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ABSTRACT

The oceans have a major impact on the planet: they store 28% of the CO2 pro-

duced by humans, they act as the world’s thermal damper for temperature changes,

and more than 17, 000 species call the deep oceans their home. Scientific drivers, like

climate change, and commercial applications, like deep sea fisheries and underwater

mining, are pushing the need to know more about oceans at depths beyond 1000 me-

ters. However, the high cost associated with autonomous underwater vehicles (AUVs)

capable of operating beyond the depth of 1000 meters has limited the study of the

deep ocean.

Traditional AUVs used for deep-sea navigation are large and typically weigh up-

wards of 1000-kgs, thus requiring careful planning before deployment and multi-

person teams to operate. This thesis proposes the use of a new vehicle design based

around a low-cost oceanographic glass sphere as the main pressure enclosure to reduce

its size and cost while maintaining the ability for deep-sea operation. This novel hous-

ing concept, together with a minimal sensor suite, enables environmental research at

depths previously inaccessible at this price point. The key characteristic that enables

the cost reduction of this platform is the removal of the Doppler velocity log (DVL)

sensor, which is replaced by optical cameras. Cameras allow the vehicle to estimate

its motion in the water, but also enable scientific applications such as identification of

habitat types or population density estimation of benthic species. After each survey,

images can be further processed to produce full, dense 3D models of the survey area.

While underwater optical cameras are frequently placed inside pressure housings

behind flat or domed viewports and used for visual navigation or 3D reconstruc-

tions, the underlying assumptions for those algorithms do not hold in the underwater

domain. Refraction at the housing viewport, together with wavelength-dependent

attenuation of light in water, render the ubiquitous pinhole camera model invalid.

This thesis presents a quantitative evaluation of the errors introduced by underwa-

ter effects for 3D reconstruction applications, comparing low- and high-cost camera

systems to quantify the trade-off between equipment cost and performance.

Although the distortion effects created by underwater refraction of light have been
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extensively studied for more traditional viewports, the novel design proposed neces-

sitates new research into modeling the lensing effect of this off-axis domed viewport.

A novel calibration method is presented that explicitly models the effect of the glass

interface on image formation based on the characterization of optical distortions. The

method is capable of accurately finding the position of the camera within the dome

and further enables the use of deconvolution to improve the quality of the taken

image.

Finally, this thesis presents the validation of the designed vehicle for optical sur-

veying tasks and introduces a end-to-end ocean mapping pipeline to streamline AUV

deployments, enabling efficient use of time and resources.
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CHAPTER I

Introduction

1.1 Motivation

Technological advances in the last century have opened the oceans to scientific,

industrial, and recreational use. Although the use of the seas for trade, resources,

and war goes back thousands of years, it was not until the Challenger Expedition at

the end of the 19th century that oceanography emerged as a branch of science. Since

then, technological advances have taken many forms to facilitate the scientific work

on ocean research: new ship hull materials and designs allowed for extended periods

at sea, sonar replaced manual, range-limited bathymetry soundings, and satellite

technology allowed the covering of mesoscale ocean processes. Despite technological

advances, much is still unknown about the oceans. Only 0.05% of the oceans are

mapped at meter resolution [1], while the highest-resolution map covering the ocean’s

entirety is 5km [2].

In the past, AUVs have appeared as a new tool to allow the collection of detailed

oceanographic data. As opposed to remotely operated vehicles (ROVs), AUVs are

not tethered to the deployment vessel and do not require human intervention. This

has made previously inaccessible areas available and allows researchers to collect

oceanographic data at unprecedented scales. Optical cameras are seeing increasing

deployment for benthic applications due to their low-cost and low-power characteris-

tics. The 3D photogrammetry tools combine individual images into three dimensional

models of the seafloor that show the geometry of the seafloor and its texture. For

example, Figure 1.1b shows the reconstruction of a coral reef off of the coast of Hawaii.

Most AUVs have been successfully deployed in shallow coastal waters (depths up

to 200m). Some example applications include optical monitoring of coral reefs [3],

underwater archaeology [4], and mapping underwater regions [5]. Other projects have

used AUVs to control invasive species [6], count animal populations [7], or analyze
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shark behaviour [8]. Many custom vehicles have been developed for each of these

specific tasks, and commercial vehicles exist that can be adapted to mission specific

requirements, such as the Kongsberg REMUS 100, Oceanservers IVER (Figure 1.1a),

or the Bluefin AUV.

However, there are only a few deep-sea rated AUVs that can go beyond the

mesopelagic zone. These vehicles are usually large, heavy pieces of equipment and

require teams of multiple operators to deploy and recover. As a result, operation and

acquisition of millions of dollars restrict their widespread use. This is of special im-

portance if we consider the resolution of AUV data is orders of magnitude larger than

surface-vessel-based technologies. Additionally, AUV area coverage is much greater

than the next closest solution by cost for high resolution imaging, a deep sea lander.

The gap in available tools for ocean research, when comparing shallow and deep

sea research, is an important constraint on new discoveries regarding oceanic benthos

and the target of this thesis.

(a) Shallow water OceanServer IVER3 (Im-
age taken by G.Billings)

(b) 3D reconstruction of a coral reef in Ka-
neohe Bay, Hawaii

Figure 1.1: AUV and typical 3D reconstruction example

1.2 On the Importance of the Deep Oceans

One of the objectives of the United Nations Sustainable Development Goals is

“to conserve and suitably use the oceans, seas, and marine resources for sustainable

development”. Although the general public’s understanding of the oceans focuses on

pristine beaches and coral reefs, epipelagic coastal waters only account for 5% of

the ocean’s volume. The rest, beyond 200m depth, is the dark deep sea. Multiple

distinct habitats exist in the deep ocean. On a broad-scale, ocean regions can be

categorized as soft-sediment planes, volcanic mountain ranges, and ocean trenches.

On a smaller scale, hydrothermal vents, methane seeps, cold water coral habitats,
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and oxygen minimum zones represent some of the most significant areas [9]. These

habitats are host to a very large number of marine species. It is estimated that there

are approximately two million species [10]. However, the fact that only 9% of the

species have been identified [11] highlights the lack of knowledge about our oceans.

Life at these depths is highly adapted to its environment. With very little sunlight

reaching 1000m, most of the ocean lies in total darkness, requiring deep sea ecosystems

to harvest alternative sources of energy. Communities around hydrothermal vents or

methane seeps rely on chemosynthetic bacteria to obtain their energy [12]. Others, like

Osedax worms, depend on sunken bones from dead fish or mammals to survive [13].

The deep oceans also play a fundamental role in the carbon and nutrient cycles on

earth. Cold water near the earth’s poles sinks to the bottom of the ocean, dragging

dissolved CO2 with it. These water masses will remain isolated from the atmosphere

for ∼ 1000 years, creating a buffer that regulates climate and CO2 exchange. With

approximately 25% of the CO2 emitted by human activity currently locked in the

oceans [14], they play a crucial role in reducing the greenhouse effect. However,

the consequences, such as ocean acidification, are already being experienced by coral

reefs worldwide [15]. In addition to to CO2 locking, thermohaline circulation is also

responsible for cycling and regenerating nutrients that feed shallow water fauna. Some

of the worlds most productive fisheries are located in areas of strong upwelling [16].

While we struggle to understand the complicated relationships and processes that

govern deep sea ecosystems, studies show that no single ocean area is free of anthro-

pogenic impacts [17]. These impacts can be organized into three main categories [9]:

1. Disposal, grouping elements such as sewage, radioactive waste, wrecks, munitions,

or chemical contamination; 2. Exploitation, which includes fishing, mining for re-

sources like oil, gas, and minerals, as well as underwater cable and pipeline laying;

and 3. Ocean Acidification and Climate Change, made up of warming temperature,

nutrient loading, and hypoxia or deep circulation shutdown. While impacts during

the 20th century were mostly of disposal in nature, the current push for fossil fuels,

metal mining, and deep sea fisheries presents the highest threat to the deep seas in

the short term [9]. The wide range of anthropogenic impacts on the deep ocean and

their geographical ubiquity emphasize the need for comprehensive ocean research. As

Dr. Sylvia Earle said: “Far and away the biggest threat to the ocean is ignorance”.
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(a) Ocean zones (Figure by Chris Huh, Pub-
lic Domain)

(b) Riftia pachyptila tube worms commonly
found at hydrothermal vents

Figure 1.2: Ocean zones and deep sea worms

1.3 Problem Statement

In recent decades, optical cameras have been increasingly applied to ocean sci-

ence. Still images and video data provide scientists with information that enables

a large variety of research in deep water biology: the classification and analysis of

benthic habitats, validation of ecological niche factor analyses [18], evaluations of

anthropogenic impacts such as oil spills on coral reefs [19], benthic habitat classifica-

tion [20], among other scientific applications. In the case of moving cameras, images

can be further joined into photomosaics, or fully textured 3D models, that contextu-

alize data and highlight processes happening at different scales. These examples show

the growth of the importance of optical sampling methods for underwater biological

research in the abyssal ocean zone. This thesis is focused on enabling abyssal deep

sea imaging for biological research and addresses the engineering requirements for re-

liable, visual data-gathering of the ocean benthos. The main challenges and proposed

solutions are discussed in the following sections.

1.3.1 Deep Sea Research Platforms

Optical cameras are mounted onto research equipment that includes mechanical

housings, electrical connections, and pertinent software for recording images and pa-

rameters. With deployments frequently performed from costly research vessels far

from shore, maximizing area coverage and ship-time utilization becomes a critical

factor. Figure 1.3 shows a comparison of the different technologies available for per-

forming deep ocean benthic research with respect to their cost and area coverage
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capabilities. Deploying deep-sea landers for imaging the deep sea is the method with

the lowest cost currently available. However, their static position severely limits the

area covered. On the other end of the cost spectrum are manned submersibles. Very

high costs, complex operation, and reduced availability (less then 10 vehicles world-

wide [21]) restrict their use for deep ocean benthic imaging. In between these two

technologies, ROVs offer a compromise between cost and area coverage, mostly limited

by the tether connecting them to the ship. AUVs significantly increase area coverage

but are equipped with additional sensors to enable autonomy that increase their cost.

In summary, technologies for deep sea imaging are large pieces of equipment with

high associated costs and complex operational requirements. The lack of smaller,

lower-cost alternatives reduces a researcher’s ability to study benthic ecosystems and

are a major obstacle towards understanding the oceans.

Figure 1.3: Abyssal pptical sensing platforms comparison: Qualitative comparison
of cost and area coverage for different technologies capable of performing optical
sampling at abyssal ocean depths (1000m to 6000m).

Firstly, this thesis introduces the DROP-Sphere (DROPS), a novel, ultra low-cost

autonomous underwater vehicle for abyssal ocean benthic biological research. The

vehicle cost of approximately $35, 000 is significantly less then AUVs, ROVs, and

manned submersibles that can operate up to 6000m depth. Additionally, its area

coverage, although smaller then that of AUVs is larger then ROVs, landers, and

manned submersibles.

In order to achieve such a significant cost reduction, the designed vehicle replaced

the DVL, an acoustic sensor used to measure vehicle speed, with optical cameras for

pose estimation. Global acoustic localization methods are also eliminated from the

standard vehicle payload. Although the lack of georeferencing prevents the use of

the vehicle in applications that require accurate global position information, such as

bathymetric mapping or underwater search missions, many biological tasks, such as
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habitat mapping, species counts, or impact analysis, can still be accomplished with

coarse position estimates.

1.3.2 Visual Underwater Navigation

The decision to eliminate the DVL from the sensor suite on board the DROP-

Sphere required the use of a reliable, alternative way of estimating vehicle pose un-

derwater. Optical navigation methods have emerged as a complimentary navigation

tool to traditional, DVL-based navigation and estimate vehicle movement from image

sequences. Cameras are low-power and low-cost sensors. They provide not only data

for navigation, but also valuable information about the seafloor they image. Addi-

tionally, when used in a simultaneous localization and mapping (SLAM) framework,

camera images allow the identification of previously visited areas. These loop clo-

sures bound the drift in pose estimation and create consistent trajectories. Visual

navigation techniques have been successfully applied underwater in multiple occa-

sions [3], [22]–[24]. Mahon et al. [4] show full 3D reconstructions obtained with a

diver-operated camera rig equipped exclusively with cameras, a depth sensor, and an

inertial measurement unit (IMU). This proves the feasibility of estimating vehicle

pose without requiring the use of a DVL.

However, applying computer vision methods underwater presents additional chal-

lenges when compared to terrestrial settings: 1. the lack of ambient light requires the

use of artificial light sources, increasing power consumption and potentially creating

lightening artifacts; 2. light is strongly attenuated underwater as a function of its

wavelength, and this causes underwater images to look predominantly green or blue;

3. backscattering of light by particles in the water; and 4. refraction at the hous-

ing glass interface bends the light rays and breaks projective geometry assumptions

used in many computer vision methods. These challenges are sources for systematic

errors in underwater visual navigation and need to be addressed for vehicles relying

on optical sensors as their main navigation instrument. The off-center position of

the cameras inside the DROP-Sphere, a consequence of the spherical housing used to

enclose the stereo pair, induces large refractive errors that have to be addressed to

ensure accurate navigation and benthic reconstructions.

To summarize, underwater effects, such as refraction, render traditional perspec-

tive projection models for camera systems inaccurate in the presence of housings.

This induces systematic errors in computer vision methods, such as visual odometry,

that can compromise the autonomous vehicle navigation capabilities as well as the

value of the generated data products.
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The second goal was to model underwater image formation effects into a general

camera model to improve navigation accuracy and reconstruction fidelity. In order to

do so, the impact of underwater effects on the quality of 3D reconstructions with off-

the-shelf terrestrial algorithms had to be determined and new calibration techniques

developed for cameras positioned in housings with large offsets from the dome center.

1.4 Contributions

The following list enumerates the specific contributions, as well as the correspond-

ing chapter that enable the achievement of this thesis’s goals.

• Develop an open source, DVL-less, ultra low-cost deep sea capable robot, the

DROP-Sphere, that reduces the barriers of entry to abyssal deep ocean explo-

ration and research through low cost and small size. (Chapter 2)

• Quantify the impact of optical underwater effects on 3D reconstructions with

conventional computer vision methods developed for in-air use. (Chapter 3)

• Develop a framework for calibrating off-axis cameras inside domed viewports

through the use of the point spread function (PSF). (Chapter 4)

• Develop an end-to-end deep sea surveying and 3D reconstruction pipeline and

validate the vehicles optical mapping capabilities. (Chapter 5)

Work presented in this proposal, as well as related research, has been published

in the following publications:

Eduardo Iscar, Atulya Shree, Nicholas Goumas, and Matthew Johnson-Roberson.

“Low cost underwater acoustic localization.” In Proceedings of Meetings on Acoustics

173EAA, vol. 30, no. 1, p. 070006. ASA, 2017.

Eduardo Iscar, Katherine A. Skinner, and Matthew Johnson-Roberson. “Multi-

view 3D reconstruction in underwater environments: Evaluation and benchmark.” In

OCEANS – Anchorage, 2017, pp. 1-8. IEEE, 2017. ©2017 IEEE. Reprinted, with

permission, from [25].

Katherine A. Skinner, Eduardo Iscar Ruland and Matthew Johnson-Roberson,

“Automatic color correction for 3D reconstruction of underwater scenes.” In Proceed-

ings of the IEEE International Conference on Robotics and Automation, Singapore,
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2017.
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CHAPTER II

Low Cost Deep Water Mapping AUV

2.1 Background

The manufacturing cost of electronic goods has decreased exponentially over pre-

vious decades. Simultaneously, the appearance of accessible software design tools

allow custom solutions to be easily turned into functional parts at a low cost. In

parallel, rapid prototyping technologies, such as 3D printing, enable quick iteration

over prototypes and proofs of concept for mechanical components. The accessibility

of these technologies has fostered the appearance of low-cost robotic platforms in

many domains: open source prosthetics [27], aerial drones [28], ground vehicles [29],

and manipulators [30]. However, very little of this innovation is making its way to

deep sea AUV technology. Some of the reasons include a very aggressive working en-

vironment at high pressures, a small user base committed to very complex platforms,

and high overhead costs that relativize the impact of vehicle cost reductions. This

chapter presents an overview of the state of the art in deep sea AUV technologies

as well as a novel, low-cost and open source marine robotic platform for deep ocean

mapping.

2.1.1 Deep Sea AUVs

Operating at high depth in the ocean presents AUVs with many challenges, in-

cluding withstanding the high pressure at abyssal depths, collision risks due to poorly

mapped seafloor areas, and frequent far from shore deployments on the open sea

that depend on meteorological conditions. As a result, commercial and research

deep sea AUVs are large and heavy pieces of equipment, with their weight start-

ing at 630kg, with a typical example being the Bluefin 21 AUV [31]. Additionally,

commercial AUVs carry a large and varied suite of sensors that includes DVLs, ultra-
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short-baseline (USBL), or long-baseline (LBL) positioning systems; acoustic modems;

inertial navigation systems (INSs); and sonar sensors such as multi-beam or side-scan.

Finally, most vehicles offer a reconfigurable payload area where mission specific equip-

ment, such as hydrophones, fluorometers, conductivity-temperature-depths (CTDs),

or turbidity sensors, are installed. Due to their large size and complexity, these types

of AUVs require the use of large oceanographic support vessels as well as teams of

multiple operators [32]. Table 2.1 shows a list of some of the most representative deep

sea research AUVs.

Table 2.1: List of deep sea AUVs: For an exhaustive list of sensors please refer to the
vehicles data sheets.

Vehicle Size Weight Battery Depth Sensors
Hugin
4500 [33]

�:1m
L:6m

1900kg 60 kWh 4500m DVL, INS, Multi-
beam & Forward
Sonar, Iridim, UHF
Radio, GPS

Remus
6000 [34]

�:0.71m
L:3.84m

862kg 11 kWh 6000m INS, ADCP, LBL,
Acoustic modem,
Iridium, Wi-Fi,
Side-Scan, Camera,
Multibeam, CTD,
GPS

Bluefin 21 [31] �:0.53m
L:4.93m

750kg 13.5 kWh 4500m INS, DVL, SVS,
GPS, USBL, RF,
Iridium, Acousitc
Modem

Sentry [35] L:2.9m
W:2.2m
H:1.8m

1250kg 18 kWh 6000m DVL, USBL,
Acoustic Modem,
INS, CTD, Cam-
eras, Multibeam
and SideScan
Sonar, ADCP,
IMU

Nereus [36] 1 L:3m
W:2m
H: 2m

2800kg 18 kWh 11000m CTD, Magnetome-
ter, Forward and
Profiling Sonar,
DVL

1. Lost at sea during a deployment in 2009.
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2.1.2 Low-Cost Underwater Robotics

Multiple low-cost underwater autonomous vehicles have been developed over pre-

vious decades for deployment in shallow water depths of up to 100m. The Starbug

AUV [37] is a shallow-water reef monitoring AUV with a cost less than $10, 000. It

navigates by making use of stereo cameras and an IMU. Pirajuba [38] is an AUV

designed as a platform for academic research in hydrodynamics and control architec-

tures. Other AUVs are built for very specific applications; one example is Folaga [39],

an AUV intended for the collection of vertical oceanographic data in coastal waters.

Other low cost vehicles, such as the Stingray AUV [40], imitate the shape of ocean

animals in an effort to reduce drag and improve the AUVs characteristics. However,

fewer examples of completely open source designs that include hardware and soft-

ware exist, with quality and completeness of the sources and documentation varying

considerably between projects. The HippoCampus [41] is a small vehicle intended

for research in underwater swarms, localization, and acrobatics. Other open-source

AUVs are the result of student teams participating in robotics competitions [42], [43]

but frequently lack design files for mechanical components of the vehicle. While the

development of low-cost AUVs has been mostly done at universities, low-cost ROV

have seen a rise in popularity as consumer, citizen-science tools/projects. Both the

OpenROV and BlueROV are examples of such open source marine platforms for shal-

low water. They lead the open source marine robotics movement with high quality

documentation, a large active user community and continuous development.

2.2 Design Drivers

One of the main reasons for the small number of deep sea AUVs in research is the

high cost associated with owning and operating such equipment. This chapter is de-

voted to the design of the DROP-Sphere (DROPS), a new, low cost underwater vehicle

capable of operating at depths of up to 6000m. This vehicle will allow for research

operations in more than 50% of the world’s oceans surface area and all fresh water

bodies. In addition to the depth rating, the DROP-Sphere has been designed to be

small enough to be carried and deployed by a single person without requiring special-

ized equipment. This creates a reduction in operations cost by reducing the number

of operators and the required deployment vessel size, and this simplifies equipment

transportation by qualifying as regular baggage on commercial flights. These design

characteristics allow a switch from traditional monolithic vehicle approaches used for

sea exploration to a distributed heterogeneous multi-vehicle approach in which mul-
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tiple small AUVs deploy different sensing and monitoring capabilities. The proposed

design represents the base configuration of such a system. Although the seafloor cov-

erage capabilities of a single DROP-Sphere are not comparable with those of larger

AUVs, its low-cost allows researchers and operators to adapt the number of vehicles

to the project constraints: survey area size, available support vessels, time frame,

and available economic resources. Additionally, offloading the mapping and sampling

tasks on multiple smaller vehicles has the advantage of greatly reducing the risk and

impact associated with vehicle loss.

2.3 Low Cost for Deep Sea

As mentioned in Section 2.2, one of the main characteristics of the developed

vehicle is its low cost to enable access to the deep sea to a broader group of researchers

and scientists. The development cost of an AUV can be roughly broken down into

three major contributors:

• Mechanical components: Hardware pieces such as pressure housings, underwater

buoyancy foam, connectors, and other required hardware to physically construct

the vehicle, together with machining of components and raw materials.

• Sensors: All AUVs mount an array of different sensors to allow them to navigate

and collect ocean data. Some examples include DVLs, USBL, or CTD probes.

These sensors are high accuracy, low volume products and have high price tags

attached.

• Development time: Design, assembly, and testing of both the hardware and

software required on the vehicle are time consuming operations to be performed

by highly qualified operators.

Our chosen design addresses each of these cost blocks in the following manner:

• Mechanical: The DROP-Sphere uses many commercial, off-the-shelf (COTS)

components. Most significant is the use of a borosilicate oceanographic glass

sphere as the main pressure housing. These devices have been extensively used

for oceanographic research, are comparatively low cost, and are rated for ex-

treme water pressures. Additionally, the optical properties of glass allow the

placement of imaging cameras inside the housing. Custom mechanical parts or

mounts can be manufactured through rapid prototyping technologies or with a

small machine shop.
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• Sensors: The main navigation sensors on traditional AUVs are the DVL, mea-

suring vehicle speed, and USBL that allows users to acoustically estimate the

position of the AUV in the water. Our design replaces both sensors with cam-

eras and relies on state-of-the art computer vision techniques to estimate robot

motion.

• Development: The complete development of the robot will be released as open

source for use by the scientific and engineering community without restrictions.

This includes all mechanical design files, electrical schematics, assembly instruc-

tions, as well as all associated software and firmware. In this way, reproducing

the work presented in this thesis will involve a minimal amount of required time.

2.4 Vehicle Characteristics

As mentioned in Section 2.3, one of the main drivers for deep sea AUV cost is

the requirement for custom pressure vessels composed of expensive materials, such as

titanium [44] or made with carbon fiber composites [45]. To avoid this, the presented

design uses a 0.2m diameter borosilicate glass sphere as its main pressure vessel.

Glass spheres have been extensively used as instrument housings for oceanographic

research and provide very high pressure ratings. The selected sphere gives our vehicle

a theoretical maximum depth of 12000m. Deep sea rated foam provides the required

buoyancy to compensate for the sphere weight. It also integrates the ducts for the

vertical thrusters, emergency drop weights, and space for ballasting and trim weights.

Fig. 2.1a shows an exploded view of the vehicle, illustrating the different components

and their relative position.

For propulsion, four low-cost COTS brushless motors were used. These have the

advantage of working when flooded, eliminating the need for custom thruster pressure

housings. With proper freshwater rinsing and lubrication after each use, they do not

suffer excessive wear. Additionally, their low cost makes it possible to simply exchange

them when needed. The thruster assembly has been tested to equivalent depths of

7500m in a pressure vessel at Woods Hole Oceanographic Institution. The thruster

configuration allows the control of surge, heave, pitch, and yaw degrees-of-freedom.

All vehicle components are capable of functioning to at least 6000m of water depth.

The DROP-Sphere main sensing capabilities are enabled by two downward-looking

Point Grey BlackFly U3−23S6C-C USB3 cameras. These are used to navigate based

on visual-SLAM techniques and to produce maps of the surveyed area offline. These
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(a) Vehicle exploded view

(b) The AUV during deployment in Hawaii.

Figure 2.1: The developed deep sea AUV

cameras are hardware triggered through a sync signal together with LED strobes for

illumination. A Valeport VA500RAP pressure and altitude sensor enables the vehicle

to estimate its position in the water column, while a global positioning system (GPS)

module provides a geo-referenced position when on the water’s surface. Finally, an

XSENS IMU is used for vehicle attitude estimation. Other secondary sensors monitor

variables such as temperature, current consumption, internal pressure, and humidity.

An embedded Linux computer collects the sensor information and runs the vehicle’s

control, navigation, and localization software stack based on the Robot Operating

System (ROS). Power is provided by a battery pack consisting of 18 18650 Li-Ion cells,

supplying 210 Wh. The main characteristics of the vehicle have been summarized in

Table 2.2, while Fig. 2.1b shows the complete prototype.

Table 2.2: Main characteristics of the DROP-Sphere AUV

Dimensions 0.86 m x 0.43 m x 0.25 m
Weight 20 kg

Max depth 6000 m
Propulsion 4x flooded brushless motors

Power/Autonomy 210Wh / 4-7 hours
Cost <$35000
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2.5 Vehicle Deployment and Operations

Of major importance for our vehicle are its seafloor coverage capabilities. This is

dependent both on vehicle characteristics, such as the cameras and lenses mounted,

as well as mission specific parameters, such as altitude over the seafloor and vehicle

speed. Mission altitude is usually restricted by water clarity. Additionally a minimum

of 25% image overlap is required to ensure enough image features can be extracted

for a successful seafloor reconstruction. For the given combination of cameras and

lenses (resolution, pixel size and focal length), and at a height of 2m from the seafloor

a field of view width of 1.5m is expected. At a nominal speed of 1kn, a single AUV

will cover 2778 m2/h. Using the most conservative endurance estimates, this results

in 11112 m2/deployment for a single vehicle. If the same calculations are applied

to a REMUS 6000 AUV with a speed of 5kn and a endurance of 22 hours, 305580

m2/deployment can be covered.

For descent to the ocean bottom, disposable weights are attached to the nose of the ve-

hicle through galvanic timed releases. Figure 2.2 shows such a corrodible link together

with the descent weights. Release times have to be chosen long enough to ensure the

AUV has reached the seafloor before dropping the weights. During the descent, the

vehicle is kept in a low-power consumption state and only monitors the pitch angle.

While the weights are attached to the front of the vehicle the pitch angle remains

approximately 90 degrees. Once the link corrodes and the weights are released, the

vehicle returns to the horizontal position. At that point the main computer and other

sensors are turned on and the mission is started. After the mission is finished, ascent

to the surface is achieved through the vehicle’s slight positive buoyancy. An ARGOS

satellite tracking tag is used to obtain the vehicle location and retrieve it.

Figure 2.2: Descent weights and acoustic pinger
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Finally, deploying multiple robots spreads the risk of catastrophic vehicle failure

across the individual agents and mitigates its impact at the cost of map fidelity and the

complexity of fusing multiple platforms data. This makes multi-vehicle approaches

in its own nature resilient to vehicle loss.

2.6 Cost

One of the main drivers for this project has been to reduce the cost of deep

sea capable devices. With the shown configuration, the vehicle cost is very close to

$35, 000. Table 2.3 summarizes the main cost groups. Additional common hardware

shared by multiple vehicles, such as the vacuum pump for closing the glass housings

is not included in that list.

Table 2.3: Approximate cost breakdown for one DROP-Sphere.

System Subsystem Cost [$]
Mechanical Glass Sphere 3000

Buoyancy Foam 12000
Underwater connectors 1250
Other hardware 4000
Thrusters 80

Electronics Embedded Computer 75
Printed Circuit Boards & Components 500
Cameras & Lenses 3000
Batteries 250
Altimeter and Pressure Sensor 5500
Satellite Tag 1500
Acoustic Pinger 735
IMU 1400

Misc. 1000
Total 31890
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CHAPTER III

Underwater 3D reconstruction Benchmarking

The main deployment capability of the DROP-Sphere introduced in Chapter II

is high resolution surveying of the seafloor with optical cameras. Recorded images

are processed after a mission and assembled in large, textured 3D models. These

models allow scientists and researchers to visualize the data at a larger scale and make

phenomena that may not be apparent in individual images, visible. Benthic mapping

is not exclusive to our vehicle and has become an important function of modern

AUVs and ROVs. A wide range of fields from marine biology [46] to underwater

archaeology [47] are increasingly relying on accurate 3D models of objects on the

seafloor to perform their science. Optical cameras are playing an important role

in such mapping due to their ubiquity and low cost. The improvements in open

source robust feature matching [48], sparse non-linear bundle adjustment (BA), multi-

view stereo [49], and front-end systems [50] have enabled end-users to apply these

techniques with great success in a variety of terrestrial applications. Often, these tools

designed for terrestrial problems are being used underwater due to cost-effectiveness

and convenience; however, a thorough understanding of the accuracy and applicability

of these methods to the underwater domain is absent from the literature.

The objective of this chapter is to present a quantitative evaluation of current

methods for monocular and stereo 3D reconstruction underwater, using a range of

open source and commercially available software and low- to high-cost camera sys-

tems. This error analysis motivates the decision to use high quality machine vision

stereo cameras instead of monocular approaches in the design of the DROP-Sphere.

This is especially important for the vehicle as computer vision techniques are used

as the main navigational sensor to replace the acoustic DVL. Although commercial

solutions for 3D reconstruction exist, using open-source alternatives presents a se-

ries of advantages: open-source code allows the users to customize the code for their

specific application and usage scenario, it allows the tracking of changes and gives
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control over revision history and future development, and reduces the overall system

cost. These benefits align with the intended characteristics of the DROP-Sphere as

an accessible, low cost, benthic research tool for underwater biology and motivate the

decision to develop all navigation and reconstruction software based on open source

projects.

Further, the results in accuracy of the different approaches and camera systems

motivate the need to explicitly model underwater image formation effects (Chap-

ter IV). Additionally, we are releasing a novel open-source stereo reconstruction im-

plementation to enable the processing of stereo underwater images into 3D models

without any other sensor requirements.

3.1 Background

Terrestrial reconstruction techniques operate on the assumption that the bright-

ness constancy constraint (BCC) holds true (i.e., that the intensity of an object

viewed from two locations is the same) and that a pinhole camera model calibration

describes the mapping of points in the world to points on the camera plane [51]. It

has been shown that neither assumption is fully correct underwater [52]. Work has

been done to quantify the degree to which the violation of these assumptions induces

error in the recovery of 3D information from stereo and structure from motion [53].

Furthermore, the metric scale is an essential attribute of an end-user application (e.g.,

measuring coral, sizing an amphora in a shipwreck, etc.) and the inherent scale ambi-

guity in monocular structure from motion confounds the other assumption violations

underwater. Jordt-Sedlazeck and Koch developed an underwater camera model to

account for refraction through flat viewport housings and incorporated this into a

framework for structure from motion [52], but their work focused on the monocular

case and did not address stereo reconstruction. Bryson et al. developed a method to

correct for several range-dependent effects such as absorption and scattering of light

through the water column with automatic selection of attenuation coefficients [54].

In [55], the authors proposed a method that includes the estimation of underwater

attenuation coefficients into the bundle adjustment step of 3D reconstruction, esti-

mating a model for water-column effects. Instead of modelling water-column specific

effects, this chapter presents a comprehensive evaluation quantifying and comparing

the accuracy of methods for 3D reconstruction applied underwater that is absent in

the literature.
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3.2 Methodology

(a) Scene in air (b) Scene underwater (c) Ground truth surface

Figure 3.1: Artificial rock scene. These figures show the artificial rock scene created to
quantitatively evaluate the quality of underwater reconstructions from various camera
systems.

The goal of this chapter is to evaluate the relative performance of low- and high-

cost imaging systems underwater to establish a relation between equipment cost and

performance. We chose a low-cost system (GoPro Hero3+ stereo) that has become

common in underwater applications [56] and a high-sensitivity machine-vision stereo

pair (Prosilica GT1380) popular with robotics applications [57]. These cameras are

representative for low- and high-end quality imaging systems. Despite both rigs

being stereo, we emulate a monocular setup by treating each image independently

and discarding the stereo calibration.

To allow us to compare the quality of reconstructions from different camera sys-

tems using different algorithms, we have developed the processing pipeline shown in

Figure 3.3, integrating both a standard monocular and a novel stereo reconstruction

pipeline to obtain quantitative results.

3.2.1 Scene and Ground Truth Mesh

In order to evaluate reconstruction accuracy, we created a rigid reference scene

consisting of three plastic rocks mounted on a rigid base. The scene can be observed

out of the water in Figure 3.1a and submerged during the experiments in Figure 3.1b.

The reference artificial rock scene was scanned with a Kinect RGBD sensor, and

a dense point-cloud was obtained using ElasticFusion [58]. The point cloud was

processed inside Meshlab [59] and a surface mesh obtained through screened poisson

surface reconstruction [60]. In Figure 3.3, the lower branch illustrates the ground

truth generation steps. Figure 3.1c shows the ground truth mesh.
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3.2.2 Reconstruction Methods

Three different reconstruction methods are compared in this chapter. Figure 3.2

displays the open source reconstruction methods processing pipeline.

3.2.2.1 Open Source Monocular Reconstruction

We chose to use the open-source Multi-View Environment implementation by

Fuhrmann et al. [61] because it implements several of the current state-of-the-art

monocular reconstruction methods. We processed monocular data by extracting all

sparse speeded-up robust features (SURF) [62] and scale-invariant feature transform

(SIFT) [48] features in all images, followed by matching of features between pairs of

images. After matching, camera poses are incrementally computed from a starting

pair of images with strong correspondences. A dense point cloud is generated through

multi-view stereo [63]. The output surface mesh is obtained by applying Floating

Scale Surface Reconstruction (FSSR) [64] to the dense point cloud.

3.2.2.2 Open Source Stereo Reconstruction

Extending [61], we have developed a fixed baseline stereo pipeline to go from

underwater images to 3D models. Stereo camera calibration is incorporated into

the processing pipeline by matching extracted features between corresponding im-

age pairs first and then imposing the epipolar geometry constraint. This filters out

bad features at an early stage and reduces errors when computing relative poses

between image pairs. After the features are filtered, the same incremental structure-

from-motion (SfM), multi-view stereo, and FSSR steps as in the monocular case

are applied. We are releasing our implementation under https://bitbucket.org/

droplabumich/stereo_mve/overview.

3.2.2.3 Commercial Reconstruction Software

The widespread use of commercial software solutions to perform underwater re-

constructions motivates the evaluation of its performance compared to open source

solutions to understand trade-offs between ease-of-use, cost, and reconstruction re-

sults. We use Photoscan because it has become popular in the underwater community

despite being designed for terrestrial use [65] [66]. Photoscan reconstructions were

performed with the highest quality settings available.
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Figure 3.2: 3D reconstruction method pipeline: The reconstruction process for the
open source monocular solution is represented by the blue boxes. Two additional
steps are added (shown in red) for stereo reconstructions. Although the number of
steps for stereo is higher, epipolar filtering reduces the number of features to match.
Additionally, only one image per left-right pair is used in the pairwise matching step
in case of stereo, further reducing the number of required operations by four.

3.2.3 Mesh Alignment and Error Metrics

The surface meshes generated by the different reconstruction methods were first

coarsely aligned by hand with the ground truth reference mesh. We then applied

iterative closest point (ICP) [67] to finely register both surfaces. To account for the

uncertainty in the scale of the monocular reconstructions, the models were scaled

to match the size of the ground truth before alignment, and scaling was added as a

free variable to ICP. No scaling was applied to the stereo reconstructions. For the

monocular reconstruction with the commercial software Photoscan, the same scaling

and aligning as for the open source monocular implementation was applied to the

obtained surfaces.

The obtained reconstructions were then compared with the ground truth mesh

(Figure 3.1c) obtained with a laser-scan in-air by computing the Hausdorff dis-

tance [68]. This metric represents the maximum distances between all points on

one of the meshes and their closest point on the other mesh. Reconstruction time

was also recorded.

3.3 Experiments

To provide a comprehensive evaluation of reconstruction accuracy all three meth-

ods presented in Section 3.2.2 have been applied to two different camera systems.

The 4ft. by 7ft. (1.22m by 2.14m) artificial scene was placed on the bottom of

the University of Michigan’s Marine Hydrodynamics Laboratory (MHL) towing tank

(Figure 3.1b) at a depth of approximately 3m. Images of it were taken with the cam-

era axis perpendicular to the ground plane. The cameras moved in the direction of
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Figure 3.3: 3D reconstruction error evaluation pipeline. The evaluation pipeline used
to compare the reconstruction quality of different camera systems with open source
monocular and multi-view stereo methods as well as commercial software solutions.

the longer edge of the scene keeping a constant distance from the towing tank floor.

Two underwater lights were attached to the camera mounting frame and provided

constant illumination to the scene. A total of 160 images (80 image pairs) were used

in the reconstructions.

Figure 3.4 shows the error plot color-coded onto the reconstructed mesh for all

six combinations of the reconstruction method and camera system. The left column

shows the high-end machine vision camera reconstruction, while the low-cost camera

reconstructions are shown on the right. The first, second, and third row depict

Photoscan monocular, open source monocular, and open source stereo reconstruction

methods, respectively. A histogram of the error distribution is available on the right

of the color scale. The ground truth reference is shown as a green wireframe mesh.

Table 3.1 summarizes the results seen in Figure 3.4, showing the average and

standard deviation of the errors on each reconstruction method-camera system pair.

The lowest values are highlighted and denote the best reconstruction.

It is important to note that resolution is a significant driver in the quality of

reconstruction results. We experimented with different resolutions for both camera

systems and found that the distortion and noise in the optics of the low-cost cameras

limited the quality of the calibration required for stereo reconstructions. We selected

a downsampling factor of four in order to reduce the pixelwise calibration error with

respect to image size, resulting in a resolution of 676 by 381 pixels. For the high

sensitivity machine vision cameras, we used the full 1360 by 1024 pixel resolution.
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3.4 Main Experimental Insights

The completed in-lab experiments and reconstructions using unmodified terres-

trial approaches show that the stereo system always outperforms the accuracy of a

monocular reconstruction with the trade-off being a more complex setup. Moreover,

low-cost action camera stereo systems are able to perform at levels close to those from

high quality equipment at a fraction of the cost, making their use highly appealing

for the scientific community.

Comparing the mean errors, the high-end cameras performed 38% better than the

action cameras in the monocular case, while the improvements increased to 57% for

the stereo case. Stereo reconstruction errors are lower: 38% for the high-end cameras

and 47% for the low-cost cameras compared to the monocular reconstruction. The

results from the commercial software Photoscan were very similar to our monocular

reconstruction for the action cameras, but had an average error increase of 35% for

the high-end imaging system. Both low- and high-end image reconstructions done

with Photoscan have a large error on the top of the rocks.

The comparison of the histograms (shown to the right of the color scale in Fig-

ure 3.4) of the reconstructions of both imaging systems shows that the high-end

cameras’ errors accumulate in the lower bins, while the low-cost cameras’ histogram

maximum occurs at bins with higher error. Our hypothesis is that this difference in

distribution is caused by higher errors in the calibration of the action cameras, which

feature a wide angle lens, as well as higher noise levels in the images as a consequence

of lower quality optics and sensors.

Warping along the axis of camera movement is another effect that can be clearly

observed on all monocular reconstructions by noting how error increases along the

short edges of the scene base. The higher number of constraints present in stereo

pairs reduces this effect.

This comprehensive evaluation of error bounds of each system will enable us to

System Mean [m] Std Dev [m]
Low-cost Open Source Stereo 0.021 0.020
Low-cost Open Source Mono 0.045 0.040
High-end Open Source Stereo 0.012 0.012
High-end Open Source Mono 0.032 0.029
High-end PhotoScan 0.044 0.030
Low-cost PhotoScan 0.046 0.049

Table 3.1: Average reconstruction error and standard deviation

23



better understand the impact of the variable effects of the underwater domain on the

accuracy of reconstructed 3D models in the field. It is important to remark that the

absolute value of the error of monocular reconstructions (∼ 4.5cm) is of the same

order of magnitude as many biological processes of interest in the underwater domain

(e.g., coral growth [69]); thus, single camera systems are not well suited for such

applications. This highlights the advantages of stereo machine vision camera setups

and drove the decision to use such a system for the DROP-Sphere. Additionally, we

have shown the trade-offs between ease-of-use and support of commercial monocular

software solutions and performance of stereo reconstructions.
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(a) High-end Photoscan reconstruction (b) Low-cost Photoscan reconstruction

(c) High-end open source monocular recon-
struction

(d) Low-cost open source monocular recon-
struction

(e) High-end open source Stereo reconstruc-
tion

(f) Low-cost open source stereo reconstruc-
tion

Figure 3.4: Error plots for both camera systems comparing open source and commer-
cial monocular reconstructions with multi-view stereo techniques. A histogram with
error distribution is shown to the right of the color scale. The color scales have been
clipped to 0.12m in order to allow direct comparison between the plots. 160 images
were used for each of the reconstructions.
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CHAPTER IV

Distortion Based Calibrations

4.1 Introduction

In order to deploy cameras in the aqueous underwater environment , optical sys-

tems require an additional housing that protects the lens and camera from water

damage and pressure. Light rays travelling through this additional housing interface

get refracted when changing mediums. The change in direction is proportional to

the incidence angle and the quotient of the material’s refractive indices. Because of

refraction, camera rays no longer intersect the optical axis at the center of projec-

tion [53]. Underwater images are further affected by scattering and absorption, a

wavelength dependent phenomenon that modifies the perceived color in the images.

As a consequence, the widely-used pinhole camera model [51] is not valid [70].

Chapter III analyzed the errors introduced by the underwater environment on 3D

reconstruction accuracy. Specifically, we looked at cameras with flat viewports and

domed viewports. Flat viewports are simpler to manufacture and generally smaller.

However, they reduce the camera field of view (FOV) by approximately 25% [71].

Inversely, domed viewports are more difficult to manufacture but do not introduce the

refraction effects in the image as long as the center of the dome and the camera optical

center are located in the same position. Although this is very difficult to achieve in

practice, it has been shown [72] that, for a small misalignment, the error is negligible.

However, there are situations when ensuring small alignment errors is not physically

possible, such as when multiple cameras share a single domed viewport. Figure 4.1

shows the stereo camera pair configuration used by the DROP-Sphere, housed in

a borosilicate glass dome. The effect of the large offset from the sphere center on

the accuracy of pinhole camera models is illustrated in Figure 4.2. It compares

the reprojection errors of small and big (mm vs cm) displacements of the camera

inside the domed viewport and highlights the extent a large offset impacts the image
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formation process. The reprojection error serves as a metric for the quality of camera

models and calibration data; this is calculated as the distance between the actual

position of a point in the image and the position it would be projected onto using a

camera model. More information on its definition and computation can be found in

Section 4.4. One of the main characteristics of the DROP-Sphere is that it dispenses

with the DVL and relies on the camera feed for navigation while surveying the ocean

benthos. As a consequence, it is required to address the errors arising from large

offsets in domed underwater cameras to enable accurate vehicle navigation and precise

3D reconstructions of the ocean seafloor. This chapter analyzes the applicability of

methods developed for domed housings with small offsets and introduces the usage

of the PSF as a means to compute the camera position inside the dome. To do so,

the authors collected a dataset of PSFs for multiple camera-dome positions and show

how the camera pose can be recovered by analysing the optical distortions.

Figure 4.1: Stereo camera used for vehicle navigation. The position of the cameras is
far from the center of the hemisphere, introducing significant distortion in the images.

More specifically, the contributions of this chapter are two-fold. First, we analyze

raytracing, a technique frequently used in the literature for underwater refractive

models, and show how and why it fails in the case of domed viewports with large

camera-dome offsets. Second, we propose the use of the PSF to characterize the

complete optical system, consisting of camera, lens, and dome, and use it to obtain

the camera pose within the dome.

The following describes how the chapter is organized. Section 4.2 presents a review

of related work in the field of underwater refraction modelling. Section 4.3 analyzes

the limitations of raytracing methods when applied to underwater domed housings.
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(a) Reprojection with small displacement (b) Reprojection with large displacement

Figure 4.2: Pixel reprojection errors due to refraction. Computed for points on a
plane at 3m in front of the camera that is located inside a sphere of 8cm radius. The
left figure shows the errors for small displacements (∼2.5mm), while the right figure
is generated with large (∼2.8cm) offsets between camera and sphere center. Although
the errors would be significantly reduced if the system was calibrated with underwater
images, refraction errors depend on scene depth and position in the camera frame.

Section 4.4 introduces the use of the PSF as a tool for domed housing camera cali-

bration. Section 4.5 describes the experimental setup developed to measure the PSFs

of the system, while Section 4.6 presents the results. Finally, Section 4.7 presents the

conclusions and suggestions for future work.

4.2 Related Work

Modelling underwater image formation effects has been an important topic of

research in recent years. Extensive work has been done with regard to the effect

of flat viewport lenses on underwater cameras. A comprehensive overview of the

literature on refractive underwater imaging and camera models is presented by Sed-

lazeck et. al. [70]. A popular approach has been to use an unmodified pinhole camera

model [51] with a conventional calibration based on checkerboard patterns [73] un-

derwater. Errors due to refraction, attenuation, and scattering are absorbed by the

estimated camera intrinsic and distortion parameters. Although small reprojection

errors can be obtained for a given set of high-quality calibration images, the projec-

tion of points and camera raytracing will be affected by systematic errors dependent

on scene depth. However, examples of the successful application of this approach are

numerous in the literature [74], [75]. Other authors propose to slightly modify the
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pinhole camera model for underwater use. Lavest et al. [71] analyzed the effect of flat

viewports on the camera calibration and established that the effective focal length

underwater is 1.33 times the focal length in air. They also adapted the camera dis-

tortion parameters to more closely model the refraction. Their derivation, however,

only holds for viewports with a constant surface normal and does not generalize to

domed housings.

Flat viewports also require the estimation of extra parameters to completely cal-

ibrate the imaging system. In addition to the camera extrinsics [R|t], distortion

parameters d, and intrinsics K, the distance between the camera and flat viewport,

and the viewport normal, need to be estimated. Sedlazeck and Koch [76] presented a

calibration method for flat viewport stereo cameras that does not require any special

calibration target to be imaged. Additional parameters, such as interface thickness

or refractive indices, can also be included in the calibration process. Sedlazeck and

Koch [77] developed a method that also includes the estimation of the parameters of

a radiometric model of light propagation. Much less work has been done to model,

characterize, and correct refraction in domed viewports. One of the main reasons is

that, when properly aligned, domed viewports introduce smaller distortions. Kunz

and Singh [72] used raytracing to simulate refraction through a spherical interface and

evaluate the induced error in 3D point triangulation. However, the authors focused

on small displacements between the dome center and the optical center and did not

consider situations where the offset is large compared to the hemisphere radius. Ad-

ditionally, these experiments were limited to simulations. In a practical application,

Menna et al. [78] presented methods for characterization of a commercial underwater

camera domed housing and analyzed its properties. As opposed to flat viewports,

where cameras can be shown to be axial, no simplified model exists for domed optical

systems. As a solution, Sturm et al. [79], [80] presented a general imaging model that

defined cameras as a collection of correspondences between pixels and imaging rays.

Multi-view geometry relations and a calibration procedure are introduced for such a

generalized camera model.

While these methods approach refractive image formation from a physics-based

perspective, extensive work has been done in the image processing community to re-

cover images that are degraded by a range of different effects, such as motion blur,

chromatic aberrations, comma, or defocus. This process generally assumes that the

observed image can be expressed as the convolution of the underlying “sharp” im-

age with an unknown kernel, called the PSF. If the PSF for a system is known,

the original, un-degraded image can be recovered through deconvolution. The char-
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acterization of the optical distortions through the PSF forms the foundation of the

method introduced for domed housing camera calibration and is described in detail

in Section 4.4.

4.3 Limitations of Raytracing Methods

Water
Refracion coefficient nw

X̄

A
B

Cam 1θ

Figure 4.3: Refraction of underwater rays. This figure illustrates the effect of refrac-
tion on underwater image formation. Refraction effects have been exaggerated for
illustration purposes.

As mentioned in Section 4.2, previous work mostly focuses on the modelling of

refraction by tracing individual light rays imaged by the camera and explicitly com-

puting the refraction points at each of the interfaces. Most developed methods rely

heavily on a constant interface that is normal in the case of flat viewports, while,

to the best of our knowledge, only simulation results have been presented for domed

housings. In this Section, we analyze the issues arising when raytracing methods are

applied to the calibration of cameras with large offsets in spherical dome housings

(Section 4.3.1) and describe the main sources of image degradation (Section 4.3.2).

The raytracing process is visualized in Figure 4.3. The figure shows a ray originating

from the camera at a given pixel that intersects the inner glass surface at point A

with angle θ. While going through the interface, the ray is refracted according to

Snell’s Law and then travels through the glass until it intersects the outer surface at

point B. At this point, it is again refracted and the ray direction in the water can be

obtained. This generates a set of image pixel - underwater ray correspondences that

fully describe a general camera model and allow to obtain the camera ray represen-

tation in water for any given pixel coordinate. The inverse of this problem, to obtain
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the pixel that corresponds to a given 3D point, is called reprojection and has to be

solved as an optimization problem due to the non-linearities introduced by refraction.

For more information on general camera models and ray equation derivations, refer

to [72], [80] .

4.3.1 Raytracing Based Calibration

In the context of most computer vision applications, the pinhole camera model [51]

is used together with a calibration technique based on the imaging of geometric pat-

terns such as checkerboards [73], circle grids, or AprilTags [81] to establish corre-

spondences between pixel coordinates and 3D world coordinates. The raytracing

underwater-image formation model requires a total of 24 parameters in the case of

spherical dome housings: four camera intrinsics (K) parameters (focal length for each

image axis and image center), five lens distortion parameters (three radial and two

tangential coefficients), six pose parameters each for the camera and dome poses re-

spectively, as well as the three refraction coefficients of air, glass, and water. The

camera’s intrinsic and distortion coefficients can be obtained by performing a pinhole

camera calibration in air [73]. Furthermore, due to the rotational symmetry of the

dome, the camera pose with respect to the dome reduces to the estimation of its

translation vector. Finally, refraction coefficients for the glass interface can be ob-

tained from manufacturer data with high accuracy using the Sellmeier Equation [82].

While the refractive index of air depends on temperature and pressure, changes are

under 0.008% [83]. The index of sea water refraction is the most variable of the

three with up to 3%, but, given pressure, temperature, and salinity, its value can

be computed with an accuracy of at least 10−4 [84]. With these simplifications, the

calibration of a domed underwater camera system only requires the estimation of the

relative camera-dome translation Tdome
c and the camera extrinsics (Rc

w and Tc
w) for

each taken image.

Due to the nonlinear effects introduced into the image formation process by re-

fraction, no explicit expression for the model parameters can be derived. Nonlinear

optimization methods can be used to search for the correct parameter values through

the minimization of a cost function.

Following the procedure outlined in [72], the calibration process is set-up as two nested

optimization problems. The outer loop optimizes the relative position between the

camera and dome, while the inner loop searches for the optimal camera extrinsics Rc
w
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and Tc
w.

Rc
w,T

c
w,T

dome
c = arg min

1

2

n∑
i

ρi ‖di‖2 (4.1)

di
(
Rc

w,T
c
w,T

dome
c

)
=
‖BX × u‖
‖u‖

(4.2)

where di is the distance between the in-water ray, defined by the intersection point,

with the outer surface B and its direction u going through pixel i and the correspond-

ing 3D point X. We chose to define the cost function as the L2 distance between the

ray and 3D point instead of the reprojection error because the reprojection of world

points into the image is a minimization problem itself. Instead, the distance can be

computed very efficiently.

The initial values for the camera poses are computed through the Efficient Perspective-

n-Point (EPNP) algorithm [85], while initial values for the camera to dome relative

position can be either measured on the physical system or CAD model.

Figure 4.4: Result of camera calibration simulations without noise. Both images show
the reprojection error of points on a plane at 3m in front of the camera. The left image
represents the reprojection using a conventional pinhole camera model calibrated with
underwater images, while the right image incorporates refraction with the proposed
improved model.

Figure 4.4 shows the result of applying the proposed algorithm to noiseless pixel-

3D point correspondences in simulation. The optimizer successfully converged on all

noiseless trials and the resulting reprojection error is orders of magnitude smaller than

what would be obtained if a pinhole model was assumed and calibration performed
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Figure 4.5: Calibration noise sensitivity. As pixel noise increases, the calibration
optimization converges to local minima at significant distances from the true camera
position and ray tracing will fail. Histogram legend in pixels.

using in-water checkerboard images. After performing experiments with noiseless

data, the procedure was repeated introducing increasing levels of noise on the corners

extracted from the image. The results are shown in Figure 4.5, showing the histogram

of camera pose estimation errors as noise is increased.

4.3.2 Sources of Error

In addition to refraction based geometric distortion, images taken inside glass

domed viewports are degraded by additional effects exemplified in Figure 4.6. This

figure shows an image of different calibration boards acquired by one of the cameras

inside the spherical housing shown in Figure 4.1 and highlights the following effects:

1. Space varying defocus: The spherical glass interface acts as a lens and generates

a space varying defocus across the image plane. This effect can be seen when

comparing the two zoomed areas in the bottom of Figure 4.6.

2. Chromatic aberration: The different light wavelengths are refracted in different

amounts by the interface, generating a change in color.

3. Illumination falloff: Part of the light gets reflected on the glass dome surface in

addition to lens vignetting, generating the illumination decay pattern observed.
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Figure 4.6: Underwater image degradation. Example of image obtained inside the
dome with large offset from the center. Note the difference in focus across the image
plane as well as the chromatic aberration along the circle edges. Figure details are
best seen in digital format

The combination of these effects adds excessive noise to the position of corners ex-

tracted from the calibration targets. Multiple attempts were performed to apply the

raytracing-based calibration procedure to real datasets with different calibration pat-

terns without success. This section has analyzed the applicability and noise sensitiv-

ity of raytracing methods developed for flat viewports, proposed methods for domed

viewports [72], and highlights the need for a different approach to the modelling and

calibration of optical cameras housed inside spherical housings in the presence of large

offsets.
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4.4 Distortion Based Calibration

4.4.1 Image Formation

The degradation effects introduced in Section 4.3.2 can be encoded as a convolu-

tion kernel K. The observed image O is then the result of convolving the kernel with

the original image I in the presence of additive gaussian noise N .

O = I ~K +N (4.3)

The kernel K is known as the PSF. Intuitively, in an ideal optical system a point

of light would appear as a single point in the image, with a one to one correspondence

between image plane and object plane. However, in a real imaging system the point

image is degraded or spread by the kernel K. Deconvolution can be applied to the

observed image O to recover the latent image I. Methods can be divided into blind

and non-blind methods. While blind methods estimate both the PSF and latent

image simultaneously, non-blind methods provide better results when provided with

a prior of the PSF. The PSF is a unique property of an optical system and fully

describes it, that is, no two distinct optical systems share the same PSF [86]. As

a consequence, if the PSF of a system can be measured, it should be possible to

recover the parameters of the system that generated it. It is however a very high

dimensional function that depends on optical properties such as lens geometry and

materials, aperture and imaging distance. While in some cases such as motion blur a

static PSF can be used for the whole image the general PSF will also vary along the

image plane.

Shih et al. [87] showed that the PSF can be used to refine lens prescription pa-

rameters through optimization. Their work focuses however on small deviations from

the nominal parameters due to manufacturing inaccuracies, while our work considers

the dome-lens-camera system as an optical assembly with large parameter variations.

4.4.2 Distortion Based Calibration

Knowledge about the PSF, and its variations with respect to the optical system

variables, can be used to recover the specific set of parameters that generate the

image distortions observed. If we consider the relative position between dome and

camera as independent variables of the PSF, obtaining the complete lens prescription

is equivalent to calibrating the optical system. Such a priori knowledge about the

PSF can be obtained in the form of measurement datasets or high-fidelity optical
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simulations. In this work, we focus on the case where a dataset of the PSF has

been previously collected. Details about dataset collection and experimental setup

are given in Section 4.5. If such a dataset of PSFs is available for a discrete set

of camera-sphere relative positions, it is now possible to formulate the calibration

problem as one where, given a measurement of the PSF, we aim to recover the x, y,

z (Tdome
c ) position of the camera that generated such an array of distortions. Given

a set of measured PSFs Gij, each centered at pixel i, j, for one system configuration,

and a dataset Ui,j(x, y, z) of the PSFs for a different camera to sphere position x, y

and z at the same i, j positions, we define the cost function as

f(x, y, z) =
∑
R,G,B

∑
i,j

‖Gi,j − Pi,j(x, y, z)‖ (4.4)

where Pi,j(x, y, z) is the estimated response based on the available dataset. Because

PSFs can only be measured at a discrete set of coordinates in the image plane, we

use linear interpolation to obtain the PSF at the desired pixel coordinates. In the

same way, PSFs can be interpolated between different camera poses [88] to obtain

Pi,j from Ui,j.

The camera position inside the dome can then be computed as

x, y, z = arg min f(x, y, z) (4.5)

4.5 Experimental PSF Characterization

In order to characterize the changes of the PSF with respect to camera pose inside

the spherical dome, we assembled the experimental setup shown in Figure 4.7. The

camera is mounted on a three-axis linear-motion stage. The X axis is a electronically

controlled, 150mm, travel-range stage; both the Y and Z axes are manual, 50mm,

travel stages. The camera is mounted with the optical axis aligned with the system X

axis. A precision indicator dial is mounted on top of it, aligned with the X axis as well.

A custom acrylic tank was assembled to hold one of the BK-7 glass hemispheres used

as the pressure housing by the DROP-Sphere in front of the camera. The hemisphere

has an external nominal radius of 187mm and a thickness of 14mm. Finally, in the

tank on the opposite side of the spherical dome at a distance of 370mm, a LED

light source was mounted on an actuated Y-Z motion platform controlled by stepper

motors. A 0.2mm pinhole cut out of 0.1mm thick stainless-steel was placed in front
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(a) (b)

Figure 4.7: Experimental PSF measurement setup. The PSF of the complete camera-
lens-dome optical system is measured for different camera position within the dome.
Subfigure a shows the 3-Axis linear motion stage with camera and indicator dial
mounted in front of the water tank with spherical dome. The light source motion
system can be seen at the back of the tank. Subfigure b shows the light point source
mounted on YZ translation system.

of the LED module to generate a small-point light source. The LED light can be

configured to emit red, green, and blue light. Using a movable single light point as

opposed to a grid of points ensured repeatable measurements and allowed exposure

to be adjusted individually for each position to adequately use the camera’s sensor

dynamic range.

4.5.1 Measurement Calibrations

Before taking measurements of the PSF, the measurement system had to be cal-

ibrated. There were two different calibrations to obtain: a) Dome center calibration

and b) Camera pose measurement in the system of coordinates.

4.5.1.1 Dome Center Calibration

The following steps were taken to obtain the center coordinates of the dome.

First, the internal diameter of the glass dome was measured with a spherometer.

Then, the x-axis of the linear stage assembly was advanced until the dial indicator

tip was compressed about 10mm. Subtracting the dial indicator measurement from

the linear stage position gives the x coordinate of point of contact between indicator

tip and glass dome. The corresponding Y and Z coordinates are the positions of the
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respective linear stages. This process is then repeated moving the Y and Z positions

to obtain a set of sample points of the internal glass surface. Finally, the dome center

is computed by fitting the points into the equation of a decenterd sphere.

(x− cx)2 + (y − cy)2 + (z − cz)2 = R2 (4.6)

The resulting system of equations can then be solved through Orthogonal Distance

Regression [89] that allows the inclusion of measurement errors in both the indepen-

dent and dependent variables.

4.5.1.2 Camera Pose

Once the position of the sphere dome is known, we needed to compute the posi-

tion of the camera’s center of projection in the measurement coordinate frame. To do

so, we first performed a conventional pinhole calibration in air to obtain the camera

intrinsics. Next, a small checkerboard was placed on the flat side of the tank and

imaged by the camera. Together with the camera intrinsics, this allowed computation

of the camera position with respect to the board. Finally, the dial indicator tip was

moved onto each of the checkerboard corners to obtain their coordinates in the mea-

surement frame of reference. With the same set of points expressed in the camera and

measurement coordinate frames, it was then possible to compute the transformation

to express camera pose in the measurement coordinate system.

4.5.2 Experimental Procedure

For each camera pose, the light source was moved to 62 different Y-Z positions,

evenly spaced along the back of the tank. Not all positions fall within the field of

view of every camera pose, but are designed so that all camera poses have a similar

number of measurements taken. For each of the positions, the PSF was measured

for red, green, and blue light. The camera was configured to produce images without

gamma correction in raw format and set to constant gain. Exposure was adjusted for

each measured PSF to ensure the maximum pixel response was between 80% and 98%

of the maximum pixel value to avoid over saturated regions. Additionally, the focus

of the lens was adjusted for each pose. While this change in the back-focal distance

affects the shape and size of the PSF and makes solving Equation 4.5 significantly

harder due to the unmodelled focus variable. The collected dataset was also designed

with future work in mind that will benefit from this property.
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4.5.3 Collected Dataset

A Flir BFS-U3-63S4C camera, with a pixel size of 2.4um and a resolution of

2048x3072, was used together with a Edmund Optics UC-8mm lens. The used

IMX178 color sensor uses a color filter array (CFA) in a RGGB Bayer pattern that

requires demosaicing the measured PSF response. Schuler et al. [90] showed that the

improvement, when explicitly considering demosaicing in the deconvolution process,

only improved the resulting image peak signal-to-noise ratio (PSNR) by an average

of 0.4dB. Based on these results, we exclusively demosaiced the raw image to obtain

the PSF of each channel. The PSFs of a total of 200 camera poses were characterized

during the experiments, with samples taken at 3mm intervals. In order to find the

sphere center, a total of 180 points lying on the interior sphere surface where sampled,

and the diameter measured to be 159.3mm.

While the collected dataset is specific to the camera, lens, and dome used, similar

datasets can be collected for different configurations following the outlined procedure.

Figure 4.8 shows the normalized PSFs for the three color channels for four different

positions in the image plane and highlights the variability of the PSF as a function

of wavelength, as well as pixel position, in the image plane.

4.6 Results

4.6.1 Calibration

The proposed distortion-based calibration method (Equation 4.5) was applied

to different poses within the dataset described in Section 4.5. The minimization

problem was formulated as a non-linear least squares problem and solved using the

Levenberg-Marquardt algorithm. Figure 4.9 shows the error between the measured

and estimated PSF at multiple different positions in the image plane. The optimizer

converged to a position with an error of 0.184, 0.004, and 0.023mm on each axis. The

error along the X axis is between one and two orders of magnitude larger than the

Y and Z axis. Analysing the dataset showed that variation along the X axis mostly

affected the size of the PSFs with a smaller impact on its shape. Blur due to a change

in focus has a similar influence, modeled as a solid disk kernel of a varying radius

depending on how much the image is out of focus. This similarity, together with the

aforementioned fact that the camera focus was readjusted at each pose, is likely the

reason for the discrepancy in error magnitude between the axis. Finally, the X axis

was sampled very sparsely with only two different values in the dataset, which could
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Figure 4.8: Examples of the measured point spread functions for four different posi-
tions in the image plane. The PSFs are shown for red, blue and green light. All PSFs
are normalized with respect to their maximum response.
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further influence the result.

Testdata Interpolated Error

Pos 1

Pos 2

Figure 4.9: Resulting PSFs of calibration routine. Each row shows the measured
PSF, as well as the result of the optimization at a different position in the image
plane. The error plot shows the difference between the test data and optimization
and represents a term in Equation 4.4.

4.6.2 Deconvolution

In addition to camera-to-dome pose calibration, the obtained point spread func-

tions can be used to deconvolve the measured image and recover the underlying image.

Figure 4.10 shows an example of a region of an image before and after deconvolu-

tion with the obtained PSF. We used the Van Cittert algorithm as implemented in

DeconvolutionLab2 [91]. In order to evaluate image sharpness, we use the variation

of Laplacian, σ2
∇2 [92], a measure that increases for sharper images. Comparing the

original and deconvolved image, values of σ2
∇2 increased from 19 to 62.

4.7 Conclusion and Future Work

In this chapter, we introduced the use of the PSF as an alternative character-

ization of an underwater optical system and showed it can be used to recover the

position of the camera within the dome. This was necessary due to the limitations of

state-of-the-art raytracing-based calibration methods when applied to cameras within
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Original Corrected

Figure 4.10: Image deconvolved with interpolated PSF. The variance of the Laplacian,
a measure of sharpness, increased from 19.2 to 62.9

underwater domed viewports at large offsets.

The presented procedure is very time intensive and requires PSF measurements used

for calibration to be performed under the same conditions (such as aperture or work-

ing distance) as the original dataset. This severely limits the application of the

technique on field-deployed robotic platforms. Future work will address this by re-

placing the experimental data collection with PSF simulation data and modelling

algorithms, enabling the regression dataset to be adapted to the calibration data

conditions. Additionally, more advanced interpolation methods, such as methods

based on principal component analysis (PCA) or Shapelets, have the potential to

increase the calibration performance. We are sharing the collected dataset, under

https://umich.box.com/v/psfdataset-uwdomedcameras for other researchers to

have access to a collection of calibrated PSF measurements.

42

https://umich.box.com/v/psfdataset-uwdomedcameras


CHAPTER V

System validation and end-to-end mapping

5.1 Introduction

In addition to the challenges presented by the underwater environment, such as

high pressures, corrosion, and low visibility, deep sea mapping requires the com-

bination of many different disciplines and skill sets. Operational constraints, such

as restricted working spaces on research vessels, reduced connectivity, and limited

deployment time-windows require that AUV operations be highly automated and

streamlined. These considerations are especially important for the DROP-Sphere,

which is intended to be used by very small groups of researchers and scientists from

small vessels.

Research on AUV operations has focused on mission and trajectory planning [93],

[94], autonomy architectures [95], [96], and cooperative deployments [97]–[99]. Eich-

horn et al. [100] developed a mission planning framework for gliders in dynamic ocean

current scenarios. Mission planning for cooperative underwater developments is pre-

sented in [101] for adaptive sampling in order to predict ocean processes. In [102],

the authors present a framework for the monitoring and quality assurance of AUV

sensor data. However, none of the presented works consider the complete pipeline,

going from mission specification to processed models and 3D reconstructions of the

seafloor.

The main contributions of this chapter are: 1. the development of a complete, end-

to-end AUV operation pipeline that goes from desired mission location to complete

3D reconstructions with minimal operator intervention, and 2. the validation of the

DROP-Sphere vehicle as a platform for deep ocean optical surveys.
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5.2 Autonomous Ocean Mapping Pipeline

The goal of the developed pipeline is threefold: enable vehicle operators to use

their time effectively, provide the ability to efficiently process collected data, and

provide an overall simplification of AUV operations. This is especially important

when operating from small vessels where operator safety and health (e.g. motion

sickness) place hard constraints on the tasks that can be performed at sea. This thesis

introduces a state-of-the-art pipeline, shown in Figure 5.1, where each deployment

of the DROP-Sphere AUV represents a complete run through it. Each step of the

pipeline is further described in the following sections.

Mission
planning

System
self-diagnosis

Benthic
Survey &
Recovery

Color Cor-
rection & 3D

Reconstruction

Survey
Report

Figure 5.1: Automated end-to-end survey processing pipeline.

5.2.1 Mission Planning Software

DROP-Sphere missions are specified by a set of operator configurable parameters.

The first is the survey pattern, which describes the trajectory geometry the vehicle will

follow underwater. Frequent mission survey patterns include linear transects as well as

rectangular “lawn-mower” grid patterns. The second configuration parameter, target

altitude or depth, specifies at what altitude from the seafloor or depth the vehicle

will execute the planned survey pattern. The third parameter, duration, specifies the

maximum duration for the survey. Last are the safety parameters; these parameters

represent limits that force a mission abort if exceeded. The generated mission plan

is loaded onto the DROP-Sphere.

5.2.2 Autonomous Systems Diagnosis

Autonomous vehicles consist on multiple interconnected subsystems and it is crit-

ical to ensure all are functioning correctly before vehicle deployment. This is a repet-

itive, error-prone, and time consuming task currently performed by human operators.

For swarm based deployments, automatically performing these tests enables timely

deployments, builds the operators’ trust of the platform, and reduces the risks as-

sociated with AUV operation. On the DROP-Sphere, all sensors are monitored au-

tonomously to ensure both the sensor measurement and measurement frequency are
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within acceptable ranges. In addition to aborting a survey when values are outside

the safe interval, the vehicle uses a set of lights to transmit the vehicle status to the

operator by changing the colors and blinking frequency. This allows quick assessment

of the readiness of the platform before and after a survey.

5.2.3 Autonomous Benthic Survey and Recovery

At this step, the vehicle is launched in the ocean and the autonomous navigation

software follows the planned survey pattern on the seafloor. Once the survey is

finished, the vehicle ascends to the surface through its positive buoyancy. The vehicle

is equipped with an ARGOS satellite tracking tag, as well as radio and acoustic

pingers, to allow operators to retrieve the vehicle after the mission ends. Argos

satellite tags do not use GPS but instead compute their position based on the Doppler

shift of the ARGOS satellite signal, with the position accuracy ranging between 150m

and 1000m. More details on the performance of the recovery localization devices will

be given in Section 5.3.6.

5.2.4 Automated Color Correction and 3D Model Generation

Light attenuates as it travels through the water column. This effect changes the

appearance of objects when observed underwater and gives the characteristic green or

blue hue to underwater images, as seen in Figure 5.2a. After a survey is completed,

images are downloaded from the vehicle and color-corrected to compensate for the

wavelength dependent attenuation of light in water. We implement the Greyworld

approach [103] to normalize image intensities. This method processes color chan-

nels independently and computes the corresponding mean and standard deviation.

A gain and offset is then applied to the distribution to increase the image contrast.

Figure 5.2 shows an example of an image before and after the correction algorithm

was applied. Together, with the navigational data, a 3D textured mesh of the area

is constructed. The mesh is generated using the approach detailed in Section 3.2.2.3.

These meshes are the main data product generated by the vehicle and can enable sci-

entific research on the ocean benthos, such as geological characterization, population

density assessments, species diversity studies, among others.

5.2.5 Survey Report Generation

After the mission has been completed and the data processed, it is important to

generate a comprehensive report with all collected information and data products for
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(a) Raw Image (b) Color Corrected

Figure 5.2: Example of color correction of underwater imagery

easy human interpretation. The developed reports include all raw sensor readings

such as depth, altitude, current and voltage of each power rail, IMU data, thruster

set-points etc; mission parameters and vehicle configuration (controller parameters,

safety thresholds, camera configuration), as well as processed data outputs such as

energy consumption, 3D reconstruction overviews, image summary, and vehicle speed

plots. This set of parameters allows operators to quickly identify anomalies in the

mission execution, verify controller performance as well as evaluate power consump-

tion. This systematic analysis of survey data allows for quick turnaround times and

gives researchers the opportunity to optimize future deployments.

5.3 Autonomous Ocean Mapping Pipeline Validation

5.3.1 Location

In order to validate the vehicle’s autonomous survey capabilities with the devel-

oped end-to-end processing pipeline, multiple deployments were performed over the

course of a week in the coastal waters of the island of Oahu, Hawaii. The waters in

Hawaii presented a great deployment opportunity due to the abundance of coral, as

well as easy access to the ocean from the harbours along the shore. The shores of Oahu

offer areas of steep depth increases in the south shore and more gradual slopes on the

east coast of the island. Of special interest are the areas of Makapu’u point, as well

as outside of Kane’ohe Bay. These areas have a high diversity of coral ranging from

shallow-water corals to mesophotic and deep-sea corals; numerous previous surveys

have characterized the area [104], [105]. A 22-foot boat, shown in Figure 5.4a, was
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Figure 5.3: Vehicle deployment locations. Deployments were performed outside of
Kaneohe bay (top insert) as well as Makapu’u point (bottom insert). The red line
shows the trajectory of the vehicle on the ocean surface before retrieval.

chartered with a local captain, and highlights the deployment flexibility of a small,

lightweight vehicle like the DROP-Sphere, shown before a deployment in Figure 5.4b.

5.3.2 Deployments Summary

The vehicle was deployed in the waters outside of Kane’ohe Bay (deployments

numbered 1 through 5) and Makapu’u point (deployment number 6) at depths ranging

from 8 to 80 meters. Missions were planned as linear transects with bottom times

between 5 and 20 minutes and conducted at an altitude of 3m from the seafloor.

Table 5.1 lists the performed deployments and the deployment coordinates. Figure 5.3

highlights deployment locations in both the top and bottom insert over a large-scale

map of the island of Oahu. While the exact position coordinates for deployment #5

were not recorded, the vehicle was roughly deployed to the NE of deployment #4.

The figure also shows the trajectory followed by the vehicle at the ocean surface after

deployment #6. More details about this are given in Section 5.3.6.
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Deployment # Latitude Longitude Duration [s]
1 21◦ 28.32’N 157◦45.840’W 1805
2 21◦28.494’N 157◦45.876’W 1869
3 21◦28.110’N 157◦45.756’W 644
4 21◦28.962’N 157◦47.184’W 589
5 - - 5535
6 21◦16.297’N 157◦36.681’W -

Table 5.1: Vehicle Deployments

(a) Vessel used for deployment (b) DROP-Sphere before deployment

Figure 5.4: Deployment Descent

5.3.3 Deployment Phases

Each deployment has four characteristic phases. The first, Standby phase, is the

phase when the vehicle is turned on and floating on the water’s surface. Once the

pre-deployments checks have been completed, the vehicle is ready to transition to

the second phase, Descent. This phase is where the vehicle gains depth either using

the vertical thrusters when the target depth was under 60m, or, for greater depths,

using weights to sink to the ocean floor. The weights were connected to the bow of

the vehicle through an approximately 2m long segment of braided line attached to a

corrodible link. The corrodible links had a 2-hour release time, after which the link

breaks and the vehicle is released and can start its mission. During the Descent phase,

the vehicle achieves vertical speeds of approximately 0.1m/s when using the vehicles

vertical thrusters; when weighted down with descent weights, the speed increases to
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Figure 5.5: Main phases of a DROP-Sphere deployment. 1. The vehicle is weighted
down to the seafloor using weights during the Descent phase, 2. The vehicle waits
for the link to break, 3 & 4. The vehicle is released and the Survey phase begins, 5
& 6. The vehicle floats back to the surface during the Ascent phase

Deployment # 1 2 3 4 5 6
Descent speed [m/s] 0.10 0.09 0.10 0.11 0.44 0.49
Descent time [s] 284 381 115 112 160 145
Max depth [m] 31.3 43.0 13.9 14 72.5 77.6
Survey speed [m/s] 0.07 0.16 0.08 - -
Survey time [s] 619 812 121 59 4395 -
Ascent speed [m/s] 0.15 0.14 0.12 - 0.10 -
Ascent time [s] 211 321 104 - 729 -

Table 5.2: Main Deployment Phase Characteristics

0.45m/s. The third phase of the deployment is the Survey phase, when the optical

survey of the seafloor is started after the vehicle is at the seafloor and free from

the weights, if used. Once at the bottom, the speed of these surveys varied greatly

between deployments, ranging from 8 to 16 cm/s, due to the deployments in shallower

areas being strongly affected by tidal and surface wave-induced currents. Compared

to speeds achieved in previous deployments in Traverse City Bay in Lake Michigan,

where speed under the same vehicle configuration reached 27 cm/s, the ocean current

strength can be estimated between 12 and 20 cm/s. After the survey time has elapsed

or an abort condition triggered, the Ascent phase is started. Ascent to the surface

was achieved using the vehicle’s positive buoyancy, with speeds of 0.15m/s. Once the

vehicle reaches the surface, it goes back into Standby phase until it is recovered. The

phases are easily recognized in a depth plot such as shown in Figure 5.6. Table 5.2
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shows the main statistics corresponding to each of the phases of the deployments.

Figure 5.6: Deployment Phases

5.3.4 Energy Balance

Figure 5.7 shows a typical energy consumption profile corresponding to deploy-

ment #1. The graph shows how maximum power is demanded during descent due

to the use of the vertical thrusters. Once at the bottom, the vehicle intermittently

actuates the vertical thrusters to control altitude and the required power strongly

oscillates. After the mission is finished, the thrusters are turned off and the vehicle

ascends passively to the surface with a great reduction in consumed power. Once

at the surface, power demand does not change significantly and remains low until

the vehicle is retrieved by the operators. Consumed energy can be computed from

the power graph as the integral over time. Figure 5.7b shows a plot of the total

energy consumed for each of the mission phases. Table 5.3 summarizes the energy

consumption figures for all six deployments.

Furthermore, the energy consumption can be grouped by main consumers, giving

insight into not only when but where power is consumed in the AUV. Figure 5.8a

shows how most of the energy is consumed by the thrusters. These energy consump-

tion figures indicate that the vehicle is capable of approximately three hour mission

surveys with the current 210Wh battery pack. Figure 5.8b shows how, during the

survey mission phase, the vertical thrusters mostly operate at their maximum power,

switching back and forth between push and pull modes. While this controller config-

uration is capable of satisfactorily controlling the vehicle altitude, it is certainly not
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(a) Mission power profile (b) Energy consumption by mission phase

Figure 5.7: Energy Consumption Plots

energy efficient and represents a direction for potential future research into energy-

optimal control methods. The current configuration was chosen to enable the vehicle

to submerge when at the water surface due to the reduced thrust delivered by the

motors while at the surface. The energy consumption values obtained from the trials

also allow computation of the depth to which it is more energy efficient to descend

using the thrusters instead of using descent weights. This is due to the standby power

that continues to be consumed while waiting for the corrodible links to release after

reaching the seafloor. The critical depth can be computed as:

d =
tLINK · vDESCENT · PSTANDBY

PDESCENT

(5.1)

where tLINK is the time for the corrodible link to release, vDESCENT and PDESCENT

are the descent speed and power when using the vehicles vertical thrusters, and

PSTANDBY is the standby power. For a nominal corrosion time of two hours, a de-

scent speed of 0.1 m/s and the mean of the powers in Table 5.3, the obtained depth

is 123m.

Deployment # 1 2 3 4 5 6
Mean Descent Power [W] 82.56 76.54 90.27 87.61 14.04 13.59
Mean Survey Power [W] 72.27 66.76 81.59 79.48 30.70 -
Mean Standby Power [W] 14.06 14.14 14.31 14.91 13.86 13.66
Total Energy [Wh] 22.53 25.80 7.33 10.89 48.02 -

Table 5.3: Energy Consumption
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(a) Energy consumption (b) Thruster usage profile during survey

Figure 5.8: Plots of energy consumption by consumer and thruster setpoint profile.

5.3.5 Imagery and 3D Reconstructions

A total of 61505 images were collected during the trials. Images were captured at

10Hz rate during the survey, with a resolution of 1536px width and 1180px height. Im-

ages were taken at an altitude of 3m off of the seafloor using 2000lm LED light sources

combined with variable intensity natural light, depending on deployment depth. Fig-

ure 5.9 shows samples of the obtained images after color correction and highlights

how they can be used to count species, e.g., sea stars present in Figure 5.9a or coral

coverage and species distribution in Figure 5.9c. After vehicle recovery, the images

were color-corrected and processed into full 3D reconstructions. Figure 5.10 shows the

resulting models for one of the survey transects and a detail view of the reconstruction

of deployment #2. In Figure 5.10c a color coded height map highlights the rugosity

of the terrain surveyed during deployment #3. The generated 3D reconstructions

cover an approximate area of 500 m2 of seafloor and provide insight into the terrain

composition, rugosity, and biological cover. Software problems prevented the acqui-

sition of images during the last survey over the Makapu’u bed, while a problem with

the corrodible link during survey #5 made the vehicle unable to move adequately.

As a consequence, no 3D model can be obtained from the images taken during that

deployment. Table 5.4 shows the number of images taken, distance traveled, and

total area surveyed for each of the deployments.
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(a) 40m depth (b) 30m depth

(c) 15m depth (d) 15m depth

Figure 5.9: Survey sample images

Deployment # 1 2 3 4 5 6
Number of images 14298 18868 3871 7108 17630 -
Transect length 46.8 129.1 10.3 15.6 - -
Area Covered 126.1 348.6 27.81 42.1 - -

Table 5.4: Image statistics
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(a) Survey #1

(b) Abandoned rope/cables found in the reconstruction of Survey of #2

(c) Color coded relief of Survey #3

Figure 5.10: Survey sample 3D reconstructions
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5.3.6 Recovery Issues

The last deployment took place at Makapu’u point, approximately four miles

from the coast, and targeted the edge of the Makapu’u bed at a depth of 90m. The

vehicle was deployed at 8:00am. While tracking of the underwater acoustic pinger was

attempted after deployment with the hydrophone, it was postponed due to rough seas

and motion sickness. The first location from the satellite tracking tag was received

around 9:45am, indicating the vehicle had returned to the surface. The first fix is

shown in Figure 5.3 as the southernmost red dot. Once the deployment boat reached

the received position, it was not possible to locate the vehicle. The radio tracking

equipment, composed of a directional antenna and radio receiver, was able to listen

to the transmitted pings from the satellite tag but it was impossible to identify a

direction where the signal was clearly stronger. This can be attributed to the lack of

the crew’s training in radio tracking, as well as a potential multi-path due to the large

waves in the area. Vehicle position updates kept coming in once or twice an hour,

but the vehicle could not be found. At 5pm, and after two hours without a satellite

position fix, the search was aborted. During the night, the vehicle started sending

position messages that indicated it had not been taken offshore by the currents but

was rather moving North following the coast profile. The complete track is shown

in Figure 5.3. The search was resumed the next morning during more favorable

environmental conditions and the vehicle was found at 11:10am. The conclusions

from this event are:

• The precision of the ARGOS satellite tag position estimate is not good enough

to enable reliable, fast localization of the vehicle in the ocean in the presence of

waves that limit line-of-sight.

• The use of radio tracking equipment to triangulate a transmitter requires ade-

quate training and operator expertise. While the devices worked on land, they

were of little use on the water. More advanced tracking equipment, such as ra-

dio goniometers, could be used to overcome some of the operational difficulties

encountered.

• A direct satellite communication modem, such as iridium-based technology,

needs to be mounted on the vehicle to transmit accurate, real-time, GPS-

obtained position estimates to the operators for retrieval. However, ARGOS

tags can still be used as back-up positioning devices.
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5.4 Conclusions

This chapter introduced an automated pipeline for the deployment of the DROP-

Sphere and the processing of the collected data. We deployed the vehicle in open

ocean waters and performed fully autonomous optical surveys of the seafloor. The

results highlight the capabilities of the DROP-Sphere to produce dense maps and 3D

reconstructions of the seafloor that can be further used by researchers and scientists

to characterize the ocean benthos. The recovery issues encountered will be addressed

further by hardware changes to incorporate an Iridium-connected satellite modem

into the design to enable accurate GPS position transmission.
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CHAPTER VI

Conclusions

6.1 Contributions

The main contributions of this thesis are:

1. The development of the DROP-Sphere: a novel, deep-sea-capable AUV with

the ability to perform optical surveys at high depth. The vehicle eliminates

expensive acoustics-based sensors, like DVL and USBL and custom deep sea

enclosures, and replaces them with optical cameras housed inside a commercial,

off-the-shelf glass sphere. Its low cost enables smaller research groups to access

the ocean benthos and reduces the barriers of entry to deep sea exploration and

research.

2. A qualitative evaluation of error metrics for underwater 3D reconstructions,

comparing state-of-the-art software implementations and hardware platforms.

The results from this analysis were used to influence the design of the optical

system of the DROP-Sphere vehicle.

3. The first step towards a calibration method based solely on the analysis of

the distortions of underwater images taken through a spherical dome. This

analysis also showed that the camera position inside the glass can be recovered

by exclusively looking at the shape and size of the distortion kernels.

4. The development of an end-to-end mapping pipeline to streamline AUV oper-

ations. Field deployments in Hawaii validated the pipeline, as well as the rest

of the DROP-Sphere vehicle, during which we mapped more than 500 m2 and

reached depths of up to 80m.
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The presented survey platform, together with the developed software, represents a

departure from traditional approaches to deep ocean research and provides an oppor-

tunity to explore and further characterize benthic communities. All work presented in

this thesis, including the software and hardware, have been shared publicly to further

encourage engineers and scientists to adopt the developed technologies and address

the lack of knowledge about the deep sea.

6.2 Vehicle Shortcomings and Challenges

Before reaching the state presented in this thesis, the vehicle has gone through

multiple iterations of both hardware, electronics and software. Many revisions were

necessary to address engineering problems such as noise in the electrical system and

to add additional features such as power monitoring or Bluetooth connectivity. Some

of the challenges that motivated these revisions, as well as shortcomings of the current

design, are listed in this section.

1. Thermal management: The cameras inside the DROP-Sphere generate large

amounts of heat. Initial iterations of the vehicle design made extensive used of

3D printed parts that deformed after prolonged use of the cameras. This re-

quired a complete redesign of the hardware used to mount the cameras, switch-

ing to an aluminium bracket with large contact areas to the glass to transport

heat away from the cameras and into the surrounding water. With this change,

camera temperatures are kept within the safe operating range.

2. Processing power: The ODROID-XU4 was the most powerful small form factor

single board computer available when the design of the DROP-Sphere was first

started. While capable of running the basic software stack, more advanced

processing algorithms require more processing power. As a consequence, the

addition of demanding software modules is limited. More powerful and power

efficient alternatives such as Nvidia’s Jetson range of single board computers

have been introduced to the market since the design of the vehicle and could

replace the used ODROID-XU4.

3. Thruster assembly: The thrusters used are simple brushless motors that are

low cost and designed to be replaced regularly as they wear out. The current

configuration of the vehicle however lacks a way of replacing the thrusters in the

field in a fast manner due to the need to cut and solder the thruster wires. This

means that when a thruster failure is identified after a deployment, it usually
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requires to return to shore to perform the switch. A connector based mechanism

should be developed to address this issue and enable better use of deployment

windows.

4. Localization system: As mentioned in Section 5.3.6, the localization system

based on ARGOS technology failed to work reliably as a means to obtaining the

vehicle position on the surface for retrieval. In order to address this, a custom

Iridium based modem has to be developed to transmit the vehicle position

obtained through GPS. While this will increase the vehicle cost by roughly

$3000 to $5000, the cost will be offset quickly due to ARGOS tags being single

use tags without rechargeable batteries that cost around $1500.

5. Battery and endurance: The current battery system of 210Wh is, according to

the performed field trials in Hawaii, capable of delivering power for approxi-

mately three hour missions. The designed endurance however was six hours,

and changes to the controller and electronics need to be made to reach this

figure.

6.3 Future Work

The development of the DROP-Sphere is a novel AUV concept that relies on

optical sensors for navigation. The unique camera configuration inside a glass dome

severely impacts image formation and introduces unique challenges not present in

other visual navigation application domains, such as terrestrial or aerial robotics.

This is critically important as the gathered images are not only used for vehicle

navigation but are also the main data product gathered by the platform. While this

thesis has proposed a specific design of the optical system and developed methods

to help characterize it, there are generally two different ways at two different stages

in the research the quality of the images can be improved: at the design stage and

through the use of post-processing methods.

At the design stage, an analysis of the camera, lens, and geometric configuration

of the system through optical design software allows refining of the camera, lens, and

pose selection to minimize the effect of refraction and blur. This type of effort is

frequently limited by the availability of high-level fidelity models for the lenses under

consideration, as well as the high-cost associated with the required software packages.

Post-processing methods, however, focus on the removal of the optical aberrations

after an image is taken. This is a difficult problem because there will be an inevitable
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loss of information in the image acquisition process. In the underwater domain, post-

processing methods have mostly been focused on color correction and the modelling

of the refraction at the interface. Domed housings, however, introduce additional

blur when the camera is positioned far from the dome’s optical center that further

degrades the image. This thesis presented initial progress towards the calibration

of such an optical system. Including the blur from the images into the analysis of

underwater optical systems, and using it as a defining characteristic of the system,

offers the potential to better model the effects of the glass interface and the water on

image formation.

Additionally, deconvolution methods have shown to be very effective at remov-

ing specific blur types from images, including motion-blur, and could be applied to

sharpen the underwater images after being captured. Image processing techniques

like these can be combined with ray-tracing methods proposed in the literature to

create a hybrid approach to image enhancement and geometric feature tracking.

In addition to image formation, localization of a small-sized AUV is a topic of

significant importance, not only for navigation but also to localize collected data and

provide context for scientists analysing the imagery. This task is further complicated

by the lack of a DVL to measure vehicle velocities. Visual inertial implementations

have been shown to produce good motion estimates when in close proximity of the

seafloor. Localization is especially hard during the descent phase; the seafloor is

still too far to enable the tracking of visual features and only the depth sensor and

IMU provide navigation information. Research into dynamic modelling of the vehicle

characteristics can provide valuable information to estimate the vehicle descent path.

Finally, the development of the DROP-Sphere required a large amount of engi-

neering time to develop the mechanical hardware, electronics, and software that make

the vehicle run. As such, it is a one-off prototype and subject to constant refinement

and improvement of the design. Furthermore, it is very important to consider the

inter-dependencies between the hardware and software that are present in a robotics

platform because many software packages, such as visual-inertial navigation, have

hardware requirements, such as a camera to IMU synchronization, implemented into

hardware. Not considering these early on will force costly hardware design revisions.

Many prototypes of each subsystem and module have been built and tested over the

last few years until arriving at the current, functional prototype stage, and the cost

of doing so was significant. Open sourcing all the software and hardware design files

addresses part of the cost, at least for the community as a whole if not for the DROP-

Lab. It not only allows others to replicate the design but, more importantly, modify
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it and use it as a starting point for custom designs and research projects.

The rest of the section discusses some of the mentioned areas of future research

in greater detail.

Distortion based camera calibration

The method introduced in Chapter IV represents the first step towards a com-

plete procedure not only capable of calibrating the camera system inside the dome

housing with large offsets, but also capable of accounting for refraction and produc-

ing improved odometry estimates. In its current state, the proposed method requires

large amounts of data captured in a controlled environment. However, optical sim-

ulation software has been shown to be able to produce accurate PSF estimations

given the optical system prescription. The challenge lies in the high dimensionality

of the PSF and the computational power required for its simulation. In parallel, deep

learning offers the ability to learn high dimensional functions like the PSF. Future

work will aim to combine the two to generate accurate, compact PSF representations

to perform regression over and identify the camera model parameters. Furthermore,

deconvolution and kernel estimation methods can be combined within the framework

to enable the calibration of domed viewports from a single image and without the

need of special calibration targets.

Vehicle localization

One of the immediate applications of the DROP-Sphere, enabled by its low-cost, is

the simultaneous deployment of large groups of vehicles to cooperatively map an area.

Previous work [106] introduced the development of low-cost acoustic transceivers for

low-bandwidth acoustic communication and ranging. Multiple vehicles gather si-

multaneous data about a shared environment and enable communication between

AUVs, allowing position refinement estimates for all vehicles involved. Expanding

this research, future work will focus on combining coarse bathymetry maps with

altimeter-based information through bandwidth-limited acoustical channels to im-

prove the localization estimates of all vehicles.

Vehicle Development

Finally, future research on hardware changes will focus mostly on the development

of a satellite communication modem for better retrieval, based around Iridium and

GPS technologies, as well as smaller, incremental changes to increase the vehicle’s

reliability and reduce power consumption.
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