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ABSTRACT

Vessels and marine structures are subjected to degradation during their service,

jeopardizing structural safety and shortening their service life. Numerical models of

such structural systems are developed and relied on to simulate and ensure system

integrity. Such numerical models are the essential part of digital twins representing

complex marine structures and providing enhanced forecasts of risk and lifecycle per-

formance. Digital twins also require data fusion from observations or experiments

to improve the numerical model agreement with the real-world structure. Due to

the infeasiblity of full-scale testing of marine structures, scale experiments are de-

veloped but few of them reflect many of the properties of large and complex marine

structures. Thus, an experiment must be designed to mimic the multiple degradation

process and retain structural redundancy so that a single element failure will not

remove all load carrying capacity. Dynamic Bayesian networks (DBN) expand the

Ordinary Bayesian networks (BN) with slices representing the state of the system at

different time intervals. DBN can model the degradation process of structure but its

performance has not been validated by experiments. Therefore, the PhD research

designs an experiment to mimic the properties of marine structure and develops a

corresponding numerical model based on DBN whose performance is evaluated by

the designed experiment.

To mimic the interdependence, redundancy and component-to-system level per-

formance of marine structures in degradation, a hexagon tension specimen with four

propagating fatigue cracks, one on each corner, is designed and tested. The ap-

plied loading cycles and corresponding crack lengths are recorded as the major time-

xii



varying data of degradation state. Two new methods of measuring crack length

are developed based on computer vision and digital image correlation. A standard

eccentrically-loaded single edge crack tension specimen is designed and tested to val-

idate the performance of the developed computer vision-based method for measuring

crack length. The results of the hexagon experiment demonstrate that the designed

specimen successfully simulates the interaction among cracks and structural redun-

dancy. To complement the test specimen, a DBN is constructed to predict the crack

length with input observations. The network models the time-varying process of

degradation with sequential slices. The task is divided into several steps including

the first two steps as modeling single crack propagation with simulated observations,

two cracks propagation considering dependence evaluated via simulated observations.

The dependence among components are controlled by hyperparameters and are in-

tegrated into complex system behavior to reflect the structure from the component

level to the system level. Then a DBN model is developed for four cracks propaga-

tion with dependence modeled by hyperparameters using Object-oriented Networks

(OON) technology and evaluated by data gathered from the hexagon experiment.

Finally, the dependence between crack length and stress is modeled in the fourth

model based on the technology named Temporal Clone which is also evaluated via

experimental data. The experimental data and developed numerical models provide

support and guidance in the exploration of digital twin models.

xiii



CHAPTER I

Introduction

Structural degradation of vessels and marine structures during their service can

jeopardize structural safety and shorten their service lives. Owing to the lack of a

physical prototype to test degradation phenomena, efforts are made to develop the

numerical models of vessels and marine structures to describe the aging of real-world

structural systems and assist in making decisions for maintenance. Such numerical

models are known as digital twins representing the complex marine structures and

providing an enhanced forecast of risk and lifecycle performance. Digital twins fuse

data from observations, experiments or data generated by numerical models to make

the model agree with the real-world structure. Numerical models are highly relied

upon by engineers, while the common method for validating and evaluating numerical

models is using small sets of model-generated data. Usually, the generated data is

not independent from the numerical models, which questions the validity of numerical

models in real world. Thus, independent experimental data is critical for evaluating

the numerical models in digital twin approaches.

Experimental testing of marine structures have been conducted in the past decades

in several sub-areas. Individual components of marine structures are tested com-

monly, determining the component strength and properties. Numerous components

experiments can be found, including collapse tests on stiffened panels Gordo and

1



Soares (2008), corrosion experiments on steels plates Saad-Eldeen et al. (2016a), fa-

tigue evaluation on welded structural joints of ships Garbatov and Soares (2012).

Even if sufficient data is gathered to establish component strength, experiments of

single component do not consider the interdependence of components which is critical

in real-world complex structural systems. Some larger experiments are also conducted

though with less frequency, including the assessment of corroded box-girders Saad-

Eldeen et al. (2013), even larger full scale experiments. However, the cost and time

span make testing expensive; especially at large scale. Thus, it would be ideal to

design a lab-level experiment reflecting many of the properties of large and complex

marine structures. The designed experiment should not only mimic the multiple

degradation process to explore the interactions among components, but also retain

structural redundancy so that a single component failure will not remove all load

carrying capacity.

Building numerical models of actual marine structures is challenged by uncer-

tainties in the as-built condition. The uncertainties can come from various areas

such as shipyard-to-shipyard differences, material qualities, and manufacturing vari-

ances. To handle such uncertainties, Bayesian networks (BN) have been explored to

model the degradation of complex marine structures considering interactions among

components. Abaei et al. (2018) applied BN on assessing reliability of marine floating

structures and predicting the optimum design point of the mooring system. Bhandari

et al. (2017) modeled the pitting degradation of ocean structures with BN. Numerous

approaches have been developed based on BN, however, the majority of them have

not been validated or evaluated by independent experimental data. Thus, the true

applicability of this approach for real structures is not yet known.

In this work, the challenge of evaluating digital twin models is handled by de-

signing and conducting a laboratory-level experiment reflecting the complex marine

structural system. The labotory experiment can not only reduce time consumption
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but also mimic important system-level properties of real-world marine structures such

as inter-dependence and structural redundancy. A system-level model is proposed and

developed based on dynamic Bayesian network (DBN) modeling of the designed ex-

periment. The performance of the proposed model is evaluated by the experimental

data independent of the numerical model.

1.1 Motivation

Modeling structural degradation is critical for predicting structure performance

and providing guidance towards inspection, maintenance and decision making. Nu-

merical models are developed and relied on for simulating the degradation of ma-

rine structures, and serve as an essential part of the digital twin concept. Digital

twin approaches are promising in enhancing lifecycle performance and forecasting

risks. Many twins are attempting to model structural behavior at the system level

rather than focusing on a single component. Beside the numerical model simulating

complex marine structures, digital twins also fuse data into numerical model from

real-world observations to increase the agreement between the numerical model and

the actual structure. However, most of the proposed models are evaluated on self-

generated data, which is usually dependent on the model, making the model perfor-

mance less convincing. While a many experiments have been conducted, the majority

of them focus on individual components of marine structures. Far fewer tests have

been carried out on larger structure systems which however are expensive and usu-

ally time-consuming. The challenge exists in designing a laboratory-level experiment

with acceptable expense and short time span reflecting important properties of real-

world complex marine structures in degradation process such as dependence among

components, components-to-system behavior, and structural redundancy. This work

explores the design and fabrication of such a specimen tested in a laboratory-level

experiment.
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Numerical models in the marine structure area are challenged by uncertainties.

Extended efforts have been conducted on building models from individual component

probabilistic modeling to BN approaches. Traditional probabilistic methods only fo-

cus on analyzing the performance of individual components while BN brings us the

capability of modeling structural behavior on a system level. Ordinary BN have

been expanded to DBN by adding repeating time slices which are suitable for model-

ing crack propagation and other structure deterioration process. The first challenge

left with us is modeling system behavior considering dependence and redundancy

rather than modeling an individual component. Few DBN have been explored for

system-level prediction and problems with dependence quantification and state-space

explosion make the challenge even harder. This work explores the numerical model

simulating the system-level structural deterioration based on DBN. The second major

challenge is evaluating the performance of model with independent data leading to

the development of an independent experiment under the concept of digital twins.

1.2 Research Overview

Digital twin approaches contain a numerical model simulating an actual struc-

ture and fuses data from observations to increase the agreement between model and

structure. Based on digital twin, a laboratory-level deterioration experiment is de-

signed and conducted to mimic the properties of real-world complex marine structures

with affordable expense and time consumption. The deterioration is characterized as

the growth of multiple fatigue. The crack growth and according applied cycles are

recorded for the purpose of evaluating digital twin formulations on their ability to cor-

rectly track the experimentally-observed degradation. Additionally, two new methods

for measuring crack length are developed and evaluated.

A numerical model is developed for modeling the deterioration in the laboratory-

level experiment. Rather than modeling single component, the numerical model simu-
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late the system-level behavior of complex structural system and make evidence-based

prediction for crack propagation. The performance of developed numerical model is

evaluated and validated by the independent experimental data.

1.3 Research Contribution

In this PhD research, a novel laboratory-level experiment is designed and con-

ducted. A DBN approach is used to construct a corresponding numerical model of

the degrading system. The experiment reflects common properties of complex ma-

rine structural system such as component dependence, component-to-system behav-

ior, and structure redundancy. The numerical model simulates the crack propagation

in system level and the performance is evaluated by the independent data collected

from the designed experiment. The primary contribution of this PhD research can

be summarized as follows:

1. A hexagon-shaped specimen with four propagating cracks is designed and tested

in a laboratory-scale experiment. The specimen reflects important properties

of complex structural system including crack dependence and structure redun-

dancy. The specimen is applied with tension cycles and the test is under dis-

placement control. The applied loading cycles and corresponding crack lengths

are recorded as the major time-varying data of degradation state. Two ap-

proaches for measuring crack length are developed based on computer vision and

Digital Image Correlation (DIC) technologies. A standard eccentrically-loaded

single edge crack tension specimen is designed and tested to validate the per-

formance of the developed computer vision based method for measuring crack

length. Strain gauges integrated into a data acquisition system are deployed to

monitor the structure strain state and assist in understanding the degradation

process. Five sets of hexagon specimens have been tested with the data be-
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ing documented for supporting the exploration of digital twin approaches. The

test results demonstrate that the designed experiment successfully mimics the

desired properties of complex marine structures.

2. A new numerical model is developed based on DBN to simulate the system-

level deterioration. The task is divided into several steps. First, a single crack

propagation with simulated evidence and two crack interaction considering com-

ponent dependence with simulated evidence are investigated. The component

dependence is modeled by a system-level hyperparameter and the performance

is evaluated with generated evidence. Based on this, a system-level network is

developed for modeling crack propagation in the hexagon experiment. The net-

work is built in Hugin based on Object-oriented Networks (OON). The model

is updated with dependence between crack length and stresses constructed on

a Hugin technology called Temporal Clone. The models of hexagon specimen

are evaluated by independent data collected from the test. The developed nu-

merical model demonstrates strong capabilities in making accurate predictions

of the growth of multiple fatigue.
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CHAPTER II

Background

2.1 Introduction

The designed experiments and numerical model simulating the degradation pro-

cess in the experiments are based on digital twin approaches and BN. This chapter

aims to introduce the concept of digital twin and BN including the construction,

quantification, inference approaches, and proposed extensions to DBN.

2.2 Digital Twins

The development of computer and simulation technology over the past decades as

well as the increasing capability of collecting data leads to the emergence of digital

twin approaches, Schleich et al. (2017) and Schirmann et al. (2018). Digital twin

contains one or more numerical models simulating a real-world system of interest

and fuses data from sensors or observations. With the data fusion, the agreement

between numerical model and real-world system increases. Figure 2.1 demonstrated

the concept of digital twin approaches, where M1, M2, M3 and M4 represent the

numerical model for real-world system S1, S2. By fusing the gathered data, the

difference between model and real-world system decreases to generate a more accurate

prediction assisting decision making. The concept of digital twin guides the PhD
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Figure 2.1: Concept of Digital Twin Approach, Schirmann et al. (2018)

research in designing laboratory-scale experiment and developing a numerical model

for the experiment in terms of predicting structure degradation.

2.3 Bayesian Network

A BN is a probabilistic graphic structure allowing us to represent and reason about

an uncertain domain Korb and Nicholson (2010). BN can handle the causal relation-

ships between random variables and model complex structural systems dealing with

diagnosis, updating and predictions Weber et al. (2012). The graphic structure of

BN is a directed acyclic graph with nodes representing random variables and edges

referring to conditional dependency. The conditional dependency is quantified by

conditional probability distributions between two dependent nodes. The flow of con-
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dition dependence or the inference of Bayesian network is governed by the Bayes’

Theorem describing the relationship of prior, conditional, and posterior probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

where A and B are nodes with causal relationship. P (A) and P (B) are marginal

probabilities while P (A|B) and P (B|A) are conditional probabilities which are usually

represented by a Conditional Probability Table (CPT).

Rewrite the Bayes’ Theorem with chain rule as shown in Equation 2.2, the joint

probability of random variables can be obtained, from which the marginal probability

of a desired node can be acquired by summing over the states of its parent nodes as

demonstrated in Equation 2.3, where random variables x1 and x2 are the parent nodes

to random variable x3. Figure 2.2 illustrates the structure of the network containing

x1 and x2 as parent nodes and x3 as child node.

P (x1, x2, ..., xn) = P (x1)P (x2|x1)P (x3|x2, x1)...P (xn|xn−1, ..., x2, x1) (2.2)

P (x3) =
∑
x1

∑
x2

P (x1, x2, x3) =
∑
x1

∑
x2

P (x1)P (x2|x1)P (x3|x2, x1) (2.3)

In the following section, an example of BN is provided in terms of constructing,

quantifying, and updating in BN.

2.3.1 Construction

Figure 2.3 demonstrates a straightforward case of BN model named “Earthquake

or Burglar” case. This example is taken from Jensen and V. (1996). The model
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Figure 2.2: Illustration of Chain Rule of Bayesian Network

describes an alarm system which can be triggered by a burglary or an earthquake.

The alarm system affects the probability of the homeowner receiving a call from John

or Mary. Given the evidence that John or Mary calls, the probability of Burglar

or Earthquake can be determined. Similarly, given the evidence that burglar or

earthquake happens, the probability of John or Mary calling can be updated.

In the construction process of a BN, the state random variable is determined

first by obtaining the desired variables. In this case, the random variables are built

as nodes including “Burglar”, “Earthquake”, “Alarm”, “John Call”, and “ Mary

Call”. With the determined random variables, the next step in constructing BN is

finding the causal relationships between random variables. For example, since the

alarm can be triggered by burglar or earthquake, two edges are built to connect

parent nodes “burglar” and “earthquake” with child node “Alarm”. To conclude,

the structure of BN contains nodes and pointers representing random variables and

causal relationships which is determined in the construction process of a BN.

2.3.2 Quantification

In a BN, each node contains a probability table indicating the probability of

the random variable with respect to its possible states. Considering the structure
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Figure 2.3: Structure of Bayesian Network for Burglary Case

of BN, two types of probability tables are used to quantify the model including a

prior probability table and conditional probability table. Prior probability tables,

associated with nodes having no parents, describes the probability of its states. Like

the nodes “Burglary” in Figure 2.4 without any parent nodes, the probability table

contains the states “T” and “F” with 50-50 chance. Conditional probability table

(CPT) describes the probabilities of those random variables having parent nodes.

CPT contains the states of each possible combination of parent nodes. For example,

the node “Alarm” has a CPT as shown in Figure 2.4. Each column represents one

combinations of its parent nodes. It should be noted that each column of CPT should

sum up to 1 due to the mutual exclusive and exhausted definition of states.

After constructing and quantifying BN, the power of BN lies in updating, i.e.

When the evidence is input into the network, for example, Mary makes the call, the

marginal probabilities of the rest nodes will be updated accordingly. The following

section includes more details of inference and updating in BN.

2.3.3 Inference in Bayesian Network

Several efficient inference methods have been developed for BN including exact

and approximate inferences. The Junction Tree algorithm is one of the exact meth-
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Figure 2.4: Bayesian Network and Potentials of Burglary Case

ods widely applied. Understanding the inference algorithm is important for tuning

the Bayesian network for a better performance. The overall flow of Junction tree

algorithm can be easily described, but few example cases have been studied to help

understand the application of algorithm. Thus, in this section, the theory of Junction

tree algorithm is described followed by a detailed example.

The Junction Tree algorithm can be divided into two parts in general: Junction

Tree Construction and Message Passing, which comprise eight sub-steps as follows,

Korb and Nicholson (2010):

1. Junction Tree Construction:

(a) Moralize

This step converts a directed graph to an undirected graph by removing

the arrows; and “marries” the parents who have the same child by adding

a chord
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(b) Triangulate

Triangulate the moralized graph, which means every cycle of length greater

than 3 possesses a chord

(c) Construct Junction Tree

Identify maximal cliques in the triangulated graph to form compound

nodes; connect the nodes to construct the Junction Tree

(d) Create Separators

For every pair of connected compound nodes, add a separator between

them serving as the intersection of the two compound nodes

2. Message Passing

(a) Compute Parameters

Assign the potentials to the nodes of Junction tree from CPTs and initialize

the separators potentials to 1

(b) Collect Evidence

Select an arbitrary node as the root and start to collect evidence from leaf

nodes. Leaf nodes usually connect with only one node

(c) Distribute Evidence

Pass the potential from the root node to leaves and the consistency of

Junction Tree is reached

(d) Marginal Probability

Compute the marginal probability from the nodes’ potentials

The message passing process is illustrated in Figure 2.5. Take node W as the

leaf node while node V as root node. Then the forward pass updating process,

from leaf node W to root node V , collects evidence from leaf nodes, which can

be described as
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Figure 2.5: Bayesian Network Structure and Potentials

φ?S =
∑
W/S

φW φ?V =
φ?S
φS
φV (2.4)

where
∑

W/S φW means summarizing φW over W to get φ?S for updating φV ,

Kahle et al. (2008) and Rosenberg (2010).

Then the backward pass from root node V to leaf node W is,

φ??S =
∑
V/S

φ?V φ?W =
φ??S
φ?S

φ?V (2.5)

After conducting the two passes, local consistency is achieved described as,

∑
V/S

φ?V =
∑
W/S

φ?W (2.6)

The global consistency is achieved if Equation 2.7 is satisfied for any node V

and W with intersection I,

∑
V/I

φV =
∑
W/I

φW (2.7)

In the following “Rain or Sprinkler” case, the Junction Tree algorithm is applied

and explained according to the above steps. Four random variables are included in

this model represented by nodes “Cloudy”, “Sprinkler”, “Rain”, and “Wet Grass”.

The causal relationships are modeled by directed arcs indicating that the wet grass

can be caused by sprinkler or rain which are affected by that if the weather is cloudy,

Murphy (2001). Figure 2.6 shows the structure of this BN model along with their
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probability tables.

Figure 2.6: Bayesian Network and Potentials of Sprinkler Case

The process of generating Junction tree for the sprinkler case is demonstrated in

Figure 2.7. Since the sprinkler node and rain node are parent nodes for wetgrass

node, a chord is added when building moralized graph as shown in Figure 2.7(a).

Then the maximal cliques are found as C, S,R and S,R,W with the intersection

S,R as a separator, where C for Cloudy, S for Sprinkler, R for rain, and W for

WetGrass.

Two types of evidences are investigated, the first one is a single observation that

wetgrass = T , the second one involves two evidences which are cloudy = T and

wetgrass = T . Figure 2.8(a) and Figure 2.8(b) illustrate the collecting evidence pro-

cess for evidence wetgrass = T . Due to the evidence, the probability of wetgrass = F

is removed. The dash node is the evidence node with wetgrass = T as evidence, and

the double-circled node is chosen as root node. The information flow is marked as
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Figure 2.7: Building Junction Tree of Sprinkler Case

red arrows. After the information reaches the root node, it is distributed backward

as shown in Figure 2.8(c) and Figure 2.8(d).

Then the updated probabilities of Cloudy, Sprinkler and Rain can be acquired

from the join probability P (C, S,R) as follows. From the updated marginal probabil-

ities, we can tell that if the grass is wet, the probability of being cloudy and having

rain increases while the probability of using sprinkler decreases, which demonstrates

the updating power of BN.

P (Cloudy = T ) =
0 + 0.324 + 0.009 + 0.0396

0 + 0.324 + 0.009 + 0.0396 + 0 + 0.045 + 0.18 + 0.0495
= 0.5758

P (Cloudy = F ) =
0 + 0.045 + 0.18 + 0.0495

0 + 0.324 + 0.009 + 0.0396 + 0 + 0.045 + 0.18 + 0.0495
= 0.4242

(2.8)

P (Sprinkler = T ) =
0.18 + 0.0495 + 0.009 + 0.0396

0 + 0.324 + 0.009 + 0.0396 + 0 + 0.045 + 0.18 + 0.0495
= 0.4298

P (Sprinkler = F ) =
0 + 0 + 0.045 + 0.324

0 + 0.324 + 0.009 + 0.0396 + 0 + 0.045 + 0.18 + 0.0495
= 0.5702

(2.9)
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Figure 2.8: Collecting and Distributing Evidence Process, case 2, evidence:
“wetgrass = T” (information flow pass: (a)− >(b)− >(c)− >(d))

P (Rain = T ) =
0.045 + 0.324 + 0.0495 + 0.0396

0 + 0.324 + 0.009 + 0.0396 + 0 + 0.045 + 0.18 + 0.0495
= 0.7079

P (Rain = F ) =
0 + 0 + 0.18 + 0.009

0 + 0.324 + 0.009 + 0.0396 + 0 + 0.045 + 0.18 + 0.0495
= 0.2921

(2.10)

For evidence cloudy = T and wetgrass = T , Figure 2.9 demonstrates the process

of collecting and distributing information which follows pass (a)− > (b)− > (c)− >

(d). Due to the observed evidence, the probabilities of wetgrass = T and cloudy = T

are removed from tables, which means the potential of the cliques C, S,R and S,R,W

is changed simultaneously according to evidence before updating. Then the collecting

and distributing process is the same with the single evidence case as shown in Figure

2.9.

Then the updated probabilities of Sprinkler and Rain are acquired from the

join probability P (C, S,R) as follows. Compared to the case with single evidence
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Figure 2.9: Collecting and Distributing Evidence Process, Case 2, Evidence:
“Cloudy = T”, “wetgrass = T” (information flow pass: (a)− >(b)− >(c)− >(d))

wetgrass = T , the probability of raining increases to 0.9758 while the probability of

using sprinkler decreases to 0.1304 which makes sense. The BN has more confidence

that it is raining with the two pieces of evidence than a single pieces of evidence.

P (Sprinkler = T ) =
0.009 + 0.0396

0 + 0.324 + 0.009 + 0.0396
= 0.1304

P (Sprinkler = F ) =
0 + 0.324

0 + 0.324 + 0.009 + 0.0396
= 0.8696

(2.11)

P (Rain = T ) =
0.324 + 0.0396

0 + 0.324 + 0.009 + 0.0396
= 0.9758

P (Rain = F ) =
0 + 0.009

0 + 0.324 + 0.009 + 0.0396
= 0.0242

(2.12)
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2.4 Dynamic Bayesian Network

Analyzing a dynamic system usually can be seen as working on time series data

with real-time observations. Modeling of such systems requires Dynamic Bayesian

network (DBN) developed from ordinary BNs by involving time. BNs can model

the relations among variables in a specific time slot but cannot easily capture the

evolvation of the system over time. DBN can model time series or dynamic process

by expanding the BNs with slices representing the state of system at different time

steps. In other words, a DBN can be constructed from a set of BNs that capture the

instantaneous relationships between domain variables, together with a set of temporal

dependencies that capture the dynamic behavior of the domain variables, Dagum et al.

(1992). Figure 2.10 shows a general structure of DBN with slices at time t− 1, t and

t + 1 referring to previous state, current state and future state respectively. In each

slice, the instantaneous relationships between random variables (Xt−1 → St−1) are

built similar to that in an ordinary BN. The edges between adjacent slices, known

as temporal links, represent the transitions between nodes over time including the

evolvation of the same node (Xt−1 → Xt) and different nodes (Xt−1 → St). For

example, the current state of node Xt is affected by its previous state Xt−1. The

current sate of node St is influenced by parents nodes Xt in current time slice and

Xt−1 in the previous time slice. Quantification of the DBN is similar to quantifying an

ordinary BN except defining the transition matrix between time slices, i.e. P (Xt|Xt−1)

is also required.

Since DBN contains discrete and static time slices representing the desired timesteps,

DBN can be seen as static given a specific interested time point.The observations in-

formation is integrated in the past slices while the future slices represent a prediction

based on observations in past. Due to the stactic property of DBN, the inference like

Junction Tree applied to ordinary BNs in Section 2.3.3 can also be employed for the

inference in DBN. The details of exact and approximate inference methods for DBN
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can be found in Murphy (1994).

Figure 2.10: Concept of Dynamic Bayesian Network

2.5 Conclusion

Based on Bayes’ rule, BNs introduced in this chapter offer evidence-based updating

providing valuable predictions. Feeding evidence into BNs, the marginal probabili-

ties of random variables are updated accordingly. This chapter describes the theory

behind BNs, construction, quantification, and inference of BNs. Based on BNs, DBN

are introduced which are suitable for modeling dynamic system such as the process

of structure degradation. By inputting real-time observations into a DBN modeling

crack growth, the structural characters can be updated and the predictions of future

crack length can be updated accordingly.
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CHAPTER III

Laboratory Level Experiment Mimicking Complex

Structural System: Design, Deployment, and

Analysis

3.1 Introduction

This PhD research focuses on two subject areas: experimental and numerical

model, which serves as two essential parts of a digital twin. A digital twin contains

models of real-world structures and fuses data from observations of the structures

and scale experiment to pull the models into better agreement with the real world.

Digital twin models have the promise of representing complex marine structures and

providing enhanced lifecycle performance and risk forecasts. Experimentally verifying

the updating approaches is necessary but rarely performed. Thus, the proposed

work is designing an experiment and developing a numerical model updated by the

experimental data. In this chapter, the design of experiment of a structural system

with time-evolving degradation as well as the associated data collecting methods are

presented. A fatigue crack growth mechanism is selected as a suitable degradation

mechanism of the structure. A model of system reliability is constructed based on

DBN in Chapter IV, which is evaluated by the data collected from the experiments

described in this chapter.
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In the following sections, a laboratory scale experiment of a four-crack hexagon-

shaped specimen is presented, designed to mimic many of the properties of complex

degrading marine structural systems, such as crack interaction, component inter-

dependence, redundant load path and non-binary failure. The design of specimen,

methods of measuring crack length, execution of the experiment and the collected

data are presented and discussed.

3.2 Design

3.2.1 Introduction

In this section, the literature review of structure experiment is conducted followed

by the design of specimen and grip. The fatigue testing system is introduced and the

execution steps of the experiment is summarized.

3.2.2 Literature Review

In the past decades, experimental tests of marine structures have been conducted

in several sub-areas. The most common tests focus on the components of marine

structures, determining the component strength and properties. Numerous compo-

nent experiments can be found in the literature, including compressive and collapse

tests on stiffened panels Gordo and Soares (2008) and Xu and Soares (2013), strength

analysis on deteriorated steels plates Saad-Eldeen et al. (2016a) and Saad-Eldeen et al.

(2016b), and fatigue evaluation on welded ship structural joints Garbatov and Soares

(2012). Experiments of single component do not consider critical properties of real-

world complex structural system such as the interdependence of components. Some

larger experiments are also conducted with less frequency, including the assessment

of corroded box-girders Saad-Eldeen et al. (2013) and Saad-Eldeen et al. (2012). Full

scale experiments of marine structure is very rare Pohler et al. (1979). However, the
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cost and time consumption make these testing expensive; especially at large scale.

Thus, a laboratory scale experiment reflecting many of the properties of large and

complex marine structures would be a major advantage in developing and testing

digital twin approaches. The designed experiment should not only mimic multiple

degradation processes to explore the interactions among components, but also retain

structural redundancy so that a single component failure will not remove all load

carrying capacity.

3.2.3 Design Concept

The motivation for the presented experiment is to conduct testing of a multiple-

crack fatigue specimens representing the degradation characteristics of a more com-

plex structural system. Such systems are currently the focus of digital twin ap-

proaches, where numerical models of real-world structures are fused data from ob-

servations of the structures and scale experiments to pull the models into better

agreement with the real world. In the present experiment, the fatigue crack growth

and maximum reaction force is recorded verses the applied cycles. The recorded

data can not only be used for validating and evaluating the performance of a DBN

but also as physical experiment results to support research into complex structural

degradation.

The experiment is designed to evaluate system-level response of a complex struc-

ture in a laboratory level test mimicking the properties of real-world structure in

degradation process. By keeping the experiment at lab scale, the cost and time as-

sociated with the test can be significantly reduced. Thus, while the specimen does

not physically match any marine structure of interest, as a load-carrying system, the

specimen reflects several system-level properties of more complex marine structures,

including:

• Multiple components with redundant load paths
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• Changing (degrading) properties over time

• Failure that are continuous, not binary intact/failed

• Allowing for periodic updating and inspections

• Contains a common system-level parameter to measure overall structural per-

formance

3.2.4 Initial Specimen Design

Based on the desired properties, the designed structure must possess both mul-

tiple degradation process and redundancy so that a single element failure will not

remove all load carrying capability to simulate the deterioration process of real-world

marine structural system. A simple diamond structure was designed first with four

pre-cracks on each arm as shown Figure 3.1. Four pre-cracks are designed based on

ASTM standard E1290 ASTM (2008) to boost the initiation of cracks and restrict the

crack propagation in desired areas. Due to the symmetric diamond shape, the four

pre-cracks are equivalent at the beginning of experiment but one or two cracks are ex-

pected to be dominant as the applied load cycles increase. The specimen is preloaded

to ensure the loaded cycles are in tensile. The experiment is conducted under dis-

placement control with the reaction force at the maximum displacement treated as a

stand-in for the capability of structure. The R ratio is decreasing with the reduction

of the reaction force due to the propagation of cracks. The data gathered from the

experiment are the number of applied cycles and corresponding maximum reaction

force and crack length. Figure 3.2 demonstrates an Abaqus model of the diamond

specimen built to calculate the Stress Intensity Factor (SIF) to ensure the initializa-

tion of cracks. The frame of diamond specimen without pre-cracks is machined by

waterjet from sheets of ASTM A36 steel whose properties are shown in Table 3.1.

The pre-cracks are machined by wired EDM with a 0.004 inches diameter wire for
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Material Young’s modulus Poisson’s ratio
ASTM A36 steel, plate 200 GPa 0.26

Table 3.1: Parameters for ASTM A36 Steel Plate

high-resolution crack tips.

Figure 3.1: Diamond Specimen Design Figure 3.2: ABAQUS Model for SIF

According to the design of specimen and the data recorded in the experiment,

several experiment requirements are summarized as follows,

1. The vertical test space should be larger than the diagonal of specimen

2. The number of cycles can be tracked

3. The displacement can be tracked to 0.01 mm accuracy applying displacement

control with less than a 1 mm maximum displacement

4. The reaction force can be measured to 0.1kN accuracy

Based on the listed requirements, an MTS 810 material testing system, a multipur-

pose servohydraulic testing systems with 250 kN capability and ±75 mm stroke, is
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selected for performing the test. The 810 Material Testing System provides high stiff-

ness, precision-aligned load frames with integral actuators delivering a broad array

of testing capabilities for both low and high force static and dynamic testing. By

selecting from a variety of force capacities, servovalve flow ratings, pump capacities,

software, and accessories, the floor-standing 810 system can easily be configured to

meet the fatigue test requirements. Figure 3.3 shows the MTS 810 material testing

system mounted with diamond specimen.

Figure 3.3: MTS 810 Material Testing System with Diamond Specimen

Unexpectedly, the cracks of diamond specimen didn’t propagate even the number

of cycles reached two million. The possible reason is that the SIF was designed to

be above the material minimums but the actual material apparently had a much

higher threshold SIF considering the variance of material quality. Thus, the design

was revised and a hexagon shape specimen is proposed in the following section.
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3.2.5 Revised Specimen Design

A modified design is proposed with a hexagon shape containing four pre-cracks at

each corner based on ASTM standard E1290 ASTM (2008). The pre-cracks serve the

same purposes as in the diamond shape specimen. Moreover, the pre-cracks have a 15

degree orientation which helps the propagated crack be straight as demonstrated in

the CAD plot, Figure 3.4. Except the four corners where pre-cracks locate, the other

corners are rounded to reduce stress concentration. The experiment is still conducted

under displacement control and the specimen is preloaded to ensure the applied cycles

are in tension. The test is conducted on MTS 810 material testing system with the

crack length and reaction force measured every 100000 cycles. The test is conducted

with frequency of 7 Hz.

An Abaqus model is built to find the required displacement and reaction force

with respect to the desired SIF. Quadratic element C3D20 is used for the frame while

C3D15 is employed for modeling the crack front. Under 0.65 mm displacement, the

maximum reaction force is 22.05 kN and the SIF is 31.8 Mpa
√
m, which is capable to

start crack propagation even if the material toughness is significantly above the grade

minimums. The frame of hexagon specimen without pre-cracks is cut by waterjet

from sheets of ASTM A36 steel. The pre-cracks are machined by wired EDM with a

0.004 inches diameter wire for high-resolution crack tips.

In order to mount specimen onto fatigue test machine, two grips were designed

and manufactured. The grips contain two parts: the head and the threaded stud.

The two parts are designed to connect together rather than a single machined part

to reduce stress concentration between stub and head. The threaded stud part and

the head part are mounted together and fastened by Loctite Threadlocker Red 271.

Figure 3.6 shows the 3D sketch of the grip. The threaded stud fastens the grip onto

test machine while a bolt going through the head part locks the specimen and grip

together. The head part is machined from 1215 carbon steel; the threaded stud is
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Figure 3.4: CAD Plot of Hexagon Specimen (unit: inch)
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Figure 3.5: ABAQUS Model for SIF, Hexagon Specimen

B7 alloy steel purchased from Grainger, and the hex bolt is a grade 8 bolt with zinc

plated surface. Two 1/16” thick PVC washers are placed between specimen and grip

to center the specimen and ensure the reaction force is in-plane.

Owing to the symmetric shape, the four pre-cracks are equivalent at the begin-

ning of the experiment but one or two cracks are expected to become dominant as

the applied cycles increase, which reflects the interactions among components. The

specimen is loaded in tensile cycles with a constant maximum displacement, and the

reaction force at the maximum displacement is treated as a stand-in for the overall

system capability of the structure. This force reduces over time as the cracks grow.

The data gathered from the experiment is the number of applied cycles verses corre-

sponding maximum reaction force and all four crack length. The methods developed

for measuring crack length are explained in the following sections.
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Figure 3.6: 3D Sketch of Grip

3.2.6 Testing Setup

The steps for setting up the testing is summarized as follows:

1. Mount grips onto MTS 810 testing machine

2. Launch MTS 810 software and open testing frame

3. Mount the hexagon specimen onto the top grip

4. Align the holes on bottom grip and hexagon specimen through MTS 810 soft-

ware, fix the specimen with bolts

5. Setup the testing parameters in MTS 810 software including frequency, dis-

placement, number of cycles, etc.

6. Preload the specimen and reset the reference point after preloading

7. Run the test for 100000 cycles, then stop the test for measurement and record

the data
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The test is conducted with frequency of 7 Hz. The designed hexagon specimen

fails around 1 million cycles resulting in roughly 40 hours for conducting one test,

which usually lasts for one week in practice.

3.3 Measuring Crack length - Computer Vision Method

3.3.1 Introduction

Three methods are employed to measure crack length during the experiment -

measuring with a machinist scale, Computer Vision (CV) based method and Digital

Image Correlation (DIC) method. Usually, it is not accurate enough to optically

measure crack length with machinist scale, especially for cracks with curvature. Thus,

the computer vision based methods is developed in this PhD research and applied

in the hexagon experiment, providing a simple, low-cost and accurate method for

measuring crack length on steel structures.

In the developed computer vision method, the crack is detected from images which

are converted into a matrix containing intensity and then the crack length is measured

on a pixel level. In order to have a accurate measurement, the noise haa to be filtered

out with different strategies. The flowchart in Figure 3.7 summarizes the procedure

of applying computer vision method onto an image. The first step is acquiring crack

images with digital cameras which stores RGB images with the amount of red, green

and blue colors on each pixel point. Since the colors are not helpful for detecting the

cracks, the RGB image is transferred to a grayscale image in the second step. The

pixel values of grayscale images indicates the amount of light at that pixel ranging

from 0 (black) to 255 (white). In the third step, two filters are applied for smoothing

the grayscale images and detecting cracks. Then noises are filtered out for a more

accurate calculation of crack length on a pixel level. The last step is transferring the

pixel-level crack length to real dimension. The following section presents the details

31



of computer vision method including the steps, methodology, results, and discussion.

Figure 3.7: Flow Chart of Crack Length Capturing Process based on Computer Vision

3.3.2 Literature Review

During the past decades, measuring crack size has been investigated with different

methods. The most conventional method is crack width gauge which basically is a

scale containing transparent upper plate marked with a red crosshair cursor and a

white bottom plate marked with measuring grid. The distance between cursor and

grid can indicate the width of crack. However, this method is designed commonly for

measuring crack width restricting its usage in measuring crack length; and error is

introduced by observing the crack optically. Extending from the idea of a crack width

gauge, a traveling microscope is developed for measuring crack length. Traveling mi-

croscopes contain a cast iron base holding a movable microscope. The microscope can
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eliminate the optical error in determining crack tip by using high magnification. It

successfully monitored the fatigue crack propagation in polymer foams, Saenz et al.

(2014). However, in our application, this device requires a removal of the specimen

from testing machine for measurement, increasing the test time. For in-situ mea-

surements on complex specimens, the microscope must be mounted on the specimen

itself, and then if the crack grows in an unexpected direction incompatible with the

initial mounting, the mounting must be changed during the experiment. Several

other techniques have been developed involving acoustic wave reflection. Acoustic

wave methods compose a transmitter and a receiver sending and receiving acoustic

wave with designed frequency, Resch et al. (1985), Kimoto et al. (2006), Longo et al.

(2010). The high-frequency component of the transmitted wave will be reflected from

the discontinuities of structure like cracks and flaws. However, the complexity of the

technology and specialized knowledge required to implement this technique limit the

application in experiments. Digital image correlation method has also been explored

to measure crack size which is reviewed in detail in Section 3.5. Thus, developing a

practical and flexible method for measuring crack size in large scale tests is necessary.

3.3.3 Capture Images

A GoPro HERO4 camera with 12.0 Mega Pixel (MP) resolution is used to take

PNG pictures at 4000× 3000 dimension. A NEEWER 12.5X macro lens is mounted

on GoPro camera to allow the GoPro image to focus on the small region around

a growing crack. The camera is mounted on a flexible tripod that can be easily

moved around the specimen to take images of all active cracks. In order to increase

the contrast between structure surface and crack, the crack area is painted by Fluid

Fluorescent Dye adapted from leak detection for traditional coolant systems. The

Fluid Fluorescent Dye shows bright maize color under Ultraviolet (UV) lights. The

UV dye is painted on the surface of structure when the crack is closed by removing the
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loading on the structure (e.g. pausing the fatigue test apparatus at zero or a low load

value). After the crack is re-opened by re-applying displacement to the specimen, the

crack is observable and recorded. The setup of capturing images is shown in Figure

3.8.

Figure 3.8: Setup of Capturing Images-Computer Vision Method

The detailed procedure for capturing crack images is summarized as follows:

1. Stop the test and remove the loading on structure

2. Clean the surface of crack growth regions

3. Mount the GoPro camera and UV light onto the crack location, adjust the

distance between camera lens and specimen surface to make sure the lens is

parallel to the specimen surface and the crack image is clear; turn on cameras

and UV light to stand by

4. Paint the crack area with Fluid Fluorescent Dye
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5. Apply the maximum displacement to the specimen and take pictures

3.3.4 Image Prepossessing

After capturing images, several preprocessing technologies of images are applied

to prepare the images for cracks detection. The first prepossessing of images is trans-

ferring the RGB image to Grayscale for the convenience of applying filters. In this

step, the information of colors stored in RGB image is substituted by the amount of

light or intensity. Then, a Gaussian filter is implemented as the second prepossessing

to smooth the image and reduce noises. Gaussian filter can enhance the image quality

captured under poor or uneven lighting. In image possessing, the Gaussian filter is

implemented as a window moving along the pixels, convolving the image with the

Gaussian function. The Gaussian function in two dimension is shown in Equation

3.1, where x is the coordinate in the horizontal axis, y is the coordinate in the vertical

axis and σ is the standard deviation of the Gaussian distribution, Nixon and Aguado

(2012), Shapiro and Stockman (2001). Values are sampled from Equation 3.1 to build

a convolution matrix applied on the Grayscale image. Figure 3.9 demonstrates a

sampled convolution matrix averaging the pixel values by the weights shown in the

matrix.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.1)

Figure 3.9: A 3× 3 Sampled Convolution Matrix
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3.3.5 Edge Detection

In order to detect cracks, a Sobel operator is applied to the processed image. The

Sobel operator is a gradient operator approximating the gradient of image density.

The Sobel operator composes two convolution matrices applied on the horizontal

and vertical directions as shown in Figure 3.10. The two matrices measure gradient

in each orientation of input image which can be combined following Equation 3.2 to

calculate the gradient magnitude at each pixel. In Equation 3.2, Gx is the gradient on

horizontal direction while Gy is the vertical gradient. The Sobel operator convolves

the image with a small, separable, and integer-valued filter in the horizontal and

vertical directions and is therefore relatively inexpensive in terms of computations

Sobel and Feldman (1968).

|G| =
√

(G2
x +G2

y) (3.2)

Figure 3.10: Convolution Matrices of Sobel Operator

3.3.6 Crack Simulation and Calculation

The image with detected cracks usually contains noise points biasing the cal-

culating of crack length on pixel level. Therefore, it is critical to filter out noise

points before calculating crack length. The gradient is first filtered by a threshold

determined by the gradient magnitude of the cracks, which is to eliminate points cor-

responding with relatively small gradient since the edge should be accompanied by

obvious intensity change and thus a relatively large gradient magnitude. Accordingly,

the threshold can be set higher for a high-quality image compared with poor quality
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images. Besides, the Sobel operator can also detect the boundary of image so the

gradients magnitude of image density near boundaries are set to 0. The detected

edge is stored as a series of gradient scalars, where the number indicates gradient

magnitude on the pixel point as shown in Figure 3.11. The series of number in a

specific column indicates the width of the crack at the specific location of image. The

numbers inside the crack width are usually not zero in practice since the intensity is

not homogeneous. In other words, the crack in the image is marked with high gradient

scalars for many consecutive rows. Some noise points have the similar format but less

width than the real continuous cracks which may come from the non-uniform light-

ing or uneven painting. These noise points are filtered out according to their short

width, and the corresponding lower number of rows. For the current experiment, it

is observed that noises points usually have less than three rows which is adopted as

the threshold for filtering out noise points with short width.

After filtering out noise points on pixel level, the next step is calculating the crack

length on pixel level. It is worth mentioning that the numerical values on pixel points

refer to the gradient magnitude and the length calculation requires the location of

pixel points whose gradient magnitude is significant. Since width is not considered for

length calculation, the column of sequential numerical values in Figure 3.11 indicating

crack width is compressed vertically by selecting the median for the whole column of

their coordinate location. The median is used instead of mean to avoid bias from any

possible outlier in the column. A series of coordinate of pixel points is acquired in

this step representing the location of the crack. Calculating the crack length based

on every filtered pixel point can introduce bias since the distance between two pixel

points is too small to be used for describing the entire crack length. Thus, ten pixel

points are compressed and grouped together horizontally by selecting the median of

the grouped pixel points for calculating crack length on pixel level. In summary,

the gradient magnitudes are compressed vertically first since width is not considered
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for calculating crack length, then the magnitudes are compressed horizontally for

representing the crack length accurately.

Figure 3.11: Detected Edge by Sobel Operator

The last step is transferring the pixel length to real world dimension in millimeter.

Here, a feature in the image of known size is needed to establish as relationship

between pixels and real-world distance. For this step, the quality of the initial image

is also critical, as image sensor must be parallel to the surface of the specimen, and

areas of high lens distortion must be avoided. In trials to date, a simple machinist

scale glued on the specimen bridges the dimension in millimeter and pixel length

finishing the calculation of crack length. The scale is marked at 0.5 mm resolution,

and is located immediately adjacent to the crack to establish this conversion.

3.3.7 Initial Result and Discussion

The developed method is coded in MATLAB and applied to the images captured

from the hexagon experiment to measure the crack length. Figure 3.12 illustrates

the application of developed method on a captured image. To increase the contrast

between crack and structure surface, the UV dye is painted after the testing machine

is temporarily stopped resulting in no applied displacement on the specimen. Then
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the specimen is applied with the maximum displacement to open the crack showing

in Figure 3.12a as the original image, which is transferred to grayscale in Figure

3.12b. The grayscale image is smoothed by Gaussian filter followed by Sobel operator

detecting the cracks as shown in Figure 3.12c. After filtering out the noise, the crack

length on pixel level is calculated from the Euclidean distance of grouped pixel points.

Figure 3.12d demonstrates the simulated crack length.

(a) Original Image (b) B/W Image

(c) Edge Detected (d) Crack Simulated

Figure 3.12: The Application of Computer Vision Method

The performance of the developed method is demonstrated and investigated in this

section on the acquired images from the fifth hexagon fatigue test. Since the cracks

are straight, the measurement from machinist scale is adopted here as a comparison
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with computer vision method. The percentage errors between the measurement from

computer vision method and machinist scale are calculated based on Equation 3.3,

where Lcv, Lscale is the crack length measured by the developed method and machinist

scale respectively. Table 3.2 compares the measurement of crack length from the fifth

hexagon experiment. Since the CV method requires cracks to be opened when taking

pictures so that the crack and the rest regions can have different intensity for edge

detection, the CV results of left top and right bottom at 800000 cycles are not available

due to the unopened crack. The percentage error is relatively large when the crack

is small. With the propagation of the crack, the percentage error decreases resulting

in a mean error around 4.23% with standard deviation around 3.98%, encouraging

for the proposed CV method. Given the relative easy application of the method,

and its ability to quickly record the length of several cracks on the same specimen,

it appears well suited for system fatigue tests where tracking multiple crack length

is the key experimental result. When investigating potential causes of the error, one

area is identified for improving the performance which is to improve the quality of

captured images. The quality of captured images can be enhanced by improving the

ambient light and revising the mounting system to ensuring that the lens is parallel

to structure surfaces.

Error = |Lcv − Lscale
Lscale

| × 100% (3.3)

3.4 Validation of Computer Vision Based Method

In order to have a more exact validation than just using the data from the fifth

hexagon experiment, the developed computer vision method in Section 3.3 is validated

by a standard fatigue test with a traverse microscope as conventional method for

measuring crack length. The design of standard fatigue test specimens, test setup,
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Cycles Left Top (MS;CV) Error% Left Bottom(MS;CV) Error% Right Top(MS;CV) Error% Right Bottom(MS;CV) Error%
100000 2.00; 2.27 13.50 2.30; 2.19 4.78 2.65; 2.42 8.68 2.40; 2.81 17.08
200000 5.50; 5.51 0.18 5.50; 5.22 5.09 5.65; 5.34 5.49 4.50; 4.43 1.55
300000 8.25; 8.38 1.57 8.00; 7.79 2.63 8.50; 8.38 1.41 7.50; 7.41 1.2
400000 11.40; 11.12 2.46 11.00; 11.89 8.09 11.75; 11.88 1.11 9.80; 9.81 0.10
500000 13.25; 12.8 3.40 14.10; 13.98 0.85 14.80; 14.5 2.03 11.80; 11.69 0.93
600000 14.70; 15.29 4.01 17.50; 18.97 8.4 19.00; 17.9 5.79 12.60; 12.53 0.55
700000 14.70; 16 8.84 23.50; 22.93 2.42 25.00; 26.14 4.56 12.60; 14.05 11.56
800000 14.70; N/A N/A 30.75; 31.92 3.80 31.50; 32.16 2.09 12.60; N/A N/A

Mean of Error% (CV) 4.23
Std of Error% (CV) 3.98

Table 3.2: Comparison of Crack Length of Machinist Scale and CV Method of the
Fifth Hexagon Experiment (unit: mm; MS = Machinist Scale; CV = Computer
Vision)

and validation results are included in the following section.

3.4.1 Experimental Design

The validation of the developed computer vision based method has been conducted

on two standard eccentrically-loaded single edge crack tension specimen, which is a

rectangular specimen with an edge pre-crack designed following the ASTM standard,

ASTM (2011). The detail dimension of the specimen is shown in the CAD plot,

Figure 3.13. The bolt hole has the same dimension with those on hexagon specimens

so that the grip can be employed for this validation test as well. The specimen

without pre-cracks is cut by waterjet from an A36 steel sheet with 9 mm thickness

and the pre-crack is machined by wired EDM with 0.004 inches diameter wire for

high-resolution crack tips. The experiment is tested under displacement control. An

Abaqus model is built to calculate the SIF given specific displacements. The detail

procedure is similar to the modeling of hexagon specimen in Section 3.2.3. The SIF

is calculated using contour integral method around crack front region. The quadratic

element C3D20 is used for the frame while C3D15 is employed for modeling the crack

front. For the specimen with pre-crack, the calculated SIF is 30 Mpa
√
m with 23.6

kN maximum reaction force under 0.3 mm displacement.

As the conventional measuring method, a traverse microscope is employed to
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Figure 3.13: CAD Plot of Standard Eccentrically-loaded Single Edge Crack Tension
Specimen (unit: inch)

measure the crack length at the back side of the specimen while the computer vision

method measures the crack at the front side. The traverse microscope has 20X mag-

nification capability which is equipped with a micrometer with a resolution of 1e−5

inches. To help the traverse microscope locates crack tip, UV dye is also painted on

the backside surface of structure when the crack is closed by pausing the fatigue test

apparatus at zero or a low load value. After the crack is re-opened by re-applying

load to the specimen, the crack length is measured under UV light. The measured

crack length is compared with the results from CV method. The setup of the valida-

tion test is shown in Figure 3.14. Since the crack is straight, a machinist scale with

marking of 0.5 mm was also used to measure the crack length on the front side to

ensure the crack propagate through the thickness identically,
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Figure 3.14: Test Setup of the Validation of Computer Vision Based Method

3.4.2 Test Setup

Two standard eccentrically-loaded single edge crack tension specimens have been

tested on MTS 810 testing system. The grip designed for hexagon specimen is used

to fix the standard crack specimen onto testing frame. Two PVC washers are inserted

between specimen and grips to ensure the reaction force is in-plane. The standard

specimens were preloaded at 8 kN to guarantee a slack-free connection between the

specimen and the fixture bolts. The test is under displacement control with a max-

imum displacement amplitude of 0.14 mm resulting to a maximum reaction force of

23.6 kN . The first test was recorded 6 times with respect to different crack length

while the second one was recorded 11 times to provide sufficient data points for val-

idation purpose. In each recording, three methods are applied to record the crack

length. The traverse microscope measured the crack length from the backside of the

specimen, and the CV method is applied on the front side for the convenience of

taking photos. In order to ensure the cracks on both sides are identical, a machinist

scale with marking of 0.5 mm was also used to measure the crack length on the front
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side.

The process of testing a standard eccentrically-loaded single edge crack tension

specimen is summarized as follows:

1. Mount grips onto MTS 810 testing machine

2. Launch MTS 810 software and open testing frame

3. Mount the standard eccentrically-loaded single edge crack tension specimen onto

the top grip with bolts and PVC washers

4. Align the holes on bottom grip and single edge crack tension specimen through

MTS 810 software, fix the specimen with bolts and PVC washers

5. Setup the testing parameters in MTS 810 software including frequency, dis-

placement, number of cycles, etc.

6. Preload the specimen and reset the reference point after preloading

7. Run the test for 75000 cycles and stop the test for the first measurement, then

decrease the increment of applied cycles from 40000 to 7000 in terms of gathering

more measurements

3.4.3 Validation Results

An example of applying developed CV method on captured image is demonstrated

in Figure 3.15 from original image to simulated crack. To increase the contrast be-

tween crack and structure surface, the UV dye is painted after the testing machine

is temporarily stopped resulting in no applied displacement on the specimen. Then

the specimen is applied with the maximum displacement to open the crack showing

in Figure 3.15a as the original image, which is transferred to grayscale as shown in

Figure 3.15b. The grayscale image is smoothed by the Gaussian filter and the cracks
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are detected by Sobel operator illustrated in Figure 3.15c. After filtering out the

noise, the pixel points are first grouped by finding the median points, then the crack

length on pixel level is calculated from the Euclidean distance of grouped pixel points.

The simulated crack length is demonstrated in Figure 3.15d. Table 3.3 and 3.4 shows

the recorded crack length as well as the crack length calculated by computer vision

method. Error 1 compares the crack lengths on the frontside and backside measured

by machinist scale and traverse microscope respectively. Error 2 indicates the differ-

ence between crack lengths measured by traverse microscope and CV method. Figure

3.16 and 3.17 plot the measured crack length by traverse microscope, machinist scale

and CV method. The crack length measured by traverse microscope and machinist

scale has a relatively large error at 115000 cycles in the second standard fatigue test,

which could come from the impurity of the material obstructing the growth of crack

temporarily. However, the rest measured crack lengths by traverse microscope and

machinist scale have acceptable error indicating the cracks on the back and front side

are identical. Since the conventional and CV methods are applied on the back and

front side respectively, the identical length on the two sides makes the comparison

of conventional and CV methods meaningful. Even the difference between results of

conventional and CV methods are relatively large at 200000 cycles in the first test

and 115000 cycles in the second test, the most measurements matches very well with

mean of error around 5.5 % and standard deviation around 7.2 %. The validation

results demonstrate the performance of the developed CV method. Given the relative

easy application and its ability to quickly record the length of several cracks on the

same specimen, the developed CV method is suitable for measuring total crack length

in system fatigue tests.
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(a) Original Image (b) B/W Image

(c) Edge Detected (d) Crack Simulated

Figure 3.15: The Validation of Computer Vision Method

Cycles Traverse Microscope (backside) Machinist Scale (frontside) CV method (frontside) Error1 (%) Error2 (%)
150000 6.70560 7.1 6.6790 5.882 0.397
200000 12.80160 12.5 10.2647 2.356 19.817
225000 16.56080 16.6 16.3971 0.237 0.988
240000 20.16760 19.8 19.3698 1.823 3.956
247500 21.84400 21.6 20.7989 1.117 4.784
255000 23.92680 24.3 22.9990 1.560 3.878

Mean of Error 2.162 5.637
Std of Error 1.957 7.166

Table 3.3: Validation Results of Computer Vision Based Method from The First
Standard Fatigue Test (unit: mm)
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Cycles Traverse Microscope (backside) Machinist Scale (frontside) CV method (frontside) Error1 (%) Error2 (%)
75000 2.28600 2.4 2.2449 4.987 1.798
115000 5.18160 4.0 4.1375 22.804 20.150
150000 7.70128 7.6 7.6082 1.315 1.209
165000 8.89000 9.5 9.2773 6.862 4.357
180000 11.50112 11.4 11.6840 0.879 1.590
195000 13.66520 13.6 15.0165 0.477 9.889
205000 15.91056 15.5 15.5417 2.580 2.318
215000 17.79016 17.5 20.9704 1.631 17.876
225000 20.16760 20.0 20.1087 0.831 0.292
232000 21.79320 21.0 22.0879 3.640 1.352
239000 23.89632 23.6 23.8591 1.240 0.156

Mean of Error 4.295 5.544
Std of Error 6.454 7.203

Table 3.4: Validation Results of Computer Vision Based Method from The Second
Standard Fatigue Test (unit: mm)

Figure 3.16: Measured Crack Lengths of The First Validation Test
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Figure 3.17: Measured Crack Lengths of The Second Validation Test

3.5 Measuring Crack length - Digital Image Correlation Method

3.5.1 Introduction

Due to the rapid development of computers and charge-coupled device (CCD)

cameras, the DIC technique is widely used as a full-field non-contact measuring

method. DIC is a post-possessing approach to acquire the field-strain and displace-

ment of structure under deformation, which can be performed for detecting the crack

tip and calculate the crack length. Figure 3.18 shows the procedure of applying DIC

method. The structure surface is prepared by painting with speckle patterning in

terms of matching the reference and deformed images. Then the first step is similar

to the computer vision method which captures images for analysis. The difference is

that in order to perform correlation of images successfully, the structure surface needs

to be painted with a refined pattern, i.e. the surface is paint with black background

color and some tiny white particles are made for tracking and correlating. Then a

region of interest (ROI) is drawn to indicate the area for analysis. The processing
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of image is performed by an open-source software named GOM Correlate, and the

crack length can be acquired by plotting the major strain verses distance which is

explained in detail in the following sections.

Figure 3.18: Flow Chart of DIC Method

3.5.2 Literature Review

DIC method was first proposed by Peters and Ranson (1982) utilizing digital

imaging techniques to correlate the deformed images and references in terms of mea-

suring surface displacements. During the past decades, the proposed method has

been applied to fields such as automotive, material science, aerospace, and civil.

Brauser et al. (2010) analyzed the deformation behaviour of spot-welded specimens

which is widely used in automotive structures by acquire the local strain distributions

through DIC method. Rossini et al. (2015) investigated dissimilar laser welding of

high strength steel sheets for automotive industry by monitoring the deformation field

on the surface of the specimen using DIC. In aerospace area, DIC is usually employed
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in experimental analysis of panels such as evaluating the fracture behavior of a large

aircraft panel with a propagated crack, Du et al. (2011). DIC has also been used in

material research related to fatigue. Sutton et al. (1992) conducted an experimental

study of the near tip deformation fields for a Single Edge-Cracked specimen and gen-

erated a parabolic fit to the acquired displacement data in terms of locating crack tip.

Sutton et al. (2007) used DIC to acquire full-field deformations during the loading

and stable tearing processes in terms of characterizing the stable crack extension be-

havior of an aluminum alloy. Lee et al. (2009) investigated fracture behavior such as

crack initiation and rapid growth of multilayered unidirectional graphite using DIC

and high-speed cameras. The broad application of DIC inspired modifying and using

it in this research for obtaining crack length.

3.5.3 Image Acquisition

The quality of captured figure is critical in a successful DIC application relying

on camera and lighting system. A Blackfly BFLY-PGE-31S4M GigE CCD camera

manufactured by FLIR is used in the experiment. The reason of choosing CCD

camera is that its sensors can create high-quality and low-noise images while CMOS

sensors are more susceptible to noise. A Sony IMX265 sensor is equipped in the

Blackfly CCD camera capturing monochrome figure at 35 Frame per Second (FPS)

with resolution 2048×1536. Tamron 23FM25SP lens is combined with the CCD

camera whose 25mm focal lens can capture detailed figure around 10cm×8cm area at

26cm objective distance. The camera is connected to a GigE host adapter with RJ45

connector and controlled by software named FlyCapture Software Development Kit

(SDK), which provides a common software interface to control and acquire images

for FLIR cameras under 32- or 64-bit Windows or Linux system. Besides the CCD

camera system, a LimoStudio 700W photography lighting system is chosen to provide

high-quality and uniform light on the specimen. A white back drop is hanging behind
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the specimen for a clean background in favor of following analysis. The setup of DIC

system of diamond specimen is shown in Figure 3.19, an standard setup also used for

hexagon specimen.

Figure 3.19: Setup of DIC Method

The detailed procedure of image acquisition for DIC approach is summarized as

follows:

1. Clean the surface of specimen and paint with black color as background, then

make tiny white particles with filters refining the particles. Leave the paint until

dry. It is recommended to use spray painting with flat finish to avoid reflection.

2. Stop the test and remove the applied displacement on specimen

3. Mount the CCD camera and lights in front of the crack location

4. connect CCD camera with PC by Ethernet cable and open FlyCapture Software
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5. Adjust the distance between camera and specimen to make sure the crack area

is clearly observed in FlyCapture Software

6. Take a picture before loading as the reference figure

7. Applied the maximum displacement to specimen and take a second picture as

the deformed figure

3.5.4 DIC Analysis and Crack Length Calculation

The DIC analysis is performed by an open source program named GOM Corre-

late. Images of the non-deformed specimen (reference image), the deformed specimen

(current image) are input into the software. Then the ROI is defined as the interested

area. The analysis is performed on the ROI of current and reference images to obtain

correspondence between material points by cutting the reference image into small

subsections and finding the corresponding locations in current image. After finishing

the calculation and defining the inspection sections along the crack, a plot of major

strain verses length is generated for the defined sections. The length is scaled to the

mm for determining crack length. The procedure is shown in Figure 3.20. The major

strain describes the strain from the tip of precracks to the crack tip where it tends

to have a turning point due to the plastic zone as illustrated in Figure 3.21, i.e. the

rate of decrease of the strain is slow after the turning point. It should be noted that

the plastic zone tends to extend the crack resulting to a longer crack length, thus the

crack length is corrected by subtracting the radius of plastic zone which is calculated

by Equation 3.4, where K is the SIF and σy is the yield strength of material. In order

to simplify the calculation of the size of plastic zone, two assumptions are made: (1)

since the size of plastic zone decreases slowly as the crack size increases, it is assumed

that the size of plastic zone decreases linearly with the increasing of cycles under

displacement control experiment; (2) the four cracks have the same size of plastic
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zone. The size of plastic zone before crack propagation is determined by calculating

the SIF by Abaqus, while the size of plastic zone after structure failure is assumed to

be 0. Then the linearity of the size of plastic zone verses cycles can be determined.

It should be noticed that the discussed DIC method is suitable for measuring the

length of a straight crack. If the crack has curvature, a series of section should be

drawn with the assumption that the crack in each section is straight, and the length

of curvature is simulated by adding up the length of each straight crack.

ry =
1

2π
(
K

σy
)2 (3.4)

(a) Original Image (b) Defined ROI

(c) Inspection Section (d) Strain v.s. Length

Figure 3.20: The Procedure of Applying DIC Method
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Figure 3.21: Illustration of the Change of Major Strain Verses Length

3.5.5 Result and Discussion

The following section demonstrates the DIC results of the fifth hexagon test.

Figure 3.22 shows the correction of radius of plastic zone. The SIF without crack

growth is simulated by Abaqus and the radius of 0 cycles is calculated which is 2.3

mm. The structure fails at 867111 cycles where the radius of plastic zone is assumed

to be 0. With the assumption that the radius of plastic zone has linear relation with

applied cycles, the correction is calculated and applied to correct the DIC results

shown in Table 3.5, where the crack length measured by machinist scale and DIC is

compared followed by the percentage error. The DIC method is implemented from

100000 cycles to 800000 cycles. It should be noted that the DIC results of left top and

right bottom at 800000 cycles are not available since the crack cannot be opened. As

shown in Table 3.5, the percentage error is relatively large when the crack is small.

With the propagation of crack, the percentage error decreases resulting in a mean

error around 9.71% with standard deviation around 7.36% for DIC method, which

meets our expectation and the trend of crack length from DIC follows the results from

machinist scale very well as shown in Figure 3.23. The DIC method is suitable for

fatigue test or monitoring of real world structure where crack length is the key factor.

54



The measurement from CV method is also included in Table 3.5 for comparison.

Overall, the CV method has a better performance regarding the mean of error and

std of error.

Table 3.6 shows the DIC results of the fifth hexagon test using an alternative

assumption, which assumes that the radius of plastic zone does not decrease with

crack propagates. In other words, the radius is a constant which equals to the radius

of plastic zone when four crack have no growth. The mean of error decreases to 5.24%

while the std of error decrease to 4.53%. The alternative assumption with a constant

radius increases the performance of DIC method, indicating that DIC method can be

enhanced in the future by refining its assumptions.

Figure 3.22: Correction of Radius of Plastic Zone

Cycles Left Top (MS;DIC;CV) Error% (DIC;CV) Left Bottom(MS;DIC;CV) Error% (DIC;CV) Right Top(MS;DIC;CV) Error% (DIC;CV) Right Bottom(MS;DIC;CV) Error% (DIC;CV)
100000 2.00; 2.56; 2.27 28.26; 13.50 2.30; 2.96; 2.19 28.92;4.78 2.65; 2.76; 2.42 4.34;8.68 2.40; 2.86; 2.81 19.38;17.08
200000 5.50; 5.93; 5.51 7.82; 0.18 5.50; 6.03; 5.22 9.64; 5.09 5.65; 5.73; 5.34 1.42; 5.49 4.50; 5.73; 4.43 27.34;1.55
300000 8.25; 8.80; 8.38 6.61; 1.57 8.00; 8.99; 7.79 12.44;2.63 8.50; 9.69; 8.38 14.06; 1.41 7.50; 8.89; 7.41 18.60; 1.20
400000 11.40; 11.16; 11.12 2.09; 2.46 11.00; 12.06; 11.89 9.64; 8.09 11.75; 12.56; 11.88 6.90; 1.11 9.80; 10.56; 9.81 7.76; 0.10
500000 13.25; 13.53; 12.80 2.08; 3.40 14.10; 15.03; 13.98 6.56;0.85 14.80; 16.02; 14.50 8.28; 2.03 11.80; 12.02; 11.69 1.91; 0.93
600000 14.70; 15.69; 15.29 6.74; 4.01 17.50; 18.49; 18.97 5.66; 8.40 19.00; 19.79; 17.90 4.16; 5.79 12.60; 13.79; 12.53 9.45; 0.55
700000 14.70; 16.06; 16.00 9.23; 8.84 23.50; 24.76; 22.93 5.34; 2.42 25.00; 26.06; 26.14 4.22; 4.56 12.60; 14.05; N/A 11.56; N/A
800000 14.70; N/A; N/A N/A; N/A 30.75; 32.32; 31.92 5.11; 3.80 31.50; 33.32; 32.16 5.78; 2.09 12.60; N/A; N/A N/A; N/A

Mean of Error% (DIC;CV) 9.71; 4.23
Std of Error% (DIC;CV) 7.36; 3.98

Table 3.5: Comparison of Crack Length of Machinist Scale, DIC Method with Varying
Radius of Plastic Zone, and CV Method of the Fifth Hexagon Experiment (unit: mm;
MS = Machinist Scale; DIC = Digital Image Correlation; CV = Computer Vision)
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(a) Crack Length by DIC (b) Crack Length by Machinist Scale

Figure 3.23: Comparison of Crack Length of the Fifth Hexagon Experiment (Left:
DIC, Right: Machinist Scale)

Cycles Left Top (MS;DIC;CV) Error% (DIC;CV) Left Bottom(MS;DIC;CV) Error% (DIC;CV) Right Top(MS;DIC;CV) Error% (DIC;CV) Right Bottom(MS;DIC;CV) Error% (DIC;CV)
100000 2.00; 2.30; 2.27 15.00; 13.50 2.30; 2.70; 2.19 17.39;4.78 2.65; 2.50; 2.42 5.66;8.68 2.40; 2.60; 2.81 8.33;17.08
200000 5.50; 5.40; 5.51 1.82; 0.18 5.50; 5.50; 5.22 0.00; 5.09 5.65; 5.20; 5.34 7.96; 5.49 4.50; 5.20; 4.43 15.56;1.55
300000 8.25; 8.00; 8.38 3.03; 1.57 8.00; 8.20; 7.79 2.50;2.63 8.50; 8.90; 8.38 4.71; 1.41 7.50; 8.10; 7.41 8.00; 1.20
400000 11.40; 10.10; 11.12 11.40; 2.46 11.00; 11.00; 11.89 0.00; 8.09 11.75; 11.50; 11.88 2.13; 1.11 9.80; 9.50; 9.81 3.06; 0.10
500000 13.25; 12.20; 12.80 7.92; 3.40 14.10; 13.70; 13.98 2.84;0.85 14.80; 14.70; 14.50 0.68; 2.03 11.80; 10.70; 11.69 9.32; 0.93
600000 14.70; 14.10; 15.29 4.08; 4.01 17.50; 16.90; 18.97 3.43; 8.40 19.00; 18.20; 17.90 4.21; 5.79 12.60; 12.20; 12.53 3.17; 0.55
700000 14.70; 14.20; 16.00 3.40; 8.84 23.50; 22.90; 22.93 2.55; 2.42 25.00; 24.20; 26.14 3.20; 4.56 12.60; 12.20; N/A 3.17; N/A
800000 14.70; N/A; N/A N/A; N/A 30.75; 30.20; 31.92 1.79; 3.80 31.50; 31.20; 32.16 0.95; 2.09 12.60; N/A; N/A N/A; N/A

Mean of Error% (DIC;CV) 5.24; 4.23
Std of Error% (DIC;CV) 4.53; 3.98

Table 3.6: Comparison of Crack Length of Machinist Scale, DIC Method with Con-
stant Radius of Plastic Zone, and CV Method of the Fifth Hexagon Experiment (unit:
mm; MS = Machinist Scale; DIC = Digital Image Correlation; CV = Computer Vi-
sion)
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3.6 Strain Monitoring

3.6.1 Introduction

In order to understand the change of rigidity during the hexagon experiment,

strain gauges are employed in the third, fourth and fifth hexagon fatigue test to

capture strain. A data acquisition system from National Instrument (NI) is used in

the test, which is able to track small resistance change in strain gauges and record

the streaming data from strain gauges. The data acquisition system is configured

through LabView software and validated in the third test of hexagon specimen and

then applied to the fourth and fifth hexagon specimen test. The collected data from

strain gauges provides another piece of evidence for the BNs. The configuration of

data acquisition system, setup of strain gauges as well as analysis results are explained

in the following sections.

3.6.2 Literature Review

Strain gauges have a long history of being widely used in testing and structure

health monitoring including aerospace, civil engineering, and marine engineering dis-

ciplines. In aerospace, strain gauges are usually attached to a load-bearing component

to measure stresses along the path of wing deflection. In the low-speed wind-tunnel

experiments on sharp-edged delta wings conducted by Earnshaw and Lawford (1966),

strain gauges were used to investigate the forces and moments, and normal-force fluc-

tuations. Strain gauge has also been used to monitor the structure health of bridges.

Wong (2004) introduced a wind and structural health monitoring system integrating

more than 350 measurement channels including strain gauge sensory system and data

acquisition system, which is applied to monitor the structure conditions of Tsing Ma

Bridge, Kap Shui Mun Bridge and Ting Kau Bridge in Hong Kong. Nakamura and

Suzumura (2012) employed strain gauges to analyze the stress concentration factor at
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the sharp edge of the pits of corroded bridge wires. In the field of naval architecture

and marine engineering, Lee (2018) applied strain gauge to evaluate the stability of

marine propulsion shafting system. Ritch et al. (2008) collected data from 120 strain

gauges on a ship panel to measure and evaluate local ice pressure. Strain gauge has

also been applied in passive structural health monitoring of a high-speed naval ship by

record the ambient vibrations with five strain gauges at a 100 Hz sampling frequency,

Sabra and Huston (2011). The wide application of strain gauges inspired using strain

gauge in the experiment of hexagon specimens to monitor the changes of strain field

during structure degradation.

3.6.3 Wheatstone Bridge

Strain gauges convert a mechanical strain into a small change of an electrical re-

sistance. Measuring such a small change in resistance is challenging considering the

low signal level and unknown noises. Fulfilling a strain measurement successfully re-

quires Wheatstone bridge since the resistance change is too small to be measured by

ohmmeter. The basic structure of Wheatstone bridge is shown in Fig 3.24 containing

four arms with one resistance on each arm, a excitation voltage, and a galvanome-

ter which measures current accurately. The Wheatstone bridge contains two parallel

voltage divider circuits, R1 R2 and R3 R4, forming a passive and balanced electrical

circuits. The balanced electrical circuit can be used to measure an unknown resis-

tance by replacing one of the four arms with the unknown resistance. The output of

Wheatstone bridge (V0) is measured by Equation 3.5. With a balanced resistance,

the output is zero while a nonzero output is generated by replacing any resistance in

the Wheatstone bridge with an active strain gauge. There are three types of strain

gauge configuration, quarter bridge, half bridge and full bridge, determined by the

number of active strain gauges in Wheatstone bridge. The configuration of strain

gauge applied in the experiment is a quarter-bridge strain gauge illustrated in Figure
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3.25. It can measure axial or bending strain by replacing R4 with a strain gauge

measuring the tensile strain. The compensating strain gauge for the effect of tem-

perature is not deployed in this application since the room temperature is stable and

the strain gauges used in this research are capable of compensating temperature on

steel structures.

V0 = [
R3

R3 +R4

− R2

R1 +R2

]Vex (3.5)

Figure 3.24: Diagram of Wheatstone
Bridge

Figure 3.25: Configuration of Strain
Gauge

3.6.4 Strain Gauges and Data Acquisition System

OMEGA uniaxial pre-wired strain gauges KFH-3-350-C1-11L3M3R with 350 Ω

resistance are employed in the fatigue test as shown in Figure 3.26. It has a grid with

3mm × 2mm measuring area carried by rugged polyimide with dimension 7.4mm ×

3.9mm The measuring grid is formed by etching constantan foil, which is then com-

pletely sealed in a carrier medium composed of polyimide film making them durable

in the experiment. Their rugged construction and flexibility make them suitable for

highly accurate static and dynamic measurement. The strain gauges are compensated

for steel and the pre-wire makes them easy to be installed.

A National Instrument measurement system containing of a NI 9236 and a cDAQ-

9181 are adopted for collecting data from strain gauges in this test as shown in

Figure 3.27. NI 9236 is a 350ohm, quarter bridge input module with 8 channels

which enables it to connect and measure eight strain gauges simultaneously at a
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high speed. It can read as much as 10 k samples per second on each channel. A

build-in voltage excitation is included in NI 9236 for quarter-bridge sensors. cDAQ-

9181 is a chassis designed for small and distributed sensor measurement with one

slot to connect one NI 9236 modules. The chassis controls the timing, data transfer

through communicating with computer by Ethernet. The system allows synchronized,

high-speed measuring for dynamic strain on all channels simultaneously. The data

recording system is driven by NI-DAQmx and controlled by a LabView algorithm as

demonstrated in Figure 3.28. The DAQ Assistant is an API from NI-DAQmx aiming

to help the users set up measurements, triggering and data logging straightforwardly.

It let user configure measurement tasks, channels, customized timing, triggering, and

scales without lengthy programming. DAQ Assistant outputs the measurement from

strain gauge as an input to Write To Measurement File, which documents the data

with desired format on hard drive. The Iterations Panel is included to demonstrate

the counting of iterations. Since the test is running on 7 Hz and the strains don’t

change in a short period, a lag is added and set as 20000 milliseconds to record the

strain once every 20 seconds. The 20 seconds delay can not only reduce recording

repeated data but also keep the data consistent meanwhile. In other words, the

system measures for 1 second with the sample rate of 1000 Hz every 20 seconds. The

entire function is enclosed in a while loop with the stop condition as N ≤ 750 which

is able to cover 100000 cycles in a hexagon experiment.

Figure 3.26: OMEGA Uniaxial Pre-wired Strain Gauges
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(a) NI 9236 (b) cDAQ-9181

Figure 3.27: Measurement System from National Instrument

Figure 3.28: LabView Program for Data Acquisition with Strain Gauges
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3.6.5 Test Setup

The strain gauge measuring system is validated in the third hexagon experiment

and deployed in the fourth and fifth hexagon tests. Four OMEGA uniaxial pre-wired

strain gauges KFH-3-350-C1-11L3M3R are glued on the center of each side of the

vertical beams as shown in Figure 3.29. The location is selected to be away from the

crack propagation area to reflect the structure status without influence from crack

propagation. In order to have a stable connection, the surface where strain gauges are

glued on is flattened by wired EDM resulting a smooth surface for deploying strain

gauges. The dimension of the flattened area is also included in Figure 3.29.

Figure 3.29: Strain Gauge Locations (unit: inch)

Surface cleanness is critical for measuring strains accurately. The fourth and fifth

hexagon experiment involve the DIC measurement. DIC requires painting patterns

on specimen surface. The flatted area is covered by tape during painting to avoid

any particles which may negatively affect the measurement of strain gauges. The

operation procedure contains surface preparation, mounting strain gauges, and setting
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up data acquisition system is summarized as follows.

1. Surface Preparation

(a) Remove any painting or coatings by sand paper with 400 grit or higher;

use 220 grit sand paper for any necessary coarse cleaning

(b) Clean the surface gently with a metal conditioner and wipe with a clean

tissue to make sure no dust particles are in the strain gauges area

2. Strain Gauges Mounting

(a) Mark on the specimens for strain gauge orientation and alignment

(b) Remove strain gauges from package and inspect for any defect by eyes

(c) Glue strain gauges to the surface; apply constant pressure until the contact

is strong

(d) Cover the strain gauges with plastic membrane to prevent dust

3. Data Acquisition System Setup

(a) Insert NI 9236 into chassis cDAQ-9181; Connect the chassis with computer

by Ethernet and power supply with power cord

(b) Connect the wires of strain gauges to NI 9236

(c) Open LabView program, configure the measurement in DAQ Assistant

(d) Start the data acquisition system by running LabView program; then start

fatigue test

3.6.6 Results of Strain Measurement

The strain gauge is deployed aiming to understand the status of hexagon specimen

during complex multi-degradation. Each of the four strain gauges is composed a

quarter-bridge and measure the strain every 20 seconds with 1000 Hz sample rate.
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The data is stored as text in a lvm file which is explored by Pandas Dataframe

supported by Python. Due to the cyclic loading, the maximum strain corresponding

to the maximum displacement is selected and extracted to monitor the status of

the structure. With the maximum and minimum strain, the maximum stresses θmax

and minimum stresses θmin are obtained and used to calculate the membrane and

bending stresses. The associated equations are shown in Equation 3.6, where θm

and θb represent membrane and bending stresses respectively. The reaction force

can be calculated by multiplying membrane stress with the area of cross section

where strain gauges are deployed. Figure 3.30a shows the strain of the fifth hexagon

experiment with respect to the applied cycles. From the left to the right, the strain

is numbered as 0, 1, 2, and 3 with respect to the location of strain gauges. Due to

the symmetric design, strain 0 and strain 3 are increasing while strain 1 and strain

2 are decreasing with applied cycles; the bending and membrane stresses of the two

beams are decreasing while bending stress has a larger slope compared to membrane

stress. It should be noticed that the bending stress decreases to 0 and starts to

grow again around 740000 cycles, which corresponds to the intersection of strain

0, 3 and strain 1, 2 in Figure 3.30a. The interesting phenomenon is illustrated in

Figure 3.31, where the arrow indicates the direction of the stress and the length of

arrow demonstrates the absolute value of the stress. Since the design is symmetric,

Figure 3.31 only shows the left beam of the hexagon specimen. From Figure 3.31a

to Figure 3.31e, with the growing of cracks, S1 is decreasing while S2 is increasing.

After S2 becomes positive and keeps increasing, S1 and S2 are identical at a specific

point resulting in pure membrane stress and the bending stress switches orientation in

Figure 3.30b. The reaction force is calculated as shown in Figure 3.30c and compared

to the maximum reaction force indicated by MTS testing system which have similar

trend and matches very well. The small difference could come from the fact that

the reaction force recorded by MTS testing system is static force, i.e. the test is
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stopped and the maximum displacement is applied to record the maximum reaction

force, while the strain gauges measurement indicates the dynamic force. The strain

gauges successfully monitor the complex change inside the hexagon specimen during

the experiment. The rest results of strain gauge measurement for the third and fourth

tests are included in the following section of experiment results.

θm =
1

2
(θmax + θmin),

θb =
1

2
(θmax − θmin).

(3.6)

(a) Measured Strain of The Fifth Hexagon Experiment

(b) Membrane and Bending Stress of The Fifth
Hexagon Experiment

(c) Comparison of Reaction Force

Figure 3.30: Results from Strain Gauge Measurement of the Fifth Hexagon Experi-
ment
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Figure 3.31: Analysis of Stress Change Over the Experiment

3.7 Experiment Results

In experiment exploration, two diamond specimens has been design and machined

first. Unfortunately, the cracks of diamond specimen didn’t propagate as expected

even using wired EDM to make the crack tip sharp and loading to two million cycles.

Then hexagon specimens have been designed as an upgraded version and machined by

waterjet as well as wired EDM. To measure crack length, two methods are developed

including computer vision method and DIC method. Strain gauge measurement is

applied to understand the complex strain status of specimen undergoing degradation.

The first hexagon specimen is tested mainly for validating the specimen design, so the

crack length is only measured by machinist scale rather than the developed methods;

The second hexagon specimen is for applying the computer vision and DIC method.

The third experiment hexagon specimen focuses on validating the system measuring

strain gauges. The fourth and fifth hexagon test employ all the developed methods

including computer vision and DIC methods for crack length and strain gauges for

structure status. The recorded data of the five hexagon experiments are listed in the

following sections.
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3.7.1 The First Hexagon

Note that the first hexagon specimen has four horizontal pre-cracks which is unable

to have the cracks growing straight out of the pre-crack on the specimen. Thus, the

design of following four hexagon specimens changes slightly by orienting the pre-crack

of 15◦ to ensure the grown crack straight out of the pre-crack. The first hexagon

experiment focuses on validating the design so the crack length is measured only by

machinist scale and the record is not refined, i.e. the cycles between records are not

uniform, as shown in Table 3.7. In the first hexagon test, the specimen is preloaded

with 8.6 kN to guarantee the bolt and hole have a tight contact and the specimen is

always under tension cycles. Then the amplitude is set as 0.25 mm resulting in 23.44

kN maximum reaction force initially. The maximum and minimum displacements in

a period of the first hexagon experiment are extracted and plotted in Figure 3.32,

which demonstrates the displacement in 190 minutes showing that the experiment

is under displacement control. The rest four experiments have the same test setup

leading to a fixed maximum and minimum displacement. The maximum reaction force

decrease smoothly with applying cycles onto specimen as shown in Figure 3.33b. The

crack length is measured by machinist scale with markings 0.5mm and plotted in

Figure 3.33a. From the beginning to around 670000 cycles, the crack lengths have

minor differences. With more cycles applied, the left top and right bottom cracks

become dominant and the growth of left bottom and right top cracks are shadowed

by the dominant cracks. The first experiment successfully verifies that the crack can

propagate with hexagon-shaped design and the cracks interact with each other during

deterioration process, which satisfies the goal of the experimental design.

3.7.2 The Second Hexagon

The second hexagon experiment employs the developed computer vision and DIC

method to measure crack length. The specimen is preloaded with 9.69 kN to guar-
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Cycles Left Top (MS) Left Bottom (MS) Right Top (MS) Right Bottom (MS) Maximum Reaction Force
369706 2.50 4.00 4.00 5.50 21.22
569706 10.80 11.80 9.50 11.80 19.14
669706 14.20 14.50 12.50 16.00 17.89
769706 17.00 16.80 13.60 19.40 17.01
869706 21.10 18.00 14.00 24.00 15.28

Table 3.7: Recorded Crack Length of the First Experiment of Hexagon Specimen
(unit: Length mm; Force kN ; MS = Machinist Scale)

Figure 3.32: Maximum and Minimum Displacement in A Period of the First Hexagon
Test

(a) Crack Length v.s. Cycles of The First
Hexagon Test

(b) Maximum Reaction Force v.s. Cycles of The
First Hexagon test

Figure 3.33: Plot of Crack Length and Maximum Reaction Force From The First
Experiment of Hexagon Specimen, measured by machinist scale
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antee the bolt and hole have a tight contact without slack. Then the amplitude is

set as 0.25 mm resulting in 22.16 kN maximum reaction force. The crack length and

maximum reaction force is recorded every 100000 cycles to have a detailed record of

crack propagation. The images for the computer vision analysis are taken by GoPro

while the images for DIC method are captured by a CCD camera. Since the crack is

straight, a machinist scale with markings 0.5 mm is also used for measuring the crack

length. Figure 3.35a plots the propagation of four crack length with respect to the ap-

plied cycles. From the beginning to 600000 cycles, the four crack length has negligible

differences since the symmetric design and identical starting length of the precracks.

However, with increasing cycles, the left bottom crack becomes dominant among the

four cracks. At 1147505 cycles, the left bottom crack has propagated through the

width of the bar as demonstrated in Figure 3.34. Interestingly, the bottom crack

on each side is dominant, which means the left bottom crack is dominant between

left bottom and top cracks; right bottom crack is dominant between right bottom

and top cracks. The maximum reaction force is recorded to reflect the rigidity and

indicate the threshold of structure failure for the future experiments. The maximum

reaction force decreases smoothly from the beginning to a million cycles while an

abrupt drop appears around 1.1 million cycles with a steeper slope. The left bottom

crack is broken at 1.2 million cycles resulting in a 1.9 kN maximum reaction force.

This means the specimen still has the capability to take loads even it is pretty small

compared to the capability at the beginning. The experiment successfully simulated

the dependence and interaction among component in deterioration with a structural

redundancy mimicking the properties of complex marine structures.

The crack lengths are also measured by computer vision and DIC method as

shown in Table 3.8. Since the cracks barely open when close to break, images cannot

be captured for further analysis resulting in several N/A in the table. The crack

length measurement from computer vision method and DIC method is plot in Figure
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Figure 3.34: Cracked Hexagon Specimen(backside)

Cycles Left Top (MS;DIC;CV) Error% Left Bottom(MS;DIC;CV) Error% Right Top(MS;DIC;CV) Error% Right Bottom(MS;DIC;CV) Error% MRF
100000 2.25;2.89;2.12 28.52;5.77 2.20; 3.09; 1.68 40.53;23.64 2.50; 2.19;N/A 12.33;N/A 2.25; 2.59; N/A 15.18;N/A 20.02
200000 5.40;5.58 ;4.77 3.40;11.67 5.40; 6.28; 4.60 16.36;14.81 5.40; 6.58;5.01 21.91;7.22 4.70; 5.58; 4.22 18.79;10.21 19.36
300000 8.00;8.27 ;7.38 3.44;7.75 8.30; 8.67; 7.25 10.20;12.65 8.70; 8.48;7.43 2.59;14.60 8.00; 8.87; 6.05 10.94;24.38 17.73
400000 10.90;10.97;10.16 0.61;6.79 11.50; 11.77; 10.01 2.32;12.96 11.30; 10.97;9.22 2.95;18.40 10.50; 11.07; 9.06 5.40;13.71 17.04
500000 13.60;13.26;12.65 2.51;6.99 14.00; 14.06; 12.49 0.42;10.79 12.50; 12.86;12.38 2.87;0.96 12.40; 12.96; 11.75 4.50;5.24 16.35
600000 15.30;14.05;14.42 8.17;5.75 15.70; 16.05; 15.20 2.23;3.18 14.20; 14.35;13.08 1.06;7.89 14.30; 15.85; 13.53 10.84;5.38 15.85
700000 16.40;16.54;17.86 0.86;8.90 18.20; 18.04; 18.52 0.87;1.76 14.90; 16.04;16.40 7.66;10.07 16.00; 17.24; 14.62 7.76;8.63 15.48
800000 17.20; 17.23;16.12 0.19;6.28 20.00; 20.83; 20.93 4.17;4.65 15.50; 16.63;15.19 7.31;2.00 17.10; 20.03; 16.60 17.15;2.92 15.06
900000 17.50; 18.42;19.06 5.29;8.91 23.40; 23.92; 22.06 2.24;5.73 15.50; 17.43;13.65 12.42;11.94 18.90; 20.63; 18.53 9.13;1.96 14.98
1000000 17.50; 18.62;N/A 6.38;N/A 27.30; 28.42; 27.84 4.09;1.98 15.50; 17.62;N/A 13.65;N/A 20.00; 20.92; N/A 4.58;N/A 14.13
1100000 17.70; N/A;N/A N/A;N/A 32.50; 33.31; 31.95 2.49;1.69 17.00; 18.81;N/A 10.64;N/A 21.20; 21.81;N/A 2.87;N/A 13.86
1147505 18.00; N/A;N/A N/A;N/A 36.00; N/A;N/A N/A;N/A 17.50; N/A;N/A N/A;N/A 21.50; N/A;N/A N/A;N/A 10.64
1200000 18.00; N/A;N/A N/A;N/A 37.50; N/A;N/A N/A;N/A 17.50; N/A;N/A N/A;N/A 21.50; N/A;N/A N/A;N/A 1.9

Mean of Error% (DIC;CV) 7.96; 8.56
Std of Error% (DIC;CV) 8.08; 5.67

Table 3.8: Recorded Crack Length of the Second Experiment of Hexagon Specimen
(unit: Length mm; Force kN ; MS = Machinist Scale; DIC = Digital Image Correla-
tion; CV = Computer Vision; MRF = Maximum Reaction Force)
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3.36. Even DIC results are more close to the measurement from machinist scale,

both computer vision and DIC follows the trend of crack growth very well, resulting

in 8.56% mean of error and 5.67% standard deviation of error for computer vision

method, 7.96% mean of error and 8.08% standard deviation of error for computer

vision method, which lays a solid foundation for applying there methods in the fourth

and fifth tests. It should be noted that the measurement from CV method for right

top drops from 700000 to 800000 cycles since the crack cannot open thoroughly due

to the shadowing effect from the dominant crack. The computer vision measurement

can be improved by increasing lighting and ensuring the camera lens is parallel with

structure surface.

(a) Crack Length v.s. Cycles of The Second
Hexagon Test

(b) Maximum Reaction Force v.s. Cycles of The
Second Hexagon test

Figure 3.35: Plot of Crack Length and Maximum Reaction Force From The Second
Experiment of Hexagon Specimen, measured by machinist scale

3.7.3 The Third Hexagon

The purpose of the third hexagon is verifying the application of strain gauges and

data acquisition system so the crack length is only measured by machinist scale as

shown in Table 3.9. Since the goal of the third test is validating the data acquisition

system rather than collecting abundant data, a relatively larger pre-load is applied

to shorten the test duration. The specimen is preloaded with 12 kN to guarantee a

tight contact and the specimen is applied with tension cycles. Then the amplitude
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(a) Crack Length v.s. Cycles of The Second
Hexagon Test by CV method

(b) Crack Length v.s. Cycles of The Second
Hexagon Test by DIC method

Figure 3.36: Plot of Crack Length From The Second Experiment of Hexagon Speci-
men, measured by CV and DIC methods

is set as 0.25 mm resulting in 24.07 kN maximum reaction force. The crack length

and maximum reaction force is recorded every 100000 cycles and the data from strain

gauges is recorded for 1 second every 20 seconds with 1000 Hz sample rate. The crack

lengths are similar from beginning to 200000 cycles and then the right top and left

bottom crack start to dominant. The record of crack length and maximum reaction

force stops at 700000 cycles since the gathered data is sufficient for validating strain

gauge measurement.The strain gauge data is analyzed by program written in Python

and plotted as shown in Figure 3.38. With respect to the location of strain gauges,

the strain is numbered as 0, 1, 2, and 3 from the left to the right. The measured strain

from strain gauge 0, 3 and strain gauge 1, 2 has similar trend due to the symmetric

design and their deployment locations. With applying more cycles, the strain of 0

and 3, i.e. the outer side of two beams increase while the strain of inner side of two

beams decrease due to crack propagation. As shown in Figure 3.38b, the membrane

stress of left and right beams are similar during the degradation process as well as

the bending stress of left and right beams. The membrane stress decrease slightly

compared to the bending stress. The bending stress decreases to 0 and starts to grow

again around 600000 cycles corresponding to the intersection of strain 0, 3 and strain
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1, 2 in Figure 3.38a. The reaction force is calculated as shown in Figure 3.38c and

compared to the maximum reaction force indicated by MTS testing system which

have similar trend and matches well. The difference could come from the fact that

the reaction force recorded by MTS testing system is static force, i.e. the test is

stopped and the maximum displacement is applied to record the maximum reaction

force, while the strain gauges measurement indicates the dynamic force. The strain

gauges successfully monitor the complex change inside the hexagon specimen during

the experiment and are applied in the fourth and fifth hexagon experiments.

Cycles Left Top (MS) Left Bottom (MS) Right Top (MS) Right Bottom (MS) Maximum Reaction Force
100000 2.50 2.50 2.50 2.50 21.91
200000 4.50 5.00 5.00 4.50 21.34
300000 7.00 9.00 9.00 6.60 20.03
400000 9.20 12.30 13.20 8.30 18.36
500000 9.20 17.50 18.30 8.90 17.32
600000 9.20 24.40 25.70 9.20 14.72
700000 9.20 31.80 31.80 9.50 12.04

Table 3.9: Recorded Crack Length of the Third Experiment of Hexagon Specimen
(unit: Length mm; Force kN ; MS = Machinist Scale)

(a) Crack Length v.s. Cycles of The Third
Hexagon Test

(b) Maximum Reaction Force v.s. Cycles of The
Third Hexagon test

Figure 3.37: Plot of Crack Length and Maximum Reaction Force From The Third
Experiment of Hexagon Specimen, measured by machinist scale
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(a) Measured Strain of The Third Hexagon Experiment

(b) Membrane and Bending Stress of The Third
Hexagon Experiment

(c) Comparison of Reaction Force of The Third
Hexagon Experiment (Strain Gauges verses MTS)

Figure 3.38: Results from Strain Gauge Measurement of the Third Hexagon Experi-
ment
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3.7.4 The Fourth Hexagon

The fourth hexagon experiment employs machinist scale, computer vision method,

and DIC method for measuring crack length, as well as strain gauges for monitoring

structural status during degradation. The specimen is preloaded with 9.1 kN so it is

under tension cycles during deterioration process. 0.25 mm displacement amplitude

is applied after preloading the specimen. The crack length and maximum reaction

force is recorded every 100000 cycles and the data from strain gauges is recorded for

1 second every 20 seconds with 1000 hZ sample rate. As shown in Figure 3.39a, the

crack length barely differ until 300000 cycles. Then, with applying more cycles, the

left bottom and right top crack start to be dominant shadowing the growth of the

left top and the right bottom crack. The maximum reaction force decreases smoothly

along with increasing crack propagation. The left bottom crack breaks at 813097

cycles resulting in a 1.31 kN maximum reaction force as demonstrated in Figure

3.39b. The comparison of three measurement methods are displayed in Table 3.10

with 9.88% mean of error and 10.19% std of error for DIC method and 5.52% mean

of error and 5.39% std of error for computer vision method. As shown in Figure

3.40, both measurement from computer vision and DIC follows the crack growth

measured by machinist scale very well. The measured data of strain gauges labeled

as 0 to 3 from left beam to right beam of hexagon specimen is plotted in 3.41a. The

measured strain from strain gauge 0, 3 and strain gauge 1, 2 has similar trend due

to the symmetric design and their deployment locations. Similar to the result in the

third hexagon experiment, the bending stress approaches to 0 and starts to growing

positively with respect to the moment that the strain on left and right side of each

beam are identical. The reaction force is calculated as shown in Figure 3.41c having

similar trend as the maximum reaction force indicated by MTS testing system. The

difference in strain measurement could due to the relative small measurement area of

strain gauge which is easily affected by unexpected particles which could come from
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the process of painting pattern for DIC method.

Cycles Left Top (MS;DIC;CV) Error% Left Bottom(MS;DIC;CV) Error% Right Top(MS;DIC;CV) Error% Right Bottom(MS;DIC;CV) Error% MRF
100000 2.00; 2.48; 1.48 24.14; 26 2.00; 2.78; 1.91 39.14; 4.26 2.00; 2.68; 1.69 34.14; 15.5 1.90; 2.58; 1.83 35.94;3.68 20.81
200000 4.50; 4.46; 4.68 0.76; 4 4.70; 4.86; 4.72 3.52;0.42 5.20; 4.76; 4.88 8.35;6.15 4.50; 4.96; 4.19 10.35; 6.88 19.57
300000 7.60; 7.17; 7.56 5.94; 0.52 8.50; 7.95; 7.8 6.48; 8.23 8.10; 6.85; 7.57 15.45;6.54 7.10; 6.54; 7.03 7.76; 0.98 18.87
400000 9.80; 9.83; 9.89 0.32; 0.92 11.40; 11.03; 10.73 3.23; 5.88 11.40; 10.83; 11.37 4.98;0.26 9.50; 9.83; 9.55 3.49;0.53 17.61
500000 11.60;12.61; 10.96 8.74;5.52 15.40; 14.71; 14.81 4.45; 3.83 14.30; 14.61; 14.63 2.19; 2.31 11.50; 12.11; 10.13 5.34; 11.91 16.74
600000 12.20; 13.69; 12.12 12.27; 0.65 18.50; 17.70; 19.04 4.34; 2.92 18.60; 17.90; 19.30 3.77; 3.76 12.60; 13.89; 11.73 10.29; 11.91 15.33
700000 12.20; 13.98;N/A 14.59; N/A 26.80; 24.88; 24.29 7.16; 9.36 26.30; 25.28; 25.95 3.87; 1.33 12.60; 14.18; N/A 12.54; N/A 13.24
800000 12.20; N/A; N/A N/A; N/A 33.50; 33.96; 35.8 1.38; 6.86 33.00; 33.46; 30.2 1.40;8.48 12.60; N/A; N/A N/A; N/A 10.37
813097 12.20; N/A; N/A N/A; N/A 37.50; N/A; N/A N/A; N/A 33.00; N/A; N/A N/A; N/A 12.60; N/A; N/A N/A; N/A 1.31

Mean of Error% (DIC;CV) 9.88; 5.52
Std of Error% (DIC;CV) 10.19; 5.39

Table 3.10: Comparison of Crack Length of Machinist Scale and DIC method of
the Fourth Hexagon Experiment (unit: Length mm; Force kN ; MS = Machinist
Scale; DIC = Digital Image Correlation; CV = Computer Vision; MRF = Maximum
Reaction Force)

(a) Crack Length v.s. Cycles of The Fourth
Hexagon Test

(b) Maximum Reaction Force v.s. Cycles of The
Fourth Hexagon test

Figure 3.39: Plot of Crack Length and Maximum Reaction Force From The Fourth
Experiment of Hexagon Specimen, Measured by Machinist Scale

3.7.5 The Fifth Hexagon

Similar to the fourth hexagon specimen, the crack length in the fifth test is also

measured by machinist scale, computer vision method, and DIC method. Four strain

gauges are bonded to the two sides of the specimen for recording the strain state dur-

ing degradation. The results of computer vision method, DIC method, strain gauge

measurement for the fifth hexagon specimen are discussed in Section 3.3, Section 3.5,

and Section 3.6 respectively. The following tables and figures serve as complementary
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(a) Crack Length v.s. Cycles of The Fourth
Hexagon Test by CV method

(b) Crack Length v.s. Cycles of The Fourth
Hexagon Test by DIC method

Figure 3.40: Plot of Crack Length From The Fourth Experiment of Hexagon Speci-
men, Measured by CV and DIC Methods

(a) Measured Strain of The Fourth Hexagon Experi-
ment

(b) Membrane and Bending Stress of The Fourth
Hexagon Experiment

(c) Comparison of Reaction Force of The Fourth
Hexagon Experiment

Figure 3.41: Results from Strain Gauge Measurement of the Fourth Hexagon Exper-
iment
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results for the fifth hexagon experiment. The fifth hexagon specimen is preloaded at

9.3 kN to connect the specimen and the fixture bolt without slack and ensure the

specimen is applied with tension cycles. Then a maximum displacement amplitude

of 0.25 mm is set through MTS software resulting a maximum reaction force of 21.77

kN . Figure 3.43a plots the propagation of the four cracks with respect to the number

of applied cycles measured by a machinist scale with markings of 0.5 mm. From the

start of the test to 500000 cycles, the four crack lengths have only minor differences

owing to the symmetric design and identical starting length of the precracks. How-

ever, with increasing cycles, the left bottom and right top cracks become dominant

among the four cracks. At 867111 cycles, the right top crack has propagated through

the width of the bar as demonstrated in Figure 3.42. It can be observed from Figure

3.42 that the left bottom crack is dominant on the left side while the right top crack

is dominant on the right side. The maximum reaction force is recorded as shown in

3.43b to reflect the rigidity which decreases smoothly from the beginning to a 800000

cycles, followed by an abrupt drop with a steeper slope. The right top crack is bro-

ken at 867111 million cycles resulting in a 1.33 kN maximum reaction force. Even

if the maximum reaction force at the end of the test is small compared to that at

the beginning, the specimen still has the capability to take loads. The experiment

successfully simulated the dependence and interaction among components in deteri-

oration with a structural redundancy mimicking the properties of complex marine

structures. Notably, the emergence of a large crack in the left bottom and right top

appears to shield the other crack on the corresponding sides, slowing their growth.

The recorded crack length and corresponding maximum reaction force are shown in

table 3.11.

78



Figure 3.42: Cracked Fifth Hexagon Specimen (backside)

(a) Crack Length v.s. Cycles of The Fifth
Hexagon Test

(b) Maximum Reaction Force v.s. Cycles of The
Fifth Hexagon test

Figure 3.43: Plot of Crack Length and Maximum Reaction Force From The Fifth
Experiment of Hexagon Specimen, Measured by Machinist Scale

Cycles Left Top (MS;DIC;CV) Error% (DIC;CV) Left Bottom(MS;DIC;CV) Error% (DIC;CV) Right Top(MS;DIC;CV) Error% (DIC;CV) Right Bottom(MS;DIC;CV) Error% (DIC;CV) MRF
100000 2.00; 2.56; 2.27 28.26; 13.50 2.30; 2.96; 2.19 28.92;4.78 2.65; 2.76; 2.42 4.34;8.68 2.40; 2.86; 2.81 19.38;17.08 20.51
200000 5.50; 5.93; 5.51 7.82; 0.18 5.50; 6.03; 5.22 9.64; 5.09 5.65; 5.73; 5.34 1.42; 5.49 4.50; 5.73; 4.43 27.34;1.55 19.48
300000 8.25; 8.80; 8.38 6.61; 1.57 8.00; 8.99; 7.79 12.44;2.63 8.50; 9.69; 8.38 14.06; 1.41 7.50; 8.89; 7.41 18.60; 1.2 18.20
400000 11.40; 11.16; 11.12 2.09; 2.46 11.00; 12.06; 11.89 9.64; 8.09 11.75; 12.56; 11.88 6.90; 1.11 9.80; 10.56; 9.81 7.76; 0.10 17.13
500000 13.25; 13.53; 12.8 2.08; 3.40 14.10; 15.03; 13.98 6.56;0.85 14.80; 16.02; 14.5 8.28; 2.03 11.80; 12.02; 11.69 1.91; 0.93 15.99
600000 14.70; 15.69; 15.29 6.74; 4.01 17.50; 18.49; 18.97 5.66; 8.4 19.00; 19.79; 17.9 4.16; 5.79 12.60; 13.79; 12.53 9.45; 0.55 15.11
700000 14.70; 16.06; 16 9.23; 8.84 23.50; 24.76; 22.93 5.34; 2.42 25.00; 26.06; 26.14 4.22; 4.56 12.60; N/A; 14.05 N/A; 11.56 13.27
800000 14.70; N/A; N/A N/A; N/A 30.75; 32.32; 31.92 5.11; 3.80 31.50; 33.32; 32.16 5.78; 2.09 12.60; N/A; N/A N/A; N/A 11.38
867111 14.70; N/A; N/A N/A; N/A 34.20; N/A; N/A N/A; N/A 37.50; N/A; N/A N/A; N/A 12.60; N/A; N/A N/A; N/A 1.33

Mean of Error% (DIC;CV) 9.71; 4.23
Std of Error% (DIC;CV) 7.36; 3.98

Table 3.11: Comparison of Crack Length of Machinist Scale, DIC method and CV
method of the Fifth Hexagon Experiment (unit: mm; MS = Machinist Scale; DIC
= Digital Image Correlation; CV = Computer Vision; MRF = Maximum Reaction
Force)
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3.8 Conclusions

By combining numerical model and observations from marine structures or labo-

ratory experiment, digital twin approaches are promising in predicting crack length

and enhancing lifecycle performance of complex marine structures. Experimental

data is important to verify and support such models. In this research, in terms of

reducing time consumption and test cost of large scale experiments, a laboratory scale

experiment is designed and conducted reflecting many of the properties of a complex

marine structure undergoing degradation. The design of specimen and the logic of

the experiment is presented. Three methods are used to measure the crack length

including machinist scale, CV method and DIC method. As part of this work the

new CV method was followed by the validation using standard eccentrically-loaded

single edge crack tension specimen. Strain gauges are applied to monitor the struc-

ture helping understand the structural status better. Five sets of hexagon specimen

have been tested and the test results are presented and documented in this chapter.

The results indicate that the cracks interact with each other undergoing degradation

resulting in the interesting shadowing effect. The maximum reaction force decreases

smoothly as applied cycles increase and drops to a small maximum reaction force

when one crack breaks indicating the specimen still has the capability to take loads.

The result demonstrates that the designed specimen successfully mimics the prop-

erties of complex structures including crack interaction and structural redundancy.

The results can not only be used to evaluate the performance of the numerical model

developed in the following chapter but also support the exploration of digital twin

models.
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CHAPTER IV

A Numerical Model Predicting the Crack Growth

of Complex Structural System: Development,

Tuning and Evaluation

4.1 Introduction

Suffering from fluctuating load cycles, the structural safety and reliability of ma-

rine structures are jeopardized by fatigue damage. If the crack length can be predicted

and the inspection or maintenance strategies are optimized accordingly, the safety and

reliability of marine structures can be increased. Digital twin models have been pro-

posed for such purposes. Digital twin contains a numerical model describing the

real-world structural system. With the data fusion process combining observations

from the structural system into the numerical model, the numerical model will have

enhanced prediction performance. Such digital twin methods can improve lifecycle

performance and forecast risks, and importantly many digital twins now attempt to

model structural system rather than individual failures, such as fatigue cracks. In the

following section, a DBN is explored to model the crack propagation from a single

crack to multi-crack with interactions. The task is divided into several steps: first, a

DBN is constructed to model one crack propagation with simulated input in Section

4.3. Based on Section 4.3, Section 4.4 introduces hyperparameters for modeling the
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interactions between two cracks with simulated input. Then, a DBN with hyperpa-

rameters describing the interaction among four cracks is developed for the hexagon

specimen in Section 4.5. Finally, Section 4.6 introduced the connections between

crack lengths and SIF to model the interactions among cracks better. In summary,

Section 4.3 and Section 4.4 explored DBN from one crack to two cracks with simulated

evidence. Section 4.5 and Section 4.6 expand the DBN to four cracks with experiment

data as evidence and focus on how to improve the modeling of crack interactions in

terms of increasing prediction accuracy. The performance of the developed numerical

model is evaluated by the independent data of hexagon experiment and the result is

concluded in Section 4.7.

4.2 Literature Review

Due to the uncertainties in the as-built condition of marine structures from sources

such as shipyard-to-shipyard differences, material qualities discrepancy, and manufac-

ture inconsistency, it is challenging to build numerical models for the fatigue damage

in complex structural system. Owing to the stochastic nature of fatigue damage, prob-

abilistic approaches have been widely proposed for modeling fatigue damage. Souza

and Ayyub (2000) developed a methodology to analyze ship structure fatigue based

on probabilistic linear elastic fracture mechanics considering the effects of the residual

stresses introduced in the fabrication process. Doshi and Vhanmane (2013) proposed

a method to assess the fatigue life of the connection of a longitudinal stiffener to a

transverse web frame with fracture mechanics. In this work, the crack growth law pa-

rameters and the applied loads were treated as random variables. Probabilistic fatigue

analysis usually requires simulate numerous cases. Monsalve-Giraldo et al. (2016) ap-

plied univariate dimension-reduction method to increase the simulation efficiency in

terms of making the method more applicable. Khan and Ahmad (2010) applied the

uncertainty modeling to evaluate the fatigue safety of oil and gas risers under ran-
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dom loads. Finite element model built in ABAQUS/Aqua was used to acquire the

dynamic behavior of riser. Moreover, probabilistic modeling has also been explored

for steel structures in civil engineering area. Kwon et al. (2011) integrated a bilin-

ear S-N approach into a probabilistic model to describe the uncertainties associated

with the fatigue deterioration process, which is applied to critical details of bridges

for case study. Lu et al. (2016) presented a probabilistic modeling approach with

deterministic finite-element-based hot-spot analysis. In order to reduce the compu-

tational complexity in finite element model, machine learning technologies including

uniform design and support vector regression is introduced. Extended efforts have

been conducted on this area, however, these studies mainly focused on analyzing the

fatigue performance on individual components. The interactions among components

are also an important factor for modeling fatigue damage more accurately. These

system studies are currently lacking in the literature.

To overcome the difficulties in probabilistic method and work with uncertainties,

BN have been explored to model the degradation process of complex structural sys-

tem considering interactions among components. BN are suitable for system-level

modeling giving their ability to model complex conditional dependence and propa-

gate evidence throughout the entire network. Bhandari et al. (2017) models pitting

degradation of ocean structures with a BN predicting the long-term pitting corrosion

depth of steel structures in marine environment. Abaei et al. (2018) applied a BN on

assessing reliability of marine floating structures and predicting an optimum design

point of the mooring system. DBN have been developed to extend the BN to problems

involving time sequences. DBN are efficient and robust in updating and predicting,

making it suitable for the crack length prediction of deterioration processes. Straub

(2009) proposed a framework for modeling deterioration processes using DBN. The

study indicated that the DBNs is ideally suitable for near-real time application in

deterioration process due to its efficiency, robustness and updating capability. Rabiei
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et al. (2016) applied DBN on estimating damage and predicting crack initiation in

a metallic alloy under fatigue. In this study, DBN is employed to model all ran-

dom variables along with their dependence. Zhu et al. (2019) assessed the fatigue

damage of orthotropic steel deck based DBN. The framework was able to perform

diagnosis and prognosis through integrating the model with inspections. In order to

handle the dependence at different system components during deterioration, Luque

and Straub (2016) introduced the hierarchical structure to DBN for system-level anal-

ysis. Numerous approaches have been developed based on BN, however, the majority

of them have not been evaluated by independent experiment data. In this work, a

new hierarchical network is built based on DBN and evaluated by independent data

from real-world experiments. The following sections explore the construction of the

developed network in several steps from modeling a single crack to modeling a multi-

crack structure including component dependence whose performance is evaluated by

independent experiment data.

4.3 Dynamic Bayesian Network for Single Crack with Simu-

lated Input

In this section, the growth of a single crack is modeled by DBN based on Paris’ law.

The DBN model is constructed by the commercial software - HUGIN Andersen et al.

(1989) and Jensen et al. (2005). The simulated evidence is input at each timestep to

predict the crack growth.

4.3.1 Fatigue Crack Growth Model

The deterministic core of the fatigue model used here is the Paris’ law describing

crack growth as follows,

da

dn
= C[∆SF

√
πa]m (4.1)
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where a is crack length; n is number of applied cycles; da
dn

describes the crack growth

rate; ∆S is the stress range with constant amplitude which is assumed to be homo-

geneous and uniaxial; C and m are experimentally determined material constants; F

is a dimensionless parameter depends on the geometry which is set as 1 in this case

for convenience with the assumption that the crack is located on a plate with infinite

size. All the proceeding variables can be modeled scholastically to give a stochastic

crack growth prediction. ∆SF
√
πa(n) is defined as the stress intensity factor (SIF)

in linear elastic theory interpreting the stress intensity near the tip of a crack or notch

caused by a remote load or residual stresses, Anderson (2005).

Equation 4.1 is a differential equation where crack length a and number of cycles

n can be separated given F is equal to 1. Solving the Equation 4.1 for crack length a

with respect to the number of cycle n, results in Equation 4.2, Ditlevsen and Madsen

(1996)

a = [(1− m

2
)C∆Smπm/2n+ a

(1−m/2)
0 ]1/(1−m/2) (4.2)

If the model is built based on Equation 4.2 directly, the states of modeling

(1 − m
2

)C∆Smπm/2n is the multiplication of the states of C, m and ∆S, which is

computationally expensive and could lead to an explosion of the associated state

space. In order to avoid state space explosion and reduce computation cost, q =

(1 − m
2

)C∆Smπm/2n is introduced to reduce the dimension of the problem Straub

(2009). The corresponding equation 4.2 is shown as follows,

a = [q + a
(1−m/2)
0 ]1/(1−m/2) (4.3)

By replacing the number of cycles as the cycles between time step t and t − 1,

equation 4.2 can be rewritten in the following format, equation 4.4,

at = [q + a
(1−m/2)
t−1 ]1/(1−m/2) (4.4)
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where at and at−1 represent the crack length of current and previous time step

respectively; q and m are the parameter for the current time step. Note that the

equation is valid when m 6= 2, which otherwise may lead to extreme values of at.

4.3.2 Network Construction

Based on equation 4.4, the network is constructed as illustrated in Figure 4.1,

following the example of Straub (2009). The time steps are shown as subscripts of

the nodes from 0 to T . In the first time step, q is constructed as a child of parent

nodes C, m and ∆S. In each time step, the dependencies between nodes are modeled

by arrows, e.g. a1 depends on a0, q1 and m1. The nodes without parents are described

by prior probability such as nodes C, ∆S and a0 while the nodes with parents have

conditional probability tables such as q and a1. The progression of crack is described

by the arrows between two time steps, e.g. q1 to q2, m1 to m2 and a1 to a2. The

progression is quantified by transition matrices. The evidence can be input from the

node of crack length (ai, i = 0, 1, ...T ) of each time step.

Figure 4.1: Diagram of DBN for the Growth of a Single Crack (adapted from Straub
(2009))

The software, Hugin, is used to build the DBN model and perform inference with

evidence. The Hugin software is a system contains tools for construction, mainte-

nance, and deployment of BN, which is designed to be used easily for anyone wishing

86



to construct an expert system based on BN, Madsen et al. (2005) and Jensen et al.

(2005). It provides a GUI for users to construct a network, input evidence, and

perform inference. The model shown in Figure 4.1 is constructed in Hugin with the

concept of OON. The OON contain instance nodes representing subnets. It is suitable

for building a DBN which usually has repetitive patterns. An instance connects to

other nodes through interface nodes including input nodes and output nodes. The

input nodes are placeholders rather than real nodes that pass the info from previous

instance to the current instance. The output nodes are real nodes of an instance

which can be bounded to an input node of another instance. For example, in Figure

4.2 the “first slice” and “other slices” are two subnets of the entire network where

the “first slice” is unique and the “other slices” is a repetitive pattern. Thus, the

instances are built separately in Hugin software and connected together to represent

the entire DBN model. Instances connect with each other by interface nodes respon-

sible for transferring information, i.e. the input and output nodes. In Figure 4.2,

the dashed gray nodes of “other slice” are input node and the gray nodes are output

nodes. The first slice contains input and output nodes as well but the input nodes are

not connected with previous output nodes. The model contains four slices and since

the first slices have two nodes for inputting observations, five nodes are available for

inputting five evidence in total.

4.3.3 Variable Discretization and Network Quantification

After constructing the structure of model, the next step is quantifying the network.

The first step is determining the range of variables. The range is defined in the way

that the probability of this variable being outside the range is smaller than a specific

threshold, which is usually set as 10−6 in practical. Note that in Chapter II the in-

ference method focuses on discrete variables while this chapter deals with continuous

variable, hence the variables are discretized. Inference of continuous variables exists
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Figure 4.2: Implement DBN of Crack Growth in Hugin

but is usually inferenced by sampling-based methods where the cost of calculation

increases dramatically with increasing the number of nodes and the convergence is

usually hard to achieve, Li and Mahadevan (2018). Thus, the next step is discretizing

the range in terms of using exact inference more efficiently, Luque and Straub (2016)

and Schneider et al. (2017). The most straightforward discretization is dividing the

range into equal-length intervals. However, this approach may not describe the vari-

ables suitably. Thus, the variable x is usually projected onto a higher space T (x) and

the equal-length discretization is applied on the higher space. The discretized contin-

uous variables will have a series of consecutive and mutually exclusive states. Table

4.1 shows the range and discretization of variables for the model in Figure 4.2. The

final quantifying step is determining the probability tables including prior probability

tables and conditional probability tables, with respect to the state of a variable. The

prior probabilities tables quantify the prior probabilities of nodes without parents like

node C while the conditional probability tables describe the conditional probabilities

conditioned on the states of parent nodes for child nodes like q. Table 4.2 shows

the distribution and parameters of nodes having prior probabilities. The conditional
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Variable Range Number of States Intervals
at(mm) 0.01-50 80 0, exp{ln(0.01):[ln(50)-ln(0.01)]/78:ln(50)},∞

m 2-5 30 0, ln{exp(2):[exp(5)-exp(2)]/28:exp(5)},∞
q -1-−10−3 35 −∞, -exp[0:ln(10−3/33:ln(10−3)], ∞

∆S 10-110 52 0, 10:2:110:, ∞
ln(C) (-35.3)-(-30.7) 48 −∞, -35.3:0.1:-30.7, ∞

Table 4.1: Range and Discretization of Variables

Variable Distribution Mean Standard deviation Correlation
a0(mm) Exponential 1 1 -

∆S Normal 60 10 -
ln(C), m Bi-Normal (-33; 3.5) (0.47;0.3) ρln(C),m = −0.9

Table 4.2: Distribution and Parameters of Variables

probabilities is acquired through Monte Carlo simulation combining the states of the

parents nodes. Take q(C,∆S,m) for an example, for each combination of the states

of C, ∆S and m, 1000 sample is generated according to q = (1 − m
2

)C∆Smπm/2n,

where n is 106 cycles. Then the simulated q is distributed into the state of q to form

the conditional probability table.

4.3.4 Single Crack Results and Conclusions

To test the updating ability of the proposed DBN model, five crack lengths are

generated as simulated observations from sampling Equation 4.3. The parameters

used for generating observation are summarized in Table 4.3. The generated five

crack lengths are input into the aprev and a nodes of the first slice and a nodes of

the rest three slices as evidence to update the marginal probability of nodes C, S

and m. The updated C, S and m are described by the expectation calculated by

multiplying the marginal probability with the states of the variable. Figure 4.3 shows

the expectations of C, S and m with two and five pieces of evidence used for update.

The red dash line indicates the parameters adopted for data generation which is

the true value that the predictions are supposed to approach. In other words, with

more evidence input into the model, the expectations or predictions of parameters
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a0(mm) S(MPa) C m n
1.1 75 exp(−33) 3.3 106

Table 4.3: Parameters for Generating Simulated Crack Growth

are expected to move towards the red dash line. Figure 4.3a-4.3c demonstrate the

predicted parameters with three and five evidence input. The results indicate that

the prediction of parameters moves towards the red dash line, i.e. the true value, with

more evidence input. The predicted S with five pieces of evidence is slightly higher

than the parameter used in data generation which indicates the DBN model believes

the observed crack length should correspond to a higher stress. The prediction of m is

changing slightly compared with C and S but it should be noted that the predicted m

is already very close to the number used in data generation. The results demonstrate

the power of updating and predicting of DBN and lay the foundation for modeling

multi-crack deterioration in Section 4.4.

4.4 Dynamic Bayesian Network for Multi-crack with Simu-

lated Input

4.4.1 Introduction

Section 4.3 demonstrated the capability of DBN in modeling the deterioration

process of a single crack. However, marine structures usually suffer from multi-cracks

in critical location and the cracks in complex structural system are typically cor-

related. Thus, considering the structure at the system level instead of the level of

individual components is critical. In the following section, the dependence between

cracks is modeled and the deterioration of a single crack is integrated into a system

level prediction.
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(a) Updating of Log(C) (b) Updating of S

(c) Updating of M

Figure 4.3: Parameter Updating with Evidence Input
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4.4.2 Dependency and Hierarchy Model

Modeling dependence for components at the system level is difficult in terms of

representing the correlation mathematically. Several previous studies can be found

which investigated the component dependence. These studies commonly used two

typical models - random field models and hierarchical models - two common methods

for modeling dependence, Maes et al. (2008) and Vrouwenvelder (2004). Random

field models focus on modeling the dependence among different geometric locations

Maes (2003) and Stewart and Mullard (2007), while hierarchical model uses common

influencing factors describing the components dependence Maes et al. (2008) and

Maes and Dann (2007), which is suitable for this case since cracks are correlated with

common features instead of geometric properties. Figure 4.4 shows a hierarchical BN

with a common influencing factor α at the highest level of the hierarchy, which is

usually referred to as the hyperparameters level. The hyperparameter has several

children nodes (V1, V2, ..., Vn) which are correlated through the hyperparameter. As

long as the hyperparameter is uncertain, the children variables are dependent on each

other.

In order to calculate the CPT of variables Vi, Nataf transformation Liu and

Der Kiureghian (1986) is applied making the assumption that the children nodes of

the hyperparameter node are jointly normal. Nataf transformation projects the ran-

dom variable Vi onto the space of standard normal distribution shown as Y1, Y2, ..., Yn

in Figure 4.4 circled by the dash box. Yi are standard normal variables connecting

random variables Vi and the hyperparameter α by Equation 4.5, where FVi is the CDF

of Vi and φ is the inverse of standard normal CDF. The correlation ρV between Vi can

be reflected by the correlation ρY between Yi. In other words, after performing the

transformation described in Equation 4.5, the resulting random variables Y1, Y2, ..., Yn

have correlation ρY . ρY is a function of ρV and FV which can be approximated ac-

cording to Liu and Der Kiureghian (1986). The dependence of Yi is modeled by the
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standard normal hyperparameter α as shown in Figure 4.4. Then Yi are normal ran-

dom variable conditional on α with mean
√
ρY α and standard deviation

√
1− ρY .

The unconditional Yi are standard normal random variables with mutual correlation

ρY . The nodes Yi working as transformation nodes can be eliminated and the result-

ing BN with direct connection from α to Vi is shown in the right plot of Figure 4.4.

The CPT of Vi can be acquired by Equation 4.6.

Yi = φ−1[FVi(Vi)], i = 1, 2...n (4.5)

Figure 4.4: Hierarchy Model of Bayesian Network, Luque and Straub (2016)

FV |α(v) = φ[
φ−1(FV (v))−√ρY α√

1− ρY
] (4.6)

4.4.3 Network Construction, Variable Discretization, and Network Quan-

tification

The DBN network is built in Hugin based on the single-crack model described in

Section 4.3.2, combined with the hyperparameter concept. Figure 4.5 demonstrated

the DBN model for two interactive cracks constructed in Hugin. Similar to the single-

crack model, the first slice is unique while the other slices have a repetitive pattern.

In the model, the stress of two single-crack model are connected by a hyperparameter

in the first slice representing the interactions of the cracks in the degradation process.
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The first slice is connected to its successors by connecting the output nodes, shown

as gray nodes, with the input nodes of the other slices, shown as dashed gray nodes.

The entire model has five slices modeling the deterioration process.

(a) First Slice

(b) Other Slices (c) Entire Network

Figure 4.5: Modeling Two Cracks in Hugin

The random variables used this model have the same range, discretization, and

distribution with those in Section 4.3, as shown in Table 4.4 and Table 4.5. The

distribution and parameters for hyperparameter of stress are summarized in Table

4.9. The correlation of components stress is ρS = 0.5. The prior probabilities tables

are quantified according to the specified distributions like node C and node hyperpa-
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Variable Range Number of States Intervals
at(mm) 0.01-50 80 0, exp{ln(0.01):[ln(50)-ln(0.01)]/78:ln(50)},∞

m 2-5 30 0, ln{exp(2):[exp(5)-exp(2)]/28:exp(5)},∞
q -1-−10−3 35 −∞, -exp[0:ln(10−3/33:ln(10−3)], ∞

∆S 10-110 52 0, 10:2:110:, ∞
ln(C) (-35.3)-(-30.7) 48 −∞, -35.3:0.1:-30.7, ∞

Table 4.4: Range and Discretization of Variables

Variable Distribution Mean Standard deviation Correlation
a0(mm) Exponential 1 1 -
ln(C), m Bi-Normal (-33; 3.5) (0.47;0.3) ρln(C),m = −0.9

Table 4.5: Distribution and Parameters of Variables

rameter node HP , which is node α in Figure 4.4. The conditional probability tables

for node S1 and S are acquired by Equation 4.6. The rest conditional probability

tables are simulated through Monte Carlo method combining the states of parents

nodes. For each combination of the parents states, 1000 samples are generated and

distributed into the states to form the conditional probability table.

4.4.4 Results and Conclusions

The performance of the network with hyperparameter is evaluated by the crack

length generated in Section 4.3. The simulated crack length is the observation of one

crack while another crack is assumed to have no growth in the deterioration process.

Five observations are input into the growing and non-growing crack. Since the hy-

perparameter models the interaction of the stresses of two cracks, the expectation of

the two stresses S and S1 are calculated and compared by multiplying the marginal

probability with the states of the variable. The expectations are calculated after

inputting the third and fifth evidence respectively in terms of investigating the up-

dating power. The result is plotted in Figure 4.6 with the red dash line indicating the

Variable Distribution Mean Std Number of States Intervals
αs Normal 0 1 5 φ−1(0 : 0.2 : 1)

Table 4.6: Distribution and Parameters for Hyperparameter of Stress
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parameters used for data generation which the predictions are supposed to approach.

It should be noted that in the data generation process, the crack interaction is not

considered. The expectation after three observations are annotated with red color

while the expectations after five observations are marked with blue color. Comparing

the expectations with real number used in observation generation, the expectation of

stress moves towards the true value with more evidence observed. The stress differ-

ence between two cracks increases with the observation from three to five indicating

the model can distinguish the different propagation of the two cracks. The predicted

stress S for crack 1 with five observations of crack growing is slightly higher than the

parameter used in data generation, while the predication for crack 2 without crack

propagation is lower than the real number, which indicates the interaction between

two cracks. That is to say, due to the interaction of cracks, the DBN model believes

the growing crack should correspond to a higher stress while the stress of another

crack is shadowed by the growing crack. The result successfully demonstrates that

DBN combined with hyperparameter can distinguish and react to the interactions

among components.

4.5 Dynamic Bayesian Network for Hexagon Specimen

4.5.1 Introduction

With the exploration of DBN and hyperparameters in Section 4.3 and Section 4.4,

the DBN is proved to be capable of modeling the deterioration of structural system

over time and make predictions about future structural capacity. Additionally, the

DBN modeling single crack growth in component level was expanded to address the

propagation of two cracks in a common system, which lays a solid foundation for

modeling the hexagon specimen with interaction between four cracks in this section.

Expanding the interactions from two cracks to four cracks is not only about increasing
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Figure 4.6: Stress Updating of Two Dependent Cracks

computational cost, the crack model as well as the quantification are also modified

for this case. The goal of modeling hexagon specimen is to predict the crack length

in system level considering the dependence among cracks. Section 4.5.2 describes the

crack growth model used in this model. The construction and quantification of model

are detailed in Section 4.5.3. The updating power and performance of the developed

model are discussed in Section 4.5.4.

4.5.2 Fatigue Crack Growth Model

The deterministic fatigue model used here is the Paris law, Equation 4.7, the same

as modeling the single crack propagation with simulated input in Section 4.3. The

equation describes the crack growth rate as a function of SIF - ∆SF
√
πa(n) - with

power m and coefficient C, where SIF is a function of stress ∆S, crack length a and

geometry parameter F . In Section 4.3, the geometry parameter F is set as 1 by

assuming the crack is on a plate with infinite size. The assumption makes Equation
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4.7 integratable to a explicit solution of crack length. However, in modeling the crack

growth of hexagon specimen, the crack cannot be assumed to propagate on an infinite

plate. The geometry restriction has to be considered for modeling accurately. Thus,

each crack on the hexagon specimen is viewed as an edge crack on a bar with finite

width. The geometry factor F is estimated by a fourth order polynomial shown in

Equation 4.8, where a is the crack length, b is the width of bar, Liu et al. (2015).

Since the geometry factor is a function of crack length a, integrating the Paris’ law

equation explicitly is not possible. Thus, the crack growth is simulated numerically

by the fourth order Runge Kutta method which estimates the integration with four

approximations to the slope.

da

dn
= C[∆SF

√
πa]m (4.7)

F = 1.122− 0.231
a

b
+ 10.55(

a

b
)2 − 21.71(

a

b
)3 + 30.382(

a

b
)4 (4.8)

The concept behind the fourth order Runge Kutta method is shown in Equation

4.9 and 4.10. Equation 4.9 describes the initial value problem where y is an unknown

function of t and y itself. The initial y0 is known at t0. With the defined step size h,

which is the applied cycles between two observations, the fourth order Runge Kutta

estimated the increment from yn to yn+1 with a weight average of increment k1, k2, k3

and k4, described in Equation 4.10, where n = 0, 1, 2... represents the steps, Süli and

Mayers (2003). k1 and k4 are acquired from the slope at the beginning and ending

of the interval; k2 and k3 are calculated using the slope at the midpoint with yn and

k1, yn and k2 respectively, shown in Equation 4.11.
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ẏ = f(t, y),

y(t0) = y0.

(4.9)

yn+1 = yn +
1

6
(k1 + k2 + k3 + k4) (4.10)

k1 = hf(tn, yn),

k2 = hf(tn +
h

2
, yn +

k1
2

),

k3 = hf(tn +
h

2
, yn +

k2
2

),

k4 = hf(tn + h, yn + k3).

(4.11)

4.5.3 Network Construction, Variable Discretization, and Network Quan-

tification

In Section 4.4, the system-level deterioration process is explored by modeling the

interactions of two cracks with hyperparameters, which supports the modeling of

hexagon specimen is this section. The DBN network is built in Hugin with a similar

structure as the case with two cracks. The major difference is that the first slice

is expanded to four cracks with two hyperparamters HPs and HPm describing the

interactions of stress and material property among four cracks, as shown in Figure

4.7a. The initial crack length a0 does not appear in the model since it is involved in

the calculation of CPT implicitly. With the concept OON in Hugin, the first slices

and other slices are built as two instances with input and output nodes shown as

gray nodes and dashed gray nodes respectively. By connecting the first slice to its

successors through the output nodes and the input nodes, the entire model is built

with nine slices modeling the nine observations in the deterioration process of the fifth
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hexagon specimen, Figure 4.7c. In this application, the approach is justified owing to

the precision in the initial crack size via the EDM fabrication approach. The model

is a rough approximation of the crack growth process, as full dependence between the

cracks is not included, nor is the impact of crack size on resulting stress.

To model the hexagon specimen, the random variables should be adjusted with

respect to the hexagon application in terms of range, discretization, and distribution,

as shown in Table 4.4 and Table 4.5. The range is defined so that the probability of a

variable being outside the range is smaller than a specific threshold. In this work, the

threshold is set as 10−6. The discretization is applied on each continuous variables over

its range in favor of performing exact inference method. The discretized continuous

variables have a series consecutive and mutually exclusive states. Since the crack

propagation is slow initially and increases dramatically with continuing application

of loading cycles, the discretization of crack length at is refined for crack length less

than 3 mm and increased from 4 mm to 100 mm to capture crack growth. Material

parameter m is uniformly discretized in exponential space and then transferred back

to its original space. Similarly, material parameter C is uniformly discretized in

log space. Stress ∆S is discretized evenly in its original stress space. Compared

to the random variables in Section 4.4, the range of random variables for hexagon

specimen is adjusted according to this specific case. The discretization strategy of

variables m, ∆S, and ln(C) are the same except the number of states is reduced to

avoid state explosion and lower the computation cost. The discretization of crack

length at is refined for small crack length since the rate of crack growth increases

as crack propagates. In this way, the discretization is able to capture the crack

propagation well with a manageable size of CPT. The distribution and parameters

for hyperparameter of stress ∆S and material property m are the same to the model

in Section 4.4, summarized in Table 4.9.

After defining the range, discretization, and distribution of random variables, the
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(a) First Slice

(b) Other Slices (c) Entire Network

Figure 4.7: Modeling Hexagon Specimen in Hugin
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Variable Range Number of States Intervals
at(mm) 0.0001-100 31 0, exp(log(0.0001):(log(3)-log(0.0001))/5:log(3)), 4:1:18, 21:3:36, 39:30:100, ∞

m 2.4-3.6 20 0, ln{exp(2.4):[exp(3.6)-exp(2.4)]/18:exp(3.6)}, ∞
∆S 5-84 21 0, 5:4:84, ∞

ln(C) (-21.3)-(-19.5) 22 −∞, -21.3:(21.3-19.5)/20:-19.5, ∞

Table 4.7: Range and Discretization of Variables

Variable Distribution Mean Standard Deviation Correlation
ln(C), m Bi-Normal (-20.4; 3) (0.3;0.2) ρln(C),m = −0.9

Table 4.8: Distribution and Parameters of Variables

next step is calculating the probability table. The prior probability table is calculated

by assessing the probability in the defined intervals. The conditional probability ta-

ble of crack length an given an−1, ∆s, c and m is simulated by Monte Carlo method

combining the states of parents nodes. In each combination, 1000 sample is generated

and the crack growth is numerically simulated through the fourth order Runge Kutta.

The crack size is then scattered into the node’s states to construct the conditional

probability table. Since the combination of states of an−1, ∆s, c and m increase dra-

matically with increased number of discretizations, the number of states is decreased

to avoid potential state explosion problem.

4.5.4 Results and Conclusions

For evaluation purpose, the crack length from the fifth hexagon experiment mea-

sured by machinist scale are input into the DBN model as observations, Table 4.10.

The distribution of random variables is updated after inputting an observation of

crack length which is extracted from Hugin as CSV files for further analysis. Since

the prediction is available after inputting the first observation and the prediction af-

Variable Distribution Mean Std Number of States Intervals

HP s Normal 0 1 5 φ−1(0 : 0.2 : 1)
HP m Normal 0 1 5 φ−1(0 : 0.2 : 1)

Table 4.9: Distribution and Parameters of Hyperparameters

102



ter last observation has no comparison, 8 data points are available for comparing the

prediction with recorded experimental results.

Each probability from Hugin describes the chance falling into a specific state

of crack length, thus, the predicted crack length is the expectation calculated by

multiplying the center of each state with the corresponding probability. Note that

the the crack length at has states beyond 39 mm for refining the CPT, i.e. [39,

69], [69, 99], which is treated as 39 mm in calculating expectation since the crack is

broken after 39 mm and the center points of those states has no physical meaning in

this case. The comparison between predicted and recorded crack length is plotted in

Figure 4.8. The pink diamond represents the predicted crack length from the network

while the blue square shows the recorded data from experiment. The 50% range is

plotted indicating the variability of distribution from the network. Note that if the

probability of being in one state is greater than 50%, no range is associated with that

expectation. The four sub-plots have the same range of Y axis for demonstrating

the shadowing effect clearly. As shown in the plot, even though the prediction tends

to be larger than recorded data, by providing more observations, the prediction still

follows the overall trend well. The variability of distribution stays low until the left

bottom and right top crack become dominant from 600000 cycles when some large

variability appears reflecting the adjustment of network from this observation. Then

the model is confident with its prediction with more than 50% probability in one

state. The biggest challenge for this model is predicting the shadowing effect, i.e.

which crack is dominant. According to the experiment record, left bottom and right

top cracks become dominant starting from 500000 to 600000 cycles, corresponding to

the prediction after inputting 5 evidence. The model seems unable to forecast the

dominant cracks resulting in the jump of left top and right bottom crack from 500000

to 600000 cycles. The jump shows that the model is adapting to the disagreement

between prediction and observation. The predicted length of the dominant cracks, left
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bottom and right top, also has jumps due to the relatively large prediction compared

to the observations. After adjusting to the observations, the prediction moves closer

to the records from 6 to 8 evidence for left top, left bottom, and right bottom cracks,

7 to 8 evidence for right top crack.

Cycles Left Top (MS) Left Bottom(MS) Right Top(MS) Right Bottom(MS)
100000 2.00 2.30 2.65 2.40
200000 5.50 5.50 5.65 4.50
300000 8.25 8.00 8.50 7.50
400000 11.40 11.00 11.75 9.80
500000 13.25 14.10 14.80 11.80
600000 14.70 17.50 19.00 12.60
700000 14.70 23.50 25.00 12.60
800000 14.70 30.75 31.50 12.60
867111 14.70 34.20 37.50 12.60

Table 4.10: Validation Data Collected from the Fifth Hexagon Experiment (unit:
mm; MS = Machinist Scale)

The updating of nominal stress node is investigated through the extracted CSV

file from Hugin. The data is probabilities associated to the states of stress which is

fitted with quadratic line and plotted in Figure 4.9. The X axis shows the range of

nominal stress while the Y axis indicating the probability. The distribution of stress

is updated after inputting each observation of crack length. For a clear illustration

of updating process, the distribution of stress after inputting the evidence of 100000,

300000, 500000, and 700000 cycles are plotted. 100000, 300000 cycles is included to

demonstrate the distribution before left bottom and right top crack become dominant,

while 500000 and 700000 cycles shows the change of stress after the shadowing effect

appears. As demonstrated in the plot, the four cracks have a similar stress distribution

before 500000 cycles since the growth of four cracks is the same. Starting from 500000

cycles, left bottom and right top cracks take dominant slowing the propagation of left

and right bottom crack while increasing the growth rate of left bottom and right top

crack. Thus, at 700000 cycles, the left top and right bottom have a large nominal
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(a) Crack Length of Left Top (b) Crack Length of Left Bottom

(c) Crack Length of Right Top (d) Crack Length of Right Bottom

Figure 4.8: Predicted Crack Length from the DBN model Developed with OON
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stress due to a relatively smaller crack length. The left bottom and right top crack

have smaller nominal stress resulting from the larger crack. Even with the left bottom

and right top cracks dominant, the nominal stress of left bottom is slightly larger than

right top since right top crack grows faster than the left bottom. The updating of

nominal stress demonstrates the status of the specimen providing a supplement view

for the degradation process.

(a) Nominal Stress of Left Top (b) Nominal Stress of Left Bottom

(c) Nominal Stress of Right Top (d) Nominal Stress of Right Bottom

Figure 4.9: Updating of Nominal Stress from the DBN model Developed with OON

Considering that the material property is different at different locations of a steel

plate, the hyperparameter of m is included. The updating of material property m is

extracted from the CSV file and plotted as quadratic lines in Figure 4.10. Since the

prediction of material properties falls to the first state with 100% after 7 observations

for right top and left bottom crack, 6 observations for left top and right bottom crack,
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the plot includes the probability distribution from 100000 to 500000 cycles. As shown

in the plot, the distribution for four cracks are similar before 500000 cycles since the

crack growth is the same. As inputting more evidence from 100000 to 400000 cycles,

the variability of distribution decrease while the center moves from 2.75 to 2.55. Since

500000 cycles, the left bottom and right top crack are dominant resulting in a similar

distribution. As both are shadowed, the left top and right bottom crack have similar

updating for m at 500000 cycles. This updating of m reflects the interaction among

four cracks and demonstrates the updating capability of DBN. As inputting evidence

after 500000 cycles, the difference between large predictions and small observation

drag the prediction of m to the first state which can be tuned in future works.

(a) m of Left Top (b) m of Left Bottom

(c) m of Right Top (d) m of Right Bottom

Figure 4.10: Updating of Material Parameter m from the DBN model Developed with
OON

The performance of this model is affected by several factors. This DBN model

107



models the propagation of four cracks separately whose dependence is described only

by hyperparameters. In other words, each crack is treated as a single edge crack in

modeling the propagation and then connected through hyperparameters. Since the

assumption of single edge notch, the SIF is obtained based on an empirical equation in

establishing the CPT which may not suit well for this case leading to a large prediction

for crack length. By using hyperparameter of stress, we assume that the stress of

every two cracks has the same correlation which is too simple of an idealization for

this hexagon specimen. This assumption affects the performance negatively. Thus,

an updated model is developed in the following section by exploring the dependence

between crack lengths and SIF.

4.6 Dynamic Bayesian Network for Hexagon Specimen with

Connections between Cracks and SIF

4.6.1 Introduction

The DBN model in Section 4.5 has an acceptable performance when provided with

evidence in predicting crack length. The model is a rough approximation of the crack

growth process without counting the impact of crack size on the resulting stress. In

other words, as the crack grows, the specimen stiffness changes resulting in the SIF

evolving at each crack tip over time from the other three crack lengths, rather than

just its own crack length. Thus, in order to improve the model performance, the

connections between each crack size and load stress are critical and explored in this

section. This stress need not be tracked explicitly, it can be included in SIF for each

crack which depend on the lengths of other cracks. More complex connection means

more combinations of states which can result in a state explosion problem, restricting

the application of the method. The technologies named Temporal Clone and Boyen-

Koller approximation are applied to avoid state explosion which is explained in detail
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in Section 4.6.2. Another challenge is quantifying the connection between cracks and

resulting SIF. An Abaqus script is written in Python to calculate the SIF with respect

to various combinations of crack lengths. Then the data is used to train a Kriging

model in terms of building the CPT. The details are included in Section 4.6.4 and

4.6.5. The quantification of the other probability tables are described in Section 4.6.3.

Finally, Section 4.6.6 evaluates the performance of this DBN model, followed by the

analysis of marginal probabilities updating. The performance of model developed in

this section is also compared to the model in Section 4.5.

4.6.2 Network Construction

DBN can be constructed by building and connecting ordinary static BN repre-

senting the evolving of time, where each ordinary static BN is called a time slice,

Kjærulff (1995). As described in Section 4.5, OON is built in Hugin, and can be used

to model the degradation of structural systems over time. In an OON, the output

and input nodes of each time slice are connected together to form the entire model.

Another method used to construct DBN is named Temporal Clone based on the idea

that the state of random variables in current time depends on the state of the system

in the past. The state of system in the past can be represented by Temporal Clone.

Figure 4.11 illustrates a simple application of Temporal Clone in modeling disease

progression. The Temporal Clone is marked with right slashes named as T Disease

which represents the system state of node Disease in the past. Node T Disease is

cloned from its master node Disease. Node Symptom is the observed symptom, input

as evidence. By connecting the Temporal Clone T Disease and regular node Disease,

the dependence between past and current states is specified. With time evolving, the

Temporal Clone T Disease always dynamically represents the state of system at past

time while regular node Disease stands for current state. By defining the number of

time slices, the DBN can be built based on the defined structure containing Temporal
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Clones and regular nodes.

In order to use Temporal Clone correctly, it should be noted that the links between

nodes should represent the natural flow of time. As discretized random variables,

discretized temporal clones have tables defining the distribution of its initial state.

With time evolving, the time clone are substituted by nodes in the previous time

slices. The discretization of temporal clones can only be changed by modifying the

nodes from which they clone. Deleting the master node also deletes the Temporal

Clones of that master node.

Figure 4.11: Disease Progression Model based on Temporal Clone

Based on Temporal Clone and Paris’ law in Equation 4.7, the hexagon model

connecting cracks with resulting SIF is built in Hugin as shown in Figure 4.12, where

the solid nodes represent the current state of the system while the nodes marked

with right slashes model the system states at the past. In this model, m lt, m rt,

m lb, m rb, and C lt, C rt, C lb, C rb represents the material properties at the left

top (lt) crack, right top (rt) crack, left bottom (lb) crack, and right bottom (rb)

crack respectively. K lt, K rt, K lb, and K rb are the SIF of the four cracks while

a lt, a rt, a lb, and a rb are the current crack length. HP m is the hyperparameter

of material property m describing the correlation of material property at different

locations. The Temporal Clone for the hyperparameters is added into the model to
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represent the dependencies between past and current. The Temporal Colones for four

cracks - T a lt, T a rt, T a lb, and T a rb - connect the crack length at past time to

current SIF. Each SIF is linked by four temporal clones of crack lengths since SIF at

each crack location is determined by all the remaining crack sizes. Compared with the

model in Section 4.5 which model the interaction among stress with hyperparameter,

this DBN model modeling the interaction by connecting temporal clones of crack

lengths with SIF. The current crack length is a function of material properties m, C,

SIF K, and previous crack length modeled by temporal clone T a. Nine time slices

are defined for this model with respect to the records in the fifth hexagon experiment.

To summarize, the degradation of four cracks is modeled in this DBN with temporal

clones and the interaction among cracks is described by the hyperparameter of m and

the temporal clones of previous crack lengths linking to the current SIFs, which are

different at each crack tip.

The complex connections between crack lengths and SIF make it a challenge to

inference and update with evidence. Boyen-Koller approximation is applied here to

improve the computational performance. Boyen and Koller, Boyen and Koller (1998)

and Koller and Friedman (2009), proposed an approach to approximately calculate

the joint distribution of the interface variables between two successive time slices with

the goal of keeping the accumulated errors bounded indefinitely, which is suitable for

the inference of model with temporal clones. The idea behind the proposed method is

to make the complexity of junction tree of a single time slice tractable by factorizing

the distribution. In inference, the desired factorization is applied to approximate the

distribution of interface variables from which the factors are passed to the junction

tree of the next time slice. Hugin software integrates this technique for inference and

predictions with evidence. Normal propagation is performed within each time slice

while approximate distribution of interface nodes is transferred from one time slice

to the next by conducting approximation following the links between the temporal
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Figure 4.12: Model of Hexagon Specimen with Connections between Cracks and
Resulting SIF based on Temporal Clones
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clones which defines the factorization according to Hugin Expert .

4.6.3 Variable Discretization and Network Quantification

Regarding quantifying the model, the range, discretization, and distributions of

random variables are first determined as shown in Table 4.11, which is applied to the

four cracks. The range is chosen so that the probability of a variable being outside

the range is smaller than a specific threshold which is set as 10−6 in this work. Since

crack usually grow slowly in the beginning of deterioration, the refined discretization

of crack length has 1mm increment from 0mm to 19mm while 3mm step from 19mm

to 37mm. The range and discretization of SIF is determined by the Kriging results

whose detail is in Section 4.6.5. The material property m is discretized uniformly

after being projected to a exponential space while C is discretized uniformly after

being projected to a log-space. The discretization of temporal clones of nodes a,

and HP m is the same with their master nodes. Their distribution representing the

initial state of system is shown in Table 4.12 from which the prior probabilities are

determined. The distribution and parameters of hyperparameter HP m is described

in Table 4.13. The CPT of m given HP m is determined by Equation 4.6. The CPT

of HP m given its temporal clone is a diagonal matrix. The CPT of crack length an

given an−1, m, c and K is simulated by Monte Carlo method combining the states

of parents nodes. In each combination, 1000 samples are generated and the crack

growth is calculate by integrating the crack growth with the assumption that the SIF

is a constant. The integrated results are scattered into the states of crack length to

form the conditional probability table. The CPT of SIF given crack length at left

top, right top, left bottom, and right bottom is established using Kriging model as

shown in Section 4.6.5 which is employed to avoid running large number of Finite

Element Analysis (FEA). The Kriging model is trained on sufficient SIFs generated

by running FEA repeatedly with different combinations of crack length as input. The
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Variable Range Number of States Intervals
a(mm) 0-37 26 0, 0:19/19:19,22:(37-22)/5:37,∞
m 2.4-3.6 20 0, ln{exp(2.4):[exp(3.6)-exp(2.4)]/18:exp(3.6)},∞

ln(C) (-21.3)-(-19.5) 22 −∞, -21.3:(21.3-19.5)/20:-19.5, ∞

Table 4.11: Range and Discretization of Variables in Modeling of Hexagon Specimen

Variable Distribution Mean Standard Deviation Correlation
a LogNormal 0 1 -

ln(C), m Bi-Normal (-20.4; 3) (0.3;0.2) ρln(C),m = −0.9

Table 4.12: Distribution and Parameters of Variables

details of acquiring training points from Abaqus in described in Section 4.6.4

4.6.4 Stress Intensity Factor from Abaqus

In the proposed model, it is a challenge to quantify the CPTs of resulting SIF

from combinations of crack lengths. A Kriging model is trained to approximate the

SIF given four crack lengths instead of running FEA simulation. A trained Kriging

model or Gaussian process regression can make predictions by interpolating values.

The kriging model is trained on data points of SIF generated by Abaqus with many

combinations of crack lengths as input. The details of Abaqus modeling is described

in this section.

Training a Kriging model requires hundreds data points as training set from FEA.

In order to automate the FEA process, a Python script is written and iterative cal-

culate the SIF of different combinations of crack length. The program flowchart is

shown in Figure 4.13. For each iteration, a combination of crack lengths is input into

the program. The crack length used for generating combinations is shown in 4.14.

The integral circle around crack tips restricts the maximum crack growth as 27 mm

Variable Distribution Mean Std Number of States Intervals

HP m Normal 0 1 5 φ−1(0 : 0.2 : 1)

Table 4.13: Distribution and Parameters of Hyperparameters
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Variable range Intervals

Crack length for four cracks (mm) 0 - 27 0:(27-0)/9:27

Table 4.14: Crack Growth Used in Abaqus FEA Process

with 3 mm increments starting from 0 mm. The combinations of cracks growth are

determined with the order of left top, right top, left bottom, right bottom. Due to

the symmetric design, the crack growth of left top is set as smaller than the rest three

crack growth in generating combinations to avoid duplication. Based on the provided

crack lengths, the hexagon frame as well as crack partitions are built to which the

material properties are assigned. The Young’s modulus for A36 steel is set as 200

GPa with a Poisson’s ratio of 0.26, Matweb (1999). Then the model is assembled

and displacement analysis steps are created. Two reference points are defined and

coupled to the surface of bolt holes to simulate the bolts applying displacement and

boundary conditions. Then seams are assigned to four cracks and contour integration

is defined around each crack tip area. The frame and crack front regions are meshed

separately - Quadratic element C3D20 is used for the frame while C3D15 is employed

for modeling the crack front regions. The displacement is set as 0.65 mm resulting

in 22.05 kN maximum reaction force and 31.8 Mpa
√
m SIF in the case where four

cracks are all 20 mm. Figure 4.14 shows a meshed hexagon specimen generated by

the Python script. Each iteration generates an odb file storing SIF info around the

four crack tip regions which is extracted to build the training dataset containing 310

data points in total. Figure 4.15 shows the SIF from Abaqus analysis with four iden-

tical propagated cracks, which indicates the SIF decreases with four cracks growing

identically under displacement control.
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Figure 4.13: FEA process of calculating SIF for hexagon specimen with different
combinations of crack length
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Figure 4.14: A Meshed Hexagon Specimen Modeled from Python Script

Figure 4.15: SIF from the Abaqus Model with Four Identical Propagated Cracks
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4.6.5 Kriging Model: Training, Testing, Application

With the training data obtained from Abaqus models, a Kriging model is trained

and applied for predicting SIF with the combinations of four crack lengths as input.

The trained Kriging model is used to determine the discretization of SIF and generate

the CPT of SIF given combinations of crack lengths. A brief introduction as well as

the application of Kriging model is presented in this section.

A Kriging model or Gaussian process regression makes predictions by interpolating

values which follows a Gaussian process. The model assumes that the parameter

distribution can be represented by a Gaussian process. A training dataset has the

format T = {Y,X} with n points, where X is the matrix containing the features

of all training points, i.e. X = [x1,x2, ...,xn]T , in which xi(i = 1, 2...n) is a feature

vector for a training point. Y can be seen as a vector storing the target values, i.e.

Y = [y1, y2, ..., yn]T , which is assumed being governed by a multivariate Gaussian

distribution. A Gaussian process is defined by the mean µ and the covariance matrix

K(x,x′) between all possible pairs, i.e. Y = f(x) ∼ N(µ,K(x,x′)), where µ defines

the central tendency which is usually set as 0 and covariance matrix describes the

correlations between x and x′. The value of an observed value y can be seen as the

summation of an unknown constant or global trend function f(x) with numerical or

experimental error ε as shown in Equation 4.12.

y = f(x) + ε (4.12)

where ε is assumed to be independent and identically distributed, i.e. ε ∼ N(0, σ2)

in which σ2 is the variance. The likelihood of y given f can be expressed as,

p(y|f) = N(y|f, σ2I) (4.13)

where f = {f(x1), f(x2), ..., f(xn)} is the response vector with respect to the sample
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locations. I is a diagonal matrix with dimension n × n. According to Williams

and Rasmussen (2006), the prior probability of f can be described as a Gaussian

distribution with 0 as mean and Gram matrix K,

p(f) = N(f |0, K) (4.14)

where each entry of K, i.e. Kij = k(xi, xj) represents the covariance of two sample

points xi and xj. Then the probability of y can be acquired by combining Equation

4.13 and Equation 4.14,

p(y) =

∫
p(y|f)p(f)df = N(f |0, K + σ2I) (4.15)

Then given the input vector xinput, the joint distribution of predicted vector ypredict

can be expressed as,

 y

ypredict

 ∼ N

 0,

 K + σ2I,K1

KT
1 , K̂ + σ2I


 (4.16)

where K1 represents the covaraince between predicted and sample points, i.e. K1 =

[k(xinput, x1), k(xinput, x2), ..., k(xinput, xn)]T . K̂ describes the covariance of input vec-

tor xinput.

According to Williams and Rasmussen (2006), the covariance are determined by

hyperparameters in terms of the best prediction result, which can be acquired based

on training data using maximum log-likelihood estimation shown in Equation 4.17,

where Θ is the hyperparameter that the Kriging algorithm optimizes so that the

likelihood is maximized, n is the dimension of the input variables, Williams and

Rasmussen (2006).
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Method Metric Result (Pa
√
m)

10-fold Cross Validation RMSE 3597.92

Table 4.15: Performance Evaluation of Trained Kriging Model

logp(f(x)|Θ, x) = −1

2
f(x)TK(Θ, x, x′)−1f(x′)− 1

2
log|K(Θ, x, x′)| − n

2
log2π (4.17)

The Kriging model used here is written in Python by Zhu et al. (2014). The

training dataset is generated from Abaqus models described in Section 4.6.4. The

training dataset contains 310 data points where 10 data points are the SIF with all

4 cracks set to the same length at each location while the other 300 data points are

the SIF with different crack lengths. The combinations of different crack lengths are

generated based on a defined strategy, i.e. the crack growth of left top is set as smaller

than the rest three crack growth to avoid duplication. Thus, the training dataset

consists of 310 rows and 5 columns where the first four columns are the crack length

in the order left top, right top, left bottom and right bottom. The last column is the SIF

of the left top crack from Abaqus with all cracks modeled at the corresponding size.

The performance of trained kriging model is evaluated using 10-fold cross validation

with Root Mean Squared Error (RMSE) as the evaluation metric. The 10-fold cross

validation divides the training dataset into ten subgroups and use nine subgroups for

training while keeping the rest one subgroup for testing. The process is performed 10

times on different subgroups iteratively generating ten errors. The RMSE is averaged

on the ten errors to achieve a performance evaluation with relatively low variance,

i.e. the RMSE from 10-fold cross validation can represent the performance of trained

Kriging model very well. The performance evaluation is summarized in Table 4.15.

Considering that the level of SIF is 106 Pa
√
m, the RMSE of 3597.92 Pa

√
m means

the model is accurate and suitable for making predictions.
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Variable range Intervals

Crack length in Abaqus (mm) 0 - 27 0:(27-0)/9:27
Crack length in Numerical Model (mm) 0 - 37 0, 0:19/19:19,22:(37-22)/5:37,∞

Table 4.16: Crack Growth Used in Abaqus FEA Process

As described in Section 4.6.4, due to the integral circle around crack tips, the

training data from Abaqus covers the crack growth from 0 mm to 27 mm with 3 mm

increment, while the crack growth in numerical model ranges from 0 mm to 37 mm

as shown in Table 4.16. The combinations of crack lengths generated by combining

the states of crack length in numerical model is used as the input for predictions.

The trained Kriging model is employed to make predictions on those combinations

of crack lengths. Since the training data contains the SIF of left top crack with

combinations of crack lengths ordered as left top, right top, left bottom and right

bottom, the prediction is the SIF of left top crack with desired crack combinations.

In other words, the prediction results and training dataset follow the same format.

In the results, when crack lengths are beyond the range of crack lengths covered in

training dataset, the prediction tends to be biased. Therefore, a strategy is defined

that the predicted SIF is set as 0 when two or more crack lengths are larger than

34mm, i.e. when two or more cracks are about to break, the SIF of left top crack

should be very small and set as 0 in prediction results. With the prediction results, a

histogram of SIF is plotted in Figure 4.16 from which the states of SIF is determined.

The states of SIF is obtained by dividing the histogram into 42 bins and each bin

contains the same number of data points. In this way, the discretization of SIF is

refined and represent the distribution of SIF properly.

The above process generates a look-up table with combinations of crack lengths

in the order of left top, right top, left bottom and right bottom and the associated

SIF of left top crack. With the look-up table, the CPT of SIF given crack lengths

are determined. Due to the discretization, each combination of crack lengths defines
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Figure 4.16: Histogram of SIF

a range. If directly using Monte Carlo simulation in each defined range to simulate

possible combinations of crack lengths and then employing Kriging model to predict

the SIF in term of generating the CPT, the required computation power is impossible

to be satisfied. In order to reduce the demand of computation, the look-up table

is used to determine the lower and upper bounds of SIF given any combination of

crack lengths. The determined lower and upper bounds are used to search the states

of SIF which includes these bounds. The conditional probability insides the located

states of SIF is determined by uniform distribution while the conditional probabilities

outside the states are set as 0. For example, if the states for left top, right top, left

bottom and right bottom are 9mm-10mm, 7mm-8mm, 15mm-16mm, and 12mm-

13mm respectively, then the lower bound of SIF of left top crack can be determined

by searching the look-up table for the combination of 9mm, 8mm, 16mm, and 13mm.

The upper bound of SIF of left top can be obtained by checking the look-up table

for the combination of 10mm, 7mm, 15mm, and 14mm. The SIF of left top crack

reaches upper bound when left top crack is the largest in its state while the rest three
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Conditional Probability SIFleft top SIFright top SIFleft bottom SIFright bottom

Condition Sequence

aleft top aright top aleft bottom aright bottom
aright top aleft top aleft top aleft bottom
aleft bottom aright bottom aright bottom aright top
aright bottom aleft bottom aright top aleft top

Table 4.17: Sequences of Crack Lengths in Determining CPTs of SIF

crack lengths are the smallest in their states. Similarly, the lower bound of SIF of

left top crack is obtained with left top crack being the smallest in its state while the

rest three crack lengths being largest in their states. This interesting phenomena also

indicates the interaction among four cracks.

After having the CPT for SIF of left top crack given the combination of crack

lengths of the four cracks, the CPTs for right top, left bottom, and right bot-

tom can be obtained by switching the sequence of parents nodes of SIF due to

the symmetrical design, i.e. change the order of cracks. For example, considering

the left-right symmetric, the CPT of SIF of left top crack given crack lengths in

the order of left top, right top, left bottom and right bottom is the same with the

CPT of right top crack given crack lengths in the order of right top, left top, right

bottom and left bottom, i.e. P (SIFleft top|aleft top, aright top, aleft bottom, aright bottom) =

P (SIFright top|aright top, aleft top, aright bottom, aleft bottom), where a represents crack length.

Similarly, the CPTs of SIF of left bottom and right bottom cracks can be determined

as summarized in Table 4.17.

4.6.6 Results and Conclusions

The developed model is validated and evaluated on the data collected from the

experiment of the fifth hexagon specimen. The gathered data is crack length measured

every 100000 cycles until structure failure by machinist scale with respect to applied

tension cycles, Table 4.18. The predicted crack length can be treated as time series

data and each observation updates the distribution, thus, the prediction from DBN
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is recorded every time after inputting an evidence, i.e. input the observation from

100000 cycles to 300000 cycles into time slices T1 to T3 and record the prediction for

400000 cycles from time slice T4. The prediction generated by Hugin software is a

probability table with respect to the defined states of a random variable, which can

be exported as a CSV file for further analysis.

Cycles Left Top (MS) Left Bottom(MS) Right Top(MS) Right Bottom(MS)
100000 2.00 2.30 2.65 2.40
200000 5.50 5.50 5.65 4.50
300000 8.25 8.00 8.50 7.50
400000 11.40 11.00 11.75 9.80
500000 13.25 14.10 14.80 11.80
600000 14.70 17.50 19.00 12.60
700000 14.70 23.50 25.00 12.60
800000 14.70 30.75 31.50 12.60
867111 14.70 34.20 37.50 12.60

Table 4.18: Validation Data Collected from the Fifth Hexagon Experiment (unit:
mm; MS = Machinist Scale)

By combining the updated probabilities with states of crack length, the predicted

crack length is calculated as the expectation. Since each states is a discretized range

and the predicted probability describe the chance of crack length being in this range,

the expectation is obtained by summing the product of each predicted probability

with the corresponding center of each state. Even though nine observations are

recorded in the fifth hexagon experiment, only eight comparisons are generated in

terms of comparing the performance of the developed model with records because

the last observation generates no prediction. The first prediction before inputting

any evidence comes from the initial states of the system. The comparison between

predicted crack length and recorded crack length for four cracks are plotted in Figure

4.17. The predicted crack length is plotted as pink diamonds while the recorded crack

length is shown as blue squares. The X axis represents the number of evidence input

into the model. In order to display the shadowing effect, the four plot have the same
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range on Y axis. The variability of the distribution is less than 1 mm so the 50%

range is not plotted here. As shown in the figure, the prediction for four cracks is

slightly biased after only inputting the first evidence, then with more observations,

the model adjust itself and makes the overall predictions matching record very well.

The biggest challenge in this model is predicting the shadow effect, which means if

the network can forecast which crack will be dominant in the degradation process.

From the record, we can know that the left bottom and right top crack start to being

dominant since 500000 - 600000 cycles, corresponding to the sixth prediction after

inputting five evidence. As shown in Figure 4.17a and Figure 4.17d, after inputting

five evidence, the model predicts that the crack length of left top and right bottom

stops growing while the crack length of left bottom and right top keep growing with

a relatively larger growth rate. This results indicate that the developed model is

capable to forecast the dominant crack during the deterioration process. This result

successfully demonstrate the developed model can simulate the system-level behav-

ior of complex structural system and make accurate predictions. The independent

data from experiment evaluates the performance of DBN bringing more confidence in

applying DBN to real-world applications.

The updating of SIF is also extracted from CSV file exported from Hugin. The

data is probabilities with respect to the states of SIF which is plot with bars as shown

in Figure 4.18. Each bar is plotted on the center of corresponding state representing

a probability. The highest bar means the probability of being in that state is the

highest. The width of the bar has no specific meaning. The Y axis for Figure 4.18a

and Figure 4.18d have range 0-1 while the Y axis in Figure 4.18b and 4.18c is limited to

0.6 for a clear demonstration. The distribution of the SIF is updated after inputting

each observation of crack length. For a clear illustration of updating process, the

distribution of SIF after inputting the evidence of 100000, 300000, 500000, 700000,

and 867111 cycles are plotted. The distribution after inputting evidence of 867111
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(a) Crack Length of Left Top (b) Crack Length of Left Bottom

(c) Crack Length of Right Top (d) Crack Length of Right Bottom

Figure 4.17: Predicted Crack Length from the Developed DBN model
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cycles is included in terms of investigating the SIF during final structure failure. As

shown in Figure 4.18a and Figure 4.18d, the SIF of left top and right bottom crack

has similar updating process which matches the fact that these two crack have similar

crack propagation in experiment. The SIF of left top and right bottom change slightly

before 500000 cycle since the four cracks have similar propagation, i.e. no crack is

dominant. This also explains that the SIF of four cracks before 500000 cycles has

similar locations indicating a similar SIF. With applying more cycles, the left bottom

and right top crack start to take dominant since 500000 cycles, thus, the SIF of left

top and right bottom cracks decrease to the range of 20 MPa
√
m - 25 MPa

√
m

while the SIF of left bottom and right top crack increase due to being dominant. The

shadowing effect can be clearly observed from the change of SIF after 500000 cycles,

i.e. the left top and right bottom cracks are shadowed by left bottom and right top

crack resulting a smaller SIF and slow crack growth, while the dominant cracks have

a rapid crack growth due to the increased SIF. The distribution of SIF at 867111

cycles demonstrates the status of structure around the moment of failure. In other

words, the left top and right bottom crack have a SIF close to zero while the left

bottom and right top crack have their largest SIF around 35 MPa
√
m. It should

be noted that the bar of left top and right bottom crack located at 5 MPa
√
m does

not indicate the SIF is 5 MPa
√
m since the bar is plotted at the center of state. It

should be interpreted that the SIF is small enough to fall into the bin with smallest

SIF and the model is confident with the prediction since the probability is 1. The

updating of SIF clearly demonstrates the status of cracks during degradation process

including the shadowing effect, which provides a supplement view for understanding

the crack propagation in the experiment.

Usually, the material property are different at different locations of a steel plate.

The model includes a hyperparamter of material property m to count for this effect.

The updating of material property m is investigated and plotted in Figure 4.19. The
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(a) SIF Updating of Left Top (b) SIF Updating of Left Bottom

(c) SIF Updating of Right Top (d) SIF Updating of Right Bottom

Figure 4.18: SIF Updating of Four Cracks from the Developed DBN model
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X axis indicates the states of m while the Y axis represents the probability. Since the

probability distribution has a bell-shape, quadratic interpolation is applied to achieve

a smooth plot. It should be noted that the plot does not represent probability den-

sity but probability. For a clear demonstration and considering the fact that material

property changes less with increasing number of evidence, the plot includes the prob-

ability of m at 100000, 300000, 500000, and 700000 cycles. With one observations of

crack length inputted into the model, the material properties m for four are similar

with the highest probability around 2.6. With one more observation, the m of four

cracks increase with left top and right bottom centered around 2.9 and left bottom

and right top centered around 2.75 and 2.85 respectively. This result indicates that

the model updates its distribution of m after given more evidence. Beginning from

500000 cycles when the left bottom and right top crack start to take dominant, the

model adjusts its predictions for m of the left top and right bottom by decreasing

the center of distribution while increasing the prediction for m of the left bottom

and right top. In other words, the model estimates that four locations have roughly

similar material properties before left bottom and right top crack become dominant,

then the model adjusts its estimation due to two dominant cracks by predicting the

dominant cracks have larger m than the shadowed cracks. This prediction means that

higher m is associated with the area of dominant crack which makes sense. Even the

variances of distribution changes slightly which can be improved in future by tuning

the hyperparameter of m, the updating still can demonstrate the inference process of

DBN with observation of crack lengths.

Compared to the DBN built in Section 4.5, the updated model has a much more

accurate prediction of crack length and the ability to forecast the emergence of the

dominant crack. The updated model removes the assumption that each crack is a

single edge notch in isolation as well as the emperical approximation of SIF. Instead,

an Abaqus model and a Kriging model are used to build a look-up table for SIF
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(a) m Updating of Left Top (b) m Updating of Left Bottom

(c) m Updating of Right Top (d) m Updating of Right Bottom

Figure 4.19: m Updating of Four Cracks from the Developed DBN model
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with respect to combinations of four crack lengths increasing the agreement between

numerical model and hexagon specimen. Besides connecting four cracks through

hyperparameter, the updated model better describes the interaction by including the

connection between crack lengths and SIF. The performance of updated model is

evaluated by independent experimental data proves the ability of DBN in modeling

system-level structural behavior in a degradation process.

4.7 Conclusions

The task of modeling hexagon specimen, a complex structural system, is tack-

led in this section in four steps. The DBN for a single crack with simulated input

validates the fatigue growth model and the updating power of the DBN. Then, the

model is expanded to two cracks with the interaction modeled by hyperparameters.

As inputting simulated observations, the developed DBN can distinguish the two

cracks and make predictions accordingly. The hyperparameter method is applied in

modeling the degradation process of hexagon specimen. The prediction performance

as well as updating of nominal stress and material property are investigated. Even

the model doesn’t forecast which crack will become dominant, the model is able to

adjust to observations quickly and make acceptable predictions. Finally, an updated

model is developed based on Temporal Clone. FEA-based SIFs are used instead of

nominal stress and the dependence between crack length and SIF is included. The

performance of this model is increased and the prediction matches experiment records

very well. The updated model can forecast the dominant crack based on observations

of crack length. The successful evaluation of the performance of DBN by independent

experimental data lays solid foundation for applying the DBN method in digital twin

research.
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CHAPTER V

Conclusions

5.1 Summary

The object of this PhD research is to evaluate the performance of DBN in modeling

system-level structural degradation using independent experimental data. This work

is done to refine the concept of digital twins, by providing the community with both a

dataset for future model validation as well as an explicit investigation into the power

of DBNs. By selecting crack propagation to characterize the structure deterioration, a

lab-level experiment was designed and conducted to collect crack length and maximum

reaction force associated with applied tension cycles. The laboratory experiment

aimed to simulate several properties of real-world complex marine structures including

structure redundancy, component dependence, and component-to-system integration.

A diamond-shaped specimen was designed initially followed by a upgraded hexagon-

shaped design. Two new methods were developed for measuring crack length based

on computer vision and DIC technology, which could be applied to structures for

measuring crack length in terms of monitoring the structural health. The performance

of computer vision based method was evaluated by a standard eccentrically-loaded

single edge crack tension specimen. Five hexagon specimens were machined and

tested using a MTS 810 material testing system. The first two experiments focused

on validating the design and the developed methods for measuring crack length. In
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the third experiment, strain gauges were deployed to monitor the structural status

in degradation process. All the developed methods measuring crack length as well as

strain gauge monitoring system were employed in the fourth and fifth experiment of

hexagon specimen. The recorded crack length and maximum reaction force proved

that the design successfully reflected the properties of real-world complex structural

system. The gathered data from the experiment is not only employed to evaluate the

performance of DBN model but also support the exploration and research of future

digital twin approaches.

Based on DBN, a numerical model simulating the structural degradation was built

and evaluated with the independent data from the hexagon experiment. First, the

propagation of a single crack was modeled using a DBN and evaluated with simu-

lated evidence of crack length, which verified the capability of the DBN in modeling

crack growth of individual components. Then, the concept of hyperparameters was

introduced to deal with crack propagation on two interacting components. The de-

pendence between cracks was modeled through a stress hyperparameter. The model

was able to distinguish the two cracks when provided with simulated observations.

Then a DBN model with hyperparameters was built to simulate the degradation pro-

cess of the hexagon specimen. The four cracks were modeled as single edge notch

and connected through hyperparameter of nominal stress and material property m.

The performance of developed DBN was evaluated with observations collected from

the hexagon experiment. Even though the model had a relatively large prediction of

crack growth, its prediction was able to match the trend of observed crack length.

This model was unable to forecast the dominant crack and shadowing effect among

cracks, but it could still adjust with evidence quickly in terms of making accurate

predictions. The updating of nominal stress and material property m was investi-

gated to understand the structure’s status. The nominal stress and material property

were able to reflect the difference between dominant and shadowed cracks. Finally, an

133



updated model was developed by adding the connections between crack length and

SIF which was missing in the former model. The corresponding CPT of SIF with re-

spect to crack length was obtained through a batch of Abaqus modeling with Python

script and a Kriging model. In addition to the dependence between crack length and

SIF, the model also included a hyperparameter of material property m. This model

predicted crack length based on observations which matched the experiment data

very well. Compared to the previous model, the updated model was able to foresee

the dominant crack and predicted the shadowing effect successfully. The capability

of DBN in modeling system-level structural degradation was clearly demonstrated

through this investigation, which used independent, physical crack growth data in

place of simulated growth data.

5.2 Contributions

The contribution of this work can be summarized in the following points,

• A laboratory scale experiment, with acceptable expense and short time span,

has been designed and conducted to mimic the key characteristics of much

larger marine structural systems, including component dependence, structural

redundancy, and component-to-system integration.

• Two new methods have been developed for measuring crack length based on

computer vision and DIC. The novel computer vision method, developed and

initially validated in this work, can approximate crack lengths rapidly on com-

plex structural specimens with multiple cracks.

• A large experimental dataset, capturing complex system-level dynamics of the

structure system, has been generated from the tests for demonstrating digi-

tal twin methodologies and supporting the exploration of future digital twin

models.
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• Four different DBN modeling strategies for crack growth problems have been

investigated from single crack to multiple cracks, simulated data to independent

experiment data, laying solid foundation for applying the DBN method in digital

twin research.

• A new high-fidelity system-level DBN approach, using a mix of FEA analysis

and Kriging models to model component interaction during the degradation

of a complex system, has been developed in this work, delivering an accurate

prediction of crack growth in the degradation of complex structural system.

• The performance of the developed model is verified by independent data serv-

ing as the first marine-specific assessment of a structural digital twin against

independent experimental dataset.

5.3 Recommendations for Future Work

The recommendations for future works are summarized as follows,

• The developed methods for crack length measurement should be investigated

in terms of automation. The computer vision based method can be automated

regarding cropping images and matching pixel distance to real-world length.

The DIC based method can be improved by automatically defining region of

interest and determining the turning point in terms of finding crack length. The

DIC method can be further expanded regarding locating the crack tip.

• The DBN updating accuracy could potentially be improved by including more

hyperparameters to describe the correlations better. Tuning hyperparameters

is also a key points in terms of increasing the model performance.

• Refined discretization of random variables is promising in enhancing model per-

formance. However, increasing number of states can increase the computation
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demands exponentially. Thus, the optimized discretization of random variables

can be further investigated aiming to find a balance between accuracy and com-

putation cost.

• The state space explosion problem could potentially be reduced by exploring a

more concise approach to model the SIF interactions, such as a single parameter

instead of using all crack lengths.

• A common difficulty of DBNs in modeling complex structural system is the

size of CPTs grows exponentially with increasing number of states and complex

dependence, resulting in a slow inference. A potential approach employing API

and more computation power could be investigated in terms of speeding up the

inference and making a faster real-time prediction.

• The strain gauge data collected from the experiment, as well as the resisting

force gathered during the test, can be explored to improve the DBN updating

accuracy.

• The comparison of future reliability predictions between the developed DBN

network in this work and other proposed structural reliability methods can be

further explored and summarized.

• The experiment can be expanded by including corrosion to reflect the real-world

structure degradation better.

• The developed DBN can be explored and expanded to Influence Diagram to

assist in making decisions in term of optimized maintenance strategy.
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