
Complexity, Algorithms, and Heuristics of Influence
Maximization

by

Biaoshuai Tao

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2020

Doctoral Committee:

Associate Professor Chris Peikert, Co-Chair
Assistant Professor Grant Schoenebeck, Co-Chair
Professor Wei Chen
Professor Seth Pettie
Assistant Professor Daniel Romero

Biaoshuai Tao

bstao@umich.edu

ORCID iD: 0000-0003-4098-844X

© Biaoshuai Tao 2020

Acknowledgments

First, I would like to thank my advisor Grant Schoenebeck. He has provided me

invaluable advice in my research and trained me in various useful research skills.

He has also provided me all the opportunities of learning, visiting, travelling and

conferences that I have ever requested.

In addition to my advisor, I would like to thank Wei Chen. As an expert in influence

maximization, he has kindly given me many invaluable suggestions and shown me

new research sub-areas related to this thesis.

I would also like to thank my other coauthors and collaborators on this thesis: Fang-

Yi Yu and Binghui Peng. It has been a very pleasant experience to work with them.

I thank the other members of my thesis committee, Chris Peikert, Seth Pettie and

Daniel Romero, for their helpful feedback on this dissertation and throughout grad-

uate school.

I would also like to thank all of my coauthors and collaborators on my other research

areas unrelated to this thesis. Especially, I would like to thank Xiaohui Bei for his

helpful suggestions and ideas for my work in fair division. I would also like to thank

Yuqing Kong, Hongjun Wu, Ning Chen, Fedor Duzhin, Guangda Huzhang, Jiajun

Wu, Endong Yang, Xia Hua, Andrew Gitlin, Laura Balzano and John Lipor who

have worked with me on various other research areas.

I thank all of my friends and family. Thanks to my parents, my wife, and my parents-

in-law, for their support during these five years.

Finally, I would like to give my best wishes to my new-born child Jingce Tao (nick-

name: little bamboo).

ii

Table of Contents

Acknowledgments . ii

List of Figures . vii

List of Tables . ix

List of Appendices . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Diffusion Models: Submodular versus Nonsubmodular 2
1.2 Related Work . 4

1.2.1 On Approximability of Influence Maximization 4
1.2.2 Greedy Algorithm And Its Approximation Guarantee 5
1.2.3 Adaptive Influence Maximization 6
1.2.4 Empirical Work . 7

1.3 Overview of this Thesis . 8
1.3.1 Part I: Submodular Influence Maximization 9
1.3.2 Part II: Nonsubmodular Influence Maximization 10

2 Preliminaries . 12

2.1 Cascade and Diffusion Models . 12
2.1.1 General Threshold Model and Influence Maximization 12
2.1.2 Triggering Model . 15
2.1.3 Independent Cascade Model 16
2.1.4 Linear Threshold Model . 17
2.1.5 Bootstrap Percolation . 20

2.2 Greedy Algorithm . 21
2.2.1 Monte-Carlo Method . 22
2.2.2 Reverse-Reachable-Set-Based Algorithms 22

Part I Submodular Influence Maximization 24

3 On Approximability of Submodular Influence Maximization . . . 25

3.1 Introduction . 25

iii

3.2 Additional Related Work . 27
3.3 Dinur’s PCP Theorem . 28
3.4 APX-hardness of Influence Maximization 30
3.5 Lift, Coupling and Upper Bounds 40

3.5.1 Upper Bound for Uniform Independent Cascade Model . . . 42
3.5.2 Upper Bound for Uniform Linear Threshold Model 44
3.5.3 Upper Bound for Weighted Independent Cascade Model . . 47
3.5.4 Refined Upper Bounds for ULTM and WICM 48
3.5.5 Discussions about Scalability of Reverse-Reachable-Set-Based

Algorithms . 51
3.6 Highly Scalable Heuristics with Empirical Good Performance 51

3.6.1 Local Greedy Heuristics . 52
3.6.2 The Heuristic DegreeDiscountIC 53
3.6.3 Experimental Setup . 54
3.6.4 Results . 55

3.7 Conclusion . 57

4 On Approximation Ratio of Greedy Algorithm 62

4.1 Introduction . 63
4.2 Preliminaries . 65

4.2.1 Influence Maximization Is A Special Case of Max-k-Coverage 68
4.3 Upper Bound on Approximation Guarantee 69
4.4 Lower Bound on Approximation Guarantee 72

4.4.1 Some Properties of Max-k-Coverage 72
4.4.2 Proof of Theorem 4.10 . 73

4.5 On Other Alternative Models . 80
4.6 Conclusion and Open Problems . 83

5 Adaptive Influence Maximization and Greedy Adaptivity Gap . 84

5.1 Introduction . 84
5.2 Preliminary . 87

5.2.1 Adaptive Influence Maximization 87
5.2.2 Adaptivity Gap and Greedy Adaptivity Gap 88

5.3 Infimum of Greedy Adaptivity Gap 89
5.3.1 Tight Examples . 90
5.3.2 Lower Bound . 95

5.4 Supremum of Greedy Adaptivity Gap 100
5.4.1 On Linear Threshold Model with Prescribed Seed Candidates 101
5.4.2 Proof of Theorem 5.14, 5.15 104

5.5 Greedy Algorithms in Practice and Robustness of Our Results . . . 106
5.5.1 (ε, δ)-Greedy Algorithms . 106
5.5.2 Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithms 109

5.6 A Variant of Greedy Adaptive Policy 118
5.7 Empirical Experiments . 119

5.7.1 Experiments Setup . 119

iv

5.7.2 Results . 121
5.8 Conclusion and Open Problems . 125

Part II Nonsubmodular Influence Maximization 126

6 2-Quasi Submodular Diffusion Model 127

6.1 Introduction . 127
6.2 Additional Related Work . 129
6.3 Preliminaries . 130
6.4 Hardness of Approximation for 2-Quasi-Submodular Influence Max-

imization . 131
6.4.1 Proof Sketch of Theorem 6.2 for a1 > 0 132
6.4.2 Proof of Theorem 6.2 for a1 > 0 with Directed Graphs . . . 138
6.4.3 Proof of Theorem 6.2 for a1 > 0 with Undirected Graphs . . 143
6.4.4 Constructions of Some Other Required Gadgets 147
6.4.5 Construction of the AND Gadget with I = 2 154
6.4.6 Construction of the AND Gadget with General I of an Integer

Power of 2 . 157
6.4.7 Construction of Directed Edge Gadget 161
6.4.8 Proof of Theorem 6.2 for a1 = 0 163

6.5 A Variant of Theorem 6.2 . 169

7 Bootstrap Percolation on Graphs with Hierarchical Communities 172

7.1 Introduction . 172
7.2 Preliminaries . 173

7.2.1 Hierarchical Blockmodel . 174
7.2.2 Stochastic Hierarchical Blockmodel 175

7.3 Hardness of Approximation for Hierarchical Blockmodel 176
7.4 Hardness of Approximation for Stochastic Hierarchical Blockmodel . 185
7.5 Hierarchical Blockmodel with One-Way Influence 197

7.5.1 A Dynamic Programming Algorithm 198
7.5.2 Further Discussions . 202

8 r-Complex Contagion on Graphs with Hierarchical Communities 203

8.1 Our Results . 203
8.2 Preliminaries . 205

8.2.1 Stochastic Hierarchical Blockmodels 205
8.2.2 Succinct Stochastic Hierarchical Blockmodel 206
8.2.3 Complex Contagion on Erdős-Rényi Graphs 208

8.3 Our Main Result . 209
8.3.1 Proof Sketch of Lemma 8.13 210
8.3.2 Proof of Lemma 8.14 . 211

8.4 Proof for Proposition 8.16 . 214
8.4.1 Inhomogeneous Random Walk Interpretation 214
8.4.2 The Coupling . 216

v

8.4.3 Validity of the Coupling . 219
8.4.4 Proof of Inequality (8.2) . 221

8.5 Optimal Seeds in Submodular Influence Maximization 222
8.6 A Dynamic Programming Algorithm 222
8.7 Conclusion and Future Work . 225

Bibliography . 227

Appendices . 233

vi

List of Figures

3.1 The edge gadget . 38
3.2 The lift and the boundary lift of G . 50
3.3 Comparing the performances of the local greedy heuristics with objective

functions fλve (left) and fλvb (right) with λ = 0.9, 0.7, 0.5, 0.3, 0.1 on dataset
CA-HepPh under ULTM. 55

3.4 Comparing the performances of the local greedy heuristics with the five
objective functions fe, fv, f 0.9

ve , fb, f
0.9
vb on CA-HepPh under ULTM. 56

3.5 Comparing the local greedy heuristic with f 0.9
vb to the greedy maximum

coverage algorithm on 1,000,000 reverse reachable sets (labelled as “greedy
(RR sets)”), DegreeDiscount, DegreeDiscountIC, and the algorithm that
simply pick k vertices with highest degrees (labelled as “maxDegree”). The
diffusion model is ULTM. 58

3.6 Comparing the local greedy heuristic with f 0.9
vb to the greedy maximum

coverage algorithm on 1,000,000 reverse reachable sets (labelled as “greedy
(RR sets)”), DegreeDiscount, DegreeDiscountIC, and the algorithm that
simply pick k vertices with highest degrees (labelled as “maxDegree”). The
diffusion model is WICM. 59

3.7 Comparing the local greedy heuristic with f 0.9
vb to the greedy maximum

coverage algorithm on 1,000,000 reverse reachable sets (labelled as “greedy
(RR sets)”), DegreeDiscountIC, and the algorithm that simply pick k
vertices with highest degrees (labelled as “maxDegree”). The diffusion
model is UICM with p = 0.01. 60

4.1 The tight example. 71

5.1 The results for the dataset Nethept. The three rows correspond to the
three realizations φ1, φ2, φ3, the left column is for ICM, and the right col-
umn is for LTM. 121

5.2 The results for the dataset CA-HepPh. The three rows correspond to
the three realizations φ1, φ2, φ3, the left column is for ICM, and the right
column is for LTM. 122

5.3 The results for the dataset DBLP. The three rows correspond to the three
realizations φ1, φ2, φ3, the left column is for ICM, and the right column is
for LTM. 123

vii

5.4 The results for the dataset com-YouTube. The three rows correspond to
the three realizations φ1, φ2, φ3, the left column is for ICM, and the right
column is for LTM. 124

6.1 The high-level structure of the reduction for the proof of Theorem 6.2 . 133
6.2 The probability scaling down gadget . 135
6.3 The probability separation block . 135
6.4 The output probability y versus the input probability x 135
6.5 The directed edge gadget 〈u, v〉 . 136
6.6 The AND gadget with two inputs . 136
6.7 The high-level structure of the reduction 140
6.8 The relation of all the gadgets defined 148
6.9 The probability scaling down gadget . 148
6.10 The probability separation block . 150
6.11 The output probability y versus the input probability x 151
6.12 AND gadget with I = 2 . 155
6.13 The (I,Λ, p0, p2, ε1, ε2, f)-AND gadget 159
6.14 The directed edge gadget 〈u, v〉 . 161
6.15 The modified AND gadget with parameter (2,Λ, f) 164
6.16 Connection between a pair of vertices representing a subset and vertices

in the two cliques representing an element, and a (2,Λ0, f)-AND gadget
in the first level of the (2n, (2n)c, f)-AND gadget. 166

7.1 An example of a hierarchy tree with its corresponding graph. The number
on each node of the hierarchy tree on the left-hand side indicates the
weight of the node, which reflects the weight of the corresponding edges on
the hierarchical block graph on the right-hand side in the above-mentioned
way. 174

7.2 The construction of the hierarchy tree T for proving Theorem 7.5. 177
7.3 A toy example illustrating the construction of T for proving Theorem 7.5. 179
7.4 The construction of the hierarchy tree T for proving Theorem 7.7 and 7.8. 189

8.1 The coupling with Phase I ended at Event Esymm 218
8.2 The coupling with Phase I ended at Event Eskew, if E∗ happens 220
8.3 The time line for the coupling after event Eskew happens. 220

viii

List of Tables

2.1 Notations used in this thesis . 13

3.1 Computing marginal gain for each objective function 53
3.2 Datasets for experiments . 54

4.1 Approximation surplus of the greedy algorithm under different settings. . 65

5.1 Results for the adaptivity gap (AG), the infimum of the greedy adaptivity
gap (GAG inf) and the supremum of the greedy adaptivity gap (GAG
sup), where GSDM stands for general submodular diffusion model. . . . 86

6.1 New notations used in Chapter 6. 131

ix

List of Appendices

A Omitted Proofs in Chapter 4 . 233

B Generalizing Results in Chapter 5 for General Threshold Model 251

C Omitted Proofs in Chapter 8 . 255

x

ABSTRACT

People often adopt improved behaviors, products, or ideas through the influence of

friends. This is modeled by cascades. One way to spread such positive elements

through society is to identify those most influential agents—those that cause the

maximum spread, and initiate the spread by seeding them. However, this strategy

has a key difficulty: finding these influential seed nodes. This is difficult even if both

the network structure and the way the cascade spreads are known. In the influence

maximization problem, a central planner is given a graph and a limited budget k, and

he needs to pick k seeds such that the expected total number of infected vertices in

the graph at the end of the cascade is maximized. This problem plays a central role

in viral marketing, outbreak detection, rumor controls, etc.

This thesis focuses on computational complexity, approximability and algo-

rithm/heuristic design aspects of the influence maximization problem, with both sub-

modular and nonsubmodular diffusion models. The first part of the thesis studies

submodular influence maximization mainly in the computational complexity and al-

gorithm analysis aspects, which includes some breakthroughs in understanding the

approximability of submodular influence maximization and the theoretical perfor-

mance of the well-studied greedy algorithm. The second part of the thesis focuses on

nonsubmodular influence maximization. New sociologically founded nonsubmodular

diffusion models are proposed, and we show how the seeding strategy for nonsubmod-

ular diffusion models is fundamentally different compared to submodular diffusion

models.

xi

CHAPTER 1

Introduction

In social networks, cascades model the phenomena that agents receive certain in-
formation, adopt certain products, or take up certain political opinions from their
neighbors due to their influence. We can model a cascade on a graph as a stochastic
mapping from a subset of vertices, called the seeds, to another set of vertices that al-
ways contain the seed vertices, called the infected vertices. A graph models the social
network, the seeds represent the initial set of agents that have a certain property (e.g.,
adopted a certain product, endorsed a political bill, etc.), and the infected vertices
represent those agents that eventually obtain the said property, due to the direct or
indirect influence of the initial agents. This process is normally broken down into
iterations. In the initial iteration, only the seeds are considered infected. In each fu-
ture iteration, a not-yet-infected vertex will be infected with certain probability, and
this probability is decided by the set of its infected neighbors and the diffusion model
considered. The cascade terminates when there is no new infection in an iteration.

In the influence maximization problem (InfMax), initially posed by Domingos
and Richardson [26, 62], a central planner is given a graph and a limited budget k,
and he needs to pick k seeds such that the expected total number of infected vertices
in the graph at the end of the cascade is maximized. This problem plays a central
role in viral marketing—a marketing strategy of advertising products by giving the
products to a certain number of users for free in the hope that they will recommend
these products to their friends. It also plays an important role in outbreak detection,
rumor controls, etc. InfMax has been studied extensively in the past literature both
theoretically and practically (cf. Chen et al. [19], Li et al. [54]).

1

1.1 Diffusion Models: Submodular versus Nonsub-

modular

Perhaps the two best known diffusion models are the independent cascade model and
the linear threshold model, both introduced in the seminal paper Kempe et al. [44].
These two models are studied almost exclusively in the past literature of this field. In
the independent cascade model, a newly-infected (or seed) vertex u infects each of its
not-yet-infected neighbors v with a certain fixed probability puv independently. See
Sect. 2.1.3 for details about the independent cascade model. In the linear threshold
model, in the case the graph is unweighted, each non-seed vertex has a threshold
independently sampled uniformly from the interval [0, 1], and becomes infected when
the fraction of its infected neighbors exceeds this threshold; in the case the graph is
edge-weighted, it is assumed that the sum of the weights of all incoming edges for
each vertex is at most 1, and a vertex is infected if the sum of the weights of all the
incoming edges connecting from its infected neighbors exceeds its threshold, where,
again, the threshold is sampled uniformly from the interval [0, 1]. See Sect. 2.1.4 for
details about the linear threshold model.

Both models were shown to be submodular [44], meaning that the marginal influ-
ence from a newly infected vertex u to its not-yet-infected neighbor v decreases as v
have an increasing number of existing infected neighbors. More formally, letting T
be the set of v’s infected neighbors and letting P (T) be the probability that v will
be infected given the set of infected neighbors T , a diffusion model is submodular if
P (T1 ∪ {u}) − P (T1) ≥ P (T2 ∪ {u}) − P (T2) whenever T1 ⊆ T2. It is widely known
that, for the InfMax problem with a submodular diffusion model, the greedy algo-
rithm which iteratively picks the seed that has the most marginal influence achieves a
(1−1/e)-approximation. This includes the independent cascade model and the linear
threshold model. On the hardness side, it is shown by Kempe et al. [44] that InfMax

is NP-hard to approximate to within a factor of (1− 1/e+ ε) for any ε for the inde-
pendent cascade model, and finding the exact optimal solution for InfMax for the
linear threshold model is NP-hard, even for undirected graphs. Refer to Sect. 1.2.1
for more details about these results.

Diffusion models that violate the submodularity property are called nonsubmod-
ular cascades (or sometimes complex cascades). A well-known nonsubmodular dif-
fusion model, which is also the most extreme one, is the r-complex contagion [10,
11, 28, 39], where a node is infected if and only if at least r of its neighbors are

2

infected, also known as the bootstrap percolation, or the fixed threshold model (we
will define these terms slightly differently in this thesis, and see Sect. 2.1.5 for de-
tails). In nonsubmodular contagion models, like the r-complex contagion model, the
marginal probability of being infected may increase as more neighbors are infected.
For example, if r = 2, then the first infected neighbor has zero marginal impact, but
the second infected neighbor causes this vertex to become infected with probability 1.
Unlike submodular contagions, nonsubmodular contagions can require well-connected
regions to spread [9].

InfMax becomes qualitatively different in nonsubmodular diffusion models. The
greedy approaches, in particular, can perform poorly in the nonsubmodular setting [2].
Moreover, in contrast to the submodular case which has efficient constant approxima-
tion algorithms, for general nonsubmodular cascades, it is NP-hard even to approxi-
mation influence maximization to within an n1−ε factor of optimal for any constant
ε > 0 [45] (where n is the number of vertices), and the inapproximability results have
been extended to several more restrictive nonsubmodular models [20, 53]. The intrin-
sic reason why nonsubmodular influence maximization is hard is that one needs to
take into account the potential synergy of multiple seeds. This is in sharp contrast to
submodular influence maximization, where the submodularity enables a seed-picker
to consider placing seeds one at a time in a myopic way, as is done in the greedy
algorithm.

Motivations for different diffusion models Submodular diffusion models have
been studied mostly in the past literature for many reasons. They are conceptually
simple, natural and mathematically clean. As remarked by Kempe et al. [44], the
independent cascade model is conceptually the simplest model based on the work in
interacting particle systems from probability theory [27, 55], and has also been studied
in the context of marketing [35, 34]. The linear threshold model can be motivated
in two different natural ways. Firstly, as remarked by [44], it can be viewed as a
variant to those threshold models (such as r-complex contagion) with uncertainty to
the thresholds of the vertices, which naturally models that the advertiser does not
know how likely it is for each individual agent to adopt a new product. Secondly, if we
want that a vertex’s infection probability is linear in terms of the infected neighbors,
the linear threshold model becomes the simplest model to capture this linearity.

Another important reason that submodular diffusion models are popular is its
tractability. As we have mentioned, the greedy algorithm always achieves a (1−1/e)-
approximation for submodular InfMax, while nonsubmodular InfMax is substan-

3

tially harder to approximate even under very restrictive simple models. Our result
in Chapter 6 shows that InfMax is inapproximable for almost all nonsubmodular
diffusion models, including those that are “very close to” submodular ones. This pro-
vides strong evidences that restrictive assumptions on diffusion model along cannot
make InfMax tractable, and we need to additionally make some assumptions on the
network topology (which motivates our work in Chapter 7 and 8).

Despite the intractability of nonsubmodular InfMax, many sociological studies
reveal that the social influence in our daily life can be nonsubmodular [4, 50, 63,
75, 32]. Specifically, the submodularity is violated in a particular way: the second
infected neighbor usually has more marginal influence than the first (see Sect. 6.1 for
more details). This also suggests that the cascade in social networks is more complex
than it is suggested by the independent cascade model: the probability that u infects
v depends on the set of v’s existing infected neighbors, although the independent
cascade model and other submodular diffusion models may more accurately describe
non-social cascades, like virus spreading.

1.2 Related Work

1.2.1 On Approximability of Influence Maximization

Kempe et al. [44] showed that the simple greedy algorithm that iteratively chooses
the seed with the maximum marginal influence obtains a (1− 1/e) factor approxima-
tion to InfMax with both the independent cascade model and the linear threshold
model. The same set of authors later extended this result to a family of submodular
cascades, called the decreasing cascade model, which captures the independent cas-
cade model and the linear threshold model as special cases [45]. Mossel and Roch
[58] showed that local submodularity implies global submodularity: if the diffusion
model is submodular, then the global influence function that maps a set of seeds to
the expected total number of infections is a submodular function (see Theorem 2.4
for details). This implies that the greedy algorithm achieve a (1 − 1/e) factor ap-
proximation whenever the diffusion model is submodular, as the greedy algorithm
achieves (1 − 1/e) approximation whenever the objective function is monotone and
submodular, which is known by Nemhauser et al. [59] and also remarked by Kempe
et al. [44].

On the hardness or inapproximability side, Kempe et al. [44] showed that InfMax

on both the independent cascade model and the linear threshold model is NP-hard.

4

For the independent cascade model, Kempe et al. [44] considered a reduction from
the maximum coverage problem preserving the approximation factor. Since Feige [29]
showed that the maximum coverage problem is NP-hard to approximate within factor
(1− 1/e+ ε) for any constant ε > 0, the same inapproximability factor holds for the
independent cascade InfMax. Therefore, the gap between upper bound and lower
bound for the independent cascade InfMax is closed (up to lower order terms).
Note that, however, the reduction depends heavily on the directed nature of the
graph, and there is no known hardness result for the independent cascade InfMax

with undirected graphs. For the linear threshold model, Kempe et al. [44] reduced
the problem from the vertex cover problem such that the graph, being undirected, is
the same in the two problems. It is easy to see that we can infect all the vertices in
the graph with probability 1 by k seeds if and only if the graph admits a vertex cover
of size k (the k seeds are exactly the vertex cover). This reduction shows InfMax

with the linear threshold model is NP-hard even for undirected graphs, but does not
imply any hardness of approximation. In summary, we do not know any hardness of
approximation result for InfMax with the independent cascade model for undirected
graphs, nor do we know any hardness of approximation result for InfMax with the
linear threshold model even for directed graphs. In Chapter 3, we show that InfMax

is APX-hard for both diffusion models with undirected graphs, which provides the
thus far missing APX-hardness result.

If the diffusion model can be nonsubmodular, Kempe et al. [44] showed that
InfMax is NP-hard to approximate to within a factor of n1−ε for any ε > 0, where n
is the number of vertices. Many work after this [12, 53, 73] are dedicated to studying
specific nonsubmodular models (or study optimization on nonsubmodular objective
functions), and unfortunately most of those models, even for those very restrictive
models, admit polynomial inapproximability factors (nτ for some constant τ > 0,
or even worse, n1−ε for any ε > 0). Our work in Chapters 6, 7 and 8 studies the
approximability of nonsubmodular InfMax on various diffusion models and network
structures, and provides a general intuition on how the seeding strategy is different
for the nonsubmodular InfMax (compared with the one for submodular InfMax).

1.2.2 Greedy Algorithm And Its Approximation Guarantee

The greedy algorithm iteratively picks a seed that has the maximum marginal gain
to the expected total number of infected vertices. We will describe it formally in
Sect. 2.2. For InfMax, nearly all the known algorithms are based on the greedy al-

5

gorithm. Some of them improve the running time of the original greedy algorithm by
skipping vertices that are known to be suboptimal [51, 37], while the others improve
the scalability of the greedy algorithm by using more scalable algorithms to approx-
imate the expected total influence [8, 71, 72, 22, 60, 40] or computing a score of the
seeds that is closely related to the expected total influence [15, 18, 17, 38, 43, 31].
Due to its prevalence, the greedy algorithm will be one of the main focuses in this
thesis. We remark that there do exist InfMax algorithms that are not based on
greedy [7, 33, 2], but they are typically for nonsubmodular diffusion models.

On the approximation guarantee, we know that the greedy algorithm always
achieves a (1−1/e)-approximation for InfMax with the independent cascade model,
the linear threshold model, or even the general submodular diffusion model, as men-
tioned earlier. It is easy to see that this is tight if the network is directed, and this
is true for both the independent cascade model and the linear threshold model. If
the graph is undirected, Khanna and Lucier [47] showed that the greedy algorithm
achieves a (1 − 1/e + c)-approximation for some constant c > 0. No previous result
is known for the exact performance of the greedy algorithm for the linear threshold
model, and our results in Chapter 4 fill in this missing piece.

1.2.3 Adaptive Influence Maximization

The InfMax problem has recently been studied in the adaptive setting, where the
seed-picker can observe the spread whenever a seed is chosen and chooses the seeds
iteratively and adaptively. In the full-adoption feedback model, after selecting each
seed, the seed-picker observes all the infected vertices until the cascade dies out. In
the myopic feedback model, the seed-picker only observes whether each neighbor of
the chosen seed is infected.

The greedy algorithm can be naturally extended to this adaptive setting, and
the adaptive greedy algorithm has been studied before. Golovin and Krause [36]
showed that InfMax with the independent cascade model and full-adoption feedback
is adaptive submodular, which implies that the adaptive greedy algorithm obtains a
(1 − 1/e)-approximation to the adaptive optimal solution. On the other hand, Inf-

Max for the independent cascade model with myopic feedback, as well as InfMax for
the linear threshold model with both feedback models, are not adaptive submodular.
In particular, the adaptive greedy algorithm fails to obtain a (1−1/e)-approximation
for the independent cascade model with myopic feedback [61]. Previous work has also
been focused on improving the running time of the adaptive greedy algorithm [40].

6

To measure the power of adaptivity, the adaptivity gap was proposed [36], which is
defined by the ratio between the performance of the optimal adaptive algorithm and
the performance of the optimal non-adaptive algorithm. Peng and Chen [61] showed
that the adaptivity gap for the independent cascade model with myopic feedback is
at most 4 and at least e/(e − 1), and they also showed that both the adaptive and
non-adaptive greedy algorithms perform a 0.25(1− 1/e)-approximation to the adap-
tive optimal solution. The adaptivity gap for the independent cascade model with
full-adoption feedback, as well as the adaptivity gap for the linear threshold model
with both feedback models, are still open problems, although there is some partial
progress [14]. There are some partial progress on this: Chen and Peng [14] showed
that the adaptive gap for the independent cascade model with the full-adoption feed-
back is upper-bounded by a constant if the graph is an in-arborescence (a directed
tree with the root being the sink), an out-arborescence (a directed tree with the root
being the source), or a directed bipartite graph (where all edges are from one side of
the vertices to another).

1.2.4 Empirical Work

Following the work of Kempe, Kleinberg, and Tardos [44, 45], there was extensive work
to solve InfMax based on the alternative implementations of the greedy algorithm
designed to be efficient and scalable. Leskovec et al. [51] and Goyal et al. [37] proposed
algorithms CELF and CELF++ respectively which improve the greedy algorithm by
skipping some of the vertices in each iteration that are known to be suboptimal,
but still relying on Monte-Carlo method to evaluate the influence of a given seed
set. Although the (1− 1/e) approximation guarantee is secured, algorithms based on
Monte-Carlo method are limited in their scalability [3].

To avoid using Monte-Carlo method to evaluate the influence of a given seed set,
another category of algorithms are based on constructing reverse reachable sets (more
details have been discussed in Sect. 2.2.2). Theoretically, these algorithms achieve
(1− 1/e− ε) approximation, and arbitrarily small ε > 0 can be obtained by sampling
more reverse reachable sets.1

Another method similar to reverse reachable sets sampling is snapshots sampling,
based on which the algorithms StaticGreedy [22] and PMC [60] were invented. Instead
of considering the set of vertices that can infect a particular vertex, these algorithms
sample a sufficient number of “snapshots” of the graph, each of which is obtained by

1There was a mistake in the algorithm IMM which makes IMM possibly fail to achieve the said
approximation guarantee. Chen [13] spotted and corrected this mistake.

7

including each edge with probability proportional to its edge-weight.
Other than the above-mentioned algorithms that preserve the theoretical approxi-

mation guarantee, heuristics have also been proposed, and most of them are based on
computing a “score” for a seed set that are closely correlated to the expected number
of infected vertices. These algorithms include the Degree Discount Heuristics [15],
PMIA [16], LDAG [18], SIMPATH [38], IRIE [43] and EaSyIM [31]. Our heuristic in
Sect. 3.6 is perhaps most related to the Degree Discount Heuristics, as both heuristics
only examine the neighbors or a restrictive local area around the seeds. As we will
see in Sect. 3.6, by exploiting our theoretically provable upper bounds in Sect. 3.5,
our heuristics produce seeds with better qualities.

A benchmarking study of most of these above-mentioned algorithms has been done
by Arora et al. [3], and it was observed that TIM+, IMM and PMC provide the seeds
with the best qualities while also maintain moderate scalability. As a result, we will
mainly compare the performance of our heuristics to those reverse-reachable-set-based
algorithms.

Rather than working on the independent cascade model and the linear threshold
model as it is in all the work above, empirical study for nonsubmodular InfMax

has also been studied. For example, Angell and Schoenebeck [2] provided a dynamic
programming based InfMax algorithm which is fundamentally different than most
algorithms that are more or less based on greedy.

1.3 Overview of this Thesis

In Chapter 2, we introduce basic diffusion models and notations related to InfMax

that are used throughout the entire thesis. The remaining part of the thesis is then
split into two parts. The first part focuses on InfMax with submodular diffusion
model. It includes Chapter 3, Chapter 4 and Chapter 5. The second part of this thesis
focuses on InfMax with nonsubmodular diffusion models. It includes Chapter 6,
Chapter 7 and Chapter 8.

In general, my work on submodular InfMax in the first part mainly focuses on
those fundamental theoretical problems about complexity and approximability. My
work on nonsubmodular InfMax in the second part, on the other hand, mainly
focuses on new diffusion models and network models that are well motivated by
empirical/sociological studies, and studies how the seeding strategy is fundamentally
different for nonsubmodular InfMax.

8

1.3.1 Part I: Submodular Influence Maximization

In Chapter 3, we show that InfMax with both the independent cascade model and
the linear threshold model are APX-hard (i.e., there exists a constant τ > 0 such that
InfMax is NP-hard to approximate within a factor of (1− τ)), even for undirected
graphs. This is one of the major breakthroughs in understanding the approximability
of submodular InfMax. As mentioned in Sect. 1.2.1, it provides the thus far missing
hardness-of-approximation results, and it rules out the possibility of Polynomial Time
Approximation Scheme (PTAS).

In both Chapters 4 and 5, we study the standard greedy algorithm that has
been used almost exclusively in the past literature. In Chapter 4, we discuss the
approximation guarantee for the greedy algorithm. In particular, we show that, for the
linear threshold model with undirected graphs, the greedy algorithm achieves at least
a (1−(1−1/k)k+Ω(1/k3))-approximation and at most a (1−(1−1/k)k+O(1/k0.2))-
approximation (recall that k is the number of the seeds). This indicates that the
approximation guarantee for the greedy algorithm in general submodular InfMax,
(1 − 1/e), is still asymptotically correct under this special case. This is in sharp
contract to the result from Khanna and Lucier [47] mentioned in Sect. 1.2.2 for the
independent cascade model.

In Chapter 5, we study InfMax and the greedy algorithm in the adaptive setting.
We define the greedy adaptivity gap which is given by the ratio of the performance of
the adaptive greedy algorithm versus the performance of the conventional nonadaptive
greedy algorithm. The greedy adaptivity gap provides a better measurement for
the power of adaptivity in the practical sense than the adaptivity gap (mentioned
in Sect. 1.2.3, which compares the adaptive optimal algorithm to the nonadaptive
optimal algorithm): firstly, our APX-hardness results in Chapter 3 indicate that it is
hard to achieve, or even approach to, the optimal solution in practice; secondly, as
mentioned in Sect. 1.2.2, the greedy algorithm is the one that is used exclusively in
practice. In Chapter 5, we give some characterizations on the greedy adaptivity gap.
In particular, we show that the infimum of the greedy adaptivity gap is (1 − 1/e)

for both the independent cascade model and the linear threshold model with both
the full-adoption feedback model and the myopic feedback model (see Sect. 1.2.3
for informal definitions of the two feedback model, and see Sect. 5.2.1 for formal
definitions), meaning that the adaptive greedy algorithm can only achieve a (1−1/e)-
fraction of the performance of the nonadaptive greedy algorithm. This shows that,
surprisingly, the adaptive greedy algorithm can perform worse than the nonadaptive

9

greedy algorithm. Nevertheless, it never perform too bad. On the other hand, for
general submodular diffusion model with the full-adoption feedback, the supremum
of the greedy adaptivity gap is infinity, which indicates that the adaptive greedy
algorithm can perform significantly better than its nonadaptive counterpart under
this setting.

Chapter 3 is based on the paper [67], Chapter 4 is based on the paper [70], and
Chapter 5 is based on the paper [21].

1.3.2 Part II: Nonsubmodular Influence Maximization

In Chapter 6, we point out that a few sociological studies show that many cascade
processes in our real life are nonsubmodular. Based on the observations of these stud-
ies, we propose a new nonsubmodular diffusion model called the 2-quasi-submodular
diffusion model. This diffusion model can be arbitrarily close to a submodular model
by adjusting the parameters. We show that, even when the parameters of the 2-
quasi-submodular diffusion model are fixed in advance, InfMax is still NP-hard to
approximate to within factor nτ , where τ > 0 is a constant depending on the pa-
rameters of the model. This result can be viewed as a threshold result: if the model
is submodular, InfMax admits a (1 − 1/e)-approximation algorithm; if the model
is only slightly nonsubmodular, no constant-factor or even subpolynomial-factor ap-
proximation algorithm is possible (unless P = NP).

Since even strong assumptions on the diffusion models fail to make InfMax

tractable, another natural approach is to see if assumptions on network structures
can. In Chapter 7, we propose the (stochastic) hierarchical blockmodel, which is
a special case of the well-known (stochastic) blockmodel where the communities in
the network form a hierarchical structure. We study the algorithmic complexity of
InfMax under the (stochastic) hierarchical blockmodel with the standard r-complex
contagion model. We show that InfMax is NP-hard to approximate to within factor
n1−ε for any constant ε > 0 under this setting, if the thresholds r of different vertices
need not be the same. On the other hand, in Chapter 8, we show that, under some
further mild assumptions, InfMax is tractable if all vertices have a same threshold
r. In particular, we show that the optimal seeding strategy is to put all the seeds in a
single community. This justifies the intuition that putting seeds together creates syn-
ergy for nonsubmodular InfMax, which is in sharp contrast to the seeding strategy
for submodular InfMax where seeds are put far apart to avoid waste of influence.

Both Chapter 6 and 7 are based on the papers [66] and [68]. Chapter 8 is based

10

on the paper [69].

11

CHAPTER 2

Preliminaries

Unless otherwise specified, all graphs in this thesis are simple, unweighted and directed
by default. Given a graph G = (V,E) and a vertex v ∈ V , let Γ(v) and deg(v) be
the set of in-neighbors and the in-degree of v respectively. Let Γo(v) and dego(v) be
the set of out-neighbors and the out-degree of v respectively. In this thesis, we will
consistently use n = |V | to denote the number of vertices in the graph. If a graph
G = (V,E) is undirected, it is treated as a directed graph with anti-parallel edges
such that (u, v) ∈ E if and only if (v, u) ∈ E.

2.1 Cascade and Diffusion Models

In general a cascade on a graph is a stochastic mapping from a subset of vertices—the
seeds, to another set of vertices that always contain the seed vertices—the infected
vertices. In the next five subsections, we define the InfMax problem with various
different diffusion models. The notations defined there are summarized in Table 2.1,
which will be used throughout the thesis.

2.1.1 General Threshold Model and Influence Maximization

The cascades we study in this thesis all belong to the general threshold model [44],
which captures the local decision-making of vertices.

Definition 2.1 (Kempe et al. [44]). The general threshold model, IG,F , is defined
by a graph G = (V,E) and for each vertex v a monotone local influence function
fv : {0, 1}|Γ(v)| → [0, 1] with fv(∅) = 0. Let F = {fv | v ∈ V }.

On an input seed set S ⊆ V , IG,F (S) outputs a set of infected vertices as follows:

12

notation meaning
G = (V,E) a directed simple graph with vertex set V and edge set E
Γ(v) set of v’s in-neighbors
deg(v) in-degree of v
Γo(v) set of v’s out-neighbors
dego(v) out-degree of v
n total number of vertices, |V |
S set of seeds
k number of seeds
fv local influence function (Definition 2.1)
F = {fv | v ∈ V } collection of local influence functions for all vertices
IG,F general threshold model with G and F (Definition 2.1)
σG,F global influence function: σG,F (S) = E [|IG,F (S)|]
Trigv triggering set of vertex v (Definition 2.5)
Dv distribution of v’s triggering set (Definition 2.5)
D = {Dv | v ∈ V } collection of distribution of triggering sets for all vertices
IG,D triggering model with G and D (Definition 2.5)
φ realization (see the second paragraph after Definition 2.5)
ICM independent cascade model (Definition 2.7)
UICM uniform independent cascade model (Definition 2.9)
WICM weighted independent cascade model (Definition 2.10)
LTM linear threshold model (Definition 2.11)
ULTM uniform linear threshold model (Definition 2.13)
BP bootstrap percolation (Definition 2.15)
R = {rv | v ∈ V } collection of thresholds for all vertices for BP

Table 2.1: Notations used in this thesis

13

1. Initially, only vertices in S are infected, and for each vertex v the threshold θv
is sampled uniformly at random from the interval (0, 1] independently.1

2. In each subsequent round, a vertex v becomes infected if the influence of its
infected in-neighbors, IN v ⊆ Γ(v), exceeds its threshold: fv(IN v) ≥ θv.

3. After a round where no additional vertices are infected, the set of infected
vertices is the output.

IG,F in Definition 2.1 can be viewed as a random function IG,F : {0, 1}n → {0, 1}n.
In addition, if the threshold θv is fixed for each vertex v, then IG,F is deterministic.
Let σG,F (S) = E [|IG,F (S)|] be the expected total number of infected vertices due to
the influence of S, where the expectation is taken over the samplings of the thresholds
of all vertices. We refer to σG,F (·) as the global influence function. Sometimes we write
σ(·) with the parameters G,F omitted, when there is no confusion. Because each fv
is monotone, it is straightforward to see that σ is monotone.

Definition 2.2. The InfMax problem is an optimization problem which takes as
inputs G = (V,E), F , and an integer k, and the goal is to output a seed set S ⊆ V

subject to the budget constraint |S| ≤ k that maximizes σG,F (S).

In this thesis, we will consistently use k = |S| to denote the number of seeds, or
the budget, which is a part of the input to the InfMax instance.

Submodularity A function Φ mapping from a set of elements to a non-negative
value is submodular if Φ(A ∪ {v}) − Φ(A) ≥ Φ(B ∪ {v}) − Φ(B) for any two sets
A,B with A ⊆ B and any element v /∈ B. We formally define the submodularity of
a diffusion model, to which we have referred multiple times in the introduction, as
follows.

Definition 2.3. A diffusion model characterized by the general threshold model
IG,F is submodular if the local influence function fv is a submodular function for
each v ∈ V . A diffusion model characterized by the general threshold model is
nonsubmodular if this is not satisfied.

The following result says that local submodularity implies global submodularity,
which is a crucial characterization that eventually establishes the tractability of sub-
modular InfMax: as long as the diffusion model is submodular, the greedy algorithm
always achieves a (1− 1/e)-approximation.

1The rationale of sampling thresholds after the seeds’ selection is to capture the scenario that
the seed-picker does not have the full information on the agents in a social network, and this setting
is standard in the InfMax literature.

14

Theorem 2.4 (Mossel and Roch [58]). If the general threshold model IG,F is submod-
ular, then the function σG,F (·) is submodular.

2.1.2 Triggering Model

A common diffusion model that is strictly less general than the general threshold
model is the triggering model. The triggering model is still general enough to include
the well-studied independent cascade model and linear threshold model as special
cases. As we will see later, the triggering model is always submodular, and it en-
ables an useful interpretation of the cascade process called the live edges realization.
This enables a class of powerful and highly-scalable InfMax algorithms discussed in
Sect. 2.2.2.

Definition 2.5 (Kempe et al. [44]). The triggering model, IG,D, is defined by a graph
G = (V,E) and for each vertex v a distribution Dv over the subsets of its in-neighbors
{0, 1}|Γ(v)|. Let D = {Dv | v ∈ V }.

On an input seed set S ⊆ V , IG,D(S) outputs a set of infected vertices as follows:
1. Initially, only vertices in S are infected. Each vertex v samples a subset of its

in-neighbors Trigv ⊆ Γ(v) from Dv independently. We call Trigv the triggering
set of v.

2. In each subsequent round, a vertex v becomes infected if a vertex in Trigv is
infected in the previous round.

3. After a round where no additional vertices are infected, the set of infected
vertices is the output.

Given v, its triggering set Trigv, and an in-neighbor u ∈ Γ(v), we say that the
edge (u, v) is live if u ∈ Trigv, and we say that (u, v) is blocked if u /∈ Trigv. It is easy
to see that, when the triggering sets for all vertices are sampled, IG,D(S) is the set
of all vertices that are reachable from S when removing all blocked edges from the
graph.

We define a realization of a graph G = (V,E) as a function φ : E → {L, B} such
that φ(e) = L if e ∈ E is live and φ(e) = B if e ∈ E is blocked. Let IφG,D : {0, 1}n →
{0, 1}n be the deterministic function corresponding to the triggering model IG,D with
vertices’ triggering sets following realization φ. We write φ ∼ D to indicate that a
realization φ is sampled according to D = {Dv}.

The theorem below says that the triggering model is a special case of the general
threshold model, and it is always submodular.

15

Theorem 2.6 (Kempe et al. [44]). The triggering model is a special case of the
general threshold model IG,F where each fv ∈ F is a submodular function.

The theorem above says that the submodularity of the general threshold model
IG,F is a necessary condition for it to be a triggering model. However, this is not
a sufficient condition. A diffusion model that is captured by a submodular general
threshold model but not the triggering model, named decreasing cascade model, was
discovered in the full version of [44]; this indicates that even the general threshold
model with submodular local influence functions is strictly more general than the
triggering model. Salek et al. [65] completely characterized the necessary and suffi-
cient condition under which a general threshold model can be captured by a triggering
model.

2.1.3 Independent Cascade Model

The diffusion model that has been studied the most often is the independent cascade
model. From now on, we will use the acronym ICM to denote the independent cascade
model. In ICM, each vertex u attempts only once to infect each of its not-yet-infected
out-neighbor v with probability w(u, v), where w(u, v) is a parameter for the edge
(u, v) that is given as an input to the instance.

Definition 2.7. The independent cascade model ICMG is defined by a directed edge-
weighted graph G = (V,E,w) such that 0 ≤ w(u, v) ≤ 1 for each (u, v) ∈ E. On
input seed set S ⊆ V , ICMG(S) outputs a set of infected vertices as follows:

1. Initially, only vertices in S are infected.

2. In each subsequent round, each vertex u infected in the previous round infects
each (not yet infected) out-neighbor v with probability w(u, v) independently.

3. After a round where there is no additional infected vertices, ICMG(S) outputs
the set of infected vertices.

It is easy to see that ICM is a special case of both the triggering model and the
general threshold model.

Theorem 2.8 (Kempe et al. [44]). ICMG with G = (V,E,w) is equivalent to the
general threshold model IG,F with fv(IN v) = 1 −

∏
u∈IN(v)(1 − w(u, v)). It is also

equivalent to the triggering model IG,D where Dv is defined such that Trigv includes
each u ∈ Γ(v) with probability w(u, v) independently.

16

Since ICM is a special case of the triggering model, Theorem 2.6 implies that ICM
is a submodular diffusion model.

ICM on unweighted graphs ICM in Definition 2.7 is defined upon edge-weighted
graphs. However, in many practical scenarios, only unweighted graphs are available
as inputs to InfMax instances. We discuss the following two common ways to assign
weights to an unweighted graph. In the uniform independent cascade model, all the
edges have the same weight; in the weighted independent cascade model, each edge
(u, v) has weight w(u, v) = 1/ deg(v).

Definition 2.9. The uniform independent cascade model UICMG,p for G = (V,E) is
a special case of the independent cascade model ICMG with G = (V,E,w), where
w(u, v) = p for each (u, v) ∈ E and p ∈ [0, 1] is an input parameter.

Definition 2.10. The weighted independent cascade model WICMG for G = (V,E)

is a special case of the independent cascade model ICG with G = (V,E,w), where
w(u, v) = 1/ deg(v) for each (u, v) ∈ E.

As mentioned at the beginning of this chapter, when we restrict our attention to
undirected graphs, the undirected graph is “bidirected”, i.e., it is viewed as a special
directed graph with each undirected edge of the graph being viewed as two anti-
parallel edges.

It should then be noticed that modeling cascade process on undirected graphs does
not necessarily imply that the influence from u to v is the same as the influence from v

to u on an edge (u, v). Although they are the same in the uniform independent cascade
model, they are not necessarily the same in the weighted independent cascade model.
In the weighted independent cascade model, if u has a larger degree than v, it is less
likely that v will infect u than u will infect v, as w(v, u) = 1

deg(u)
< 1

deg(v)
= w(u, v).

2.1.4 Linear Threshold Model

The second most well-studied diffusion model is the linear threshold model, which we
will denote by the acronym LTM from now on. The basic idea behind LTM is that the
influence from the in-neighbors of a vertex is additive.

Definition 2.11. The linear threshold model LTMG is defined by a directed edge-
weighted graph G = (V,E,w) such that

∑
u:u∈Γ(v) w(u, v) ≤ 1 for each v ∈ V . On

input seed set S ⊆ V , LTMG(S) outputs a set of infected vertices as follows:

17

1. Initially, only vertices in S are infected, and for each vertex v a threshold θv is
sampled uniformly at random from (0, 1] independently.

2. In each subsequent round, a vertex v becomes infected if
∑

u:u∈INv
w(u, v) ≥ θv,

where again IN v is the set of v’s infected neighbors.

3. After a round where there is no additional infected vertices, LTMG(S) outputs
the set of infected vertices.

The constraint
∑

u∈Γ(v) w(u, v) ≤ 1 in the definition above is crucial for the linear
threshold model, as otherwise the probability a vertex v is infected is no longer “linear”
in terms of the influence from its infected in-neighbors, and the resultant model
becomes fundamentally different.

It is straightforward to see why LTM is a special case of the general threshold
model. It may be less obvious that LTM is a special case of the triggering model and
what does the distribution of the triggering set for each vertex look like. Kempe et al.
[44] gave the following characterization.

Theorem 2.12 (Kempe et al. [44]). LTMG with G = (V,E,w) is equivalent to the
general threshold model IG,F with fv(IN v) =

∑
u∈IN(v) w(u, v). It is also equivalent

to the triggering model IG,D where Dv is defined as follows: order v’s in-neighbors
u1, . . . , uT arbitrarily, sample a real number γ in [0, 1] uniformly, and

Trigv =

{
{ut} if γ ∈

[∑t−1
i=1 w(ui, v),

∑t
i=1w(ui, v)

)
∅ if γ ≥

∑T
i=1w(ui, v)

.

Intuitively, Trigv includes at most one of v’s in-neighbors such that each ut is included
with probability w(ut, v).

For an intuition of the theorem above, consider a not-yet-infected vertex v and a
set of its infected neighbors IN v ⊆ Γ(v). v will be infected by vertices in IN v with
probability

∑
u:u∈INv

w(u, v), as Pr
(
θv ≤

∑
u:u∈INv

w(u, v)
)

=
∑

u:u∈INv
w(u, v). In

the case where v becomes infected, we can attribute its infection to exactly one of its
infected neighbors. The infection will be attributed to neighboring infected vertex u
with probability equal to w(u, v) (in which case Trigv = {u}). Overall, the probability
that v includes an incoming edge from {(u, v) : u ∈ IN v} is exactly

∑
u:u∈INv

w(u, v).
Since LTM is a special case of the triggering model, Theorem 2.6 implies that LTM

is a submodular diffusion model.

18

LTM on unweighted graphs Again, LTM in Definition 2.11 is defined upon edge-
weighted graphs. Similar to the scenario in ICM, we can also define LTM for unweighted
graphs.

Definition 2.13. The uniform linear threshold model ULTMG for G = (V,E) is a
special case of the linear threshold model LTMG with G = (V,E,w), where w(u, v) =

1/ deg(v) for each (u, v) ∈ E.

The weight assignments in the definition of the uniform linear threshold model
is similar to the one of the weighted independent cascade model. The readers may
wondering why we do not define a linear threshold model with all the weights of the
edges being the same, as it is in the uniform independent cascade model. In fact,
this definition for the linear threshold model is unnatural. More generally, any model
assigning the weights of the edges satisfying ∀u, v : w(u, v) = w(v, u) is unnatural for
LTM, because it disallows the case that a popular vertex exercises significant influence
over many somewhat lonely vertices. Consider an extreme example where the graph is
a star, with a center u and T leaves v1, . . . , vT . The constraint

∑T
i=1w(vi, u) ≤ 1 (see

Definition 2.11 and the remark immediately following the definition) implies that there
exists at least one vi such that w(vi, u) ≤ 1

n
, and furthermore, w(u, vi) = w(vi, u) ≤ 1

n
.

In this case, even if u is the only neighbor of vi, u still has very limited influence to
vi just because u has a lot of other neighbors. In reality, it is unnatural to assume
that a node’s being popular reduces its influence to its neighbors.

We remark that it is the constraint
∑

u∈Γ(v) w(u, v) ≤ 1 that is unique for LTM

that makes the above model with symmetrically weighted graphs unnatural. For ICM
which does not have this constraint, it is much more natural to consider graphs with
symmetric edge weights ∀u, v : w(u, v) = w(v, u).

Again, when we restrict our attention for undirected graphs, the undirected graph
is “bidirected”. For the reason discussed above, it is unnatural to consider a weighted
undirected graph with w(u, v) = w(v, u) for all pairs {u, v} (of course, we can assign
weights to an undirected graph such that the two anti-parallel edges have different
weights, but this model is then no more specific to LTM with the general directed
graphs, as we can assign w(u, v) > 0 and w(v, u) = 0 to simulate directed edge
(u, v)). Therefore, we assume the following.

Assumption 2.14. When considering LTMG with G being an undirected graph, the
uniform linear threshold model ULTMG is automatically assumed: an undirected edge
(u, v) is viewed as two directed edges (u, v) and (v, u), with w(u, v) = 1/ deg(v) and
w(v, u) = 1/ deg(u).

19

The same as it is in the weighted independent cascade model, if u has a larger
degree than v, it is less likely that v will infect u than u will infect v.

As a final remark, the triggering model corresponding to ULTM has a very neat
description: each vertex v chooses exactly one incoming edge being live uniformly at
random. This characterization will be used multiple times in this thesis.

2.1.5 Bootstrap Percolation

The triggering model and two of its special cases, ICM and LTM, are all submodular
diffusion models. In this subsection, we define a typical nonsubmodular diffusion
model called the bootstrap percolation, which we have mentioned briefly in the intro-
duction chapter. Some existing literature uses the phrases bootstrap percolation and
r-complex contagion interchangeably. However, in this thesis, we will define them
to be slightly different where “bootstrap percolation” refers to a more general model
where vertices can have different thresholds and “r-complex contagion” refer to the
special case where all the vertices have the same threshold r.

Definition 2.15. The bootstrap percolation BPG,R is defined by a directed unweighted
graph G = (V,E) with R = {rv ∈ Z+ | v ∈ V }. On input seed set S ⊆ V , BPG,R(S)

outputs a set of infected vertices as follows:

1. Initially, only vertices in S are infected.

2. In each subsequent round, a vertex v becomes infected if the number of v’s
infected neighbors is at least rv.

3. After a round where there is no additional infected vertices, BPG,R(S) outputs
the set of infected vertices.

Definition 2.16. The r-complex contagion is a special case of the bootstrap perco-
lation BPG,R with rv = r for each v ∈ V .

Traditionally, the bootstrap percolation is defined on unweighted graphs. How-
ever, it is also natural to define it for edge-weighted graphs G = (V,E,w). In the
edge-weighted graph setting, rv can be a real number that is not an integer, and a
vertex v is infected if the sum of the weights of the edges connecting from v’s infected
neighbors exceeds the threshold rv:

∑
u∈INv

w(u, v) ≥ rv.
The bootstrap percolation, especially under the edge-weighted graph setting, may

appear to be very similar to LTM. However, there is a fundamental difference. The

20

Input: G = (V,E); F = {fv | v ∈ V }; k ∈ Z+

Output: a seed set S ⊆ V satisfying |S| ≤ k
1 initialize S = ∅
2 for each of k iterations do
3 find s ∈ argmaxs∈V (σ(S ∪ {s})− σ(S)) with tie broken arbitrarily
4 S ← S ∪ {s}
5 end
6 return S

Algorithm 2.1: The greedy algorithm

threshold θv in LTM is sampled after the seeds are chosen, which is not a part of
the input parameters. The threshold rv in BP, on the other hand, is fixed as an
input parameter. In particular, given a seed set S ⊆ V , LTMG(S) is a random set
where the randomness comes from the sampling of the thresholds, while BPG,R(S) is
deterministic. This key difference makes BP nonsubmodular.

It is easy to see that BP is still a special case of the general threshold model IG,F .
In particular, we have

fv(IN v) =

{
0 if |IN v| < rv

1 if |IN v| ≥ rv
,

and

fv(IN v) =

{
0 if

∑
u∈INv

w(u, v) < rv

1 if
∑

u∈INv
w(u, v) ≥ rv

if graphs are edge-weighted.
Since BP is nonsubmodular, it cannot be a special case of the triggering model due

to Theorem 2.6.

2.2 Greedy Algorithm

The greedy algorithm iteratively picks a seed that has the maximum marginal gain in
the objective function σ(·). The formal description is given in Algorithm 2.1.

However, it has been shown that, given S ⊆ V , it is #P-hard to compute σ(S)

even for LTM [18] and ICM [16]. This obstacle prevents us from executing Line 3 in
Algorithm 2.1. However, it is easy to see that a simple Monte-Carlo method can
approximate σ(S) arbitrarily close with arbitrarily high probability. In other words,
there is a Fully Polynomial-Time Randomized Approximation Scheme (FPRAS) to
compute σ(S). If the diffusion model is a triggering model, a powerful and highly

21

scalable method using the technique of reverse-reachable sets is available. We discuss
these two methods in the next two subsections.

As an important remark, the greedy algorithm based on either of the two methods
can achieve a (1−1/e−ε)-approximation with probability at least 1−δ for any ε > 0

and δ > 0, and the algorithm runs in a time that is polynomial in terms of the input
size, 1/ε and log(1/δ).

2.2.1 Monte-Carlo Method

The Monte-Carlo method works as follows. Given general threshold model IG,F and
a seed set S, we sample the threshold θv for each vertex v uniformly at random and
independently from [0, 1] (as described in Definition 2.1), and compute the number of
infected vertices |IG,F (S)| with given {θv | v ∈ V }. This experiment is repeated for a
sufficient number of times independently, and σ(S) is estimated by taking an average
over the values of |IG,F (S)| from those experiments. Kempe et al. [44] showed that,
in order to approximate σ(S) with multiplicative error at most ε with probability at
least 1−δ, O(knε−2 ln(n/δ)) experiments is sufficient. This number is recently known
to be improvable [64]. When implemented in practice, Kempe et al. [44] recommended
10, 000 experiments.

2.2.2 Reverse-Reachable-Set-Based Algorithms

The Monte-Carlo in the previous subsection is widely-known to be unscalable to large
graphs. If the diffusion model is the triggering model, a highly scalable method using
the technique of reverse-reachable sets is available. This technique was first invented
by Borgs et al. [8], and the algorithm RIS is invented based on this. This technique
has later been improved, and more algorithms based on this were invented later on,
including TIM+ [71], IMM [72], EPIC [40], and so on.

In all those reverse-reachable-set-based algorithms, a sufficient number of reverse
reachable sets are sampled. Each reverse reachable set is sampled as follows: first,
a vertex v is sampled uniformly at random; second, sample the live edges in the
graph where each vertex chooses a triggering set according to the triggering model
(undirected graphs are treated as directed graphs with anti-parallel edges); lastly, the
reverse reachable set consists of exactly those vertices from which v is reachable.

After collecting sufficiently many reverse reachable sets, the algorithms choose
k seeds that attempt to cover as many reverse reachable sets as possible (we say a
reverse reachable set is covered if it contains at least 1 seed), and this is done by a

22

greedy maximum coverage way: iteratively select the seed that maximizes the extra
number of reverse reachable sets covered by this seed.

The meat of those reverse-reachable-set-based algorithms is that, given a seed set
S, the probability that a randomly sampled reverse reachable set is covered by S is
exactly the probability that a vertex selected uniformly at random from the graph is
infected by S. Therefore, when sufficiently many reverse reachable sets are sampled,
the fraction of the reverse reachable sets covered by S is a good approximation to
σ(S)/|V |.

23

Part I

Submodular Influence Maximization

24

CHAPTER 3

On Approximability of Submodular
Influence Maximization

In this chapter, we study InfMax in undirected networks, specifically focusing on
the three special cases of ICM and LTM: UICM, WICM and ULTM. We prove APX-hardness
(NP-hardness of approximation within factor (1 − τ) for some constant τ > 0) for
each of the three models (which implies APX-hardness for the more general ICM and
LTM), which improves the previous NP-hardness lower bound for LTM. No previous
NP-hardness or hardness-of-approximation result was known for ICM (for undirected
graphs).

As part of the hardness proof, we show some natural properties of these cascades
on undirected graphs. We show that σ(S) is upper-bounded by the size of the edge
cut of S for WICM and ULTM.

Motivated by our upper bounds, we present a suite of highly scalable local greedy
heuristics for InfMax on both WICM and ULTM on undirected graphs that, in practice,
find seed sets which on average obtain 97.52% of the performance of the much slower
greedy algorithm for ULTM, and 97.39% of the performance of the greedy algorithm
for WICM. Our heuristics also outperform other popular local heuristics, such as the
degree discount heuristic by Chen et al. [15].

3.1 Introduction

Among these social networks on which InfMax algorithms are tested (e.g, those
mentioned in Sect. 1.2.4), most of them are undirected. For example, Arora et al.
[3] performs a thoughtful benchmarking study of those InfMax algorithms, and the
four main graphs considered, Nethept, HepPh, DBLP, YouTube, are all undirected.
Undirected datasets are used in most, if not all, of the empirical work in Sect. 1.2.4,

25

and are used exclusively in [15, 18, 31, 37, 38]1 in particular. Peer relationships
are, in some sense, undirected by definition. Moreover, these models typically try
to capture word-of-mouth influence among peers as opposed to a more directional
advertisements.

Unfortunately, theoretical results for InfMax on undirected graphs are lacking.
The original greedy algorithm in [44], for example, does not take advantage of the
undirected nature of the graph in any meaningful way. On the positive side, as men-
tioned in Sect. 1.2.2, for ICM with undirected graphs, Khanna and Lucier [47] improve
the analysis of the greedy algorithm to show it obtains an approximation ratio slightly
better than (1−1/e). This is one of the very few existing results that take advantage
of the undirected nature of the graph. On the hardness side, the inapproximability
results for InfMax on undirected graphs are almost completely lacking in the liter-
ature. For LTM, the previously mentioned NP-hardness result in [44], which is almost
16 years old, is the only known hardness result to the best of our knowledge. There is
still a gap between (1− 1/e) and 1 for both directed and undirected graphs. For ICM,
although the inapproximability factor (1−1/e+ε) in [44] matches the approximation
guarantee (1 − 1/e) of the greedy algorithm, the hardness/inapproximability results
for undirected graphs are completely missing.2 In particular, before this work, it was
not even known whether computing the exact optimal seeds is NP-hard.

It is worth noticing that, as we mentioned before, given a seed set S, computing
the exact value of σ(S) is #P-hard for both LTM [18] and ICM [16]. This can be
easily extended to the #P-hardness of InfMax. However, if we assume oracle access
to σ(·), a setting commonly adopted in most work (including [44]), the complexity
of computing the exact optimal seed set is still unknown. Moreover, we have seen
in Sect. 2.2.1 that a simple Monte-Carlo method provides a FPRAS for computing
σ(S). Therefore, the #P-hardness result cannot even rule out a polynomial time
approximation scheme (PTAS) for InfMax. In this chapter, we will assume that
σ(·) can be accessed by an oracle.

Our results As our main results, we show that InfMax on both ICM and LTM with
undirected graphs is APX-hard: there exists a constant τ > 0 such that approximating
InfMax to within factor (1− τ) is NP-hard. The APX-hardness holds even for the
special cases UICM, WICM and ULTM.

1Directed graphs are treated as undirected graphs in [18].
2An APX-hardness result for the independent cascade InfMax with undirected graphs was

presented by Khanna and Lucier [47]. However, their APX-hardness result is applied to a more
general non-standard setting. We discussed this in details in Sect. 3.2.

26

We prove this result by using the PCP theorems and a novel coupling approach.
Our coupling approach reveals an upper bound on σ(S) for each of the three cas-
cade models: UICM, WICM and ULTM. An especially interesting upper bound for both
ULTM and WICM on undirected graphs is that, the expected number of vertices infected
by S is no more than the number of edges between vertices in S and vertices out-
side S. This is an indication that the cascade on these two models on undirected
graphs is diminishing and somehow characterized by its local behaviors on S and
neighbors of vertices in S: no matter how large and dense the graph G is outside S,
the cascade is limited as long as S has limited connections to the remaining vertices.
This indicates that, although WICM is similar to UICM in definition, it is more similar
to ULTM in behaviors.3 This also theoretically justifies the phenomenon that those
reverse-reachable-set-based algorithms (Sect. 2.2.2) are much more scalable on ULTM

and WICM than UICM, as observed by Arora et al. [3] (See Sect. 3.5.5 for details.).
Motivated by this observation, we present a family of InfMax heuristics we called

the local greedy heuristics, which iteratively select the seeds only based on the local
features of S: the number of edges goes out from S, the number of vertices that are
connected to S, and a combination of both. Our heuristics are highly scalable, since
we have only checked the neighbors of the seeds, instead of analyzing the influence
of the seeds in the graph globally (as it is in the Monte-Carol method). Moreover,
our heuristics, although being extremely simple, produce seeds with almost the same
quality as the seeds output by those greedy-based algorithms in the state-of-art (being
97.52% of the greedy-based algorithms on average for ULTM, and 97.39% for WICM),
outperform the degree discount heuristic proposed by [15] which iteratively selects a
vertex with highest degree and removes it from the graph, and significantly outperform
the naïve algorithm that picks the seeds with the highest degrees.

3.2 Additional Related Work

The work by Khanna and Lucier [47] mentioned in Sect. 1.2.1 is most relevant to
our work. Khanna and Lucier [47] studied the independent cascade InfMax on
undirected graphs. They worked on a more general model where the seed-picker is
only allowed to pick seeds from a prescribed subset of vertices and the vertices are
weighted so that the objective is to maximize the expected total weight of all the
infected vertices. Under this generalized setting, Khanna and Lucier [47] showed
that the greedy algorithm achieves a (1− 1/e + c)-approximation for some constant

3Similar observations have been made before by Kempe et al. [44], Chen et al. [15].

27

c > 0, and InfMax on this model is APX-hard. In their APX-hardness reduction, a
bipartite graph is constructed such that the vertices on the left-hand side have weight 0

and the vertices on the right-hand side have weight 1, and the seed-picker is restricted
to pick seeds among the left-hand side vertices. These features are not allowed in
the standard InfMax setting (where the seed-picker can seed on any vertices, and
the expected number of infected vertices is the objective), and extending the same
APX-hardness result to the less general, standard setting requires significantly more
insight.

A weaker version of our upper bound for ULTM on undirected graphs was presented
by Lim et al. [56], where it was shown that the expected number of infected vertices
by a single seed is upper-bounded by the degree of this seed plus one. In addition,
Lim et al. [56] observed that this upper bound is tight when the graph is a tree.
We have the same observation in Lemma 3.13 and Corollary 3.15. Our upper bound
generalizes Lim et al.’s upper bound to the setting with multiple seeds, which is
crucial for showing the APX-hardness of the InfMax problem.

3.3 Dinur’s PCP Theorem

We will use the following version of the PCP theorem which is due to Dinur [25].

Theorem 3.1. There exist a universal constant integer d and a universal constant
γ ∈ (0, 1) such that, given a 3SAT instance φ where each variable appears in at most
d clauses, it is NP-hard to distinguish between the following two cases:

• YES: φ has a satisfiable truth-assignment;

• NO: for any truth-assignment, at most (1−γ) fraction of clauses can be satisfied.

Dinur’s PCP theorem straightforwardly implies Theorem 3.2.

Theorem 3.2 (Inapproximability of IndSet). There exist a universal constant in-
teger d and a universal constant γ ∈ (0, 1) such that, given an undirected graph
G = (V,E) where the degree of each vertex is at most d and the number of vertices
|V | is a multiple of 3, it is NP-hard to distinguish between the following two cases:

• YES: G has an independent set of size n;

• NO: any subgraph of G induced by n vertices contains at least γn edges,

where n = |V |
3
.

28

Proof. Given a 3SAT instance φ with n clauses such that each variable appears in
at most d′ clauses, we construct the IndSet instance Gφ = (Vφ, Eφ) as follows: Gφ

contains 3n vertices {vij | i = 1, . . . , n; j = 1, 2, 3} where vij corresponds to the j-
th literal in the i-th clause of φ; (vij, vi′j′) ∈ Eφ if i = i′ or vij, vi′j′ correspond to
two literals such that one is the negation of the other. It is easy to see that if each
variable in φ appears in at most d′ clauses, then each vertex in Gφ has degree at
most d = d′ + 1. If the 3SAT instance is a YES instance, then φ is satisfiable and
has an assignment which satisfies all the n clauses. This assignment, by including
one true literal in each clause, yields an independent set of size n in G. If the 3SAT

instance is a NO instance, Dinur’s PCP theorem implies that there exists a constant
γ ∈ (0, 1) such that no assignment satisfies even (1 − γ)n clauses. This means that
no independent set of size more than (1 − γ)n exists, because by including one true
literal in each clause for a given assignment yields an independent set with the same
number of vertices as satisfying clauses. As a result, any subgraph of size n contains
at least γn edges: if the number of edges in certain subgraph with size n is less than
γn, removing one endpoint for each edge gives an independent set of size more than
n− γn, which is a contradiction.

Dinur’s PCP theorem also implies the APX-hardness of the vertex cover problem
(VertexCover) on graphs with constant degree-bound. We will need it for the
proof of Theorem 3.10.

Theorem 3.3 (Inapproximability of VertexCover). There exist a universal con-
stant integer d and a universal constant γ ∈ (0, 1) such that, given an integer k and
an undirected graph G = (V,E) where the degree of each vertex is bounded by d, it is
NP-hard to distinguish between the following two cases:

• YES: G has a vertex cover of size k;

• NO: all vertex covers of G have sizes at least (1 + γ)k.

Proof. Fix γ > 0 from Theorem 3.1. We will show that Theorem 3.3 is true for
substituting γ with γ/2. Given a 3SAT instance φ with n clauses, we construct the
VertexCover instance (Gφ, k) with k = 2n and Gφ being the same graph as it is
in the proof of Theorem 3.2. By Theorem 3.2 (or following the same arguments in
the proof of Theorem 3.2, if φ is a YES instance, Gφ has an independent set of size n,
picking the remaining 2n vertices that are not in this independent set gives a vertex
cover of size k = 2n. If φ is a NO instance, Dinur’s PCP theorem implies that no
assignment satisfies even (1 − γ)n clauses. This means that no independent set of

29

size (1 − γ)n exists (because by including one true literal in each clause for a given
assignment yields an independent set with the same number of vertices as satisfying
clauses). Thus, all vertex covers of G have sizes at least 3n − (1 − γ)n = (2 + γ)n.
This implies the YES and NO instances differ by a factor of 1 + γ/2.

3.4 APX-hardness of Influence Maximization

All our APX-hardness results are built upon the upper bounds on σ(S) in Theo-
rem 3.4, 3.5 and 3.6. Our upper bound for ULTM and WICM in Theorem 3.5 and 3.6
are particularly interesting even on their own, and they will further be considered in
Sect. 3.6. Both of them show that σ(S) is upper-bounded by the number of edges
between S and V \ S, which reveals that σ(S) is somehow characterized by its local
behaviors on S and neighbors of vertices in S. In particular, the expected number of
new infections caused by a single seed is upper-bounded by the degree of this seed.
As we will see later in Sect. 3.5.2 and 3.5.3, the expected number of infections caused
by a single seed is exactly the degree of this seed if the graph is a tree (Lemma 3.13
and 3.16). This implies that trees provide the most number of infections, and adding
more edges to a tree may only reduce the total number of infections.

Notice that, although Theorem 3.4 can be adapted for directed graphs with d

in the theorem being the maximum out-degree, Theorem 3.5 and 3.6 only holds for
undirected graphs. ULTM and WICM on directed graphs has a fundamentally different
nature. The local characterization no longer applies and the cascade process is no
longer diminishing. As a simple example, if a seed s is put at one end of a directed
line, G = (V,E) where E = {(s, v1), (v1, v2), . . . , (vN−1, vN)}, then, for both the ULTM
and WICM, σ({s}) = N + 1 as all the vertices in G will be infected with probability 1,
even if the degree of s is only 1.

Theorem 3.4. Given a uniform independent cascade model UICMG,p with a seed set
S ⊆ V , and assuming p < 1

d
where d is the maximum degree over all vertices, we have

σG,p(S) ≤ |S|+ |E(S,V \S)|p
1−pd .

Theorem 3.5. Given a uniform linear threshold model ULTMG with an undirected
graph G = (V,E) and a seed set S ⊆ V , we have σG(S) ≤ |E(S, V \ S)|+ |S|, where
E(S, V \ S) is the set of edges between S and V \ S.

Theorem 3.6. Given a weighted independent cascade model WICMG with an undirected
graph G = (V,E) and a seed set S ⊆ V , we have σG(S) ≤ |E(S, V \ S)|+ |S|, where
E(S, V \ S) is the set of edges between S and V \ S.

30

We defer the proofs of these three theorems to Sect. 3.5, and in this section we
use them to prove our main APX-hardness results.

The theorem below shows that InfMax on undirected graphs with ICM is APX-
hard, even if all edges have the same weight (i.e., the model UICM).

Theorem 3.7. There exist universal constants τ, p ∈ (0, 1) and a function T : Z+ →
R+ such that, considering the InfMax problem (G = (V,E), k) with a uniform inde-
pendent cascade model UICMG,p on an undirected graph G, it is NP-hard to distinguish
between the following two cases:

• YES: there exists a seed set S with |S| = k such that σG,p(S) ≥ T (|V |);

• NO: for any seed set S with |S| = k, we have σG,p(S) ≤ (1− τ)T (|V |).

The intuition behinds the following proof of Theorem 3.7 is as follows: given an
IndSet instance Gφ, we first make vertices in Gφ have the same degree d by adding
dummy vertices; by making the value of p small, we can approximate σG,p(S) by only
counting the number of edges going out from S; if Gφ has an independent set of size
n, then the number of out-going edges is nd; otherwise, Theorem 3.2 indicates that
there are at most nd − γn out-going edges for any seed set of size n; this yields the
APX-hardness result since γ is a constant.

Proof. The reduction is as follows. Given an IndSet instance Gφ = (Vφ, Eφ) with
|Vφ| = 3n and degree bound d (and a potential independent set of size n is regarded),
the undirected graph G = (V,E) is obtained by modifying Gφ = (Vφ, Eφ) as follows:
let d be the maximum degree over vertices in Gφ, for each v ∈ Vφ with deg(v) < d,
add d−deg(v) dummy vertices and make them connect to v only. This makes all the
original 3n vertices in Vφ have the same degree d. The number of seeds k is set to n.
We will decide the values for p and τ , and the function T (·) later. In the remaining
part of this proof, we will view Gφ as a subgraph of G so that V \Vφ are exactly those
dummy vertices.

When the IndSet instance Gφ is a YES instance, there is an independent set of
size n in Gφ. If we pick the corresponding n vertices in G as seeds, denoted by S,
the expected number of infected vertices after the first round of the cascade is at
least ndp(1− p)d−1. This is because the total number of edges between S and V \ S
is exactly nd (since S is an independent set and each s ∈ S has degree d), and the

31

expected number of infected vertices for the first round is∑
v∈∂S

Pr(v is infected) =
∑
v∈∂S

(
1− (1− p)δv

)
(where ∂S = {v ∈ V \ S | ∃s ∈ S : (s, v) ∈ E} and δv = Γ(v) ∩ S)

=
∑
v∈∂S

δv−1∑
i=0

p(1− p)i

≥
∑
v∈∂S

δv−1∑
i=0

p(1− p)d−1 (since i ≤ δv − 1 ≤ d− 1)

= ndp(1− p)d−1,

where the last equality follows since
∑

v∈∂S
∑δv−1

i=0 1 is exactly the number of edges
between S and V \ S, which is nd. Therefore, by only consider the first round of the
cascade, we have

σG,p(S) ≥ n+ ndp(1− p)d−1, (3.1)

for certain S ⊆ V if Gφ is a YES instance.
When the IndSet instance Gφ is a NO instance, there are at least γn edges

between any set of n vertices in Gφ. We first note that we can assume without loss
of generality that seeds are chosen in Vφ ⊆ V , as seeding any w ∈ V \ Vφ is always
less beneficial.4 Next, consider any seed set S ⊆ Vφ ⊆ V with |S| = n. We have
|E(S, V \ S)| ≤ nd − γn = n(d − γ). By Theorem 3.4, if we set p such that p < 1

d
,

this implies

σG,p(S) ≤ n+ np
d− γ
1− dp

, (3.2)

for any S with |S| = n.
Next, the inequality

d(1− p)d−1 >
d− γ
1− dp

holds for sufficiently small p, as the left-hand side has limit d and the right-hand side
has limit d − γ < d when p → 0. We choose the value of p with p > 0 such that
this inequality still holds. Notice that p is a universal constant, since d and γ in the

4To see this, for (u,w) such that u ∈ Vφ and w ∈ V \ Vφ, if u is not seeded, seeding u is strictly
more beneficial than seeding w; if u is seeded, seeding w adds only 1 − p to σG(S), while seeding
any unseeded vertices in Vφ is more beneficial.

32

equality are universal constants. Let

τ = 1−
1 + p d−γ

1−dp

1 + dp(1− p)d−1
.

Our choice of p makes sure τ > 0, and τ is a constant since p, d and γ are all
constants. Finally, choosing T (n) = n+ ndp(1− p)d−1, it is straightforward to check
that Eqn. (3.1) and Eqn. (3.2) imply the theorem.

The theorem below shows that the linear threshold InfMax is also APX-hard,
even with undirected graphs. The ideas for the proof of Theorem 3.8 is similar to the
ones for proving Theorem 3.7. The difficulty here is, we cannot adjust the value of p,
as the weight of each edge is decided by the degree of one of its incident vertices in
ULTM. However, we can link to each vertex a large number D (still being a constant)
of dummy vertices to artificially reduce the weights of edges.

Theorem 3.8. There exists a universal constant τ ∈ (0, 1) and a function T : Z+ →
R+ such that, considering the InfMax problem (G = (V,E), k) with the linear thresh-
old model ULTMG on an undirected graph G, it is NP-hard to distinguish between the
following two cases:

• YES: there exists a seed set S with |S| = k such that σG(S) ≥ T (n);

• NO: for any seed set S with |S| = k, we have σG(S) ≤ (1− τ)T (n).

Proof. Let Gφ = (Vφ, Eφ) be the IndSet instance, with d being the upper bound of
the degrees and |Vφ| = 3n. We construct the InfMax instance G = (V,E) as follows.
Let D be a sufficiently large integer to be decided later. For each vertex v ∈ Vφ,
create D + d − deg(v) dummy vertices and connect them to v. Again, we will view
Gφ as a subgraph of G. By our construction, all vertices in Vφ have degree D + d in
G. Set k = n.

When the IndSet instance Gφ is a YES instance, there is an independent set of
size n in Gφ. If we pick the corresponding n vertices in G as seeds, denoted by S,
the expected number of infected vertices after two rounds of the cascade is at least
n + nD + ndD

d+D
. To see this, first notice that, if a vertex v ∈ Vφ is infected, then

all the dummy vertices connected to it will be infected in the next round, as these
vertices have degree 1. Let ∂S = {v ∈ Vφ \ S | ∃s ∈ S : (s, v) ∈ Eφ} be the set of
all non-dummy vertices that are connected to a seed, and ∂dS = {v ∈ V \ Vφ | ∃s ∈
S : (s, v) ∈ E} be the set of all dummy vertices that are connected to a seed. By our
construction, we have |E(S, Vφ \ S)| + |∂dS| = n(d + D) (since the left hand side is

33

exactly the number of edges between S and V \S and each vertex in the independent
set S has degree exactly d+D) and |∂dS| ≥ nD (since each vertex in Vφ has at least
D dummy neighbors). For each v ∈ ∂S, let δv be the number of v’s neighbors in S.
In the first round, all vertices in ∂dS will be infected with probability 1, and each
vertex v ∈ ∂S will be infected with probability δv

d+D
. If a vertex in ∂S is infected, it

will infect all the dummy vertices connected to it in the second round, and there are
at least D such dummy vertices. Thus, the total number of vertices that are infected
in the first two rounds is at least∑

v∈∂dS

1 +
∑
v∈∂S

δv
d+D

·D =
∣∣∂dS∣∣+ |E(S, Vφ \ S)| D

d+D

= nD +
(∣∣∂dS∣∣− nD)+ |E(S, Vφ \ S)| D

d+D

≥ nD +
(∣∣∂dS∣∣− nD) D

d+D
+ |E(S, Vφ \ S)| D

d+D
(since |∂dS| ≥ nD)

= nD + nd
D

d+D
.

(since |E(S, Vφ \ S)|+ |∂dS| = n(d+D))

Therefore, we have

σG(S) ≥ n+ nD +
ndD

d+D
. (3.3)

When the IndSet instance Gφ is a NO instance, there are at least γn edges
between any set of n vertices in Gφ. We first note that we can assume without loss of
generality that seeds are chosen in Vφ ⊆ V .5 Next, consider any seed set S ⊆ Vφ ⊆ V

with |S| = n. We have |E(S, V \ S)| ≤ n(d+D)− γn. By Theorem 3.5, this implies

σG(S) ≤ n+ nD + nd− nγ, (3.4)

for any S with |S| = n.
Lastly, it is possible to choose D such that

1 +D +
dD

d+D
> 1 +D + d− γ,

as dD
d+D

, having limit d when D → ∞, can be larger than d − γ for sufficiently large

5To see this, for (u, v) such that u ∈ Vφ and v ∈ V \ Vφ, if u is not seeded, seeding u is strictly
more beneficial than seeding v; if u is seeded, v will be infected with probability 1, while seeding
any unseeded vertices in Vφ is more beneficial.

34

D. We choose D satisfying this, and notice that D is a universal constant since d and
γ are universal constants. Finally, letting

τ = 1− 1 +D + d− γ
1 +D + dD

d+D

and T (n) = n+ nD +
ndD

d+D
,

Eqn. (3.3) and Eqn. (3.4) imply the theorem.

The APX-hardness for WICM can be proved in a way similar to proving Theo-
rem 3.8.

Theorem 3.9. There exists a universal constant τ ∈ (0, 1) and a function T : Z+ →
R+ such that, considering the InfMax problem (G = (V,E), k) with the weighted in-
dependent cascade model WICMG on an undirected graph G, it is NP-hard to distinguish
between the following two cases:

• YES: there exists a seed set S with |S| = k such that σG(S) ≥ T (n);

• NO: for any seed set S with |S| = k, we have σG(S) ≤ (1− τ)T (n).

Proof. Let Gφ = (Vφ, Eφ) be the IndSet instance, with d being the upper bound of
the degrees and |Vφ| = 3n. We construct the InfMax instance G = (V,E) in exactly
the same way as it is in the proof of Theorem 3.8, and the corresponding constant D
is decided later.

When the IndSet instance Gφ is a YES instance, there is an independent set of
size n in Gφ. Again, we consider picking the corresponding n vertices in G as seeds,
denoted by S, and find a lower bound for σG(S). Let ∂S and ∂dS be the same as they
are in the proof of Theorem 3.8. For each v ∈ ∂S, let δv be the number of v’s neighbors
in S again. In the first round, all vertices in ∂dS will be infected with probability 1,
and each vertex v ∈ ∂S will be infected with probability 1−

(
1− 1

d+D

)δv . If a vertex
in ∂S is infected, it will infect all the dummy vertices connected to it in the second

35

round, and there are at least D such dummy vertices. Putting together, we have

σG(S) ≥ n+
∑
v∈∂dS

1 +
∑
v∈∂S

(
1−

(
1− 1

d+D

)δv)
D

= n+
∣∣∂dS∣∣+

∑
v∈∂S

δv−1∑
i=0

1

d+D

(
1− 1

d+D

)i
D

≥ n+
∣∣∂dS∣∣+

∑
v∈∂S

δv−1∑
i=0

D

d+D

(
1− 1

d+D

)d
(since i < δv ≤ d)

= n+
∣∣∂dS∣∣+ |E(S, Vφ \ S)| D

d+D

(
1− 1

d+D

)d
(since

∑
v∈∂S

δv−1∑
i=0

1 = |E(S, Vφ \ S)|)

≥ n+ nD +
(∣∣∂dS∣∣− nD + |E(S, Vφ \ S)|

) D

d+D

(
1− 1

d+D

)d
(since |∂dS| ≥ nD)

= n+ nD +
ndD

d+D

(
1− 1

d+D

)d
.

(since |E(S, Vφ \ S)|+ |∂dS| = n(d+D))

When the IndSet instance Gφ is a NO instance, the same analysis in the proof
of Theorem 3.8, coupled with Theorem 3.6, implies that

σG(S) ≤ n+ nD + nd− nγ,

for any S with |S| = n.
Lastly, it is possible to choose D such that

1 +D +
dD

d+D

(
1− 1

d+D

)d
> 1 +D + d− γ,

as dD
d+D

(
1− 1

d+D

)d, having limit d when D → ∞, can be larger than d − γ for suffi-
ciently large D. We choose D satisfying this, and notice that D is a universal constant
since d and γ are universal constants. Finally, letting

τ = 1− 1 +D + d− γ
1 +D + dD

d+D

(
1− 1

d+D

)d and T (n) = n+nD+
ndD

d+D

(
1− 1

d+D

)d
,

36

the theorem is implied.

We conclude this section by presenting the following APX-hardness result that has
almost perfect completeness : in the case of a YES instance, the number of infected
vertices is N − o(N) deterministically. However, it only holds for general directed
graphs. The proof of the theorem makes use of Dinur’s PCP theorem as well, but
does not depend on the upper bound in Theorem 3.5 as well as any results in Sect. 3.5.

Theorem 3.10. Consider the InfMax problem (G = (V,E), k) with ULTM. There
exists a constant τ ∈ (0, 1) such that it is NP-hard to distinguish between the following
two cases:

• YES: there exists S ⊆ V with |S| = k such that Pr(ULTMG(S) ≥ N − o(N)) = 1;

• NO: for any seed set S with |S| = k, we have σG(S) ≤ (1− τ)N .

Proof. We consider a reduction from VertexCover. Given a VertexCover in-
stance (G = (V ,E), k), we will construct an InfMax instance (G = (V,E,w), k).
Let n̄ = |V |, m̄ = |E|, and W = 2m̄5n̄5 (W can be any sufficiently large even number
in this reduction, as long as it is bounded by a polynomial of m̄ and n̄). We consider
exclusively those G such that each v ∈ V has degree at most d. Let γ and the notion
of YES/NO instance be defined as they are in Theorem 3.3. We further assume that
k ≥ m̄/d. This can be assume without loss of generality: the total number of edges
that can possibly be covered by k vertices is at most kd, so a set of less than m̄/d

vertices cannot be a vertex cover and the VertexCover instance is a trivial NO
instance if k < m̄/d.

The number of seeds k is set to k = m̄+k̄. The graphG containsN = n̄+m̄(2+W)

vertices and is defined as follows.

• For each v̄ ∈ V , construct a vertex v ∈ V ; for each (ū, v̄) ∈ E, construct 2 +W

vertices: euu,v, evu,v, w1
u,v, w

2
u,v, . . . , w

W
u,v.

• For each (ū, v̄) ∈ E, construct 4 +W edges:

– (u, evu,v), (v, e
u
u,v), (e

u
u,v, e

v
u,v), (e

v
u,v, e

u
u,v), each of which has weight 0.5, and

– (euu,v, w
1
u,v), . . . , (e

u
u,v, w

W
2
u,v), (evu,v, w

W
2

+1
u,v), . . . , (euu,v, w

W
u,v), each of which has

weight 1.

For each (ū, v̄) ∈ E, we have constructed a gadget shown in Fig. 3.1, for which we
will denote by Gu,v, that contains 4+W vertices u, v, euu,v, evu,v, w1

u,v, w
2
u,v, . . . , w

W
u,v and

37

Figure 3.1: The edge gadget

4+W edges defined above. Notice that any two gadgets can only share at most a single
vertex v which corresponds to a certain v̄ ∈ V . More importantly, the infected vertices
in Gu,v \{v} will never infect v as v is connected to the rest of Gu,v by a directed edge.
This ensures that the infection of any one or more of euu,v, evu,v, w1

u,v, w
2
u,v, . . . , w

W
u,v in

a gadget Gu,v has no impact on the other gadgets. Thus, after a seed set is fixed, we
can analyze the cascade in each gadget independently. Finally, it is easy to see that
the construction has a polynomial size, so this is a polynomial time reduction.

If the VertexCover instance is a YES instance, we assume without loss of
generality that {v̄1, . . . , v̄k} is a vertex cover of G. Consider the seed set S of size
k = m̄+ k̄ defined as follows:

• S includes v1, . . . , vk;

• for each gadget Gu,v, S includes exactly one of euu,v, evu,v: S includes euu,v if
u ∈ {v1, . . . , vk}, S includes evu,v if v ∈ {v1, . . . , vk}, and pick an arbitrary one
of euu,v, evu,v to be included in S if u, v ∈ {v1, . . . , vk}. Notice that we have either
u ∈ {v1, . . . , vk} or v ∈ {v1, . . . , vk} since {v̄1, . . . , v̄k} is a vertex cover of G.

It is easy to see that each gadget Gu,v contains at least 3 +W ≥ W infected vertices
after the cascade: assume without loss of generality that u, euu,v ∈ S; then evu,v, having
all the two in-neighbors u, euu,v infected, will be infected with probability 1; finally,
the infection of both euu,v and evu,v will infect all of w1

u,v, . . . , w
W
u,v with probability

1. Therefore, with probability 1, the total number of infected vertices is at least
m̄W = N − o(N).

38

If the VertexCover instance is a NO instance, a vertex cover of G has size at
least (1+γ)k. Consider an arbitrary seed set S ′ with |S ′| = k = m̄+k̄. We can assume
that S ′ does not contain any of w1

u,v, . . . , w
W
u,v in each gadget Gu,v, as seeding euu,v is

strictly better than seeding any of w1
u,v, . . . , w

W
2
u,v and seeding evu,v is strictly better

than seeding any of w
W
2

+1
u,v , wWu,v (if euu,v or evu,v is also seeded, we can remove the seeds

from w1
u,v, . . . , w

W
u,v without changing the number of infected vertices). Moreover, we

can assume that S ′ does not contain both euu,v and evu,v in each gadget Gu,v, as in this
case either switching euu,v to u or switching evu,v to v will cause one more infection and
thus strictly better: for example, euu,v will still be infected by u and evu,v if we seed u
instead of euu,v (if either u or v is already seeded, we can just remove euu,v or evu,v from
S ′ without changing the number of infected vertices).

We say that Gu,v is active if we have either u, euu,v ∈ S ′ or v, evu,v ∈ S ′. From
previous analyses, an active gadget contains at least 3 + W infected vertices. A
gadget can fail to be active in the following two different ways:

Failure I none of euu,v, evu,v is chosen in the seed set, and

Failure II none of u, v is chosen in the seed set.

Keeping our justified assumptions {euu,v, evu,v} 6⊆ S ′ and w1
u,v, . . . , w

W
u,v /∈ S ′, by ana-

lyzing the cascade, it is straightforward to see that the expected number of infected
vertices in Gu,v is at most 3

4
W +O(1) if one of the above two failures occur, and the

number of infected vertices is 0 if both failures occur. To calculate an upper-bound
of σG(S ′), we only need to count the number of failures in all the gadgets, where the
occurrences of both failures in a single gadget are counted as two failures. Since the
occurrence of a single failure causes a lost of 1

4
W + O(1) infected vertices and the

occurrences of both failures in a gadget imply a lost of W + O(1) infected vertices
which is even more than 2× (1

4
W +O(1)), this way of counting only underestimates

the number of uninfected vertices
Next, we aim to show that the total number of failures is at least γk̄. Let n1, n2

be the number of Failure I and II respectively. The number of seeds in the “inner
parts” of all the m̄ gadgets,

⋃
u,v:(ū,v̄)∈E{euu,v, evu,v}, is m̄ − n1, since exactly a seed

is needed for one of euu,v, evu,v in each Gu,v to avoid a Failure I. As a results, the
number of seeds allocated for those vertices representing vertices of G, {v : v̄ ∈ V },
is k − (m̄ − n1) = k + n1. This symbolizes picking a set of k + n1 vertices in the
VertexCover instance. By Theorem 3.3, we need max{γk̄ − n1, 0} additional
vertices to form a vertex cover. This implies that there are at least max{γk̄ − n1, 0}

39

uncovered edges for the picked set of k + n1 vertices. Thus, n2 ≥ max{γk̄ − n1, 0}.
Therefore, the total number of failures is lower-bounded by

n1 + n2 ≥ n1 + max{γk̄ − n1, 0} ≥ γk,

implying

σG(S ′) ≤ N − (n1 + n2)

(
1

4
W +O(1)

)
≤
(
m− γk̄

4

)
W + o(W)

≤
(

1− γ

4d

)
mW + o(W),

where the last inequality is due to our assumption k̄ ≥ m̄/d. We conclude the theorem
by noticing N = mW + o(W) and letting τ be a constant strictly less than γ

4d
.

3.5 Lift, Coupling and Upper Bounds

In this section, we define the lift of an undirected graph G with respect to a vertex set
A ⊆ V , which is a new undirected graph ĜA that has the same vertex set A with G
plus a lot of new vertices. We will then define a coupling between sampling live-edges
in G and sampling live-edges in ĜA (refer to Sect. 2.1.2 for details about live-edges).
Given the seed set S, this coupling reveals an upper bound of σG(S) for each of UICM,
WICM and ULTM on undirected graphs. In particular, we will show that, for A = S

being the seed set, σG(S) ≤ σĜA(S) for all these models. These bounds will imply
Theorem 3.4, 3.5 and 3.6 in Sect. 3.4, and the upper bounds in Theorem 3.5 and 3.6
are also the key in the InfMax heuristic presented in Sect. 3.6.

Let

PA = {P = ((v1, v2), (v2, v3), . . . , (vt−1, vt)) : v1 ∈ A; v2, . . . , vt /∈ A;∀i 6= j : vi 6= vj}

be the set of all simple paths P that start from vertices in A but never come back to
A.

Definition 3.11. Given an undirected graph G = (V,E) and A ⊆ V , the lift of G
with respect to A, denoted by ĜA = (V̂ , Ê), is an undirected graph defined as follows.

• The vertex set is V̂ = A ∪ VP , where VP = {vP : P ∈ PA} is the set of vertices
corresponding to the simple paths in PA.

40

• For each u ∈ A and vP ∈ VP , include (u, vP) ∈ Ê if P is a path of length 1 that
starts from u; for each vP1 , vP2 ∈ VP , include (vP1 , vP2) if |P2| = |P1| + 1 and
P2, P1 share the first |P1| common edges (or |P1| = |P2| + 1 and P1, P2 share
the first |P2| common edges, since ĜA is undirected); do not include any edge
between any two vertices in A.

It is easy to see that the same vertex set A is in both ĜA and G, and ĜA is a
forest with roots being exactly those vertices in A. The vertices in the tree rooted at
u ∈ A in ĜA correspond to all the paths in PA starting at u. For any path P ∈ PA
with v being its ending vertex, deg(vP) in ĜA is less than or equal to deg(v) in G.
Specifically, deg(v)− deg(vP) equals to exactly the number of v’s neighbors that are
in A. Figure 3.2 shows an example of G and ĜA (please ignore the third graph in
Fig. 3.2 at this moment).

Next, we present a coupling argument to show that σG(S) ≤ σĜS(S) for all the
diffusion models considered. Intuitively, we somehow have separated different “trends”
of the cascade on G by considering the corresponding cascade process on G’s tree-like
counterpart ĜS. If a seed s infects vertices v1, v2, . . . , vt one by one along the path

Pt := ((s, v1), (v1, v2), . . . , (vt−1, vt)),

it corresponds to the case that the same seed s in the lift ĜS infects vP1 , vP2 , . . . , vPt

one by one, where

P1 := ((s, v1)),

P2 := ((s, v1), (v1, v2)),

...

Pt := ((s, v1), (v1, v2), . . . , (vt−1, vt)).

We will define the coupling describing the above correspondence. Moreover, as we
will see later, ĜS contains many more vertices than G, which potentially produces
more infected vertices.

Let Ψ : E → 2Ê be the function mapping an undirected edge in G to its counter-
parts in ĜA:

Ψ(e) =

∅ if e = (u, v) for u, v ∈ A
{(u, vP) | P = ((u, v))} if e = (u, v) for u ∈ A, v /∈ A
{(vP1 , vP2) | P2 = (P1, e)} Otherwise.

41

Notice that in the above definition, Ψ(e) contains only a single edge (u, vP) with
P = ((u, v)) being the length-one path connecting u, v if u ∈ A and v /∈ A, while
Ψ(e) contains the set of all (vP1 , vP2) such that P2 is obtained by appending e to P1.
Let Φ : V → 2V̂ represent the vertex correspondence:

Φ(v) =

{
{v} if v ∈ A
{vP | P ends at v} Otherwise.

From our definition, it is easy to see that Ψ(e1) ∩ Ψ(e2) = ∅ if e1 6= e2, and
Φ(u) ∩ Φ(v) = ∅ if u 6= v. Moreover, since PA contains only paths, for any vertex v
and edge e in G, each path in ĜA connecting a root in A to a leaf (recall that ĜA is
a forest with the set of roots exactly A) can intersect each of Ψ(e) and Φ(v) at most
once.6 We will use this fact multiple times later.

3.5.1 Upper Bound for Uniform Independent Cascade Model

We consider UICM with p being fixed for the weight of all edges in this subsection.

Lemma 3.12. Given a uniform independent cascade model UICMG,p with an undi-
rected graph G = (V,E) and a seed set S ⊆ V , we have

σG,p(S) ≤ σĜS ,p(S).

Proof. We will define a coupling between the process of revealing live-edges in G and
the process of revealing live-edges in ĜS. We shall ignore those edges that are internal
to S in G, as they do not affect the number of infected vertices. Let χG be the edge-
revelation process in G, and χĜS be the edge-revelation process in ĜS, where each
edge is revealed with probability p independently in both processes. We will couple
χG with another edge-revelation process χ′

ĜS
of ĜS.

We consider the following coupling. For each undirected edge e in G, we reveal
both of its corresponding two anti-parallel directed edges, and meanwhile reveal the
two anti-parallel edges for each undirected edge in Ψ(e) in the following way:

6To see this for each Ψ(e), suppose for the sake of contradiction that the path from vP to the
root contains two edges (vP1 , vP2), (vP3 , vP4) such that (vP1 , vP2), (vP3 , vP4) ∈ Ψ(e) for some edge
e. Assume without loss of generality that the order of the four vertices on the path according
to the distances to the root is (vP1

, vP2
, vP3

, vP4
). It is easy to see from our construction that

P1 (P2 (P3 (P4. As a result, (vP1
, vP2

), (vP3
, vP4

) ∈ Ψ(e) implies that P2 is the path obtained
by appending e to P1, and P4, containing P2, P3, is obtained by appending e to P3, which further
implies that P4 is a path that uses the edge e twice, contradicting to our definition that PS contains
only simple paths.
The corresponding claim for each Φ(v) can be shown similarly.

42

• if e = (u, v) for u ∈ S and v /∈ S, then for each undirected edge (u, vP) ∈ Ψ(e)

where P = ((u, v)), make (u, vP) live if and only if (u, v) is live in χG, and make
(vP , u) live if and only if (v, u) is live in χG;

• if e = (u, v) for u, v /∈ S, then

– for each undirected edge (vP1 , vP2) ∈ Ψ(e) where P1 ends at u and P2 =

(P1, e), make (vP1 , vP2) live if and only if (u, v) is live in χG, and make
(vP2 , vP1) live if and only if (v, u) is live in χG;

– for each undirected edge (vP1 , vP2) ∈ Ψ(e) where P1 ends at v and P2 =

(P1, e), make (vP1 , vP2) live if and only if (v, u) is live in χG, and make
(vP2 , vP1) live if and only if (u, v) is live in χG.

This defines a coupling between χG and χ′
ĜS

. Notice that the two processes χ′
ĜS

and χĜS are not the same, because the edges in χ′
ĜS

are not revealed independently.
However, we will show that the expected number of vertices that are reachable from
S by live edges is the same in both χ′

ĜS
and χĜS , which implies that the expected

number of vertices that are reachable from S by live edges in χ′
ĜS

is still exactly
σĜS(S).

To see this, it suffices to show that, for each vP ∈ V̂ , all the directed edges in
the path connecting from the root of the tree vP is in to the vertex vP are sampled
independently, since this would imply that the probability vP is connected to a seed
is the same in both χ′

ĜS
and χĜS , and the total number of vertices reachable from S

by live edges is the same by the linearity of expectation. We only need to show that
there do not exists two edges on this path that are in the same set Ψ(e) for some
e ∈ E, since edges in Ψ(e1) are revealed independently to the revelations of edges
in Ψ(e2) whenever e1 6= e2 (this is because e1, e2 are revealed independently in χG).
This is true since paths in PS are all simple paths, as remarked earlier.

To conclude the lemma, we will show that the number of the vertices reachable
from S in χG is always at most the number of vertices reachable from S in χ′

ĜS
. It is

easy to see that, if v ∈ V is connected to S by a path P consisting of live edges, the
vertex vP ∈ V̂ is also connected to S in ĜS by live edges. Thus, there exists at least
one vertex in Φ(u) connected to S by live edges in ĜS for each vertex u ∈ V connected
to S by live edges in G. The lemma follows from that Φ(u)’s are non-overlapping.

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. Fix an arbitrary p ∈ [0, 1/d) (as assumed in the theorem state-
ment). For each seed s ∈ S ⊆ V , let δs be the number of s’s neighbors in V \ S.

43

Let T be a forest such that each vertex s ∈ S is the root with δs children, and each
child is a root of an infinite full d-ary subtree. Clearly, ĜS is a subgraph of T , so
σT,p(S) ≥ σĜS ,p(S) ≥ σG,p(S) by Lemma 3.12. For each tree in T rooted at s ∈ S,
the probability that a vertex on level i is infected is pi, and there are δsdi−1 vertices
on level i. Therefore, we have

σT,p(S) = |S|+
∑
s∈S

∞∑
i=1

δsd
i−1pi = |S|+

∞∑
i=1

|E(S, V \S)|di−1pi = |S|+ |E(S, V \ S)|p
1− pd

,

which implies the theorem.

Lemma 3.12 and Theorem 3.4 can be generalized to directed graphs as well. The
lift ĜA should then be defined as the directed forest such that the root for each
tree is the source and the leaves are the sinks. With the same proofs, Lemma 3.12
and Theorem 3.4 follow for directed graphs, where d in Theorem 3.4 becomes the
maximum out-degree. Since we only need Theorem 3.4 for undirected graphs and the
generalization to directed graphs is straightforward, we omit the details for directed
graphs. Notice that, however, the results in the next section for LTM do not generalize
to directed graphs.

3.5.2 Upper Bound for Uniform Linear Threshold Model

In the edge-revelations for ULTM, the incoming edges of a single vertex are revealed
dependently, with one of them being live. This suggests that we should couple the
two edge-revelation processes by vertices instead of edges.

The following lemma has been shown by Lim et al. [56]. We include a simple proof
here for the completeness.

Lemma 3.13. Consider a uniform linear threshold model ULTMT with the graph T

being an undirected tree. Let S = {s} be a seed set containing only a single seed s.
We have σT (S) = deg(s) + 1.

Proof. We assume without loss of generality that T is rooted at s. Consider an
arbitrary vertex v 6= s at the second last level with children v1, . . . , vt being leaves of
T . We have deg(v) = t + 1. Suppose v’s parent u is infected by s with probability
x (x = 1 if u = s). Then v will be infected with probability x/(t + 1), and all
of v1, . . . , vt, having degree 1, will be infected with probability 1 if v is infected.
Therefore, the expected number of infected vertices in the subtree rooted at v is
x
t+1

(1 + t) + (1− x
t+1

) · 0 = x. This suggests that, if we contract the subtree rooted at

44

v to a single vertex v, the expected total number of infected vertices stays the same
for this change of the graph T , since the degree of v becomes 1 after this contraction,
making the infection probability of v be the same as that of u, which is x. We can
keep doing this contraction until T becomes a star with center s, and the expected
number of infected vertices remains the same. The lemma follows.

Lemma 3.14 is proved similarly as Lemma 3.12, except that we will couple the
two processes by vertices instead of by edges: for each v in the original graph, we
reveal all its incoming edges simultaneously, and this is coupled with the revelations
of all incoming edges for each vertex in Φ(v). Although the corresponding vertex in
ĜS may have a less degree: deg(v) − deg(vP) > 0 for certain vP ∈ Φ(v) (this makes
the weights of the incoming edges inconsistent), we can add dummy vertices to make
the degrees consistent, and Lemma 3.13 ensures this modification does not change
the expected number of infected vertices.

Lemma 3.14. Given a uniform linear threshold model ULTMG with an undirected
graph G = (V,E) and a seed set S ⊆ V , we have

σG(S) ≤ σĜS(S).

Proof. First of all, we modify the graph ĜS such that deg(vP) = deg(v) for each
vP ∈ Φ(v). We have seen that deg(v) − deg(vP) ≥ 0, and so we can add (deg(v) −
deg(vP)) dummy vertices that connect to vP only. Notice that Lemma 3.13 ensures
this modification does not change the expected number of infected vertices: for each
s ∈ S, the degree of s in ĜS will be the same as the degree of s in G after removing
all internal edges of S (the vertices that are adjacent to s in ĜS are exactly those
paths of length 1 in G, which corresponds to exactly the neighbors of s in G); thus,
the tree rooted at s will have exactly deg(s) + 1 infected vertices in expectation, with
or without modification (the resultant graph is still a forest after connecting those
dummy vertices). We will let ĜS be this modified graph from now on.

We will define a coupling between the process of revealing live-edges in G and the
process of revealing live-edges in ĜS. We shall ignore those edges that are internal
to S in G, as they do not affect the number of infected vertices. Let χG be the
edge-revelation process in G, and χĜS be the edge-revelation process in χĜS , where
in both processes, each edge is viewed as two anti-parallel directed edges, and we
always reveal all the incoming edges for a vertex simultaneously by choosing exactly
one incoming edge uniformly at random. Again, we will couple χG with another
edge-revelation process χ′

ĜS
of ĜS.

45

We consider the following coupling. In each iteration where all the incoming edges
of v, denoted by (u1, v), (u2, v), . . . , (udeg(v), v), are revealed such that exactly one of
them is live, we reveal all the incoming edges for each vP ∈ Φ(v) as follows.

• For each P ′ such that vP ′ is a neighbor of vP , there exists ui ∈ {u1, . . . , udeg(v)}
such that either that P ′ is obtained by appending (v, ui) to P or that P is
obtained by appending (ui, v) to P ′. Reveal the directed edge (vP ′ , vP) such
that it is live if and only if (ui, v) is live in G.

• If there is a live edge (vP ′ , vP) revealed in the above step, make all the remaining
directed edges connecting the dummy vertices to vP not be live. If no live edge
is revealed in the above step, choose exactly one of the directed edges connecting
the dummy vertices to vP as the live edge uniformly at random.

This defines a coupling between χG and χ′
ĜS

. It is easy to check that each vP ∈ V̂
chooses exactly one of its incoming edges uniformly at random in this coupling, which
is the same as it is in the process χĜS . The difference is that, there are dependencies
between the revelations of incoming edges for different vertices in ĜS: if both vP , vP ′ ∈
V̂ belongs to the same Φ(v) for some v ∈ V , the incoming edges for vP and vP ′ are
revealed in the same iteration and in the same way.

Same as it is in the proof of Lemma 3.12, although the two processes χ′
ĜS

and
χĜS are not the same, we will show that the expected number of vertices that are
reachable from S by live edges is the same in both χ′

ĜS
and χĜS . It suffices to show

that, for each vP ∈ V̂ , all the vertices in the path connecting vP to the root of the
tree vP is in are considered independently (meaning that the incoming edges for vP1

on the path are revealed independently to the revelations of the incoming edges of
vP2), since this would imply that the probability vP is connected to a seed is the same
in both χ′

ĜS
and χĜS , and the total number of vertices reachable from S by live edges

is the same by the linearity of expectation. We only need to show that there do not
exist two vertices on this path that are in the same set Φ(v) for some v ∈ V , since
the incoming edges of each vP1 ∈ Φ(v1) are revealed independently to the revelations
of the incoming edges of each vP2 ∈ Φ(v2) whenever v1 6= v2. This is true due to that
all the paths in PS are simple paths, as remarked in the paragraph below where we
define function Φ(·).

Following the same analysis before, we can show that the number of the vertices
reachable from S in χG is always at most the number of vertices reachable from S in
χ′
ĜS

. The lemma concludes here.

46

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. For each s ∈ S, let ns be the number of s’s incident edges with
the other ends in V \ S. It is easy to see that ĜS is a forest such that each s ∈ S has
exactly degree ns. By Lemma 3.14 and Lemma 3.13,

σG(S) ≤ σĜS(S) =
∑
s∈S

(ns + 1) = |E(S, V \ S)|+ |S|,

which implies the theorem.

In particular, if we take S = {s} in the theorem above, deg(s) + 1 in Lemma 3.13
becomes an upper bound.

Corollary 3.15. Consider a uniform linear threshold model ULTMG with an undirected
graph G. Let S = {s} be a seed set containing only a single seed s. We have σG(S) ≤
deg(s) + 1.

This suggests that, in ULTM on undirected graphs, trees provide the most number
of infections, and adding more edges to a tree may only reduce the total number of
infections.

3.5.3 Upper Bound for Weighted Independent Cascade Model

Firstly, Lemma 3.13 holds for WICM as well, with exactly the same proof.

Lemma 3.16. Consider a weighted independent cascade model WICMT with the graph
T being an undirected tree. Let S = {s} be a seed set containing only a single seed s.
We have σT (S) = deg(s) + 1.

Next, we can show the following lemma by combining ideas in the proofs of both
Lemma 3.12 and 3.14.

Lemma 3.17. Given a weighted independent cascade model WICMG with an undirected
graph G = (V,E) and a seed set S ⊆ V , we have

σG(S) ≤ σĜS(S).

Proof. We first modify the graph ĜS in the same way as described in the first para-
graph of the proof of Lemma 3.14. Then, the remaining part of the coupling follows
the one in the proof of Lemma 3.12. Notice that the modification of ĜS ensures that

47

v ∈ V has the same degree as the degree of each vertex in Φ(v). This validates the
coupling between χG and χ′

ĜS
. The remaining part of the proof is the same as the

proof of Lemma 3.12.

Applying the same arguments in the proof of Theorem 3.5, Lemma 3.17 implies
Theorem 3.6. The following corollary of Theorem 3.6, as a counterpart to Corol-
lary 3.15, shows that trees also provide the most number of infections for WICM.

Corollary 3.18. Consider a weighted independent cascade model WICMG with an undi-
rected graph G. Let S = {s} be a seed set containing only a single seed s. We have
σG(S) ≤ deg(s) + 1.

3.5.4 Refined Upper Bounds for ULTM and WICM

The upper bounds in Theorem 3.5 and 3.6 can be further refined, and the refined
upper bounds will yield a local greedy heuristic with better performance than the
heuristic based on upper bound in Theorem 3.5 and 3.6.

Theorem 3.19. Given a uniform linear threshold model ULTMG with an undirected
graph G = (V,E) and a seed set S ⊆ V , we have

σG(S) ≤ |S|+
∑
v∈V \S

δv
deg(v)

(1 + deg(v)− δv) ,

where δv is the number of v’s neighbors in S.

Theorem 3.20. Given a weighted independent cascade model WICMG with an undi-
rected graph G = (V,E) and a seed set S ⊆ V , we have

σG(S) ≤ |S|+
∑
v∈V \S

δv
deg(v)

(1 + deg(v)− δv) ,

where δv is the number of v’s neighbors in S.

Notice that both theorem above indeed provide a tighter upper bound compared
to Theorem 3.5, as

|E(S, V \ S)| =
∑
v∈∂S

δv ≥
∑
v∈V \S

δv
deg(v)

(1 + deg(v)− δv) .

Towards proving Theorem 3.5 and 3.6, we have considered the lift of G with
respect to S such that ĜS is a forest rooted at vertices in S, and we have shown that

48

σG(S) ≤ σĜS(S) by coupling. We need a slightly more complicated way to “lift” G in
order to show Theorem 3.19, in which we make those vertices in ∂S to be the roots
of the trees, where ∂S = {v ∈ V \ S | ∃s ∈ S : (s, v) ∈ E} is the set of all non-seed
vertices that are adjacent to a seed.

Similar to the definition of PA, let

P∂A = {P = ((v1, v2), (v2, v3), . . . , (vt−1, vt)) : v1 ∈ ∂A; v2, . . . , vt /∈ A;∀i, j : vi 6= vj}

be the set of all simple paths P that start from vertices in ∂A but never reach a
vertex in A (we allow the paths passing a vertex in ∂A in the middle).

Definition 3.21. Given an undirected graph G = (V,E) and A ⊆ V , the boundary
lift of G with respect to A, denoted by Ĝb

A = (V̂ , Ê), is an undirected graph defined
as follows.

• The vertex set is V̂ = A ∪ ∂A ∪ VP , where VP = {vP : P ∈ P∂A} is the set of
vertices corresponding to the simple paths in P∂A.

• For each u ∈ A and v ∈ ∂A, include (u, v) ∈ Ê if (u, v) ∈ E; for each u ∈ ∂A
and vP ∈ VP , include (u, vP) ∈ Ê if P is a path of length 1 that starts from
u; for each vP1 , vP2 ∈ VP , include (vP1 , vP2) if |P2| = |P1| + 1 and P2, P1 share
the first |P1| common edges (or |P1| = |P2| + 1 and P1, P2 share the first |P2|
common edges, since ĜA is undirected); do not include any edge between any
two vertices in A; do not include any edge between any two vertices in ∂A.

It is easy to see that the same vertex set A∪ ∂A is in both Ĝb
A and G. Moreover,

for each v ∈ ∂A, if removing those edges from v to vertices in A, the connected
component that contains v is a tree rooted at v. Figure 3.2 shows an example of G,
ĜA and Ĝb

A.
Corresponding, the definitions for Ψ(·) and Φ(·) are changed accordingly as follows.

Ψ(e) =

∅ if e = (u, v) for u, v ∈ A
{(u, v)} if e = (u, v) for u ∈ A, v ∈ ∂A
{(vP1 , vP2) | P2 = (P1, e)} Otherwise.

Φ(v) =

{
{v} if v ∈ A ∪ ∂A
{vP | P ends at v} Otherwise.

It is straightforward to check that all the properties of the two functions in Sect. 3.5
continue to hold here.

49

Figure 3.2: The lift and the boundary lift of G

Proof of Theorem 3.19. By the same coupling in the proof of Lemma 3.14, we can
show that

σG(S) ≤ σĜbS
(S).

For each v ∈ ∂S, we denote its neighbors as s1, . . . , sδv , u1, . . . , udeg(v)−δv , where
s1, . . . , sδv are v’s neighbors in S and u1, . . . , udeg(v)−δv are v’s remaining neighbors.
As we have mentioned, if we remove the δv edges (s1, v), . . . , (sδv , v), v is the root of
a tree, with u1, . . . , udeg(v)−δv being all the children of v. Since this tree contains no
seed, we can apply the contraction argument in the proof of Lemma 3.13 to itera-
tively contract the leaves of this tree, until at the stage where the tree only contains
v and u1, . . . , udeg(v)−δv . We do this contraction for each v ∈ ∂S. It is then simple to
compute σĜbS(S): each v ∈ ∂S is infected with probability δv

deg(v)
, and it will further

infect all its deg(v)− δv children if infected. Therefore,

σĜbS
(S) = |S|+

∑
v∈∂S

δv
deg(v)

(1 + deg(v)− δv) .

The theorem follows from σG(S) ≤ σĜbS
(S).

Proof of Theorem 3.20. By the same coupling in the proof of Lemma 3.17, we can
show that

σG(S) ≤ σĜbS
(S).

For each v ∈ ∂S, we denote its neighbors as s1, . . . , sδv , u1, . . . , udeg(v)−δv , where
s1, . . . , sδv are v’s neighbors in S and u1, . . . , udeg(v)−δv are v’s remaining neighbors.
By the same arguments in the previous proof, we can iteratively contract the leaves
of this tree, until at the stage where the tree only contains v and u1, . . . , udeg(v)−δv .
We do this contraction for each v ∈ ∂S. It is then simple to compute σĜbS(S): each

50

v ∈ ∂S is infected with probability 1 −
(

1− 1
deg(v)

)δv
≤ δv

deg(v)
, and it will further

infect all its deg(v)− δv children if infected. Therefore,

σĜbS
(S) = |S|+

∑
v∈∂S

δv
deg(v)

(1 + deg(v)− δv) .

The theorem follows from σG(S) ≤ σĜbS
(S).

3.5.5 Discussions about Scalability of Reverse-Reachable-Set-

Based Algorithms

As mentioned in Sect. 1.2.4 and Sect. 2.2, reverse-reachable-set-based algorithms give
(1− 1/e− ε) approximation for InfMax, and are considered as the state-of-the-art
in that they produce high quality seeds (almost as good as the greedy algorithm) and
are moderately scalable.

Arora et al. [3] observed that these algorithms are much more scalable on ULTM

and WICM than on UICM. In particular, Arora et al. [3] pointed out that IMM requires
significantly more memory for UICM compared to WICM (see Fig. 1 in their paper).
This indicates that the average size of a random reverse reachable set for UICM is
significantly larger.

Notice that most of the networks used by Arora et al. [3] are undirected. Our
upper bounds in Corollary 3.15 and 3.18 provide a sound theoretical justification of
this phenomenon. For UICM, p is usually set to 0.1 in the simulations. If a graph
contains a lot of well-connected vertices with degrees significantly higher than 10, as
it is the case in large social networks, then the size of a random reverse reachable set
is likely to be large. On the other hand, Corollary 3.15 and 3.18 suggest that, for
ULTM and WICM, the expected size of a reverse reachable set is upper-bounded by the
degree of the randomly chosen vertex plus 1, which is small.

3.6 Highly Scalable Heuristics with Empirical Good

Performance

For both ULTM and WICM with undirected graphs, Theorem 3.5 (Theorem 3.6) and
Theorem 3.19 (Theorem 3.20) provide upper bounds based only on the local graph
structure around the seed set S and the vertices that are adjacent to the seeds.
Towards proving both theorems, the (boundary) lift of the graph G with respect to

51

input : An undirected graph G = (V,E) and an integer k
1 initialize S = ∅
2 for i = 1, . . . , k do
3 find v ∈ V \ S maximizing f(S ∪ {v})− f(S) ; // follow Table 3.1
4 update S ← S ∪ {v}
5 end
6 return S

Algorithm 3.1: Local greedy heuristic with f ∈ {fv, fe, fb, fλve, fλvb}

the seed set S has been considered, where the network G has been modified to a forest.
We have also seen that tree structures provide the maximum numbers of infections,
and adding more edges can only decrease the expected number of infections. Since
most of the networks in our real life are sparse, it is very possible that tree structures
also provide good approximations to the number of infected vertices, and the seeds S
maximizing E(S, V \S) or

∑
v∈∂S

δv
deg(v)

(1 + deg(v)− δv) as appeared in the two upper
bounds are likely to provide good expected number of infections. This motivates our
local greedy heuristics in this section.

3.6.1 Local Greedy Heuristics

We consider three local features of a seed set S:

Vertex Cut: Number of vertices adjacent to S, denoted by fv(S) = |∂S|.

Edge Cut: Number of edges between S and V \S, denoted by fe(S) = |E(S, V \S)|.

Boundary Expansion: Second term in the upper bound in Theorem 3.19, denoted
by fb(S) =

∑
v∈∂S

δv
deg(v)

(1 + deg(v)− δv).

We also consider mixtures of them:

Mixture of Vertex Cut and Edge Cut: fλve(S) = λfv(S) + (1− λ)fe(S), and

Mixture of Vertex Cut and Boundary Expansion:
fλvb(S) = λfv(S) + (1− λ)fb(S),

where λ is a parameter set in the interval (0, 1).
For a chosen objection function f ∈ {fv, fe, fb, fλve, fλvb}, we iteratively choose the

seed that maximizes the marginal gain of f , the algorithm is shown in Algorithm 3.1.
Notice that the marginal gain f(S ∪ {v}) − f(S) can be easily computed for each
of the five objective functions as shown in Table 3.1 (where the marginal gain for

52

Objective How to Compute Marginal Gain f(S ∪ {v})− f(S)
Function
fv +1 for each v’s neighbor in V \ S; −1 if v ∈ ∂S
fe +1 for each v’s neighbor in V \ S; −1 for each v’s neighbor in S
fb equals to 1− δv

deg(v)
(1 + deg(v)− δv) +

∑
u∈γ(v)\S

(
1− 2 δu

deg(u)

)
fλve equals to λ (fv(S ∪ {v})− fv(S)) + (1− λ) (fe(S ∪ {v})− fe(S))
fλvb equals to λ (fv(S ∪ {v})− fv(S)) + (1− λ) (fb(S ∪ {v})− fb(S))

Table 3.1: Computing marginal gain for each objective function

fb in the table follows from straightforward calculations, which are omitted here).
In particular, the marginal gains for all these objectives can be computed by only
looking at v’s neighbors, and we only need to check each neighbor’s degree and the
number of each neighbor’s neighbors that are already chosen as seeds, which are all
local properties that can be stored and updated in a look-up table.

3.6.2 The Heuristic DegreeDiscountIC

We will compare our heuristics to the degree discount heuristics in [15] which itera-
tively finds the vertex with highest degree and removes it from the graph7, as they
are similar to our heuristics in that only local features of the seeds are ever looked
at. This algorithm is called “the single degree discount heuristic” in [15], for which
we will name it DegreeDiscount in this chapter.

Another variant of this heuristic designed specifically for UICM, named “degree
discount IC”, was also proposed by Chen et al. [15], for which we will name it
DegreeDiscountIC. The ideas and motivations of DegreeDiscountIC are as follows.
In DegreeDiscount, the score of a candidate seed is computed by its degree minus
the number of its neighbors that are already selected as seeds in the previous itera-
tions. In other words, each edge connecting the candidate seed to the existing seed
is “discounted” by 1. Intuitively, these edges, connecting to the existing seeds, play
no role in further infections, so they should be discounted from the degree of the
candidate seed. However, when considering UICM especially with small parameter p,
discounting by 1 is too much and thus inaccurate. The heuristic DegreeDiscountIC

shown in Algorithm 3.2 fixes this inaccuracy by using a more delicate estimation of
this discount. Readers interested in more details of this heuristic can refer to [15].

7Notice the difference between our edge cut heuristic and the degree discount heuristic: if we
start from the sum of the degrees of all the seeds, each internal edge is punished by −1 in the degree
discount heuristic, and is punished by −2 in our edge cut heuristic (when adding all the degrees,
each edge has been over-counted twice when computing the edge cut).

53

input : An undirected graph G = (V,E), parameter p ∈ [0, 1], and an integer k
1 initialize S = ∅
2 for each vertex v do
3 compute its degree dv
4 ddv ← dv
5 initialize tv ← 0

6 end
7 for i = 1 to k do
8 select u = arg maxv{ddv | v ∈ V \ S}
9 S ← S ∪ {u}

10 for each neighbor v of u and v ∈ V \ S do
11 tv ← tv + 1
12 ddv ← dv − 2tv − (dv − tv)tvp
13 end
14 end
15 return S

Algorithm 3.2: DegreeDiscountIC

Dataset Number of Vertices Number of Edges Average Degree
CA-GrQc 5,242 14,490 5.53
ego-facebook 1,034 26,749 51.74
Nethept 15,233 31,387 4.12
CA-HepPh 12,008 118,505 19.73
DBLP 317,080 1,049,866 6.62
com-YouTube 1,134,890 2,987,624 5.26
LiveJournal 3,997,962 34,681,189 17.35

Table 3.2: Datasets for experiments

Chen et al. [15] observed that, surprisingly, the seeds output by this variant,
although aiming for UICM, works well for LTM as well, with the parameter p set to
0.01.

3.6.3 Experimental Setup

We implement the experiments on seven undirected graphs, shown in Table 3.2. All
of our datasets come from [49], and these networks are also popular choices in other
empirical work.

All the experiments are implemented on a laptop with an Intel i7 processor and
a 16GB memory. We compare the best one of our five local greedy heuristics (with
our five different objective functions) to the standard greedy algorithm implemented

54

0 50 100 150 200

number of seeds, |S|

0

1000

2000

3000

4000

5000

0 50 100 150 200

number of seeds, |S|

0

2000

4000

6000

Figure 3.3: Comparing the performances of the local greedy heuristics with objective
functions fλve (left) and fλvb (right) with λ = 0.9, 0.7, 0.5, 0.3, 0.1 on dataset CA-HepPh
under ULTM.

using 1,000,000 reverse reachable sets. Note that this is more than the number of the
reverse reachable sets that are generated when standard heuristics (e.g., RIS, TIM+

or IMM) are implemented in practice.8 We also compare our heuristics to the simple
degree heuristic that chooses the k vertices with highest degrees, and the two versions
of the degree discount heuristic mentioned in the last section, DegreeDiscount and
DegreeDiscountIC, where p is set to 0.01 for DegreeDiscountIC.

On those small networks (the first six networks in Table 3.2), we set the number
of seeds k = 200 with the graph plotted for every seed (except for Fig. 3.3 where we
are comparing different values of λ for fλve and fλvb). For some large networks (the last
three networks in Table 3.2), we set the number of seeds k = 2000.

3.6.4 Results

Figure 3.3 shows the performance of Algorithm 3.1 with the objective functions fλve
and fλvb for λ = 0.9, 0.7, 0.5, 0.3, 0.1 respectively, on the dataset CA-HepPh with ULTM.
We notice that the seeds quality decreases as the value of λ decreases, for both fλve
and fλvb. This indicates that the local greedy heuristics with more emphasis on vertex
cut are better. We observe the same phenomenon for the remaining six datasets. We
will only consider λ = 0.9 for both fλve and fλvb from now on.

Although it seems that our observation in Fig. 3.3 indicates that vertex cut is a
better predictor for the seeds quality, setting λ = 1, i.e., implementing Algorithm 3.1
with the vertex cut objective fv, is outperformed by both f 0.9

ve and f 0.9
vb . Figure 3.4

compares the performances of fv, fe, fb, f 0.9
ve , f

0.9
vb on the dataset CA-HepPh, and the

8Our implementation with 1,000,000 reverse reachable sets produce slightly better quality of seed
sets than those of TIM+ and IMM as reported in [3], where TIM+ and IMM are tested on the four
networks, Nethept, HepPh, DBLP, Youtube, which we also used in our experiment.

55

0 20 40 60 80 100 120 140 160 180 200

number of seeds, |S|

0

1000

2000

3000

4000

5000

6000

vertex cut
edge cut
boundary expansion
mixture of vertex cut and edge
mixture of vertex cut and boundary expansion

Figure 3.4: Comparing the performances of the local greedy heuristics with the five
objective functions fe, fv, f 0.9

ve , fb, f
0.9
vb on CA-HepPh under ULTM.

mixture of boundary expansion and vertex cut f 0.9
vb performs the best and the edge

cut fe performs the worst. These have been observed in the remaining six datasets as
well, except for ego-facebook where the vertex cut is worse than the edge cut, while
f 0.9
vb is still the best. Notice that it is not surprising that fb performs better than
fe nor that f 0.9

vb performs better than f 0.9
ve , as we have remarked after Theorem 3.20

that the boundary expansion provides a better upper bound than the edge cut. As a
result, we recommend using f 0.9

vb in practice.
Finally, we compare, on all the datasets, the performance of f 0.9

vb to the greedy
maximum coverage algorithm on 1,000,000 reverse reachable sets, the two degree
discount heuristics DegreeDiscount and DegreeDiscountIC, and the algorithm that
simply picks the k vertices with highest degrees. We perform this comparison for
ULTM, WICM, and UICM. Since the local characterization Theorem 3.5, Theorem 3.6,
Theorem 3.19, and Theorem 3.20 do not hold for UICM, the performance of our local
greedy heuristics is better on ULTM and WICM than on UICM, as we will see next.

Linear Threshold Model Figure 3.5 shows the results on the seven datasets. In
all the experiments, our heuristic has slightly worse but almost the same performance
with the greedy maximum coverage algorithm on reverse reachable sets, and our
heuristic outperforms the two degree discount heuristics and the heuristic picking
k vertices with highest degrees. In particular, our algorithm outperforms the two
degree discount heuristics and the max-degree heuristic significantly in some of the
datasets. On average, for ULTM, the performance of our heuristic is 97.52% of the
performance of the much slower greedy algorithm (on 1,000,000 reverse reachable

56

sets).9 However, our heuristic does not require any MCMC simulations or reverse
reachable sets samplings, and thus is much more scalable.

Weighted independent cascade model The results for the weighted independent
cascade model are shown in Fig. 3.6. On average, the performance of the local greedy
heuristic with f 0.9

vb is 97.39% of the performance of the greedy maximum coverage
algorithm on 1,000,000 reverse reachable sets.

Comparing Fig. 3.5 and Fig. 3.6, we can see that the shapes of the curves are very
similar in each of the nine figures, although the numbers of infected vertices in both
models are different (look at the values on the y-axis). This again suggests that the
dynamics in both ULTM and WICM are similar.

Uniform independent cascade model The results for the uniform indepen-
dent cascade model are shown in Fig. 3.7. The parameter p is set to 0.01. Since
DegreeDiscountIC is specially designed for UICM, we will only compare our heuris-
tic to DegreeDiscountIC, not DegreeDiscount. Our heuristic has similar perfor-
mance with DegreeDiscountIC in all the six datasets. It is slightly worse than
DegreeDiscountIC on CA-GrQc, Nethept, DBLP, it matches the performance of
DegreeDiscountIC on ego-facebook and CA-HepPh, and it performs slightly bet-
ter on com-YouTube. On average, the performance of our heuristic is 86.26% of the
greedy algorithm (with 1,000,000 reverse reachable sets). This indicates that the local
greedy heuristic is less promising for UICM. As mentioned earlier, this is not surprising,
as our local characterization does not applied to this model.

3.7 Conclusion

We have seen that InfMax is APX-hard for both LTM and ICM on undirected graphs.
For LTM, there is still a gap between the upper bound (1− 1/e) and the lower bound
(1− τ), while the gap is slightly smaller for ICM with upper bound (1− 1/e+ c) and
lower bound (1− τ). A natural open problem is to close these gap by either designing
an approximation algorithm, taking advantage of the undirected nature of the graph,
that achieves approximation guarantee better than (1 − 1/e) (or (1 − 1/e + c) for
ICM), or to show that the problem is hard to approximate with a larger gap. Another

9This percentage is averaging over the experiments with exactly 200 seeds. If including those
with 2000 seeds, the percentage is 97.20%.

57

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

C
A

-G
rQ

c

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

e
g

o
-f

a
c

e
b

o
o

k

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

N
e

th
e

p
t

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

2
0
0
0

4
0
0
0

6
0
0
0

C
A

-H
e

p
P

h

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

0
.51

1
.52

×
1
0

4
D

B
L

P

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

02468
×

1
0

4
D

B
L

P
 (

2
0

0
0

 s
e

e
d

s
)

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

01234
×

1
0

5
c

o
m

-Y
o

u
T

u
b

e

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0246
×

1
0

5
c

o
m

-Y
o

u
T

u
b

e
 (

2
0

0
0

 s
e

e
d

s
)

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

tI
C

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

02468

1
0
×

1
0

5
L

iv
e

J
o

u
rn

a
l

(2
0

0
0

 s
e

e
d

s
)

g
re

e
d

y
 (

R
R

 s
e
ts

)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n
tI

C

d
e

g
re

e
D

is
c
o

u
n
t

m
a

x
D

e
g
re

e

F
ig
ur
e
3.
5:

C
om

pa
ri
ng

th
e
lo
ca
l
gr
ee
dy

he
ur
is
ti
c
w
it
h
f

0
.9
v
b

to
th
e
gr
ee
dy

m
ax

im
um

co
ve
ra
ge

al
go

ri
th
m

on
1,
00

0,
00

0
re
ve
rs
e

re
ac
ha

bl
e
se
ts

(l
ab

el
le
d
as

“g
re
ed
y
(R

R
se
ts
)”
),

De
gr

ee
Di

sc
ou
nt

,
De

gr
ee

Di
sc

ou
nt

IC
,
an

d
th
e
al
go

ri
th
m

th
at

si
m
pl
y
pi
ck

k
ve
rt
ic
es

w
it
h
hi
gh

es
t
de
gr
ee
s
(l
ab

el
le
d
as

“m
ax

D
eg
re
e”
).

T
he

di
ffu

si
on

m
od

el
is
UL

TM
.

58

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

C
A

-G
rQ

c

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

2
0
0

4
0
0

6
0
0

8
0
0

e
g

o
-f

a
c

e
b

o
o

k

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

N
e

th
e

p
t

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

C
A

-H
e

p
P

h

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

D
B

L
P

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0246
×

1
0

4
D

B
L

P
 (

2
0

0
0

 s
e

e
d

s
)

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0123
×

1
0

5
c

o
m

-Y
o

u
T

u
b

e g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

012345
×

1
0

5
c

o
m

-Y
o

u
T

u
b

e
 (

2
0

0
0

 s
e

e
d

s
)

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

012345
×

1
0

5
L

iv
e

J
o

u
rn

a
l

(2
0

0
0

 s
e

e
d

s
)

g
re

e
d

y
 (

R
R

 s
e

ts
)

o
u

r
h

e
u

ri
s
ti
c

d
e

g
re

e
D

is
c
o

u
n

t

m
a

x
D

e
g

re
e

d
e

g
re

e
D

is
c
o

u
n

tI
C

F
ig
ur
e
3.
6:

C
om

pa
ri
ng

th
e
lo
ca
l
gr
ee
dy

he
ur
is
ti
c
w
it
h
f

0
.9
v
b

to
th
e
gr
ee
dy

m
ax

im
um

co
ve
ra
ge

al
go

ri
th
m

on
1,
00

0,
00

0
re
ve
rs
e

re
ac
ha

bl
e
se
ts

(l
ab

el
le
d
as

“g
re
ed
y
(R

R
se
ts
)”
),

De
gr

ee
Di

sc
ou
nt

,
De

gr
ee

Di
sc

ou
nt

IC
,
an

d
th
e
al
go

ri
th
m

th
at

si
m
pl
y
pi
ck

k
ve
rt
ic
es

w
it
h
hi
gh

es
t
de
gr
ee
s
(l
ab

el
le
d
as

“m
ax

D
eg
re
e”
).

T
he

di
ffu

si
on

m
od

el
is
WI

CM
.

59

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

1
0
0

2
0
0

3
0
0

C
A

-G
rQ

c

g
re

e
d
y
 (

R
R

 s
e
ts

)

o
u
r

h
e
u
ri
s
ti
c

d
e
g
re

e
 d

is
c
o
u
n
t
IC

m
a
x
 d

e
g
re

e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

1
0
0

2
0
0

3
0
0

4
0
0

e
g

o
-f

a
c

e
b

o
o

k

g
re

e
d
y
 (

R
R

 s
e
ts

)

o
u
r

h
e
u
ri
s
ti
c

d
e
g
re

e
 d

is
c
o
u
n
t
IC

m
a
x
 d

e
g
re

e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

1
0
0

2
0
0

3
0
0

N
e

th
e

p
t

g
re

e
d
y
 (

R
R

 s
e
ts

)

o
u
r

h
e
u
ri
s
ti
c

d
e
g
re

e
 d

is
c
o
u
n
t
IC

m
a
x
 d

e
g
re

e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C
A

-H
e

p
P

h

g
re

e
d
y
 (

R
R

 s
e
ts

)

o
u
r

h
e
u
ri
s
ti
c

d
e
g
re

e
 d

is
c
o
u
n
t
IC

m
a
x
 d

e
g
re

e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

D
B

L
P

g
re

e
d
y
 (

R
R

 s
e
ts

)

o
u
r

h
e
u
ri
s
ti
c

d
e
g
re

e
 d

is
c
o
u
n
t
IC

m
a
x
 d

e
g
re

e

0
5
0

1
0
0

1
5
0

2
0
0

n
u

m
b

e
r

o
f

s
e

e
d

s
,

|S
|

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

c
o

m
-Y

o
u

T
u

b
e

g
re

e
d
y
 (

R
R

 s
e
ts

)

o
u
r

h
e
u
ri
s
ti
c

d
e
g
re

e
D

is
c
o
u
n
tI
C

m
a
x
D

e
g
re

e

F
ig
ur
e
3.
7:

C
om

pa
ri
ng

th
e
lo
ca
l
gr
ee
dy

he
ur
is
ti
c
w
it
h
f

0
.9
v
b

to
th
e
gr
ee
dy

m
ax

im
um

co
ve
ra
ge

al
go

ri
th
m

on
1,
00

0,
00

0
re
ve
rs
e

re
ac
ha

bl
e
se
ts

(l
ab

el
le
d
as

“g
re
ed

y
(R

R
se
ts
)”
),
De

gr
ee

Di
sc

ou
nt
IC

,a
nd

th
e
al
go

ri
th
m

th
at

si
m
pl
y
pi
ck
k
ve
rt
ic
es

w
it
h
hi
gh

es
t

de
gr
ee
s
(l
ab

el
le
d
as

“m
ax

D
eg
re
e”
).

T
he

di
ffu

si
on

m
od

el
is
UI

CM
w
it
h
p

=
0.

01
.

60

interesting future direction is to study the same problem for LTM with directed graphs.
Notice that the same gap still exists even for this setting.

61

CHAPTER 4

On Approximation Ratio of Greedy
Algorithm

In this chapter, we consider InfMax on undirected graphs under LTM (equivalently,
undirected graphs under ULTM by Assumption 2.14). On the one hand, we prove that
the greedy algorithm always achieves a (1 − (1 − 1/k)k + Ω(1/k3))-approximation,
showing that the greedy algorithm does slightly better on undirected graphs than the
generic (1 − (1 − 1/k)k) bound which also applies to directed graphs. On the other
hand, we show that substantial improvement on this bound is impossible by presenting
an example where the greedy algorithm can obtain at most a (1−(1−1/k)k+O(1/k0.2))

approximation.
This result stands in contrast to the previous work on ICM. Like LTM, the greedy

algorithm obtains a (1−(1−1/k)k)-approximation on directed graphs in ICM. However,
Khanna and Lucier [47] showed that, in undirected graphs, the greedy algorithm
performs substantially better: a (1− (1−1/k)k + c) approximation for constant c > 0

(as mentioned multiple times in many chapters of this thesis). Our results show that,
surprisingly, no such improvement occurs in LTM.

Finally, we show that, under LTM, the approximation ratio (1− (1−1/k)k) is tight
if 1) the graph is directed or 2) the vertices are weighted. In other words, under either
of these two settings, the greedy algorithm cannot achieve (1 − (1 − 1/k)k + f(k))-
approximation for any positive function f(k). The result in setting 2) is again in a
sharp contrast to Khanna and Lucier’s (1− (1− 1/k)k + c)-approximation result for
ICM, where the (1− (1− 1/k)k + c) approximation guarantee can be extended to the
setting where vertices are weighted.

We also discuss some possible generalizations of the model ULTM to the edge-
weighted settings (that violates Assumption 2.14, but still reasonable), and whether
our results extend to those more generalized settings.

62

4.1 Introduction

We have remarked in Sect. 2.2, for InfMax, nearly all the known algorithms are
based on the greedy algorithm. Therefore, improving the approximation guarantee
of the standard greedy algorithm improves the approximation guarantees of most
InfMax algorithms in the literature in one shot!

We have seen that both ICM and LTM are submodular, and the greedy algorithm
achieves a (1 − (1 − 1/k)k)-approximation, or, a (1 − 1/e)-approximation for any
k. A natural and important question is, can we show that the greedy algorithm can
perform better than a (1−(1−1/k)k)-approximation through a more careful analysis?

To answer this question, it is helpful to notice that InfMax is a special case of
the Max-k-Coverage problem: given a collection of subsets of a set of elements
and a positive integer k, find k subsets that cover maximum number of elements
(see details in Sect. 4.2.1). For Max-k-Coverage, it is well known that the greedy
algorithm cannot overcome the (1 − (1 − 1/k)k) barrier: for any positive function
f(k) which may be infinitesimal, there exists a Max-k-Coverage instance where
the greedy algorithm cannot achieve (1 − (1 − 1/k)k + f(k))-approximation. Thus,
to hope that the greedy algorithm can overcome this barrier for InfMax, we need to
find out what makes InfMax more special and exploit those InfMax features that
are not in Max-k-Coverage.

Unfortunately, InfMax with ICM for general directed graphs is nothing more
special than Max-k-Coverage, as it can simulate any Max-k-Coverage instance:
set the probability that u infects v to be 1 for all edges (u, v) (i.e., a vertex will be
infected if it contains an infected in-neighbor); use a vertex to represent a subset in
the Max-k-Coverage instance, and use a clique of size m to represent an element;
create a directed edge from the vertex representing the subset to an arbitrary vertex
in the clique representing the element if this subset contains this element. It is
easy to see that this simulates a Max-k-Coverage instance if m is sufficiently
large. Therefore, the greedy algorithm cannot achieve a (1 − (1 − 1/k)k + f(k))-
approximation for any positive function f(k). This implies we must use properties
beyond mere submodularity (a property shared by Max-k-Coverage) to improve
the algorithmic analysis.

As mentioned in Sect. 3.2, Khanna and Lucier [47] showed that the (1−(1−1/k)k)

barrier can be overcome if we restrict the graphs to be undirected in ICM. They proved
that the greedy algorithm for InfMax with ICM for undirected graphs achieves a
(1− (1−1/k)k+c)-approximation for some constant c > 0 that does not even depend

63

on k.1 This means greedy produces a (1−1/e+c) algorithm for any k. Moreover, this
result holds for the more general setting where 1) there is a prescribed set of vertices
V ′ ⊆ V as a part of input to the InfMax instance such that the seeds can only be
chosen among vertices in V ′ and 2) a positive weight is assigned to each vertex such
that the objective is to maximize the total weight of infected vertices (instead of the
total number of infected vertices). This result is remarkable, as many of the social
networks in our daily life are undirected by their nature (for example, friendship,
co-authorship, etc.). Knowing that the (1− (1− 1/k)k) barrier can be overcome for
ICM, a natural question is, what is the story for LTM?

Our results We show that Khanna and Lucier’s result on ICM can only be partially
extended to LTM. Our first result is an example showing that the greedy algorithm can
obtain at most a (1−(1−1/k)k+O(1/k0.2))-approximation for InfMax on undirected
graphs under LTM. This shows that, up to lower order terms, the approximation
guarantee 1− (1− 1/k)k is tight. In particular, no analogue of Khanna and Lucier’s
(1 − 1/e + c) result is possible if c > 0 is a constant. For the greedy algorithm, we
define the approximation surplus at k be the additive term after 1− (1− 1/k)k in the
approximation ratio. Our result can then be equivalently stated as the approximation
surplus at k for the linear threshold model is O(1/k0.2).

For our second result, we prove that the greedy algorithm does achieve a (1 −
(1 − 1/k)k + Ω(1/k3))-approximation under the same setting (LTM with undirected
graphs). This indicates that the greedy algorithm can overcome the (1− (1− 1/k)k)

barrier by a lower order term. In particular, the barrier is overcome for constant k.
We remark that the approximation surplus Ω(1/k3) does not depend on the number
of vertices/edges in the graph, so this improvement is not diminishing as the size of
the graph grows.

Finally, we extend our results to other InfMax settings. Firstly, we show that the
approximation ratio (1 − (1 − 1/k)k) is tight if we consider general directed graphs.
That is, the greedy algorithm cannot achieve a (1− (1−1/k)k +f(k))-approximation
for any positive function f(k). Secondly, while still considering undirected graphs,
we consider the two generalizations considered by Khanna and Lucier [47]. We show
that our result that the greedy algorithm achieves a (1 − (1 − 1/k)k + Ω(1/k3))-
approximation can be extended to the setting where the seeds can only be picked

1Khanna and Lucier [47] only claimed that the greedy algorithm achieves a (1 − 1/e + c)-
approximation. However, c being a constant implies that there exists k0 such that 1− (1− 1/k)k <
1− 1/e+ c/2 for all k ≥ k0 (notice that (1− (1− 1/k)k) is decreasing and approaches to 1− 1/e);
the greedy algorithm will then achieve a (1− (1− 1/k)k + c/2)-approximation for k ≥ k0.

64

Linear Threshold Independent Cascade
Approximation at least Ω(1/k3)) less than f(k) at least some less than f(k)

Surplus at most O(1/k0.2)) for any f(k) > 0 constant c > 0 for any f(k) > 0
Directed

X XGraph
Undirected

X XGraph
Undirected

X X
Graph with
Weighted
Vertices

Undirected

X X
Graph with
Prescribed
Seed Set

Table 4.1: Approximation surplus of the greedy algorithm under different settings.

from a prescribed vertex set. However, it cannot be extended to the setting where
the vertices are weighted, in which case the approximation ratio of (1 − (1 − 1/k)k)

is tight, as it is in directed graphs. These results, as well as the corresponding result
for the independent cascade model by Khanna and Lucier [47], are summarized in
Table 4.1.

We have defined LTM for unweighted, undirected graphs based on Assumption 2.14.
We discuss alternative versions and extensions of LTM to edge-weighted graphs (that
violates Assumption 2.14), and discuss how our results extend to these settings.

4.2 Preliminaries

In this chapter, we will use the following equivalent definition for ULTM. Recall that, for
undirected graphs with LTM (which are the subjects mainly studied in this chapter),
ULTM is automatically assumed (Assumption 2.14).

Definition 4.1. The (uniform) linear threshold model LTG is defined by a directed
graph G = (V,E). On input seed set S ⊆ V , LTG(S) outputs a set of infected vertices
as follows:

1. Initially, only vertices in S are infected, and for each vertex v a threshold θv ∈
Z+ is sampled uniformly at random from {1, 2, . . . , deg(v)} independently. If
deg(v) = 0, set θv =∞.

65

2. In each subsequent iteration, a vertex v becomes infected if v has at least θv
infected in-neighbors.

3. After an iteration where there are no additional infected vertices, LTG(S) out-
puts the set of infected vertices.

As we also remarked, under ULTM, each vertex chooses one of its incoming edges
being live uniformly at random. We summarize this result again in the theorem below,
as this is a crucial observation used in the proofs in this chapter.

Theorem 4.2 (Claim 2.6 in [44]). Let L̂TG(S) ⊆ V be the set of vertices that are
reachable from S when each vertex v picks exactly one of its incoming edges uniformly
at random to be included in the graph and vertices pick their incoming edges indepen-
dently. Then L̂TG(S) and LTG(S) have the same distribution. Those picked edges
are called “live edges”.

Once again, when considering undirected graphs, those live edges in Theorem 4.2
are still directed. Whenever we mention a live edge in the remaining part of this
chapter, it should always be clear that this edge is directed.

Remark 4.3. Since each vertex can choose only one incoming edge as being live, if
a vertex v is reachable from a vertex u after sampling all the live edges, then there
exists a unique simple path consisting of live edges connecting u to v.

Remark 4.4. When considering the probability that a given vertex v will be infected
by a given seed set S, we can consider a “reverse random walk without repetition” pro-
cess. The random walk starts at v, and it chooses one of its neighbors (in-neighbors
for directed graphs) uniformly at random and moves to it. The random walk termi-
nates when it reaches a vertex that has already been visited or when it reaches a seed.
By analogizing each move in the reverse random walk to selecting one incoming live
edge, Theorem 4.2 implies that the probability that this random walk reaches a seed
is exactly the probability that v will be infected by seeds in S.

Given a set of vertices A and a vertex v, let A→ v be the event that v is reachable
from A after sampling live edges. Alternatively, this means that the reverse random
walk from v described in Remark 4.4 reaches a vertex in A. If A is the set of seeds,
then Pr(A→ v) is exactly the probability that v will be infected. Intuitively, A→ v

can be seen as the event that “A infects v”. We set Pr(A→ v) = 1 if v ∈ A. In this
chapter, we mean A → v when we say v reversely walks to A or v is reachable from
A. In particular, the reachability is in terms of the live edges, not the original edges.

66

Given a set of vertices A, a vertex v, and a set of vertices B such that B ∩ (A ∪
{v}) = ∅, let A �B−→ v be the event that the reverse random walk from v reaches a
vertex in A before reaching any vertex in B. By definition, A �B−→ v is the same as
A→ v if B = ∅.

Again, let σ(S) be the expected total number of infected vertices due to the in-
fluence of S, σ(S) = E[|LTG(S)|], where the expectation is taken over the samplings
of thresholds of all vertices, or equivalently, over the choices of incoming live edges
of all vertices. By the linearity of expectation, we have σ(S) =

∑
v∈V Pr(S → v). In

this chapter, we adopt the standard assumption σ(·) can be accessed by an oracle.
Remark 4.4 straightforwardly implies the following lemma, which describes a neg-

ative correlation between the event that {u} infects v and the event that u is infected
by another seed set. Some other properties for the linear threshold are presented in
Sect. 4.4.2. We decide to introduce Lemma 4.5 in the preliminary section because this
negative correlation property is a signature property that makes LTM quite different
from ICM. In ICM, knowing the existence of certain connections between vertices only
makes it more likely that another pair of vertices are connected. Intuitively, this is
because, in ICM, each vertex does not “choose” one of its incoming edges, but rather,
each incoming edge is included with certain probability independently. In addition,
Lemma 4.5 holds for directed graphs, while all the lemmas in Sect. 4.4.2 hold only
for undirected graphs.

Lemma 4.5. For any three sets of vertices A,B1, B2 with A ∩B1 = A ∩B2 = ∅ and
any two vertices u, v /∈ A∪B1∪B2, we have Pr(A ��B1−→ u) ≥ Pr(A ��B1−→ u | {u} ���A∪B2−−−→ v).

Proof. Consider any simple path p from u to v. If u ���A∪B2−−−→ v happens with all edges
in p being live, then Pr(A ��B1−→ u) ≥ Pr(A ��B1−→ u | p is live). This is apparent by
noticing Remark 4.4: if p is already live, then the reverse random walk starting from
u should reach A without touching any vertices on p (if the random walk touches a
vertex in p, it will follow the reverse direction of p and eventually go back to u), which
obviously happens with less probability compared to the case without restricting that
the random walk cannot touch vertices on p.

Noticing this, the remaining part of the proof is trivial:

Pr
(
A ��B1−→ u | u ���A∪B2−−−→ v

)
=
∑
p

Pr(A ��B1−→ u | p is live) Pr(p is live)

Pr(u ���A∪B2−−−→ v)

≤ Pr(A ��B1−→ u)
∑
p

Pr(p is live)

Pr({u} ���A∪B2−−−→ v)
= Pr

(
A ��B1−→ u

)
,

67

where the summation is over all simple paths p connecting u to v without touching
any vertices in A ∪ B2, and Remark 4.3 ensures that the events “p is live” over all
possible such p’s form a partition of the event u ���A∪B2−−−→ v.

4.2.1 Influence Maximization Is A Special Case of Max-k-

Coverage

In this section, we establish that InfMax is a special case of the well-studied Max-

k-Coverage problem, a folklore that is widely known in the InfMax literature.
This section also introduces some key intuitions that will be used throughout the
chapter. We will only discuss ULTM for the purpose of this chapter, although InfMax

in general can also be viewed as a special case of Max-k-Coverage.

Definition 4.6. The Max-k-Coverage problem is an optimization problem which
takes as input a universe of elements U = {e1, . . . , eN} , a collection of subsets
M = {S1, . . . , SM : Si ⊆ U} and an positive integer k, and outputs a collection of k

subsets that maximizes the total number of covered elements: S ∈ argmax
S⊆M,|S|=k

∣∣∣∣∣⋃
S∈S

S

∣∣∣∣∣.
Given S ⊆M, we denote val(S) =

∣∣∣∣∣⋃
S∈S

S

∣∣∣∣∣.
It is well-known that the greedy algorithm (that iteratively selects a subset that

maximizes the marginal increment of val(·)) achieves a (1−(1−1/k)k)-approximation
for Max-k-Coverage. On the other hand, this approximation guarantee is tight:
for any positive function f(k) > 0 which may be infinitesimal, there exists a Max-

k-Coverage instance such that the greedy algorithm cannot achieve (1 − (1 −
1/k)k+f(k))-approximation.2 We will review some properties of Max-k-Coverage

in Sect. 4.4.1 that will be used in our analysis for InfMax.
InfMax with ULTM can be viewed as a special case of Max-k-Coverage in that

an instance of InfMax can be transformed into an instance of Max-k-Coverage.
Given an instance of InfMax (G = (V,E), k), let H be the set of all possible live-
edge samplings. That is, H is the set of directed graphs on V that are subgraphs
of G where each vertex has in-degree equal to 1. In particular, |H| =

∏
v∈V deg(v).3

We create an instance of Max-k-Coverage by letting the universe of elements be
2Our result in Sect. 4.5 says that the greedy algorithm cannot achieve a (1− (1− 1/k)k + f(k))-

approximation for the linear threshold InfMax with directed graphs, which provides a proof of this,
since, as we will see soon, InfMax is a special case of Max-k-Coverage.

3Of course, vertices with in-degree 0 should be excluded from this product. Whenever we write
this product next time, we always refer to the one excluding vertices with in-degree 0.

68

V ×H, i.e., pairs of vertices and live-edge samplings, (v, g), where v ∈ V and g ∈ H.
We then create a subset for each vertex v ∈ V . The subset corresponding to v ∈ V
contains (u, g) if u is reachable from v in g. Since σ(S) =

∑
v∈V Pr(S → v) =∑

v∈V
|{g: v is reachable from S under g}|∏

w∈V deg(w)
= |{(v,g): v is reachable from S under g}|∏

w∈V deg(w)
, σ(S) equals to the

total number of elements covered by “subsets” in S, divided by
∏

v∈V deg(v). As a
result, σ(S) is proportional to the total number of covered elements if viewing S as
a collection of subsets. This establishes that InfMax is a special case of Max-k-

Coverage. We denote by Σ(S) = {(u, g) : u is reachable from S under g} the set
of “elements” that the “subsets” in S cover, and we have σ(S) = |Σ(S)|/

∏
v∈V deg(v)

as discussed above.
Having established the connection between InfMax and Max-k-Coverage, we

take a closer look at the intersection, union and difference of two subsets. Let S1, S2

be two seed sets. Σ(S1) ∪ Σ(S2) contains all those (u, g) such that u is reachable
from either S1 or S2 under g. Clearly, σ(S1 ∪ S2) = |Σ(S1 ∪ S2)|/

∏
v∈V deg(v) =

|Σ(S1) ∪ Σ(S2)|/
∏

v∈V deg(v). The first equality holds by definition which holds for
set intersection and set difference as well. The last equality, however, does not hold
for set intersection and set difference.

Σ(S1) ∩Σ(S2) contains all those (u, g) such that u is reachable from both S1 and
S2 under g. We have |Σ(S1)∩Σ(S2)|/

∏
v∈V deg(v) =

∑
v∈V Pr((S1 → v)∧ (S2 → v)).

For the special case where S1 = {u1} and S2 = {u2}, by Remark 4.3, the event
(S1 → v) ∧ (S2 → v) can be partitioned into two disjoint events: 1) v reaches u2

before u1 in the reverse random walk, ({u1} ��{v}−−→ u2)∧ ({u2} ��{u1}−−→ v), and 2) v reaches

u1 before u2 in the reverse random walk, ({u2} ��{v}−−→ u1) ∧ ({u1} ��{u2}−−→ v). For general
S1, S2 with S1 ∩ S2 = ∅, the event (S1 → v) ∧ (S2 → v) can be partition into two
disjoint events with respect to which of S1, S2 that v reversely reaches first.

Similarly, Σ(S1) \ Σ(S2) contains all those (u, g) such that u is reachable from S1

but not from S2 under g, we have |Σ(S1) \ Σ(S2)|/
∏

v∈V deg(v) =
∑

v∈V Pr((S1 →
v) ∧ ¬(S2 → v)).

4.3 Upper Bound on Approximation Guarantee

In this section, we show that the approximation guarantee for the greedy algorithm
on InfMax is at most (1− (1− 1/k)k + O(1/k0.2)) with the linear threshold model
on undirected graphs. In other words, the approximation surplus is O(1/k0.2). This
shows that the approximation guarantee (1−1/e) cannot be asymptotically improved,
even if undirected graphs are considered.

69

Before we prove our main theorem in this section, we need the following lemma
characterizing the cascade of a single seed on a complete graph which is interesting
on its own.

Lemma 4.7. Let G be a complete graph with n vertices and S be a set containing a
single vertex. We have σ(S) < 3

√
n for ULTM.

The proof of Lemma 4.7 is in Appendix A.1. The intuition behind this lemma
is simply the birthday paradox. Consider the reverse random walk starting from
any particular vertex v. At each step, instead of choosing one of the remaining
n− 1 vertices uniformly at random, we add a self-loop and assume that the random
walk chooses one of the n vertices in the graph uniformly at random. The effect
of this change can be ignored if n is large. Then, by the birthday paradox, with a
high probability, it takes approximately

√
n steps for a reverse random walk to visit

a vertex that has been visited before. The probability that a particular vertex v is
infected is then the probability that the random walk reaches the seed before reaching
a visited vertex, which is approximately 1 − (1 − 1/n)

√
n ≈ 1/

√
n. Finally, by the

linearity of expectation, the total number of infected vertices is about
√
n.

The remaining part of this section proves the following theorem.

Theorem 4.8. Consider InfMax on ULTM with undirected graphs. There exists an
instance where the greedy algorithm only achieves a (1 − (1 − 1/k)k + O(1/k0.2))-
approximation.

The InfMax instance mentioned in Theorem 4.8 is shown below.

Example 4.9. The example is illustrated in Fig. 4.1. Given the number of seeds
k, we construct the undirected graph G = (V,E) with kdk1.2e + b(1 − 100

k0.2)k1.8c
vertices as follows. Firstly, construct k cliques C1, . . . , Ck of size dk1.2e, and in each
clique Ci label an arbitrary vertex ui . Secondly, construct k vertices v1, . . . , vk.
For each i = 1, . . . , k, create dk0.8(1 − 1/k)i−1e − 1 vertices and connect them to
vi. For each i, those dk0.8(1 − 1/k)i−1e − 1 vertices combined with vi form a star
of size dk0.8(1 − 1/k)i−1e, and we will use Di to denote the i-th star. Thirdly, we
continue creating ` of these kinds of stars Dk+1, . . . , Dk+` centered at vk+1, . . . , vk+`

such that |Dk+1| = · · · = |Dk+`−1| = dk0.8(1 − 1/k)ke, |Dk+`| ≤ dk0.8(1 − 1/k)ke,
and

∑k+`
i=1 |Di| = b(1− 100

k0.2)k1.8c. In other words, we keep creating stars of the same
size dk0.8(1 − 1/k)ke until we reach the point where the total number of vertices in
all those stars is b(1 − 100

k0.2)k1.8c, where the last star created may be “partial” and
have a size smaller than dk0.8(1 − 1/k)ke. Notice that |D1| ≥ |D2| ≥ · · · ≥ |Dk| ≥

70

Figure 4.1: The tight example.

|Dk+1| = · · · = |Dk+`−1| ≥ |Dk+`| = Θ(k0.8).4 Finally, create k × (k + `) edges
{(ui, vj) : i = 1, . . . , k; j = 1, . . . , k + `}.

Proof Sketch of Theorem 4.8 We want that the greedy algorithm picks the seeds
v1, . . . , vk, while the optimal seeds are u1, . . . , uk. The purpose of constructing a clique
Ci for each ui is to simulate directed edges (ui, vj) (such that, as mentioned earlier,
each ui will be infected with o(1) probability even if all of v1, . . . , vk+` are infected,
and the total number of infections among the cliques is negligible so that the “gadget”
itself is not “heavy”). In the optimal seeding strategy, each vi will be infected with
probability 1 − o(1), as the number of edges connecting to the seeds u1, . . . , uk is
k, which is significantly more than the number of edges inside Di (which is at most
dk0.8e). Therefore, σ({u1, . . . , uk}) ≈

∑k+`
i=1 |Di| = b(1 − 100

k0.2)k1.8c, which is slightly
less than k1.8. Moreover, each σ({ui}) is approximately 1

k
of σ({u1, . . . , uk}), which

is slightly less than k0.8

The greedy algorithm would pick v1 as the first seed, as σ(v1) is at least dk0.8e
(by only accounting for the infected vertices in D1) which is slightly larger than each
σ({ui}). After picking v1 as the first seed, the marginal increment of σ(·) by choos-
ing each of u1, . . . , uk becomes approximately 1

k

∑k+`
i=2 |Di| = 1

k
(−|D1| +

∑k+`
i=1 |Di|),

which is slightly less than 1
k
(−dk0.8e + k1.8) ≈ |D2|. On the other hand, noticing

that v1 infects each of u1, . . . , uk as well as v2 with probability o(1), the marginal
increment of σ(·) by choosing v2 is approximately |D2|, which is slightly larger than
the marginal increment by choosing any ui based on our calculation above. Thus, the
greedy algorithm will continue to pick v2. In general, we have designed the sizes of

4These inequalities may not be strict. In fact, |D1| may be equal to |D2| as k0.8−k0.8(1−1/k) =
1/k0.2 < 1.

71

D1, D2, . . . , Dk such that they are just large enough to make sure the greedy algorithm
will pick v1, v2, . . . , vk one by one.

Our construction of cliques C1, . . . , Ck makes sure that each of u1, . . . , uk will
be infected with o(1) probability even if all of v1, . . . , vk are seeded. Therefore,
σ({v1, . . . , vk}) ≈

∑k
i=1 |Di| =

∑k
i=1dk0.8(1− 1/k)i−1e ≤ k +

∑k
i=1 k

0.8(1− 1/k)i−1 =

k + k1.8(1 − (1 − 1/k)k). On the other hand, we have seen that σ({u1, . . . , uk}) is
just slightly less than k1.8. To be more accurate, σ({u1, . . . , uk}) ≈ (1 − 100

k0.2)k1.8.
Dividing σ({v1, . . . , vk}) by σ({u1, . . . , uk}) gives us the desired upper bound on the
approximation ratio in Theorem 4.8. The numbers 0.2, 0.8, 1.2 on the exponent of k
are optimized for getting the tightest bound while ensuring that the greedy algorithm
still picks v1, . . . , vk.

A full proof of Theorem 4.8 is available in Appendix A.2.

4.4 Lower Bound on Approximation Guarantee

In this section, we prove that the greedy algorithm can obtain at least a (1 − (1 −
1/k)k + Ω(1/k3))-approximation to maxS⊆V :|S|=k σ(S), stated in Theorem 4.10. This
indicates that the barrier 1 − (1 − 1/k)k can be overcome if k is a constant. We
have seen that InfMax is a special case of Max-k-Coverage in Sect. 4.2.1, and
it is known that the greedy algorithm cannot overcome the barrier 1 − (1 − 1/k)k

in Max-k-Coverage. Theorem 4.10 shows that InfMax with ULTM on undirected
graphs has additional structure. To prove Theorem 4.10, we first review in Sect. 4.4.1
some properties of Max-k-Coverage that are useful to our analysis, and then we
prove Theorem 4.10 in Sect. 4.4.2 by exploiting some special properties of InfMax

that are not satisfied in Max-k-Coverage.

Theorem 4.10. Consider InfMax on undirected graphs with ULTM. The greedy al-
gorithm achieves a (1− (1− 1/k)k + Ω(1/k3))-approximation.

4.4.1 Some Properties of Max-k-Coverage

In this section, we list some of the properties of Max-k-Coverage which will be
used in proving Theorem 4.10. The proofs of the lemmas in this section are all
standard, and are deferred to the appendix. For all the lemmas in this section, we
are considering a Max-k-Coverage instance (U,M, k), where S = {S1, . . . , Sk}
denotes the k subsets output by the greedy algorithm and S∗ = {S∗1 , . . . , S∗k} denotes
the optimal solution.

72

Lemma 4.11. If S1 ∈ S∗, then val(S) ≥ (1− (1− 1
k
)k + 1

4k2) val(S∗).

Lemma 4.12. If |S1∩(
⋃k
i=1 S

∗
i)|

val(S∗) /∈ [1
k
− ε, 1

k
+ ε] for some ε > 0 which may depend on

k, then val(S) ≥ (1− (1− 1/k)k + ε/4) val(S∗).

Lemma 4.13. If
∑k

i=1 |S∗i | > (1 + ε) val(S∗) for some ε > 0 which may depend on
k, then val(S) ≥ (1− (1− 1

k
)k + ε

8k
) val(S∗).

Lemma 4.14. If |S1 \ (
⋃k
i=1 S

∗
i)| > ε val(S∗) for some ε > 0 which may depend on

k, then val(S) ≥ (1− (1− 1/k)k + ε/16) val(S∗).

Lemma 4.15. If there exists S∗i ∈ S∗ such that |S∗i | < (1
k
− ε) val(S∗) for some ε > 0

which may depend on k, then val(S) ≥ (1− (1− 1
k
)k + ε

8k
) val(S∗).

4.4.2 Proof of Theorem 4.10

We begin by proving some properties that are exclusively for InfMax.

Lemma 4.16. Given a subset of vertices A ⊆ V , a vertex v /∈ A and a neighbor
u ∈ Γ(v) of v, with probability at most |A|

|A|+1
, there is a simple live path from a vertex

in A to vertex v such that the last vertex in the path before reaching v is not u.

Proof. We consider all possible reverse random walks starting from v, and define a
mapping from those walks that eventually reach A to those that do not. For each
reverse random walk that reaches a vertex a ∈ A, v ← w1 ← · · · ← w`−1 ← w` ← a

(with w1, . . . , w` /∈ A), we map it to the random walk v ← w1 ← · · · ← w`−1 ← w` ←
w`−1, i.e., the one with the last step moving back. Notice that the latter reverse
random walk visits w`−1 more than once, and thus will not reach A. Specifically, for
those reverse random walks that reach A in one single step v ← a (in the case v is
adjacent to a ∈ A), we map it to the reverse random walk v ← u, which are excluded
from the event that “there is a simple live path from a vertex in A to vertex v such
that the last vertex in the path before reaching v is not u” (if v ← u, then every path
that reaches v should then reach u in the penultimate step).

It is easy to see that at most |A| different reverse random walks that reach A can
be mapped to a same random walk that does not reach A. In order to make different
reverse random walks have the same image in the mapping, they must share the same
path v ← w1 ← · · · ← w` except for the last step. The last step, which moves to a

73

vertex in A, can only have |A| different choices. For the special reverse random walks
that move to A in one step, there are at most |A| of them, which are mapped to the
random walk v ← u.

It is also easy to see that each random walk happens with the same probability as
its image does. This is because w` chooses its incoming edges uniformly, so choosing
a happens with the same chance as choosing w`. Specifically, v chooses its incoming
edge (a, v) with the same probability as (u, v).

Since we have defined a mapping that maps at most |A| disjoint sub-events in the
positive case to a sub-event in the negative case with the same probability, the lemma
follows.

Lemma 4.17. Given a subset of vertices A ⊆ V and two different vertices u, v /∈ A,
we have Pr(A→ u | {u} �A−→ v) ≤ |A|

|A|+1
.

Proof. Let w1, . . . , wt enumerate all the neighbors of u that are not in A. For each
i = 1, . . . , t, let Ei be the event that the reverse random walk starting from v reaches u
without touching A and its last step before reaching u is at wi. Clearly, {E1, . . . , Et} is
a partition of {u} �A−→ v. Conditioning on the event Ei, if A→ u happens, the reverse
random walk from u to A cannot touch wi, since wi has already chosen its incoming
edge (u,wi) in the case Ei happens. Therefore, by Lemma 4.5 and Lemma 4.16,

Pr(A→ u | Ei) = Pr(A ��{wi}−−→ u | Ei) ≤ Pr(A ��{wi}−−→ u) ≤ |A|
|A|+1

.5 We have

Pr(A→ u | {u} �A−→ v) =

∑t
i=1 Pr(A→ u | Ei) Pr(Ei)

Pr({u} �A−→ v)

≤ |A|
|A|+ 1

∑t
i=1 Pr(Ei)

Pr({u} �A−→ v)
=
|A|
|A|+ 1

,

which concludes this lemma.

Finally, we need the following lemma, which is a special case of Corollary 3.15.

Lemma 4.18. For any v ∈ V , we have σ({v}) ≤ deg(v) + 1.

5Rigorously speaking, the statement of Lemma 4.5 does not directly imply Pr(A ��{wi}−−−→ u | Ei) ≤

Pr(A ��{wi}−−−→ u). However, the proof of Lemma 4.5 can be adapted to show this. Instead of summing
over all simple paths p from u to v in the summation of the last inequality in the proof, we sum over
all simple paths from u to v such that u first moves to wi. The remaining part of the proof is the
same. The idea here is that, the event v reversely walks to u is negatively correlated to the event
that u reversely walks to A, as the latter walk cannot hit the vertices on the path u→ v if there is
already a path from u to v.

74

A proof of a more generalized version of the lemma above, which extends this
lemma to the linear threshold model with slackness (see Append. A.4 for definition
of this model), is included in Appendix A.5 for completeness. The proof is mostly
identical to the arguments in Sect. 3.5.2.

Now we are ready to show Theorem 4.10. In the remaining part of this section,
we use S = {v1, . . . , vk} and S∗ = {u1, . . . , uk} to denote the seed sets output by
the greedy algorithm and the optimal seed set respectively. Recall that we have es-
tablished that InfMax is a special case of Max-k-Coverage in Sect. 4.2.1, and
v1, . . . , vk, u1, . . . , uk can be viewed as subsets in Max-k-Coverage. Thus, the lem-
mas in Sect. 4.4.1 can be applied here.

First of all, if v1 ∈ S∗, Lemma 4.11 implies Theorem 4.10 already. In particular,
Lemma 4.11 implies that |Σ(S)| ≥ (1− (1−1/k)k+1/4k2)|Σ(S∗)| (refer to Sect. 4.2.1
for the definition of Σ(·)), which implies σ(S) ≥ (1 − (1 − 1/k)k + 1/4k2)σ(S∗) by
dividing

∏
w∈V deg(w) on both side of the inequality. Therefore, we assume v1 /∈ S∗

from now on.
Next, we analyze the intersection between Σ({v1}) and Σ(S∗). As an overview

of the remaining part of our proof, suppose the barrier 1 − (1 − 1/k)k cannot be
overcome, Lemma 4.13 and Lemma 4.15 imply that Σ({u1}), . . . ,Σ({uk}) must be
almost disjoint and almost balanced, Lemma 4.12 implies that Σ({v1}) must intersect
approximately 1/k fraction of Σ(S∗), and Lemma 4.14 implies that Σ({v1}) \ Σ(S∗)

should not be large. We will prove that these conditions cannot be satisfied at the
same time.

The intersection Σ({v1}) ∩ Σ(S∗) consists of all the tuples (w, g) such that w is
reachable from both v1 and S∗ under the live-edge realization g. Consider the reverse
random walk starting from w. There are three different disjoint cases: 1) w reaches
v1 first, and then reaches a vertex in S∗; 2) w reaches a vertex in S∗, and then reaches
v1; 3) w visits more than one vertex in S∗, and then reaches v1. The three terms in
the following equation, which are named C1, C2, C3, correspond to these three cases

75

respectively.

|Σ({v1}) ∩ Σ(S∗)|∏
w∈V deg(w)

=
∑
w∈V

Pr

(
(S∗ → v1) ∧

(
{v1} ��S∗−→ w

))
(C1)

+
∑
w∈V

k∑
i=1

Pr

((
{v1} ��S∗−→ ui

)
∧
(
{ui} ��S∗−→ w

))
(C2)

+
∑
w∈V

∑
i 6=j

Pr

(
({v1} → uj) ∧

(
{uj} ��S∗−→ ui

)
∧
(
{ui} ��S∗−→ w

))
(C3)

Notice that this decomposition assumes v1 /∈ S∗.
Firstly, we show that C1 cannot be too large if the barrier 1 − (1 − 1/k)k is not

overcome. Intuitively, C1 describes those w that first reversely reaches v1 and then
reversely reaches a vertex in S∗. Lemma 4.17 tells us that v1 will reversely reach
S∗ with at most probability k/(k + 1) conditioning on w reversely reaching v1. This
implies that, if w reversely reaches v1, v1 will not reversely reach S∗ with probability
at least 1/(k+1), which is at least 1/k of the probability that v1 reversely reaches S∗.
Therefore, whenever we have a certain number of elements in Σ({v1}) ∩ Σ(S∗) that
corresponds to C1, we have at least 1/k fraction of this number in Σ({v1}) \ Σ(S∗).
Lemma 4.14 implies that the 1−(1−1/k)k barrier can be overcome if |Σ({v1})\Σ(S∗)|
is large.

Proposition 4.19. If C1 >
9

10k
· σ(S∗), then σ(S) ≥ (1− (1− 1

k
)k + 1

640k2) · σ(S∗).

Proof. If w = v1, {v1} ��S∗−→ w happens automatically, and Pr(({v1} ��S∗−→ w) ∧ (S∗ →
v1)) = Pr(S∗ → v1). Substituting this into C1, we have

C1 = Pr(S∗ → v1) +
∑

w∈V \{v1}

Pr

(
(S∗ → v1) ∧

(
{v1} ��S∗−→ w

))

≤ 1 +
∑

w∈V \{v1}

Pr

(
{v1} ��S∗−→ w

)
· Pr

(
S∗ → v1 | {v1} ��S∗−→ w

)

≤ 1 +
∑

w∈V \{v1}

Pr

(
{v1} ��S∗−→ w

)
· k Pr

(
¬(S∗ → v1) | {v1} ��S∗−→ w

)
(Lemma 4.17)

= 1 + k
∑

w∈V \{v1}

Pr

((
{v1} ��S∗−→ w

)
∧ ¬ (S∗ → v1)

)
,

where the penultimate step is due to Lemma 4.17 from which we have Pr(S∗ → v1 |

76

{v1} ��S∗−→ w) ≤ k
k+1

, which implies Pr(¬(S∗ → v1) | {v1} ��S∗−→ w) ≥ 1
k+1

, which further

implies Pr(S∗ → v1 | {v1} ��S∗−→ w) ≤ k · Pr(¬(S∗ → v1) | {v1} ��S∗−→ w).

Notice that the summation
∑

w∈V \{v1} Pr(({v1} ��S∗−→ w) ∧ ¬(S∗ → v1)) describes
those (w, g) such that w is reachable from v1 but not S∗ under realization g, which
corresponds to elements in Σ({v1}) \ Σ(S∗). Therefore, we have

|Σ({v1}) \ Σ(S∗)|∏
w∈V deg(w)

≥
∑

w∈V \{v1}

Pr

((
{v1} ��S∗−→ w

)
∧ ¬ (S∗ → v1)

)
≥ C1 − 1

k
.

If σ(S∗) ≤ 8
7
k, we can see that σ(S) ≥ k ≥ 7

8
σ(S∗) > (1− (1− 1

k
)k + 1

640k2)σ(S∗)

and the proposition is already implied. Thus, we assume σ(S∗) > 8
7
k from now on.

If we have C1 >
9

10k
σ(S∗) as given in the proposition statement, we have C1− 1 >

9
10k
σ(S∗)− 7

8k
σ(S∗) = 1

40k
σ(S∗) = 1

40k
|Σ(S∗)|∏
w∈V deg(w)

. Putting together,

|Σ({v1}) \ Σ(S∗)|∏
w∈V deg(w)

≥ C1 − 1

k
>

1

40k2

|Σ(S∗)|∏
w∈V deg(w)

,

which yields |Σ({v1}) \Σ(S∗)| > 1
40k2 |Σ(S∗)|. Lemma 4.14 implies |Σ(S)| ≥ (1− (1−

1
k
)k + 1

640k2)|Σ(S∗)|, which further implies this proposition.

Secondly, we show that C2 cannot be too large if the barrier 1 − (1 − 1/k)k

is not overcome. To show this, we first show that there exists ui ∈ S∗ such that
Pr({v1} → ui) ≥ C2

σ(S∗)
, and then show that this implies that |Σ({v1})\Σ(S∗)| is large

by accounting for v1’s influence to ui’s neighbors.

Proposition 4.20. If C2 >
1

100k
· σ(S∗), then σ(S) ≥ (1− (1− 1

k
)k + 1

64000k3)σ(S∗).

Proof. We give an outline of the proof first. Assume u1 ∈ argmax
ui∈S∗

Pr

(
{v1} ��S∗−→ ui

)
without loss of generality. The proof is split into two steps.

• Step 1: We will show that
∑

w∈Γ(u1)\S∗ Pr({v1} ��S∗−→ w) = Ω
(

1
k2

)
σ(S∗) if we

have C2 >
1

100k
·σ(S∗) in the proposition statement. Notice that the summation

consists of the neighbors of u1 (that are not in S∗) that reversely reaches v1,
which is a lower bound to σ(v1) (v1 may infect much more vertices than only
the neighbors of u1). To show this, we first find an upper bound of C2 in terms

of this summation: C2

σ(S∗)
≤ 1

deg(u1)

∑
w∈Γ(u1)\S∗ Pr({v1} ��S∗−→ w). This will imply

that
∑

w∈Γ(u1)\S∗ Pr({v1} ��S∗−→ w) = Ω
(

1
k2

)
σ(S∗) if assuming C2 >

1
100k
· σ(S∗),

because deg(u1) is (approximately) an upper bound to σ({u1}) by Lemma 4.18,

77

and σ({u1}) is approximately 1
k
σ(S∗) (otherwise, the proposition holds directed

by Lemma 4.15).

• Step 2: We will show that Pr(¬(S∗ → v1) | {v1} ��S∗−→ w) ≥ 1
2(k+1)

for each
w ∈ Γ(u1)\S∗. This says that, for each of u1’s neighbor w, if it reversely reaches
v1, it will not reach S∗ with a reasonably high probability. Correspondingly, a
reasonably large fraction of Σ({v1}) will not be in Σ(S∗). By Lemma 4.14, this
proposition is concluded.

Step 1 Firstly, based on the first vertex in S∗ that w reversely reaches, we can
decompose σ(S∗) as follows:

σ(S∗) =
∑
w∈V

k∑
i=1

Pr

(
{ui} ��S∗−→ w

)
.

Next, we have

C2

σ(S∗)
=

∑
w∈V

∑k
i=1 Pr

(
{ui} ��S∗−→ w

)
Pr

(
{v1} ��S∗−→ ui | {ui} ��S∗−→ w

)
∑

w∈V
∑k

i=1 Pr

(
{ui} ��S∗−→ w

)

≤

∑
w∈V

∑k
i=1 Pr

(
{ui} ��S∗−→ w

)
Pr

(
{v1} ��S∗−→ ui

)
∑

w∈V
∑k

i=1 Pr

(
{ui} ��S∗−→ w

) (Lemma 4.5)

≤ Pr

(
{v1} ��S∗−→ u1

)
·

∑
w∈V

∑k
i=1 Pr

(
{ui} ��S∗−→ w

)
∑

w∈V
∑k

i=1 Pr

(
{ui} ��S∗−→ w

)
= Pr

(
{v1} ��S∗−→ u1

)
=

1

deg(u1)

∑
w∈Γ(u1)\S∗

Pr

(
{v1} ��S∗−→ w

)
.

For the last step, v1 needs to first connect to one of u1’s neighbors before connecting
to u1. Notice that these neighbors may include v1 itself. In this special case w = v1 ∈
Γ(u1) \ S∗, we have Pr({v1} ��S∗−→ w) = 1 and u1 chooses its incoming live edge to be
(v1, u1) with probability 1

deg(u1)
, which is also a valid term in the summation above.

78

If C2 >
1

100k
· σ(S∗) as suggested by the proposition statement, we have

∑
w∈Γ(u1)\S∗

Pr

(
{v1} ��S∗−→ w

)
≥ deg(u1)C2

σ(S∗)
>

deg(u1)

100k

≥ deg(u1) + 1

200k
≥ σ({u1})

200k
≥ 9σ(S∗)

2000k2
,

where the penultimate step is due to Lemma 4.18 and the last step is based on
the assumption σ({u1}) ≥ 9

10k
σ(S∗). Notice that we can assume this without loss of

generality, as otherwise Lemma 4.15 implies that |Σ(S)| ≥ (1−(1− 1
k
)k+ 1

80k2)|Σ(S∗)|,
which directly implies this proposition.

Step 2 If w 6= v1, Lemma 4.17 implies that Pr(¬(S∗ → v1) | {v1} ��S∗−→ w) ≥
1

k+1
> 1

2(k+1)
. If w = v1, then u1 and v1 are adjacent. Notice that deg(v1) ≥ 2,

for otherwise σ({u1}) > σ({v1}) so v1 cannot be the first seed picked by the greedy
algorithm. Therefore, v1 reversely reaches u1 in one step with probability at most 1

2
.

If v1 reversely reaches a vertex in S∗ such that the first step of the reverse random
walk is not towards u1, Lemma 4.16 implies that the probability this happens is at
most k

k+1
. Putting together, for w = v1, Pr(S∗ → v1 | {v1} ��S∗−→ w) ≤ 1

2
+ 1

2
· k
k+1

.

Therefore, it is always true that Pr(¬(S∗ → v1) | {v1} ��S∗−→ w) ≥ 1
2(k+1)

.
Finally, we consider Σ({v1})\Σ(S∗) by only accounting for those vertices in Γ(u1)\

S∗.

|Σ({v1}) \ Σ(S∗)|∏
w∈V deg(w)

≥
∑

w∈Γ(u1)\S∗
Pr

((
{v1} ��S∗−→ w

)
∧ ¬ (S∗ → v1)

)

≥
∑

w∈Γ(u1)\S∗

1

2(k + 1)
Pr

(
{v1} ��S∗−→ w

)
>

1

2(k + 1)
· 9σ(S∗)

2000k2
(result from Step 1)

>
1

4000k3

|Σ(S∗)|∏
w∈V deg(w)

.

By Lemma 4.14, this implies |Σ(S)| ≥ (1− (1− 1
k
)k + 1

64000k3)|Σ(S∗)|, which further
implies this proposition.

Finally, we prove that C3 cannot be too large if the greedy algorithm does not
overcome the 1− (1− 1/k)k barrier. Informally, this is because C3 corresponds to a
subset of the intersection among Σ({u1}), . . . ,Σ({uk}), and Lemma 4.13 implies that

79

it cannot be too large.

Proposition 4.21. If C3 >
1
k2 · σ(S∗), then σ(S) ≥ (1− (1− 1

k
)k + 1

8k3)σ(S∗).

Proof. Notice that C3

∏
w∈V deg(w) is at most the number of tuples (w, g) such that

w is reachable from more than one vertex in S∗ under g. It is easy to see that

C3

∏
w∈V

deg(w) ≤

(
k∑
i=1

|Σ({ui})|

)
− |Σ(S∗)|

because: 1) each (w, g) such that w is reachable by more than one vertex in S∗

under g is counted at most once by C3

∏
w∈V deg(w), exactly once by Σ(S∗), and at

least twice by
∑k

i=1 Σ({ui}), so the contribution of each such (w, g) to the right-hand
side of the inequality is at least the contribution of it to the left-hand side; 2) each
(w, g) such that w is reachable by exactly one vertex in S∗ under g is not counted by
C3

∏
w∈V deg(w) and is counted exactly once by both

∑k
i=1 Σ({ui}) and Σ(S∗), so the

contribution of such (w, g) is the same on both sides of the inequality; 3) each (w, g)

such that g is not reachable from S∗ contributes 0 to both sides of the inequality.
Observing this inequality, if C3 >

1
k2 · σ(S∗), we have(

k∑
i=1

|Σ({ui})|

)
− |Σ(S∗)| > 1

k2
σ(S∗)

∏
w∈V

deg(w) =
1

k2
|Σ(S∗)|.

Lemma 4.13 implies |Σ(S)| ≥ (1−(1− 1
k
)k+ 1

8k3)|Σ(S∗)|, which implies this proposition.

With Proposition 4.19, 4.20 and 4.21, if σ(S) = (1− (1− 1/k)k + o(1/k3))σ(S∗),
it must be that

|Σ({v1}) ∩ Σ(S∗)|∏
w∈V deg(w)

= C1 + C2 + C3 ≤
(

1

k2
+

9

10k
+

1

100k

)
σ(S∗) <

92
100k
|Σ(S∗)|∏

w∈V deg(w)
.

However, Lemma 4.12 would have implied σ(S) ≥ (1− (1− 1
k
)k + 8

400k
)σ(S∗), which

is a contradiction. This finishes proving Theorem 4.10.

4.5 On Other Alternative Models

In this section, we first consider the linear threshold InfMax on more general models.
Naturally, Theorem 4.8 holds if the model is more general. We study if Theorem 4.10

80

still holds. We consider whether the barrier 1 − (1 − 1/k)k can still be overcome.
Subsequently, we consider alternative models of LTM on undirected graphs that are
not ULTM, those that violate Assumption 2.14.

Directed graphs If we consider InfMax with LTM on general directed graphs,
Theorem 4.10 no longer holds, even for ULTM. Moreover, for any positive function f(k)

which may be infinitesimal, there is always an example where the greedy algorithm
achieves less than a (1 − (1 − 1/k)k + f(k))-approximation. Example 4.9 can be
easily adapted to show this. Firstly, all the k(k + `) edges (ui, vj) become directed,
so the cliques associated with those ui’s are not even needed. We replace each Ci

by a single vertex ui. Secondly, D1, . . . , Dk+` become directed stars such that the
directed edges in each star Di are from vi to the remaining vertices in the star.
Lastly, we change the size of the star so that |Di| = dm(1 − 1

k
)i−1e for i = 1, . . . , k

and |Dk+1| = · · · = |Dk+`−1| = dm(1 − 1
k
)ke, where ` and |Dk+`| are set such that∑k+`

i=1 |Di| = mk − 2k and m is a large integer which can be set significantly larger
than 1/f(k).

Now each ui has in-degree 0, so will never be infected unless seeded. Each vj has in-
degree exactly k, and each ui will contribute 1/k to vj’s infection probability. Straight-
forward calculations reveal that the greedy algorithm will pick S = {v1, . . . , vk} so
that σ(S) =

∑k
i=1dm(1 − 1

k
)i−1e ≤ mk(1 − (1 − k)k) + k. On the other hand, the

optimal solution is S∗ = {u1, . . . , uk}, and σ(S∗) = k + (mk − 2k) = mk − k. We
have σ(S)

σ(S∗)
= mk(1−(1−k)k)+k

mk−k , which can be less than (1 − (1 − 1/k)k + f(k)) when m
is sufficiently large.

Prescribed seed set Khanna and Lucier [47] considered the more generalized set-
ting where the seed set S can only be a subset of a prescribed vertex set V ′ ⊆ V ,
where V ′ is a part of the input of the instance, and showed that their result for the
independent cascade model can be extended to this setting. It is straightforward
to check that our proof for Theorem 4.10 can also be extended to this setting. In
particular, all the lemmas in Sect. 4.4.1 hold for the generalized Max-k-Coverage

setting where S must be a subset of a prescribed candidate set M′ ⊆ M, with the
proofs being exactly the same. Basically, the proofs in Sect. 4.4 do not rely on that
each vertex in V is a valid seed choice, so restricting that the seeds can only be chosen
from V ′ does not invalidate any propositions or lemmas.

81

Weighted vertices Another generalization Khanna and Lucier [47] considered is to
allow that each vertex v has a positive weight ω(v), and the objective of InfMax is to
find the seed set that maximizes the expected total weight of infected vertices. Khanna
and Lucier [47] showed that the greedy algorithm can still achieve a (1−(1−1/k)k+c)

approximation (for some constant c > 0) for this generalized model. We show that,
for LTM, the story is completely different. If vertices are weighted, for any positive
function f(k) which may be infinitesimal, there is always an example where the greedy
algorithm achieves less than a (1− (1− 1/k)k + f(k))-approximation (for the linear
threshold InfMax with undirected graphs). Thus, Theorem 4.10 fails to extend to
this setting. While the settings with and without weighted vertices are not very
different in ICM, they are quite different for LTM.

Again, Example 4.9 can be easily adapted to show our claim. Let m � k be
a very large number. Firstly, change the size of each clique Ci to m0.1. Secondly,
instead of connecting each vi to a lot of vertices to form a star, we let vi have a very
high weight (so each star Di is replaced by a single vertex vi). Specifically, let ω(vi) =

m(1−1/k)i−1 for each i = 1, . . . , k, let ω(vk+1) = · · · = ω(vk+`−1) = m(1−1/k)k, and
let ` and ω(vk+`) be such that

∑k+`
i=1 ω(vi) = mk −m0.1k. Let the weight of all the

remaining vertices be 1. The greedy algorithm will pick {v1, . . . , vk}, and the expected
total weight of infected vertices is o(m0.1)+

∑k
i=1 ω(vi) = m(1− (1−1/k)k)+o(m0.1).

The optimal seeds are u1, . . . , uk, with expected total weight of infected vertices being
at least mk −m0.1k. We have σ(S)

σ(S∗)
≤ mk(1−(1−1/k)k)+o(m0.1)

mk−m0.1k
, which is less than (1 −

(1− 1/k)k + f(k)) when m is sufficiently large.

Alternative models for linear threshold model So far, we have been following
Assumption 2.14 such that the graph becomes automatically unweighted if we are
dealing with LTM for undirected graphs. Can we define LTM for undirected graphs in
a more general way that allows edge-weighted graphs?

For undirected graphs, ULTM is a special case of LTM by assigning weights to the
edges in the graph (that is originally unweighted) as follows: w(u, v) = 1

deg(v)
. If the

undirected graph G = (V,E,w′) is originally weighted, then a natural extension is to
define w(u, v) = w′(u,v)∑

u∈Γ(v) w
′(u,v))

.
In Appendix A.4, we discuss alternative or more general ways to define a linear

threshold model on undirected graphs. In particular, we show that in the above undi-
rected weighted version of LTM, the greedy algorithm cannot achieve a (1−(1−1/k)k+

f(k))-approximation for any positive function f(k). (See the subsection “weighted
undirected graphs with normalization” in Appendix A.4.) We also consider a version

82

where we require all incoming edges of a vertex v to have the same weight but the
total weight is allowed to be strictly less than 1. In this case, all our results (The-
orem 4.8 and Theorem 4.10) still hold. (See the subsection “Unweighted undirected
graphs with slackness” in Appendix A.4.)

4.6 Conclusion and Open Problems

We have seen that the greedy algorithm for InfMax with ULTM on undirected graphs
can overcome the 1 − (1 − 1/k)k barrier by an additive term Ω(1/k3) as shown in
Theorem 4.10. However, Theorem 4.8 suggests that, unlike the case for ICM, the
greedy algorithm cannot overcome the (1−1/e) barrier for k →∞ for ULTM. Moreover,
we have seen in Sect. 4.5 that the approximation guarantee 1− (1− 1/k)k is tight if
the vertices are weighted, which is different from Khanna and Lucier’s result for ICM.
This again suggests that there are fundamental differences between these two models.

The tight example in Example 4.9 has a significant limitation: it cannot scale
to large σ(S∗). Notice that, to make the example work, we have to make the size
of each Di be o(k) and σ(S∗) = o(k2). Otherwise, {u1, . . . , uk} will not be able to
infect each vi with probability 1 − o(1). If this happens, each seed in the seed set
{v1, . . . , vk} output by the greedy algorithm will not be connected from {u1, . . . , uk}
with a constant probability. In the Max-k-Coverage view, this will imply that
Σ(S) \ Σ(S∗) contains a significant number of elements, which will make the greedy
algorithm overcome the 1 − 1/e barrier. Therefore, a natural question is, if σ(S∗) is
large enough, say, σ(S∗) = ω(k2), can the 1− 1/e barrier be overcome? We believe it
can be overcome, and we make the following conjecture.

Conjecture 4.22. Consider InfMax problem (G = (V,E), k) with ULTM on undi-
rected graphs. If maxS:S⊆V,|S|≤k σ(S) = ω(k2), there exists a constant c > 0 such that
the greedy algorithm achieves a (1− 1/e+ c)-approximation.

Other than to prove (or disprove) the conjecture above, another open problem is
to further close the gap for InfMax with undirected graphs. Right now, the gap
between (1−1/e) [44] and (1− τ) (Chapter 3) is still large. Designing an approxima-
tion algorithm that achieves significantly better than a (1− 1/e)-approximation and
proving a stronger APX-hardness result are two interesting and important directions
for future work.

83

CHAPTER 5

Adaptive Influence Maximization and
Greedy Adaptivity Gap

In this chapter, we consider the adaptive influence maximization problem: InfMax

where seeds are chosen iteratively and adaptivity. In the full-adoption feedback model,
after selecting each seed, the seed-picker observes all the resulting adoptions. In
the myopic feedback model, the seed-picker only observes whether each neighbor of
the chosen seed adopts. Motivated by the extreme success of greedy-based algo-
rithms/heuristics for InfMax, we propose the concept of greedy adaptivity gap, which
compares the performance of the adaptive greedy algorithm to its non-adaptive coun-
terpart. Our first result shows that, for submodular InfMax, the adaptive greedy
algorithm can perform up to a (1− 1/e)-fraction worse than the non-adaptive greedy
algorithm, and that this ratio is tight. More specifically, on one side we provide ex-
amples where the performance of the adaptive greedy algorithm is only a (1 − 1/e)

fraction of the performance of the non-adaptive greedy algorithm in four settings: for
both feedback models and both ICM and LTM. On the other side, we prove that in
any submodular cascade, the adaptive greedy algorithm always outputs a (1− 1/e)-
approximation to the expected number of adoptions in the optimal non-adaptive seed
choice. Our second result shows that, for the general submodular diffusion model
with full-adoption feedback, the adaptive greedy algorithm can outperform the non-
adaptive greedy algorithm by an unbounded factor. Finally, we propose a risk-free
variant of the adaptive greedy algorithm that always performs no worse than the
non-adaptive greedy algorithm.

5.1 Introduction

In this chapter, we study the adaptive influence maximization problem, where seeds
are selected iteratively and feedback is given to the seed-picker after selecting each

84

seed. Two different feedback models have been studied in the past: the full-adoption
feedback model and the myopic feedback model [36]. In the full-adoption feedback
model, the seed-picker sees the entire diffusion process of each selected seed, and in
the myopic feedback model the seed-picker only sees whether each neighbor of the
chosen seed is infected.

Past literature focused on the adaptivity gap—the ratio between the performance
of the optimal adaptive algorithm and the performance of the optimal non-adaptive
algorithm [36, 61, 14]. However, even in the non-adaptive setting, InfMax is known
to be APX-hard (see Chapter 3). As a result, in practice, it is not clear whether the
adaptivity gap can measure how much better an adaptive algorithm can do.

In this chapter, we define and consider the greedy adaptivity gap, which is the ratio
between the performance of the adaptive greedy algorithm and the non-adaptive
greedy algorithm. We focus on the gap between the greedy algorithms for three
reasons. First, as we mentioned, the APX-hardness of InfMax renders the practical
implications of the adaptivity gap unclear. Second, as we remarked multiple times, the
greedy algorithm is used almost exclusively in the context of influence maximization.
Third, the iterative nature of the original greedy algorithm naturally extends to the
adaptive setting.

Our results We show that, for the general submodular diffusion models, with both
the full-adoption feedback model and the myopic feedback model, the infimum of the
greedy adaptivity gap is exactly (1− 1/e) (Sect. 5.3). In addition, this result can be
extended to both ICM and LTM. This is proved in two steps.

As the first step, in Sect. 5.3.1, we show that there are InfMax instances where
the adaptive greedy algorithm can only produce (1− 1/e) fraction of the influence of
the solution output by the non-adaptive greedy algorithm. This result is surprising:
one would expect that the adaptivity is always helpful, as the feedback provides more
information to the seed-picker, which makes the seed-picker refine the seed choices
in future iterations. Our result shows that this is not the case, and the feedback, if
overly used, can make the seed-picker act in a more myopic way, which is potentially
harmful.

As the second step, in Sect. 5.3.2, we show that the adaptive greedy algorithm
always achieves a (1 − 1/e)-approximation of the non-adaptive optimal solution, so
its performance is always at least a (1 − 1/e) fraction of the performance of the
non-adaptive greedy algorithm. In particular, combining the two steps, we see that
when the adaptive greedy algorithm output only obtains a (nearly) (1− 1/e)-fraction

85

model AG GAG inf GAG sup
ICM, full-adoption at least e/(e− 1) [14] 1− 1/e (Thm 5.6) unknown
ICM, myopic at least e/(e− 1), 1− 1/e (Thm 5.6) at most 4e/(e− 1) [61]

at most 4 [61]
LTM, full-adoption unknown 1− 1/e (Thm 5.6) unknown
LTM, myopic unknown 1− 1/e (Thm 5.6) unknown
GSDM, full-adoption ∞ (Thm 5.15) 1− 1/e (Thm 5.6) ∞ (Thm 5.14)
GSDM, myopic at least e/(e− 1) 1− 1/e (Thm 5.6) unknown

(implied by [61])

Table 5.1: Results for the adaptivity gap (AG), the infimum of the greedy adaptivity
gap (GAG inf) and the supremum of the greedy adaptivity gap (GAG sup), where
GSDM stands for general submodular diffusion model.

of the performance of the non-adaptive greedy algorithm, the non-adaptive greedy
algorithm is (almost) optimal. This worst-case guarantee indicates that the adaptive
greedy algorithm will never be too bad.

As the second result, in Sect. 5.4, we show that the supremum of the greedy adap-
tivity gap is infinity, for the general submodular diffusion model with full-adoption
feedback. This indicates that the adaptive greedy algorithm can perform significantly
better than its non-adaptive counterpart. We also show, with almost the same proof,
that the adaptivity gap in this setting (general submodular model with full-adoption
feedback) is also unbounded.

All the results above hold for the “exact” deterministic greedy algorithm where a
vertex with the exact maximum marginal influence is chosen as a seed in each itera-
tion. However, most variants of the greedy algorithm used in practice are randomized
algorithms that find a seed with a marginal influence close to the maximum with high
probability in each iteration. In Sect. 5.5, we discuss how our results for the exact
greedy algorithm can be adapted to those greedy algorithms used in practice.

Finally, in Sect. 5.6, we propose a risk-free but more conservative variant of the
adaptive greedy algorithm, which always performs at least as well as the non-adaptive
greedy algorithm. In Sect. 5.7, we compare this variant of the adaptive greedy algo-
rithm with the adaptive greedy algorithm and the non-adaptive greedy algorithm by
implementing experiments on social networks in our real life.

We summarize the existing results about the adaptivity gap (see Sect. 1.2.3 for
details) and our new results about the greedy adaptivity gap in Table 5.1.

86

5.2 Preliminary

We consider the triggering model (Sect. 2.1.2) for this chapter. A more general way
to capture submodular diffusion models is the general threshold model (Sect. 2.1.1)
with submodular local influence functions. All our results hold under this setting as
well. We will discuss this in Appendix B.

5.2.1 Adaptive Influence Maximization

In the remaining part of this subsection, we define the adaptive version of the influence
maximization problem. We will define two different models: the full-adoption feedback
model and the myopic feedback model. Suppose a seed set S ⊆ V is chosen by the
seed-picker, and an underlying realization φ is given but not known by the seed-picker.
Informally, in the full-adoption feedback model, the seed-picker sees all the vertices
that are infected by S in all future iterations, i.e., the seed-picker sees IφG,D(S). In
the myopic feedback model, the seed-picker only sees the states of S’s neighbors, i.e.,
whether each vertex in {v | ∃s ∈ S : s ∈ Γ(v)} is infected.

Define a partial realization as a function ϕ : E → {L, B, U} such that ϕ(e) = L

if e is known to be live, ϕ(e) = B if e is known to be blocked, and ϕ(e) = U if the
status of e is not yet known. We say that a partial realization ϕ is consistent with
the full realization φ, denoted by φ ' ϕ, if φ(v) = ϕ(v) whenever ϕ(v) 6= U. For
the ease of notation, for an edge (u, v) ∈ E, we will write φ(u, v), ϕ(u, v) instead of
φ((u, v)), ϕ((u, v)).

Definition 5.1. Given a triggering model IG=(V,E),D with a realization φ, the full-
adoption feedback is a function Φf

G,D,φ mapping a seed set S ⊆ V to a partial realiza-
tion ϕ such that

• ϕ(u, v) = φ(u, v) for each u ∈ IφG,D(S), and

• ϕ(u, v) = U for each u /∈ IφG,D(S).

Definition 5.2. Given a triggering model IG=(V,E),D with a realization φ, the myopic
feedback is a function Φm

G,D,φ mapping a seed set S ⊆ V to a partial realization ϕ such
that

• ϕ(u, v) = φ(u, v) for each u ∈ S, and

• ϕ(u, v) = U for each u /∈ S.

87

An adaptive policy π is a function that maps a seed set S and a partial realization
ϕ to a vertex v = π(S, ϕ), which corresponds to the next seed the policy π would
choose given ϕ and S being the set of seeds that has already been chosen. Naturally,
we only care about π(S, ϕ) when ϕ = Φf

G,D,φ(S) or ϕ = Φm
G,D,φ(S), although we define

π that specifies an output for any possible inputs S and ϕ. Notice that we have
defined π as a deterministic policy for simplicity, and our results hold for randomized
policies. Let Π be the set of all possible adaptive policies.

Notice that an adaptive policy π completely specifies a seeding strategy in an
iterative way. Given an adaptive policy π and a realization φ, let S f(π, φ, k) be
the first k seeds selected according to π with the underlying realization φ under the
full-adoption feedback model. By on our definition, S f(π, φ, k) can be computed as
follows:

1. initialize S = ∅;

2. update S = S ∪ {π(S,Φf
G,D,φ(S))} for k iterations;

3. output S f(π, φ, k) = S.

Define Sm(π, φ, k) similarly for the myopic feedback model, where Φm
G,D,φ(S) instead

of Φf
G,D,φ(S) is used in Step 2 above.
Let σf(π, k) be the expected number of infected vertices given that k seeds are cho-

sen according to π, i.e., σf(π, k) = Eφ∼F [|IφG,D(S f(π, φ, k))|]. Define σm(π, k) similarly
for the myopic feedback model.

Definition 5.3. The adaptive influence maximization problem (adaptive InfMax)
is an optimization problem which takes as inputs G = (V,E), D, and k ∈ Z+, and
outputs an adaptive policy π that maximizes the expected total number of infections:
π ∈ argmaxπ∈Π σ

f(π, k) or π ∈ argmaxπ∈Π σ
m(π, k) (depending on the feedback model

used).

5.2.2 Adaptivity Gap and Greedy Adaptivity Gap

The adaptivity gap is defined as the ratio between the performance of the optimal
adaptive policy and the performance of the optimal non-adaptive seeding strategy.
In this chapter, we only consider the adaptivity gap for triggering models.

Definition 5.4. The adaptivity gap with full-adoption feedback is

sup
G,D,k

maxπ∈Π σ
f(π, k)

maxS⊆V,|S|≤k σ(S)
.

88

The adaptivity gap with myopic feedback is defined similarly.

The (non-adaptive) greedy algorithm iteratively picks a seed that has the maxi-
mum marginal gain to the objective function σ(·), which has been defined in Sect. 2.2.
Let Sg(k) be the set of k seeds output by the (non-adaptive) greedy algorithm.

The greedy adaptive policy πg is defined as πg(S, ϕ) = s such that

s ∈ argmax
s∈V

E
φ'ϕ

[∣∣∣IφG,D (S ∪ {s})
∣∣∣− ∣∣∣IφG,D (S)

∣∣∣] ,
with tie broken in an arbitrary consistent order.

Definition 5.5. Given a triggering model IG,D and k ∈ Z+, the greedy adaptivity gap
with full-adoption feedback is σf(πg ,k)

σ(Sg(k))
. The greedy adaptivity gap with myopic feedback

is defined similarly.

Notice that, unlike the adaptivity gap in Definition 5.4, we leave G,D, k unspec-
ified (instead of taking a supremum over them) when defining the greedy adaptivity
gap. This is because we are interested in both supremum and infimum of the ratio
σf(πg ,k)
σ(Sg(k))

. Notice that the infimum of the ratio maxπ∈Π σ
f(π,k)

maxS⊆V,|S|≤k σ(S)
in Definition 5.4 is 1: the

optimal adaptive policy is at least as good as the optimal non-adaptive policy, as the
non-adaptive policy can be viewed as a special adaptive policy; on the other hand, it
is easy to see that there are InfMax instances such that the optimal adaptive policy
is no better than non-adaptive one (for example, a graph containing k vertices but
no edges). For this reason, we only care about the supremum of this ratio.

5.3 Infimum of Greedy Adaptivity Gap

In this section, we show that the infimum of the greedy adaptivity gap for the trig-
gering model is exactly (1− 1/e), for both the full-adoption feedback model and the
myopic feedback model. This implies that the greedy adaptive policy can perform
even worse than the conventional non-adaptive greedy algorithm, but it will never be
significantly worse. Moreover, we show that this result also holds for both ICM and
LTM.

Theorem 5.6. For the full-adoption feedback model,

inf
G,D,k: IG,D is ICM

σf(πg, k)

σ(Sg(k))
= inf

G,D,k: IG,D is LTM

σf(πg, k)

σ(Sg(k))
= inf

G,D,k

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

89

In Sect. 5.3.1, we show by providing examples that the greedy adaptive policy in
the worst case will only achieves (1− 1/e+ ε)-approximation of the expected number
of infected vertices given by the non-adaptive greedy algorithm, for both ICM and
LTM.

In Sect. 5.3.2, we shows that the greedy adaptive policy has performance at least
(1−1/e) of the performance of the non-adaptive optimal seeds (Theorem 5.10). Theo-
rem 5.10 provides a lower bound on the greedy adaptivity gap for the triggering model
and is also interesting on its own. At the end of Sect. 5.3.2, we prove Theorem 5.6
by putting the results from Sect. 5.3.1 and Sect. 5.3.2 together.

5.3.1 Tight Examples

In this subsection, we show that the adaptive greedy algorithm can perform worse
than the non-adaptive greedy algorithm by a factor of (1−1/e+ ε), for both ICM and
LTM and any ε > 0. This may be surprising, as one would expect that the feedback
provided to the seed-picker will refine the seed choices in the future iterations. Here,
we provide some intuitions why adaptivity can sometimes hurt. Suppose there are
two promising sequences of seed selections, {s, u1, . . . , uk} and {s, v1, . . . , vk}, such
that

• s is the best seed which will be chosen first;

• {s, u1, . . . , uk} has a better performance;

• the influence of u1, . . . , uk are non-overlapping, the influence of v1, . . . , vk are
non-overlapping, but the influence of ui, vj overlaps for each i, j; moreover, if u1

is picked as the second seed, the greedy algorithm, adaptive or not, will continue
to pick u2, . . . , uk, and if v1 is picked as the second seed, v2, . . . , vk will be picked
next;

Now, suppose there is a vertex t elsewhere which can be infected by both s and v1,
such that

• if t is infected by s, which slightly reduces the marginal influence of v1, v1 will
be less promising than u1;

• if t is not infected by s, v1 is more promising than u1;

• in average, when there is no feedback, v1 is still less promising than u1, even
after adding the increment in t’s infection probability to v1’s expected marginal
influence.

90

In this case, the non-adaptive greedy algorithm will “go to the right trend” by selecting
u1 as the second seed; the adaptive greedy algorithm, if receiving feedback that t is
not infected by s, will “go to the wrong trend” by selecting v1 next.

As a high-level description of the lesson we learned, both versions of the greedy
algorithms are intrinsically myopic, and the feedback received by the adaptive policy
may make the seed-picker act in a more myopic way, which could be more hurtful to
the final performance.

We will assume in the rest of this section that vertices can have positive integer
weights, as justified in the following remark.

Remark 5.7. For both ICM and LTM, we can assume without loss of generality that
each vertex has a positive integer weight, so that, in InfMax, we are maximizing
the expected total weight of the infected vertices instead of maximizing the expected
number of infected vertices as before. Suppose we want to make a vertex v have
weight W ∈ Z+. We can construct W − 1 vertices w1, . . . , wW−1, and create W − 1

directed edges (v, w1), . . . , (v, wW−1) with weight 1. (Recall from Definition 2.7 and
Definition 2.11 that the graphs in both ICM and LTM are edge-weighted, and the
weights of edges completely characterize the collection of triggering set distributions
F .) It is straightforward that, for both ICM and LTM, each of w1, . . . , wW−1 will be
infected with probability 1 if v is infected. In addition, both the greedy algorithm and
the greedy adaptive policy will never pick any of w1, . . . , wW−1 as seeds, as seeding v is
strictly better. Therefore, we can consider the subgraph consisting of v, w1, . . . , wW−1

as a gadget that representing a vertex v having weight W .

Lemma 5.8. For any ε > 0, there exists G,D, k such that IG,D is an ICM and

σf(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε,

σm(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε.

Proof. We will construct an InfMax instance (G = (V,E,w), k+ 1) with k+ 1 seeds
allowed. Let W ∈ Z+ be a sufficiently large integer divisible by k2k(k− 1) and whose
value are to be decided later. Let Υ = W/k2. The vertex set V contains the following
weighted vertices:

• a vertex s that has weight 2W ;

• a vertex t that has weight 4kΥ;

• 2k vertices u1, . . . , uk, v1, . . . , vk that have weight 1;

91

• 2k2 vertices {wij | i = 1, . . . , 2k; j = 1, . . . , k}

– w11, . . . , w1k have weight W
k
;

– for each i ∈ {2, . . . , k}, wi1, . . . , wik have weight 1
k
(1− 1

k
)i−1W + 4k−2

k−1
Υ;

– for each i ∈ {k + 1, . . . , 2k}, wi1, . . . , wik have weight 1
k
(1− 1

k
)kW .

The edge set E is specified as follow:

• create two edges (v1, t) and (s, t);

• for each i = 1, . . . , k, create 2k edges (ui, w1i), (ui, w2i), . . . , (ui, w(2k)i), and
create k edges (vi, wi1), (vi, wi2), . . . , (vi, wik).

For the weights of edges, all the edges have weight 1 except for the edge (s, t) which
has weight 1/k.

It is straightforward to check that

σ({s}) = w(s) +
1

k
w(t) = 2W + 4Υ, (5.1)

∀i ∈ {1, . . . , k} : σ({ui}) = w(ui) +
2k∑
j=1

w(wji) = 1 +W + (4k − 2)Υ, (5.2)

σ({v1}) = w(v1) + w(t) +
k∑
j=1

w(w1j) = 1 + 4kΥ +W, (5.3)

∀i ∈ {2, . . . , k} : σ({vi}) = w(vi) +
k∑
j=1

w(wij)

= 1 +

(
1− 1

k

)i−1

W +
k(4k − 2)

k − 1
Υ, (5.4)

and the influence of the remaining vertices are significantly less than these.
Since s has the highest influence, both the greedy algorithm and the greedy adap-

tive policy will choose s as the first seed.
The non-adaptive greedy algorithm will choose u1, . . . , uk iteratively for the next

k seeds, and the expected number of infected vertices by the seeds chosen by non-
adaptive greedy algorithm is

σ({s, u1, . . . , uk}) = w(s) +
1

k
w(t) +

k∑
i=1

w(ui) +
2k∑
i=1

k∑
j=1

w(wij) = (k + 2)W + o(W).

(5.5)

92

To show the former claim, letting Ui = {s, u1, . . . , ui} and U0 = {s}, and supposing
without loss of generality that the non-adaptive greedy algorithm has chosen Ui for
the first (i+ 1) seeds (notice the symmetry of u1, . . . , uk), it suffices to show that, for
any vertex x, we have

σ(Ui ∪ {ui+1})− σ(Ui) ≥ σ(Ui ∪ {x})− σ(Ui). (5.6)

To consider an x that makes the right-hand side large, it is easy to see that we
only need to consider one of ui+1, . . . , uk, v1, v2, as the remaining vertices clearly have
less marginal influence. By symmetry, σ(Ui ∪ {ui+1}) = σ(Ui ∪ {ui+2}) = · · · =

σ(Ui∪{uk}). Therefore, we only need to consider x being v1 or v2. It is straightforward
to check that

σ(Ui ∪ {ui+1})− σ(Ui) = 1 +W + (4k − 2)Υ, (5.7)

σ(Ui ∪ {v1})− σ(Ui) = 1 + (4k − 4)Υ +
k − i
k

W ≤ 1 +W + (4k − 4)Υ, (5.8)

σ(Ui ∪ {v2})− σ(Ui) = 1 +
k − i
k

(
1− 1

k

)
W +

(k − i)(4k − 2)

k − 1
Υ

≤ 1 +W − W

k
+ (4k + 5)Υ. (5.9)

Recall that Υ = W/k2, straightforward calculations show that σ(Ui ∪{ui+1})−σ(Ui)

is maximum.
For the greedy adaptive policy, we have seen that s will be the first seed chosen.

The second seed picked by the greedy adaptive policy will depend on whether t is
infected by s. Notice that the status of t is available to the policy in both the full-
adoption feedback model and the myopic feedback model, so the arguments here,
as well as the remaining part of this proof, apply to both feedback models. By
straightforward calculations, the greedy adaptive policy will pick v1 as the next seed
if t is not infected by s, and the policy will pick a seed from u1, . . . , uk otherwise.

In the latter case, the policy will eventually pick the seed set {s, u1, . . . , uk}, which
will infect vertices with a total weight of

w(s) + w(t) +
k∑
i=1

w(ui) +
2k∑
i=1

k∑
j=1

w(wij) = (k + 2)W + o (W)

with probability 1 (notice that we are in the scenario that t has been infected by s).
In the former case, we can see that the third seed picked by the policy will be v2

93

instead of any of u1, . . . , uk. In particular, v2 contributes 1 + (1 − 1
k
)W + k(4k−2)

k−1
Υ

infected vertices. On the other hand, since w11, . . . , wik have already been infected
by v1, the marginal contribution for each ui is σ({ui})− w(w1i) = 1 +W + (k − 1) ·
4k−2
k−1

Υ − 1
k
W , which is less than the contribution of v2. By similar analysis, we can

see that the greedy adaptive policy in this case will pick the seed set {s, v1, . . . , vk},
which will infect vertices with a total weight of

w(s) + w(t) +
k∑
i=1

w(vi) +
k∑
i=1

k∑
j=1

w(wij) =

(
2 +

k∑
i=1

(
1− 1

k

)i−1
)
W + o (W)

=

(
2 + k

(
1−

(
1− 1

k

)k))
W + o (W)

in expectation.
Since t will be infected with probability 1

k
, the expected weight of infected vertices

for the greedy adaptive policy is

1

k
((k + 2)W + o (W)) +

(
1− 1

k

)
·

((
2 + k

(
1−

(
1− 1

k

)k))
W + o (W)

)

≤

(
3 + k

(
1−

(
1− 1

k

)k))
W + o (W) .

Putting this together with Eqn. (5.5), both σf(πg ,k)
σ(Sg(k))

and σm(πg ,k)
σ(Sg(k))

in this case are at
most (

3 + k
(

1−
(
1− 1

k

)k))
W + o (W)

(k + 2)W + o (W)
,

which has limit 1− 1/e when both W and k tend to infinity.

Lemma 5.9. For any ε > 0, there exists G,D, k such that IG,D is an LTM and

σf(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε,

σm(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε.

Proof. We will construct an InfMax instance (G = (V,E,w), k+ 1) with k+ 1 seeds
allowed. Let W ∈ Z+ be a sufficiently large integer divisible by k2k(k− 1) and whose
value are to be decided later. Let Υ = W/k2. The vertex set V contains the following
weighted vertices:

• a vertex s that has weight 2W ;

94

• a vertex t that has weight 4kΥ;

• k vertices u1, . . . , uk that have weight 1;

• k vertices v1, . . . , vk such that w(v1) = W and w(vi) = W (1 − 1
k
)i−1 + 4k2−2k

k−1
Υ

for each i = 2, . . . , k;

• k vertices vk+1, . . . , v2k such that w(vk+1) = · · · = w(v2k) = W (1− 1
k
)k.

The edge set E and the weights of edges are specified as follow:

• create two edges (v1, t) and (s, t) with weights 1− 1
k
and 1

k
respectively;

• create 2k2 edges {(ui, vj) | i = 1, . . . , k; j = 1, . . . , 2k}, each of which has weight
1
k
.

It is easy to check that the weights of the incoming edges for each vertex v satisfy∑
u∈Γ(v) w(u, v) ≤ 1, as required in Definition 2.11.
The remaining part of the analysis is similar to the proof of Lemma 5.8. The

first seed chosen by both algorithms is s. After this, each ui has marginal influence
1 + 1

k

∑2k
i=1 w(vi) = 1 +W + (4k−2)Υ. Since t is infected by s with probability 1

k
, the

marginal influence of v1 without any feedback is (1− 1
k
)w(t)+w(v1) = W +(4k−4)Υ.

If t is known to be infected, the marginal influence of v1 is W ; if t is known to be
uninfected, then seeding v1 will infect t with probability 1, and the marginal influence
of v1 is W + 4kΥ. By comparing these values, the non-adaptive greedy algorithm will
pick one of u1, . . . , uk as the second seed, and the greedy adaptive policy will pick v1

as the second seed if t is not infected and one of u1, . . . , uk as the second seed if t is
infected. (Notice that w(v1) > w(v2) > · · · > w(vk) > w(vk+1) = · · · = w(v2k).)

Simple analyses show that the non-adaptive greedy algorithm will choose seeds
{s, u1, . . . , uk}, which will infect all of v1, . . . , v2k with probability 1, and the adaptive
greedy policy will choose {s, v1, . . . , vk} with a very high probability 1− 1

k
, which will

leave vk+1, . . . , v2k uninfected. Since s, v1, . . . , v2k are the only vertices with weight
Θ(W) and we have both

∑k
i=1w(vi) = (1 − (1 − 1

k
)k)W + o(W) and

∑2k
i=1w(vi) =

W + o(W), the lemma follows by taking the limit W →∞ and k →∞.

5.3.2 Lower Bound

Theorem 5.10. For a triggering model IG,D, we have both

σf(πg, k) ≥
(

1− 1

e

)
max

S⊆V,|S|≤k
σ(S) and σm(πg, k) ≥

(
1− 1

e

)
max

S⊆V,|S|≤k
σ(S).

95

For a high-level idea of the proof, let S with |S| = i be the seeds picked by πg for the
first i iterations and S∗ be the optimal non-adaptive seed set: S∗ ∈ argmax|S′|≤k σ(S ′).
Given S as the existing seeds and any feedback (myopic or full-adoption) correspond-
ing to S, we can show that the marginal increment to the expected influence caused
by the (i + 1)-th seed picked by πg is at least 1/k of the marginal increment to the
expected influence caused by S∗. Then, a standard argument showing that the greedy
algorithm can achieve a (1− 1/e)-approximation for any submodular monotone opti-
mization problem can be used to prove this theorem.

Theorem 5.10 is implied by the following three propositions. In the remaining
part of this section, we let S∗ be an optimal seed set for the non-adaptive InfMax:
S∗ ∈ maxS⊆V,|S|≤k σ(S).

We first show that the global influence function after fixing a partial seed set S
and any possible feedback of S is still submodular.

Proposition 5.11. Given a triggering model IG,D, any S ⊆ V , any feedback model
(either full-adoption or myopic) and any partial realization ϕ that is a valid feedback
of S (i.e., ∃φ : ϕ = Φf

G,D,φ(S) or ∃φ : ϕ = Φm
G,D,φ(S), depending on the feedback model

considered), the function T : {0, 1}|V | → R≥0 defined as T (X) = Eφ'ϕ[|IφG,D(S ∪X)|]
is submodular.

Proof. Fix a feedback model, S ⊆ V and ϕ that is a valid feedback of S. Let S be
the set of infected vertices indicated by the feedback of S. Formally, S is the set of
all vertices that are reachable from S by only using edges e with ϕ(e) = L.

We consider a new triggering model IG′,F ′ defined as follows:

• G′ shares the same vertex set with G;

• The edge set of G′ is obtained by removing all edges e in G with ϕ(e) 6= U;

• The distribution F ′v is normalized from Fv. Specifically, for each Trigv ⊆ Γ(v),
let p(Trigv) be the probability that Trigv is chosen as the triggering set under
Fv. Let Γ′(v) be the set of v’s in-neighbors in G′, and we have Γ′(v) ⊆ Γ(v) by
our construction. Then, F ′v is defined such that Trigv ⊆ Γ′(v) is chosen as the
triggering set with probability p(Trigv)/

∑
Trig′v⊆Γ′(v) p(Trig′v).

A simple coupling argument reveals that

T (X) = E
φ'ϕ

[∣∣∣IφG,D(S ∪X)
∣∣∣] = σG′,F ′(S ∪X). (5.10)

96

We define a coupling of a realization φ of G with φ ' ϕ to a realization φ′ of G′ in a
natural way: φ(e) = φ′(e) for all edges e in G′. From our construction of F ′ = {F ′v},
it is easy to see that, when φ is coupled with φ′, the probability that φ is sampled
under IG,D conditioning on φ ' ϕ equals to the probability that φ′ is sampled under
IG′,F ′ . Under this coupling, it is easy to see that u is reachable from S by live edges
under φ if and only if it is reachable from S by live edges under φ′. This proves
Eqn. (5.10).

Finally, since σG′,F ′(·) is submodular, for any two vertex sets A,B with A (B

and any u /∈ B,

T (A ∪ {u})− T (A) = σG′,F ′(S ∪ A ∪ {u})− σG′,F ′(S ∪ A)

is weakly larger than

T (B ∪ {u})− T (B) = σG′,F ′(S ∪B ∪ {u})− σG′,F ′(S ∪B)

if u /∈ S, and
T (A ∪ {u})− T (A) = T (B ∪ {u})− T (B) = 0

if u ∈ S. In both case, the submodularity of T (·) holds.

Next, we show that the marginal gain to the global influence function after se-
lecting one more seed according to πg is at least 1/k fraction of the marginal gain of
including all the vertices in S∗ as seeds.

Proposition 5.12. Given a triggering model IG,D, any S ⊆ V , any feedback model
and any partial realization ϕ that is a valid feedback of S, let s = πg(S, ϕ) be the next
seed chosen by the greedy policy. We have

E
φ'ϕ

[∣∣∣IφG,D(S ∪ {s})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣] ≥ 1

k

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]) .

Proof. Let S∗ = {s∗1, . . . , s∗k}. By the greedy nature of πg, we have

∀v : E
φ'ϕ

[∣∣∣IφG,D(S ∪ {s})
∣∣∣] ≥ E

φ'ϕ

[∣∣∣IφG,D(S ∪ {v})
∣∣∣] ,

and this holds for v being any of s∗1, . . . , s∗k in particular.
Let S∗i = {s∗1, . . . , s∗i } for each i = 1, . . . , k and S∗0 = ∅, the proposition concludes

97

from the following calculations

E
φ'ϕ

[∣∣∣IφG,D(S ∪ {s})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]

≥1

k

k∑
i=1

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ {s∗i })
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣])

≥1

k

k∑
i=1

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ S∗i−1 ∪ {s∗i })
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S ∪ S∗i−1)
∣∣∣])

(Proposition 5.11)

=
1

k

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]) ,

where the last equality is by a telescoping sum, by noticing that S∗i = S∗i−1∪{s∗i } and
S∗ = S∗k .

Finally, we prove the following proposition which is a more general statement than
Theorem 5.10.

Proposition 5.13. For a triggering model IG,D and any ` ∈ Z+, we have σf(πg, `) ≥
(1− (1− 1/k)`)σ(S∗), and the same holds for the myopic feedback model.

Proof. We will only consider the full-adoption feedback model, as the proof for the
myopic feedback model is identical. We prove this by induction on `. The base step
for ` = 1 holds trivially by Proposition 5.12 by considering S = ∅ in the proposition.

Suppose the inequality holds for ` = `0. We investigate the expected marginal
gain to the global influence function by selecting the (`0 + 1)-th seed. For a seed set
S ⊆ V with |S| = `0 and a partial realization ϕ, let P (S, ϕ) be the probability that
the policy πg chooses S as the first `0 seeds and ϕ is the feedback. That is, P (S, ϕ) =

Prφ∼F

(
S f (πg, φ, `0) = S ∧ Φf

G,D,φ(S) = ϕ
)
. The mentioned expected marginal gain

98

is

σf (πg, `0 + 1)− σf (πg, `0)

=
∑

S,ϕ:|S|=`0

P (S, ϕ)

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ {πg(S, ϕ)})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣])

≥
∑

S,ϕ:|S|=`0

P (S, ϕ) · 1

k

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]) (Proposition 5.12)

≥
∑

S,ϕ:|S|=`0

P (S, ϕ) · 1

k

(
E
φ'ϕ

[∣∣∣IφG,D(S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣])

=
1

k
σ(S∗)− 1

k
σf(πg, `0),

where the last equality follows from the law of total probability.
By rearranging the above inequality and the induction hypothesis,

σf (πg, `0 + 1) ≥ 1

k
σ(S∗) +

k − 1

k
σf (πg, `0)

≥

(
1

k
+
k − 1

k

(
1−

(
1− 1

k

)`0))
σ(S∗)

=

(
1−

(
1− 1

k

)`0+1
)
σ(S∗),

which concludes the inductive step.

By taking ` = k and noticing that 1− (1− 1/k)k > 1− 1/e, it is easy to see that
Proposition 5.13 implies Theorem 5.10.

Finally, putting Theorem 5.10, Lemma 5.8 and Lemma 5.9 together, Theorem 5.6
can be concluded easily.

Proof of Theorem 5.6. Since ICM and LTM are special cases of triggering models, we
have

inf
G,D,k: IG,D is ICM

σf(πg, k)

σ(Sg(k))
≥ inf

G,D,k

σf(πg, k)

σ(Sg(k))

and

inf
G,D,k: IG,D is LTM

σf(πg, k)

σ(Sg(k))
≥ inf

G,D,k

σf(πg, k)

σ(Sg(k))
.

Lemma 5.8 and Lemma 5.9 show that both

inf
G,D,k: IG,D is ICM

σf(πg, k)

σ(Sg(k))
and inf

G,D,k: IG,D is LTM

σf(πg, k)

σ(Sg(k))

99

are at most 1− 1/e. On the other hand, Theorem 5.10 implies

σf(πg, k)

σ(Sg(k))
≥ σf(πg, k)

σ(S∗)
≥ 1− 1

e

for any triggering model IG,D and any k, where S∗, as usual, denotes the optimal
seeds in the non-adaptive setting.

Putting together, Theorem 5.6 concludes for the full-adoption feedback model.
Since all those inequalities hold for the myopic feedback model as well, Theorem 5.6
concludes for all feedback models.

5.4 Supremum of Greedy Adaptivity Gap

In this section, we show that, for the full-adoption feedback model, both the adaptivity
gap and the supremum of the greedy adaptivity gap are unbounded. As a result, in
some cases, the adaptive version of the greedy algorithm can perform significantly
better than its non-adaptive counterpart.

Theorem 5.14. The greedy adaptivity gap with full-adoption feedback is unbounded:
there exists a triggering model IG,D and k such that

σf(πg, k)

σ(Sg(k))
= 2Ω(log log |V |/ log log log |V |).

Theorem 5.15. The adaptivity gap for the general triggering model with full-adoption
feedback is infinity.

In Sect. 5.4.1, we consider a variant of InfMax such that the seeds can only be
chosen among a prescribed vertex set V ⊆ V , where V is specified as an input to the
InfMax instance. We show that, under this setting with LTM, both the adaptivity
gap and the supremum of the greedy adaptivity gap with the full-adoption feedback
model are unbounded (Lemma 5.18). Since it is common in practice that only a
subset of nodes in a network is visible or accessible to the seed-picker, Lemma 5.18
is also interesting on its own. In Sect. 5.4.2, we show that how Lemma 5.18 can
be used to prove Theorem 5.14 and Theorem 5.15. Notice that Theorem 5.14 and
Theorem 5.15 hold for the standard InfMax setting without a prescribed set of seed
candidates, but we do not know if they hold for LTM (instead, they are for the more
general triggering model).

100

We first present the following lemma revealing a special additive property for LTM,
which will be used later.

Lemma 5.16. Suppose IG,D is LTM. If U1, U2 ⊆ V with U1 ∩ U2 = ∅ satisfy that
there is no path from any vertices in U1 to any vertices in U2 and vice versa, then
σ(U1) + σ(U2) = σ(U1 ∪ U2).

Proof. For any seed set S ⊆ V , σ(S) can be written as follows:

σ(S) =
∑
φ

Pr(φ is sampled) ·
∣∣∣IφG,D(S)

∣∣∣ . (5.11)

For U1 and U2 in the lemma statement, since each vertex can only have at most
one incoming live edge (in Definition 2.11, each Tv has size at most 1), under any
realization φ, each vertex v ∈ V \ (U1 ∪U2) that is reachable from vertices in U1 ∪U2

is reachable from either vertices in U1 or vertices in U2, but not both. Therefore,
|IφG,D(U1)| + |IφG,D(U2)| = |IφG,D(U1 ∪ U2)| for any φ, and the lemma follows from
considering the decomposition of σ(U1) and σ(U2) according to (5.11).

5.4.1 On Linear Threshold Model with Prescribed Seed Can-

didates

Definition 5.17. The influence maximization problem with prescribed seed candidates
is an optimization problem which takes as inputs G = (V,E), D, k ∈ Z+, and
V ⊆ V , and outputs a seed set S ⊆ V that maximizes the expected total number of
infections: S ∈ argmaxS⊆V :|S|≤k σ(S). The adaptive influence maximization problem
with prescribed seed candidates has the same definition as it is in Definition 5.3, with
the exception that the range of the function π is now V , and Π is the set of all such
policies.

Lemma 5.18. For InfMax with prescribed seed candidates with LTM and the full-
adoption feedback, the adaptivity gap is infinity, and the greedy adaptivity gap is
2Ω(log |V |/ log log |V |).

Proof. For d,W ∈ Z+ with d being sufficiently large and W � dd+1, we construct
the following (adaptive) InfMax instance with prescribed seed candidates:

• the edge-weighted graph G = (V,E,w) consists of an (d+ 1)-level directed full
d-ary tree with the root node being the sink (i.e., an in-arborescence) and W
vertices each of which is connected from the root node of the tree; the weight

101

of each edge in the tree is 1/d, and the weight of each edge connecting from the
root to those W vertices is 1;

• the number of seeds is given by k = 2(d+1
2

)d;

• the prescribed set for seed candidates V is the set of all the leaves in the tree.

Since the leaves are not reachable from one to another, Lemma 5.16 indicates that
choosing any k vertices among V , i.e., the leaves, infects the same number of vertices
in expectation. It is easy to see that a single seed among the leaves will infect the root
node with probability 1/dd, and those W vertices will be infected with probability
1 if the root of the tree is infected. Thus, for any seed set S ⊆ V , by assuming all
vertices in the tree are infected (in the sake of finding an upper bound for σ(S)),
we have σ(S) ≤ 1

dd
· |S| · W +

∑d
i=0 d

i < |S|W
dd

+ dd+1. This gives an upper bound
for the performance of both the non-adaptive greedy algorithm and the non-adaptive
optimal seed set.

Now, we analyze the seeds chosen by the greedy adaptive policy. At a particular
iteration when executing the greedy adaptive policy, we classify the internal tree nodes
(i.e., the nodes that are neither leaves nor the root) into the following three types:

• Unexplored: the subtree rooted at this internal node contains no seed.

• Explored: the subtree rooted at this internal node contains seeds, and no edge
in the path connecting this internal node to the root is known to be blocked
(i.e., all edges in the path have statuses either L or U).

• Dead: if an edge in the path connecting this internal node to the root is known
to be blocked.

Here we give some intuitions for the behavior of the greedy adaptive policy. Our
objective is to infect the root, which will infect those W vertices that constitute most
vertices of the graph. Before the root is infected, once a internal node is known to be
“dead”, the policy should never choose any seed from the leaves that are descendants
of this node, as those seeds will never have a chance to infect the root (this explains
our naming). Moreover, as we will see soon, the greedy adaptive policy will keep
“exploring” an explored node before starting to “exploring” an unexplored node, until
this explored node becomes dead.

We will show that, if the root node is not infected yet, at any iteration of the
greedy adaptive policy, each internal level of the tree can contain at most one explored

102

node. This is a formal statement describing what we meant just now by saying that
we should keep exploring an explored node.

Firstly, since only one seed can be chosen at a single iteration, among all the
nodes at a particular level of the tree, at most one of them can change the status
from “unexplored” to “explored”. Suppose for the sake of contradiction that, at a par-
ticular iteration of the greedy adaptive policy, an internal node v′ which is previously
unexplored become explored, while there is already another explored node v at the
same level of v′. Suppose this is the first iteration we see two explored nodes at the
same level. Let u be the least common ancestor of v and v′. Let `u be the level
containing u. It is easy to see that all the nodes on the path from v to the root, which
includes u, are explored (they cannot be unexplored, as the descendants of each of
those nodes contains the descendants of v, which contain seeds; they cannot be dead,
for otherwise v is dead). Since v and v′ are the first pair of explored nodes at the same
level, before the iteration where v′ is explored, all nodes on the path between v′ and u
are unexplored (excluding u). Let du be the number of u’s children that are not dead.
Given the feedback from previous iterations, since all the descendants of v′ and all
the nodes on the path between v′ and u (excluding u) are unexplored, the probability
that a seed from a leaf that is a descendant of v′ infects u is 1

d`u−1·du . On the other
hand, if at this same iteration we pick a seed from a leaf which is a descendant of v
and the path from this leaf to v contains no blocked edge, the probability that this
seed infects u is at least 1

d`u−2(d−1)du
. This is because there is at least one dead node

that is a descendant of v (we know that all the nodes on the path between v and the
root are explored and uninfected, and we know that seeds have been chosen among
the leaves on the subtree rooted at v; the only reason that those seeds have not made
the root infected is that there are dead nodes that “block the cascade”, and we know
there is no dead node on the path between v and the root). Since the only way that
a seed corresponding to either v or v′ can infect the root is to first infect u and we
have 1

d`u−2(d−1)du
> 1

d`u−1·du , the marginal influence of a seed corresponding to v′ is
smaller than the marginal influence of a seed corresponding to v. In other words,
“exploring” v′ provide less marginal influence than “exploring” v, which leads to the
desired contradiction.

Next, we evaluate the expected number of seeds required to infect the root, under
the greedy adaptive policy. Suppose the tree only has two levels (i.e., a star). The
number of seeds among the leaves required to infect the root is a random variable
with uniform distribution on {1, . . . , d}, with expectation d+1

2
. We will show that, by

induction on the number of levels of the tree, with a d-level tree as it is in our case,

103

the expected number of seeds required to infect the root is (d+1
2

)d, which equals to k
2
.

Let x1, . . . , xd be the d children of the root node. By the claim we showed just now,
at most one of x1, . . . , xd can be “explored” at any iteration. The greedy adaptive
policy will do the following: it first explores one of x1, . . . , xd, say, x1; it will continue
exploring x1 until x1 is dead or until the root is infected. The only situation that x1 is
dead is that x1 is infected but the edge between x1 and the root is blocked. Therefore,
the greedy adaptive policy will attempt to infect x1, x2, x3, . . . one by one, until one of
those children infects the root. By the induction hypothesis, the expected number of
seeds required to infect each of x1, . . . , xd is (d+1

2
)d−1. Let X be the random variable

indicating the smallest d′ such that xd′ is in the triggering set of the root (this means
that the greedy adaptive policy will need to infect x1, . . . , xd′ in order to infect the
root). Then the expect number of seeds required to infect the root is

d∑
d′=1

(
Pr(X = d′) · d′

(
d+ 1

2

)d−1
)

=

(
d+ 1

2

)d
,

where d′(d+1
2

)d−1 is the expected number of seeds required to infected all of x1, . . . , xd′

by the linearity of expectation.
After proving that the expected number of seeds required to infect the root is

(d+1
2

)d = k
2
, by Markov’s inequality, the k seeds chosen according to the greedy adap-

tive policy will infect the root with probability at least 1/2. Therefore, σf(πg, k) ≥
1
2
W , and the optimal adaptive policy can only be better: maxπ∈Π σ

f(π, k) ≥ σf(πg, k) ≥
1
2
W .
Putting together, both the adaptivity gap and the supremum of the greedy adap-

tivity gap is at least

1
2
W

kW
dd

+ dd+1
=

1
2
W

1
2d−1 (1 + 1

d
)dW + dd+1·

= Ω
(
2d
)
,

if setting W = dd+10 � dd+1. The lemma concludes by noticing d = Ω(log |V |
log log |V |)

(in particular, |V | = W + o(W) = dd+10 + o(dd+10), so log |V | = d log d + o(d log d),
log log |V | = log d+ o(log d), and d = Ω(log |V |

log log |V |)).

5.4.2 Proof of Theorem 5.14, 5.15

To prove Theorem 5.14 and Theorem 5.15, we construct an InfMax instance with a
special triggering model IG,D which is a combination of ICM and LTM.

104

Definition 5.19. The mixture of ICM and LTM is a triggering model IG,D where
G = (V,E,w) is an edge-weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E

and each vertex v is labelled either IC or LT such that Tv is sampled according to
Fv described in Definition 2.7 if v is labelled IC and Tv is sampled according to Fv
described in Definition 2.11 if v is labelled LT. In addition, each vertex v labelled L

satisfies
∑

u∈Γ(v) w(u, v) ≤ 1.

To conclude Theorem 5.14 and Theorem 5.15, we construct an edge-weighted
graph G = (V,E,w) on which the greedy adaptive policy significantly outperforms
the non-adaptive greedy algorithm. Let M � dd+1 be a large integer. We reuse the
graph with a tree and W vertices in the proof of Lemma 5.18. We create M such
graphs and name them T1, . . . , TM . Let L = dd be the number of leaves in each Ti.
Let ZL = {1, . . . , L} and ZML be the set of all M -dimensional vectors whose entries
are from ZL. For each z = (z1, . . . , zM) ∈ ZML , create a vertex az and create a directed
edge from az to the zi-th leaf of the tree Ti for each i = 1, . . . ,M . The weight of each
such edge is 1. Let A = {az | z ∈ ZML }. Notice that |A| = LM and each az ∈ A is
connected to M vertices from T1, . . . , TM respectively. The leaves of T1, . . . , TM are
labelled as IC, and the remaining vertices are labelled as LT. Finally, set k = 2(d+1

2
)d

as before.
Due to that M is large, it is more beneficial to seed a vertex in A than a vertex

elsewhere. In particular, seeding a root in certain Ti infects W vertices, while seeding
a vertex in A will infects M · (1

d
)dW � W vertices in expectation.

It is easy to see that, in the non-adaptive setting, the optimal seeding strategy is
to choose k seeds from A such that they do not share any out-neighbors, in which
case the k chosen seeds will cause the infection of exactly k leaves in each Ti. This
is also what the non-adaptive greedy algorithm will do. As before, to find an upper
bound for any seed set S with |S| = k, we assume that all vertices in each Ti are
infected, and we have σ(S) ≤M

(
k · 1

dd
W +

∑d
i=0 d

i
)
.

By the same analysis in the proof of Lemma 5.18, by choosing k seeds among A
as described above, which is equivalent as choosing k leaves in each of T1, . . . , TM

simultaneously, the root in each Ti is infected with probability at least 1
2
. Therefore,

the expected total number of infected vertices is at least M · 1
2
W .

It may seem problematic that the greedy adaptive policy may start to seed the
roots among T1, . . . , TM when it sees that there are already a lot of infected roots
(so seeding a root is better than seed a vertex in A). However, since M � dd+1, by
simple calculations, this can only happen when there are already (1 − o(1))M trees
with infected roots, in which case the number of infected vertices is already much

105

more than M · 1
2
W .

Putting together as before, both the adaptivity gap and the supremum of the
greedy adaptivity gap is at least

M · 1
2
W

M(kW
dd

+ dd+1)
=

1
2
W

1
2d−1 (1 + 1

d
)dW + dd+1·

= Ω
(
2d
)
,

if fixing W = dd+10 � dd+1. Theorem 5.15 concludes by letting d → ∞. To
conclude Theorem 5.14, we need to show that d = Ω(log log |V |/ log log log |V |).
To see this, we set M = dd+10 which is sufficiently large for our purpose. Since
we have L = dd, we have |V | = LM + o(LM) = dd

d+11
+ o(dd

d+11
), which implies

d = Ω(log log |V |/ log log log |V |).

5.5 Greedy Algorithms in Practice and Robustness

of Our Results

Recall that, in the greedy algorithm, we find a vertex s that maximizes the marginal
gain of the influence σ(S ∪ {s}) − σ(S) in each iteration. However, in practice, the
greedy algorithm is implemented with σ(·) estimated by Monte-Carlo method, reverse
reachable sets coverage (see Sect. 2.2.2 for details), or other randomized approximation
algorithms. As a result, in reality, when implementing the greedy algorithm, a vertex
s that approximately maximizes the marginal gain of the influence is found in each
iteration with high probability. In this section, we discuss the applicability of all our
results in previous sections under this approximation setting. In Sect. 5.5.1, We first
define the (ε, δ)-greedy algorithm where in each iteration a vertex s that approximately
maximizes the marginal gain σ(S ∪ {s}) − σ(S) within factor (1 − ε) is found with
probability at least (1 − δ), which captures the practical implementations of greedy
algorithms. In Sect. 5.5.2, we discuss the robustness of our results by studying under
what ε and δ our results hold.

5.5.1 (ε, δ)-Greedy Algorithms

Definition 5.20. An (ε, δ)-greedy algorithm is a randomized iterative algorithm that
satisfies the following:

1. the algorithm initializes S = ∅;

106

2. for each of the k iterations, with probability at least 1− δ, the algorithm finds
s ∈ V such that

σ(S ∪ {s})− σ(S) ≥ (1− ε) max
s′∈V

(σ(S ∪ {s′})− σ(S)) ,

and update S ← S ∪ {s};

3. the algorithm outputs S.

Since an (ε, δ)-greedy algorithm is an approximation version of the “exact” greedy
algorithm, it achieves an approximation ratio that is close to (1− 1/e). The proof is
standard, and we include it here for completeness.

Theorem 5.21. For any ε ≤ 1
k
, an (ε, δ/k)-greedy algorithm gives a (1 − 1/e − ε)-

approximation for submodular InfMax with probability (1− δ).

Proof. Let S∗ = {s∗1, . . . , s∗k} be an optimal solution which maximizes σ(·), and let
S = {s1, . . . , sk} be the seed set output by any (ε, δ/k)-greedy algorithm with ε ≤ 1/k.
Let S∗i = {s∗1, . . . , s∗i } and Si = {s1, . . . , si}. In particular, let S∗0 = S0 = ∅. Similar
to Proposition 5.12, we will show that, for each i = 0, 1, . . . , k − 1,

σ(Si+1)−σ(Si) ≥
1− ε
k

(σ(Si∪S∗)−σ(Si)) with probability at least 1− δ
k
. (5.12)

This is because

σ(Si+1)− σ(Si) ≥ (1− ε)
(

max
s∈V

(σ(Si ∪ {s})− σ(Si))

)
(by definition of (ε, δ)-greedy)

≥ (1− ε)1

k

k∑
j=1

(
σ(Si ∪ {s∗j})− σ(Si)

)
(since s is the maximizer)

≥ 1− ε
k

k∑
j=1

(
σ(Si ∪ S∗j)− σ(Si ∪ S∗j−1)

)
(submodularity of σ(·))

=
1− ε
k

(σ(Si ∪ S∗)− σ(Si)) . (telescoping sum)

Next, similar to Proposition 5.13, we can prove by induction that for each i = 1, . . . , k

σ(Si) ≥

(
1−

(
1− 1

k

)i
− ε

)
σ(S∗) with probability at least 1− iδ

k
. (5.13)

107

The base step for i = 1 follows from Eqn. (5.12):

σ(S1) = σ(S1)− σ(S0) ≥ 1− ε
k

(σ(S0 ∪ S∗)− σ(S0)) >

(
1

k
− ε
)
σ(S∗).

For the inductive step, by Eqn. (5.12) again, we have, with probability at least (1−
δ/k),

σ(Si+1)− σ(Si) ≥
1− ε
k

(σ(Si ∪ S∗)− σ(Si)) ≥
1− ε
k

(σ(S∗)− σ(Si)),

which implies

σ(Si+1) ≥ 1− ε
k

σ(S∗) +
k − 1 + ε

k
σ(Si).

By the induction hypothesis, with probability at least (1− iδ
k

), we have

σ(Si) ≥

(
1−

(
1− 1

k

)i
− ε

)
σ(S∗).

Putting together by a union bound, with probability at least 1− (i+1)δ
k

, we have

σ(Si+1) ≥ 1− ε
k

σ(S∗) +
k − 1 + ε

k

(
1−

(
1− 1

k

)i
− ε

)
σ(S∗)

=

(
1−

(
1− 1

k

)i+1

− ε+
ε

k

(
1− ε−

(
1− 1

k

)i))
σ(S∗)

(elementary calculations)

≥

(
1−

(
1− 1

k

)i+1

− ε

)
σ(S∗), (since ε ≤ 1

k
and i ≥ 1)

which concludes the inductive step.
The theorem concludes by taking i = k in Eqn. (5.13) and noticing that 1− (1−

1/k)k > 1− 1/e.

We can define the (ε, δ)-greedy adaptive policy similarly.

Definition 5.22. An adaptive policy π is a (ε, δ)-greedy adaptive policy if, for any
S ⊆ V and any partial realization ϕ, with probability at least 1−δ, we have π(S, ϕ) =

v for v such that

E
φ'ϕ

[∣∣∣IφG,D (S ∪ {v})
∣∣∣− ∣∣∣IφG,D (S)

∣∣∣] ≥ (1− ε) max
s∈V

E
φ'ϕ

[∣∣∣IφG,D (S ∪ {s})
∣∣∣− ∣∣∣IφG,D (S)

∣∣∣] .
108

5.5.2 Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithms

We re-exam all the theorems and lemmas in Sect. 5.3 and Sect. 5.4. Throughout
this section, we use Agε,δ to denote the set of all (ε, δ)-greedy algorithms and Πg

ε,δ to
denote the set of all (ε, δ)-greedy adaptive policies. Since the greedy adaptive policy
we are studying now is randomized, for any (ε, δ)-greedy adaptive policy πg ∈ Πg

ε,δ,
the values σf(πg, k) and σm(πg, k) are the expected numbers of infected vertices under
the full-adoption feedback setting and the myopic feedback setting respectively, where
the expectation is taken over both the sampling of a realization and the randomness
when implementing πg. Correspondingly, for a randomized non-adaptive (ε, δ)-greedy
algorithm Ag ∈ Agε,δ, we will slightly abuse the notation and use σ(Ag, k) to denote
the expected number of infected vertices when k seeds are chosen based on algorithm
Ag, where the expectation is again taken over both the sampling of a realization and
the randomness when implementing Ag.

The argument behind all the proofs in this section is the same, which we summarize
as follows. To show that the greedy adaptivity gap remains the same in the (ε, δ)-
greedy setting, we find an ε that is small enough such that, in the InfMax instance
we constructed, requiring the marginal influence being at least a (1 − ε) fraction of
the maximum marginal influence is the same as requiring the maximum marginal
influence. This is done by setting ε to be small enough such that the only seed that
produces the marginal influence within (1 − ε) of the maximum marginal influence
is the seed that produce the maximum marginal influence. By definition, the (ε, δ)-
greedy algorithm/policy will behave exactly the same as their exact deterministic
counterpart with probability at least 1 − δ. By setting δ = o(1/k) and taking a
union bound over all the k iterations, with probability at least 1 − o(1), the (ε, δ)-
greedy algorithm/policy will behave the same way as the exact deterministic greedy
algorithm/policy.

5.5.2.1 Infimum of Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithms

In this section, we show that, for ε = o(1/k) and δ = o(1/k), the infimum of the greedy
adaptivity gap for (ε, δ)-greedy algorithms is between 1 − 1/e − ε and 1 − 1/e. We
will formally state what exactly we mean by this, and we will prove this by showing
that Lemma 5.8, Lemma 5.9 and Theorem 5.10 can be adapted in the (ε, δ)-greedy
setting.

The following lemma extends Lemma 5.8 to the (ε, δ)-greedy setting.

109

Lemma 5.23. Given any two functions ε : Z+ → R+ and δ : Z+ → R+ satisfying
ε(k) = o(1/k) and δ(k) = o(1/k), for any τ > 0, there exists G,D, k such that IG,D
is an ICM and, for any adaptive policy πg ∈ Πg

ε(k),δ(k) and any non-adaptive algorithm
Ag ∈ Agε(k),δ(k), we have

σf(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ and

σm(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ.

Proof. We construct the same InfMax instance (G = (V,E,w), k+ 1) as it is in the
proof of Lemma 5.8, with only one change: set Υ = ε(k+1)·W instead of the previous
setting Υ = W/k2.1 Notice that ε(k + 1) means the value of the function ε(·) with
input k + 1, not ε times (k + 1). To avoid possible confusion, we write ε := ε(k + 1)

and δ := δ(k + 1) for this proof. The remaining part of the proof is an adaption of
the proof of Lemma 5.8 to the (ε, δ) setting.

We first show that, for any Ag ∈ Agε,δ, with probability at least 1 − (k + 1) · δ =

1− o(1), Ag will output {s, u1, . . . , uk}.
From Eqn. (5.1), (5.2), (5.3) and (5.4), by the definition of (ε, δ)-greedy, with

probability at least 1− δ, the first seed chosen must have expected influence at least
(1− ε)σ({s}) ≥ (1− o(1/k)) · 2W . Since any other vertex does not have an influence
which is even close to 2W , the first seed chosen by Ag is s with probability at least
1− δ.

Next, we show that, if Ag has chosen s and i vertices from {u1, . . . , uk} after i+ 1

iterations, Ag will choose the next seed from {u1, . . . , uk} with probability 1− δ. Let
Ui = {s, u1, . . . , ui} and U0 = {s} as before. Without loss of generality, we only need
to show that, supposing Ag has chosen Ui as the first (i + 1) seeds, with probability
at least 1 − δ, Ag will choose a vertex from {ui+1, . . . , uk} as the next seed. By our
calculation in Eqn. (5.7), (5.8) and (5.9), with probability at least 1−δ, Ag will choose
a seed x such that

σ(Ui ∪ {x})− σ(Ui) ≥ (1− ε)(σ(Ui ∪ {ui+1})− σ(Ui))

> W + (4k − 2)Υ− 1.1εW = W + (4k − 3.1)Υ,

where the last inequality is due to ε(W+(4k−2)Υ) = ε(W+o(W)) < 1.1εW = 1.1Υ.
On the other hand, from Eqn. (5.8) and (5.9), choosing v1 or v2 as the next seed does

1If ε(k+1) ·W is not an integer, we can always make W large enough and find a positive rational
number ε′ < ε(k + 1) such that ε′W ∈ Z+. The remaining part of the proof will not be invalidated
by this change.

110

not provide enough marginal gain to σ(·):

σ(Ui ∪ {v1})− σ(Ui) ≤ 1 +W + (4k − 4)Υ < (1− ε)(σ(Ui ∪ {ui+1})− σ(Ui)),

σ(Ui ∪ {v2})− σ(Ui) ≤ 1 +W − W

k
+ (4k + 5)Υ = W + 4kΥ− ω(Υ)

(since Υ = εW = o
(
W
k

)
)

< (1− ε)(σ(Ui ∪ {ui+1})− σ(Ui)),

and the marginal influence of the remaining vertices other than v1 and v2 are even
smaller. Therefore, we conclude that, with probability at least 1− δ, Ag will choose
a vertex from {ui+1, . . . , uk} as the next seed.

Putting together, by a union bound, with probability 1− (k + 1)δ = 1− o(1), Ag

will choose {s, u1, . . . , uk}, which will infected (k+2)W+o(W) vertices in expectation,
as calculated in the proof of Lemma 5.8. Therefore,

σ(Ag, k + 1) ≥ (1− (k + 1)δ)((k + 2)W + o(W)) + (k + 1)δ · 0 = kW − o(kW).

Second, we show that, for any greedy adaptive policy πg ∈ Πg
ε,δ, π

g will choose
{s, v1, . . . , vk} with probability at least 1 − 1/k − (k + 1)δ = 1 − o(1). By the same
analysis in the non-adaptive case, with probability (1 − δ), the first seed chosen by
πg is s. We assume that s fails to infect t which happens with probability 1 −
1/k, and this is given as the feedback to πg. The marginal influence of v1 is then
w(t) + w(v1) +

∑k
i=1w(w1i) = 4kΥ + 1 + W . With probability at least 1 − δ, πg

will choose a second seed with marginal influence at least (1 − ε)(4kΥ + 1 + W) >

W + 4kΥ− ε · 1.1W = W + (4k − 1.1)Υ. It is easy to see that v1 is the only vertex
that can provide enough marginal influence. In particular, the marginal influence of
each of u1, . . . , uk is 1 + W + (4k − 2)Υ, which is less than W + (4k − 1.1)Υ, the
marginal influence of v2 is 1 + (1− 1

k
)W + k · 4k−2

k−1
Υ = W + 4kΥ− ω(Υ) (notice that

k · 4k−2
k−1

Υ = 4kΥ + Θ(Υ) and W/k = ω(Υ)), which is less than W + (4k− 1.1)Υ, and
the marginal influence of v3, . . . , vk are even smaller than that of v2.

We have shown that the first two seeds are s and v1 with probability at least
1 − 1/k − 2δ. Next, we show that, for each i = 1, . . . , k − 1, if πg has chosen
s, v1, . . . , vi, with probability (1− δ), πg will choose vi+1 as the next seed. Suppose πg

has chosen s, v1, . . . , vi. From the proof of Lemma 5.8, we have seen that vi+1 has the
highest marginal influence, which is 1 + (1 − 1/k)iW + k · 4k−2

k−1
Υ. With probability

at least 1− δ, πg will choose a seed with marginal influence at least (1− ε) fraction

111

of this value:

(1− ε)

(
1 +

(
1− 1

k

)i
W + k

4k − 2

k − 1
Υ

)

>

(
1− 1

k

)i
W + k

4k − 2

k − 1
Υ− ε

((
1− 1

k

)i
W + k

4k − 2

k − 1
Υ

)

≥
(

1− 1

k

)i
W + k

4k − 2

k − 1
Υ− ε

((
1− 1

k

)1

W + k
4k − 2

k − 1
Υ

)

≥
(

1− 1

k

)i
W + k

4k − 2

k − 1
Υ− 1.1Υ.

(since ε(1− 1
k
)1W < εW = Υ and εk 4k−2

k−1
Υ = Θ(4kεΥ) = o(Υ) < 0.1Υ)

The marginal influence of vi+2 is (1− 1/k)i+1W + k 4k−2
k−1

Υ = (1− 1/k)iW + k 4k−2
k−1

Υ−
1
k
(1− 1/k)iW < (1− 1/k)iW + k 4k−2

k−1
Υ− 0.63W

k
, which is less than the value above

(as Υ = o(W/k)). The marginal influence of vi+3, . . . , vk are even smaller, and we
do not need to consider them. The marginal influence of u1 is

∑k
j=i+1w(wj1) =

(1−1/k)iW+(k−i)· 4k−2
k−1

Υ ≤ (1−1/k)iW+(k−1)· 4k−2
k−1

Υ < (1−1/k)iW+k 4k−2
k−1

Υ−2Υ,
which is again less than the value above.

Putting together, by a union bound, with probability (1−1/k)(1−(k+1)δ) = o(1),
πg will choose {s, v1, . . . , vk}, which can infect, as computed in the proof of Lemma 5.8,
k(1− (1− 1/k)k)W + o(kW) vertices. Therefore,

σf(πg, k) = σm(πg, k) ≤ (1− o(1))

(
k

(
1−

(
1− 1

k

)k)
W + o(kW)

)
+ o(1) · |V |

= k

(
1−

(
1− 1

k

)k)
W + o(kW).

The theorem concludes by taking the ratio of the computed upper-bound of σf(πg, k) =

σm(πg, k) and the computed lower-bound of σ(Ag, k), and then taking the limits
k →∞ and W →∞.

Remark 5.24. Lemma 5.23 provides an upper bound for each of σ
f(πg ,k)
σ(Ag ,k)

and σm(πg ,k)
σ(Ag ,k)

,
where the numerator and the denominator in each ratio represent the number of
infected vertices (in the non-adaptive setting and the adaptive setting respectively)
in expectation. The same proof for Lemma 5.23 can be used to show the following
stronger version of Lemma 5.23. Let IφG,D(πg, k) be the set of infected vertices when
the adaptive policy πg is used and the underlying live-edge realization is φ. Let

112

IφG,D(Ag, k) have similar meaning corresponding to non-adaptive algorithm Ag. The
same proof for Lemma 5.23 implies that, under the same setting in Lemma 5.23, for
both full-adoption and myopic feedback models, we have

Pr
φ∼F

(
|IφG,D(πg, k)|
|IφG,D(Ag, k)|

≤ 1− 1

e
+ τ

)
≥ 1− 2(k + 1)δ − 1

k
= 1− o(1), (5.14)

where we have taken a union bound of the “bad” events that the “correct” seed is not
chosen in each of the (k + 1) iterations in both πg and Ag, as well as the “bad” event
that s infects t (with probability 1/k).

The following lemma extends Lemma 5.9 to the (ε, δ)-greedy setting.

Lemma 5.25. Given any two functions ε : Z+ → R+ and δ : Z+ → R+ satisfying
ε(k) = o(1/k) and δ(k) = o(1/k), for any τ > 0, there exists G,D, k such that IG,D
is an LTM and, for any adaptive policy πg ∈ Πg

ε(k),δ(k) and any non-adaptive algorithm
Ag ∈ Agε(k),δ(k), we have

σf(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ and

σm(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ.

Proof. We construct the same InfMax instance (G = (V,E,w), k+ 1) as it is in the
proof of Lemma 5.9, with only one change: set Υ = ε ·W instead of the previous
setting Υ = W/k2. The remaining part of the proof is exactly the same as how we
have adapted the proof of Lemma 5.8 to Lemma 5.23. We omit the details here.

Remark 5.26. Similarly, we can prove a stronger version of Lemma 5.25 given by
exactly the same equation (5.14).

Next, it is easy to show that Theorem 5.10 holds for the (ε, δ)-greedy setting.

Theorem 5.27. For a triggering model IG,D, any ε ∈ (0, 1/k], any function δ : Z+ →
R+ such that δ(k) = o(1/k), and any πg ∈ Πg

ε,δ(k), we have

σf(πg, k) ≥
(

1− 1

e
− ε
)

max
S⊆V,|S|≤k

σ(S) and σm(πg, k) ≥
(

1− 1

e
− ε
)

max
S⊆V,|S|≤k

σ(S).

Proof. Let S∗ ∈ argmaxS⊆V,|S|≤k σ(S) be an optimal non-adaptive seed set. For any
S ⊆ V , any partial realization φ that is a valid feedback of S under any feedback
model (either full-adoption or myopic), letting s∗ ∈ argmaxs′ Eφ'ϕ[|IφG,D(S∪{s′})|] be

113

the vertex which maximizes the expected marginal influence given ϕ, with probability
at least 1− δ, πg will pick the next seed s = πg(S, ϕ) such that

E
φ'ϕ

[∣∣∣IφG,D(S ∪ {s})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]

≥(1− ε)
(

E
φ'ϕ

[∣∣∣IφG,D(S ∪ {s∗})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]) (Definition 5.22)

≥1− ε
k

(
E
φ'ϕ

[∣∣∣IφG,D(S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,D(S)
∣∣∣]) . (Proposition 5.12)

We can then prove that, for any ` ∈ Z+, both σf(πg, `) and σm(πg, `) are no less than
(1−(1−1/k)`−ε)σ(S∗), by using the same arguments in the proof of Proposition 5.13.
The theorem concludes by taking ` = k.

Finally, we formally state and prove that, when ε = o(1/k) and δ = o(1/k), the
infimum of the adaptivity gap under the (ε, δ)-greedy setting is between 1− 1/e− ε
and 1− 1/e, which adapts Theorem 5.6 to the (ε, δ)-greedy setting.

Theorem 5.28. Given any two functions ε : Z+ → R+ and δ : Z+ → R+ such that
ε(k) = o(1/k) and δ(k) = o(1/k), we have

inf
G,D,k:IG,D is ICM

(
inf

πg∈Πg
ε(k),δ(k)

,Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

)
∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,D,k:IG,D is ICM

(
sup

πg∈Πg
ε(k),δ(k)

,Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

)
∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,D,k:IG,D is LTM

(
inf

πg∈Πg
ε(k),δ(k)

,Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

)
∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,D,k:IG,D is LTM

(
sup

πg∈Πg
ε(k),δ(k)

,Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

)
∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,D,k

(
inf

πg∈Πg
ε(k),δ(k)

,Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

)
∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,D,k

(
sup

πg∈Πg
ε(k),δ(k)

,Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

)
∈
(

1− 1

e
− ε(k), 1− 1

e

)
.

All the six statements above also hold for the myopic feedback model.

Proof. Since σ(Ag, k) ≤ maxS⊆V,|S|≤k σ(S) always hold, the lower bound 1 − 1
e
− ε

holds for each of the six statements according to Theorem 5.27. Then, Lemma 5.23
implies the first two statements, Lemma 5.25 implies the third and the fourth. Finally,

114

since both ICM and LTM are special cases of the triggering model, the left-hand side
of the fifth statement is at most the left-hand side of the first (or the third), and the
left-hand side of the sixth statement is at most the left-hand side of the second (or
the fourth). Thus, the first four statements imply the last two.

5.5.2.2 Supremum of Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithm

We first show that Lemma 5.18 holds for the (ε, δ)-greedy setting for very mild restric-
tions on ε and δ. the following lemma shows that, under the (ε, δ)-greedy setting where
ε = O(log log k/ log k) and δ = o(1/k), the greedy adaptivity gap for InfMax with
prescribed seed candidates with LTM and full-adoption feedback is 2Ω(log |V |/ log log |V |).2

Notice that Lemma 5.29 below is a stronger claim: it says that the adaptive greedy
policy significantly outperforms any non-adaptive InfMax algorithm, including the
non-adaptive greedy algorithm and even the optimal non-adaptive algorithm.

Lemma 5.29. There exists a constant c > 0 such that, given any two functions
ε : Z+ → R+ and δ : Z+ → R+ such that ε(k) ≤ c log log k

log k
and δ(k) = o(1/k), for

InfMax with prescribed seed candidates with LTM, there exists k such that, for any
valid seed set S (i.e., S is a subset of the candidate set V and |S| ≤ k) and any
πg ∈ Πg

ε(k),δ(k), we have

σf(πg, k)

σ(S)
≥ 2c log(|V |)/ log log(|V |).

Proof. The sketch of the proof of this lemma follows the proof of Lemma 5.18. We
construct the same InfMax instance with the same k, V , d,W as given in the proof
of Lemma 5.18. Again, by Lemma 5.16, choosing any k vertices among V infects
the same number of vertices in expectation. We can reach the same conclusion that
σ(S) < |S|W

dd
+ dd+1 by the same arguments. It then remains to analyze the greedy

adaptive policy.
Consider an arbitrary greedy adaptive policy πg ∈ Πg

ε(k),δ(k). Let the three status
“unexplored”, “explored” and “dead” have the same meanings as they are in the proof of
Lemma 5.16. Correspondingly, we will show that, with probability at least 1−kδ(k) =

1 − o(1), if the root node is not infected yet, at any iteration of the greedy adaptive
policy, each internal level of the tree can contain at most one explored node.

2Lemma 5.18 also says that the adaptivity gap under the same setting is infinity. Since the
adaptivity gap is about optimal algorithm/policy which is irrelevant to the greedy algorithm, this
result holds as always, and it makes no sense to “adapt” it into the setting in this section. Similarly,
Theorem 5.15 is also irrelevant here, and it holds as always.

115

Let v, v′, u, `u, du have the same meaning as in the proof of Lemma 5.18. We have
already seen that, at the current iteration, choosing v′ is suboptimal, and choosing v′

yields a marginal influence which is at most a fraction

1

d`u−1du
/

1

d`u−2(d− 1)du
= 1− 1

d

of the marginal influence of v. Therefore, if we set ε such that ε < 1
d
, the next

seed chosen by the policy πg will not be a leaf that is a descendent of an unexplored
node with probability at least 1 − δ. By a union bound, with probability at least
1 − kδ = 1 − o(1), if the root node is not infected yet, it will never happen that, at
an iteration, there are more than one explored node in the same level.

The remaining part of the proof is almost the same. Since this crucial claim
holds with probability at least 1 − o(1), the same induction argument shows that
σf(πg, k) ≥ 1

2
W , and we have σf(πg ,k)

σ(S)
= Ω(2d) = 2Ω(log |V |/ log log |V |) as long as ε < 1

d
.

Noticing that d = Ω(log k
log log k

) (in particular, since k = 2(d+1
2

)d, log k = d log d + O(d)

and log log k = log d+o(log d), we have d = Ω(log k
log log k

)), implying 1
d

= O(log log k
log k

). The
lemma holds with a sufficiently small c.

Finally, we extend Theorem 5.14 to the (ε, δ)-greedy setting.

Theorem 5.30. For any constant c > 0, given any two functions ε : Z+ → R+ and
δ : Z+ → R+ such that ε(k) = O(1

k2+c) and δ(k) = o(1/k), there exists a triggering
model IG,D and k such that, for any valid seed set S (i.e., S is a subset of the candidate
set V and |S| ≤ k) and any πg ∈ Πg

ε(k),δ(k), we have

σf(πg, k)

σ(S)
≥ 2c

′ log(|V |)/ log log(|V |),

where c′ > 0 is a universal constant.

Proof. The sketch of the proof follows from Sect. 5.4.2. We construct the same
InfMax instance with the same triggering model that is a mixture of ICM and
LTM. The analysis for the non-adaptive algorithms is the same. We have σ(S) ≤
M(k · 1

dd
W + dd+1) for any S with |S| ≤ k.

Consider any πg ∈ Πg
ε(k),δ(k). Consider an arbitrary iteration. Let az ∈ A be

the seed that maximizes the marginal influence, which will be the one picked by the
exact greedy adaptive policy. Recall that a vertex in A corresponds to the selection
of a seed among the leaves in each of T1, . . . , TM . Naturally, az makes the optimal
selection in all the M trees. From the argument in the proof of Lemma 5.18, in each

116

tree Ti and in each iteration, as long as the seed selected in Ti satisfies that there
is at most one explored node at each level of Ti, we will have the greedy adaptivity
gap being 2Ω(log |V |/ log log |V |) on the subgraph Ti, and the same argument in Sect. 5.4.2
shows that the greedy adaptivity gap overall is 2Ω(log log |V |/ log log log |V |). To conclude
the proof of this theorem, we will show that ε = O(1

k2+c) is sufficient to make sure
that this will happen for all T1, . . . , TM .

To show this, we consider a suboptimal a′z ∈ A such that, at some tree Ti, there
are more than one explored node at some level of Ti, and we find a lower bound of
the difference between the marginal influence of az and the marginal influence of a′z.
Let v, v′, u, `u, du have the same meaning as in the proof of Lemma 5.18. Let pu be
the probability that, given the feedback at the current iteration, the path connecting
from u to the root contains only live edges (i.e., u will infect the root). Then the
marginal influence of v′ is at most

1

d`u−1du
· pu ·W + d+ 1

(where the second term d is the number of nodes on the path from v′ to the root,
which can potentially be infected), and the marginal influence of v is at least

1

d`u−2(d− 1)du
· pu ·W.

The difference is at least

Wpu ·
1

d`u−2du

(
1

d− 1
− 1

d

)
− d− 1 ≥ W

dd(d− 1)
− d− 1,

where we used the fact that du ≤ d and pu ≥ 1
dd−`u

.
On the other hand, the marginal influence of az is at most M(W + d + 1) (we

have assumed the root is infected at this iteration for each of T1, . . . , TM). It suffices
to find an ε such that

W

dd(d− 1)
− d− 1 > εM(W + d+ 1).

Since we have set W = M = dd+10, this is equivalent to

d10

d− 1
− d− 1 > εdd+10

(
dd+10 + d+ 1

)
,

117

which implies

ε = O

(
1

d2d+11

)
.

Finally, recalling that k = 2(d+1
2

)d, elementary calculations shows that ε = O(1
k2+c) is

a sufficient condition to the above:

1

k2+c
=

1

22+c

(
2

d+ 1

)2d+cd

<

(
1

d

)2d+cd

· 22d+cd =
1

d2d+11
· 22d+cd

2(cd−11) log d
,

and the second term in the product above tends to 0 as d→∞.

5.6 A Variant of Greedy Adaptive Policy

Although we have seen that the adaptive version of the greedy algorithm can perform
worse than its non-adaptive counterpart, in general, we would still recommend the use
of it as long as it is feasible, as it can also perform significantly better than the non-
adaptive greedy algorithm (Theorem 5.14) while never being too bad (Theorem 5.10).
As we remarked, the adaptivity may be harmful because exploiting the feedback may
make the seed-picker too myopic. In this section, we propose a less aggressive risk-free
version of the greedy adaptive policy, πg−, in that it balances between the exploitation
of the feedback and the focus on the average in the conventional non-adaptive greedy
algorithm.

First, we apply the non-adaptive greedy algorithm with |V | seeds to obtain an
order L on all vertices. Then for any S ⊆ V and any partial realization ϕ, πg−(S, ϕ)

is defined to be the first vertex v in L that is not known to be infected. Formally, v
is the first vertex in L that are not reachable from S when removing all edges e with
ϕ(e) ∈ {B, U}. This finishes the description of the policy.

This adaptive policy is always no worse than the non-adaptive greedy algorithm,
as it is easy to see that those seeds chosen by πg are either seeded or infected by
previously selected seeds in πg−.

However, πg− can sometimes be conservative. It is possible that πg− has the same
performance as the non-adaptive greedy algorithm, but πg is much better. Especially,
when there is no path between any two vertices among the first k vertices in L, πg− will
make the same choice as the non-adaptive greedy algorithm. The InfMax instance
in Sect. 5.4.2 is an example of this.

We have seen that πg− sometimes performs better than πg (e.g., in those instances
constructed in the proofs of Lemma 5.8 and Lemma 5.9) and sometimes performs

118

worse than the πg (e.g., in the instance constructed in Sect. 5.4.2). Therefore, given a
particular InfMax instance, for deciding which of πg− and πg to be used (we should
never consider the non-adaptive greedy algorithm if adaptivity is available, as it is
always weakly worse than πg−), we recommend a comparison of the two policies by
simulations. Notice that the seed-picker can randomly sample a realization φ and
simulate the feedback the policy will receive. Thus, given IG,D, both πg− and πg can
be estimated by taking an average over the numbers of infected vertices in a large
number of simulations. In the next section, we evaluate the three algorithms—the
non-adaptive greedy algorithm, the greedy adaptive policy πg and the conservative
greedy adaptive policy πg−—empirically by experiments on social networks in our
real life.

5.7 Empirical Experiments

In this section, we compare the three algorithms—the non-adaptive greedy algorithm,
the greedy adaptive policy πg and the conservative greedy adaptive policy πg−—
empirically by experiments on the social networks in our real life. As a quick result
obtained from our experiments, we have observed the followings.

1. The greedy adaptive policy πg outperforms the conservative greedy adaptive
policy πg− and the non-adaptive greedy algorithm in most scenarios.

2. The conservative greedy adaptive policy πg− always outperforms the non-adaptive
greedy algorithm.

3. Occasionally, the greedy adaptive policy πg is outperformed by the conservative
adaptive policy πg−, or even the non-adaptive greedy algorithm.

Notice that our results in Sect. 5.3 supports the third observation, and the second
observation follows easily from our definition of πg− in the last section.

5.7.1 Experiments Setup

We implement the experiments on four undirected graphs, Nethept, CA-HepPh,
DBLP and com-YouTube, which are parts of Table 3.2. We implement the three
algorithms with k = 200 seeds.

For the diffusion model, we implement both ICM and LTM. For ICM, we use UICM

with p = 0.01. For LTM, we consider ULTM. For each dataset, we sample three re-
alizations φ1, φ2, φ3 as the “ground-truth”. Therefore, a total of six experiments are

119

performed for each dataset: the two models ICM and LTM for each of the three re-
alizations. For each of those six experiments, when a seed s is chosen, all vertices
that are reachable from s in the ground-truth realization are considered infected, and
given as the feedback. In particular, we consider the full-adoption feedback in our
experiments.

To implement the three algorithms, we sample 1,000,000 reverse reachable sets,
and perform the greedy maximum coverage algorithm (described in Sect 2.2.2) which
iteratively selects the seed that maximizes the number of extra reverse reachable sets
covered by this seed. We iteratively select seeds in this way until a sufficient number
of seeds is selected (we decided to select 10,000 seeds, which turns out to be sufficient),
and we ordered them in a list. Naturally, the non-adaptive greedy algorithm choose
the first k = 200 seeds in this list. The conservative adaptive greedy policy iteratively
select the first not-yet-selected seed in the list that is not known to be infected, as
described in Sect. 5.6.

As for the adaptive greedy policy, the first seed is the same as the one for non-
adaptive greedy algorithm and the conservative adaptive greedy policy. In each future
iteration, the vertices that are infected (given as the feedback) are removed from the
graph, and 1,000,000 new reverse reachable sets are sampled on the remainder graph.
Notice that, for LTM, the degrees of the vertices in the remainder graph may decrease,
which increase the weights of the incoming edges of these vertices. Then, a seed that
covers most reverse reachable sets is selected as the next seed.

We remark that removing infected vertices from the graph and sampling reverse
reachable sets on the remainder graph is the correct way to implement the algorithm.
Since we are considering the full-adoption feedback, we know that there is no directed
live edge from an infected vertex to an uninfected vertex, for otherwise the uninfected
vertex should have been infected. When sampling the reverse reachable set, the
triggering set of any uninfected vertex should not intersect with any infected vertex.
Given an arbitrary uninfected vertex v and letting X be the set of all infected vertices,
v should include each vertex in Γ(v) \ X to its triggering set with probability 0.01

independently under ICM, and v should include exactly one vertex chosen uniformly
at random in Γ(v)\X to its triggering set under LTM. Consequently, for both ICM and
LTM, we can and we should remove those infected vertices from the graph and sample
reverse reachable sets in the remainder graph.

120

0 50 100 150 200

Number of Seeds

0

100

200

300

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

50

100

150

200

250

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

50

100

150

200

250

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

1000

2000

3000

4000
N

u
m

b
e

r
o

f
In

fe
c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

Figure 5.1: The results for the dataset Nethept. The three rows correspond to the
three realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for
LTM.

5.7.2 Results

As we mentioned, for each dataset, we have six figures corresponding to ICM and LTM

for each of the three realizations φ1, φ2, φ3. In each figure, the x-axis is the number
of seeds, and the y-axis is the number of infected vertices in the realization. The
three curves correspond to the outcomes of the three algorithms. Figure 5.1, 5.2, 5.3
and 5.4 correspond to the datasets Nethept, CA-HepPh, DBLP and com-YouTube
respectively. The three observations mentioned at the beginning of this section can
be easily observed from the figures.

121

0 50 100 150 200

Number of Seeds

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

2000

4000

6000

8000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

2000

4000

6000

8000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

2000

4000

6000

8000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

Figure 5.2: The results for the dataset CA-HepPh. The three rows correspond to the
three realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for
LTM.

122

0 50 100 150 200

Number of Seeds

0

200

400

600

800

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s ×10
4

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

200

400

600

800

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

0.5

1

1.5

2

2.5
N

u
m

b
e

r
o

f
In

fe
c
te

d
 V

e
rt

ic
e

s ×10
4

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

200

400

600

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s ×10
4

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

Figure 5.3: The results for the dataset DBLP. The three rows correspond to the three
realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for LTM.

123

0 50 100 150 200

Number of Seeds

0

5000

10000

15000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of seeds

0

1

2

3

4

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s ×10
5

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

5000

10000

15000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

1

2

3

4

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s ×10
5

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

5000

10000

15000

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

0 50 100 150 200

Number of Seeds

0

1

2

3

4

N
u

m
b

e
r

o
f

In
fe

c
te

d
 V

e
rt

ic
e

s ×10
5

Non-adaptive Greedy

Conservative Adaptive Greedy

Adaptive Greedy

Figure 5.4: The results for the dataset com-YouTube. The three rows correspond to
the three realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for
LTM.

124

5.8 Conclusion and Open Problems

We have seen that the infimum of the greedy adaptivity gap is exactly (1− 1/e) for
ICM, LTM, and general triggering models with both the full-adoption feedback model
and the myopic feedback model. We have also seen that the supremum of this gap
is infinity for the full-adoption feedback model. One natural open problem is to find
the supremum of the greedy adaptivity gap for the myopic feedback model. Another
natural open problem is to find the supremum of the greedy adaptivity gap for the
more specific ICM and LTM.

The greedy adaptivity gap studied in this chapter is closely related to the adap-
tivity gap studied in the past. Since the non-adaptive greedy algorithm is always a
(1− 1/e)-approximation of the non-adaptive optimal solution, a constant adaptivity
gap implies a constant greedy adaptivity gap. For example, the adaptivity gap for
ICM with myopic feedback is at most 4 [61], so the greedy adaptivity gap in the same
setting is at most 4

1−1/e
. In addition, the greedy adaptive policy is known to achieve

a (1−1/e)-approximation to the adaptive optimal solution for ICM with full-adoption
feedback [36], so the adaptivity gap and the greedy adaptivity gap could either be
both constant or both unbounded for ICM with full-adoption feedback model, but
it remains open which case is true. The adaptivity gap for ICM with full-adoption
feedback, as well as the adaptivity gap for LTM with both feedback models, are all
important open problems. We believe these problems can be studied together with
the greedy adaptivity gap.

125

Part II

Nonsubmodular Influence
Maximization

126

CHAPTER 6

2-Quasi Submodular Diffusion Model

We have mentioned that InfMax admits a (1−1/e)-factor approximation algorithm
if the diffusion model is submodular. Otherwise, in the worst case, the problem is
NP-hard to approximate to within a factor of n1−ε. This chapter studies whether
this worst-case hardness result can be circumvented by making assumptions about
the diffusion model.

We propose a new diffusion model that is a special case of the general threshold
model (see Sect. 2.1.1) where the local influence functions are 2-quasi-submodular,
which is almost submodular except that the second infected neighbor has more
marginal influence to a vertex than the first. This model is motivated by the corre-
sponding observation from many empirical and sociological studies [4, 50, 63, 75].

We present strong inapproximability results for this model. Our inapproximabil-
ity results hold even for any 2-quasi-submodular local influence function f fixed in
advance and the graphs are undirected. This result also indicates that the “threshold”
between submodularity and nonsubmodularity is sharp, regarding the approximabil-
ity of influence maximization.

6.1 Introduction

InfMax becomes qualitatively different in nonsubmodular settings. In the submod-
ular case, seeds erode each other’s effectiveness, and so should generally not be put
too close together. However, in the nonsubmodular case, it may be advantageous
to place the initial seeds close together to create synergy and yield more infections.
The intuition that it is better to saturate one market first, and then expand implic-
itly assumes nonsubmodular influence in the cascades. For general nonsubmodular
cascades, it is NP-hard even to approximation InfMax to within an n1−ε factor of
optimal [45], and the inapproximability results have been extended to several more

127

restrictive nonsubmodular models [20, 53]. Unfortunately, empirical research shows
that many cascades are indeed not submodular [4, 50, 63, 75, 32].

Key Question: Can this worst-case inapproximability result of n1−ε for
nonsubmodular InfMax be circumvented by making realistic assumptions
about the diffusion model?

The same research showing that cascades are often not submodular empirically
also shows that the local submodularity often fails in one particular way—the second
infected neighbor of an agent is, on average, more influential than the first. When
Leskovec et al. [50] studied the probability a person buys a book versus the num-
ber of incoming recommendations he receives, they observed a peak in the marginal
probability of buying at 2 incoming recommendations and then a slow drop. While
this work presents observational evidence, it suggests that if a person does not buy
a book after the first recommendation, but receives another, he is more likely to be
persuaded by the second recommendation. But thereafter, they are less likely to
respond to additional recommendation.

Backstrom et al. [4] made the same observation when they calculated the prob-
ability a person joins a community (e.g., LiveJournal and DBLP) as a function of
the number t of his friends already in the community. Romero et al. [63] studied
hashtag adoption in the Twitter network, and considered the fraction of users who
adopt a hashtag after having t neighbors’ adoptions. They coalesced their study’s
observations into a model where the marginal influence increases linearly from zero
to two adopting neighbors and then linearly decreases thereafter.

These empirical studies motivate our study of the 2-quasi-submodular diffusion
model (more accurately, the general threshold model with 2-quasi-submodular lo-
cal influence functions) where the marginal effect of the second infected neighbor is
greater than the first, but after that the marginal effect decreases.

Our result we present an inapproximability result for InfMax with the 2-quasi-
submodular model. In particular, for any 2-quasi-submodular function f , and even
for undirected graphs, we show that it is NP-hard to approximate InfMax within
a factor of nτ when each agent has f as its local influence function, where τ > 0 is
a constant depending on f . This can be seen as a threshold result for approxima-
bility of InfMax, because if f is submodular, then InfMax can be approximated
to within a (1 − 1/e)-factor, but if f is just barely nonsubmodular InfMax can no
longer be approximated to within any constant factor. To further strengthen our
inapproximability result, we also show that, for any γ ∈ (0, 1), when only nγ agents

128

have the fixed 2-quasi-submodular f as their local influence functions and the re-
maining agents’ local influence functions are submodular (or even identical to a fixed
submodular function), InfMax is still NP-hard to approximate to within a factor of
nτ , where τ > 0 is a constant depending on f and γ.

6.2 Additional Related Work

The work most related to the present chapter are several inapproximability results for
InfMax. If no assumption is made for the influence function, InfMax is NP-hard
to approximate to within a factor of n1−ε for any ε > 0 [44].

Chen [12] found inapproximability results on a similar optimization problem: in-
stead of maximizing the total number of infected vertices given k initial targets, he
considered the problem of finding a minimum-sized set of initial seeds such that all
vertices will eventually be infected. This work studied restrictions of this problem to
various threshold models.

An important difference between our hardness result in Sect. 6.4 and all the pre-
vious results is that our result holds for any 2-quasi-submodular functions. In par-
ticular, in this work, f is fixed in advance before the NP-hardness reduction, while in
previous work, specific influence functions were constructed within the reductions.

The notion of “near submodularity” was also proposed and studied in [73]. Our
definition differs from the one in [73] in that a 2-quasi-submodular function can be,
intuitively, very far from being submodular (for example, the 2-threshold cascade
model). However, our reduction in Sect. 6.4 works for all 2-quasi-submodular func-
tions, and 2-quasi-submodular functions can be arbitrarily close to submodular func-
tions.

Similar to our inapproximability result for the 2-quasi-submodular model in Sect. 6.4
but independent to our work, Li et al. [53] studies InfMax with almost submodular
local influence functions, and shows that, for any γ, ε ∈ (0, 1), InfMax is hard to ap-
proximate to within factor 1/n

γ
c even if the graph only contains nγ vertices that admit

nonsubmodular local influence functions that are ε-almost submodular (and the re-
maining vertices admit submodular local influence functions), where c = 3+3/ log 2

2−ε .
When the number of vertices admitting ε-almost submodular local influence functions
is a constant, Li et al. [53] provides a constant-factor approximation algorithm for
InfMax.

Our result in Sect. 6.4 can be seen as a generalization to the inapproximability
result in Li et al.: their results construct a 2-quasi-submodular influence function f

129

(although ε can be arbitrarily small and fixed in advance, making f arbitrarily close
to a submodular function); in contrast, our result holds for any f that is fixed in
advance and universal for all vertices. In addition, our inapproximability result holds
even for undirected graphs, while the graph constructed in the reduction in Li et al.
is directed.

At a high level, the techniques of the two approaches are similar. However, the
gadgets used in our more general result require additional ideas.

In Sect 6.5, we show that our results seamlessly extend to the setting of Li et
al. where only a sublinear fraction of vertices (e.g., nγ) admit nonsubmodular local
influence functions.

6.3 Preliminaries

Due to the heavy use of notations, in this particular chapter, we will use N = |V | to
denote the total number of vertices in the input graph, instead of n as in the other
chapters.

To eventually define our 2-quasi-submodular setting, we first define some special
classes of the general threshold model.

We say that the general threshold model IG,F is symmetric, if fv(IN v) only depends
on |IN v| for each v ∈ V . That is, the local influence function fv only depends on
the number of v’s infected neighbors so that each of v’s infected neighbors is of equal
importance. In this case, fv can be viewed as a function fv : Z≥0 → R≥0 which takes
an integer as input, rather than a set of vertices. Note that fv(0) = 0, as we have
assumed fv(∅) = 0 in Definition 2.1. As examples, UICM, WICM and ULTM studied in
previous chapters are all special cases of the symmetric general threshold models.

We say that the general threshold model IG,F is universal if it is symmetric and, in
addition, all fv’s are identical. Notice that UICM is universal (with f(t) = 1−(1−p)t),
while WICM and ULTM are not (fv in both models depends on deg(v)). In this chapter,
we will only consider the universal general threshold model, and let f : Z≥0 → R≥0

be the common local influence function. We will denote the model by IG,f . Since the
main result in this chapter is a hardness result, stronger assumptions on the model
make the result stronger.

We will consider the universal general threshold model with 2-quasi-submodular
local influence functions f , which is “almost” submodular such that the submodularity
is only violated for the first two inputs of f . In particular, we fail to have the
submodular constraint f(1)− f(0) ≥ f(2)− f(1), and instead we have f(1)− f(0) <

130

notation meaning
N total number of vertices |V |
f : Z≥0 → R≥0 symmetric local influence function that only depends on

the number of infected vertices
IG,f universal general threshold model where local influence

function for each vertex is f
a0, a1, a2, . . . denote f(0), f(1), f(2), . . . respectively

Table 6.1: New notations used in Chapter 6.

f(2)− f(1), which is just f(2) > 2f(1) as f(0) = 0. (Notice that, for a set function
f such that f(A) only depends on the cardinality of A, submodular constraint ∀A (
B, v /∈ B : f(A ∪ v) − f(A) ≥ f(B ∪ v) − f(B) becomes ∀i ≥ 0 : f(i + 1) − f(i) ≥
f(i+ 2)− f(i+ 1).)

Definition 6.1. f : Z≥0 → [0, 1] is 2-quasi-submodular if f(2) > 2f(1) and f(i) −
f(i− 1) is non-increasing in i for i ≥ 2.

In general, for any non-zero submodular function f , if we sufficiently decrease
f(1), f becomes 2-quasi-submodular. Thus, from any non-zero submodular function,
we can obtain a 2-quasi-submodular function.

We note that the 2-complex contagion (Definition 2.16) can be viewed as the
universal general threshold model with a 2-quasi-submodular f (with f(0) = f(1) = 0

and f(i) = 1 for i ≥ 2).
Clearly, f can be encoded by an increasing sequence of positive real numbers

a0, a1, a2, . . . so that f(i) = ai. We will use a0, a1, a2, . . . to denote f(0), f(1), f(2), . . . ,
and notice that these numbers are constant if we consider InfMax instances with f
fixed in advance (instead of being a part of inputs). All the new notations used in
this particular are summarized in Table 6.1.

6.4 Hardness of Approximation for 2-Quasi-Submodular

Influence Maximization

We prove the following theorem in this section which says that, for any fixed 2-quasi-
submodular f , there exists a constant τ depending on f such that InfMax with the
universal general threshold model IG,f is NP-hard to approximate to within factor
N τ , where recall that N is the number of vertices of the graph.

131

Theorem 6.2. Consider the InfMax problem with the universal general threshold
model IG,f for any fixed 2-quasi-submodular f . There exists a constant τ > 0 depend-
ing on f such that it is NP-hard to distinguish between the following two cases:

• YES: there exists a seed set S with |S| = k such that σ(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σ(S) = O(N τ),

even if G is an undirected graph.

Since 2-complex contagion is a special case of IG,f with 2-quasi-submodular f , we
immediately have the following corollary.

Corollary 6.3. There exists a constant τ > 0 such that InfMax with r-complex
contagion is NP-hard to approximate to within factor N τ , even if r = 2 and the graph
is undirected.

The sequence notation (ai)i=0,1,2... is used to represent f in this section. Because
f is 2-quasi-submodular, we have a0 = 0 and a2 > 2a1. We denote p∗ = limi→∞ ai,
which exists because (ai) is increasing and bounded by 1 (see Definition 6.1). We
consider two cases: a1 > 0 and a1 = 0. We note that we have a2 > 0 by the 2-
quasi-submodular assumption. In the case a1 > 0, we will first assume the graph is
directed, and later we will show that this assumption is not essential.

The remaining part of this section is organized as follows: Sect. 6.4.1 provides a
sketch of the proof of Theorem 6.2 for the case a1 > 0, with arguments presented in
an intuitive level, Sect. 6.4.2 to Sect. 6.4.7 prove the theorem rigorously for the case
a1 > 0, and Sect. 6.4.8 prove the theorem rigorously for the case a1 = 0. Finally, in
a similar style to the result in [53], we prove a variant of Theorem 6.2 in Sect. 6.5
saying that the inapproximability also holds if only Nγ (for some fixed γ ∈ (0, 1))
vertices admit the fixed 2-quasi-submodular function f while the remaining vertices
admit certain fixed non-zero submodular function g.

6.4.1 Proof Sketch of Theorem 6.2 for a1 > 0

We prove the theorem by a reduction from the SetCover problem.

Definition 6.4. Given a universe U of n elements, a set of K subsets A = {Ai | Ai ⊆
U}, and a positive integer k, the SetCover problem asks if we can choose k subsets
{Ai1 , . . . , Aik} ⊆ A such that Ai1 ∪ · · · ∪ Aik = U .

132

Figure 6.1: The high-level structure of the reduction for the proof of Theorem 6.2

We construct a graph G which consists of two parts: the set cover part and the
verification part, where the set cover part simulates SetCover and the verification
part verifies if all the elements in the SetCover instance are covered. The construc-
tion is shown in Fig. 6.1. We first assume that the graph G is directed, and then we
show that this assumption is not essential by constructing a directed edge gadget to
simulate directed edges.

Given a SetCover instance, in the set cover part, we use a single vertex to
represent a subset Ai and a clique of size m to represent each element in U . If an
element is in a subset, we create m directed edges from the vertex representing the
subset to each the m vertices in the clique representing the element. If a vertex
representing a subset is picked, then all vertices in the cliques corresponding to the
elements contained in this subset will be infected with probability close to p∗, by
choosing m large enough. We call such cliques as being activated. In a YES instance
of SetCover, we can choose k seeds such that all cliques are activated.

In the verification part, we construct a AND gadget, simulating the logical AND
operation, to verify if all the cliques are activated. The AND gadget takes n inputs,
each of which is a set of vertices from each of the n cliques. The output of the
AND gadget is a vertex v, such that it will only be infected with a positive constant
probability if all the n cliques are activated.

We connect the output vertex v of this AND gadget to a huge bundle of M1 ver-
tices, such that a constant fraction of those M1 vertices will be infected only if all

133

the cliques are activated (which corresponds to the case the SetCover is a YES
instance). By making M1 large enough, we can achieve a hardness of approxima-
tion ratio N τ . To avoid the seed-picker bypassing the set cover game by directed
seeding the output vertex v, we duplicate the verification part by M2 times for some
sufficiently large M2.

Finally, we replace all directed edges in Fig. 6.1 by directed edge gadgets, includ-
ing those connecting the vertices representing subsets and the cliques representing
elements, and those connecting the set cover part and the verification part. To com-
plete the proof of Theorem 6.2, we present the construction of the AND gadget and
the directed edge gadget in the next few subsections.

6.4.1.1 The Probability Filter Gadget

In this section, we present the construction of a gadget called probability filter gadget,
which is the key component in the constructions of both AND gadget and directed
edge gadgets mentioned above.

Given a set of vertices that will be infected with a same probability x, the prob-
ability filter gadget tests if x is larger than certain threshold p1. It outputs a vertex
infected with probability almost 0 if x < p1, and with certain non-negligible proba-
bility p2 if x > p1.

The probability scaling down gadget Firstly, we need to construct the probabil-
ity scaling down gadget which takes a vertex u with infection probability pu as input,
and output a vertex v such that v is infected with probability pv = αpu, where α ≤ p∗

is an adjustable parameter. The construction of this gadget is shown in Fig. 6.2: we
add many paths of different lengths from u to v, and we can achieve pv = αpu by
adjusting the number of paths and the length of each path.

The probability separation block Next, we construct a probability separation
block, which is the building block to the probability filter gadget. The probability
separation block takes h vertices as input and outputs one vertex such that

1. if each input is infected independently with a same probability that is greater
than certain threshold p1, then the output vertex will be infected with a slightly
higher probability;

2. if each input is infected independently with a same probability that is less than
p1, then the output vertex will be infected with a slightly lower probability.

134

Figure 6.2: The probability scaling down gadget

Figure 6.3: The probability separation
block

Figure 6.4: The output probability y ver-
sus the input probability x

The construction of the probability separation block is shown in Fig. 6.3, in which
the h inputs’ infection probabilities are scaled down by a certain factor α by the prob-
ability scaling down gadgets, and then they are connected to the output vertex. It is
exactly the 2-quasi-submodularity of f which enables us to adjust the two parameters
h and α such that (1) and (2) above hold.

Suppose each of the h vertices in the input are infected with probability x, and
let y = y(x) be the probability that the output vertex is infected. We claim that we
can tune the values of α and h such that the graph of y(x) looks like Fig. 6.4.

By considering the number of infected neighbors of the output vertex, we have

y =
h∑
i=1

(
h

i

)
ai(αx)i(1− αx)h−i,

which is y = hαa1x+ h(h−1)
2

α2(a2 − 2a1)x2 + o(x2) for sufficiently small x. Choosing
a sufficiently small constant δ > 0 and choosing α, h to satisfy hαa1 = 1− δ, we have

y − x = −δx+
h(h− 1)

2
α2(a2 − 2a1)x2 + o(x2).

Since y − x = −δx+ o(x), we can see that y < x for small enough x.
On the other hand, for sufficiently large h and sufficiently small δ (and adjusting

α such that hαa1 = 1− δ still holds), the second order derivative of y − x, which is

d2(y − x)

dx2
= h(h− 1)α2(a2 − 2a1) + o(1) ≈ 1

a2
1

(a2 − 2a1) > 0,

135

Figure 6.5: The directed edge gad-
get 〈u, v〉

Figure 6.6: The AND gadget with two
inputs

can be considerably more significant than its first order derivative −δ. Therefore,
y − x, starting from 0 at x = 0 and being negative for very small x, will soon
become positive after x increases. This proves our claim. Notice that the 2-quasi-
submodularity of f makes sure a2 − 2a1 > 0.

The probability filter gadget The probability filter gadget consists of ` layers
such that the i-th layer consists of h`−i probability separation blocks, where the output
vertices of every h probability separation blocks in the i-th layer are the inputs of
a single probability separation block in the (i + 1)-th layer. Because there are h`−1

probability separation blocks in the first layer, the probability filter gadget takes
Λ = h` vertices as input. The probability filter gadget outputs a single vertex after `
layers.

From Fig. 6.4, if we make ` large enough, we conclude that the probability filter
gadget does the following job, which tests if the input vertices are infected with a
probability larger than the threshold value p1.

1. if each vertex in the Λ inputs is infected independently with a same probability
less than p1, then the vertex on the output end will be infected with a probability
close to 0;

2. if each vertex in the Λ inputs is infected independently with a same probability
in (p1, p2], then the vertex on the output end will be infected with a probability
close to p2.

6.4.1.2 The AND Gadget and the Directed Edge Gadget

Both the AND gadget and the directed edge gadget can be constructed by using a
single probability filter gadget as the core.

136

The directed edge gadget The construction of the directed edge gadget 〈u, v〉
is shown in Fig. 6.5. It uses a single probability filter gadget, whose input vertices
are connected to u, and whose output vertex is connected to v. By adjusting h

and α making p1 small enough1, we can make the output v infected with noticeable
probability (almost p2) if u is infected. On the other hand, if v is infected, then the
expected number of infected vertices among those h vertices on the input end of the
top layer probability separation block is hαa1 = 1 − δ < 1, which suggests that the
cascade process will die out after a few layers from right to left. In particular, the
influence of v cannot be passed to u.

The AND gadget The AND gadget in Fig. 6.1 takes n sets of vertices as input.
It tests if all cliques are activated, that is, if each vertex in each input set is infected
with probability almost p∗.

Here, we first construct a smaller AND gadget which only takes two input sets.
Let I1 = {u1, u2, . . . , uΛ} and I2 = {v1, v2, . . . , vΛ} be the two input sets. The AND
gadget should do the following:

1. if each vertex in I1 and I2 is infected with probability p∗, the AND gadget
outputs a vertex which is infected with a notable probability;

2. if all vertices in at least one of I1, I2 are infected with probability 0, the AND
gadget outputs a vertex which is infected with a negligible probability.

We create Λ vertices w1, w2, . . . , wΛ and create two edges (ui, wi), (vi, wi) for each
i = 1, 2, . . . ,Λ. In case (1), each wi will be infected with probability q1 = a2(p∗)2 +

2a1p
∗(1− p∗); in case (2), each wi will be infected with probability at most q2 = a1p

∗.
Obviously, q1 > q2, and the AND gadget needs to “amplify” the gap between q1 and
q2.

This naturally reminds us the probability filter gadget. In particular, if the thresh-
old p1 of the probability filter gadget is in between: q1 > p1 > q2, we can just make
{w1, . . . , wΛ} the inputs of the probability filter gadget, and we are done. However,
by our discussion about probability separation block in the last subsection, p1 is only
guaranteed to exist, which may not be in (q2, q1). To settle this, we use probability
scaling down gadgets to rescale the infection probability of wi such that p1 will be in

1if we further check the calculations in the subsection where we construct the probability separa-
tion block, we can see that p1 can be made arbitrarily small, by choosing small enough δ = 1−hαa1.
Detailed calculations and justifications are in the later sections.

137

between after rescaling q1, q2.2 Fig. 6.6 shows the construction of this AND gadget.
To construct the AND gadget allowing n input sets, we can use this AND gadget

as a building block and construct an AND circuit with log2 n levels of AND gadgets.
The last level contains a single AND gadget, whose output is connected to the M1

vertices on the right-hand side of Fig. 6.1. For each AND gadget in Level i, its output
become one input of a certain AND gadget in Level i + 1. The inputs of the AND
gadgets in Level 1 are exactly those associated to the n cliques representing elements
of the VertexCover instance.

We conclude the proof sketch here. In the remaining sections, we present the full
proof of Theorem 6.2 which realizes the intuitions and ideas in this section.

6.4.2 Proof of Theorem 6.2 for a1 > 0 with Directed Graphs

We first define the following AND gadget which simulates the logical AND operation.
The construction of this AND gadget is deferred to Section 6.4.4—6.4.6. We note that
the nonsubmodularity property a2 > 2a1 plays an important role in the construction
of the AND gadget. In particular, the construction of the AND gadget uses a smaller
gadget called the “probability filter gadget” as a building block (see Figure 6.8), and
2-quasi-submodularity is essential for constructing the probability filter gadget (refer
to Section 6.4.4.2 for details).

Definition 6.5. An (I,Λ, p0, p2, ε1, ε2, f)-AND gadget takes I sets which each con-
tains Λ vertices as input, and outputs one vertex such that

1. if all the vertices in all I sets are infected independently with probabilities less
than 11

10
p0, and moreover the infection probabilities of the vertices in at least

one input set are less than 1
2
p0, then the output vertex will be infected with

probability less than ε1;

2. if all the vertices in all I sets are infected independently with probabilities in
the interval (p0,

11
10
p0), the output vertex will be infected with probability in

(p2 − ε2, p2],

We remark that the choices for both factors of p0 in 1 of the above definition,
11
10

and 1
2
, are only required to be close enough to 1 and 0 respectively. We aim to

simulate the case where at least one of the inputs is not “active” (being far from
2It seems worrying that q1 and q2 may be both less than p1, in which case the construction fails

as we can only scale probabilities “down”. However, as we have remarked, we can make p1 arbitrarily
small such that p1 � q2 < q1

138

the threshold p0) and the other ones are not “too active” (being at most somewhere
around the threshold p0), in which case the AND gadget outputs “false” (such that
the output vertex is infected with negligible probability ε1).

With the choice of the seven parameters satisfying the relation in the below lemma,
we can construct the AND gadget.

Lemma 6.6. Given any 2-quasi-submodular function f with a1 > 0, any constant
threshold p0 > 0 and any I = 2` that is an integer power of 2, there exists a constant
p2 > 0 depending on p0 and f such that for any ε1 > 0 and any constant ε2 > 0, we
can construct an (I,Λ, p0, p2, ε1, ε2, f)-AND gadget with Λ = O ((1/ε1)c1Ic2), and the
numbers of vertices and edges in this AND gadget are both O ((1/ε1)c1Ic2+1), where
c1 and c2 are two constants.

The following lemma is needed in the next section for the proof of Theorem 6.2
for undirected graphs.

Lemma 6.7. Given any 2-quasi-submodular function f with a1 > 0 and any I = 2`

that is an integer power of 2, there exists p2 > 0 such that for any ε1 > 0 and any
constant ε2 > 0, we can construct an (I,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget. We
have Λ = O ((1/ε1)c1Ic2) and the AND gadget contains O ((1/ε1)c1Ic2+1) vertices and
O ((1/ε1)c1Ic2+1) edges, where c1 and c2 are two constants.

Notice that Lemma 6.6 does not imply Lemma 6.7: in Lemma 6.6, we first fix the
third parameter p0, and the existence of the fourth parameter p2 relies on the third;
in Lemma 6.7, we simultaneously fix the third and the fourth parameters.

The construction of the AND gadget and the proof of Lemma 6.6 and Lemma 6.7
are deferred to Section 6.4.6. In this section, we aim to prove Theorem 6.2 for a1 > 0

with directed graphs and assuming Lemma 6.6, while we do not need Lemma 6.7 at
this moment. We remark that the construction of AND gadget requires no directed
edges, although we consider directed graph in this section.

6.4.2.1 A Reduction from SetCover

We prove the theorem by a reduction from SetCover.
Without loss of generality, we will assume K = O(n).3 We will also assume that

each element in U is covered by at least one subset Ai in SetCover (otherwise we
3One way to justify this assumption is to consider VertexCover, which can be viewed as a

special case of SetCover by viewing vertices as subsets and edges as elements. In a connected
graph, the number of vertices K never exceeds O(n), if n is the number of edges.

139

Figure 6.7: The high-level structure of the reduction

know for sure the instance is a NO instance). In addition, we assume the number of
elements n = |U | is an integer power of 2, as we can add elements into U and let
these elements be included in all sets Ai in the case n is not an integer power of 2.

We construct a graph G with N vertices which consists of two parts: the set cover
part and the verification part, where the set cover part simulates the SetCover

instance and the verification part verifies if all the elements in the SetCover instance
are covered. The construction is shown in Figure 6.7.

Define ε = 2
(
p∗ − aba1nc

)
which approaches to 0 as n → ∞ if a1 > 0. According

to Lemma 6.6, for p0 = a1(p∗−ε) and I = n, there exists a constant p2 > 0, such that
if we set ε1 = 1

n
and ε2 = 1

100
p2, we can construct an (n,Λ, p∗ − ε, p2, ε1, ε2, f)-AND

gadget, where Λ = O ((1/ε1)c1nc2) = O (nc1+c2). We will use this AND gadget later.
Define M1 = nc1+c2+10, M2 = n2, and m = M2Λ.

The set cover part Given a SetCover instance, we use a single vertex to repre-
sent a subset Ai and a clique of size m to represent each element in U . If an element
is in a subset, we create m directed edges from the vertex representing the subset to

140

each the m vertices in the clique representing the element.

The verification part We construct the (n,Λ, a1(p∗ − ε), p2, ε1, ε2, f)-AND gadget
mentioned. We associate each of the n cliques to one of the n inputs of this AND
gadget, such that a matching is formed between the n cliques and the n inputs. For
each of the n cliques and its associated input, we choose Λ vertices from the clique,
and connect them to the Λ vertices of the associated input by Λ directed edges. We
create M1 vertices and let the output vertex v of the AND gadget be connected to
these M1 vertices with undirected edges. Then, we duplicate the AND gadget and
the attached M1 vertices to a total of M2 copies such that the vertices at the input
ends of the AND gadgets in all these M2 copies are connected from the different
vertices in the n cliques as inputs. This, in particular, justifies our choice of clique
size m = M2Λ.

The size of the construction To show that the reduction is in polynomial time,
it is enough to show that the number of vertices N in the graph G we constructed is a
polynomial of n. According to Lemma 6.6, the AND gadget has O ((1/ε1)c1nc2+1) =

O (nc1+c2+1) vertices. We have

N = K +mn+M2

(
O
(
nc1+c2+1

)
+M1

)
= K +mn+ Θ

(
nc1+c2+12

)
= Θ

(
nc1+c2+12

)
,

where K+mn is the size for the set cover part and M2 (O (nc1+c2+1) +M1) is the size
for the verification part.

Finally, noticing that N = Θ (nc1+c2+12) and letting τ = 1
c1+c2+12

(which depends
on c1, c2, and c1, c2 depends only on f), the lemma below immediately concludes
Theorem 6.2 for the case a1 > 0 with directed edges.

Lemma 6.8. If the SetCover instance is a YES instance, by choosing k seeds
appropriately, we can infect at least Θ (nc1+c2+12) vertices in expectation in the graph
G we have constructed; if it is a NO instance, we can infect at most O (nc1+c2+11)

vertices in expectation for any choice of k seeds.

Proof. If the SetCover instance is a YES instance, we are able to choose k sub-
sets {Ai1 , . . . , Aik} ⊆ A such that Ai1 ∪ · · · ∪ Aik = U . We choose the k vertices
corresponding to these k subsets as seeds.

We say that a clique representing an element is activated if all its m vertices are
infected with probabilities more than p∗−ε. If a vertex representing a subset is seeded,
for each clique representing the element it covers, each of the m vertices in this clique

141

will be infected with probability a1. Thus,ma1 vertices will be infected in expectation.
According to Chernoff-Hoeffding inequality, with probability at least 1−exp

(
−1

8
a2

1m
)
,

there are more than 1
2
a1m infected vertices in the clique. If this happens, in the next

cascade iteration, each vertex in the clique has more than 1
2
a1m infected neighbors,

so it will be infected with probability at least ab 1
2
a1mc ≥ aba1nc > p∗ − ε (notice that

1
2
m = Θ(nc1+c2+2) � n). Therefore, if a vertex representing a subset is seeded and

a clique representing an element is in this subset, then this clique is activated with
probability at least 1− exp

(
−1

8
a2

1n
)
.

By our choice of k seeds, each of the clique is activated with probability at least
1−exp

(
−1

8
a2

1n
)
. By a union bound, all the n cliques will be activated with probability

at least
pactivated = 1−Kn exp

(
−1

8
a2

1n

)
= Θ(1).

In the highly likely case where all the n cliques are activated, all the vertices at
the input ends of all the AND gadgets will be infected with probability more than
a1(p∗− ε). Since the parameter p0 = a1(p∗− ε) is set for the AND gadget, the output
vertex v falls into case (2) in Definition 6.5, which means it will be infected with
probability more than p2 − ε2. Therefore, all the M1 vertices connected to v in each
of the M2 copies will be infected with probability at least a1(p2− ε2), so the expected
total number of infected vertices is at least pactivated ·a1(p2−ε2)M1M2 = Θ (nc1+c2+12).

On the other hand, if the SetCover instance is a NO instance, consider any
choice of k seeds with k1 of them in the K vertices representing subsets, k2 of them
in the n cliques, and the remaining k3 = k − k1 − k2 of them in the verification part.
We first show that at least one clique will not be activated.

The k3 vertices in the verification part play no role in activating the cliques, as the
n cliques are connected to the verification part by directed edges. As for the k2 vertices
in the cliques, since we assume each element in U is in at least one subset, infecting
any vertex in any clique is at most as good as infecting the vertex representing the
subset covering the element that the clique represents. Therefore, when analyzing
the activation of cliques, we can reason as if these k2 seeds are among the K subsets.
Since the SetCover instance is a NO instance, and we have picked k1 + k2 ≤ k

subsets, at least one clique will not be activated.
Among the M2 AND gadgets, at most k2 of them take the input vertices which

are connected from the k2 seeds in the cliques. Since these k2 seeds are infected with
probability 1 making these input vertices infect with probability a1 which may be
larger than 11

10
a1(p∗− ε), the outputs of these k2 AND gadgets are unknown as it falls

142

into neither case (1) nor case (2). We have also assumed k3 seeds are selected in the
verification parts, so we also do not know the outputs of another (at most) k3 AND
gadgets.

For the remaining M2 − k2 − k3 AND gadgets, they fall into case (1) by the fact
that at least one clique is not activated and our setting p0 = a1(p∗ − ε) for the AND
gadget. Since we have set the AND gadget parameter ε1 = 1

n
, the output vertex v will

be infected with probability less than 1
n
, which will infect at most a1

M1

n
vertices in

expectation among the M1 vertices on the right-hand side of Figure 6.7. Notice that
each AND gadget has O(nc1+c2+1) vertices by Lemma 6.6, and the set cover part has
K+nm vertices. In this case, even if all the K+nm+ (M2−k2−k3) ·O (nc1+c2+1) =

O (nc1+c2+3) vertices in the set cover part and the (M2 − k2 − k3) AND gadgets are
infected, the total number of infected vertices cannot exceed O (nc1+c2+3)+M2·a1

M1

n
=

O (nc1+c2+11).
Finally, for those remaining k2 + k3 AND gadgets whose outputs are unknown,

even if all vertices in these k2 + k3 copies of AND gadgets and their attached M1

vertices are infected, this total number is still (k2 + k3) · (O (nc1+c2+1) +M1) = (k2 +

k3) · O (nc1+c2+10) = O (nc1+c2+11). Therefore, if the SetCover instance is a NO
instance, we can infect at most O (nc1+c2+11) vertices in G.

6.4.3 Proof of Theorem 6.2 for a1 > 0 with Undirected Graphs

To prove Theorem 6.2 for undirected graphs, we will need the following directed
edge gadget which simulates directed edges, and the construction of this gadget also
requires the property a2 > 2a1. This is because the directed edge gadget also uses
probability filter gadgets as building blocks.

Definition 6.9. A (Υ, ε, b, f)-directed edge gadget 〈u, v〉 takes one vertex u as input
and output one vertex v such that the following properties hold.

1. directed property: If u is connected to each of the Υ vertices v1, . . . , vΥ by a
directed edge gadget 〈u, vi〉, and v1, . . . , vΥ are already infected, then u will be
infected with probability less than ε.

2. If the input u is infected, then the output v will be infected with probability b.
Moreover, b > 0.

The size of a directed edge gadget is given by the following lemma.

143

Lemma 6.10. For any 2-quasi-submodular function f with a1 > 0, any positive
integer Υ and any ε > 0, there exists b ∈ (0, 1) such that we can construct a (Υ, ε, b, f)-
directed edge gadget with Θ

(
Υd(1/ε)d

)
vertices and Θ

(
Υd(1/ε)d

)
edges, where d > 1

is a constant depending only on f .

We also need the following lemma.

Lemma 6.11. Given an (I,Λ, p0, p2, ε1, ε2, f)-AND gadget, for any Υ and ε, we can
construct a (Υ, ε, b, f)-directed edge gadget with b ∈

(
p2 − 1

2
ε2, p2

]
using Θ

(
Υd(1/ε)d

)
vertices and Θ

(
Υd(1/ε)d

)
edges, where d > 1 is a constant depending only on f .

The construction of the directed edge gadget and the proofs of Lemma 6.10 and
Lemma 6.11 are deferred to Section 6.4.7.

6.4.3.1 A Reduction from SetCover

According to Lemma 6.7, for I = n, there exists a constant p2 > 0, such that if we
set ε1 = 1

n
and ε2 = 1

100
p2, we can construct an (n,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND

gadget, where Λ = O ((1/ε1)c1nc2) = O (nc1+c2). Define M2 = n2 and m = M2Λ as
before, and we will define M1 later.

Applying Lemma 6.11, we can construct a (mn,m−2, b, f)-directed edge gadget
such that b ∈

(
p2 − 1

2
ε2, p2

]
. The numbers of vertices and edges in this directed edge

gadget are both

Θ
(

(mn)d
(
1/m−2

)d)
= Θ

(
m3dnd

)
= Θ

(
n(3c1+3c2+7)d

)
.

We will use this directed edge gadget exclusively in the construction.
Finally, define M1 = n(30c1+30c2+70)d.
We will construct an undirected graph G similar to the one in the last section,

with some modifications. We make the following two modifications:

1. We replace all directed edges in Figure 6.7 by (mn,m−2, b, f)-directed edge
gadgets. These consist of 1) the directed edges connecting between the K

vertices representing subsets and the n cliques representing elements and 2) the
directed edges connecting between the set cover part and the verification part.

2. We use the (n,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadgets in the verification part
instead of the (n,Λ, a1(p∗ − ε), p2, ε1, ε2, f)-AND gadgets.

144

For the remaining parts of the construction, all the edges, including the ones in the
clique, the ones in the AND gadget, and the ones connected to the M1 vertices on
the right-hand side of Figure 6.7, are undirected edges. In particular, we recall that
the edges in the AND gadget are undirected.

The size of the construction We show that the total number of vertices in G

is still of polynomial size. In the set cover part, we have created at most Kmn
directed edge gadgets between the K vertices and the mn vertices in the n cliques.
The total size of the set cover part is at most K + mn + Kmn · Θ

(
n(3c1+3c2+7)d

)
=

O
(
n(3c1+3c2+7)d+c1+c2+4

)
.

In the verification part, the AND gadget containsO (nc1+c2+1) vertices by Lemma 6.7,
the total number of vertices is M2(O(nc1+c2+1) +M1) = Θ

(
n(30c1+30c2+70)d+2

)
.

Since d > 1 by Lemma 6.7, N is dominated by the number of vertices in the
verification part: N = Θ

(
n(30c1+30c2+70)d+2

)
.

Finally, with τ = 1
(30c1+30c2+70)d+2

, Theorem 6.2 for undirected graphs follows
immediately from the following lemma.

Lemma 6.12. If the SetCover instance is a YES instance, by choosing k seeds
appropriately, we can infect Θ

(
n(30c1+30c2+70)d+2

)
vertices in expectation in the graph

G; if it is a NO instance, we can infect at most O
(
n(30c1+30c2+70)d+1

)
vertices in

expectation for any choice of k seeds.

Proof. If the SetCover instance is a YES instance, we are able to choose k subsets
{Ai1 , . . . , Aik} ⊆ A such that Ai1 ∪ · · · ∪ Aik = U . We choose the k vertices corre-
sponding to these k subsets as the seeds. Since the SetCover instance is a YES
instance, for each clique, each vertex is connected from a seed by a directed edge
gadget, which will be infected with probability b. In each clique, bm vertices will be
infected in expectation, and the remaining vertices in the clique will be infected with
probability at least abbmc, which has limit p∗ as n→∞.

By the same analysis in the proof of Lemma 6.8, with a high probability pactivated =

Θ(1), all the n cliques will be activated such that all vertices in the clique will
be infected with probability p∗ − ε for certain ε = o(1). By our construction and
Lemma 6.11, each of the mn vertices that are passed into the input of the AND
gadget will be infected with probability

(p∗ − ε)b ∈
(

(p∗ − ε)
(
p2 −

1

2
ε2

)
, (p∗ − ε)p2

]
⊆
(
p∗(p2 − ε2),

11

10
p∗(p2 − ε2)

)
,

145

by noticing that ε = o(1) and ε2 = 1
100
p2 <

1
10
p2 is a constant. Thus, the AND gadget

falls into case (2) of Definition 6.5, so the output vertex v of the AND gadget will be
infected with probability more than p2−ε2. Therefore, each of theM1 vertices will be
infected with probability pactivateda1(p2−ε2), and the expected total number of infected
vertices in those M2 copies of M1 vertices is already pactivateda1(p2 − ε2)M1M2 =

Θ
(
n(30c1+30c2+70)d+2

)
.

If the SetCover instance is a NO instance, consider any choice of the k seeds
with k1 seeds in the K vertices representing subsets, k2 seeds in the directed edge
gadgets connecting the K vertices and nm vertices in the n cliques, k3 seeds in the n
cliques, k4 seeds in the directed edge gadgets between the n cliques in the set cover
part and the inputs of the AND gadget in the verification part, and the remaining
k5 = k − k1 − k2 − k3 − k4 seeds in the verification parts. We first aim to show that
at least one clique will not be activated with high probability.

When analyzing cliques’ activation, it is easy to see that putting k2 seeds on
the directed edge gadgets is at most as good as putting them on the corresponding
vertices representing the subsets. Similarly, putting k4 seeds on the directed edge
gadgets connecting the set cover part and the verification part is at most as good as
putting them on the corresponding vertices in the cliques, and having k3 + k4 seeds
in the cliques is at most as good as having them in the K vertices representing the
subsets covering the elements that those cliques represent. Thus, we can reason as
if we have selected k1 + k2 + k3 + k4 subsets in the SetCover problem. Since the
SetCover instance is a NO instance, those k1 + k2 + k3 + k4 ≤ k seeds cannot cover
all the cliques. As for the k5 seeds in the verification part, their influences on each
vertex in the n cliques is at most m−2 based on Definition 6.9, which has remote effect
to the cliques, and we will discuss it later.

To show that at least one clique is not activated, it remains to show that the
clique not covered by those k1 + k2 + k3 + k4 vertices cannot be activated. For each
of those vertices representing subsets that are not picked, since it is connected to at
most mn vertices (m vertices in each of the n cliques) by the (mn,m−2, b, f)-directed
edge gadgets, it will be infected with probability at most m−2 by Definition 6.9. For
each vertex in each uncovered clique, it may only be infected due to 1) the influence
from one of the K vertices which is not seeded and which is infected with probability
at most m−2, or 2) the influence from the k5 seeds from the verification parts. In
particular, it will be infected due to (1) with probability bm−2, and it will be infected
due to (2) with probability m−2. By a union bound, the probability that there exist
infected vertices in an uncovered clique is at most m · (bm−2 +m−2) = O(m−1). Since

146

there can be at most n uncovered cliques, the probability that all uncovered cliques
contain no infected vertex is at least pno = 1 − n · O (m−1) > 1 − O

(
1
n

)
. Therefore,

with the probability above, there exists at least one clique which is not activated.
In the case that not all cliques are activated, since all the vertices in a not activated

clique are infected with probability 0, the corresponding input vertices to the AND
gadget are also infected with probability 0b = 0. The output vertices v in the AND
gadgets therefore fall into case (1) in at least M2 − k3 − k4 − k5 copies. Thus, in
each of the corresponding M2 − k3 − k4 − k5 copies of the M1 vertices bundle (on
the rightmost of Figure 6.7), the expected number of infected vertices is at most
ε1 · M1 = O

(
n(30c1+30c2+70)d−1

)
. In this case, even if all the vertices in the entire

set cover part, the mn directed edge gadgets connecting the two parts, all the M2

AND-gadgets, and the remaining k3 + k4 + k5 copies of the M1 vertices bundles, the
total number of infected vertices is at most

Kmn ·Θ
(
n(3c1+3c2+7)d

)
+mn ·Θ

(
n(3c1+3c2+7)d

)
+M2 ·O

(
nc1+c2+1

)
+ (k3 + k4 + k5)

(
O
(
nc1+c2+1

)
+M1

)
+ (M2 − k3 − k4 − k5)O

(
n(30c1+30c2+70)d−1

)
=O

(
n(3c1+3c2+7)d+c1+c2+4

)
+ Θ

(
n(3c1+3c2+7)d+3

)
+O

(
nc1+c2+3

)
+O

(
n(30c1+30c2+70)d+1

)
+O

(
n(30c1+30c2+70)d+1

)
=O

(
n(30c1+30c2+70)d+1

)
. (6.1)

Finally, even assuming all vertices in G are infected in the case that all cliques are
activated (which happens with probability 1− pno < O

(
1
n

)
), the expected number of

infected vertices is at most

pno ·O
(
n(30c1+30c2+70)d+1

)
+ (1− pno)N = O

(
n(30c1+30c2+70)d+1

)
,

which concludes the lemma.

6.4.4 Constructions of Some Other Required Gadgets

Before constructing the AND gadget and the directed edge gadget, we need some
other gadgets. In this section and the next two sections, graph with undirected edges
are considered.

We will construct the probability scaling down gadget and the probability filter
gadget, which are used to construct the AND gadget and the directed edge gadget.
The relation of these gadgets are shown in Figure 6.8.

147

Figure 6.8: The relation of all the gadgets defined

Figure 6.9: The probability scaling down gadget

6.4.4.1 Probability Scaling Down Gadget

We first define and construct the following probability scaling down gadget which is
an essential component of both the AND gadget and the directed edge gadget.

Definition 6.13. The (α, ε, f)-probability scaling down gadget takes one vertex u as
input and output a vertex v such that

• if u is infected with probability pu, v will be infected with probability pv ∈
(αpu − ε, αpu].

Lemma 6.14. For any 2-quasi-submodular function f with a1 > 0, any constant
ε > 0 and any α with 0 < α ≤ p∗, there exists an (α, ε, f)-probability scaling down
gadget with constant numbers of vertices and edges.

Proof. To construct this gadget, we iteratively add paths from u to v, where a path of
length ` consists of `−1 vertices w1, . . . , w`−1 and ` edges (u,w1), (w1, w2), . . . , (w`−1, v).
Given pu, by repeatedly adding paths from u to v, we are increasing pv. In each it-
eration i, we add a path of length `i from u to v, where `i is the minimum length
to maintain pv ≤ αpu. That is, either it is true that pv > αpu if a path of length
`i − 1 was added, or `i = 2 which is already the minimum length a path can ever be.
The iterative process ends if pv ∈ (αpu − ε, αpu], and it is straightforward to check
that such process will end as long as α ∈ (0, p∗]. Figure 6.9 illustrates the probability
scaling down gadget.

The size of the probability scaling down gadget depends on the influence function

148

f and the small constant ε. Since f is fixed in advance, the size of this gadget is
constant.

Remark 6.15. The probability scaling down gadget is symmetric. Given pv = αpu,
then pu = αpv if v becomes the input and u becomes the output.

6.4.4.2 Probability Filter Gadget

Based on the probability scaling down gadget, we can construct the following proba-
bility filter gadget.

Definition 6.16. A (Λ, p1, p2, ε1, ε2, f)-probability filter gadget takes Λ vertices as
input, and outputs a vertex such that

1. if each vertex in the Λ inputs is infected independently with a same probability
less than p1, then the vertex on the output end will be infected with a probability
less than ε1;

2. if each vertex in the Λ inputs is infected independently with a same probability
in (p1, p2], then the vertex on the output end will be infected with a probability
in (p2 − ε2, p2].

We aim to show the following lemma in this subsection.

Lemma 6.17. Given any 2-quasi-submodular influence function f with a1 > 0, any
constant ε2 > 0, any ε1 > 0, and any ratio r > 0, we can construct a (Λ, p1, p2, ε1, ε2, f)-
probability filter gadget with p2/p1 > r and Λ = O((1/ε1)c), and this probability filter
gadget contains O((1/ε1)c) vertices and O((1/ε1)c) edges, where c is a constant.

To construct the probability filter gadget, we first construct the gadget shown in
Figure 6.10, which is the building block of this gadget. We will call this building
block probability separation block. As shown in the figure, this building block takes h
vertices as input and outputs one vertex. Particularly, we apply h probability scaling
down gadgets to “scale down” the probabilities of all input vertices’ infection by a
factor of α, and then connect those vertices to the output vertex.

The probability filter gadget consists of ` layers such that the i-th layer consists of
h`−i such probability separation blocks, where the output vertices of every h probabil-
ity separation blocks in the i-th layer are the input of a probability separation block
in the (i+1)-th layer. Because there are h`−1 probability separation blocks in the first
layer, the probability filter gadget takes Λ = h` vertices as input. The probability

149

Figure 6.10: The probability separation block

filter gadget outputs a single vertex after ` layers. We will tune the value of α, h and
` such that the two properties in Definition 6.16 hold for certain thresholds p1 and
p2.

For each probability separation block, suppose each of the h vertices in the input
are infected with probability x independently, and let y = y(x) be the probability
that the output vertex is infected. We aim to tune the value of α and h such that
the graph of y(x) looks like Figure 6.11.

By considering the number of infected neighbors of the output vertex, it is straight-
forward to see that

y =
h∑
i=1

(
h

i

)
ai(αx)i(1− αx)h−i. (6.2)

For sufficiently small x, we have

y = hαa1x+
h(h− 1)

2
α2(a2 − 2a1)x2 + o(x2).

Choosing a sufficiently small constant δ > 0 and choosing α (h will be set in the
future) to satisfy hαa1 = 1− δ, we have

y − x = −δx+
h(h− 1)

2
α2(a2 − 2a1)x2 + o(x2).

Since y − x = −δx + o(x), we can see that y < x for small enough x. On the
other hand, for sufficiently large h and sufficiently small δ (and adjusting α such that

150

Figure 6.11: The output probability y versus the input probability x

hαa1 = 1− δ still holds4), we have

h(h− 1)

2
α2 =

1

2
h2α2 − h

2
α2 =

(1− δ)2

2a2
1

− (1− δ)2

2ha2
1

>
1

3a2
1

.

We can see from the following that y > x after a while as x increases.

x1 =
6a2

1

a2 − 2a1

δ =⇒ y(x1)− x1 > −δx1 +
a2 − 2a1

3a2
1

x2
1 + o(x2

1)

=
6a2

1

a2 − 2a1

δ2 + o(δ2)

> 0.

Notice that the 2-quasi-submodularity of f makes sure a2 > 2a1 such that x1 is
positive.

We have seen that y < x for small enough x, and y > x after x increases. There
must be a threshold p1 such that y = x at x = p1 by the Intermediate Value Theorem.
On the other hand, y is upper bounded by p∗ while x can be as large as 1, so y ≤ x for
sufficiently large x. The Intermediate Value Theorem suggests there exists another
threshold x = p2 > p1 such that y = x. Consequently, Figure 6.11 indeed represents
the graph of y(x) for the proper choices of α and h.

Finally, from the graph in Figure 6.11, we can see that the infection probability
of the output vertices in the i-th layer increases as i increases, if all the Λ = h` input

4According to Definition 6.13 and Lemma 6.14, given the scale α∗ for which we want to adjust
to, we can construct a probability scaling down gadget such that the actual scale α is arbitrarily
close to α∗. Although we cannot make the adjustment exact, a close enough approximation would
still satisfy our purpose here, as all we want is δ to be small enough, or hαa1 to be close enough to
1.

151

vertices are infected with an independent probability larger than p1. In contrast, the
infection probability of the output vertices in the i-th layer decreases as i increase, if
all the Λ = h` input vertices are infected with an independent probability less than
p1. By setting ` large enough, we can make both (1) and (2) in Definition 6.16 hold.

Before we move on, we show some properties of the thresholds p1 and p2, and our
objective is to show the following proposition which is a part of Lemma 6.17.

Proposition 6.18. For any large ratio r > 0, we can find h and α such that p2/p1 >

r.

By the calculation above, the proposition below follows immediately.

Proposition 6.19. p1 <
6a2

1

a2−2a1
δ.

We also have the following lower bound for p2.

Proposition 6.20. By choosing h sufficiently large and δ sufficiently small, we have
p2 > a1γ for any γ such that

a2(1− e−γ − γe−γ)− a1(γ − γe−γ) > 0.

Proof. By replacing all a3, a4, . . . , ah to a2 in Equation (6.2), we have

y ≥
h∑
i=1

(
h

i

)
a2(αx)i(1− αx)h−i −

(
h

1

)
(a2 − a1)αx(1− αx)h−1

= a2

(
h∑
i=0

(
h

i

)
(αx)i(1− αx)h−i − (1− αx)h

)
− h(a2 − a1)αx(1− αx)h−1

= a2 − a2(1− αx)h − h(a2 − a1)αx(1− αx)h−1

= a2 − a2 exp(h ln(1− αx))− h(a2 − a1)αx exp((h− 1) ln(1− αx))

≥ a2 − a2 exp(−hαx)− h(a2 − a1)αx exp(−αx(h− 1)).

(concavity of ln function)

Letting x = a1γ, we have

y − x ≥ a2 − a2 exp(−γ(1− δ))− (a2 − a1)(1− δ)γ exp

(
γ(1− δ)

(
1

h
− 1

))
− a1γ

(since x = a1γ and hαa1 = 1− δ)

> a2(1− e−γ − γe−γ)− a1(γ − γe−γ)− ε,

152

where in the last step, for any ε > 0, we can find small enough δ and large enough h
to make the inequality holds. Rigorously, we have 1−δ → 1 and 1

h
→ 0 for δ → 0 and

h → ∞. The expression in the second last step is a continuous function, which has
limit a2(1−e−γ−γe−γ)−a1(γ−γe−γ), and the last step is obtained by the definition
of limit.

Therefore, y − x > 0 for any x > p1 with x = a1γ, where γ satisfies

a2(1− e−γ − γe−γ)− a1(γ − γe−γ) > 0,

which implies the proposition.

We remark that there always exists γ satisfying the inequality in Proposition 6.20.
To see this, we show that Φ(γ) := a2(1 − e−γ − γe−γ) − a1(γ − γe−γ) > 0 when γ

is sufficiently small. By straightforward calculations, we have Φ(0) = Φ′(0) = 0 and
Φ′′(0) = a2 − 2a1 > 0, which means Φ(0) = 0 and Φ is increasing on [0, γ0) for some
small γ0, which further implies that Φ is positive on [0, γ0).

Proposition 6.19 implies that we can construct the probability filter gadget with
arbitrarily small p1 by setting δ small. On the other hand, Proposition 6.20 implies
that p2 can be made larger than some number depending only on a1 and a2, which in
particular can be considerably larger than p1, which yields Proposition 6.18.

Finally, we are ready to show Lemma 6.17.

Proof of Lemma 6.17. The possibility of this construction is straightforward, as the
construction is already made explicit in this section. It remains to show that the
gadget contains O((1/ε1)c) vertices and O((1/ε1)c) edges, and Λ = O((1/ε1)c).

Since ε2 is a constant, we only need constantly many layers such that the input
probability x increases to more than p2 − ε2, if x is initially larger than p1.

To investigate how many layers are needed to make x decreases to less than ε1 in
the case x is initially smaller than p1, recall that in each layer of the probability filter
gadget, the input probability x is updated to y such that y − x = −δx + o(x) for
sufficiently small x, so each time x is decreased by a factor of (1−δ). After a constant
number of layers, x will be sufficiently small such that the term o(x) is negligible, and
after another log(1/ε1)

log(1/(1−δ)) layers, x will decrease by a factor of (1 − δ)
log(1/ε1)

log(1/(1−δ)) = ε1,
which makes the value of x much smaller than ε1. Therefore, we need at most
` = O(log(1/ε1)) layers. Let χv, χe be the number of vertices and edges respectively
in a probability separation block shown in Figure 6.10, and they are both constants
according to Lemma 6.14. The total number of vertices in a probability filter gadget

153

is ∑̀
i=1

χv · h`−i = χv
h` − 1

h− 1
= Θ

(
h`
)

= O((1/ε1)c),

and the total number of edges has the same asymptotic bound by the same calculation
above, with χv changed to χe. Thus, we conclude that the gadget contains O((1/ε1)c)

vertices and O((1/ε1)c) edges.
For Λ, we have Λ = h` = O((1/ε1)c) by our construction, which concludes the last

part of the lemma.

6.4.5 Construction of the AND Gadget with I = 2

In this section, we construct the AND gadget with parameter I = 2. The AND gadget
makes use of a single probability filter gadget with the same choices of parameters
Λ, p2, ε1, ε2 and f . The AND gadget takes two sets I1, I2 of vertices as inputs, and
each set has Λ = h` vertices. Let I1 = {u1, u2, . . . , uΛ} and I2 = {v1, v2, . . . , vΛ}.
We create Λ vertices w1, w2, . . . , wΛ and create two edges (ui, wi), (vi, wi) for each
i = 1, 2, . . . ,Λ. We apply the probability scaling down gadgets to create another Λ

vertices w′1, w′2, . . . , w′Λ such that p(w′i) = βp(wi) for each i = 1, 2, . . . ,Λ, where β is
set to the value such that

βϕ+
T (p0) < p2, βϕ−T (p0) > p1, and βϕ+

F (p0) < p1,

where

ϕ+
T (p0) = (a2 − 2a1)

(
11

10
p0

)2

+ 2a1

(
11

10
p0

)
,

ϕ−T (p0) = (a2 − 2a1)p2
0 + 2a1p0,

ϕ+
F (p0) =

11

20
(a2 − 2a1)p2

0 +
16

10
a1p0.

The construction is shown in Figure 6.12.
Notice that if all ui and vi are infected with an independent probability in the

interval (p0,
11
10
p0), that is, the inputs I1, I2 fall into case (2) in Definition 6.5, wi will

be infected with probability

p(wi) = a2p(ui)p(vi) + a1p(ui)(1− p(vi)) + a1p(vi)(1− p(ui))

= (a2 − 2a1)p(ui)p(vi) + a1p(ui) + a1p(vi),

154

Figure 6.12: AND gadget with I = 2

which is in the interval
(
ϕ−T (p0), ϕ+

T (p0)
)
.

On the other hand, if one of ui and vi is infected with probability less than 1
2
p0

and the other one is infected with probability less than 11
10
p0, that is, the inputs I1, I2

fall into case (1) in Definition 6.5, wi will be infected with probability

p(wi) = (a2 − 2a1)p(ui)p(vi) + a1p(ui) + a1p(vi)

<
11

20
(a2 − 2a1)p2

0 +
16

10
a1p0

= ϕ+
F (p0).

Given that
(
βϕ−T (p0), βϕ+

T (p0)
)
⊆ (p1, p2) and βϕ+

F (p0) < p1, it is now straightforward
to check that the two properties (1) and (2) in Definition 6.5 hold for I = 2, since
the probability filter gadget will “filter” the two probabilities such that one goes to a
value less than ε1 and the other goes into (p2 − ε2, p2].

By our construction of probability scaling down gadget, the factor must satisfy
β ≤ p∗. It seems worrying that

(
ϕ−T (p0), ϕ+

T (p0)
)
and ϕ+

F (p0) will be both scaled down
to smaller than p1 even if we take maximum β = p∗. Indeed, Proposition 6.18 and
Proposition 6.19 ensure that this cannot happen, as we can always make p1 small
enough by making δ small enough. We remark here that the choice of δ depends on
p0 and p∗ (it needs to be considerably smaller than some polynomial of p0 such that(
ϕ−T (p0), ϕ+

T (p0)
)
and ϕ+

F (p0) can be scaled down to different sides of p1), where p∗

depends only on f .
Now we prove the following lemma, which is a special case of Lemma 6.6 with

I = 2.

155

Lemma 6.21. Given any 2-quasi-submodular function f with a1 > 0 and any con-
stant threshold p0 > 0, there exists a constant p2 > 0 depending on p0 and f such that
for any constant ε2 > 0 and any ε1 > 0, we can construct a (2,Λ, p0, p2, ε1, ε2, f)-
AND gadget with Λ = O ((1/ε1)c1), and the number of vertices and edges in this AND
gadget are both O ((1/ε1)c1), where c1 is a constant.

Proof. The existence of this AND gadget is shown by the explicit construction in this
section.

To show that p2 only depends on p0 and f , notice that it depends on h, δ and f
(in particular, a1 and a2 only) according to Proposition 6.20. Additionally, h, α are
selected such that δ = 1 − hαa1 is small enough, and we have remarked just now
that δ depends on p0 and f . Therefore, p2 only depends on p0 and f , as the graph
y = y(x) determines the value of p2.

For the size of this AND gadget and the input size Λ, the size of this AND gadget
is the size of a probability filter gadget plus 3Λ for those ui, vi, wi, and the size of
each of both input sets is Λ. Therefore, Lemma 6.17 implies the second part of this
lemma.

Remark 6.22 (Remark of Lemma 6.21). Lemma 6.21 shows that when constructing
a (2,Λ, p0, p2, ε1, ε2, f)-AND gadget, we are free to set up the parameter p0, and the
parameter p2 will be determined. After p2 is determined, we are still free to choose
ε1, ε2, and Λ will be then determined. In fact, the two parameters ε1, ε2 decides the
number of layers needed in the probability filter gadget, and we can achieve (1) and
(2) in Definition 6.5 for any valid function y(x) with two intersections to the line
y = x as it is in Figure 6.11. That is the reason why we can choose ε1, ε2 after p2

is determined. In particular, for the same function y(x) but different ε1, ε2, we just
need the AND gadgets with different numbers of layers in their inner probability filter
gadgets. We will make use of this observation to construct AND gadgets with the
same parameters p0, p2, f but different ε1, ε2 in the next section.

To conclude this section, we show that we can also construct a (2,Λ, p2−ε2, p2, ε1, ε2, f)-
AND gadget and a (2,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget which will be used in
the next section. Notice that Lemma 6.21 does not imply the possibility of construct-
ing this AND gadget, as p2’s existence is supposed to depend on the third parameter,
which now become p2 − ε2 and p∗(p2 − ε2), two constants related to p2.

Lemma 6.23. Given any 2-quasi-submodular influence function f and any constant
threshold p0 > 0, we can construct a (2,Λ, p0, p2, ε1, ε2, f)-AND gadget, a (2,Λ, p2 −

156

ε2, p2, ε1, ε2, f)-AND gadget and a (2,Λ, p∗(p2− ε2), p2, ε1, ε2, f)-AND gadget with the
same parameters Λ, p2, ε1, ε2.

Proof. The three AND gadgets are only different at the third parameter, which is
the input threshold determining which of the two cases (1) and (2) in Definition 6.5
the inputs fall into. By our construction, we can use the same structure for the three
AND gadgets, except that we use three different scaling down factors β1, β2, β3 for
the different thresholds p0, p2−ε2 and p∗(p2−ε2). In particular, the three probability
filter gadgets inside the three AND gadgets can be exactly the same, provided that
the “gap” p2/p1 is large enough such that

•
(
β1ϕ

−
T (p0), β1ϕ

+
T (p0)

)
and β1ϕ

+
F (p0) are on the different sides of p1,

•
(
β2ϕ

−
T (p2 − ε2), β2ϕ

+
T (p2 − ε2)

)
and β2ϕ

+
F (p2 − ε2) are on the different sides of

p1, and

•
(
β3ϕ

−
T (p∗(p2 − ε2)), β3ϕ

+
T (p∗(p2 − ε2))

)
and β3ϕ

+
F (p∗(p2 − ε2)) are on the differ-

ent sides of p1.

We know that this is always possible by Proposition 6.18.
As the same probability filter gadget is used in the two AND gadgets, the four

parameters Λ, p2, ε1, ε2, which are inherited from the probability filter gadget by our
construction, are identical for the three AND gadgets.

6.4.6 Construction of the AND Gadget with General I of an

Integer Power of 2

In this section, we construct the AND gadget in Definition 6.5 with general I that is
an integer power of 2.

An (I,Λ, p0, p2, ε1, ε2, f)-AND gadget is a (log2 I)-level AND circuit using 2-set-
input AND gadgets constructed in the previous section as building block. We will
use three different types of 2-set-input AND gadgets.

• Type A: (2,Λ0, p0, p2,
1
3
(p2 − ε2), ε2, f)-AND gadget.

• Type B: (2,Λ0, p2 − ε2, p2,
1
3
(p2 − ε2), ε2, f)-AND gadget.

• Type C: (2,ΛC , p2 − ε2, p2, ε1, ε2, f)-AND gadget.

157

Lemma 6.23 indicates that we can construct A and B, and by Lemma 6.21 Λ0 is
a constant since 1

3
(p2 − ε2) is a constant. By Lemma 6.21 and its remark, we can

construct C based on B by adjusting the number of layers in the inner probability
filter gadget, and ΛC = O ((1/ε1)c1) for some constant c1.

Figure 6.13 shows the construction of this AND gadget. The type and the number
of AND gadgets in each of the log2 I levels are set as follows:

• Level (log2 I): A single AND gadget of Type C is constructed.

• Level (log2 I − 1): 2 groups of ΛC Type B AND gadgets are constructed, and
the output vertices in each group are connected to each of the input ends I1, I2

of the AND gadget in Level (log2 I).

• Level (log2 I − 2): 22 groups of Λ0ΛC Type B AND gadgets are constructed,
and the output vertices in each group are connected to each of the input ends
I1, I2 of the AND gadgets in each of the 2 groups in Level (log2 I − 1).

• Level (log2 I − 3): 23 groups of Λ2
0ΛC Type B AND gadgets are constructed,

and the output vertices in each group are connected to each of the input ends
I1, I2 of the AND gadgets in each of the 22 groups in Level (log2 I − 2).

• · · ·

• Level 2: 2log2 I−2 groups of Λ
log2 I−3
0 ΛC Type B AND gadgets are constructed,

and the output vertices in each group are connected to each of the input ends
I1, I2 of the AND gadgets in each of the 2log2 I−3 groups in Level 3.

• Level 1: 2log2 I−1 groups of Λ
log2 I−2
0 ΛC Type A AND gadgets are constructed,

and the output vertices in each group are connected to each of the input ends
I1, I2 of the AND gadgets in each of the 2log2 I−2 groups in Level 2.

Finally, the two input sets I1, I2 in each of the 2log2 I−1 = I
2
AND gadget groups in

Level 1 form two of the I input sets for the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget we are
constructing, and the output vertex of the Type C AND gadget in Level (log2 I) is
the output of the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget.

We now show that (1) and (2) in Definition 6.5 hold.

1. If all the vertices in all I input sets are infected with independent probabilities
less than 11

10
p0, and the infection probabilities of the vertices in at least one

set are less than 1
2
p0, then the Type A AND gadgets in at least one group in

158

Figure 6.13: The (I,Λ, p0, p2, ε1, ε2, f)-AND gadget

159

Level 1 will output vertices with infection probabilities less than 1
3
(p2 − ε2).

Since the threshold (the third parameter) of Type B AND gadgets is set to
(p2 − ε2) and 1

3
(p2 − ε2) < 1

2
(p2 − ε2), the Type B AND gadgets in at least

one group in each of Level 2, 3, . . . , log2 I − 1 will output vertices with infection
probabilities less than 1

3
(p2 − ε2). Finally, at least one of the two input sets

for the Type C AND gadget in Level (log2 I) will be infected with probabilities
less than 1

3
(p2 − ε2), which is less than 1

2
(p2 − ε2). Thus, the output of the

entire (I,Λ, p0, p2, ε1, ε2, f)-AND gadget is a vertex with infection probabilities
less than ε1, which implies (1) in Definition 6.5.

2. If all the vertices in all I input sets are infected with independent probabilities
in (p0,

11
10
p0), all the Type A AND gadgets in Level 1 will output vertices with in-

fection probabilities in (p2−ε2, p2]. Since (p2−ε2, p2] ⊆
(
p2 − ε2,

11
10

(p2 − ε2)
)
for

small enough ε2,5 all the Type B AND gadgets in each of Level 2, 3, . . . , log2 I−1

will output vertices with infection probabilities in (p2 − ε2, p2]. Finally, the
Type C AND gadget in Level (log2 I) will output a vertex with infection prob-
ability in (p2 − ε2, p2].

Finally, we prove Lemma 6.6 and Lemma 6.7 in Section 6.4.2.

Proof of Lemma 6.6. The existence of the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget is proved
by the explicit construction above. It remains to show that the number of ver-
tices and edges in this AND gadget is O ((1/ε1)c1Ic2+1), and the input size is Λ =

O ((1/ε1)c1Ic2).
By Lemma 6.21, the number of vertices and edges in the Type A and B AND

gadgets are constants, since the parameter 1
3
(p2−ε2) is a constant. Let χ be a constant

upper bound for these. As for Type C AND gadget, it has O ((1/ε)c1) vertices and
edges by Lemma 6.21. Since there are 2log2 I−iΛ

log2 I−i−1
0 ΛC AND gadgets in Level i

and ΛC = O ((1/ε)c1) as mentioned, the total number of vertices and edges have the
following bound.

O ((1/ε)c1) +

log2 I−1∑
i=1

χ · 2log2 I−iΛ
log2 I−i−1
0 ΛC < χΛC · (2Λ0)log2 I = O

(
(1/ε1)c1Ic2+1

)
,

where c2 = log2 Λ0 is a constant.
5If the parameter ε2 in the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget we are constructing is not

small enough to satisfy this, we can replace ε2 with another smaller ε′2 and instead construct a
(I,Λ, p0, p2, ε1, ε

′
2, f)-AND gadget. Notice that the description 2 of Definition 6.5 implies that a

(I,Λ, p0, p2, ε1, ε
′
2, f)-AND gadget is also a valid (I,Λ, p0, p2, ε1, ε2, f)-AND gadget for ε′2 < ε2.

160

Figure 6.14: The directed edge gadget 〈u, v〉

As for Λ, there are Λ
log2 I−2
0 ΛC AND gadgets in each of the I

2
groups in Level 1,

and each of these AND gadgets takes Λ0 vertices as one of the two inputs. Therefore,
we have

Λ = Λ0 · Λlog2 I−2
0 ΛC = O ((1/ε1)c1Ic2) ,

which concludes the last part of the lemma.

Proof of Lemma 6.7. Based on Lemma 6.23, by changing all the TypeA (2,Λ0, p0, p2,
1
3
(p2−

ε2), ε2, f)-AND gadgets in Level 1 to the TypeA′ (2,Λ0, p
∗(p2−ε2), p2,

1
3
(p2−ε2), ε2, f)-

AND gadgets, we obtain an (I,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget.
The size of the AND gadget only changes by a constant, as the only difference

between the two AND gadgets are the different probability scaling down gadgets used
for different β for A and A′. Since the probability scaling down gadget has a constant
size, we conclude the second half of the lemma.

6.4.7 Construction of Directed Edge Gadget

The (Υ, ε, b, f)-directed edge gadget in Definition 6.9 can be constructed by modify-
ing the number of layers in the (Λ, p1, p2, ε1, ε2, f)-probability filter gadget in Defini-
tion 6.16. While still keeping the parameter h and α such that a1hα = 1 − δ in the
probability separation block of the probability filter gadget, we modify the number
of layers in the circuit to L = log(Υ/ε)

log(1/(1−δ)) + 1.
To construct a directed edge gadget 〈u, v〉, we connect u to all the hL inputs to the

circuit, and let v be the output. The construction of directed edge gadget is shown
in Figure 6.14.

To show property (1) in Definition 6.9, suppose u is connected to Υ infected
vertices v1, v2, . . . , vΥ by the directed edge gadgets. If the vertices in the i-th layer
are infected with probability xi, then the vertices in the (i − 1)-th layer will be

161

infected with probability xi−1 = a1αxi, which can be easily seen from Figure 6.10 and
by noticing the symmetric property of probability scaling down gadgets mentioned in
Remark 6.15. Therefore, each vertices in the first level that are adjacent to u will be
infected with probability (a1α)L. Since there are hL vertices in the first level and u
is assumed to be connected to Υ vertices by the directed edge gadgets, the expected
number of u’s infected neighbors is

E[num of infected neighbors] = ΥhL(a1α)L = Υ(1− δ)L = ε(1− δ) < ε,

where recall that we have set

L =
log(Υ

ε
)

log 1
1−δ

+ 1.

Therefore, by Markov’s inequality, the probability that u has infected neighbor(s) is
less than ε, which means u will be infected with probability less than ε.

For (2), suppose u is connected to v by a directed edge gadget 〈u, v〉 and u is
already infected. Then all the hL inputs of the inner probability filter gadget will be
infected with probability a1 independently, and v will be infected with probability in
(p2−ε2, p2] if δ is set small enough such that a1 passes the threshold p1. In particular,
b > 0.

Lastly, we prove Lemma 6.10 and Lemma 6.11.

Proof of Lemma 6.10. The possibility of the construction is already made explicit.
Let λ be the upper bound of the number of vertices and edges in a probability

separation block in the probability filter gadget (which is a constant), the total number
of vertices in a directed edge gadget is

L−1∑
i=0

λhi = λ
hL − 1

h− 1
= Θ

(
hL
)

= Θ

(
h

log Υ

log 1
1−δ

+
log(1

ε)

log 1
1−δ

+1

)
= Θ

(
Υd(1/ε)d

)
,

and the total number of edges is

hL︸︷︷︸
number of edges from u to the probability scaling down gadget

+
L−1∑
i=0

λhi = Θ
(
hL
)

= Θ
(
Υd(1/ε)d

)
.

where d = log h

log 1
1−δ

.
To show that d depends only on f , it is enough to notice that we only need to set

up the values of h and δ such that p1 < a1 as mentioned.

Proof of Lemma 6.11. Given an (I,Λ, p0, p2, ε1, ε2, f)-AND gadget which consists of

162

many 2-set-input AND gadgets (see Figure 6.13), we can obtain a (Λ, p1, p2, ε1, ε2, f)-
probability filter gadget which is the core of an arbitrary 2-set-input AND gadget.
We construct the (Υ, ε, b, f)-directed edge gadget by increasing the number of layers
in this probability filter gadget, just as what we did earlier. By our analysis above,
we already have b ∈ (p2 − ε2, p2]. Moreover, by Figure 6.11, increasing the number
of layers makes b closer to p2. Therefore, we can have b ∈

(
p2 − 1

2
ε2, p2

]
by just

increasing the number of layers, which proves the possibility of the construction.
By our discussion in Section 6.4.4.2, we only need a constant number of layers to

have b ∈
(
p2 − 1

2
ε2, p2

]
, as 1

2
ε2 is a constant. Thus, requiring b ∈

(
p2 − 1

2
ε2, p2

]
does

not change the number of layers asymptotically. Following the proof of Lemma 6.10,
we conclude the second half of the lemma.

6.4.8 Proof of Theorem 6.2 for a1 = 0

In the case a1 = 0, the constructions of both the AND gadget and the directed edge
gadget fail. Modifications of the structure in Figure 6.7 as well as the structure of
the AND gadget are required. We will discuss these modifications in this section, and
the remaining details are left to the readers.

Modification to the AND gadget The AND gadget for the case a1 = 0 is much
simpler. The input ε1, ε2 is no longer needed, and both p0, p2 in the original AND
gadget are set to 1

2
a2. The definition of the modified AND gadget is shown below.

Definition 6.24. A (I,Λ, f)-AND gadget takes I sets of Λ vertices each as inputs,
and output a vertex such that

1. if the vertices in at least one input set are infected with probability 0, then the
output vertex will be infected with probability 0;

2. if the vertices in all input sets are infected with independent probability at least
1
2
a2, then the output vertex will be infected with probability at least 1

2
a2,

The construction of a (2,Λ, f)-AND gadget is shown in Figure 6.15. It is easy to
see that the infection of the output vertex will not affect any other vertices in this
circuit due to a1 = 0. Due to the same reason, property (1) above is trivial for the
case I = 2 here. Let x be the probability that each vertex in the two input sets is
infected, and let y be the probability the output is infected. Then,

y =
Λ∑
i=2

(
Λ

i

)
ai(a2x)i(1− a2x)Λ−i.

163

Figure 6.15: The modified AND gadget with parameter (2,Λ, f)

To satisfy (2), we only need to choose Λ large enough such that y(1
2
a2) ≥ 1

2
a2. This

is always possible, as we have y(1
2
a2) → p∗ > 1

2
a2 as Λ → ∞ (the expected number

of infected neighbors of the output vertex is 1
2
a2Λ which goes to infinity).

Lemma 6.25. For any f with a2 > a1 = 0, we can construct a (2,Λ0, f)-AND gadget
with constant size, and Λ0 is a constant depending on f .

Proof. The construction above shows the existence of the gadget, and Λ0 is a constant
that is large enough to make y(1

2
a2) ≥ 1

2
a2 true, which depends only on f .

From Figure 6.15, it is clear that the gadget has 3Λ0 + 1 vertices and 3Λ0 edges,
which are both constants.

To construct a (I,Λ, f)-AND gadget with I being an integer power of 2, we use the
same “tower structure” in Figure 6.13. Specifically, all the AND gadgets in all log2 I

levels are identically the (2,Λ0, f)-AND gadget in Figure 6.15, and the output vertices
of 2log2 I−i groups of Λ

log2 I−i
0 (2,Λ0, f)-AND gadgets in Level i are connected to the

input ends of 2log2 I−i−1 groups of Λ
log2 I−i−1
0 (2,Λ0, f)-AND gadgets in Level (i +

1). It is straightforward to check that (1) and (2) in Definition 6.24 hold for this
construction.

Lemma 6.26. For any f with a2 > a1 = 0 and any I that is an integer power of
2, we can construct a (I,Λ, f)-AND gadget with O (Ic+1) vertices and O (Ic+1) edges,
and Λ = Ic, where c is a constant depending on f .

Proof. The existence of this AND gadget is shown by the explicit construction.

164

The numbers of vertices and edges are both

log2 I∑
i=1

3Λ0 · 2log2 I−iΛ
log2 I−i
0 < 3Λ0 · (2Λ0)log2 I = O

(
Ic+1

)
,

where c = log2 Λ0 is a constant, and it depends only on f as Λ0 depends only on f
according to Lemma 6.25. Notice that the number of vertices in a (2,Λ0, f)-AND
gadget is counted as 3Λ0 other than 3Λ0 + 1 in Lemma 6.25, because the output
vertex of each (2,Λ0, f)-AND gadget is counted as one of the input vertices in one of
the (2,Λ0, f)-AND gadgets in the next level.

Finally, since there are Λ
log2 I−1
0 (2,Λ0, f)-AND gadgets in each group in Level 1,

we have
Λ = Λ0 · Λlog2 I−1

0 = Ic,

which concludes the lemma.

Modification to the set cover part We will use a pair of vertices to represent a
subset in the SetCover problem and use a pair of cliques to represent an element in
U . The pair of vertices are connected to each vertex of the two cliques by a specially
designed gadget shown in the bottom of Figure 6.16.

If the two vertices representing a subset are both infected, it is straightforward to
check that each vertex at the output end of the gadget at the bottom of Figure 6.16
will be infected with probability a7

2. Given there are m vertices in a clique, the
expected number of infected vertices in a clique is a7

2m. By choosing m large enough
(but still a constant) such that aba7

2mc > p∗ − ε, each vertex in the clique will be
infected with probability at least p∗− ε. Therefore, if a subset is picked such that the
two vertices representing it are chosen as seeds, all pairs of cliques representing its
elements will be activated. Naturally, given the SetCover instance in which we are
choosing k subsets, we are asked to choose 2k seeds in the InfluenceMaximization

instance.
On the other hand, since a1 = 0, an activated clique will not be able to infect the

pair of vertices representing a subset, so the connection between the pair of vertices
to each vertex in the clique is like a directed edge. Moreover, it is easy to see that we
still need two seeds to pick a subset even if some cliques representing elements in this
subset are activated. Although we have the option to choose the two seeds “on the
gadget”, we still need to pick at least two seeds to “choose a subset”. Thus, it does
not matter if any of these seeds is not exactly in the pair of vertices representing the

165

Figure 6.16: Connection between a pair of vertices representing a subset and vertices
in the two cliques representing an element, and a (2,Λ0, f)-AND gadget in the first
level of the (2n, (2n)c, f)-AND gadget.

166

subset.
The M2 (n,Λ, p∗ − ε, p2, 1/n, ε2, f)-AND gadgets in Figure 6.7 is changed to M2

(2n, (2n)c, f)-AND gadgets here. Moreover, each of the n groups of the (2,Λ0, f)-
AND gadgets in Level 1 of the (2n, (2n)c, f)-AND gadget corresponds to the vertices
in the two cliques representing the same element in U . A single (2,Λ0, f)-AND gadget
is illustrated on the right-hand side of Figure 6.16.

Modification to the connection to the M1 vertices In Figure 6.7, the output
vertex v is connected to theM1 vertices byM1 edges. Since a1 = 0, such construction
will fail to satisfy our purpose here. To fix this, we can use 2M2 (2n, (2n)c, f)-AND
gadgets such that the outputs of every two AND gadgets are connected to each of
the M1 vertices.6

In addition, we also update the value of M1 to M1 = nc+10.

Modification to the clique size m Since there are (2n)c vertices in each of the n
inputs for each of the 2M2 (2n, (2n)c, f)-AND gadgets, to furnish enough inputs, we
update the clique size to m = 2M2 · (2n)c = 21+cn2+c = O (nc+2).

Modification to Lemma 6.8 To conclude this section, we have the following
lemma corresponding to Lemma 6.8 in Section 6.4.2.

Lemma 6.27. If the SetCover instance is a YES instance, by choosing 2k seeds
appropriately, we can infect at least 1

4
a3

2 · nc+12 vertices in expectation in the graph G
we have constructed; if it is a NO instance, we can infect at most O (knc+10) vertices
in expectation for any choice of 2k seeds.

Proof. If the SetCover instance is a YES instance, we choose the 2k seeds represent-
ing the k subsets, and all the 2n cliques will be activated such that each vertex in all
these clique will be infected with probability p∗−ε. Since p∗ ≥ a2, we have p∗−ε > 1

2
a2

as ε is sufficiently small due to large size ofm. All the 2M2 (2n, (2n)c, f)-AND gadgets
fall into case (2), so that the output vertices are infected with probabilities at least
1
2
a2. The M1 vertices in each of the 2M2 copies of the verification part are connected

to two vertices with infection probabilities at least 1
2
a2, so the total expected number

6Another way to fix this is to reduce the number of levels by 1 in the (2n, (2n)c, f)-AND gadget,
such that we have two output vertices of the AND gadget instead of only one output in Defini-
tion 6.24.

167

of infected vertices in G is at least

M2×
(

1

2
a2

)2

︸ ︷︷ ︸
probability both output vertices are infected

× (a2M1)︸ ︷︷ ︸
expected num of infections in M1 vertices

=
1

4
a3

2 ·nc+12.

If the SetCover instance is a NO instance, consider any choice of 2k seeds with k1

seeds in the vertices representing subsets, k2 seeds in the connection gadgets between
vertices representing subsets and vertices in the cliques, k3 seeds in the 2n cliques, k4

seeds in those (2,Λ0, f)-AND gadgets at Level 1 of the (2n, (2n)c, f)-AND gadgets,
and k5 = 2k − k1 − k2 − k3 − k4 seeds in the remaining part of the verification parts
(the (2,Λ0, f)-AND gadgets at the remaining levels and the M1 vertices connecting
to the (2n, (2n)c, f)-AND gadgets). Again, we first prove that at least one clique will
not be activated such that all its vertices are infected with probability 0.

First of all, those k5 seeds cannot have effect in activating cliques. This is because
their influence cannot pass through the (2,Λ0, f)-AND gadgets in the first level, as
the infection of the output vertex in each (2,Λ0, f)-AND gadget cannot further infect
the input vertices due to a1 = 0.

Secondly, for those k1 and k2 seeds, they are at the vertex-pairs representing the
subsets and the gadgets connected to those pairs respectively. We call the vertices
in those gadgets connecting to a pair the vertices around the pair. It is easy to see
that we need to choose at least 2 seeds in or around a pair to pick a subset. To see
this, even if vertex C in the gadget (at the bottom of Figure 6.16) is already infected
(which is possible as C belongs to a clique which may have been activated already)
such that D and E already have one infected neighbor, we still cannot make both A
and B infected by picking only 1 seed in or around the pair (A,B). Thus, we assume
without loss of generality that all k2 seeds are on the pairs representing the subsets,
as we need at least 2 seeds in or around a pair (A,B) in which case we can assume
the seeds are just at A and B.

For those k3 seeds on the cliques and k4 seeds on the (2,Λ0, f)-AND gadgets in the
first level, since each AND gadget in the first level takes two sets of vertices from two
cliques representing the same element in U , we need at least 3 seeds to activate two
cliques representing the same element in U : one in the middle of the AND gadget,
and one in each of the two cliques (such that the two vertices connecting to the seed
in the middle of the AND gadget have two infected neighbors, and stand a chance
to activate the two cliques). In contrast, we only need 2 seeds to activate these two
cliques, by choosing the pair of vertices representing the subset covering the element

168

that these two cliques represent. Therefore, we can assume that those k3 and k4 seeds
are also on those pairs representing subsets.

Since k1 +k2 +k3 +k4 ≤ 2k and the SetCover instance is a NO instance, by the
fact that we need 2 seeds to pick a subset, we conclude that at least one clique will
not be activated, and the vertices in this clique are infected with probability 0.

By the effect of the (2n, (2n)c, f)-AND gadget, except for those (at most) k4 + k5

AND gadgets containing seeds, the output vertices of the remaining 2M2 − k4 − k5

AND gadgets will be infected with probability 0, which have no effect on those M1

vertices. Therefore, even if all the vertices in the set cover part, the k4 + k5 copies of
the verification parts, and the 2M2 (2n, (2n)c, f)-AND gadgets are infected, the total
number of infected vertices cannot exceed

2K + 6K(2n)m+ 2nm︸ ︷︷ ︸
size of the set cover part

+2M2 (2n)c+1︸ ︷︷ ︸
size of an AND gadget

+(k4 + k5)
(
(2n)c+1 +M1

)︸ ︷︷ ︸
size of a verification part

= O
(
knc+10

)
,

which concludes the lemma.

Noticing that the total number of vertices in G is

N = 2K + 6K(2n)m+ 2nm+M2

(
(2n)c+1 +M1

)
= Θ

(
nc+12

)
,

and knc+10 = O(nc+11). we conclude Theorem 6.2 in the case a1 = 0 by setting
τ = 1

c+12
.

6.5 A Variant of Theorem 6.2

Li et al. [53] considered a model where there is only a sublinear fraction of vertices
admitting nonsubmodular local influence functions that are almost submodular. They
showed that, even though this appears to make the diffusion model globally closer
to submodularity, InfMax is still NP-hard to approximate to within N τ for certain
constant τ . In this section, we adapt Theorem 6.2 to a variant that is of a similar
style of this.

Theorem 6.28. Consider the InfMax problem with general threshold model IG,F .
For any fixed 2-quasi-submodular f , any fixed submodular function g : Z≥0 7→ [0, 1]

with g(1) > g(0) = 0, and any γ ∈ (0, 1), there exists a constant τ depending on

169

f and γ such that, even if fv ∈ F is symmetric with either fv = f or fv = g, and
|{v ∈ V : fv = f}| ≤ Nγ, it is NP-hard to distinguish between the following two cases:

• YES: there exists a seed set S with |S| = k such that σ(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σ(S) = O(N1−τ).

Proof. We again discuss two different cases: a1 = f(1) > 0 and a1 = f(1) = 0.
For the first case, the reduction in Sect. 6.4.3 can be modified to prove this theorem

(if we only need to prove this theorem for directed graphs, the much simpler reduction
in Sect. 6.4.2 can be used), with the following modifications.

• Except for those M1 vertices on the right-hand side of Fig. 6.7 in each of the
M2 copies of the verification part, the remaining vertices are equipped with f .
Those M1 vertices in each of the M2 copies are equipped with g.

• Change M1 = n(30c1+30c2+70)d (as it is in Sect. 6.4.3) to M1 = n
1
γ

(30c1+30c2+70)d,
where n is the number of elements in the SetCover instance and c1, c2, d are
the constants in Lemma 6.6 and Lemma 6.10.

Recall from Sect. 6.4.3 that the set cover part has O(n(3c1+3c2+7)d+c1+c2+4) vertices
and the AND gadget has O(nc1+c2+1) vertices, the total number of vertices in G is

N = O
(
n(3c1+3c2+7)d+c1+c2+4

)
+M2

(
O
(
nc1+c2+1

)
+M1

)
= Θ

(
n

1
γ

(30c1+30c2+70)d+2
)
,

which is of polynomial size. Moreover, the total number of vertices that are equipped
with f is

O
(
n(3c1+3c2+7)d+c1+c2+4

)
+M2O

(
nc1+c2+1

)
= o

(
n(30c1+30c2+70)d

)
� Nγ.

The remaining part of the proof is almost identical to the proof of Lemma 6.12.
The only difference is that, if the output of the AND gadget, the vertex v in Fig. 6.7,
is infected, then each of those M1 vertices is now infected with probability g(1),
instead of a1 = f(1) before. With this change, when the SetCover instance is
a YES instance, the total number of infected vertices (for properly choosing seeds
corresponding to the subsets) become

pactivatedg(1)(p2 − ε2)M1M2 = Θ
(
n

1
γ

(30c1+30c2+70)d+2
)

= Θ(N),

where pactivated is the same as it is in the proof of Lemma 6.12, p2, ε2 are the param-
eters for the AND gadget which are the same as defined in Sect. 6.4.3. When the

170

SetCover instance is a NO instance, following the same analysis, the upper bound
for the total number of infected vertices can also be computed by Equation (6.1),
with M1 replaced by the modified value n

1
γ

(30c1+30c2+70)d here. In particular, the first
three terms in (6.1) are dominated, the fourth and the fifth terms are both at most
O(n

1
γ

(30c1+30c2+70)d+1). Therefore, we conclude the theorem for the case a1 > 0 by
setting τ = 1

1
γ

(30c1+30c2+70)d+2
.

For the second case a1 = f(1) = 0, the reduction is almost the same as it is in
Sect. 6.4.8, except for the following changes.

• Those M1 vertices in each of the M2 copies are equipped with g, while the
remaining vertices are equipped with f .

• Change the value of M1 from nc+10 (as it is in Sect. 6.4.8) to n
1
γ

(c+10).

Following the same analysis in Sect. 6.4.8, we can see that the graph has N =

n
1
γ

(c+10)+2 vertices, and there are only O(nc+4) � Nγ vertices that have f as their
local influence functions. Corresponding to Lemma 6.27, we can show that the ex-
pected number of infections is at least 1

4
a2

2g(2)n
1
γ

(c+10)+2 = Θ(N) when appropriately
choosing 2k seeds for a YES instance, and the expected number of infections can be
at most O(kn

1
γ

(c+10)) for a NO instance. By noticing kn
1
γ

(c+10) = O(n
1
γ

(c+10)+1) and
taking τ = 1

1
γ

(c+10)+2
, we conclude the theorem for the case a1 = 0.

We remark that Theorem 6.28 can be viewed as a generalization of the inapprox-
imability result in [53] in the following two directions.

1. Our result holds for any f that is fixed in advance, while f is set to f(1) = 1−ε
2

and f(2) = 1 in [53] (where ε is an arbitrary constant fixed in advance).

2. Our result holds for undirected graphs, while it is unknown if the proof in [53]
can be adapted to show the same inapproximability result for undirected graphs
(notice that an undirected graph can be viewed as a special case of a directed
graph with anti-parallel edges, so an inapproximability result for a more special
case is stronger).

171

CHAPTER 7

Bootstrap Percolation on Graphs with
Hierarchical Communities

We have seen in the previous chapter that even strong assumptions on diffusion
models fail to make nonsubmodular InfMax approximable. Can we circumvent the
inapproximability result by making natural assumptions on the network topology
instead?

In this chapter, we present strong inapproximability results for a very restricted
class of networks called the (stochastic) hierarchical blockmodel, a special case of the
well-studied (stochastic) blockmodel in which relationships between blocks admit a
tree structure. We also provide a dynamic-programming-based polynomial time al-
gorithm which optimally computes a directed variant of the influence maximization
problem on hierarchical blockmodel networks. Our algorithm indicates that the inap-
proximability result is due to the bidirectionality of influence between agent-blocks.

7.1 Introduction

We know a lot about what social networks look like, and previous hardness reductions
make no attempt to capture realistic features of networks. It is very plausible that
by restricting the space of networks we might regain tractability.

In this chapter, we consider two natural network topologies: the hierarchical block-
model and the stochastic hierarchical blockmodel. Each is a natural restriction on
the classic (stochastic) blockmodel [24, 41, 74] network structure. In (stochastic)
blockmodels, agents are partitioned into ` blocks. The weight (or likelihood in the
stochastic setting) of an edge between two vertices is based solely on blocks to which
the vertices belong. The weights (or probabilities) of edges between two blocks can
be represented by an ` × ` matrix. In the (stochastic) hierarchical blockmodel, the

172

structure of the `× ` matrix is severely restricted to be “tree-like”.1

Our (stochastic) hierarchical blockmodel describes the hierarchical structure of
the communities, in which a community is divided into many sub-communities, and
each sub-community is further divided, etc. Typical examples include the structure
of a country, which is divided into many provinces, and each province can be divided
into cities. Our model captures the natural observation that people in the same sub-
community in the lower hierarchy tend to have tighter (or more numerous) bonds
among each other [23]. Such a highly abstracted model necessarily fails to capture all
features of social networks. However, when we use this model as a lower bound, that
is a strength as it shows that the problem is hard even in the case that communities
structure can be represented by a tree. Additionally, this is a very natural model
which captures salient features of real-world networks, so our upper bounds in this
model are still interesting.

Our results We present inapproximability results for InfMax with both the hierar-
chical blockmodel and the stochastic hierarchical blockmodel. We show that InfMax

is NP-hard to approximate to within a factor of N1−ε for an arbitrary ε > 0. More-
over, this result holds in the hierarchical blockmodel even if we assume all agents
have unit threshold rv = 1. We also extend this hardness result to the stochastic
hierarchical blockmodel.

Moreover, for the hierarchical blockmodel, we present a dynamic-programming-
based polynomial time algorithm for InfMax when we additionally assume the in-
fluence from one block to another is “one-way”. This provides insights to the above
intractability result: the difficulty comes from the bidirectionality of influence between
agent-blocks.

7.2 Preliminaries

Same as in the previous chapter, we use N instead of n to denote the total number
of vertices.

We consider bootstrap percolation IG,R (Definition 2.15) for this chapter.
We consider two graph models—the hierarchical blockmodel and the stochastic

hierarchical blockmodel, which are the special case of the well studied blockmodel [74]
and stochastic blockmodel [41] respectively.

1Previous work on community detection in networks [57] defines a different, but related stochastic
hierarchical blockmodel, where the hierarchy is restricted to two levels.

173

Figure 7.1: An example of a hierarchy tree with its corresponding graph. The number
on each node of the hierarchy tree on the left-hand side indicates the weight of the
node, which reflects the weight of the corresponding edges on the hierarchical block
graph on the right-hand side in the above-mentioned way.

7.2.1 Hierarchical Blockmodel

Definition 7.1. A hierarchical blockmodel is an undirected edge-weighted graph G =

(V, T), where V is the set of all vertices of the graph G, and T = (VT , ET , wT) is a
node-weighted binary tree T called a hierarchy tree. In addition, wT satisfies wT (t1) ≤
wT (t2) for any t1, t2 ∈ VT such that t1 is an ancestor of t2.2 Each leaf node t ∈ VT
corresponds to a subset of vertices V (t) ⊆ V , and the V (t) sets partition the vertices
of V . In general, if t is not a leaf, we denote V (t) = ∪t′: a leaf, and an offspring of tV (t′).

For u, v ∈ V , the weight of the edge (u, v) in G is just the weight of the least
common ancestor of u and v in T . That is w(u, v) = maxt:u,v∈V (t) w(t). If this weight
is 0, then we say that the edge does not exist.

To avoid possible confusion, in this chapter, we use the words node and vertex to
refer to the vertices in T and G respectively.

Figure 7.1 provides an example of how a hierarchy tree defines the weights of edges
in the corresponding graph.

Additionally, we can assume without loss of generality that the hierarchy tree is
a full binary tree, as a node in T having only one child plays no role at deciding the
weights of edges in G. For example, in Figure 7.1, the node having weight 2 does not
affect the weight configuration on the right-hand side. We can delete this node and
promote the node with weight 5 to be a child of the root node. We will keep the full
binary tree assumption from now on.

2Since, as it will be seen later, each node in the hierarchy tree represents a community and its
children represent its sub-communities, naturally, the relation between two persons is stronger if
they are in a same sub-community in a lower level.

174

Since hierarchical blockmodel is essentially an edge-weighted graph, we should
consider the weighted version of the bootstrap percolation mentioned in the paragraph
immediately following Definition 2.16.

7.2.2 Stochastic Hierarchical Blockmodel

The stochastic hierarchical blockmodel is similar to the hierarchical blockmodel defined
in the last section, in the sense that the structure of the graph is determined by a
hierarchy tree. Instead of assigning weights to different edges measuring the strength
of relationships, here we assign a probability with which the edge between each pair
of vertices appears. Technically speaking, a stochastic hierarchical blockmodel is a
distribution of unweighted undirected graphs, where each edge is sampled with a
certain probability.

Definition 7.2. A stochastic hierarchical blockmodel is a distribution G = (V, T) of
unweighted undirected graphs where V, T are the same as they are in Definition 7.1
with the additional restriction that the node weights in T belong to the interval [0, 1].
Let H be the weighted graph defined by the hierarchical blockmodel H = (V, T),
and let w(e) denote the weight of edge e in H. Then G = (V,E) is sampled by
independently including each edge e with probability w(e).

When it comes to the choices of S, the InfMax problem can be defined in two
different ways, regarding whether we allow the seed-picker to see the sampling G ∼ G
before choosing the seed set S.

Definition 7.3. Pre-sampling stochastic hierarchical blockmodel InfMax is an opti-
mization problem which takes as inputs G, R, and an integer k and outputs

argmax
S⊆V :|S|=k

E
G∼G

[σG,R(S)] ,

a seed set of size k that maximizes the expected global influence.

Definition 7.4. Post-sampling stochastic hierarchical blockmodel InfMax is an aver-
age case version of InfMax which takes as input G, R, and an integer k, and outputs
the solution of the InfMax instance (G,R, k) after sampling G from G.

175

7.3 Hardness of Approximation for Hierarchical Block-

model

In this section, we provide a strong inapproximability result for InfMax problem for
the hierarchical blockmodel with bootstrap percolation even when all vertices have
the same threshold 1. Specifically, we will show that it is NP-hard to approximate
optimal σ(S) within a factor of N1−ε for any ε > 0 (recall that N = |V | is the total
number of vertices in the graph).

Theorem 7.5. Consider the InfMax problem with bootstrap percolation IG,R. For
any constant ε > 0, even if G is a hierarchical blockmodel and rv = 1 for all v ∈ V ,
it is NP-hard to distinguish between the following two cases:

• YES: there exists a seed set S with |S| = k such that σ(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σ(S) = O(N ε).

We will prove this by a reduction from the VertexCover problem, a well-known
NP-complete problem.

Definition 7.6. Given an undirected graph G = (V ,E) and a positive integer k, the
VertexCover problem (G, k) asks if we can choose a subset of vertices S ⊆ V such
that |S| = k and such that each edge is incident to at least one vertex in S.

The reduction Given a VertexCover instance (G, k), let n = |V | and m = |E|.
We use A1, . . . , An to denote the n vertices and e1, . . . , em to denote the m edges.3 We
make the assumptions n > k is an integer power of 2 and m > n+ k.4 Let W = nm,
M = (n(2W +m)− 1)

1
ε , and δ > 0 be a sufficiently small real number.

We will construct the graph G = (V,E,w) by constructing a hierarchy tree T
which uniquely determines G (see Definition 7.1 in Section 7.2.1). The construction
of T is shown in Figure 7.2. The first log2 n levels of T is a full balanced binary subtree
with n leaves, and the weight of the nodes in all these levels is δ. Each of those n
leaves is the root of a subtree corresponding to each vertex Ai in the VertexCover

instance.
3We use the letter A to denote the vertices in a VertexCover instance instead of commonly

used v, while v is used for the vertices in an InfMax instance. Since VertexCover can be viewed
as a special case of SetCover with vertices corresponding to subsets and edges corresponding to
elements, the letter A, commonly used for subsets, is used here.

4For the assumption that n is an integer power of 2, we can just add isolated vertices to G. For
the assumption m > n + k, notice that allowing the graph G to be a multi-graph does not change
the nature of VertexCover, we can ensure m to be sufficiently large by just duplicating edges.

176

Figure 7.2: The construction of the hierarchy tree T for proving Theorem 7.5.

The structure of the subtrees corresponding to A2, . . . , An and A1 are shown on
the right-hand side of Figure 7.2. The numbers on the tree nodes indicate the weights,
and in particular

wij =

{
[1−(n+k−1)Wδ−(n−1)(j−1)δ−2δ]+δ

W−1+j
if edge ej is incident to Ai

1−(n+k−1)Wδ−(n−1)(j−1)δ−2δ
W−1+j

otherwise
, (7.1)

for each i = 1, . . . , n and j = 1, . . . ,m.
The leaves of each subtree Ai are the leaves of T , which, as we recall from Def-

inition 7.1 correspond to subsets of vertices in G = (V,E,w). Among all the leaves
shown on the right-hand side of Figure 7.2, each solid dot corresponds to a subset
of V containing only one vertex, and each hollow circle corresponds to a subset of V
containing many vertices with the corresponding number of vertices shown.

For each subtree Ai with i = 2, . . . , n, we have constructed m + 2 leaves corre-
sponding to 2W +m vertices in G. They are, in up-to-down order, a clique Di of W
vertices, vertices vim, vi(m−1), . . . , vi1, and a clique Ci of W vertices. As each vertex
has threshold 1 and the leaf nodes corresponding to Ci, Di both have weight 1, infect-
ing any vertex in Ci or Di will cause the infection of all W vertices (which justifies
the name “clique”).

The construction of A1 is similar. The only difference is that, instead of connecting
to a node corresponding to the vertex v1m, the node with weight w1m is now connected
to another node with the same weight and corresponding to a bundle B in G with M
vertices. We shall not call this large bundle B a “clique”, as the weight of the edge

177

between each pair of these M vertices is w1m � 1, which is much weaker.
It is easy to calculate the total number of vertices in the construction: N =

M +M ε.
We present a toy example illustrating the construction of T in Fig. 7.3, where the

explicit construction of T corresponding to a small graph with 4 vertices and 4 edges
is given. In the toy example, n = m = 4, W = mn = 16, k̄ = 2, M = (n(2W +m)−
1)1/ε = 1431/ε, and the values of ε and δ are set sufficiently small and unassigned
for clarity. The wijs, defined according to (7.1), are as follows: corresponding to
the edge e1 = (A1, A2), we have w11 = w21 = 1−81δ

16
(shown by larger dots) and

w31 = w41 = 1−82δ
16

(shown by smaller dots); corresponding to the edge e2 = (A1, A3),
we have w12 = w32 = 1−84δ

17
(shown by larger dots) and w22 = w42 = 1−85δ

17
(shown by

smaller dots); corresponding to the edge e3 = (A1, A4), we have w13 = w43 = 1−87δ
18

(shown by larger dots) and w23 = w33 = 1−88δ
18

(shown by smaller dots); corresponding
to the edge e4 = (A3, A4), we have w34 = w44 = 1−90δ

18
(shown by larger dots) and

w14 = w24 = 1−91δ
18

(shown by smaller dots). In this example, G has a 2-vertex
cover {A1, A3}. Corresponding to this, the k = m + k = 6 seeds should be put
at C1, C2, C3, C4, D1, D3 respectively, so that the vertices in the large bundle B (the
one containing 1431/ε vertices) will be eventually infected: firstly, all the vertices in
C1, C2, C3, C4, D1, D3 will be infected; in the next step, the influence of these infected
vertices is just enough to infect v11, as |C1|w11 + |D1| · (1 + 1

16
)δ + (|C2| + |C3| +

|C4|+ |D3|)δ = 1; we can also check by calculation that the additional infection of v11

will further infect v21, and the additional infection of v21 will further infect v31, v41,
making all the four vertices corresponding to e1 infected; finally, it is easy to check
that the cascade will carry on level-by-level and eventually reach the bundle B. In
general, each level i corresponding to the edge ei = (Aj1 , Aj2) contains n vertices
vi1, . . . , vin, and two of them, vij1 , vij2 , are connected to the tree by a weight heavier
than that of the remaining n − 2 vertices. If the vertices in at least one of Dj1 , Dj2

are infected (corresponding to the case the vertex Aj1 or Aj2 is included in the vertex
cover), after the infection of the vertices in the first i − 1 levels, the corresponding
vertex in vij1 , vij2 will be infected, which will further infect all the remaining n − 1

vertices in the i-th level. On the other hand, if none of the vertices in Dj1 , Dj2 is
infected, even if the cascade reaches the (i − 1)-th level, no vertex in the i-th level
will be infected and the cascade will end here without reaching the bundle B which
contains most vertices of G.

178

Figure 7.3: A toy example illustrating the construction of T for proving Theorem 7.5.

The reduction correctness For a VertexCover instance (G, k), consider the
InfMax instance (G,R, k) with k = n+ k. We aim to show that,

1. If the VertexCover instance (G, k) is a YES instance, then there exists S ⊆ V

with |S| = k such that σ(S) ≥M ;

2. If the VertexCover instance (G, k) is a NO instance, then for any S ⊆ V

with |S| = k we have σ(S) ≤M ε = n(2W +m)− 1.

Proof of (1). Suppose we have a YES VertexCover instance (G, k) with S ⊆ V

covering all edges in E. In the InfMax instance, we aim to show that at least M
vertices will be infected if we choose those k = n+ k seeds in the following way:

• choose an arbitrary seed in each of the cliques C1, . . . , Cn (a total of n seeds are
chosen);

• for each Ai ∈ S, choose an arbitrary seed in the clique Di (a total of k seeds
are chosen).

By such a choice, in the first round of the cascade, all the W vertices in each of
C1, . . . , Cn and each of those k (Di)’s are infected. We aim to show that all vertices
in B will be infected after at most 3m cascade rounds. We call the set of n vertices

179

{v1j, . . . , vnj} the j-th level, and we will show that the cascade carries on level by level.
In particular, we will first show that all vertices in the first level will be infected in at
most 3 rounds. Next, given that all vertices in the first j levels are infected, by similar
calculations, we can show that all vertices in the (j + 1)-th level will be infected.

Consider the first level {v11, . . . , vn1}. Let e1 = (Ai1 , Ai′1) ∈ E. Since the Ver-

texCover instance is a YES instance, either Ai1 ∈ S or Ai′1 ∈ S, or both. Assume
Ai1 ∈ S without loss of generality, then all vertices in Di1 are already infected. In the
coming round, the vertex vi11 ∈ V will be infected, as

fvi11

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di

 = δ

∣∣∣∣∣∣
⋃
i 6=i1

Ci ∪
⋃

i 6=i1,Ai∈S

Di

∣∣∣∣∣∣+ wi11|Ci1|+ δ

(
1 +

1

W

)
|Di1|

= δ((n− 1) + (k − 1))W +
1− (n+ k − 1)Wδ − δ

W
·W

+ δ

(
1 +

1

W

)
W

= 1.

If Ai′1 ∈ S as well, then vi′11 ∈ V will also be infected in the this round, due to the
same calculation. On the other hand, if Ai′1 /∈ S, vi′11 will be infected in the next
round, as

fvi′11

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di ∪ {vi11}

 = δ

∣∣∣∣∣∣
⋃
i 6=i′1

Ci ∪
⋃
Ai∈S

Di ∪ {vi11}

∣∣∣∣∣∣+ wi′11|Ci′1|

= δ((n− 1 + k)W + 1) +
1− (n+ k − 1)Wδ − δ

W
·W

= 1.

Therefore, both vi11 and vi′11 will be infected in both cases.
In the next round, the remaining n−2 vertices {vi01}i0 /∈{i1,i′1};1≤i0≤n will be infected,

180

as we have

fvi01

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di ∪ {vi11, vi′11}

 = δ

∣∣∣∣∣∣
⋃
i 6=i0

Ci ∪
⋃
Ai∈S

Di ∪ {vi11, vi′11}

∣∣∣∣∣∣+ wi01|Ci0|

= δ((n− 1 + k)W + 2)+

1− (n+ k − 1)Wδ − 2δ

W
·W

= 1,

in the case Ai0 /∈ S (such that no vertex in Di0 is infected at this moment), and

fvi01

 n⋃
i=1

Ci ∪
⋃

i 6=i0,Ai∈S

Di ∪ {vi11, vi′11}

=δ

∣∣∣∣∣∣
⋃
i 6=i0

Ci ∪
⋃

i 6=i0,Ai∈S

Di ∪ {vi11, vi′11}

∣∣∣∣∣∣+ wi01|Ci0|+ δ

(
1 +

1

W

)
|Di0|

=δ((n− 1 + k − 1)W + 2) +
1− (n+ k − 1)Wδ − 2δ

W
·W + δ

(
1 +

1

W

)
W

=1 + δ > 1,

in the case Ai0 ∈ S (such that all vertices in Di0 are infected at the first round).
In conclusion, all the n vertices {vi1}1≤i≤n will be eventually infected in at most 3

rounds.
The analysis of the second level is similar. For e2 = (Ai2 , Ai′2) ∈ E, we have either

Ai2 ∈ S or Ai′2 ∈ S (or both), making one of vi22, vi′22 infected (or both), which further
makes both vi22, vi′22 infected (if one of them is not infected previously), and which
eventually makes all the n vertices {vi2}1≤i≤n infected.

For each j = 1, . . . ,m with ej = (Aij , Ai′j), we have either Aij ∈ S or Ai′j ∈ S (or
both). Similar as above, after either two or three rounds, all the vertices in {vij}1≤i≤n

will be infected, if all the vertices in {vi1}1≤i≤n, . . . , {vi(j−1)}1≤i≤n are already infected.
Therefore, we can see that the cascade after the first round carries on in the

following order:

vi11 → vi′11 → {vi1}i 6=i1,i′1 → vi22 → vi′22 → {vi2}i 6=i2,i′2 → · · ·

→ vimm → vi′mm → {vim}i 6=im,i′m → B.

181

Therefore, we conclude 1 as we already have M infected vertices by just counting
those in the bundle B.

For the proof of (2), we present a general proof idea before the formal proof.
To show (2) by contradiction, we assume that we can choose a seed set S ⊆ V

such that |S| = k = n + k and σ(S) > M ε. By a careful analysis, we can conclude
that the only possible way to choose S is as follows.

• an arbitrary vertex from each of C1, . . . , Cn (a total of n vertices are chosen);

• an arbitrary vertex from each ofDπ1 , . . . , Dπk
for certain {π1, . . . , πk} ⊆ {1, . . . , n}

(a total of k vertices are chosen).

The intuitive reason for this is the following: firstly, choosing k seeds among the 2n

cliques C1, . . . , Cn, D1, . . . , Dn is considerably more beneficial, as a seed would cause
the infection of W vertices; secondly, if we cannot choose both Ci and Di, it is always
better to choose Ci because the weights wi1, . . . , wim are considerably larger than
δ(1 + 1/W), if δ is set sufficiently small.

Since the VertexCover instance is a NO instance, there exists an edge ej =

(Aij , Ai′j) such that no vertex in Dij and Di′j
is chosen as seed. By following similar

analysis as in the proof of 1, we can see that the cascade would stop at the level
{vij}i=1,...,n, which concludes (2).

Proof of (2). Assume that we can choose seed set S ⊆ V such that |S| = k = n + k

and σ(S) > M ε. First notice that choosing any seeds from B is at most as good as
choosing seeds from C1 ∪ {v1j}1≤j≤m−1. By our assumption m > n + k = k, we can
assume without loss of generality that no seed is chosen in B. With this assumption,
we will prove that none of these M vertices will be infected in the cascade. Since the
graph G has a total of N = M +M ε vertices, this contradicts that σ(S) > M ε.

Suppose, for the sake of contradiction, a vertex u ∈ B is infected in round t of
the cascade, and there is no infected vertex in B in the first t− 1 rounds. Let Iu be
the set of infected vertices before round t. Since u is infected in round t, we have
fu(Iu) ≥ 1, which, by Definition 7.1, implies∑

v∈Iu

w(u, v) ≥ 1.

We analyze the constituents of Iu.

182

We set δ to be sufficiently (but still polynomially) small such that

(n− 1)(2W +m)δ + δ

(
1 +

1

W

)
� w1m.

5

Then the infection of each vertex in C1∪{v1j}1≤j≤m−1 has contribution w1m to fu(Iu),
while the net contribution from the infections of all vertices in V \{C1∪{v1j}1≤j≤m−1∪
B} is much less than w1m. On the other hand, even if all the W +m− 1 vertices in
C1 ∪ {v1j}1≤j≤m−1 are included in Iu, the contribution to fu(Iu) is

(W +m− 1)w1m ≤ 1− (n+ k − 1)Wδ − (n− 1)(m− 1)δ − δ < 1,

which is still not enough. Thus, we conclude that C1 ∪ {v1j}1≤j≤m−1 ⊆ Iu, and the
vertices from V \{C1∪{v1j}1≤j≤m−1∪B} should contribute at least (n+k− 1)Wδ+

(n− 1)(m− 1)δ+ δ to fu(Iu). From the term (n+ k− 1)Wδ, we can see that at least
n+ k − 1 cliques from the 2n− 1 cliques C2, . . . , Cn, D1, . . . , Dn must be included in
Iu. Coupled with the observation C1 ⊆ Iu, we need at least n + k infected cliques
from C1, . . . , Cn, D1, . . . , Dn.

On the other hand, the only way to infect a clique Ci or Di is to seed one of its
vertices. To see this for each Di, it is enough to notice that the weight δ(1 + 1/W)

is extremely small. To see this for each Ci, notice that only vi1, . . . , vim have non-
negligible influence to Ci, and

m∑
j=1

wij <
m∑
j=1

1

W − 1 + j
< m× 1

W
=

1

n
� 1.

Therefore, to have u ∈ B infected in round t, the only possible way is to choose
k = n+ k seeds from n+ k cliques, among all the 2n cliques C1, . . . , Cn, D1, . . . , Dn.
Lastly, it is straightforward to check that the infection of an vertex in Di is less
influential than the infection of an vertex in the corresponding Ci (both Ci and Di

contain the same number of vertices, so their influences to the outside subtrees are the
same; however, Ci is connected to vi1, . . . , vim with higher weights than Di). Thus,
we can assume without loss of generality that S consists of

• an arbitrary vertex from each of C1, . . . , Cn (a total of n vertices are chosen);

• an arbitrary vertex from each ofDπ1 , . . . , Dπk
for certain {π1, . . . , πk} ⊆ {1, . . . , n}

5This is always possible: when δ → 0, the left-hand side approaches to 0, while we have
limδ→0 w1m = 1

W+m−1 for the right-hand side.

183

(a total of k vertices are chosen).

Since the VertexCover instance is a NO instance, for the choice S = {Aπ1 , . . . , Aπk},
there exists edge ej that is not covered by S. Let j∗ be the smallest j such that ej is
not covered by S.

We first deal with the case j∗ = 1. The case where j∗ > 1 is dealt with subse-
quently.

If j∗ = 1, for e1 = (Ai1 , Ai′1), we have Ai1 , Ai′1 /∈ S. In this case, vi11 will not be
infected, as

fvi11

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di

 = δ

∣∣∣∣∣∣
⋃
i 6=i1

Ci ∪
⋃
Ai∈S

Di

∣∣∣∣∣∣+ wi11|Ci1|

= δ(n− 1 + k)W +
1− (n+ k − 1)Wδ − δ

W
·W

= 1− δ < 1,

and vi′11 will not be infected for the same reason. For i0 6= i1, i
′
1, vi01 will not be

infected either, as we have

fvi01

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di

 = δ

∣∣∣∣∣∣
⋃
i 6=i0

Ci ∪
⋃
Ai∈S

Di

∣∣∣∣∣∣+ wi01|Ci0|

= δ(n− 1 + k)W +
1− (n+ k − 1)Wδ − 2δ

W
·W

= 1− 2δ < 1,

in the case Ai0 /∈ S, and

fvi01

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di

 = δ

∣∣∣∣∣∣
⋃
i 6=i0

Ci ∪
⋃

i 6=i0,Ai∈S

Di

∣∣∣∣∣∣+ wi01|Ci0|+ δ

(
1 +

1

W

)
|Di0|

= δ(n− 1 + k − 1)W +
1− (n+ k − 1)Wδ − 2δ

W
·W

+ δ

(
1 +

1

W

)
W

= 1− δ < 1,

in the case Ai0 ∈ S. Thus, none of {vi1}1≤i≤n will be infected. Since wij1 > wij2 when-
ever j1 < j2 for any i (easy to see by observing wij ≈ 1

W−1+j
), none of {vij}1≤i≤n;2≤j≤m

184

will be infected. In particular, no vertex in B can be infected, which leads to the
desired contradiction.

If j∗ > 1, by the similar analysis in the proof of 1 for the YES instance case,
after many cascade rounds, all vertices in {vij}1≤i≤n;1≤j≤j∗−1 will be infected. For
ej∗ = (Aij∗ , Ai′j∗), we have Aij∗ , Ai′j∗ /∈ S. In this case, vij∗j∗ will not be infected, as

fvij∗ j∗

 n⋃
i=1

Ci ∪
⋃
Ai∈S

Di ∪ {vij}1≤i≤n;1≤j≤j∗−1

=δ

∣∣∣∣∣∣
⋃
i 6=ij∗

Ci ∪
⋃
Ai∈S

Di

∣∣∣∣∣∣+ wij∗j∗
∣∣Cij∗ ∪ {vij∗j}1≤j≤j∗−1

∣∣+ δ
∣∣{vij}i 6=ij∗ ,1≤j≤j∗−1

∣∣
=δ(n− 1 + k)W

+
1− (n+ k − 1)Wδ − (n− 1)(j∗ − 1)δ − δ

W − 1 + j∗
· (W + j∗ − 1) + δ(n− 1)(j∗ − 1)

=1− δ < 1,

and vi′
j∗j
∗ will not be infected for the same reason. Following similar analysis, vi0j∗

will not be infected for i0 6= ij∗ , i
′
j∗ , and none of {vij∗}1≤i≤n will be infected. By

the same observation wij1 > wij2 whenever j1 < j2, none of {vij}1≤i≤n;j∗≤j≤m will
be infected. In particular, no vertex in B can be infected, which again leads to the
desired contradiction. We conclude (2) here.

Since M = Θ(N), (1) and (2) imply Theorem 7.5.

7.4 Hardness of Approximation for Stochastic Hier-

archical Blockmodel

In this section, we will present strong inapproximability results for both pre-sampling
and post-sampling versions of stochastic hierarchical blockmodel InfMax. A major
difference between the results in Section 7.3 and this section is that the strong inap-
proximability result no longer holds if we assume rv = 1 for all v ∈ V in the stochastic
hierarchical blockmodel. In fact, if all the thresholds are fixed to be 1, σ(·) in both
Definition 7.3 and Definition 7.4 become submodular, in which case we can have a
simple greedy (1 − 1/e)-approximation algorithm [44, 59]. In particular, assuming
rv = 1 for all v ∈ V makes post-sampling InfMax trivial: as an infected seed will
eventually infect a whole connected component of G, the optimal way of choosing S

185

is to choose k seeds from the first k largest connected components, after seeing the
sampling G ∼ G. For pre-sampling InfMax, the model becomes exactly ICM, which
is submodular.

The following two theorems are the same, except that Theorem 7.7 corresponds
to the hardness for pre-sampling model (see Definition 7.3), while Theorem 7.8 show
the same hardness result for the post-sampling model (see Definition 7.4) via a ran-
domized Karp’s reduction.

Theorem 7.7. Consider the pre-sampling stochastic hierarchical blockmodel InfMax

problem (G, R, k). For any ε > 0, it is NP-hard to distinguish between the following
two cases:

• YES: there exists a seed set S with |S| = k such that E
G∼G

[σ(S)] = Θ(N);

• NO: for any seed set S with |S| = k, we have E
G∼G

[σ(S)] = O(N ε).

Theorem 7.8. Consider the post-sampling stochastic hierarchical blockmodel Inf-

Max problem (G, R, k). For any ε > 0 and c > 0, it is NP-hard to distinguish
between the following two cases with probability at least N−c (where the probability is
taken over G ∼ G):

• YES: there exists a seed set S with |S| = k such that σ(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σ(S) = O(N ε).

As a remark to Theorem 7.8, the theorem says that if we have an oracle that
outputs a solution which approximates maxS⊆V,|S|≤k σ(S) within a factor of N1−ε for
certain samples G ∼ G, and with probability at least N−c we receive a sample G in
the set of graphs for which the oracle outputs valid solutions, then we can use this
oracle to solve any NP-complete problem as long as we have randomness to sample
G ∼ G.

We will prove both Theorem 7.7 and Theorem 7.8 by a reduction from Ver-

texCover. Given a VertexCover instance (G = (V ,E), k), we will construct a
hierarchy tree T which determines G for both proofs.

The reduction Let n = |V | and m = E as usual. Assume m > n > k
2

+

2, and log2 n is an integer.6 In addition, we assume that A1 ∈ S whenever the

6Notice that we can assume n� k is an integer power of 2 by adding isolated vertices to G which
are never picked, and we can assume m > n by duplicate each edge (which makes G a multi-graph).

186

VertexCover instance is a YES instance.7

We define the following variables used in this section.

δ =
1

10mn2k
, and ∆ = mn2δ =

1

10k
, W = m10n10.

Let M be an extremely large number whose value will be decided later.
The construction of T is shown in Figure 7.4. T is a full balanced binary tree with

log2 n levels and n leaves. The weight of all non-leaf nodes is 1/W , and the weight of
all leaves is 1. The i-th leaf corresponds to Ai ∈ V in the VertexCover instance.
Recall from Definition 7.2 that G = (V, T) is determined by T , and in particular each
leaf of T corresponds to a subset of V . As the weight of each leaf is 1, meaning each
edge appear with probability 1, its corresponding subset of vertices forms a clique in
all G ∼ G. We will call the clique corresponding to the i-th leaf the i-th clique in the
remaining part of this section. For each clique i, we will first describe the vertices we
have constructed in Figure 7.4, and then define their thresholds.

For positive integers x, y, denote by B(x, y) a bundle of x vertices with threshold
y. For each i = 1, . . . , n, we construct the following vertices for the i-th clique:

• a bundle of kW 2 vertices: Bi := B
(
kW 2,∞

)
, and

• m(n − 2) bundles of W 3 vertices: Bijı := B (W 3, rijı) for j = 1, . . . ,m and
ı = 1, . . . , n− 2.

For i = 1, we add an extra bundle C :=
(
M, r1(m+1)

)
. The thresholds {rijı} and

r1(m+1) of those constructed vertices will be defined later.
By our construction, the 1-st clique hasM +kW 2 +m(n−2)W 3 vertices, which is

much more than the number of vertices kW 2 +m(n− 2)W 3 in each of the remaining
cliques. As a remark, we have constructed N = M+nm(n−2)W 3+nkW 2 vertices for
G. Moreover, for M whose value we have not decided yet, we can make it arbitrarily
close to N .

Denote by B·jı := {Bijı}i=1,...,n the n bundles in a horizontal level in Figure 7.4 (for
example, in Figure 7.4, after the top-level {B1, . . . , Bn}, there come levelsB·11, B·12, . . .).
We will call B·jı a level and abuse the word “level” to refer to the vertices in B·jı.

The correspondence between the VertexCover instance and the graph we con-
structed is as follows. Recall that each vertex Ai ∈ V corresponds to the i-th clique.

7This assumption can be made without loss of generality because we can add two extra vertices
named A1, A2 and one extra edge (A1, A2) such that one of A1, A2 much be chosen to cover this
edge, and we can assume A1 is chosen.

187

Now, for each edge ej ∈ E, we have constructed n− 2 levels B·j1, . . . , B·j(n−2), which
are n(n− 2) bundles of W 3 vertices. For example, in Figure 7.4, we have illustrated
the n − 2 levels corresponding to e1 and the n − 2 levels corresponding to em, while
the levels corresponding to the remaining edges in E are omitted.

For each j = 1, . . . ,m and ı = 1, . . . , n − 2, we denote by B≺jı the union of the
first (j − 1)(n − 2) + ı − 1 levels (where the levels are ordered from up to down in
Figure 7.4):

B≺jı :=
⋃

(n−2)j′+ı′<(n−2)j+ı

B·j′ı′

=B·11 ∪B·12 ∪ . . . ∪B·1(ı−1) ∪B·1ı ∪ . . . ∪B·1(n−3) ∪B·1(n−2)∪

B·21 ∪B·22 ∪ . . . ∪B·2(ı−1) ∪B·2ı ∪ . . . ∪B·2(n−3) ∪B·2(n−2)∪

· · ·

B·j1 ∪B·j2 ∪ . . . ∪B·j(ı−1).

Next, we define the thresholds {rijı} and r1(m+1). Denote

ωjı := ((j − 1)(n− 2) + (ı− 1))W 3 + (n− 1) ((j − 1)(n− 2) + (ı− 1))W 2,

which is the expected number of neighbors of each bijı ∈ Bijı in B≺jı. For each fixed
j, denote by ij, i′j the two indices such that ej = (Aij , Ai′j) with ij < i′j, and all rijı’s
are defined as follows.
r1j1 r2j1 · · · rnj1

r1j2 r2j2 · · · rnj2
...

...
. . .

...
r1jn r2jn · · · rnjn

 :=

ωj1 + (1−∆)W 2 ωj1 + (1−∆)W 2 · · · ωj1 + (1−∆)W 2

ωj2 + (1−∆)W 2 ωj2 + (1−∆)W 2 · · · ωj2 + (1−∆)W 2

...
...

. . .
...

ωjn + (1−∆)W 2 ωjn + (1−∆)W 2 · · · ωjn + (1−∆)W 2

+

Column ij Column i′j

1W 2 2W 2 3W 2 · · · 0 · · · 0 · · · (n− 3)W 2 (n− 2)W 2

(n− 2)W 2 1W 2 2W 2 · · · 0 · · · 0 · · · (n− 4)W 2 (n− 3)W 2

(n− 3)W 2 (n− 2)W 2 1W 2 · · · 0 · · · 0 · · · (n− 5)W 2 (n− 4)W 2

...
...

...
...

...
...

...
...

...
...

2W 2 3W 2 4W 2 · · · 0 · · · 0 · · · (n− 2)W 2 1W 2

Notice that for different ı1, ı2 ∈ {1, . . . , n−2}, (r1jı1 − ωjı1 , r2jı1 − ωjı1 , . . . , wnjı1 − ωjı1)

188

Figure 7.4: The construction of the hierarchy tree T for proving Theorem 7.7 and
7.8.

is a permutation of (w1jı2 − ωjı2 , w2jı2 − ωjı2 , . . . , wnjı2 − ωjı2). Specifically, for the
second matrix above, excluding the ij-th and the i′j-th columns, the first row is an
arithmetic progression 1W 2, 2W 2, (n − 2)W 2, and the (ı + 1)-th row is obtained by
cyclically shifting the ı-th row to the right by 1 unit.

Finally, for the threshold r1(m+1) of each vertex in the bundle C. We define

r1(m+1) := m(n− 2)W 3 + (n− 1)m(n− 2)W 2 + (1−∆)W 2.

As we will see later, r1(m+1) is slightly less than the expected number of neighbors of
each c ∈ C in V \ C, by an amount of Θ(∆W 2).

189

The high-level ideas Before presenting rigorous arguments, we provide high level
ideas of the reduction in this subsection.

We have constructed the hierarchy tree T , which corresponds to a graph distribu-
tion G (refer to Definition 7.2). In the next subsection, we will show that a sample
G ∼ G can simulate the corresponding VertexCover instance with high probabil-
ity. In particular, we will say such samples are “good” samples, which we will define
rigorously, and we will prove that a sample is good with probability 1− o(1).

Given a VertexCover instance (G, k), we consider the InfMax instance (G,R, k),
where G is a good sample and k = kW 2.

Suppose we have a good sample G. If the VertexCover instance is a YES
instance, we can find S ⊆ V with |S| = k such that S covers all edges in E. For each
Ai ∈ S, we choose W 2 seeds from the bundle Bi, so a total of kW 2 = k seeds are
chosen.

Similar to what happens in Section 7.3, the cascade will flow level-by-level. In
particular, for the first edge e1 ∈ E and i1, i′1 such that e1 = (Ai1 , Ai′1), the vertices in
the bundles Bi111 and Bi′111 have the lowest threshold in the level B·11. On the other
hand, by our choice of k seeds, we have chosenW 2 seeds from one (or both) of Bi and
Bi′ . Calculations show that these seeds are just enough to infect all vertices in Bi111

and Bi′111. The infection of these vertices will eventually infected the entire level B·11,
and similar analysis shows that the levels B·12, B·13, ... will be infected one-by-one.
Finally, the cascade can reach the huge bundle C, and most vertices in G will be
infected.

If the VertexCover instance is a NO instance, we can assume all seeds are
chosen from {B1, . . . , Bn}, as it is always a better idea to choose seeds from vertices
having higher thresholds in a clique.8 We say that the i-th clique is activated if we
have chosen almost W 2 seeds from Bi, or more than this number. We can draw
an analogy between activating the i-th clique in InfMax and picking the set Ai in
VertexCover.

Since the VertexCover instance is a NO instance, certain element ej∗ is not
covered, and we will show that the cascade will stop at one of the n − 2 levels
B·j∗1, . . . , B·j∗(n−2). Intuitively, the thresholds of vertices in these levels shift cyclically
by our construction, and there exists a level whose vertices’ thresholds are shifted to
the position such that the cascade fails on all leaves. In particular, even if we put

8Rigorously, this may not be true in the post-sampling case, where the seed-picker can see the
sample G. The vertices not in {B1, . . . , Bn} may happen to have more neighbors across cliques, and
the seed-picker can take advantage of this. We will reason about this later. However, for now, we
assume all seeds are chosen from {B1, . . . , Bn}.

190

all k = kW 2 seeds in a single bundle Bi, there exists a level ı such that rij∗ı is large
enough, making the cascade still fail on leaf i. On the other hand, there are only
two leaves ij∗ , i′j∗ having lowest rij∗ı in all levels ı = 1, . . . , n − 2, which are exactly
those ij∗ , i′j∗ with ej∗ = (Aij∗ , Ai′j∗). However, we have very few seeds (considerably
fewer than W 2) on the ij∗-th and the i′j∗-th cliques, by our assumption that ej∗ is not
covered.

Since the cascade will fail on a certain intermediate level, it cannot reach the huge
bundle C. By making C contain most vertices in G (i.e., makingM large enough), we
can see that the number of infected vertices corresponding to a YES VertexCover

instance is significantly higher, which implies both Theorem 7.7 and Theorem 7.8.
In the next two subsections, we will rigorously prove the correctness of our reduc-

tion.

Good samplings In this subsection, we define “good” samplings G ∼ G which
are useful in the reduction from VertexCover, in the sense that G successfully
simulates the VertexCover instance, and we show that a sample G ∼ G is good
with a high probability.

Firstly, consider a W 3 sized bundle Bijı, and an arbitrary vertex v not in the i-th
clique. Over all the samplings G ∼ G, v’s expected number of neighbors in Bijı is

E
G∼G

[|Γ(v) ∩Bijı|] =
1

W
·W 3 = W 2.

Secondly, consider a set Di of δW 2 vertices in the i-th clique, and a set D−i of
(k+ 1)W 2 vertices that are not in the i-th clique, the expected total number of edges
between Di and D−i is

E
G∼G

[|{(u, v) : u ∈ Di, v ∈ D−i}|] =
1

W
· δW 2 · (k + 1)W 2 = δ(k + 1)W 3.

We define a sampling G ∼ G to be “good” if the above two numbers roughly
concentrate on their expectations.

Definition 7.9. A sampling G ∼ G is good if the following holds.

1. For all i = 1, . . . , n, j = 1, . . . ,m and ı = 1, . . . , n− 2, and any vertex v not in
the i-th clique,

(1− δ)W 2 < |Γ(v) ∩Bijı| < (1 + δ)W 2.

2. For any set Di of δW 2 vertices in the i-th clique, and any set D−i of (k+ 1)W 2

191

vertices that are not in the i-th clique, the number of edges between Di and
D−i is less than W 3.6:

|{(u, v) : u ∈ Di, v ∈ D−i}| < W 3.6.

The following lemma shows that a sampling G ∼ G is good with high probability.

Lemma 7.10. A sampling G ∼ G is good with probability more than 1− e−
√
W .

Proof. We apply Chernoff-Hoeffding inequality and union bounds to show this lemma.
In a random sample G ∼ G, for each i = 1, . . . , n; j = 1, . . . ,m; ı = 1, . . . , n− 2 and
v, requirement 1 in Definition 7.9 fails with probability

Pr
[∣∣W 2 − |Γ(v) ∩Bijı|

∣∣ ≥ δW 2
]
≤ 2 exp

(
−1

2

(
δW 2

)2 1

W 3

)
< e−W

0.6

,

where the last inequality is due to (δW 2)2 = 1

k
2m38n36 > W 3.6.

For each Di and D−i, requirement 2 in Definition 7.9 fails with probability

Pr
[
|{(u, v) : u ∈ Di, v ∈ D−i}| ≥ W 3.6

]
≤ exp

(
−1

2

(
W 3.6 − δ(k + 1)W 3

)2

δW 2 · (k + 1)W 2

)
< e−W

3

.

By a union bound, the probability that a sample G ∼ G is not good is

Pr[not good] < nm(n− 2)Ne−W
0.6

+

(
N

δW 2

)(
N

kW 2

)
e−W

3

< N2e−W
0.6

+N δW 2+kW 2

e−W
3

= e2 logNe−W
0.6

+ e(δW 2+kW 2) logNe−W
3

< e−
√
W ,

(as N = poly(W), which implies logN = o(W c) for arbitrary c > 0)

which immediately implies the lemma.

The reduction correctness In this section, we show that InfMax on a good
sample G ∼ G simulates the VertexCover problem.

Lemma 7.11. Consider InfMax with k = kW 2 seeds. For any good sample G ∼ G,

1. if the VertexCover instance is a YES instance, a total of kW 2 + nm(n −
2)W 3 +M vertices can be infected by properly choosing the k seeds;

192

2. if the VertexCover instance is a NO instance, at most N −M vertices can
be infected for any choices of the k seeds.

Proof of (1). Suppose the VertexCover instance is a YES instance. Let S be
the choice of k vertices in VertexCover instance that covers all edges in E. As
mentioned earlier, we can assume A1 ∈ S. For each Ai ∈ S, we choose W 2 seeds from
the bundle Bi, so a total of kW 2 = k seeds are chosen.

We show that all vertices in the level B·11 will be infected. Consider e1 = (Ai1 , Ai′1)

with i1 < i′1. By the fact the VertexCover instance is a YES instance and the way
we choose the seeds, W 2 vertices in either Bi1 or Bi′1

, or both, are seeded. Assume
without loss of generality thatW 2 vertices from Bi1 are seeded, then all the vertices in
the bundle Bi111, having threshold ri111 = ω11+(1−∆)W 2+0 = (1−∆)W 2 < W 2 will
be infected. As for the vertices in Bi′111, they will be infected in the same way if W 2

vertices from Bi′1
are also seeded. On the other hand, if no vertex in Bi′1

is seeded, all
vertices in Bi′111 will be infected due to the influence of Bi111. This is because 1) each
vertex in Bi′111 has more than (1− δ)W 2 infected neighbors in Bi111 by requirement 1
of Definition 7.9, and 2) each vertex in Bi′111 has threshold (1−∆)W 2 < (1− δ)W 2.
In the next n − 2 iterations, by a careful calculation and based on requirement 1 of
Definition 7.9, all vertices in the remaining n− 2 bundles {Bi11}i 6=i1,i′1 will be infected
in the following order:

B111 → B211 → · · ·B(i1−1)11 → B(i1+1)11 → · · ·B(i′1−1)11 → B(i′1+1)11 → · · · → Bn11.

(7.2)
Therefore, the entire level B·11 will be infected.

By similar analysis, we will show that the next level B·12 will be infected after the
previous level B·11. Again, assume without loss of generality that W 2 seeds in Bi1

are chosen. (Remember that the first n− 2 levels are for edge e1 ∈ E, so we are still
working on e1.) Each vertex in Bi112 has (W 2 + W 3) infected neighbor in the i1-th
clique, and has more than (n−1)(1−δ)W 2 infected neighbors in {Bi11}i 6=i1 , which is a
total of more than W 3 +nW 2− (n−1)δW 2 neighbors. Moreover, each vertex in Bi112

has threshold ri112 = ω12 + (1−∆)W 2 + 0 = W 3 + (n− 1)W 2 + (1−∆)W 2 = W 3 +

nW 2−∆W 2 which is less than the number of infected neighbors, as −∆ < −(n−1)δ.
Therefore, all vertices in Bi112 will be infected. As for the vertices in Bi′112, following
the analysis in the last paragraph, they will be infected at the same iteration if W 2

vertices in Bi′1
are seeded, and they will be infected at the next iteration due to the

extra influence from Bi112 if not. Finally, the remaining n − 2 bundles {Bi12}i 6=i1,i′1

193

will be infected in the following order:

B212 → B312 → · · ·B(i1−1)12 → B(i1+1)12 → · · ·B(i′1−1)12 → B(i′1+1)12 → · · ·Bn12 → B112,

(7.3)
which is similar to (7.2), but is cyclically shifted to the left by 1 unit, due to our
cyclic construction of the thresholds. Thus, we have shown that the level B·12 will be
infected after the previous level B·11.

Following the same analysis, we can conclude that all levels will be infected in the
following order:

B·11 → B·12 → · · · → B·1(n−2) →

B·21 → B·22 → · · · → B·2(n−2) →

· · ·

B·m1 → B·m2 → · · · → B·m(n−2).

Lastly, each vertex c ∈ C has W 2 + m(n − 2)W 3 infected neighbors in the 1-st
clique (notice that we assume A1 ∈ S, which implies W 2 vertices in B1 are seeded,
which contributes W 2 infected neighbors), and more than (n−1) ·m(n−2)(1− δ)W 2

infected neighbors from the other n−1 cliques, which is a total of m(n−2)W 3 +(n−
1)m(n− 2)W 2 + W 2 − (n− 1)m(n− 2)δW 2 neighbors. In addition, c has threshold
r1(m+1) = m(n − 2)W 3 + (n − 1)m(n − 2)W 2 + (1 − ∆)W 2, which is less than the
number of infected neighbors, as we have −∆ = −mn2δ < −(n − 1)m(n − 2)δ.
Consequently, all vertices in C will be infected. By summing up the total number of
infected vertices, we conclude the first part of this lemma.

Proof of (2). Suppose the VertexCover instance is a NO instance. For those nkW 2

vertices in {Bi}i=1,...,n having threshold ∞, they will not be infected unless being
seeded, which means at least (n− 1)kW 2 of them will not be infected. To show that
the total number of infected vertices cannot exceed N −M , it is enough to show that
at most (n− 1)kW 2 vertices can be infected in the bundle C of M vertices. We will
show the following stronger claim.

Proposition 7.12. If the VertexCover instance is a NO instance, all vertices in
C will not be infected unless being seeded.

To show Proposition 7.12, we show that the cascade will stop at an intermediate
level. We will first identify this level, and then show this claim in Proportion 7.13.

Consider an arbitrary seed set S (with |S| = k). Let Si be the seeds chosen

194

from the i-th clique, and ki = |Si| so that
∑n

i=1 ki = k. We say that the i-th clique is
activated if ki ≥ (1−9∆)W 2. Since (k+1)(1−9∆)W 2 = kW 2 +

(
1− 9

10
− 9

10k

)
W 2 >

k, at most k cliques can be activated.
If we draw an analogy between activating a clique and picking a vertex in Ver-

texCover, by the fact that the VertexCover instance is a NO instance, there
exists j∗ where ej∗ = (Aij∗ , Ai′j∗) such that both ij∗-th and i′j∗-th cliques are not acti-
vated. For the ease of illustration, assume without loss of generality that ij∗ = n− 1

and i′j∗ = n. Since we have assumed n > k
2

+ 2, there exists ı∗ ≤ n− 1− k such that
the ı∗-th, the (ı∗ + 1)-th, ..., and the (ı∗ + k − 1)-th cliques are not activated. (If we
have an activated clique within any k consecutive cliques in the first n − 2 cliques,
the total number of activated cliques is at least n−2

k
> k, which is a contradiction.)

We will show that the cascade stops at the level B·j∗ı∗ . That is, there are only o(W 3)

infected vertices in ⋃
(n−2)j+ı≥(n−2)j∗+ı∗

B·jı

 ∪ C = V \ (B1 ∪ · · · ∪Bn ∪B≺j∗ı∗) .

We will show that this is true even in the case that all vertices in the previous
(n− 2)(j∗ − 1) + ı∗ − 1 levels (i.e., those in B≺j∗ı∗) are infected.

Proposition 7.13. There are only o(W 3) infected vertices in the level B·j∗ı∗, given
that all vertices in B≺j∗ı∗ and at most kW 2 vertices elsewhere (i.e., in V \B≺j∗ı∗) are
infected.

The “kW 2 vertices elsewhere” mentioned in Proposition 7.13 refer to the k =

kW 2 seeds. Notice that the seed-picker may choose the seeds outside B≺j∗ı∗ , and
Proposition 7.13 holds even if all vertices in B≺j∗ı∗ are infected and the k seeds are
all outside B≺j∗ı∗ .

Before proving Proposition 7.13, we remark that Proposition 7.13 immediately im-
plies Proposition 7.12: the vertices in the later levels B·j∗(ı∗+1), B·j∗(ı∗+2), . . . , B·m(n−2)

have thresholds even higher than the thresholds of vertices in B·j∗ı∗ , and the thresh-
olds increase by Θ(W 3) for each next level.

Proposition 7.13 can be proved by just a sequence of calculations.

Proof of Proposition 7.13. Suppose all vertices in B≺j∗ı∗ and at most kW 2 vertices
elsewhere are infected after a certain cascade iteration t. We will first show that less
than δW 2 not-seeded vertices can be infected in each bundle Bij∗ı∗ for i = 1, . . . , n in
the next cascade iteration t + 1. Specifically, we will show this separately for (i) the

195

2 bundles Bnj∗ı∗ and B(n−1)j∗ı∗ , (ii) the k bundles Bı∗j∗ı∗ , B(ı∗+1)j∗ı∗ , . . . , B(ı∗+k−1)j∗ı∗ ,
and (iii) the remaining n − 2 − k bundles. Then, we will show the same claim for
later iterations.

(i) For each vertex in the bundle Bnj∗ı∗ , by requirement 1 of Definition 7.9, the
number of infected neighbors among the vertices in B≺j∗ı∗ is less than

((n− 2)(j∗ − 1) + ı∗ − 1)W 3︸ ︷︷ ︸
from the n-th clique

+ (n− 1) · ((n− 2)(j∗ − 1) + ı∗ − 1) · (1 + δ)W 2︸ ︷︷ ︸
from the other n−1 cliques

< ωj∗ı∗+∆W 2.

(7.4)
For each vertex in the bundle Bnj∗ı∗ , we have already counted the number of

infected neighbors in B≺j∗ı∗ . Next, we consider the infected neighbors in V \ B≺j∗ı∗ .
There are at most kW 2 of them by our assumption, and they are the seeds S =⋃n
i=1 Sn.
The number of infected neighbors among seed set Sn contributes at most kn <

(1− 9∆)W 2, as we have assumed the n-th clique is not activated. Summing up this
and (7.4), the total number of infected neighbors in B≺j∗ı∗ ∪ Sn is at most ωj∗ı∗ +

(1− 8∆)W 2. Since by our construction rnj∗ı∗ = ωj∗ı∗ + (1−∆)W 2 + 0, to have δW 2

not-seeded vertices infected, the number of edges between each of these δW 2 vertices
and

⋃n−1
i=1 Si should be more than

7∆W 2, 7∆W 2 − 1, 7∆W 2 − 2, . . . , 7∆W 2 − δW 2 + 1

respectively. This requires a total of

δW 2−1∑
t=0

(7∆W 2 − t) > δW 2(7∆W 2 − δW 2 + 1) > W 3.6

edges, where the last inequality is based on the fact δW 2 = 1
10k
m19n18 � W 1.6. Since∑n−1

i=1 ki < (k + 1)W 2, this is a contradiction to requirement 2 of Definition 7.9.
For exactly the same reason, we can only have less than δW 2 not-seeded vertices

infected in the bundle B(n−1)j∗ı∗ , as r(n−1)j∗ı∗ = rnj∗ı∗ .
(ii) Next, we consider these k bundles: Bı∗j∗ı∗ , B(ı∗+1)j∗ı∗ , . . . , B(ı∗+k−1)j∗ı∗ , whose

corresponding cliques ı∗, ı∗ + 1, . . . , ı∗ + k − 1 are not activated by our assumption.
Based on our construction, the vertices in these bundles have thresholds

ωj∗ı∗ + (1−∆)W 2 + 1W 2, ωj∗ı∗ + (1−∆)W 2 + 2W 2, . . . , ωj∗ı∗ + (1−∆)W 2 + kW 2

respectively, which are all more than rnj∗ı∗ . By the same arguments, we can show

196

that having δW 2 not-seeded vertices infected in any of these bundles requires even
more edges, which contradicts requirement 2 of Definition 7.9.

(iii) For each of the remaining n − 2 − k bundles Bij∗ı∗ with i 6= ı, ı + 1, . . . , ı +

k−1, n−1, n, although the corresponding i-th clique may be activated, the threshold
rij∗ı∗ is at least ωj∗ı∗ + (1 − ∆)W 2 + (k + 1)W 2. The number of seeds chosen in
the i-th clique ki cannot offset the term (k + 1)W 2. Therefore, applying the same
arguments shows us that less than δW 2 not-seeded vertices can be infected in each of
these bundles.

We have shown that less than δW 2 not-seeded vertices can be infected in each
bundle Bij∗ı∗ in iteration t + 1. To show this claim for future iterations, assume for
the sake of contradiction that 1) at iteration t∗ > t + 1, less than δW 2 not-seeded
vertices are infected in each bundle Bij∗ı∗ , and 2) at iteration t∗ + 1, for certain i∗

we have at least δW 2 not-seeded vertices infected in the bundle Bi∗j∗ı∗ . Denote by
D−i∗ the set of those vertices outside the i-th clique which are infected during the
iterations t + 1, t + 2, . . . , t∗, and Di∗ be the set of those vertices in the i-th clique
which are infected during the iterations t+ 1, t+ 2, . . . , t∗, t∗+ 1. Following the same
arguments, for some δW 2 vertices from Di∗ , the number of edges between each of
these δW 2 vertices and D−i∗ ∪ S should be more than

7∆W 2, 7∆W 2 − 1, 7∆W 2 − 2, . . . , 7∆W 2 − δW 2 + 1

respectively, whose summation is more than W 3.6. On the other hand, since |D−i∗ | <
(n − 1) · δW 2 < W 2, we have |D−i∗ ∪ S| < (1 + k)W 2, which again contradicts to
requirement 2 of Definition 7.9. Therefore, we conclude Proposition 7.13.

As we have remarked that Proposition 7.13 implies Proposition 7.12, we conclude
the second part of Lemma 7.11.

Finally, by makingM sufficiently large, both Theorem 7.7 and Theorem 7.8 follow
from Lemma 7.10 and Lemma 7.11.

7.5 Hierarchical Blockmodel with One-Way Influence

In this section, we consider a variant to the hierarchical blockmodel in which the
influence between any two vertex-blocks can only be “one-way”. To each node in the
hierarchy tree, a sign is assigned deciding the directions of the edges between the
two vertex-blocks associated to its two children. For example, let t be a node in the

197

hierarchy tree, and tL, tR be its left child and right child respectively. If t has a positive
sign, then all edges between V (tL) and V (tR) are from V (tL) to V (tR); otherwise,
these edges are from V (tR) to V (tL). In this manner, the influence between V (tL)

and V (tR) is one-way.
In InfMax, the seed-picker needs to decide not only the choice of those k seeds,

but also the sign at each tree node. That is, the algorithm to InfMax problem should
also output the optimal directions of influence between each pair of vertex-blocks.

Our algorithm also works in the more restrictive, but, perhaps, more practical
setting where the signs for all tree nodes are fixed as input and the seed-picker only
needs to decide the choice of k seeds. The directed influence between two commu-
nities may be observed in our real life for multiple reasons. In some scenarios (e.g.,
Twitter), the network itself is directed. Status differences between members of dif-
ferent communities could create a uniform direction of influence. Another reason
of directed influence may be government regulations. For example, in the cellphone
market, many Chinese users adopt iPhone products due to the influence of American
users, while Huawei cellphones, adopted by many Chinese users, are banned in the
United States of America.

7.5.1 A Dynamic Programming Algorithm

We present a dynamic-programming-based algorithm for InfMax for this variant of
the hierarchical blockmodel, when the thresholds of the vertices are deterministic.
Our algorithm makes use of the following observation: for a tree node t, the influence
from the infected vertices in the vertex-block V (t) to each vertex in V \ V (t) only
depends on the number of infected vertices in V (t). This is formally described in
Definition 7.14 and Lemma 7.15 below.

Definition 7.14. Given a set I ⊆ V of infected vertices and a vertex v ∈ V \ I, the
influence from I to v is defined by

∑
u∈I w(u, v), where w(u, v) is the weight of the

edge (u, v) which is the weight of the deepest node t ∈ VT such that V (t) contains
both u and v.

By our definition, if the influence from the set of all infected vertices to an unin-
fected vertex v exceeds rv, v will be infected.

Lemma 7.15. Consider an arbitrary node t ∈ VT . The influence from a set of
infected vertices I1 ⊆ V (t) in V (t) to a vertex u ∈ V \ V (t) only depends on |I1|.
Moreover, for any v1, v2 ∈ V (t) and an arbitrary set of infected vertices outside V (t),
I2 ⊆ V \ V (t), the influences from I2 to v1 and v2 are the same.

198

Proof. For any v1, v2 ∈ V (t) and u ∈ V \ V (t), let tv1 , tv2 , tu be the leaves such that
v1 ∈ V (tv1), v2 ∈ V (tv2) and u ∈ V (tu). The least common ancestor of tv1 and tu

is the same as the least common ancestor of tv2 and tu, which is the least common
ancestor of t and tu. This implies that the edges (v1, u) and (v2, u) have the same
weight, and the lemma follows easily from this observation.

For each tree node t ∈ VT , each i = 1, . . . , k, and each ν = 0, 1, . . . , |V |, define
H[t, i, ν] be the smallest positive real number γ satisfying the following:

• given that the threshold of each vertex is updated to rv ← rv − γ, where we
assume the vertex with rv − γ ≤ 0 is infected immediately, we can choose i
seeds in V (t) such that at least ν vertices in V (t) will be infected (due to the
influence of these i seeds).

Intuitively, this means we can infect ν vertices by i seeds, given that the influence from
infected vertices outside V (t) is H[t, i, ν]. Correspondingly, let Σ[t, i, ν] ⊆ V (t) store
the seeding strategy that allocate i seeds in V (t) such that, given that the influence
from certain set of infected vertices in V \ V (t) to each vertex in V (t) is H[t, i, ν],
those i seeds infect at least ν vertices in V (t).

If t is a leaf, the subgraph induced by V (t) is a clique in which all the |V (t)|(|V (t)|−
1) edges have the equal weight. Obviously, the optimal strategy is to place the i seeds
on those vertices with the highest thresholds. We propose Algorithm 7.1 to calculate
Σ[t, i, ν] and H[t, i, ν] for each leaf t.

Input: vertex set V (t), weight of each edge w(t), threshold set {rv}v∈V (t), integers
i, ν

Output: Σ[t, i, ν] and H[t, i, ν] for leaf t
1 set Σ[t, i, v] be the i vertices in V (t) having the highest thresholds (set Σ[t, i, v] = V (t)

if i ≥ |V (t)|)
2 for each vertex v ∈ V (t) do
3 update rv ← rv − i · w(t)
4 end
5 if ν ≤ |{rv : rv ≤ 0}|+ i then
6 set H[t, i, ν] = 0
7 else
8 set H[t, i, ν] be the (ν − i)-th smallest threshold in {rv}v∈V (t)

9 end
10 return Σ[t, i, ν] and H[t, i, ν]

Algorithm 7.1: Initialization for a Leaf t

199

If t is not a leaf, we aim to find a recurrence relation between H[t, i, ν] and
H[tL, iL, νL], H[tR, iR, νR]. Suppose the sign of t is positive, and there are νL infected
vertices in V (tL). Their influence to V (tR) is νL · w(t) where w(t) is the weight of t
reflecting the weight of all edges from V (tL) to V (tR). We have a similar observation
in the case that the sign of t is negative.

By considering all decompositions i = iL + iR and ν = νL + νR, if the sign of t is
positive, we have

H+[t, i, ν] = min
iL=0,...,i; νL=0,...,ν

{
max

(
H[tL, iL, νL], H[tR, i− iL, ν − νL]− νL · w(t)

)}
;

(7.5)
if the sign of t is negative, we have

H−[t, i, ν] = min
iR=0,...,i; νR=0,...,ν

{
max

(
H[tL, i− iR, ν − νR]− νR ·w(t), H[tR, iR, νR]

)}
,

(7.6)
where we set H[t, i, ν] =∞ if ν > |V (t)|. Finally, we decide the sign of t:

H[t, i, ν] = min
(
H+[t, i, ν], H−[t, i, ν]

)
. (7.7)

The recurrence between Σ[t, i, v] and Σ[tL, iL, νL],Σ[tR, iR, νR] can be obtained in a
natural way. The sign of t, sign(t) ∈ {+,−}, is defined naturally by (7.7). If sign(t) =

+, we have Σ[t, i, ν] = Σ[tL, i
∗
L, ν

∗
L]∪Σ[tR, i−i∗L, ν−ν∗L], where (i∗L, ν

∗
L) is the minimizer

for (7.5); if sign(t) = −, we have Σ[t, i, ν] = Σ[tL, i− i∗R, ν − ν∗R]∪Σ[tR, i
∗
R, ν

∗
R], where

(i∗R, ν
∗
R) is the minimizer for (7.6).

Define the height of t ∈ VT be the length of the path to t’s deepest descendant.
The following Algorithm 7.2 solves InfMax for the hierarchical blockmodel with
one-way influence. It is straightforward to check that Algorithm 7.2 runs in time
O (N3k2).

Remark 7.16. Algorithm 7.2 can be easily adapted to the variant of the InfMax

problem where each sign(t) is fixed as input (instead of being a part of the out-
put). Instead of computing both H+[t, i, ν] and H−[t, i, ν], and setting H[t, i, ν] =

min
(
H+[t, i, ν], H−[t, i, ν]

)
, we only need to have H[t, i, ν] = Hsign(t)[t, i, ν]. Corre-

sponding, we have either Σ[t, i, ν] = Σ[tL, i
∗
L, ν

∗
L] ∪ Σ[tR, i − i∗L, ν − ν∗L] or Σ[t, i, ν] =

Σ[tL, i − i∗R, ν − ν∗R] ∪ Σ[tR, i
∗
R, ν

∗
R] depending on sign(t) which is now given by the

input.

200

Input: hierarchical blockmodel G = (V, T), threshold set {rv}v∈V , integer k
Output: 1) S ⊆ V such that |S| = k and S maximizes σ(S), and 2) the sign of each

internal node t: sign(t)
1 for each height i = 0, 1, . . . , h do
2 for each node t ∈ VT with height i do
3 if t is a leaf then
4 initialize Σ[t, i, ν] and H[t, i, ν] by Algorithm 7.1 for all i = 0, 1, . . . , k and

ν = 0, 1 . . . , N
5 else
6 for for each i = 0, 1, . . . , k and ν = 0, 1 . . . , N do
7 H+[t, i, ν] = min

iL=0,...,i;νL=0,...,ν

{
max

(
H[tL, iL, νL], H[tR, i − iL, ν − νL] −

νL · w(t)
)}

8 H−[t, i, ν] = min
iR=0,...,i;νR=0,...,ν

{
max

(
H[tL, i − iR, ν − νR] − νR ·

w(t), H[tR, iR, νR]
)}

9 H[t, i, ν] = min
(
H+[t, i, ν], H−[t, i, ν]

)
10 set sign(t) = argmin

s∈{+,−}
Hs[t, i, ν]

11 if sign(t) = + then
12 set Σ[t, i, ν] = Σ[tL, i

∗
L, ν

∗
L] ∪ Σ[tR, i − i∗L, ν − ν∗L], where (i∗L, ν

∗
L)

minimizes H+[t, i, ν]
13 else
14 set Σ[t, i, ν] = Σ[tL, i − i∗R, ν − ν∗R] ∪ Σ[tR, i

∗
R, ν

∗
R], where (i∗R, ν

∗
R)

minimizes H−[t, i, ν]
15 end
16 end
17 end
18 end
19 end
20 set ν∗ be the maximum ν such that H[r, k, ν] = 0, where r is the root of T
21 return Σ[r, k, ν∗] and sign(t) for each internal node t

Algorithm 7.2: Dynamic Programming Algorithm for Hierarchical Blockmodel Inf-
Max with One-Way Influence

201

7.5.2 Further Discussions

We have seen inapproximability results in Section 7.3 and Section 7.4 for InfMax

on the (stochastic) hierarchical blockmodel. Our algorithm in this section reveals the
intrinsic reason why these problems are difficult.

In the hard InfMax instances in Figure 7.2 and Figure 7.4, we constructed the
hierarchy tree by creating n branches corresponding to the n vertices in Vertex-

Cover. In the case the VertexCover instance is a YES instance, the influence
of the properly chosen seeds passes through these n branches “back-and-forth” fre-
quently: the infected vertices in branch Ai make vertices in branch Aj infected, while
these newly infected vertices in Aj may have backward influence to Ai, and cause more
infected vertices in Ai. This bidirectional effect is not considered in Algorithm 7.2,
and is exactly why InfMax is hard. On the other hand, when there is no such bidi-
rectional effect, even if the algorithm needs to decide the optimal directions at all
internal nodes (with exponentially many choices 2Θ(|VT |)), InfMax becomes easy on
the hierarchial blockmodel, as our algorithm in this section suggests.

Angell and Schoenebeck [2] show that a generalization of this algorithm works well
empirically. This perhaps indicates that the bidirectional influence is, in the average
case, not often so important in realistic settings.

202

CHAPTER 8

r-Complex Contagion on Graphs with
Hierarchical Communities

We have seen strong inapproximability results in both Chapter 6 and Chapter 7,
which are regarding InfMax with strong assumptions on diffusion model and network
topology respectively. In particular, we have seen in Theorem 7.7 that InfMax with
bootstrap percolation and stochastic hierarchical blockmodel is still extremely hard
to approximate. In this chapter, we show that, under some further mild technical
assumptions, InfMax with r-complex contagion (i.e., bootstrap percolation such
that all vertices have the same threshold r) and stochastic hierarchical blockmodel
becomes tractable.

When the graph is not exceptionally sparse, in particular, when the weight of
the root of the hierarchy tree T is ω

(
n−(1+1/r)

)
, under certain mild assumptions, we

prove that the optimal seeding strategy is to put all the seeds in a single community.
This matches the intuition that in a nonsubmodular diffusion model placing seeds
near each other creates synergy. However, it sharply contrasts with the intuition for
submodular diffusion models (e.g., ICM and LTM) in which nearby seeds tend to erode
each others’ effects. Our key technique is a novel time-asynchronized coupling of four
cascade processes. By this coupling argument, we reveal a supermodular property of
r-complex contagion on Erdős-Rényi graphs.

Finally, we show that this observation yields a polynomial time dynamic program-
ming algorithm which outputs optimal seeds if each edge appears with a probability
(or the weight of each node in T is) either in ω

(
n−(1+1/r)

)
or in o (n−2).

8.1 Our Results

Result 1: We first prove that, for InfMax on the stochastic hierarchical blockmodel
with r-complex contagion, under certain mild technical assumptions, the optimal

203

seeding strategy is to put all the seeds in a single community, if, for each vertex-
pair (u, v), the probability that the edge (u, v) is included satisfies puv = ω(n−(1+1/r)).
Notice that the assumption puv = ω(n−(1+1/r)) captures many real life social networks.
In fact, it is well-known that an Erdős-Rényi graph G(n, p) with p = o(1/n) is globally
disconnected: with probability 1−o(1), the graph consists of a union of tiny connected
components, each of which has size O(log n).

The technical heart of this result is a novel coupling argument in Proposition 8.16.
We simultaneously couple four cascade processes to compare two probabilities: 1)
the probability of infection spreading throughout an Erdős-Rényi graph after the
(k+1)-st seed, conditioned on not already being entirely infected after k seeds; 2) the
probability of infection spreading throughout the same graph after the (k+2)-nd seed,
conditioned on not already being entirely infected after k + 1 seeds. This shows that
the marginal rate of infection always goes up, revealing the “supermodular” nature of
the r-complex contagion. The supermodular property revealed by Proposition 8.16
is a property for cascade behavior on Erdős-Rényi random graphs in general, so it is
also interesting on its own.

Our result is in sharp contrast to Balkanski et al.’s observation. Balkanski et al. [5]
studies the stochastic blockmodel with the well-studied submodular diffusion model
ICM, and remarks that “when an influential node from a certain community is selected
to initiate a cascade, the marginal contribution of adding another node from that
same community is small, since the nodes in that community were likely already
influenced.”

Algorithmic aspects The stochastic hierarchical structure seems optimized for a
dynamic programming approach: perform dynamic programming from the bottom to
the root in the tree-like community structure. This intuition can be misleading: we
have seen in the previous chapter that the Ω(n1−ε) inapproximability results extend
to the setting where the networks are stochastic hierarchical blockmodels.
Result 2: However, Result 1 (when the network is reasonably dense, putting all
the seeds in a single community is optimal) can naturally be extended to a dynamic
programming algorithm. We show that this algorithm is optimal if the probability puv
that each edge appears does not fall into a narrow regime. Interestingly, a heuristic
based on dynamic programming works fairly well in practice [2]. Our second result
theoretically justifies the success of this approach, at least in the setting of r-complex
contagions.

204

8.2 Preliminaries

In this section, we useK instead of k to denote the number of seeds. We use σr,G(S) to
denote the total number of infected vertices at the end of the cascade, and σr,G(S) =

EG∼G [σr,G(S)] if the graph G is sampled from some distribution G. Notice that the
function σr,G(·) is deterministic once the graph G and r are fixed.

8.2.1 Stochastic Hierarchical Blockmodels

We study the stochastic hierarchical blockmodel in the last chapter. The definition is
slightly rephrased as follows.

Definition 8.1. A stochastic hierarchical blockmodel is a distribution G = (V, T) of
unweighted undirected graphs sharing the same vertex set V , and T = (VT , ET , w) is
a weighted tree T called a hierarchy tree. The third parameter is the weight function
w : VT → [0, 1] satisfying w(t1) < w(t2) for any t1, t2 ∈ VT such that t1 is an ancestor
of t2. Let LT ⊆ VT be the set of leaves in T . Each leaf node t ∈ LT corresponds to a
subset of vertices V (t) ⊆ V , and the V (t) sets partition the vertices in V . In general,
if t 6∈ LT , we denote V (t) =

⋃
t′∈LT :t′ is an offspring of t V (t′).

The graph G = (V,E) is sampled from G in the following way. The vertex set V
is deterministic. For u, v ∈ V , the edge (u, v) appears in G with probability equal to
the weight of the least common ancestor of u and v in T . That is Pr((u, v) ∈ E) =

maxt:u,v∈V (t) w(t).

In the rest of this chapter, we use the words “tree node” and “vertex” to refer to the
vertices in VT and V respectively. In Definition 8.1, the tree node t ∈ VT corresponds
to community V (t) ⊆ V in the social network. Moreover, if t is not a leaf and t1, t2, . . .
are the children of t in VT , then V (t1), V (t2), . . . partition V (t) into sub-communities.
Thus, our assumption that for any t1, t2 ∈ VT where t1 is an ancestor of t2 we have
w(t1) < w(t2) implies that the relation between two vertices is stronger if they are in
a same sub-community in a lower level, which is natural.

To capture the scenario where the advertiser has the information on the high-level
community structure but lacks the knowledge of the detailed connections inside the
communities, when defining the influence maximization problem as an optimization
problem, we would like to include T as a part of input, but not G. Rather than
choosing which specific vertices are seeds, the seed-picker decides the number of seeds
on each leaf and the graph G ∼ G(n, T) is realized after seeds are chosen. Moreover,
we are interested in large social networks with n→∞, so we would like that a single

205

encoding of T is compatible with varying n. To enable this feature, we consider the
following variant of the stochastic hierarchical block model.

Definition 8.2. A succinct stochastic hierarchical blockmodel is a distribution G(n, T)

of unweighted undirected graphs sharing the same vertex set V with |V | = n, where
n is an integer which is assumed to be extremely large. The hierarchy tree T =

(VT , ET , w, v) is the same as it is in Definition 8.1, except for the followings.

1. Instead of mapping a tree node t to a weight in [0, 1], the weight function
w : VT → F maps each tree node to a function f ∈ F = {f | f : Z+ → [0, 1]}
which maps an integer (denoting the number of vertices in the network) to a
weight in [0, 1]. The weight of t is then defined by (w(t))(n). We assume F is
the space of all functions that can be succinctly encoded.

2. The fourth parameter v : VT → (0, 1] maps each tree node t ∈ VT to the fraction
of vertices in V (t). That is: v(t) = |V (t)|/n. Naturally, we have

∑
t∈LT v(t) = 1

and
∑

t′:t′ is a child of t v(t′) = v(t).

We assume throughout that G(n, T) has the following properties.

Large communities For tree node t ∈ VT , because v(t) does not depend on n,
|V (t)| = v(t)n = Θ(n). In particular, |V (t)| goes to infinity as n does.

Proper separation w(t1) = o (w(t2)) for any t1, t2 ∈ VT such that t1 is an ancestor
of t2. That is, the connection between sub-community t2 is asymptotically (with
respect to n) denser than its super-community t1.

Our definitions of w and v are designed so that we can fix a hierarchy tree T =

(VT , ET , w, v) and naturally define G(n, T) for any n. As we will see in the next
subsection, this allows us to take T as input and then allow n→∞ when considering
InfMax (to be defined soon). This enables us to consider graphs having exponentially
many vertices.

Finally, we define the density of a tree node.

Definition 8.3. Given a hierarchy tree T = (VT , ET , w, v) and a tree node t ∈ VT ,
the density of the tree node is ρ(t) = w(t) · (v(t)n)1/r.

8.2.2 Succinct Stochastic Hierarchical Blockmodel

We study the r-complex contagion on the succinct stochastic hierarchical blockmodel.
Roughly speaking, given hierarchy tree T and an integerK, we want to chooseK seeds

206

which maximize the expected total number of infected vertices, where the expectation
is taken over the graph sampling G ∼ G(n, T) as n→∞.

Definition 8.4. The influence maximization problem InfMax is an optimization
problem which takes as inputs an integer r, a hierarchy tree T = (VT , ET , w, v) as in
Definition 8.2, and an integer K, and outputs k ∈ N|LT |≥0 —an allocation of K seeds
into the leaves LT with

∑
t∈LT kt = K that maximizes

Σr,T (k) := lim
n→∞

EG∼G(n,T) [σr,G(Sk)]

n
, 1

the expected fraction of infected vertices in G(n, T) with the seeding strategy defined
by k, where Sk denotes the seed set in G generated according to k.

Before we move on, the following remark is very important throughout the paper.

Remark 8.5. In Definition 8.4, n is not part of the inputs to the InfMax instance.
Instead, the tree T is given as an input to the instance, and we take n → ∞ to
compute Σr,T (k) after the seed allocation is determined. Therefore, asymptotically,
all the input parameters to the instance, includingK, r and the encoding size of T , are
constants with respect to n. Thus, there are two different asymptotic scopes in this
paper: the asymptotic scope with respect to the input size and the asymptotic scope
with respect to n. Naturally, when we are analyzing the running time of an InfMax

algorithm, we should use the asymptotic scope with respect to the input size, not of
n. On the other hand, when we are analyzing the number of infected vertices after
the cascade, we should use the asymptotic scope with respect to n.

In this paper, we use OI(·),ΩI(·),ΘI(·), oI(·), ωI(·) to refer to the asymptotic scope
with respect to the input size, and we use O(·),Ω(·),Θ(·), o(·), ω(·) to refer to the
asymptotic scope with respect to n. For example, with respect to n we always have
r = Θ(1), K = Θ(1) and |VT | = Θ(1).

Lastly, we have assumed that r ≥ 2, so that the contagion is nonsubmodular.
When r = 1, the model becomes a special case of ICM. As mentioned, for submodular
InfMax, a simple greedy algorithm is known to achieve a (1 − 1/e)-approximation
to the optimal influence [44, 45, 58].

1We divide the expected number of infected vertices by n to avoid an infinite limit. However, as
a result, our analysis naturally ignores lower order terms.

207

8.2.3 Complex Contagion on Erdős-Rényi Graphs

In this section, we consider the r-complex contagion on the Erdős-Rényi random
graph G(n, p). We review some results from [42] which are used in our paper.

Definition 8.6. The Erdős-Rényi random graph G(n, p) is a distribution of graphs
with the same vertex set V with |V | = n and we include an edge (u, v) ∈ E with
probability p independently for each pair of vertices u, v.

The InfMax problem in Definition 8.4 on G(n, p) is trivial, as there is only one
possible allocation of the K seeds: allocate all the seeds to the single leaf node of T ,
which is the root. Therefore, σr,T (·) in Definition 8.4 depends only on the number of
seedsK = |k|, not on the seed allocation k itself. In this section, we slightly abuse the
notation σ such that it is a function mapping an integer to R≥0 (rather than mapping
an allocation of K seeds to R≥0 as it is in Definition 8.4), and let σr,G(n,p)(k) be the
expected number of infected vertices after the cascade given k seeds. Correspondingly,
let σr,G(k) be the actual number of infected vertices after the graph G is sampled from
G(n, p).

Theorem 8.7 (A special case of Theorem 3.1 in [42]). Suppose r ≥ 2, p = o(n−1/r)

and p = ω(n−1). We have

1. if k is a constant, then σr,G(n,p)(k) ≤ 2k with probability 1− o(1);

2. if k = ω
(
(1/npr)1/(r−1)

)
, then σr,G(n,p)(k) = n− o(n) with probability 1− o(1).

Theorem 8.8 (Theorem 5.8 in [42]). If r ≥ 2, p = ω(n−1/r) and k ≥ r, then
PrG∼G(n,p) [σr,G(k) = n] = 1− o(1).

When p = Θ(n−1/r), the probability that k seeds infect all the n vertices is positive,
but bounded away from 1. We use Po(λ) to denote the Poisson distribution with mean
λ.

Theorem 8.9 (Theorem 5.6 and Remark 5.7 in [42]). If r ≥ 2, p = cn−1/r + o(n−1/r)

for some constant c > 0, and k ≥ r is a constant, then

lim
n→∞

Pr
(
σr,G(n,p)(k) = n

)
= ζ(k, c),

for some ζ(k, c) ∈ (0, 1). Furthermore, there exist numbers ζ(k, c, `) > 0 for ` ≥ k

such that
lim
n→∞

Pr
(
σr,G(n,p)(k) = `

)
= ζ(k, c, `)

208

for each ` ≥ k, and ζ(k, c) +
∑∞

`=k ζ(k, c, `) = 1.
Moreover, the numbers ζ(k, c, `)’s and ζ(k, c) can be expressed as the hitting prob-

abilities of the following inhomogeneous random walk. Let ξ` ∼ Po
((

`−1
r−1

)
cr
)
, ` ≥ 1

be independent, and let S̃` :=
∑`

j=1(ξj − 1) and T̃ := min{` : k+ S̃` = 0} ∈ N∪{∞}.
Then

ζ(k, c) = Pr
(
T̃ =∞

)
= Pr

(
k + S̃` ≥ 1 for all ` ≥ 1

)
(8.1)

and ζ(k, c, `) = Pr(T̃ = `).

We have the following corollary for Theorem 8.9, saying that when p = Θ(n−1/r),
if not all vertices are infected, then the number of infected vertices is constant. As a
consequence, if the cascade spreads to more than constantly many vertices, then all
vertices will be infected.

Corollary 8.10 (Lemma 11.4 in [42]). If r ≥ 2, p = cn−1/r + o(n−1/r) for some
constant c > 0, and k ≥ r, then

lim
n→∞

Pr
(
φ(n) ≤ σr,G(n,p)(k) < n

)
= 0

for any function φ : Z+ → R+ such that limn→∞ φ(n) =∞.

8.3 Our Main Result

Our main result is the following theorem, which states that the optimal seeding
strategy is to put all the seeds in a community with the highest density, when the
root has a weight in ω(1/n1+1/r).

Theorem 8.11. Consider the InfMax problem with r ≥ 2, T = (VT , ET , w, v),
K > 0 and the weight of the root node satisfying w(root) = ω(1/n1+1/r). Let t∗ ∈
argmax
t∈LT

ρ(t) and k∗ be the seeding strategy that puts all the K seeds on t∗. Then

k∗ ∈ argmax
k

Σr,T (k).

Notice that the assumption w(root) = ω(1/n1+1/r) captures many real life social
networks. In fact, it is well-known that an Erdős-Rényi graph G(n, p) with p = o(1/n)

is globally disconnected: with probability 1 − o(1), the graph consists of a union of
tiny connected components, each of which has size O(log n).

The remaining part of this section is dedicated to proving Theorem 8.11. We
assume w(root) = ω(1/n1+1/r) in this section from now on. It is worth noting that,

209

in many parts of this proof, and also in the proof of Theorem 8.23, we have used the
fact that an infection of o(n) vertices contributes 0 to the objective Σr,T (k), as we
have taken the limit n → ∞ and divided the expected number of infections by n in
Definition 8.4.

Definition 8.12. Given T = (VT , ET , w, v), a tree node t ∈ VT is supercritical if
w(t) = ω(1/n1/r), is critical if w(t) = Θ(1/n1/r), and is subcritical if w(t) = o(1/n1/r).

From the results in Sect. 8.2.3, if we allocate k ≥ r seeds on a supercritical leaf
t ∈ LT , then with probability 1 − o(1) all vertices in V (t) will be infected; if we
allocate k seeds on a subcritical leaf t ∈ LT , at most a negligible amount of vertices,
2k = Θ(1), will be infected; if we allocate k ≥ r seeds on a critical leaf t ∈ LT , the
number of infected vertices in V (t) follows Theorem 8.9.

We say a tree node t ∈ VT is activated in a cascade process if the number of
infected vertices in V (t) is v(t)n− o(n), i.e., almost all vertices in V (t) are infected.
Given a seeding strategy k, let Pk be the probability that at least one tree node
is activated when n → ∞. Notice that this is equivalent to at least one leaf being
activated. The proof of Theorem 8.11 consists of two parts. We will first show that,
Pk completely determines Σr,T (k) (Lemma 8.13). Secondly, we show that placing all
the seeds on a single leaf with the maximum density will maximize Pk (Lemma 8.14).

Lemma 8.13. Given any two seeding strategies k1,k2, if Pk1 ≤ Pk2, then Σr,T (k1) ≤
Σr,T (k2).

Lemma 8.14. Let k be the seeding strategy that allocates all the K seeds on a leaf
t∗ ∈ argmax

t∈LT
(ρ(t)). Then k maximizes Pk.

Lemma 8.13 and Lemma 8.14 imply Theorem 8.11.

8.3.1 Proof Sketch of Lemma 8.13

We sketch the proof. The full proof is in the appendix.

Proof (sketch). Let E be the event that at least one leaf (or tree node) is activated
at the end of the cascade.

In the case that E does not happen, we show there are only o(n) infected vertices
in V , regardless of the seeding strategy. First, Theorem 8.8 and Corollary 8.10 imply
that the number of infected vertices in a critical or supercritical leaf t can only be
either a constant or v(t)n. Because E does not happen, it must be the former. Second,

210

Theorem 8.7 indicates that a subcritical leaf with a constant number of seeds will not
have ω(1) infected vertices. As there are only a constant number of infections in each
of the critical or supercritical leaves, and we have only a constant number K = Θ(1)

of seeds, this implies that there are also only a constant number of infections in
subcritical leaves.

If E happens, we can show that the expected total number of infected vertices
does not vary significantly for different seeding strategies. Consider two leaves t1, t2
with their least common ancestor t. If a leaf t1 is activated, we find a lower bound of
the probability that a vertex v ∈ V (t2) is infected due to the influence of V (t1). We
assume without loss of generality that w(t) = o(1/n), which can only further reduce
v’s infection probability from the case when w(t) is in Ω(1/n). With this assumption,
the probability that v ∈ V (t2) is infected by the vertices in V (t1) is(

v(t1)n

r

)
w(t)r(1− w(t))v(t1)n−r = ω

(
nr
(

1

n1+ 1
r

)r
· 1
)

= ω

(
1

n

)
,

where the first equality uses the assumption w(t) = o(1/n) so that (1−w(t))v(t1)n−r =

Ω(1). Thus, there are ω(1/n) · Θ(n) = ω(1) infected vertices in V (t2). Theorem 8.8
and Corollary 8.10 show that t2 will be activated if t2 is critical or supercritical.
Therefore, when E happens, all the critical and supercritical leaves will be activated.
As for subcritical leaves, the number of infected vertices may vary, but Theorem 8.7
intuitively suggests that adding a constant number of seeds is insignificant (we handle
this rigorously in the full proof). Therefore, the expected total number of infections
equals to the number of vertices in all critical and supercritical leaves, plus the ex-
pected number of infected vertices in subcritical leaves which does not significantly
depend on the seeding strategy k.

In conclusion, the number of infected vertices only significantly depends on whether
or not E happens. In particular, we have a fixed fraction of infected vertices whose
size does not depend on k if E happens, and a negligible number of infected vertices
if E does not happen. Therefore, Pk characterizes Σr,T (k), and a larger Pk implies a
larger Σr,T (k).

8.3.2 Proof of Lemma 8.14

We first handle some corner cases. If K < r, then the cascade will not even start,
and any seeding strategy is considered optimal. If T contains a supercritical leaf, the
leaf with the highest density is also supercritical. Putting all the K ≥ r seeds in

211

this leaf, by Theorem 8.8, will activate the leaf with probability 1− o(1). Therefore,
this strategy makes Pk = 1, which is clearly optimal. In the remaining part of this
subsection, we shall only consider K ≥ r and all the leaves are either critical or
subcritical. Notice that, by the proper separation assumption, all internal tree nodes
of T are subcritical.

We split the cascade process into two phases. In Phase I, we restrict the cascade
within the leaf blocks (V (t) where t ∈ LT), and temporarily assume there are no
edges between two different leaf blocks (similar to if w(t) = 0 for all t 6∈ LT). After
Phase I, Phase II consists of the remaining cascade process.

Proposition 8.15 shows that maximizing Pk is equivalent to maximizing the prob-
ability that a leaf is activated in Phase I. Therefore, we can treat T such that all the
leaves, each of which corresponds to a G(n, p) random graph, are isolated.

Proposition 8.15. If no leaf is activated after Phase I, then with probability 1−o(1)

no vertex will be infected in Phase II, i.e., the cascade will end after Phase I.

We sketch the proof here, and the full proof is available in the appendix.

Proof (sketch). Consider any critical leaf t and an arbitrary vertex v ∈ V (t) that
is not infected after Phase I. Let Kin be the number of infected vertices in V (t)

after Phase I, and Kout be the number of infected vertices in V \ V (t). If no leaf
is activated after Phase I, Theorem 8.7 and Corollary 8.10 suggest that Kin = O(1)

and Kout = O(1). The probability that v is connected to any of the Kin infected
vertices in V (t) can only be less than w(t) = Θ(n−1/r) conditioning on the cascade
inside V (t) does not carry to v, so the probability that v has a infected neighbors
in V (t) is O(n−a/r). On the other hand, the probability that v has r − a neighbors
among the Kout outside infected vertices is o(n−(r−a)/r). Therefore, the probability
that v is infected in the next iteration is

∑r−1
a=0O(n−a/r) · o(n−(r−a)/r) = o(1/n), and

the expected total number of vertices infected in the next iteration after Phase I is
o(1). The proposition follows from the Markov’s inequality.

Since Theorem 8.7 suggests that any constant number of seeds will not activate
a subcritical leaf, we should only consider putting seeds in critical leaves. In Propo-
sition 8.16, we show that in a critical leaf t, the probability that the (i + 1)-th seed
will activate t conditioning on the first i seeds failing to do so is increasing as i in-
creases. Intuitively, Proposition 8.16 reveals a super-modular nature of the r-complex
contagion on a critical leaf, making it beneficial to put all seeds together so that
the synergy effect is maximized, which intuitively implies Lemma 8.14. The proof

212

of Proposition 8.16 is the most technical result of this paper, we will present it in
Sect. 8.4.

Proposition 8.16 (log-concavity of lim
n→∞

Pr(En
k)). Consider an Erdős-Rényi random

graph G(n, p) with p = cn−1/r + o(n−1/r), and assume an arbitrary order on the n
vertices. Let En

k be the event that seeding the first k vertices does not make all the
n vertices infected. We have lim

n→∞
Pr(En

k+2 | En
k+1) < lim

n→∞
Pr(En

k+1 | En
k) for any

k ≥ r − 1.

Equipped with Proposition 8.16, to show Lemma 8.14, we show that the seeding
strategy that allocates K1 > 0 seeds on a critical leaf t1 and K2 > 0 seeds on a critical
leaf t2 cannot be optimal. Firstly, it is obvious that both K1 and K2 should be at
least r, for otherwise those K1 (K2) seeds on t1 (t2) are simply wasted.

Let En
k be the event that the first k seeds on t1 fail to activate t1 and F n

k be
the event that the first k seeds on t2 fail to activate t2. By Proposition 8.16, we
have lim

n→∞
Pr(En

K1+1 | En
K1

) < lim
n→∞

Pr(En
K1
| En

K1−1) and lim
n→∞

Pr(F n
K2+1 | F n

K2
) <

lim
n→∞

Pr(F n
K2
| F n

K2−1), which implies

lim
n→∞

Pr(En
K1+1) Pr(F n

K2−1)

Pr(En
K1

) Pr(F n
K2

)
·

Pr(En
K1−1) Pr(F n

K2+1)

Pr(En
K1

) Pr(F n
K2

)

= lim
n→∞

Pr(En
K1+1 | En

K1
) Pr(F n

K2+1 | F n
K2

)

Pr(En
K1
| En

K1−1) Pr(F n
K2
| F n

K2−1)
< 1.

Therefore, we have either lim
n→∞

Pr(EnK1+1) Pr(FnK2−1)

Pr(EnK1
) Pr(FnK2

)
or lim

n→∞

Pr(EnK1−1) Pr(FnK2+1)

Pr(EnK1
) Pr(FnK2

)
is less than

1. This means either the strategy putting K1 + 1 seeds on t1 and K2 − 1 seeds on t2,
or the strategy putting K1−1 seeds on t1 and K2 + 1 seeds on t2 makes it more likely
that at least one of t1 and t2 is activated. Therefore, the strategy putting K1 and K2

seeds on t1 and t2 respectively cannot be optimal. This implies an optimal strategy
should not allocate seeds on more than one leaf.

Finally, a critical leaf t with v(t)n vertices and weight w(t) can be viewed as an
Erdős-Rényi random graph G(m, p) withm = v(t)n and p = w(t) = ρ(t)·(v(t)n)−1/r =

ρ(t)m−1/r, where ρ(t) = Θ(1) when t is critical. Taking c = ρ(t) in Theorem 8.9, we
can see that ξ` has a larger Poisson mean if c is larger, making it more likely that the
G(m, p) is fully infected (to see this more naturally, larger c means larger p if we fix
m). Thus, given that we should put all the K seeds in a single leaf, we should put
them on a leaf with the highest density. This concludes Lemma 8.14.

213

8.4 Proof for Proposition 8.16

Since the event En
k+1 implies En

k , we have Pr(En
k+1|En

k) = Pr(En
k+1)/Pr(En

k). There-
fore, the inequality we are proving is equivalent to

lim
n→∞

Pr(En
k+2)/Pr(En

k+1) < lim
n→∞

Pr(En
k+1)/Pr(En

k),

and it suffices to show that

lim
n→∞

Pr(En
k+2) lim

n→∞
Pr(En

k) < lim
n→∞

Pr(En
k+1) lim

n→∞
Pr(En

k+1). (8.2)

Proposition 8.16 shows that the failure probability, lim
n→∞

Pr(En
k), is logarithmically

concave with respect to k.
The remaining part of the proof is split into four parts: In Sect. 8.4.1, we begin by

translating Eqn. (8.2) in the language of inhomogeneous random walks. In Sect. 8.4.2,
we present a coupling of two inhomogeneous random walks to prove Eqn. (8.2). In
Sect. 8.4.3, we prove the validity of the coupling. in Sect. 8.4.4, we finally show the
coupling implies Eqn. (8.2).

8.4.1 Inhomogeneous Random Walk Interpretation

We adopt the inhomogeneous random walk interpretation from Theorem 8.9, and
view the event En

k as the following: the random walk starts at x = k; in the i-th
iteration, x moves to the left by 1 unit, and moves to the right by α(i) ∼ Po

((
i−1
r−1

)
cr
)

units; Let Ek be the event that the random walk reaches x = 0. By Theorem 8.9,
Pr(Ek) = lim

n→∞
Pr(En

k). Thus, lim
n→∞

Pr(En
k+2) lim

n→∞
Pr(En

k) = Pr(Ek+2) Pr(Ek). In this

proof, we let λ(i) =
(
i−1
r−1

)
cr, and in particular, λ(0) = λ(1) = · · · = λ(r − 1) = 0.

Note that as i increases, the expected movement of the walk increases, and make it
harder to reach 0. This observation is important for our proof.

To compute Pr(Ek+2) Pr(Ek), we consider the following process. A random walk
in Z2 starts at (k + 2, k). In each iteration i, the random walk moves from (x, y) to
(x−1+α(i), y−1+β(i)) where α(i) and β(i) are sampled from Po(λ(i)) independently.
If the random walk hits the axis y = 0 after a certain iteration T , then it is stuck
to the axis, i.e., for any i > T , the update in the i-th iteration is from (x, 0) to
(x − 1 + α(i), 0); similarly, after reaching the axis x = 0, the random walk is stuck
to the axis x = 0 and updates to (0, y − 1 + β(i)). Then, Pr(Ek+2) Pr(Ek) is the
probability that the random walk starting from (k + 2, k) reaches (0, 0).

214

To prove (8.2), we consider two random walks in Z2 defined above. Let A be the
random walk starting from (k + 2, k), and let B be the random walk starting from
(k + 1, k + 1). Let HA and HB be the event that A and B reaches (0, 0) respectively.
To prove (8.2), it is sufficient to show:

Pr(HA) < Pr(HB).

To formalize this idea, we define a coupling between A and B such that: 1) whenever
A reaches (0, 0), B also reaches (0, 0), and 2) with a positive probability, B reaches
(0, 0) but A never does.

In defining the coupling, we use the idea of splitting and merging of Poisson
processes [6]. We reinterpret the random walk by breaking down each iteration i into
J(i) steps such that it is symmetric in the x- and y-directions (with respect to the
line y = x) and the movement in each step is “small”.

If at the beginning of iteration i the process is at (x, y) with x > 0 and y > 0:

• At step 0 of iteration i, we sample J(i) ∼ Po(2λ(i)), set (α(i, 0), β(i, 0)) =

(−1,−1), and update (x, y) 7→ (x+ α(i, 0), y + β(i, 0));

• At each step j for j = 1, . . . , J(i), (α(i, j), β(i, j)) = (1, 0) with probability 0.5,
and (α(i, j), β(i, j)) = (0, 1) otherwise. Update (x, y) 7→ (x+α(i, j), y+β(i, j));2

On the other hand, if x = 0 (or y = 0) at the beginning of iteration:

• At step 0 of iteration i, we sample J(i) ∼ Po(2λ(i)), set
(
α(i, 0), β(i, 0)

)
=

(0,−1) (or (−1, 0) if y = 0), and update (x, y) 7→
(
x+ α(i, 0), y + β(i, 0)

)
;

• At each step j for j = 1, . . . , J(i), with probability 0.5
(
α(i, j), β(i, j)

)
= (1, 0),

(or
(
α(i, j), β(i, j)

)
= (0, 1)) and (α(i, j), β(i, j)) = (0, 0), otherwise. Update

(x, y) 7→
(
x+ α(i, j), y + β(i, j)

)
;

If at the end of iteration i, (x, y) = (0, 0) we stop the process.
Notice that we only switch from one type of iteration to the other if x = 0 (or

y = 0) at the end of an iteration i. Here way say the random walk is stuck to the
axis x = 0 (or the axis y = 0). If this happens, it will be stuck to this axis forever.
Also, notice that in each step we have at most 1 unit movement. Also, in steps
j = 1, . . . , J(i) the walk can only move further away from both axes y = 0 and x = 0.

2Standard results from Poisson process indicate that,
∑J(i)
j=1 α(i, j) ∼ Po(λ(i)), and

∑J(i)
j=1 β(i, j) ∼

Po(λ(i)) which are two independent Poisson random variables.

215

Let
(
x(i, j), y(i, j)

)
be the position of the random walk after iteration i step j, and(

x(i), y(i)
)
be its position at the end of iteration i. Moreover, let α(i) =

∑J(i)
j=1 α(i, j)

be the net movement in x direction during iteration i excluding the movement in
Step 0, and let ᾱ(i) = α(i)+α(i, 0) be the net movement including movement at step
0. Similarly define y-directional movements β(i) =

∑J(i)
j=1 β(i, j) and β̄(i).

8.4.2 The Coupling

We want to show that the probability of A reaching the origin is less that of B. To this
end, we create a coupling between the two walks, which we outline here. Fig. 8.1 and
Fig. 8.2 illustrate most aspects of this coupling. In the description of the coupling,
we will let B move “freely”, and define how A is “coupled with” B.

Recall that A starts at (k+ 2, k) and B starts at (k+ 1, k+ 1). At the beginning,
we set A’s movement to be identical to B’s. Before one of them hits the origin, either
of the following two events must happen: A and B become symmetric to the line
x = y at some step, Esymm, or A reaches the axis y = 0 at the end of some iteration,
Eskew. This is called Phase I and is further discussed in Sect. 8.4.2.1.

In the first case Esymm, the positions of A and B are symmetric. We set A’s
movement to mirror B’s movement. Therefore, in this case, A and B will both
hit the origin, or neither of them will. This is called Phase II Symm and is further
discussed in Sect. 8.4.2.2.

For the latter case Eskew, A reaches the axis y = 0 at iteration Tskew. We call the
process is in Phase II Skew and further discussed in Sect. 8.4.2.3. Because B starts
one unit above A and one unit to the left of A, at iteration Tskew, B is at the axis
y = 1 and one unit to the left of A. Next we couple A’s movement in the x-direction
to be identical to B’s, so that B is always one unit to the left of A. This coupling
continues unless B hits the axis x = 0. Denote this iteration T ∗. At time T ∗, A is one
unit to the right of the axis x = 0. Recall that at iteration Tskew when Eskew happens,
B is one unit above the axis so that y = 1. Therefore, we can couple the movement
of A in the x-direction after iteration T ∗ with B’s movement in the y-direction after
iteration Tskew. Because λ(i) increases with i, we can couple the walks in such a way
as to ensure that A moves toward the origin at a strictly slower rate than B does.
Therefore, A only reaches the y-axis x = 0 if B reaches the x-axis y = 0, and we have
shown that A is less likely to reach the origin than B does.

Let
(
xA(i, j), yA(i, j)

)
, and

(
xB(i, j), yB(i, j)

)
be the coordinates for A and B

respectively after iteration i step j. Similarly, let JA(i) and JB(i) be the number of

216

steps for A andB in iteration i. Let αA(i, j) and αB(i, j) be the x-direction movements
of both walks in iteration i step j, and βA(i, j) and βB(i, j) be the corresponding y-
direction movements.

8.4.2.1 Phase I

Starting with
(
xA(0), yA(0)

)
= (k + 2, k) and

(
xB(0), yB(0)

)
= (k + 1, k + 1), A

moves in exactly the same way as B, i.e., JA(i) = JB(i), αA(i, j) = αB(i, j) and
βA(i, j) = βB(i, j), until one of the following two events happens.

Event Esymm The current position of A and B are symmetric with respect to the
line y = x, i.e., xA(i, j)− xB(i, j) = yB(i, j)− yA(i, j) and xA(i, j) + xB(i, j) =

yA(i, j) + yB(i, j). Notice that Esymm may happen in some middle step j of an
iteration i. When Esymm happens, we move on to Phase II Symm.

Event Eskew A hits the axis y = 0 at the end of an iteration. Notice that this means
A is then stuck to the axis y = 0 forever. When Eskew happens, we move on
to Phase II Skew. Note that B is one unit away from the axis y = 0, yB = 1.
We remark that the in the third part we show, if event Eskew happens, B has a
higher chance to reach (0, 0) than A.

The following three claims will be useful.

Claim 8.17. A is always below the line y = x before Esymm happens, so A will never
hit the axis x = 0 in Phase I.

Proof. To see this, A can only have four types of movements in each step: lower-left
(x, y) 7→ (x − 1, y − 1), up (x, y) 7→ (x, y + 1), and right (x, y) 7→ (x + 1, y). It is
easy to see that, 1) A will never step across the line y = x in one step, and 2) if A
ever reaches the line y = x at (w,w) for some w, then A must be at (w,w− 1) in the
previous step. However, when A is at (w,w− 1), B should be at (w− 1, w) according
to the relative position of A,B. In this case event Esymm already happens.

Claim 8.18. Esymm and Eskew cannot happen simultaneously.

Proof. Suppose Esymm and Eskew happen at the same time, then it must be that A is
at (1, 0) and B is at (0, 1), as the relative position of A and B is unchanged in Phase
I, and this must be at the end of a certain iteration. In the previous iteration, A must
be at (2, 1), since Eskew did not happen yet and A is below the line y = x. However,
B is at (1, 2) when A is at (2, 1), implying that case Esymm has already happened in
the previous iteration, which is a contradiction.

217

Phase I (ended at Event (a))

B

A

Phase II(a)

B

A

Figure 8.1: The coupling with Phase I ended at Event Esymm

Claim 8.19. B cannot reach the axis x = 0 before either Esymm or Eskew happen.

Proof. If Esymm happens before Eskew, B cannot reach the axis x = 0 before Esymm as A
is always below the line y = x and B is always on the upper-left diagonal of A. If Eskew
happens before Esymm, B cannot reach the axis x = 0 before Eskew, or even by the time
Eskew happens: by the time Eskew happens, A can only at one of (2, 0), (3, 0), (4, 0), . . .

(A cannot be at (1, 0), for otherwise Esymm and Eskew happen simultaneously, which is
impossible as shown just now), in which case B will not be at the axis x = 0.

8.4.2.2 Phase II Symm

Let A move in a way that is symmetric to B with respect to the line y = x: JA(i) =

JB(j), αA(i, j) = βB(i, j) and βA(i, j) = αB(i, j). Notice that, in Phase II Symm, A
may cross the line y = x, after which A is above the line y = x while B is below.

8.4.2.3 Phase II Skew

If event Eskew happens, we need a more complicated coupling. Suppose Phase II Skew
starts after iteration Tskew. Here we use T AS (and T BS) to denote the hitting time of
A (and B) to a set of states S which is the first iteration of the process into the set
S. For example i = T By=1 is the hitting time of B such that yB(i) = 1. Here we list
six relevant hitting times and their relationship.

Tskew = T By=1 = T Ay=0 < T By=0, and Tskew < T Bx=0 = T Ax=1 < T Ax=0.

Back to the coupling, we first let the x-direction movement of A be the same with
that of B. To be specific, in each iteration Tskew < i ≤ T Bx=0, set JA(i) = JB(i). At
step j, we set αA(i, j) = αB(i, j) and βA(i, j) = 0 (βA(i, j) is always 0 now, as A is

218

stuck to the axis y = 0). Till now, the relative position of A and B in x-coordinate
is preserved xA(i, j) = xB(i, j) + 1. Let E∗ be the event that B reaches the axis
x = 0, and let E∗ happens at the end of iteration T ∗ = T Bx=0. We further define
∆ = T ∗−Tskew to be the additional time before xB = 0 (if both stopping times exist),
and L = T By=0−Tskew to be the additional time before yB = 0 (if both stopping times
exist).

At the end of iteration T ∗, the positions for A is one unit to the right of the origin.
That is xA(T ∗) = 1 while yA(T ∗)

)
= 0. Informally, we want to couple the movement

of A from (1, 0) at T ∗ to the movement of B in the y-direction at Tskew which is one
unit above the axis at y = 1. Formally, starting at (1, 0), A is a 1-dimensional random
walk on the axis y = 0, and we couple it to B in the following way.

• For each t = 1, . . . , L, we couple A’s movement in the x direction at iteration
T ∗+t with B’s movement ∆ steps earlier in the y direction at iteration T ∗+t−
∆ = Tskew+t such that αA(T ∗+t) ∼ Po(λ(T ∗+t)) and αA(T ∗+t) ≥ βB(Tskew+t).
3

• We do not couple A to B for future iterations after T ∗ + L.

A key property of this coupling is that the x-coordinate of A at T ∗ + t is always
greater or equal to the y-coordinate of B at iteration Tskew + t.

Claim 8.20. For all t = 1, . . . , L, xA(T ∗ + t) ≥ yB(Tskew + t).

Proof. We use induction. For the base case, we have 1 = xA(T ∗) = yB(Tskew) from
the definitions of Tskew and T ∗. For the inductive case, αA(T ∗ + t) ≥ βB(Tskew + t)

due to our coupling.

8.4.3 Validity of the Coupling

The coupling induces the correct marginal random walk process for B, as we have
defined the coupling in a way that B is moving “freely” and A is being “coupled”
with B. The only non-trivial part is to show that the coupling induces the correct

3Here is an example of such a coupling. Consider iteration i = T ∗ + t for A, and we want to
couple it with B’s movement at iteration ι = Tskew + t. Let JB(ι) be the number of steps of B in the
iteration ι which is not necessary equal to the number of steps of A after iteration T ∗. At step 0,
we sample a non-negative integer d(i) ∼ Po(2(λ(i)− λι)) independent to JB(ι), and set the number
of steps of A to be JA(i) = JB(ι) + d(i). Then set αA(i, 0) = −1 and β(i, 0)A = 0. At each step
j = 1, . . . , JB(ι), we set (αA(i, j), βA(i, j)) = (βBιj , 0). At the later steps j = JB(ι) + 1, . . . , JA(i),
we set (αA(i, j), βA(i, j)) = (1, 0) with probability 0.5, or (0, 0) otherwise.

219

Phase I (ended at Event (b))

B

A

Phase II(b)

B
A

Post-Phase II(b)

B

A

B moves freely on axis x = 0

Figure 8.2: The coupling with Phase I ended at Event Eskew, if E∗ happens

marginal random walk process for A. It is straightforward to check that the marginal
probabilities are correct during Phase I, before the event E∗ occurs, or if the event E∗

does not occur. If the process enters Phase II Skew and B reaches the axis x = 0,
the movement of A in the x direction is coupled with B’s movement in y direction
∆ = T ∗−Tskew iterations ago. We note that B’s movements in the x direction and the
y direction are independent and A does not contain two iterations that are coupled
to a same iteration of B. Therefore, the movements of A in x direction after T ∗

are independent to its previous movement, so the marginal distribution is correct.
Fig. 8.3 illustrates the coupling time line.

A, x-direction

B, x-direction

A, y-direction

B, y-direction

Tskew T ∗

0 movement

(stuck on axis y = 0)

Figure 8.3: The time line for the coupling after event Eskew happens.

Remark 8.21. The coupling of the two random walks A and B in Z2 in the proof
above can be alternatively viewed as a coupling of four independent random walks in
Z (this is why we have said that “we simultaneously couple four cascade processes” in
the introduction), as the x-directional and y-directional movements for both A and B
correspond to the four terms in inequality (8.2), which are intrinsically independent.

220

8.4.4 Proof of Inequality (8.2)

It suffices to show that in our coupling HA ⊆ HB and HB \HA is not empty, because
this implies inequality (8.2): Pr(HA) = Pr(HB∩HA) < Pr(HB∩HA)+Pr(HB\HA) =

Pr(HB). We aim to show that:

1. if the coupling never moves to Phase II, neither A nor B reaches (0, 0);

2. if the coupling moves to Phase II Symm, A reaches (0, 0) if and only if B reaches
(0, 0);

3. if the coupling moves to Phase II Skew, A reaches (0, 0) implies that B also
reaches (0, 0);

4. there is an event with a positive probability such that B reaches (0, 0) but A
does not.

The first, second, and third show HA ⊆ HB. The last one shows HB \ HA has a
positive probability.

1 is trivial. 2 follows from symmetry.
To see 3, first notice that in Phase II Skew, E∗ must happens if A ever reaches (0, 0):

because A can move to the left by at most 1 unit in each iteration, A must first reach
(1, 0), but at this point xB = 0 and event E∗ happens. Now consider the case that B
never reaches the origin after event E∗. Then the x movement of A remains coupled
to the y-movement of B in such a way that ᾱA(T ∗+ t) ≥ β̄B(Tskew + t). Walk A starts
at xA = 1, and walk B starts at yB = 1. Therefore, A cannot reach the origin if B
does not. In the case walk B meets the origin, the statement is vacuously true.

For 4, to show Pr(HB \ HA) > 0, we define the following event which consists
of four parts. i) For all i = 1, . . . , k, it happens that αA(i) = βA(i) = 0, in which
case the event Eskew happens at Tskew = k and A reaches (2, 0). ii) For i = k + 1, it
happens that αA(i) = 0 and βB(i) = 1, in which case A reaches (1, 0) and B reaches
(0, 1), and the process B reaches the axis x = 0 at iteration T ∗ = k + 1. iii) In
iteration i = T ∗ + 1, it happens that βB(i) = 0, so B reaches (0, 0). On the other
hand, by the coupling αA(T ∗ + 1) ≥ βB(Tskew + 1) = 1, so A does not reach (0, 0) at
iteration T ∗ + 1 = k + 2. iv) Finally, it happens that αA(i) ≥ 1 for all i > k + 2.
It is straightforward the i), ii), and iii) happen with positive probabilities. By direct
computations, iv) happens with a positive probability as well.4 Since the above event

4The event that αA(i) ≥ 1 for all i > k+ 2 happens with probability
∏
i>k+2 Pr(Po(λ(i)) ≥ 1) =∏

i>k+2(1− exp(−λ(i))) ≥
∏
i≥r+1(1− exp(−

(
i−1
r−1
)
cr)) which is a positive constant depending on r

and c.

221

consisted of i), ii), iii) and iv) belongs to HB \ HA and each of the four sub-events
happens with a positive probability, 4 is implied.

From 2, 3, and 4, we learn that the probability that B reaches (0, 0) is strictly
larger than that of A, which implies inequality (8.2) and concludes the proof.

8.5 Optimal Seeds in Submodular Influence Maxi-

mization

We have seen that putting all the K seeds in a single leaf is optimal for r-complex
contagion, when the root node has weight ω(1/n1+1/r). To demonstrate the sharp
difference between r-complex contagion and a submodular cascade model, we present
a submodular InfMax example where the optimal seeding strategy is to put no
more than one seed in each leaf. The hierarchy tree T in our example meets all
the assumptions we have made in the previous sections, including large communities,
proper separation, and w(root) = ω(1/n1+1/r), where r is now an arbitrarily fixed
integer with r ≥ 2.

We consider UICM with p = 1/n1− 1
4r . The hierarchy tree T contains only two

levels: a root and K leaves. The root has weight 1/n1+ 1
2r , and each leaf has weight

1. After G ∼ G(n, T) is sampled and each edge in G is sampled with probability
p, the probability that an edge appears between two vertices from different leaves is
(1/n1− 1

4r) · (1/n1+ 1
2r) = o(1/n2), and the probability that an edge appears between

two vertices from a same leaf is 1·(1/n1− 1
4r) = ω(log n/n). Therefore, with probability

1 − o(1), the resultant graph is a union of K connected components, each of which
corresponds to a leaf of T . It is then straightforward to see that the optimal seeding
strategy is to put a single seed in each leaf.

8.6 A Dynamic Programming Algorithm

In this section, we present an algorithm which finds an optimal seeding strategy
when all w(t)’s fall into two regimes: w(t) = ω(1/n1+1/r) and w(t) = o(1/n2). We
will assume this for w(t)’s throughout this section. Since a parent tree node always
has less weight than its children (see Definition 8.1), we can decompose T into the
upper part and the lower part, where the lower part consists of many subtrees whose
roots have weights in ω(1/n1+1/r), and the upper part is a single tree containing only
tree nodes with weights in o(1/n2) and whose leaves are the parents of those roots

222

of the subtrees in the lower part. We call each subtree in the lower part a maximal
dense subtree defined formally below.

Definition 8.22. Given a hierarchy tree T = (VT , ET , w, v), a subtree rooted at
t ∈ VT is a maximal dense subtree if w(t) = ω(1/n1+1/r), and either t is the root, or
w(t′) = O(1/n1+1/r) where t′ is the parent of t.

Since we have assumed either w(t) = ω(1/n1+1/r) or w(t) = o(1/n2), w(t′) =

O(1/n1+1/r) in the definition above implies w(t′) = o(1/n2).
The idea of our algorithm is the following: firstly, after the decomposition of T

into the upper and lower parts, we will show that the weights of the tree nodes in the
upper part, falling into w(t) = o(1/n2), are negligible so that we can treat the whole
tree T as a forest with only those maximal dense subtrees in the lower part (that is,
we can remove the entire upper part from T); secondly, Theorem 8.11 shows that after
we have decide the number of seeds to be allocated to each maximal dense subtree,
the optimal seeding strategy is to put all the seeds together in a single leaf that has
the highest density defined in Definition 8.3; finally, we use a dynamic programming
approach to allocate the K seeds among those maximal dense subtrees.

Now, we are ready to describe our algorithm, presented in Algorithm 8.1.
The correctness of Algorithm 8.1 follows immediately from Theorem 8.23 (below)

and Theorem 8.11. Theorem 8.23 shows that we can ignore the upper part of T
and treat T as the forest consisting of all the maximal dense subtrees of T when
considering the InfMax problem. Recall Theorem 8.11 shows that for each subtree
Ti and given the number of seeds, the optimal seeding strategy is to put all the seeds
on the leaf with the highest density.

Theorem 8.23. Given T = (VT , ET , w, v), let {T1, . . . , Tm} be the set of all T ’s
maximal dense subtrees and let T− be the forest consisting of T1, . . . , Tm. For any
seeding strategy k and any r ≥ 2, we have Σr,T (k) = Σr,T−(k).

Proof. Since the total number of possible edges between T− and the rest of the tree
is upper bounded by n2 and each such edge appears with probability o(1/n2), the
expected number of edges is o(1). By Markov’s inequality the probability there exists
edges between T− and the rest of the tree o(1). Therefore, we have

E
G∼G(n,T)

[σr,G(k)]

n
=

o(1)O(n) + (1− o(1)) E
G∼G(n,T−)

[σr,G(k)]

n
.

Taking n→∞ we have concludes the proof.

223

1: Input: r ∈ Z with r ≥ 2, T = (VT , ET , w, v), and K ∈ Z+

2: Find all maximal dense subtrees T1, . . . , Tm, and let r1, . . . , rm be their roots
(Definition 8.22).

3: For each Ti and each k = 0, 1, . . . , K, let s∗i (k) be the seeding strategy that puts
k seeds in the leaf t ∈ LTi with the highest density, and let

h(Ti, k) = lim
n→∞

EG∼G(v(ri)·n,Ti)[σr,G(s∗i (k))]

n

be the expected number of infected vertices in the subgraph defined by Ti, nor-
malized by the total number of vertices in the whole graph.

4: Let S[i, k] store a seeding strategy that allocates k seeds in the first i subtrees
T1, . . . , Ti, and let H[i, k] be the expected total number of infected vertices corre-
sponding to S[i, k], divided by n.

5: for k = 0, 1, . . . , K do
6: set S[1, k] = s∗1(k) and H[1, k] = h(T1, k).
7: end for
8: for each i = 2, . . . ,m do
9: for k = 0, 1, . . . , K do
10: ki = argmax

ki∈{0,1,...,k}
H[i− 1, k − ki] + h(Ti, ki);

11: set S[i, k] be the strategy that allocates k − ki seeds among T1, . . . , Ti−1

according to S[i− 1, k− ki] and puts the remaining ki seeds in the leaf of Ti
with the highest density;

12: set H[i, k] = H[i− 1, k − ki] + h(Ti, ki);
13: end for
14: end for
15: Output: the seeding strategy S[m,K].

Algorithm 8.1: The InfMax algorithm

224

Finally, it is straightforward to see the time complexity of Algorithm 8.1, in terms
of the number of evaluations of Σr,G(n,T)(·).

Theorem 8.24. Algorithm 8.1 requires OI(|VT |K2) computations of Σr,G(n,T)(·).

8.7 Conclusion and Future Work

In this chapter, we presented an influence maximization algorithm which finds optimal
seeds for the stochastic hierarchical blockmodel, assuming the weights of tree nodes
do not fall into a narrow regime between Ω(1/n2) and O(1/n1+1/r). As a crucial
observation behind the algorithm, when the root of the tree has weight ω(1/n1+1/r),
our results show that the optimal seeding strategy is to put all the seeds together.
Our results provide a formal verification for the intuition that one should put the
seeds close to each other to maximize the synergy effect in a nonsubmodular cascade
model.

Removing Limitations One obvious future direction is to extend our algorithm
such that it works for weights of tree nodes between Ω(1/n2) and O(1/n1+1/r) as
well. Related to this, Schoenebeck and Tao [66] shows that InfMax for the complex
contagion on the stochastic hierarchical blockmodel is NP-hard to approximate to
within factor n1−ε if vertices have non-homogeneous thresholds, i.e., each vertex v

has a individual threshold rv ∈ Z+ such that v is infected when it has at least rv
infected neighbors. It is unknown whether this inapproximability result carries over
to the homogeneous case where all agents have the same threshold.

It is also interesting to see if our main result Theorem 8.11 still holds without
the proper separation assumption. We only use this assumption in the proof of
Proposition 8.15. To remove the proper separation assumption, more insight is needed
on the behavior of the cascade in the critical leaves. As a next step for this, one might
consider the case when leaves t1 and t2 have weights c1n

−1/r and c2n
−1/r respectively,

and their parent t has weight dn−1/r with d < c1 and d < c2; it is an interesting open
problem to see that if it is still optimal to either put all the seeds in t1 or to put all
the seeds in t2. We conjecture this is true.

Extension One way to extend our results is to relax the assumption that the net-
work is known. For example, can the network be learned from observing previous
cascades, or by experimenting with them? Or, can they be elicited from agents with
limited, local knowledge? Another direction would be to leverage these results to

225

create heuristics that work well on real-world networks. A final direction would be
more careful empirical studies (particularly experiments) about the nature of various
cascades (e.g. submodular versus nonsubmodular).

226

BIBLIOGRAPHY

[1] J. A. Adell and P. Jodrá. Exact kolmogorov and total variation distances between
some familiar discrete distributions. Journal of Inequalities and Applications,
2006(1):64307, 2006.

[2] R. Angell and G. Schoenebeck. Don’t be greedy: Leveraging community struc-
ture to find high quality seed sets for influence maximization. WINE, 2016.

[3] A. Arora, S. Galhotra, and S. Ranu. Debunking the myths of influence maximiza-
tion. In Proceedings of the 2017 ACM International Conference on Management
of Data-SIGMOD’17, 2017.

[4] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan. Group formation
in large social networks: membership, growth, and evolution. In ACM SIGKDD,
2006.

[5] E. Balkanski, N. Immorlica, and Y. Singer. The importance of communities for
learning to influence. In Advances in Neural Information Processing Systems,
pages 5862–5871, 2017.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to probability, volume 1. Athena
Scientific Belmont, MA, 2002.

[7] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization in
social networks. In WINE, 2007.

[8] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence
in nearly optimal time. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 946–957. SIAM, 2014.

[9] D. Centola. The spread of behavior in an online social network experiment.
Science, 329(5996):1194–1197, 2010.

[10] D. Centola and M. Macy. Complex contagions and the weakness of long ties.
American journal of Sociology, 113(3):702–734, 2007.

[11] J. Chalupa, P. L. Leath, and G. R. Reich. Bootstrap percolation on a bethe
lattice. Journal of Physics C: Solid State Physics, 12(1):L31, 1979.

227

[12] N. Chen. On the approximability of influence in social networks. SIAM Journal
on Discrete Mathematics, 23(3):1400–1415, 2009.

[13] W. Chen. An issue in the martingale analysis of the influence maximization
algorithm imm. In International Conference on Computational Social Networks,
pages 286–297. Springer, 2018.

[14] W. Chen and B. Peng. On adaptivity gaps of influence maximization under the
independent cascade model with full adoption feedback. In ISAAC 2019: The
30th International Symposium on Algorithms and Computation, 2019.

[15] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social
networks. In ACM SIGKDD, pages 199–208. ACM, 2009.

[16] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 1029–1038. ACM, 2010.

[17] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social net-
works under the linear threshold model. In 2010 IEEE International Conference
on Data Mining, pages 88–97. IEEE, 2010.

[18] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social
networks under the linear threshold model. In Data Mining (ICDM), 2010 IEEE
10th International Conference on, pages 88–97. IEEE, 2010.

[19] W. Chen, L. V. Lakshmanan, and C. Castillo. Information and influence propa-
gation in social networks. Synthesis Lectures on Data Management, 5(4):1–177,
2013.

[20] W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou. Robust influence maximiza-
tion. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 795–804. ACM, 2016.

[21] W. Chen, B. Peng, G. Schoenebeck, and B. Tao. Adaptive greedy versus non-
adaptive greedy for influence maximization. In AAAI, 2020.

[22] S. Cheng, H. Shen, J. Huang, G. Zhang, and X. Cheng. Staticgreedy: solving
the scalability-accuracy dilemma in influence maximization. In Proceedings of the
22nd ACM international conference on Information & Knowledge Management,
pages 509–518. ACM, 2013.

[23] A. Clauset, C. Moore, and M. E. Newman. Hierarchical structure and the pre-
diction of missing links in networks. Nature, 453(7191):98–101, 2008.

[24] P. DiMaggio. Structural analysis of organizational fields: A blockmodel ap-
proach. Research in organizational behavior, 1986.

228

[25] I. Dinur. The pcp theorem by gap amplification. Journal of the ACM (JACM),
54(3):12, 2007.

[26] P. Domingos and M. Richardson. Mining the network value of customers. In
ACM SIGKDD, 2001.

[27] R. Durrett. Lecture notes on particle systems and percolation. Brooks/Cole Pub
Co, 1988.

[28] J. W. Essam. Percolation theory. Reports on Progress in Physics, 43(7):833,
1980.

[29] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[30] W. Feller. An introduction to probability theory and its applications, volume 2.
John Wiley & Sons, 2008.

[31] S. Galhotra, A. Arora, and S. Roy. Holistic influence maximization: Combining
scalability and efficiency with opinion-aware models. In Conference on Manage-
ment of Data, pages 743–758. ACM, 2016.

[32] J. Gao, G. Ghasemi, J. J. Jones, and G. Schoenebeck. Complex contagions in
charitable donations. 2019.

[33] S. Goldberg and Z. Liu. The diffusion of networking technologies. In SODA,
2013.

[34] J. Goldenberg, B. Libai, and E. Muller. Using complex systems analysis to
advance marketing theory development: Modeling heterogeneity effects on new
product growth through stochastic cellular automata. Academy of Marketing
Science Review, 9(3):1–18, 2001.

[35] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing letters, 12(3):211–
223, 2001.

[36] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of AI Research, 42:427–486,
2011.

[37] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: optimizing the greedy algo-
rithm for influence maximization in social networks. In Proceedings of the 20th
international conference WWW, pages 47–48. ACM, 2011.

[38] A. Goyal, W. Lu, and L. V. Lakshmanan. Simpath: An efficient algorithm
for influence maximization under the linear threshold model. In Data Mining
(ICDM), 2011 IEEE 11th International Conference on, pages 211–220. IEEE,
2011.

229

[39] M. Granovetter. Threshold models of collective behavior. American Journal of
Sociology, 83(6):1420–1443, 1978. URL http://www.journals.uchicago.edu/
doi/abs/10.1086/226707.

[40] K. Han, K. Huang, X. Xiao, J. Tang, A. Sun, and X. Tang. Efficient algorithms
for adaptive influence maximization. Proceedings of the VLDB Endowment, 11
(9):1029–1040, 2018.

[41] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

[42] S. Janson, T. Łuczak, T. Turova, and T. Vallier. Bootstrap percolation on the
random graph gN,P . The Annals of Applied Probability, 22(5):1989–2047, 2012.

[43] K. Jung, W. Heo, and W. Chen. IRIE: Scalable and robust influence maximiza-
tion in social networks. In Data Mining (ICDM), 2012 IEEE 12th International
Conference on, pages 918–923. IEEE, 2012.

[44] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In ACM SIGKDD, pages 137–146, 2003.

[45] D. Kempe, J. M. Kleinberg, and É. Tardos. Influential nodes in a diffusion model
for social networks. In ICALP, pages 1127–1138, 2005.

[46] J. H. Kemperman. On the optimum rate of transmitting information. In Proba-
bility and information theory, pages 126–169. Springer, 1969.

[47] S. Khanna and B. Lucier. Influence maximization in undirected networks. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1482–1496. Society for Industrial and Applied Mathematics, 2014.

[48] L. Le Cam et al. An approximation theorem for the poisson binomial distribution.
Pacific Journal of Mathematics, 10(4):1181–1197, 1960.

[49] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[50] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral mar-
keting. In EC, pages 228–237, 2006.

[51] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 420–429. ACM, 2007.

[52] D. A. Levin and Y. Peres. Markov chains and mixing times, volume 107. Amer-
ican Mathematical Soc., 2017.

[53] Q. Li, W. Chen, X. Sun, and J. Zhang. Influence maximization with ε-almost
submodular threshold functions. In NIPS, pages 3804–3814, 2017.

230

http://www.journals.uchicago.edu/doi/abs/10.1086/226707
http://www.journals.uchicago.edu/doi/abs/10.1086/226707
http://snap.stanford.edu/data

[54] Y. Li, J. Fan, Y. Wang, and K.-L. Tan. Influence maximization on social graphs:
A survey. IEEE Trans. on Knowledge and Data Engineering, 30(10):1852–1872,
2018.

[55] T. M. Liggett. Interacting particle systems, volume 276. Springer Science &
Business Media, 2012.

[56] Y. Lim, A. Ozdaglar, and A. Teytelboym. A simple model of cascades in net-
works, 2015.

[57] V. Lyzinski, M. Tang, A. Athreya, Y. Park, and C. E. Priebe. Community
detection and classification in hierarchical stochastic blockmodels. arXiv, 2015.

[58] E. Mossel and S. Roch. Submodularity of influence in social networks: From
local to global. SIAM J. Comput., 39(6):2176–2188, 2010.

[59] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming, 14(1):
265–294, 1978.

[60] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi. Fast and accurate
influence maximization on large networks with pruned monte-carlo simulations.
In AAAI, pages 138–144, 2014.

[61] B. Peng and W. Chen. Adaptive influence maximization with myopic feedback.
In Advances in Neural Information Processing Systems, pages 5575–5584, 2019.

[62] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral mar-
keting. In ACM SIGKDD, pages 61–70, 2002.

[63] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of
information diffusion across topics : Idioms , political hashtags , and complex
contagion on twitter. In WWW, pages 695–704. ACM, 2011. URL http://dl.
acm.org/citation.cfm?id=1963503.

[64] G. Sadeh, E. Cohen, and H. Kaplan. Sample complexity bounds for influence
maximization. In 11th Innovations in Theoretical Computer Science Conference
(ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[65] M. Salek, S. Shayandeh, and D. Kempe. You share, I share: Network effects and
economic incentives in P2P file-sharing systems. In International Workshop on
Internet and Network Economics, pages 354–365. Springer, 2010.

[66] G. Schoenebeck and B. Tao. Beyond worst-case (in)approximability of non-
submodular influence maximization. In International Conference on Web and
Internet Economics, pages 368–382. Springer, 2017.

[67] G. Schoenebeck and B. Tao. Influence maximization on undirected graphs: To-
wards closing the (1− 1/e) gap. In Proceedings of the 2019 ACM Conference on
Economics and Computation, pages 423–453. ACM, 2019.

231

http://dl.acm.org/citation.cfm?id=1963503
http://dl.acm.org/citation.cfm?id=1963503

[68] G. Schoenebeck and B. Tao. Beyond worst-case (in)approximability of non-
submodular influence maximization. ACM Trans. Comput. Theory, 11(3):
12:1–12:56, Apr. 2019. ISSN 1942-3454. doi: 10.1145/3313904. URL http:
//doi.acm.org/10.1145/3313904.

[69] G. Schoenebeck, B. Tao, and F.-Y. Yu. Think globally, act locally: On the
optimal seeding for nonsubmodular influence maximization. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2019.

[70] G. Schoenebeck, B. Tao, and F.-Y. Yu. Limitations of greed: Influence maxi-
mization in undirected networks re-visited. In International Conference on Au-
tonomous Agents and Multi-Agent Systems, 2020.

[71] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time com-
plexity meets practical efficiency. In SIGMOD international conference on Man-
agement of data, pages 75–86. ACM, 2014.

[72] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A
martingale approach. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1539–1554. ACM, 2015.

[73] Y. S. Thibaut Horel. Maximization of approximately submodular functions. In
NIPS, 2016.

[74] H. C. White, S. A. Boorman, and R. L. Breiger. Social structure from multiple
networks. i. blockmodels of roles and positions. American Journal of Sociology,
81(4):730–780, 1976. URL http://www.jstor.org/stable/2777596.

[75] Y. Yang, J. Jia, B. Wu, and J. Tang. Social role-aware emotion contagion in
image social networks. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

232

http://doi.acm.org/10.1145/3313904
http://doi.acm.org/10.1145/3313904
http://www.jstor.org/stable/2777596

APPENDIX A

Omitted Proofs in Chapter 4

A.1 Proof of Lemma 4.7

Given a seed s in the complete graph G, we calculate the probability that an arbitrary
vertex v ∈ V \ {s} is infected according to Remark 4.4. Consider the reverse random
walk without repetition starting from v as described in Remark 4.4. It reaches s in one
move with probability 1

n−1
, and it reaches s in tmoves with probability 1

n−1

∏t−1
i=1

n−1−i
n−1

since
∏t−1

i=1
n−1−i
n−1

is the probability that the random walk never reaches s and never
comes back to any vertices that have been visited within the first t − 1 moves and

1
n−1

is the probability that the random walk moves to s in the t-th move. Putting
this together, v will be infected by s with probability

1

n− 1
+

n−1∑
t=2

1

n− 1

t−1∏
i=1

n− 1− i
n− 1

=
1

n− 1

n−1∑
t=1

t−1∏
i=0

n− 1− i
n− 1

.

233

Simple calculations reveal an upper bound for this probability.

1

n− 1

n−1∑
t=1

t−1∏
i=0

n− 1− i
n− 1

=
1

n− 1

d√ne∑
t=1

t−1∏
i=0

n− 1− i
n− 1

+
n−1∑

t=d
√
ne+1

t−1∏
i=0

n− 1− i
n− 1

=

1

n− 1

d√ne∑
t=1

t−1∏
i=0

n− 1− i
n− 1

+

d√ne−1∏
i=0

n− 1− i
n− 1

 n−1∑
t=d
√
ne+1

t−1∏
i=d
√
ne

n− 1− i
n− 1

(distributive law)

<
1

n− 1

d√ne∑
t=1

1 + 1 ·
n−1−d

√
ne∑

t=1

(
n− 1− d

√
ne

n− 1

)t
(the first two products are replaced by 1, and

∏t−1
i=d
√
ne

n−1−i
n−1

≤
(
n−1−d

√
ne

n−1

)t−d√ne
)

<
1

n− 1

d√ne∑
t=1

1 +
∞∑
t=0

(
n− 1− d

√
ne

n− 1

)t
(the summation is extended to the infinite series)

=
1

n− 1

(⌈√
n
⌉

+
n− 1

d
√
ne

)
.

Finally, by linearity of expectation, the expected total number of infected vertices is

1 + (n− 1) · 1

n− 1

(⌈√
n
⌉

+
n− 1

d
√
ne

)
< 3
√
n,

which concludes the lemma.

A.2 Proof of Theorem 4.8

Before we move on, we examine some of the properties of Example 4.9 which will be
used later.

Proposition A.1. The followings are true.

1. ` ≤ k;

2. σ({u1}) = · · · = σ({uk});

3. σ({v1}) ≥ · · · ≥ σ({vk+`});

4. The greedy algorithm will never pick any vertices in V \ {u1, . . . , uk, v1, . . . , vk};

5. For any i = 1, . . . , k and j = 1, . . . , k + `, we have Pr(ui → vj) <
1
k

+ 3
k1.2 ;

234

6. For any i, j ∈ {1, . . . , k} with i 6= j, we have Pr(ui → uj) <
2k

k1.2+2k−1
(1
k

+ 3
k1.2).

Proof. To show 1, suppose ` > k, we will have

k+∑̀
i=1

|Di| ≥
k∑
i=1

⌈
k0.8

(
1− 1

k

)i−1
⌉

+
k+`−1∑
i=k+1

⌈
k0.8

(
1− 1

k

)k⌉

≥ k1.8 ·

(
1−

(
1− 1

k

)k)
+ k · k0.8

(
1− 1

k

)k
= k1.8 >

⌊(
1− 100

k0.2

)
k1.8

⌋
,

which violates our construction.
2 follows immediately by symmetry, and 3 is trivial. As for 4, choosing a seed in

Di \ {vi} is clearly sub-optimal, as choose vi as a seed will make all the remaining
vertices in Di infected with probability 1. Choosing a seed in Ci \ {ui} is also sub-
optimal. If ui is not seeded, seeding ui is clearly better. Otherwise, seeding any
vertices from u1, . . . , ui−1, ui+1, . . . , uk is better (notice that we have a total of k
seeds, so there are unseeded vertices among these). This is due to the submodularity:
if a clique Ci already contains a seed, putting another seed in the same clique is no
better than putting a seed in a new clique that does not contain a seed yet. Finally,
given that the greedy algorithm will choose seeds in u1, . . . , uk, v1, . . . , vk+`, choosing
seeds in {vk+1, . . . , vk+`} is clearly sub-optimal: we should first seed all of v1, . . . , vk
before seeding any of vk+1, . . . , vk+`, but we have a total of only k seeds.

To see 5, consider the reverse random walk starting from vj. Since deg(vj) =
k + |Dj| − 1 > k, it will reach ui in one step with probability less than 1/k. It is
easy to see that the walk will never reach ui if it ever reaches any vertex in V \
{u1, . . . , uk, v1, . . . , vk+`}. Therefore, the only possibility of the walk reaching ui is to
alternate between {u1, . . . , uk} and {v1, . . . , vk+`}. When it reaches a vertex on the
u-side, it will move to a vertex on the v-side with probability (k+`)/(k1.2−1+k+`).
When it reaches a vertex on the v-side, it will move to exactly ui with probability less
than 1/k, as all vertices in {v1, . . . , vk+`} have degrees more than k. If we disregard the
scenario where the random walk visits a vertex that has already been visited (which
can only increase the probability that the random walk reaches ui), the random walk
reaches ui at Step 3 with probability less than 1

k
· k+`
k1.2−1+k+`

, it reaches ui at Step 5
with probability less than 1

k
·(k+`
k1.2−1+k+`

)2, and so on. Putting these analyses together,

Pr(ui → vj) <
∞∑
t=0

1

k
·
(

k + `

k1.2 − 1 + k + `

)t
=

1

k
· k

1.2 − 1 + k + `

k1.2 − 1

≤ 1

k
+

2k

k(k1.2 − 1)
<

1

k
+

3

k1.2
,

where the penultimate inequality uses property 1.
To see 6, the reverse random walk starting from uj will reach the v-side with

235

probability (k+ `)/(k1.2− 1 + k+ `) ≤ 2k/(k1.2 + 2k− 1) (since ` ≤ k by 1). Noticing
this, property 5 and Lemma 4.5 conclude 6 immediately.

Proposition A.2. Given G constructed in Example 4.9, the greedy algorithm will
iteratively pick v1, . . . , vk.

Proof. By 4 in Proposition A.1, we will only consider seeds in {u1, . . . , uk, v1, . . . , vk}.
We will prove this proposition by induction.

For the base step, since choosing v1 is more beneficial than choosing any of
v2, . . . , vk, we only need to compare σ({v1}) to each of σ({u1}), . . . , σ({uk}). Since
σ({u1}) = · · · = σ({uk}), we consider σ({u1}) without loss of generality. We aim to
find an upper bound for σ({u1}) by upper-bounding the probability that each vertex
in the graph is infected given a single seed u1.

Firstly, the expected number of infected vertices in C1 is at most 3k0.6 by Lemma 4.7.
Next, by 6 in Proposition A.1, each of u2, . . . , uk will be infected with probability less
than Pr(ui → uj) <

2k
k1.2+2k−1

(1
k

+ 3
k1.2). Moreover, if ui is not infected, all the remain-

ing vertices in Ci will not be infected. If ui is infected, the total number of infected
vertices in Ci is at most 3k0.6 by Lemma 4.7. Finally, each vertex v1, . . . , vk will be
infected with probability less than 1

k
+ 3

k1.2 by 5 of Proposition A.1. In addition, if
certain vi is infected, then all vertices in Di will be infected. Putting together, we
have

σ ({u1})

≤3k0.6 + (k − 1) · 2k

k1.2 + 2k − 1

(
1

k
+

3

k1.2

)
· 3k0.6 +

(
1

k
+

3

k1.2

)⌊(
1− 100

k0.2

)
k1.8

⌋
(†)

≤3k0.6 + k · 2k

k1.2

2

k
· 3k0.6 +

1

k

(
1− 100

k0.2

)
k1.8 +

3

k1.2

(
1− 100

k0.2

)
k1.8

<3k0.6 + 12k0.4 + k0.8 − 100k0.6 + 3k0.6 (‡)
<k0.8.

On the other hand, we have σ({v1}) ≥ |D1| = dk0.8e > σ({u1}). Therefore, the
first seed that the greedy algorithm will pick is v1, which concludes the base step of
the induction.

For the inductive step, suppose v1, . . . , vt have been chosen by the greedy algorithm
in the first t iterations. We aim to show that the greedy algorithm will pick vt+1 next.
By symmetry, with v1, . . . , vt being seeded, the marginal increment of σ(·) by seeding
each of u1, . . . , uk is the same. Thus, we only need to show that σ({v1, . . . , vt+1}) −
σ({v1, . . . , vt}) > σ({v1, . . . , vt, u1})− σ({v1, . . . , vt}).

To calculate a lower bound for σ({v1, . . . , vt+1})−σ({v1, . . . , vt}), we first evaluate
the probability Pr({v1, . . . , vt} → vt+1). In order for the reverse random walk starting
from vt+1 to reach one of v1, . . . , vt, it must reach one of u1, . . . , uk in the first step,
and then “escape” from the clique in the second step. The probability that the walk
escapes from the clique, (k + `)/(k1.2 − 1 + k + `), is clearly an upper bound of
Pr({v1, . . . , vt} → vt+1). Therefore, with seeds v1, . . . , vt, the expected number of

236

infected vertices in Dt+1 is at most (k + `)/(k1.2 − 1 + k + `)× |Dt+1|. On the other
hand, when vt+1 is further seeded, all vertices in Dt+1 will be infected. By only
considering the marginal gain on the expected number of infected vertices in Dt+1,
we have

σ({v1, . . . , vt+1})− σ({v1, . . . , vt}) >
(

1− k + `

k1.2 − 1 + k + `

)
·

⌈
k0.8

(
1− 1

k

)t⌉

>

(
1− 2k

k1.2

)
k0.8

(
1− 1

k

)t
> k0.8

(
1− 1

k

)t
− 2k0.6.

To find an upper bound for σ({v1, . . . , vt, u1})− σ({v1, . . . , vt}). We note that all
vertices in D1, . . . , Dt are infected with probability 1 with seeds v1, . . . , vt, and we
have

σ({v1, . . . , vt, u1})− σ({v1, . . . , vt})

=
∑

w∈V \(D1∪···∪Dt)

(Pr({v1, . . . , vt, u1} → w)− Pr({v1, . . . , vt} → w))

<
∑

w∈V \(D1∪···∪Dt)

Pr({u1} → w), (By submodularity)

so we only need to consider the expected number of infected vertices with the graph
containing only one seed u1 and with vertices in D1∪· · ·∪Dt disregarded. Therefore,
if we split σ({v1, . . . , vt, u1})− σ({v1, . . . , vt}) into three terms as it is in (†), the first
two terms regarding the expected number of infections on the k cliques are the same
as they appeared in (†), which are less than 3k0.6 + 12k0.4 as computed at step (‡).

237

By excluding D1, . . . , Dt for the third term, we have

σ({v1, . . . , vt, u1})− σ({v1, . . . , vt})

<3k0.6 + 12k0.4 +

(
1

k
+

3

k1.2

)(⌊(
1− 100

k0.2

)
k1.8

⌋
−

t∑
i=1

⌈
k0.8

(
1− 1

k

)i⌉)

≤3k0.6 + 12k0.4 +

(
1

k
+

3

k1.2

)((
1− 100

k0.2

)
k1.8 −

t∑
i=1

k0.8

(
1− 1

k

)i)

≤3k0.6 + 12k0.4 + k0.8

(
1− 100

k0.2

)
− k0.8

(
1−

(
1− 1

k

)t)

+
3

k1.2
·

((
1− 100

k0.2

)
k1.8 −

t∑
i=1

k0.8

(
1− 1

k

)i)
(since

∑t
i=1 k

0.8
(
1− 1

k

)i
= k1.8

(
1− 1

k

)t)
≤3k0.6 + 12k0.4 + k0.8

(
1− 1

k

)t
− 100k0.6 +

3

k1.2
· k1.8

(since
((

1− 100
k0.2

)
k1.8 −

∑t
i=1 k

0.8
(
1− 1

k

)i) ≤ k1.8)

<k0.8

(
1− 1

k

)t
− 50k0.6

<σ({v1, . . . , vt+1})− σ({v1, . . . , vt}),

which concludes the inductive step.

We are now ready to prove Theorem 4.8. Let S = {v1, . . . , vk} be the set of seeds
selected by the greedy algorithm, and let S∗ = {u1, . . . , uk} be the optimal seeds (we
do not even need to show that this is optimal: if there were seeds with quality better
than S∗, the approximation guarantee is even smaller than σ(S)

σ(S∗)
).

By only considering infected vertices in D1, . . . , Dk+`, we have

σ(S∗) >
k

k0.8 + k

⌊(
1− 100

k0.2

)
k1.8

⌋
>

k

k0.8 + k

(
k1.8 − 50k1.6

)
,

since each of v1, . . . , vk+` will be infected with probability at least k
k0.8+k

(notice that
even v1, with the highest degree among v1, . . . , vk+`, has degree only k0.8 + k − 1).

Now consider σ(S). Given seed set S, each of u1, . . . , uk will be infected with
probability k

k1.2+k−1
, and each of vk+1, . . . , vk+` will be infected with probability at

most k
k1.2+k−1

, as the reverse random walk starting from any of vk+1, . . . , vk+` needs

238

to reach one of u1, . . . , uk before reaching a seed in S. Therefore,

σ(S)

≤
k∑
i=1

⌈
k0.8

(
1− 1

k

)i⌉
+ k · k

k1.2 + k − 1
· 3k0.6 + ` · k

k1.2 + k − 1

⌈
k0.8

(
1− 1

k

)k⌉

≤
k∑
i=1

k0.8

(
1− 1

k

)i
+ k +

3k2.6

k1.2
+ k · k

k1.2
k0.8 (since dxe ≤ x+ 1 and ` ≤ k)

=k1.8

(
1−

(
1− 1

k

)k)
+ k + 3k1.4 + k1.6.

Finally, the approximation guarantee of the greedy algorithm on the instance
described in Example 4.9 is at most

σ(S)

σ(S∗)
≤
k1.8

(
1−

(
1− 1

k

)k)
+ k + 3k1.4 + k1.6

k
k0.8+k

(k1.8 − 50k1.6)

≤

(
1−

(
1− 1

k

)k)
k1.8(k0.8 + k)

k(k1.8 − 50k1.6)
+
k + 3k1.4 + k1.6

1
2
× 1

2
k1.8

(since k
k0.8+k

> 1
2
and 50k1.6 � 1

2
k1.8)

=

(
1−

(
1− 1

k

)k)(
1 +

51k0.8

k − 50k0.8

)
+

4 + 12k0.4 + 4k0.6

k0.8

≤

(
1−

(
1− 1

k

)k)
+O

(
1

k0.2

)
,

which concludes Theorem 4.8.

A.3 Proofs of Properties of Max-k-Coverage

We prove all the lemmas in Sect. 4.4.1 here. Notice that the lemmas are restated
for the ease of reading. Again, for all the lemmas in this section, we are considering
a Max-k-Coverage instance (U,M, k) where S = {S1, . . . , Sk} denotes k subsets
output by the greedy algorithm and S∗ = {S∗1 , . . . , S∗k} denotes the optimal solution.

We first define a useful notion called a Max-k-Coverage instance with restric-
tion.

Definition A.3. Given a Max-k-Coverage instance (U,M, k) and a subset U ′ ⊆
U , the Max-k-Coverage instance (U,M, k) with restriction on U ′ is another Max-
k-Coverage instance (U ′,M′, k′) whereM′ = {S ∩ U ′ : S ∈M}.

We begin by proving the following lemma, which compares the k subsets output by
the greedy algorithm with arbitrary ` subsets. This is a more general statement than
saying that the greedy algorithm always achieves a (1− (1− 1/k)k)-approximation.

239

Lemma A.4. Given a Max-k-Coverage instance (U,M, k), let S ′ be an arbitrary
collection of ` subsets, we have val(S) ≥ (1− (1− 1/`)k) val(S ′).

Proof. Fix an arbitrary `, we prove this lemma by induction on k. To prove the
base step for k = 1, the subset in S ′ with the largest size covers at least 1

`
val(S ′)

elements, so the first subset picked by the greedy algorithm should cover at least
1
`

val(S ′) elements. Thus, for k = 1, val(S) ≥ (1/`) val(S ′) = (1− (1− 1/`)k) val(S ′).
For the inductive step, suppose this lemma holds for k = k0, we aim to show

that it holds for k = k0 + 1. Let S = {S1, . . . , Sk0+1} be the output of the greedy
algorithm. By the same analysis above, |S1| ≥ 1

`
val(S ′). Consider the Max-k-

Coverage instance (U ′ = U \ S1,M′, k0) which is the instance (U,M, k0 + 1) with
restriction on U \ S1. Since the greedy algorithm selects subsets based on marginal
increments to val(·), (S2\S1), . . . , (Sk0+1\S1) will also be the k0 subsets picked by the
greedy algorithm on the restricted instance. By the induction hypothesis, we have∣∣∣∣∣

(
k0+1⋃
i=2

Si

)
\ S1

∣∣∣∣∣ =

∣∣∣∣∣
k0+1⋃
i=2

(Si \ S1)

∣∣∣∣∣ ≥
(

1−
(

1− 1

`

)k0
)∣∣∣∣∣ ⋃

S∈S′
(S \ S1)

∣∣∣∣∣
=

(
1−

(
1− 1

`

)k0
)∣∣∣∣∣
(⋃
S∈S′

S

)
\ S1

∣∣∣∣∣ .
We then discuss two different cases.

If |S1 ∩ (
⋃
S∈S′ S)| ≤ 1

`
|
⋃
S∈S′ S| = 1

`
val(S ′), then |(

⋃
S∈S′ S) \ S1| ≥ `−1

`
val(S ′)

and

val(S) = |S1|+

∣∣∣∣∣
(
k0+1⋃
i=2

Si

)
\ S1

∣∣∣∣∣ ≥ 1

`
val(S ′) +

(
1−

(
1− 1

`

)k0
)
· `− 1

`
val(S ′)

=

(
1−

(
1− 1

`

)k0+1
)

val(S ′),

which concludes the inductive step.
If |S1 ∩ (

⋃
S∈S′ S)| > 1

`
|
⋃
S∈S′ S| =

1
`

val(S ′), let |S1 ∩ (
⋃
S∈S′ S)| = (1

`
+ c) val(S ′)

240

for some c ∈ (0, 1− 1
`
], and we have

val(S) =|S1|+

∣∣∣∣∣
(
k0+1⋃
i=2

Si

)
\ S1

∣∣∣∣∣
≥
(

1

`
+ c

)
val(S ′) +

(
1−

(
1− 1

`

)k0
)
·
(

1− 1

`
− c
)

val(S ′)

=

(
1−

(
1− 1

`

)k0+1

+ c

(
1− 1

`

)k0
)

val(S ′)

>

(
1−

(
1− 1

`

)k0+1
)

val(S ′),

which concludes the inductive step as well.

The lemma below shows that, if the first subset picked by the greedy algorithm
is one of the subsets in the optimal solution, then the barrier 1 − (1 − 1/k)k can be
overcome.
Lemma 4.11. If S1 ∈ S∗, then val(S) ≥ (1− (1− 1

k
)k + 1

4k2) val(S∗).
Proof. Assume S1 = S∗1 without loss of generality. In order to be picked by the
greedy algorithm, S∗1 should also be the subset in S∗ with the largest size. Therefore,
|S1| = |S1 ∩ (

⋃k
i=1 S

∗
i)| = (1

k
+ c) val(S∗) for some c ≥ 0, and |(

⋃k
i=2 S

∗
i) \ S1| =

|(
⋃k
i=1 S

∗
i) \ S1| = (1− 1

k
− c) val(S∗). By applying Lemma A.4 on the instance with

restriction U \ S1, we have |(
⋃k
i=2 Si) \ S1| ≥ (1 − (1 − 1

k−1
)k−1)|(

⋃k
i=2 S

∗
i) \ S1| =

(1− (1− 1
k−1

)k−1)(1− 1
k
− c) val(S∗). Putting together,

val(S) = |S1|+

∣∣∣∣∣
(

k⋃
i=2

Si

)
\ S1

∣∣∣∣∣
≥
(

1

k
+ c

)
val (S∗) +

(
1−

(
1− 1

k − 1

)k−1
)(

1− 1

k
− c
)

val (S∗)

=

(
1−

(
1− 1

k

)(
1− 1

k − 1

)k−1

+ c

(
1− 1

k − 1

)k−1
)

val(S∗)

≥

(
1−

(
1− 1

k

)(
1− 1

k

)k−1(
1− 1

(k − 1)2

)k−1
)

val(S∗)

(since
(
1− 1

k

) (
1− 1

(k−1)2

)
= 1− 1

k−1
and c

(
1− 1

k−1

)k−1 ≥ 0)

≥

(
1−

(
1− 1

k

)k (
1− 1

(k − 1)2

))
val(S∗)

≥

(
1−

(
1− 1

k

)k
+

1

(k − 1)2

(
1− 1

k

)k)
val(S∗).

241

The lemma follows from noticing (1− 1
k
)k ≥ 1

4
and 1

k−1
> 1

k
.

Next, we show that, in order to have the tight approximation guarantee 1− (1−
1/k)k, the first subset picked by the greedy algorithm must intersect almost exactly
1/k fraction of the elements covered by the k optimal subsets.

Lemma 4.12. If |S1∩(
⋃k
i=1 S

∗
i)|

val(S∗) /∈ [1
k
− ε, 1

k
+ ε] for some ε > 0 which may depend on

k, then val(S) ≥ (1− (1− 1/k)k + ε/4) val(S∗).

Proof. By the same argument in the first paragraph of the proof of Lemma A.4, we
have |S1| ≥ 1

k
val(S∗). On the other hand, considering the instance with restriction

on U \ S1, the greedy algorithm, picking subsets based on marginal increments, will
pick (S2 \S1), . . . , (Sk \S1) as the first k−1 seeds in the restricted instance. Applying
Lemma A.4, we have |(

⋃k
i=2 Si) \ S1| ≥ (1− (1− 1/k)k−1)|(

⋃k
i=1 S

∗
i) \ S1|.

If |S1∩(
⋃k
i=1 S

∗
i)|

val(S∗) > 1
k

+ ε, let |S1∩(
⋃k
i=1 S

∗
i)|

val(S∗) = 1
k

+ c where c > ε. The last paragraph
of the proof of Lemma A.4 can be applied here, and we have

val(S) ≥
(

1

k
+ c

)
val(S∗) +

(
1−

(
1− 1

k

)k−1
)(

1− 1

k
− c
)

val(S∗)

=

(
1−

(
1− 1

k

)k
+ c

(
1− 1

k

)k−1
)

val(S∗) >

(
1−

(
1− 1

k

)k
+
ε

4

)
val(S∗),

since (1− 1
k
)k−1 > 1

4
and c > ε.

If |S1∩(
⋃k
i=1 S

∗
i)|

val(S∗) < 1
k
− ε, let |S1∩(

⋃k
i=1 S

∗
i)|

val(S∗) = 1
k
− c where c ∈ (ε, 1

k
). We have∣∣∣∣∣

(
k⋃
i=2

Si

)
\ S1

∣∣∣∣∣ ≥
(

1−
(

1− 1

k

)k−1
)∣∣∣∣∣
(

k⋃
i=1

S∗i

)
\ S1

∣∣∣∣∣
=

(
1−

(
1− 1

k

)k−1
)(

1− 1

k
+ c

)
val(S∗).

Adding S1, we have

val(S) =|S1|+

∣∣∣∣∣
(

k⋃
i=2

Si

)
\ S1

∣∣∣∣∣
≥1

k
val(S∗) +

(
1−

(
1− 1

k

)k−1
)(

1− 1

k
+ c

)
val(S∗)

=

(
1−

(
1− 1

k

)k
+ c

(
1−

(
1− 1

k

)k−1
))

val(S∗)

>

(
1−

(
1− 1

k

)k
+
ε

4

)
val(S∗),

242

since 1 − (1 − 1
k
)k−1 > 1

4
(this holds k ≥ 2; if k = 1, the premise of the lemma will

not hold as we will then have S∗ = {S1}) and c > ε.

The next lemma shows that, in order to have the tight approximation guarantee
1 − (1 − 1/k)k, the first subset output by the greedy algorithm must not cover a
number of elements that is significantly more than 1/k fraction of the number of
elements in the optimal solution.

Lemma A.5. If |S1| ≥ (1
k

+ ε) val(S∗) for some ε > 0 which may depend on k, then
val(S) ≥ (1− (1− 1/k)k + ε/8) val(S∗).

Proof. If |S1 ∩ (
⋃k
i=1 S

∗
i)|/ val(S∗) /∈ [1

k
− ε

2
, 1
k

+ ε
2
], Lemma 4.12 directly implies this

lemma. Suppose |S1∩(
⋃k
i=1 S

∗
i)|/ val(S∗) ∈ [1

k
− ε

2
, 1
k

+ ε
2
]. Since |S1| ≥ (1

k
+ε) val(S∗),

we have |S1 \ (
⋃k
i=1 S

∗
i)| > ε

2
val(S∗). Let |S1 ∩ (

⋃k
i=1 S

∗
i)| = (1

k
+ c) val(S∗) where

c ∈ [− ε
2
, ε

2
]. By the same analysis in the last paragraph of the proof of Lemma 4.12

(which uses Lemma A.4 as well),

val(S) =|S1|+

∣∣∣∣∣
(

k⋃
i=2

Si

)
\ S1

∣∣∣∣∣
≥
(

1

k
+ ε

)
val(S∗) +

(
1−

(
1− 1

k

)k−1
)(

1− 1

k
+ c

)
val(S∗)

=

(
1−

(
1− 1

k

)k
+ c

(
1−

(
1− 1

k

)k−1
)

+ ε

)
val(S∗)

>

(
1−

(
1− 1

k

)k
+
ε

8

)
val(S∗).

For the last inequality, it holds trivially if c ≥ 0, and it holds for c < 0 as c(1− (1−
1
k
)k−1) + ε > c+ ε ≥ ε

2
.

The next two lemmas show that, in order to have the tight approximation guar-
antee 1 − (1 − 1/k)k, those optimal subsets must be almost disjoint and the first
subset output by the greedy algorithm must not cover too many elements that are
not covered by the optimal subsets.

Lemma 4.13. If
∑k

i=1 |S∗i | > (1 + ε) val(S∗) for some ε > 0 which may depend on
k, then val(S) ≥ (1− (1− 1

k
)k + ε

8k
) val(S∗).

Proof. If
∑k

i=1 |S∗i | > (1 + ε) val(S∗), the subset in S∗ with the largest size should
contain more than 1+ε

k
val(S∗) elements, implying that |S1| > 1+ε

k
val(S∗). Lemma A.5

then implies that val(S) ≥ (1− (1− 1
k
)k + ε

8k
) val(S∗).

Lemma 4.14. If |S1 \ (
⋃k
i=1 S

∗
i)| > ε val(S∗) for some ε > 0 which may depend on

k, then val(S) ≥ (1− (1− 1/k)k + ε/16) val(S∗).

243

Proof. If |S1 ∩ (
⋃k
i=1 S

∗
i)| < (1

k
− ε

2
) val(S∗), Lemma 4.12 implies this lemma. Other-

wise, we have

|S1| =

∣∣∣∣∣S1 \

(
k⋃
i=1

S∗i

)∣∣∣∣∣+

∣∣∣∣∣S1 ∩

(
k⋃
i=1

S∗i

)∣∣∣∣∣ ≥ ε val(S∗) +

(
1

k
− ε

2

)
val(S∗)

=

(
1

k
+
ε

2

)
val(S∗),

and Lemma A.5 implies this lemma.

Finally, the lemma below shows that, in order to have the tight approximation
guarantee 1− (1− 1/k)k, those subsets in the optimal solution must have about the
same size.

Lemma 4.15. If there exists S∗i ∈ S∗ such that |S∗i | < (1
k
− ε) val(S∗) for some ε > 0

which may depend on k, then val(S) ≥ (1− (1− 1
k
)k + ε

8k
) val(S∗).

Proof. Assume |S∗1 | < (1
k
− ε) val(S∗) ≤ (1

k
− ε)

∑k
i=1 |S∗i | without loss of generality.

We have
k∑
i=2

|S∗i | >
(
k − 1

k
+ ε

) k∑
i=1

|S∗i | ≥
(
k − 1

k
+ ε

)
val(S∗).

Therefore,

max
2≤i≤k

|S∗i | >
(

1

k
+

ε

k − 1

)
val(S∗) >

(
1

k
+
ε

k

)
val(S∗).

By the nature of the greedy algorithm,

|S1| ≥ max
2≤i≤k

|S∗i | >
(

1

k
+
ε

k

)
val(S∗),

and Lemma A.5 implies this lemma.

We remark that we only include those properties that are useful in our analysis,
while there are some other important properties for Max-k-Coverage that are not
listed here.

A.4 Alternative Models for Linear Threshold Model
on Undirected Graphs

As mentioned in the last subsection of Sect. 4.5, we will discuss alternative or more
general ways to define LTM on undirected graphs, and discuss whether our results in
Sect. 4.3 and Sect. 4.4 extend to those new settings.

244

Weighted undirected graphs with symmetric weights A seemingly natural
way to define LTM on undirected edge-weighted graphs is to define edge-weighted
undirected graphs such that the weights satisfy the constraints that, 1) for each
vertex v,

∑
u∈Γ(v) w(u, v) ≤ 1 (as it is in LTM for general directed graphs), and 2)

w(u, v) = w(v, u) for any pair {u, v} (so that the graph is undirected). However,
this model is unnatural in reality, because it disallows the case that a popular ver-
tex exercises significant influence over many somewhat lonely vertices. Consider an
extreme example where the graph is a star, with a center u and n leaves v1, . . . , vn.
The constraint

∑n
i=1 w(vi, u) ≤ 1 implies that there exists at least one vi such that

w(vi, u) ≤ 1
n
, and furthermore, w(u, vi) = w(vi, u) ≤ 1

n
. In this case, even if u is the

only neighbor of vi, u still has very limited influence to vi just because u has a lot
of other neighbors. In reality, it is unnatural to assume that a node’s being popular
reduces its influence to its neighbors.

The LTM constraint
∑

u∈Γ(v) w(u, v) ≤ 1 makes the above model with symmetri-
cally weighted graphs unnatural. Moreover, this constrains is particular to LTM. For
ICM which does not have this constraint, it is much more natural to consider graphs
with symmetric edge weights ∀{u, v} : w(u, v) = w(v, u), and this is indeed the model
studied most often in the past literature, including Khanna and Lucier’s work [47].

Weighted undirected graphs with normalization A more natural way to de-
fine LTM on graphs that are both edge-weighted and undirected is to start with an
edge-weighted undirected graph G = (V,E,w′) without any constraint and then
normalize the weight of each edge (u, v) such that w(u, v) = w′(u,v)∑

u′∈Γ(v) w
′(u′,v)

and

w(v, u) = w′(u,v)∑
v′∈Γ(u) w

′(u,v′)
, as mentioned in the last subsection of Sect. 4.5. After

normalization, we have, for each v ∈ V ,
∑

u∈Γ(v) w(u, v) = 1, so this is a valid linear
threshold model. Notice that, after the normalization, the weights of the two anti-
parallel directed edges (u, v) and (v, u) may be different. Even though they had the
same weight before the normalization (to maintain the undirected feature). In the
corresponding live-edge interpretation, each v chooses one of its incoming edges to
be “live” with probability proportional to the edge-weights (instead of choosing one
uniformly at random as in Theorem 4.2).

Theorem 4.8 holds naturally under this more generalized model. However, Theo-
rem 4.10 no longer holds, and the barrier 1−(1−1/k)k is tight even up to lower order
terms: for any positive function f(k) which may be infinitesimal, there is always an
example where the greedy algorithm achieves less than a (1 − (1 − 1/k)k + f(k))-
approximation. Example 4.9 can be easily adapted to show this. Let m � k be a
sufficiently large number that is divisible by kk such that both m0.1 and

√
m are inte-

gers. Increase the size of C1, . . . , Ck to m0.1. Increase the sizes of the stars such that
|Di| = m(1− 1

k
)i−1 for i = 1, . . . , k and |Dk+1| = · · · = |Dk+`−1| = m(1− 1

k
)k, where

` and |Dk+`| are set such that
∑k+`

i=1 |Di| = km− k
√
m. Set the weights of the edges

in each Di to be extremely small, say 1/m100, and set the weights of the remaining
edges to be 1. After normalizing the weights, the weight of each edge connecting vi
to each of the remaining vertices in Di is still 1, the weight of each edge (ui, vj) (for

245

i = 1, . . . , k and j = 1, . . . , k + `) becomes 1
k+(|Dj |−1)/m100 ≈ 1

k
, the weight of each

edge (vj, ui) (again for i = 1, . . . , k and j = 1, . . . , k + `) becomes 1
k+`+|Ci|−1

= Θ(1
m

)

which can be made much smaller than f(k). By a similar argument, the greedy
algorithm will choose {v1, . . . , vk}, while the optimal seed set is {u1, . . . , uk}. We
have σ(S)

σ(S∗)
≤ mk(1−(1−1/k)k)+o(m0.1)

km−k
√
m

, which can be less than (1− (1− 1/k)k + f(k)) for
sufficiently large m.

Lemma 4.16 and Lemma 4.17 rely crucially on the fact that each vertex v should
choose its incoming live edge uniformly at random, and Lemma 4.18 also relies on
this. This explains why the proof of Theorem 4.10 fails to work for this edge-weighted
setting.

Unweighted undirected graphs with slackness In the previous setting, as well
as the unweighted setting used in this paper, we have

∑
u∈Γ(v) w(u, v) equals exactly

1. Equivalently, each v chooses exactly one incoming live edge. The most general LTM
allows that

∑
u∈Γ(v) w(u, v) may be strictly less than 1, or that each v can choose no

incoming live edge with certain probability.
To define a model that incorporates this feature, we consider a more general model

where each vertex v has a parameter ϑv ∈ [0, 1] (given as an input to the algorithm)
such that each vertex v chooses no incoming live edge with probability 1 − ϑv, and,
with probability ϑv, it chooses an incoming edge being live uniformly at random.
Equivalently, given an undirected unweighted graph G = (V,E), we assign weights
to the edges such that w(u, v) = ϑv

deg(v)
and consider the standard LTM on directed

graphs. Notice that we could further generalize this to allow weighted graphs, and
then normalize the weights of the edges such that the sum of the weights of all
incoming edges of each vertex v is exactly ϑv. However, this is a model that is even
more general than the one in the last subsection (the model in the last subsection is
obtained by setting ϑv = 1 for all v from this model), and we know that the ratio
1− (1−1/k)k is tight even up to infinitesimal additive f(k). Thus, in this subsection,
we consider the unweighted setting with the (1− ϑv) slackness for each vertex v. We
will show that both Theorem 4.8 and Theorem 4.10 hold under this setting. It is
clear that Theorem 4.8 holds, as we are considering a more general model.

To see that Theorem 4.10 holds, we first observe that Lemma 4.5, Lemma 4.16
and Lemma 4.17 hold with exactly the same proofs. To see that the remaining part
of the proof of Theorem 4.10 can be adapted to this setting, we need to show that
Lemma 4.18 holds, and we need to establish that InfMax under this setting is still
a special case of Max-k-Coverage so that Proposition 4.21, 4.19 and 4.20 hold.

Note that Lemma 4.18 is also true for this new setting with slackness, and it can
be proved by a simple coupling argument if knowing Lemma 4.18 for the original
setting without slackness is true. Alternative, it can be proved directly by a similar
arguments used in Sect. 3.5.2, and we include such a proof in Appendix A.5 for
completeness.

We will use a more general version of Max-k-Coverage with weighted ele-
ments, where each element ei has a positive weight w(ei), and the objective function

246

we are maximizing becomes val(S) =
∑

e∈
⋃
S∈S S

w(e). All the lemmas in Sect. 4.4.1

hold for the weighted Max-k-Coverage with exactly the same proofs. The inter-
pretation of an InfMax instance to a Max-k-Coverage instance is almost the
same as it is given in Sect. 4.2.1. The elements are tuples in V × H where H is
the set of all possible realizations. Notice that here |H| =

∏
v∈V (deg(v) + 1), as an

extra outcome that an vertex chooses no incoming live edge is possible now. The
weight of the element (v, g) equals to the probability that g is sampled. There-
fore, σ(S) =

∑
v∈V Pr(S → v) =

∑
v∈V

∑
g: v is reachable from S under g Pr(g is sampled) =∑

(v,g): v is reachable from S under g w((v, g)). Let Σ(S) be the same as before (which is the
set of all elements (v, g) that are “covered” by S, or equivalently, the set of all (v, g)’s
such that v is reachable from S under g). We have σ(S) =

∑
(u,g)∈Σ(S) w((u, g)).

Finally, Proposition 4.21, 4.19 and 4.20 hold with the following changes to the
proof.

• every |Σ(S)| is changed to its weighted version
∑

(u,g)∈Σ(S) w((u, g));

•
∏

v∈V deg(v) is changed to 1 (Notice that we had |H| =
∏

v∈V deg(v) before,
but we have

∑
g∈H Pr(g is sampled) = 1 now).

A.5 Proof of Lemma 4.18 Including Slackness

Recall that, in LTM on undirected graphs with slackness, each vertex has a parameter
ϑv ∈ [0, 1] that is given as an input to the algorithm. With probability 1− ϑv, vertex
v chooses no incoming live edge, and with probability ϑv, vertex v chooses one of
its incoming edges as the live edge uniformly at random. (See the last subsection of
Append. A.4.)

We prove the following lemma in this section.

Lemma A.6. Consider LTM on undirected graphs with slackness. For any v ∈ V , we
have σ({v}) = deg(v) + 1.

This lemma is a generalization to Lemma 4.18, as the linear threshold model in
Definition 4.1 used in Chapter 4 is a special case with the slackness of each vertex
being 0.

This lemma also fills in the last piece of the proof that Theorem 4.10 holds for
the setting with unweighted undirected graphs with slackness.

As mentioned, the arguments is largely identical to the one in Sect. 3.5.2.
We first show that Lemma 4.18 holds for trees.

Lemma A.7. Suppose G is a tree, we have σ({v}) ≤ deg(v) + 1.

Proof. We assume without loss of generality that G is rooted at v. Consider an
arbitrary vertex u 6= v at the second last level with children u1, . . . , ut being leaves of
T . We have deg(u) = t + 1. Suppose u’s parent s is infected by v with probability
x (x = 1 if s = v). Then u will be infected with probability xϑu

t+1
, and each ui

247

of u1, . . . , ut, having degree 1, will be infected with probability ϑui if u is infected.
Therefore, the expected number of infected vertices in the subtree rooted at u is

xϑu
t+ 1

(
1 +

t∑
i=1

ϑui

)
+

(
1− xϑu

t+ 1

)
· 0x ≤ xϑu

t+ 1
(t+ 1) = xϑu.

This suggests that, if we contract the subtree rooted at u to a single vertex u, the
expected total number of infected vertices can only increase for this change of the
graph G, since the degree of u becomes 1 after this contraction, making the infection
probability of u become xϑu. We can keep doing this contraction until G becomes
a star with center v, and the expected number of infected vertices can only increase
during this process. The lemma follows.

We define the lift of an undirected graph G with respect to a vertex a ⊆ V , which
is a new undirected graph Ĝa that shares the same vertex a with G plus a lot of
new vertices. We will then define a coupling between sampling live-edges in G and
sampling live-edges in Ĝa. Given the seed v, this coupling reveals an upper bound
of σ({v}). In particular, we will show σG({v}) ≤ σĜv({v}), where σG(·) and σĜv(·)
denote the function σ(·) with respect to the graphs G and Ĝv respectively.

Let

Pa = {P = ((v1, v2), (v2, v3), . . . , (vt−1, vt)) : v1 = a; v2, . . . , vt 6= a;∀i 6= j : vi 6= vj}

be the set of all simple paths P that start from vertex a but never come back to a.

Definition A.8. Given an undirected graph G = (V,E) and a ∈ V , the lift of G
with respect to a, denoted by Ĝa = (V̂ , Ê), is an undirected graph defined as follows.

• The vertex set is V̂ = {a}∪VP , where VP = {vP : P ∈ Pa} is the set of vertices
corresponding to the simple paths in Pa.

• For each vP ∈ VP , include (a, vP) ∈ Ê if P is a path of length 1 that starts from
a; for each vP1 , vP2 ∈ VP , include (vP1 , vP2) if |P2| = |P1| + 1 and P2, P1 share
the first |P1| common edges (or |P1| = |P2| + 1 and P1, P2 share the first |P2|
common edges, since Ĝa is undirected).

• If P ∈ Pa is a path ending at a vertex in G that is adjacent to a, add a dummy
vertex in Ĝ and connect this vertex to vP .

It is easy to see that Ĝa is a tree (that can be viewed as) rooted at a. The vertices
in the tree Ĝa correspond to all the paths in Pa starting at a. For any path P ∈ Pa
with v being its ending vertex, deg(vP) in Ĝa equals to deg(v) in G.

Let Ψ : E → 2Ê be the function mapping an undirected edge in G to its counter-
parts in Ĝa:

Ψ(e) =

{
{(a, vP) | P = ((a, v))} if e = (a, v)
{(vP1 , vP2) | P2 = (P1, e)} Otherwise.

248

Notice that in the above definition, Ψ(e) contains only a single edge (a, vP) with
P = ((a, v)) being the length-one path connecting a and v if e = (a, v), while Ψ(e)
contains the set of all (vP1 , vP2) such that P2 is obtained by appending e to P1. Let
Φ : V → 2V̂ represent the vertex correspondence:

Φ(v) =

{
{v} if v = a
{vP | P ends at v} Otherwise.

From our definition, it is easy to see that Ψ(e1) ∩ Ψ(e2) = ∅ if e1 6= e2, and
Φ(u) ∩ Φ(v) = ∅ if u 6= v. Moreover, since Pa contains only paths, for any vertex v
and edge e in G, each path in Ĝa connecting a to a leaf (recall that Ĝa is a tree) can
intersect each of Ψ(e) and Φ(v) at most once.1

Finally, to let the inequality σG({v}) ≤ σĜv({v}) make sense, we need to specify
the parameter ϑ for each vertex in Ĝv. This is done in a natural way: for each vertex
w ∈ Φ(v) in Ĝv, set ϑw for vertex w in Ĝv be the same as ϑv for vertex v in G.

Lemma A.9.
σG({v}) ≤ σĜv({v}).

Proof. We will define a coupling between the process of revealing live-edges in G and
the process of revealing live-edges in Ĝv. Let χG be the edge-revelation process in G,
and χĜv be the edge-revelation process in χĜv , where in both processes, each edge
is viewed as two anti-parallel directed edges, and we always reveal all the incoming
edges for a vertex u simultaneously by choosing exactly one incoming edge uniformly
at random with probability ϑu. We will couple χG with another edge-revelation
process χ′

Ĝv
of Ĝv.

We consider the following coupling. In each iteration where all the incoming edges
of u, denoted by (u1, u), (u2, u), . . . , (udeg(u), u), are revealed such that at most one of
them is live, we reveal all the incoming edges for each vP ∈ Φ(u) as follows.

• If none of (u1, u), (u2, u), . . . , (udeg(u), u) is live in G, then vP chooses no live
incoming edge.

• For each P ′ such that vP ′ is a neighbor of vP , there must exists ui ∈ {u1, . . . , udeg(u)}
such that either that P ′ is obtained by appending (u, ui) to P or that P is ob-
tained by appending (ui, u) to P ′. Reveal the directed edge (vP ′ , vP) such that
it is live if and only if (ui, u) is live in G.

1To see this for each Ψ(e), suppose for the sake of contradiction that the path from vP to the
root contains two edges (vP1

, vP2
), (vP3

, vP4
) such that (vP1

, vP2
), (vP3

, vP4
) ∈ Ψ(e) for some edge

e. Assume without loss of generality that the order of the four vertices on the path according
to the distances to the root is (vP1

, vP2
, vP3

, vP4
). It is easy to see from our construction that

P1 (P2 (P3 (P4. As a result, (vP1 , vP2), (vP3 , vP4) ∈ Ψ(e) implies that P2 is the path obtained
by appending e to P1, and P4, containing P2, P3, is obtained by appending e to P3, which further
implies that P4 is a path that uses the edge e twice, contradicting to our definition that Pa contains
only simple paths.
The corresponding claim for each Φ(v) can be shown similarly.

249

• If there is a live edge (vP ′ , vP) revealed in the above step, make all the remaining
directed edges connecting to vP not be live. If no live edge is revealed in the
above step and one of (u1, u), (u2, u), . . . , (udeg(u), u) in G is live, it must be that
(a, u) is an edge in G and u has chosen (a, u) being the live edge. In this case,
let the edge between vP and the dummy vertex being live (See the third bullet
point of Definition A.8).

This defines a coupling between χG and χ′
Ĝv
. It is easy to check that each vP ∈ V̂

chooses exactly one of its incoming edges uniformly at random with probability ϑvP
and chooses no incoming edge with probability 1− ϑvP in this coupling, which is the
same as it is in the process χĜv . The difference is that, there are dependencies between
the revelations of incoming edges for different vertices in Ĝv: if both vP , vP ′ ∈ V̂
belongs to the same Φ(u) for some u ∈ V , the incoming edges for vP and vP ′ are
revealed in the same way.

Although the two processes χ′
Ĝv

and χĜv are not the same, we will show that the
expected number of vertices that are reachable from v by live edges is the same in
both χ′

Ĝv
and χĜv . It suffices to show that, for each vP ∈ V̂ , all the vertices in the

path connecting vP to the seed v are considered independently (meaning that the
incoming edges for vP1 on the path are revealed independently to the revelations of
the incoming edges of vP2), since this would imply that the probability vP is connected
to a seed is the same in both χ′

Ĝv
and χĜv , and the total number of vertices reachable

from v by live edges is the same by the linearity of expectation. We only need to show
that there do not exist two vertices on this path that are in the same set Φ(u) for
some u ∈ V , since the incoming edges of each vP1 ∈ Φ(u1) are revealed independently
to the revelations of the incoming edges of each vP2 ∈ Φ(u2) whenever u1 6= u2. This
is true due to that all the paths in Pv are simple paths, as remarked in the paragraph
below where we define function Φ(·).

Following the same analysis before, we can show that the number of the vertices
reachable from v in χG is always at most the number of vertices reachable from v in
χ′
Ĝv
. The lemma concludes here.

Since v has the same degree in G and Ĝv, Lemma A.9 and Lemma A.7 implies
Lemma 4.18 in the slackness setting.

250

APPENDIX B

Generalizing Results in Chapter 5 for
General Threshold Model

In this section, we show that all our theoretical results in Chapter 5 hold for submod-
ular general threshold model. In Sect. B.1, we define the two feedback models, the
full-adoption and the myopic, based on the general threshold model. In Sect. B.2,
we justify that all our results in Chapter 5 hold for submodular general threshold
model. Notice that, however, our empirical results in Sect. 5.7 depend on the reverse
reachable set technique, which is only compatible with the triggering model.

B.1 General Threshold Model and Feedback

IG,F in Definition 2.1 can be viewed as a random function IG,F : {0, 1}|V | → {0, 1}|V |.
In addition, if the thresholds of all the vertices are fixed, this function becomes deter-
ministic. Correspondingly, we define a realization of a graph G = (V,E) as a function
φ : V → (0, 1] which encodes the thresholds of all vertices. Let IφG,F : {0, 1}|V | →
{0, 1}|V | be the deterministic function corresponding to the general threshold model
IG,F with vertices’ thresholds following realization φ. We will interchangeably con-
sider φ as a function defined above or a |V | dimensional vector in (0, 1]|V |, and we
write φ ∼ (0, 1]|V | to mean a random realization is sampled such that each θv is
sampled uniformly at random and independently as it is in Definition 2.1.

In the remaining part of this section, we define the full-adoption feedback model
and the myopic feedback model corresponding to the general threshold model.

When the seed-picker sees that a vertex v is not infected (v may be a vertex
adjacent to IφG,F (S) in the full-adoption feedback model, or a vertex adjacent to S in
the myopic feedback model), the seed-picker has certain partial information about v’s
threshold. Specifically, let IN v be v’s infected in-neighbors that are observed by the
seed-picker. By seeing that v is not infected, the seed-picker knows that the threshold
of v is in the range (fv(IN v), 1], and the posterior distribution of θv is the uniform
distribution on this range.

Let the level of a vertex v, denoted by ov, be a value which either equals a character
X indicating that it is infected, or a real value ϑv ∈ [0, 1] indicating that θv ∈ (ϑv, 1].
Let O = {X} ∪ [0, 1] be the space of all possible levels. A partial realization ϕ
is a function specifying a level for each vertex: ϕ : V → O. We say that a partial

251

realization ϕ is consistent with the full realization φ, denoted by φ ' ϕ, if φ(v) > ϕ(v)
for any v ∈ V such that ϕ(v) 6= X.

Definition B.1. Given a general threshold model IG=(V,E),F with a realization φ, the
full-adoption feedback is a function Φf

G,F,φ mapping a seed set S ⊆ V to a partial
realization ϕ such that

• ϕ(v) = X for each v ∈ IφG,F (S), and

• ϕ(v) = fv(I
φ
G,F (S) ∩ Γ(v)) for each v /∈ IφG,F (S).

Definition B.2. Given a general threshold model IG=(V,E),F with a realization φ, the
myopic feedback is a function Φm

G,F,φ mapping a seed set S ⊆ V to a partial realization
ϕ such that

• ϕ(v) = X for each v ∈ S, and

• for each v /∈ S, ϕ(v) = X if fv(S ∩ Γ(v)) ≥ φ(v), and ϕ(v) = fv(S ∩ Γ(v)) if
fv(S ∩ Γ(v)) < φ(v).

Notice that, in both definitions above, a vertex v that does not have any infected
neighbor (i.e., v /∈ S such that IφG,F (S) ∩ Γ(v) = ∅ for the full-adoption feedback
model or S ∩ Γ(v) = ∅ for the myopic feedback model) always satisfies ϕ(v) = 0, as
fv(∅) = 0 by Definition 2.1.

After properly defining the two feedback models, the definition of the adaptive
policy π, as well as the definitions of the functions S f(·, ·, ·),Sm(·, ·, ·), σf(·, ·), σm(·, ·),
are exactly the same as they are in Sect. 5.2.1. The definitions of the adaptivity gap
and the greedy adaptivity gap are also the same as they are in Sect. 5.2.2.

B.2 Extending of Our Results to General Threshold
Model

We will show in this section that all our results can be extended to the submodular
general threshold model. Recall that a general threshold model is submodular means
that all the local influence functions fv’s are submodular. In this section, whenever we
write IG,F , we refer to the general threshold model in Definition 2.1, not the triggering
model in Definition 2.1.

B.2.1 Infimum of Greedy Adaptivity Gap

Theorem 5.6 is extended as follows.

Theorem B.3. For the full-adoption feedback model,

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))

252

= inf
G,F,k: IG,F is submodular

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

Recall that Theorem 5.6 can be easily implied by Lemma 5.8, Lemma 5.9 and
Theorem 5.10. Since Lemma 5.8 and Lemma 5.9 are for specific models ICM and
LTM which are compatible with both the triggering model and the general threshold
model, their validity here is clear. Following the same arguments, Theorem B.3 can be
implied by Lemma 5.8, Lemma 5.9 and the following theorem which is the counterpart
to Theorem 5.10.

Theorem B.4. If IG,F is a submodular general threshold model, then we have both

σf(πg, k) ≥
(

1− 1

e

)
max

S⊆V,|S|≤k
σ(S) and σm(πg, k) ≥

(
1− 1

e

)
max

S⊆V,|S|≤k
σ(S).

Similar to the proof of Theorem 5.10, Theorem B.4 can be proved by showing
the three propositions: Proposition 5.11, Proposition 5.12 and Proposition 5.13. It
is straightforward to check that Proposition 5.12 and Proposition 5.13 hold for the
general threshold model with exactly the same proofs. Now, it remains to extend
Proposition 5.11 to the general threshold model, which is restated and proved below.

Proposition B.5. Given a submodular general threshold model IG,F , any S ⊆ V ,
any feedback model (either full-adoption or myopic) and any partial realization ϕ that
is a valid feedback of S (i.e., ∃φ : ϕ = Φf

G,F,φ(S) or ∃φ : ϕ = Φm
G,F,φ(S), depending on

the feedback model considered), the function T : {0, 1}|V | → R≥0 defined as T (X) =
Eφ'ϕ[|IφG,F (S ∪X)|] is submodular.

Proof. Fix a feedback model, S ⊆ V and ϕ that is a valid feedback of S. Let
T = {v | ϕ(v) = X} be the set of infected vertices indicated by the feedback of S.
We consider a new general threshold model IG′,F ′ defined as follows:

• G′ is obtained by removing vertices in T from G (and the edges connecting
from/to vertices in T are also removed);

• For any v ∈ V ′ = V \T , Γ(v)∩T is the set of in-neighbors of v that are removed.
Define f ′v(Y) = fv((Γ(v)∩T)∪Y)−ϕ(v)

1−ϕ(v)
for each subset Y of v’s in-neighbors in the

new graph G′: Y ⊆ Γ(v) ∩ V ′.

Notice that f ′v is a valid local influence function. f ′v is clearly monotone. For each
v ∈ V ′, we have ϕ(v) = fv(Γ(v)∩T), as this is exactly the feedback received from the
fact that v has not yet infected. It is then easy to see that f ′v is always non-negative
and f ′v(∅) = 0.

A simple coupling argument can show that

E
φ'ϕ

[∣∣∣IφG,F (S ∪X)
∣∣∣] = σG′,F ′(X \ T) + |T |. (B.1)

253

To define the coupling, for each v ∈ V ′, the threshold of v in G, θv, is coupled with
the threshold of v in G′ as θ′v = θv−ϕ(v)

1−ϕ(v)
. This is a valid coupling: by φ ' ϕ, we

know that θv is sampled uniformly at random from (ϕ(v), 1], which indicates that the
marginal distribution of θ′v is the uniform distribution on (0, 1], which makes IG′,F ′ a
valid general threshold model.

Under this coupling, on the vertices V ′, the cascade in G with seeds S ∪ X and
partial realization ϕ is identical to the cascade in G′ with seeds X \ T . To see this,
consider an arbitrary vertex v ∈ V ′ and let IN v and IN ′v be v’s infected neighbors in
G and G′ respectively. For induction hypothesis, suppose the two cascade processes
before v’s infection are identical. We have IN v = IN ′v ∪ (Γ(v)∩T) and IN ′v ∩ (Γ(v)∩
T) = ∅. It is easy to see from our construction that v is infected in G if and only if v
is infected in G′:

fv(IN v) ≥ θv ⇔ f ′v(IN
′
v) =

fv(IN v)− ϕ(v)

1− ϕ(v)
≥ θ′v.

This proves Eqn. (B.1).
Finally, since each fv(·) is assumed to be submodular, it is easy to see that each

f ′v(·) is submodular by our definition. Thus, IG′,F ′ is a submodular model. This,
combined with Eqn. (B.1), proves the proposition.

B.2.2 Supremum of Greedy Adaptivity Gap

All the results in Sect. 5.4 about the supremum of the greedy adaptivity gap can be ex-
tended easily to the submodular general threshold model. In particular, Lemma 5.16
and Lemma 5.18 are under LTM, which is compatible with the submodular general
threshold model. Theorem 5.14 and Theorem 5.15 are proved by providing an exam-
ple with a diffusion model that is a combination of ICM and LTM, and the diffusion
model constructed in Definition 5.19 can be easily described in the formulation of
the general threshold model, since both ICM and LTM can be described in the general
threshold model.

254

APPENDIX C

Omitted Proofs in Chapter 8

C.1 Proof of Lemma 8.13

The proof will follow the structure of the proof sketch in the main body of this paper.
Let E be the event that at least one leaf (or tree node) is activated at the end

of the cascade. By our definition, Pk = limn→∞ Pr(E). Given a seeding strategy
k, let σ(k) := EG∼G(n,T)[σr,G(k)] be the expected number of infected vertices, σ(k |
E) := EG∼G(n,T)[σr,G(k) | E] be the expected number of infected vertices conditioning
on event E, and σ(k | ¬E) := EG∼G(n,T)[σr,G(k) | ¬E] be the expected number of
infected vertices conditioning on that E does not happen. We have

σ(k) = Pr(E) · σ(k | E) + (1− Pr(E)) · σ(k | ¬E),

and

Σr,T (k) = lim
n→∞

σ(k)

n
= Pk · lim

n→∞

σ(k | E)

n
+ (1− Pk) · lim

n→∞

σ(k | ¬E)

n
. (C.1)

To prove Lemma 8.13, it is sufficent to show the following two claims:

1. First, we show that 1 − Pk > 0 implies σ(k | ¬E) = o(n), so the second term
in (C.1) is always 0 (Sect. C.1.1).

2. Second, to conclude the proof, it suffices to show that σ(k | E) = cn+ o(n) for
some constant c which does not depend on k, which implies that the first term
in (C.1) is monotone in Pk (Sect. C.1.2).

These two claims correspond to the second and the third paragraphs in the sketch of
the proof.

The following proposition is useful for proving both claims.

Proposition C.1. Suppose the root of T has weight ω(1/n1+1/r) and consider a leaf
t. If there are Θ(n) infected vertices in V \ V (t), then these infected vertices outside
V (t) will infect ω(1) vertices in V (t) with probability 1− o(1).

Proof. LetX = Θ(n) be the number of infected vertices in V \V (t). For each u ∈ V (t)
and v ∈ V \ V (t), we assume that the probability puv that the edge (u, v) appears

255

satisfies puv = ω(1/n1+1/r) and puv = o(1/n), where puv = ω(1/n1+1/r) holds since
the root of T has weight ω(1/n1+1/r), and assuming puv = o(1/n) may only decrease
the number of infected vertices in V (t) if the least common ancestor of the two leaves
containing u and v has weight Ω(1/n). Let p be the minimum probability among
those puv’s, and we further assume that each edge (u, v) appears with probability p,
which again may only reduce the number of infected vertices in V (t).

For each vertex u ∈ V (t), by only accounting for the probability that it has exactly
r neighbors among those X outside infected vertices, the probability that u is infected
is at least

ρ :=

(
X

r

)
pr(1− p)X−r = ω

(
nr ·

(
1

n1+1/r

)r (
1− 1

n

)n)
= ω

(
1

n

)
,

and the expected number of infected vertices in V (t) is at least v(t)n · ρ = ω(1).
Let Y be the number of vertices in V (t) that are infected due to the influence of

V \ V (t), so we have E[Y] = v(t)nρ. Applying Chebyshev’s inequality,

Pr

(
Y ≤ 1

2
v(t)nρ

)
≤ Pr

(
|Y − E[Y]| ≥ 1

2
v(t)nρ

)

≤ Var(Y)

(1
2
v(t)nρ)2

=
v(t)nρ(1− ρ)

1
4
v(t)2n2ρ2

= o(1),

where we have used the fact that nρ = ω(1) and the variance of the Binomial random
variable with parameter n, p is np(1 − p). Therefore, with probability 1 − o(1), the
number of infected vertices in V (t) is at least 1

2
v(t)nρ = ω(1).

C.1.1 Proof of the First Claim

We consider two cases: 1) T contains no critical or supercritical leaf; 2) T contains
at least one critical or supercritical leaf.

If there is no critical or supercritical leaf in T , given that the total number of
seeds K = Θ(1) is a constant, Theorem 8.7 shows that, with high probability, there
can be at most 2K = Θ(1) infected vertices even without conditioning on that E has
not happened. To be specific, we can take the maximum weight w∗(t) over all the
leaves, and assume the entire graph is the Erdős-Rényi graph G(n,w∗(t)). This makes
the graph denser, so the expected number of infected vertices increases. We further
assume that we have not conditioned on ¬E, this further increases the expected
number of infected vertices. However, even under these assumptions, Theorem 8.7
implies that the total number of infected vertices is less than 2K with high probability.
Thus, σ(k | ¬E) = o(n) even without assuming 1− Pk > 0.

Suppose there is at least one critical or supercritical leaf, and Pr(¬E) = Θ(1)
(equivalently, 1− Pk > 0, as given in the statement of the first claim). To show that
σ(k | ¬E) = o(n), it suffices to show that, conditioning on there being Θ(n) infected
vertices, E happens with probability 1− o(1). This is because, if Pr(¬E) = Θ(1) and

256

Pr(¬E | σ(k) = Θ(n)) = o(1), then

Pr (σ(k) = Θ(n) | ¬E) =
Pr(σ(k) = Θ(n)) · Pr(¬E | σ(k) = Θ(n))

Pr(¬E)
= o(1),

which implies σ(k | ¬E) = o(n).
Now, suppose there are Θ(n) infected vertices; to conclude the claim, we will show

that E happens with probability 1 − o(1). Since the number of leaves is a constant,
there exists t′ ∈ LT such that the number of infected vertices in V (t′) is Θ(n). Let
t be a critical or supercritical leaf (we have supposed there is at least one critical or
supercritical leaf). Theorem 8.8 and Corollary 8.10 indicate that, with probability
1−o(1), the number of infected vertices in V (t) is either a constant or v(t)n. Therefore,
if t′ = t, with probability 1 − o(1), those Θ(n) infected vertices in V (t) will activate
t, so E happens with probability 1 − o(1). If t′ 6= t, let X = Θ(n) be such that
with probability 1 − o(1) the number of infected vertices in V (t′) is more than X,
then the total number of vertices in V (t) that are infected by those X vertices in
V (t′) is ω(1) (with high probability) according to Proposition C.1. Theorem 8.8 and
Corollary 8.10 show that, with high probability, those ω(1) infected vertices in V (t)
will further spread and activate t, which again says that E happens with probability
1− o(1).

C.1.2 Proof of the Second Claim

As an intuitive argument, Proposition C.1, Theorem 8.8, and Corollary 8.10 show
that, when E happens, with high probability, a single activated leaf will activate all
the critical and supercritical leaves, and the number of vertices corresponding to all
the critical and supercritical leaves is fixed and independent of k; based on the tree
structure and the number of infected outside vertices, the number of infected vertices
in a subcritical leaf may vary; however, we will see that the seeding strategy k, adding
only a constant number of infections, is too weak to significantly affect the number
of infected vertices in a subcritical leaf.

To break it down, we first show that all critical and supercritical leaves will be
activated with high probability if E happens. This is straightforward: Proposition C.1
shows that an activated leaf can cause ω(1) infected vertices in every other leaf with
high probability, and Theorem 8.8 and Corollary 8.10 indicate that those critical
and supercritical leaves will be activated by those ω(1) infected vertices with high
probability.

Lastly, assuming all critical and supercritical leaves are activated, we show that the
number of infected vertices in any subcritical leaf does not significantly depend on k.
We do not need to worry about those seeds that are put in the critical or supercritical
leaves, as all vertices in those leaves will be infected later. As a result, we only need
to show that a constant number of seeds in subcritical leaves has negligible effect to
the cascade.

We say a subcritical leaf t is vulnerable if there exists a criticial or supercritical
leaf t′ such that the least common ancestor of t and t′ has weight Ω(1/n), and we say t

257

is not-vulnerable otherwise. It is easy to see that a vulnerable leaf t will be activated
with high probability conditional on E, even if no seed is put into it. Since each
v ∈ V (t) is connected to one of the v(t′)n vertices in V (t′) with probability Ω(1/n),
the number of infected neighbors of v follows a Binomial distribution with parameter
(v(t′)n, p) where p = Ω(1/n). We only consider p = Θ(1/n), as there can only be more
infected vertices if p = ω(1/n). If p = Θ(1/n), the Binomial distribution becomes a
Poisson distribution with a constant mean λ for n→∞. In this case, with constant
probability e−λ λ

r

r!
, v has r infected neighbors. Therefore, v will be infected with

constant probability, and V (t) has Θ(n) vertices that are infected by V (t′) outside.
The second part of Theorem 8.7 shows that, these Θ(n) infected vertices will further
spread and activate t with high probability. Therefore, the seeds on those vulnerable
subcritical leaves have no effect, since vulnerable subcritical leaves will be activated
with high probability regardless the seeding strategy.

Let t1, . . . , tM be all the not-vulnerable subcritical leaves. Suppose we are at
the stage of the cascade process where all those critical, supercritical and vulnerable
subcritical leaves have already been activated (as they will with probability 1− o(1)
since we assumed that E has happened) and we are revealing the edges between
V \
⋃M
m=1 V (tm) and

⋃M
m=1 V (tm) to consider the cascade process in

⋃M
m=1 V (tm). For

each i = 0, 1, . . . , r − 1 and each m = 1, . . . ,M , let χmi be the number of vertices in
V (tm) that have exactly i infected neighbors among V \

⋃M
m=1 V (tm), which can be

viewed as a random variable. For eachm = 1, . . . ,M , let χmr be the number of vertices
in V (tm) that have at least r infected neighbors. If there are Km seeds in V (tm), we
increase the value of χmr by Km. Let χm = (χm0 , χ

m
1 , . . . , χ

m
r). Since (χ1, . . . ,χM)

completely characterizes the expected number of infected vertices in the subcritical
leaves (the expectation is taken over the sampling of the edges within every V (ti) and
between every pair V (ti), V (tj)), we let σ(χ1, . . . ,χM) be the total number of infected
vertices in the subcritical leaves, given (χ1, . . . ,χM). We aim to show that adding
K1, . . . , KM seeds in V (t1), . . . , V (tM) only changes the expected number of infected
vertices by o(n).

Let (χ1, . . . ,χM) correspond to the case where no seed is added, and (χ̄1, . . . , χ̄M)
correspond to the case where Km seeds are added to tm for each m = 1, . . . ,M . The
outline of the proof is that, we first show that a) the total variation distance of
the two distributions (χ1, . . . ,χM) and (χ̄1, . . . , χ̄M) is o(1); then b) we show that
σ(χ1, . . . ,χM) and σ(χ̄1, . . . , χ̄M) can only differ by o(n) in expectation.

We first note that claim a) can imply claim b) easily. Notice that the range of the
function σ(·) falls into the interval [0, n]. The total variation distance of (χ1, . . . ,χM)
and (χ̄1, . . . , χ̄M) being o(1) implies that∣∣∣∣ E

(χ1,...,χM)
[σ(χ1, . . . ,χM)]− E

(χ̄1,...,χ̄M)
[σ(χ̄1, . . . , χ̄M)]

∣∣∣∣ = o(n),

by a standard property of total variation distance (see, for example, Proposition 4.5
in [52]).

To show the claim a), noticing thatM is a constant and χm1 is independent of χm2

for any m1 and m2 (the appearances of edges between V (tm1) and V \
⋃M
m=1 V (tm)

258

are independent of the appearances of edges between V (tm2) and V \
⋃M
m=1 V (tm)),

it is sufficient to show that the total variation distance between χm and χ̄m is o(1).
Each vertex v ∈ V (tm) is connected to an arbitrary vertex in a critical or supercriti-
cal leaf with probability between ω(1/n1+1/r) (since the root has weight ω(1/n1+1/r))
and o(1/n) (otherwise tm is vulnerable). Since the number of infected vertices in
V \

⋃M
m=1 V (tm) is Θ(n), the number of v’s infected neighbors follows a Binomial

distribution, Bin(n, θ), with mean nθ between ω(1/n1/r) and o(1), we can use Pois-
son distribution Po(nθ) to approximate it. Formally, the total variation distance is
dTV (Bin(n, θ),Po(nθ)) ≤ nθ2 = o(1/n). Thus, this approximation only changes the
total variation distance of χm by o(1). Observing this, the proposition below shows
the total variation distance between χm and χ̄m is o(1).

Proposition C.2. Let λ be such that λ = ω(1/n1/r) and λ = o(1). Let Y1, . . . , Yn ∈
Z be n independently and identically distributed random variables where each Yi is
sampled from a Poisson distribution with mean λ. Let Z1, . . . , Zn ∈ Z be n random
variables, where the first K of them satisfy Z1 = · · · = ZK = r with probability 1,
and the remaining random variables ZK+1, . . . , Zn are independently sampled from a
Poisson distribution with mean λ. For i = 0, 1, . . . , r − 1, let χi be the number of
random variables in {Y1, . . . , Yn} that have value i, and χ̄i be the number of random
variables in {Z1, . . . , Zn} that have value i. Let χr be the number of random variables
in {Y1, . . . , Yn} that have values at least r, and χ̄r be the number of random variables
in {Z1, . . . , Zn} that have values at least r. The total variation distance between
χ = (χ0, χ1, . . . , χr) and χ̄ = (χ̄0, χ̄1, . . . , χ̄r) is dTV (χ, χ̄) = o(1) if K = Θ(1).

To show that random vectors χ and χ̄ have a small total variation distance, we
first estimate them by Poisson approximations. Note that χ and χ̄ can be seen as
ball and bin processes. There are r + 1 bins, and n balls. For χ, the probability of
ball i in bin ` is Pr[Yi = `] when 0 ≤ ` < r and Pr[Yi ≥ r] for bin r. χ` is the number
of balls in bin `. Therefore, we can simplify the correlation between the coordinates
of χ = (χ0, χ1, . . . , χr), and formulate χ as a r + 1 coordinate-wise independent
Poisson ζ = (ζ0, ζ1, . . . , ζr) with the same expectation E[χ] = E[ζ] conditioning on∑

0≤`≤r ζ` = n. For χ̄, we define ζ̄ similarly.
Then, we upper-bound the total variation distance between those two Poisson

vectors ζ and ζ̄ conditioning on
∑

0≤`≤r ζ` =
∑

0≤`≤r ζ̄` = n. We compute the relative
divergence between them and use the Pinsker’s inequality [46] to upper bound the
total variation distance.

Proof. For χ, there are r + 1 bins and n balls. Let the probability of ball i in bin `
be p` := Pr[Yi = `] when 0 ≤ ` < r and pr := Pr[Yi ≥ r] for bin r (note that these
probabilities are independent of the index i). For 0 ≤ ` ≤ r, χ` is the number of balls
in bin `. Consider the following Poisson vector ζ = (ζ0, ζ1, . . . , ζr) with parameters
(λ0, . . . , λr) where λ` = np` for 0 ≤ ` ≤ r: each coordinate ζ` is sampled from a
Poisson distribution with parameter λ` independently. Note that the distribution of

259

χ equals to ζ conditioning on
∑r

`=0 ζ` = n: for all k ∈ Zr+1
≥0 with

∑r
`=0 k` = n,

Pr (χ = k) = Pr

(
ζ = k |

r∑
`=0

k` = n

)
=

n!

nne−n

r∏
`=0

λk`` e
−λ`

k`!
. (C.2)

The process χ̄ needs more work. In the context of ball and bin process, the first
K balls are in bin r with probability 1, and the rest of balls follow the distribution
(p`)0≤`≤r defined above. For 0 ≤ ` ≤ r, χ̄` is the number of balls in bin `. This non-
symmetry makes the connection from χ̄ to a Poisson distribution less obvious. Here,
we first use a process χ̄′ to approximate χ̄ where all balls are thrown into the bins
independently and identically, and we translate χ̄′ to a Poisson distribution. Before
defining χ̄′, note that χ̄ is equivalent to the following process: instead of picking first
K indices, we can randomly pickK indices i1, i2, . . . , iK and let Ziι = r for 0 ≤ ι ≤ K.
The other follows the distribution (p`)0≤`≤r. In this formulation, the distribution of
the positions of balls are identical, but not independent. Now we define χ̄′ by setting
them to be independent: Let the probability of ball i in bin ` be p̄` := (1 −K/n)p`
when 0 ≤ ` < r and p̄r := (1−K/n)pr+K/n. The positions of balls are now mutually
independent in χ̄′. For 0 ≤ ` ≤ r, χ̄′` is the number of balls in bin `.

Note that the distributions of χ̄ and χ̄′ are different. In particular, the marginal
distribution of χ̄r is K plus a binomial distribution with parameter (n−K, pr), and
the marginal distribution of χ̄′r is a binomial distribution with parameter (n, p̄r).
However, we can show that

dTV (χ̄, χ̄′) = o(1). (C.3)

Equivalently, we want to show there exists a coupling between χ̄ and χ̄′ such that
the probability of χ̄ 6= χ̄′ is in o(1). First, for all kr ≥ K, the distributions of χ̄
conditioning on χ̄r = kr and χ̄′ conditioning on χ̄′r = kr are the same. Therefore,
fixing a coupling between χ̄r and χ̄′r, we can extend it to a coupling between χ̄ and
χ̄′ such that when an event χ̄r = χ̄′r happens, χ̄ = χ̄′. Thus, we have dTV (χ̄, χ̄′) =
dTV (χ̄r, χ̄

′
r). Now it suffices to show the following claim.

Claim C.3.
dTV (χ̄r, χ̄

′
r) = o(1).

Intuitively, the mean of χ̄r and χ̄′r are both np̄r which is in ω(1), so the small dis-
tinction between them should not matter. We present a proof later for completeness.

Given χ̄′, consider the following Poisson vector ζ̄ = (ζ̄0, ζ̄1, . . . , ζ̄r) with parameter
(λ̄0, . . . , λ̄r) where λ̄` = np̄` for 0 ≤ ` ≤ r. The distribution of χ̄′ equals to ζ̄
conditioning on

∑r
`=0 ζ̄` = n: for all k ∈ Zr+1

≥0 with
∑r

`=0 k` = n,

Pr (χ̄′ = k) = Pr

(
ζ̄ = k |

r∑
`=0

k` = n

)
=

n!

nne−n

r∏
`=0

λ̄k`` e
−λ̄`

k`!
. (C.4)

Finally, with (C.2), (C.3), and (C.4), it suffices to upper-bound the total variation
distance between χ and χ̄′. We will prove the following claim later.

260

Claim C.4.
dTV (χ, χ̄′) = o(1).

With these claims, we completes the proof:

dTV (χ, χ̄) ≤ dTV (χ, χ̄′) + dTV (χ̄, χ̄′) = o(1)

by the triangle inequality.

Proof of Claim C.3. Informally, the mean of χ̄r and χ̄′r are both np̄r = ω(1), so
the small distinction between them should not matter. We formalize these by using
Poisson distributions to approximate χ̄r (a binomial, Bin(n, p̄r)) and χ̄′r (a transported
binomial, K + Bin(n−K, pr)).

Recall that Po(x) denotes a Poisson random variable with parameter x. By the
triangle inequality, the distance, dTV (χ̄r, χ̄

′
r) = dTV (K + Bin(n −K, pr),Bin(n, p̄r)),

is less the the sum of the following four terms:

1. dTV (K + Bin(n−K, pr), K + Po((n−K)pr)),

2. dTV (K + Po((n−K)pr), K + Po(np̄r)),

3. dTV (K + Po(np̄r),Po(np̄r)), and

4. dTV (Po(np̄r),Bin(n, p̄r)).

Now we want to show all four terms are in o(1). By the Poisson approximation [48],
for all p, dTV (Bin(n, p),Po(np)) ≤ p, the first and the final term, are less than pr and
p̄r respectively. Both are in o(1) since pr = Θ(λr).

For the second term, because dTV (Po(λ1),Po(λ2)) ≤ |λ1−λ2|√
λ1+
√
λ2

for all λ1 and λ2

(see [1]) and pr = Ω(λr) = ω(1/n),

dTV (Po((n−K)pr),Po(np̄r)) ≤
np̄r − (n−K)pr√
np̄r +

√
(n−K)pr

=
K +Kpr√

np̄r +
√

(n−K)pr
= o(1).

Finally, for the third term, let (x)+ = max{0, x} for all x. Recall that λ̄r = np̄r. By

261

a definition of total variation distance, we have

dTV (K + Po(λ̄r),Po(λ̄r))

=
∑
x≥0

(
Pr(K + Po(λ̄r) = x)− Pr(Po(λ̄r) = x)

)+

=
∑
x≥K

(
Pr(Po(λ̄r) = x−K)− Pr(Po(λ̄r) = x)

)+ (the first K terms are zero)

=
∑
x≥K

Pr(Po(λ̄r) = x−K)

(
1− Pr(Po(λ̄r) = x)

Pr(Po(λ̄r) = x−K)

)+

=
∑
x≥0

Pr(Po(λ̄r) = x)

(
1− Pr(Po(λ̄r) = x+K)

Pr(Po(λ̄r) = x)

)+

(change variable)

=
∑
x≥0

Pr(Po(λ̄r) = x)

(
1− (λ̄r)

K

(x+ 1)(x+ 2) . . . (x+K)

)+

Because (x+ 1)(x+ 2) . . . (x+K) is increasing as x increases, there exists x∗ such
that (λ̄r)

K ≤ (x+ 1)(x+ 2) . . . (x+K) if and only if x ≥ x∗. Therefore,

dTV (K + Po(λ̄r),Po(λ̄r))

=
∑
x≥0

Pr(Po(λ̄r) = x)

(
1− (λ̄r)

K

(x+ 1)(x+ 2) . . . (x+K)

)+

=
∑
x≥x∗

Pr(Po(λ̄r) = x)

(
1− (λ̄r)

K

(x+ 1)(x+ 2) . . . (x+K)

)
= Pr(Po(λ̄r) ≥ x∗)− Pr(Po(λ̄r) ≥ x∗ +K)

=
x∗+K−1∑
x=x∗

Pr(Po(λ̄r) = x) ≤ K max
x

Pr(Po(λ̄r) = x)

Now we want to show maxx Pr(Po(λ̄r) = x) = o(1). Intuitively, since the expectation
λ̄r = ω(1) is large, the probability mass function Pr(Po(λ̄r) = x) is “flat”, and the
maximum of the probability mass function is small. Formally, for all x, Pr(Po(λ̄r) =
x + 1)/Pr(Po(λ̄r) = x) = λ̄r/(x + 1), so the maximum happens at xM := bλ̄rc.Then

262

we can compute an upper bound of Pr(Po(λ̄r) = xM) by Stirling approximations.

Pr
(
Po(λ̄r) = xM

)
=

(λ̄r)
xM e−λ̄r

xM !
≤ (λ̄r)

xM e−λ̄r
√

2πx
xM+1/2
M e−xM

(Stirling’s approximation [30])

=
1

√
2πx

1/2
M

· e
−λ̄r

e−xM
·
(
λ̄r
xM

)xM
≤ 1√

2πxM
·
(
λ̄r
xM

)xM
(λ̄r ≥ xM)

≤ 1√
2πxM

·
(

1 +
λ̄r − xM
xM

)xM
≤ 1√

2πxM
·
(

1 +
1

xM

)xM
≤ e√

2πxM
= o(1)

The last one holds because xM = bλ̄rc = ω(1).

Proof of Claim C.4. Because the distributions of χ and χ̄′ are very close to product
distributions, the relative entropy between them is easier to compute than the total
variation distance. By Pinsker’s inequality, if the relative entropy is small, the total
variation distance is also small.

DKL(χ‖χ̄′) =−
∑

k:
∑r
`=0 k`=n

Pr(χ = k) log
Pr(χ̄′ = k)

Pr(χ = k)

=−
∑

k:
∑r
`=0 k`=n

Pr(χ = k) log

∏r
`=0

λ̄
k`
` e
−λ̄`

k`!∏r
`=0

λ
k`
` e
−λ`

k`!

(by Eqn. (C.2) and (C.4))

=−
∑

k:
∑r
`=0 k`=n

Pr(χ = k)

(
r∑
`=0

k` log
λ̄`
λ`

)
(because

∑r
`=0 λ` =

∑r
`=0 λ̄`)

=−
∑

k:
∑r
`=0 k`=n

Pr(χ = k)

(
r−1∑
`=0

k` log

(
1− K

n

)
+ kr log

(
1 + (1/pr − 1)

K

n

))

In the outermost parentheses, everything except k` and kr are independent of the

263

summation over k, so we can simplify it as the following:

DKL(χ‖χ̄′)

=−

[
log

(
1− K

n

)∑
k

Pr(χ = k)

(
r−1∑
`=0

k`

)
+ log

(
1 + (1/pr − 1)

K

n

)∑
k

Pr(χ = k)kr

]

=−

[
log

(
1− K

n

) r−1∑
`=0

E[χ`] + log

(
1 + (1/pr − 1)

K

n

)
E[χr]

]

=−
[
(n− λr) log

(
1− K

n

)
+ λr log

(
1 + (1/pr − 1)

K

n

)]
(E[χ`] = λ`)

=− n
[
(1− pr) log

(
1− K

n

)
+ pr log

(
1 + (1/pr − 1)

K

n

)]
(λr = npr)

Now we want to show (1−pr) log
(
1− K

n

)
+pr log

(
1 + (1/pr − 1)K

n

)
is o(1/n). Because

pr = Pr(Yi ≥ r) = Θ(λr) = ω(1/n) and K is a constant, we can use Taylor expansion
to approximate both logs at 1,

(1− pr) log

(
1− K

n

)
+ pr log

(
1 + (1/pr − 1)

K

n

)
=− (1− pr)

K

n
+ pr(1/pr − 1)

K

n
+O

(
1

n2

)
+O

(
1

prn2

)
=O

(
1/(prn

2)
)

= o(1/n) (because prn = ω(1))

Therefore, we have DKL(χ‖χ̄′) = o(1). By Pinsker’s inequality

dTV (χ, χ̄′) ≤
√

1

2
DKL(χ‖χ̄′) = o(1).

C.2 Proof of Proposition 8.15

By Theorem 8.7 and Corollary 8.10, if no leaf is activated by the local seeds, then there
can be at most constantly many infected vertices with high probability. Consider an
arbitrary vertex v that is not infected, and let t be the leaf such that v ∈ V (t). Let
Kin be the number of infected vertices in V (t) after Phase I and Kout be the number
of infected vertices outside V (t). By our assumption, Kin = O(1) and Kout = O(1).
We compute an upper bound on the probability that v is infected in the next cascade
iteration. Let Xv be the number of v’s infected neighbors in V (t) and Yv be the
number of v’s infected neighbors outside V (t).

Since the probability that v is connected to each of those Kout vertices is o(n−1/r),
we have

Pr(Yv ≥ r − a) ≤
(
Kout

r − a

)(
o(n−1/r)

)r−a
= o

(
n−(r−a)/r

)
264

for each a ∈ {0, 1, . . . , r − 1}.
Ideally, we would also like to claim that

Pr(Xv ≥ a) ≤
(
Kin

a

)
w(t)a = O

(
n−a/r

)
, (C.5)

so that putting together we have,

Pr(v is infected) ≤
r−1∑
a=0

Pr(Xv ≥ a) Pr(Yv ≥ r−a) = r·O
(
n−a/r

)
·o
(
n−(r−a)/r

)
= o

(
1

n

)
.

and conclude that the expected number of infected vertices in the next iteration is
o(1), which implies the proposition by the Markov’s inequality.

However, conditioning on the cascade in V (t) stopping after Kin infections, there
is no guarantee that the probability an edge between v and one of the Kin infected
vertices is still w(t). Moreover, for any two vertices u1, u2 that belong to those Kin

infected vertices, we do not even know if the probability that v connects to u1 is
still independent of the probability that v connects to u2. Therefore, (C.5) does not
hold in a straightforward way. The remaining part of this proof is dedicated to prove
(C.5).

Consider a different scenario where we have put Kin seeds in V (t) (instead of
that the cascade in V (t) ends at Kin infections), and let X̄v be the number of edges
between v and those Kin seeds (where v is not one of those seeds). Then we know
each edge appears with probability w(t) independently, and (C.5) holds for X̄v:

Pr(X̄v ≥ a) ≤
(
Kin

a

)
w(t)a = O

(
n−a/r

)
.

Finally, (C.5) follows from that X̄v stochastically dominates Xv (i.e., Pr(X̄v ≥
a) ≥ Pr(Xv ≥ a) for each a ∈ {0, 1, . . . , r − 1}), which is easy to see:

Pr (Xv ≥ a) = Pr
(
X̄v ≥ a | X̄v ≤ r − 1

)
=

Pr(a ≤ X̄v ≤ r − 1)

Pr(X̄v ≤ r − 1)

=
Pr(X̄v ≥ a)− Pr(X̄v ≥ r)

1− Pr(X̄v ≥ r)
≤ Pr

(
X̄v ≥ a

)
,

where the first equality holds as Pr
(
X̄v ≥ a | X̄v ≤ r − 1

)
exactly describes the prob-

ability that v has at least a infected neighbors among Kin conditioning on v has not
yet been infected.

265

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Diffusion Models: Submodular versus Nonsubmodular
	Related Work
	Overview of this Thesis

	Preliminaries
	Cascade and Diffusion Models
	Greedy Algorithm

	I Submodular Influence Maximization
	On Approximability of Submodular Influence Maximization
	Introduction
	Additional Related Work
	Dinur's PCP Theorem
	APX-hardness of Influence Maximization
	Lift, Coupling and Upper Bounds
	Highly Scalable Heuristics with Empirical Good Performance
	Conclusion

	On Approximation Ratio of Greedy Algorithm
	Introduction
	Preliminaries
	Upper Bound on Approximation Guarantee
	Lower Bound on Approximation Guarantee
	On Other Alternative Models
	Conclusion and Open Problems

	Adaptive Influence Maximization and Greedy Adaptivity Gap
	Introduction
	Preliminary
	Infimum of Greedy Adaptivity Gap
	Supremum of Greedy Adaptivity Gap
	Greedy Algorithms in Practice and Robustness of Our Results
	A Variant of Greedy Adaptive Policy
	Empirical Experiments
	Conclusion and Open Problems

	II Nonsubmodular Influence Maximization
	2-Quasi Submodular Diffusion Model
	Introduction
	Additional Related Work
	Preliminaries
	Hardness of Approximation for 2-Quasi-Submodular Influence Maximization
	A Variant of Theorem 6.2

	Bootstrap Percolation on Graphs with Hierarchical Communities
	Introduction
	Preliminaries
	Hardness of Approximation for Hierarchical Blockmodel
	Hardness of Approximation for Stochastic Hierarchical Blockmodel
	Hierarchical Blockmodel with One-Way Influence

	r-Complex Contagion on Graphs with Hierarchical Communities
	Our Results
	Preliminaries
	Our Main Result
	Proof for Proposition 8.16
	Optimal Seeds in Submodular Influence Maximization
	A Dynamic Programming Algorithm
	Conclusion and Future Work

	Bibliography
	Appendices
	Omitted Proofs in Chapter 4
	Proof of Lemma 4.7
	Proof of Theorem 4.8
	Proofs of Properties of Max-k-Coverage
	Alternative Models for Linear Threshold Model on Undirected Graphs
	Proof of Lemma 4.18 Including Slackness

	Generalizing Results in Chapter 5 for General Threshold Model
	General Threshold Model and Feedback
	Extending of Our Results to General Threshold Model

	Omitted Proofs in Chapter 8
	Proof of Lemma 8.13
	Proof of Proposition 8.15

