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Abstract

Motivated by Gromov-Witten theory, this thesis is about moduli of maps from curves

to algebraic stacks, the obstruction theories of those moduli, and the functoriality of

the stacks and their obstruction theories. The first part discusses the moduli of sections

S of a map Z → C from an artin stack Z to a family of twisted curves C over a base

algebraic stack. The existence and basic properties of S are due to Hall-Rydh; the

new result in this thesis is that S has a canonical obstruction theory (not necessarily

perfect), generalizing known constructions on Deligne-Mumford substacks of S. We

also work out basic functoriality properties of S and its obstruction theory.

The second part proves an abelianization formula for the quasimap I-function. That

is, if Z is an affine l.c.i. variety with an action by a complex reductive group G such that

the quotient Z//θG is a smooth projective variety, we relate the quasimap I-functions

of Z//θG and Z//θT where T is a maximal torus of G. With the mirror theorems of

Ciocane-Fontantine and Kim, this computes the genus-zero Gromov-Witten invariants

of Z//θG in good cases.
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Chapter 1

Introduction

This thesis is about moduli of maps from complex curves to algebraic stacks, the

obstruction theories of those moduli, and functoriality of these objects. The study of

these objects is motivated by the quest to compute Gromov-Witten invariants.

1.0.1 What are Gromov-Witten invariants?

This section is written for the non-mathematician and it is not rigorous. I will dodge

the question three times before telling you the actual answer. The dodges will tell you

why both physicists and mathematicians are interested in computing Gromov-Witten

invariants. The first dodge is snarky: Gromov-Witten invariants are numbers, like 12

or 27 or −64 or 2/3. They are numbers associated to a specific target, or geometric

space, usually a space with at least four real dimensions. Say we have a geometric

space, call it X. The Gromov-Witten invariants of X are some numbers that tell me

about how shapes like the ones in Figure 1.1 can fit inside X.

The second dodge is physics-y: Gromov-Witten invariants describe particle interac-

tions in some model of space-time. The story begins with the long-standing quest of

theoretical physicists to unify quantum physics and general relativity. One possible

solution is string theory, which models fundamental particles with strings vibrating

in space-time. These strings curl up in 6 extra dimensions that are present at every

point in space-time (for a total of 6 + 4 = 10 dimensions in our universe). The

extra 6 dimensions are the geometric space X described above, and the shape of X

determines how particles can interact in our universe. These particle interactions are

geometrically modeled by the curves in Figure 1.1, and numerically they are equal to

the Gromov-Witten invariants of X.
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Figure 1.1: Some complex curves
These surfaces are called complex curves because they have one complex dimension (two
real dimensions). The leftmost surface is just a (hollow) ball, and the one following is a
(hollow) donut. The number of “holes” in the surface is its genus: from left to right, these
curves have genus 0, 1, 2, and 3.

A priori, no one knows which X is the shape of our universe at its microscopic level.

For a while, many people were wanting to compute Gromov-Witten invariants for lots

of different X’s, hoping to match the numbers for one special X to experimentally

measured particle interactions. However, it is outside the reach of current science to

measure the required particle interactions. Hence the physical interest in computing

Gromov-Witten invariants is somewhat dated.

The last dodge is mathy: Gromov-Witten invariants are psuedo-answers to enumer-

ative questions. An example of an enumerative question is the following:

How many points are contained in the intersection of two distinct lines in C2?

The answer to this particular question is, of course, either 1 (if the lines cross) or 0 (if

they are parallel). One gets a “better” answer if one modifies the question:

How many points are contained in the intersection of two distinct lines in P2?

Now the answer is always 1: two parallel lines in C2 meet at infinity in P2.

Instead of counting points in specified intersections of lines, Gromov-Witten invari-

ants count shapes like in Figure 1.1, called curves, containing certain points in X. For

example, the answer to the question

How many smooth conics in P2 contain 5 generic points? (1.1)

is a Gromov-Witten invariant of X = P2 (you should picture the “smooth conic” here
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like the ball in Figure 1.1). But in general, Gromov-Witten invariants are not exactly

equal to the answers to these curve-counting (or enumerative) questions. Indeed, these

enumerative questions should always have positive whole numbers for answers, like 12

or 27, but Gromov-Witten invariants can be negative numbers or fractions. Instead,

Gromov-Witten invariants answer a modified question whose answer is better behaved:

I say the answer is better behaved because Gromov-Witten invariants exhibit a wealth

of algebraic structures. These structures are interesting and beautiful in their own

right, but they also make it possible to write down all the Gromov-Witten invariants of

X (in many special but interesting cases) with one explicit formula, called a generating

series (see (1.2) for an example of a generating series).

Finally, the actual answer: Gromov-Witten invariants are integrals on the moduli of

stable maps from curves to X. The moduli space in question parametrizes functions

from shapes like in Figure 1.1 to high-dimensional geometric spaces X. In symbols, a

Gromov-Witten invariant is∫
[Mg,n(X,β)]vir

ev∗1γ1 ∪ . . . ∪ ev∗nγn

(where γ1, . . . , γn are classes in H∗(X,C)). You should think of the notation ev∗1γ1 ∪
. . .∪ ev∗nγn as analogous to the “5 points” in the enumerative question (1.1). From my

perspective, the interesting part is [Mg,n(X, β)]vir. In this notation, X is the same

as P2 in the question (1.1), g is related to the word “smooth,” β is related to the

word “conic,” and n is equal to 5 (the number of constraints in our counting problem).

The notation Mg,n(X, β) is a highly abstracted kind of space called the moduli of

stable maps to X. This space does not come with a way to do integrals; you have to

define integration separately, and that choice of how to integrate is called the virtual

fundamental class, notated [. . .]vir.

My thesis studies the spacesMg,n(X, β) (and related ones called moduli of quasimaps)

and their virtual fundamental classes. I derive some very general results about these

moduli spaces, and then I use these results to compute explicit formulas for generating

functions of Gromov-Witten invariants (see (1.2)).

1.0.2 Context for this thesis: quasimaps

Since the first mirror theorems of Givental [Giv98] and Lian-Liu-Yau [LLY97] in the

90s, there have been many approaches to computing Gromov-Witten invariants. The
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most relevant for this thesis is the strategy of quasimaps to a GIT quotient introduced

by Ciocan-Fontanine, Kim, and Maulik in [CK10; CKM14] (building on ideas of

Marian-Oprea-Panharipande in [MOP11]). The idea here is that if Z//θG is a GIT

quotient of an l.c.i. variety Z by a reductive group G, one should study not maps

to Z//θG, but maps to the stack quotient [Z/G]. The latter maps are allowed to hit

the unstable locus in Z, and they remember how they hit that locus—if Z//θG is

projective space, maps to the corresponding stack quotient are like rational maps, but

they carry more information about the basepoints.

The moduli of all maps to [Z/G] is very ill-behaved. It is an algebraic stack with

infinite stabilizers, not in general separated or quasi-compact. But it contains the

familiar Deligne-Mumford moduli space Mg,n(Z//θG, β) as an open substack. It also

contains other compactifications of maps from smooth source curves to [Z/G]; among

these are the quasimap moduli spaces. The quasimap moduli spaces are indexed by

a rational positive stability parameter ε and they stabilize for ε sufficiently small or

large. When ε is large they recover Mg,n(Z//θG, β). When ε is small, one hopes that

they are easier to describe explicitly and hence easier to compute with. Wall-crossing

theorems relate the quasimap invariants for changing values of ε and hence provide

a strategy for computing Gromov-Witten invariants. The literature contains several

wall-crossing theorems (the papers [CK14b; CK16; Zho19] are most relevant to this

thesis), but relatively few computations of quasimap invariants for small ε.

The questions studied in this thesis aim to better understand the quasimap moduli

spaces and compute quasimap invariants for small ε for a large class of targets.

1.0.3 Main results of this thesis

This thesis contains two parts. Aside from the fact that key results in the first part

are used in the second, the two parts are independent. Each part contains a complete

introduction to its contents. Here I will just informally summarize the results as they

relate to the quasimap context explained above.

Part 1

The quasimap moduli spaces are certain moduli stacks of maps to the stack quotient

[Z/G]. The first part of this thesis generalizes this setup slightly, replacing the moduli

of maps to a stack X with the moduli of sections S of a map Y → C, where Y is an
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algebraic stack and C is a family of twisted curves over an algebraic stack U . (Note

that the moduli of sections of C ×X → C recovers the moduli of maps to X.) The

reason for using the moduli of sections is that the results developed here are also used

to study the p-fields problem in my joint work [CJW19], but we will not discuss p-fields

in this thesis. The quasimap moduli spaces are certain separated substacks of the

Deligne-Mumford locus of S, but this thesis directly studies the entire (nonseparated,

unbounded, algebraic) stack S. The main result is the following.

Theorem. The algebraic stack S has a canonical relative obstruction theory over U .

By obstruction theory, I mean a morphism φ : E → LS/U in the derived category

of quasi-coherent sheaves on S, such that φ induces an isomorphism in cohomology

in degrees 0 and 1 and a surjection in degree -1. The restriction of the canonical

obstruction theory in the above Theorem recovers the standard obstruction theory on

the quasimap moduli spaces when the base U is chosen to be the moduli of principal

G-bundles on twisted curves. The main application of the above Theorem is that it

also defines a canonical obstruction theory on the quasimap moduli spaces when the

base U is just the moduli of twisted curves. (Previous constructions of an obstruction

theory for S relative to the moduli of twisted curves used a mapping cone construction,

and hence were not canonical.) This is key for the computation in the second part.

The first part also proves some functoriality lemmas about S and its canonical

obstruction theory. This functoriality is also used in the second part of this thesis (as

well as in [CJW19]). While these properties seem well-known, at least individually, the

coherent presentation here seems quite useful in applications. As preparation for this

functoriality and the Theorem above, I summarize the definitions and properties of

quasicoherent sheaves on algebraic stacks, including their derived categories and also

the cotangent complex. In addition, as a warmup to the proof of the Theorem above,

this first part proves a mildly new result about the deformation theory of algebraic

stacks.

Part 2

The second part deals directly with quasimap moduli spaces, though only with very

special ones. The goal here is to actually compute the quasimap invariants for small

ε, thereby completing the strategy outlined above for computing Gromov-Witten

invariants. Previous to this thesis, the computation had been done for “abelian”
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targets Z//θT for Z a vector space and T a torus, and a few “non-abelian” targets

Z//θG for non-abelian groups G (including all flavors of flag varieties). The invariants

of these non-abelian examples demonstrated a phenomenon common to many contexts

where it is possible to define invariants of a reductive group G: they were related to

invariants of Z//θT for a maximal torus T ⊂ G via an abelianization formula. The

second part of this thesis proves that formula in complete generality.

To state the abelianization formula, one encodes the quasimap invariants of Z//θG

(for small ε) in a generating function IZ//G called the I-function. The coefficient I
Z//G
β

of this generating series records invariants of degree β. The abelianization theorem

may now be stated as follows.

Theorem (Rough statement). The I-functions of Z//θG and Z//θT satisfy

I
Z//G
β =

∑
β̃→β

(∏
α

∏β̃(α)
k=−∞(c1(Lα) + kz)∏0
k=−∞(c1(Lα) + kz)

)
I
Z//T

β̃
(z)

 (1.2)

where the sum is over all degrees β̃ mapping to β and the product ranges over all roots

α of G.

The second part of the thesis proves this Theorem when Z admits a certain nice

embedding into a vector space, including the case where Z is equal to a vector space.

In this latter situation (Z is a vector space), an explicit formula for the quasimap

I-function of Z//θT is known, and in this case the above Theorem provides an explicit

formula for the quasimap invariants of Z//θG. I include an example of using the

Theorem to write down an I-function of a target whose invariants were previously

unknown.
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Chapter 2

Moduli of Sections

2.1 Introduction

This chapter is the product of my quest to understand what I consider the basic

objects of Gromov-Witten theory: the moduli of prestable maps M(X ) to an algebraic

stack target X and its obstruction theory. As explained in the introduction to this

dissertation, I was led to consider the entire moduli of prestable maps because of

questions arising from quasimap theory. However, this leads to many difficulties as

both the target and resulting moduli are artin stacks. Fortunately, the theory of

algebraic stacks is now developed enough to let us work with M(X ): for example,

the stack M(X ) is shown to be algebraic and locally finite type in [HR19], and the

theory of derived categories of quasicoherent sheaves on algebraic stacks, including

a cotangent complex, is worked out in [HR17; LO08; Ols07a]. One could view this

chapter as a routine check that M(X ) and its obstruction theory behave as we expect.

2.1.1 Moduli of sections and its obstruction theory

We recall the moduli of sections of an algebraic stack and its canonical obstruction

theory. Consider a tower of algebraic stacks over C

Z → C π−→ U

where π : C → U is a flat finitely-presented family of connected, nodal, twisted curves

(defined as in [AV02, Sec 4]) and Z → U is locally finitely presented, quasi-separated,

and has affine stabilizers. We define the moduli of sections Sec(Z/C) to be the stack
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whose fiber over T → U is HomC(C ×U T, Z). By [HR19, Thm 1.3], the stack Sec(Z/C)

is algebraic and the canonical morphism Sec(Z/C)→ U is locally finitely presented,

quasi-separated, and has affine stabilizers. It has a universal curve CSec(Z/C) and a

universal section n : CSec(Z/C) → Z.

Example 2.1.1. Let Y be an algebraic stack, locally finitely presented, quasi-

separated, and with affine stabilizers over C, and let YU denote its base change

to U. By [HR19, Thm 1.2] there is an algebraic stack HomU(C, YU) whose fiber over

T → U is HomU(C ×U T, YU). On the other hand, we have the moduli of sections

Sec(C×UYU/C). By Lemma 2.3.1, the projection C×UYU → YU induces an isomorphism

Sec(C ×U YU/C)→ HomU(C, YU)

We now define a canonical construction for families of sections. If X → Y is a

morphism of algebraic stacks, let LX/Y denote the cotangent complex (see Section

2.2.3), and if C → U is a family of curves, let ω• = ωC/U[1] denote the dualizing

object in the derived category, with trace map tr (see Section 2.2.2). To a diagram of

algebraic stacks

Z

K C

B U

f

π

where the square is fibered, we associate a morphism of complexes

φB/U : EB/U := Rπ∗(f
∗LZ/C ⊗ ω•)→ LB/U (2.1)

defined as follows. There is a morphism α in the derived category Dqc(K) induced by

the canonical arrows

Lf ∗LZ/C → LK/C
∼←− π∗LB/U (2.2)

where left-pointing arrow is an isomorphism since π is flat. There is also an arrow

β : Rπ∗(Lπ
∗LB/U ⊗ ω•)

∼←− LB/U ⊗Rπ∗ω•
id⊗tr−−−→ LB/U (2.3)

where the left-pointing arrow is the projection formula, an isomorphism in this context;
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and the right-pointing arrow is induced by the trace map (see Section 2.2.2). We set

φB/U = β ◦Rπ∗(α⊗ ω•).

2.1.2 Main results

Setting B = Sec(Z/C) defines a canonical morphism φSec(Z/C)/U of complexes in the

unbounded derived category of quasi-coherent sheaves Dqc(Sec(Z/C)lis-et) (see Section

2.2.1 for more about this category). The main result of this chapter is the following.

Theorem 2.1.2. The canonical morphism φSec(Z/C)/U is an obstruction theory on

Sec(Z/C).

By “obstruction theory,” we mean that φ induces an isomorphism of cohomology

sheaves in degrees 0 and 1 and a surjection in degree -1.

If M ⊂ Sec(Z/C) is Deligne-Mumford and the restriction of ESec(Z/C)/U to M is

perfect, then by [BF97] one can use φ to construct a virtual cycle onM (see [AP19] for

some discussion of the situation when M is not Deligne-Mumford). The obstruction

theory in Theorem 2.1.2 recovers the standard obstruction theory on the moduli spaces

of stable maps studied in [AGV08; Beh97], as well as the obstruction theory on the

moduli of sections studied in [CL12; CL18].

The most obvious difference between Theorem 2.1.2 and the cited results is that

Theorem 2.1.2 is a statement about 3-term obstruction theories on a stack that may not

be Deligne-Mumford. However, even when it is restricted to the cited Deligne-Mumford

situations, the proof of Theorem 2.1.2 uses a slightly different strategy than what is

in the literature, and most importantly it includes a certain critical detail, which we

will explain momentarily. We note that there are other approaches to constructing a

virtual cycle on the moduli of stable maps, including [LT98] and [Wis11].

We now explain the difference between our approach to Theorem 2.1.2 and those in

the literature, including an informal explanation of our added detail (this is explained

more fully in Section 2.4.3). It is well-known (see Lemma 2.4.7) that φ is an obstruction

theory if and only if, given any f : T → Sec(Z/C) from a scheme T and a square-zero

ideal I on T , the maps

Exti(Lf ∗LSec(Z/C)/U, I)→ Exti(Lf ∗ESec(Z/C)/U, I) (2.4)

induced by φ are isomorphisms for i = −1, 0, and “injective on obstructions” for i = 1.

9



(In other words, ESec(Z/C)/U captures the deformation theory of Sec(Z/C) over U, see

Theorem 2.1.3.) The standard approach to Theorem 2.1.2 is to prove an equivalence

of certain categories of deformations, and this equivalence implies that the Ext groups

in (2.4) are isomorphic for i = −1, 0, but it does not explain why the map φ is an

isomorphism.

Our proof of Theorem 2.1.2 adds the critical detail that φ itself induces isomorphisms

of the desired Ext groups. The strategy is to use the “fundamental theorem” of [Ill71,

Thm III.1.2.3] [Ols06, Thm 1.1], which is an isomorphism

ExalY(X , I) ' Ext0/−1(LX/Y , I) (2.5)

between the category of square-zero extensions ExalY(X , I) of X and a Picard category

determined by the cotangent complex (see Section 2.4.1). This fundamental theorem

lets us explicitly relate the well-known equivalence of deformation categories mentioned

in the previous paragraph and the morphism φ.

As a warmup to the proof of Theorem 2.1.2, we use the fundamental theorem (2.5)

to prove that the cotangent complex governs deformation theory as expected. That is,

suppose we are given a solid diagram

X Y

X ′ Z

f

g

(2.6)

of algebraic stacks where X ′ is a square-zero extension of X . Then one can define

a category Def(f) of dotted arrows making the entire diagram (2.6) commute. We

prove the following theorem.

Theorem 2.1.3. Consider a solid diagram (2.6) of algebraic stacks where X → X ′ is

a square-zero extension of Deligne-Mumford stacks with ideal sheaf I, and f and g are

representable.

1. There is an obstruction o(f) ∈ Ext1(Lf ∗LY/Z , I) whose vanishing is necessary

and sufficient for the category Def(f) to be nonempty.

2. If o(f) = 0, then the set of isomorphism classes of Def(f) is a torsor under

Ext0(Lf ∗LY/Z , I).
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3. If o(f) = 0, then the automorphisms of any element of Def(f) are canonically

isomorphic to Ext−1(Lf ∗LY/Z , I).

The hypothesis that X is Deligne-Mumford is necessary for our method of proof,

which uses that (2.5) comes from an isomorphism of Picard stacks on the small étale

site of X when X is Deligne-Mumford [Ols06, Rmk 1.3]. In fact, we prove the analog

of Theorem 2.1.3 at the level of Picard stacks and obtain Theorem 2.1.3 as a corollary.

This theorem is a generalization of [Pom15, Thm 3.4]. If in addition Y and Z are

Deligne-Mumford, Theorem 2.1.3 is just a special case of [Ill71, Prop III.2.2.4]; if Z is

a scheme and Y is an algebraic stack, then it is a special case of [Ols06, Thm 1.5] (but

as stated, Theorem 2.1.3 does not follow from either of these).

2.1.3 Organization of the chapter

Section 1 summarizes the definitions and properties of (derived) categories of quasico-

herent sheaves on algebraic stacks, with special attention to the cotangent complex

and duality for twisted curves. The results in this section are all well known.

Section 2 lists functoriality properties of the moduli spaces Sec(Z/C) and their

canonical obstruction theories φ. These properties seem to be well known. In the final

section they are applied to explain why the moduli space and its obstruction theory

are equivariant when a group acts on (3.16). This section was originally the appendix

of a joint work with Qile Chen and Felix Janda [CJW19].

Section 3 is the core of this chapter. It reviews the Fundamental Theorem (2.6) and

then uses it to prove (a more refined version of) Theorem 2.1.3. Section 2.4.3 proves

the analog of the criterion [BF97, Thm 4.5] in the artin setting and discusses the role

of the morphism φ in a little more detail. Section 2.4.4 proves Theorem 2.1.2. Finally,

Section 2.4.5 gives some applications of Theorem 2.1.2. The first is to write down

the cotangent complex of the moduli of principal G-bundles on an arbitrary family

of curves, for G an affine group. The second application is our original motivation

for proving Theorem 2.1.2, namely to relate different virtual cycles on the moduli

space of quasimaps. This result is used in the second part of the thesis to relate our

computations there to the ones in the literature.

Section 4 addresses the functoriality of the fundamental theorem (2.5), which is

absolutely critical for our proof of Theorem 2.1.2. This functoriality is hinted at in

[Ols06, Sec 2.33].
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2.2 Background

2.2.1 Sheaves on algebraic stacks

Let X be an algebraic stack. In order to get a good notion of a cotangent complex for

X , we must work with sheaves on the lisse-étale site of X (see Section 2.2.3). The

difficulty with working in this topos Xlis-et is that it is not functorial: a morphism

f : X → Y of algebraic stacks does not in general induce a morphism of topoi

from Xlis-et to Ylis-et, because the inverse image functor f−1 may not be exact [Beh03,

Warning 5.3.12]. One solution is to replace quasi-coherent sheaves on Xlis-et with an

equivalent category that behaves functorially. This is a category of quasicoherent

sheaves in a topos X•et on the strictly simplicial space associated to a smooth cover

X → X of X by an algebraic space. Because of this extra step, standard constructions

and results for morphisms of quasi-coherent sheaves (insomuch as they come from

morphisms of topoi) do not automatically apply to arbitrary morphisms of algebraic

stacks (at least not in the lisse-étale topos).

In this section we briefly summarize some results about the topoi Xlis-et and X•et,

their associated derived categories of quasi-coherent sheaves, and functors between

these categories, including those induced by morphisms of stacks.This section and the

next are partial summary of [HR17, Sec 1], which in turn relies on [LO08; Ols07a].

Equivalence of topoi

Let X be an algebraic stack and X → X a smooth cover by an algebraic space. These

data define three ringed topoi:

1. the lisse-étale topos Xlis-et on X [LM00, 12.1] (see also [Stacks, Tag 0787])

2. the strictly simplicial topos X+
•,lis-et defined in [Ols07a, Sec 2.1, 4.2], which we

will denote X•lis-et

3. the strictly simplicial topos X+
•,et defined in [Ols07a, Sec 2.1, 4.2], which we will

denote X•et

We will use O to denote the ring object in each topos, sometimes with a subscript

indicating the topos. For each topos we define several categories of sheaves:

1. categories of sheaves of O-modules, for which we will not need notation

12



2. the corresponding unbounded derived categories, denoted D(Xlis-et) and so forth

3. categories of quasi-coherent sheaves, denoted QCoh(Xlis-et) etc. (see [LM00,

Def 13.2.2] or [Ols16, Def 9.1.14] for Xlis-et; see [Ols07a, Def 6.9] for the strictly

simplicial topoi)

4. the corresponding unbounded derived categories, denoted Dqc(Xlis-et) etc. This is

the full subcategory of D(Xlis-et) with cohomology in QCoh(Xlis-et) (Dqc(X
•
lis-et)

and Dqc(X
•
et) are defined similarly).

As in [LO08, Ex 2.2.5] there are morphisms of topoi

X•lis-et X•et

Xlis-et

r

ε

The functors r∗ and r∗ relating QCoh(T ) and QCoh(X•et) are exact and inverse

equivalences, and the same holds for the derived categories (see also [Ols07a, Prop 6.12]).

Likewise, ε∗ is exact and defines an equivalence of QCoh(Xlis-et) and QCoh(T ) with

inverse equivalence ε∗, and ε∗ and Rε∗ are inverse equivalences for the derived categories.

The upshot of these functors is that we can compare (derived) categories of quasi-

coherent sheaves on Xlis-et and X•et as follows. We define a restriction functor

$∗X : QCoh(Xlis-et)→ QCoh(X•et) (2.7)

to be the composition r∗ ◦ ε∗. It is exact and hence naturally extends to a functor of

the derived categories, and moreover it preserves O. As a functor of quasi-coherent

sheaves, $∗X has an inverse ($X)∗ = ε∗ ◦r∗. Likewise, as a functor of derived categories

of quasi-coherent sheaves, $∗X has an inverse (R$X)∗ = Rε∗ ◦ r∗.

Remark 2.2.1. To develop the theory of sheaves on Xlis-et, it is probably better to

replace X•lis-et with the restricted topos Xlis-et|X• , and to replace the strictly simplicial

topos X•et = X+
•,et with its non-strict version (usually denoted X•,et). See, for example,

[Ols16, Sec 9.2.3]. We have chosen our approach so that we can directly cite results

appearing in [Ols07a], [HR17], and [Ols06].
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Independence of cover

Let X be an algebraic stack. If U → X and V → X are two smooth covers by algebraic

spaces, then we know the (derived) categories of quasicoherent sheaves on U•et and

V •et are equivalent because they are both equivalent to the corresponding category on

Xlis-et. However we can also compare these categories directly.

Lemma 2.2.2. Let U
f−→ V → X be smooth surjective morphisms with U, V algebraic

spaces. Then R($V )∗(f
•)∗ = R($U)∗ and $∗U = (f •)∗$∗V .

A corollary of this lemma is that (f •)∗ is an equivalence of the (derived) categories

of quasi-coherent sheaves on U•et and V •et.

Proof. The second equality follows from the first. For the first, it suffices to show that

this square commutes:

QCoh(U•lis-et) QCoh(U•et)

QCoh(V •lis-et) QCoh(V •et)

r∗

(f•)∗ (f•)∗

r∗

If T
t−→ Un is smooth, then T

f◦t−−→ V n is also smooth. Hence if F is a sheaf in

QCoh(V •et), then the restriction of either pullback to T is the sheaf (f ◦ t)∗F on the

small étale site of T (see the proof of [Ols16, Prop 9.1.18].

Deligne-Mumford setting

If X is a Deligne-Mumford stack, then we can also define the small étale site of X as

in [LM00, Def 12.1] (see also [Ols16, Sec 9.1.16]). In this case, given a smooth cover

X → X by an algebraic space, there is a commutative diagram of morphisms of topoi

X•lis-et X•et

Xlis-et Xet

r

ε εet

rX

(2.8)

where (r∗X , (rX )∗) are exact functors and inverse equivalences of (derived) categories

of quasicoherent sheaves on Xlis-et and Xet (see [Ols16, Prop 9.1.18] for the underived

statement). Similarly, the pair (ε∗et, R(εet)∗) are inverse equivalences of Dqc(Xet) and

Dqc(X
•
et). To see that (2.8) commutes, it suffices to show r∗ε∗et = ε∗r∗X . This follows as

in the proof of Lemma 2.2.2.

14



Standard functors

Let X be an algebraic stack. There is a (derived) tensor operation ⊗ on each of

the categories D(Xlis-et), D(X •lis-et) and D(X•et), that preserves the subcategories of

complexes with quasi-coherent cohomology [Stacks, Tag 06YU]. Each category also

has an internal hom functor which we denote RHom [Stacks, Tag 08J7].1

Let f : X → Y be a morphism of algebraic stacks. The functors f ∗ and Lf ∗ are only

defined on QCoh(Xlis-et) and Dqc(Xlis-et). To define them, find a commuting diagram

X Y

X Y

(2.9)

with X → X and Y → Y smooth covers by algebraic spaces. Let (f •∗ , (f
•)−1) denote

the morphism of topoi from X•et to Y •et. We define Lf ∗ : Dqc(Ylis-et)→ Dqc(Xlis-et) to

be the functor

Lf ∗ = R($X)∗L(f •)∗$∗X (2.10)

and we define f ∗ similarly. Following [HR17, Sec 1.3], we define Rf∗ : Dqc(Xlis-et)→
Dqc(Ylis-et) to be the right adjoint of Lf ∗. When f is quasi-compact and quasi-separated,

this is the functor

Rf∗ = R($X)∗Rf
•
∗$
∗
X . (2.11)

where Rf •∗ is the usual derived functor of f •∗ . In this qcqs case, Rf∗ agrees with

the usual right derived functor of f∗ : QCoh(Xlis-et)→ QCoh(Ylis-et) on complexes in

Dqc
+(Xlis-et) [HR17, Lem 1.2], or on all complexes in Dqc(Xlis-et) if f is concentrated

[HR17, Thm 2.6].

Independence of cover

A priori, the definitions of f ∗ and Lf ∗ depend on the choice of diagram (2.9). Any two

1One can also define internal hom RHomqc(F ,−) for the category Dqc(Xlis-et) as the right adjoint
to the functor −⊗F as in [HR17, Sec 1.2]. We will not use this functor, which agrees with RHom
if F is perfect.
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such diagrams are dominated by a third. So suppose we have a commuting diagram

X1 X2 X

Y1 Y2 Y

(2.12)

where horizontal maps are smooth and Xi, Yi are algebraic spaces. Let f ∗i , Lf ∗i denote

the functors defined using Xi → Yi. A straightforward computation using Lemma

2.2.2 shows that

f ∗1 = f ∗2 and Lf ∗1 = Lf ∗2 . (2.13)

A consequence of this observation is that if f, g : X → Y are two 1-morphisms and

γ : f → g is a 2-morphism, then f ∗ = g∗ and Lf ∗ = Lg∗. This is because γ induces a

commuting diagram of covers as in (2.12).

Deligne-Mumford setting

If X and Y are Deligne-Mumford then we also have a morphism of topoi Xet → Yet

and hence a functor Lf ∗et : D(Yet)→ D(Xet) sending Dqc(Yet) to Dqc(Xet) (note that

now Lfet is defined on the entire unbounded derived category). The commuting

equivalences of (2.8) imply

Lf ∗ = (rX )∗Lf ∗et(rY)∗ (2.14)

on Dqc(Yet). Similarly, when f is quasi-compact and quasi-separated, we have

Rf∗ = (rX )∗R(fet)∗(rY)∗

on complexes in Dqc
+(Xlis-et).

Remark 2.2.3. We can also allow X → X to be a smooth cover by a Deligne-Mumford

stack, so that X• is a simplicial Deligne-Mumford stack. As in (2.7) we have an

equivalence of Dqc(Xlis-et) and Dqc(X
•
et), and we can use this equivalence as in (2.10) to

define (derived) pullback for Dqc(Xlis-et). By (2.13) this definition of derived pullback

agrees with the one constructed previously.

2.2.2 Some properties

We present several properties of the functors in Section 2.2.1 that will be used in this

chapter.
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Symmetric monoidal categories

Amongst the definitions of Sections 2.2.1 and 2.2.1, there are several adjoint pairs of

functors of symmetric monoidal categories, where the left adjoint is strong monoidal.

Such pairs satisfy many familiar formulae for purely formal reasons.

Loosely speaking, a category is symmetric monoidal if it has an associative, commu-

tative operation ⊗ with unit O (see [Hal, Appendix A] for a precise definition). A

functor between two such categories is called strong monoidal if it preserves ⊗ and O .

We have several instances of this formalism:

• All the categories D(Xlis-et), Dqc(Xlis-et), D(X•lis-et), Dqc(X
•
lis-et), D(X•et), and

Dqc(X
•
et) are symmetric monoidal with operation ⊗ and unit O

• The functors $∗X and (R$X)∗ defined in Section 2.2.1 are strong monoidal.

Likewise the functors ε∗et and R(εet)∗ defined in (2.8) are strong monoidal.

• If f : X → Y is a morphism of algebraic stacks, then Lf ∗ is strong monoidal

(this uses the previous item).

We note that inverse equivalences form adjoint pairs (see eg [Mac71, Sec IV.4]).

Let C , D be symmetric monoidal categories with L,R : C � D a left-right adjoint

pair of functors, with L strong monoidal. Suppose we have internal hom functors

RHom on both C and D .2 Then given B ∈ D and A ∈ C there is a functorial

isomorphism

RHom(A,R(B))
∼−→ R(RHom(L(A), B)), (2.15)

see [FHM03, (3.4)]. This leads to the following morphism which we will use repeatedly.

Lemma 2.2.4. There is a morphism

RHom(A,B)→ R(RHom(L(A), L(B))) (2.16)

functorial in the adjoint pair (L,R), in A, and in B; and it is an isomorphism if L is

fully faithful.

2Warning: If one wishes to apply what follows to Lf∗ : Dqc(Ylis-et)→ Dqc(Xlis-et), then one must
use the internal hom RHomqc for these derived categories, which does not agree with RHom in
general; see footnote 1 on p. 15. We will only apply the following discussion in other contexts.
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Proof. The morphism (2.16) is equal to the composition

RHom(A,B)→ RHom(A,RL(B)) ' R(RHom(L(A), L(B))

where the first arrow is induced by the unit B → RL(B) of the adjunction and the

isomorphism is (2.15). This unit is an isomorphism if L is fully faithful. To see that

(2.16) is functorial in (L,R), use the Yoneda embedding and check that the maps

Hom(T,RHom(A,B))→ Hom(T,R(RHom(L(A), L(B))))

are induced by the set maps

Hom(T ⊗ A,B)→ Hom(L(T ⊗ A), L(B))

given by L. See Claim 2.4.10 in Section 2.4.4 for a detailed example of this kind of

argument.

Projection formula and duality for twisted curves

We will study families of twisted nodal curves as defined in [AV02, Sec 4] (see also

[Ols07b]); note that such families are preserved by base change. From here on we will

simply call these families of twisted curves.

If π : C → M is a family of twisted curves with M an algebraic stack, then the

morphism π is concentrated in the sense of [HR17, Def 2.4] (this follows from [DG13,

Thm 1.4.2]; see also [HR17, 14]). Then by [HR17, Cor 4.12], the projection formula

holds for π; that is, the natural map

Rπ∗F ⊗ G → Rπ∗(F ⊗ π∗G) (2.17)

is a quasi-isomorphism for all F ∈ Dqc(Clis-et) and G ∈ Dqc(Mlis-et). Likewise, if

f : N → M is any morphism of algebraic stacks, with π′ : C ×M N → N and

f ′ : C ×M N → C, then by [HR17, Cor 4.13] the natural base change map

Lf ∗Rπ∗F → Rπ′∗L(f ′)∗F (2.18)

is also an isomorphism.

Lemma 2.2.5. Let π : C →M be a family of twisted curves.
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1. The map π has cohomological dimension ≤ 1.

2. If M is a Noetherian algebraic space, then Rπ∗ takes perfect complexes to perfect

complexes.

See e.g. [HR17, Def 2.1] for the definition of cohomological dimension.

Proof. To prove (1), let F ∈ QCoh(C). We must show Riπ∗F = 0 for i > 1. If M is

a scheme, one can see this as follows: the map π factors through the coarse moduli

space π : C →M which is a scheme. If p denotes the map C → C, then we compute

Rπ∗F = Rπ∗p∗F and so the result follows from the usual computation of cohomology

for representable curves and the fact that C is a good moduli space. Now the general

case can be reduced to the case when M is a scheme using base change (2.18).

Compare our proof of (2) with [Stacks, Tag 08EV]. Since we may check the

conclusions locally, by base change (2.18) it suffices to consider the case whenM = M

is a Noetherian scheme. Let P ∈ Dqc(C) be a perfect complex. Then by [Stacks,

Tag 08G8, 0DJJ], P is pseudo-coherent and has finite tor dimension.

Applying [Stacks, Tag 08E8] étale-locally we see that P has coherent cohomology

sheaves. By [Stacks, Tag 015J], there is a spectral sequence

Rpπ∗H
q(P) =⇒ Rp+qπ∗(P)

Observe that if F ∈ QCoh(C) is coherent, then so is Riπ∗F (this follows from [Stacks,

Tag 0205] and the fact that pushing forward to the coarse moduli space of C preserves

coherentness). So since π is concentrated, the spectral sequence implies that Rπ∗P

has coherent cohomology.

To show that Rπ∗P is perfect, by [Stacks, Tag 08G8, 0DJJ, 08E8, 08EA] it

remains to show that for any F ∈ QCoh(M), the complex Rπ∗(P)⊗F has vanishing

cohomology outside a finite range. But by the projection formula (2.17), we have

H i(Rπ∗(P)⊗F) = H i(Rπ∗(P ⊗ π∗F))

and the right hand side for i outside some finite range, since P is perfect and π is

concentrated.

We will use the following version of Grothendieck duality. Compare with [Stacks,

Tag 0E6N] for families of representable curves on schemes; especially compare the
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proof of Proposition 2.2.6 with the argument in [Stacks, Tag 0E61]. We use π! to

denote the right adjoint to Rπ∗, which exists by [HR17, Thm 4.14].

Proposition 2.2.6. For every family C → M of twisted curves on an algebraic

stack M that is quasi-separated and locally finite type, there is a pair (ω•M, trM) with

ω•M = ωM[1] where ωM ∈ QCoh(Clis-et) is locally free and trM : Rπ∗ω
•
M → OM, such

that the following hold:

1. The pair is functorial in the following sense. Given a fiber square

CN CM

N M

fC

f

(2.19)

there is a canonical isomorphism

f ∗Cω
•
M
∼−→ ω•N (2.20)

such that the following square commutes

Lf ∗Rπ∗ω
•
M ON

Rπ∗Lf
∗
Cω
•
M Rπ∗ω

•
N

Lf∗trM

(2.18)

(2.20)

trN (2.21)

2. If M is a quasi-compact and quasi-separated Deligne-Mumford stack, then ω•T =

π!OT and trT is the counit of the (Rπ∗, π
!) adjunction.

For a general base M we do not know if our construction of (ω•M, trM) agrees with

the right adjoint to pushforward.

Proof. The idea is to take (2) as the definition of the pair (ω•M, trM) when M is a

quasi-compact and quasi-separated algebraic space and show that this construction

“glues” as desired. The key observation is that we have a base change property for π!

in this setting, as we now explain (see also [Stacks, Tag 0AA5] and [Nee17]).

Suppose we have a square (2.19) with N and M Deligne-Mumford stacks. Then

the isomorphism of left adjoints in (2.18) implies that the right adjoints are also
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isomorphic; that is, there is a canonical isomorphism

R(fC)∗π
!
N (K)

∼−→ π!
M ◦Rf∗(K) (2.22)

for any K ∈ Dqc(M). This lets us define the functorial base change map

Lf ∗Cπ
!
M(K)→ π!

NLf
∗(K) (2.23)

as the adjoint to the composition

π!
M → π!

MRf∗Lf
∗(K)

(2.22)←−−−
∼

R(fC)∗π
!
NLf

∗. (2.24)

The proof of the following lemma uses the notion of a generating set for a derived

category of quasi-coherent sheaves: we say that {Pi}i∈I ⊂ Dqc(M) generates Dqc(M)

if, for any α : A→ B in Dqc(M), the morphisms

Hom(Pi[n], α) : Hom(Pi[n], A)→ Hom(Pi[n], B)

are isomorphisms for each i if and only if α is an isomorphism. Here Pi[n] denotes the

shift operator applied to Pi.

Lemma 2.2.7. If N and M are (possibly infinite) disjoint unions of quasi-compact,

quasi-separated, and locally finite type Deligne-Mumford stacks, then (2.23) is an

isomorphism.

Proof. By the argument in [Stacks, Tag 0E9S], it suffices to prove the lemma in the

case when f is quasi-affine. By [HR17, Thm A], the category Dqc((CM)et) is generated

by a collection {Pi}i∈I of perfect complexes. (The cited theorem gives a single compact

generator for the derived category of each connected component of CM, since these

components are quasi-compact and quasi-separated; after extending by 0 we get an

infinite collection of perfect complexes that generate Dqc((CM)et).)

Our first claim is that {Lf ∗C (Pi)}i∈I is a collection of perfect complexes that generate

Dqc((CN )et). The complexes Lf ∗C (Pi) are perfect by [Stacks, Tag 08H6]. To see that

they generate Dqc((CN )et), let α : A→ B be a morphism in Dqc((CN )et) such that the

induced map Hom(Lf ∗CPi[n], α) is an isomorphism for each Pi. Since f is quasi-affine,

by [HR17, Cor 2.8], to show that α is an isomorphism it suffices to show that Rf∗α is

an isomorphism. But this is something we can detect with the Pi. In fact there is a
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commuting diagram

Hom(Pi[n], Rf∗A) Hom(Pi[n], Rf∗B)

Hom(Lf ∗CPi[n], A) Hom(Lf ∗CPi, B)

where the equalities are adjunction. This completes the proof of the first claim.

Now to show that (2.23) is an isomorphism, it suffices to show that the induced

maps

Hom(Lf ∗C (Pi[n]), Lf ∗C ◦ π!
M(K))→ Hom(Lf ∗C (Pi[n]), π!

N ◦ Lf ∗(K))

are isomorphisms for each n ∈ Z and for each Pi. Writing P = Pi[n] and omitting
subscripts on f and π, we have a diagram

Hom(Lf∗(P ), Lf∗ ◦ π!(K)) Hom(Lf∗(P ), π! ◦ Lf∗(K))

Hom(P, π!(K)) Hom(P,Rf∗ ◦ π! ◦ Lf∗(K)) Hom(Lf∗(P ), π! ◦ Lf∗(K))

Hom(Rπ∗(P ),K) Hom(Lf∗ ◦Rπ∗(P ), Lf∗(K)) Hom(Rπ∗ ◦ Lf∗(P ), Lf∗(K))

Lf∗

(2.24)

Lf∗ (2.18)

where the equalities are adjunctions, the top square commutes by definition of

(2.23) via adjunction, and the bottom square commutes by the discussion in [Stacks,

Tag 0AA5]. But the maps labeled Lf ∗ are isomorphisms because Lf ∗P and Rπ∗P are

perfect—this uses Lemma 2.2.5 and [FHM03, Prop 3.12].

Now we can use a gluing argument to construct (ωM, trM) for an arbitrary family

of twisted curves. First, for M a disjoint union of quasi-compact and quasi-separated

Deligne-Mumford stacks locally of finite type, the right adjoint π! exists by [HR17,

Thm 4.14]. Set ω•M = π!(OM) and define trM : Rπ∗ω
•
M → OM to be the counit of the

adjunction. By Lemma 2.2.8 below, the complex ω•M is a locally free sheaf in degree

-1. So part (2) of Proposition 2.2.6 is satisfied by definition. Moreover, part (1) is

satisfied when N and M are disjoint unions of qcqs DM stacks locally of finite type:

the isomorphism (2.20) is the base change map (2.23) (which is an isomorphism by

Lemma 2.2.7), and the commuting diagram (2.21) follows from [Stacks, Tag 0E5L]

which is completely formal.

Hence we may define (ω•M, trM) when M is an algebraic stack as follows. Let
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M → M be a smooth cover by a disjoint union of qcqs Deligne-Mumford stacks

and let CM = C ×MM . Let C•M be the simplicial Deligne-Mumford stack that is the

coskeleton of this cover (see Remark 2.2.3), and likewise let M• be the simplicial stack

induced from M →M. We have a map C•M →M• which at every level is a family of

twisted curves on a disjoint union of qcqs DM stacks (this uses [Stacks, Tag 075S]).

Hence we have a quasi-coherent sheaf ω•M• on (C•M)et defined by the collection ω•Mn

and the canonical isomorphisms (2.20) (note that these compose as desired by [Stacks,

Tag 0ATR]). Likewise by [Stacks, Tag 0DL9] we have a morphism Rπ∗(ω
•
M•)→ OM• in

Dqc((C•M )et) defined by the trace maps trMn and the functoriality diagrams (2.21): the

required negative exts vanish since ω•M• is locally free in degree -1, so its pushforward

is perfect in [−1, 0] by Lemma 2.2.5. (The reference [Stacks, Tag 0DL9] constructs

a morphism in the simplicial topos but we may restrict it to the strictly simplicial

topos.) Hence using the equivalences of Section 2.2.1 we have a pair (ω•M, trM), where

ω•M = R$∗ω
•
M• is locally free in degree -1. A priori this pair depends on our choice of

cover M , but the next paragraph shows that pairs constructed from different covers

are canonically isomorphic in the sense of (1).

Finally we check that part (1) of Proposition 2.2.6 holds when M and N in (2.19)

are quasi-separated algebraic stacks. Choose a diagram

M N

M Nf

with M → M and N → N smooth covers by disjoint unions of qcqs DM stacks.

Now we have a canonical map Lf ∗etω
•
N• → ω•M• in Dqc(C•M) (using (2.21) and [Stacks,

Tag 0ATR, Tag 0ATS]). From the definition of f ∗ on QCoh(Xlis-et), we see that (2.20)

is satisfied. Likewise, by inserting several copies of $M, $N , R($M)∗, and R($N )∗

in (2.21), we see that this diagram holds for (ω•M, trM) as well.

Lemma 2.2.8. Let C →M be a family of twisted curves on a quasi-compact, quasi-

separated Deligne-Mumford stack M that is locally finite type. Then π!OM is repre-

sented by a locally free sheaf in degree -1.

Proof. In this proof, a superscript ! will always denote right adjoint to pushforward.

By Lemma 2.2.7 it suffices to prove the statement when M = T is an affine scheme.
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Let C be the coarse moduli space of C. Let U → C be an étale map from an affine

scheme U so that we have a diagram

V [V/G] U

C C

T

σ

ρ

τ

p

π q

(2.25)

where the square is fibered (see [Ols07b, Prop 2.2]). If V = Spec(A) then U = Spec(AG)

where AG is the ring of G-invariants. Note that all spaces appearing in the diagram are

qcqs Deligne-Mumford stacks, and hence have compactly generated derived categories,

and hence right adjoints to pushforward exist for all maps by [FHM03, Thm 8.4] (using

[Stacks, Tag 0944]). Moreover since everything is Deligne-Mumford we may work with

étale sites and all maps induce morphisms of topoi. Because Rπ∗ = Rq∗Rp∗, we get a

similar equality of right adjoints, and

π!OT = p!q!OT .

Now by [Stacks, Tag 0E6P, 0E6R] we know q!OT is locally free in degree -1. In

particular it is dualizable, so by [FHM03, Thm 8.4] we see that

π!OT = p∗ω•C ⊗ p!OC .

So to prove the lemma it suffices to show that p!OC is perfect in degree 0.

By argument used to prove Lemma 2.2.7 shows that the base change map (analog

of 2.23) for the fibered square in (2.25) is an isomorphism, so it suffices to show that

τ !OU is perfect in degree 0. To compute this we observe again that we have an equality

ρ!OU = σ∗τ !OU ⊗ σ!O[V/G]

so it suffices to show that ρ!OU is OV . Indeed, the isomorphism ρ!OU ' OV implies

that σ∗τ !OU is dualizable, hence perfect by [HR17, Lem 4.3(3)], and then the same

isomorphism also forces σ∗τ !OU to be concentrated in degree 0.
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Finally we compute ρ!OU . To do so we apply [FHM03, Thm 4.14(3)], which says

that ρ!OU is the sheaf corresponding to the A-module

RHomAG(A,AG).

We compute below that RHomAG(A,AG) ' A as A-modules, so ρ!OU ' OV as desired.

Let R = AG. By [Ols07b, Prop 2.2] there are two possibilities for A:

1. A = R[x]/(xr − t) for some t ∈ R and G = 〈ζ〉 is the group of rth roots of unity

with generator ζ, and G acts by ζ · p(x) = p(ζx)

2. A = R[x, y]/(xy− t, xr − u, yr − v) for some t, u, v ∈ R and G = 〈ζ〉 is the group

of rth roots of unity with generator ζ, and G acts by ζ · p(x, y) = p(ζx, ζ−1y)

Case 1: As an R-module, A is isomorphic to the sum of its G-eigenspaces, each of

which is a free R-module:

A = R⊕ xR⊕ x2R⊕ . . .⊕ xr−R (2.26)

Let e∨i ∈ HomR(A,R) denote the projection to the xiR-factor in (2.26). Then consid-

ering HomR(A,R) as an A-module, xi sends e∨r−1 to e∨r−i−1 for i = 1, . . . , r − 1. This

shows that the A-module homomorphism

A
17→e∨r−1−−−−→ HomR(A,R)

is surjective. Since it is an isomorphism of R-modules, it is an isomorphism.

Case 2: In this case we may assume that R = C[u, v, t]/(uv− tr) as every situation is

the base change of this one (arguing as in Lemma 2.2.7). This computation is similar

to the one in [Nir09, Lem 3.2].

As R-modules, we again have an eigenspace decomposition

A = R⊕ A1 ⊕ A2 ⊕ . . .⊕ Ar−1

where ζ acts on Ai by multiplication by ζ i. By Lemma 2.2.9 we have the following

resolution of A by free R-modules:

. . .
d3−→ R⊕2r−2 d2−→ R⊕2r−2 d1−→ R⊕2r−1 d0−→ A→ 0 (2.27)
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Let {fi, gi}r−1
i=1 denote a free basis for R⊕2r−2 and let e denote the additional basis

element of R⊕2r−1. Then the maps di are defined as follows:

d0 : e0 7→ 0 di, i odd : fi 7→ vfi − tigr−i di, i > 0 even: fi 7→ ufi + tigr−i

fi 7→ xi gr−i 7→ ugr−i − tr−ifi gr−i 7→ tr−ifi + vgr−i

gi 7→ yi

Now RHomR(A,R) is computed by the chain complex

0→ R⊕2r−1

 v −ti

−tr−i u


−−−−−−−−−−−→

d∨1

R⊕2r−2

 u ti

tr−i v


−−−−−−−−→

d∨2

R⊕2r−2 → . . . ,

where we have written out the matrices for the maps resolving Ai for i = 1, . . . , r − 1

(see (2.28)). Now the argument in Lemma 2.2.9 shows that the cohomology of this

complex vanishes in positive degrees. In degree 0, we find ker(d∨1 ) is equal to the image

of d∨0 . Certainly e∨0 ∈ ker(d∨1 ); on the other hand, this element generates ker(d∨1 ) as an

A-module. Indeed, we have

xi · e∨0 = uf∨r−i + tig∨i yr−i · e∨0 = tr−if∨r−i + vg∨i

which are precisely generators of ker(d∨1 ) = ker(d∨3 ) which is equal to the image of d∨2 .

This shows that the A-module homomorphism A→ HomR(A,R) induced by sending

1 to e∨0 is surjective. It is injective because it is injective as a map of R-modules: the

relations between xi and yri are given by the image of d1 (on the ith eigenspace), and

the relations between uf∨r−i + tig∨i and tr−if∨r−i + vg∨i are given by the image of d∨1 (on

the (r − i)th eigenspace), and these are the same matrix, both equal to[
v −tr−i

−ti u

]
.

This shows that A ' HomR(A,R) as desired.

Lemma 2.2.9. The complex (2.27) is a free resolution of A over R.

Proof. We restrict (2.27) to each of the eigenspaces of A. We must show for i =
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1, . . . , r − 1 that the complex

. . .

 v −tr−i

−ti u


−−−−−−−−−−−→

d3

R2

 u tr−i

ti v


−−−−−−−−→

d2

R2

 v −tr−i

−ti u


−−−−−−−−−−−→

d1

R2

fi 7→ xi

gr−i 7→ yr−i

−−−−−−−−−−→
d0

Ai → 0

(2.28)

is a resolution of Ai. We write {f = fi, g = gr−i} for the free basis of each R2. Clearly

this is a chain complex. We check that it is acyclic.

Degree 0: Let p, q ∈ R = C[u, v, t]/(uv − tr) be polynomials and suppose pf + qg ∈
ker(d0). To show it is in the image of d1 we find a, b ∈ R such that

p = av − btr−i q = bu− tia. (2.29)

Using the relation uv = tr, we may uniquely write

p = pu + pv + p0 q = qu + qv + q0 (2.30)

with pu, qu ∈ uC[t, u], pv, qv ∈ vC[t, v], and p0, q0 ∈ C[t]. Since pf + qg ∈ ker(d0), we

know

pxi + qyr−i = 0 in A.

Substituting the expressions (2.30) for p, q, writing pv = v(pv/v) and qu = u(qu/u),

and applying the relations xy = t, u = xr, and v = yr to eliminate xy-terms, we see

that

pu = −tr−i(qu/u) qv = −ti(pv/v) p0 = q0 = 0. (2.31)

Now set a = pv/v and b = qu/u. Then (2.31) implies that (2.29) is satisfied.

Degree i odd: For simplicity of notation we work with i = 1. Let p, q ∈ R and

suppose that pf + qg ∈ ker(d1). We show it is in the image of d2 by finding a, b ∈ R
such that

p = au+ btr−i q = ati + bv. (2.32)

Decompose p and q as in (2.30). Since pf + qg ∈ ker(d1) we know p(vf − tig) + g(ug−
tr−if) = 0 and hence

vp = tr−iq uq = tip. (2.33)
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We get the relations

tr−iqv = v(pv + p0) tipu = u(qu + q0)

by equating the v-parts of the first relation in (2.33) (resp. the u-parts of the second

relation). Setting a = pu/u and b = qv/v we see that (2.32) is satisfied.

Degree i > 0 even: The argument in this case is parallel to the one used in the case

where i is odd.

Pushing forward stacks

Let C → C ′ be a continuous morphism of sites inducing a morphism of topoi (f−1, f∗)

and let P be a stack on C ′. Then there is a pushforward stack f∗P on C ′ whose fibers

are given by the familiar rule f∗P(U) = P(f(U)) for U ∈ C.
If X• is a simplicial space and $ : X• → X is an augmentation to a Deligne-

Mumford stack, then we have a morphism of topoi X•et → Xet that does not come

from a morphism of sites. However, if P is a stack on X•et, we can still define the

pushforward π∗P as a stack on X . If U → X is an étale map from a scheme, let

U• = U ×X X•, and set

($∗P)(U) = HomX•et
(U•,P) (2.34)

where the right hand side is the categorical hom for stacks on X•et. Given morphisms

f : U → V , u ∈ $∗P(U), and v ∈ $∗P(V ), an arrow from u to v over f is a

commuting diagram

U U• P

V V •

f

u

v

where the square is fibered. This defines a stack $∗P on Xet.

We will apply this construction to Picard stacks. We begin with some general

observations. First, if P is a Picard stack, so is $∗P (see [73, Sec XVIII.1.4.9]).

Second, let P → Q be a morphism of Picard stacks on X•et with kernel K, meaning

that there is a fiber diagram

K Q

• P

f

e
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where • is the constant sheaf with all its fibers equal to a single point. Then $∗K is

the kernel of $∗P → $∗Q.

Finally, we wish to make the functor $∗ more explicit for a certain kind of Picard

stack. Let C be a site. Recall from [73, Sec XVIII.1.4.11] the functor ch from the

bounded derived category D[−1,0](C) to the category of Picard stacks on C (in the latter

category, arrows are isomorphism classes of morphisms of stacks). Given a two-term

complex F• = F−1 → F0 with F−1 injective and U ∈ C, the objects of ch(F)(U)

are F0 and an arrow from x to y is an element f ∈ F−1(U) with df = y − x. For

general F , this construction defines a prestack, and ch(F) is the associated stack. In

any case the isomorphism classes of objects of ch(F•) are the sheaf H0(F•), and the

automorphsims of the identity element are the sheaf H−1(F•).
A rule for pushing forward ch(F•) along a morphism of sites was given in [73,

Construction XVIII.1.4.19]. The same formula works for pushing forward along an

augmentation X• → X from a simplicial algebraic space to a Deligne-Mumford stack.

Lemma 2.2.10. Let F be an object of D[−1,∞](X•et). Then there is a natural isomor-

phism

$∗ch(τ≤0F) ' ch(τ≤0R$∗F) (2.35)

Proof. We unwind the definitions of each side. By [73, Prop XVIII.1.4.15] we may

assume that F is a complex of injectives. Then Rπ∗F = π∗F is still a complex of

injectives, so the fiber of the right hand side over a scheme U with an étale map

to X is the quotient of π∗ ker(F0 → F1)(U) by (π∗F−1)(U). If f : U → V is a

morphism of schemes étale over X , then an arrow from u ∈ π∗ ker(F0 → F1)(U) to

v ∈ π∗ ker(F0 → F1)(V ) is an arrow x→ f ∗y given by a morphism in π∗F−1(U).

By definition, the fiber of the left hand side is HomX•et
(U•, ch(τ≤0F)), which is equal

to HomU•et
(U•, ch(τ≤0F)|U•) by Lemma 2.3.1. To compute ch(τ≤0F)|U• , note that this

is in particular a stack on each Un (with some compatibility data). We can check

directly that (τ≤0F)|Un = (τ≤0F|Un) (using [Stacks, Tag 03F3] and the fact that F
is a complex of injectives), so we see that the fiber of the left hand side of (2.35) is

HomU•et
(U•, ch(τ≤0F|U•)). Writing π∗OU = OU• for the sheaf represented by U•, this

groupoid is the quotient of HomU•(π
∗OU , ker(F0 → F1)|U•) by HomU•et

(π∗OU ,F−1|U•).
This is equivalent via adjunction to the fiber in the previous paragraph.

Likewise, given f : U → V , an arrow lying above f in the right hand side is a
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diagram

ch(τ≤0F|U•) ch(τ≤0F|V •)

U• V •
f•

that 2-commutes. One can see that these arrows are the same as those on the right

hand side.

2.2.3 Cotangent complex

In this section we define the cotangent complex of an arbitrary morphism of algebraic

stacks. The first step is to define the sheaf of differentials of an algebraic space over

an algebraic stack.

Differentials of an algebraic space relative to an algebraic stack

Let X → Y be a morphism from an algebraic space X to an algebraic stack Y. Fix

Y → Y a smooth cover by an algebraic space and let YX = X ×Y Y be the fiber

product (an algebraic space). Let Y • and Y •X be the coskeletons of Y → Y and

YX → X , respectively. Let εY denote the morphism of the topoi Xet and Y •X,et that

was denoted εet in (2.8). Then let

ε∗Y Ω1
X/Y = Ω1

Y •X/Y
• in Dqc(Y

•
X,et)

and define

Ω1
X/Y = R(εY )∗(ε

∗
Y Ω1

X/Y) in Dqc(Xet).

Here Ω1
Y •X/Y

• is the sheaf of relative differentials for a morphism of ringed topoi, defined

as in [Stacks, Tag 04BQ]. It is cartesian by the base change property of differentials.

A priori the definition of Ω1
X/Y depends on the choice of Y , but part 1 of the following

lemma shows that the sheaves arising from any two choices of Y are canonically

isomorphic. See also [LM00, (17.5.6)].

Lemma 2.2.11. The sheaf ΩX/Y has the following properties.
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1. Given a commuting diagram

X ′ Y ′ Y ′

X Y Y

f (2.36)

with X ′ and X algebraic spaces; Y ′ and Y algebraic stacks; and Y → Y, Y ′ → Y ′

smooth covers by algebraic spaces, there is a canonical morphism

df : Lf ∗Ω1
X/Y → Ω1

X′/Y ′

that is an isomorphism if the square with X ′ and Y ′ is fibered. The morphism df

is functorial with respect to vertical compositions of diagrams (2.36)

2. Given morphisms

X ′
f−→ X → Y (2.37)

with X ′ and X algebraic spaces and Y an algebriac stack, there is an exact

sequence

f ∗Ω1
X/Y → Ω1

X′/Y → ΩX′/X → 0.

This sequence is exact on the left if f is smooth and it is functorial in the triple

(2.37).

The functoriality of the morphisms df mentioned in part (1) of this lemma is

analogous to the chain rule in elementary calculus.

Proof. For (1), observe that there is a commuting diagram

Y ′X′ X ′ ×X YX YX

Y ′ Y ′ ×Y Y Y

(2.38)

with the left square fibered, and the right square is also fibered if the left square

of (2.36) is fibered. Let f • : (Y ′X′)
• → (YX)• be the induced morphism of strictly

simplicial spaces. Then there is a canonical map

d(f •) : (f •)∗Ω1
Y •X/Y

• → Ω1
Y ′
X′
•/Y ′•
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which is is an isomorphism if both squares in (2.38) are fibered, because the map at

each level comes from the canonical morphism of differentials for a fibered square

of algebraic spaces (use [Stacks, Tag 05ZC]). Using (2.14), this defines the required

canonical morphism. Its functoriality follows from [Stacks, Tag 05Z7].

For (2), choose a smooth cover Y → Y . Then we have a diagram of fibered squares

YX′ Y •X Y •

X ′ X Y

f•

which leads to an exact sequence

(f •)∗Ω1
Y •X/Y

• → Ω1
Y •
X′/Y

• → ΩY •
X′/Y

•
X
→ 0

which is exact on the left if Y n
X′ → Y n

X is smooth for each n. Exactness may be checked

level-wise, where these claims follow from [Stacks, Tag 05Z8] and [Stacks, Tag o6BI].

Using (2.14), this defines the required exact sequence. Functoriality follows from the

functoriality in part (1).

Cotangent complex of algebraic stacks

Let X → Y be a morphism of algebraic stacks. Fix Y → Y and X → X ×Y Y smooth

covers by algebraic spaces. Let X•, Y •, and Y •X be the coskeletons of X → X , Y → Y ,

and X ×Y Y → X , respectively. Let

$∗XLX/Y = [LX•/Y • → Ω1
X•/Y •X

] (2.39)

be the object of D(X•et) that, on Xn, is equal to

LXn/Y n
∂−→ Ω1

Xn/Y nX
.

Here, the map δ is the augmentation LXn/Y n → Ω1
Xn/Y n followed by the canonical map

of differentials for algebraic spaces over algebraic stacks that was defined in Lemma

2.2.11, and (2.39) is read as a complex with Ω1
X•/Y •X

in degree 1. Note that LX•/Y •
and Ω1

Xn/Y nX
may not individually define objects of Dqc(X

•
et) (their cohomology sheaves

may fail to be cartesian). However, by [Ols07a, Lem 8.3], the complex (2.39) is in
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Dqc(X
•
et). Set

LX/Y = R($X)∗($X)∗LX/Y in Dqc(Xlis-et).

Given a commuting diagram

X ′ X

Y ′ Y

f

g g (2.40)

of algebraic stacks, there is a canonical morphism

df : Lf ∗LX/Y → LX ′/Y ′ (2.41)

defined as follows. Choose a diagram of algebraic spaces

X ′ X

Y ′ Y

with smooth surjective maps X ′ → X ′, X → X , Y ′ → Y ′, and Y → Y , and such that

X → Y ×Y X and X ′ → Y ′ ×Y ′ X ′ are smooth and surjective. Then df is given by

the morphisms

L(f •)∗LX•/Y • LX′•/Y ′•

L(f •)∗Ω1
X•/Y •X

Ω1
X′•/Y ′X′

•

d(f•)

d(f•)

where the top map df is the canonical map of cotangent complexes and the bottom

is the functoriality morphism of Lemma 2.2.11. The square defines a morphism of

complexes by functoriality of the functoriality morphism.

From [Ols07a, Sec 8] we have the following properties of LX/Y .

1. The object LX/Y ∈ Dqc(Xlis-et) and the functoriality morphism df are independent

of the choices involved, up to canonical isomorphism.

2. If the square (2.40) is fibered and either X → Y or Y ′ → Y is flat, then (2.41) is

an isomorphism.

3. If Y → Z is another morphism of algebraic stacks, then there is a distinguished
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triangle

Lg∗LY/Z → LX/Z → LX/Y → .

We close with a lemma on the functoriality of the cotangent complex.

Lemma 2.2.12. Suppose we have the following 2-commuting diagram of algebraic

stacks.
X Z

Y

A C

B

h

π f π

g

k

π

1. There is a commuting diagram in Dqc(Xlis-et)

Lh∗LZ/C LX/A

Lf ∗LY/B

dh

Lf∗dg df

where the arrow Lh∗LZ/C → Lf ∗LY/B also incorporates an identification Lh∗ =

Lf ∗ ◦ Lg∗.

2. There is a morphism of distinguished triangles

Lπ∗f ∗LB/C Lπ∗LA/C Lπ∗LA/B

Lg∗LY/Z LX/Z LX/Y

(2.42)

where the arrow Lπ∗Lk∗LB/C → Lg∗LY/Z also incorporates an identification

Lπ∗ ◦ Lk∗ = Lf ∗ ◦ Lπ∗.

Proof. To prove (1), choose smooth covers of all the stacks so that they fit into a

commuting diagram in the category of algebraic spaces as follows.

X Z

Y

A C

B

h

π f π

g

k

π
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Ensure moreover that Z → CZ := C ×C Z, Y → BY := B ×B Y, and X → AX :=

A×A X are smooth and surjective. Then we get a commuting diagram

L(h•)∗LZ•/C• L(f •)∗LY •/B• LX•/A•

L(h•)∗Ω1
Z•/C•Z

L(f •)∗Ω1
Y •/B•Y

Ω1
X•/A•X

L(f•)∗d(g•) d(f•)

L(f•)∗d(g•) d(f•)

The composition of the top arrows is the canonical morphism of cotangent complexes

for h•, and likewise the composition of the bottom arrows is d(h•) by Lemma 2.2.11.

To prove (2), form two commutative diagrams as in [Ols07a, (8.10.4)]: one for

the triangle XYZ and one for the triangle ABC. Ensure that the first diagram

maps to the second. Then we get two copies of the diagram in [Ols07a, (8.10.5)].

The pullback of the diagram for ABC maps to the diagram for XYZ: for the exact

sequences of cotangent complexes (viewed as simplicial modules), this follows from

[Ill71, (III.2.1.1.6)]; and for the exact sequences of sheaves of differentials it follows

from Lemma 2.2.11.

2.3 Functoriality

Let Z, C, U, ESec(Z/C), and φSec(Z/C) be as in Section 2.1.1. This section was originally

the appendix of the joint work [CJW19] with Qile Chen and Felix Janda; I thank my

coauthors for helping me to polish it.

2.3.1 Properties of the moduli

Suppose we have morphisms of algebraic stacks

Z → W → C π−→ U (2.43)

where both Z → U and W → U are locally finitely presented, quasi-separated, and

have affine stabilizers. We now prove some canonical isomorphisms of moduli of

sections. The following observation will be useful.

Lemma 2.3.1. Fix a diagram of algebraic stacks with morphisms as below, so that
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the square is fibered (and includes a 2-morphism α):

F D

A B C

z

y

x

Then the arrow F → D induces an equivalence of groupoids

HomB(A,F )
∼−→ HomC(A,D).

Proof. The domain is precisely the fiber product

HomB(A,F ) Hom(A,F )

• Hom(A,B)x

There is an analogous fibered square defining HomC(A,D); this second fibered square

factors, yielding a fiber product

HomC(A,D) Hom(A,B)×Hom(A,C) Hom(A,D)

• Hom(A,B)x

But there is an isomorphism Hom(A,F )→ Hom(A,B)×Hom(A,C) Hom(A,D) sending

f to (y ◦ f, z ◦ f, α). By the universal property of fiber products of groupoids, the

induced morphism HomB(A,F )→ HomC(A,D) is an isomorphism.

In the context of (3.16), on Sec(W/C) we have the universal curve (pullback of C)
and universal section, denoted n : CSec(W/C) → W .

Lemma 2.3.2. Let n∗Z denote the fiber product CSec(W/C) ×W Z. Then there is a

canonical isomorphism

Sec(n∗Z/CSec(W/C)) ∼= Sec(Z/C)

of stacks over U.

Proof. The canonical morphism Φ: Sec(n∗Z/CSec(W/C))→ Sec(Z/C) is a morphism of
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categories fibered in groupoids over U, so to show Φ is an equivalence, it suffices to

study the induced map on fibers over a scheme T → U.

We compute the fiber of F := Sec(n∗Z/CSec(W/C)). The fiber of F over an arrow T →
Sec(W/C) is HomCSec(W/C)(CT , n∗Z); by Lemma 2.3.1 this is equivalent to HomW (CT , Z).

Hence F(T → U) is the groupoid of dotted arrows

Z

W

CT C

T U

q

p

i

Specifically, an object of F(T ) is a tuple (z, w, τ, ω) where z : CT → Z and w : CT → W

are 1-morphisms, and τ : q ◦ z → w and ω : p ◦ w → i are 2-morphisms. An arrow in

F(T ) from (z1, w1, τ1, ω1) to (z2, w2, τ2, ω2) is a pair of 2-morphisms α : w1 → w2 and

β : z1 → z2 such that ω1 = ω2 ◦ p(α) and α ◦ τ1 = τ2 ◦ q(β).

Now let G be the usual construction of the fiber product for the diagram3

G Sec(Z/C)

Sec(W/C) Sec(W/C)

π2

id

The map Φ factors as F Φ′−→ G π2−→ Sec(Z/C). Of course π2 is an equivalence of stacks

over U. On the other hand, we claim that Φ′ induces the literal identity map from

F(T ) to G(T ). By definition, an object of the fiber of F is a tuple (w, ω; z, ζ; τ), where

w : CT → W and z : CT → Z are 1-morphisms, ω : p ◦ w → i and ζ : p ◦ q ◦ z → i are

2-morphisms, and τ : q ◦ z → w is a 2-morphism such that ζ = ω ◦ p(τ). The final

condition determines ζ from the other data, and hence these objects are literally the

same as the objects of F . Arrows in these two groupoids are also literally the same.

Lemma 2.3.3. Let Z → C → U be as above. Suppose Z ′ → C ′ → U′ is another tower

3Compare with [Stacks, Tag 06N7].
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of the same type, and suppose we have a commuting diagram of fibered squares

Z ′ Z

C ′ C

U′ U
f

Then there is a canonical isomorphism

Sec(Z ′/C ′) ∼= Sec(Z/C)×U U
′ (2.44)

of stacks over U′.

Proof. Let F = Sec(Z/C)×U U
′. First, observe that a slight extension of the argument

in [Stacks, Tag 06N7] shows that F is indeed fibered in groupoids over U′. So to show

that the canonical map Φ: Sec(Z ′/C)→ F is an equivalence, it suffices to show it is

an equivalence on the fiber over arbitrary x : T → U′.

The fiber F(T ) has for objects tuples (a, α, n, ν) where (letting Ca = C ×U,a T )

a : T → U and n : Ca → Z are 1-morphisms and α : f ◦ x→ a and ν are 2-morphisms

(ν witnesses the commutativity of a triangle, one of whose sides is n). A morphism in

F(T ) from (a, α, n, ν) to (b, β,m, µ) is a tuple (τ, σ) where τ : a→ b and σ : n→ m◦cτ
are 2-morphisms (here cτ : Ca → Cb is the morphism induced by τ), such that (1)

β−1 ◦ τ ◦ α is the identity, and (2) the 2-cell with faces σ, ν, µ, and one other face

determined by τ is commutative.

The fiber Sec(Z ′/C ′) is by Lemma 2.3.1 equal to HomC(CT , Z). This groupoid has

for objects pairs (n, ν) where n : CT → Z is a 1-morphism and ν is a 2-morphism

witnessing the commutativity of the triangle over C. A morphism from (n, ν) to (m,µ)

is a 2-morphism σ : n→ m such that the 2-cell with σ, ν, and µ commutes.

Let ΦT : Sec(Z ′/C ′) → F(T ) be the restriction of Φ to the fiber. Then ΦT sends

(n, ν) to (f ◦ x, id, n, ν) and σ to (id, σ). The map ΦT is essentially surjective because

α induces an isomorphism from an object in the image of ΦT to (a, α, n, ν). It is fully

faithful because if β = α = id, then condition (2) forces τ = id.

Lemma 2.3.4. There is a natural morphism Sec(Z/C)→ Sec(W/C). If Z → W is a

closed embedding, then so is Sec(Z/C)→ Sec(W/C).
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Proof. Let S′ = Sec(Z/C) and S = Sec(W/C). Since S′ → U is already locally of

finite type, by [Stacks, Tag 04XV] it suffices to show that ι : S′ → S is universally

closed and a monomorphism. The monomorphism property is immediate using the

characterization in [Stacks, Tag 04ZZ]. By Lemma 2.3.3, to show that ι is universally

closed it suffices to prove that it is a closed map, and since we already know that ι is a

monomorphism, it suffices to show that ι(S′) is closed in S. Now the set ι(S′) consists

of points whose πS-fibers map completely into Z. Hence, S \ ι(S′) = πS(n−1(W \Z))

where n : CS → W Since πS is flat, and hence open, this implies that ι(S′) is closed,

which finishes the proof of the lemma.

2.3.2 Properties of the obstruction theory

The morphism (2.1) is functorial in several senses. The proofs all use the following

technical lemma, which is a reformulation of [Abr+, Lem 4.1].

Lemma 2.3.5. Suppose we have a commuting diagram

Z

K ′ K C

B′ B U

µK

µB

where the squares are fibered. Then there is a commuting circuit

Lµ∗BEB/U Lµ∗BLB/U

Rπ∗((Lµ
∗
KLf

∗LZ/C)⊗ ω•) Lµ∗BLB/U

Rπ∗((Lµ
∗
KLπ

∗LB/U)⊗ ω•) Rπ∗((Lπ
∗Lµ∗BLB/U)⊗ ω•)

∼

Lµ∗BφB/U

F

∼

β

where β is the composition of (the inverse of) the projection morphism and the trace

map as in (2.3).

Proof. We will demonstrate this circuit as the composition of three. The first circuit
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is the perimeter of the following commuting diagram

Lµ∗BRπ∗(Lf
∗LZ/C ⊗ ω•) Lµ∗BRπ∗(LK/C ⊗ ω•) Lµ∗BRπ∗(Lπ

∗LB/U ⊗ ω•)

Rπ∗((Lµ
∗
KLf

∗LZ/C)⊗ ω•) Rπ∗((Lµ
∗
KLK/C)⊗ ω•) Rπ∗((Lµ

∗
KLπ

∗LB/U)⊗ ω•)

∼ ∼ ∼

∼

where the bottom row induces the the arrow F in the circuit above. The horizontal

arrows are canonical maps of cotangent complexes and the vertical arrows are the

composition of natural isomorphisms.

The second commuting circuit is the one in [Stacks, Tag 0B6B]. Unfortunately,

as our derived functors do not come from morphisms of ringed spaces, it is not

immediately obvious that the reference applies. In fact commutativity of this circuit

can be shown for general symmetric monoidal categories, and the details are worked

out in an updated version of [Hal, Appendix A] communicated to me privately.

Lµ∗BRπ∗(Lπ
∗LB/U ⊗ ω•) Lµ∗B(LB/U ⊗Rπ∗ω•)

Rπ∗(Lµ
∗
K(Lπ∗LB/U ⊗ ω•)) Lµ∗BLB/U ⊗ Lµ∗BRπ∗ω•

Rπ∗((Lµ
∗
KLπ

∗LB/U)⊗ ω•) Rπ∗((Lπ
∗Lµ∗BLB/U)⊗ ω•) Lµ∗BLB/U ⊗Rπ∗Lµ∗Kω•

b

p

t

t
b

∼ p

The third commuting circuit is the boundary of the diagram

Lµ∗B(LB/U ⊗Rπ∗ω•) Lµ∗B(LB/U ⊗ O)

Lµ∗BLB/U ⊗ Lµ∗BRπ∗ω• Lµ∗BLB/U ⊗ Lµ∗BO

Lµ∗BLB/U ⊗Rπ∗µ∗kω• Lµ∗BLB/U ⊗ O

t

b

where the horizontal arrows are all induced by the trace map. The commutativity of the

top square is the natural transformation of functors Lµ∗B(LB/U ⊗ •)→ Lµ∗B(LB/U)⊗
Lµ∗B(•), and the commutativity of the bottom is functoriality of the pair (ω•, tr)

(Proposition 2.2.6).
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The first functoriality lemma is designed to be used with Lemma 2.3.2.

Lemma 2.3.6. Suppose we have a commuting diagram of algebraic stacks

Z

W

KZ KW CU

BZ BW U

q

µK

fZ

fW

µB

(2.45)

where the squares are fibered. Then there is a morphism of distinguished triangles

Lµ∗BEBW /U EBZ/U Rπ∗(Lf
∗
ZLZ/W ⊗ ω•)

Lµ∗BLBW /U LBZ/U LBZ/BW

Lµ∗BφBW/U

d

φBZ/U
(2.46)

where the distinguished triangle in the bottom row is the canonical one and the arrow

labeled d is induced by differentiation.

Proof. By Lemma 2.2.12 we have morphisms of distinguished triangles

Lf ∗Zq
∗LW/C Lf ∗ZLZ/C Lf ∗ZLZ/W

Lµ∗KLKW /C LKZ/C LKZ/KW

Lπ∗Lµ∗BLBW /U Lπ∗LBZ/U Lπ∗LBZ/BW

∼ ∼ ∼

where all arrows are induced by differentiation except for the two in the leftmost

column, which also incorporate various commutations of derived pullback functors. We

tensor the above diagram with ω• and apply Rπ∗ (here π is the projection KZ → BZ).
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The bottom row of the resulting diagram is the top row of the diagram

Rπ∗(Lπ
∗Lµ∗BLBW /U ⊗ ω•) Rπ∗(Lπ

∗LBZ/U ⊗ ω•) Rπ∗(Lπ
∗LBZ/BW ⊗ ω•)

Lµ∗BLBW /U ⊗Rπ∗ω• Lπ∗LBZ/U ⊗Rπ∗ω• Lπ∗LBZ/BW ⊗Rπ∗ω•

Lµ∗BLBW /U LBZ/U LBZ/BW

∼ ∼ ∼

where the top level of vertical arrows are the projection morphism (2.17) and the

bottom vertical arrows are induced by the trace morphism. By Lemma 2.3.5 we may

replace the leftmost column with Lµ∗BφBW /U, completing the proof.

Corollary 2.3.7. Let φBZ/BW : EBZ/BW → LBZ/BW be the morphism (2.1) constructed

for the diagram below, so in particular EBZ/BW = Rπ∗Lg∗LZ×WKW /KW .

Z ×W KW

KZ KW

BZ BW

g

If Z → W or KW → C is flat, then there is a morphism of distinguished triangles

Lµ∗BEBW /U EBZ/U EBZ/BW

Lµ∗BLBW /U LBZ/U LBZ/BW

Lµ∗BφBW/U φBZ/U φBZ/BW
(2.47)

where the bottom triangle is the canonical one.

Proof. We must show that there is a commuting square

Rπ∗(Lf
∗
ZLZ/W ⊗ ω•) EBZ/BW

LBZ/BW LBZ/BW

∼

(2.48)

where the left vertical arrow is the third column of (2.46). Let ZK = Z ×W KW , and

42



g and h be morphisms

KZ
g−→ ZK

h−→ Z.

such that h ◦ g = fZ (up to 2-morphism). By Lemma 2.2.12 (1) there is a commuting

diagram

Lf ∗ZLZ/W Lg∗Lh∗LZ/W Lg∗LZK/KW

LKZ/KW LKZ/KW

γ ∼

where γ is an isomorphism and the map labeled ∼ is an isomorphism because of the

flatness assumption. From here it is straightforward to obtain the diagram (2.48).

Our second functoriality lemma is designed to be used with Lemma 2.3.3 (see also

[Abr+, Lem 4.1]).

Lemma 2.3.8. Suppose we have a commuting diagram of algebraic stacks

Z ′ Z

C ′ C

K ′ K

U′ U

B′ B
µB

where all vertical squares in the bottom level are fibered (but the square with Z ′, Z,

and C ′ need not be). Then there is a commuting diagram

Lµ∗BEB/U Lµ∗BLB/U

EB′/U′ LB′/U′

Lµ∗BφB/U

F

φB′/U′

(2.49)

where the rightmost vertical arrow is the canonical one. If moreover the square with Z ′,

Z, and C ′ is fibered and either Z → C or C ′ → C is flat, then F is an isomorphism.

Proof. The proof is analogous to that of Lemma 2.3.6. In particular, if we let µZ denote

the map Z ′ → Z, then the map F consists of the canonical map Lµ∗ZLZ/C → LZ′/C′
and some isomorphisms.
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2.3.3 Equivariance of the moduli and its obstruction theory

In this section we use the functoriality properties of the moduli of sections and its

obstruction theory to explain why these objects are equivariant when a group acts on

(3.16). Let G be a flat, separated affine group scheme, finitely presented over C. In

this section we study the universal family

Z

CSec C

Sec(Z/C) U

(2.50)

in the presence of a G-action. We use the definitions of G-stacks and equivariant

morphisms in [Rom05a].

Lemma 2.3.9. Given equivariant data for the column Z → C → U in (2.50), it is

possible to make the entire diagram equivariant.

Proof. We have a commuting diagram

G× Z Z

G× CSec G× C C

G× Sec(Z/C) G× U U

where the left part of the diagram is just the product of G with (2.50), and the right

part is the equivariance of the right column of (2.50)—in particular, the horizontal

arrows are all action by G. Since all the squares are cartesian, by the universal property

of Sec(Z/C), this diagram factors canonically through the original one (2.50). This is

the desired equivariance.

Thanks to the functoriality of our constructions, the equivariant nature of Sec(Z/C)

is not difficult to understand.
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Lemma 2.3.10. There is a natural isomorphism

[Sec(Z/C)/G] ' Sec([Z/G]/[C/G]).

Under the resulting canonical map Sec(Z/C) → Sec(Z/C)/G ∼−→ Sec([Z/G]/[C/G]),

the candidate obstruction theory on Sec([Z/G]/[C/G]) pulls back to the candidate

obstruction theory on Sec(Z/C). In particular, the latter candidate obstruction theory

is equivariant.

Proof. We have a fiber diagram

Z [Z/G]

C [C/G]

U [U/G]

where the horizontal maps are fppf covers (see [Rom05a, Theorem 4.1]). Hence by

Lemma 2.3.8 we have the following commuting diagram where the square is fibered.

[Sec(Z/C)/G]

Sec(Z/C) Sec([Z/G]/[C/G])

U [U/G]

F

ρS

q p

ρU

(2.51)

The map ρS is equivariant and hence factors as depicted. In fact, the outer trapezoid

is also fibered, since it is a commuting diagram of G-torsors. Again, both horizontal

maps and the diagonal map are fppf covers, so by descent the map labeled F is an

isomorphism. Setting X = [Sec(Z/C)/G] ' Sec([Z/G]/[C/G]), Lemma 2.3.8 also gives

us a commuting square

Lρ∗SEX/[U/G] ESec(Z/C)/U

Lρ∗SLX/[U/G] LSec(Z/C)/U

Lρ∗Sφ

∼

φ

∼
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where both horizontal arrows are isomorphisms. This shows the equivariance of

φSec(Z/C)/U.

For some applications (e.g. localization) it is useful to have an absolute obstruction

theory φabs : Eabs → LSec(Z/C) on Sec(Z/C). This is defined as a (shifted) mapping cone

fitting in the following diagram:

Eabs ESec(Z/C)/U q∗LU[1]

LSec(Z/C) LSec(Z/C)/U q∗LU[1]

φabs

F

φ (2.52)

The morphism q was defined in (2.51). The triangle in the bottom row is the canonical

one, and the arrow labeled “F” is the composition of φ with the canonical map of

cotangent complexes.

Lemma 2.3.11. The absolute obstruction theory φabs : Eabs → LSec(Z/C) is naturally

equivariant.

Proof. In the notation of (2.51), Lemma 2.2.12 gives us a morphism of distinguished

triangles

LSec(Z/C) LSec(Z/C)/U q∗LU[1]

Lρ∗SLX Lρ∗SLX/[U/G] Lρ∗SLp
∗L[U/G][1]

where all arrows are the canonical ones, except for the rightmost vertical arrow.

Combining this morphism of distinguished triangles with (2.51) and (2.52) shows that

the entire diagram (2.52) may be pulled back from [Sec(Z/C)/G], and in particular is

equivariant.

2.4 Obstruction theory

2.4.1 The fundamental theorem

We recall the “fundamental theorem” of [Ill71, Thm III.1.2.3] and its generalization

in [Ols06, Thm 1.1, Rmk 1.3]. Given a representable morphism of algebraic stacks

x : X → Y and a quasicoherent sheaf I on X , recall from [Ols06, Sec 2.2] the category
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ExalY(X , I): objects are (x′, j, ε, ι) where j : X ↪→ X ′ is a square-zero extension of

algebraic stacks, with x′ : X ′ → Y a 1-morphism and ε : x→ x′ ◦ j a 2-morphism, and

ι : I → ker(OX ′ → OX ) is an isomorphism of sheaves. An arrow from (x′1, j1, ε1, ι1) to

(x′2, j2, ε2, ι2) is a pair (ψ, φ) with ψ : X ′1 → X ′2 a morphism of stacks and φ : x′1 → x′2◦ψ
a 2-morphism such that

(i) we have j2 = ψ ◦ j1 and if ρ is the isomorphism

ker(OX ′2 → OX )→ ker(OX ′1 → OX )

induced by ψ, then ρ ◦ ι2 = ι1

(ii) we have j∗1(φ) ◦ ε1 = ε2.

A consequence of condition (ii) is that ExalY(X , I) is a groupoid.

When X is Deligne-Mumford, the category ExalY(X , I) has a more refined version:

by [Ols06, Sec 2.14], it is the value on X of a Picard stack ExalY(X , I) on Xet. If

U → X is an étale map from a scheme, then the fiber ExalY(X , I)(U) is the groupoid

ExalY(U, I|U). In fact, by [Ols06, Sec 2.26] there is an isomorphism of Picard stacks

ExalY(X , I) ' Ext0/−1(LX/Y , I[1]), (2.53)

where for two complexes F ∈ D[−∞,a] and G ∈ D[b,a−1], we define

Ext0/−1(F,G) := ch(τ≤0RHom(F,G))

(see Section 2.2.2 for the definition of the functor ch). The isomorphism (2.53) is

described in Section 2.5.2.

For us, the key property of the isomorphism (2.53) will be its functoriality under

pullback and basechange as stated in the next two lemmas.

Lemma 2.4.1. Suppose we have maps

Z f−→W g−→ Y

with Z a Deligne-Mumford stack and f and g ◦ f representable. Then given a quasi-

coherent sheaf I ∈ QCoh(Z), there is a commuting diagram of Picard stacks on
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Zet

Ext0/−1(LZ/W , I[1]) Ext0/−1(LZ/Y , I[1])

ExalW(Z, I) ExalZ(X , I)

A

B

(2.53) (2.53) (2.54)

where A is induced by the canonical map LZ/Y → LZ/W and B is induced by composition

with g.

Lemma 2.4.1 is a special case of [Ols06, (2.33.3)], but that result is stated only at

the level of isomorphism classes of global objects and the proof is omitted. We will

prove Lemma 2.4.1 in Section 2.5.3.

For the second functoriality lemma, suppose we have a fiber square

Z X

W Y

a

(2.55)

where Z and X are Deligne-Mumford stacks, the map W → Y is flat, and X → Y is

a representable morphism. Then given a quasi-coherent sheaf I ∈ QCoh(X ), there is

a morphism of Picard stacks

ExalY(X , I)→ ExalW(Z, a∗I) (2.56)

sending X ′ → Y to the pullback Z ′ := X ′ ×Y W →W (observe that, since (2.55) is

fibered, we have an induced map Z ↪→ Z ′ with the desired kernel). The morphism

(2.56) extends to a morphism of Picard stacks.

Lemma 2.4.2. Given the fiber square (2.55) with Z and X Deligne-Mumford stacks

and X → Y a representable morphism, and given a quasi-coherent sheaf I ∈ QCoh(X ),

there is a commuting diagram of Picard stacks on Xet

Ext0/−1(LX/Y , I[1]) a∗Ext0/−1(a∗LX/Y , a∗I[1]) a∗Ext0/−1(LZ/W , a∗I[1])

ExalY(X , I) a∗ExalW(Z, a∗I)

C
∼
D

(2.53)

E

(2.53)

(2.57)

where the arrow C is (2.16), D is induced by the canonical map of cotangent complexes
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(an isomorphism in this case), and E is the map (2.56).

We will prove Lemma 2.4.2 in Section 2.5.3.

2.4.2 Proof of Theorem 2.1.3

In this section we prove Theorem 2.1.3. In fact, we will prove a more refined version:

this is Theorem 2.4.4.

Consider a solid diagram of algebraic stacks where X ↪→ X ′ is a square-zero extension

of Deligne-Mumford stacks and f, g are representable

X Y

X ′ Z

f

q r

g

(2.58)

with a fixed 2-morphism γ : r ◦ f → g ◦ q. Define Def(f) to be the category of lifts

of f : an object of Def(f) is a triple (k, ε, δ) such that k : X ′ → Y is a 1-morphism,

and ε : f → k ◦ q and δ : r ◦ k → g are 2-morphisms satisfying q∗(δ) ◦ r(ε) = γ. A

morphism from (k1, ε1, δ1) to (k2, ε2, δ2) is a natural transformation τ : k1 → k2 such

that q∗(τ) ◦ ε1 = ε2 and δ1 = δ2 ◦ r(τ).

The category Def(f) has a more refined version: it is the value on X a stack Def(f)

on the small étale site Xet of X , defined as follows. The diagram (2.58) defines an

element (g, q, γ, id) of ExalZ(X , I) which via restriction defines a section of the stack

ExalZ(X , I) over X . We define Def(f) to be the fiber product

Def(f) ExalY(X , I)

X ExalZ(X , I)

R

(g,q,γ,id)

(2.59)

where the arrow R is induced by composition with r : Y → Z (it is the same as the

map B in (2.54)). It is perhaps intuitive that the global sections of Def(f) are the

category Def(f), but we check this carefully in the next lemma.

Lemma 2.4.3. If u : U → X is an object of Xet, then the fiber Def(f)(U) is equivalent

to the category Def(f ◦ u) for any extension U → U ′ over q : X → X ′.
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In other words, the category Def(f ◦ u) is the category of lifts for the outer square

of the diagram

U X Y

U ′ X ′ Z

u

u∗q q

f

r

g

(2.60)

where the left square is fibered and U ′ → X ′ is flat. The extension U → U ′ exists and

is unique [Ols06, Thm 1.4].

Proof of Lemma 2.4.3. Let u : U → X be an object of Xet. Then the fiber Def(f)(U)

is the fiber product of the diagram of groupoids

ExalY(U, IU)

X ExalZ(U, IU)

R

u∗g

where the object u∗g = u∗(g, q, γ, id) is given by the outer square of (2.60). An object

of Def(f)(U) is an object x ∈ ExalY(U, IU) together with an arrow from R(x) to u∗g.

From the universal property of fiber products, there is a canonical map

Φ : Def(f ◦ u)→ Def(f)(U)

which sends the object (k, ε, δ) ∈ Def(f ◦ u) to the object (k, u∗q, ε, id) ∈ ExalY(U, IU )

and the arrow δ.

The functor Φ is fully faithful. Indeed, given two objects (ki, εi, δi) ∈ Def(f ◦ u),

an arrow between their images in Def(f)(U) is given by a pair (ψ, φ) that defines a

morphism between (k1, u
∗q, ε1, id) and (k2, u

∗q, ε2, id). In particular, ψ : U ′ → U ′ is a

1-morphism and φ : k1 → k2 is a 2-morphism. Furthermore the diagram

r(k1) r(k2)

g g

r(φ)

δ1 δ2

is required to commute. Referring to the description of ψ and φ in Section 2.4.1, we

see that condition (i) forces ψ = id and (ii) reduces to q∗(φ) ◦ ε1 = ε2. So we see that

an arrow between the images in Def(f)(U) is precisely an arrow φ between the original
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objects in Def(f ◦ u).

The functor Φ is also essentially surjective. Suppose we have an object of Def(f)(U)

given by (k, j, ε, ι) ∈ ExalY(U, IU) with (ψ, φ) the isomorphism to (g ◦ u′, u∗q, u∗γ, id).

Then this same object is isomorphic to the image of (k ◦ ψ−1, ε, (ψ−1)∗(φ)) under Φ

via the pair (ψ, id).

The definition of Def(f) allows for the following stronger version of Theorem 2.1.3.

Theorem 2.4.4. Consider a solid diagram (2.58) of algebraic stacks where X → X ′

is a square-zero extension of Deligne-Mumford stacks with ideal sheaf I.

1. There is an obstruction o(f) ∈ Ext1(Lf ∗LY/Z , I) whose vanishing is necessary

and sufficient for the set Def(f) to be nonempty.

2. If o(f) = 0, then Def(f) is a torsor for Ext0/−1(Lf ∗LY/Z , I) on Xet.

Remark 2.4.5. To recover the statement of Theorem 2.1.3, we may take the values

on X of the objects in Theorem 2.4.4 (2). When Def(f) is not empty, we obtain an

isomorphism of groupoids

Ext0/−1(Lf ∗LY/Z , I)(X )×Def(f)
∼−→ Def(f)×Def(f) (2.61)

induced by the action and projection to the second factor. Restricting to isomorphism

classes of objects, we get a bijection

Ext0(Lf ∗LY/Z , I)×Def(f)
∼−→ Def(f)×Def(f),

i.e., the set Def(f) is a torsor under Ext0(Lf ∗LY/Z , I). Likewise, if f ′ ∈ Def(f) is any

object and e ∈ Ext0(Lf ∗LY/Z , I) is the trivial extension, then (2.61) yields a group

isomorphism

Aut(e)× Aut(f ′)
∼−→ Aut(f ′)× Aut(f ′).

Restricting this isomorphism to the subgroup Aut(e)× {id} yields an isomorphism

Aut(e) ' Aut(f ′). By the description of ch in Section 2.2.2, we see that Aut(f ′) is

isomorphic to Ext−1(Lf ∗LY/Z , I).

Proof of Theorem 2.4.4. We employ the well-known strategy of studying the distin-

guished triangle

f ∗LY/Z → LX/Z → LX/Y . (2.62)
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Applying Lemma 2.4.1 to the maps

X → Y → Z

we get a commuting diagram

Ext0/−1(LX/Y , I[1]) Ext0/−1(LX/Z , I[1])

ExalY(X , I) ExalZ(X , I)

∼ ∼
R

(2.63)

where the arrow R is as in (2.59). When we restrict (2.63) to isomorphism classes of

objects over X , we get the commuting square in the diagram below.

Ext1(LX/Y , I) Ext1(LX/Z , I) Ext1(f ∗LY/Z , I)

ExalY(X , I) ExalZ(X , I)

∼ ∼α

ob

R

(2.64)

A consequence of Lemma 2.4.3 is that Def(f) is nonempty if and only if the fiber of R

over [g] := (g, q, γ, id) is nonempty. From the long exact sequence for Exti(−, I) applied

to (2.62), we see that this happens if and only if the image of [g] in Ext1(f ∗LY/Z , I)

is 0. We define

o(f) = ob(α−1([g])). (2.65)

In particular, the obstruction group is the image of ob.

If Def(f) is not empty, then by Lemma 2.4.6 below Def(f) is a torsor under the

kernel of the morphism of Picard stacks

R : ExalY(X , I)→ ExalZ(X , I).

By [Ols06, Lem 2.29], using the distinguished triangle

RHom(LX/Z , I[1])
F−→ RHom(LX/Y , I[1])→ RHom(f ∗LY/Z , I[1])→

induced from (2.62), this kernel is canonically isomorphic to ch((τ≤−1Cone(τ≤0F ))[−1]).
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But a direct computation shows that

τ≤−1Cone(τ≤0F )) = τ≤−1Cone(F ) = τ≤0Cone(F [−1])

so we get that this kernel is canonically isomorphic to Ext0/−1(f ∗LY/Z , I).

Lemma 2.4.6. Let f : P → Q be a morphism of Picard stacks on a site with

underlying category X , and let K denote the kernel. Let q : X → Q be a section and

F = P ×Q,q X the fiber product. If F (X ) is not empty, then F is a K-torsor on X .

Proof. Let α : P × P → P denote the action. From the definitions we obtain a

factorization of the composition K × F → P × P α−→ P through F . Since F (X ) is not

empty, to show that α : K × F → F makes F a K-torsor it remains to check that the

map

K ×X F
(α,pr2)−−−−→ F ×X F

is an isomorphism. For this note that the map

F ×X F
(α(·,(·)−1),pr2)−−−−−−−−→ K ×X F

is an inverse.

2.4.3 A criterion for an obstruction theory

Let Y → Z be a morphism of algebraic stacks. We say a morphism φ : E → LY/Z

in the derived category of Y is an obstruction theory if the induced morphisms of

cohomology sheaves satisfy h−1(φ) is a surjection and h0(φ), h1(φ) are isomorphisms.

On the other hand, for every diagram (2.58) we have induced homomorphisms

Φi : Exti(Lf ∗LY/Z , I)→ Exti(Lf ∗E, I).

The following lemma is a well-known extension of [BF97, Thm 4.5] to the situation

when Y → Z is an arbitrary morphism of algebraic stacks (see eg [AP19, Cor 8.5] and

[Pom15, Thm 3.5]).

Lemma 2.4.7. The following conditions are equivalent.

1. The morphism φ is an obstruction theory.
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2. For every diagram (2.58) with X a scheme, the following hold:

a) the element Φ1(o(f)) ∈ Ext1(Lf ∗E, I) vanishes if and only if Def(f) is

nonempty

b) if Φ1(o(f)) = 0 then Φ0 and Φ−1 are isomorphisms

In fact, in condition (2) it suffices to check only diagrams (2.58) with X an affine

scheme.

We emphasize a difference in wording between our criterion and that found in

[BF97, Thm 4.5], [AP19, Cor 8.5], and [Pom15, Thm 3.5]: in place of condition (2b),

the references cited require only that Def(f) be a torsor under Ext0(Lf ∗E, I) (and

automorphisms are isomorphic to Ext−1(Lf ∗E, I)). This condition implies that for

i = 0,−1 the groups Exti(Lf ∗E, I) and Exti(Lf ∗LY/Z , I) are isomorphic, but not that

Φi is an isomorphism. This is clearly not strong enough to force φ to be an obstruction

theory. For instance, take Y a smooth scheme with LY = Ω1
Y the locally free sheaf of

differentials in degree 0. Let E = Ω1
Y and let φ : E → LY be the zero map. Then for

any diagram (2.58), the map Φ1 is injective (in fact Ext1(Lf ∗LY , I) = 0 since Lf ∗LY
is a projective module in degree 0) and the groups Ext0(Lf ∗E, I) and Ext0(Lf ∗LY , I)

are isomorphic. But φ is not an obstruction theory.

We emphasize this difference because in our application of interest (the moduli of

stable maps), it is relatively easy to check that Def(f) is a torsor under Ext0(Lf ∗E, I)

(and that automorphisms are isomorphic to Ext−1(Lf ∗E, I)) using Theorem 2.4.4. It

is much harder to show condition (2b), namely that the Φi are isomorphisms. This is

the reason for our lengthy argument in Section 2.4.4.

The following proof of Lemma 2.4.7 is not new. Bhargav Bhatt explained part of

the argument to me, and other parts are taken from [BF97, Thm 4.5].

Proof of Lemma 2.4.7. The following argument is well-known. Let C be the mapping

cone of E → LY/Z . From the long exact sequence of cohomology sheaves for the

resulting triangle we see that condition (1) is equivalent to

(1’) hi(C) = 0 for i ≥ −1.

We will show that (1’) and (2) are equivalent.

Assume (1’). Then hi(Lf ∗C) also vanish for i ≥ −1, so a spectral sequence [Stacks,

Tag 07AA] for Exti(−, I) implies Exti(Lf ∗C, I) = 0 for i ≥ −1 and any I. On the
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other hand, the distinguished triangle

Lf ∗E → Lf ∗LY/Z → Lf ∗C →

gives rise to a long exact sequence

Exti(Lf ∗C, I) Exti(Lf ∗LY/Z , I) Exti(Lf ∗E, I) Exti+1(Lf ∗C, I)

We conclude that Φ1 is injective and Φ0 and Φ−1 are isomorphisms. Combined with

Theorem 2.4.4, this proves (2) (with X an arbitrary scheme).

Now assume (2) holds for every diagram (2.58) with X an affine scheme. By Theorem

2.4.4, this implies that for any diagram (2.58), with X an affine scheme, the map Φ1

is injective on the span of obstruction elements o(f). If X → Y is in fact a smooth

cover by a scheme, then I claim Φ1 is injective, i.e., every element of Ext1(Lf ∗LY/Z , I)

is equal to o(f) for some diagram (2.58). From the definition of the obstruction in

(2.65), this is equivalent to the map ob being surjective. This follows from the long

exact sequence

→ Ext1(LX/Z , I)
ob−→ Ext1(Lf ∗LY/Z , I)→ Ext2(LX/Y , I)→

induced from the distinguished triangle X f−→ Y → Z, since LX/Y = Ω1
X/Y [0] is a

projective module in degree 0.

Likewise the assumption (2b) is stronger than it initially appears, since the maps Φ0

and Φ−1 depend only on f and I and not the whole diagram (2.58). In fact, for any

morphism f : X → Y and OX-module I, we can form a diagram (2.58) with X ′ → Z
the trivial extension of X f−→ Y → Z by I. Then the category Def(f) contains the

trivial extension of f : X → Y and in particular is not empty. So o(f) = 0 for this

diagram, and hence by assumption Φ0 and Φ−1 are isomorphisms (independent of the

value of o(f)).

Now let f : X → Y be a smooth cover by an affine scheme. To prove (1’), it suffices to

show that hi(Lf ∗C) = 0 for i ≥ −1. Let I be an OX -module. The long exact sequence

of Exti(−, I) for the distinguished triangle Lf ∗E → Lf ∗LY/Z → Lf ∗C →, together

with the observations of the above paragraphs that Φ0 and Φ−1 are isomorphisms and

Φ1 is injective, implies that Exti(Lf ∗C, I) = 0 for every i ≤ 1. On the other hand, by
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[Stacks, Tag 07AA] there is a spectral sequence whose second page is

Exti(h−j(Lf ∗C), I) =⇒ Exti+j(Lf ∗(C), I).

A priori we know Lf ∗E and Lf ∗LY/Z , and hence Lf ∗C are in D≤1(X ), so hi(Lf ∗C) = 0

for i ≥ 2. Then by the above spectral sequence, the group Ext0(h1(Lf ∗C), I) is

equal to Ext−1(Lf ∗C, I) which vanishes for every I. This forces h1(Lf ∗C) to vanish.

Inductively applying the same argument to Ext0(Lf ∗C, I) and then Ext1(Lf ∗C, I)

shows that h0(Lf ∗C) and h−1(Lf ∗C) vanish as well.

2.4.4 Proof of Theorem 2.1.2

We use Lemma 2.4.7. The idea for our argument was inspired by the arguments in

[BF97, Prop 6.2] and [Abr+, Prop 4.2] and discussions with Bhargav Bhatt. We must

check several compatibilities of morphisms, which for readability we present as a series

of claims. Granting these claims, the crux of the argument is in the final step (Claim

2.4.13 below). The statements of the claims and the proof of Claim 2.4.13 (the final

claim) can all be read with only the background presented so far in this thesis, but the

proofs of the first four claims use the technical material in Section 2.5 (which contains

the definitions of the objects and maps in Lemmas 2.4.1 and 2.4.2). To begin, fix a

solid commuting diagram

T S

T ′ S

m

(2.66)

with T → T ′ a square zero extension of affine schemes with ideal sheaf I.
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Claim 2.4.8. There is a commuting diagram of stacks

CT Z C

CT ′ CT CS C

CT ′ T S U

T ′

nT

π

m̃

π

n

π

m

(2.67)

The horizontal levels of this diagram define categories Def(m) and Def(nT ) that are

canonically equivalent.

Proof. Let γ be the 2-morphism witnessing the commutativity of (2.66). By Lemma

2.4.4 we may assume γ = id (precisely, Def(m) is canonically equivalent to another

category Def(m′) with γ = 1). This yields the commuting diagram (2.67).

There is a functor Def(nT ) → Def(m) as follows. From an element (k, ε, δ) of

Def(nT ) we get an arrow kδ : T ′ → S determined by k and δ, making the resulting

triangle over U strictly commutative. The 2-morphism ε determines a 2-morphism

(also denoted ε) from m to the composition T → T ′
kδ−→ S. Hence our functor sends

the object (k, ε, δ) to the object (kδ, ε, id). This functor is fully faithful. To see that it

is essentially surjective, let (k, ε, δ) be an object in Def(m), and apply Lemma using

k : T ′ → S for f : X → Y. We get k′ : T ′ → S and τ : k → k′, and in fact τ is an

arrow from (k′, q∗(τ−1) ◦ ε, id) to (k, ε, δ) in Def(m).

Claim 2.4.9. The diagram (2.67) leads to a commuting diagram of Picard stacks

π∗Ext0/−1(Ln∗TLZ/C, π
∗I) π∗Ext0/−1(LCT /Z, π∗I[1]) π∗Ext0/−1(LCT /C, π∗I[1])

Ext0/−1(Lm∗LS/U, I) Ext0/−1(LT/S, I[1]) Ext0/−1(LT/U, I[1])

A

F A◦D−1◦C

A

D−1◦C

(2.68)

where the arrows are labeled as in Lemmas 2.4.1 and 2.4.2, and the terms in the

leftmost column are the kernels of the top and bottom horizontal maps.

Proof. By 2.2.12, diagram (2.67) leads to the following morphisms of distinguished
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triangles.

Ln∗TLZ/C LCT /C LCT /Z

Lm̃∗LCS/C LCT /C LCT /CS

π∗Lm∗LS/U π∗LT/U π∗LT/S

∼ ∼ ∼

(2.69)

This leads to the following commuting diagram of Picard stacks where the terms in
the leftmost column are kernels.

π∗Ext0/−1(Ln∗TLZ/C, π
∗I) π∗Ext0/−1(LCT /Z, π

∗I[1]) π∗Ext0/−1(LCT /C, π
∗I[1])

π∗Ext0/−1(Lm̃∗LCS/C, π
∗I) π∗Ext0/−1(LCT /CS

, π∗I[1]) π∗Ext0/−1(LCT /C, π
∗I[1])

π∗Ext0/−1(π∗Lm∗LS/U, π
∗I) π∗Ext0/−1(π∗LT/S, π∗I[1]) π∗Ext0/−1(π∗LT/U, π∗I[1])

Ext0/−1(Lm∗LS/U, I) Ext0/−1(LT/S, I[1]) Ext0/−1(LT/U, I[1])

A

∼

A

A

∼D ∼D

A

C

A

C

(2.70)

The top three rows come directly from applying the functor π∗Ext0/−1(−, π∗I[1])
to (2.69), applying [Ols06, Lem 2.29] as in the proof of Theorem 2.4.4, and the fact
that π∗ preserves kernels for Picard stacks. The bottom row likewise comes from a
morphism of distinguished triangles

Rπ∗RHom(π∗LT/S, π∗I[1]) Rπ∗RHom(π∗LT/U, π∗I[1]) Rπ∗RHom(π∗Lm∗LS/U, π
∗I[1])

RHom(LT/S, I[1]) RHom(LT/U, I[1]) RHom(Lm∗LS/U, I[1])

and an application of Lemma 2.2.10. This morphism of triangles is induced by (2.16).

Now (2.68) is the perimeter of (2.70).

Claim 2.4.10. The arrow F in (2.68) is quasi-isomorphic to the map induced by φ.

More precisely (and more generally), there is a commuting square

RHom(Lm∗LS/U, I) π∗RHom(Ln∗TLZ/C, π
∗I)

RHom(Lm∗LS/U, I) RHom(Lm∗E, I)

F ′

∼

RHom(Lm∗φ,I)

(2.71)
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where ch(τ≤0F
′) = F .

The crux of the argument is to show that there is a commuting diagram

Rπ∗RHom(Ln∗TLZ/C, π
∗I) RHom(Rπ∗(Ln

∗
TLZ/C ⊗ ω•), I)

Rπ∗RHom(π∗Lm∗LS/U, π
∗I) RHom(Rπ∗(π

∗Lm∗LS/U ⊗ ω•), I)

RHom(Lm∗LS/U, π∗π
∗I)

RHom(Lm∗LS/U, I) RHom(Lm∗LS/U, I)

∼

∼

(2.15) (2.72)

where the top vertical arrows are induced by the composition

Ln∗TLZ/C
dnT−−→ L̃m∗LCS/C

dπ←−
∼
π∗Lm∗LS/U,

the bottom left vertical arrow is induced by the unit I → π∗π
∗I of the adjunction,

and the bottom right vertical arrow is induced by the projection formula and trace

map as in (2.3). Granting this, define F ′ to be the composition of the left vertical

arrows. To see that ch(τ≤0F
′) = F , use the decomposition of F ′ in (2.70) and Lemma

2.2.10 (which also holds for π a morphism of algebraic stacks). Moreover, by Lemma

2.3.5, the composition of the right vertical arrows in (2.72) is quasi-isomorphic to

RHom(Lm∗φ, I).

Lemma 2.4.11. There is a commuting diagram (2.72) with vertical arrows as specified.

Proof. Note that we may choose the horizontal arrows in whatever (functorial) way

is convenient for us, and so we can focus on the bottom square. We use the Yoneda

embedding: let A = Lm∗LS/U and apply Hom(B,−) to the bottom square of (2.72).

The commutativity of the resulting diagram

1 Hom(B,Rπ∗RHom(π∗A, π∗B)) 2 Hom(B,RHom(Rπ∗(π
∗A⊗ ω•), I))

3 Hom(B,RHom(A, I)) 4 Hom(B,RHom(A, I))

∼

(2.73)
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follows from the commutativity of three diagrams that we describe below. The gray

numbers are to aid the reader in assembling the diagrams. We will use the fact that

if (L,R) is an adjoint pair of functors and Y → R(Z) is a morphism, then there is a

commuting diagram

Hom(X, Y ) Hom(X,R(Z))

Hom(L(X), L(Y )) Hom(L(X), Z)

Hom(id,f)

a

Hom(id,a(f))

(2.74)

where the left vertical arrow is induced by the functor L and a stands for adjunction.

We show that (2.73) is equivalent to the diagram

5 Hom(π∗(B ⊗ A), π∗I) 6 Hom(π∗(B ⊗ A)⊗ ω•, π∗I ⊗ ω•)

Hom(B ⊗ A, π∗π∗I) 7 Hom(B ⊗Rπ∗(π∗A⊗ ω•), I)

8 Hom(B ⊗ A, I) 9 Hom(B ⊗ A, I)

∼a

(2.75)

In this diagram, the top equality is just the functor − ⊗ ω•. The bottom vertical

arrows are induced by the unit and counit of the respective adjunctions. The top right

vertical arrow is defined to be the composition

6 Hom(π∗(B ⊗ A)⊗ ω•, π∗I ⊗ ω•) ∼−→Hom(π∗(B ⊗ A)⊗ ω•, π!I)

= Hom(Rπ∗(π
∗(B ⊗ A)⊗ ω•), I)

= Hom(Rπ∗(π
∗B ⊗ (π∗A⊗ ω•)), I)

(2.17)−−−→
∼

7 Hom(B ⊗Rπ∗(π∗A⊗ ω•), I)

The first isomorphism is induced by the map

π∗I ⊗ ω• → π!I

defined in [FHM03, (5.8)]. It is an isomorphism by [FHM03, Thm 8.4] using the results

of [HR17]—that π! preserves coproducts follows as in [Nee96, Ex 5.2], and we are

working on an affine scheme T which is in particular quasi-compact and quasi-separated.
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The first equality is (Rπ∗, π
!) adjunction. Diagram (2.75) commutes as follows. The

composition 8 → 5 → 6 is just the maps of Hom sets induced by π∗(−) ⊗ ω• (using

(2.74)). Now commutativity is a direct computation using (2.74) and the diagram

Rπ∗(π
∗I ⊗ ω•) I ⊗Rπ∗ω• I

Rπ∗(π
∗(B ⊗A)⊗ ω•) (B ⊗A)⊗Rπ∗ω• B ⊗A

Rπ∗(π
∗B ⊗ (π∗A⊗ ω•)) B ⊗Rπ∗(π∗A⊗ ω•) B ⊗ (A⊗Rπ∗ω•)

id⊗tr(2.17)

∼

(2.17)

∼
id⊗tr

(2.17)

∼
(2.17)

∼

id⊗tr

where the bottom left cell is associativity of the projection formula (follows from

associativity of ⊗ and the definitions in [Hal, Appendix A].

To see that (2.73) is equivalent to (2.75), observe that we have commuting diagrams

Hom(π∗B,RHom(π∗A, π∗I)) Hom(π∗B ⊗ π∗A, π∗I)

1 Hom(B,Rπ∗RHom(π∗A, π∗I)) 5 Hom(π∗(B ⊗ A), π∗I)

Hom(B,RHom(A,Rπ∗π
∗I)) Hom(B ⊗ A,Rπ∗π∗I)

3 Hom(B,RHom(A, I)) 8 Hom(B ⊗ A, I)

a

a

Hom(id,(2.15)) a

a

a

(2.76)

and

7 Hom(B ⊗Rπ∗(π∗A⊗ ω•), I) 2 Hom(B,RHom(Rπ∗(π
∗A⊗ ω•), I))

9 Hom(B ⊗ A, I) 4 Hom(B,RHom(A, I))

a

a

(2.77)

and we can choose the isomorphism 1→ 2 in (2.73) to be the composition

1
in (2.76)−−−−→
∼

5
in (2.75)−−−−→
∼

7
in (2.77)−−−−→
∼

2.

The top square of (2.76) commutes by a direct computation using (2.74); see also

[FHM03, 5]. The diagram (2.77) commutes by the naturality of this adjunction.
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Claim 2.4.12. The diagram (2.67) leads to a commuting diagram of Picard stacks

π∗Def(nT ) π∗Exal
Z
(CT , π

∗I) π∗Exal
C
(CT , π

∗I)

Def(m) Exal
S

(T, I) Exal
U
(T, I)

B

G B◦E

B

E (2.78)

where the arrows B and E are as in Lemmas 2.4.1 and 2.4.2, and the terms in the

leftmost column are fibers of the top and bottom horizontal maps.

Proof. From the bottom two (fibered) squares of (2.67), we get a diagram

π∗Exal
Z
(CT , π

∗I) π∗Exal
C
(CT , π

∗I)

π∗Exal
CS

(CT , π
∗I) π∗Exal

C
(CT , π

∗I)

Exal
S

(T, I) Exal
U
(T, I)

B

B

B

E

B

E

(2.79)

From the defintions of E and B, it is easy to check that this diagram commutes.

Moreover, the element of ExalU(T, I) defined by m and the corresponding horizontal

square in (2.67) maps to the element of ExalC(CT , π
∗I) defined by nT and its horizontal

square. So by definition 2.59 of Def and universal properties of fiber products, we get

(2.78).

Claim 2.4.13. Condition (2) in Lemma 2.4.7 holds.

Proof. First, observe that by Claim 2.4.8, the arrow G in (2.78) is an isomorphism

of Picard stacks. To complete the proof we study the commuting cube formed by

mapping the right square of (2.68) to the right square of (2.78) via (2.53). Call this

diagram of Picard stacks D.

To prove (2a), restrict the diagram D to isomorphism classes of objects over T . As

in (2.64) we extend this diagram by the obstruction maps, obtaining a commutative
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diagram

ExalC(CT , π
∗I) Ext1(LCT /C, π∗I) Ext1(n∗TLZ/C, π

∗I)

ExalU(T, I) Ext1(LT/U, I) Ext1(m∗LS/U, I)

(2.53)

∼
ob

E

(2.53)

∼

D−1◦C

ob

Φ′1

We construct the right (commutative) square as in Claim 2.4.9. By defintion of E and

commutativity of the diagram, the map labeled Φ′1 sends o(m) to o(nT ). On the other

hand, Φ′1 is quasi-isomorphic to Φ1 by Claim 2.4.10, where Φ1 is defined as in Lemma

2.4.7. By Theorem 2.4.4, the element o(nT ) (resp o(m)) vanishes if and only if Def(nT )

(resp Def(m)) is nonempty. Since G is an isomorphism we have Def(nT ) = Def(m)

and we see that (2a) holds.

To prove (2b), recall the fact that a morphism f : A→ B of complexes in D[−1,0](T )

is a quasi-isomorphism if and only if the induced map of Picard stacks ch(f) : ch(A)→
ch(B) is an isomorphism (see eg [73, Prop XVIII.1.4.15]). Hence by Claim 2.4.10 it

suffices to show that the map F in (2.68) is an isomorphism. As in the proof of Lemma

2.4.7 this property depends only on f and I and is independent of the square-zero

extension T ′. So we may check it from the diagram D which induces a commuting

square of kernels like so:

π∗Ext0/−1(LCT /Z, π∗I) π∗ ker
(
π∗ExalZ(CT , π

∗I)→ π∗Exal
C
(CT , π

∗I)
)

Ext0/−1(m∗LS/U, I) ker
(
Exal

S
(T, I)→ Exal

U
(T, I)

)
(2.53)

∼

F

(2.53)

∼

G′

The map G′ is just a special case of the map G when the outer square of (2.58)

corresponds to the trivial extension. In particular it is an isomorphism. So F is an

isomorphism as well.

2.4.5 Applications

We give two applications of Theorem 2.1.2.
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Moduli of principal bundles

Let G be an affine algebraic group over C, locally finitely presented, quasi-compact,

and quasi-separated. Let π : C → U be a family of twisted curves. We describe the

cotangent complex for the moduli of principal G-bundles S on C.

Proposition 2.4.14. The moduli space S is smooth and the canonical obstruction

theory (2.1) is a quasi-isomorphism.

Proof. Let BG denote the Artin stack that is a quotient of a point by G. The stack

S may be described as a moduli of sections Sec(C ×BG/C), and hence by Theorem

2.1.2 the morphism

φ : Rπ∗(n
∗LBG ⊗ ω•)→ LS

is an isomorphism in degrees 0 and 1 and surjective in degree -1. The cotangent

complex of BG is a locally free sheaf in degree 1, so Rπ∗(n
∗LBG⊗ω•) is perfect in [0,1].

Hence h−1(LS) = 0 while h0(LS) is locally free. Then if S → S is a smooth cover by

a scheme, we see from the construction of the cotangent complex that h−1(LS) = 0

and h0(LS) is locally free. A standard argument using Theorem 2.1.3 shows that S is

formally smooth; since S is also locally finitely presented, S is smooth. This implies

that S is smooth and hence φ is a quasi-isomorphism.

Moduli of quasimaps

Fix a complex reductive group G. Let M = Mtw
g,n denote the moduli space of prestable

orbifold curves of genus g with n markings, and let C be its universal curve. Denote

by B = Sec(C × BG/C) the moduli stack of prestable orbicurves together with

a principal G-bundle, and let P → CB be the universal principal bundle over its

universal curve. Now let Y be an affine l.c.i. variety with an action by G. Let θ be a

character of G with Y ss
θ = Y s

θ smooth and having finite G-stabilizers. Fix ε > 0 and

β ∈ Hom(Pic([Y/G]),Q).

With this data, [CCK15] defines a moduli space of ε-stable quasimapsMε

g,n([Y/G], β)

as an open substack of Sec(P×G Y/CB) (see [CKM14] for the situation when Y s
θ has

trivial G-stabilizers). As such, it has a canonical obstruction theory relative to CB).

However it is often convenient (as in Chapter 3 of this thesis) to realizeMε

g,n([Y/G], β)

as an open substack of Sec(C× [Y/G]/C), whence it inherits a canonical obstruction

theory relative to M. We rigorously explain why this is equivalent.
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The moduli spaces are identified by Lemma 2.3.2. We now investigate the obstruction

theories (see also the discussion in [CK10, Section 5.3]). SettingM =Mε

g,n([Y/G], β),

we have the following analog of (2.45).

C× [Y/G]

P×G Y C×BG

CM C C

M B M

q

u

µ

(2.80)

By Corollary 2.3.7 we have the following morphism of distinguished triangles:

Lµ∗EB/M EM/M EM/B

Lµ∗LB/M LM/M LM/B

Lµ∗φB/M φM/M φM/B

By Proposition 2.4.14, the complex Lµ∗EB/M is perfect in [−1, 1] and φB/M is a

quasi-isomorphism. Then argument of [KKP03, Prop 3] shows that φM/Mtw
g,n

and φM/B

induce the same virtual class on M.

We have proved the following lemma.

Lemma 2.4.15. The stack of ε-stable quasimaps Mε

g,n([Y/G], β) is canonically iso-

morphic to an open substack of Sec(C× [Y/G]/C). Moreover, the restriction of (2.1) to

this substack is a perfect obstruction theory, and it induces the same virtual fundamental

class as the perfect obstruction theory of [CKM14, 4.4.1] and [CCK15, Sec 2.4.5].

2.5 Functoriality and the fundamental theorem

The goal of this section is to define the isomorphism (2.53) and prove its functoriality

as in Lemmas 2.4.1 and 2.4.2. The strategy is to reduce to statements about simplicial

algebraic spaces, which are in turn interpreted as general statements about ringed

topoi. Hence we begin by studying the setting of ringed topoi in Section 2.5.1, and
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then in Section 2.5.2 we define (2.53) and in Section 2.5.3 we prove Lemmas 2.4.1 and

2.4.2.

2.5.1 Illusie’s Theorem

Let C be a ringed site with A→ B a morphism of sheaves of rings on C, and let I be

a sheaf of B-modules. This section discusses a canonical isomorphism

β : Exal
A

(B, I)→ Ext
0/−1
B (LB/A, I[1]) (2.81)

where the subscript on Ext
0/−1
B indicates that it uses internal hom for the category

of B-modules on C. This isomorphism is referred to as “Illusie’s Theorem” in [Ols06,

Appendix A], where it is proven in Theorem A.7 to be an isomorphism (see also [Ill71,

Sec III.1.2.2]). We refer the reader to [Ols06, Thm A.7] for the definition of β; here

we will discuss its functoriality under changing the rings A and B, the B-module I,

and the topos C.

Review of Exal

We review the category of algebra extensions and its functoriality. While our discussion

is at the level of Picard categories, everything we say here holds for the relevant Picard

stacks as well. As defined in [Ill71, Sec III.1.1.5], the objects of the Picard category

ExalA(B, I) are A-algebra maps E → B with kernel I. We write these objects as

short exact sequences

0→ I → E → B → 0. (2.82)

If I → J is a morphism of B-modules, there is an induced morphism

ExalA(B, I)→ ExalA(B, J) (2.83)

sending (3.53) to

0→ J → E ⊕I J → B → 0;

i.e., the object E ⊕I J is defined by a pushout diagram (this is [Ill71, Equ III.1.1.5.2]).

If B′ → B is a morphism of A-algebras, then there is an induced morphism

ExalA(B, I)→ ExalA(B′, IB′) (2.84)
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sending (3.53) to

0→ I → E ×B B′ → B′ → 0;

i.e., the objectE×BB′ is defined by a fiber product diagram (this is [Ill71, Equ III.1.1.5.3]).

Here, IB′ denotes the sheaf I considered as a B′-module. If A′ → A is a morphism of

rings, there is an induced morphism

ExalA(B, I)→ ExalA′(B, I) (2.85)

sending (3.53) to the same exact sequence (but E → B is now a morphism of A′-

algebras) (this is [Ill71, Equ III.1.1.5.4]).

Finally, let C ′ → C be a continuous morphism of sites inducing a morphism of topoi

(a∗, a
−1). Then we have an induced morphism

ExalA(B, I)→ Exala−1A(a−1B, a−1I) (2.86)

sending (3.53) to its image under a−1. We are using that a−1 is an exact functor.

Lemma 2.5.1. The maps (2.83), (2.84), (2.85), and (2.86) commute pairwise.

Proof. The most involved pair to check is (2.84) and (2.83). We work it out in detail

and offer a few words about the remaining pairs at the end of the proof. When we

say these commute, we mean that if B′ → B is a morphism of rings and I → I ′ is a

morphism of B-modules, then the diagram

ExalA(B, I) ExalA(B′, I)

ExalA(B, I ′) ExalA(B′, I ′)

(2.87)

is 2-commutative.

Given an element (3.53) of ExalA(B, I), we have a diagram

I ′ P

0 I E B 0

F B′

a′

(0,b)

a

(a,0)

ιE

b

pE

b′

(2.88)
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where P = I ′ ⊕I E and F = E ×B B′. Set Q = I ′ ⊕I F and G = P ×B B′. Then

0→ I ′ → Q→ B′ → 0

is the image of (3.53) under the composition → ↓ in (2.87), and likewise G defines the

image under the composition ↓ →. An arrow from Q to G in the groupoid ExalA(B′, I ′)

is given by four dashed arrows so that this diagram commutes:

I I ′ P

F B′ B

(2.89)

(To check commutativity, it suffices to check that the quadrilaterals I ′IFP and I ′IFB′

and the perimeter commute.) The required collection of dotted arrows is given by

a′ : I ′ → P , 0 : I ′ → B′, ιE ◦ pE : F → P , and b′ : F → B′.

To show that the resulting arrows in ExalA(B′, I ′) define a natural transformation,

suppose we are given an arrow

0 I E1 B 0

E2

a1

a2
f

b1

b2

in ExalA(B, I). Let fP : P1 → P2 and fF : F1 → F2 be the maps induced by f , where

Pi and Fi are defined as in (2.88). Likewise let Qi and Gi be the images of Ei in

ExalA(B′, I ′) under the maps in (2.87). We must compare two maps from Q1 to G2

in ExalA(B′, I ′). Such maps are given by diagrams of the form (2.89) with F replaced

by F1 and P replaced by P2. In the situation at hand, one of the maps from Q1 to G2

is given by the diagram

I ′ P2

F1 B′

fP ◦a′1

0

fP◦ιE1
◦pE1

b′1
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and the other is given by the diagram

I ′ P2

F1 B′

a′2

0

ιE2
◦pE2

◦fF

b′2◦fF

These are easily seen to consist of the same morphisms.

This completes the proof that (2.84) and (2.83) commute. Of the remaining pairs,

most of the checks are trivial (in particular, the analog of (2.87) is strictly commutative).

Only the pairs ((2.83), (2.86)) and ((2.84), (2.86)) are nontrivial. For these, one uses

that a−1 is exact and hence preserves finite limits and colimits.

Functoriality of Illusie’s theorem

For each map of Exal stacks defined in the previous section, we see what it looks like

as a map of Ext0/−1 stacks via the isomorphism β defined in (2.81).

Lemma 2.5.2. The isomorphism (2.81) is functorial as follows.

1. Let A → B be a map of sheaves of rings on C. If I → J is a morphism of

B-modules, there is a commuting diagram

Exal
A

(B, I) Ext
0/−1
B (LB/A, I[1])

Exal
A

(B, J) Ext
0/−1
B (LB/A, J [1])

β

(2.83)

β

where the right vertical arrow is induced by functoriality of RHom.

2. If there is a commuting square of rings

A′ A

B′ B
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then there is a commuting square

Exal
A

(B, I) Ext
0/−1
B (LB/A, I[1])

Exal
A′

(B′, IB′) Ext
0/−1
B′ (LB′/A′ , IB′ [1]) Ext

0/−1
B (LB′/A′ ⊗B, I[1])

β

β

(2.90)

where the left vertical arrow is (2.85) followed by (2.84) and the right vertical

arrow is induced by the canonical map LB′/A′ ⊗ B → LB/A. The equality is

induced by (2.15).

3. Let C → C ′ be a continuous morphism of ringed sites inducing a flat morphism
of topoi (a−1, a∗). Let A and B = OC be sheaves of rings on C. Then if I is a
sheaf of B-modules, there is a commuting diagram

Exal
A

(B, I) Ext
0/−1
B (LB/A, I[1])

a∗Exal
a−1A

(a−1B, a−1I) a∗Ext
0/−1
a−1B(a−1LB/A, a−1I[1]) a∗Ext

0/−1
La∗B(La∗LB/A, La∗I[1])

β

(2.86) (2.16)

a∗β F

(2.91)

where the map F is given by (2.16) for the adjoint functors (−⊗L
a−1Ba

∗B, (−)a−1B).

Proof. We summarize the definition of β; see [Ols06, Thm A.7] for more details. Let
P • be the simplicial A-algebra given by the standard free resolution of the A-algebra
B [Stacks, Tag 08SR]. The morphism β is defined to be a composition

Exal
A

(B, I)
β1−→ Exal

A
(P •, I)

β2−→ Ext(ΩP•/A, I)
β3−→ Ext(ΩP•/A ⊗B, I)

β4−→ Ext0/−1(LB/A, I[1])

Here, Ext(Ω•, I) denotes the Picard stack on C whose fiber on U ∈ C is the category

of simplicial OC-module extensions of Ω• by I (viewed as a simplicial module); see

[Ols06, Sec A.1]. The map β1 is given by the map (2.84) applied to the augmentation

P • → B, the morphism β2 is given by taking differentials, β3 is given by tensoring

with B, and β4 is the functorial isomorphism in [Ols06, Prop A.3].
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Proof of (1). The desired functoriality follows from a commuting diagram

Exal
A

(B, I) Exal
A

(P •, I) Ext(ΩP•/A, I) Ext(ΩP•/A ⊗B, I) Ext0/−1(LB/A, I[1])

Exal
A

(B, J) Exal
A

(P •, J) Ext(ΩP•/A, J) Ext(ΩP•/A ⊗B, J) Ext0/−1(LB/A, J [1])

β1

(2.83)

β2

(2.83)

β3 β4

β1 β2 β3 β4

(2.92)

The square with β1 commutes by Lemma 2.5.1. The square with β2 commutes because

differentials commute with colimits [Stacks, Tag 031G]. The square with β3 commutes

because tensor product is a left adjoint and so commutes with colimits, and the square

with β4 commutes by the naturality in [Ols06, Prop A.3].

Proof of (2). The desired functoriality follows from two commuting diagrams. First
we have

Exal
A

(B, I) Exal
A

(P •, I) Ext(ΩP•/A, I) Ext(ΩP•/A ⊗B, I)

Exal
A′

(B′, I) Exal
A′

((P •)′, I) Ext(Ω(P•)′/A′ , I) Ext(Ω(P•)′/A′ ⊗B′, I)

β1 β2 β3

β1 β2 β3

(2.93)

which we claim commutes. Here (P •)′ is the simplicial A′-algebra that is the standard

resolution of B′. The two left vertical arrows are given by (2.85) and (2.84); the next

two vertical arrows are given by the analog of (2.84) for the Ext stacks; and the final

vertical arrow is the canonical map of cotangent complexes. The first square commutes

by Lemma 2.5.1. The square with β2 also commutes essentially by definition of the

maps.

We check that the square with β3 commutes. To clarify the situation, write Y =

ΩP •/A and Y ′ = Ω(P ′)•/A′ , so we have a map Y ′ → Y . Also drop the bullets on P • and

(P •)′ We must show this square commutes:

Ext(Y, I) Ext(Y ⊗P B, I)

Ext(Y ′, I) Ext(Y ′ ⊗P ′ B′, I)

⊗PB

(2.84) (2.84)

⊗P ′B′

Let 0→ I → X → Y → 0 be an object of Ext(Y, I) over some U ∈ C that is in the

image of β2, so both X and Y are P -modules. Unwinding the definitions, we see that
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we need a morphism

(X ×Y Y ′)⊗P ′ B′ → (X ⊗P B)×Y⊗PB (Y ′ ⊗P ′ B′) (2.94)

of B′-modules compatible with maps from I and with maps to Y ′ ⊗P ′ B′ on both the

source and target. To give (2.94), it suffices to give a morphism

X ×Y Y ′ → (X ⊗P B)×Y⊗PB (Y ′ ⊗P ′ B′)

of P ′-modules, but this is evident. It is straightforward to check that the resulting

map (2.94) equalizes maps from I and maps to Y ′ ⊗P ′ B′.
The second diagram comprising (2.90) is as follows.

Ext
B

(ΩP•/A ⊗B, I) Ext
0/−1
B (LB/A, I[1])

Ext
B′

((ΩP•/A ⊗B)B′ , IB′) Ext
0/−1
B′ ((LB/A)B′ , IB′ [1]) Ext

0/−1
B ((LB/A)B′ ⊗B′ B, I[1])

Ext
B′

(Ω(P•)′/A′ ⊗B′, IB′) Ext
0/−1
B′ (LB′/A′ , IB′ [1]) Ext

0/−1
B (LB′/A′ ⊗B′ B, I[1])

β4

β4 (2.15)

β4 (2.15)

The composition of the left vertical arrows is equal to the right vertical arrow in

(2.93). The diagonal arrow is induced by the counit of tensor-hom adjunction, and

the equalities labeled (2.15) are just the defining property of internal hom. The two

bottom right vertical arrows are induced by the canonical map LB/A → LB′/A′ .
The bottom right square commutes by functoriality of (2.15). The bottom left

square commutes by definition of the map LB/A → LB′/A′ and functoriality of β4. The

last map in the triangle is defined so that it is commutative (note the analogy with

(2.16)). Finally the top left square commutes by a direct local computation, using the

definition of β4 and the fact that

(RHomB(LB/A, I))B′ → RHomB′((LB/A)B′ , IB′)

is locally given by applying the functor (−)B′ to the complexes LB/A and I.

Proof of (3). The map F is chτ≤0Ra∗ applied to the morphism

RHoma−1B(a−1LB/A, a−1I)→
(
RHoma∗B(a∗LB/A, a∗I)

)
a−1B
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of Lemma 2.2.4.
Let A′ = a−1A, B′ = a−1B, and P = P •, and let P ′ denote the standard resolution

of B′ as an A′-algebra. The desired commuting square comes from two commuting
diagrams. First, we have

Exal
A

(B, I) Exal
A

(P, I) Ext(ΩP/A, I) Ext(ΩP/A ⊗B, I)

a∗Exal
A′

(B′, a−1I) a∗Exal
A′

(P ′, a−1I) a∗Ext(ΩP ′/A′ , a
−1I) a∗Ext(ΩP ′/A′ ⊗B′, a−1I)

β1

a−1

β2

a−1

β3

a−1

β1 β2 β3

The commutativity of these squares follows, from left to right, from [Stacks, Tag 08SV]

and Lemma 2.5.1, from [Stacks, Tag 08TQ], and from [Stacks, Tag 07A4]. Second, we

have

Ext(ΩP/A ⊗B, I) Ext
0/−1
B (LB/A, I[1])

a∗Ext(ΩP ′/A′ ⊗B′, a−1I) a∗Ext
0/−1
a−1B

(a−1LB/A, a−1I[1]) a∗Ext
0/−1
a∗B (a∗LB/A, a∗I[1])

β4

a−1 a−1
(2.16)

β4 F

In the triangle, all maps are induced by (2.2.4), and commutativity of this triangle is

just the functoriality of that morphism in the adjoint functors (Lemma 2.2.4). The

square commutes by direct local computation, using the definition of β4 and the fact

that

RHomOC
(LB/A, I)→ Ra∗RHoma−1B(a−1LB/A, a−1I)

is locally given by applying the functor a−1 to the complexes LB/A and I (this local

description follows from the proof of Lemma 2.2.4).

2.5.2 Description of (2.53)

Let f : X → Y be a representable morphism of algebraic stacks. Let Y → Y be a
smooth cover by a scheme with $Y : Y • → Y the associated simplicial algebraic space
and $X : X• → X its pullback to X . We will sometimes omit the subscripts on the
augmentation maps π. In this section, the functors (R$∗, $

∗) will generally relate Xet

and X•et, as opposed to the lisse-étale sites (but recall that these are equivalent as in
(2.8)). Choose I ∈ QCoh(Xet). The isomorphism (2.53) is defined in [Ols06, Sec 2.26]
to be the following composition of morphisms of Picard stacks on Xet:

ExalY(X , I)
α−→ $∗Exal

f−1OY •
(OX• , $

∗I)
$∗β−−−→ $∗Ext0/−1(LX•/Y • , $∗I[1])

γ←− Ext0/−1(LX/Y , I[1]).
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Here we understand LX/Y to be an object in Xet via restriction. The objects and

maps in this composition are defined as follows.

The only stack we have not yet defined is the Picard stack Exal
f−1OY •

(OX• , $
∗I) on

X•et. Recall that an object of X•et is given by an étale map U → Xn with U a scheme.

To such an object, this stack associates the groupoid Exalf−1(OU , $
∗I|U).

We describe α on a fiber over V , where V → X is an étale map from a scheme. Let

V • = V ×X X•. Given an extension V ′ of V by I|V , pullback defines an extension

V ′• of V • by $∗V I. The map α sends the extension V → V ′ to the exact sequence of

f−1OY •-modules

0→ $∗V I → OV ′• → OV • → 0.

By definition (2.34), this is an element of π∗Exal
f−1OY •

(OX• , $
∗I)(V ). The map α is

an isomorphism by [Ols06, Sec 2.26].

The map β : Exal
f−1OY •

(OX• , $
∗I)→ Ext0/−1(LX•/Y • , I[1]) was defined in (2.81).

The arrow γ is induced by (2.16) via Lemma 2.2.10. Note that it is an isomorphism

since the restriction map $∗ is fully faithful (in fact, an equivalence of categories as in

Section 2.2.1).

Theorem 2.5.3 ([Ols06, (2.26.3)]). The morphism (2.53) is an isomorphism.

We note that the proof of Lemma 2.4.1 shows that (2.53) is independent of the

choice of cover Y → Y .

2.5.3 Proofs of Lemmas 2.4.1 and 2.4.2

We are finally ready to prove the functoriality of (2.53). We first describe an amalga-

mation of the three diagrams in Lemma 2.5.2 that will be used in both functoriality

lemmas.

Let C → C ′ be a continuous morphism of ringed sites inducing a flat morphism

of topoi (a−1, a∗). Let A and B = OC be sheaves of rings on C, let I be a sheaf of

B-modules, and let A′ be a sheaf of rings on C ′ such that there is a commuting diagram

a−1A A′

a−1B a∗B

Then we obtain the commuting diagram in Figure 2.1. In that figure, the left square
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is Lemma 2.5.2 part 3 and the right square is Lemma 2.5.2 part 2. The middle square

is Lemma 2.5.2 part 1, using the unit a−1I → (a∗I)a−1B of the tensor-hom adjunction.

The triangle commutes by definition of the map F .

Proof of Lemma 2.4.1. Construct a diagram

U V

Z • Y

Z W Y

ρ

r

$

where U, V, Z, and Y are algebraic spaces with Y → Y and V → • smooth and
surjective and all squares are fibered. Let p denote the map Z → Y and let $′ = $ ◦ρ.
Then commutativity of (2.54) is equivalent to commutativity of the following diagram.

Ext0/−1(LZ/W , I[1]) Ext0/−1(LZ/Y , I[1])

$′∗Ext0/−1(LU•/V • , $′∗I[1]) $′∗Ext0/−1(ρ∗LZ•/Y • , $′∗I[1]) $∗Ext0/−1(LZ•/Y • , $∗I[1])

$′∗Exal
r−1OV •

(OU• , $′∗I) $′∗Exal
ρ−1p−1OY •

(ρ−1OZ• , $′∗I) $∗Exal
p−1OY •

(OZ• , $∗I)

ExalW(Z, I) ExalY(Z, I)

γ∼

A

γ∼

∼

$′∗β $∗β

B

α α

(2.95)

The trapezoid commutes by definition of the canonical map LZ/Y → LZ/W . The

commutativity of the middle square is the diagram in Figure 2.1, reflected left-to-right,

with a = ρ, A = p−1OY • , A
′ = r−1OV • , and B = OZ• . In particular, in the triangle,

all of the maps are induced by (2.16), and the triangle commutes by Lemma 2.2.4.

Hence the arrow

$′∗Ext0/−1(ρ∗LZ•/Y • , $′∗I[1])← $∗Ext0/−1(LZ•/Y • , $∗I[1])

is an equivalence because

ρ∗ : QCoh(Z•et)→ QCoh(U•et)
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is fully faithful (since $∗U and $∗V are).

It remains to check that the bottom square commutes. We do this by direct

computation. It suffices to work with global sections. For this, let i : Z ↪→ Z ′ be an

element of ExalW(Z, I). We have the following commuting diagram, where all squares

are fibered:
U U ′ V

Z Z ′ • Y

Z Z ′ W Y

i

ρ

i

$

i

(2.96)

The map α sends i : Z ↪→ Z ′ to the extension

0→ $′∗I
m−→ i−1OU ′• → OU• → 0

of r−1OV •-modules, and the maps (2.85) and (2.84) send this to the extension

0→ $′∗I
(m,0)−−−→ i−1OU ′• ×OU• ρ

−1OZ• → OU• → 0 (2.97)

of ρ−1p−1OY •-modules.

On the other hand, the map B sends i : Z ↪→ Z ′ to the same extension, now as an

element of ExalY(Z, I). The image of this under ρ−1 ◦ α is

0→ ρ−1$∗I → ρ−1i−1OZ′•
n−→ ρ−1OZ• → 0

an extension of ρ−1p−1OY •-modules. Finally the map (2.83) sends this extension to

0→ $′∗I → $′∗I ⊕ρ−1$∗I ρ
−1i−1OZ′•

(0,n)−−→ ρ−1OZ• → 0 (2.98)

also an extension of ρ−1p−1OY •-modules.

To show that the bottom square commutes, we must find a morphism from (2.98) to

(2.97) in the groupoid Exalρ−1p−1OY •
(ρ−1OZ• , $

′∗I) and show that it is functorial. Such

a morphism is given by a collection of dotted arrows making the following diagram
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commute.
ρ−1$∗I $′∗I i−1OU ′•

ρ−1i−1OZ′• ρ−1OZ• OU•

(2.99)

We choose arrows

m : $′∗I → i−1OU ′• n : ρ−1i−1OZ′• → ρ−1OZ•

0 : $′∗I → ρ−1OZ• ρ′] : ρ−1i−1OZ′• → i−1OU ′• .

Commutativity of the resulting diagram follows from commutatitivity of (2.96).

We claim that this morphism is natural for arrows coming from ExalW(Z, I).

If we are given an arrow f from i1 : Z → Z1 to i2 : Z → Z2 inducing maps

fU : i11OU•1
→ i−1

2 OU•2
and fZ : ρ−1i−1

1 OZ•1
→ ρ−1i−1

1 OZ•2
, then this naturality is

equivalent to the fact that the maps in the criss-cross diagrams

$′∗I i−1OU ′•

ρ−1i−1OZ′• ρ−1OZ•

m2

0

ρ]2◦fZ

n2◦fZ

and

$′∗I i−1OU ′•

ρ−1i−1OZ′• ρ−1OZ•

fU◦m1

0

fU◦ρ]1

n1

coincide.

Proof of Lemma 2.3.8. Construct a diagram

Z X ×X Z X

W Y ×Y W Y

p q

where the squares are fibered and Y → Y is a smooth cover by a scheme, X = Y ×Y X ,

and W → Y ×Y W is a smooth cover by a scheme. Also use a to denote the map

Z → X. Then commutativity of (2.57) is equivalent to commutativity of the diagram
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in Figure 2.2.

In Figure 2.2, the top left square commutes by functoriality of (2.16) in the adjoint

functors. The top right square commutes by definition of the canonical map of

cotangent complexes. The middle rectangle is the diagram in Figure 2.1 with a the

map Z → X, A = q−1OY • , B = OX• , and A′ = p−1OW • . We have suppressed various

squares commuting the maps a and $.

It remains to check that the bottom square of the diagram in Figure 2.2 commutes.

This we do by direct computation, using the diagram in Figure 2.1 to factor the map

$∗Exal
q−1OY •

(OX• , $
∗I)→ a∗$∗Exal

p−1OW•
(OZ• , $

∗a∗I).

It suffices to work with global sections. Let i : X ↪→ X ′ be an element of ExalY(X , I).

Then we have a commuting diagram

Z Z ′ W

X X ′ Y ′

Z Z ′ W

X X ′ Y

where the front, bottom, and back squares are fibered (six squares in all). The map

a−1 ◦ α sends i : X ↪→ X ′ to the extension

0→ a−1$∗I → a−1i−1OX′• → a−1OX• → 0

of a−1q−1OY •-algebras, and the map (2.83) sends this extension to the extension

0→ a∗$∗I → a∗$∗I ⊕z−1$∗I a
−1i−1OX• → a−1OX• → 0. (2.100)

On the other hand, the map E sends i : X ↪→ X ′ to Z ↪→ Z ′, which under α

corresponds to the extension

0→ $∗a∗I → i−1OZ′• → OZ• → 0

of p−1OW •-algebras. After applying $∗a∗ = a∗$∗ and the morphisms (2.85) and
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(2.84), this becomes the extension

0→ a∗$∗ → i−1OZ′• ×OZ• a
−1OX• → a−1OX• → 0 (2.101)

of a−1q−1OY •-algebras. As in the proof of Lemma 2.4.1, one can write down a functorial

(necessarily iso)morphism between (2.100) and (2.101).
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Chapter 3

Quasimaps From P1 to GIT

Quotients

3.1 Introduction

Let Z be an affine l.c.i. variety and let G be a connected complex reductive algebraic

group acting on Z with maximal torus T . A character θ of G defines a linearization of

the trivial bundle on Z. From this data, we get two GIT quotients with a rational

map between them: Z//T 99K Z//G. The abelian-nonabelian correspondence is a

conjectured relationship [CKS08, Conj 3.7.1] between the genus-zero Gromov-Witten

invariants of Z//G and those of Z//T . This paper proves a correspondence of their

quasimap I-functions. In certain cases, our I-function correspondence implies [CKS08,

Conj 3.7.1].

The abelian-nonabelian correspondence was observed for Grassmannians in the

physics paper of Hori-Vafa [HV], and they conjectured that it should extend to

complete intersections in flag varieties. In mathematics, the cohomology of X//G

and X//T was studied by Ellingsrud-Stromme [ES89] and by Martin [Mar]: classes in

H∗(Z//G,Q) can be “lifted” to classes in H∗(Z//T,Q), not necessarily uniquely, and

the Poincaré pairings are related. The full correspondence of the genus-zero Gromov-

Witten invariants is conjectured in [CKS08], and when Z//G is Fano with a sufficiently

nice torus action, this correspondence is shown to be equivalent to a correspondence of

small J-functions (generating series that parameterize invariants with one insertion).

After applying the mirror result of [CK14b], the full abelian-nonabelian correspondence

for these “nice” targets is equivalent to a correspondence of small I-functions.
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3.1.1 Statement of the main result

We adopt the setup in [CK14b, Section 2.1], which in turn uses the GIT setup of

[Kin94, Section 2]. Let Z, G, T , and θ be as stated. Then we have sets Zs(G) and

Zss(G) of θ-stable and semistable points in Z. We assume that Zs(G) = Zss(G) is not

empty, that G acts on Zs(G) freely, and that Z//θG := Zs(G)/G is projective. We

also assume that each of these statements holds with T in place of G. Hence V //θG

and V //θT are smooth varieties.4 We fix the character θ for all of this paper, and we

will generally write Z//G := Z//θG and Z//T := Z//θT .

Recall that there is a G-equivariant embedding Z → X into a G-representation

X so that Z; we assume that this embedding can be chosen so that X satisfies all

assumptions listed above (Xs(G) = Xss(G) is not empty, G acts on Xs(G) freely,

and X//θG is projective; and each of these holds with T in place of G) and moreover

Zs(G) = Xs(G) ∩ Z. These assumptions hold, for example, if Z//G is a complete

intersection in X//G, defined say by the zero locus of a homogeneous vector bundle.

The small quasimap I-function of Z//G, defined in [CKM14], has the form

IZ//G(z) = 1 +
∑
β 6=0

qβI
Z//G
β (z) (3.1)

where β is in Hom(PicG(Z),Z) with PicG(Z) the group of G-equivariant line bundles

on X, qβ is a formal variable, and the coefficients I
Z//G
β (z) are formal series in z and

z−1 with coefficients in H∗(X//G).

To state the main theorem, we make two observations. First, the rational map

Z//T 99K Z//G may be stated more precisely via the diagram

Zs(G)/T Zs(T )/T

Zs(G)/G

j

g (3.2)

Second, there is an inclusion

χ(G)→ PicG(Z) (3.3)

4By [FJR18, Prop 3.1.2], the variety V //G is equal to P(V ⊕ C)//G for some choice of line bundle
and linearization on P(V ⊕ C) (and similarly for the V //T ).
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sending the character ξ to

Lξ := Z × Cξ (3.4)

where Cξ is the representation with character ξ.

Theorem 3.1.1. The I-functions of Z//G and Z//T satisfy

g∗I
Z//G
β (z) = j∗

∑
β̃→β

(∏
α

∏β̃(α)
k=−∞(c1(Lα) + kz)∏0
k=−∞(c1(Lα) + kz)

)
I
Z//T

β̃
(z)

 , (3.5)

where the sum is over all β̃ mapping to β under the natural map Hom(PicT (Z),Z)→
Hom(PicG(Z),Z) and the product is over all roots α of G.

In Theorem 3.1.1, the quotient of infinite products is to be interpreted as follows.

When β̃(α) is nonnegative, it is equal to the product

β̃(α)∏
k=1

(c1(Lα) + kz)

and when β̃(α) is negative, it is defined to be 0∏
k=β̃(α)+1

(c1(Lα) + kz)

−1

.

Since g∗ is injective, the equality (3.5) completely determines IZ//G. When Z is a

vector space, combining (3.5) with Givental’s formula for a twisted toric I-function

[Giv98] yields a closed formula for the I-function of Z//G.

Previous to this work, Theorem 3.1.1 was known for Z//G equal to a flag variety or

the Hilbert scheme of n points in C2 [BCK05] [BCK08] [CKP12]. Since the posting

of this paper, a proof of this result for quiver flag varieties has also appeared [Kal].

Finally, a result analogous to Theorem 3.1.1 was proved in the symplectic category by

Gonzalez-Woodward using the language of stable gauged maps [GW]. It is not clear

how the theories of gauged maps and quasimaps are related.

We remark that Theorem 3.1.1 completes a provisional result in [IIM17].

84



3.1.2 Supplementary results

In addition to Theorem 3.1.1, this chapter contains several ancilliary results, including

examples and applications.

First, the geometric nature of our proof makes it useful in other contexts. That is,

the bulk of the proof of Theorem 3.1.1 is a careful analysis of certain moduli spaces of

maps from P1 to [Z/G] and [Z/T ]; the geometry of these moduli spaces is summarized

in Proposition 3.3.1. This geometry is used in [Wen] to compute quasimap I-functions

in K-theory.

Next, we prove the standard extension of Theorem 3.1.1 to the equivariant and

twisted theories (Corollaries (3.5.1) and (3.5.2)). Essentially the same proof works in

these settings, with only minor modifications. We also use the theory developed in

[CK16] to write down a big I-function for Z//θG when Z is a vector space (Corollary

3.5.4). This recovers, for example, an explicit big I-function for the Grassmannian

Gr(k, n).

Finally we explain the extent to which Theorem 3.1.1 implies abelianization for

J-functions. In fact, with the reconstruction result in [CKS08] and the mirror result in

[CK14b], the equivariant version of Theorem 3.1.1 implies the full abelian-nonabelian

correspondence for projective Fano quotients Z//G with “nice” torus actions (Corollary

3.5.6). We use this result to explicitly compute an equivariant twisted small J-function

for a Grassmann bundles on a Grassmannian variety (Theorem 3.5.7).

3.1.3 Conventions and notation

We work over C and all group actions are left actions. A variety is an irreducible

separated finite type scheme over C. Fix an affine variety X and another variety G

that is a complex reductive algebraic group over C and fix T ⊂ G a maximal torus.

Let NG(T ) be the normalizer of T in G, and let W = NG(T )/T denote the Weyl group.

The characters of G are χ(G).

3.1.4 Organization of the chapter

Section 3.2 is mostly an informal discussion of ε-stable quasimaps to GIT quotients.

Its purpose is to give some examples of the theory originally introduced by Ciocane-

Fontanine, Kim, and Maulik in a series of papers: [CKM14], [CK14b], and [CK10]. The

historical and mathematical context of the theory can be found in the original papers
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and in the survey articles [CK14a] and [Kim12]. However, in Section 3.2.3 we introduce

some notation and conventions unique to our treatment of quasimap graph spaces,

and Section 3.2.4 introduces some preliminary abelian-nonabelian correspondences.

In Section 3.3 we prove Proposition 3.3.1 about the geometry of the quasimap fixed

loci. In Section 3.4 we prove Theorem 3.1.1. Finally in Section 3.5 we explain how

the proof of Theorem 3.1.1 extends to the equivariant and twisted theories. We also

explain how (and when) Theorem 3.1.1 implies [CKS08, Conj 3.7.1] and we explicitly

write down an equivariant twisted small J-function for a Grassmann bundle on a

Grassmannian variety. Section 3.6 contains a few general lemmas.

This chapter is a combination of the survey [Weba] and the paper [Webb].

3.2 Motivation and background

3.2.1 Motivation for quasimap theory

Gromov-Witten theory begins with the study of maps from smooth genus-g curves

with n marks to a projective target, for example to Pn. The set of such maps having

a fixed degree d forms a moduli space, denoted (in this example) Mg,n(Pn, d). The

idea behind Gromov-Witten invariants is to define numerical invariants of Pn that are

integrals of classes on this moduli space. Unfortunately, Mg,n(Pn, d) is not compact;

in order to define Gromov-Witten invariants of Pn, we must replace Mg,n(Pn, d)

with a compactification. The most common compactification is contained in the

moduli of prestable maps to Pn (the space denoted Sec(C× Pn/C) in the notation of

Section 2.1.1). This compactification is the moduli space of Kontsevich-stable maps

Mg,n(Pn, d). These stable map moduli spaces and their virtual cycles are the central

objects of Gromov-Witten theory.

The Kontsevich moduli space compactifiesMg,n(Pn, d) by allowing the source curve

to be nodal, but there are other ways to compactify. One may see hints of these other

ways by looking at possible limits of families of maps in Mg,n(Pn, d). Let C be equal

to P1 with homogeneous coordinates [x : y] and markings at [1 : 1] and [2 : 1]. Define

φ : C∗ × P1 → P2 φa(x, y) = [ax2 : xy : y2] for a ∈ C∗. (3.6)

This is a family in M0,2(P2, 2) with base C∗. To extend it over the origin to a flat
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family over C, we need to define a map φ0. The natural choice seems to be

φ0(s, t) = [0 : xy : y2], (3.7)

but this has a basepoint (is undefined) at y = 0. To recover the limit in M0,2(P3, 2),

we resolve the rational map φ : A1 × P1 99K P2 (given by (3.6) and (3.7)) by blowing

up this basepoint, adding an extra rational curve in the fiber over 0. This produces a

morphism φ̃ from the blowup to P2, and φ̃0 has a source curve that is two copies of

P1, glued at a node. The limiting map has degree 1 on each copy. This is depicted in

Figure 3.1.

a = 0

φ̃

Figure 3.1: A family of stable maps extending φ

The morphism φ̃ maps from Bla=y=0A1 × P1 on the left to P2 on the right, depicted here in
the chart of P2 where the middle coordinate is nonzero. The varying shades of gray show
the fibers of this family of stable maps. The fiber over a = 0 is a map from a nodal curve.

However, what happens if we compactify M0,2(P2, 2) by allowing basepoints? That

is, what if we take φ0(x, y) = [0 : xy : y2] as a rational map from P1 to P2 to be the

limit of (3.6)? Indeed, this rational map is a stable quasimap.

a = 0

φ

Figure 3.2: A family of stable quasimaps extending φ

The rational map φ takes A1 × P1 on the left to P2 on the right. The varying shades of gray
show the fibers of this family of quasimaps. In particular, the fiber over a = 0 is a rational
map of degree 1 with a basepoint of length 1 (see Definition 3.2.7).

With the right definitions, stable quasimaps form a moduli space that compactifies

Mg,n(Pn, d) and is just as well-behaved as the Kontsevich moduli spaces. This
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compactification is a substack not of prestable maps to Pn, but of prestable maps to

the stack quotient [Cn+1/C∗] (the space denoted Sec(C× [Cn+1/C∗]/C) in the notation

of Section 2.1.1). In fact, stability for quasimaps depends on a postive rational

parameter ε, giving us a whole collection of moduli spaces, each a substack of the

moduli of prestable maps to [Cn+1/C∗]. This collection has the following advantages:

1. When ε > 2, the quasimap moduli space is equal to the familiar Kontsevich

moduli space, and its invariants are Gromov-Witten invariants.

2. When ε is sufficiently small, certain quasimap invariants (the genus-0 invariants)

are easier to compute. A generating function for these explicit invariants is called

the quasimap I-function.

3. One can “cross the wall,” relating quasimap invariants for differing values of ε,

thereby (roughly) expressing genus-0 Gromov-Witten invariants in terms of the

quasimap I-function.

These statements are a heuristic only; for careful statements and their proofs, see [CK;

CK14b; CK17]. For certain targets, invariants with small ε and g = 0 were first studied

by Givental [Giv96], while the strategy in (3) above for computing Gromov-Witten

invariants was first employed by Bertram [Ber00].

3.2.2 Maps to quotients in algebraic geometry

When a reductive algebraic group G acts on an affine variety Z, we’d like to take

the quotient, producing an algebraic object Z/G. Unfortunately, it is somewhat rare

for there to be a scheme Z/G with all the desired properties of a quotient (including

that Z/G is a good geometric quotient and a categorical quotient). Therefore, defining

a quotient either requires us to modify the original data Z and G, or to leave the

category of schemes. Two types of algebraic quotients that arise in quasimap theory

are geometric invariant theory (GIT) quotients and stack quotients.

GIT quotients

We briefly summarize the key definitions of GIT for affine Z when G acts with no

kernel, as found in [Kin94]. Fix a character θ of G. Given a nonnegative integer n,

a function f ∈ Γ(Z,OZ) is a relative invariant of weight θn if for every x ∈ Z and
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g ∈ G we have f(g · x) = θ(g)nf(x). We use Γ(Z,OZ)G,θ
n

to denote relative invariants

of weight θn.

Definition 3.2.1. A point x ∈ Z is θ-semistable if there exists an integer n ≥ 1 and

a relative invariant f of weight θn such that f(x) 6= 0. If moreover the dimension of

the orbit G · x is equal to the dimension of G and the G-action on {y ∈ Z | f(y) 6= 0}
is closed, then x is θ-stable.

The upshot of these definitions is that we get an open locus Zss
θ (G) ⊂ Z of semistable

points with respect to θ, and a smaller locus Zs
θ(G) ⊂ Zss

θ (G) of stable points. We

define the locus of unstable points to be Zus
θ (G) = Z \ Zss

θ (G). The sets Zs
θ(G) and

Zss
θ (G) can be computed with [Kin94, Prop 2.5]. We include the group G in our

notation here because later we will vary it. The GIT quotient is defined to be

Z//θG = Proj

(⊕
n>0

Γ(Z,OZ)G,θ
n

)
(3.8)

where the Proj is taken relative to the affine quotient Spec(Γ(Z,OZ)G). In particular,

when Γ(Z,OZ)G is C, then the GIT quotient is projective. The definition (3.8)

may be expressed informally as Z//θG = Zss(G)/G. In this thesis we will assume

Zssθ(G) = Zs
θ(G), so we will often write

Z//θG = Zs(G)/G.

Principal bundles and associated fiber bundles

Let G be a reductive algebraic group. A principal G-bundle on a scheme C is a scheme

π : P → C with π faithfully flat and locally finitely presented, together with an action

µ : G×P →P leaving π invariant such that the map

G×P
(µ,pr2)−−−−→P ×C P

is an isomorphism. With our assumptions, a principal G-bundle is locally trivial in

the étale topology (see e.g. [Ols16, Rmk 4.5.7]).

We close this section with an important example in which a desirable quotient does

exist as a scheme, namely the associated fiber bundle to a principal G-bundle. Let

P → S be a principal G-bundle with a left G-action and let Z be an affine G-variety.
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Then P × Z carries a natural G-action defined on closed points by

g · (p, x) = (gp, gx).

for (p, x) ∈P × Z. We define the associated fiber bundle to be the quotient

P ×G Z := (P × Z)/G

where the right-hand side is defined to be the algebraic space that satisfies the universal

property of quotients. In fact, the right hand side exists as a scheme when S has finite

type, and it is a good geometric quotient (this uses affineness of Z; see for example

the discussion in [Bri96, Sec 3]). It has a natural map to P/G = S, with closed fibers

isomorphic to Z. In particular, when Z is a vector space and G acts linearly on Z,

the associated fiber bundle P ×G Z is the total space of a vector bundle on S.

In fact, there is a bijection between principal GLr-bundles and rank-r vector bundles

on S given by sending P to P×GCr, where Cr is a GLr-module via left multiplication.

We call P ×G Cr the vector bundle associated to P , and P the underlying principal

bundle of P ×G Cr.

Stack quotients

Whereas the GIT quotient “forgets” the unstable locus Zus, this information is retained

in the stack quotient. The objects of the stack quotient [Z/G] over a scheme S are

diagrams

P Z

S

where P is a principal G-bundle (locally trivial in the étale topology) and P → Z is

a G-equivariant map. Morphisms in this category are given by fiber diagrams.

The stack quotient [Z/G] and the GIT quotient Z//θG are closely related. In a

moment we will define quasimaps to Z//G to be certain “stable” maps to the stack

quotient [Z/G]. Motivation for this definition comes from the previous section and

the next example.
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Example 3.2.2 (GIT vs stack quotient). Let C∗ act on Cn+1 by

λ · (x1, . . . , xn) = (λx1, . . . , λxn). (3.9)

Then if θ : C∗ → C∗ is the identity, we have (Cn+1)ss = Cn+1\{0} and Cn+1//θC∗ = Pn.

A map from a scheme S to Pn is given by a line bundle L on S and n+ 1 sections of

L that do not simultaneously vanish.

On the other hand, the stack [Cn+1/C∗] “remembers the origin.” By definition, a

map from a scheme S to [Cn+1/C∗] is a principal C∗-bundle P on S and an equivariant

map P → Cn+1. As we will see in Example 3.2.4, this equivariant map is equivalent

to a section of P ×C∗ Cn+1 = L⊕n+1 → S where L is the line bundle associated to P .

Comparing this to the data of a map to Cn+1//C∗, we see that the only difference is

that now, the sections of L are allowed to vanish simultaneously—i.e., we allow the

map to “hit the origin.”

Quasimaps to GIT quotients

Loosely speaking, a prestable quasimap to Z//θG is a map to the stack quotient [Z/G]

that recovers a rational map to the GIT quotient.

Definition 3.2.3. A prestable quasimap to Z//G is data (C, x1, . . . , xn,P, ũ) where

• C is a curve with at worst nodal singularities and marked points x1, . . . , xn

• % : P → C is a principal G-bundle with a left G-action

• σ̃ : P → Z is a G-equivariant map with %(σ̃−1(Zus)) a finite set that is disjoint

from nodes and markings.

The genus of the quasimap is the genus of C.

Note that the principal bundle P → C and morphism σ̃ : P → Z define a

morphism from C to the stack quotient [Z/G]. It is helpful to replace σ̃ with an

associated section of P ×G Z → C, which we will typically denote σ. In fact this is

equivalent data, as explained in the example below.

Example 3.2.4. If % : P → C is a principal G-bundle, then equivariant maps

P → Z are in bijection with sections of the fiber bundle P ×G Z → C. We sketch

this bijection.
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From the universal property of fiber products, we have a natural bijection between

Hom(P, Z) and Sec(P,P × Z) where Sec denotes the space of sections. Letting G

act on morphisms by conjugation, this is a G-equivariant bijection, so we have

HomG(P, Z) ∼= SecG(P,P × Z).

On the other hand, we sketch a bijection

Sec(C,P ×G Z) ∼= SecG(P,P × Z)

by interpreting an element of Sec(C,P ×G Z) as a map to the stack quotient [(P ×
Z)/G]. Such a map is by definition a principal G-bundle Q on C and an equivariant

map to P × Z; to say that it is a section means that composition with projection to

C is the identity:

Q P × Z P

C C

Then the induced map Q → P is a morphism of principal bundles, hence an iso-

morphism. After identifying P with Q this way, the map Q →P × Z becomes a

G-equivariant section P →P × Z. The reader is invited to find the inverse to this

correspondence.

With this we can define the degree of a quasimap. The degree of (C,P, σ̃) is the

homomorphism β ∈ Hom(PicG Z),Z) given by

β(L ) = degC(σ∗(P ×G L )) L ∈ PicG(Z). (3.10)

Here, PicG(X) is the group of G-equivariant line bundles on Z.

Example 3.2.5. For two GIT quotients Z//G, we’ll write down all quasimaps from

P1 to Z//G as vectors of homogeneous polynomials.

1. If Z = Cn+1 and G = C∗ with action (3.9), and if θ is the identity character

of C∗, then Z//θG is Pn. A quasimap to Pn of degree d ∈ Hom(Z,Z) = Z with

source curve P1 is

• A principal C∗-bundle P such that degP1(P ×C∗ Cθ) = d. Therefore P is

the underlying principal bundle of OP1(d).
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• A section of P ×C∗ Cn+1. Here the action of C∗ on Cn+1 is given by (3.9),

so that this vector bundle is n + 1 copies of the associated bundle, i.e.,

O(d)⊕n+1.

Therefore, a prestable quasimap to Pn of degree d ∈ Z is given by a vector

( p1(x, y), p2(x, y), . . . , pn+1(x, y) )

of homogeneous polynomials of degree d that are not all zero. In particular (3.7)

is a prestable quasimap of degree 2.

2. If Z = Mk×n is k×n matrices over C and G = GLk acts on Z by left multiplication

and θ is the determinant character, then Z//θG is the Grassmannian Gr(k, n).

A quasimap to Gr(k, n) of degree d ∈ Hom(Z,Z) = Z with source curve P1 is

• A principal GLk-bundle P on P1 such that degP1(P ×GLk Cθ) = d. If

E is the rank-k vector bundle associated to P, then P ×GLk Cθ is the

determinant bundle of E. From Grothendieck’s classification of principal

bundles [Gro57], we have E = ⊕ki=1O(di) for some di with
∑k

i=1 di = d.

• A section of P ×GLk Mk×n, i.e., of E⊕n.

So a prestable quasimap to Gr(k, n) of degree d is given by a matrix of polynomials

[pij(x, y)]1≤i≤k, 1≤j≤n (3.11)

where pij(x, y) is homogeneous of degree di. Because Mus
k×n is matrices of low

rank, to define a prestable quasimap the matrix (3.11) must have low rank on a

finite set.

Moduli of quasimaps

As explained in Section 2.4.5, prestable quasimaps are an open subset of the moduli

of sections Sec(C× [Z/G]/C) over Mg,n, where C is the universal curve on Mg,n. We

can further impose a stability condition given by a rational number ε to cut out a

separated, Deligne-Mumford substack of the moduli. We will not use these ε-stable

quasimap spaces in this thesis. However, for the sake of exposition, in this section

we informally discuss the moduli problem encoded by the quasimap spaces, including

ε-stability.
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Let Mg,n(Z//G, β) be the moduli stack of prestable quasimaps to Z//G of genus g,

degree β, and n marks. Objects in this category over a base S are families of prestable

quasimaps on S; i.e., they are diagrams

P V

C

σ̃

where C → S is a flat family of genus-g nodal curves (not necessarily stable) on S,

P → C is a principal G-bundle, σ̃ : P → Z is G-equivariant, and geometric fibers

over S are prestable quasimaps of degree β. An isomorphism between objects in

Mg,n(Z//G, β)(S)—i.e., of quasimap families—is a commuting diagram

P ′ P Z

C ′ C

∼

σ̃′

σ̃

∼

where C ′ ∼−→ C commutes with the maps to S and the square is fibered. The stack

Mg,n(Z//G, β) is not Deligne-Mumford, as some prestable quasimaps have non-finite

automorphism groups. We see the familiar offenders from stable map theory: for

example, a degree-0 map sending P1 to a point in P2 is invariant under the entire

automorphism group of P1. However, there are new examples as well. For instance,

[x2 : 3x2 : x2] defines a prestable quasimap of degree 2 from P1 to P2 which is invariant

under [x : y] 7→ [x : ty].

Example 3.2.6. Let’s find isomorphisms between the quasimaps in Example 3.2.5

that do not come from automorphisms of the source curve—in other words, we compute

those isomorphisms of quasimaps from a fixed P1 to Pn and Gr(k, n). Quasimaps from

a fixed P1 will play an important role in this chapter.

1. Let Z,G, and θ be as in Example 3.2.5 part 1. From that example, a prestable

quasimap from P1 to Pn of degree d is given by a vector of homogeneous degree-d

polynomials (pi(x, y))i=1,...,n+1. Then a quasimap isomorphism is an element

α ∈ Aut(O(d)) = C∗, and it sends (pi(x, y)) to (αpi(x, y)).

2. Let Z,G, and θ be as in Example 3.2.5 part 2. From that example, a prestable
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quasimap from P1 to Gr(k, n) of degree d is n sections of a vector bundle

⊕ki=1O(di) of degree d, which may be denoted by a k × n matrix (pij(x, y)) of

polynomials where pij(x, y) is homogeneous of degree di. Then a quasimap

isomorphism is an element A of Aut(E) = Hom(⊕O(di),⊕O(di))
× which we

may identify with a k × k matrix (a`i(x, y)) of polynomials where a`i(x, y) is

homogeneous of degree d` − di. Such an isomorphism acts on a the quasimap

(pij(x, y)) by matrix multiplication. (Notice that if d1 ≥ d2 ≥ . . . ≥ dk, then

(a`i(x, y)) will be block upper triangular.)

We now define the ε stability conditions that identify certain open subsets of

Mg,n(Z//G, β) containing Mg,n(Z//G, β).

Definition 3.2.7. Let (C, x1, . . . , xn,P, σ̃) be a prestable quasimap to Z//θG and let

L = P ×G Cθ. This quasimap is ε-stable if

1. On every component C ′ of C we have

2gC′ − 2 + nC′ + ε deg(L|C′) > 0

where gC′ is the genus of C ′ and nC′ is the number of marked points and nodes

on C ′, and

2. For every x ∈ C we have

`(x) ≤ 1/ε

where `(x), called the length of x, is the order of contact of σ(C) with P ×G Zus,

and σ is the section of P ×G Z → C determined by σ̃. See [CKM14, Def 7.1.1]

for more on the definition of length. For x ∈ C, the length `(x) is nonzero if

and only if σ(x) is in P ×G Zus, and in this case we say x is a basepoint of the

quasimap.

The first condition (1) is sometimes stated as “ωC(
∑
xi)⊗ Lε is ample.” A family

of prestable quasimaps is ε-stable if every geometric fiber is ε-stable. The moduli space

of ε-stable quasimaps is denoted Mε

g,n(Z//G, β). The next theorem says that moduli

spaces of ε-stable quasimaps are sufficiently well behaved for defining enumerative

theories analogous to Gromov-Witten theory.

Theorem 3.2.8. [CKM14, Thm 7.1.6] The moduli space Mε

g,n(Z//G, β) is a proper

separated Deligne-Mumford stack of finite type.
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As explained in Section 3.2.1, the benefit of these spaces, at least in genus 0, is that

when ε is greater than 2, the space Mε

0,n(Z//G, β) is the familiar space of stable maps

M0,n(Z//G, β). On the other hand, when ε is sufficiently small, the moduli spaces

Mε

0,n(Z//G, β) do not depend on ε; this is called the 0+-stable quasimap moduli space.

The spaceM0+

0,n(Z//G, β) is more “computable” (see Example 3.2.17). Hence the wall-

crossing theorem of [CK14b], which translates between invariants of Mε

0,n(Z//G, β)

for differing values of ε, gives a way to relate the Gromov-Witten invariants of Z//G

to invariants that are more computable.

We close with an example that illustrates how ε-stability cuts out separated substacks

of Mg,n(Z//G, β).

Example 3.2.9. In Section 3.2.1 we described two possible limits of the family (3.6)

of quasimaps to P2. One limit was the stable map φ̃. Because φ̃ has no basepoints, it

satisfies condition (2) in Definition 3.2.7 for each ε. However, on the component with

no marks—call it C ′—we have

2gC′ − 2 + nC′ + ε deg(L|C′) = −1 + ε,

which is possible only for ε > 1. So this map is ε stable for ε > 1.

The second limit was the rational map φ0(x, y) = [0 : xy : y2]. This quasimap

satisfies condition (1) of Definition 3.2.7 for every ε > 0. However, we have `([1 : 0]) = 1,

so that this map is ε-stable only when ε ≤ 1.

Hence, the family (3.6) in Mε

g,n(Z//G, β) has the stable map φ̃ for a limit when

ε > 1, and the rational map φ0 for a limit when ε ≤ 1.

3.2.3 Quasimap graph spaces and the I-function

Here we develop in detail the quasimap moduli spaces needed to define the I-function

of [CKM14].

Graph quasimaps

The quasimap I-function is defined using a variant of the quasimap moduli spaces

called quasimap graph spaces. This adds the data of an isomorphism between P1 and a

component of the source curve. We review the definition of these objects for arbitrary

genus (and no markings), and then we rigorously show how this definition simplifies in
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the case when g = 0. These simpler spaces (with g = n = 0) are the only ones needed

to define the I-function.

Fix for the duration of this paper a copy of the projective line with projective

coordinates [u : v] and denote it P1. That is, the notation P1 in this paper will always

refer to this particular copy of the projective line, with these coordinates. A priori we

have the following definition from [CKM14, Def 7.2.1].

Definition 3.2.10. Let k be an algebraically closed field. A stable genus-g geometric

graph quasimap to Z//θG over k is a tuple (C,P, σ,x) where

• C is a connected genus-g nodal projective curve over k

• P → C is a principal G-bundle

• σ is a section of the associated fiber bundle P ×G Z

• x : C → P1 is an isomorphism on one component of C and contracts the rest of

the curve.

These data must satisfy the following conditions:

1. Let C0 denote the component of C where x is an isomorphism, let C̃ = (C \ C0)

denote the closure of the complement, and let p1, . . . , pn denote the nodes of C.

Then ωC̃(
∑
pi)⊗ (P ×G Cθ)

ε is ample for every rational ε > 0

2. The set of points p ∈ C such that σ(p) 6∈ Zs is finite and disjoint from the pi.

(Note that stability depends on the character θ used to construct the GIT quotient

Z//θG.) We will only work with genus-0 quasimaps; in this situation, Definition 3.2.10

simplifies as follows. If C̃ is nonempty, then it contains some component C1 with only

one node p1. On this component the bundle ωC1(p1)⊗ (P ×GCθ)
ε has negative degree

for ε < 1 and hence is not ample. So we see that Definition 3.2.10 is the following,

which we will use as our definition of a quasimap.

Definition 3.2.11. Let k be an algebraically closed field. A stable genus-0 geometric

graph quasimap to Z//θG over k is a tuple (C,P, σ,x) where

• C is a smooth genus-0 projective curve over k

• P → C is a principal G-bundle
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• σ is a section of the associated fiber bundle P ×G Z

• x : C → P1 is an isomorphism.

Moreover, the set of points p ∈ C such that σ(p) 6∈ Zs
θ must be finite.

Again, stability depends on the character θ; since we have fixed θ once and for all in

this paper, we will generally omit it from the notation. The set {p ∈ C | σ(p) 6∈ Zs} is

called the base locus of the quasimap. Because we work exclusively with the quasimaps

in Definition 3.2.11, we call them simply “quasimaps.”

The degree of a quasimap (C,P, σ,x) is defined as in (3.10); that is, it is the

homomorphism β ∈ Hom(PicG(Z),Z) given by

β(L) = degC(σ∗(P ×G L )) L ∈ PicG(Z).

Let T ⊂ G be a maximal torus. From the morphisms χ(G)→ χ(T ) and PicG(Z)→
PicT (Z) and the inclusion (3.3), we have the following diagram, crucial for understand-

ing how degree works in the abelian-nonabelian correspondence:

Hom(PicT (Z),Z) Hom(PicG(Z),Z)

Hom(χ(T ),Z) Hom(χ(G),Z))

rPic

`T `

rχ

(3.12)

The maps are all given by restriction of homomorphisms.

We have one more defintion that depends on the character θ.

Definition 3.2.12. The classes β ∈ Hom(PicG(Z),Z) that are realized as the class

of some stable quasimap to Z//θG are called the θ-effective classes of (Z,G).

The θ-effective classes form a semigroup.

Remark 3.2.13. When Z is a vector space, and when rχ = rPic is restricted to θ-effective

classes in both the source and target, it has finite fibers. This is shown in the proof of

[CKM14, Thm 3.2.5].

It will be convenient to work with specific representatives of quasimaps. Let

U = {v 6= 0} and V = {u 6= 0} be the distinguished affine subsets of P1
k. Then any

morphism τ : U \ 0→ G defines a transition function that can be used to glue the two

trivial bundles U ×G and V ×G. We denote the resulting principal G-bundle by Pτ .
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In particular, any cocharacter τ of G defines a principal G-bundle Pτ on P1, or more

generally on any P1
k by pullback. If T is a principal T -bundle, then the map τ 7→ Tτ

is W -equivariant with respect to the actions defined in (3.24) and Section 3.2.4

Any k-quasimap is isomorphic to one of the form (P1
k,Pτ , σ, id) for some transition

function τ . Note that the fiber bundle Pτ ×G Z is given by gluing the trivial bundles

U ×Z and V ×Z via τ . Moreover a quasimap (P1
k,Pτ , σ, id) is completely determined

by the maps σU : U → Z and σV : V → Z of σ, where σU is the composition

U
σ|U−−→ (Pτ ×G Z)|U = U × Z pr2−−→ Z

and σV is defined similarly. Hence we have

τ(u)σU(u) = σV (u) for every u ∈ U \ {0}.

Two quasimaps (P1
k,Pτ , σ, id) and (P1

k,Pω, ρ, id) are isomorphic if and only if there

are functions φU : U → G and φV : V → G such that

φV (u−1)τ(u) = ω(u)φU(u) in T , for every u ∈ U \ {0}

φU(u)σU(u) = ρU(u) in Z, for every u ∈ U

φV (v)σV (v) = ρV (v) in Z, for every v ∈ V.

(3.13)

Moduli space

As in [CKM14], quasimaps to Z//G of fixed degree have a good notion of a family.

Definition 3.2.14. A family of degree-β quasimaps to Z//G over a base scheme S is

a tuple (C,P, σ,x) where

• C → S is a connected nodal genus-0 projective curve

• P → C is a principal G-bundle

• σ is a section of P ×G Z

• x : C → P1
S is an morphism

such that geometric fibers of (C,P, σ,x) are geometric quasimaps to Z//G of degree

β.
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A priori from this definition the curve C → S could be a nontrivial family of nodal

curves. In fact, the condition that the geometric fibers of x are isomorphisms forces x

to be an isomorphism. One can show this directly, or one can note that (C,x) defines

a family in M0,0(P1, 1). This latter moduli space is isomorphic to the Grassmannian

Gr(P1,P1) according to [FP97, 5], which of course is represented by a point. So its

universal family is trivial.

Definition 3.2.15. An isomorphism of families of stable quasimaps (C,P, σ,x) and

(C,P ′, σ′,x′) on S is a commuting diagram

P ′ P

P1 C ′ C

∼

x′ ∼
f

x

(3.14)

such that the square is fibered and f ∗σ = σ′.

Let QGβ(Z//G) denote the groupoid of stable degree-β quasimaps to Z//G. We will

denote it simply QGβ when the target Z//G is understood. The space QGβ is called a

quasimap graph space in analogy with Gromov-Witten theory, and it is equal to the

space Qmap0,0(Z//G, β;P1) from [CKM14].

Theorem 3.2.16. [CKM14, Theorem 7.2.2] The moduli space QGβ(Z//G) is a proper

separated Deligne-Mumford stack of finite type.

We observe that since the families of curves parametrized by QGβ are trivial,

the universal curve on QGβ(Z//G) is trivial. (3.15)

Hence, we may interpret the moduli spaces QGβ(Z//G) in terms of the moduli of

sections of Section 2.1.1: fixing the trivial family of curves P1 → pt, the stack

QGβ(Z//G) is an open substack of the moduli of sections Sec(P1× [Z/G]/P1) (see also

Section 2.4.5). Note that from the tower of morphisms

P1 × [Z/G]→ P1 ×BG→ P1 (3.16)

we get a morphism of moduli of sections

Sec(P1 × [Z/G]/P1)→ Sec(P1 ×BG/P1) (3.17)
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where the latter space is the moduli of principal bundles on P1, denoted BunG in

[CKM14, Sec 7.2]. The restriction of the forgetful map (3.17) to QGβ(Z//G) is denoted

µ in [CKM14, Sec 7.2], and the morphism QGβ(Z//G)→M0,0(P1, 1) = pt is denoted

ν. By the argument in Section 2.4.5 it is equivalent to work over the point pt or

over BunG. This observation will be important when we choose a perfect obstruction

theory on QGβ(Z//G) in the next section.

As an example, we explicitly describe the space QGβ(Pn).

Example 3.2.17. We have seen (Example 3.2.5) that a quasimap from P1 to Pn of

degree d is a nonzero element of Γ(P1,O(d))⊕n+1. However, two such sections define

isomorphic quasimaps exactly when they differ by a complex scalar (Example 3.2.6).

Hence, we naively expect

QGd(Pn) =
(

Γ(P1,O(d))⊕n+1 \ {0}
)
/ C∗ ∼= PN ,

where N = dn+ d+ n. Indeed, this space carries a tautological family of quasimaps

as follows. On PN we have the trivial family of curves PN × P1, and on this family the

vector bundle V = OPN (1)⊕n+1⊗OP1(d). An element of PN ×P1 may be written (σ,x)

where σ ∈ Γ(P1,O(d))⊕n+1 is a vector of n+ 1 degree-d homogeneous polynomials in

two variables and x = (x, y). The tautological quasimap is given by the section of V

sending (σ,x) to σ(x).

The tautological family on PN defines a map F : PN → QGd(Pn) which is a bijection

on closed points by Examples 3.2.5 and 3.2.6. It can be shown that QGd(Pn) is a

smooth algebraic space. Since PN is smooth as well, it follows from Lemma 3.6.2 that

F is an isomorphism.

Perfect obstruction theory

We describe an absolute perfect obstruction theory on QGβ. Let CQGβ
∼= QGβ × P1

denote the universal curve with projection π to QGβ. Let u : CQGβ → [Z/G] denote

the universal map (equivalent data to the universal section of the Z-fiber bundle on

QGβ). Since QGβ(Z//G) is an open substack of Sec(P1× [Z/G]/P1), by Theorem 2.1.2

it has a canonical obstruction theory relative to the base pt of the family P1—that is,

a canonical absolute obstruction theory

φ : EQGβ := Rπ∗u
∗(L[Z/G] ⊗ ω•)→ LQGβ (3.18)
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We note that since the cotangent complex L[Z/G] is perfect, there is a canonical

isomorphism

EQGβ ' (Rπ∗u
∗T[Z/G])

∨

given by [FHM03, (4.1)] (it is an isomorphism by [FHM03, Thm 4.4] and Proposition

2.2.6 part 2). A priori, this φ may not agree with the ν-relative theory defined in

[CKM14, Sec 7.2], which is defined via a mapping cone construction to be compatible

with the canonical µ-relative theory. However, the argument in Lemma 2.3.6 shows

that (3.18) is in fact compatible with the µ-relative theory in [CKM14], implying that

φ is a perfect obstruction theory and that it induces the same virtual cycle as the µ-

and ν-relative theories in [CKM14]. We have proved the following lemma.

Lemma 3.2.18. The arrow (3.18) is an absolute perfect obstruction theory on QGβ

inducing the same virtual cycle as the one used in [CKM14].

For this paper it is important that the absolute obstruction theory in Lemma 3.2.18

is constructed canonically, rather than as a (non-unique) mapping cone, so that it is

functorial under abelianization.

Quasimap I-function

Let C∗ act on P1 by

λ · [u : v] = [λu : v], λ ∈ C∗. (3.19)

This induces an action on QGβ, via

λ · (C,P, σ,x) = (C,P, σ, λ ◦ x). (3.20)

For quasimaps of the form (P1
k,Pτ , σ, id) we can write this action in another way.

Observe that we have the diagram

(λ−1)∗Pτ Pτ

P1
k P1

k P1
k

∼

λ−1

λ
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which implies

λ · (P1
k,Pτ , σ, id) = (P1

k,Pτ◦λ−1 , σ ◦ λ−1, id). (3.21)

In terms of the moduli of sections, the action described on QGβ comes from the

C∗-equivariant structure on the tower of morphisms (3.16) given by letting C∗ act on

P1 via (3.19). By Lemmas 2.3.9 and 2.3.10 this equivariant tower induces C∗-actions on

QGβ and CQGβ making π and u equivariant. It also induces a canonical C∗-equivariant

structure on the perfect obstruction theory (3.18).

We define the fixed locus of QGβ under the C∗-action as in [CKL17, Sec 3]. Its closed

points are geometric quasimaps (P1
k,P, σ,x) such that λ · (P1

k,P, σ,x) is isomorphic

to (P1
k,P, σ,x) for every λ ∈ C∗ (see eg [AHR19, Prop 5.23]). The I-function of Z//G

is defined in terms of localization residues at certain fixed loci (see [CKM14, Sec 7.3]).

A fixed quasimap must have all its base points at [0 : 1] or [1 : 0]. Indeed, If a

graph quasimap (C,P, ũ, φ) over Spec(C) is C∗-fixed, then for every λ ∈ C∗ we have

a diagram (3.14) with (C ′,P ′, ũ′, φ′) = (C,P, ũ, λ ◦ φ) and φ an isomorphism. Then

the map C ′ → C in (3.14) must be φ−1 ◦λ ◦φ. But φ−1 ◦λ ◦φ must fix basepoints of ũ,

for every λ. This means that basepoints of ũ have to be φ−1([0 : 1]) or φ−1([1 : 0]). We

can use this information to identify components of the fixed locus: the lengths of these

basepoints `([0 : 1]) and `([1 : 0]) are constant in families, so specifying these integers

specifies a component of the fixed locus. Let Fβ(Z//G) denote the component of the

fixed locus of QGβ(Z//G) corresponding to quasimaps that have a unique basepoint

at [0 : 1] (it may not be connected). We will omit the space Z//G from the notation

when there is no danger of confusion.

Moreover, for a fixed quasimap the resulting map

P1 \ {[1 : 0], [0 : 1]} → Z//G (3.22)

must be constant. Let ev• : Fβ → Z//G send a quasimap to the point in Z//G that is

the image of the constant map (3.22). More precisely ev• may be defined as follows.

Let (C,P, σ̃, φ) be an object of Fβ lying over S. Recall from Example 3.2.4 that σ̃

defines a section σ of P ×G X → C; since [1 : 0] is not a basepoint, σ([1 : 0]) is in

P ×G Zs. So define ev• to send (C,P, σ̃, φ) to the morphism S → Z//G apparent in
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the following diagram:

P ×G Z P ×G Zs Zs/G = Z//G

S × {[1 : 0]} C

σ

Finally we can define the I-function of Z//θG as a formal power series in the q-adic

completion of the semigroup ring generated by the semigroup of θ-effective classes on

(Z,G).

Definition 3.2.19. The (small) I-function of Z//θG is

IZ//G(z) = 1 +
∑
β 6=0

qβI
Z//G
β (z) where I

Z//G
β (z) = (ev•)∗

(
[Fβ]vir

eC∗(N vir
Fβ

)

)
(3.23)

and the sum is over all θ-effective classes of (Z,G).

3.2.4 Abelianization and the Weyl group

Action of the Weyl group

Heuristically, an abelian/nonabelian correspondence relates data of G to data of T

and the Weyl group W . In this section we explain the action of W on several objects

of interest.

This group acts on T , characters of T , dual characters, and cocharacters of T in the

usual ways; i.e., if w ∈ NG(T ) and ξ ∈ χ(T ) and τ : C∗ → T is a cocharacter, then

w · t = wtw−1 for t ∈ T

w · ξ(t) = ξ(w−1 · t) for t ∈ T

w · α̃(ξ) = α̃(w−1 · ξ) for α̃ ∈ Hom(χ(T ),Z)

(w · τ)(t) = w · (τ(t)) for t ∈ T.

(3.24)

Let Z be a G-scheme. Then W also acts on the quotient Z/T . For w ∈ NG(T ) and

t ∈ T , z ∈ Z we compute

w(tz) = (wtw−1)(wz). (3.25)

and if w ∈ T then the objects z and wz are equivalent in Z/T . This means that if
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Z/T is a scheme (e.g. a GIT quotient) then we get a well-defined action of W on Z/T .

The Weyl group also acts on the stack quotient [Z/T ] by [Rom05b, Rmk 2.4], but this

action is more subtle. It remembers the fact that as computed in (3.25), the morphism

w : Z → Z is not a morphism of T -schemes. Rather, the maps Z → [Z/T ] given by tw

and wt are isomorphic via a natural transformation equal to the commutator of t and

w (i.e., the diagram in [Rom05b, Rmk 2.4] has a nontrivial 2-morphism.) Another way

of expressing this phenomenon is to say that the map w : Z → Z is twisted-equivariant

for the homomorphism a : T → T defined by a(t) = wtw−1; that is,

w(tz) = a(t)w(z).

This twisted equivariance also manifests itself in the Weyl actions that we describe

below.

On maps to [Z/T ]. When we study the action of W on maps to [Z/T ], this twist

a manifests itself in concrete ways. We explain how W acts on a map S → [Z/T ] for

a scheme S. Such a morphism is given by a fiber diagram (solid square)

T Z Z

Z [Z/T ] [Z/T ]

w

w

(3.26)

where T → Z is a (T -equivariant) morphism of principal T -bundles. For w and

S-point of NG(T ), the dashed arrow is the automorphism of [Z/T ](S) defined by w as

in [Rom05b, Rmk 2.4]. The point is that the right square in (3.26) is NOT a pullback

of principal T -bundles since the map w is only twisted equivariant. It becomes a

pullback of principal T -bundles only when we twist the action on the source Z by a−1.

For example, when Z is a point we get an action on principal bundles: define wT to

be the T -bundle with the same underlying space as T and with T -action ·w given by

t ·w x = (w−1tw) · x for t ∈ T, x ∈ T . (3.27)

Here · denotes the usual action of T on T . The identity map T → wT is an

a-equivariant isomorphism.
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When Z is nontrivial, the T -equivariant morphism f : T → Z in (3.26) is also part

of the data of the morphism S → [Z/T ], and in fact it is equivalent to the section of

T ×T Z defined by the quotient of T
(id,f)−−−→ T × Z. We see that the action of w on

this map is given by

w · (T , σ : S → T ×T Z) = (wT , $ ◦ σ : S → wT ×T Z) (3.28)

where $ : T ×T Z → wT ×T Z is the isomorphism coming from the a-equivariant

map

T × Z $−→ wT × Z

(x, z) 7→ (x,wz).
(3.29)

On PicT (Z). Finally, W acts on PicT (Z), by which we mean the group of line bundles

on [Z/T ], or equivalently T -equivariant line bundles on Z. Since W acts on [Z/T ] we

get an action on PicT (Z) by sending L ∈ Pic([Z/T ]) to the pullback (w−1)∗L . We

can make this more concrete in terms of T -equivariant line bundles on Z. Over the

fiber square defining (w−1)∗L , we have a fiber square of T -torsors

(w−1)∗L1 L1

wZ Zw

where wZ is Z with T -action twisted as in (3.27), so that the map w : wZ → Z is

T -equivariant, and L1 is a T -equivariant line bundle on Z. From this one sees that

w ·Lξ = Lwξ, (3.30)

i.e., the map χ(T )→ PicT (Z) defined in (3.3) is W -equivariant. More generally, we

have a pullback square of principal T -bundles

(w−1)∗L1 L1

Z Zw−1

(3.31)

where the horizontal maps are a-equivariant (notice that here we take the usual

T -action on Z).
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The action on PicT (Z) defines an action on Hom(PicT (Z),Z) analogous to (3.24).

Principal bundles on P1

We recall Grothendieck’s classification of principal G-bundles on P1, which may be

read as an abelian/nonabelian correspondence theorem.

Let BunG(P1) denote the moduli space of principal bundles on P1; that is, if S is

a C-scheme then an S-point of Bun(P1) is a principal G-bundle on P1
S. There is a

natural map

ψ : BunT (P1)→ BunG(P1)

defined by sending a principal T -bundle T to T ×T G. (The space T ×T G has a

left G-action via multiplication on the right by g−1.) Since BunT (P1) is equivalent to

the stack of maps from P1 to [•/T ], the discussion in Section 3.2.4 defines an action of

W on BunT (P1).

Theorem 3.2.20 (Abelian/Nonabelian Correspondence for Principal Bundles). The

map ψ is invariant under the action of W and the induced map [BunT (P1)/W ] →
BunG(P1) is a bijection on k-points, for k an algebraically closed field.

Proof. For the invariance of ψ, let S be a scheme and let T be a principal T -bundle

on P1
S. Let w : S → NG(T ) be an S-point of NG(T ). Then the principal G-bundles

T ×T G and wT ×T G are isomorphic via a map $ analogous to the one in (3.29).

The remainder of the theorem is just a restatement of Grothendieck’s classification

theorem [Gro57] for principal bundles on P1 (see also [MS02, 393]).

Because the isomorphism class of a principal T -bundle on P1
k is completely determined

by its degree, we may detect the isomorphism class of a principal G-bundle as follows.

Let P be a principal G-bundle and let T be a principal T -bundle such that T ×GG ∼=
P. We define a homomorphism α̃ ∈ Hom(χ(T ),Z) by

α̃(ξ) = degP1(T ×T Cξ) ξ ∈ χ(T ).

By the above discussion, knowing the Weyl-orbit of α̃ in Hom(χ(T ),Z) is equivalent

to knowing the isomorphism class of P as a principal G-bundle.
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Cohomology of X//G and X//T

We recall an abelian-nonabelian correspondence for cohomology of X//G and X//T .

Recall the diagram (3.2) where j is an open embedding and g is a fiber bundle with

fiber G/T . The following result is well-known, but we could not find a reference in

our setting.

Proposition 3.2.21. The pullback g∗ in diagram (3.2) induces an isomorphism

g∗ : A∗(Z
s(G)/G)⊗Q ∼−→ (A∗(Z

s(G)/T )⊗Q)W . (3.32)

An analogous statement holds for cohomology rings with coefficients in Q.

Proof. We prove the statement for chow groups. Compare the statement and its

proof with [Bri98, Thm 10]. Notice that g factors through Zs(G)/T → Zs(G)/B

where B ⊂ G is a borel subgroup containing T . Since Zs(G)/T → Zs(G)/B is a fiber

bundle with affine fibers, pullback induces an isomorphism on chow groups, and we

are reduced to showing (3.32) with B in place of T .

Let R be the symmetric algebra over Q of the character group χ(T ) of T and let RW
+

be the ring of W -invariants of positive degree. Recall the characteristic homomorphism

that sends a character of T to the associated line bundle on G/T . Let

φ : R/RW
+
∼−→ A∗(G/B)⊗Q

be the (W -equivariant) isomorphism induced by the characteristic homomorphism

(see for example [Bri98, 22]), and let {ci}Ni=1 be elements of R with images [ci] in

R/RW
+ such that {φ([ci])}Ni=1 is a basis for A∗(G/B). Then the polynomials ci also

define classes c̃i in A∗(Zs(G)/B)⊗Q (via an analogous characteristic homomorphism

induced by mapping characters to associated line bundles), and the restrictions of

these classes to every fiber of g are a basis.

Thus we may apply the algebraic Leray-Hirsch theorem [EG97, Lem 6] to the

G/B-fiber bundle g. Let {bj} be a basis for A∗(Z
s(G)/G) ⊗ Q. This theorem says

that the map φ : A∗(Z
s(G)/G)Q ⊗ A∗(G/B)Q → A∗(Z

s(G)/B)Q given by∑
bj ⊗ φ([ci]) 7→

∑
g∗(bj) ∪ c̃i

is an isomorphism. Because g is W -invariant, a direct computation shows that this

map is W -equivariant. Now we take W -invariants of both sides. On the left side,
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if
∑
bj ⊗ φ([ci]) is W -invariant, then because the classes bj are all W -invariant, the

classes [ci] ∈ R/RW
+ are as well. Hence if they are nonzero, they have degree zero. The

result follows.

3.3 Abelianization for fixed loci in graph spaces

The goal of this section is to “pull back” diagram (3.2) to the C∗-fixed loci in the

quasimap moduli spaces. That is, we prove the following.

Proposition 3.3.1. Let β ∈ Hom(PicG(Z),Z) be effective. For every β̃ ∈ r−1
Pic(β),

there is

• a parabolic subgroup P`T (β̃) ⊂ G, and

• a morphism ψβ̃ : Fβ̃(Z//T ) ∩ Zs(G) → Fβ(Z//G) whose image we denote

Fβ̃(Z//G),

fitting into the following commutative diagram:

Fβ̃(Z//G) Fβ̃(Z//T ) ∩ Zs(G) Fβ̃(Z//T )

Zs(G)/P`T (β̃) Zs(G)/T Zs(T )/T

Zs(G)/G

i

ψβ̃

h

ev•

f

j

g

p
(3.33)

Here, the two squares are fibered, the vertical arrows in the top row are all closed

embeddings, and the composition f ◦ i is the evaluation map ev•.

3.3.1 Definitions of P`T (β̃) and ψβ̃

We may identify cocharacters with dual characters of T as follows. A dual character

α̃ ∈ Hom(χ(T ),Z) determines a cocharacter τα̃ via the rule

ξ(τα̃(t)) = t−α̃(ξ) for any ξ ∈ χ(T ). (3.34)

The negative sign in the exponential appears so that Tτα̃ has degree α̃. One can check

that this identification of cocharacters and dual characters is W -equivariant under the
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actions defined in (3.24). To lighten the notation we will write Tα̃ for Tτα̃ and Pα̃ for

the associated principal G-bundle.

The construction of the parabolic subgroup P`T (β̃) uses the “dynamic method” (see

for example [CGP10, Sec 2.1]). If α̃ = `T (β̃) is a dual character and τα̃ the cocharacter

defined in (3.34), then the dynamic method defines a (reduced) parabolic subgroup

with closed points given by

Pα̃ = {g ∈ G | lim
t→0

τα̃(t)−1gτα̃(t) exists in G}. (3.35)

The subgroup Pα̃ clearly contains T . It has a natural inclusion into Aut(Tτ ×T G),

given by sending g ∈ Pα̃ to the automorphism that is multiplication by g on V ⊂ P1.

The dynamic method also produces a canonical Levi subgroup Lα̃ ⊂ Pα̃, equal to the

centrilizer of τα̃:

Lα̃ = {g ∈ G | τα̃(t)−1gτα̃(t) = g}

In fact this is the unique Levi sugbroup of Pα̃ containing T (see [CF, Prop 12.3.1].

Let

F 0 = Fβ̃(Z//T )×Xs(T )/T X
s(G)/T,

so F 0 is the open substack of Fβ̃(Z//T ) where ev• lands in Zs(G)/T . We define

ψβ̃ : F 0 → Fβ(Z//G)

(C,T , σ,x) 7→ (C,T ×T G, σ,x).
(3.36)

To process this definition, it may help to note that σ is a section of

T ×T Z = (T ×T G)×G Z.

A priori ψβ̃ is a map to QGβ(Z//G); it is straightforward to check that it factors

through Fβ(Z//G). One uses the fact that isomorphisms of principal T -bundles induce

isomorphisms of associated G-bundles.

3.3.2 Properties of Fβ

The discussion of this section applies to both Fβ(Z//G) and Fβ(Z//T ), so we omit the

group from the notation. Our goal is to prove the following.
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Lemma 3.3.2. The stack Fβ is a proper separated algebraic space of finite type. If Z

smooth, then Fβ is smooth and [Fβ]vir is the usual fundamental class of Fβ.

The content of this lemma is the statement about smoothness and being an algebraic

space. We need smoothness of Fβ because we have to work with its geometric points:

we do not know of an analog of Grothendieck’s classification theorem for principal

G bundles on P1
S when S is an arbitrary scheme. Fortunately, when Fβ is smooth

and proper, its geometric points (and their isotropy groups) characterize it up to

isomorphism (see Lemma 3.6.2).

Proof. One sees from the definition of torus fixed loci in [CKL17, Sec 3] that Fβ is a

closed substack of QGβ, so all properties except smoothness and being an algebraic

space follow from Theorem 3.2.16.

To check that Fβ is an algebraic space, let (P1
S,P, σ, id) be a quasimap in Fβ over a

scheme S, and let φ be an automorphism of it, i.e., φ is an automorphism of P such

that the induced automorphism of P ×G Z fixes σ. If U → P1
S is an étale chart where

P is trivial, then σ is given by a map σU : U → Z and φ is given by φU : U → G, and

these data satisfy

φU(u)σU(u) = σU(u)

for each u ∈ U . This means φU (u) is in the stabilizer GσU (u). Because the quasimap is

stable, the group GσU (u) is trivial on an open subset of U . Hence φU is the identity,

and φ is trivial.

Now we show that Fβ is smooth. Let F = Fβ. By [CKL17, Sec 3], the composition

(EQGβ |F )fix (φ|F )fix

−−−−→ (LQGβ |F )fix → LF

is a perfect obstruction theory for F . We will show that (Eν |F )fix has the property

that h−1 vanishes and h0 is locally free, and hence by [BF97, Prop 5.5] the stack F is

smooth and [F ]vir is the usual fundamental class.

If Z is smooth, then there are vector bundles E1, E2 on [Z/G] fitting into a distin-

guished triangle

E1 → E2 → T[Z/G] → .

This can be seen, for example, from the description of the cotangent complex in Section
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2.2.3 using the smooth cover Z → [Z/G]. Hence we have a distinguished triangle

EQGβ → (Rπ∗u
∗E2)∨ → (Rπ∗u

∗E1)∨ → . (3.37)

We use the following fact.

Lemma 3.3.3. If E is a vector bundle on [Z/G], then (Rπ∗u
∗E)|fix

F is quasi-isomorphic

to a locally free sheaf in degree 0.

Proof. We have (R1π∗u
∗E)|p = H1(Cp, u

∗E|Cp) for any closed point p ∈ QGβ. Because

p is fixed, there is a C∗-equivariant map identifying Cp with the target P1. So it has

coordinates [u : v] where the C∗-action scales u. Since the linearization on u∗E is

trivial, and H1(Cp, u
∗E|Cp) has a basis of monomials in u, v where each variable has

degree at least 1, we see that this representation has no fixed part. So the fiber of

(R1π∗u
∗E)|fix

F vanishes at every closed point, and by Nakayama’s lemma this sheaf is

zero.

On the other hand, by [CKM14, Claim p.36] the complex Rπ∗u
∗E has a global

resolution by vector bundles, so we may write (Rπ∗u
∗E)|fix

F = [T 0 f−→ T 1] where the Ti

are vector bundles. We have shown that f is surjective. Hence T • is quasi-isomorphic

to its truncation τ≤0T
• = ker(f), a locally free sheaf in degree 0.

Applying this lemma to the complexes in (3.37) and using the fact that dual

commutes with fix and restriction to F for these complexes, we see that we have a

distinguished triangle

EQGβ |fix
F → Ẽ2 → Ẽ1 →

with Ẽi locally free sheaves in degree 0. From the long exact sequence in cohomology,

we see that h−1(EQGβ |fix
F ) is zero and h0(EQGβ |fix

F ) is the kernel of a map of locally free

sheaves, hence locally free.

3.3.3 Proof of Proposition 3.3.1 when Z is a vector space

In this section we assume that Z is a vector space X and that G acts linearly on X,

and we prove Proposition 3.3.1 in this case. When X is a vector space, the inclusion

(3.3) is an isomorphism and the maps ` and `T are identity maps. Hence, in this

section, we will write α for the degree of a quasimap to X//G and α̃ for the degree of

a quasimap to X//T (generally assuming that r(α̃) = α).
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Let B be a basis for X where T acts diagonally, and let ξ1, . . . , ξr be the corresponding

torus weights. The following lemma tells us explicitly what geometric quasimaps in

Fα̃(X//T ) look like.

Lemma 3.3.4. A geometric quasimap in Fα̃(X//T ) is isomorphic to one of the form

(P1
k,Tα̃, (ciu

α̃(ξi)), id) where the ci are complex numbers, and conversely any quasimap

in QGα̃(X//T ) of this form is fixed. Moreover, ev• sends this quasimap to the class of

the vector (c1, . . . , cr) in X.

We remark that the vector of monomials

(ciu
α̃(ξi))ri=1

denotes a section of Tα̃ ×G X = ⊕ri=1O(α̃(ξi) on P1
k (with coordinates u, v) in the

standard way.

Proof. After isomorphism, we may assume a geometric quasimap in QGα̃(X//T ) is

isomorphic to one of the form (P1
k,Tα̃, σ, id).

Now assume this quasimap is in Fα̃(X//T ). We first show that σV must be constant.

Combining (3.13) and (3.21), we see that for each λ ∈ C∗ we have a morphism

φλV : V → T satisfying

φλV (v)σV (λ−1v) = σV (v) for all v ∈ V and λ ∈ C∗. (3.38)

In the basis B, the morphism φV : V ∼= A1 → X is given by a vector of polynomials

in v, and (3.38) says that each coordinate polynomial must be homogeneous in v.

Moreover, (3.38) says that σV (λ−1v) is in the T -orbit TσV (v) for all λ, so since T -orbits

on Xs are closed and v = 0 is not a basepoint, we have σV (0) ∈ TσV (v) as well. This is

not possible if some coordinate polynomial vanishes at v = 0 but is not itself identically

zero; hence each must be constant.

On the other hand, the section σ in Γ(P1
k,⊕ri=1O(α̃(ξi)) is represented by a vector of

homogeneous polynomials in u and v. Since σV is constant, as a vector of polynomials

σ must have the desired form.

Conversely we check that a quasimap (P1,Tα̃, (ciu
α̃(ξi)), id) is fixed. By (3.13) and

(3.21), for each λ ∈ C∗ we must find morphisms φλV : V → T and φλU : U → T

113



satisfying

φλV (u−1)τα̃(u) = τα̃(λ−1u)φλU(u) in T , for every u ∈ U \ {0}

φλU(u)σU(u) = σU(λ−1u) in X, for every u ∈ U

φλV (v)σV (v) = σV (λ−1v) in X, for every v ∈ V.

One checks using (3.34) that φλU(u) = τα̃(λ) and φλV (v) = 1.

Our first application of Lemma 3.3.4 is as follows. The stack QGα(X//T ) =

tα̃ 7→αQGα̃(X//T ) is still of finite type (this follows from Remark 3.2.13; let Fα(X//T ) ⊂
QGα(X//T ) be the fixed locus. There is a natural rational map ψ : QGα(X//T ) 99K

QGα(X//G) given by the disjoint union of the maps ψα̃ defined in (3.36), and by

Grothendieck’s classification (Theorem 3.2.20) the map ψ is surjective. The restriction

of ψ to Fα(X//T ) factors through Fα(X//G); however it is not at all clear that the

restricted rational map ψ : Fα(X//T ) 99K Fα(X//G) is still surjective. In other words,

if a quasimap is fixed as a map to [X/G], is it also fixed as a map to [X/T ]? This is

the content of the following lemma.

Lemma 3.3.5. The rational map ψ : Fα(X//T ) 99K Fα(X//G) sending (C,T , σ,x)

to (C,T ×T G, σ,x) is surjective.

Proof. Because the Fα are proper, the image of ψ is closed, and it suffices to check

(essential) surjectivity on C-points. Let (P1,Pα̃, σ, id) be an element of Fα(X//G)

over Spec(C). We find an automorphism φ of Pα̃ sending σ to a section ρ with ρV a

constant function. By Lemma 3.3.4 the quasimap (P1,Tα̃, ρ, id) is in Fα̃(X//T ), and

(P1,Pα̃, σ, id) is in its essential image.

To define φV , let ι : G ↪→ Xs(G) be the morphism defined by i(g) = gσV (0). This is

a closed embedding as follows: since Xs(G)→ X//G is a principal G-bundle, the map

G×Xs(G)→ Xs(G)×X//G Xs(G) is an isomorphism. On the other hand by [Stacks,

Tag 02XE] there is a fiber square

Xs(G)×X//G Xs(G) X//G

Xs(G)×Xs(G) X//G×X//G

so since X//G is a separated scheme, the composition G×Xs(G)→ Xs(G)×Xs(G)

is a closed embedding.
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We claim that σV : V → Xs(G) factors through this image. Granting this, we define

φV = ι−1σV , or in other words,

φV (v)σV (0) = σV (v). (3.39)

To see that σV factors through the image of ι, note that because this quasimap is

fixed, σV (V \ {0}) is contained in a single G-orbit. Because G-orbits are closed, σV (0)

must also be in this orbit.

Now define

φU(u) = τ(u)−1φV (u−1)τ(u) for u ∈ U \ {0}. (3.40)

We show that φU extends to all of U . Embed G as a closed subgroup in some GLn.

There is a commuting diagram

U \ {0} G An2 Pn2

C P1

φU j0

det detP

i0

where An2
is the ring of n × n matrices, and all hooked arrows are embeddings

with j0(x1, . . . , xn2) = [x1 : . . . xn2 : 1] and i0(x) = [x : 1]. The composition arrow

U \ {0} φU−→ G ↪→ AN extends to one F̃ : U → PN .

We show F̃ factors through G. First notice that the morphism det ◦φV from V ' A1

to C∗ must be constant, say equal to d. (One way to see this is that the corresponding

ring map C[x, x−1]→ C[x] must send x to a unit and hence to something in k.) So

from the formula for φU , the composition detP ◦F̃ is also constant with value [d : 1].

In particular F̃ factors through GLn ⊂ An2
. But G is a closed subgroup of GLn, so F̃

factors through G.

By (3.40), the morphisms φU and φV define an automorphism of Pα̃, and by (3.39)

its inverse sends σ to a section ρ with ρV = σV (0) a constant function.

Our next application of Lemma 3.3.4 is to characterize the fixed locus Fα̃(X//T ). A

portion of this lemma is stated without proof in [CK10, 29].

Lemma 3.3.6. There is a subspace Xα̃ ⊂ X, invariant under Pα̃, such that ev• :

Fα̃(X//T )→ X//T is a closed embedding with image Xα̃//T . The universal family on
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Xα̃//T defines a vector bundle X on P1
Xα̃//T

and section S:

X =
Xs
α̃(T )× C2 ×X

(x, u, y) ∼ (tx, su, τα̃(s)ty)
S(x, u) = (x, u, τα̃(u1)x) (3.41)

where Xs
α̃(T ) = Xα̃ ∩Xs(T ) and we have (x, u, y) ∈ Xs

α̃(T )×C2×X with u = (u1, u2)

and (t, s) ∈ T × C∗.

Proof. Define Xα̃ to be the subspace of X spanned by those elements of B whose

corresponding weights ξi satisfy α̃(ξi) ≥ 0 (note the subspace Xα̃ is independent of the

choice of basis B). To see that Xα̃ is invariant under Pα̃, let g ∈ Pα̃ and let x ∈ Xα̃

have weight ζ with α̃(ζ) ≥ 0. From the definition (3.35) of Pα̃ we know

lim
u→0

τα̃(u)−1gτα̃(u)x exists in X

for u ∈ C∗. But τα̃(u)x = u−α̃(ζ)x (using (3.34)). Write x = (ci)
r
i=1 in the coordinates

of the basis B. Since G acts linearly on X, we have

lim
u→0

u−α̃(ζ)uα̃(ξi)ci exists in C

for every i = 1, . . . , r. If ci 6= 0 this implies α̃(ξi) ≥ α̃(ζ), so in particular Xα̃ is

invariant.

To show that ev• is a closed embedding with image Xα̃//T , note that Xα̃//T is a

smooth closed subvariety of X//T , and ev• factors through Xα̃//T . We will show that

ev• : Fα̃(X//T )→ Xα̃//T

induces a bijection of C-points; by Lemma 3.3.2 and Lemma 3.6.2 the result follows.

By Lemma 3.3.4 a quasimap in Fα̃(X//T ) has the form (P1,Tα̃, ciu
α̃(ξi), id) for some

complex numbers (ci)
r
i=1. Suppose (di)

r
i=1 is another vector defining a quasimap with

the same image under ev•. Then for some t ∈ T we have

(ci)
r
i=1 = t · (di)ri=1.

Hence if we define φV (v) = φU (u) = t for every u ∈ U and v ∈ V , the equations (3.13)

are satisfied, and the quasimaps are isomorphic.

On the other hand, if (ci)
r
i=1 are the B-coordinates of a point in Xα̃, it is the image
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of a quasimap (P1,Tα̃, σ := (ciu
α̃(ξi)), id) which is in Fα̃(X//T ) by Lemma 3.3.4.

Turning to the claimed universal family (3.41), note that the quantity τα̃(u1)x in

the definition of S is well-defined for u1 ∈ C because x is in Xα̃: when u1 = 0 we

have τα̃(u1)x = 0. Using that T is abelian, one checks that S is in fact a section of X .

Moreover, (3.41) defines a family of fixed quasimaps because its geometric fibers are

fixed (this suffices since we are working with smooth schemes). From the definitions,

one sees that the map from Xα̃//T to Fα̃(X//T ) induced by (3.41) is a section of ev•,

hence an isomorphism.

Lemma 3.3.7. Proposition 3.3.1 holds when X is a vector space and G acts linearly.

Proof. Let F be the pullback of the T -torsor Xs(G)→ Xs(G)/T to Fα̃(X//T )∩Xs(G)

along ev•. By Lemmas 3.6.1 and 3.3.6 and the universal property of categorical

quotients, we have a diagram of schemes

F/Pα̃ Fα̃(X//T ) ∩Xs(G) F

Xs(G)/Pα̃ Xs(G)/T Xs(G)

ev•

where the outer square is a fiber diagram of Pα̃ torsors and the right square is a

fiber diagram of T -torsors. By the universal property of the categorical quotient

F/T = Fα̃(X//T ) ∩Xs(G), the factorization of F → F/Pα̃ through such a quotient is

unique, and hence the left square is also fibered (see [Bri11, Thm 3.3]).

Let ψ̃α̃ : F → Fα(X//G) denote the composition

F → Fα̃(X//T ) ∩Xs(G)
ψα̃−→ Fα(X//G)

and let Fα̃(X//G) denote its image (also the image of ψα̃), i.e., the closed substack

defined by

ker(OQGα → (ψα̃)∗OFα̃(X//T )∩Xs(G)).

This kernel-sheaf is quasicoherent because ψα̃ is qcqs (its domain is a Noetherian

scheme).

We show that the map ψ̃α̃ is invariant under the action of Pα̃ on F . Because

Fα(X//G) is a separated algebraic space and F is a reduced scheme, it suffices to check

invariance of C-points. Let (ci)
r
i=1 be a point of Xs

α̃(G) with image (c′i)
r
i=1 under g ∈ Pα̃

(note that Xs
α̃(G) := Xα̃ ∩ Xs(G) is identified with F via ev•). The corresponding
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quasimaps to X//G are (P1,Pα̃, (ciu
α̃(ξi)), id) and (P1,Pα̃, ((c

′
i)u

α̃(ξi)), id), but these

are isomorphic via the automorphism of Tα̃ ×T G defined by g ∈ Pα̃ (see (3.35)).

Since ψ̃α̃ is invariant, we get an induced map

A : F/Pα̃ → Fα̃(X//G)

factoring ψ̃α̃. We show that A is an isomorphism using Lemma 3.6.2.

By Lemma 3.3.5, we have Fα(X//G) =
⋃
α̃→α Fα̃(X//G). In fact this union is disjoint

and finite by Remark 3.2.13, so since each Fα̃(X//G) is closed, we see that Fα̃(X//G)

is an open subset of Fα(X//G). Thus Fα̃(X//G) is smooth by Lemma 3.3.2. Moreover

F/Pα̃ is smooth by Luna’s étale slice theorem, and it is proper (it is a closed subscheme

of the flag bundle Xs(G)/Pα̃ on the projective variety X//G), so A is proper.

It remains to show that A induces a bijection of C-points and their automorphism

groups. Since A is surjective by construction and both F/Pα̃ and Fα̃(X//G) are

algebraic spaces (using Lemma 3.3.2), we only need to show A is injective on C-points.

Let (ci)
r
i=1 and (di)

r
i=1 be two elements of Xα̃ ∩Xs(G) (this space is identified with F

via ev•). If their images under ψ̃α̃ are equal, then the quasimaps (P1,Tα̃, (ciu
α̃(ξi)), id)

and (P1,Tα̃, (diu
α̃(ξi)), id) are isomorphic as quasimaps to X//G. That is, there are

maps φU : U → X and φV : V → X (defining an element of Aut(Tα̃ ×T G)) that

satisfy

φV (v)(ci)
r
i=1 = (di)

r
i=1 for each v ∈ V

φU(u) = τ−1
α̃ (u)φV (u−1)τα̃(u) for each u ∈ U \ 0

(see (3.13)). The first equation implies that φV is constant and hence may be identified

with an element g ∈ G. The second equation implies that limt→0 τα̃(t)−1gτα̃(t) exists

in G (and equals φU(0)), so we have g ∈ Pα̃.

3.3.4 Proof of Proposition 3.3.1 for general Z

Now let Z be an l.c.i. affine variety with Zs(G) smooth, and let X be a G-representation

with a closed equivariant embedding Z ↪→ X inducing an identification Zs
θ(G) =

Xs
θ (G) ∩ Z. This exists by our assumption in Section 3.1.1. Then the natural map

ι : Fβ(Z//G)→ F`(β)(X//G) (3.42)
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induced by the inclusion Z ⊂ X is a closed embedding (because it is a proper

monomorphism, see for example Lemma 2.3.4). When G is the torus T and α̃ = `T (β̃)

we have a fiber diagram

Zβ̃ Xα̃ ∩Xs(G) Xs(G)

Fβ̃(Z//T ) ∩ Zs(G) Fα̃(X//T ) ∩Xs(G) Xs(G)/Tι ev•

(3.43)

where the scheme Zβ̃ is defined to be the fiber product, a closed subscheme of Xs(G).

Lemma 3.3.8. The subscheme Zβ̃ ⊂ X is invariant under the action of Pα̃.

Proof. Let f : S → Zβ̃ be a map from a scheme S. The composition

S
f−→ Zβ̃

ι−→ Xα̃ ∩Xs(G)→ Fα̃(X//T ) ∩Xs(G)

defines a family of fixed quasimaps to X//T of degree α̃ whose section factors through

Zs(G) ⊂ X. Using the universal family (3.41) we can describe this family as follows.

The underlying principal bundle is P1
S × Tα̃, which is trivial on U × S and V × S

and has transition function U × S pr1−−→ U
τα̃−→ T . The section σf is defined by setting

σf,V×S equal to the composition

V × S pr2−−→ S
f−→ Zβ̃ ⊂ X.

If g ∈ Pα̃, then gf : S → Xα̃ also defines a family of quasimaps to X//T of degree α̃

that factors through Zs(G) ⊂ X (since Zs(G) is G-invariant). This family is given by

the same principal bundle P1
S × Tα̃ but with section σgf defined by setting σgf,V×S

equal to the composition

V × S pr2−−→ S
gf−→ Xα̃ ∩ Zs(G) ⊂ X.

In particular this is still a family of quasimaps to Zs(G)/T ⊂ Z//T ; to show that the

induced map to Fα̃(X//T ) ∩ Xs(G) factors through Fβ̃(Z//T ) ∩ Zs(G), we need to

show it has degree β̃. This may be checked at geometric points of S.

Let (P1,Tα̃, σ, id) be a geometric fiber of the family defined by f on S, a quasimap to

Z//T of degree β̃. The corresponding fiber of the family defined by gf is (P1,Tα̃, ℘◦σ, id)

where ℘ ∈ Aut(Tα̃ ×T Z) is the automorphism defined by g ∈ Pα̃ (see (3.35)). Then
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as a quasimap to Z//T , the degree of (P1,Tα̃, ℘ ◦ σ, id) is the homomorphism that

sends L ∈ PicT (Z) to

degP1((℘ ◦ σ)∗(T ×T L )).

Because Pα̃ is a connected subgroup of Aut(Tα̃ ×T Z), there is a (piecewise linear)

homotopy from the automorphism ℘ to the identity on Tα̃ ×T Z. In particular the

images of σ and ℘ ◦ σ are rationally equivalent, hence the degree of Tα̃ ×T L along

these two rational curves is the same.

Proof of Proposition 3.3.1. Let β ∈ Hom(PicG(Z),Z) be effective and choose β̃ ∈
r−1

Pic(β). Set α = `(β) and α̃ = `T (β̃). By Lemma 3.3.8 and Lemma 3.3.7, the map

Fβ̃(Z//T )→ Xs(T )/T is a closed embedding, but the image is clearly in Zs(T )/T . So

we get the top right fibered square in (3.2).

Recall that Fβ̃(Z//G) is the image of ψβ̃ in Fβ(Z//G), and similarly Fα̃(X//G) is

the image of ψα̃ in Fα(X//G). We have a (a priori solid) commuting diagram

Fβ(Z//G) Fβ̃(Z//G) Fβ̃(Z//T ) ∩ Zs(G) Zβ̃

Fα(X//G) Fα̃(X//G) Fα̃(X//T ) ∩Xs(G) Xα̃ ∩Xs(G)

ι j

ψβ̃

ι

ψα̃

(3.44)

where the rightmost square is the left square of (3.43) and j is induced by the universal

property of the image of a morphism. Note that Fβ̃(Z//G) is also the image of Zβ̃
under the composition

Zβ̃ → Xα̃ ∩Xs(G)→ Fα̃(X//T )
ψα̃−→ Fα̃(X//G).

But we saw in the proof of Lemma 3.3.7 that Xα̃ ∩Xs(G)→ Fα̃(X//G) is a principal

Pα̃-bundle. Hence by Lemmas 3.3.8 and 3.6.1, the arrow Zβ̃ → Fβ̃(Z//G) is also a

principal Pα̃-bundle, and one may argue as in the proof of Lemma 3.3.7 to show that

the middle square in (3.44) is fibered. Since the images of ι and j land in Fα̃(Z//T )

and Fα̃(Z//G), respectively, this proves the proposition.

3.4 Abelianization for quasimap I-functions

In this section we prove Theorem 3.1.1.
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3.4.1 Weyl group action

It is now our goal to show that the images Fβ̃(Z//G) are always disjoint or equal, and

to write Fβ(Z//G) as a specific disjoint union of these images. Define

Fβ(Z//T ) = tβ̃→βFβ̃(Z//T ) ∩Xs(G)

and let ψ : Fβ(Z//T ) → Fβ(Z//G) be defined to equal ψβ̃ on Fβ̃(Z//T ) ∩ Zs(G).

Similarly, let ev• : Fβ(Z//T )→ Zs(G)/T be defined to equal ev• on each component.

Notice that Fβ(Z//T ) is a stack of maps to [Z/T ] and hence carries a W -action as in

(3.28). Under this action, ev• is equivariant and ψ is invariant.

For α̃ ∈ Hom(χ(T ),Z), let Wα̃ = NLα̃(T )/T be the Weyl group of Lα̃, the unique

Levi subgroup of Pα̃ containing T . Recall that W acts on Hom(PicT (Z),Z) as in

Section 3.2.4.

Lemma 3.4.1. The action of W on Fβ(Z//T ) has the following properties.

1. If (C,T , σ,x) is a quasimap of degree β̃, then w · (C,T , σ,x) has degree w · β̃.

In particular the action of W permutes the components Fβ̃(Z//T ) ∩ Zs(G) of

F̃β(Z//T ).

2. If α̃ = `T (β̃), then the stabilizer of a quasimap of degree β̃ is Wα̃..

Consequently, if Fβ̃1
(Z//T ) and Fβ̃2

(Z//T ) are W -related, then they have the same

image in Fβ(Z//G). Conversely,

3. If Fβ̃1
(Z//T ) and Fβ̃2

(Z//T ) are not W -related, then their images in Fβ(Z//G)

are disjoint.

Proof. To prove (1), let (P1,T , σ, id) be a C-quasimap in Fβ̃(Z//T ) and choose an

equivariant line bundle L ∈ PicT (Z). Then from (3.31) we have a fiber square

T × w∗L wT ×L

T ×X wT ×X(id,w·)

where the horizontal maps are twisted-equivariant isomorphisms and vertical maps

are T -equivariant. Hence we can quotient the square by T to obtain a fiber square
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over $ defined in (3.29). From this it follows that

degP1($ ◦ σ)∗(wT ×T L ) = degP1 σ∗(T ×T w∗L ) = degP1 σ∗(T ×T (w−1 ·L )),

or in other words, the degree of the quasimap (P1, wT , $ ◦ σ, id) applied to L is

(w · β̃)(L ).

For (2), first note that by definition, Lα̃ is the G-stabilizer of the cocharacter τα̃.Since

the identification (3.34) of α̃ and τα̃ is W -equivariant, we see that Wα̃ is the stabilizer

of α̃. So the stabilizer of β̃ is a subgroup of Wα̃. Conversely, if w ∈ NLα̃(T ) we want

to show (P1,Tα̃, σ, id) and (P1,Twα̃, $ ◦ σ, id) have the same degree. Because w is

in the stabilizer of α̃, the bundles Tα̃ and Twα̃ are identically the same. In fact the

morphism

$ : Tα̃ ×T G→ Twα̃ ×T G

defined in (3.29) is the same as the automorphism ℘ ∈ Aut(Tα̃ ×T G) determined by

p = w as an element of Pα̃. We have

degP1($ ◦ σ)∗(Twα̃ ×T L ) = degP1 σ∗($∗(Tα̃ ×T L )) = degP1 σ∗(Tα̃ ×T L ),

where in the first equality we have replaced Twα̃ with Tα̃, and the second equality can

be argued as in Lemma 3.3.8.

To prove (3), let (P1,Tα̃1 , σ1, id) and (P1,Tα̃2 , σ2, id) be two C-quasimaps with the

same image in Fβ(z//G). Then in particular the associated G-bundles Pα̃1 and Pα̃2

are isomorphic, so by Theorem 3.2.20 there is some w ∈ NG(T ) such that wα̃1 = α̃2.

Then the injectivity argument in the proof of Lemma 3.3.7 shows that there exists

p ∈ Pτ such that (P1,Tα̃2 , wσ1, id) = (P1,Tα̃2 , ℘ ◦ σ2, id) (in particular, this argument

did not require the two quasimaps to have the same degree, just the same bundle

type). Finally the argument of Lemma 3.3.8 shows that (P1,Tα̃2 , ℘ ◦ σ2, id) and

(P1,Tα̃, σ2, id) have the same degree. So the degree of w · (P1,Tα̃1 , σ1, id) equals the

degree of (P1,Tα̃2 , σ2, id).

Lemma 3.4.1 shows that the images Fβ̃(Z//G) in Fβ(Z//G) are either disjoint or

identical. Moreover, by Lemma 3.3.5 we know every element of Fβ(Z//G) ⊂ Fα(X//G)

is the image of some element of Fα(X//T ) under ψ, but this element must be a

quasimap to Z//T (because its image is). So the images Fβ̃(Z//G) cover Fβ(Z//G).
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Let β̃i be elements of Hom(PicT (Z),Z) such that

Fβ(Z//G) = tiFβ̃i(Z//G). (3.45)

This is a decomposition of Fβ(Z//G) as a disjoint union of closed subschemes.

3.4.2 Relate the perfect obstruction theories

The main goal of this section is to relate the perfect obstruction theory of Fβ̃(Z//T )

to the pullback of the perfect obstruction theory of Fβ̃(Z//G) under ψβ̃. Let

E•G := E•QGβ(Z//G) E•T := E•QGβ̃(Z//T )

denote the absolute perfect obstruction theories defined in (3.18). In what follows,

if A• (resp. B•) is a complex on QGβ(Z//G) (resp. QGβ̃(Z//T )), we will use the

notation

A•|F := A•|Fβ̃(Z//G) (resp. B•|F := B•|Fβ̃(Z//T )∩Zs(G))

for the restricted complex whenever the intended degree β̃ is clear. In particular, we

have

E•G|F := E•G|Fβ̃(Z//G) E•T |F := E•T |Fβ̃(Z//T )∩Zs(G).

Lemma 3.4.2. In the derived category of Fβ̃(Z//T ) ∩ Zs(G), there is a morphism of

distinguished triangles

ψ∗
β̃
(E•G|F ) E•T |F (R•π∗u

∗
FTψ)∨

ψ∗
β̃
(LQGβ(Z//G)|F ) LQGβ̃(Z//T )|F Lψ◦|F

(3.46)

where ψ is the canonical map [Z/T ]→ [Z/G] and u is the restriction to Fβ̃(Z//T ) ∩
Zs(G) of the map defined in Section 3.2.3.

The map ψ◦ will be defined in the proof below.

Proof. We have a tower of morphisms CM(P1)× [X/T ]
ψ−→ CM(P1)× [X/G]→ CM(P1) →

M(P1) as in (3.16), which leads to a morphism of moduli of sections

ψ : Sec(CM(P1) × [Z/T ]/CM(P1))→ Sec(CM(P1) × [Z/G]/CM(P1)).
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Define QGβ(Z//T )◦ to be the fiber product

QGβ(Z//T )◦ Sec(CM(P1) × [Z/T ]/CM(P1))

QGβ(Z//G) Sec(CM(P1) × [Z/G]/CM(P1))

ψ◦ ψ

Notice that QGβ(Z//T )◦ is an open substack of the (finite) disjoint union of moduli

spaces QGβ̃(Z//T ) with β̃ mapping to β. On QGβ(Z//T )◦ we have the following

morphism of distinguished triangles, where the left vertical arrows are the absolute

perfect obstruction theories of (3.18) (see Lemma 2.3.6).

(ψ◦)∗E•G E•T (R•π∗u
∗Tψ)∨

(ψ◦)∗LQGβ̃(Z//G) LQGβ̃(Z//T ) Lψ◦

(ψ◦)∗φG (ψ◦)∗φT (3.47)

Now restrict this diagram to Fβ̃(Z//T ) ∩ Zs(G) and use base change as in (2.18).

We use Lemma 3.4.2 to relate the virtual and euler classes appearing in the definition

(3.23) of the I-function. We recall the definitions of these classes. According to [CKL17,

Sec 3], the composition

E•G|fix
F

φ|fix
F−−→ LQGβ(Z//G)|fix

F → LFβ̃(Z//G)

is a perfect obstruction theory on Fβ̃(Z//G). The virtual class [Fβ̃(Z//G)]vir in (3.23)

is the one defined by this perfect obstruction theory. By definition we have

Nvir
Fβ̃(Z//G) := (E•G|mov

F )∨. (3.48)

We note that the complex (3.48) has a global resolution by vector bundles. (This is

because it is a perfect complex on a projective variety, see [Stacks, Tag 0F87].) Thus

we may define its euler class as in [Stacks, Tag 0F9E].
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Corollary 3.4.3. We have the following relationships on Fβ̃(X//T ):

ψ∗
β̃
[Fβ̃(Z//G)]vir = [Fβ̃(Z//T )]vir (3.49)

ψ∗
β̃
eC∗(N

vir
Fβ̃(Z//G)

) = eC∗(N
vir
Fβ̃(Z//T )

)

∏
β̃(ρ)<0

∏−1

k=β̃(ρ)+1
(c1(Lρ) + kz)∏

β̃(ρ)≥0

∏β̃(ρ)
k=1(c1(Lρ) + kz)

. (3.50)

Here, ρ ranges over characters of T .

Proof. For the equality of virtual classes, modify (3.46) by applying the “fix” functor,

and then use the commuting square

Fβ̃(Z//T ) ∩ Zs(G) QGβ(Z//T )◦

Fβ̃(Z//G) QGβ(Z//G)

and Lemma 2.2.12 part 2 to map the bottom row to the canonical distinguished triangle

for ψ : Fβ̃(X//T ) ∩ Xs(G) → Fβ̃(X//G). The resulting morphism of distinguished

triangles

ψ∗
β̃
(E•G|fix

F ) E•T |fix
F ((R•π∗u

∗
FTψ)fix)∨

ψ∗
β̃
(LFβ̃(Z//G)) LFβ̃(Z//T ) Lψβ̃

is exactly the diagram for checking that we can define virtual pullback along ψβ̃ as in

[Man12]. Because the complex Tψ is a vector bundle in degree 0, Lemma 3.3.3 shows

that (Rπ∗u
∗Tψ)|fix

F is also a vector bundle in degree 0. So virtual pullback is defined

and agrees with the usual flat pullback [Man12, Rmk 3.10]. By [Man12, Cor 4.9], we

get (3.49).

To compute the euler class, pull back the universal family (3.41) along the closed

embedding (3.42). We see that we may write the universal curve [Fβ̃(Z//T )∩Zs(G)]×P1

as the quotient

(Zβ̃ × C2)/(T × C∗)

and that with this presentation, the vector bundle u∗FTψ on [Fβ̃(Z//T ) ∩ Zs(G)]× P1

is induced from a topologically trivial bundle on Zβ̃ × C2. This trivial bundle has
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fiber equal to the subspace of the lie algebra g of G with nontrivial weights, viewed

as a T × C∗ representation, where T acts via the adjoint representation and C∗ acts

trivially. In particular, u∗FTψ splits into a sum of line bundles corresponding to the

weights ρ of the T -action on g.

Now we apply [Stacks, Tag 0F9F] to the top row of (3.46), recalling the definition

(3.48). Since Riπ∗u
∗
FTψ is locally free for i = 0, 1 (its fibers all have the same rank,

see [Har77, Exercise II.5.8]), we get

ψ∗
β̃
eC∗(N

vir
Fβ̃(X//G)

) = eC∗(N
vir
Fβ̃(X//T )

)
eC∗((R

1π∗u
∗
FTψ)mov)

eC∗((R0π∗u∗FTψ)mov)
(−1)rk(R1π∗u∗FTψ)−rk(R0π∗u∗FTψ).

(3.51)

To compute the sign in (3.51), recall that for the reductive group G the weights ρ

come in pairs (ρ,−ρ). Since the euler characteristic of OP1(d) and OP1(−d) have the

same parity, we see that the sign is always equal to +1.

If β̃(ρ) is nonnegative, then R0π∗u
∗
FTψ is nonzero on a closed fiber of π, and a basis

is given by the monomials uβ̃(ρ), uβ̃(ρ)−1v, uβ̃(ρ)−2v2, . . . , vβ̃(ρ) which have C∗-weights

0, 1, 2, . . . , β̃(ρ), respectively. Hence the euler class of the moving part of this bundle

is
∏β̃(ρ)

k=1(c1(Lρ) + kz).

If β̃(ρ) is less than -1, then R1π∗u
∗
FTψ is nonzero on a closed fiber of π, and a basis

is given by monomials uvβ̃(ρ)+1, u2vβ̃(ρ)+2, . . . , uβ̃(ρ)+1v. Hence the euler class of the

moving part of this bundle is
∏−1

k=β̃(ρ)+1
(c1(Lρ) + kz).

3.4.3 Proof of the main theorem

The following lemma, a restatement of [Bri96, Prop 2.1], lets us navigate around the

bottom left triangle of (3.33).

Lemma 3.4.4. For any δ ∈ A∗(Zs(G)/Pα̃), we have

g∗f∗δ =
∑

ω∈W/Wα̃

ω∗

[
p∗δ∏

ρ∈R+
α̃
c1(Lρ)

]
(3.52)

where R+
α̃ is the set of roots of G whose inner product with the dual character α̃ is

positive.

Proof. We reduce this statement to the one in [Bri96, Prop 2.1]. Using the dynamic

method, one may obtain a Borel subgroup of G, contained in Pα̃, equal to Pµ for some
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cocharacter µ that is positive on any root where τα̃ is positive (see e.g. [CF, 45]). So

the opposite roots of this Borel, minus the roots of Lα̃, are precisely those roots where

τα̃ is negative. Recalling the relationship (3.34), we see that this is the set R+
α̃ .

Using the Leray-Hirsch theorem for Zs(G)/Pα̃ → Zs(G)/G and the fact that the

characteristic homomorphism (Sym(χ(T ))Wα̃ → A∗(G/Pα̃) is surjective (this follows

from [Dem74, Sec 1.5] and [RWY11, (3.1)]), it is enough to show that (3.52) holds

when δ is in the image of cP : (Sym(χ(T )))Wα̃ → A∗(Z
s(G)/Pα̃).

For such δ = cP (ξ), the result [Bri96, Prop 2.1] tells us

g∗f∗δ = p∗f ∗f∗c
P (ξ) = p∗cP

 ∑
w∈W/Wα̃

w · (ξ/
∏
ρ∈R+

α̃

ρ)

 .

Note that f∗c
P is a restriction of the characteristic homomorphism cT : Sym(χ(T ))→

A∗(Zs(G)/T ), by functoriality of c1. The map cT is W -equivariant (3.30), so (3.52)

follows.

Let α̃i = `T (β̃i). Turning to formula (3.23) for I
Z//G
β (z), we first write it as a sum of

pushforwards from Fβ̃i(Z//G) using (3.45). We use Proposition 3.3.1 to identify the

evaluation map on each component, and then apply Lemma 3.4.4, obtaining

g∗I
Z//G
β =

∑
β̃i

∑
w∈W/W`T (β̃i)

w∗

[
p∗i∗([Fβ̃i(Z//G)]vireC∗(N

vir
Fβ̃i

(Z//G))
−1)∏

ρ∈R+
α̃i

c1(Lρ)

]
. (3.53)

Let us simplify the numerator of a summand of (3.53). From Lemma 3.4.1 and the

equivariance of ev•, we have a commuting diagram

Fw−1β̃i
(Z//T ) ∩ Zs(G) Fβ̃i(Z//T ) ∩ Zs(G) Fβ̃i(Z//G)

Zs(G)/T Zs(G)/T Zs(G)/Pα̃i

w

ev•

ψβ̃i

ev• i

w pα̃i

The square on the left is fibered because w is an isomorphism and the square on the

right is fibered by Proposition 3.3.1, so the outer square is fibered. Because w and pα̃i
are flat, by [Ful98, Prop 1.7] we have w∗p∗α̃ii∗ = (ev•)∗w

∗ψ∗
β̃i

, so that the numerator of
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a summand in (3.53) is

(ev•)∗ψ
∗
w−1β̃i

(
[Fβ̃i(Z//G)]vireC∗(N

vir
Fβ̃i

(Z//G))
−1
)

(3.54)

where we have also used that ψ (defined on Fβ(Z//T )) is equivariant.

Now let us compute the denominator of a summand of (3.53). We get

w∗
∏
ρ∈R+

α̃i

c1(Lρ) =
∏
ρ∈R+

α̃i

c1(Lw−1·ρ) =
∏

ρ∈R+

w−1·α̃i

c1(Lρ). (3.55)

The first equality uses (3.30) and the second follows from the fact that the natural

pairing between χ(T ) and Hom(χ(T ),Z) is invariant.

Finally we apply equations (3.54) and (3.55) and use Lemma 3.4.1 to combine the

double sum in (3.53) into a single sum, obtaining

g∗I
Z//G
β =

∑
β̃ 7→β

(ev•)∗ψ
∗
β̃
([Fβ̃(Z//G)]vireC∗(N

vir
Fβ̃(Z//G))

−1)∏
ρ∈R+

`T (β̃)

c1(Lρ)
. (3.56)

We can compute the pullbacks in the numerator with Corollary 3.4.3. Finally, applying

the projection formula and recalling that R+

`T (β̃)
is just the set of roots with `T (β̃)(ρ) =

β̃(ρ) > 0, we recover Theorem 3.1.1.

3.5 Extensions and applications

3.5.1 Equivariant I-functions

Let S be a torus and suppose that we have an action of S ×G on Z extending the

action of G = {1} ×G on Z. In other words, S acts on Z and this action commutes

with the action of G. Then S acts on [Z/G] and [Z/T ] (see [Rom05b, Rmk 2.4]) and

this defines actions on QGβ(X//G) and QGβ̃(X//T ) and their universal families by

Lemma 2.3.9, viewing them as substacks of the moduli of sections as in Section 3.2.3.

Moreover the perfect obstruction theory E• in (3.18) is canonically S-equivariant as

in Lemma 2.3.10.

Because the actions of S and C∗ on P1×[Z/G] commute, the C∗-fixed locus Fβ(Z//G)

is invariant under the action of S and the C∗-fixed and moving parts of the perfect

obstruction theory E• are also S equivariant. Finally the map ev• is S-equivariant
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since the universal family on QGβ(X//G) is. These statements also hold for T in place

of G. Since the spaces Fβ(Z//G) are schemes, we can use the equivariant intersection

theory of [EG98] to define [Fβ(Z//G)]S,vir in AS∗ (F ). The class eS×C∗(N
vir
Fβ

) is defined

as in [Stacks, Tag 0F9E] but with the euler classes replaced by their S×C∗-equivariant

counterparts. Hence we can define the S-equivariant I-function via the same formulas

(3.23), but with all objects replaced by their S-equivariant counterparts.

For ρ ∈ χ(T ), let Lρ be the S-equivariant line bundle on Xs(T )/T given by

Lρ = Xs(T )×T Cρ (3.57)

where Cρ is the S × T -equivariant representation where S acts trivially and T acts

with character ρ.

Corollary 3.5.1. The S-equivariant I-functions of Z//G and Z//T satisfy the equation

(3.5), with I
S,Z//G
β (z) and I

S,Z//T
β (z) in place of I

Z//G
β (z) and I

Z//T
β (z).

Proof. First note that Proposition 3.2.21 and Lemma 3.4.4 also hold S-equivariantly

(in Lemma 3.4.4, the line bundles c1(Lρ) are S-equivariant as in (3.57) and we take

the S-equivariant first chern class). The same proofs work after replacing Zs(G)

with Zs(G)×S U , where U → U/S is an appropriate approximation of the universal

S-bundle (definition as in [EG98, Sec 2.2]).

Now the computation in Section 3.4 proceeds as follows. The hardest part is showing

that the whole diagram (3.46) is equivariant; i.e., it is isomorphic to the pullback of

a morphism of distinguished triangles on [(Fβ̃(Z//T ) ∩ Zs(G))/S] (compare with the

proof of Lemma 2.3.11). It suffices to show that the diagram (3.47) is equivariant.

In fact, it is the pullback of the analogous diagram on [QGβ(Z//T )◦/T ]. This uses

Lemma 2.3.10, as well as Corollary 2.3.7 to recognize the map

(R•π∗u
∗Tψ)∨ → Lψ◦

and its analog on [QGβ(Z//T )◦/T ] as canonical obstruction theories so that Lemma

2.3.10 applies to this morphism as well. To get commutativity of the remaining squares,

use Lemma 2.2.12 part 2 to get two morphisms of distinguished triangles, to one of

which apply the functor R•π∗u
∗.

To compute the equivariant euler class in Corollary 3.4.3, note that since S commutes

with G its action on the lie algebra g is trivial. The remainder of the proof is the same

as in the non-equivariant case.
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3.5.2 Twisted I-functions

Let S be a torus and suppose we have an action of S × G on Z as in Section 3.5.1.

Furthermore, let R = C∗ act trivially on Z with equivariant parameter µ; note this

induces the trivial action on Fβ as a moduli space of maps. Let E be a S × G-

equivariant vector bundle on Z, and let Cµ be the R-equivariant vector bundle on

Z that is topologically trivial and has its R-action given by scaling fibers. Let EG

denote the S ×R-equivariant vector bundle on [Z/G] corresponding to E ⊗ Cµ. Let

π : Fβ × P1 → Fβ be the universal curve and u : Fβ × P1 → [Z/G] the universal map.

Recall that we have an additional C∗-action on Fβ × P1 that is trivial on Fβ and

acts on P1 via (3.19), and that u is invariant with respect to this action. So u∗EG

is naturally S × R × C∗-equivariant. We assume that the complex Rπ∗u
∗EG has a

S × R × C∗-equivariant global resolution by vector bundles; i.e., it is an element of

the rational Grothendieck group

K◦S×R×C∗(Fβ) = K◦S×C∗(Fβ)⊗Q[µ, µ−1]

of S ×R× C∗-equivariant vector bundles on Fβ. This assumption holds, for example,

if R1π∗u
∗EG is zero and R0π∗u

∗EG is a vector bundle (see also [CKM14, Sec 6.2]).

Fix an invertible multiplicative characteristic class c defining a group homomorphism

c : K◦S×R×C∗(Fβ)→ (H∗S×R×C∗(Fβ,Q))×

to the group of units in H∗S×R×C∗(Fβ,Q). A priori, c may be defined only for vector

bundles; its invertibility means its definition extends to elements of K-theory. Let EG

denote the S × R-equivariant vector bundle on Z//G induced by E ⊗ Cµ. Now we

define the S-equivariant, c(E)-twisted I-function to be

IZ//G, S, c(E)(z) = 1 +
∑
β 6=0

qβI
Z//G, S, c(E)
β (z)

where

I
Z//G, S, c(E)
β (z) = c(EG)−1(ev•)∗

(
[Fβ]S×R,vir ∩ c(Rπ∗u

∗EG)

eS×R×C∗(N vir
Fβ

)

)
. (3.58)

(see [CK14b, (7.2.3)]). Note that the torus R is omitted from the superscripts in the
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I-function notation.

For the abelianization theorem, observe that E is naturally a T -equivariant vector

bundle on Z, so we can also define the c(E)-twisted I-function of Z//T .

Corollary 3.5.2. If the class c is functorial with respect to pullback, then Theorem

(3.1.1) holds with I
Z//G, S, c(E)
β (z) and I

Z//T, S, c(E)
β (z) in place of I

Z//G
β (z) and I

Z//T
β (z).

Proof. To complete the computation in Section 3.4.3, first note that

g∗c(EG)−1 = c(g∗EG)−1 = c(ET )−1.

The remainder of the computation is the same until the last line when we replace the

numerator in the right-hand side of (3.56) with

(ev•)∗ψ
∗
β̃
([Fβ̃(Z//G)]vir ∩ eS×R×C∗(N vir

Fβ̃(Z//G))
−1 ∩ c(Rπ∗u

∗EG)).

By functoriality of c, the term ψ∗
β̃
(c(Rπ∗u

∗EG)) is equal to

c(ψ∗
β̃
Rπ∗u

∗EG) = c(Rπ∗u
∗ψ∗EG)

where ψ is the natural map from [X/T ] to [X/G]. The bundle ψ∗EG is just ET .

Remark 3.5.3. The standard application of twisted invariants is to choose E that

satisfies R1π∗u
∗EG = 0 and set c to be the R-equivariant euler class eS. Then the

non-equivariant limit of (3.58) exists—i.e., one can set µ = 0. This non-equivariant

limit is the definition of the twisted I-function in [CK14b, Sec 7.2]. Taking the non-

equivariant limit of Corollary 3.5.2, we see that abelianization holds for these twisted

I-functions as well. We will denote these non-equivariant, euler-twisted I-functions by

IZ//G,E.

3.5.3 Big I-functions

The I-function we have been discussing in this paper is often called the small I-function

because it is related to Gromov-Witten invariants with insertions all in H2(Z//G,Q).

The big I-function is expected to encode Gromov-Witten invariants with arbitrary
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insertions, and it is defined in [CK16] to be the generating series

IZ//G(z) = 1 +
∑
β 6=0

qβIZ//Gβ (z) where IZ//Gβ (z) = (ev•)∗

(
exp(êv∗β(t)/z)

[Fβ]vir

eC∗(N vir
Fβ

)

)
(3.59)

Fβ and ev• are defined as in (3.23), and the sum is over all θ-effective classes β of

(Z,G) (but we have yet to define the notation exp(êv∗β(t)/z)). The goal of this section

is to prove an abelianization formula for IZ//G(z) and use it to derive a closed formula

for IZ//G(z) when Z is a vector space.

Let S be a torus acting on Z as in Section 3.5.1—we will define (3.59) S-equivariantly.

If Zs ⊂ Z is any locus of stable points, recall the Kirwan map

κG : H∗S×G(Z,Q)→ H∗S(Zs/G,Q).

We will write out the definition when S is trivial. Let EG be the universal principal

G-bundle. Then we have maps

EG×G Z
a←− EG×G Zs b−→ Zs(G)/G

where a is an open embedding and b is projection to the second factor. Then b∗ induces

an isomorphism on cohomology, and the Kirwan map is defined by κG = (b∗)−1 ◦ a∗.
This map is surjective by [Kir84].

In similar spirit we define

êv∗β : H∗G×S(Z,Q)⊗Q Q[z]→ H∗S×C∗(Fβ,Q).

Let P → Fβ × P1 be the universal principal bundle and let σ : Fβ × P1 →P ×G Z
be the universal section. When S is trivial, the map êv∗β is simply the pullback in

cohomology along the composition of maps

Fβ
(id,0)−−−→ Fβ × P1 σ−→P ×G Z → EG×G Z.

Now we can define the notation in (3.59). Fix a homogeneous basis γi of H∗S(Z//G,Q).

Let γ̃i ∈ H∗S×G(Z,Q) be classes such that κG(γ̃i) = γi, and set

t =
∑
i

γ̃iti
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for ti some formal variables. The term exp(êv∗β(t)/z) is interpereted as a polynomial

in the ti with coefficients in H∗S×C∗(Fβ,Q) via the power series expansion of the

exponential.

When Z is a vector space, we can explicitly compute (3.59) as follows. By

Proposition 3.2.21, the classes γi are uniquely determined by their pullbacks g∗γi ∈
H∗S(Zs(G)/T,Q), and these pullbacks may be expressed as W -invariant polynomials

in the classes c1(Lξj), where ξj are the characters of the T -action on Z. Write

g∗γi = qi(c1(Lξξξ))

for these polynomials, where qi(c1(Lξξξ)) is shorthand for qi(c1(Lξ1), . . . , c1(Lξr)).

Corollary 3.5.4. If the GIT chamber of θ has dimension equal to the rank of the group

of rational characters χ(G)⊗Q, then the coefficient g∗IZ//Gβ (z) of the big I-function of

Z//θG equals

j∗

∑
β̃→β

exp

(∑
i

tiqi(c1(Lξξξ) + β̃(ξξξ)z)/z

)(∏
α

∏β̃(α)
k=−∞(c1(Lα) + kz)∏0
k=−∞(c1(Lα) + kz)

)
I
Z//T

β̃
(z)

 ,
(3.60)

where

qi(c1(Lξξξ) + β̃(ξξξ)z) := qi(c1(Lξ1) + β̃(ξ1)z, . . . , c1(Lξr) + β̃(ξr)z)

and the sum is over all β̃ mapping to β under the natural map Hom(PicT (X),Z)→
Hom(PicG(X),Z) and the product is over all roots α of G.

This corollary extends the procedure in [CK16, Sec 5.3].

Proof. The first step is to carefully choose the lifts γ̃i. We have a commuting diagram

of topological spaces

ET ×T Z ET ×Z Zs(G) Zs(G)/T

EG×G Z EG×G Zs(G) Zs(G)/G

ψ

a b
∼

g

a b
∼
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which leads to a commuting diagram of cohomology maps

H∗S×T (Z,Q)W H∗S(Zs(G)/T,Q)W

H∗S×G(Z,Q) H∗S(Z//G,Q)

κT

∼ψ∗

κG

∼ g∗ (3.61)

The right vertical arrow is an isomorphism by Proposition 3.2.21, and the left vertical

arrow is an isomorphism by [Bri98, Prop 1]. Let

δ̃i = qi(c1(Lξξξ)) ∈ H∗S×T (Z,Q)W ,

so κT (δ̃i) = g∗γi. Then set γ̃i = ψ∗δ̃i. Commutativity of (3.61) implies that κG(γ̃i) = γi

as desired.

Now we apply the computation in Section 3.4.3 to IZ//Gβ . In place of (3.56) we arrive

at the formula

g∗IZ//Gβ =
∑
β̃ 7→β

(ev•)∗ψ
∗
β̃
(exp(êv∗

β̃
(t)/z)[Fβ̃(Z//G)]vireC∗(N

vir
Fβ̃(Z//G))

−1))∏
ρ∈R+

`T (β̃)

c1(Lρ)

where êv∗
β̃

denotes the composition

H∗G×S(Z,Q)⊗Q Q[z]
êv∗β−−→ H∗S×C∗(Fβ(Z//G),Q)→ H∗S×C∗(Fβ̃(Z//G),Q)

where the second map is restriction to an open and closed subspace of Fβ(Z//G). To

compute ψ∗
β̃
êv∗

β̃
we use the commuting diagram

H∗S×T (Z,Q) H∗S(Fβ̃(Z//T ) ∩ Zs(G),Q)

H∗S×G(Z,Q) H∗S(Fβ̃(Z//G),Q)

êv∗
β̃

êv∗
β̃

ψ∗ ψ∗
β̃

which follows from the commuting diagram of topological spaces (in the case when S
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is trivial)

ET ×T Z T ×T Z Fβ̃(Z//T ) ∩ Zs(G)× P1 Fβ̃(Z//T ) ∩ Zs(G)

EG×G Z P ×G Z Fβ̃(Z//G)× P1 Fβ̃(Z//G)

ψ

σ (id,0)

ψβ̃

σ (id,0)

We see that

ψ∗
β̃
êv∗

β̃
(γ̃i) = êv∗

β̃
ψ∗(γ̃i) = êv∗

β̃
(δ̃i)

by the definition of γ̃i. But by [CK16, Lem 5.2, Rmk 5.3], we have

êv∗
β̃
(δ̃i) = ev∗•qi(c1(Lξξξ) + β̃(ξξξ)z)

(this is where we use the assumption that the GIT chamber of θ has full dimension).

The rest of the computation proceeds via the projection formula as in Section 3.4.3

and [CK16, Sec 5.1].

3.5.4 Applications to Gromov-Witten theory

With the wall-crossing theorems of [CK14b], Theorem 3.1.1 can be used to compute

certain small J-functions. In order to have a clear statement to use in our applications,

we summarize [CK14b, Cor 7.3.2] here. If E is a vector space with a linear G-action,

we say that the resulting vector bundle on Z//G is convex if (P1,P, σ,x) is a quasimap

to Z//G, then H1(P1,P ×G E) = 0. (See [CKM14, Prop 6.2.3] for some sufficient

conditions for E to be convex.) The following theorem applies to the twisted theory

described in Remark 3.5.3.

Theorem 3.5.5 ([CK14b, Cor 7.3.2]). Assume Z//θG is Fano of index at least 2, and

has an S-action with isolated fixed points. Let E be a convex representation satisfying

β(det(TZ))− β(det(Z × E)) ≥ 0

for all θ-effective classes β, where TZ is the (G-equivariant) tangent bundle of Z. Then

JX//G,E = IX//G,E, both S-equivariantly and nonequivariantly.

We remark that the big I-func in (3.59) is also known to lie on the Lagrangian cone

in good circumstances (see [CK16, Thm 3.3]).
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One application of [CK14b, Cor 7.3.2] is as follows. In [CKS08, Conj 3.7.1] the

authors conjecture a relationship between the Frobenius manifolds defined by the

Gromov-Witten theories of Z//T and Z//G. Theorem 3.1.1, together with several

substantial results in the literature, implies their conjecture in certain cases. Let S be

a torus acting as in Section 3.5.1.

Corollary 3.5.6. If Z//G is Fano of index at least 2, and if the S-action has isolated

fixed points, then the conjecture [CKS08, Conj 3.7.1] holds.

Proof. We may apply the reconstruction theorem in [CKS08, Thm 4.3.6] because the

localized equivariant cohomology ring

H∗S(Z//G,Q)⊗ Frac(H∗S(pt,Q))

is generated by divisors (this follows from the torus localization theorem). By the

reconstruction theorem, it suffices to relate the S-equivariant small J-functions of

Z//G and Z//T (by the same factor as in Theorem 3.1.1 for I-functions). By the

mirror theorem of [CK14b, Cor 7.3.2] (restated in Theorem 3.5.5 above), this equality

follows from the equality in Theorem 3.1.1 of small I-functions.

3.5.5 Example: A Grassmann bundle on a Grassmannian

variety

In this section we will apply Theorem 3.1.1 to a family of Calabi-Yau hypersurfaces in

Fano GIT quotients, proving the following.

Theorem 3.5.7. Let Y := GrGr(k,n)(`, U
⊕m) be the Grassmann bundle of `-planes

in m copies of the tautological bundle U on Gr(k, n), and assume n > `m and

gcd(n−`m, km) > 1. Let ω∨ be the anticanonical bundle of Y with trivial linearization.

Let S = (C∗)n+m act on Y as defined in Section 3.5.5. Then the ω∨-twisted equivariant
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small J-function of Y equals 1 +
∑

d,e>0 q
d
1q
e
2J(d,e)(z), where J(d,e)(z) equals

∑
d1+...+dk=d
e1+...+e`=e

k∏
i,j=1
i 6=j

(∏di−dj
h=−∞(xi − xj + hz)∏0
h=−∞(xi − xj + hz)

) ∏̀
i,j=1
i 6=j

(∏ei−ej
h=−∞(yi − yj + hz)∏0
h=−∞(yi − yj + hz)

)

·
k∏
i=1

n∏
α=1

(∏0
h=−∞(xi + λ1

α + hz)∏di
h=−∞(xi + λ1

α + hz)

)
k∏
i=1

∏̀
j=1

m∏
β=1

(∏0
h=−∞(yj − xi + λ2

β + hz)∏ej−di
h=−∞(yj − xi + λ2

β + hz)

)

·

(∏(n−`m)d+kme
h=−∞ ((n− `m)

∑k
i=1 xi + km

∑`
j=1 yj + hz)∏0

h=−∞((n− `m)
∑k

i=1 xi + km
∑`

j=1 yj + hz)

)
,

(3.62)

where the xi are the Chern roots of U , the yj are the Chern roots of the tautological

bundle for the Grassmann bundle Y , and the λ’s are the equivariant parameters.

In the formula (3.62), the first line is the factor coming from the roots of G, the

second line is the J-function of the abelian quotient, and the last line is the ω∨-twisting

factor.

Defining the target

To define the GIT target, choose integers k, n, `, and m with k < n and ` < km. Let

Mk×n denote the space of k × n matrices with complex entries, and set

• the vector space X = Mk×n ×M`×km

• the group G = GLk ×GL`

• the action (g, h) · (V,W ) = (gV, hWdiag(g−1)) for (g, h) ∈ G and (U,W ) ∈ X
where diag(g−1) is the block diagonal km × km matrix with g−1 repeated m

times

• the character θ(g, h) = det(g) det(h)

We can check stability of points using the numerical criterion [Kin94, Prop 2.5]. It is

straightforward to compute that

Xss
θ (G) = Xs

θ (G) = (Mk×n \∆)× (M`×km \∆),

where ∆ denotes matrices of less than full rank. Thus,

X//θG = GrGr(k,n)(`, U
⊕m) =: Y
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is the Grassmann bundle of `-planes in m copies of the tautological bundle U on

Gr(k, n).

On X//θG we have the euler sequence

0→ Xs(G)×G g→ Xs(G)×G X → TX//G → 0,

which is just the dual of the short exact sequence of cotangent complexes for the

smooth morphisms Xs(G)→ X//G→ pt. From this sequence we compute that for any

ϑ the anticanonical bundle of V //ϑG is the line bundle corresponding to the character

(g, h) 7→ det(g)n−`m det(h)km.

One can also check that if ϑ(g, h) = det(g)a det(g)b with a, b > 0 then Xss
ϑ (G) =

Xs
ϑ(G) = Xs

θ (G) so also X//ϑG = X//θG. Since Xs(G) ×G Cϑ is always ample on

X//ϑG, this implies that when n > `m, the target Y is Fano. If gcd(n− `m, km) > 1

then we also know it has index at least 2. A generic section of the anticanonical bundle

defines a Calabi-Yau subariety of Y .

Quasimaps and I-function

Let ω∨ denote the anticanonical bundle of Y . To check that it is convex, so that

we can write down the I-function a corresponding hypersurface, we need to briefly

investigate quasimaps to Y . We will also describe the fixed locus Fα̃(X//G) in this

case, for α̃ ∈ Hom(χ(T ),Z). A stable quasimap to Y is equivalent to the following

data:

• a rank-k vector bundle ⊕ki=1OP1(di) and a rank-` vector bundle ⊕`j=1OP1(ej)

• a section σ of
[
⊕ki=1OP1(di)

⊕n]⊕ [⊕`j=1 ⊕ki=1 OP1(ej − di)⊕m
]
, written as a k× n

and `×mk matrix of polynomials, such that all but finitely many points x ∈ P1

satisfy σ(x) ∈ V s.

In fact, this data defines a quasimap to X//θT of degree α̃ = (d1, . . . , dk, e1, . . . , e`);

the degree as a quasimap to V //G is α = (
∑
di,
∑
ej). In order to have finitely many

basepoints, a stable quasimap must have di ≥ 0, hence also ej ≥ 0, so that if n > `m

then ω∨ is indeed convex.
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We can now read off the twisted I-function using Theorem 3.1.1, obtaining formula

(3.62) with the equivariant parameters λ set to zero. In the next section we will derive

the full equivariant formula.

Finally we identify Fα̃(X//G). For simplicity assume that the sequences d1, . . . , dk

and e1, . . . , e` are ordered from smallest to largest. The subspace Xα̃ ⊂ X is Mk×n×X ′α̃,

where X ′α̃ is the subspace of M`×km consisting of matrices (mij) where

mij = 0 if ei − d(j mod m)+1 < 0.

Such a matrix looks something like the picture in Figure 3.3.

* 0 * 0 · · · * 0

Figure 3.3: An element of X ′α̃
This diagram represents a matrix. The entries labeled “0” are required to be zero and the
entries labeled “*” are not. The same `× k pattern of *’s and 0’s is repeated m times.

The group Pα̃ ⊂ G is P1 × P2 where P1 is the parabolic subgroup of GLk equal to

block lower triangular matrices with blocks determined by the multiplicities of the di,

and P2 ⊂ GL` is similarly defined by the ej . Hence from Lemma 3.3.6 and Proposition

3.3.1 we have a series of maps

Fα̃(X//G) = Xs
α̃(G)/Pα̃ ↪→ Xs(G)/Pα̃ → Xs(G)/G = X//G

whose composition is ev•. The first arrow is a closed embedding and the second is a

flag bundle.

A good torus action

The target Y has a torus action with isolated fixed points. Let S = (C∗)n × (C∗)m act

on X as follows: if s1 is an n×n diagonal matrix and s2 is a km×km diagonal matrix

with m constant k × k diagonal blocks, and both s1 and s2 are filled with numbers

from C∗ then

(s1, s2) · (V,W ) = (Ws1, V s2).
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This action commutes with the action of G. We can extend it to a linearization of ω∨

as follows. The total space of ω∨ is X ×G Cκ, where κ(g, h) = det(g)n−`m det(h)km.

Define (s1, s2) · (V,W, z) = (V s1,Ws2, z) for (V,W ) ∈ X and z ∈ C.

The S-action on Y has isolated fixed points as follows. For I ⊂ {1, . . . , n} let DI

denote the k × n matrix which has the identity matrix in the I-columns and zeros

elsewhere. Similarly, for J ⊂ {1, . . . , km}, let DJ denote the ` × km matrix which

has the identity matrix in the I-columns and zeros elsewhere. Then the fixed points

of the S-action are (DI , DJ) for all possible combinations of I and J . Now we can

apply the mirror theorem in [CK14b, Cor 7.3.2] (see also Theorem 3.5.5), noting that

the quantity β(det(TX))− β(X × E) in the hypotheses is 0 since E = det(TX), and

conclude that (3.62) holds.

3.6 Two lemmas

Here we prove two geometric lemmas that are probably well-known, but we could not

find a reference. Compare the following statement and its proof with [Con, Cor 1.2].

Lemma 3.6.1. Let X and Y be finite type schemes over C and let G be an algebraic

group, also of finite type over C. If π : X → Y is a principal G-bundle and V ⊂ X is

a closed invariant subscheme, then there is a fibered square

V X

π(V ) Y

π

where π(V ) is the scheme-theoretic image of V .

Proof. We claim that V = π−1(Z) for some closed subscheme Z ⊂ Y . Granting this

claim, we must have π(V ) ⊂ Z from the universal property of images, and hence

V ⊂ π−1(π(V )) ⊂ π−1(Z) = V.

This implies V = π−1(π(V )).

Now we prove the claim. By fppf descent for closed subschemes, it suffices to show

that p−1
1 (V ) = p−1

2 (V ) for the projection morphisms pi : X ×Y X → X. Clearly

p−1
1 (V ) = V ×Y X and p−1

2 (V ) = X ×Y V . On the other hand we have a morphism
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φ : G×X → X ×Y X given by φ = (α, p2), where α : G×X → X is action and p2 is

projection to the second factor. We have

X ×Y V ⊂ φ(G× V ) ⊂ V ×Y V ⊂ V ×Y X

where the second inclusion uses the G-invariance of V . An analogous argument shows

that the opposite containment V ×Y X ⊂ X ×Y V also holds.

The following result is probably known, but due to a lack of reference we provide a

proof. Compare for example with [Stacks, Tag 0DUD].

Lemma 3.6.2. Let X and Y be smooth algebraic stacks over C, locally of finite

type with diagonals represented by separated algebraic spaces of finite type, with Y

quasicompact. If π : X → Y is a proper morphism inducing bijections of C-points and

of automorphism groups of C-points, then π is an isomorphism.

The heuristic for this lemma is that every locally closed subset of a stack contains a

point of finite type [Stacks, Tag 06G2], and for stacks locally of finite type over C, the

points of finite type are precisely the C-points. Hence to check that an open or closed

property is true for an algebraic stack, it suffices to check it for C-points of the stack.

Proof. We first show that π is universally injective by checking that the diagonal

∆π : X → X ×Y X is surjective. Because π is separated, ∆π is closed, so the

complement of the image |∆π|C is an open subset of |X ×Y X| and contains a C-point

if it is nonempty. So it suffices to show that ∆π is surjective on C-points.

To this end, let (x1, x2, β) be an element of (X ×Y X)(C), so we have xi ∈ X(C)

and β : π(x1) → π(x2) a morphism lying over the identity. We find an arrow from

(x1, x1, id) to (x1, x2, id). It suffices to find an arrow α from x1 to x2 in X such that

π(α) = β, yielding a commuting square

π(x1) π(x1)

π(x1) π(x2)

id

π(α)

β

Because π is injective on C-points, and the C-points π(x1) and π(x2) are isomorphic,

the points x1 and x2 are also isomorphic via some arrow γ in X. Then π(γ)−1 ◦ β
is in Aut(π(x1)). Because we’ve assumed π induces bijections of isotropy groups of
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C-points, there is some δ ∈ Aut(x1) with π(δ) = π(γ)−1 ◦ β. Then β = π(γ ◦ δ), as

desired.

Next we show that π is representable by algebraic spaces. It suffices to show that

the inertia stack IX/Y → X is trivial ([Stacks, Tag 04YY]). By assumption and

the exact sequence of automorphism groups in [Stacks, Tag 0CPK], we see that the

relative automorphism group of every C-point of X is trivial. We can check triviality

of IX/Y → X on a smooth cover by a scheme U → X. Let G = U ×X IX/Y denote

the fiber product; then G → U is a finite type group algebraic space over a locally

finite type scheme with trivial fibers at C-points. From here we may argue as in

[Con07, Thm 2.2.5], replacing geometric points with C-points. For example, [Stacks,

Tag 04NW] implies that G→ U is locally quasi-finite.

In fact, our assumptions imply that π is separated and locally quasi-finite, so that

by [Stacks, Tag 03XX] π is representable by schemes. Hence we have reduced to the

case where X and Y are schemes.

To prove the lemma in this case, observe that π is injective: the rank of π∗OX

is 1 at every C-point, hence its rank is 1 everywhere (dimension can only go up on

closed sets). Likewise π is surjective. Now restrict π to a connected component U

of Y ; its preimage must be a component V of X. Then π : V → U is a quasifinite,

proper (hence finite) morphism of integral schemes; since it is injective, it induces an

isomorphism of function fields. Hence π is a birational morphism of smooth integral

finite-type schemes, and therefore an isomorphism.
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Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck
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