurements to weight observations from participants with metal 

measurements, so that the weighted subpopulation is representative of all SWAN participants in 

the original cohort who were continuing in the cohort and were free of diabetes at the time of 

metal measurements (visit 03). Probability of continuation in the follow-up study up to visit 03 

and probability of selection into the substudy given that participants were not censored at visit 03 

were modeled separately. We estimated the probability of continuing in the study up to visit 03 

by using pooled logistic regression(Weuve et al. 2012), conditional on covariates (RF, and L) 

and on being uncensored at the previous visit, which equals to ∏ Pr[𝐶𝑖𝑘 = 0 | 𝐶𝑖(𝑘−1) =𝑖
𝑘=1

0, 𝐿𝑖(𝑘−1), 𝑅𝐹𝑖(𝑘−1)], where k represents the kth visit (01-03) and C is the censoring indicator. 
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Given the large number of possible predictors among the relative to the number of persons who 

dropped out of the study, we used forward selection to inform the variables included in the final 

models, including age, race/ethnicity, study site, education level, marital status, husband’s 

employment status, smoking, menopausal status, self-rated health, and diagnose of heart attack 

or angina. The reciprocal of this cumulative probability (W1) is the weight of remaining free of 

diabetes and in the study for individual i at visit 03. For the probability of selection into the 

substudy given that participants were not censored at visit 03, we used a single logistic 

regression model to predict the probability(Weisskopf et al. 2015), which equals to 

Pr[𝑈𝑖 = 1 | 𝐶𝑖,3 = 0, 𝐿𝑖,3, 𝑅𝐹𝑖,3], where U indicates the selection into substudy. Variables 

included in the final logistic model were determined through forward selection, including age, 

study site, education level, smoking, menopausal status, total cholesterol level, low density 

lipoprotein cholesterol level, triglyceride level, and hypertension. The reciprocal of this 

probability (W2) is the weight of being selected into the substudy at visit 03. Finally, we 

calculated a combined weight 𝑊𝑠𝑢𝑏𝑠𝑡𝑢𝑑𝑦 = 𝑊1 × 𝑊2, as the inverse of the probability of the 

conjunction of these two events. 

Selective attrition after metal measurements 

 We hypothesized that women with higher concentrations of toxic metals would 

experience higher risk of diabetes during 15 years of follow-up after metal measurements. 

However, given the toxicity of metals such as arsenic, those with high concentrations of toxic 

metals who remained in the cohort might have other beneficial characteristics (healthier) that 

protected them from developing diabetes. This is because the risk factors for diabetes especially 

those health conditions predict the censoring or attrition after the metal measurements. Studies of 

toxic metals that are also themselves associated with substantial attrition through the related 
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adverse health outcomes correlated with diabetes. In this way, the selection induces an 

association between metals and diabetes, even if there is no true effect (see DAG in 

Supplemental Figure III. 3). 

 Same symbols (E, RF, L, DM) as those in Supplemental Figure III. 2 were used in 

Supplemental Figure III. 3 to represent the same type of variables in the DAG. S with a box 

drawn around represents continuation in the SWAN study at each visit after visit 03. S is a 

collider on which we condition through the restriction of our analysis to those remained in the 

cohort at each visit. Therefore, statistical associations, for example, between E3 and L3, RF3 and 

L3, are induced via conditioning on S4. E0 is then connected to DM through paths that do not 

emanate from E3, such as E3→ RF3→S4←L3→DM, which is noncausal. On the other hand, if 

continuation in SWAN is at least partly driven by RF, then the continuation in the cohort 

effectively conditions on RF, resulting in bias from conditioning on an intermediate between 

metal and diabetes.  

 Similar to the strategy we used to address the selective participation, IPW was used to 

reduce potential bias resulting from the selective attrition. The intuition behind these weights is 

that participants with characteristics similar to the observations missing due to attrition are 

upweighted, so as to represent their original contribution as well as their missing contributions. 

We modeled and estimate the probability of continuing in the study after visit 03 by using pooled 

logistic regression, conditional on covariates (RF and L) and on being uncensored at the previous 

visit, which equals to ∏ Pr[𝐶𝑖𝑘 = 0 | 𝐶𝑖(𝑘−1) = 0, 𝐸𝑖 , 𝐿𝑖(𝑘−1), 𝑅𝐹𝑖(𝑘−1), 𝑍𝑖]
𝑗
𝑘=4 , where k represents 

the kth visit (04-15) and C is the censoring indicator. Age, study site, SWAN visit number, 

household income, smoking, use of hormone, self-rated health, BMI (linear and quardratic 

terms), and waist circumference (linear and quardratic terms) were included in the final logistic 
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model after forward selection. The reciprocal of this cumulative probability of continuing is the 

non-stabilized weight (Wattrition). And the weight was applied at the level of observations within 

individuals.  

Combine IPWs for selective participation and selective attrition 

We calculated the total 𝑊 = 𝑊𝑠𝑢𝑏𝑠𝑡𝑢𝑑𝑦 × 𝑊𝑎𝑡𝑟𝑟𝑖𝑡𝑖𝑜𝑛 for each participant in the metals-

diabetes analysis, as the inverse of the probability of being selected into the SWAN multi-

pollutant substudy from the original SWAN cohort and of being uncensored up to a given study 

visit after metal measurements. To note, including L in the calculation of the weight is not 

sufficient to control for confounding when evaluating associations between metals and diabetes 

incidence, and as such, the potential confounders were adjusted as covariates in the Cox 

proportional hazards model in our primary analysis (Hernán et al. 2004; Weuve et al. 2012). 
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Supplemental Table III. 1. Medians, interquartile range, and detection rate of urinary metals, the Study of Women’s Health 

Across the Nation. 

Metals LOD* Percent >LOD Median concentration (IQR†), μg/L 

   Non-diabetes (n= 1,089) Incident diabetes (n= 137) 

Arsenic 0.3 100 14.24 (6.51, 36.69) 14.28 (6.44, 39.09) 

Barium  0.1 99.7 1.79 (0.99, 3.00) 1.75 (1.15, 3.04) 

Beryllium  0.04 15.7 <LOD (<LOD, <LOD) <LOD (<LOD, <LOD) 

Cadmium  0.06 94.5 0.47 (0.23, 0.82) 0.48 (0.23, 0.85) 

Cobalt  0.05 99.3 0.62 (0.38, 0.97) 0.63 (0.41, 1.00) 

Chromium  0.4 24.3 <LOD (<LOD, <LOD) <LOD (<LOD, <LOD)  

Cesium  0.01 100 4.71 (3.05, 7.27) 4.48 (2.75, 7.46) 

Copper  2.5 97.1 9.54 (6.12, 13.57) 11.01 (6.73, 16.85) 

Mercury  0.05 99.8 1.23 (0.67, 2.45) 1.11 (0.58, 2.02) 

Manganese  0.08 99.6 0.92 (0.62, 1.46) 1.06 (0.65, 1.70) 

Molybdenum  0.3 100 43.27 (24.39, 69.97) 46.76 (27.93, 74.80) 

Nickel  0.8 96.2 3.69 (2.26, 5.79) 4.00 (2.64, 5.97) 

Lead 0.1 97.6 0.80 (0.48, 1.27) 0.88 (0.48, 1.46) 

Antimony  0.04 78.5 0.08 (0.05, 0.13) 0.10 (0.05, 0.17) 

Tin 0.1 96.7 0.94 (0.48, 1.81) 1.08 (0.64, 2.31) 

Thallium 0.02 92.4 0.15 (0.08, 0.23) 0.15 (0.08, 0.25) 

Uranium 0.01 33.3 <LOD (<LOD, 0.01) <LOD (<LOD, 0.01) 

Vanadium 0.6 37.4 <LOD (<LOD, 1.18) <LOD (<LOD, 0.81) 

Tungsten 0.2 29.0 <LOD (<LOD, 0.21) <LOD (<LOD, 0.24) 

Zinc 2 100 301 (166, 499) 464 (258, 686) 

* LOD: limit of detection. 
† IQR: interquartile range. 
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Supplemental Table III. 2. Hazard ratios* for incident diabetes for two-fold increase in specific gravity corrected-urinary metal 

concentrations. 

Metals Model 1† Model 2‡ Model 3§ 

 HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

Arsenic 1.05 (0.97, 1.13) 0.25 1.12 (1.04, 1.22) 0.004 1.15 (1.06, 1.24) <0.001 

Barium 1.00 (0.90, 1.10) 0.96 1.02 (0.93, 1.13) 0.64 1.06 (0.95, 1.17) 0.29 

Cadmium 1.01 (0.92, 1.10) 0.92 1.01 (0.91, 1.11) 0.91 1.03 (0.93, 1.14) 0.55 

Cobalt 0.97 (0.86, 1.09) 0.60 0.97 (0.86, 1.09) 0.60 1.03 (0.92, 1.17) 0.59 

Cesium 0.99 (0.83, 1.18) 0.88 1.03 (0.87, 1.23) 0.71 1.08 (0.90, 1.29) 0.42 

Copper 1.04 (0.91, 1.19) 0.55 1.01 (0.88, 1.15) 0.91 0.98 (0.85, 1.12) 0.74 

Mercury 0.85 (0.78, 0.93) 0.001 0.87 (0.79, 0.95) 0.03 0.91 (0.82, 1.00) 0.05 

Manganese 1.06 (0.95, 1.19) 0.27 1.05 (0.94, 1.18) 0.38 1.06 (0.96, 1.19) 0.30 

Molybdenum 1.00 (0.89, 1.14) 0.96 1.02 (0.90, 1.16) 0.74 1.10 (0.97, 1.25) 0.16 

Nickel 1.06 (0.93, 1.22) 0.38 1.04 (0.92, 1.19) 0.53 1.13 (0.99, 1.29) 0.07 

Lead 1.13 (1.01, 1.26) 0.03 1.16 (1.04, 1.31) 0.01 1.20 (1.07, 1.34) 0.002 

Antimony 1.07 (0.96, 1.20) 0.21 1.09 (0.98, 1.23) 0.11 1.10 (0.99, 1.23) 0.08 

Tin 1.09 (1.01, 1.18) 0.02 1.08 (1.00, 1.17) 0.05 1.09 (1.01, 1.19) 0.03 

Thallium 1.01 (0.92, 1.11) 0.83 1.03 (0.94, 1.13) 0.54 1.01 (0.91, 1.11) 0.90 

Zinc 1.58 (1.38, 1.83) <0.001   1.46 (1.26, 1.69) <0.001 

* All models were constructed by Cox proportional hazards model.  
† Model 1: adjustment for age, race/ethnicity, study sites. 

‡ Model 2: model 1 with additional adjustment for education, household income, smoking status, alcohol consumption, physical 

activity score, menopausal status, and use of hormone. In model 2, rice intake and urinary mercury concentration (log-

transformed) were additionally adjusted for arsenic, cadmium, and mercury models, except for mercury model that was further 

adjusted for rice intake only. 
§ Model 3: model 2 with additional adjustment for body mass index at the time of metal measurements.
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Supplemental Figure III. 1. Schematic diagram of analytic sample. 
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Supplemental Figure III. 2. Directed acyclic graphs illustrating selective participation in the SWAN multi-

pollutant substudy. 
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Supplemental Figure III. 3. Directed acyclic graphs illustrating selective attrition after metal measurements. 
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Supplemental Figure III. 4. Spearman correlation matrix of metal concentrations. 

As: arsenic, Ba: barium, Cd: cadmium, Co: cobalt, Cs: cesium, Cu: copper, Hg: mercury, Mn: manganese, Mo: molybdenum, Ni: 

nickel, Pb: lead, Sb: antimony, Sn: tin, Tl: thallium, Zn: zinc. 
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Supplemental Figure III. 5. Cluster means of the 15 standardized log-transformed urinary metals using k-means 

clustering method. 

Y-axis (cluster means) represents the mean standardized log-transformed specific gravity adjusted metal 

concentrations. Cluster 1: “high” exposure pattern of metal mixtures; cluster 2: “low” exposure pattern of metal 

mixtures. As: arsenic, Ba: barium, Cd: cadmium, Co: cobalt, Cs: cesium, Cu: copper, Hg: mercury, Mn: manganese, 

Mo: molybdenum, Ni: nickel, Pb: lead, Sb: antimony, Sn: tin, Tl: thallium, Zn: zinc. 
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Health Across the Nation (SWAN) 
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Abstract 

Background: Epidemiologic studies on associations between metals and insulin resistance and 

β-cell dysfunction have been cross-sectional and focused on individual metals. 

Objective: We assessed the association between exposure to metal mixtures based on assessment 

of 15 urinary metals and longitudinal changes in insulin resistance and β-cell function. 

Methods: We examined 1,262 women, aged 45-56 years at baseline (1999-2000), who were 

followed through 2015-2016, from the Study of Women’s Health Across the Nation. Urinary 

concentrations of 15 metals (arsenic, barium, cadmium, cobalt, cesium, copper, mercury, 

manganese, molybdenum, nickel, lead, antimony, tin, thallium, and zinc) were determined at 

baseline. Homeostatic model assessments for insulin resistance (HOMA-IR) and β-cell function 

(HOMA-β) were repeatedly measured over 16 years of follow-up. Adaptive elastic-net (AENET) 

models were fitted to identify components of metal mixtures associated with longitudinal 

changes in HOMA-IR and HOMA-β. 

Results: In multivariable adjusted AENET models, urinary copper, lead, and zinc were 

associated with higher HOMA-IR at baseline, whereas molybdenum was associated with lower 

HOMA-IR at baseline. The estimated changes in baseline HOMA-IR for one-standard deviation 

increase in log-transformed urinary metal concentrations were 1.57% (-1.09%, 4.29%) for 

copper, 0.70% (-1.59%, 3.05%) for lead, 5.76% (3.05%, 8.55%) for zinc, and -3.25% (-5.45%, -

1.00%) for molybdenum, respectively. Urinary zinc was also associated with a faster rate of 

increase in HOMA-IR. Urinary arsenic and zinc were associated with lower baseline HOMA- β, 

whereas cobalt was associated with higher baseline HOMA- β. Arsenic was also associated with 

a faster rate of decline in HOMA-β.  
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Conclusion: Exposure to metals including arsenic, cobalt, copper, molybdenum, and lead, and 

increased urinary excretion of zinc, may be exerting effects on insulin resistance and β-cell 

dysfunction, which might be mechanisms by which metals affect diabetes risks.
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1. Introduction  

Type 2 diabetes mellitus (T2DM) is a major global health concern and its incidence has 

rapidly increased over the past two decades (Magliano et al. 2019). The etiology of T2DM has 

not been well understood yet and the role of environmental exposures, specifically metals, in the 

pathogenesis of T2DM has received little attention by the medical community. Metals are widely 

dispersed in the environment, including soil, water, air, dust, human food chain, as well as 

manufacturing products (Järup 2003; Tchounwou et al. 2012; Wang et al. 2019b). The general 

population can be exposed to a myriad of metals through food, drinking water and ambient air 

throughout their lifetime. Most studies of metabolic diseases to date have focused on the effects 

of genetics, unhealthy diets and lifestyle, while ignoring the potential effects of environmental 

toxicants. Nonetheless, exposure to metals needs to be considered one of the leading factors 

contributing to the global disease burden, including to the burden of T2DM (Thayer et al. 2012). 

It has been estimated that among the 40 million adults with high exposure to arsenic in the 

United States, over 4 million would become diabetic attributable to arsenic exposure alone 

(Smith 2013). In a most recent paper, we found that in addition to arsenic, high concentrations of 

lead, an excessive urinary excretion of zinc, as well as a high concentrations of urinary metal 

mixtures were associated with an increased risk of developing T2DM among midlife women 

with urinary metals concentrations consistent with background levels of environmental exposure 

to metals in the United States. These findings provided an impetus to investigate the underlying 

mechanisms by which metal exposures may influence T2DM risk. 

 The etiopathogenic mechanisms underlying T2DM involves insulin resistance and β-cell 

dysfunction, which commonly precedes the onset of diabetes by one to two decades (DeFronzo 

2004; Warram et al. 1990). Biological studies provided evidence that both non-essential and 
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essential metals may impact these conditions. For example, non-essential metals such as arsenic, 

cadmium and lead, are well-known inducers of oxidative stress c. The accumulation of these 

metals in pancreatic islets is hypothesized to lead to impaired function and apoptotic death of β-

cells via the induction of oxidative stress (Lu et al. 2011; Patra et al. 2011). These metals have 

also been demonstrated to disrupt glucose uptake by interfering insulin intracellular signaling 

pathways in adipocytes and muscle cells (Han et al. 2003; Kim et al. 2015; Mohammed Abdul et 

al. 2015). On the other hand, essential metals such as zinc have been known to be necessary for 

insulin synthesis, storage and secretion in β-cells (Chausmer 1998), and have a preventative role 

in insulin resistance, for example, zinc complexes showed insulin-like effects (Adachi et al. 

2006). Other essential metals including cobalt, copper, manganese, molybdenum, and nickel are 

required for various biological pathways and appropriate amounts of these metals in human body 

are necessary for multiple physiological functions (Zoroddu et al. 2019). On the contrary, non-

essential metals including arsenic, barium, cadmium, cesium, mercury, lead, antimony, tin, and 

thallium have no known physiological roles (Zoroddu et al. 2019). Both essential and non-

essential metals may exert adverse health effects depending on the level of exposure (Zoroddu et 

al. 2019).  

 Only a few epidemiologic studies have examined the associations of metal exposures 

with insulin resistance and β-cell dysfunction and those studies have yielded inconsistent results 

(Barregard et al. 2013; Feng et al. 2015; Grau-Perez et al. 2017; He et al. 2013; Moon 2013; Park 

et al. 2016; Rhee et al. 2013; Wallia et al. 2014). Most studies were cross-sectional and focused 

on a limited number of metals (Barregard et al. 2013; Feng et al. 2015; Grau-Perez et al. 2017; 

He et al. 2013; Moon 2013; Park et al. 2016; Rhee et al. 2013; Wallia et al. 2014). In addition, 

the general population is exposed to metal mixtures (Wang et al. 2019b), however, most previous 
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studies have been limited to examination of single metals. This narrow focus on individual 

metals could be partly due to statistical challenges such as the complex correlations among 

metals, confounding by correlated co-pollutants, and lack of well-established statistical methods 

to evaluate the combined effects of exposure to metal mixtures (Braun et al. 2016; Park et al. 

2017; Wang et al. 2018, 2019c). Quantifying the health impact of exposure to metal mixtures is 

needed for to enhance our understanding of the role of environmental risk factors in pathogenesis 

of metabolic diseases including T2DM.  

 Within this context, we evaluated the associations of 15 urinary metal concentrations 

with longitudinal changes in homeostatic model assessments for insulin resistance (HOMA-IR) 

and β-cell function (HOMA-β) over 16 years of follow-up in the Study of Women’s Health 

Across the Nation (SWAN), a multi-site, multi-ethnic prospective cohort study of midlife 

women. We used a two-stage modeling approach and employed a machine-learning based 

approach, the adaptive elastic-net (AENET), which was proposed for analyzing high dimensional 

data while dealing with the collinearity problem (Zou and Zhang 2009), to identify important 

components of metal mixtures associated with longitudinal changes in HOMA-IR and HOMA-β. 

2. Methods 

 Study population 

 Participants in the current analysis were from the SWAN, an ongoing, multi-site, multi-

ethnic, community-based longitudinal study of the natural history of menopause designed to 

investigate the natural history of the menopausal transition and its effect on midlife health 

including risk factors for age-related chronic diseases (Sowers et al. 2000). Between 1996 and 

1997, a total of 3,302 women from seven study sites, including Boston, MA; Chicago, IL; 
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southeast Michigan, MI; Los Angeles, CA; Oakland, CA; Newark, NJ; and Pittsburgh, PA, 

participated. Each site enrolled white women and women from one minority group (black 

women from Boston, Chicago, Southeast Michigan, and Pittsburgh; Chinese women from 

Oakland; Japanese women from Los Angeles; Hispanic women from Newark). Eligibility criteria 

of enrollment into the SWAN included: age 42 to 52 years; having an intact uterus and at least 

one ovary; having at least one menstrual period and not taking hormone therapy in the past 3 

months; and having self-identified with the site's designated race/ethnic groups. These women 

returned for regular examinations approximately annually, and approximately 75% of still living 

participants completed the 15th SWAN follow-up visit (2015-2016).  Institutional Review Board 

approval was obtained at each study site, and all participants provided signed informed consent 

at each study visit. 

To evaluate associations between urinary metals and longitudinal glucose outcomes, we 

used data from the SWAN Multi-Pollutant Substudy (MPS), which was initiated to examine the 

associations of multiple environmental chemicals with metabolic and reproductive health 

outcomes in midlife women (Ding et al. 2020; Wang et al. 2019b). Urinary metal concentrations 

were assayed in 1,400 SWAN-MPS participants who had stored urine samples available at the 

third SWAN follow-up visit (V3, 1999-2000, SWAN-MPS baseline). For this analysis, we 

excluded 39 participants who had no information on key covariates (education, household 

income, body mass index (BMI), physical activity, total energy intake), and 46 participants with 

missing information on fasting glucose or insulin levels throughout the entire follow-up, and 53 

participants who were taking antidiabetic medications at the SWAN-MPS baseline, yielding 

1,262 participants eligible for the present study. We also censored 347 observations in 

subsequent follow-up visits when the participant started taking antidiabetic medications because 
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the true untreated levels of the outcome parameters are unknown. A final sample of 1,262 

women with 9,527 observations through 2016 was used for data analysis. An overview of our 

analytic sample is illustrated in Supplemental Figure IV.1. 

Insulin resistance andβ-cell dysfunction determinations 

HOMA-IR and HOMA-β are widely used tools to assess insulin resistance and β-cell 

dysfunction in clinical practices and epidemiological studies (Wallace et al. 2004). HOMA-IR 

was calculated from fasting glucose and insulin levels according to the following equation: 

[insulin (μU/mL) × glucose (mmol/L)]/22.5 (Matthews et al. 1985). HOMA-β was calculated as 

follows: 20 × insulin/[glucose − 3.5] (Matthews et al. 1985). In the SWAN, fasting serum 

glucose and insulin levels were assayed from serum samples obtained at each follow-up visit 

(Thurston et al. 2012). Fasting serum glucose level was determined by hexokinase method 

(Boehringer Mannheim Diagnostics, Indianapolis, IN, USA). Fasting serum insulin was 

measured by a solid phase radioimmunoassay (Coat-ACount, Diagnostics Product Corp., Los 

Angeles, CA).  

Urinary metals 

 Urinary metal concentrations were analyzed with high-resolution inductively coupled 

plasma-mass spectrometry (ICP-MS) (Thermo Scientific iCAP RQ, Waltham, MA) in first 

morning spontaneously voided urine samples at the Applied Research Center of NSF 

International (Ann Arbor, Michigan), a part of the Michigan Children’s Health Exposure 

Analysis Resource (M-CHEAR) Laboratory Hub. The analytic methods and quality control 

procedures have been described previously (Wang et al. 2019b). Urinary concentrations of the 

following 15 metals were used in the current analysis, including arsenic, barium, cadmium, 
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cobalt, cesium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, tin, thallium, 

and zinc. The limits of detection (LOD) and detection rates are presented in Supplemental 

Table IV.1. Participants with metal concentration below the limit of detection (LOD) were 

assigned a value equal to the LOD divided by the square root of 2. Urinary concentrations of 

beryllium, chromium, platinum, uranium, vanadium and tungsten were also determined in the 

SWAN-MPS. However, due to the relatively low detection rates (<40%) as described previously, 

these metals were excluded from the current analysis (Wang et al. 2019b). Pairwise Spearman 

correlations among urinary metal concentrations were calculated and presented in a heat map. 

Covariates 

 Sociodemographic variables including age (continuous), race/ethnicity (white, black, 

Chinese, or Japanese), education level (≤ high school, some college, or college degree/post-

college), and annual household income ($19,999 or under, $20,000-$49,999, $50,000-$99,999, 

or $100,000 or above) were assessed through a self-administered questionnaire. Weight and 

height were measured using a calibrated balance beam scale and a stadiometer, respectively, and 

BMI was calculated as weight in kilograms divided by the square of height in meters. Lifestyle 

variables including smoking (never smoked, former smoked only, or current smoking) and 

alcohol drinking (use less than once per month, use once per month, or twice or more times per 

month) were determined based on self-report. Physical activity was evaluated using a modified 

version of the Kaiser Physical Activity Survey (Sternfeld et al. 2000), and a total score was 

calculated indicating the activity levels during the previous 12 months in 3 distinct domains: 

active living, household/caregiving, and sports/exercise. Menopausal status (pre-menopausal, 

post-menopausal, unknown menopause status due to hormone therapy or hysterectomy) was 

based on menstrual bleeding patterns and use of exogenous hormones. Dietary intake of seafood 
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and rice, total zinc intake from diets and supplements, and total energy intake were collected 

using a detailed semi-quantitative food frequency questionnaire (FFQ) adopted from the Block 

FFQ (Wang et al. 2019b). Urinary specific gravity was determined using a handheld digital 

refractometer (ATAGO model PAL-10S, Tokyo, Japan) as a marker of urine dilution. 

Statistical analysis 

A two-stage modeling approach was used to evaluate the associations of metal mixtures 

with longitudinal HOMA measures (HOMA-IR and HOMA-β) because there is no available 

analytical approach that handles correlations for both dependent and independent variables. In 

stage 1 that accounts for correlations in outcome measurements within each participant, linear 

mixed effects models were used to capture changes in HOMA measures over the follow-up 

period. Given the highly skewed distributions of both HOMA-IR and HOMA-β, logarithmic 

transformations were applied. Time (year) was modeled using a linear term. We decided not to 

add a quadratic term of time into the models due to the worse model fitting performance based 

on the Bayesian information criterion. Random intercepts and random slopes of time were 

included in the models, which allowed the variability of HOMA levels at baseline and their rates 

of change between each study participant. The participant-specific baseline HOMA levels and 

participant-specific annualized slopes (rates of changes) were estimated and used as dependent 

variables in the next stage of analysis. 

In stage 2 with the goal of handling multicollinearity among correlated exposure 

variables, AENET was used to select components of metal mixtures associated with baseline 

levels of HOMA measures and their rates of changes, respectively. Ordinary least squares 

(OLS)-based variable selection methods are commonly used but prone to over-fitting and does 

not work well in the presence of potentially high-dimensional predictors, or when predictors are 
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highly correlated (multicollinearity) (Tibshirani 1996). To combat this issue, elastic-net (ENET), 

as one of the shrinkage regression methods, has been introduced (Zou and Hastie 2005). ENET 

executes variable selection by shrinking coefficients of “unimportant” predictors towards exact 

zeroes, and has the ability to handle the complex correlations between predictor variables (Zou 

and Hastie 2005). Adaptive elastic net (AENET), as its name would suggest, is an adaptive 

version of ENET that not only deals with the collinearity problem over ENET but satisfies the 

asymptotic normality assumption that allows us to conduct statistical inference and hypothesis 

testing by providing large sample standard errors and p-values (Zou and Zhang 2009). It should 

be noted that AENET performs variable selection by shrinking certain coefficients to zero but 

not based on p-values of coefficients (like forward selection, backward elimination, and stepwise 

selection). In this study, AENET models were fitted as follows: 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑋𝑘𝑖
15
𝑘=1 + 𝜷𝒛

𝑻𝒁𝒊 + 𝜀𝑖 ,  

where 𝑌𝑖 represents participant-specific baseline HOMA levels or participant-specific rates of 

changes in HOMA measures estimated from stage 1, 𝑋𝑘𝑖 denotes urinary concentration of kth 

metal (we have a total of 15 metals in the initial model to be selected), and 𝒁𝒊 indicates the 

vector of confounders. Two AENET models were performed to select metals associated with (1) 

baseline levels of HOMAs, and (2) rates of changes in HOMAs, separately. Given the highly 

skewed distributions of all metal concentrations, logarithmic transformations were applied 

because the shapes of dose-response relationships were closer to be linear after log-

transformation. To better compare the associations of different metals with HOMA measures, we 

further standardized the log-transformed urinary metal concentrations by subtracting the mean of 

the corresponding log-transformed concentrations divided by its standard deviation (SD). All the 

potential confounders, including age, race/ethnicity, study site, education level, annual household 
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income, BMI, smoking, alcohol drinking, physical activity score, menopausal status, hormone 

therapy, dietary intake of seafood and rice, total zinc intake from diets and supplements, total 

energy intake, and urinary specific gravity were always adjusted for (“forced”) in the models. 

We adjusted for total zinc intake to better capture the potential effects of urinary zinc excretion 

that are independent of dietary zinc intake. For other essential metals, such as copper, no dietary 

intake was adjusted for due to lack of data. The AENET penalized parameters were ascertained 

based on 10-fold cross-validation for minimal prediction errors. The R package ‘gcdnet’ was 

used to implement AENET (Yi and Zou 2017).  

 To better summarize the combined effects of exposure to metal mixtures, we predicted 

HOMA-IR and HOMA-β at 0-16 years (follow-up intervals) using the coefficient estimates of 

AENET models for all metal concentrations fixed at their 25th, 50th, 75th and 90th percentiles, 

respectively, with all other covariates adjusted and results displayed graphically.  

Hyperglycemia has been associated with increased urinary zinc excretion (Chausmer 1998). 

Because participants who had relatively high glucose levels at the SWAN-MPS baseline would 

already have elevated urinary zinc excretion, the reverse causation may bias the associations 

between urinary zinc concentration and HOMA measures. To examine the potential impact of 

this reverse causation on our results, we excluded participants with fasting glucose level ≥ 100 

mg/dL (impaired fasting glucose) or HOMA-IR ≥ 4.2 (90th percentile) at SWAN-MPS baseline 

in the sensitivity analysis. All analyses were conducted by R, version 3.5.3 (www.R-project.org). 

3. Results 

Descriptive statistics 
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 Characteristics of the study population at baseline are summarized in Table IV. 1. The 

median (interquartile range, IQR) age of the 1,262 participants was 49.6 (47.5, 51.7) years. Most 

women had at least some college education, had never smoked, and were pre-menopausal at 

baseline. Geometric means (geometric standard deviations) of HOMA-IR and HOMA-β were 2.1 

(1.7) and 154.5 (1.6), respectively, at baseline. The distributions and detection rates of all 15 

urinary metal concentrations were summarized in Supplemental Table IV.1. Most metals were 

modestly and positively correlated with each other (Supplemental Figure IV.2). 

Metal mixtures and HOMA-IR 

 Table IV. 2 summarizes the associations of selected components of metal mixtures with 

baseline HOMA-IR and its rate of change in the AENET models. A total of 4 metals including 

copper, molybdenum, lead, and zinc were selected to be associated with baseline HOMA-IR out 

of 15 candidate predictors. The beta coefficients for all other metals were shrunk to zero. After 

multiple adjustment, 1-SD increase in log-transformed urinary metal concentration was 

associated with 1.57% (95%CI: -1.09%, 4.29%) higher baseline HOMA-IR level for copper, 

0.70% (95%CI: -1.59%, 3.05%) higher level for lead, and 5.76% (95% CI: 3.05%, 8.55%) higher 

level for zinc. Urinary molybdenum concentration was inversely associated with baseline 

HOMA-IR (mean percent change in HOMA-IR for 1-SD increase in urinary molybdenum 

concentration = -3.25%, 95%CI: -5.45%, -1.00%). HOMA-IR climbed by 1.51% (95%CI: 

1.41%, 1.61%) annually during the follow-up period. Urinary zinc concentration was associated 

with faster rate of increase in HOMA-IR, that 1-SD increase in urinary zinc concentration was 

associated with 0.06% (95%CI: -0.03%, 0.15%) increase in the annual rate of increase in 

HOMA-IR. Beta coefficients of selected non-zero predictors in AENET models are shown in 

Supplemental Table IV.2. 
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 Predicted HOMA-IR levels over time based on the selected non-zero metal predictors in 

AENET models are shown in Figure IV. 1. A simultaneous increase in all metal concentrations 

was associated with higher HOMA-IR at baseline, as well as with a slightly greater increase over 

the follow-up period. At the SWAN-MPS baseline, the predicted HOMA-IR was 1.99 when 

metal concentrations were fixed at their 25th percentiles and 2.16 when concentrations were fixed 

at their 90th percentiles. At the end of follow-up, the predicted HOMA-IR increased to 2.55 when 

metal concentrations were fixed at their 25th percentiles and 2.80 when concentrations were fixed 

at their 90th percentiles. 

Metal mixtures and HOMA-β 

 Table IV. 3 shows the associations of selected components of metal mixtures with 

baseline HOMA- β and its rate of change in the AENET models. After adjusting for all potential 

confounders, 1-SD increase in urinary metal concentration was associated with -1.59% (95%CI: 

-3.63%, 0.50%) lower baseline HOMA- β level for arsenic, and -2.66% (95%CI: -5.07%, -

0.30%) lower level for zinc, respectively. In contrast, 1-SD increase in urinary cobalt 

concentration was associated with 2.22% (95%CI: -0.10%, 4.60%) higher HOMA- β at baseline. 

HOMA- β declined during the follow-up (-1.00% annually, 95%CI: -1.02%, -0.90%). Urinary 

arsenic concentration was associated with faster rate of decline in HOMA- β, that 1-SD increase 

in urinary arsenic concentration was associated with 0.02% more negative change (95%CI: -

0.05%, 0%) in HOMA- β annually. Beta coefficients of selected non-zero predictors in AENET 

models are shown in Supplemental Table IV. 3. 

 Predicted HOMA- β levels over the follow-up period based on the selected non-zero 

metal predictors in AENET models are shown in Figure IV. 2. A higher exposure to metal 

mixtures was associated with lower HOMA- β at both baseline and the end of follow-up. The 
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predicted HOMA- β was 159.39 when metal concentrations were fixed at their 25th percentiles 

and 153.00 when concentrations were fixed at their 90th percentiles at the SWAN-MPS baseline. 

At the end of the study, the predicted HOMA- β was 135.81 when metal concentrations were 

fixed at their 25th percentiles and 129.41 when concentrations were fixed at their 90th percentiles. 

Sensitivity analysis 

 In the sensitivity analysis, 186 women who had fasting glucose level ≥ 100 mg/dL or 

HOMA-IR ≥ 4.2 at the SWAN-MPS baseline were excluded. In this subpopulation, we still 

observed a positive association between urinary zinc concentration and HOMA-IR, that 1-SD 

increase in urinary zinc concentration was associated with 4.08% higher HOMA-IR at baseline 

and 0.08% increase in the annual rate of increase in HOMA-IR, respectively. Similarly, urinary 

zinc concentration was inversely associated with HOMA-β at baseline, that 1-SD increase in 

urinary zinc concentration was associated with 1.00% lower HOMA-β at baseline. 

4. Discussion 

 In this study, we evaluated the associations between the concentrations of 15 metals in 

urine samples and HOMA-IR and HOMA-β in a prospective cohort of 1,262 women over 16 

years of follow-up. Using the AENET with a two-stage modeling approach, we identified 

copper, lead, and zinc as components of metal mixtures in urine that were associated with higher 

HOMA-IR at baseline, whereas molybdenum was associated with lower HOMA-IR at baseline. 

Urinary zinc was also associated with a faster rate of increase in HOMA-IR over time. For 

HOMA- β, arsenic and zinc were identified as components of metal mixtures in urine that were 

associated with lower levels at baseline, whereas cobalt was associated with higher levels at 

baseline. Arsenic was also associated with a faster rate of decline in HOMA-β over time, though 



  

139 

 

the magnitude of the association was modest. An increase in all metal concentrations was 

predicted to have consistently higher HOMA-IR and lower HOMA-β across the 16 years of the 

study. These results suggest that metal mixtures may impact insulin resistance and β-cell 

dysfunction, which are the major players in the pathogenesis of T2DM. 

 To the best of our knowledge, this study is the first to evaluate the association of 

exposure to metal mixtures with insulin resistance and β-cell dysfunction. Existing 

epidemiologic evidence has suggested that metals with high degree of toxicity, particularly 

arsenic, play a role in dysregulated glucose metabolism, although the evidence is inconsistent 

(Grau-Perez et al. 2017; Park et al. 2016; Rhee et al. 2013). In this study, we found that in 

addition to arsenic, other metals including copper, cobalt, molybdenum, lead, and zinc may also 

play a role. Most previous studies focused only on “priority toxic metals” while other potentially 

important metals were not investigated. Additionally, all previous studies have not addressed 

exposure to metal mixtures. Given the fact that people are co-exposed to multiple metals, and 

given the high degree of correlations between urinary metal concentrations in SWAN 

participants (Wang et al. 2019b), differences between our mixture analysis and previous studies 

might be attributed to complex correlation structures among metals. Simultaneously 

incorporating several metals as predictors in regression models is prone to over-fitting, leading to 

a poor model performance and variance inflation with a large number of predictors, especially 

when predictors are highly correlated (Tibshirani 1996). The statistical approach we used here 

(AENET) has been shown to overcome these issues (Zou and Zhang 2009) and offers the ability 

to identify which components of metal mixtures are potentially exerting adverse effects (Wang et 

al. 2018, 2019c). Our mixture analysis also accounted confounding due to co-exposure to other 

metal components as previous studies suggested metals may interfere with each other 
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metabolically (López Alonso et al. 2004). Furthermore, if individual metals have relatively small 

effects but exposure to metal mixtures influence the body’s response to insulin and/or insulin 

secretion, the metal components that truly disrupt these physiological functions may not be 

adequately captured by the conventional single-pollutant approach. Our findings suggest the 

importance of considering metal mixtures, rather than individual metals with known toxicities, in 

evaluation of associations between metal exposures and health outcomes in future studies. 

 While underlying mechanisms are still not well understood, there is biological 

plausibility for a role for metals in the disturbance of insulin’s action and insulin secretion. We 

observed that arsenic was adversely associated with HOMA-β in our study. Arsenic is a well-

known toxicant that can induce oxidative stress through reactive oxygen species generation. 

Experimental studies suggest that, in pancreas, arsenic may increase amyloid formation and 

apoptotic death/damage of pancreatic β cells through the generation of oxidative stress (Lu et al. 

2011; Mukherjee et al. 2006; Yen et al. 2007). Arsenic has also been shown to disrupt glucose-

stimulated insulin secretion through induction of oxidative stress (Kirkley et al. 2018) and 

endoplasmic reticulum stress (Wu et al. 2018), and through interference with calcium-mediated 

signaling required for insulin secretory granule exocytosis (Díaz-Villaseñor et al. 2008). 

Additionally, arsenic has been suggested to substitute phosphate and to interact with sulfhydryl 

groups, which could impair the production of energy and interfere with the ATP-dependent 

insulin secretion of β-cells (Petrick et al. 2001).   

We observed a positive association between urinary lead and HOMA-IR at baseline. 

Bone lead stores accrued from cumulative environmental exposures for decades are the major 

endogenous source of lead (Wang et al. 2019a). Urinary lead adjusted for urine dilution has been 

found to closely reflect lead mobilized from the bone (Tsaih et al. 1999, 2001; Wang et al. 
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2019a). Given the fact that midlife women may experience an increased bone turnover rate 

(Hernandez-Avila et al. 2000; Tsaih et al. 2001), the observed association could be attributed to a 

greater mobilization of lead from bone into the circulation. Lead is another well-known inducer 

of oxidative stress, which has been suggested to play a role in the pathogenesis of diseases 

including T2DM (Kim et al. 2015). Lead is also thought to disrupt a variety of intracellular 

signaling pathways by interfering with calcium homeostasis and calcium cellular uptake, and 

modulating activity of protein kinase C (Kim et al. 2015),  all potential biological mechanisms 

through which they could be related to dysregulated glucose transportation and greater insulin 

resistance. 

Urinary zinc concentration was adversely associated with both HOMA-IR and HOMA- β. 

Zinc is an essential nutrient that is necessary for biochemical pathways and required by 

thousands of proteins for catalytic functions (Jansen et al. 2009). Humans rely on a daily intake 

of dietary zinc to maintain health and prevent disease, and zinc leaves the body in urine and feces 

(Roohani et al. 2013). Urinary concentration of zinc reflects excretion of zinc in the urine 

(Roohani et al. 2013). Zinc intake has been associated with a lower risk of T2DM in women 

(32,33). The average intake levels in our participants were greater than the recommended dietary 

allowance, which is 8 mg/day for women (34). In our study, we found a positive association 

between urinary zinc and HOMA-IR, and an inverse association between urinary zinc and 

HOMA- β, after adjustment for zinc intake from both diets and supplements, suggesting that 

women with excess zinc excreted in urine may be at elevated risk of insulin resistance and β-cell 

dysfunction regardless of the amount of zinc intake. Mechanistic studies found that, in pancreatic 

β cells, zinc was necessary for insulin synthesis, storage and secretion, and has accounted for the 

conformational integrity of insulin in its hexameric crystalline form (Jansen et al. 2009). 
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Excessive urinary excretion of zinc was found to lead to a loss of zinc in β-cells, which 

accounted for a reduced insulin secretion (Jansen et al. 2009). Certain zinc complexes showed 

insulin-mimetic effects including reducing hyperglycemia and increasing lipogenesis in animal 

models (Jansen et al. 2009). Zinc has also been shown to improve glucose transportation in 

peripheral tissues by improving binding of insulin to its receptor through enhancing tyrosine 

kinase phosphorylation (Jansen et al. 2009). Additionally, zinc is a structural part of antioxidant 

enzymes such as superoxide dismutase that could protect insulin and β-cells from being attacked 

by free radicals (Jansen et al. 2009). Despite this evidence, hyperglycemia, on the other hand, 

was suggested to interfere the active transportation of zinc back to renal cells, leading to a loss of 

this mineral in the urine (Chausmer 1998). This raised the possibility that the observed 

association could also be explained by the increased urinary excretion of zinc in women who 

already had relatively high glucose levels at baseline. However, in the sensitivity analysis after 

excluding women who had relatively high glucose levels at baseline, the findings of associations 

between urinary zinc and HOMA measures did not change, though effect estimate for HOMA-β 

was attenuated, diminishing the likelihood that reverse causation bias drove the observed results. 

Our most recent study also reported that a higher urinary zinc excretion was associated with 

increased risk of T2DM over 16 years of follow-up in the SWAN. The results of current analysis 

suggest that an elevated urinary excretion of zinc may increase risk of T2DM possibly through 

its adverse effect on insulin resistance.  

The evidence of underlying biological mechanisms linking other metal exposures to 

insulin resistance and β-cell dysfunction is limited. We found positive association of urinary 

copper concentration with HOMA-IR. Copper is also an essential element that is needed for 

multiple biological functions (ATSDR 2004c). However, long-term exposure to excess copper 
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through environmental contamination has also shown to induce oxidative damages (Gaetke and 

Chow 2003). In a study of diabetic mice, the treatment of a copper chelating agent was found to 

reduce insulin resistance and ameliorate glucose intolerance (Tanaka et al. 2009). We found 

molybdenum concentration was inversely associated with HOMA-IR. A potential beneficial 

effect of molybdenum on insulin sensitivity is supported by an study of mice which showed the 

molybdenum treatment improved glucose tolerance, replenished glycogen stores, and corrected 

lipogenic enzyme gene expression (Tanju Özcelikay et al. 1996), likely through its insulin-like 

actions (Fillat et al. 1992). We observed a positive association between urinary cobalt 

concentration and HOMA-β. Limited evidence suggested that cobalt may improve the insulin 

secretion profiles through its antioxidative effects (Vasudevan and McNeill 2007). 

Our findings of associations between multiple metals and markers of insulin resistance 

and β-cell dysfunction may have important public health implications given the widespread 

exposure to environmental chemicals and increasing global burden of T2DM. The mixture 

analysis we used here enables us to identify those metals that impact the glucose homeostasis but 

have never been captured in previous studies and reflects the reality that no people are exposed 

to only a single metal. Our study also added reference on the fact that metal exposures could act 

as upstream risk factors of cardio-metabolic diseases which are potentially modifiable (Ding et 

al. 2018; Wang et al. 2017).  

The primary strength of our study is its utilization of a large prospective cohort with 

repeated HOMA measures over 16 years follow-up. The prospective design also minimized the 

possibility of reverse causation. Furthermore, we used an advanced statistical method, AENET, 

for the first time, to investigate the association between exposure to metal mixtures and 
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longitudinal HOMA measures while accounting for statistical challenges such as complex 

correlations underlying metal mixtures and confounding due to co-pollutants. 

Several limitations should be considered as well. First, metals considered in the current 

study have various half-lives. Urinary concentrations of metals with short half-lives such as 

arsenic mainly reflect recent exposures (ATSDR 2007a) while metals such as cadmium has half-

lives of years to decades and urinary cadmium concentration provides an index of cumulative 

cadmium exposure in humans (Suwazono et al. 2009). Information on the temporal variability of 

urinary metals concentrations, especially for those with short half-lives, is needed in future 

epidemiologic studies. Second, in our study only total arsenic concentrations were measured; 

arsenic metabolism data were not available. One recent prospective study found that urinary 

monomethylarsonate concentration was associated with higher HOMA-IR when either inorganic 

arsenic or dimethylarsinate concentration decreased (Grau-Perez et al. 2017). Additional 

measurements of arsenic metabolism will be critical to providing a better understanding of 

arsenic exposures and associated health risks in our future studies. Third, metal-metal 

interactions were not considered in the mixture analysis when important metal components were 

selected. Exposure to metal mixtures with complex exposure profile may have additive, 

synergistic or antagonistic effects on the same adverse outcome (Wang et al. 2018). Given our 

sample size, adding the pairwise linear interaction terms in the AENET model might lead to 

problems including smoothing out the magnitude of exposures’ effects, missing important 

variables, selection of spurious interaction effects and inflation of false positive results, 

particularly in presence of nonlinear interactions (Narisetty et al. 2019). Least absolute shrinkage 

and selection operator (LASSO) penalized linear mixed effects model is another shrinkage 

regression method designed for analyzing high-dimensional longitudinal data (Groll and Tutz 
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2014). However, with correlated variables as predictors, LASSO tends to randomly select only 

one out of these correlated variables and ignore the others (Friedman et al. 2010). More updated 

statistical interaction identification methods that can also be used in high-dimensional 

longitudinal data analysis are needed for future studies potentially interested in the interactions 

between pollutant mixture components, which also plays an important role in environmental 

research.  

 

Conclusion 

In this prospective cohort study with 16 years of follow-up, our mixture analysis 

demonstrated that arsenic, cobalt, copper, molybdenum, lead, and zinc as components of metal 

mixtures in urine were associated with HOMA-IR and/or HOMA-β. An increase in all metal 

concentrations was also adversely associated with HOMA-IR and HOMA-β over time. Our 

findings provide evidence that exposure to metal mixtures may be exerting effects on insulin 

resistance and β-cell dysfunctions, which might be mechanisms by which metal exposures may 

lead to elevated T2DM risks. More studies are warranted to elucidate other mechanisms 

underlying the link between exposure to metal mixtures and diabetes in humans. 
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Table IV. 1. Descriptive characteristics at the time of metal measurements. 

Characteristicsa Summary statistics 

Age, median (IQR), year 49.6 (47.5, 51.7) 

Race/ethnicity, n (%)  

    White 645 (51.1) 

    Black 254 (20.1) 

    Chinese 166 (13.2) 

    Japanese 197 (15.6) 

Study site, n (%)  

    Michigan 218 (17.3) 

    Boston 195 (15.5) 

    Oakland 290 (23.0) 

    Los Angeles 346 (27.4) 

    Pittsburgh 213 (16.9) 

BMI, median (IQR), kg/m2 25.9 (22.5, 31.1) 

Education, n (%)  

    High school or less 214 (17.0) 

    Some College 405 (32.1) 

    College and above 643 (51.0) 

Household income, n (%)  

    Less than $19,999 74 (5.9) 

    $20,000 to 49,999 328 (26.0) 

    $50,000 to 99,999 528 (41.8) 

    $100,000 or more 332 (26.3) 

Smoking status, n (%)  

    Never 802 (63.6) 

    Former 338 (26.8) 

    Current 122 (9.7) 

Alcohol drinking, n (%)  

    Less than once per month 655 (51.9) 

    Once per month 298 (23.6) 

    Twice or more per month 309 (24.5) 

Physical activity score, median (IQR), 7.9 (6.6, 9.0) 

Menopausal status, n (%)  

    Pre-menopausal 874 (69.3) 

    Post-menopausal 191 (15.1) 

    Unknownb 197 (15.6) 

Hormone therapy, n (%) 260 (20.6) 

Total energy intake, median (IQR), kcal/d 1685 (1336, 2183) 

Dietary seafood intake, median (IQR), times/week 1.5 (0.8, 2.5) 

Dietary rice intake, median (IQR), times/week 2.0 (1.0, 5.5) 

Total zinc intake, median (IQR), mg/day 11.1 (7.6, 20.8) 

Fasting glucose level, GM(GSD), mg/dL 86.8 (1.1) 

Fasting insulin level, GM(GSD), uIU/mL 9.5 (1.6) 

HOMA-IR, GM(GSD) 2.1 (1.7) 

HOMA-β, GM(GSD) 154.5 (1.6) 
a IQR: interquartile range; GM: geometric mean; GSD: geometric standard deviation. 
b Menopausal status unknown due to hormone therapy or hysterectomy.
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Table IV. 2. The associations of selected metals with baseline HOMA insulin resistance (HOMA-IR) and its annualized rate of 

change in adaptive elastic-net (AENET) models. 

Baseline HOMA-IR Selected metals in 

AENETa 

Percentage change in HOMA-IRb at baseline for 1-SD 

increase in log-transformed urinary metal concentrationc  

(95% CI) 

Copper 1.57%  

(-1.09%, 4.29%) 

Molybdenum -3.25%  

(-5.45%, -1.00%) 

Lead 0.70%  

(-1.59%, 3.05%) 

Zinc 5.76%  

(3.05%, 8.55%) 

Annualized rate of change in HOMA-

IR  

(average rate of change = 1.51%, 

95% CI: 1.41%, 1.61%) 

Selected metals in 

AENET 

Percentage change in annualized rate of change in HOMA-

IR for 1-SD increase in log-transformed urinary metal 

concentration (95% CI) 

Zinc 0.06% 

(-0.03%, 0.15%) 
a AENET models were adjusted for age, race/ethnicity, study site, education level, annual household income, body mass index, 

smoking, alcohol drinking, physical activity score, menopausal status, hormone therapy, dietary intake of seafood and rice, total 

zinc intake from diets and supplements, total energy intake, and urinary specific gravity. 
b HOMA-IR was log-transformed. 
c All urinary metal concentrations were log-transformed and standardized. 
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Table IV. 3. The associations of selected metals with baseline HOMA β-cell function (HOMA-β) and its annualized rate of 

change in adaptive elastic-net (AENET) models. 

Baseline HOMA- β Selected metals in 

AENETa 

Percentage change in HOMA-βb at baseline for 1-SD 

increase in log-transformed urinary metal concentrationc  

(95% CI) 

Arsenic -1.59% 

(-3.63%, 0.50%) 

Cobalt 2.22% 

(-0.10%, 4.60%) 

Zinc -2.66% 

(-5.07%, -0.30%) 

Annualized rate of change in 

HOMA- β  

(average rate of change =  

-1.00%, 95% CI: -1.02%, -0.90%) 

Selected metals in 

AENET 

Percentage change in annualized rate of change in HOMA-

β for 1-SD increase in log-transformed urinary metal 

concentration (95% CI) 

Arsenic -0.02% 

(-0.05%, 0%) 
a AENET models were adjusted for age, race/ethnicity, study site, education level, annual household income, body mass index, 

smoking, alcohol drinking, physical activity score, menopausal status, hormone therapy, dietary intake of seafood and rice, total 

zinc intake from diets and supplements, total energy intake, and urinary specific gravity. 
b HOMA-β was log-transformed. 
c All urinary metal concentrations were log-transformed and standardized. 
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Figure IV. 1. Predicted HOMA-IR over time based on non-zero predictors in AENET models when all urinary metal concentrations 

are fixed at their 25th, 50th, 75th, and 90th percentile, respectively. 

AENET models were adjusted for age, race/ethnicity, study site, education level, annual household income, body mass index, 

smoking, alcohol drinking, physical activity score, menopausal status, hormone therapy, dietary intake of seafood and rice, total zinc 

intake from diets and supplements, total energy intake, and urinary specific gravity. 
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Figure IV. 2. Predicted HOMA-β over time based on non-zero predictors in AENET models when all urinary metal concentrations 

are fixed at their 25th, 50th, 75th, and 90th percentile, respectively. 

AENET models were adjusted for age, race/ethnicity, study site, education level, annual household income, body mass index, 

smoking, alcohol drinking, physical activity score, menopausal status, hormone therapy, dietary intake of seafood and rice, total zinc 

intake from diets and supplements, total energy intake, and urinary specific gravity.



  

156 

 

Supplemental Table IV. 1. Distribution of urinary metal concentrations in SWAN. 

Metals (μg/L) LODa % > LODb GM (GSD)c Selected percentiles 

    25th  50th  75th  90th  

Arsenic 0.3 100 17.43 (3.53) 7.00 15.23 40.66 95.55 

Barium 0.1 99.5 1.71 (2.47) 0.99 1.77 2.95 4.86 

Cadmium 0.06 94.6 0.41 (2.80) 0.23 0.44 0.81 1.43 

Cobalt 0.05 99.3 0.61 (2.27) 0.38 0.62 0.96 1.70 

Cesium 0.01 100 4.74 (1.99) 3.07 4.75 7.35 10.47 

Copper 2.5 96.7 9.36 (2.03) 6.03 9.42 14.26 21.39 

Mercury 0.05 99.8 1.21 (2.50) 0.67 1.23 2.37 3.68 

Manganese 0.08 99.6 0.96 (2.20) 0.59 0.90 1.47 2.50 

Molybdenum 0.3 100 42.18 (2.28) 25.19 44.20 72.69 114.78 

Nickel 0.8 96.0 3.58 (2.09) 2.37 3.79 5.83 8.40 

Lead 0.1 97.6 0.76 (2.34) 0.46 0.78 1.26 2.09 

Antimony 0.04 78.9 0.08 (2.17) 0.05 0.07 0.13 0.21 

Tin 0.1 96.9 0.97 (2.99) 0.49 0.93 1.77 3.52 

Thallium 0.02 92.6 0.13 (2.56) 0.08 0.15 0.23 0.33 

Zinc 2 100 272.44 (2.43) 162.81 300.43 507.32 777.14 
a LOD: limit of detection. 
b % > LOD: detection rate 
c GM: geometric mean; GSD: geometric standard deviation.
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Supplemental Table IV. 2. Selected non-zero beta coefficients of metals for baseline HOMA insulin resistance (HOMA-IR) and 

the annualized rate of change in adaptive elastic-net (AENET) models. 

Baseline HOMA-IRa Selected metals in 

AENETb 

β for 1-SD increase in log-transformed urinary metal 

concentrationc  (95% CI) 

Copper 0.02 

(-0.01, 0.04) 

Molybdenum -0.03 

(-0.06, -0.01) 

Lead 0.01 

(-0.02, 0.03) 

Zinc 0.06 

(0.03, 0.08) 

Annualized rate of change in 

HOMA-IR  

 

Selected metals in 

AENET 

β for 1-SD increase in log-transformed urinary metal 

concentration  (95% CI) 

Zinc 0.0006  

(-0.0003, 0.0015) 
a HOMA-IR was log-transformed. 
b AENET models were adjusted for age, race/ethnicity, study site, education level, annual household income, body mass index, 

smoking, alcohol drinking, physical activity score, menopausal status, hormone therapy, dietary intake of seafood and rice, total 

zinc intake from diets and supplements, total energy intake, and urinary specific gravity. 
c All urinary metal concentrations were log-transformed and standardized.
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Supplemental Table IV. 3. Selected non-zero beta coefficients of metals for baseline HOMA β-cell function (HOMA- β) and 

the annualized rate of change in adaptive elastic-net (AENET) models. 

Baseline HOMA- βa Selected metals in 

AENETb 

β for 1-SD increase in log-transformed urinary metal 

concentrationc  (95% CI) 

Arsenic -0.02 

(-0.04, 0.01) 

Cobalt 0.02 

(-0.01, 0.04) 

Zinc -0.03 

(-0.05, -0.01) 

Annualized rate of change in 

HOMA- β  

 

Selected metals in 

AENET 

β for 1-SD increase in log-transformed urinary metal 

concentration  (95% CI) 

Arsenic -0.0002 

(-0.0005, 0) 
a HOMA- β was log-transformed. 
b AENET models were adjusted for age, race/ethnicity, study site, education level, annual household income, body mass index, 

smoking, alcohol drinking, physical activity score, menopausal status, hormone therapy, dietary intake of seafood and rice, total 

zinc intake from diets and supplements, total energy intake, and urinary specific gravity. 
c All urinary metal concentrations were log-transformed and standardized. 
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Supplemental Figure IV. 1. Schematic diagram of analytic sample.  
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Supplemental Figure IV. 2. Spearman correlation matrix of metal concentrations. 

As: arsenic, Ba: barium, Cd: cadmium, Co: cobalt, Cs: cesium, Cu: copper, Hg: mercury, Mn: manganese, Mo: molybdenum, Ni: 

nickel, Pb: lead, Sb: antimony, Sn: tin, Tl: thallium, Zn: zinc. 
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Chapter V. Conclusions 

The etiology of type 2 diabetes mellitus is not fully understood and the roles of 

environmental exposures, specifically metals, in the pathogenesis of diabetes has received little 

attention by the medical community. Metals are widely dispersed in the environment, and the 

general population can be exposed to a myriad of metals through food, drinking water and 

ambient air throughout the lifetime. Metals such as arsenic, cadmium and lead, are well-known 

inducers of oxidative stress in a variety of tissues and cell types (Ercal et al. 2001). The 

accumulation of these metals in pancreatic islets is hypothesized to lead to impaired function and 

apoptotic death of β-cells via the induction of oxidative stress (Lu et al. 2011; Patra et al. 2011). 

On the other hand, essential metals such as zinc are necessary for insulin synthesis, storage and 

secretion in β-cells and have a preventative role in insulin resistance as certain zinc complexes 

showed insulin-like effects (Jansen et al. 2009). To date, however, only a few metals, most 

notably arsenic, have been studied with regard to diabetes risk and most studies have been 

conducted in predominantly cross-sectional settings. Thus little is known about the potential 

diabetogenic effects of a wide-range of metals. Further, no epidemiologic study has examined 

metal mixtures in relation to incidence of type 2 diabetes. This dissertation fills a critical gap in 

the literature by advancing our understanding of the potential role of multiple metals in the 

development of type 2 diabetes mellitus. 
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Summary of findings 

This dissertation combined three studies that interrogated the distributions of urinary 

concentrations of multiple metals, the associations of metals with incidence of diabetes, and 

metal mixtures-related longitudinal changes in intermediate quantitative traits of diabetes in a 

cohort of midlife women using the data from the Study of Women’s Health Across the Nation 

(SWAN).  

Aim 1 evaluated concentrations of 21 metals in urine samples, identified overall exposure 

patterns, and examined demographic, socioeconomic, lifestyle, and dietary factors associated 

with both individual metals and metals exposure patterns. Significant race/ethnic differences 

were observed in the urinary concentrations of metals, i.e., significantly higher concentrations of 

arsenic, cadmium, copper, mercury, molybdenum, lead, and thallium in Asian populations 

including both Chinese and Japanese women, compared with other racial/ethnic groups. Seafood 

and rice intake were identified as important determinants of urinary arsenic, cesium, mercury, 

molybdenum and lead concentrations. This study also identified several other predictors of 

urinary metal concentrations: education level was inversely associated with cadmium and 

antimony concentrations but inversely associated with mercury concentration; cigarette smoking 

was positively associated concentrations of cadmium and lead; secondhand smoking also 

contributed to increased urinary lead concentration. A data-driven clustering approach—k-means 

clustering, was used to summarizing information of metal mixtures into distinct exposure 

patterns. Based on multiple restrict statistical criteria, two distinct overall exposure patterns- 

“high” vs. “low”, were identified by k-means clustering, suggesting two distinct overall exposure 

patterns to metal mixtures. On average, women clustered to have the “high” overall exposure 

pattern had higher concentrations of all urinary metals compared to those clustered to the “low” 
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pattern. At the same time, those women in the “high” overall exposure pattern were more likely 

to be Asians, current smokers, and those with high intake of seafood and rice. 

Aim 2 examined the associations between baseline urinary concentrations of metals and 

incidence of diabetes over 16 years of follow-up. After multivariable adjustment and controlling 

for multiple comparisons, high concentrations of toxic metals including arsenic and lead were 

positively associated with an increased risk of diabetes. An excessive urinary excretion of zinc, 

which is an essential metal, was also found to be significantly associated with elevated diabetes 

risk. In the mixture analysis, two exposure patterns of metal mixtures, i.e., “low” and “high” 

were identified, again, using the same k-means clustering. Women with high overall metal 

exposures had significantly higher incidence of diabetes compared to those with low exposure 

profiles. 

Aim 3 further investigated associations between metal mixtures and longitudinal changes 

in insulin resistance and β-cell dysfunction, which are most important etiopathogenic 

mechanisms underlying the type 2 diabetes mellitus. Using the adaptive elastic-net (AENET), we 

identified copper, lead, and zinc as metals in urine that were associated with higher HOMA-IR at 

baseline, whereas molybdenum was associated with lower HOMA-IR at baseline. Urinary zinc 

was also associated with a faster rate of increase in HOMA-IR over time. For HOMA-β, arsenic 

and zinc were associated with lower levels at baseline, whereas cobalt was associated with 

higher levels at baseline. Arsenic was also associated with a faster rate of decline in HOMA-β 

over time, though the magnitude of the association was modest. An increase in all metal 

concentrations was predicted to have consistently higher HOMA-IR and lower HOMA-β across 

the 16 years of the study. 
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Integration of three specific aims 

Across the three dissertation aims we observed evidence that people were exposed to 

many different metals. To improve our understanding of metal exposures, this dissertation began 

with describing distributions of a comprehensive list of 21 metals. Previous studies have reported 

racial/ethnical differences in lead exposure in the US (Hu et al. 1996; Theppeang et al. 2008). 

However, in Aim 1 several metals (a total of 13) were found to have  concentrations that differed 

significantly  between racial/ethnic groups. Additionally, both Chinese and Japanese women had 

higher concentrations of arsenic, cadmium, copper, mercury, molybdenum, lead, and thallium 

compared with other racial/ethnic groups. The most pronounced differences were for arsenic and 

cadmium. On average, concentrations of these two toxic metals in Asian women were about two 

times higher than those in white and black women. The racial/ethnic differences in metal 

concentrations persisted when the concentrations were compared between white and Chinese 

women within the Oakland site, and between white and Japanese women within the Los Angeles 

site, supporting the finding that Asian women may be experiencing higher exposures to many 

metals compared with other racial/ethnic groups, independent of geographic location of the 

SWAN recruitment. Some of the racial/ethnic differences may be attributed to diets, such as 

higher intakes of seafood and rice which was reported by Chinese and Japanese participants and 

was associated with higher concentrations of certain metals. These findings also suggested that 

race/ethnicity could act as an important confounder that should be considered in future  research. 

Furthermore, our findings provide insight on exposure to multiple metals as mixtures. To the best 

of our knowledge, this is the first study to identify overall exposure patterns to metal mixtures in 

human populations. Understanding the exposure to metal mixtures is an important first step 

before evaluating their potential health effects (Aim 2 & Aim 3). 
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Aim 2 is the first study to examine the associations of exposure to multiple metals with 

incidence of diabetes in a well characterized prospective cohort study. In alignment with 

previous findings (Maull et al. 2012), we observed that urinary arsenic concentration was 

positively associated with incidence of diabetes. Given that the potential roles of environmental 

exposures to other metals in the development of diabetes were less well understood, this study 

provided valuable evidence about potential new diabetogenic risk factors of environmental 

origin. Urinary lead concentration was identified to be associated with increased diabetes risks. 

Additionally, urinary zinc concentration, which represents zinc loss in urine, was positively 

associated with diabetes risk. This association remained unchanged after further adjustment for 

zinc intake from diet and supplements. Because previous studies suggested that high glucose 

levels could interfere with the active transportation of zinc back to renal cells, therefore leading 

to a loss of this mineral in the urine. Thus the observed association between zinc and diabetes 

could be possibly explained by increased urinary excretion of zinc in women who already had 

relatively high glucose levels at baseline. Because of this, we conducted a sensitivity analysis 

excluding women with the highest fasting blood glucose values at baseline. Even after this 

sensitivity analysis, we still observed a positive association between urinary zinc and incident 

diabetes. Altogether, these findings suggest that an increased urinary zinc excretion may increase 

diabetes risk, independent of zinc intake. After its development, diabetes may, in turn, increase 

urinary zinc loss due to renal damages. This study also provided insight into how metal mixtures 

influence diabetes risk. Using the k-means clustering analysis, Aim 1 showed significant 

differences in sociodemographic, lifestyle, and dietary characteristics between women with 

different exposure profiles. Aim 2 further demonstrated a potential role for differences in 

exposure to metal mixtures in explaining health disparities as a significantly elevated risk of 
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diabetes was observed among women with high overall metal exposures. It should be 

acknowledged that there are uncertainties in cluster assignment in the k-means clustering. When 

these clusters (over exposure patterns) are used as predictor variables in the Cox regression in 

Aim 2, this uncertainty can be reproduced as measurement error in the predictor. Nondifferential 

misclassification of the exposure status commonly yields the regression parameters that are 

biased toward null, with accompanying variance estimates that are too small which inflates the 

type I error. Most recently Elliott et al. developed a joint modeling of the latent class (another 

clustering method) and the regression model using a fully Bayesian method to account for the 

uncertainty in the latent class analysis when it is treated as the predictor variable in regression 

analysis (Elliott et al. 2020). Future studies that use clustering methods as predictors of other 

health outcomes of interests should account for the uncertainties in cluster assignments. 

Additionally, it should be also acknowledged that the associations between the exposure to metal 

mixtures represented by k-means clusters and diabetes risk do not provide insight into which 

metals were responsible for these associations or allow for dose-response characterization. A 

more advanced statistical approach was used to address these issues in my Aim 3. 

Aim 3 is the first study to evaluate the association of exposure to metal mixtures with 

longitudinal changes in insulin resistance and β-cell dysfunction. We used a two-stage modeling 

approach and employed a machine-learning based approach, AENET, which was proposed for 

analyzing high dimensional data while dealing with the collinearity problem (Zou and Zhang, 

2009), to identify important metals associated with longitudinal changes in HOMA-IR and 

HOMA-β. AENET was used in this aim over the conventional ordinary least squares-based 

variable selection methods (forward selection, backward elimination, etc.) because the 

conventional methods could overfit in the presence of potentially high-dimensional predictors, or 
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when predictors are highly correlated (multicollinearity). Least absolute shrinkage and selection 

operator (LASSO) penalized linear mixed effects model is another shrinkage regression method 

designed for analyzing high-dimensional longitudinal data (Groll and Tutz 2014). However, 

when correlated variables or introduced as predictors, LASSO randomly selected only one out of 

these correlated metals and ignores the others, yielding potentially biased information. Aim 3 

found that in addition to arsenic, for which a role in dysregulated glucose metabolism has been 

reported (Grau-Perez et al. 2017; Park et al. 2016; Rhee et al. 2013), other metals including 

copper, cobalt, molybdenum, lead, and zinc may also play a role. These differences are 

potentially due to the fact that most of the previous studies focused only on “priority toxic 

metals” while other potentially important metals were not investigated. Furthermore, if 

individual metals have relatively small effects but exposure to metal mixtures influences the 

body’s response to insulin and/or insulin secretion, the metals that truly disrupt these 

physiological functions may not be adequately captured by the conventional single-pollutant 

approach. This study suggested the importance of considering metal mixtures, rather than 

individual metals with known toxicities, in evaluation of associations between metal exposures 

and health outcomes in future studies. 

 

Future Research Questions 

In combination with this dissertation’s research findings, there are several additional 

research questions and recommendations for improvements in the design of future studies: 

(1) Arsenic speciation and metabolism: This analysis found positive associations of 

urinary arsenic concentration with incidence of diabetes and longitudinal measures of HOMA-β. 

However, it should be acknowledged that in our study only total arsenic concentrations were 



  

168 

 

measured while arsenic speciation data were not available. Seafood intake is a major source of 

organic arsenic (Jones et al. 2016), which is generally considered to have low toxicity (Cullen 

and Reimer 1989). On the contrary, inorganic arsenic has been associated with adverse health 

outcomes such as cardiovascular disease, diabetes, and some cancers (Chen et al. 2013; Maull et 

al. 2012; Meliker et al. 2010; Steinmaus et al. 2014) and its major source are contaminated 

drinking water and rice intake (Gilbert-Diamond et al. 2011; Hughes et al. 2011). The toxicity of 

inorganic arsenic is also influenced by its metabolism. After absorption, inorganic arsenic is 

metabolized into mono- and di-methylated compounds (MMA and DMA) and the three arsenic 

forms are excreted in the urine (Aposhian and Aposhian 2006). An increased MMA% compared 

with DMA% in urine has been associated with several diseases including skin lesions, 

cardiovascular disease, skin cancer, and bladder cancer (Ruiz-Hernandez et al. 2015). In contrast, 

a lower MMA% compared with higher DMA% in urine has been related to diabetes risk and 

insulin resistance in a large prospective study (Grau-Perez et al. 2017; Kuo et al. 2015). In future 

studies, arsenic speciation and its metabolism data will be critical to providing a better 

understanding of arsenic exposures and their associations with different health outcomes. 

 (2) Expanded coverage of environmental pollutants: In our study, only associations 

between metal exposures and diabetes risk was evaluated. Recent biomonitoring studies suggest 

that there are a broader range of environmental pollutants, such as brominated flame retardants 

(Calafat et al. 2007), per- and polyfluoroalkyl substances (PFAS) (Calafat et al. 2007), and air 

pollution (Franklin et al. 2007), detected in most of the general US population, but their risks 

related to diabetes in humans are less well understood. The biomarkers of multiple 

environmental pollutants (PFASs, polychlorinated biphenyls, organochlorine pesticides, and 

polybrominated diphenyl ethers in serum; metals, phenols, phthalates, organophosphate 
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pesticides in urine) are available in the SWAN. Future studies using the prospective cohort 

design systematically evaluating associations between environmental pollutants and diabetes will 

contribute significantly to the understanding of modifiable type 2 diabetes risk factors with 

environmental origins and provide new insights into disease etiology and progression. 

(3) Expanded coverage of intermediate quantitative traits and mediation analysis:  

The Aim 2 and Aim 3 of current dissertation provide evidence that exposure to metal mixtures 

may be exerting effects on insulin resistance and β-cell dysfunction, which might be mechanisms 

by which metal exposures may lead to elevated diabetes risks. However, the impacts of 

environmental exposures on other pathophysiological pathways, including dyslipidemia 

(Taskinen and Borén 2015), alterations in body composition (Gómez-Ambrosi et al. 2011; Hong 

et al. 2017), and inflammation (Hou et al. 2013; Masters et al. 2010), were not examined in the 

present dissertation and epidemiologic evidence is also lacking. For example, metals have been 

associated with body mass index, waist circumference, and total body fat (Wang et al. 2018). 

However, little is known about whether these metals influence diabetes risk through their effects 

on changes in obesity and body composition over the menopausal transition. Changes associated 

with the menopause transition, in particular loss of ovarian function and subsequent hormonal 

changes have been associated with an increased risk of diabetes (Ding et al. 2009). In addition to 

hormone changes, women going through the menopausal transition may also experience 

deleterious changes in fat mass and lean mass (Greendale et al. 2019). An increase in total body 

fat, preferentially of central or visceral adipose deposition may increase diabetes risk by 

decreasing tissue insulin sensitivity and glucose tolerance (Golay and Ybarra 2005). A decrease 

in skeletal muscle mass has also been associated with elevated diabetes risk, likely through a 

reduced capacity for glucose uptake from the blood (Hong et al. 2017). However, the 
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contribution of changes of obesity status or body composition due to metals exposure during the 

menopause transition to elevated diabetes risks still remains unclear. Metabolic outcomes 

including body composition and adiposity (measured by dual-energy X-ray absorptiometry), 

lipid profiles, and adipokines and inflammatory cytokines have been measured repeatedly in the 

SWAN. More studies are worth being conducted in the future (1) to evaluate whether changes in  

body composition, lipid profiles, inflammatory markers are associated with incidence of diabetes 

over the menopausal transition; and (2) to examine how exposures to multiple metals affect 

changes in these longitudinal traits. Finally, a mediation study would be warranted to examine 

causal mediation of the relationship between metal exposures and diabetes risk by different 

mechanisms pathways. A mediation analysis would help us better understand how metal 

exposures affect diabetes risk and inform potential interventions limiting the effects of exposure 

by intervening on intermediates. 

(4) Environmental risk score and risk prediction: Type 2 diabetes mellitus is a major 

public health problem in the US as well as globally. Accurate assessment of diabetes risk is an 

essential step toward disease prevention and an important public health goal. Scoring algorithms 

such as the Cambridge Diabetes Risk Score, which uses general practice record data, for example 

age, sex, body mass index, history of antihypertensive or steroid medication, family history and 

smoking history, have been developed for diabetes risk assessment in the general population 

(Griffin et al. 2000). However, the accuracy of such algorithms has been questioned. Attempts to 

improve risk prediction algorithms have been made by incorporating additional risk factors, 

including novel biomarkers, nutrition measures, and genetic variations (Meigs et al. 2008; Sattar 

et al. 2008). However, the incremental information with regard to the risk prediction added by 

those risk markers beyond that of the conventional risk factors were mostly small or inconclusive 
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(Meigs et al. 2008; Sattar et al. 2008). This dissertation has provided foundational evidence that 

environmental exposures to metal may play a role in the pathogenesis of diabetes. Future studies 

might evaluate whether environmental factors could serve as a screening tool for predicting 

future diabetes, and hence play a part in its prevention.  

In our recent analysis of National Health and Nutrition Examination Survey data, we 

examined whether blood markers of lead, cadmium, and mercury can improve prediction for 

cardiovascular (CVD) mortality (Wang et al. 2019c). We constructed an Environmental Risk 

Score (ERS) using machine learning algorithms as an integrated measures of CVD risk due to 

heavy metal exposures. We observed a significant improvement in risk prediction for CVD 

mortality when the ERS was incorporated into a model with established risk factors including 

age, gender, current smoking status, systolic blood pressure, total cholesterol level, high-density 

lipoprotein cholesterol level, diabetes, and body mass index (equivalent to the Framingham risk 

score or the Atherosclerotic CVD (ASCVD) risk estimator). By taking advantage of the rich 

longitudinal features and biomarkers of environmental pollutants in  SWAN and using the same 

ERS approach these data could be replicated. Future studies are needed to examine whether the 

information on multiple environmental exposures which are potentially associated with incidence 

of diabetes improve the prediction for risk of diabetes in addition to the conventional risk 

factors/scores. 

 

Public Health Implications 

Environmental exposure to metals has been a prevalent and persistent public health 

problem. In recent years, the public health importance of metal exposures has attracted intense 
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interest due to large-scale lead exposure events, as in Flint, Michigan, with poisoning due to lead 

in the drinking water. In 2004, the U.S. Environmental Protection Agency (EPA) reported that 

more than 3% of drinking water distribution systems servicing more than 3300 people in the US 

exceeded the lead level of 15 μg/L defined by the Lead and Copper Rule (LCR) (Brown et al. 

2012).  Lead exposure may not be the only concern. Depending on the exposure levels, many 

different metals have been demonstrated to cause tissue damages and show adverse health 

impacts, including cardiovascular diseases, kidney diseases, metabolic diseases, neurocognitive 

outcomes, some cancers, and mortality (Jaishankar et al. 2014). Investigations of the observed 

impacts of low-level exposures to metals (e.g. 5 ug/dL for blood lead levels) are also vital 

because some metals may have no safe exposure threshold (Jaishankar et al. 2014).  

Given the adverse health effects stemming from metal exposures, biomonitoring studies 

at the population level are important to provide a complete picture of the concentrations of 

multiple metals actually found in human bodies. Identification of the determinants of metal 

exposures is also critical because it can help us identify highly exposed subpopulations, their 

potential exposure sources and possible avenues for intervention. In our study, Asian women 

were found to experience the highest exposure to multiple toxic metals compared with other 

racial/ethnic groups. Seafood and rice intake, of which the highest consumption was reported by 

Asians, were found to be important exposure sources . Racial/ethnic-specific recommendations 

for reducing main sources of exposure such as dietary sources may be warranted to help mitigate 

the body burden of the toxic metals and subsequently health risks. 

Following the Clean Water Act of 1972 and the Safe Drinking Water of 1974, EPA has 

regulated lead contamination in tap water. However, no toxic threshold has been identified in 

lead levels in humans because research suggests that no lead level is a “safe” level (Jaishankar et 
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al. 2014). The U.S. Food and Drug Administration (FDA) has not established regulatory limits 

for heavy metals in finished foodstuffs other than bottled water (FDA 2020). However, the 

Agency has provided guidance on lead levels in juice not exceeding 50 ppb and a maximum lead 

level of 100 ppb in candy (FDA 2020). To date, 31 states have adopted 97 policies on some toxic 

metals including arsenic, cadmium, lead or mercury in food and consumer products 

(http://www.saferstates.com/toxic-chemicals). However, are the current maximum contaminant 

levels and maximum contaminant level goals of metals low enough to protect people against 

their adverse health effects given a lack of updated epidemiologic findings? Recent years have 

witnessed an increase in our understanding of toxicological issues and bioavailability of these 

metals. This dissertation suggesting potential effects of metals on diabetes also continues to aid 

our ability to better focus on the toxicological impact of different metals on human health. It 

provides for sound, evidence-based legislation and will form an important component of any 

policy in this area. 

Few studies have evaluated exposures to metals in midlife women, who are at increased 

risk of chronic diseases such as cardio-metabolic disorders, due to permanent changes in ovarian 

function (Davis et al. 2012b; Kim 2012; Polotsky and Polotsky 2010; Stuenkel 2017). Exposure 

to metals during this window of susceptibility may increase the risk of adverse health 

consequences associated with ovarian aging. For example, menopause has been suggested to 

play an important role in the mobilization of lead from bone into the circulation due to an 

increased bone turnover rate (Hernandez-Avila et al. 2000; Tsaih et al. 2001). Bone lead stores 

accrued from cumulative environmental exposures for decades are the major endogenous source 

of lead (Tsaih et al. 2001). Urinary lead adjusted for urine dilution has been found to closely 

reflect lead mobilized from the bone (Tsaih et al., 2001, 1999; Wang et al., 2019a). In Aim 2 and 

http://www.saferstates.com/toxic-chemicals
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Aim 3 of this dissertation, urinary lead was positively associated with HOMA-IR and risk of 

diabetes, which can be possibly attributed to a greater release of lead from bone stores during 

menopausal transition. This highlights evidence that reduction in metal exposure before midlife 

is critical, however, the current health reference guidelines only focuses on childhood exposure 

and exposure during pregnancy (CDC 2012a). As stated earlier in the list of future research 

questions, this dissertation also provides impetus for future investigators to find out whether 

metal exposures may induce unfavorable changes in hormone profiles, lipid metabolisms, 

adiposity and body composition, and inflammatory cytokines during the menopausal transition. 

Environmental Health Community should be aware of midlife as an important window of 

susceptibility and a reduction in exposure could reduce the disease burden in later life.  

Diabetes is a significant public health issue with 34.1 million adults (13.0% of the 

population aged 20 years and older) in US estimated to have the disease (CDC 2020). Diabetes 

itself also constitutes a health risk as diabetes patients are at a higher risk of developing serious 

adverse health outcomes including cardiovascular disease, eye disease, neuropathy, renal failure, 

and mortality (DeFronzo et al. 2015). Therefore, a better understanding of the factors associated 

with the development of diabetes is of substantial public health importance. Most studies of 

diabetes to date have focused on the roles of unhealthy diet and lifestyle factors, and numerous 

clinical trials have definitively shown that the lifestyle can modify the development of diabetes 

(Franz et al. 2015). However, it should be acknowledged that diabetes has still been developed 

among many individuals who had made lifestyles changes including diet changes and weight 

losing (Franz et al. 2015). Given the dramatic increase in diabetes risks over the last two 

decades, there must be some factors beyond behavior and lifestyle contributing to the rise. 

Updating evidence suggests that in addition to unhealthy diet intake, diabetes is also primarily 
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attributed to obesity, tobacco smoking, and exposure to air pollution in the US 

(https://vizhub.healthdata.org/gbd-compare/). By evaluation of associations between 

environmental exposure to multiple metals and diabetes risk in a large prospective cohort study 

(Aim 2), our findings support the possibility that metals may also be important risk factors for 

diabetes.  

Current diabetes intervention in clinical setting is primarily through treatments in an 

attempt to modify the elevated clinical indices. Our findings also highlight the importance of 

exploring novel approaches through interventions on underlying environmental toxicants in our 

human bodies. A recent prospective cohort study of middle-aged to elderly men reported that a 

‘prudent’ dietary pattern, characterized by high intake of fruit, vegetables, legumes, tomatoes, 

poultry, and seafood, might reduce the risk of development of coronary heart disease in relation 

to bone lead, suggesting that benefits from dietary interventions on cardiovascular disease could 

be achieved by shifting to diets with a combination of natural antagonists to metals’ toxicity 

(Ding et al. 2018; Wang et al. 2017). Toxic metal chelation has also been proposed recently as 

secondary prevention of atherosclerotic disease by mobilizing lead and cadmium from their 

chronic tissue storage compartments and facilitating their excretion from human bodies (Aneni et 

al. 2016; Lamas et al. 2016; Waters et al. 2001). The feasibility and effectiveness of these 

intervention approaches for reducing diabetes risk are worth investigating. 

On the other hand, the findings that urinary zinc was adversely associated with diabetes 

outcomes in both Aim 2 and Aim 3 highlight zinc loss as a risk factor for diabetes. Previous 

cross-sectional studies have observed an association between reduced zinc status and diabetes 

and this association has been largely explained by loss of zinc through the kidneys due to 

diabetic nephropathy (Chausmer 1998). The current study leveraging a prospective cohort design 

https://vizhub.healthdata.org/gbd-compare/
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adds lines of evidence support a more direct causative role of zinc loss in the pathogenesis of 

diabetes. The most intuitive way to mitigate the risk of diabetes due to zinc loss is to increase 

zinc intake from food or supplements. Given the average intake levels in our participants have 

reached the recommended dietary allowance (RDA), which is 8 mg/day for women, our findings 

provide informative results for future investigators to further consider urinary zinc loss in 

evaluation of zinc supplementation for the prevention of diabetes, and to determine if the current 

RDA level is high enough to protect people from developing diabetes. Additionally, urinary zinc 

loss may be a factor as important as zinc intake that affects diabetes risks. Future studies should 

fill these gaps concerning determinants of urinary zinc loss and the feasibility and effectiveness 

of interventions for reducing zinc loss in diabetes prevention. 

 

Overall Conclusions 

This dissertation fills a critical gap in the literature by advancing our understanding of 

environmental exposures to metals and their potential roles in the development of type 2 diabetes 

mellitus. The associations characterized in this dissertation build a foundation for future 

mediation studies. These associations are also informative for future studies evaluating clinical 

values of metal biomarkers in diabetes risk assessment and prevention. By capturing exposure 

profiles to metal mixtures and examining their effects on diabetes and its intermediate traits, this 

dissertation also highlights the importance for quantifying the impact of exposure to pollutant 

mixtures for better understanding the relationship between environmental risk factors and 

diabetes risk. Each aim contains unique contributions to the literature. Aim 1 is the first study to 

evaluate exposure to multiple metals of environmental origins and identify overall exposure 

patterns in human populations. Aim 2 is the first to examine the associations of exposure to a 
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comprehensive suite of metals with incidence of diabetes in a prospective cohort study. Finally, 

Aim 3 is the first to apply mixture analysis approach to evaluate the association of exposure to 

metal mixtures with longitudinal measures of insulin resistance and β-cell dysfunction. 

Altogether, this dissertation advances our understanding of environmental metal exposures and 

provides novel points of view for the exploration of the pathogenesis of type 2 diabetes mellitus. 
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