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ABSTRACT

This thesis studies incentive contracts in multi-agent systems with applications to

transportation policy. The early adoption of emerging transportation systems such as

electric vehicles (EVs), peer-to-peer ridesharing, and automated vehicles (AVs) relies

on governmental incentives. Those incentives help achieve a specific market share

target, prevent irregular behaviors, and enhance social benefit. Yet, two challenges

may impede the implementation of such incentive policies. First, the government

and subsidized organizations must confront the uncertainty in a market; Second, the

government has no access to the organizations’ private information, and thus their

strategies are unknown to it. In the face of these challenges, a command-and-control

incentive policy fails.

In §II, we revisit the primary setting in which a government agency incentivizes the

OEM for accelerating the widespread adoption of AVs. This work aspires to offset the

negative externalities of AVs in the “dark-age” of AV deployment. More specifically,

this chapter designs AV subsidies to shorten the early AV market penetration period

and maximize the total expected efficiency benefits of AVs. It seeks a generic optimal

AV subsidy structure, so-called “two-threshold” subsidy policy, which is proven to

be more efficient than the social-welfare maximization approach.

In §III, we develop a multi-agent incentive contracts model to address the issue of

stimulating a group of non-cooperating agents to act in the principal’s interest over

a planning horizon. We extend the single-agent incentive contract to a multi-agent

vii



setting with history-dependent terminal conditions. Our contributions include: (a)

Finding sufficient conditions for the existence of optimal multi-agent incentive con-

tracts and conditions under which they form a unique Nash Equilibrium; (b) Showing

that the optimal multi-agent incentive contracts can be solved by a Hamilton-Jacobi-

Bellman equation with equilibrium constraints; (c) Proposing a backward iterative

algorithm to solve the problem.

In §IV, we obtain the optimal EV and charging infrastructure subsidies through

the multi-agent incentive contracts model. Widespread adoption of Electric Vehicles

(EV) mostly depends on governmental subsidies during the early stage of deployment.

The governmental incentives must strike a balance between an EV manufacturer and

a charging infrastructure installer. Yet, the current supply of charging infrastructure

is not nearly enough to support EV growth over the next decades. We model the

joint subsidy problem as a two-agent incentive contract. The government observes

two correlated processes – the EV market penetration and the charging infrastructure

expansion. It looks for an optimal policy that maximizes the cumulative social benefit

in the face of uncertainty. In our case study, we find that the optimal dynamic

subsidies can achieve 70% of the target EV market share in China by 2025, and also

maintains the ratio of charging stations per EV.

§V ends the thesis with conclusions and promising future research directions. In

summary, this thesis provides a new approach to appraise transportation and energy

policies against exogenous and endogenous risks.

viii



CHAPTER I

Introduction

1.1 Incentive Design in Principal-Agent Model

1.1.1 Rational for this Thesis

The principal-agent problem stems from a conflict between insurance (i.e., risk-

sharing) and incentive [118]. The principal, the authority party in this relationship,

proposes a contract, and the agent can either accept or reject it. Contracts ensure

the agent works for the principal under the uncertainty in nature (i.e., risk) and

provides incentives for the agent to reveal private information. The private infor-

mation studied in this thesis is the actual action taken by the agent that affects the

probability distribution of the output and thus the risk. For example, an employer

(principal) hires employees (agents) to put certain effort into a project. The level of

effort is unknown to the employer, but the stochastic output affected by the agent’s

effort is public information. Whenever such an action is observable but not verifiable,

the moral hazard [63] arises. The solution to this moral hazard problem is to design

so-called “incentive contracts” used throughout this thesis.

The principal-agent problem in its moral-hazard form arises in a broad range of

practical issues from corporate finance, strategic behavior in politics, supply chain

management to organizational design [11, 23, 28, 33, 44, 46, 54, 81, 87, 93, 136].

Incentive contracts are not merely the study of the legally binding agreement, as the
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name implies. Depending on the applications, it appears in forms such as govern-

mental subsidies, revenue-sharing production plans, and managerial compensations.

Finding the optimal incentive contracts with a risk-averse agent is challenging

because two self-interested parties’ decisions are coupled. When the outcome of the

hidden action is a random process, dynamic incentive contracts turn out to be con-

siderably more complicated. Nevertheless, it is worth investigating under what con-

ditions the optimal dynamic incentive contracts exist and how different organization

forms affect the effectiveness of incentives. The following simple examples illustrate

why dynamic contracts are more challenging compared with its static counterpart

but worth studying.

Example I.1 (Static v.s. Dynamic Incentive Contracts). Optimal dynamic contracts

have memory if the payoff is history-dependent.

In the probably simplest two-period principal-agent model [103], the output xt ∼

f(x|at), t ∈ {1, 2}, i.e., xt only depends on the action at period t. A contract defines

compensations as a function of observed output c1(x1) and c2(x1, x2). The risk-averse

agent’s utility is separable as u(ct)− g(at). The risk-neutral principal thus maximize

the total payoff satisfying the incentive-compatible (IC) and individual-rational (IR)

constraints.

max
c1,c2

Ea[x1 + x2 − c1(x1)− c2(x1, x2)]

(1.1)

s.t. {a1, a2} ∈ arg max
a1,a2

Eã1,ã2 [u(c1(x1)) + u(c2(x1, x2))− g(ã1)− g(ã2)] (IC)

Ea1,a2 [u(c1(x1)) + u(c2(x1, x2))− g(a1)− g(a2)] ≥ 2ū, (IR)

where ū is the minimum utility received per period.
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It can be proved that the optimal contract satisfies the following condition: [103]:

1

u′(c1(x1))
= Ea1 [

1

u′(c2(x1, x2))
].(1.2)

We observe that, if c2(x1, x2) = c2(x2), then the LHS of (1.2) is equal to a constant,

thus no incentive is given in period 1. (1.2) implies the front-load consumption – the

agent has motivation to consume more in the first period to keep its continuation

wealth low. This example reveals a universal characteristic of dynamic contracts

– they affect the agent’s decision over the planning horizon, so the agent tends to

overwork at the beginning. Static analysis is unable to obtain those managerial

insights.

The challenges of finding optimal contracts increase exponentially when the prin-

cipal faces more complex organizations. This thesis aims to do so – the organization

is extended from single-agent to multi-agent systems (in §III and §IV).

Example I.2 (Multiagent Contracts in Matrix Games). The following example

demonstrates the importance of investigating the existence conditions in a static

matrix game setting. A principal chooses to compensate c to two agents as either

low (L) or high (H) payoff, i.e., c ∈ {L,H}. Agents indexed by i ∈ {1, 2} put effort

into a project and the output of agent i’s effort is denoted as Xi ∈ {A,B} at levels

A or B.

• The principal desires to stimulate agent 1 to exert output A and agent 2 to exert

output B. The outcomes of signing contracts can be represented by the matrices

in Table 1.1 where each entry is principal’s and agent’s utility received from the

contract. If these two contracts are signed separately, the unique equilibria are

{L,A} with agent 1, and {L,B} with agent 2.
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Table 1.1: Static incentive contracts with two uncorrelated agents.

A B

L 4,2 2,1

H 3,3 1,2

A B

L 2,1 4,2

H 1,2 3,3

• We now assume that two agents outputs are aggregate in a linearly additive

way. In this case, the principal’s dominant policy is [c1, c2] = [L,L]. Notice

that the existence and the number of equilibrium may vary with agents’ utility

functions ui(ci, Xi, X−i). Three possible outcomes for contracts are below:

1. Unique Nash equilibrium: Assume that the utility of each agent is only

dependent of its payoff, i.e., ui(ci, Xi, X−i) = ci. The agents’ best responses

are [X1, X2] = [A,B]. With a fixed [c1, c2] = [L,L], their utility follows

Table 1.2.

Table 1.2: Correlation between agents’ outcomes with unique equilibrium

A B

A 2,1 2,2

B 1,1 1,2

2. Multiple Nash equilibria: Assuming that the principal rewards whoever

delivers B an additional unit of compensation, there exists two Nash equi-

libria: [X1, X2] = [A,B] and [X1, X2] = [B,B] in which their utility follows

Table 1.3.

Table 1.3: Correlation between agents’ outcomes with multiple equilibria

A B

A 2,1 2,3

B 2,1 2,3

3. No Nash equilibrium: Assuming that the utility of each agent is affected

by the other agent’s action such that the principal would reward the agents

when their output match, i.e., ui(ci, Xi, X−i) = ci + 2 if Xi = X−i. Then

there is no Nash equilibrium as seen in Table 1.4.
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Table 1.4: Correlation between agents’ outcomes with no equilibrium

A B

A 4,3 2,2

B 1,1 3,4

With two simple examples from above, we conclude that incentive contracts in

multi-agent systems are a significant and general model with many applications, and

solving to the optimal contracts is more complicated than it may seem on the surface.

This thesis investigates a solvable framework for dynamic incentive contracts that

can be applied to differently structured organizations.

1.1.2 Statement of the Problem

This thesis covers the following three types of incentive contract(s) models in

Figure 1.1. The planning horizon is either finite or infinite in continuous time. The

single-agent model (Figure 1.1a)) that initiated this field of study is motivated by

Holmstrom and Milgrom [61] and completed in the celebrated work of Sannikov

[104, 105]. The case with infinitely many agents, i.e., mean-field approximation

(Figure 1.1c) of incentive contracts, has recently been solved by Elie et al. [37]. This

thesis first explores the realm in between – the number of agents on the same level

(Figure 1.1b) is finite, and their correlation is not trivial as in Thakur [117]. We

characterize under what conditions this type of multi-agent contracts exist, and then

seek an efficient method to find these contracts satisfying the IC- and IR-constraints

as in Example I.1.

The sequence of decisions unfold as follows:

1. The principal offers contracts to agents simultaneously.

2. The agents evaluate the contracts the offered contracts and either accept or

decline them. The multi-agent equilibrium (defined in §III) guarantees that no
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(a) Single-Agent Incentive Contract Model (Chapter II)

(b) Multi-agent Incentive Contracts Model (Chapter III)

(c) Mean-Field Incentive Contract Model

Figure 1.1: Organizational alternative structures in incentive contracts

agent has the motivation to deviate from the group’s decisions.

3. If agents accept the contracts, they exert the effort in each period.
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4. External randomness occurs, which affects the agents’ output processes.

5. The principal observes the output and remunerate the agents according to the

terms in the signed contracts.

The information available for each decision-maker is the key research question

that differentiates this thesis from the other decentralized control or dynamic games

literature. Intuitively, the less information shared between different parties, the

more challenging to find the optimal contracts. Two basic rules followed in this

thesis are: First, the principal should have no direct access to the action taken by

the agents working for it, videlicet, the moral hazard problem exists. Second, agents

have less power in choosing between different optimal contracts at equilibrium. The

latter assumption is natural as the principal has the absolute authority in designing

contracts [73].

1.1.3 Research Objectives

1. Characterizing the sufficient conditions for the existence and uniqueness of

multi-agent incentive contracts.

2. Analyzing the government incentives for automated vehicles (AVs) as incentive

contracts with a market penetration process.

3. Designing the government incentives for electric vehicles (EVs) as two-agent

contracts that coordinating the sales of EVs and the number of EV charging

stations nationwide.

Besides, this dissertation uses teal-world data in the numerical experiments aiming

to provide managerial insights for transportation policymakers.
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1.1.4 Structure of the Thesis

This thesis is organized in logic order, as in Figure 1.1. We review the related

literature in the remainder of this chapter to set the stage for our contribution. §II

revisits the basic setting – the government agency incentivizes a AV manufacturer

for the fast adoption of AVs and the mitigation of negative externalities due to low

market penetration. §III proves the existence and the uniqueness of multi-agent

incentive contracts. §IV demonstrates the power of this model with an application

to EV subsidies. We end the thesis with conclusions and future research directions

in §V.

1.2 Literature Review

1.2.1 A Brief Review of Incentive Contract Theory

Reviewing the broader contract theory literature is beyond the scope of this thesis;

hence this section only summarizes the evolution of incentive problem in its principal-

agent form. This problem is a special case of stochastic Stackelberg differential games

played between a principal and an agent. The principal expects the agent to exert

a targeted level of effort, and knows ex ante that, once accepted the contract, the

agent will have no incentive to deviate from this level (i.e., satisfying the incentive-

compatible condition) over the planning horizon. As a result, incentive contracts

bypass any moral hazard. However, finding such a globally optimal contract is not

trivial. Spear and Srivastava [113] studied the dynamic moral hazard problem in a

discrete-time setting, where the state space explodes exponentially in the size of the

planning horizon (the curse of dimensionality in dynamic programming). Holmstrom

and Milgrom [61] proposed a continuous-time model. In this setting, the agent’s

output process is represented by a stochastic differential equation (SDE) whose drift
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term is controlled by the agent’s effort. As a result, the continuous-time incentive

contract problem is a limit of discrete-time dynamic games whose number of stages

becomes unbounded in any finite interval. Some extensions of their work include

Schättler and Sung [106], Sung [115], and Müller [91].

In recent years, following the groundbreaking work of Sannikov [104], there has

been a resurgence of interest in the dynamic contract theory. As a consequence,

we can decouple the principal’s and the agent’s problems as the agent’s effort as a

function of the parameter. The resulting principal’s problem can then be solved by

dynamic programming (more specifically, a Hamiltonian-Jacobi-Bellman equation)

for the incentive contract [23–25]. The single-agent incentive contract problem has

then been explored in many settings [29, 54, 57, 88, 100, 125]. A contracted agent

can multitask with endogenous risk-taking [126].

Incentive contract in multi-agent systems is a natural extension considering the

nature of teamwork in the enterprise. Keun Koo et al. [71] presented the first exten-

sion of multi-agent incentive contracts that initiated a stream of literature for team

incentives using the Martingale approach [36, 37, 48, 117]. Similarly, the incentive-

compatible condition is satisfied if the agents’ actions form a subgame perfect Nash

equilibrium over the planning horizon. However, in the multi-agent setting, new

challenges arise due to varied interactions between agents. For example, an arbitrary

agent may compare both its effort and payoff with others – such a phenomenon is

called inequity aversion [38]. Goukasian and Wan [52] showed that the inequity aver-

sion is present in multi-agent incentive contracts, and the agents’ comparisons may

lead to envy or guilt and lower their morale over the planning horizon. This thesis

answers an unanswered problem in prior work: What are conditions for the existence

and uniqueness of multi-agent Nash Equilibrium? It is a premise for implementing
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this approach to a miscellaneous collection of problems on this avenue.

1.2.2 Empirical Evidence for Incentive Contracts

Many empirical studies have tested the incentive contract theory. Bloom and

Van Reenen [9] found that applying incentive contracts raised the productivity of

the firm and increased the variance of individual performance. Benabou and Tirole

[7] gave an opposite example in the financial industry. It turned out that contingent

rewards (extrinsic motivation) may conflict with the individual’s desire to perform

tasks (internal motivation). Chiappori and Salanié [19] presented a comprehensive

review of the econometric of contract theory in a static setting. The reverse causality

differentiates the test of adverse selection and moral hazard: in an adverse selection

context, the choice of contract arises from the agent’s type; in a moral hazard context,

the agent’s action affects contracts’ performance.

Incentive contracts in a dynamic setting were also tested in insurance, information

technology, and corporate finance [1, 20, 34, 127]. New features such as memory,

learning, and commitment are revealed in the dynamic empirical approach. Note that

continuous-time models are notoriously hard for implementation, and few empirical

studies verify it in literature. He [56] tested the executive compensation problem

where the firm size follows a geometric Brownian motion. The firm size is affected by

this executive manager’s effort, which then awards his or her equity shares. Giat and

Subramanian [50] developed a discrete-time approximation approach to fit principal’s

posterior belief in continuous-time contracts. Their study found that the interaction

between asymmetric beliefs, risk-sharing, and adverse selection costs caused the time-

paths of the agent’s incentive intensities to be either increasing or decreasing. Similar

empirical studies in firm theory include [2, 6, 18].
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1.2.3 Gamification in Emerging Transportation Systems

Emerging transportation refers to advanced technologies, including electric vehi-

cles (EVs), connected and automated vehicles (CAVs), and emerging shared mobility

services springing around them. The early adoption of these technologies is usually

supported by governmental incentives, financial or non-financial, so that today’s cash

grants endogenize the future social benefit. Gamification applies game-design ele-

ments and game principles in the non-game context of transportation. Stackelberg

games are most relevant to this field – the government agency plays as a leader who

designs networks, offers incentives, or allocate resources to the controlled transporta-

tion sector.

In classic transportation literature, gamification is applied on a network level. For

example, Yang et al. [129] studied the user equilibrium in a Stackelberg routing game

with the existence of oligopoly Cournot-Nash firms. The system optimal player is

the leader and the user equilibrium, and the Cournot-Nash players are the followers.

Öner et al. [97] formulated the operations of automated highway systems as a mean-

field Stackelberg game in which a control center as a leader imposes fixed policies on

follower vehicles to minimize the total consumed energy and travel time. In trans-

portation regulatory literature, gamification is applied on an aggregate level. Shinde

and Swarup [112] studied the demand response for EV charging problems where the

leaders are the utility company, and EV aims to reduce the power generation cost

and charging cost. Other demand response users are followers. Luo et al. [81] used a

dynamic game model that relaxed the information-sharing assumptions in the design

of governmental incentives for automated vehicles [14]. More detailed review on each

application can be found in §II and §IV, respectively.

In summary, incentive contracts are a theoretical economic model abstracted from
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different applications. This thesis expands the setting from contracting with one

agent to multi-agent, which opens doors to modeling the collaboration and compe-

tition in complex industrial organizations. Compared with static incentive theory,

dynamic contracts can provide new managerial insights such as the function of mem-

ory and commitment in repeated games. This dissertation applies these results to

the regulations of automated vehicles (§II) and electric vehicles (§IV) aiming to ac-

celerate the adoption of emerging transportation.



CHAPTER II

Single-Agent Incentive Contracts for Automated Vehicles

2.1 Transportation Incentive Design: an Overview

Transportation is one of the most publicly subsidized sectors in the United States

and much of the world. Conventional transport such as public transit highly relies on

capital and operating subsidies from federal, state, and local sources. Recent research

has been paying attention to the governmental incentives for emerging transporta-

tion technology such as electric vehicles (EVs) [60], car-sharing [90], and emerging

connected and automated vehicles (CAVs) [81]. For example, despite the low market

penetration rate, the total cost of EV subsidies is substantial. In the United States,

the federal subsidy could end up costing as much as $15 to $20 billion in 2019 [111].

Notice that most of these conventional and emerging transportation technologies or

services are operated exclusively, i.e., at the cost of validating payment, and everyone

in the area pays for the subsidies whether or not using it. On the other hand, there

are positive traffic network externalities associated with these applications. Using

public transit or CAVs can potentially reduce traffic congestion; transportation elec-

trification can reduce emissions; hence each taxpayer benefits them. The overuse

of subsidies begs a proper justification for why subsidies in place are effective and

efficient – if not so, how to improve them. This chapter, along with the follow-

13
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ing chapters aim to create a dynamic game model for evaluating, designing, and

improving the planning of incentive policies.

The remainder of this chapter focuses on subsidies for emerging automated vehicle

technology and is organized as follows. In §2.3, we formulate the AV subsidy problem

by integrating a DOI model and DSG. The optimal subsidy policy is computed by

dynamic programming with a set of implementability constraints. We then prove

the structure of optimal AV subsidy policies and demonstrate their robustness by

numerical experiments. In §2.4, the model is extended to a changing AV market

potential with price incentives. Finally, we conclude the chapter in §2.5.

2.2 Accelerating the Adoption of Automated Vehicles

Automated Vehicles (AVs) are anticipated to tremendously enhance the efficiency,

safety, and convenience of the existing transportation system, with new businesses

springing up around them. Pioneering companies such as Waymo and GM Cruise

have been working to develop, test, and pilot commercial services. A stream of

research has been conducted to quantify the profound and far-reaching implications

of AVs on the transportation system, society, and the economy [15, 17, 22, 42, 53,

89, 120]. In general, the efficiency gains from AVs are from the following three

sources: (a) Vehicle platooning can improve substantially the throughput of highway

facilities; (b) Advanced traffic management schemes (e.g., adaptive speed control and

harmonization) that leverage vehicle connectivity can further increase the throughput

and improve the stability of the traffic stream; (c) Automation can make on-demand

shared mobility services more cost-effective. Low-cost shared mobility services have

the potential to yield higher vehicle occupancy and reduce overall vehicular traffic

demand.
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All these efficiency gains hinge on the market penetration level of AVs being

sufficiently high. At low market shares, AVs exert little impact on enhancing trans-

portation system efficiency [86]. Worse yet, the early deployment of AVs will likely

compromise efficiency. At early stages of the deployment, car manufacturers (original

equipment manufacturers or OEMs) will likely configure their AVs with a lower oper-

ation speed and excessive safety clearance, i.e., longer time gap or headway, to ensure

safety and avoid liability. Undoubtedly, the presence of these types of AVs in the

traffic stream will slow other vehicles down (imposing so-called congestion external-

ities) and thus compromise the efficiency of transportation systems [12, 13, 49, 107].

Such an efficiency degradation could last for a very long time until the market pen-

etration of AVs reaches a certain threshold [107]. In addition, the benefits promised

by AVs can be offset by the increase in vehicle miles traveled (VMT) generated by

empty trips of AVs and induced travel demand [21, 43, 79, 83], particularly at the

early stage of AV deployment when necessary transportation policies are not in place

and the shared mobility market is not large enough to facilitate ride-sharing.

Figure 2.1: Efficiency benefit of AV deployment

With all these considerations, we envision that the overall efficiency benefit offered

by AVs with various market shares likely follow a trend depicted in Figure 2.1. The
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benefit initially drops and then rises with the market penetration of AVs. For lack

of a better word, we call the initial stage of performance drop the “dark age” of the

AV deployment. AV market failure may occur if the market share stagnates in this

“dark age” for a long time. Such an initial drop is pretty unusual and does not arise

in the deployment of other new technologies such as electric or connected vehicles.

A powerful policy to address the aforementioned negative impacts of AVs is to

price their utilization in a way that internalizes their external costs incurred by longer

time headway or empty trips, for example. However, the timing of implementing this

policy is critical, since such a congestion charge or Pigouvian tax may increase the

cost of using AVs, thereby discouraging their early adoption. It appears plausible

that we need to endure short-term pains for long-term benefits.

A suite of policies needs to be in place to fully correct the possible AV market

failure. However, the objective of this chapter is modest. Given the social benefit

curve as in Figure 2.1, we investigate a subsidy policy to accelerate the deployment

of AVs adaptively from lower to higher market penetration rates. The objective

of AV subsidies is to maximize the total expected efficiency benefits from the AV

deployment over the planning horizon. The questions we are interested in exam-

ining are who should be incentivized, and how much subsidies should be enacted.

While subsidizing customers can nudge them to adopt the AV technology, subsi-

dizing manufacturers can directly motivate them to innovate the technology. The

latter strategy may effectively mitigate the negative externalities of prototype AVs.

It thus remains an open question, which side should be directly incentivized. With

a time-varying market share, we also need to consider when and how long subsidies

should be implemented. Note that previous research treating it as a static problem

[10, 16] failed to answer the optimal timing for enacting AV subsidies. In contrast,
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we investigate how to implement AV subsidy policies that are adaptive to the AV

market share. Different from previous work [69, 94, 108, 119], our model can also

capture the uncertainty in forecasting the diffusion of AV technology.

The contribution of this chapter is to develop a new approach to find the optimal

AV subsidy policy that shortens the “dark age” of AV deployment. Our approach

is able to solve for non-myopic subsidy policies with the information asymmetry be-

tween the government agency and AV manufacturer. Subsidizing new technologies

is never a one-way command-and-control process [4, 27], while full information is

widely implied in the previous literature. For instance, [66] recently explored opti-

mal subsidy paths to make a technology competitive at a given future period. [75]

established a subsidy scheme to induce customers to adopt new technology over time.

Results showed that, if customers are myopic, an increasing subsidy scheme is pre-

ferred; otherwise, subsidies should decrease over time to induce the adoption in early

periods. The effectiveness of those suggested AV subsidy policies may be reduced

because of the information asymmetry. This chapter considers two essential prob-

lems: (a) How to model the non-myopic decision makings of the government agency

and the manufacturer; (b) How to avoid the information asymmetry that may lead

to an unintended AV market failure. The asymmetric information is caused by gov-

ernment agency’s unawareness of the subsidized entity’s actual effort in promoting

AVs. The new approach integrates two modeling techniques cohesively: a Diffusion

of Innovations (DOI) model that describes the evolution of the AV market share and

captures how the AVs’ efficiency benefit varies with the market share, and dynamic

Stackelberg games (DSG) in continuous time.
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2.3 Accelerating AV Market Penetration by Subsidies

Our AV subsidy design framework integrates a DSG model with a DOI process.

The main idea is as follows. In the near future, the evolution of AV’s market share

follows a DOI model with uncertainty. The government agency is the leader (denoted

by “G”) who establishes statutory subsidy policies with the intention of accelerating

the adoption of AVs. AV manufacturers are the followers (denoted by “A”) who

respond to the subsidy policies by enhancing the AV innovations. Both are non-

myopic decision makers because they consider each other’s decisions with regard to

the time-varying AV market dynamics. The information asymmetry occurs when

the government agency expects to advance the AV technology by subsidizing the

manufacturers. However, the manufacturer’s exact effort in AV innovations is not

observable. Such asymmetric information on AV innovations compromises the cost-

effectiveness of the AV subsidy policies. On the other hand, given that more advanced

AV innovations will accelerate the AV market penetration process, the government

agency can use the time-varying AV market share as an imperfect indicator of the

manufacturer’s effort. The government agency’s objective is to find an optimal AV

subsidy policy that maximizes its total expected payoff (i.e., the efficiency benefit of

AVs) over the planning horizon. In what follows, we first introduce how to model

the AV market penetration process with uncertainty, then we integrate this process

into a DSG setting.

2.3.1 AV Market Penetration with Uncertainty

The DOI model depicts the process by which the AV technology spreads in the

transportation system. The AV market size, i.e., the cumulative number of AVs

sold by time t, is denoted by N(t). The AV market potential, i.e., the population of
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potential AV consumers, is denoted by M(t). Both AV market dynamics variables are

observable to the government agency. The DOI model presumes that AV consumers

consist of two groups: innovators who are early users of AVs and imitators whose

tendency to purchase AVs depends on the size of innovators. Therefore, the market

penetration rate is determined by two diffusion parameters: (a) the coefficient of

external influence a (the “power of innovation”) that represents the manufacturer’s

effort in AV innovations, and (b) the coefficient of internal influence b (“ the power

of contagion”) that represents the word-of-mouth effect within the consumers’ social

network. Although many extensions of the model have been proposed, we simplify

the following analysis by using a (generalized) Bass diffusion model [5]. The Bass

diffusion model is widely recognized as a seminal work that initiated a stream of DOI

models. Nevertheless, our subsidy design paradigm can easily adopt more complex

market penetration models [94, 109, 116]. At time t, the AV market penetration rate

dN(t)/dt follows the dynamics below,

dN(t)

dt
= a
(
M(t)−N(t)

)
+ bN(t) · M(t)−N(t)

M(t)
,

which is a combination of the innovation effect (i.e., the rate attributes to innovators

as the first term) and the imitation effect (i.e., the rate attributes to imitators as the

second term).

The AV market forecast may overestimate or underestimate the AV market growth

in the future. It is natural to assume that the uncertain AV market dynamics follows

a Gaussian process. Each AV market penetration sample path is generated by an

extraneous Brownian motion B(t) (Figure 2.2), and the AV market dynamics is

described by the following stochastic differential equation:

dN(t) =

(
a+ b

N(t)

M(t)

)
(M(t)−N(t))dt+ σN(t)dB(t),(2.1)
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where the drift term follows the DOI model above, and the diffusion term has a

constant volatility σ. Note that the uncertainty aggravates as the time horizon

expands in Figure 2.2.

Figure 2.2: Sample paths, mean and 95% confidence interval of the DOI model for AV market
penetration

The uncertainty in the AV market penetration process implies the possible ineffi-

ciency of AV subsidy policies because of information asymmetry. Over the planning

horizon t > 0, the government agency continuously receives the efficiency benefit

of AVs represented by a function of market size g(N(t)). As shown in Figure 2.1,

g(N(t)) < 0 in the “dark age” of AV deployment. To accelerate the early adoption

of AVs, the government agency would like to incentivize the manufacturer to realize

a large a(t) during the “dark age” by a sequence of AV subsidies.

2.3.2 AV Subsidy Policies for Dynamic Stackelberg Games

In what follows, we formulate the AV subsidy problem as a DSG in the simplest

setting (Figure 2.3). An extension that includes varying market size and price dis-

count mechanisms for consumers are discussed in §2.5. When the manufacturers’

responses are additive, we can use a single agent to present a group of agents with
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linearly aggregated responses. We discuss more complicated interactions between

agents at the end of this chapter.

Figure 2.3: DSG model for the AV subsidy problem

After implementing the AV subsidies, the efficiency benefit g(N(t)) is what the

government agency gains, and the total subsidies are what it pays to the manufac-

turer. As in [69], we suppose that the government agency’s instantaneous payoff is a

linear combination of the benefits and costs. The risk-neutral government agency’s

goal is to initiate a sequence of per-unit AV subsidies {SA(t)}t≥0 to maximize the

total expected discounted payoff:

E
[
rG

∫ ∞
0

e−rGt
[
g(N(t))− SA(t) · dN(t)

dt

]
dt

]
,

where we use a continuously compounded discount factor e−rGt. Note that rG in front

of the integral normalizes the government agency’s total payoff to annuity payments.

After receiving the subsides, the AV manufacturer reacts with a response R(t).

The response represents a target action that affects the DOI process, and the exact

value of R(t) is not observable by the government agency. In practice, the government

usually lacks the access to AV manufacturer’s private information on innovations, or

monitoring the effort is too costly. Thus, the government agency who only observes

the AV market size N(t) (i.e., an imperfect indicator of R(t)) needs to specify the

amount of subsidies SA and the sensitivity level rAY in the policy (Figure 2.3).
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In the simple setting, we assume thatR(t) directly controls the power of innovation

as R(t) ≡ a(t). While most of the DOI literature focuses on controlling the imitation

effect represented by b, promoting the AV innovation represented by a is the objective

of AV subsidies. This is because the innovation effect is the main driving force in the

early adoption of AVs. In the extension, we also discuss how R(t) can include other

factors like price mechanisms. The manufacturer’s instantaneous utility function is

h(SA(t), R(t)). With a given AV subsidy policy, the AV manufacturer’s objective is

to maximize the expected total discounted utility:

E
[
rA

∫ ∞
0

e−rAth(SA(t), R(t))dt

]
.

To guarantee the existence of the best response, the AV manufacturer is assumed

to be risk-averse, i.e., the instantaneous utility h is concave and satisfies ∂h/∂SA > 0

and ∂h/∂R < 0. Risk aversion expressed by the concavity of the utility function h

is a realistic assumption. Non-myopic AV manufacturers who are exposed to the AV

market uncertainty prefer not to overexert their innovations now for future market

growth. We will give a more rigorous proof of this in Proposition II.5.

The optimal AV subsidy policy characterizes a sequence {SA(t)}t≥0 that maxi-

mizes the government agency’s expected total discounted payoff if only the AV man-

ufacturer cooperates with the best responses. Following the literature of mechanism

design, we call the conditions that specify the manufacturer’s best responses the

IC-constraint (incentive-compatible) and the IR-constraint (individual-rationality),

respectively. The IC-constraint guarantees that the AV manufacturer’s best response

solves the utility maximization problem above. The IR-constraint guarantees that

the AV manufacturer stays in the market as long as the cumulative expected utility

over the horizon exceeds some pre-defined quantity W0. In summary, the optimal
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AV subsidy policy solves the following optimization problem:

max
SA(t):t≥0

E
[
rG

∫ ∞
0

e−rGt
[
g(N(t))− SA(t)

dN(t)

dt

]
dt

]
(2.2)

s.t. a(t) ∈ arg max
a

E
[
rA

∫ ∞
t

e−rAuh(SA(u), a(u))du

]
,∀t ≥ 0 (IC-constraint),

E
[
rA

∫ ∞
0

e−rAth(SA(t), a(t))dt

]
≥ W0 (IR-constraint).

Plugging the AV market penetration process (2.1) into the objective function of

(2.2) yields E[
∫∞

0
σN(t)dB(t)] = 0. This does not mean that the asymmetric infor-

mation is eliminated because a(t) is still not directly controlled by the government

agency. The government agency’s objective function can be rewritten as:

max
SA(t):t≥0

E
[
rG

∫ ∞
0

e−rGt
[
g(N(t))− SA(t)

(
a(t) + b

N(t)

M

)
(M −N(t))

]
dt

]
.

Before investigating how to find the optimal AV subsidy policies, we first intro-

duce a hierarchy of feasible policies that are in the government agency’s interest.

Suppose that the joint domain of the government agency’s decision SA(t) and the

manufacturer’s response R(t) is a known compact set U = USA × UR ∈ R2. The

support USA and UR are known a priori due to the limited budgets of both sides

at time t. In what follows, we define the admissible, implementable, and optimal

subsidy policy, respectively.

Definition II.1. {SA(t), R(t)}t≥0 are admissible if (SA(t), R(t)) ∈ U for all t ≥ 0

along any path generated by the stochastic process B(t).

The implementable policies guarantee that the AV manufacturer will realize the

target responses after receiving the subsidies. With the presence of information

asymmetry, the attainable implementable policies are second best.

Definition II.2. {SA(t), R∗(t)}t≥0 is implementable if:
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1. {SA(t), R∗(t)}t≥0 is admissible,

2. For a given SA(t), R∗(t) are optimal for the AV manufacturer’s utility maxi-

mization problem (i.e., the policy is incentive-compatible).

Finally, our goal is to find the optimal subsidy policy defined below.

Definition II.3. {S∗A(t), R∗(t)}t≥0 is optimal if it is implementable and maximizes

the government’s expected total payoff.

The optimal subsidy policy is dependent on the AV market dynamics and the

expected total payoff. Hence, the decisions are adaptive and non-myopic over the

planning horizon. Since the bilateral decisions SA(t) and R(t) are coupled in (2.2),

and there are infinite number of IC-constraints in continuous time, below we shall

introduce a tractable scheme to decompose the optimal AV subsidy problem.

2.3.3 Solving for Optimal AV Subsidies

The optimization for the AV subsidy problem (2.2) can be transformed into a

dynamic program. This tractable scheme for solving the DSG is inspired by the cele-

brated results in differential games [25, 104]. The road map for the dynamic program

transformation includes three steps. First, we can find an equivalent representation

of the IC-constraint (Theorem II.4). Second, the representation can be parameter-

ized and incorporated into the objective function with mild smoothness assumptions

(Proposition II.5). Finally, the optimal AV subsidy policies can be computed by

dynamic programming in continuous time, i.e., a Hamilton-Jacobi-Bellman (HJB)

equation (Theorem II.6).

We denote the manufacturer’s response as a generic variable R(t). One of the

central ideas in the DSG is continuation value, which is the expected discounted total

payoff/utility at time t with the optimal subsidy policy followed to the end of the
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horizon. This function is equivalent to the value function in dynamic programming

or reinforcement learning. More specifically, the AV manufacturer’s continuation

value at time t ≥ 0 is given by

W (t) = E
[
rA

∫ ∞
t

e−rA(s−t)h(S∗A(s), R∗(s))ds|Ft
]
,

where the filtration Ft represents the information collected by time t (including the

decisions SA and Y , and the market dynamics X). W (t) is a state variable in the

dynamic program. Applying the Martingale representation theorem, we can derive

the dynamics of W (t) as follows:

dW (t) = rA (W (t)− h(S∗A(t), R∗(t))) dt+ σrAY (t)dB(t),

where rAY (t) is the sensitivity level of the manufacturer’s continuation value W (t)

with respect to the AV market size N(t). Y (t) measures the marginal utility gained

by increasing the response R(t). It is a well-defined variable because the dynamics

of W (t) and N(t) are adapted to the filtration generated by the process B(t), i.e.,

the extraneous noise in the AV market forecast.

Since U is compact, we denote the set UR = [R, R̄]. For instance, R(t) ≡ a(t) ∈

[0.01, 0.04] in this setting [84]. Over the infinite planning horizon, we assume a

transversality condition lims→∞ E[e−rAsW (t + s)] = 0. Then we can derive the fol-

lowing theorem that converts the subsidy policies respecting R(t) to Y (t) by the

comparison principle.

Theorem II.4 ([104]). For any given subsidy policy {SA(t), Y (t)} at any t ≥ 0, the

IC-constraint that derives the manufacturer’s optimal decision in (2.2) is equivalent

to:

h(SA(t), R(t)) + Y (t)R(t) ≥ h(SA(t), R̂(t)) + Y (t)R̂(t) for all R̂(t) ∈ [R, R̄]
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Proof. Theorem II.4 Given the dynamics of N(t) in equation 2.1, we can compute the

dynamics of the market penetration rate X(t) when (a) the AV manufacturer control

the power of innovation, i.e., R(t) = a(t) ; (b) the AV manufacturer controls the

pricing incentives, i.e., R(t) = p(t). For brevity, we only prove the more complicated

case R(t) = p(t) in below.

dN(t) = M(t)

(
a+ b

N(t)

M(t)

)
(1− N(t)

M(t)
)dt+ σN(t)dW (t),

dM(t) = M(t)p(t)dt.

Defining X(t) = (
N(t)

M(t)
) and applying Ito’s lemma yields

dX(t) = (a+ b
N(t)

M(t)
)(1− N(t)

M(t)
)dt+ p(t)

N(t)

M(t)
dt+ σ(

N(t)

M(t)
)dW (t),

= (a+ (b− a+ p(t))X(t)− bX(t)2)dt+ σX(t)dW (t).

Assume that at time t > 0, the AV manufacturer follows the target responses that

are obtained by solving the optimization problem (2.2). We assume that rA = rG = r

and define

VA(t) =

∫ t

0

re−rsh(s)ds+ e−rtW (t)

where W (t) is the manufacturer’s continuation value at time t.

It is easy to see that VA(t) is a martingale, i.e.,

E [VA(t)|Fs] = VA(s),∀s < t.

From the Martingale representation theorem, there exists an adopted process Y (t)

such that

dVA(t) = re−rtσY (t)dB(t),(2.3)
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where Y (t) is adapted to the filtration of B(t), and rY (t) can be interpreted as the

sensitivity of W (t) to X(t). Applying Ito’s lemma to VA :

dVA(t) = re−rth(t)dt− re−rtW (t)dt+ e−rtdW (t).

Plugging into (2.3) we have the dynamics of W (t):

dW (t) = r [σY (t)dB(t) + (W (t)− h(t))dt] .

We use the Martingale method to show the dynamics of manufacturer’s continua-

tion value. For given time t, let the manufacturer’s optimal response be R∗(t) : t ≥ 0.

Define a non-optimal control, where R̂(u), u ≤ t is arbitrary:

R̂(u) =


R̂(u) 0 ≤ u ≤ t

R∗(u) u ≥ t

and

ĥ(t) = ĥ(SA(t), SC(t), R̂(t)).

Now with

V̂A(t) =r

∫ t

0

e−ruĥ(u)du+ e−rtW (t),

dV̂A(t) =e−rt{rĥ(t)dt+ dW (t)− rW (t)dt}

=e−rt{(r(ĥ(t)− h(t))dt+ rY (t)σdB(t)}.

Define the Girsanov’s kernel

φ(t) = R̂(t)−R(t),

and the measure change:

L(t) = exp{−
∫ t

0

φ(u)B(u)− 1

2

∫ t

0

φ2(u)du}
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and dP̂ (t) = L(t)dP (t). It follows from the Girsanov’s theorem that:

σdB(t) = σdB̂(t) + φ(t)dt.

Thus, under measure P̂ , the X(t) dynamics becomes:

dX(t) =
(
a+ (b− a+ R̂(t))X(t)− bX(t)2

)
dt+ σX(t)dB̂(t),

and the dynamics of V̂A(t) becomes:

dV̂A(t) = e−rt
{[
r(ĥ(t)− h(t)) + rY (t)(R̂(t)−R(t))

]
dt+ rσY (t)dB̂(t)

}
.

By comparison theorem, under R∗, V̂A must have a negative drift, giving the

optimality condition:

h(t) + Y (t)R(t) ≥ ĥ(t) + Y (t)R̂(t) for all R̂(t).

Similar proof can be applied to the case the manufacturer determines the power

of innovation a. We show the result for the case in which the manufacturer chooses

the optimal response R. Assuming that function h is differentiable to control R so

for any given Y (t), the first-order optimality condition suggests that at optimality,

dh(R(t), S(t), Y (t))

dR(t)
+ Y (t) = 0.

In the risk-neutral manufacturer case, i.e., h is linear in R, and since a linear

(more generally convex) function achieves it maximum on the boundary so that the

optimal pricing policy becomes a bang-bang control:

R∗(t) =


R̄ if Y (t) ≥ 0

R if Y (t) < 0,

which means that the government agency should penalize those who frequently ma-

nipulate the prices to the extremes.
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For a risk-averse agent, if h is continuously differentiable, and its first-order deriva-

tive is invertible (this is the case when h is strictly concave in R), then the optimal

control is

R∗(t) = (h′)−1(−Y (t)),

where (h′)−1 is an inverse function of the first derivative of h.

By imposing mild smoothness and concavity conditions on the AV manufacturer’s

utility function, we can reduce the countably infinite IC-constraints into a parametric

function of SA and rAY (t), as seen in the following proposition.

Proposition II.5. R∗ is the best response from the AV manufacturer if

1. For any given subsidy policy {SA(t), Y (t)}, if the AV manufacturer is risk neu-

tral (i.e., h is linear in R), then R∗(t) satisfies the following optimality condition

R∗(t) =


R̄ if Y (t) ≥ 0

R if Y (t) < 0.

2. For any given subsidy policy {SA(t), Y (t)}, if h is continuously differentiable,

concave, and nonlinear in R, then R∗(t) solves

∂h(SA(t), R(t))

∂R(t)
+ Y (t) = 0

for all t ≥ 0.

The intuition of recommending a sensitivity level rAY (t) in the AV subsidy policy

is related to the dual roles of Y (t) above. The first role is to ensure no violation of

the IC-constraint. In Proposition II.5, Y (t) is the AV manufacturer’s marginal utility

for enhancing AV innovations. Besides the fixed amount of subsidies SA(t) received
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over the planning horizon, the manufacturer is incentivized to increase the response

R(t) to gain higher utility with the presence of Y (t). SA(t) are still necessary to

guarantee that the IR-constraint is satisfied. The second role is to penalize the in-

formation asymmetry. In the dynamics of the AV manufacturer’s continuation value

W (t) and Theorem II.4, a higher sensitivity level rAY (t) will potentially increase the

stochasticity of its expectation on the future benefit. Therefore, the manufacturer is

forced to cooperate with accelerating the early adoption of AVs to reduce the risk of

increasing stochasticity. Proofs of Theorem II.4 and Proposition II.5 are as follows.

In summary, the subsidy policy including Y (t) and SA(t) is sufficient to break

down the information asymmetry. Proposition II.5 demonstrates how to find a map-

ping from a subsidy policy {SA(t), Y (t)} to the AV manufacturer’s optimal response

R∗(t). Such a sensitivity level could be easily included in practice, for example, a

suggested internal rate of return relevant to the advancements of AV technology.

Different from the previous literature [23, 104], the best response R∗ is basically a

function of SA and Y because of the DOI model.

o have a more intuitive state variable representing the AV market share, we nor-

malize (2.1) by a constant market potential M to obtain the dynamics of the market

penetration rate X(t) = N(t)/M ,

dX(t) = (a(t) + bX(t)) (1−X(t))dt+ σX(t)dB(t).

Let F (X,W ), denote a C2,2 function with two state variables – AV market share

X and the manufacturer’s continuation value W . With all these considerations,

we can solve the optimal subsidy policies in (2.2) by dynamic programming in the

following theorem.

Theorem II.6 (Optimal Subsidies). The government agency’s continuation value is
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equal to F (X,W ) that solves the following HJB equation:

rGF = max
SA,Y

{
rG[g(N)− SA ·M(a∗ + bX)(1−X)] + (a∗ + bX)(1−X)FX+

rA

(
W − h(SA, a

∗)
)
FW +

1

2
σ2(X2FXX + 2rAXY FXW + r2

AY
2FWW )

}
.

Proof. Theorem II.6 For notational convenience, we denote the government’s instan-

taneous payoff function f . The government’s continuation value Cg(t) at time t > 0

and the optimal S(u) is adopted in u ∈ [t,∞):

CG(t) = ER(y){rG
∫ ∞
t

erG(u−t)f(u)du|Ft}.(2.4)

At time t > 0, we can rewrite the government’s optimal value as:

VG(t) = rG

∫ t

0

e−rGuf(u)du+ e−rGtCG(t).

In case an optimal strategy is adapted, VG(t) is a Ft martingale, and thus has a

zero drift. By assumption, there exists a C2,2 function when the manufacturers choose

a(t), or a C1,2,2 function F when the manufacturers choose p(t). For convenience, we

suppose that CG(t) = F (P (t), X(t),W (t)).

Under the assumption the continuation value of the government can be written

as:

VG(t) = rG

∫ t

0

e−rGuf(u)du+ e−rGtF (P (t), X(t),W (t)).

Using Ito’s lemma the dynamics of VG(t) can be derived as:

dVG(t) = rGe
−rGtf(t)dt− rGe−rGtF (P,X,W ) + e−rGtdF (P,X,W ),

where the drift term is [pFP + (a + (b − a + p)X − bX2)FX + rG(W − h)FW +

1
2
σ2(X2FXX + r2

GY
2FWW + 2rGXY FXW )]dt.
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By setting the drift term to zero, we have the HJB equations in Theorem II.6. It

is easy to verify the following upper bound for the government’s continuation value:

F̄ (P ) = F (P,C, 1,W ) = supE{r
∫ ∞
t

er(u−t)f(P,C, 1)du|Ft} = r
1

r
ḡ(N) = g(e−PM0).

This means that W along with other state variables are in a compact set.

The proof of Theorem II.6 shows that it is sufficient to solve the above HJB

equation to solve for the optimal subsidies in (2.2). The proof also shows that W

is finite if the manufacturer’s utility function h is finite. Let W̄ denote the upper

bound of W . It is clear that {S∗A(t)}t≥0 are adaptive to the filtration generated the

market dynamics for all t ≥ 0. We can characterize the property of F in the following

proposition.

Proposition II.7. For a given X, there exists W ∗ ∈ [0, W̄ ] such that:

1. F (X,W ∗) = maxW F (X,W ).

2. For any W ∈ [0,W ∗], FW ≥ 0.

3. For any W ∈ [W ∗, W̄ ], FW ≤ 0.

4. For any W ∈ [0, W̄ ], FWW ≤ 0.

Proposition II.7 shows that the government agency’s continuation value F is par-

tially concave with regard to the AV manufacturer’s continuation value W . A brief

proof is as follows. Note that F is assumed to be a twice differentiable function in

W with uniformly bounded derivatives over SA and Y . By definition, F (0) = 0 and

FWW (0) < 0. With the assumption that h is a concave function (i.e., a risk-averse

manufacturer), and that there is a w ∈ [0, W̄ ] such that FWW (w) = 0, it follows

that the entire solution is a linear function, which is a contradiction. So FWW is
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nonpositive everywhere and F is a concave function in W . With FW (0) > 0, the

properties above are proved.

2.4 Main Results

The main analytical results are (a) comparing the cost-effectiveness of the AV

subsidy policies using the DSG model with a standard welfare maximization ap-

proach, and (b) characterizing the special structure of optimal AV subsidies. We use

numerical methods to verify those results.

2.4.1 Optimal v.s. Welfare-Maximization Subsidies

Social welfare maximization seems to be a more natural approach for designing

subsidies. However, the presence of information asymmetry can cause inefficiency

and friction in implementing those policies. Since Pareto efficiency is a necessary

condition for welfare maximization [26], we want to compare our results with the

subsidy policies that obtain the most efficient Pareto outcomes. The government

agency who has the flexibility to choose a different approach will prefer the one that

gives a higher payoff.

The comparison also shows how, in practice, to implement the optimal subsidy

policy. The policies derived from Theorem II.6 are implementable because: (a) The

mapping from the subsidy policy to the manufacturer’s best response in Proposition

II.5 holds; (b) The manufacturer’s continuation value W (t) and the AV market share

X(t) are observable as state variables. To convey the AV subsidy policies with the

state W (t), we propose a simple mechanism to evaluate the IR-constraint below.

The mechanism uses a Pareto optimality argument in Figure 2.4. We divide the

state space of W ∈ [0, W̄ ] into three regions, W1,W2, and W3 as follows:

1. W1 = [0,W ∗],
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2. W3 = {W ∈ [0, W̄ ] : F (W ) < 0},

3. W2 = [0, W̄ ] \ {W1,W3}.

With the computed subsidy policies {S∗A, Y ∗}t≥0, the government agency can de-

cide the continuous value F (W ) regarding the entry threshold W0. The optimal

subsidy policies over the three regions are:

1. If W0 ∈ W1, the optimal subsidy policies automatically drive the AV manufac-

turer to obtain W ∗ approximately. The government agency can enforce a higher

W ≈ W ∗ such that both the government agency and the manufacturer obtain

higher payoff/utility.

2. If W0 ∈ W2, the government can obtain the exact continuation value F (W0) by

implementing the optimal subsidies.

3. If W0 ∈ W3, then F (W ) < 0 so the subsidy policy is rescinded. In other words,

no feasible AV subsidy policy exists in this region.

Figure 2.4: Relationship between the government agency’s and the manufacturer’s continuation
value

Theorem II.8. For the government agency, the DSG optimal subsidy policy domi-

nates a welfare-maximization subsidy policy by providing a higher expected discounted
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total payoff for any given market share X ∈ [0, 1].

Proof. In Proposition II.7, we know that F is a partially concave function in W

(Figure 2.4). Then we have the following observations:

1. The solid curve in Figure 2.4 is the payoff possibility frontier.

2. The welfare-maximization subsidy policy is obtained within W2.

3. Because the government agency has the flexibility of choosing which policy on

the frontier to deploy, and both contracts are implementable, it will prefer to

implement the DSG subsidy policy.

Hence, if the IR-constraint threshold W0 is not large (which is chosen to be 0

by default), the continuation value with DSG subsidy policy dominates that of the

welfare-maximization subsidy policy.

2.4.2 Structure of Optimal AV Subsidy Policy

Previous literature found the optimal subsidy policies to be monotonic [66, 69, 75].

This chapter discovers a unique structure of the optimal AV subsidies {S(t)}t≥0 in

Proposition II.9 below. The presence of this two-threshold structure is unprecedented

because of the existence of the “dark age” of AV deployment. The structure is also

relevant to the weight of innovation and imitation effects in the DOI model (see

Figure 2.5).

Proposition II.9. The optimal subsidy policy has a two-threshold structure during

the product life cycle – an early subsidy and a late subsidy.

1. The early subsidy is implemented when the AV market share is low, and de-

creases with the ascending AV market penetration rate X.
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Figure 2.5: Optimal AV subsidy policy over the AV market penetration process

2. The late subsidy is implemented when the AV market share is high, and increases

with the ascending AV market penetration rate X.

Proof. Applying the first-order optimality condition with regard to SA on the right-

hand side of the HJB equation in Theorem II.6,

S∗A = (h′)−1

(
M(a∗ + bX)(1−X)

1
2
σ2rGFW

)
.

The inverse function of an increasing continuous function is also increasing, thus

h−1 is increasing in its argument. Let the domain of SA be USA = [S, S̄]. Because

of the S-shape of the DOI model, S∗A converges to the lower bound S when the

numerator is large and FW < 0 (W0 is small). When FW = 0, it is easy to see that

S∗A = 0 in Theorem II.6. The monotonicity of the h−1 also implies a monotonic

subsidy policy in early subsidy and late subsidy respectively. Therefore, the optimal

subsidies has the two-threshold structure described above.
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The transition of risk-sharing is another dimension of the subsidy policy that is

not mentioned in previous literature. Such a transition over the planning horizon is

because of the information asymmetry associated with the DOI process. At a low

market share, the government agency shall undertake a high risk when it implements

the early subsidy policies and creates the early demand for AVs. Such a relationship

reverses when the AV market penetration reaches the near-saturation stage. At a

high market share, the declining market growth stimulates the AV manufacturer to

reduce or even terminate the production of AVs. In response, the late subsidy policy

incentivizes the manufacturer to take more risk so to gain efficiency benefit in the

future.

2.4.3 Iterative Algorithm for Optimal AV Subsidy Policy

Since the optimal AV subsidies in Theorem II.6 can only be computed numerically,

we propose an iterative algorithm that provably converges to the optimal subsidies.

We can compute a menu of subsidy policies as a look-up table for different state

variables, so the government agency can easily implement them in practice. For

notational convenience, let the decision variables be u = [SA, Y ] and Λ(u) be the

left-hand side of the HJB equation in Theorem II.6. The gradient can be evaluated

because Λ(u) is assumed to be differentiable with regard to the control variables.

• Input data: DOI coefficients b and M , the initial AV market share X(0), pa-

rameters rG, rA, σ, the stopping criteria ε > 0, and functions g and h.

• Step 0: Initialization. For given u0 = (SA, Y ) ∈ U at iteration n = 0, we solve

Λ(u0) = rGF by an implicit finite difference method. This gives the value of F 0

over discretized state space.
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• Step 1: Search direction – compute the approximate value of gradient ∇uΛ by:

∇uΛ
n =

[
Λ(SA +4SA, Y )− Λ(SA, Y )

4SA
,

Λ(SA, Y +4Y )− Λ(SA, Y )

4Y

]
If ‖∇uΛ

n‖ < ε, stop; else go to Step 2.

• Step 2: Line search – find the step size γn

Λ(un + γn∇uΛ
n) = max

γ
Λ(un + γ∇uΛ

n).

• Step 3: Update the AV subsidy policies SA and Y by the gradient ascent un+1 =

un + γn∇uΛ
n. Go to Step 1.

The concavity of F ensures that the algorithm converges to the global optimal

solution. If changing the subsidies in real time is not possible, we can approximate

the subsidy policies with a sequence of subsidies in discrete time. [110] showed that

the gap of optimality also converges in implementation. Note that, with an infinite

horizon, we do not need to resolve the menu of AV policies using the renewal theory

[23].

Proof. Convergence of the iterative algorithm We have shown that function F de-

rived from HJB equation has a numerical solution that converges to an unique weak

solution. Next, we show that the optimization also converges to (S∗A, Y
∗). We show

the convergence of sequences as follows. Set Γ = {u : Λ(u) ≤ Λ(u0)} be a com-

pact set and there exists a subsequence N such that {un}n∈N converges to ū and

OΛ(ū) = 0.

Step 2 → Step 4 satisfies that Λ(un+1) > Λ(un) and OuΛ is the steepest ascent

direction. Thus the sequence {un} ⊂ Γ. Since Γ is a compact set, there exists the

required subsequence and limit point ū.
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Now assume that Λ(ū) 6= 0 and OΛ(ū) = d̄. There exists a step size γ̄ such that

Λ(ū+ γ̄d̄) = max
γ

Λ(ū+ γd̄),

and for some δ > 0, Λ is a C1,1 function

Λ(ū) = Λ(ū+ γ̄d̄)− δ.

Now define 
zn = un + γ̄dn

z̄ = ū+ γ̄d̄

.

Note that zn → z̄ thus the difference between the current point and the limit point,

vn = zn − z̄ → 0.

Let n ∈ N , and use the first-order approximation by the Taylor’s formula:

Λ(un + γ̄dn) = Λ(zn) = Λ(z̄)−∇Λ(z̄)Tvn.

As the sequences converge zn → z̄ and un → ū, the gradient ∇Λ(un) → ∇Λ(z̄).

As vn → 0,∇Λ(z̄)Tvn → 0. Hence, for sufficiently large n ∈ N , ‖∇Λ(z̄)Tvn‖ < δ
2
.

So

Λ(un + γ̄dn) > Λ(z̄)− δ

2
= Λ(ū) +

δ

2
.

Since γn is a maximizer, thus

Λ(un+1) = Λ(un + γndn) ≥ Λ(un + γ̄dn) > Λ(ū) +
δ

2
.

This contradicts the fact that Λ(ū) > Λ(un+1). Thus such a sequence of solutions

in the iteration set exists within such a compact set. This completes the proof of

convergence.
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2.4.4 Numerical Results

We shall validate the analytical results by numerical experiments and gain some

managerial insights using the AV market forecast data. By running sensitivity tests

on the optimal subsidies regarding these input data, we can identify the critical

research directions that may effect the AV subsidy policies.

The following instances are common to all numerical experiments.

1. The AV market penetration process refers to the DOI model in [109]. They used

a survey-based approach to estimate the individuals’ propensities to adopt AVs.

The estimated power of innovation was a = 0.108, and the estimated power of

contagion was b = 0.957. The AV market saturation was expected to be 71.3%

of the current automotive market in the United States, and thus the AV market

potential is M = 200 million cars [96].

2. The aggregate efficiency benefit of AVs that is measured by the unit reduced

value of driving time refers to [107]. The benefit function is quadratic: g(X) ≈

−650 + 6000 · (X − 0.33)2. The positive efficiency benefit is not obtained until

the AV market surpasses 67% market share. We term the market share that

gives most negative efficiency benefit (X = 33.5%) the worst-case market share,

and the constant 6000 the social benefit multiplier.

3. The AV manufacturer’s continuation value W is bounded if subsidies S are

bounded. Hence, we use a trivial upper bound for the government’s continuation

value F̄ = g(M).

− Solving Optimal AV Subsidies With these considerations, we computed the

optimal subsidies with varying states X and W by the above iterative algorithm. The

government’s continuation value F (X,W ) is shown in Figure 2.6a. The convergence



41

of the algorithm is validated by tracking the error of the government agency’s con-

tinuation value F between two subsequent iterations in Figure 2.6b. The normalized

government agency’s continuation value F/Fmax.

(a) Government agency’s relative continuation
value

(b) Convergence of the iterative algorithm

Figure 2.6: Solving the optimal AV subsidy policy by the iterative algorithm

Our observations include: (a) When the government’s continuation value F (X,W ) >

0, there exists an optimal subsidy policy (S∗A, Y
∗) that accelerates the early adoption

of AVs. In the case that F < 0, the AV market failure is unavoidable; (b) Fig-

ure 2.7 verifies the two-threshold structure of optimal subsidies during the market

penetration process.

Figure 2.7: Optimal AV subsidy (in unit of $1, 000) regarding the market penetration rate X
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2.4.5 Sensitivity Analysis of Optimal Subsidies

The government agency may be inquisitive about the robustness of optimal AV

subsidy policies with regard to the input data. We considered various uncertainties in

the data, among others: (a) the AV efficiency benefit function g(N), (b) the param-

eters in the DOI model, and (c) the noise of AV market forecast. For convenience,

we ran a sensitivity test on a fixed state (W = 4.2, X = 0.8), and used the measures

of relative objective values and subsidies in respect to the original instance.

(a) Sensitivity of the government agency’s continuation value F .

(b) Sensitivity of the optimal AV subsidy policy SA.

Figure 2.8: Sensitivity of the optimal AV subsidy policy to the efficiency benefit function

We have the following observations from the sensitivity analysis:

1. The government agency’s continuation value and optimal subsidy policies are

sensitive to the AV efficiency benefit function g(N).

(a) With an increasing social benefit multiplier (i.e., the magnitude of AV’s

efficiency benefit), the government’s expected total payoff increases (Figure
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(a) Sensitivity of the government agency’s continuation value F .

(b) Sensitivity of the optimal AV subsidy policy SA.

Figure 2.9: Sensitivity of the optimal AV subsidy policy to the market penetration DOI model

Figure 2.10: Sensitivity of the government agency’s continuation value and the optimal AV subsidy
policy to the market penetration volatility

2.8a).

(b) With an increasing worst-case penetration rate (i.e., the market share with

most negative efficiency benefit), the government agency’s total payoff de-

creases (Figure 2.8a).

(c) With an increasing efficiency benefit, the government agency is willing to

pay higher subsidies (Figure 2.8b).
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Hence, it is noticeably valuable to improve the operational rules of AVs, e.g.,

the time headway, in order to improve the efficiency benefit of AVs.

2. The government agency’s objective value is insensitive to the parameters of the

market penetration process (Figure 2.9a).

3. The optimal subsidy policies are sensitive to the parameters of the market

penetration process. If the initial adoption rate of AVs during the launching

period is fast, the required amount of AV subsidies can be reduced significantly

(Figure 2.9b).

4. The optimal subsidy policies are sensitive to the AV market forecast uncertainty.

Greater uncertainty (represented by the market penetration volatility σ) may

increase the gap of information asymmetry (Figure 2.10). Therefore, with large

noise in the AV market forecast, the government should reduce the subsidies to

penalize the hidden information of R(t).

2.5 Extension: Changing AV Market Potential

2.5.1 AV Subsidy Policies with Concerns of Car Ownership and Incentivizing Con-
sumers

We aim to relax the assumption that the AV market potential M (i.e., the popula-

tion of potential AV consumers) is fixed. With the rising of shared mobility, previous

literature has predicted the possible demise of private car ownership because of the

widespread of AVs [76, 119, 132]. This implies an extrinsic declining number of the

private-car consumers. On the other hand, AVs may be highly priced at the begin-

ning so that the initial AV market potential is restricted, which causes an intrinsic

ascending or declining trend of car ownership. In response, the government agency

can directly compensate consumers by offering a per-vehicle subsidy SC(t) to con-



45

sumers. We model the market potential with a simple exponential function of the

extrinsic car ownership trend β(t) and the retail price multiplier P (t) [5]

M(t) = M0e
−β(t)−P (t)+SC(t).

β(t) is a known process that represents the decreasing car ownership because of the

widespread use of AVs [109].

Figure 2.11: Extension to the DSG model for AV subsidy problem

Now the AV manufacturer can control the AV market potential M(t) by modifying

the price multiplier p(t) = −dP (t)/dt. p(t) is termed as the “pricing incentives”

for AVs. In the extension, price multiplier is the AV manufacturer’s response, i.e.,

R(t) ≡ p(t). The extension to the DSG model is depicted in Figure 2.11. It is easy

to see that:

dM(t) = −M(t)dP (t) = M(t)p(t)dt, M(0) = M0.

Applying Ito’s lemma to (2.1), we can characterize X(t) that is controlled by p(t)

as:

dX(t) = [a+ (b− a− p(t))X(t)− bX(t)2]dt+ σX(t)dB(t).

Compared to the simpler case above, the impacts of subsidies on the AV market

penetration processes are different (Figure 2.12). When the manufacturer’s response
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R(t) controls the AV innovations (i.e. the value of a(t)), the AV market growth rate

is tempered at the early adoption stage but ultimately the market size will reach

the saturated market share. In contrast, when the manufacturer provides pricing

incentives for AVs (the value of p(t)), the market potential M(t) is changed. It is

worth mentioning that the market failure with inadequate pricing incentives (i.e., p(t)

is lower than expected) has more serious consequences than that with inadequate AV

innovations (i.e., a(t) is lower than the target). With inadequate AV innovations,

the slow market penetration only generates finite negative externalities during the

“dark age”; with inadequate pricing incentives, the AV market’s long stagnation in

low market size may continuously generate negative externalities.

(a) AV manufacturer changes the power of in-
novations a(t).

(b) AV manufacturer changes the market poten-
tial M(t) by pricing incentives.

Figure 2.12: The mean value of the AV market penetration process under controls

Similar to (2.2), the government agency solves the following an optimization prob-
lem with with an IC-constraint for the optimal pricing incentives p(t). It is trivial
to include other responses R(t), e.g., a mixture of a(t) and p(t). With all these
considerations, we can formulate the optimal subsidy problem as:

max
SA(t),SC(t)

E
[
rG

∫ ∞
0

e−rGt
[
g(N(t))− (SA(t) + SC(t))

(
a+ b

N(t)

M(t)

)
(M(t)−N(t))

]
dt

]
s.t. p(t) ∈ argmax

p
E
[
rA

∫ ∞
t

e−rAuh(SA(u), SC(u), p(u))du

]
, ∀t ≥ 0 (IC-constraint)(2.5)

E
[
rA

∫ ∞
0

e−rAth(SA(t), SC(t), p(t))dt

]
≥W0 (IR-constraint)

With the extension of decision variables SC(t) and p(t), the state variables of the
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dynamic programming should also be expanded. Let F (P,X,W ) be a C1,2,2 function.

Besides the AV manufacturer’s continuation value W (t) and AV market penetration

rate X(t), government agency also needs to observe the retail price of AVs P (t).

With Proposition II.5, the best response p∗ can be found as a function of SA, SC and

Y . The following theorem solves the optimal AV subsidy policies.

Theorem II.10. The government agency’s continuation value is equal to F (P,X,W )

that solves the following HJB equation:

rGF = max
SA,SC ,Y

{
rG[g(N)− (SA + SC)M0e

−β−P+SC (a+ bX)(1−X)] + p∗FP+

(a+ (b− a− p∗)X − bX2)FX + rA(W − h(SA, SC , p
∗))FW

+
1

2
σ2(X2FXX + 2rGXY FXW + r2

AY
2FWW )

}
.

2.5.2 Result and Discussion

We can use the same iterative method to solve for the optimal AV subsidy policies

in Theorem II.10. The arguments for two-threshold structure of the AV subsides

SA(t) also hold. However, SC(t) does not retain this special structure.

Now we briefly discuss the new insights about whom should be subsidized in the

AV market. Because of the complexity of the state variables, we find that there is no

seemingly simple answer to this question. In numerical experiments, we compared

the relative continuation values of giving a fixed amount of subsidies to consumers

(Fconsumer) and to manufacturers (Fmanufacturer). In Figure 2.13, we can observe that

there are regions where subsidizing AV manufacturers promises a larger expected

total payoff, and vice versa. In general, the government agency should give a higher

weight on the consumers’ subsidies when the market penetration rate is small, or

the AV manufacturer’s continuation value is low. Otherwise, it is more beneficial to

subsidizing AV manufacturers.
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(a) Relative difference (Fconsumer −
Fmanufacturer)/Fmanufacturer.

(b) Government agency’s continuation
value over the market penetration process.

Figure 2.13: Comparison of subsidizing AV manufacturers and consumers

In sum, our main results provide the following insights for designing AV subsidy

policies:

1. The DSG optimal subsidy has a two-threshold structure because of the presence

of a “dark age” in AV deployment. The government agency needs to subsidize

AVs in their early deployment as well as the near-saturation stage.

2. The most crucial factor for AV subsidies is the efficiency benefit related to AV

deployment. To mitigate the negative externalities of AVs, the government

agency needs to consider developing and implementing operational strategies

that improve the efficiency of AV technology. Otherwise, the government agency

has to pay high subsidies to avoid the potential AV market failure.

3. The optimal AV subsidies also depend on the parameters in the market pene-

tration process. Hence, conducting more research on forecasting the AV market

is necessary.

4. The iterative algorithm can compute a menu of optimal subsidy policies for the

government agency with a different data instance.
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2.6 Conclusion

The potential efficiency loss during the “dark age” of AV deployment calls for

policies and strategies to accelerate the deployment of AVs. As it is extremely dif-

ficult, if not impossible, to establish a single modeling framework to prescribe these

policies and strategies, this chapter investigates an optimal subsidy policy that max-

imizes the benefits of AV deployment throughout a planning horizon. The possible

AV market failure is because of the information asymmetry between the government

agency and the AV manufacturers. To prevent this failure due to the static and mo-

nopolistic subsidy design practice, we develop a new dynamic games approach. This

approach can compute the adaptive subsidies based on the state of the AV market

penetration process with uncertainty. Given the optimal subsidies, the AV manufac-

turer is incentivized to enhance the AV innovations, and provide pricing incentives

to potential consumers.

This approach opens the door to many promising research directions and inter-

esting applications in transportation policy. For example, the AV subsidies can be

imposed to evolving generations of technology with different efficiency benefit func-

tions. We can model it by replacing the DOI model with a system of diffusion

processes. This model can also capture more complex interactions between multiple

manufacturers with different utility functions, e.g., a competition for the future AV

market. We refer the interested audience to the extension to multi-agent systems

[80]. Since DSG is a general framework of prescribing optimal transportation poli-

cies, we can generalize our approach to other policy-making processes to include the

regulated entity’s response into the consideration.

With this new approach, we gain new insights about how to accelerate the adop-



50

tion of AVs through adaptive subsidies. First, the DOI model and information asym-

metry induce a two-threshold structure in the optimal subsidies, i.e., decreasing sub-

sidies at low market share, and increasing subsidies at near-saturation market share.

Second, the cost efficiency of the optimal subsidies obtained by this dynamic games

approach dominates other approaches. Third, the sensitivity analysis of the opti-

mal subsidies addresses the necessity for more AV market studies. The government

agency should consider policies that enhance the AV operations and improve the

accuracy of the AV market forecast models. With all considerations, the policy mak-

ers can strategically mitigate the negative externalities of AVs while embracing the

advances of the technology.



CHAPTER III

Multi-agent Incentive Contracts

3.1 Statement of the Multi-agent Incentive Contracts Problem

In this chapter, we consider the problem of a single party, called the principal,

creating contracts to delegate a task to a group of different agents. Incentive contracts

stimulate the agents to act in the principal’s interest by compensating them for

achieving two goals: (i) they accept the offered contract (i.e., the contract is subject

to the individual rational (IR) constraint); and (ii) they exert the effort at a desired

level determined by the compensation spelled out in the contract (i.e., the contract

is subject to the incentive compatible (IC) constraint). Such incentive contracts have

been used for many practical problems ranging from corporate finance to strategic

behavior in politics to institutional design [11, 23, 29, 44, 46, 54, 81, 87, 93].

In a dynamic setting, the goal as before is to incentivize agents to exert the desired

effort over the planning horizon. To achieve this, each contract defines a stream of

payoff amounts which depend on the effort exerted by the corresponding agent. In

the framework we consider in this chapter, the agent’s effort process is not perfectly

observable, possibly due to the cost or the difficulty of monitoring it. Instead, the

principal observes a noisy output process, which is a result of the effort exerted by

the agent. This proxy results in information asymmetry about the agent’s effort (the

51
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agent knows it, but the principal can only infer it from a proxy). The asymmetric

information can create a potential moral hazard problem in the contract design [73].

The system efficiency is degraded as the first-best contract is not admissible. Given

all these considerations, the incentive contract must solve the moral hazard problem

and maximize the principal’s utility.

A significant extension of the single-agent incentive contract is multiagent in-

centive contracts. For example, a company hires multiple employees to collaborate

on a project. Since employees with correlated responses may have different capa-

bilities and utility functions, designing contracts separately for each is not viable.

Koo et al. [71] presented the first extension of multiagent incentive contracts that

initiated a stream of literature for team incentives using the Martingale Approach

[36, 37, 48, 117]. In the multiagent setting, new challenges arise due to varied in-

teractions between agents. For example, an arbitrary agent may compare both its

effort and payoff with others – such a phenomenon is called inequity aversion [38].

Goukasian and Wan showed that inequity aversion is present in multiagent incentive

contracts [52] and agents’ comparisons lower their exerted effort levels.

The critical condition for the existence of multiagent incentive contracts is that

agents’ actions at each epoch must form a Nash Equilibrium. This equilibrium then

incentivizes each agent to choose the principal’s desired actions and nullifies the

moral hazard in the contract. The conditions for the existence of this equilibrium is

still an open question. Prior work [36] assumed away these conditions by stating that

the agents’ action matrix that appeared on both sides of agents’ optimality condition

exists. The agents’ actions constituting a Nash Equilibrium, thus led to a circular

argument. Yet, characterizing the existence of Nash Equilibrium in multiagent con-

tracts is non-trivial [30, 62, 82], more so in the dynamic setting considered in our
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work.

In Example I.2 in §I, we see that even if the existence problem is settled, the

uniqueness of the Nash equilibrium must still be tackled. In at least one prior work

the uniqueness issue has been assumed away, see Elie and Possimai [36] where the

following claim is made to resolve the situation with multiple Nash equilibria: “Since

the uniqueness of a Nash equilibrium is more the exception than the rule, we also

need to assume that the community of agents has agreed on a common rule to choose

between different equilibria.”

Our goal in this chapter is to find conditions that guarantee the existence of a

unique multiagent Nash Equilibrium in incentive contracts. We see that even if

the existence problem is settled, the uniqueness of the multiagent Nash Equilibrium

must still be tackled [36]. Characterizing unique equilibrium has practical value as

coordinating agents to select the optimal Nash Equilibrium is improbable; it also has

theoretical value as the optimal contracts with a set of equilibria is computationally

intractable. Under the assumption that all agents are risk-averse, and interactions

of all agents’ actions on other’s output follow a concave function, using a fixed point

theorem (specifically the Kakutani fixed point theorem), we prove the existence of

a subgame perfect Nash Equilibrium. With a slight strengthening of the condition

on the Hessian matrix of the interaction functions, with the use of the theorem of

Gale and Nikaido [47] and Kojima and Saigal [72], we prove that the equilibrium

is unique. These results then enable us to develop a provably convergent iterative

procedure to solve for the incentive contracts.

Unlike the infinite horizon setting of [104], we consider the problem with a finite

horizon where the terminal condition may be path-dependent. Such terminal condi-

tions are widely used in modeling options, mortgage defaults, and car leasing, thus
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enhancing the applicability of the methodology.

General notation used in the rest of the chapter is as follows. A set of indices

[n] = {1, 2, . . . n}. Bold variables are vectors or matrices of random variables or

functions. In equilibrium analysis for the ith agent, we denote a vector as xxx =

[x1, . . . , xi, . . . , xn] = [xxx−i, xi], where xi indicates the variable associated with the ith

agent. xP indicates that the variable is associated with the principal. x̃ is a variable

that deviates from x in the domain of x. DxF is the Jacobean and D2
xF is the

Hessian of the C2 function F of x.

The remainder of this chapter is organized as follows. In §3.2, we describe the

setting of multi-agent incentive contracts. In §3.3, we characterize the agents’ optimal

responses and prove the existence of unique Nash equilibrium. We then formulate

the principal’s problem as a Hamilton-Jacobi-Bellman equation in §3.4. We also give

an iterative procedure to implement the optimal incentive contracts. In §3.5, we

draw final conclusions.

3.2 Setting

There is a single principal and n agents (indexed by i ∈ [n]) entering the contracts

simultaneously at epoch t = 0. A contract signed between the principal and each

agent i specifies the payoff ci(t) that the agent will receive by outputting Xi(t), a

proxy for the the agent’s action ai(t) in working for the principal over the horizon

t ∈ [0, T ]. The vectors of n agents’ actions and compensations are denoted as aaa(t) and

ccc(t), respectively. Since the principal’s goal is to incentivize n agents to collaborate

on one project, these n contracts are correlated in many ways. The principal’s

decision, the payoff ci(t) for agent i, is in a domain Ci ⊆ R; the agent i’s decision,

the effort level ai(t), is in a domain Ai ⊆ R. The size of domains may vary for each
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i ∈ [n]. The Cartesian products of compensations and efforts are denoted as C and

A, respectively.

3.2.1 Output Processes and Terminal Conditions

In an environment of uncertainty, the principal can only observe output processes

XXX(t) = [X1(t), . . . , Xn(t)]T ∈ X , which are imperfect observations of agents’ actions.

We assume that the dynamics of Xi(t) follows a SDE that depends on n agents’

actions aaa(t):

(3.1) dXi(t) = fi(aaa(t))dt+ σidBi(t), ∀i ∈ [n],

which follows the following assumptions that are general extension of multiagent

contract in [36, 71, 110, 117].

1. The drift term fi : A → R+ in (3.1) is in L2 space such that
∫ T

0
f 2
i ds < ∞ for

all i ∈ [n].

2. fi is partially differentiable almost everywhere with respect to ai(t) for all i ∈ [n].

3. The diffusion term σi are known constants for all i ∈ [n].

4. The Brownian motionsBBB(t) = [B1(t), · · · , Bn(t)]T are correlated with the corre-

lation matrix E(BBB(t)BBB(t)T ) = ΣΣΣ strongly positive definite, i.e., xxxTΣΣΣxxx ≥ α‖xxx‖2

for all xxx ∈ Rn and some constant α > 0.

For each agent i ∈ [n], there is a path-dependent terminal payoff Φi at the

end of planning horizon T < ∞. In other words, ΦΦΦ is a vector of functions of

{XXX(t), ccc(t)}0≤t≤T . Path-dependent terminal conditions strengthen the commitments

in contracts. Each agent could be charged a penalty if its cumulative outputs do not

reach a specified target at termination. Similarly, the principal may rectify the payoff

if the cumulative compensations do not reach a certain threshold. Let ZZZ(t) denote
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the cumulative measures along the sample paths whose dynamics dZi for i ∈ [n]

follows

(3.2) dZi(t) = µZi(XXX(t), ccc(t))dt+ σσσZidBZi(t),

where µZi ,σσσZi are deterministic functions of appropriate dimension, and BZi are

independent Brownian motions. Two sets of processes BBB(t) and BBBZ(t) (BBBZ(t) =

(BZ1(t), · · · , BZn(t))T ) are also independent.

An example of a path-dependent terminal condition is an Asian-options type, i.e.,

ZZZ(t) ∈ Rn represents the total observed output from n-agents from 0 to t.

ZZZ(t) =

∫ t

0

XXX(s)ds,(3.3)

and this can be derived from (3.2) by letting µZi(XXX,ccc) = Xi and σσσZi = 0.

The two systems of SDEs, (3.1) and (3.2) are adapted to the filtration generated

by the Brownian motions Bi and BZi for all i ∈ [n]. It is a well-known result that

the vector (XXX(t),ZZZ(t)) is a Markov process.

3.2.2 Solving Optimal Contracts by Optimization

ui : A × Ci → R is ith agent’s instantaneous utility, i.e., utility in [t, t + dt) and

uP : X × C → R is the principal’s instantaneous utility. Note that ui is possibly a

function of all agents’ actions.

The principal’s and the agents’ goals are to maximize the respective expected total

discounted utility over the finite horizon [0, T ]. We denote the ith agent’s expected

total discounted utility by Ui and the principal’s expected total discounted utility

from contracting with n agents by UP as follows:

Ui = Eaaa
[
ri

∫ T

0

e−risui(aaa(s), ci(s))ds+ rie
−riTΦi(Zi(T ))

]
,∀i ∈ [n],

UP = Eaaa
[
rP

∫ T

0

e−rP suP (XXX(s), ccc(s))ds− rP111ᵀ · e−rPTΦΦΦ(ZZZ(T ))

]
,
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where ri ∈ (0, 1) and rP ∈ (0, 1) are the discount rate of the ith agent and the

principal, respectively. The discount rates in front of the integral normalize the

utility to annuity costs [113]. In the case that the principal is risk-neutral, i.e., uP

is a linear function of XXX, we can reduce the principal’s problem using the following

observation. After taking expectations on the integral of ith agent’s output process

E[
∫
Xi(t)dt] = E[

∫
fi(aaa(t))dt] + E[

∫
σidBi(t)] = E[

∫
fi(aaa(t))dt], using the fact that

the expectation of an Ito’s integral is zero. Thus we can write UP in terms of aaa only

in this special case [117].

Optimal multi-agent contracts should maximize the principal’s expected total

discounted utility UP subjected to (a) n individual-rational (IR) constraints at t = 0,

and (b) n incentive-compatible (IC) constraints at any t ∈ [0, T ]. The IR-constraints

guarantee that agents would agree to enter the contracts if the expected utility

exceeding certain thresholds; the IC-constraints guarantee that agents would realize

the target efforts at each epoch of the horizon. In the presence of interactions between

agents, we have one supplementary constraint that the n agents’ best responses

constitute a Nash equilibrium at each t ∈ [0, T ]. In summary, optimal multi-agent

contracts can be solved as follows:

max
ccc(t),t∈[0,T ]

E
[
rP

∫ T

0

e−rP t [uP (XXX(t), ccc(t))] dt− rP111ᵀ · e−rPTΦΦΦ(ZZZ(T ))

]
(3.4)

s.t. Ui ≥Wi, ∀i ∈ [n] (Individual-Rational constraint),

a∗i (t) ∈ arg max
ai

E
[ ∫ T

t

rie
−risui(ai, aaa

∗
−i, ci)ds+ rie

−riTΦi(Zi(T ))
]
,

∀i ∈ [n],∀t ∈ [0, T ] (Incentive-Compatible constraint).
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3.3 Incentive-Compatible Constraint

In this section, we characterize an individual agent’s optimum action within given

multiagent contracts.

3.3.1 Parametrization of Individual Agent’s Problem

We analyze an arbitrary ith agent’s optimum action given the other agents’ op-

timum actions. Without loss of generality, we reformulate the analysis of the prior

work [23, 104] under the new multiagent contracts setting.

In dynamic Stackelberg games, one commonly defines the continuation value Wi(t)

(the value function in dynamic programming) when the optimal actions aaa are taken

by all agents in [t, T ], i.e., the agent i’s conditional expected optimal discounted

utility received from t to T , as follows,

Wi(t) = Eaaa
[∫ T

t

rie
−ri(s−t)ui(aaa(s), ci(s))ds+ rie

−ri(T−t)Φi(Zi(T ))|FBBB,BBBzt

]
.(3.5)

where FBBB,BBBzt is the filtration generated by the Brownian Motions BBB and BBBz.

We now describe the dynamics of Wi(t) for a single agent with a path-dependent

terminal condition as follows:

Proposition III.1. There exists an FBBB,BBBzt adapted process YYY i(t) = (Yi1(t), Yi2(t))

such that the continuation value Wi(t) of the ith agent is represented by the process

dWi(t) = ri

[
Wi(t)− ui (aaa(t), ci(t))

]
dt+ riYi1(t)σidBi(t) + riYi2(t)σZidBZi(t),

Conversely, a process Wi(t) satisfying the SDE is the ith agent’s continuation value.

Proof. Given fixed and optimal n-agents efforts {aaa(t) : t ≥ 0}, and the filtration

Ft = FBBB,BBBzt , we have

Ui(t) = Eaaa
[∫ T

0

rie
−risui(aaa(s), ci(s))ds+ rie

−riTΦi(Zi(T ))|Ft
]
,(3.6)
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Ui(t) is a Ft-Martingale, i.e., for any s < t, using (3.6) and the iterated condi-

tional expectation, it is readily seen that Eaaa(Ui(t)|Fs) = Ui(s). From the Martingale

Representation theorem [23], we obtain the existence of adapted processes Yi1(t) and

Yi2(t) such that:

dUi(t) = rie
−ritYi1(t)σidBi(t) + rie

−ritYi2(t)σZidBZi(t).

From (3.5), it is easily seen that the (3.6) can be rewritten as:

Ui(t) =

∫ t

0

rie
−risui(aaa(s), ci(s))ds+ e−ritWi(t),

and using Ito’s lemma we obtain the dynamics

dUi(t) = rie
−ritui(aaa(t), ci(t))dt+ e−ritdWi(t)− rie−ritWi(t).

Equating the above two dynamics of dUi(t) gives the result.

The expansion of state space (when compared to [104]) is needed to accommodate

the path dependent terminal condition, requiring the vector (XXX(t),ZZZ(t))T to be a

part of the state space. Dynamic contracts between the principal and the ith agent

must specify: (a) the instantaneous compensations ci(t), and (b) two processes Yi1(t)

and Yi2(t) as the sensitivity of the agent’s continuation value Wi(t) to the output

Xi(t) and terminal process Zi(t), respectively.

Given a contract {ci(t),YYY i(t)}t∈[0,T ], we use the one-shot deviation principle to

derive the necessary condition for the optimality of the effort {ai(t)}0≤t≤T with given

{YYY i(t)}0≤t≤T . This optimality condition is equivalent to the IC-constraint in (3.4).

Such an optimality condition holds for an arbitrary ith agent’s ai(t) given aaa−i.

Proposition III.2. For any fixed aaa−i(t), the contracted compensation ci(t) for the

agent i is implementable if and only if {ai(t)} satisfies

ai(t) = arg max
ãi(t)∈Ai

[Yi1(t)fi(aaa−i(t), ãi(t)) + ui(aaa−i(t), ãi(t), ci(t))] , [](3.7)
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for all t ∈ [0, T ].

Proof. Let aaa(t) be the optimal effort vector, and let the effort of the ith agent, for a

fixed t > 0, be

ãi(s) =

 ãi(s) if s < t

ai(s) if s ≥ t.

We denote ã̃ãa = (aaa−i, ãi). Choosing actions ãaa will change the dynamics of Xi and

Wi. To obtain the new dynamics we apply the Girsanov’s theorem with the kernel

φ(t) = fi(ãaa(t))− fi(aaa(t)). The new dynamics adapted to Brownian motions B̃i and

B̃Zi on the space (Ω,A, P̃ ) are given by
σidBi(t) = σidB̃i(t) + φ(t)dt,

σZidBZi(t) = σZidB̃Zi(t).

Substituting in (3.1) and Proposition III.1 under ãaa, the dynamics of Ui(t) becomes:

dŨi(t) =rie
−rit (ui(ãaa(t), ci(t))− ui(aaa(t), ci(t)) + Yi1(t)(fi(ãaa(t))− fi(aaa(t))) dt+

Yi1(t)σidB̃(t) + Yi2σZidB̃Zi(t).

Since ai is optimal, the drift of this SDE must be non-positive. This completes

the proof.

These two propositions decouple the principal’s and an arbitrary ith agent’s prob-

lem. To specify the target efforts that are not observable, the principal can incentivize

the agent by recommending a sensitivity level riYYY i(t). With n agents, the Nash Equi-

librium is equivalent to finding the optimal Y(t) = [YYY 1(t), . . .YYY n(t)]ᵀ jointly. The

principal can create a contract with: (a) functions for {ci(WWW (t),XXX(t),ZZZ(t))}i∈[n] for

each agent i; and (b) functions of the sensitivity {riYYY i(t)}i∈[n] that specify the target

effort processes. Hence create multiagent contracts that provide consistent informa-

tion for all agents over the planning horizon which are thus implementable.
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Characterizing implementable multiagent contracts require that the actions of the

agents aaa(t) form a multiagent Nash Equilibrium at each epoch t ∈ [0, T ]. We note

that in our formulation there are interactions among n-agents both in the instanta-

neous utility ui and drift term of output processes fi for all i ∈ [n]. The principal

thus chooses a target effort level aaa(t) which form a a Nash Equilibrium amoung

agents, so that each agent i ∈ [n] is disincentivized to deviate from the target ai(t)

when the other agents do not, i.e., implementing the targeted ai(t).

3.3.2 Nash Equilibrium in Multi-agent Contracts

We now prove the existence of a Nash Equilibrium among n-agents best responses

(3.7) at a fixed epoch t. The Bellman’s principle of optimality guarantees that it

is sufficient to show the existence of Nash Equilibrium within the Hamiltonian of

IC-constraint to prove the existence of subgame perfect Nash Equilibrium.

We need the following assumptions on the functions ui and fi for all i ∈ [n]:

1. ui : A×Ci → R is twice continuously differentiable, increasing in ci, and concave.

2. fi : A → R+ is twice continuously differentiable, increasing and concave.

3. For each i and aaa, ∂fi(aaai,0)
∂ai

6= 0 and fi(aaa)→∞ while ∂f(aaa)
∂ai
→ 0 as ai →∞.

4. The set ∩i{(aaa,ccc) : ui(aaa, ci) ≥ 0 for all i} is nonempty and compact.

5. There exists an m > 0 such that m < supx ui(aaa−i, x, ci), and ui → −∞ as

x→∞, for all i and aaa−i, ci.

6. ui(aaa−i, 0, ci) ≥ 0 for each aaa−i, ci.

The single-agent contract in [41, 104] and the multi-agent contracts in [117] are

special cases of the functions above with u separable in a(t) and c(t) and f(a(t)) =

a(t). Assumption 4 is satisfied because an arbitrary agent can choose effort ai(t) = 0
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to have zero utility. Assumption 6 is valid because ai(t) /∈ Ai if ui < 0. With these

assumptions, we can show the following lemmas.

Lemma III.3. Let αααi = (aaa−i, ci), and we define

gαααii (x) =
−u′i(aaa−i(t), x, ci(t))

f ′i(aaa−i(t), x)
.

gαααii is continuously differentiable and monotonically increasing as a function of x

in the domain Ai. Also, there exist 0 ≤ βi < γi such that for each βi < y < γi and

αααi ∈ Rn, gαααii (x) = y has a solution.

Proof. gαααii is well defined from Assumption 3 on f ′i , i.e., it is nonzero and its mono-

tonicity follows from the concavity of ui and fi. We define

ĝi(x) = infααα∈Rng
ααα
i (x), βi = max{0, supααα∈Rng

ααα
i (0)}.

Figure 3.1: Proof for existence of gαααi
i (x) = y in Lemma III.3.

Let θi be the ith agent’s greatest effort, i.e., θi = supAi. Define γi = ĝ(θi) and

θi sufficiently large so that [βi, γi] is nonempty. This exists as ĝi is an increasing

function in Figure 3.1.
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For arbitrary y ∈ [βi, γi], we define ĝi(x̂) = y. Such an x̂ ∈ Ai exists because the

function ĝi is monotonically increasing. Now, for any αααi, the function gαααii (x̂) ≥ y

and gαααii (0) ≤ βi. The result follows from the continuity of gαααii and the intermediate

value theorem.

Applying Lemma III.3 to all agents i ∈ [n], we define a set Y =
∏

i[βi, γi]. We

can now rigorously define the multiagent Nash Equilibrium as follows.

Definition III.4. The multi-agents’ effort aaa is called a Nash equilibrium if and only

if an arbitrary agent’s deviation from the stipulated effort level in aaa while the other

agents follow their stipulated actions will result in a loss to the agent, i.e., for each

i ∈ [n],

ai ∈ Γi(aaa−i, ci, yi) =
{
x̂ : x̂ = arg max

x
[yifi(aaa−i, x) + ui(aaa−i, x, ci)]

}
.(3.8)

We now prove a simple lemma to characterize the equilibrium:

Lemma III.5. For all t ∈ [0, T ], and each yyy(t) ∈ Y and ccc(t) ∈ C, if aaa(t) satisfying

3.8 exists, it lies in the set
⋂
i{(aaa, ci) : ui(aaa, ci) ≥ 0}.

Proof. For any given contract yyy(t), ccc(t), let aaa(t) be a Nash equilibrium for each

t ∈ [0, T ] and let ui(aaa(s), ci(s)) < 0 for some i ∈ [n], and s ∈ (t1, t2). Thus∫ t2
t1
ui(aaa−i(s), ai(s), ci(s))ds < 0. But, from Property 6,∫ t2

t1

ui((aaa−i(s), 0, ci(s))ds ≥ 0.

Thus aaa(t) is not a Nash equilibrium for t ∈ (t1, t2), a contradiction. The result

follows from the fact that as ui(aaa−i(t), ai(t), ci(t)) is continuous and thus it cannot

be strictly negative on a set of measure 0 in [0, T ].

The following corollary shows that agents continue to abide by the conditions of

the contracts until the termination epoch.
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Corollary III.6. A consequence of implementation of Nash equilibrium is that no

agent has an incentive to leave the contracts before the terminal epoch T .

Proof. As is seen in the proof of Lemma III.5, when agents’ actions form a multiagent

Nash equilibrium, each agent receives a positive utility in any finite interval, thus

making the each agent’s total utility an increasing function of its continuation value.

Thus, no agent is motivated to deviate from the target action before the termination

epoch T .

Theorem below establishes the existence of such an equilibrium in each given

epoch t.

Theorem III.7. For each given yyy(t) ∈ Y and ccc(t) ∈ C, there exists a subgame perfect

Nash Equilibrium aaa(t) ∈ A for every t ∈ [0, T ].

Proof. For a fixed agent i ∈ [n], given the concavity of the functions in Proposition

III.1, a necessary and sufficient condition for x̂ to solve the optimization problem is

that g
aaa(t),ci(t)
i (x̂) = yi1(t). We note that as defined in (3.8), Γi(aaa(t), ci(t), yyyi(t)) = {x :

g
aaa(t),ci(t)
i (x) = yi1(t)}.

We now define a point-to-set map,

Γ(aaa(t)) := Γccc(t),yyy(t)(aaa(t)) = [Γ1(aaa(t), c1(t), yyy1(t))), · · · ,Γn(aaa(t), cn(t), yyyn(t)))].

Note that Γ : A → A∗, where A∗ is the set of all compact and convex subsets of

A. To see that Γ is an upper hemi-continuous point to set map, let aaak be a sequence

in A that converges to aaa. Also let xk ∈ Γ(aaak) for each k such that xxxk converges to

xxx. To see that xxx is in Γ(aaa), we note that xki is such that g
αααk(t)
i (xki ) = yi1(t). From

the definition of gi in Lemma III.3, it is a continuous function of ααα and x, thus

yi1(t) = limk→∞ g
αkαkαk(t)
i (xk) = g

ααα(t)
i (x) for each i. The existence of Nash Equilibrium
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now follows from Lemma III.5, Property 4 in the assumptions, and the Kakutani

Fixed Point Theorem [98].

3.3.3 On Uniqueness of Nash Equilibrium in Multi-agent Contracts

The individual incentive contract assumes that, if multiple subgame perfect Nash

Equilibrium exists, the principal has the power to choose her preferred one. However,

if multiple equilibria exist in the multiagent contracts, first all equilibria must be

found, and then to look for a plausible selection criteria to convince the agents to

implement a specific chosen equilibrium. To avoid this computational problem at

each epoch t, we impose reasonable and mild additional conditions to guarantee a

unique Nash Equilibrium. We now state these conditions:

1. ui is strictly concave in aaa and u′i(aaa−i, ai, ci) := ∂ui(aaa−i,ai,ci)
∂ai

< 0 for each i ∈ [n],

and each aaa−i.

2. Let for each i ∈ [n], u
′′
ij := ∂2ui

∂ai∂aj
for each i, j, and similarly f

′′
ij. The negative

definite matrix (negative semi-definite matrix) D2ui (D2fi) is such that the ith

row is strictly diagonally dominant (diagonally dominant) in variables aaa, i.e.,

−u′′ii >
∑
i 6=j

|u′′ij| (−f ′′ii ≥
∑
i 6=j

|f ′′ij|).

Remark III.8. Comments on the uniqueness conditions of the Nash equilibrium of

agents:

1. Condition 1 stipulates that the optimal effort the agents exert are unique, also

have a negative effect on their instantaneous utility, i.e., the marginal utility as

a function of the agent i’s effort ai is negative.

2. Condition 2 states that agent i’s particular decision mostly affects the decrease

in his marginal utility. In contrast, the other agents’ efforts have a minor effect
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(note the strict concavity implies that u
′′
ii is negative).

3. The signs of u′′ij is related to whether ai is strategic complement or strategic

substitute [98]. Diagonal dominance thus assumes that the magnitude of the

effect of any agent’s actions exceeds the magnitude of the combined strategic

effects of all the other agents’ actions.

We now prove a result:

Lemma III.9. Let ui and fi satisfy Conditions 1 and 2 above and gαααii be as defined

in Lemma III.3, and g(aaa) = [gααα1
1 (aaa), · · · , gαααnn (aaa)]T . The Jacobean matrix of g, Daaag(aaa)

is then a P -matrix, i.e., has all principal minors positive.

Proof. We first show that Daaag(aaa) is a strictly row diagonally dominant Jacobean

matrix. Note that, suppressing the argument aaa,, ccc, we obtain

∂gi
∂ai

=
1

f ′i
{−u′′ii −

−u′i
f ′i

f
′′

ii},

∂gi
∂aj

=
1

f ′i
{−u′′ij −

−u′i
f ′i

f
′′

ij}.

The row dominance now follows from Condition 2 and the observation that fi > 0,

−u′′ii > 0, −f ′′ii ≥ 0 and gαii =
−u′i
f ′i

> 0 in the domain g−1(Y) ⊂ A. Also, it is easy

to see that each principal submatrix of Daaag is also strictly row diagonally dominant.

Using Gershgorin’s theorem [64], it follows that all the principal submatrices of Daaag

are nonsingular. We now let B be any such principal submatirx, and let IB be

the diagonal matrix of its diagonal elements and AB the matrix of its off-diagonal

elements. Define B(t) = IB + tAB for each t ∈ [0, 1]. A(t) is strictly row diagonally

dominant for each t, and since det(B(0)) > 0, det(B(1)) is also positive. Thus Daaag

is a P -matrix.
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Theorem III.10. Assume conditions 1 and 2 above hold. Then, for each epoch

t ∈ [0, T ], the Nash equilibrium is unique.

Proof. From the strict concavity of ui and (3.8), we see that for given yyy and ccc, aaa is

a Nash equilibrium if and only if

g(aaa) = yyy.

Let θi be the largest effort agent i can put, as found in Lemma III.3, and define

Â = Πi[0, θi] and consider the set g(Â) = {yyy : g(aaa) = yyy,aaa ∈ Â}. Using the P -matrix

property of Daaag, the fact that Â is a hypercube and the Gale-Nikaido theorem [47]

(or [72]), we see that g maps Â homeomorphically onto g(Â). The uniqueness follows

as Y ⊂ g(Â).

3.4 The Optimal Multi-agent Contracts

In this section, we solve the optimal multiagent contracts given that n-agents put

effort at equilibrium. We denote the principal’ controls as vvv(t) = (ccc(t), yyy(t)). With

the parameterized IC-constraints and a well-defined set of Nash Equilibria Θ(vvv) for

given {vvv(t)} for all t ∈ [0, T ], the principal’s problem is as follows:

UP = max
{vvv:aaa∈Θ(vvv)}0≤t≤T

Evvv
[ ∫ T

0

rP e
−rP s (uP (XXXvvv(t), ccc(s)) ds(3.9)

− rP e−rPT111ᵀ ·ΦΦΦ(ZZZ(T ))
]
.

With the assumption that the solution vvv∗ = (yyy∗, ccc∗) to the principal’s problem

exists, we define the present value of the principal’s continuation value at some

epoch t ∈ [0, T ] as

RP (t) = Evvv∗
[∫ T

t

rP e
−rpu

(
uP (XXXvvv∗(u), ccc∗(u)

)
du− rP e−rPT111ᵀ ·ΦΦΦ(ZZZ(T ))|FBBB,BBBzt

]
.

We now make the following assumption about this principal’s continuation value,
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Assumption III.11. We assume that the value Rp(t) has the following C1,2,2,2 func-

tional form F (t,WWW (t),XXX(t),ZZZ(t)) in variables t, the n-agents’ continuation vector

WWW (t), the observed output vector XXX(t), and the termination value descriptor vector

ZZZ(t) (Ck represents the differentiability class).

In what follows, for the ease of exposition, we will shorten F (t,WWW (t),XXX(t),ZZZ(t))

to Ft whenever there is no possibility of confusion.

Remark III.12. The state space includes ZZZ(t) to assure that the vector process

(WWW (t),XXX(t),ZZZ(t)) is Markov. In the special case that T → +∞ (i.e., an infinite

time horizon with the transversality condition), the state space does not contain t,

as in [23].

Then the optimum utility received by the principal, following the optimal control

vvv∗ can also be written as:

UP (t) =

∫ t

0

rP e
−rP suP (xxxvvv

∗
, ccc∗(s))ds+ F (t,WWW (t),XXX(t),ZZZ(t)).(3.10)

Note that, at epoch t, {xxx(s)}s≤t is realized, and {XXXvvv(s)}s>t is dependent on

controls vvv. Following the same argument in Proposition III.1, we can see that UP (t)

defined by (3.10) is a FBBB,BBBZZZ -adapted Martingale, and thus has drift zero. Applying

Ito’s multidimensional lemma and the dynamics of WWW (t), XXX(t) and ZZZ(t), we obtain

the dynamics of UP (t). Thus, we can solve for F by setting the drift term of the

dynamics of UP to 0.

To obtain the drift term we recall the dynamics of the state variables. For nota-

tional convenience, we let σσσ = diag((σ1, · · · , σn), YYY 1(t) = diag(r1σ1YYY 11(t), · · · , rnσnYYY 1n(t))

and YYY 2(t) = diag(r1σZ1YYY 12(t), · · · , r1σZnYYY 2n(t)) and rrr = diag(r1, · · · , rn). Let LLL be

the Cholesky factor of ΣΣΣ (i.e., ΣΣΣ = LLLLLLT ), the covariance matrix of BBB(t). There exists
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a process B̂BB, a vector of n independent Brownian motions, with

BBB(t) = LLLB̂BB(t),

µ(t,WWW (t)) = WWW (t)− uuu(aaa(yyy(t)), ccc(t)),

σσσ(yyy(t)) = YYY 1(t)LLL.

Using Proposition III.1, we get

dWWW (t) = rrr [WWW (t)− uuu(aaa(yyy(t)), ccc(t))] dt+ σ(yyy(t))dB̂BB(t) + YYY 2(t)dBBBzzz(t),(3.11)

and similarly for the dynamics of ZZZ(t) using (3.2).

We define a differential operator Hvvv as a function of the control vector vvv = (yyy, ccc)T

as follows,

HvvvFt = rrr
(
DwwwFtµ(t,www(t))

)
+DxxxFtf(aaa(yyy(t))) +DzzzFtµzzz(xxx(t), ccc(t)) +

1

2
trace

(
σσσ(yyy(t))ᵀD2

wwwFtσσσ(yyy(t)) + YYY 2(t)D2
wwwFtYYY 2(t) +LLLTσσσᵀD2

xxxFtσσσLLL+(3.12)

σσσ(yyy(t))D2
wwwxxxFtσσσLLL+ σσσᵀ

zzzD
2
zzzFtσσσzzz

)
,

where DxxxFt and D2
xxxFt are the first and second derivative matrices of Ft with respect

to xxx.

Applying the multidimensional Ito’s lemma to (3.10), we get the drift of the

dynamics of UP (t) as

∂

∂t
Ft + rP e

−rP tuP (xxxvvv
∗
, ccc∗(t)) +Hvvv∗Ft.(3.13)

We now prove the theorem that verifies the Assumption III.11:

Theorem III.13. The principal’s problem can be formulated as the Hamilton-Jacobi-
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Bellman equation:

∂

∂t
Ft + max

vvv=(y,cy,cy,c)

{
rP e

−rP tuP (xxx(t), ccc(t)) +HvvvFt
}

= 0(3.14)

s.t. F (T,www,xxx,zzz) = −rP e−rPT111ᵀ ·ΦΦΦ(zzz), ∀www,xxx,zzz,

aaa(vvv(t)) ∈ Θ(vvv(t)),∀t ∈ [0, T ].

Also, its solution F vvv∗
t (= Ft) is such that Ft = UP (t) and the control vvv∗ := vvv∗(t,xxx,www,zzz)

solves principal’s optimization problem 3.9, thus verifying the Assumption III.11.

Proof. For ease of notation, we define SSSvvv = (wwwvvv,xxxvvv, zzzvvv)T and let F vvv
t = F (t,SSSvvv(t)) be

the weak solution of the equation (3.14) under control vvv.

Now, using an arbitrary control law vvv, such that aaa(vvv(t)) ∈ Θ(vvv(t)), ∀t ∈ [0, T ]

at the arbitrary time t, with the state dynamics of SSSvvv governed by the Brownian

motions BBB,BBBZZZ and when F solves the HJB equation, we see that

∂

∂t
Ft + rP e

−rP tuP (xxx(t), ccc(t)) +HvvvFt ≤ 0,

for all vvv. Thus we have, for each time s ∈ [0, T ]

∂

∂t
Fs + rP e

−rP tuP (xxxvvv(s), cccvvv(s)) +HvvvF vvv
s ≤ 0,

From the boundary condition, we also have FT = −rP e−rPT111ᵀΦΦΦ(zzzvvv). Integrating the

above expression we obtain the inequality

F vvv
t ≥ Evvv

[∫ T

t

rP e
−rP suP (xxxvvv(s), cccvvv(s))ds− rP e−rpT111ᵀΦΦΦ(zzzvvv(T ))|FBBB,BBBz

]
= RvvvP (t)

Since the control vvv was chosen arbitrarily, we have:

Ft ≥ sup
vvv
RvvvP (t) = RP (t)(3.15)

Using the Ito’ formula, we will see that

F vvv
t = Evvv

[ ∫ T

t

rP e
−rPu (uP (xxxvvv(u), ccc(u)) du− rP e−rPT111ᵀ ·ΦΦΦ(zzzvvv(T ))|FBBB,BBBZZZ

]
,



71

Using Ito’s lemma on Ft and then integrating, we obtain:∫ T

t

(
∂

∂t
Fs +Hvvv∗Fs

)
ds = e−rPT111ᵀ ·ΦΦΦ(zvvv

∗
(T )zvvv
∗
(T )zvvv
∗
(T ))− Ft,

Combining (3.15), we get:

Ft ≥ RP (t) ≥ RvvvP (t) ≥ Ft

The theorem now follows the verification theorem that Ft = RP (t) for arbitrary t

and v∗ is the optimal control law.

Proposition III.14. For some ε > 0 but small, perturb the boundary condition

to −111ᵀΦΦΦ(zzz) − ε||sss||2, and let F ε solve the HJB problem. If the boundary condition

functions Φi(Zi(T )) are convex, F ε(t, ))) is strictly concave for each t ∈ [0, T ].

Proof. Note that −111ᵀΦΦΦ(zzz)− ε||sss||2 is strictly concave in sss. By definition of concave

function, D2
sssFT is negative definite and is thus negative semi-definite on an open

neighborhood of T . We now show that F is concave at t < T by contradiction.

Assume that D2
sssFt̂ has a zero eigenvalue at given t̂ < T and ŝss ∈ R3n, and let

the associated eigenvector be qqq(t̂, ŝss). Considering the function Ft̂ along the ray

{sss : sss = ŝss+ λqqq(t̂, ŝss)}. Using the Taylor expansion on sss, we have

F (t̂, sss) = F (t̂, ŝ̂ŝs) + λDsssF (t̂, ŝ̂ŝs)qqq(t̂, ŝss) + o(λ2) = â+ b̂λ+ o(λ2),

where â and b̂ are constant in λ and possibly functions of t̂. Since F satisfies the

HJB equation in Theorem III.13, we can represent ∂Ft
∂t
− rPFt = c̄λ + d̄. If both uP

and µz are affine functions of sss, the left-hand side of (3.14) is affine in λ. We denote

function Ψvvv := rPuP +HvvvF̂t = ā(vvv)λ+ b̄(vvv). Thus, there exists vvv such that

max
vvv
{ā(vvv)λ+ b̄(vvv)}+ c̄λ+ d̄ = 0.(3.16)
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Note that if vvv∗(λ) maximizes (3.16), the function for this choice of vvv must be affine.

Thus assuming that the function at the optimum solution has the form a(vvv∗)λ+b(vvv∗),

we note that since the HJB holds for any sss, the equation is satisfied if and only if

a(vvv) = −c̄, b(vvv) = −d̄ and λDā(vvv) +Db̄(vvv) = 0. Such a control vvv almost surely does

not exist, since it must satisfy the above system which has n+ 1 variables and n+ 2

nonlinear equations. Thus, a contradiction, and D2
sssFt is negative definite and Ft is

strictly concave in sss for all t ∈ [0, T ].

3.4.1 Iterative Algorithm for Solving Multi-agent Contracts

Since adding an equilibrium constraint causes new computational issues, we pro-

pose a simple iterative algorithm to solve the optimal multi-agent contracts in The-

orem III.13. The main idea is to integrate a numerical method for HJB (i.e.,

Howard’s algorithm [67]) with a fixed-point algorithm (i.e., Eaves-Saigal’s algorithm

[32]). For brevity, we denote the state variable at time t by a time-generic vector

sss = (www,xxx,zzz) ∈ R3n (note that the mesh width for each type of state may vary) and

the control at time t by vvv = (c, yc, yc, y) ∈ R2n. We discretize the sss− t plane by choosing

uniform mesh widths ∆sss = (∆wn,∆xn,∆zn) ∈ R3n and a time step ∆t such that

T/∆t ∈ N. We define the discrete mesh points sτi,j,ksτi,j,ksτi,j,k by:

si,j,ksi,j,ksi,j,k = (i, j, ki, j, ki, j, k)ᵀ∆sss, (i, j, ki, j, ki, j, k) = (i1, ..., in, j1, ...jn, k1, ..., kn)ᵀ ∈ N3n,(3.17)

tτ = τ∆t, τ ∈ [
T

∆t
].

Our goal is to use a finite difference method in state space to produce approxi-

mations F τ
iii,jjj,kkk to the solution F (t,w, x, zw, x, zw, x, z) in (3.14).

It will be useful to define the approximation for the Hamiltonian operator HvvvFt

in (3.12) as HvvvF̂tτ (we use a forward-in-time and central-in-space scheme) with the
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following approximations for gradient:

∂F̂tτ
∂t

=
F τ+1
i,j,ki,j,ki,j,k
−F τi,j,ki,j,ki,j,k

∆t

DwwwF̂tτ |` =
F τiii+eee`,j,kj,kj,k

−F τiii−eee`,j,kj,kj,k
2∆w

, ∀` ∈ [n]

DxxxF̂tτ |` =
F τiii,jjj+eee`,kkk

−F τiii,jjj−eee`,kkk
2∆x

, ∀` ∈ [n]

DzzzF̂tτ |` =
F τiii,jjj,kkk+eee`

−F τiii,jjj,kkk−eee`
2∆z

, ∀` ∈ [n]

,

where eee` ∈ Rn is a unit vector with 1 in `th entry and 0 elsewhere. The `th entry of

the approximation for hessian (we only present the hessian regarding www) is:

D2
wwwF̂tτ |`,`′ =


F τ
iii+eee`+eee`′ ,j,kj,kj,k

− F τ
iii+eee`−eee`′ ,j,kj,kj,k

− F τ
iii−eee`+eee`′ ,j,kj,kj,k

+ F τ
iii−eee`−eee`′ ,j,kj,kj,k

4∆w2
if ` 6= `′,

F τ
iii+eee`,j,kj,kj,k

− 2F τ
iii,j,kj,kj,k + F τ

iii−eee`,j,kj,kj,k

∆w2
otherwise.

We define the function Ψvvv := rPuP + HvvvF̂t and the principal’s value function

under optimal control at time t as F ∗ := F vvv∗(t, sss). We initialize with the boundary

condition F P (T,www,xxx,zzz) = −111ᵀΦ(zzz)Φ(zzz)Φ(zzz) as the terminal conditions, and the well-posed

conditions for the state space. Especially, we note that, in a n-agents contract, when

n1-agents have zero continuation values w, we need to first solve an (n− n1)-agents

subproblem as a boundary condition. In the mth step in the policy iteration, policy

evaluation under controls vm is conducted by solving the approximation of the PDE

below: (∂F̂tτ
∂t

)m
+ Ψvvvm − rP F̂m

tτ = 0.

Since the PDE under an arbitrary control is well-posed, we can find a weak solution

to Ft [40]. In the next iteration, we need to solve two problem:

1. Solve a fixed-point problem to find the unique agents’ optimal responses aaa∗(t) ∈

Θ(vvvm);
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2. Use a greedy algorithm to improve the policy as

vvvm+1 = arg max
vvv′∈V

Ψvvv′ .

In summary, we can solve the optimal multi-agent contracts by adopting a back-

ward scheme:

1. Initialize the terminal condition F (T,sss) = −111ᵀΦ(zzz)Φ(zzz)Φ(zzz).

2. While t = T − τ∆t ≥ 0, with a fixed ε > 0,

(a) For each state www,xxx,zzz, start with an arbitrary contracts vvv0 = {ccc0, yyy0}.

(b) Solve a fixed point problem such that aaa∗(t) ∈ Θ(vvv0). If the conditions in

3.3.3 are satisfied, the equilibrium is unique.

(c) Solve for the boundary conditions as a single-agent contract in [104]. We

then solve a parabolic PDE within (3.14), i.e., with fixed contracts, to

obtain F̃ (t, sss) [32].

(d) Optimize the objective value F̃ (t, sss) for all states sss = (www,xxx,zzz) by the gra-

dient ascend method. The gradient is ∇vvvF̃ ∈ R2n, and the step size γ can

be determined by a line-search method. If ‖∇vvvF̃‖ ≥ ε, go back to (ii) with

the new contracts vvv = (ccc,yyy).

(e) Go to step 3 if ‖∇vvvF̃‖ < ε.

3. Update the contracts {ccc(t), yyy(t)} and continuation value F (t, sss). Go to Step 2

with τ ← τ + 1.

The algorithm converges because:

1. At each epoch, the Nash equilibrium of agents a∗(t) exists.
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2. With a unique Nash equilibrium, the boundary conditions are well-posed as the

convexity of F with regard to (wi, 0) for all i ∈ [n].

3. The numerical methods for a parabolic PDE converges to a weak solution under

any given contract.

4. Howard’s algorithm guarantees that the sequences of Fm converges to F ∗ and

vvvm converges to vvv∗ as m→∞ [67] for dynamic programming.

Note that our problem in (3.14) only if the Nash equilibrium for agents is unique;

otherwise, the policy evaluation has a looping pattern and the convergence result

does not hold. There are many alternative methods to solving the problem [45, 95].

3.5 Conclusion

Multiagent incentive contracts with broad applications are hard to solve in general.

We characterize the sufficient conditions under which the Nash Equilibrium of agents

exists most certainly and additional requirements for the Nash Equilibrium to be

unique. We develop a backward iterative algorithm to find the optimal contracts.

The implication of our result is two-fold. First, comparing to the single-agent setting,

multiagent contracts can model either team collaborations or competitions depending

on the context. Second, those conditions of existence and uniqueness contain new

insights about the inertia of effective contracting in multiagent systems.

The limitations of the multiagent incentive contracts model include:

1. The Martingale approach is restricted to the SDE output process, where the

each agent’s decision only affects the drift term. Extension to controlling the

diffusion of output process may cause significant technical difficulties even in

the single-agent caes.



76

2. The coupled gradient-based and fixed-point optimization restrict the compu-

tational efficiency of solving the contracts, and thus the algorithm can only

compute optimal local contracts. Developing more efficient algorithms for mul-

tiagent contracts is a meaningful future direction.

Our model has potentially opened doors to implementing dynamic contracts with

a wide range of applications in quantitative finance, economics, operations research,

and decentralized controls.



CHAPTER IV

Incentive Design for EV and Infrastructure

4.1 Introduction

Many countries worldwide have made massive investments and instituted sig-

nificant regulations on the deployment of electric vehicles (EVs). The EV adoption

provides various benefits ranging from emission reduction to dependence on imported

crude oil [65]. National governments around the world, such as Germany, Norway,

China, and India, have proposed banning the future sale of gasoline-powered vehicles

by 2030 [8]. The approaches to achieving this goal vary from market to market, which

can be categorized into non-financial and financial incentives. This work focuses on

the latter approach including subsidy, tax reductions, tax credits, and other waivers

on fees. Subsidies such as purchase rebates or cash grants are most widely used for

promoting the electrification of transport worldwide. For example, European coun-

tries have been offering governmental subsidies for EVs since 2009 [135]. Chinese

government implemented generous EV incentives to achieve its ambitious goals such

as EVs will account for 40 percent of the countrys automobile sales by 2025.

However, the adoption of EV is facing significant uncertainties ahead as govern-

ments are phasing out EV subsidies worldwide [137]. Worse yet, with EVs predicted

to see substantial growth in next decades, government and industry are faced with

77
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the challenge of ensuring that enough charging infrastructure is in place to meet the

future demand. The surge of EV adoption in large part helped by the government

incentives may fail these goals with the EV subsidy elimination [59]. In contrast, this

chapter aims to develop a new EV subsidy policy with the following two elements:

First, the policy must enhance the gradual transition to higher EV market penetra-

tion in the competition with the Internal Combustion Engines (ICE) vehicles. The

effect of EV subsidies implemented now will have a long-lasting effect due to the long

lifespan of automobiles. Second, the policy must achieve an effective coordination

between charging station (CS) installers and OEMs. EV expansion relies heavily on

the availability and affordability of the charging infrastructure and the reliability of

the electric grid [114]. How does government design subsidy policies to maximizes

EV’s social return over the planning horizon? How to allocate the limited budget

between OEMs and charging station installers to ensure and accelerate an enhanced

market for EV acceptance? This work will answer these questions that which not

been addressed in the current policy-making literature.

4.1.1 Case Study: China’s EV Subsidy Policy

This work proposes a data-driven EV and CS subsidy policy and verifies its ef-

fectiveness in the context of Chinese EV market. China has become the largest

automobile market in the world since 2009 [65]. Its ambition to become the world

leader in EVs is impeded by regulatory delays. Figure 4.1 demonstrates the timeline

of Chinese EV subsidy policies and the scope of this work. Despite the early sub-

sidy policies implemented in 2009, only 8,159 EVs were sold in China in 2011 [131].

Owing to the generous subsidy and tax reductions issued in 2014 [121], China’s EV

industry has achieved rapid growth and become the world’s largest EV market by

volume [99]. While it remains true that the expansion of EV charging infrastructure
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(Figure 4.4b) greatly lags the increase of demand.

Figure 4.1: Timeline of China’s EV policy and new policy proposed in this work.

On the other side, inappropriate EV subsidy policies might lead to two unintended

consequences [74]: First, OEMs have less incentive to improve the fuel economy

of conventional vehicles; Second, EV subsidies spawned the “cheat compensation”

problem as the government’s supervision costs rose considerably and the automobile

industry became overheated. These issues resulted in a subsidy cut across China.

Besides the policies that are still in operation, the Chinese government has reformed

the EV subsidy policy. It officially promulgated the “Dual-Credit” Policy in 2018

[99]. The new policy rewards OEMS for both the EV sales and the car model’s

fuel consumption. The implemented Dual-Credit Policy is, despite being effective in
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solving those issues, is unable to tackle the decline of overall EV adoption in China.

Although many extraneous factors attributed to the ineffectiveness of Dual-Credit

Policy, this chapter focuses on designing a pro-active dynamic subsidy policy that

assures to achieve the government’s goal in 2025.

4.1.2 Main Results and Contributions

This work aspires to present an integrated game-theoretic paradigm for EV and

charging infrastructure subsidy policy design. This game model captures how the

government coordinates two industries to strike a balance between the EV market

growth and the charging infrastructure expansion. The resulting subsidy policy aims

to significantly improve the effectiveness of existing EV subsidy policies in China.

Our work has three main contributions to the EV regulation policy literature:

1. The suggested policy is the first financial incentive model that considers the

interactions between promoting EV market penetration process and expanding

charging infrastructure.

2. This work uses China’s EV market data to analyze the EV market dynamics

and compute the optimal EV subsidies over the next decade.

3. This work develops an innovative and general multi-agent dynamic incentive

model that can be deployed with asymmetric information between the govern-

ment and industry.

The remainder of this chapter discusses how to design an alternative EV and

charging infrastructure subsidy policy. We first review the related literature in §4.2.

A dynamic game theory model is proposed in §4.3 that optimizes the EV subsidy

policy based on the EV market predictions. We consider how to allocate part of the

subsidies to EV charging station installers so that the potential demand for EVs are
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fully exploited. §4.3.3 - §4.3.5 conduct numerical experiments with real-world data

and carry out a sensitivity analysis of the proposed dynamic EV subsidy policy. We

draw general policy implications in §4.5 and final conclusions in §4.6.

4.2 Literature Review

The burgeoning research interest in government incentives for EVs has arisen

along with the sales of first mass-production plug-in EVs in 2010 [135]. With tens

of billions of dollars already invested in building up an EV-friendly infrastructure,

China has strived to be a leader in EV technology as well as EV-related public

policies. Hao et al. [55] presented the rationale of Chinas two-phase EV subsidy

scheme and estimated its impacts on EV market penetration, with a focus on the

ownership cost analysis of EVs. Du et al. [31] identified key problems regarding the

sustainable growth of EV market penetration by market-acceptance indicators and

a cluster analysis method. They concluded that the early adoption of EVs in China

relied mainly on fiscal incentive policies. Admitting the limited effect of former policy

incentives on EV adoption in China, recent research has started to rethink the EV

policy in a broader socioeconomic context as in this work.

Beyond considering the governmental incentive problem as a command-and-control

process, a stream of literature considered the inefficiency of EV subsidies because of

strategic OEMs or customers. Egbue et al.[35] used a survey-based approach to test

how consumer attitudes and perceptions of EV affected the adoption of EVs. This

early work believed that the widespread adoption of EVs could still be decades away

due to the issues of range anxiety and high upfront cost. The rapid expansion of EVs

and generous subsidies provided to the advanced EV technology worldwide proved

the falsity of this claim. Thenceforth modelling customers’ and industry’s strategic
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behaviors become a central task in studies. For example, Zhang [133] investigated

the influence of EV subsidies and the strategic consumers’ model on EV produc-

tion. Liu et al.[77] presented an evolutionary game to show that subsidy plays a key

role in stimulating EVs industry development. Yang et al. [130] applied a two-stage

optimization model to identify that there was a positive relationship between govern-

ment’s subsidy scheme and consumers acceptance of EVs. These above-mentioned

studies mainly focused on examining the performances of government incentives for

EVs as a static problem. They paid little attention to the interactions between

different stakeholders in the EV market.

Our work aligns with the prior work that studied the EV market as a two-sided

market – a network consisting of government, OEMs, and charging station installers.

Network Effect presents in the EV market as the expansion of EV infrastructure

can attract a wider user base, and vice versa. Theoretical economic models on

indirect network effects date back to Katz and Shapiro [70], Rochet and Tirole [102],

and Armstrong [3]. These early studies focused on pricing and coordination issues

in two-sided markets. Subsequent work, such as Weyl [124], extended the modeling

framework to examine different market structures and types of platforms. The theory

of two-sided market aspired to facilitate technology diffusion in emerging energy

market such as fuel cell [58] and utility service [101].

Since the adoption of EVs is a technology diffusion process, this works formu-

lates the dynamic EV subsidy problem as a principal-agent problem. There is a

reviving interest in the principal-agent problem. Sannikov [104] proposed a solvable

framework that reduced the dynamic problem as a large static variational problem in

continuous time. This new method has been used for the dynamic subsidy analysis

of automated vehicles. To the best of our knowledge, this chapter is the first work
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that fills the gap between the empirical analysis of EV regulation practice and recent

theoretical progress in incentive policy design.

4.3 Dynamic Subsidy Model for EV and CS Market Coordination

Finding an alternative EV subsidy policy that promotes the synergy of EV market

and CS infrastructure development follows the following road map:

1. Fitting a correlated forecast model of EV market penetration and CS infras-

tructure expansion processes (§4.3.1).

2. Formulating the EV subsidy problem as a multi-agent dynamic game (§4.3.2).

3. Solving the optimal EV subsidies by dynamic programming (§4.3.3).

4. Finding an implementable approximation of the optimal EV subsidy policy that

improves the Dual-Credit Policy (§4.3.4).

5. Evaluating the properties of the suggested EV subsidy policies in different sce-

narios (§4.3.5).

Notation used in this chapter is summarized in the following table:

The structure of the game-theoretical model for EV subsidies is presented in

Figure 4.2. We summarize the notation of parameters used in our model in Table

4.1.

4.3.1 Benchmark: China’s Dual-Credit Policy

This work presents a new EV subsidy scheme based on the Dual-Credit Policy

in China. Despite today’s low EV market share (e.g., EV ownership in China was

only 1.37% in 2019 [78]), the government has implemented a wide array of incentives

to promote the production of “New Energy Vehicles” (NEVs), the term used to
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Table 4.1: Summary of notation in EV-CS subsidy model

Symbol Description

EV Electric vehicle
CS Charging station
NEV Total sale of EVs
NCS Total number of installed CSs
t Time period during the decision horizon, t ∈ [0, τ ]
ICE Internal Combustion Engine powered vehicle
a1 Efforts of EV OEMs
a2 Effprts of Chargins Station installers
b1 Internal Influence of EV
b1 Internal Influence of Charging Station
XEV Market Share Rate of EV
XCS Market Share Rate of Charging Station
α11 EV self-coefficient
α12 EV to CS coefficient
α21 EV self-coefficient
α22 CS to EV coefficient
ζ EV and CS market interaction coefficient
rG Government’s discount factor
rA EV OEM’s discount factor
rB CS installer’s discount factor
γ Buffer ratio in government’s payoff
φTe Target fuel consumption of EV
φTf Target fuel consumption of ICE
φAe Actual fuel consumption of EV
φAf Actual fuel consumption of ICE
h Scores for each EV in the Dual-Credit policy
ω Amplification factor in the Dual-Credit policy
β NEV score ratio requirements
SEV NEV scores Price
SCS Charging Station Subsidy
CEV Cost of environmental impacts per EV
CICE Cost of environmental impacts per ICE
PEV The profit OEM obtained per sale of EV
PICE The profit OEM obtained per sale of ICE
PCS The profit CS installer can get in each charging station
r1 Conversion ratio of efforts to revenue utility in EV manufacturing
r2 Conversion ratio of efforts to revenue utility in CS installation

designate plug-in EVs eligible for public subsidies. The subsidies are paid directly

to OEMs rather than customers. For example, a new ”Dual-Credit” Policy was

formally implemented in 2018, aiming to promote a more sustainable development
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Figure 4.2: DSG model for the EV and CS subsidy problem at time t

of EV technology [99]. As a result, more EVs were sold in China than in the rest

of the world in 2018 [31]. The Dual-Credit Policy is constructed in such a way that

the lower vehicle fuel consumption performance can be compensated by the heavier

reliance on EVs. It assesses two scores separately for each OEM: CAFC and NEV

as in the flow chart in Figure 4.3.

• CAFC ( “Annual Vehicle Fuel Consumption Scores”):

1. If a CAFC score is positive, it can be carried over to the next year or

transferred to the affiliates;

2. If the CAFC score is negative, there are 3 ways to resolve it: a) using the

previous year’s carry-over scores, b) using the scores earned by the affiliates,

and c) purchasing NEV scores.

• NEV (“New Energy Vehicle Scores”):

1. If an NEC score is negative, it can be made up by trading with a company

with a positive score;

2. If the NEV score is positive, it can be sold to a company with a negative
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score.

Figure 4.3: Flow-chart of Dual-Credit Policy

The Dual-Credit score can be computed by equations as follows:

CAFC =

∑N
i=1 FCi × Vi∑N
n=1 Vi −Wi

,(4.1)

TCAFC =

∑N
i=1 Ti × Vi∑N

n=1 Vi
,(4.2)

CCAFC = (α× TCAFC − CAFC)×
N∑
i=1

Vi,(4.3)

where CAFC is the actual average fuel consumption of the enterprise; i is the index

of the passenger vehicle model; FCi is the fuel consumption of the i-th model; Viis

the annual production of the model; Wi is the multiplier of the i-th model; Ti is the

fuel consumption target value for the i-th model; α is the average fuel consumption

requirement (in the “Methods and Indicators for Evaluation of Passenger Vehicle

Fuel Consumption”); TCAFC is the target value of the average fuel consumption of

the enterprise; CCAFC is the average fuel consumption of the company.
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CNEV−ACTUAL =
N∑
i=1

Ci × Vi−NEV ,(4.4)

CNEV−TARGET = β ×
N∑
i=1

Vi−NEV ,(4.5)

NEV = CNEV−ACTUAL − CNEV−TARGET ,(4.6)

where Ci is the new energy passenger vehicle model scores; Vi−NEV is the annual

production or imports of the i-th new energy passenger vehicle model; β is the

EV scores ratio requirement; Vi−CV is the annual production (excluding exports) or

imports of the i-th conventional fuel vehicle. This chapter does not consider the

exchange of scores between OEMs. Transferring credit scores to the next year is

not allowed. Each OEM’s final CAFC score and NEV score must be equal by the

end of each year. We refer readers to [99] for more details about the Dual-Credit

Policy. This policy can thus assure the automobile industry to reach a proper balance

between low-energy consumption and energy diversification in production plans.

4.3.2 Correlated EV and CS Market Dynamics

The main contribution of this work is to consider subsidies for EV and CS as a

joint problem. We model the EV market penetration as a Diffusion of Innovation

(DOI) process [85] affected by the implemented subsidy policies. The DOI model

assumes that the adoption rate of EVs is determined by two diffusion parameters: (a)

the coefficient of external influence a that represents the OEMs effort in innovation,

and (b) the coefficient of internal influence b that represents the word-of-mouth effect

within consumers. At time t, the EV market share rate dXEV (t)/dt is defined by the

dynamics in equation (3.7), as follows:

dXEV

dt
= (a+ bXEV )(1−XEV ),(4.7)
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where XEV (t) = NEV (t)/MEV is the EV market share ( growing from 0 to 1 if all

vehicles in the market are EVs). The aggregate EV market size, i.e., the cumulative

number of EVs sold by time t, is denoted by NEV (t); the EV market potential, i.e.,

the saturation population of AV consumers, is MEV .

We simplify the design of a state-level EV subsidy policy by aggregating all vehicle

models into one group. This macroscopic DOI model have been widely used in the

EV policy literature [39, 51, 128]. However, the aggregate model in (4.7) has two

obvious defects:

1. It assumes that EV adoption is solely affected by the intrinsic tendency to

purchase EVs. Nevertheless, customers will not choose EVs over ICEs if there

is no convenient access to charging stations [114]. Hence the government should

also promote to build more charging stations as the EV market share increases.

2. It assumes that the market forecast is perfect while in fact any predictive model

has uncertainty.

This chapter extends the DOI model to two-dimensional differential equations:
dXEV

dt
= (α11a1 + α12a2 + ζa1a2 + b1XEV )(1−XEV )

dXCS

dt
= (α21a1 + α22a2 + ζa1a2 + b2XCS)(1−XCS)

,(4.8)

where a1 and a2 represent OEM’s effort in promoting EVs and CS installer’s effort

in expanding CS infrastructure respectively. b1 and b2 represent the fixed coefficient

of internal influence. α11a1 indicates the direct impact of OEM’s own decision on

EV production, α12a2 indicates the indirect impact of CS installer’s decision on

EV production (α12 can be set to 0 if irrelevant), and ζa1a2 indicates the degree

of correlation between the EV market and charging station infrastructure due to
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customers’ choice. These parameters are designed to capture the synergy between

the sales of EVs and the expansion of CS infrastructure.

The deterministic model is unrealistic when predictions are made over long periods

of time. Thus we model the uncertainty of this prediction by converting (4.8) to a

stochastic model which is driven by a Gaussian process (in particular, a Brownian

Motion). Measuring uncertainty in the future expansion of the markets by a Gaussian

process is appropriate when a large number of factors affect this expansion. The EV

and CS market dynamics are thus generalized to the following system of stochastic

differential equations:

dXEV = (α11a1 + α12a2 + ζa1a2 + b1XEV )(1−XEV )dt+

σ1(1−XEV )dB1(t)

dXCS = (α21a1 + α22a2 + ζa1a2 + b2XCS)(1−XCS)dt+

σ2(1−XCS)dB2(t)

,(4.9)

where the drift term follows the DOI model, and the diffusion terms have constant

volatilities σ1 and σ2 respectively. EV and CS penetration paths are generated by

extraneous Brownian Motions B1(t) and B2(t), respectively.

4.3.3 Determining Parameters of EV-CS Joint Diffusion Dynamics

In this section, we use the collected EVs and charging infrastructure data in

China’s NEV market from February 2016 to June 20191(Figure 4.4) to model the

dynamic processes in (4.9). The government goal is to use incentives to control the

rate of the market penetration with the aim of increasing the social benefit.

The Chinese government’s projection of the future EV market [65] suggests that

by 2035, the number of EVs in China will reach 80 million, and the number of
1The collected date is between 2016 and 2018 including the periods that Dual-Credit policy was in effect. This

chapter assumes that the dynamic market model is unaffected in the observations considering the short time window
that the new policy was deployed.



90

(a) Ownership of EV and CS in China (b) Penetration of EV and CS in China

Figure 4.4: Ownership and penetration of EVs and CSs in China

charging stations will reach 30 million. Therefore, we assume the saturation market

potential to be MEV = 80 million and MCS = 30 million, respectively. After fitting

the collected data to equation (4.9), the fitted parameters are shown in Table 4.2.

The parameters such as α11, α12 are not homogeneous in time, but we found these

changes to be relatively small in the best-fit values. Thus in the remaining analysis,

we assume these parameters as constant in time.

Table 4.2: EV market parameter fitting results

Fitted α11 α12 α21 α22 ζ σ1 σ2
Parameters 0.001 0.001 0.001 0.001 3 0.000982 0.001094

Fitted a1 a2 b1 b2
Decisions 0.009 0.009 0.049 0.049

Figure 4.5a and Figure 4.5b show the forecast for EVs and CSs from January

2020 to December 2026. It can be seen that by December 2026, both EV’s and CS’s

market penetration rates are close to 70% of the market potential. The confidential

intervals of predicted market growth rates are shown in Figure 4.5.

With the predicted EV and CS market penetration processes, the EV-CS ratio

gradually reaches the government’s target in Figure 4.6. Note that, due to data avail-
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(a) EV Market Penetration Forecast (b) Charging Station Market Penetration Forecast

Figure 4.5: Market forecast to 2026 based on 2016-2019 EV market data

ability, we only consider the public-owned CS infrastructure in this work. This work

investigates how a proper EV-CS subsidy policy guarantees the supply of reliable

EV charging infrastructure over time.

Figure 4.6: EV-CS ratio to 2026 based on 2016-2019 EV market data

4.3.4 EV-CS Subsidy Policy as Dynamic Stackelberg Game

After implementing the EV’s Dual-Credit Policy and the charging station subsidy

policy, the government gains an overall efficiency benefits f(XEV (t), XCS(t)). This

function includes the environmental and social benefit accrued by EV adoption.

Since OEMs and CS installers are strategic, which was a main reason for the

unintended consequence of EV subsidies in China [99], this work studies how subsi-
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dized parties react to the EV subsidies received. We model this process as a dynamic

Stackelberg Game in which the government is the principal who offers subsidies and

the OEM and CS installers are agents who independently promote their markets.

The dynamic game model for EV-CS subsidies is summarized in Table 4.3.

In this game, a risk-neutral government pays a sequence of per-unit EV and

charging station’s subsidies SEV (t) and SCS(t) to the OEM and the CS installer to

maximize the total expected discounted payoff in equation (4.10):

E[

∫ τ

0

e−rGtf(XEV (t), XCS(t), SEV (t), SCS(t))dt],(4.10)

where rG is the discount factor of the government agencys total payoff.

After implementing subsidy policies, the government is unable to observe the

exact decision a1(t) and a2(t) made by the OEM and CS installer. Given OEM’s

instantaneous utility function h1(SEV (t), a1(t)) and the CS installer’s instantaneous

utility function h2(SCS(t), a2(t)), the government observes the signals XEV and XCS

to infer their optimal decisions. With a given EV and CS subsidy policy, the OEM’s

and CS installer’s objective is to maximize their expected total discounted utility,

respectively: 
E[
∫ τ

0
e−rAth1(SEV (t), a1(t))]dt]

E[
∫ τ

0
e−rBth2(SCS(t), a2(t))]dt]

.(4.11)

The optimal EV and CS subsidy policies characterize sequences SEV (t) and SCS(t)

that maximizes the government’s expected total discounted payoff only if the EV

OEM and CS installer cooperate and adopt the optimal responses. Following the

literature of mechanism design [104], we call the conditions that specify the OEM

and CS installer’s best responses the Incentive-Compatible (IC)-constraint and the

IR-constraint respectively. The IC- constraint guarantees that the OEM and CS
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Table 4.3: Multiagent dynamic Stackelberg games for EV subsidy policy
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installer’s best responses solve their respective utility maximization problem. The

Individual-Rational (IR)-constraint guarantees that OEM and CS installer stay in

the market as long as the cumulative expected utility over the horizon exceeds some

pre-defined quantity W0 and W1. In summary, the optimal EV and CS subsidy

policies solve the following optimization problem in equation (4.12):

max
SEV (t),SCS(t)

{E[

∫ τ

0

e−rGtf(SEV (t), SCS(t), a1(t), a2(t)dt]}(4.12)

s.t.


a1(t) = argmax

a1

E[
∫ τ

0
e−rAth1(SEV (t), a1(t))]dt]

a2(t) = argmax
a2

E[
∫ τ

0
e−rBth2(SCS(t), a2(t))]dt]

(IC)


E[
∫ τ

0
e−rAth1(SEV (t), a1(t))]dt] ≥ W0

E[
∫ τ

0
e−rBth2(SCS(t), a2(t))]dt] ≥ W1

(IR)

4.3.5 Solving the Optimal EV-CS Subsidy Policy

The optimization for the EV and CS subsidy problem is notoriously difficult be-

cause (4.12) includes three coupled subproblems. Recent results in differential games

[80, 104] propose a tractable scheme for solving the problem by transforming (4.12)

into a dynamic program. The scheme includes three main steps. First, we can find

an equivalent representation of the IC-constraint. Second, the representation can be

parameterized and incorporated into the objective function with mild smoothness

assumptions. Finally, the optimal EV and charging station subsidies can be com-

puted by dynamic programming, i.e., a Hamilton-Jacobi-Bellman(HJB) equation in

Theorem IV.2.

One of the main differences between static subsidy and dynamic subsidy analysis

is the including the continuation value into the state space. Continuation values

are the expected discounted total payoff or utility at time t > 0 with the optimal
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subsidy policy followed through the horizon. This function is also termed as the

value function in dynamic programming or reinforcement learning. More specifically,

OEM’s and CS installer’s continuation values at time t > 0 are given by equation

(4.13): 
WEV (t) = E[

∫ τ
t
erA(s−t)h1(S∗EV (s), a1(s))ds|zt]

WCS(t) = E[
∫ τ
t
erA(s−th2(S∗CS(s), a2(s))ds|zt]

,(4.13)

where the filtration zt represents the information collected by time t (including

decisions and markets dynamics observed by time period t). WEV and WCS are

added as state variables in dynamic program.

After augmenting the state space, two control variables, the sensitivity level YEV

of the OEM’s continuation value WEV with respect to the EV market penetration

rate XEV (t) and the sensitivity level YCS of the CS installer’s continuation value WCS

with respect to the charging station market penetration rate XCS(t), are introduced

to the optimization of subsidy policy. YEV and YCS represent the government’s

control over the OEM’s and CS installer’s payoff in the future.

Given a subsidy policy [SEV (t), YEV (t)] and [SCS(t), YCS(t)] at time t, if h1 and

h2 are continuously differentiable, concave, and nonlinear in a1 and a2 respectively,

we can define a Nash Equilibrium as follows:

Definition IV.1. OEM’s and CS installer’s responses a∗1 a
∗
2 form a Nash Equilibrium

defined in (4.14) for all t ∈ [0, τ ]:
a∗1 = arg maxa1 YEV (α11a1 + α12a

∗
2 + ζa1a

∗
2 + b1XEV ) + h1(a1, a

∗
2)

a∗2 = arg maxa2 YCS(α21a
∗
1 + α22a2 + ζa∗1a2 + b2XCS) + h2(a∗1, a2)

(4.14)
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Using the first-order optimality condition, we have

(4.15)


∂h1(a1, a

∗
2)

∂a1

+ YEV (α11 + ζa∗2)(1−XEV ) = 0

∂h2(a∗1, a2)

∂a2

+ YCS(α22 + ζa∗1)(1−XCS) = 0

.

Plugging in the utility functions, we have:
a1 = YEV

2r21
(α11 + ζa∗2)(1−XEV )

a2 = YCS
2r22

(α22 + ζa∗1)(1−XCS)

As long as the slopes of two curves satisfy

ζYCS
2r2

1

≤ 2r2
2

YEV ζ
,

we have that the unique solution to (4.15) a∗1 ≥ 0, a∗2 ≥ 0 forms a Nash Equilibrium.

It is easy to check that the data fitted in Table 4.2 guarantee this condition.

The solution to (4.15) is a significant step towards promoting EVs via the network

effect, which is a new finding not addressed in prior work. The government allocates

a fixed amount of subsidies between the OEM and the CS installer to ensure that EV

customers can have a stable access to charging infrastructure without oversubsidizing

either side. It also designates that both the OEM and CS installer can not be better

off if they do not follow the optimal a∗1 and a∗2.

Let F (XEV ,WEV , XCS,WCS) denote a second-order continuous function with four

state variables – EV market share XEV , OEM’s continuation value WEV , charging

station market share XCS, CS installers continuation value WCS. In Theorem IV.2,

we show that F calculates the government’s continuation value, i.e., the cumulative

payoff gained from the new EV subsidy policy. The government’s goal is thus to

maximize the value of F and achieve the target EV market penetration rate over the

planning horizon.
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Theorem IV.2. With all these considerations, we can obtain the optimal EV-CS

subsidy policies by solving the following HJB equation:

rG
∂F

∂t
= max
{SEV ,SCS ,YEV ,YCS}t∈[0,τ ]

{f(XEV , XCS, SEV , SCS) + L1OF1+

1

2
HT

1 O
2F2H1 + L2OF2 +

1

2
HT

2 O
2F2H2}

(4.16)

The operators in (4.16) are defined below:

OF1 = [ ∂F
∂XEV

, ∂F
∂WEV

]ᵀ

OF2 = [ ∂F
∂XCS

, ∂F
∂WCS

]ᵀ

O2F1 =


∂2F

∂XEV
2

∂2F
∂XEV ∂WEV

∂2F
∂XEV ∂WEV

∂2F
∂WEV

2



O2F2 =


∂2F

∂XCS
2

∂2F
∂XCS∂WCS

∂2F
∂XCS∂WCS

∂2F
∂WCS

2


L1 = [(α11a

∗
1 + α12a

∗
2 + ζa∗1a

∗
2 + b1XEV )(1−XEV ),WEV − h1(SEV , a

∗
1)]

L2 = [(α21a
∗
1 + α22a

∗
2 + ζa∗1a

∗
2 + b2XCS)(1−XCS),WCS − h2(SCS, a

∗
2)]

H1 = [XEV YEV ]ᵀ

H2 = [XCS YCS]ᵀ

.

The HJB equation obtains the optimal subsidies SEV for the OEM and the optimal

subsidy SCS for the CS installer that also maximizes their own utility in equation

(4.14) along with the control variables. In conclusion, the derived EV subsidy policy

resolves the “cheating compensation” problem amid the current EV subsidy policy.

We use the following boundary conditions in the government’s continuation value

to solve the HJB equation:

These boundary conditions assure that:



98

(a) Functional relationship between F and WEV (b) Functional relationship between F and XEV

(c) Functional relationship between F and WCS (d) Functional relationship between F and XCS

1. When the penetration rate of XEV and XCS hits 1, and the OEM’s continuation

value WEV and WCS hit W ∗
EV or W ∗

CS, the government’s continuation value

reaches the maximum.

2. When the penetration rate of XEV and XCS hits 0, the government agency

cannot realize its Aim of Promoting EVs and CSs. Hence, it’s continuation

value reaches the minimize.

3. When the continuation values WEV or WCS hit W , the government’s continua-

tion value at its lowest value.

4.4 Result

In this section, we develop a new EV-CS subsidy policy using the dynamic game

approach developed above. The computed optimal subsidy policy has a complex

form over the planning horizon, which is difficult to implement in real-time. We seek
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simple but efficient alternative EV subsidy policies in what follows. The alternative

policy is a two-stage linear approximation to the optimal policy, which means the

government either phases in or out during a certain period of time. It is almost as

efficient as the optimal policy and the cumulative social benefit collected from the

suggested EV subsidy policy is substantial compared with the Dual-Credit Policy.

We conduct several sensitivity analyses in China’s EV market to check how the policy

works with market changes.

The following assumptions about data aggregation are made through out the

analysis:

1. We compute the cash grant per unit credit as in the Dual-Credit Policy. Differ-

ent car models with different fuel consumption and mileage range will receive

different credit.

2. The total environmental pollution costs are calculated from the average EV fleet

statistics in 2019 [68].

3. The parameters in Table 4.4 are from the fitted aggregated nationwide market

dynamics in Table 4.2 and other relevant work [92, 122, 123].

Table 4.4: Values of parameters defined in Table 4.1 for numerical experiments

Parameters N MEV MCS φAe φTe φAf
Values 2.27 80 30 2 6 8

Parameters φTf γ h ω β CEV
Values 6 1.2 4.5 3 0.1 2

Parameters CICE PEV PICE PCS r1 r2
Values 8 -1 2 2 3 2

4.4.1 Optimal Subsidies for OEM and CS Installer

With EV and CS market data, we first compute the optimal EV-CS subsidies

from 2019 to 2026 for a benchmark. The optimal subsidies per EV or per CS are
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shown in Figure 4.7. In response, the OEM and CS installer’s optimal controls of

innovation coefficient a1 and a2 are shown in Figure 4.10, respectively. We draw the

following observations:

1. The EV credit score first increases monotonically to its peak from 2019 to 2022,

and then declines to a constant low level after 2023.

2. The CS subsidy remains a high constant value until 2022 due to the shortage

of charging infrastructure, and then phases out after 2024.

3. OEM reacts concurrently to the increase or decrease of EV subsidies, i.e., EV

market’s growth is proportional to the provided subsidies.

4. CS installer’s response is inconsistent with maximum amount of subsidies offered

in 2019-2023. Due to the constraint on the target EV-CS ratio, expanding the

charging infrastructure will induce high costs. CS installer prefers to delay the

initial investment and leverages the correlated EV and CS market to achieve

the set goal in 2025.

(a) Dual-Credit Policy Score (b) Charging Station Subsidy

Figure 4.7: Comparison of the optimal EV subsidy policy and the Dual-Credit EV subsidy policy

The structure of the optimal policy has interesting implications which are not

discovered in prior work. To achieve a reasonable EV-CS ratio as in Figure 4.6,
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the government should accelerate the sales of EVs at the early stage. On the other

hand, the phase-out of existing EV subsidy policy will potentially enlarge the gap

between the current EV-CS ratio (∼3.6) and the target value (∼1.5). Our model

can coordinate the interest of OEMs and CS installers more competently.

4.4.2 Simple-to-Implement EV-CS Subsidies

The optimal subsidy policy computed above, although maximizing the govern-

ment’s total payoff, is hard to interpret and implement in practice. Observing the

increasing and decreasing trends of S∗EV and S∗CS, we propose a simple piecewise lin-

ear approximation of the the optimal policy (termed as “suggested policy”). To show

the efficiency of the proposed alternative policy, we conduct numerical experiments

on the following policies:

1. Case 1 (Constant Dual-Credit Policy): The government keeps using the existing

Dual-Credit Policy until 2026 (The EV subsidy per credit score is SEV = 0.2

and the CS subsidy is SCS = 1).

2. Case 2 (Suggested EV-CS Subsidy Policy): The piecewise linear function is a

proxy to the optimal subsidy above1.

3. Case 3 (Optimal EV-CS Subsidy Policy): Implementing the optimal policy

computed in §4.1.

4. Case 4 (Price-Rebate Policy): The government extends the phase-out of the EV

subsidy and continues the increasing CS incentives (shown in Figure 3.1).

1The approximate subsidy policy follows:

SEV =

{
0.7t− 1410.4 2018 ≤ t < 2023

1 t ≥ 2023
, SCS =


15 t < 2022

−6.6t+ 13360.2 2022 ≤ t ≤ 2024

0 t > 2024)

.
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Figure 4.8: Difference between the optimal EV-CS subsidy and Case 1 / Case 2 policies

Figure 4.8 shows how the government’s loss of cumulative payoff changes compared

with the optimal subsidy policy (termed as the “optimality gap”). The difference

of government’s continuation value F using the Case 1 policy and that under the

optimal policy reaches the apex in 2021. While it is much smaller under the sug-

gested easy-to-implement policy in Case 4. As the constant credit disregards the

unmet demand in the early adoption of EVs, the optimality gap in Case 1 climbs

quickly. This comparison implies the misread of governmental incentives worldwide

– the phase-out of EV subsidies has a far-reaching negative impact on the future EV

market.

(a) Total EV Subsidy (b) Total CS Subsidy

Figure 4.9: Comparison of cumulative EV and CS subsidies in Case 1 - Case 4
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Figure 4.10: OEM and CS installers’ best response

The government usually faces a budget constraint in the EV-CS incentive problem.

A common trade-off is between the effectiveness of the policy, measuring by the

proportion of the actualized EV and CS market share, and the annually spent budget.

Figure 4.9 shows that, to reach the same predicted EV and CS market size from 2019

to 2026, our suggested policy requires the government to offer significantly less grant.

In other words, the performance of EV subsidy is not a matter of how much but a

matter of when – by following the derived timing of policy, the government can save

budget while achieving the same goal over the planning horizon. The key issue is

making a pro-active policy that subsidizes the early adoption of EVs and prepares

charging infrastructure before the year of 2022. Despite the case study of China’s

EV market, it is a general conclusion applied to other EV markets worldwide.

4.4.3 Interactions between EV Market and CS Market

As the growth of EV market and the expansion of CS infrastructure are closely

related, we now investigate how the strength of this interaction affects the optimal

subsidy policy. This work use the interaction factor ζ between two market pene-

tration processes XEV and XCS as an aggregate parameter for a variety of factors
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such as customers’ choice [114] and the spatial proximity to the charging infrastruc-

ture. A greater value represents stronger synergy between these two markets. The

above numerical experiments set ζ = 3 from the fitted market data. We test the sce-

narios that the interaction becomes weaker or stronger, or even the opposite, with

ζ = −30,−6,−3, 0, 3, 6, 30 respectively. The impact of interaction strength on the

EV subsidies is shown in the Table 4.5.

Table 4.5: Impact of EV and CS market interactions on optimal subsidy policies

Dual-Credit Policy Score /CS Subsidy(Thousand Yuan)
ζ 2018 2019 2020 2021 2022 2023 2024 2025 2026
30 1.6/− 1.7/− 2.6/+ +/+ +/+ 1.8/+ −/4.3 −/− −/−
−6 1.9/− 2.5/+ 3.7/+ +/+ +/+ 1.3/13 −/2.6 −/− −/−
−3 1.9/+ 2.6/+ 3.6/+ +/+ +/+ 1.2/11.8 −/2 −/− −/−
0 2/+ 2.5/+ 4/+ +/+ +/+ 1.2/11 −/1.8 −/− −/−
3 2.2/+ 2.6/+ 4.1/+ +/+ +/+ 1.1/11 −/1.6 −/− −/−
6 2.3/+ 3.3/+ 4.4/+ +/+ +/+ 1/10.3 −/1.3 −/− −/−
30 2.5/+ 3.3/+ 4.4/+ +/+ +/+ 1/7 −/− −/− −/−
+ : Subsidies for EV or CS reach the upper bound.

− : Subsidies for EV or CS reach the lower bound.

Since the expansion of CS lags behind the growth of EV market in China, the

impact of interaction has has different implications for these two markets:

1. EV: From 2018 to 2022, the optimal Dual-Credit score for EVs will increase

with the correlator ζ. During the period of 2022-2024, as the optimal amount

of subsidy per EV declines, ζ has an inverse impact. It is because the overheat

of EV will otherwise enlarge the EV-CS ratio.

2. CS: From 2018 to 2023, when the correlator ζ is negative and small, the optimal

CS subsidies will increase from 0 to the maximum and then remain a constant

thereafter. From 2023 to 2025, the optimal CS subsidy is negatively correlated

with ζ. The government eliminates the subsidy for CS after 2025.

In summary, the government can intervene the interaction between EV and CS
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market in many ways. For example, improving the network design of charging in-

frastructure so that EV becomes a more attractive product. Nevertheless, enhancing

the correlation does not always mean the drop of subsidies.

4.4.4 Sensitivity Analysis of Optimal Subsidy Policies

The computed EV and CS subsidy policies may be sensitive to the input EV and

CS market data. Among the high dimensional input data, we choose five parameters

that are most important in the Dual-Credit policy. The experiment below computes

the relative impact of these parameters on the government’s cumulative payoff over

the planning horizon. Positive impact means that increasing the parameter will

enhance the government’s total payoff.

Figure 4.11: Sensitivity analysis of optimal subsidies

Figure 4.11 shows that φAf , γ and ω have a great impact on the government’s

continuation value F . The definition of these parameters can be found in Table 4.1.

φAf and β have a negative correlation with the government’s objective while γ, ω

and h have a positive correlation. The impact of h and β can be ignored. We explain

the impact of φAf , γ and ω as follows:
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1. φAf : The relative impact of φAf on the government’s objective is decreasing

over the planning horizon. This is because the proportion of ICEs in sales

of automobiles decreases. φAf has the greatest impact on the government’s

objective value in 2018-2020, which suggests the government to allocate more

budget to promote the improvement of fuel consumption.

2. γ: The relative impact of buffer ratio on the government’s objective value is

about 40% over the planning horizon. As the most influential parameter from

2021 to 2024, the government can increase the value of γ by incentivizing OEMs

to deploy more advanced technology to enhance the environmental benefit of

EVs.

3. ω: The relative impact of ω increases over the years. It represents that the

NEV’s weight the CAFE score becomes the most influential parameter after

2025. The government can directly control ω in the Dual-Credit Policy to

promote the adoption of EVs more effectively after 2025.

Although the impact of h and β on the government’s objective is small, they

are critical for the Dual-Credit Policy. For example, h determines the OEM’s effort

in improving EVs’ mileage per charge, which is an important factor in customers’

purchasing decision. More customers’ behavior research is needed in the subsidy

policy.

4.5 Policy Implication

We now summarize the key policy implications. First, the government should

integrate the subsidies for EVs and charging infrastructure as a joint decision. The

range anxiety is one of the significant barriers to large-scale adoption of EVs [35].

Since the expansion of the charging infrastructure lags behind the growth of the EV
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market, this work suggests boosting the uptake of CS in the early stage and phasing

out both financial subsidies afterward. This asynchronous EV-CS subsidy policy

leverages the network effect theory [102] to reduce the governmental spending on

the adoption of EVs. These results outperform the existing strategies in China’s EV

market case study.

Second, the government should encourage the OEM and the infrastructure in-

staller to share the subsidy information and production plans. This information-

sharing is critical for accelerating the buildup of charging infrastructure for EVs.

China’s separate incentive policies for EVs and their charging infrastructure caused

the difficulty of coordinating two parties’ investments. The mistrust in the other

party’s decision has induced huge market frictions. This work’s equilibrium-based

approach will meet the EV-CS ratio standards by 2025 in a noncooperative way,

i.e., their revenue-oriented strategies will automatically serve for the best of the EV

adoption process.

Finally, the government should facilitate the sustainable growth of the EV mar-

ket with proactive incentive policies. Many unintended consequences of previous

EV subsidy policies resulted from using static analyses. Those analyses suggested

using a fixed amount of subsidy that have yielded substantial market inefficiency.

For example, OEMs overproduced EVs due to the bull-whip effect, i.e., producing

more EVs to meet the new demand than needed. This work shows the benefits of

implementing a mixture of dynamic EV-CS subsidy policies under uncertain market

conditions.
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4.6 Conclusion

This chapter develops a new multi-agent dynamic game approach to design EV

subsidy policy. The optimal EV subsidy policy increases the synergy between the

EV market growth and charging infrastructure development. It thus significantly

enhances the effectiveness of governmental incentives amid the phase-out of subsidies

worldwide. China’s EV market case study validates the long-term value of using a

proactive EV-CS subsidy policy. We recommend an alternative easy-to-implement

subsidy policy, which gains more social benefit than the currently implemented Dual-

Credit Policy in China. Besides, the sensitivity analysis uncovers three important

input parameters that affect the government’s payoff over the planning horizon, either

positively or negatively.

We do not intend to conclude that the suggested EV subsidy policy is superior

to other options. Our goal is to outline a uniform game-theoretic scheme to test

and compare different policies. Interesting future research directions include, among

others: First, extending the aggregate analysis to more specific policies considering

more factors such as car type and fuel economy; Second, exploring regional EV

subsidy policies because the EVs’ level of impact on emissions varies across China

[65]; Third, including more decision-makers into dynamic games such as customers.

The last task requires to develop a new fundamental approach to solve the optimal

subsidies because adding customers into games violate the multi-agent structure in

this work.



CHAPTER V

Conclusion

This thesis studies incentive contracts in multi-agent systems. We proved the

existence and uniqueness conditions of the model in a general setting. Incentive

contracts are most suitable for designing pro-active policies for complex organizations

with mutual or conflicting interests. Compared with static incentive design, dynamic

contracts are in favor of the principal because of following two new features: First,

characterizing conditions for termination (principal terminates the incentives) or

retirement (agent withdraws from the contracts); Second, exploiting the uncertainty

of future profit through the front-loading compensation as agents possessing memory

tend to consume more in advance.

This thesis also demonstrated the capability of incentive contract theory with two

applications in emerging transportation systems. Governments around the world

have been underwriting EVs for a decade, and AV is an emerging technology that

promises to benefit the society even more. The subsidy is one of the most significant,

if not the only, regulatory techniques to help these markets to comply with the

transportation electrification and (potential) automation mandate. With the phasing

out of EV subsidies and uncertain AV market in the future, it is necessary to rethink

the best practice of transportation policy under the umbrella of this thesis.

109
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To close this doctoral thesis, I would like to mention some promising while chal-

lenging research avenues. Two significant extensions of this dissertations are infor-

mation explosion and organizational structure.

First, existing incentive contracts literature solves a planning problem. The prin-

cipal faced with asymmetric information (i.e., the agent’s action is unobservable) is

assumed to have access to both the output process and the agent’s utility functions.

In a single-agent setting, prior works studied the case that principal and agent share

a common prior on the project’s unknown profitability (i.e., the output process)

and applies a Bayesian learning approach to update their belief on the profitability

[29, 57]. Learning splits the optimal incentive contracts to a two-phase form with the

agent’s information rent. Nevertheless, Demarzo and Sannikov [29] eliminates the

hidden utility function assumption by contracting with a risk-neutral agent, which

limits the direct extension to this thesis’s scope of multi-agent systems.

Second, the organization can be expanded vertically to a hierarchical structure.

Hierarchies appear in organizations with a branching structure such that direct links

exist only between the immediate superiors and subordinates. Almost every system

of organization applied to the world is arranged in hierarchies as they are one of

such forms that agents on the higher level have a greater power of authority than

those on the lower level. In contrast, agents on the same level have the same relative

amount of authority. To the best of my knowledge, Zhou [134] is the only related

work that studied a dynamic signaling game in which each subordinate observes

only the superior’s signals before determining its action. It found that the welfare-

optimal hierarchical structure is a chain structure. Hence, it is interesting to study

how incentive contract theory can be applied to hierarchies.
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[20] Pierre-André Chiappori, Ines Macho, Patrick Rey, and Bernard Salanié. Re-
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[76] Patŕıcia S Lavieri, Venu M Garikapati, Chandra R Bhat, Ram M Pendyala,

Sebastian Astroza, and Felipe F Dias. Modeling individual preferences for own-

ership and sharing of autonomous vehicle technologies. Transportation Research

Record: Journal of the Transportation Research Board, (2665):1–10, 2017.

[77] Cong Liu, Weilai Huang, and Chao Yang. The evolutionary dynamics of chinas

electric vehicle industry–taxes vs. subsidies. Computers & Industrial Engineer-

ing, 113:103–122, 2017.

[78] Zongwei Liu, Han Hao, Xiang Cheng, and Fuquan Zhao. Critical issues of

energy efficient and new energy vehicles development in china. Energy Policy,

115:92–97, 2018.

[79] Benjamin Loeb and Kara M Kockelman. Fleet performance and cost evaluation

of a shared autonomous electric vehicle (saev) fleet: A case study for austin,

texas. Transportation Research Part A: Policy and Practice, 121:374–385, 2019.

[80] Qi Luo and Romesh Saigal. Multi-agent contracts in continuous time. Working

paper, University of Michigan, Ann Arbor, MI., 2017.

[81] Qi Luo, Romesh Saigal, Zhibin Chen, and Yafeng Yin. Accelerating the adop-

tion of automated vehicles by subsidies: A dynamic games approach. Trans-

portation Research Part B: Methodological, 129:226–243, 2019.



122

[82] Ching-To Ma. Unique implementation of incentive contracts with many agents.

The Review of Economic Studies, 55(4):555–572, 1988.

[83] Michal Maciejewski and Joschka Bischoff. Congestion effects of autonomous

taxi fleets. Transport, pages 1–10, 2017.

[84] Vijay Mahajan, Eitan Muller, and Frank M Bass. Diffusion of new prod-

ucts: Empirical generalizations and managerial uses. Marketing science, 14

(3 supplement):G79–G88, 1995.

[85] Vijay Mahajan, Eitan Muller, and Yoram Wind. New-product diffusion models,

volume 11. Springer Science & Business Media, 2000.

[86] Hani S Mahmassani. 50th anniversary invited articleautonomous vehicles and

connected vehicle systems: flow and operations considerations. Transportation

Science, 50(4):1140–1162, 2016.

[87] Thibaut Mastrolia and Zhenjie Ren. Principal-agent problem with common

agency without communication. SIAM Journal of Financial Mathematics, 9

(2):775–799, 2018.

[88] Jianjun Miao and Alejandro Rivera. Robust contracts in continuous time.

Econometrica, 84(4):1405–1440, 2016.

[89] Dimitris Milakis, Bart Van Arem, and Bert Van Wee. Policy and society related

implications of automated driving: A review of literature and directions for

future research. Journal of Intelligent Transportation Systems, 21(4):324–348,

2017.

[90] Adam Millard-Ball. Car-sharing: Where and how it succeeds, volume 108.

Transportation Research Board, 2005.



123

[91] Holger M Müller. Asymptotic efficiency in dynamic principal-agent problems.

Journal of Economic Theory, 91(2):292–301, 2000.

[92] Sergio Tadeu Gonçalves Muniz, Bruce M Belzowski, and Jaclyn Zhu. The

trajectory of china’s new energy vehicles policy. International Journal of Au-

tomotive Technology and Management, 19(3-4):257–280, 2019.

[93] Sergey Nadtochiy and Thaleia Zariphopoulou. Optimal contract for a fund

manager with capital injections and endogenous trading constraints. SIAM

Journal of Financial Mathematics, 10(3):698–722, 2019.
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