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Abstract 
 

 In 1863, Rudolf Virchow proposed that tumors arise from sites of chronic inflammation. 

This concept was largely ignored throughout the majority of the next century as the genetic basis 

of cancer was explored. However, it has become well appreciated that inflammation and cancer 

are intimately linked. For example, chronic inflammation of the intestine in the form of 

Inflammatory Bowel Disease (IBD) predisposes to the development of colon cancer. Although 

the vast majority of colon tumors do not arise from sites of chronic inflammation, sporadic colon 

tumors elicit an inflammatory response that is essential for tumor growth, progression, and 

evasion of anti-tumor immunity.  

 Hypoxia is a well-characterized feature of nearly all solid tumors and promotes 

stabilization of the hypoxia inducible transcription factors (HIF-1α and HIF-2α) with known 

roles in modulating tumor-associated inflammation. We have previously reported that intestinal 

epithelial HIF-2α is an important driver of the acute inflammatory response in colitis. The 

present work describes a novel axis by which intestinal epithelial HIF-2α serves as a critical link 

between inflammation and cancer of the colon. Mechanistically, our work shows a crucial role 

for intestinal epithelial HIF-2α in regulation of the immune microenvironment of colon tumors 

through recruitment of intra-tumoral neutrophils. Neutrophils are granulocytic myeloid cells of 

the innate immune system that are the first responders to sites of infection to limit microbes. 



 ix 

Neutrophils are highly infiltrated in nearly all solid tumors including colon cancer. We showed 

that neutrophil influx was due to direct HIF-2α-dependent regulation of the potent neutrophil 

chemokine CXCL1. These data identify a novel role for HIF-2α in modulation of the tumor 

immune microenvironment of inflammation-driven colon tumors and suggest therapeutic 

potential.  

 Our data suggested an important role for neutrophils in the maintenance of colon tumors. 

However, the importance of neutrophils in the initiation of colon tumorigenesis is largely 

unknown. Using mice with constitutive genetic depletion of neutrophils, the present work 

demonstrates an essential role for neutrophils in restricting colon tumor growth and progression 

in both inflammation-driven and sporadic colon tumor models. Neutrophil depletion correlated 

with robust expansion of colon-tumor associated microbiota and tumor-associated B-cells, both 

of which had important roles in neutrophil-deficient colon tumorigenesis. Together, our data 

suggest divergent roles for neutrophils in the initiation and maintenance of colon tumors.  

 The work presented in this thesis also shows an important role for the transcription factor, 

myc-associated zinc finger (MAZ) in colitis and colon cancer. MAZ is an inflammation induced 

transcription factor that has a previously identified role as a HIF-2α transcriptional cofactor. We 

show that MAZ is highly active in human colitis and colon cancer. The present work delineates a 

critical function for MAZ in the inflammatory progression of colitis and colon cancer through 

regulation of oncogenic STAT3 signaling. Collectively, these studies shed new light onto the 

inflammatory progression of colon cancer and propose potential therapeutic targets.  
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Chapter 11 
 

Introduction 
 
 

The tumor microenvironment is similar to an inflammatory focus as it consists of a 

complex milieu of both innate and adaptive immune cells (1). Hypoxia is a characteristic feature 

of both tumors and inflammatory foci. Increased metabolic demand from rapid cell turnover, 

immune cell infiltration, and vascular disruption cause local O2 tension to decline. The decreased 

O2 tension of tumors or inflamed tissue promotes activation of HIFs. HIFs are basic helix-loop-

helix-per-arnt-sim (bHLH-PAS) containing transcription factors consisting of a heterodimer of 

an oxygen-sensitive a subunit (HIF-1a, HIF-2a, and HIF-3a) and a constitutively expressed β 

subunit (ARNT) (2). HIF-1a is ubiquitously expressed whereas HIF-2a and HIF-3a expression 

is more tissue restricted (3-5). HIF-a subunits are regulated by O2-dependent post-translational 

hydroxylation of two specific proline residues by prolyl hydroxylase domain-containing (PHD-

containing) enzymes. In normoxia, HIF hydroxylation leads to association with the von-Hippel 

Lindau (VHL) tumor suppressor/E3 ubiquitin ligase complex, ubiquitin conjugation, and 26s 

proteasomal degradation. As O2 homeostasis is disrupted and O2 concentration declines under 

inflammatory conditions or in tumors, HIFs are stabilized, dimerize with ARNT, and translocate 

to the nucleus to regulate transcription by binding to hypoxia response elements (HREs) in 

promoters of target genes (Fig. 1.1A). In addition to O2-dependent regulation, inflammation and 

direct HIF regulation are intimately linked. NF-κB, a master transcription factor in the 
                                                
1 This chapter represents published manuscript: Triner D and Shah YM. “Hypoxia-inducible 
factors: a central link between inflammation and cancer.” Journal of Clinical Investigation 2016. 
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inflammatory response, is a direct transcriptional regulator of Hif1a. In response to NF-κB-

activating stimuli, such as bacterial lipopolysaccharide (LPS), NF-κB directly increases Hif1a 

mRNA in macrophages (6). LPS-induced NF-κB can also increase HIF-1a protein stability by 

increasing intracellular ferritin, which sequesters the labile iron pool leading to decrease PHD 

activity (7). Independent of NF-κB, several cytokines and intermediate metabolites such as 

succinate can lead to HIF activation (8, 9). In macrophages, IL-4 and IL-13 selectively induce 

Hif2a mRNA (10). Several studies demonstrate that cytokine-induced ROS and specifically 

mitochondrial ROS directly activate HIF (11-13), and recently it was shown that mitochondrial 

membrane potential increases mitochondrial ROS to modulate HIF activation (14) (Fig. 1.1B). 

HIFs are critical drivers of cancer and regulate a wide variety of cellular processes 

including metabolism, cell cycle progression, angiogenesis, invasion/metastasis, and 

chemoresistance (15). HIF-1a and HIF-2a are highly expressed in a wide variety of solid 

tumors, including those of the colon, breast, lung, and pancreas (16). Although HIF-1a and HIF-

2a have several overlapping functions, distinct target genes and functions for HIF-1a and HIF-

2a are well-characterized (17) and highlighted in several tumor models (18). In renal cell 

carcinoma (RCC) that is deficient in VHL, which stabilizes HIF-1a and HIF-2a in normoxic 

conditions, HIF-1a has an anti-tumor role and decreases tumor growth by increasing expression 

of proapoptotic genes (19). HIF-2a is essential for RCC tumor growth and promotes tumor cell 

proliferation through augmented c-Myc activity (20). It is well known that hypoxia and HIF 

signaling play an important role in inflammatory responses and regulating the immune 

environment (21). However, the intersection of hypoxia, inflammation, and cancer is not well
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understood. Hypoxia can modulate the pro-tumor inflammatory response or anti-tumor-immune 

response in cancer.  

 

1.1 Inflammation and cancer  

It is widely recognized that inflammation plays an essential role in tumorigenesis and 

tumor progression. This paradigm dates back to Virchow, a 19th century pathologist whose 

observation of leukocytes in tumors led him to hypothesize that tumors originate in sites of 

chronic inflammation. The discovery of the first oncogene v-src in Rous sarcoma virus over a 

century ago led to decades of in-depth cancer genetic analysis and the discovery of numerous 

oncogenes and tumor-suppressors; however, studies of tumor-associated inflammation lagged 

behind. A renaissance over the last twenty years has uncovered a critical role for inflammation in 

the pathogenesis and progression of nearly all solid tumors and this knowledge has greatly 

changed the approach to current cancer treatments. The advent of immune-modulating therapies, 

such as immune checkpoint blockers for the treatment of advanced cancers, underscores the 

importance of understanding the specific function of inflammatory cells in cancer and is an 

exciting avenue for the discovery of novel therapeutic targets (22).    

 

Chronic inflammation-associated cancers 

As Virchow postulated, several chronic inflammatory diseases predispose the 

development of cancer. For example, Helicobacter pylori (H. pylori), a gram-negative bacterium, 

infects nearly 50% of the world’s population and is the major causative agent of chronic gastritis 

(23). Chronic gastritis associated with H. pylori is asymptomatic in the majority of infected 

individuals; however, this chronic gastritis represents a significant risk factor for the 
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development of gastric cancer, which occurs in 1-3% of H. pylori infections and is the third 

leading cause of cancer death worldwide (23). Similarly, chronic viral infections predispose to 

the development of cancer. Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections are 

key risk factors for development of hepatocellular carcinoma (HCC). For example, HCV infects 

more than 100 million people worldwide and HCC due to chronic hepatitis induced by HCV 

infection occurs in approximately 1-5% of infected individuals (24).  

One of the best-studied cancers from a genetic and inflammatory perspective is colon 

cancer. Chronic intestinal inflammation associated with inflammatory bowel disease (IBD), 

including Crohn’s Disease and ulcerative colitis, represents a significant risk factor for the 

development of colon cancer, termed colitis-associated colon cancers (CAC). More than 1 

million Americans suffer from IBD and 12-20% of patients will develop CAC within 30 years of 

developing IBD (25). The vast majority of colon cancers develop sporadically and proceed 

through a step-wise process from adenoma to invasive carcinoma (26). This process includes the 

acquisition of sequential mutations leading to the loss of adenomatous-polyposis coli (APC) 

tumor suppressor, activation of the oncogene KRAS, and loss of the TP53 tumor-suppressor (27). 

Interestingly, in colon cancers preceded by chronic inflammation due to IBD, the kinetics of the 

genetic alterations are different, as TP53 is lost early in disease progression and APC mutations 

are not as frequently observed compared to sporadic colon cancer (28, 29). These data suggest 

inflammation may induce novel mechanisms to drive cellular proliferation and survival, resulting 

in tumorigenesis. 

 

Tumor-derived inflammation 
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All solid tumors elicit an inflammatory response that is critical in the tumor 

microenvironment. The tumor-derived inflammatory response is essential for the recruitment of 

immune cells, tumor cell proliferation, survival, and angiogenesis (30). Tumors initiate these 

responses through several mechanisms including transcriptional regulation of inflammatory 

genes by proto-oncogenes (31, 32). It was recently demonstrated that defects in epithelial 

permeability elicited an inflammatory response through a microbiota-mediated mechanism in 

colon cancer (33).  

 

Pro- and anti-tumor immune responses 

In tumors, there is a mix of both innate and adaptive immune cells with anti- and pro-

tumor functions (1). Precise identification of immune cells found in tumor biopsies can serve as 

prognostic markers for clinical outcomes. Adaptive immune responses have been correlated with 

positive prognosis. Several distinct T-cell subsets reside within the tumor microenvironment, 

including cytotoxic anti-tumor CD8+ T-cells and subsets of CD4+ T-cells with both pro- and anti-

tumor functions. In colon cancer, decreased expression of CD8 as well as cytotoxic T-cell 

markers GZMB and CD45RO all correlated with disease recurrence (34). Furthermore, patients 

with high intratumoral expression of T-cell marker CD3 had improved disease-free survival 

compared to patients with low levels of CD3 (34). Recent meta-analysis studies have mapped the 

prognostic impact of twenty-two immune cell types on recurrence-free survival by analyzing 

expression signatures across more than 5,000 tumor samples (35). In general, these studies found 

a positive correlation of T-cells with recurrence-free survival and a negative correlation of 

several myeloid cell types such as neutrophils and macrophages (35). In ovarian cancer, 

increased CD8+/CD4+ T-cell ratio was associated with improved survival, whereas increased 
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CD4+ T-cells portend poor survival (36). Expression profiles associated with anti-tumor T-cell 

cytokines (IFNg) and effector molecules (granulysin and granzyme B) are also independent 

prognosticators of decreased early metastasis in colon cancer (37). These associations, however, 

do not highlight the complexity of the tumor immune environment. Many specific cell types 

have been associated with better or worse prognosis and the plasticity of immune cells can 

confer both pro- and anti-tumor functions, which we will review in depth.  

 

1.2 Hypoxia and epithelial-elicited tumor inflammatory response 

Historically it was believed that the major function of epithelial surfaces, such as the skin 

or the intestinal epithelium, was to serve as a physical barrier separating the external 

environment from the underlying immune cells. It is now evident that epithelial surfaces play an 

active role in innate immunity and shape the underlying immune environment and inflammatory 

response (38, 39). This is also the case in epithelial-derived cancers. Colon tumor cell secretion 

of the C-C family chemokine, CCL2, was essential for tumorigenesis through recruitment and 

activation of pro-tumorigenic myeloid cells (40). PTX3 is a tumor suppressor that activates 

Complement-mediated anti-tumor immunity and is epigenetically silenced due to methylation in 

colon tumors (41). Recent studies in colon cancer have further highlighted the contribution of 

epithelial and stromal gene expression in patient-derived colon cancer xenograft models (42). In 

these studies the epithelial and stromal gene expression was readily delineated by analyzing 

tumor expression of human or mouse transcripts. Analysis of genes with a greater than 50% 

difference in expression between the epithelium and the stroma showed that several cytokines 

and chemokines are directly expressed by the tumor epithelium (42). These results demonstrate 
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that tumor epithelial cells play an active role in regulating the inflammatory response, which may 

impact tumorigenesis.  

Several lines of evidence suggest that intra-tumoral hypoxia and HIFs plays an essential 

role in sculpting the tumor immune environment in several epithelial-derived tumors. For 

example, in a Kras-driven mouse model of non-small cell lung cancer, loss of HIF-2a increased 

tumor burden and tumor cell proliferation; however, loss of HIF-1a had no effect on 

tumorigenesis (43). Tumors lacking HIF-2a also displayed increased infiltration of CD45+ 

immune cells, specifically Gr-1+ granulocytic cells, suggesting that HIF-2a repression of 

granulocytic cell infiltration is in part responsible for its anti-tumor effects (43). Hypoxia and 

HIF stabilization is also a key feature of pancreatic ductal adenocarcinoma (PDAC) (16). PDAC 

development occurs in a step-wise manner and is preceded by precursor lesions termed 

pancreatic intraepithelial neoplasias (PanINs) (44). In contrast to studies showing decreased 

PanIN progression following pancreatic-specific disruption of HIF-2a (45), deletion of HIF-1a 

in a murine model of Kras-initiated PDAC significantly enhanced PanIN progression and 

increased tumor cell proliferation (46). Loss of HIF-1a correlated with increased pancreata B 

cell infiltration and antibody-mediated depletion of B cells reversed the increased PanIN 

progression (46). Hypoxic inflammation is also important in colon tumorigenesis and both HIF-

1a and HIF-2a are overexpressed in colon tumors (16). Using the Apcmin/+ model of intestinal 

tumorigenesis, intestine-specific disruption of the tumor suppressor Vhl significantly increased 

colon tumorigenesis and adenoma-to-carcinoma progression (47). The increase in colon 

tumorigenesis was HIF-2a-dependent, as double disruption of Vhl as well as Hif2a ameliorated 

the effect (47). HIF-2a-mediated inflammatory responses are essential in colon tumorigenesis. 

Epithelial HIF-2a regulates expression of the pro-inflammatory meditator Tnfa (48).  TNFa has 
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a crucial role in the progression of cancer and inhibiting TNFa decreases growth in several 

mouse models of cancer (49, 50). HIF-2a-induced inflammation was found to be critical to 

tumor progression, as treatment with the anti-inflammatory drug nimesulide significantly 

reduced HIF-2a-driven colon tumorigenesis. (48). These previous studies of HIF-2a in colon 

cancer have been examined in sporadic colon tumor models. Although HIF-2a has a prominent 

role in acute colitis, its function in colitis-associated colon cancer has yet to be investigated. 

 Intestine-specific overexpression of HIF-1a does not enhance tumorigenesis in colon 

cancer (51). The precise factors which govern the divergent functions of HIF-1a and HIF-2a in 

colon cancer are currently not well understood. It has been proposed that HIF target gene 

specificity are dependent upon interactions with cofactors. Interestingly, we have identified a 

critical transcription factor, Myc-associated zinc finger (MAZ), as an essential cofactor 

interacting with HIF-2a and driving HIF-2a-dependent transcription of inflammatory target 

genes Tnfa in colitis (48). The work in this thesis expands upon these previous studies to suggest 

that MAZ is essential in the regulation of HIF-2a-dependent Cxcl1 expression in inflammation-

induced colon cancer (52). These studies suggest that tumor HIFs have the potential to modulate 

tumor-associated inflammation to regulate tumor growth and progression. 

 

1.4 Hypoxia and immune cell recruitment 

Tumors are highly infiltrated by cells of both the innate and adaptive immune systems. 

This infiltration is in part mediated by tumor-derived secretion of a host of cytokines and 

chemokines (Fig. 1.2A). HIF-induced secretion of tumor-derived factors can modulate immune 

cell recruitment to aid in tumor growth, which we will review in detail by immune cell subtype 

(Table 1.1).  
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T-cells 

CD4+ T-cells can be differentiated into several different helper T (Th) cell types. Th1 and 

Th2 CD4+ T-cells are the classical types of Th cells that play an important role in the 

inflammatory response to infection and cancer (53). Th1 and Th2 cells promote anti-tumor 

immunity by cytotoxic lymphocyte activation and humoral-mediated immune responses, 

respectively (53). In addition to the classic Th1 and Th2 T-cell effector populations, other 

subsets of T-cells have been found to have an important role in cancer. For example, Th17 cells 

are a recently identified subset of IL-17-expressing CD4+ T-cells that are highly prevalent in 

tumors and have a controversial role in tumor progression. IL-6 and TGF-β collaboratively 

promote Th17 differentiation (54) and Th17 differentiation by these cytokines is dependent on 

HIF-1a (55). Th17 cells have both anti- and pro-tumor functions. In a melanoma model, Th17 

cells showed more potent tumor eradication than Th1 cells (56). However, in other models, Th17 

cells promote tumor growth through angiogenic and immune suppressive effector functions (57, 

58).  

Immunosuppressive regulatory T-cells (Tregs) are frequently increased in cancers (59). 

Tregs are CD4+ and defined by expression of forkhead box transcription factor 3 (FoxP3). Tregs 

have been largely shown to promote tumorigenesis through suppression of anti-tumor CD4+ and 

CD8+ T-cell-mediated immune responses by secreting immunosuppressive molecules such as IL-

10 and TGF-β; removal of Tregs improves anti-tumor immunity (60-62). Primary tumor hypoxia 

regulated recruitment of CCR10+CD4+FoxP3+ immunosuppressive Tregs in a model of ovarian 

cancer, which increased immune tolerance and angiogenesis through VEGF secretion (63). This 

effect was regulated by hypoxia-induced excretion of the chemokine CCL28, which was 

dependent upon HIF-1a and to a lesser extent HIF-2a (63).   
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B-cells 

The precise role for B-cells in tumor progression is controversial and they may function 

to enhance or inhibit anti-tumor immune responses. B-cells can be directly cytotoxic to tumors 

and promote anti-tumor T-cell responses (64). However, B-cells have also been shown to inhibit 

the function of anti-tumor T-cells, as depletion of B-cells increases anti-tumor immunity, 

suggesting context specific roles for B-cells in anti-tumor immunity (65). In pancreatic cancer, as 

detailed above, HIF-1a in epithelial cells decreased tumor growth by attenuating expression of 

B-cell-recruiting chemokines, resulting in decreased B-cell infiltration into the tumors (46). 

Myeloid Derived Suppressor Cells  

Hypoxia also regulates tumor recruitment of immune suppressive myeloid cells. Myeloid 

cells include monocyte/macrophages, neutrophils, eosinophils, basophils, mast cells, and 

dendritic cells. During infection or in cancers, immature myeloid cells closely related to 

neutrophils and monocytes can be detected in circulation. These cells, termed myeloid derived 

suppressor cells (MDSCs), dampen immune responses to infection and are an important 

suppressor of anti-tumor immunity. (66). MDSCs promote tumor growth through suppression of 

both NK- and T-cell-mediated anti-tumor immune responses (66). This is through multiple 

mechanisms including arginine metabolism via increased expression of arginase 1 (ARG1), 

which converts the available L-arginine pool to urea and L-ornithine. Additionally, MDSCs 

mediate nitration of tyrosine residues in the T-cell receptor (TCR) and CD8, which decreases the 

function of these proteins (67-69). The function of MDSCs is well described in the 

azoxymethane (AOM) and dextran sulfate sodium (DSS) model of CAC. Mice with CXCR2-

deficient bone marrow have significantly reduced MDSC homing to colon tumors and decreased 

colon tumorigenesis (70). Tumor-specific hypoxia increased recruitment of MDSCs 
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(CD11b+/Ly6C-/Ly6G+) to the lung premetastatic niche to promote metastasis. This effect was 

partly regulated through inhibition of NK cell-mediated cytoxicity (71). In head and neck 

squamous cell carcinoma, hypoxia increased recruitment of MDSCs in a process that was 

dependent upon both HIF-1a and HIF-2a induction of the potent chemoattractant migration 

inhibitory factor (MIF) (72). 

Tumor–associated macrophages  

The best-characterized immune cell type in the tumor microenvironment is tumor-

associated macrophages (TAMs). TAMs are highly prevalent in the tumor microenvironment and 

can be polarized into anti-tumor M1 or pro-tumor/immunosuppressive M2 phenotypes (73). M2 

TAMs regulate tumor angiogenesis and are an important source of VEGF (74). TAMs directly 

promote tumor growth via direct secretion of cytokines such as IL-6, which induces tumor-cell 

STAT3 signaling to promote growth and stem cell expansion (75), and have been directly linked 

to tumor invasion and metastasis (76, 77). TAMs inhibit anti-tumor immune responses through 

secretion of immune suppressive cytokines such as IL-10 and TGF-β (78). ARG1 expression in 

human monocytes and macrophages is controversial and has not been definitively shown in 

tumors (79). In rodents, however, there is clear evidence showing TAM expression of 

immunesuppressive ARG1 (80). TAMs reside in largely avascular and hypoxic regions of 

tumors (81). Tumor hypoxia is a potent driver of TAM recruitment, and induces the secretion of 

chemoattracants such as oncostatin M and eotaxin (82). Moreover, tumor HIF-1a directly 

induces recruitment of monocyte/macrophage cells through regulation of stromal-derived factor 

1a (SDF1a/CXCL12) expression (83). Expression of the SDF1a/CXCL12 receptor, CXCR4, is 

also regulated by hypoxia in TAMs (84). TAM polarization into a pro-tumorigenic M2 

phenotype can be directly regulated by tumor hypoxia. Tumor-derived lactic acid is induced by 
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hypoxia in a HIF-1a-dependent manner and promotes M2 macrophage polarization and regulates 

expression of M2 TAM markers ARG1 and VEGF (85). Importantly, blockade of TAM 

recruitment to hypoxic tumor areas and trapping TAMs in normoxic tumor microenvironments 

through loss of the Semaphorin 3A receptor Nrp1 decreased tumor growth through blunted 

angiogenesis and increased anti-tumor T-cell responses showing that hypoxia-induced 

localization of macrophages causes a switch from anti- to pro-tumor phenotypes. (86).  

Neutrophils  

A close relationship of neutrophils (polymorphonuclear neutrophils [PMNs]) and tissue 

hypoxia has been recently shown. The reactive oxygen burst that is critical for neutrophil 

function can affect local tissue oxygenation (87).  Although PMNs are highly prevalent in most 

solid tumor types, the specific role for PMNs is not completely understood. PMNs are highly 

plastic and can be differentiated into anti-tumor (N1) and pro-tumor (N2) phenotypes (88). Pro-

tumor PMNs regulate tumor growth through secretion of cytokines, ROS production, generation 

of matrix degrading enzymes, and angiogenesis (89). PMNs have also been shown to play an 

essential role in promoting metastasis in a murine breast cancer model (90). The specific role for 

PMNs in colon cancer has largely suggested a pro-tumorigenic role. However, PMNs expressing 

the hepatocyte growth factor (HGF) receptor, c-MET, were found to be anti-tumorigenic in 

mouse models of colon cancer (91). It is not currently well understood the contribution of PMNs 

to the initiation of most cancers, particularly colon cancer. Interestingly, PMNs have recently 

been demonstrated to reside in hypoxic tumor regions in epithelial uterine tumors and this effect 

was regulated by hypoxic tumor cell expression of PMN chemoattractants such as CXCL5 (92).  

 

1.5 Hypoxic regulation of tumor immune cell function. 
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Hypoxia is a hallmark of tumors and most infiltrating immune cells function in the 

hypoxic tumor environment. Immune cell expression of HIF-1a and HIF-2a regulates effector 

function (Table 1.1) (93). Tumor hypoxia has an essential role in regulating tumor inflammatory 

cell functions in addition to regulating immune cell recruitment (Fig. 1.2B). TAMs express both 

HIF-1a and HIF-2a (16, 94). TAM HIF-2a expression is highly correlated with tumor 

vascularity and tumor grade (95). Macrophage HIF-2a is critical in regulating macrophage 

inflammatory cytokine expression following LPS and IFNg challenge (96). Importantly, 

macrophage loss of HIF-2a impaired TAM infiltration of tumors and decreased tumor burden in 

murine models of HCC and CAC (96). TAM HIF-1a has also been shown to play an important 

role in TAM-mediated suppression of tumor-associated T-cells (97). TAMs cultured under 

hypoxic conditions exhibited increased suppression of T-cells in a HIF-1a-dependent manner 

without affecting TAM recruitment or polarization (97). Furthermore, tumor hypoxia regulates 

TAM expression of VEGF, suggesting a role for hypoxic TAMs in angiogenesis (98).  

Hypoxia and HIF-1a have an important role in regulating tumor-associated MDSC function. 

MDSCs cultured with the hypoxia-mimetic desferroxamine (DFO) robustly suppress T-cell 

proliferation and loss of HIF-1a decreases MDSC-mediated T-cell suppression (99). Hypoxia 

induces MDSC expression of miR-210 in a HIF-1a-dependent manner and miR-210 promotes 

MDSC-mediated T-cell suppression by increasing ARG1 expression and NO synthesis (100). 

Notably, HIF-1a increases mRNA expression of the immune checkpoint receptor programmed 

death ligand-1 (Pdl1) in MDSCs, which is essential for their T-cell immunosuppressive ability 

(101). MDSCs also have the capacity to differentiate into TAMs and HIF-1a is a critical 

mediator of this plasticity (99).  
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The role of PMN HIF-1a and HIF-2a in the tumor microenvironment are not well 

understood. However, it has been shown that PMN HIF-1a is an essential PMN survival factor 

through an NF-κB-dependent signaling loop (102). Constitutive HIF-2a activation increases 

PMN inflammatory responses and loss of HIF-2a increases susceptibility to apoptosis (103).  

Dendritic cells (DCs) are antigen-presenting cells that are central regulators of the adaptive 

immune response. DCs can sample tumor antigens and activate CD8+ T-cell responses and are 

currently in clinical trials as a vaccination strategy to prime anti-tumor immune responses (104). 

DCs function is directly regulated by hypoxia and HIFs. Activated dendritic cells increase 

expression of costimulatory molecules and T-cell activation in response to TLR stimulation 

when cultured in hypoxia in a HIF-1a-dependent manner (105). Alternatively, it has been 

suggested that hypoxic treated immature DCs have impaired antigen uptake and T-cell activation 

(106, 107). Moreover, hypoxia inhibits DC maturation and T-cell activation but simultaneously 

increases DC inflammatory cytokine secretion (108). Although it is unclear, this dichotomy may 

be due to maturation state of DCs. Further work is needed to address more precisely DC HIF-1a 

and HIF-2a in the progression of cancer and anti-tumor immune responses. 

Tumor hypoxia increases T-cell expression of FoxP3 through tumor secretion of TGF-β 

in vitro, suggesting hypoxic tumor cells can induce Treg differentiation (109). Tregs are more 

efficiently activated systemically than within the tumor microenvironment (110) and tumor 

secretion of cytokines such as TGF-β may be a critical source of systemic Treg activation and 

infiltration into tumors. CD4+ T-cell HIF-1a directly targets the Foxp3 promoter and increases 

immunosuppressive Treg cell production and function (111, 112). Loss of HIF-1a in Tregs 

decreased their immune-suppressive function (111). The specific role for hypoxia signaling in 

anti-tumor CD4+ and CD8+ T-cell responses is not completely clear. T-cell HIF-1a represses T-
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cell inflammatory responses, as depletion of HIF-1a significantly enhanced IFNg and IL-2 

production (113). However, other studies have shown that hypoxia signaling has the capacity to 

increase CD8+ T-cell function, as Vhl depletion in CD8+ T-cells increased T-cell effector 

responses and decreased tumor growth in a model of melanoma (114). Additionally, HIF-1a 

regulates expression of T-cell CD137, which augments anti-tumor immunity upon antibody-

mediated activation (115). More work is needed to further understand the specific roles of 

hypoxia and HIFs in anti-tumoral T-cell responses. In addition, hypoxia has cell intrinsic roles in 

CTLs and NK, and NKT cells, which have not been completely assessed in tumor biology. 

 

1.6 Hypoxia, stromal cells, & inflammation  

In addition to immune cells, the tumor microenvironment is also made up of vascular 

endothelial cells, fibroblasts, and pericytes, collectively known as the stroma. In tumor 

endothelial cells, depletion of HIF-1a reduced tumor metastasis, whereas depletion of 

endothelial HIF-2a increased tumor metastasis (116). This dichotomy was due to differential 

regulation of nitric oxide (NO) homeostasis by HIF-1a and HIF-2a. HIF-1a regulates 

expression of inducible nitric oxide synthase (iNOS), which catalyzes the conversion of l-

arginine to NO. iNOS was also an essential regulator of VEGF expression to promote increased 

tumor vascularity (116). Myeloid cell and mesenchymal stem cell NO production has been 

implicated in decreasing T-cell cytotoxicity; thus, it is possible that endothelial cell NO has a 

similar function (117-119). On the other hand, HIF-2a regulates expression of ARG1, which 

metabolizes l-arginine. ARG1 expression in immune cells is a potent suppressor of anti-tumor T-

cells. Future studies should determine if endothelial ARG1 also has an immune-suppressive role 

in the tumor microenvironment.  
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Fibroblasts are frequently recruited to tumors and make up a variable proportion of the 

tumor mass (120). Cancer-associated fibroblasts (CAFs) have a largely pro-tumor role and 

promote angiogenesis through VEGF secretion and increase invasion/metastasis through 

secretion of extracellular matrix-degrading matrix metalloproteinase enzymes (120-122). 

Conditional loss of CAF HIF-1a by Fsp1-Cre expression decreased TAMs in mouse mammary 

tumors suggesting that CAF HIF-1a is important for TAMs tumor infiltration (123). These 

results demonstrate that stromal cell HIF signaling can also modulate the microenvironment of 

tumors. However, the specific role for HIFs in the tumor endothelial cells and CAFs and the 

significance of this relationship to tumor inflammatory responses has not been fully elucidated. 

 

1.7 Hypoxia and intratumor heterogeneity  

Tumor growth is an evolving process that leads to an accumulation of genetic alterations. 

This evolutionary process in tumors leads to substantial spatial variation in which genetically 

distinct subclonal populations of cancer cells exist (124). Although not completely clear at 

present, a few studies have demonstrated that intratumor heterogeneity is an independent risk 

factor for poor survival in several tumor types (125). Mechanisms which drive regional 

heterogeneity in tumors are poorly described. Hypoxia-induced immune cell recruitment and 

modulation could be an important process in driving regional selective pressures in tumors. More 

work is needed to elucidate mechanisms by which hypoxia and immune cells establish 

microenvironments leading to intratumor heterogeneity. Although, through enhanced imaging it 

is clear that distinct subpopulation of hypoxic cells are observed in tumors (126-128). Through 

histopathologcal and molecular analysis it is clear that distinct tumor regions have different 

inflammatory infiltrates and this can be modulated by intratumoral hypoxia (129, 130).  
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1.8 Perspectives  

Hypoxia is an important microenvironmental feature in solid tumors and is essential for 

tumor growth. HIF-1a and HIF-2a have been extensively studied in regulating tumor glucose 

metabolism, angiogenesis, cell survival, proliferation and migration. Research in the past two 

decades has established an essential role for pro-tumor inflammatory response or anti-tumor-

immune response in the growth of most solid tumors and with this increased focus, Hanahan and 

Weinberg’s “hallmarks of cancer” were recently updated to include tumor inflammation and 

immune evasion as a major enabling factor in cancer progression (131). It is becoming clear that 

hypoxia is central to regulating the inflammatory response in tumors.  The work presented in this 

thesis clearly delineates a novel role for epithelial HIF-2a as a regulator of the colon tumor 

inflammatory microenvironment in colon cancer through recruitment of PMNs (Chapter 2). Our 

work also challenges the role for PMNs in colon cancer and suggest that PMNs while important 

for promoting growth and progression of established tumors, restrict the earliest stages of 

tumorigenesis (Chapter 3). Lastly, we have identified Myc-associated zinc finger (MAZ), a 

previously described HIF-2a interacting protein, as having a novel role in the inflammatory 

progression in colitis and colon cancer and regulation of oncogenic signaling pathways (Chapter 

4). Future studies should be directed towards a better understanding of the precise molecular 

mechanisms by which hypoxia and PMNs alters the balance between growth-promoting 

inflammation and the anti-tumor immune response, which may lead to better use of existing 

drugs that alter the HIF response as stand-alone therapies and improve the efficacy of standard 

chemotherapeutics.  
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Figures 
 
 

 
 
Figure 1.1. Activation of HIFs by hypoxia and inflammation. (A) HIF-a subunits are 
regulated by post-translational hydroxylation of two specific proline residues by PHD enzymes 
in normoxic conditions. This leads to VHL-mediated proteasomal degradation. As O2 
concentration drops or mitochondrial ROS production increases, HIF-α are stabilized, dimerize 
with ARNT, translocate to the nucleus and bind to HRE sequences in target genes. (B) HIFs are 
activated by inflammation through cytokine-induced Hif2a expression, NF-κB-mediated 
transcription of Hif1a, NF-κB-dependent ferritin iron sequestration, cytokine-mediated 
mitochondrial ROS production, and TCA metabolite succinate. 
 
 
 
 
 
 
 
 
 
 



	 28 

 
 
Figure 1.2. Hypoxic activation of tumor-promoting inflammatory responses. (A) As O2-
concentration declines in tumors, hypoxia directed secretion of cytokines and chemokines such 
as CXCL5, CXCL12, CCL28, and MIF to recruits pro-tumor immune cells including Tregs, 
TAMs, neutrophils, B cells, and MDSCs. (B) Recruited immune cells reside in hypoxic areas of 
tumors and hypoxia and HIFs regulate inflammatory cell effector functions to promote tumor 
growth. This includes suppression of anti-tumor immune responses, ROS production, 
angiogenesis, invasion/metastasis, drug resistance, and direct cytokine expression.  
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Tables 

Table 1.1: Regulation of immune cell effector functions by HIF-1α and HIF-2α 

	
Immune Cell Recruitment 

 
HIF-1α HIF-2α 

TAM Promotes chemoattraction via SDF-
1α/CXCL12 expression (83) Not Known 

DC Not known Not known 

PMN Not Known Represses GR-1+ granulocyte 
recruitment to lung tumors (43) 

MDSC Increased recruitment to HNSCC 
through MIF secretion (72) 

Increased recruitment to HNSCC 
through MIF secretion (72) 

Treg Regulates CCL28 expression in ovarian 
cancer (63) Not known 

Th17 Not known Not known 

CD4 Not known Not known 

B cell Repress B cell infiltration into 
pancreatic tumors (46) Not known 

	
Immune Cell Effector Function 

 
HIF-1α HIF-2α 

TAM T-cell suppression (97) Essential pro-tumor function and 
inflammatory responses (96) 

DC Not known Not Known 

PMN Decrease apoptosis (102) Regulates PMN-mediated 
inflammatory responses (103) 

MDSC T-cell suppression (99); Pdl1 
expression (101) Not known 

Treg Regulates Foxp3 expression (111); 
essential for immunesuppression Not Known 

Th17 Essential for Th17 differentiation (55) Not Known 

CD4 
Represses cytokine secretion (113); 
regulates CD137 to augment anti-tumor 
immunity (115) 

Not Known 

B cell Essential for B cell maturation (132) Not Known 
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Table 1.2 Mouse models  

Genotype Chapter Description  
VhlF/F 2 Villin-Cre expressing, Vhl WT 
VhlΔIE 2 Villin-Cre expressing, Vhl floxed 
Hif-1αF/F 2 Villin-Cre expressing, Hif-1α WT 
Hif-1αΔIE 2 Villin-Cre expressing, Hif-1α floxed 
Hif-2αF/F  2 Villin-Cre expressing, Hif-2α WT 
Hif-2αΔIE 2 Villin-Cre expressing, Hif-2α floxed 
Hif-2αLSL 2 Villin-Cre expressing, Hif-2α overexpression 
Hif-2α+/+  2 Villin-Cre expressing, Hif-2α WT 
Hif-2α+/+/ApcMin/+  2 Villin-Cre expressing, Hif-2α WT, ApcMin/+  
Hif-2αΔIE/ApcMin/+  2 Villin-Cre expressing, Hif-2α floxed, ApcMin/+  
Hif-2α+/+/ApcMin/+  2 Villin-Cre expressing, Hif-2α WT, ApcMin/+  
Hif-2αLSL/ApcMin/+  2 Villin-Cre expressing, Hif-2α overexpression, ApcMin/+  
LysMCre;Mcl1wt/wt 3 LysozymeM-Cre expressing, Mcl1 WT 
LysMCre;Mcl1fl/wt  3 LysozymeM-Cre expressing, Mcl1 Het 
LysMCre;Mcl1fl/fl  3 LysozymeM-Cre expressing, Mcl1 floxed 
Mrp8Cre;Mcl1wt/wt   3 Mrp8-Cre expressing, Mcl1 WT 
Mrp8Cre;Mcl1fl/fl   3 Mrp8-Cre expressing, Mcl1 floxed 
Cdx2-CreERT2;Apcfl/fl  3 Tamoxifen inducible Cdx2-CreERT2, Apc floxed 
vilMAZ 4 Villin-promoter MAZ overexpression  
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Chapter 22 

Epithelial Hypoxia-Inducible Factor 2a Facilitates the Progression of Colon Tumors 

through Recruiting Neutrophils 

 
Abstract 

Inflammation is a significant risk factor for colon cancer. Recent work has demonstrated 

essential roles for several infiltrating immune populations in the metaplastic progression 

following inflammation. Hypoxia and stabilization of hypoxia-inducible factors (HIFs) are 

hallmark features of inflammation and solid tumors. Previously, we demonstrated an important 

role for tumor epithelial HIF-2a in colon tumors, however, the function of epithelial HIF-2a as a 

critical link in the progression of inflammation to cancer has not been elucidated. In colitis-

associated colon cancer models, epithelial HIF-2a was essential in tumor growth. Concurrently, 

epithelial disruption of HIF-2a significantly decreased neutrophils in the colon tumor 

microenvironment. Intestinal epithelial HIF-2a overexpressing mice demonstrated that 

neutrophil recruitment was a direct response to increased epithelial HIF-2α signaling. RNA-seq 

analysis from HIF-2a overexpressing mice in conjunction with data mining from The Cancer  

                                                
2 This chapter represents published manuscript: Triner D, Xue X, Schwartz AJ, Jung I, Colacino 
JA, and Shah YM. “Epithelial Hypoxia-Inducible Factor 2a Facilitates the Progression of Colon 
Tumors Through Recruiting Neutrophils.” Molecular and Cellular Biology 2017. 



	 32 

Genome Atlas identified the neutrophil chemokine CXCL1 gene was highly upregulated in colon 

tumor epithelium in a HIF-2a dependent manner. Using selective peptide inhibitors of the 

CXCL1-CXCR2 signaling axis identified HIF-2a-dependent neutrophil recruitment is an 

essential mechanism to increase colon carcinogenesis. These studies demonstrate that HIF-2a is 

a novel regulator of neutrophil recruitment to colon tumors and is essential in shaping the pro-

tumorigenic inflammatory microenvironment in colon cancer. 

 

Introduction 

Colon cancer remains a significant public health concern and is the second-leading cause 

of cancer-associated deaths in the United States (1). Patients with chronic inflammation 

associated with inflammatory bowel disease (IBD), comprising of ulcerative colitis and Crohn’s 

Disease, are at an increased lifetime risk of developing colon cancer; these tumors are termed 

colitis-associated cancers (CAC) (2). The genetic changes of sporadic colon cancer have been 

well defined, and a comprehensive genetic analysis of CAC was recently reported (3). In contrast 

to sporadic colon cancer, CAC are associated with early loss of the TP53 tumor suppressor and 

less frequent inactivation of adenomatous polyposis coli (APC) (4). Inflammation is an important 

component in the progression of sporadic cancer and the inflammatory response is essential in 

the initiation and progression of CAC (5). The precise mechanisms that initiate the pro-

tumorigenic response following inflammation remain unknown.  

Hypoxia is a characteristic feature of IBD and nearly all solid tumors including those of 

the colon (6). Hypoxia promotes activation of the hypoxia-inducible factors (HIFs). HIFs consist 

of a heterodimer of an O2-labile α-subunit (HIF-1α, HIF-2α, and HIF-3α) and an O2-stable β-

subunit (ARNT) (7). HIFs regulate transcription of target genes that mediate cellular responses to 
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hypoxic microenvironments. HIFs are also essential factors promoting tumorigenesis and 

regulate several neoplastic processes including growth, evasion of apoptosis, and 

chemoresistance (8). Previously, we have shown that overexpression of intestinal epithelial HIF-

2α, but not HIF-1α, can increase colon tumor progression in mouse models of sporadic colon 

tumorigenesis (9, 10). The essential role and mechanisms by which HIF-2α regulates CAC have 

not been defined.  

Inflammation is a critical component of the colon tumor microenvironment and colon 

tumors are highly infiltrated with cells of both the innate and adaptive immune systems (5). 

Neutrophils are granulocytic myeloid cells with a critical role in the innate immune response (11) 

and are highly prevalent in colon tumor microenvironment (12), but the function of neutrophils 

in the initiation and progression of cancer remains controversial. Previous studies have shown 

neutrophils can be polarized into anti-tumorigenic (N1) and pro-tumorigenic (N2) (13). N2 

neutrophils promote tumorigenesis through suppression of anti-tumor immunity, activation of 

oncogenic signaling through secretion of neutrophil elastase, and activation of angiogenesis (14-

16). On the other hand, anti-tumorigenic N1 neutrophils can suppress tumorigenesis through 

direct tumor cytotoxicity and activation of anti-tumor immunity (17). Neutrophil recruitment into 

tumors can be regulated by tumor-derived secretion of a variety of chemokines and cytokines. 

However, the precise mechanisms mediating recruitment of neutrophils into colon tumors are not 

well defined.  

In the present study, we show that the colon epithelial hypoxic response through 

activation of HIF-2a is essential in colon tumorigenesis in mouse models of CAC. 

Mechanistically, intestinal epithelial HIF-2a is a critical mediator of neutrophil recruitment to 

colon tumors through direct transcriptional regulation of the potent neutrophil chemokine, 



	 34 

CXCL1, in colon tumors. Taken together, these studies provide novel insights into hypoxic 

inflammatory responses in the progression of colon tumors and suggest rationale for the targeting 

of HIF-2α in colon tumors.  

 
 
Methods 
 

Animals 

VhlF/F, VhlΔIE, Hif-1αΔIE, Hif-1αF/F, Hif-2αΔIE, Hif-2αF/F, Hif-2αLSL, Hif-2α+/+ mice were 

previously described (10, 18). For all experiments, male and female mice aged 6- to 8-weeks 

were used. To evaluate HIF-2α in colon tumorigenesis, Hif-2αΔIE and Hif-2αLSL were crossed to 

ApcMin/+. To induce colon tumorigenesis in Hif-2αΔIE/ApcMin/+, animals were treated with 2% 

DSS in their drinking water for 5 days then placed back on regular drinking water for 28 days. 

For AOM/DSS experiments, animals were injected I.P. with azoxymethane (10mg/kg) then 

cycled on 1.5% DSS in their drinking water for five days followed by regular drinking water for 

2-weeks for three cycles. For the CXCR2 pepducin experiment, following the third cycle, VhlΔIE 

mice were treated with CXCR2 pepducin (pal-RTLFKAMGQKHR) or control peptide (pal-

TRFLAKMHQGHKR) (Genscript) for 35 consecutive days (s.c. 2.5mg/kg) (19). All animal 

studies were carried out in accordance with Institute of Laboratory Animal Resources guidelines 

and approved by the University Committee on the Use and Care of Animals at the University of 

Michigan.  

 

Flow cytometry 

Single cell suspensions from fresh normal colon or colon tumor tissue were prepared by 

finely mincing tissue and incubating with Collagenase Type II (Sigma-Aldrich) (1mg/ml) at 37ο 



	 35 

C for 1-hour then passed through a 40!m cell strainer. Single-cell suspensions were stained in 

HBSS in 2% FBS with eFluor780-conjugated anti-CD45 (eBioscience), PE-conjugated anti-

Ly6G (BD), APC-conjugated anti-Cd11b (eBioscience), and eFluor450-conjugated anti-F4/80 

(eBioscience). Flow cytometry was performed using an LSRFortessa (BD). Flow cytometry data 

was analyzed using FlowJo software.  

 

Neutrophil isolation and transwell assay  

Bone marrow cells were suspended in HBSS buffer supplemented with 20mM HEPES 

and 0.5% FBS. The isolated bone marrow was disaggregated through 18G needle. To lyse the 

residual RBCs, 0.2% NaCl was added to the cells for 45 seconds and the reaction was stopped 

with 1.2% NaCl. The cells were resuspended in HBSS buffer and carefully layered over 62% 

Percoll. The centrifugation was performed at 2,200 rpm for 30 minutes. The cell pellet was 

washed twice with PBS and used for antibody staining to confirm purity. The antibodies used 

were PerCP-Cy5.5-conjugated anti-CD45 (ebioscience), APC-conjugated anti-CD11b 

(ebioscience), and PE-conjugated anti-Ly6G (BD) and eFluor450-conjugated anti-F4/80 

(ebioscience) antibodies. Debris (FSC-A/SSC-A) and doublets (FSC-A/FSC-H) were excluded 

and CD45+ cells were then sub-gated on CD11b+ and Ly6G+ neutrophils. The numbers indicate 

the relative percentages of each population. For transwell assay, 1x106 neutrophils were cultured 

in the top well in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS 

and 1% anti-biotic/anti-mycotic and fresh colon explants were plated in the bottom well. 

Migration was assessed at 2-hours after plating. 

 

Isolation of colon epithelial cells and intraepithelial lymphocytes 
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Isolation of colon epithelial cells (CECs) and intraepithelial lymphocytes was performed 

as previously described (10). Briefly, colon tissue was isolated and incubated with EDTA and 

DTT in Hanks’ balanced salt solution (HBSS). To separate CECs and IELs, the tissue was 

passed through a cell strainer and exposed to a 67%:44% Percoll gradient separation. CECs were 

collected from the top and IELs were collected at the interface of the Percoll gradient.  

 

Histology 

Colon tissue and tumors were excised, fixed, sectioned and stained as previously 

described (9). Antibodies for immunofluorescence were as follows: BrdU (eBioscience) Ki67 

(1:100) (Vector Labs), Ly6G (1:100) (BD), and Alexa Fluor® 488 goat anti-mouse IgG (1:500) 

(Molecular Probes Inc).  

 

RNA isolation, qPCR analysis and high throughput RNA sequencing (RNA-seq) 

RNA was isolated and qPCR analysis was conducted as previously described (9). Primers 

are listed in Table 2.1. RNA sequencing libraries were prepared using the TruSeq RNA Library 

Prep Kit v2 (Illumina) following the manufacturer’s recommended protocol. Libraries were 

sequenced using single end 50 cycle reads on a HiSeq 2500 sequencer (Illumina) at the 

University of Michigan DNA Sequencing Core Facility. 

 

RNA-seq data analysis 

Raw sequencing read quality was assessed utilizing FastQC. Reads were aligned to the 

reference mouse transcriptome (UCSC mm10) using Bowtie v 2.1.0.0 (20) and TopHat v 2.0.9 

(21). Default parameters were used for the alignment, with the exception of ““--b2-very-
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sensitive”, “--no-coverage-search” and “--no-novel-juncs”. Mate inner pair distances were 

estimated by TopHat, and these values were used in the alignment. Expression quantification and 

differential expression analysis between Hif-2αLSL, and Hif-2α+/+ mice was conducted using 

CuffDiff v2.1.1 (22) using the parameter settings “--multi-read-correct”, “--compatible-hits-

norm”, and “--upper-quartile –norm” for normalization of expression calculations across 

samples. For the CuffDiff analysis, we used UCSC mm10.fa as the reference genome and UCSC 

mm10.gtf as the reference transcriptome. Genes were considered differentially expressed 

between conditions at a false discovery rate adjusted p-value < 0.05 (23). 

 

Pathway analyses 

A directional analysis was conducted on all genes by including p-value of the differential 

expression test as a measure of effect size and log2 fold difference in expression as a measure of 

effect direction using iPathways (Advaita). Differentially expressed pathways were identified 

utilizing PANTHER Classification System (http://pantherdb.org/). KEGG biological pathways 

and Gene Ontology biological processes were considered differentially expressed at a p-value 

<0.05. 

 

CXCL1 luciferase reporter activity 

The Cxcl1 promoter was cloned using primers listed in Table 2.1. Cxcl1 promoter 

fragments were subsequently cloned into pGL3-basic vector (Promega). Luciferase activity 

assays were performed as previously described and normalized to β-galactosidase activity (24). 

HCT116 cells expressing MAZ targeting shRNAs were generated as previously described (10).  
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Enteroid culture 

Enteroids were generated from colon tissue from mice with inducible, colon epithelial 

specific deletion of Apc, activation Kras, and loss of Tp53 (Cdx2CreER;Apcfl/fl;KrasG12V;Tp53fl/fl). 

Mice were sacrificed and the colon was cut open longitudinally. All plasticware was pre-coated 

with 0.1% BSA and all steps were carried out on ice unless specified. The tissue was incubated 

for 15 minutes at room temperature in 2.5 µg/mL amphotericin B (Fungizone, ThermoFisher) in 

Dulbecco's Phosphate-Buffered Saline containing 25 µg/mL gentamicin (Gibco) and 50 µg/mL 

normocin (InvivoGen) (DPBSgn). Colon tissue was cut into lengthwise strips (approximately 3 

mm x 5 mm). Tissue was incubated in 10 mM DTT for 15 minutes at room temperature, 

changing to fresh DTT every 5 minutes. Tissue was rinsed in DPBSgn, rinsed once with 8 mM 

EDTA, and then incubated/rotated in 8mM EDTA at 4°C for 75 minutes. EDTA was removed 

and tissue was washed three times with DPBSgn. Tissue was then “snap-shook” 10x to manually 

separate colon crypts. The crypt-containing supernatant was immediately added to 1.5 mLs of 

cold FBS in a BSA-coated 50 mL tube and the shake step was repeated twice more. Crypts were 

spun at 40 x g for 2 minutes at 4°C. The pellet was washed in DPBSgn and spun again at 40 x g 

for 2 minutes at 4°C. The pellet was resuspended in a solution of 66% matrigel (Corning), 33% 

KGMG-media (KGMG Bullet Kit, Lonza), and 10 µM of the ROCK inhibitor, Y27632, 

(Miltenyi) at a concentration of 2 crypts/µL, accounting for 250 µL per well in a 6-well plate. 

Four diagonal strips of 60 µL of the culture was added to each well in a pre-warmed cell culture 

plate using a cut tip. After 30 minutes, media containing 10 µM Y27632 was added. Media was 

changed daily for three days. On the fourth day, cultures were treated with either vehicle or 100 

µM of the PHD inhibitor, FG-4592 (Cayman Chemicals), overnight and then lysed directly in 

Trizol for qPCR analysis.    
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Data analysis 

Error bars represent the standard deviation (25). P values were calculated by independent 

t test, paired t-test, one-way ANOVA, Dunnett t test, and two-way ANOVA. 

Immunofluorescence staining and Western blot analysis were quantified with Image J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 40 

Results 

HIF-2α is essential in inflammation-induced colon tumorigenesis 

 One of the most commonly utilized models to study intestinal tumorigenesis is the 

ApcMin/+ model. These mice harbor a germline truncation mutation to the Apc gene and 

spontaneously develop intestinal adenomas (26). However, this model does not completely 

recapitulate human colon tumorigenesis as the vast majority of these tumors develop in the small 

intestine with few colon tumors observed. Moreover, few of these tumors progress beyond 

adenoma and rarely become invasive. Inflammation is an essential component of the colon tumor 

microenvironment and previous studies have shown that acute colonic inflammation induced by 

dextran sulfate sodium (DSS) can increase the incidence of colon tumorigenesis in the ApcMin/+ 

mouse (27). To directly determine the functional role for HIF-2α expression in inflammation-

induced colon tumorigenesis, mice with intestine-epithelial specific disruption of HIF-2α (Hif-

2αΔIE) by villin-cre mediated recombination were crossed to ApcMin/+ mice (Hif-2αΔIE/ApcMin/+) 

and compared to littermate controls with intact HIF-2a expression (Hif-2αF/F/ApcMin/+). The Hif-

2αΔIE/ApcMin/+ mice had significantly reduced colon tumor number and reduced tumor burden 

(Fig. 2.1A-D). Furthermore, tumors from Hif-2αΔIE/ApcMin/+ mice had significantly increased 

apoptosis as measured by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling 

(TUNEL) staining (Fig. 2.1E and F). These results show that colon-epithelial HIF-2α is 

important in inflammation-driven colon tumorigenesis.  

 Epithelial expression of HIF-2α can promote inflammatory responses (10) and can 

modulate the immune environment in tumors. Colon tumors from Hif-2αF/F/ApcMin/+ had a 

significant increase in the pan-myeloid cell marker CD11b compared to adjacent normal tissue. 

However, tumors from Hif-2αΔIE/ApcMin/+ had a significant reduction in tumor CD11b compared 
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to those from Hif-2αF/F/ApcMin/+, suggesting tumor epithelial expression of HIF-2α regulates 

myeloid cell influx into tumors. To determine the precise myeloid cell type absent, qPCR 

analysis was conducted for monocyte, macrophage, and neutrophil markers. Significantly less 

expression of neutrophil markers Ly6g and myeloperoxidase (Mpo) were observed in Hif-

2αΔIE/ApcMin/+ colon tumors compared to Hif-2αF/F/ApcMin/+ mice, whereas no changes in 

expression of the monocyte marker CD68 or macrophage markers Emr1, iNos, or Arg1 were 

observed (Fig. 2.1G). Moreover, the calcium binding protein, S100a8, which is abundantly 

expressed by neutrophils is significantly reduced in both normal and tumor tissue from Hif-

2αΔIE/ApcMin/+ (Fig. 2.1H) (28). These data suggest epithelial cell expression of HIF-2α is 

essential for the recruitment of neutrophils in colon tumors. 

 To assess if HIF-2α is sufficient to drive colon tumorigenesis, mice with overexpression 

of O2-stable HIF-2α downstream of a loxP-STOP-loxP (LSL) cassette knocked-in to the Rosa26 

allele (10) were crossed to ApcMin/+ mice to generate Hif-2αLSL/ApcMin/+ mice. These mice develop 

significantly more colon tumors compared to age-matched HIF-2α wild-type controls (Hif-

2α+/+/ApcMin/+) at 3 months (Fig. 2.2A and B). Moreover, these tumors have significantly higher 

proportion of proliferating cells as shown by incorporation of Bromodeoxyuridine (BrdU) (Fig. 

2.2C and D). Concurrent with increased tumorigenesis, tumors from Hif-2αLSL/ApcMin/+ mice 

have higher presence of neutrophils compared to Hif-2α+/+/ApcMin/+ mice by Ly6G 

immunofluorescence (Fig. 2.2E). 

 

HIF-2α regulates intratumoral neutrophils in colitis-associated colon cancer 

 In order to appropriately model the role for HIF-2α in the inflammatory progression of 

colon cancer, we used the AOM/DSS model of CAC in mice with intestine-epithelial specific 
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deletion of HIF-2α (Hif-2αΔIE) (29). Hif-2αΔIE and littermate control mice (Hif-2αF/F) were 

injected i.p. with AOM (10mg/kg) on day 0 and treated with DSS (1.5%wt/vol) in their drinking 

water beginning day five for five-days and changed back to regular drinking water for two-weeks 

for three cycles. Consistent with the inflammation-induced ApcMin/+ model, Hif-2αΔIE mice have 

significantly reduced colon tumor number compared to littermate controls, suggesting HIF-2α 

expression is essential for inflammation-induced colon tumorigenesis (Fig. 2.3A). To analyze 

neutrophil infiltration in tumors, flow cytometry was performed on individual colon tumors. 

Colon tumors from Hif-2αΔIE had a significant reduction of CD11b+Ly6G+ neutrophils from the 

colon tumor microenvironment compared to Hif-2αF/F colon tumors (Fig. 2.3B and C). No 

changes in tumor macrophages (CD11b+/F4/80+) were observed (Fig. 2.3D and E). These data 

suggest epithelial HIF-2α modulates the colon tumor microenvironment through regulating 

infiltration of tumor-associated neutrophils.  

 

HIF-1α does not impact colon tumorigenesis or neutrophil recruitment 

Our studies suggest that HIF-2α is a major regulator of colitis associated colon 

tumorigenesis through recruitment of pro-tumorigenic neutrophils. To address overlap in 

function of HIF-2α and HIF-1α in colon tumorigenesis, we assessed the role of HIF-1α using 

mice with intestine epithelial disruption of HIF-1α (Hif-1αΔIE). In the AOM/DSS model of colitis 

associated colon cancer, no difference in tumorigenesis was observed in Hif-1αΔIE compared to 

WT controls (Hif-1αF/F) (Fig. 2.4A and B). Concurrently, no changes in expression of neutrophil 

markers (Ly6g and Cd11b) were observed in Hif-1αF/F colon tumor tissue relative to Hif-1αΔIE 

colon tumor tissue (Fig. 2.4C).  
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Colon-epithelial HIF-2α regulates neutrophil chemotaxis 

 To determine if epithelial HIF-2α can regulate neutrophil chemotaxis, we used a 

transwell assay. Neutrophils were isolated from bone marrow and were shown to be highly pure 

(over 80%) (Fig. 2.5A). Isolated colon explants used were from mice with epithelial deletion of 

Von-Hippel Lindau (VhlΔIE). Previous work has shown that these mice promote intestinal 

epithelial stabilization of HIF-2α in normoxic conditions (18). A dramatic increase in neutrophil 

migration through the transwell towards colon explants from VhlΔIE compared to WT (VhlF/F) 

colon tissue explants was observed (Fig. 2.5B and C). To more directly assess the effects of HIF-

2α, media was conditioned with colon tissue from HIF-2α-overexpressing mice (Hif-2αLSL) and 

this led to a significant increase in neutrophil transwell chemotaxis compared to colon tissues 

explant from wild-type littermate mice (Hif-2α+/+) (Fig. 2.5B and C). These data demonstrate 

that HIF-2a is important in neutrophil recruitment in vitro. Flow cytometery analysis of normal 

colon tissue from mice overexpressing HIF-2α in the intestinal epithelium (Hif-2αLSL) showed a 

significant increase in intra-colonic neutrophils compared to wild-type littermate mice (Fig. 2.5D 

and E). Together, these data demonstrate an essential and sufficient role of epithelial HIF-2α in 

neutrophil recruitment in the colon.  

 

CXCL1 is highly induced by intestinal epithelial HIF-2a. 

Neutrophils are recruited to solid tumors through tumor secretion of cytokines and 

chemokines (30). To determine the precise mechanism for how epithelial HIF-2α recruits 

neutrophils into intestine, RNA-seq analysis were performed in colon tissues from Hif-2αLSL and 

WT (Hif-2α+/+) mice. Pathway analysis identified neutrophil attractive chemokines such as 

Cxcl1, Cxcl2 and Cxcl5 and neutrophil markers such as S100a8 were highly increased in the 
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colon tissues from Hif-2αLSL mice (Fig. 2.6A and B). Expression of several members of the CXC 

family of chemokines was examined by qPCR from colon tissue of HIF-1α overexpressing mice 

(Hif-1α LSL), and Hif-2α LSL mice, and littermate controls. Only Cxcl1 expression was robustly 

increased (p<0.001) in colon tissue in Hif-2α LSL mice compared to WT and Hif-1α LSL mice (Fig. 

2.6C). These data suggest that activated epithelial HIF-2α in colon tumors may recruit 

neutrophils through secretion of cytokines and chemokines. 

 

HIF-2α is an essential regulator of CXCL1 expression in colon tumors 

 Oncomine data analysis indicated that CXCL1 was highly increased in human 

colon tumors compared to normal colon tissues (Fig. 2.7A and B). We further confirmed by 

qPCR that CXCL1 was significantly increased in a set of colon tumor tissues compared to their 

adjacent normal colon tissues (Fig. 2.7C). CXCL1 expression is induced in colon tumors but the 

major regulators of CXCL1 expression in colon tumors are currently unknown. Consistent with 

patient tumor analysis, CXCL1 expression was highly induced in AOM/DSS-induced colon 

tumors in Hif-2αF/F mice compared to normal adjacent tissue. This increase was significantly 

attenuated from tumors isolated from Hif-2αΔIE mice (Fig. 2.7D and E). No difference in Cxcl1 

expression was observed in tumors from Hif-1αF/F or Hif-1αΔIE mice (Fig. 2.7F). 

The tumor microenvironment is a complex milieu of tumor epithelial cells, immune cells, 

and stromal cells. Previous genetic analysis has suggested that in tumor xenograft models, 

greater than 99% of the Cxcl1 transcripts are expressed directly by the tumor epithelial cells 

relative to tumor stromal cells (31). To evaluate if epithelial hypoxia signaling directly regulates 

Cxcl1 expression, we generated colon enteroids from mice with colon epithelial specific deletion 

of Apc, activation of the oncogene Kras, and loss of Tp53 tumor suppressor, which are 
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commonly observed mutations in human colon tumors (Fig. 2.7F). Colon enteroids are an ideal 

model to mechanistically study CRC because they maintain cell polarization and tight junctions 

in three-dimensions and the cultures can be generated from primary colon epithelial tissue 

harboring mutations that are most commonly selected for in human colon tumors (32). To 

activate hypoxia signaling, these enteroids were treated with the potent PHD inhibitor FG-4592, 

which stabilizes HIF in normoxic conditions (33). Compared to untreated enteroids, activation of 

hypoxia significantly induced Cxcl1 expression, demonstrating that epithelial hypoxia signaling 

is sufficient to activate Cxcl1 expression (Fig. 2.7G). Taken together, our data suggest that 

epithelial HIF-2α is a master regulator of CXCL1 expression in colon tumors.  

 

HIF-2α-regulates CXCL1 promoter through HRE- and MAZ-dependent mechanisms 

 HIFs activate target gene transcription through binding to hypoxia response elements 

(HREs), which are defined as 5’-RCGTG-3’, in promoter and enhancer regions. Analysis of the 

CXCL1 proximal promoter identified six canonical HREs clustered at distal and proximal sites 

(Fig. 2.8A). The proximal promoter region of Cxcl1 was cloned into the pGL3-luciferase reporter 

construct. Using co-transfection in HCT116 cells, overexpression of an oxygen-stable HIF-2α 

was shown to directly activate the Cxcl1 promoter similar to HIF-2α activation of the well-

characterized HREs of the enolase promoter (P2.1) (Fig. 2.8B). To evaluate the dependence of 

these HREs in HIF-2α-mediated CXCL1 induction, a series of deletion constructs to disrupt the 

HREs were generated. HIF-2α activation of Cxcl1 promoter was attenuated when the distal 

HREs were deleted and completely ameliorated when both the distal and proximal HREs were 

removed. These data demonstrate that the HREs are essential for HIF-2α-mediated CXCL1 

promoter induction (Fig. 2.8C). 
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It has been suggested that target gene specificity for HIF-1α and HIF-2α is mediated by 

interactions with other transcription cofactors (34). Previously, our work has shown that HIF-2α 

inflammatory target gene activation is dependent upon interaction with an essential cofactor, 

Myc-associated zinc finger (35) (10, 36). MAZ is a cys2his2-type zinc finger transcription factor 

that is highly upregulated in several human cancers and regulates tumor growth (37). To 

determine if MAZ is essential for HIF-2α-dependent CXCL1 promoter induction, we used two 

targeting shRNAs to generate stable knockdowns of MAZ expression in HCT116 cells (MAZ 

sh1 and MAZ sh2) (Fig. 2.8D). Compared to cells stably expressing scrambled shRNA (Ctrl 

cells), MAZ sh1 & MAZ sh2 significantly attenuated CXCL1-promoter activation in response to 

HIF-2α (Fig. 2.8E).  

 

CXCR2 inhibition reduces HIF-2α-driven colon tumorigenesis 

 CXCL1 induces neutrophil recruitment through binding its cognate receptor, CXCR2, 

expressed on the cell surface of neutrophils. To determine if CXCL1 signaling through CXCR2 

is the major mechanism by which epithelial HIF-2α mediates neutrophil recruitment, we use a 

well-characterized CXCR2 blocking peptide mimetic, CXCR2 pepducin. CXCR2 is a G-protein 

coupled receptor and pepducins block CXCR2 signaling and decrease neutrophil influx into sites 

of inflammation and tumors (38, 39). Bone marrow derived neutrophils were isolated and treated 

with the CXCR2 pepducin (Pep) or control pepducin (Veh). Blocking CXCR2 completely 

attenuated HIF-2a-induced neutrophil migration (Fig. 2.9A and B). 

We next assessed the functional role for neutrophil recruitment in HIF-2α-driven colon 

tumorigenesis. To investigate this axis, we used the AOM/DSS model of CAC in VhlΔIE mice. 

Previous work has shown these mice have a higher propensity to develop colon tumors in a HIF-
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2α-dependent manner (9). Unlike the Hif-2αLSL mice, VhlΔIE mice can survive 3 cycles of DSS. 

To confirm that epithelial deletion of Vhl increases Cxcl1 expression, we isolated purified colon 

epithelial cells (CECs) and intraepithelial lymphocytes (40) in VhlΔIE and VhlF/F mice. Cxcl1 

expression is significantly increased in CECs of VhlΔIE mice compared to VhlF/F mice but not in 

intraepithelial lymphocytes (IELs) (Fig. 2.9C). Moreover, CXCL1 expression is induced in 

VhlΔIE mice in a HIF-2α-dependent manner using mice with double disruption of VHL and HIF-

2α (VhlΔIE/ Hif-2αΔIE)  (Fig. 2.9D). To address the role of CXCR2-mediated neutrophil 

recruitment to colon tumors, VhlΔIE were randomized to treatment with Ctrl-pepducin (Veh) or 

CXCR2-pepducin (Pep) once daily for days 65-100 by subcutaneous injection following the third 

cycle of DSS, (Fig. 2.9E). Compared to littermate control VhlF/F mice, VhlΔIE mice treated with 

Ctrl-pepducin developed significantly more colon tumors and had higher tumor burden and 

increased neutrophil influx (Fig. 2.9F-H). The VhlΔIE mice treated with CXCR2-pepducin 

significantly reduced HIF-2α-driven colon tumorigenesis and neutrophil infiltration. In addition, 

tumors from VhlΔIE mice had a significant increase in tumor cell proliferation measured by Ki67 

immunofluorescence staining, which was attenuated in VhlΔIE mice treated with CXCR2-

pepducin (Fig. 2.9I and J). Taken together, our studies suggest that HIF-2α-mediated neutrophil 

recruitment through CXCL1-CXCR2 axis is essential for its role in colon tumorigenesis.  

 

Discussion 

Inflammation and hypoxia are intimately linked and hypoxia has been previously shown 

to regulate the inflammatory microenvironment of many tumor types. Hypoxia increases ovarian 

cancer tumor growth through secretion of CCL28, which facilitates recruitment of immune 

suppressive T regulatory (Treg) cells to promote tumor growth (41). In pancreatic ductal 
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adenocarcinoma, HIF-1α is a tumor suppressor through blockade of pro-tumorigenic B cell 

recruitment to tumors (42). Interestingly, our data shows that epithelial expression of HIF-2α can 

modulate the inflammatory milieu of colon tumors through regulating the recruitment of 

intratumoral neutrophils. Hypoxic regulation of cytokines and chemokine secretion from tumor 

cells can modulate neutrophil recruitment to promote hepatocellular carcinoma (43). 

Additionally, neutrophils tend to be localized to hypoxic zones within uterine tumors (25). 

Mechanistically, we have discovered a novel HIF-2α target gene, CXCL1. CXCL1 is a member 

of the C-X-C family of chemokines and is a potent neutrophil chemoattractant to sites of 

inflammation or tumors through binding its cognate receptor, CXCR2 (44). Consistent with our 

work showing that epithelial CXCL1 is induced by HIF-2a, previous studies using xenograft 

models demonstrate the vast majority (>99%) of Cxcl1 transcripts in colon tumors are derived 

from tumor epithelial cells (31). Our studies clearly demonstrate that the epithelial HIF-2a can 

regulate Cxcl1 induction in colon tumors.  

The functional role for neutrophils in the progression of tumors is not clear, as both anti-

tumorigenic (N1) and pro-tumorigenic (N2) neutrophils have been described (13). Neutrophils 

expressing the hepatocyte growth factor (HGF) receptor, c-MET, have been shown to be largely 

anti-tumorigenic in colon tumors (35). However, large-scale meta-analysis studies have shown 

that neutrophils correlate highly with adverse outcomes across more than 25-different tumor 

types (45). Neutrophils are critical mediators of metastasis in murine models of breast cancer 

(40). It has also been suggested that neutrophils are essential in the inflammatory progression of 

colon tumors as depletion of neutrophils with anti-Ly6G antibody significantly reduced colon 

tumors (46). Moreover, a high neutrophil to lymphocyte ratio portends poor prognosis for colon 

cancer patients (47). In our study, we show that HIF-2α-driven colon tumorigenesis is dependent 
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upon neutrophil influx into colon tumors through the neutrophil CXCL1 receptor, CXCR2. A 

critical role for CXCR2 in the initiation and progression of colon cancer and pancreatic ductal 

adenocarcinoma has been described (48, 49). Inhibition of neutrophil influx via CXCR2 

decreased HIF-2α-driven colon tumorigenesis, progression, and proliferation. These studies 

demonstrate mechanistically how hypoxic inflammatory responses can modulate the colon tumor 

immune microenvironment to promote tumor growth. More work is needed to determine the 

precise mechanisms by which neutrophils promote colon tumorigenesis.  

The studies reported herein suggest that that epithelial HIF-2α, but not HIF-1α, 

selectively modulates neutrophil recruitment into tumors without affecting other myeloid cell 

populations. Neutrophils are critical to setup an oxygen gradient in the intestine (50). These 

oxygen gradients promote tissue repair in a HIF-1α-dependent manner. HIF-1α is highly active 

in intestinal inflammation and genetic deletion of intestinal epithelial HIF-1α exacerbates colitis 

(51). HIF-1α is an essential regulator of expression of intestinal barrier protective genes such as 

intestinal trefoil factor (Itf), CD73, and multidrug resistance gene 1 (Mdr-1) (51, 52). The 

bidirectional signaling of hypoxia and neutrophil may be a feed forward mechanism mediated by 

HIF-2α critical to establish an oxygen gradient during acute inflammation for HIF-1α-dependent 

injury repair (50).  However, our data suggest in chronic inflammation this mechanism 

exacerbates tumorigenesis. 

Previously, we have shown that activation of HIF-2α can promote colon tumor cell 

growth in a cell-autonomous manner. Epithelial expression of HIF-2α is a potent activator of 

inflammatory responses and increases the progression of intestinal inflammation (10). 

Additionally, HIF-2α is a transcriptional regulator of pro-inflammatory cyclooxygenase 2 

(COX2) and microsomal prostaglandin e synthase (mPGES) to increase tumor inflammation and 
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treatment of HIF-2α-overexpressing mice with the anti-inflammatory, nimesulide, can reduce 

colon tumorigenesis (24). Interestingly, HIF-1α activation has no effect on colon tumorigenesis 

(53). Similarly, we find that HIF-1α has no effect on the expression of Cxcl1. Previous studies 

have highlighted the dichotomous role for HIF-1α and HIF-2α in several cancer models. For 

example, in renal cell carcinoma, HIF-2α is essential for tumor cell growth whereas HIF-1α 

decreases cell growth (54). In pancreatic cancer, genetic mouse models demonstrate that HIF-2α 

is essential for tumorigenesis whereas HIF-1α decreases tumorigenesis through repression of 

infiltrating pro-tumorigenic B cells (55, 56). However, in lung cancer it has been shown that 

HIF-2α exerts a tumor suppressive effect (57). These studies demonstrate the careful need to 

evaluate the tumor specific roles for HIF-1α and HIF-2α for therapeutic targeting. HIF-2α-

specific inhibitors have been developed which target a novel ligand-binding pocket that is 

located within the PAS-B domain of HIF-2α but not in HIF-1α (58). These novel tools may 

provide an exciting therapeutic avenue to decrease tumor cell proliferation as well as decrease 

tumor-promoting inflammatory responses in colon cancer.  
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Table 2.1 Primer list 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Cloning Primers 
pGL3-mCxcl1-luc1685 F 5'-ACGTGGTACCAGCTAATCTTAGGA 
pGL3-mCxcl1-luc345 F 5'-ACGTGGTACCCACTGTAGTACACC 
pGL3-mCxcl1-luc285 F 5'-ACGTGGTACCTGACCCACCTCG 
pGL3-mCxcl1-R 5'-ACGTCTCGAGGTGGAGCTCTAG 

qPCR Primers 
mCxcl1 F 5'-TCTCCGTTACTTGGGGACAC 
mCxcl1 R 5'-CCACACTCAAGAATGGTCGC 
hCxcl1 F 5'-AACAGCCACCAGTGAGCTTC 
hCxcl1 R 5'-GAAAGCTTGCCTCAATCCTG 
CD11b F 5'-ATGGACGCTGATGGCAATACC 
CD11b R 5'-TCCCCATTCACGTCTCCCA 
CD11c F 5'-CTGGATAGCCTTTCTTCTGCTG 
CD11c R 5'-GCACACTGTGTCCGAACTCA 
Emr1 F 5'-CCCCAGTGTCCTTACAGAGTG 
Emr1 R 5'-GTGCCCAGAGTGGATGTCT 
CD68 F 5'-CTTCCCACAGGCAGCACAG 
CD68 R 5'-AATGATGAGAGGCAGCAAGAGG 
iNOS F 5'-ACCCTAAGAGTCACCAAAATGGC 
iNOS R 5'-TTGATCCTCACATACTGTGGACG 
Ly6G F 5'-TGGACTCTCACAGAAGCAAAG 
Ly6G R 5'-GCAGAGGTCTTCCTTCCAACA 
Mpo F 5'-AGTTGTGCTGAGCTGTATGGA 
Mpo R 5'-CGGCTGCTTGAAGTAAAACAGG 
S100a8 F 5'-CCAATTCTCTGAACAAGTTTTCG 
S100a8 R 5'-TCACCATGCCCTCTACAAGA 
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Figure 2.1. HIF-2a is essential for inflammation-induced colon tumorigenesis. 
(A) Hif-2α+/+/ApcMin/+ (n=5) and Hif-2αΔIE/ApcMin/+ (n=7) were treated for 5-days with DSS and 
analyzed 28-days following final day of DSS administration. (B) Tumor number, (C) tumor 
burden and (D) Gross image in the colon from Hif-2α+/+/ApcMin/+ and Hif-2αΔIE/ApcMin/+ mice 25 
days following DSS administration.  (E) Representative images of H&E analysis and TUNEL 
staining, (F) quantification of TUNEL positive cells in tumor tissue from Hif-2α+/+/ApcMin/+ and 
Hif-2αΔIE/ApcMin/+ mice. (G) qPCR expression analysis of myeloid cell markers and (H) S100a8 
in tumors and/or adjacent normal tissue from Hif-2α+/+/ApcMin/+ and Hif-2αΔIE/ApcMin/+.  * 
p<0.05, ** p<0.01 and *** p<0.001 compared to Hif-2α+/+/ApcMin/+mice, ## p<0.01, ### 
p<0.001 compared to normal tissue. Statistical analysis was performed by student’s t-test or two-
way ANOVA followed by Sidak's multiple comparisons test. 
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Figure 2.2. HIF-2a increases inflammation-induced colon tumorigenesis. 
(A) Tumor number from colon tissue of Hif-2α+/+/ApcMin/+ (n=8) and Hif-2αLSL/ApcMin/+ mice 
(n=9). (B) Representative images of H&E analysis. (C) Representative images of BRDU 
incorporation in tumors from Hif-2α+/+/ApcMin/+ and Hif-2αLSL/ApcMin/+ mice. (D) Quanitficaiton 
from (C). * p<0.05. (E) Representative images of Ly6G immunofluorescence in tumors from 
Hif-2α+/+/ApcMin/+ and Hif-2αLSL/ApcMin/+ mice.  Statistical analysis was performed by Student’s 
t-test.  
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Figure 2.3. Disruption of intestinal epithelial HIF-2a decreases colon tumors and 
intratumoral neutrophils in a colitis-associated colon cancer model (CAC).  
(A) Tumor number from colons of Hif-2αF/F (n=11) and Hif-2αΔIE (n=14) following AOM/DSS 
induced CAC. (B) Flow cytometry analysis of CD11b/Ly6G double positive cells or (D) 
CD11b/F4/80 double positive cells gated from CD45+ cells in tumors from Hif-2αF/F and Hif-
2αΔIE mice. Tumors were collected from individual mice. (C and E) Quantification from flow 
cytometry data in tumors ** p<0.01 and *** p<0.001 compared to Hif-2α+/+ mice. Statistical 
analysis was performed by Student’s t-test.  
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Figure 2.4. HIF-1α does not impact colon tumorigenesis or neutrophil recruitment.  (A) 
Tumor number from colons of Hif-1αF/F (n=8) and Hif-1αΔIE (n=6) following AOM/DSS induced 
CAC. (B) Representative images of H&E staining from Hif-1αF/F and Hif-1αΔIE tumor tissue. (C) 
qPCR of Cd11b and Ly6g expression in tumor tissue from (A). Statistical analysis was 
performed by Student’s t-test. 
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Figure 2.5. Intestinal HIF-2a activation promotes recruitment of neutrophils to the colon. 
(A) Flow cytometric analysis of CD11b/Ly6G staining of bone marrow isolated neutrophils. (B) 
Representative images of neutrophil or (C) quantification of cell numbers migrated into the 
bottom well of a transwell towards VhlF/F, VhlΔIE, Hif-2α+/+, Hif-2αLSL colon tissue explants. (D) 
Flow cytometry analysis and (E) quantification of CD11b/Ly6G double positive cells gated from 
CD45+ cells in colon tissue from Hif-2αLSL mice compared to Hif-2α+/+ mice. * p<0.05 and *** 
p<0.001 compared to VhlF/F or Hif-2α+/+ mice. Statistical analysis was performed by Student’s t-
test.  
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Figure 2.6. Activation of intestinal epithelial HIF-2a increases CXCL1 expression. Volcano 
plot of RNA-Seq analysis in colon tissues from Hif-2α+/+ (n=6) and Hif-2αLSL mice (n=6). (B) 
Heatmap of genes related to cytokine activity enriched by PANTHER gene ontology analysis 
from Hif-2α+/+ and Hif-2αLSL colon tissues. (C) qPCR analysis of CXC-family of chemokines in 
colon tissue from WT,  Hif-1αLSL, and Hif-2αLSL mice. * p<0.05 and ** p<0.001 compared to 
normal colon tissues. Statistical analysis was performed by one-way ANOVA followed by 
Dunnett's multiple comparisons test. 
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Figure 2.7. Epithelial HIF-2a is essential for CXCL1 expression in colon tumors  
Oncomine database analysis of CXCL1, CXCL2 and neutrophil markers in several independent 
microarrays analysis from colon cancer and normal tissue. CXCL1 gene expression in (B) The 
Cancer Genome Atlas (TCGA) dataset and (C) a set of 8 pairs of colon tumor and adjacent 
normal tissue collected at University of Michigan (Umich). (D) qPCR analysis of Cxcl1 mRNA 
or (E) ELISA analysis of CXCL1 protein in CAC tumor tissue and adjacent normal tissue from 
Hif-2αF/F and Hif-2αΔIE  mice. (F) qPCR analysis of Cxcl1 expression in tumors from Hif-1αF/F 
and Hif-1αΔIE mice. (G) Representative image of colon enteroids following deletion of Apc and 
TP53 and activation of Kras. (H) qPCR of Cxcl1 expression in colon enteroids treated with FG-
4592 or vehicle control (Ctrl). * p<0.05. *p<0.05, ** p<0.01 and *** p<0.001 compared to WT, 
Hif-2αF/F or Ctrl. ## p<0.01, ### p<0.001 compared to normal tissue. Expression was normalized 
to β-Actin. Statistical analysis was performed by Student’s t-test, paired t-test or two-way 
ANOVA followed by Sidak's multiple comparisons test. 
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Figure 2.8. HIF-2a and MAZ are essential for CXCL1 activation.  
Analysis of the Cxcl1 proximal promoter shows there are six HREs present (I-VI) in proximal 
and distal areas. (B) Cxcl1 or the enolase (P2.1) promoter luciferase activity assays in HCT116 
cells expressing HIF-2α. (C) Cxcl1 promoter luciferase activity assays with deletion constructs in 
HCT116 cells expressing HIF-2α. (D) qPCR and western blot analysis of MAZ knockdown 
efficiency in HCT116 cells expressing MAZ targeting shRNAs (MAZ sh1 & MAZ sh2). (E) 
CXCL1-promoter luciferase activity assay in HCT116 cells expressing MAZ targeting shRNAs. 
*p<0.05, ** p<0.01 and *** p<0.001 compared to EV or Ctrl. Statistical analysis was performed 
by two-way ANOVA followed by Sidak's multiple comparisons test. 
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Figure 2.9. HIF-2a-mediated neutrophil recruitment is essential for colon tumorigenesis. 
(A) Representative images of neutrophils and (B) quantification from Ctrl pepducin (Veh) or 
CXCR2 pepducin (PEP) treated migrated into the bottom well of a transwell towards Hif-2α+/+ 
and Hif-2αLSL colon tissue explants. (C) qPCR analysis of Cxcl1 expression in colon epithelial 
cells (CEC) compared to intraepithelial lymphocytes (IEL) of VhlF/F and VhlΔIE mice. (D) ELISA 
analysis of CXCL1 protein in colon tissue of VhlF/F (n=6), VhlΔIE (n=3), VhlΔIE/Hif-2αΔIE (n=4) 
mice. (E) Schematic diagram for AOM/DSS-induced CAC and CXCR2 pepducin treatment 
protocol. (F) Tumor counting (G) tumor burden analysis, (H) representative images of H&E 
staining and Ly6G staining and (I) Ki67 staining and (J) quantification of Ki67 staining in colon 
tissue from VhlF/F (n=4), VhlΔIE + Veh (n=4), and VhlΔIE + PEP (n=3) groups. ** p<0.01 
compared to VhlF/F.  ## p<0.01 compared to VhlΔIE + CXCR2 pepducin. Statistical analysis was 
performed by one-way ANOVA followed by Dunnett's multiple comparisons test. 
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Chapter 3 

Neutrophils Restrict Tumor-Associated Microbiota to Dampen Colon Tumor Growth and 

Progression 

 

Abstract 

Neutrophils are among the most prevalent immune cells in the microenvironment of 

colon tumors. Neutrophils are largely believed to favor colon tumor growth and are predictive 

biomarkers for colon cancer patients. Clinical trials targeting neutrophil trafficking in cancer are 

initiated. However, very little is known about neutrophil function in the early steps of colon 

tumorigenesis. To clearly understand the role of neutrophils in colon cancer we utilized mice 

with constitutive genetic depletion of neutrophils. In an inflammation-induced and sporadic 

colon tumor models, depletion of neutrophils increased progression and invasion of colon 

tumors. Mechanistically, neutrophil depletion correlated with increased tumor-associated 

bacteria, high intratumoral B-cells, increased proliferation, heightened DNA damage, and 

heightened inflammatory response through IL-17 and NF-"B. Antibiotic treatment or B-cell 

depletion in neutrophil deficient animals dramatically reversed tumor progression. Our findings 

indicate a critical role for neutrophils in the repression of colon tumor growth and progression. 
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Introduction 

It has become widely appreciated that in addition to genetic hits such as APC loss, KRAS 

activation, and TP53 loss, the tumor immune response plays a critical role in the neoplastic 

progression of colon cancer (1). Chronic inflammation of the colon, in the form of inflammatory 

bowel disease (IBD), is a significant risk factor for the development of colon cancer. The colon 

tumor immune microenvironment consists of cells in the innate and adaptive response with 

variable roles in tumor growth (1). Anti-tumor immune cells, such as T-cell and natural killer 

cells dampen tumorigenesis and tumor progression and pro-tumorigenic immune cells such as T-

regulatory cell and tumor associated macrophages foster tumor growth and immune evasion (2). 

As tumors progress, mechanisms such as decreased tumor O2 tension alter immune cell 

differentiation and effector functions to tip the balance in favor of the pro-tumor immune 

response and enhance tumor growth and progression (2). Better understanding of the tumor 

immune response may provide novel therapeutic avenues for treatment of disease. 

Polymorphonuclear neutrophils (PMNs) are myeloid cells of the innate immune system 

known for their role in the acute host response to infection. PMN effector functions consist of 

bacterial phagocytosis, generation and release of cytotoxic granule proteins, and production of 

superoxide radicals (3). Evidence has emerged that PMNs are among the most prevalent immune 

cells type in several human cancers, including colon cancer, pancreatic cancer, and lung cancer 

(4). The functional role for PMNs in the progression of cancer has largely been suggested to be 

pro-tumorigenic through suppression of antitumor immunity and direct activation of tumor cell 

growth (5, 6). Recent meta-analysis demonstrates PMNs have the highest correlation with 

adverse outcomes across all cancers (7). Despite these observations, the primary contribution of 

PMNs to the initiation of colon tumorigenesis is not clear. Therefore, a more thorough 
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investigation of PMNs in cancer is necessary to identify their potential for therapeutic targeting 

in colon cancer.  

The majority of studies have relied upon antibody mediated PMN depletion and PMN 

trafficking receptor inhibitors which may have off-target effects and may not completely 

eradicate intra-tumoral PMNs in colon cancer. In the current study, a murine model of genetic 

PMN depletion was assessed in mouse models of colitis and colon cancer. Genetic depletion of 

PMNs robustly enhanced tumor progression and invasion in a colitis-associated tumor model as 

well as a sporadic colon tumor model. Interestingly, genetic PMN depletion promoted a dramatic 

expansion of tumor-associated bacteria that was critical for the increased tumor progression. This 

also led to accumulation of intra-tumoral B-cells which played an important role in increased 

tumor growth and progression. Therapeutic targeting of granulocytic myeloid cells and PMNs is 

currently being evaluated for clinical utility in several cancer types (4). Our data delineates an 

important role for neutrophils in blunting colon tumor progression and invasion and provides 

caution against anti-PMN therapy in colon cancer, particularly in the context of preceding 

inflammation and in earliest stages of neoplastic disease.  

 

Methods 

Animals 

For all experiments, male and female mice aged 6 to 8-weeks were used. All mice are 

C57BL/6 background. LysMCre;Mcl1fl/fl mice were previously described (8). All animals used are 

C57BL/6 background. To delineate the role of neutrophils in colon cancer, the AOM/DSS model 

was utilized. For AOM/DSS experiments, animals were injected I.P. with 10mg/kg 

azoxythmethane then cycled on and off DSS in their drinking water for seven days for three 
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cycles interspersed with two weeks of regular drinking water beginning five-days following 

AOM injection. For acute DSS experiments, animals were treated with 2.5% DSS in drinking 

water for seven days then changed back to regular drinking water for two days. Cdx2-

CreERT2;Apcfl/fl mice have been previously described (9). Mrp8-Cre  expressing mice were 

previously described and crossed to Mcl-1fl/fl mice (10). Bone marrow transplantation was 

performed by isolation of single cell suspension of bone marrow cells from femur and tibia of 6- 

to 8-week old mice LysMCre;Mcl1fl/fl, Mrp8Cre;Mcl1fl/f, and LysMCre;Mcl1wt/wt mice. 1x10^6 bone 

marrow cells were injected into the tail vein of recipient mice lethally irradiated with two split 

doses of 6gy radiation four-hours apart. Mice were supplemented with Neomycin (1g/ml) in their 

drinking water for two-weeks. Four-weeks post transplantation, recipient mice were injected I.P. 

with tamoxifen (100mg/kg) in corn oil and sacrificed 14-days after administration. For 

antibiotics treatment, AOM/DSS was induced in LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice 

with 1.5% DSS. 14-days after administration of AOM, mice were placed on antibiotics drinking 

water (neomycin 1mg/ml, ampicillin 1mg/ml, and streptomycin 0.5mg/ml). Every other day, 

mice were orally gavaged with antibiotics solution (neomycin 2.5mg/ml, ampicillin 2.5mg/ml, 

streptomycin 1.25mg/ml, and metronidazole 1.25mg/ml) and sacrificed 72-days after AOM 

administration. For B-cell inhibition experiments, colon tumorigenesis was initiated in 

LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice using AOM and 1.5% DSS. One-week following 

the third cycle of DSS, LysMCre;Mcl1fl/fl mice were randomized into Ctrl and anti-B220 treatment 

groups (BioXcell). Mice were treated every fourth day with 400ug I.P. anti-B220 diluted in 

sterile 1x PBS pH 7.0.  

   

Flow cytometry 
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Fresh normal and colon tumor tissue were finely minced followed by incubation with 

Collagenase Type II (Sigma-Aldrich) (1mg/ml) 1-hour in cold HBSS. Digested tissues were then 

passed through a 40um cell strainer. Peripheral blood was prepared by lysing one drop of tail 

blood for twenty minutes with RBC lysis buffer. White blood cells were then pelleted and passed 

through a 40um cell strainer. Single-cell suspensions were stained with eFluor780- anti-CD45 

(eBioscience), PE-anti-Ly6G (BD), APC-anti-Cd11b (eBioscience), FITC-anti-B220 

(eBioscience) and eFluor450 anti-F4/80 (eBioscience). Flow cytometry was performed using an 

LSRFortessa (BD). Flow cytometry data was analyzed using FlowJo software (BD Biosciences).  

 

Histology and immunofluorescence 

Colon tissue was excised, cut longitudinally, swiss-rolled, and fixed in 10% formalin 

overnight. Tissues were then embedded in paraffin and cut in 5µm sections and stained with 

hematoxylin and eosin and scored by a blinded gastroenterology pathologist. Tumor invasion 

scoring was done as previously described (11). Immunofluorescence was performed following 

antigen retrieval of 5um paraffin slides. Antibodies for immunofluorescence were as follows: 

Ki67 (1:100, Vector Labs), p-H2AX (1:200, Cell Signaling Technologies), cCasp3 (1:800, Cell 

Signaling Technologies) and Alexa Fluor® 488 goat anti-rabbit IgG (1:500, Molecular Probes 

Inc). B220 staining was performed following antigen retrieval of 5um paraffin slides using anti-

B220 FITC antibody (eBioscience). Bacteria labeling was performed with Cy3 labeled EUB338 

probe (5’-Cy3 GCTGCCTCCCGTAGGAGT). Briefly, paraffin tissue sections were 

deparaffinized in xylenes (2x for 5 minutes) followed by 100% ethanol (2x for 5 minutes) then 

rinsed in D.I. water. Slides were incubated with 100ul of 5ng/ul EUB338 for two hours at 46OC 

in hybridization buffer (35% formamide, 20mM Tris-HCl pH7.2, 0.9M Nacl, 0.01% SDS) then 
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washed for 40 minutes at 48OC and mounted with ProLongTM Gold reagent with Dapi 

(Invitrogen). cCasp3 and p-H2AX were quantified using ImageJ software as number of positive 

cells per high powered field (HPF). EUB338 was quantified as percent of EUB338 positive area 

per Dapi positive area.  

 

RNA isolation, qPCR analysis  

RNA was isolated using TRIzol reagent (Ambion). RNA was reverse transcribed to 

cDNA using MMLV reverse transcriptase (Fisher Scientific). qPCR analysis was performed 

using Radiant Green qPCR mix (Alkali Scientific Inc.). 

 

Protein isolation and Western blotting 

Tissues were lysed in radioimmunoprecipitation assay buffer (RIPA) (50 mmol/L Tris-

HCl pH 7.5, 150 mmol/L NaCl, 2 mmol/L EDTA, 1% NP-40, 0.1% SDS). Proteins were 

separated and using SDS-PAGE and transferred to nitrocellulose membrane. Antibodies used are 

as follows: phosphor-P65 (1:1000, Cell Signaling Technologies), total-P65 (1:1000 Cell 

Signaling Technologies), phospho-STAT3 (1:1000, Cell Signaling Technologies), total-STAT3 

(1:1000 Cell Signaling Technologies), GAPDH (1:1000, Santa Cruz Biotechnology), PCNA 

(1:1000, Cells Signaling Technologies). 

 

IgA ELISA 

Fecal IgA was measured using Mouse IgA ELISA Quantitation Kit according to 

manufacturer’s protocol (Bethyl Laboratories, Inc). 
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High throughput RNA sequencing (RNA-seq) and RNA-Seq data analysis 

TruSeq RNA library prep kit v2 (Illumina) was used to prepare RNA sequencing 

libraries. Libraries were sequenced using single-end 50-cycle reads on a Illumina HiSeq 2500 

sequencer. The Flux high-performance computer cluster at the University of Michigan was used 

for computational analysis. RNA-seq read quality was assessed utilizing FastQC. Reads were 

aligned to a splice junction aware build of the mouse genome (mm10) using STAR(12) with the 

options “outFilterMultimapNmax 10” and “sjdbScore 2”. Differential expression testing between 

WT and Mcl-1+/-, Mcl-1-/- colon samples was conducted with CuffDiff v 2.1.1 with the parameter 

settings “-compatible-hits-norm,” and “–frag-bias-correct”. UCSC mm10.fa was used and the 

GENCODE mouse M12 primary assembly annotation GTF as the reference genome and 

reference transcriptome, respectively. Genes were considered differentially expressed at a false-

discovery rate-adjusted (FDR) P value of <0.05. 

 

16S rRNA gene sequencing and bacterial community analysis 

 Feces were collected at 65 and 75-days after AOM/DSS induced colon tumorigenesis in 

LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice. At day 75, tumors were collected and snap frozen. 

Bacterial sequencing was performed at the Microbial Systems Molecular Biology Lab. The 

Dual-indexing sequencing strategy was used to amplify the V4 region of the 16s rRNA gene 

from each sample. PCR was performed under the following conditions 95oC, 2min; [950C, 20 

secs; 550C, 15 secs] – 30 cycles; 720C, 10 min; 40C using Accuprime High Fidelity Taq 

(ThermoFisher). Samples were normalized using the SequalPrep Normalization plate kit 

(ThermoFisher). Sequencing was done on the Illmina MiSeq platform, using a MiSeq Regent Kit 
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V2 500 cycles, according to the manufacturer’s instructions (13). Bacterial Community analysis 

was done base on Mothur wiki.  

 

Statistical analysis 

P-values were calculated by students t-test or one-way ANOVA. Error bars represent 

standard error of the mean.  

 

Results 

Neutrophil deficiency enhances the acute inflammatory response in colitis  

PMN infiltration in IBD is a marker of disease severity and progression (14). In acute 

DSS-induced colitis in mice, neutrophils robustly infiltrated inflamed mucosal tissues as early as 

4-days after initiation of colitis, were maintained through active inflammation at 7-days, and 

were quickly lost during resolution (Fig. 1A & B). Macrophage influx is milder and less robust 

(Fig. S1A & B). To dissect the role for PMNs in the inflammatory progression of colitis, we 

utilized mice with a genetic neutrophil deficiency. Mcl-1, an anti-apoptotic member of the Bcl-2 

family, is a PMN-specific survival molecule when disrupted in myeloid cells using LysM-cre 

(LysMCre;Mcl1fl/fl) (Fig. 1C) (8). Mice with myeloid deficiency of Mcl-1 had greater than 50% 

reduction of circulating PMNs in heterozygous floxed animals (LysMCre;Mcl1fl/wt) and greater 

than 90% reduction in PMNs in homozygous floxed animals (LysMCre;Mcl1fl/fl) (Fig. 1D & E). 

This was accompanied by no significant change in the number of circulating monocytes as 

previously reported (Fig. S2A) (15). Furthermore, no changes in basal histological colon 

architecture and cell proliferation were observed (Fig. S2B& C).  
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To evaluate the function of PMN depletion of the acute response in the DSS-injury 

model, LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice were treated with 2.5% DSS in their 

drinking water for 7-days then changed back to regular drinking water for 2-days. Compared to 

LysMCre;Mcl1wt/wt mice, LysMCre;Mcl1fl/fl mice failed to recover body weight by 9-days and had 

significant colon length shortening (Fig. 1F & G). Histologic analysis shows significant 

destruction of colonic architecture in LysMCre;Mcl1fl/fl colon tissue compared to 

LysMCre;Mcl1wt/wt and higher histopathologic inflammation score than LysMCre;Mcl1wt/wt (Fig. 1H 

& I). Interestingly, PMN-deficiency did not change expression of Tnfa and Il22, but correlated 

with increased expression of Il17 and Il6 (Fig. 1J).  

 

Neutrophils inhibit colitis-associated colon tumorigenesis. 

Next, the functional role for genetic PMN depletion in inflammation-induced cancer of 

the colon was assessed. PMNs are among the most prevalent immune cell type in the colon 

tumor microenvironment in the AOM/DSS model (Fig. S3A & B). The function for PMNs in the 

progression of inflammation-induced colon cancer has largely been suggested to be pro-

tumorigenic (16). However, genetic PMN ablation early in colon tumorigenesis has not been 

assessed. To address this, LysMCre;Mcl1wt/wt, LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl mice were 

I.P. injected with AOM (10mg/kg) and cycled on and off 2% DSS in their drinking water and 

sacrificed at day 87 after AOM administration (Fig. 2A). Weight loss is a surrogate for morbidity 

in AOM/DSS-induced colitis-associated colon tumorigenesis. By the end of the third cycle of 

DSS, LysMCre;Mcl1fl/fl mice failed to recover body weight by day 87 (Fig. 2B). Compared to 

LysMCre;Mcl1wt/wt animals, LysMCre;Mcl1fl/fl mice developed significantly larger tumors (Fig. 2C 

& D). No change in the total tumor number was observed between LysMCre;Mcl1wt/wt, 
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LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl mice (Fig. 2E). However, the tumor burden and average 

tumor size were significantly increased in LysMCre;Mcl1fl/fl mice (Fig. 2F & G). To confirm 

depletion of neutrophils was maintained in colon tumors, flow cytometric analysis of primary 

tumor tissue was performed. Whereas 30-40% of the white blood cells (WBCs) present in tumors 

from LysMCre;Mcl1wt/wt mice were double positive for CD11b and Ly6g, less than 10% of the 

WBCs were double positive in LysMCre;Mcl1fl/wt mice, and virtually no double positive cells 

were detected in the LysMCre;Mcl1fl/fl mice (Fig. 2H and I). No change in the percentage of 

tumor-associated macrophages was observed (Fig. S4A & B). These data suggest that PMNs 

play a critical role in inhibiting colitis-associated colon tumorigenesis by restricting tumor size 

and growth. 

 

Neutrophil depletion increases colon tumor invasion and proliferation. 

 In the AOM/DSS model, highly invasive disease is rare and in many cases requires 

additional genetic hits (11). Further histologic characterization of colon tumors showed that no 

tumors in LysMCre;Mcl1wt/wt mice developed into invasive adenocarcinomas (Fig. 3A). Strikingly, 

25% of tumors from LysMCre;Mcl1fl/wt mice were invasive adenocarcinomas and this was 

potentiated in the LysMCre;Mcl1fl/fl mice as greater than 60% of colon tumors in LysMCre;Mcl1fl/fl 

mice were invasive (Fig. 3B). 16% of tumors from LysMCre;Mcl1fl/fl had invaded through 

muscularis propria and many tumors could be detected in perirectal fat (Fig. 3C & D). In 

addition to increased tumor invasion, PMN depletion dramatically increased colon tumor 

proliferation as measured by Ki67 incorporation and proliferating cell nuclear antigen (PCNA) 

expression (Fig. 3E & F). No significant difference in tumor cell apoptosis was observed (Fig. 
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S5A & B). These data delineate an important function for intra-tumoral PMNs in restricting 

tumor invasion and proliferation. 

 

Neutrophil depletion enhances tumor progression in genetic colon cancer models. 

The data thus far shows that PMNs restrict tumor progression in inflammation-driven 

colon tumors. However, the vast majority of colon tumors are not preceded by chronic 

inflammation and develop due to mutations in the Adenomatous polyposis coli (APC) gene (17). 

In mice, truncation of a single Apc allele is sufficient to cause spontaneous intestinal 

tumorigenesis, albeit the vast majority of these tumors are localized to the small intestine (18). 

Mice with a colon-specific disruption of Apc using the colon-specific homeobox 2 (Cdx2) Cre 

(Cdx2-CreERT2; Apcfl/fl) develop colon tumors after administration of tamoxifen (9). To 

understand the role of PMN depletion in sporadic tumorigenesis, Cdx2-CreERT2; Apcfl/fl mice 

were transplanted with bone marrow from either LysMCre;Mcl1wt/wt or PMN-deficient 

LysMCre;Mcl1fl/fl mice (Fig. 4A). Chimeras transplanted with LysMCre;Mcl1fl/fl bone marrow had 

depleted circulating PMNs (Fig. 4B and C). Cdx2-CreERT2;Apcfl/fl mice were administered a 

single injection of tamoxifen (100mg/kg, I.P.) and were sacrificed and analyzed for early 

neoplastic changes 14-days after tamoxifen injection. In LysMCre;Mcl1wt/wt chimeras, only low-

grade adenomas were observed. In LysMCre;Mcl1fl/fl chimeras, 3 out of 7 mice developed 

submucosal invasive adenocarcinoma (AdenoCa-T1) (Fig. 4D & E). This suggests that PMNs 

restrict early tumor progression in colon cancer independent of acute exacerbations of colitis in 

the AOM/DSS model.  

LysM-Cre is expressed in multiple myeloid cell types including monocytes, mature 

macrophages, and granulocytes (19). Therefore, off-target effects cannot be excluded. We next 
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assessed the dependence of PMN-specific Mcl-1-deletion for the enhanced tumor progression. 

To specifically delete Mcl-1 in PMNs, Mcl-1 floxed animals were crossed to the PMN-specific 

Mrp8-Cre transgenic mice (10). Cdx2-CreERT2;Apcfl/fl animal chimeras transplanted with 

Mrp8Cre;Mcl1-/- bone marrow chimeras had significant reduction of circulating PMNs (Fig. 4 F-

H). Mrp8Cre;Mcl1-/- mice had no significant difference in circulating monocytic cells (Fig. S6A 

& B). Strikingly, at fourteen days after tamoxifen administration, Mrp8Cre;Mcl1-/- bone marrow 

recapitulated the increased invasiveness observed in LysM;Mcl-1-/- mice with areas of invasion 

into and through the muscularis propria (Fig. 4I & J). These data indicate that PMN depletion 

early in sporadic colon tumorigenesis dramatically increases progression and invasion.  

 

Neutrophils restrict colon tumor-associated bacteria expansion 

To identify mechanisms by which PMN-depletion enhanced colon tumor progression, 

RNA-seq analysis was performed on tumor tissue from LysMCre;Mcl1wt/wt, LysMCre;Mcl1fl/wt, and 

LysMCre;Mcl1fl/fl mice. Several genes with known roles in anti-microbial defense were 

significantly reduced (Cfd, Lyz2, Defa27, Mcpt1) (Fig. 5A). Additionally, several B-cell 

associated genes (Ighd, Ighg1, Fcmr) were highly upregulated (Fig. 5A). Neutrophils are well 

described for their anti-microbial and phagocytic functions. Neutrophil deficient LysMCre;Mcl1fl/fl 

mice have previously been shown to have higher attachment and decreased eradication of the 

pathogenic bacteria Citrobacter rodentium in the colon (15). To assess for tumor-associated 

bacteria, we performed fluorescence in situ hybridization (FISH) using a universal bacterial 

probe (EUB338). Relative to AOM/DSS tumors from LysMCre;Mcl1wt/wt mice, PMN-deficient 

tumors have increase in tumor-associated bacteria (Fig. 5B & C). Bacteria can induce intra-

tumoral genetic instability through promoting DNA double-stranded breaks (20). PMN-deficient 
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tumors had significantly more phosphorylated histone p-H2AX (Fig. 5D & E). IL-17 was 

identified as a highly-expressed cytokine in RNA-seq analysis in Mcl-1-/- colon tumors (Fig. 5A). 

Colon tumor-associated microbes drive tumor progression through activation of IL-17 expression 

(21). Moreover, epithelial attachment of pathogenic microbes can directly induce an IL-17 

response (22). Our data has shown in acute DSS-colitis, LysMCre;Mcl1fl/fl mice had an increased 

colon IL-17 response. LysMCre;Mcl1fl/fl colon tumors also had significantly increased Il17 

expression compared to LysMCre;Mcl1wt/wt (Fig. S7A). High activation of bacterial-activated 

inflammatory pathways such as NF-#B and STAT3 were also observed (Fig. S7B). 

We next assessed alterations in microbiota by bacterial sequencing of fecal and primary 

tumor samples from LysMCre;Mcl1wt/wt and  LysMCre;Mcl1fl/fl mice after AOM/DSS induced colon 

tumorigenesis.. No significant changes in tumor-associated and fecal bacterial diversity were 

detected (Fig. S7C). However, several bacteria species were significantly altered in tumors and 

feces of LysMCre;Mcl1fl/fl mice (Fig. 5F). Interestingly, Akkermansia, a mucinolytic bacteria 

previously shown to be associated with human colon tumors was significantly increased in 

tumors from LysMCre;Mcl1fl/fl mice (23)REF. Furthermore, Proteobacteria was significantly 

decreased in tumors from LysMCre;Mcl1fl/fl mice, which has previously been suggested to be 

decreased in human colon tumors (24). Collectively, these data suggest that PMNs play an 

important role in restricting bacterial dysbiosis in colon tumors.  

 

Colon microbiota are essential for increased tumor growth in PMN-deficient mice 

 PMN-deficiency greatly increased intra-tumoral bacteria and bacteria-dependent 

responses (Fig. 5). The colon microbiota is strongly associated with initiation and progression of 

colon tumors (25). Several bacterial species have been proposed to have a direct causal role in 
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colon cancer. Fusobacterium nucleatum can directly potentiate colon cancer growth and 

enhances ß-Catenin signaling (26). To evaluate the contribution of bacteria to tumor growth, 

LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl were induced by AOM/DSS and beginning on day 14 

after AOM treatment LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice were randomized into Ctrl and 

antibiotics treatment groups (Fig. 6A). LysMCre;Mcl1fl/fl bone marrow chimeras had significantly 

reduced PMNs one-day prior to AOM administration (Fig. 6B). Whereas, LysMCre;Mcl1fl/fl mice 

developed dramatically larger colon tumors than LysMCre;Mcl1wt/wt mice, antibiotic treatment 

decreased tumor size and decreased tumor burden with no change in total tumor number in 

LysMCre;Mcl1fl/fl mice (Fig. 6C-F). Antibiotics treatment reduced PMN-deficient tumor-

associated genetic instability (Fig. 6G). Furthermore, antibiotics dramatically reduced tumor 

invasion in LysMCre;Mcl1fl/fl mice (Fig. 6H). Collectively, these data define an important 

contribution of colon microbiota to enhanced tumor growth and progression observed in PMN-

deficient animals.  

 

Neutrophils restrict expansion of colon tumor-associated B cells 

 Antibiotics treatment partially but not completely reversed the PMN-deficient increase in 

colon tumor progression, suggesting other mechanisms promote growth and invasion. In addition 

to anti-microbial genes, RNA-seq data showed many genes associated with B-cells were higher 

in LysMCre;Mcl1fl/fl colon tumors. Immunofluorescence and flow cytometric analysis of tumors 

showed robust infiltration of B-cells into primary tumors from PMN-depleted mice compared to 

LysMCre;Mcl1wt/wt mice (Fig. S8A & B). No changes in circulating B-cells or fecal IgA were 

observed in untreated LysMCre;Mcl1fl/fl mice (Fig. S8C-E). In addition to heightened B-cell 

infiltration into the primary tumor, B-cells were also directly associated with highly invasive 
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areas in colitis-associated and sporadic tumors from LysMCre;Mcl1fl/fl mice (Fig. 7A and Fig 

S8F). The close association of B-cells with invasive tumors suggested a potential role for these 

cells in the neoplastic progression of PMN-depleted colon tumors. To define the functional role 

of B-cells in LysMCre;Mcl1fl/fl mice, we decided to target B-cells using anti-B220 antibody-

mediated B-cell inhibition (27). To evaluate the ability of anti-B220 therapy to decrease B-cells 

from colonic tissue during inflammation, mice were treated with 2.5% DSS and were 

randomized to Ctrl or anti-B220 antibody (400ug I.P.) treatment in acute DSS-colitis (Fig. S9A). 

Circulating B-cells and intracolonic B-cells were significantly decreased after three doses anti-

B220 antibody (Fig. S9B & C). This treatment did not have a significant effect on the acute 

inflammatory response in colitis (Fig. S9D-F).  

 To assess B-cells in the progression of PMN-deficient tumors, colon tumorigenesis was 

induced in LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice using AOM/DSS. Immediately following 

the third cycle of DSS, LysMCre;Mcl1fl/fl animals were randomized into Ctrl and anti-B220 treated 

groups and treated beginning every fourth day from Day 50 through Day 75 (Fig. 7B). 75-days 

post induction of colon tumorigenesis, anti-B220 treatment reduced colon B-cells (Fig. 7C). No 

change in tumor number was detected between any groups (Fig. S10A). However, tumor burden 

and tumor size were dramatically increased in LysMCre;Mcl1fl/fl mice relative to LysMCre;Mcl1wt/wt 

control animals (Fig. 7D & E). B-cell inhibition from LysMCre;Mcl1fl/fl mice improved the 

observed increase in tumor burden and tumor size (Fig. 7D & E). Furthermore, B-cell depletion 

led to a reduction in the percentage of invasive adenocarcinomas and increased percentage of 

non-invasive adenomas (Fig. 7F & S9B).  
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Discussion 

The functional role for neutrophils in neoplastic progression has been controversial, 

however, the vast majority of work suggests a pro-tumorigenic role for PMNs in tumorigenesis. 

PMN and granulocytic-cell targeted therapeutics have been proposed for the treatment of several 

tumor types (4). Peptide-mimetics targeting the G-protein coupled receptor CXCR2 which 

mediates PMN and myeloid-derived suppressor cells (MDSCs) infiltration into tumors is 

efficacious in dampening colon tumorigenesis in both colitis-associated as well as sporadic colon 

tumor models (28). Peptide Fc-fusion proteins (peptibodies) targeting the S100 family of protein 

expressed on MDSCs and PMNs have also shown to dampen tumor growth in preclinical models 

(29). Clinical trials in breast cancer targeting PMNs have been initiated (30). However, PMN 

infiltration into human colon tumors was associated with both positive and adverse clinical 

outcomes (31, 32). Experiments using mouse models further raise questions about the function of 

PMNs in the initiation and progression of colon tumors as conflicting data on the role of PMNs 

have been shown. Our work clearly demonstrates depletion of neutrophils early in colon 

tumorigenesis profoundly enhances tumor growth, proliferation, and invasion. 

Discrepancies between neutrophil function in our study relative to others could perhaps 

be explained by differences in models. For example, anti-Ly6G antibody depletion of PMNs is 

commonly used in tumor studies (33). Interestingly, flow cytometric analysis suggests Cd11b-

/Ly6G+ exist, which could perhaps suggest non-PMN targets of this treatment may affect the 

robust reduction in colitis-associated tumors observed in this model (34). Although CXCR2 is 

not completely PMN selective, deletion of the chemokine receptor CXCR2 results in reduced 

Cd11b+/Ly6g+ infiltration into colon tumors and significant reduction in colon tumorigenesis 

(34). Strategies to inhibit CXCR2 may be effective in inhibiting a subset of neutrophils. 
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Intratumoral PMN heterogeneity has been proposed to partly explain the differential effects of 

PMN depletion on tumorigenesis (35-38). Moreover, a landmark study showed that PMN 

plasticity can be driven towards protumor “N2” PMNs or antitumor “N1” PMNs in a TGF-ß-

dependent manner. Approaches to target all tumor-associated neutrophils as described in the 

present work potentiate disease progression. Moreover, this is the first study to our knowledge to 

use a complete neutrophil deficient mouse in the study of colon cancer. Other models of genetic 

neutrophil depletion have been used in the study of other cancers. The Csf3r knockout mouse fail 

to develop PMNs and enhance tumor growth in a murine uterine tumor model (39).  

The colon microbiota and microbial dysbiosis drive colon tumorigenesis (25). This idea 

is highlighted with studies from germfree mouse models which show decreased colon 

tumorigenesis in the absence of microbiota (40). Furthermore, E. coli species were directly 

linked to tumor invasion (41). Key factors regulating the expansion, diversity, and evolution of 

tumor-associated microbiota in colon cancer are not well understood. Our studies have 

delineated a novel mechanism for intra-tumoral PMNs restricting microbiota-dependent tumor 

progression. Deletion of PMNs profoundly increased tumor-associated bacteria and many known 

microbiota-dependent responses, including genetic instability, IL-17 response, and NF-#B 

activation, all of which with known critical roles in neoplastic progression. Additionally, PMN 

depletion impacted the microbiota associated with colitis-associated colon tumors in mice. 

Importantly, antibiotics treatment reduced PMN-deficient tumor progression and invasion. 

Future studies aimed at determining the precise bacteria associated with PMN-deficient tumors 

are currently in progress.  

The precise function for PMNs in the progression of IBD is not well known. Chronic 

granulomatous disease (CGD), a primary deficiency in the NADPH oxidase complex resulting in 
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inability of neutrophils to generate reactive oxygen species to kill pathogens, can predispose 

patients to development of IBD-like disease that resembles Crohn’s disease (42). This suggests a 

role for PMN anti-microbial functions in restricting spontaneous colitis. Recently, it has been 

suggested that in addition to the pathogen killing function, decreased PMN-mediated O2-

consumption through decreased ROS production in Chronic Granulomatous Disease reduces 

hypoxia-inducible transcription factor-1a (HIF-1a) activity, an essential regulator of colon 

epithelial barrier integrity (43). In addition to the ROS-mediated mucosal protection, PMN-

secreted IL-22 has also been shown to have an important role in activating expression of 

epithelial-derived antimicrobial peptides, although no changes in Il22 mRNA abundance was 

observed in our studies (44). Several studies suggesting a prominent role for PMNs in promoting 

inflammatory responses have been reported (14). The data in our studies suggest that neutrophil 

depletion in LysMCre;Mcl1fl/fl mice recapitulates aspects of the enhanced inflammatory response 

in colitis seen in Chronic Granulomatous Disease patients. Future experiments more specifically 

addressing mechanisms of increased colitis in LysMCre;Mcl1fl/fl mice and the contribution to 

microbiota are currently under investigation 

One of the more surprising finings of our study is the enhanced tumor invasion in 

response to PMN depletion. This response was not due solely to enhanced inflammation in 

colitis, as genetic colon tumor models also displayed increased local invasiveness following 

PMN depletion. PMNs have been generally characterized as critical drivers of tumor cell 

invasion and metastasis. PMNs are purported to increase tumor invasion be secreting enzymes 

such as matrix metalloproteinase 9 (MMP9) (45). In hepatocellular carcinoma, PMNs were 

shown to directly initiate an epithelial-mesenchymal transition in tumor cells (46). PMNs were 

recently shown to suppress Natural Killer (NK) cell-mediated breast cancer cell killing and 
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promote tumor cell extravasation (47). Also in breast cancer, PMNs induced by IL-17 producing 

T-cells were found to increase tumor metastasis through repression of CD8 T-cells (48). 

However, PMNs have also been shown to limit metastatic seeding of tumors in the lung through 

generation of H2O2 (49). Our findings demonstrate in colon cancer that depleting neutrophils 

early in tumors leads to cell invasion through all layers of the colon mucosae. Thus, targeting of 

PMNs therapeutically in human colon cancer may exacerbate disease.  

PMN-deficient tumors were highly infiltrated with B220+ B-cells. Analogous to PMNs, 

B-cell function in tumors is not well understood and could perhaps have both pro- and anti-tumor 

functions (50-53). Our data indicate that B-cells expand in PMN-deficient tumors and are highly 

associated with invasive areas. Moreover, inhibition of B-cells decreased tumor size and 

decreased tumor invasion in PMN-deficient mice. Previous reports suggested that B-cells in 

colon lymphoid follicles were an early site of tumor cell invasion in rat and mouse models of 

colon cancer (54). It has also been suggested that human colon cancers are highly associated with 

B-cells and lymphoid follicles (55). B-cells associated with invasive areas and promoted tumor 

growth and invasion in our model. These data suggest further study into the regulation, 

recruitment, and functional role of B-cells in colon cancer are warranted.  

It is possible that the effects observed in our studies are due to complete absence of 

PMNs prior to induction of tumorigenesis. The role for PMNs in the initiation of colon cancer 

are controversial. Our data suggest a mechanism by which PMNs restrict tumor-associated 

bacteria and B-cells, which are essential for colon tumor growth and progression (Fig. 7G). 

Clinical studies suggest PMNs are a positive prognostic indicator in early stage colon cancer 

(31). Studies in mice have proposed that PMNs in early stage tumors retain antitumor functions 

but a phenotypic switch to a more immunosuppressive state occurs throughout tumor progression 
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(56). It is possible that similar mechanisms exist in colon cancer whereby the earliest tumor 

infiltrating PMNs serve to inhibit expansion of colon microbiota and B-cells to limit 

tumorigenesis and progression. Whereas, PMNs in established tumors evolve a more pro-

tumorigenic phenotype (Fig. 7H). 
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Figures  

 
Figure 3.1. Neutrophil depletion exacerbates acute colitis. (A) Representative flow cytometry 
dot plots (D=days of DSS treatment) and (B) quantification of flow cytometric analysis of 
peripheral blood neutrophils using Ly6g and Cd11b in WT and Mcl-1-/- mice treated with 2.5% 
DSS. (C) Schematic of Mcl-1 deletion in myeloid cells using LysozymeM (LysM)-cre 
(LysMCre;Mcl1fl/fl) (D) Representative dot plots and (E) quantification of flow cytometric analysis 
of peripheral blood neutrophils using Ly6g and Cd11b staining gated on total lymphocytes in 
LysMCre;Mcl1wt/wt, LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl mice. ***p<0.001 and ****p<0.0001 
relative to LysMCre;Mcl1wt/wt, #p<0.05 compared to LysMCre;Mcl1fl/wt. (F) Body weight, (G) colon 
length, (H) representative hematoxylin & eosin staining, and (I) histopathologic inflammation 
score of LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice treated with 2.5% DSS. ***p<0.001, 
*p<0.05. (J) qPCR analysis of indicated genes *p<0.05 relative to LysMCre;Mcl1wt/wt. Statistical 
analysis was performed with student’s t-test or one-way ANOVA followed by Tukey’s multiple 
comparisons test. 
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Figure 3.2. Neutrophils restrict colitis-associated colon tumor progression. (A) Schematic of 
AOM/DSS-induced colon tumorigenesis. Mice were I.P. injected with AOM on Day 0 then 
cycled on and off 2% DSS in their drinking water for three cycles with two-weeks between then 
sacked at day 87. (B) Body weight, (C) representative images of whole mount specimens, (D) 
hematoxylin and eosin (H&E) staining of indicated mice after AOM/DSS. Body weight shown 
as a percentage of Day 0. of AOM/DSS treated colon tissue from LysMCre;Mcl1wt/wt, 
LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl mice. (E) Tumor number, (F) tumor burden, and (G) 



	 93 

average tumor size of colon tumors. *p<0.05, **p<0.01, ***p<0.001 relative to 
LysMCre;Mcl1wt/wt, ##p<0.01 relative to LysMCre;Mcl1fl/wt. (H) Flow cytometric analysis and (I) 
quantification of Cd11b and Ly6g staining from primary colon tumors. ***p<0.001 relative to 
LysMCre;Mcl1wt/wt. ##p<0.01 relative to LysMCre;Mcl1fl/wt. Statistical analysis was performed with 
one-way ANOVA followed by Tukey’s multiple comparison’s test. 
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Figure 3.3. Neutrophils limit tumor progression and invasion. (A) Representative H&E of 
staining of adenoma from LysMCre;Mcl1wt/wt mice and (B) invasive adenocarcinoma from 
LysMCre;Mcl1fl/fl mice at 10x and 20x magnification. (C) Representative image of H&E of 
invasive AdenoCa-T2, AdenoCa-T3, and colon tumor cells in perirectal fat in LysMCre;Mcl1fl/fl 

mice. (D) Quantification of percentage of low-grade adenomas (Adeno-lg), high-grade adenomas 
(Adeno-Hg), submucosal invasive adenocarcinomas (AdenoCa-T1), muscularis invasive 
adenocarcinoms (AdenoCa-T2), and invasive through muscularis (AdenoCa-T3) in 
LysMCre;Mcl1wt/wt, LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl  mice. (E) Representative image of 
Ki67 staining of colon tumors in LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl  mice. (F) Western blot 
analysis of proliferating cell nuclear antigen (PCNA) of colon tumors from LysMCre;Mcl1wt/wt, 
LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl  mice.  
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Figure 3.4. Neutrophils restrict progression of sporadic colon tumorigenesis. (A) Schematic 
of bone marrow transplantation from LysMCre;Mcl1wt/wt (n=6) and LysMCre;Mcl1fl/fl  (n=7) mouse 
donors to Cdx2-CreERT2;Apcfl/fl mice. (B) Flow cytometric do plot analysis and (C) 
quantification of Cd11b and Ly6g staining of peripheral blood. **p<0.01 relative to WT. (D) 
Representative H&E images of low grade adenomas (AdenoLg) in LysMCre;Mcl1wt/wt and 
LysMCre;Mcl1fl/fl  and invasive adenocarcinoma T1 (AdenoCaT1) in LysMCre;Mcl1fl/fl  mice. (E) 
Quantification of colon tumor stage in indicated mice. (F) Schematic of bone marrow 
transplantation from Mrp8Cre;Mcl1wt/wt  (n=3) and Mrp8Cre;Mcl1fl/fl  (n=3) mouse donors to Cdx2-
CreERT2;Apcfl/fl mice. (G) Flow cytometric do plot analysis and (H) quantification of Cd11b and 
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Ly6g staining of peripheral blood. **p<0.01 relative to Mrp8Cre;Mcl1wt/wt  . (I) Representative 
H&E images of low grade adenomas (AdenoLg) in Mrp8Cre;Mcl1wt/wt  and Mrp8Cre;Mcl1fl/fl  and 
invasive adenocarcinoma T2 (AdenoCa-T2) and adenocarcinoma T3 (AdenCa-T3). (J) 
Quantification of colon cancer stage in indicated mice. Statistical analysis was performed with 
student’s t-test. 
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Figure 3.5. Neutrophils limit tumor-associated bacteria. (A) Heat map of RNA-seq analysis 
of colon tumors from LysMCre;Mcl1wt/wt, LysMCre;Mcl1fl/wt, and LysMCre;Mcl1fl/fl mice. (B) 
Representative images fluorescence in situ hybridization (FISH) using universal bacteria 
EUB338 probe labeled with Cy3 colon tumors from LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl 
mice. (C) Quantification of EUB338 positive area per high powered field (HPF). *p<0.05. (D) 
Representative images and (E) quantification of immunofluorescence staining of p-H2AX in 
LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl colon tumors. *p<0.05. (F) Heat map of significantly 
altered tumor-associated (Day 75) and fecal bacteria (Day 65 & Day 75) in LysMCre;Mcl1fl/fl mice 
relative to LysMCre;Mcl1wt/wt mice.  
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Figure 3.6. Microbiota promotes tumor progression in PMN-deficient mice. (A) Schematic 
of AOM/DSS-induced colon tumorigenesis.  (B) Quantification of circulating Cd11b+/Ly6g+ 
cells in indicated mice. ***p<0.001 (C) Representative grow whole mount specimens, (D) tumor 
number, (E) tumor burden and (F) tumor size of colon tumors in LysMCre;Mcl1wt/wt and 
LysMCre;Mcl1fl/fl treated with antibiotics or control. ****p<0.0001, ***p<0.001. (G) 
Representative H&E analysis and (H) quantification of colon tumor progression from 
LysMCre;Mcl1wt/wt, LysMCre;Mcl1fl/fl, and LysMCre;Mcl1fl/fl mice treated with antibiotics. (I) 
Representative p-H2AX immunofluorescence staining. Statistical analysis was performed with 
student’s t-test and one-way ANOVA followed by Tukey’s multiple comparisons test. 
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Figure 3.7. B-cells are important in PMN-deficient colitis-associated colon tumor model. 
(A) Representative H&E and B220 staining from LysMCre;Mcl1fl/fl tumor tissue of invasive 
adenocarcinoma.  (B) Schematic of AOM/DSS-induced colon tumorigenesis. Anti-B220 
treatment was initiated at day 54 with 400ug/mouse treatement every fourth day. (C) 
Representative flow cytometric analysis of B220 staining in colon tissue from Ctrl and anti-B220 
treated Mcl-1-/- mice. (D) Tumor burden, (E) tumor size, and (F) quantification of colon cancer 
stage in indicated mice. with anti-B220 antibody or control. *p<0.05 relative to 
LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl plus antibiotics. ** ##p<0.001 relative to LysMCre;Mcl1fl/fl 
+ anti-B220, and **p<0.01 relative to all groups >3.0mm. Statistical analysis performed by 
either student’s t-test or one-way ANOVA followed by Tukey’s multiple comparison’s test. (G) 
Neutrophils restrict colon tumor progression and invasion by restricting outgrowth of tumor-
associated microbiota and limiting infiltration of B-cells. (H) We propose a model in which 
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PMNs in the earliest stage colon tumors inhibit tumorigenesis through repression of tumor-
associated bacteria as well as other potential mechanisms such as stimulation of T-cells. In later 
stage colon tumors, PMNs acquire pro-tumorigenic function and inhibit anti-tumor immunity, 
directly increase tumor growth, secrete inflammatory cytokines, and promote angiogenesis.  
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Figure S3.1. Macrophage infiltration in DSS colitis. (A) Representative flow cytometry dot 
plots and (B) quantification of F4/80+/Cd11b+ cells in DSS colitis time course. *p<0.05.  
 
 

 
Figure S3.2. Characterization of LysMCre;Mcl1fl/fl mice. (A) Representative flow cytometry 
dot plots of F4/80+/Cd11b+ cells in peripheral blood. (B) Representative H&E staining and (C) 
Ki67 immunofluorescence from LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mouse colon tissue.  
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Figure S3.3. Neutrophils are highly infiltrated in AOM/DSS colon tumors. (A) 
Representative flow cytometry dot plots and (B) quantification of Ly6g+/Cd11b+ cells in 
AOM/DSS colon tumors from WT mice. ****p<0.001. Statistical analysis performed by 
student’s t test.  
 
 

 
 
Figure S3.4. Tumor infiltration of macrophages is unaltered in Mcl-1-/- mice. (A) 
Representative flow cytometry dot plots and (B) quantification of F4/80+/Cd11b+ cells in colon 
tumors from LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl mice. Statistical analysis performed by 
student’s t test. 
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Figure S3.5. PMN depletion does not alter colon tumor apoptosis. (A) Representative 
immunofluorescence cleaved caspase 3 (cCasp3) and dapi from LysMCre;Mcl1wt/wt and 
LysMCre;Mcl1fl/fl mice colon tumors. (B) Quantification of cCasp3 positive cells per high 
powered field (HPF). Statistical analysis performed by student’s t test. 
 
 
 
 

 
Figure S3.6. Monocytes are unchanged in Mrp8-Cre/Mcl-1-/- mice. (A) Representative flow 
cytometry dot plots and (B) quantification of Ly6c+/Cd11b+ cells as a percentage of total 
myeloid cells from Mrp8Cre;Mcl1wt/wt and Mrp8Cre;Mcl1fl/fl mice. Statistical analysis performed 
by student’s t test. 
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Figure S3.7. PMN depletion increases microbiota-dependent inflammatory responses. (A) 
Quantitative PCR analysis of Il17 expression in LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl colon 
tumors. **p<0.01. (B) Western blot analysis of colon tumors from WT, Mcl-1+/-, and Mcl-1-/- 

mice.  Statistical analysis was performed with student’s t-test. (C) Principal component analysis 
of bacterial composition in LysMCre;Mcl1wt/wt and LysMCre;Mcl1fl/fl tumor and fecal samples. 
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Figure S3.8. Increased B-cells in PMN-deficient colon tumors. (A) Flow cytometric analysis 
and (B) representative images of B220 staining of colon tumor tissue from LysMCre;Mcl1wt/wt and 
LysMCre;Mcl1fl/fl mice. (C) Flow cytometric analysis of B220 staining and (D) quantification of 
peripheral blood B-cells. (E) IgA ELISA analysis from feces of LysMCre;Mcl1wt/wt and 
LysMCre;Mcl1fl/fl mice. (F) Representative immunofluorescence of B220 staining from WT tumor 
tissue and invasive adenocarcinoma tissue from LysMCre;Mcl1fl/fl mouse. Statistical analysis 
performed by student’s t test. 
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Figure S3.9. B-cell depletion does not exacerbate DSS colitis. (A) Schematic of 2.5% DSS 
treatment and anti-B220 injections (400ug/mouse I.P.) on days 1, 3, and 5. (B) Representative 
flow cytometric analysis of B220 staining in peripheral blood and colon tissue and (C) 
quantification B-cells of Ctrl and anti-B220 treated animals. (D) Representative H&E histologic 
analysis (E) colon length and (F) total inflammation score of treated mice. Statistical analysis 
performed by student’s t test. 
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Figure S10. B-cell depletion reduces PMN-deficient tumor progression. (A) Tumor number 
and (B) representative histologic analysis indicated tumor stage from Ctrl and anti-B220 treated 
LysMCre;Mcl1fl/fl mice. Statistical analysis was performed by one-way ANOVA followed by 
Tukey’s multiple comparisons test. 
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Chapter 4 

Myc-Associated Zinc Finger Protein Regulates the Pro-Inflammatory Response in Colitis 

and Colon Cancer via STAT3 Signaling 

Abstract 

Myc-associated zinc finger (MAZ) is a transcription factor highly upregulated in chronic 

inflammatory disease and several human cancers. In the current study, we found that MAZ 

protein is highly expressed in human ulcerative colitis and colon cancer. However, the precise 

role for MAZ in the progression of colitis and colon cancer is not well defined. To determine the 

function of MAZ, a novel mouse model of intestine epithelial specific MAZ overexpression was 

generated. Expression of MAZ in intestinal epithelial cells was sufficient to enhance 

inflammatory injury in two complementary models of colitis. Moreover, MAZ expression 

increased tumorigenesis in an in vivo model of inflammation-induced colon cancer and was 

important for growth of human colon cancer cell lines in vitro and in vivo. Mechanistically, 

MAZ is critical in the regulation of oncogenic STAT3 signaling. MAZ expressing mice have 

enhanced STAT3 activation in the acute response to colitis, Moreover, MAZ was essential for 

cytokine and bacteria-induced STAT3 signaling in colon cancer cells. These data indicate an 

important functional role for MAZ in the inflammatory progression of colon cancer through 

regulation of STAT3 signaling and suggest MAZ is a potential therapeutic target to dampen 

STAT3 signaling in colon cancer.  
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Introduction 

 Colon cancer remains a significant public health concern and is the third-leading cause of 

cancer-related deaths in the United States (1). The tumor-associated inflammatory response is 

well-characterized as a key contributor to neoplastic progression, in part through activation of 

oncogenic signaling pathways in tumor cells, such as STAT3 and NF-"B (2). Myc-associated 

zinc finger (MAZ) is an inflammation-induced cys2his2-type zinc finger transcription factor that 

is highly active in inflammatory foci and previously has been suggested to be a critical driver of 

inflammation in animal models (3). Moreover, MAZ is highly expressed in cancer of the 

pancreas, liver, breast, and prostate (4-7). MAZ has three splice-variants (MAZ1, MAZ2, and 

MAZ3). MAZ splice-variants 1 and 3 are activated by inflammation, whereas MAZ2 is anti-

inflammatory (8, 9). Our previous work has identified an essential role for MAZ in hypoxia-

driven inflammatory responses in both colitis and colon cancer (10). MAZ is a direct protein 

interactor of the hypoxia-inducible transcription factor (HIF-2a) and is important for HIF-2a 

transactivation of inflammatory target genes, such as tumor necrosis factor a (Tnfa) (11, 12). 

However, HIF-2a-independent functions for MAZ in the progression of colitis and colon cancer 

are relatively unknown.  

Signal transducer and activator of transcription 3 (STAT3) is an inflammation responsive 

transcription factor with an important role in the progression of several cancers (13). STAT3 

signaling is activated by inflammatory cytokines such as IL-6, IL-10, and IL-22 and plays a key 

role in the development of Th17 cells (14). In intestinal epithelial cells, STAT3 signaling is an 

essential mediator of epithelial repair processes in the resolution of colitis downstream of IL-22 

(15). Polymorphisms associated with STAT3 and STAT3 signaling pathway have been identified 

in both ulcerative colitis and Crohn’s disease, suggesting an important role in the progression of 
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human inflammatory bowel disease (IBD) (16). In addition to the prominent role for STAT3 in 

colitis, STAT3 is an essential transcription factor for the progression of colitis associated colon 

cancer (CAC). Genetic disruption of STAT3 in intestinal epithelial cells decreases susceptibility 

to inflammation-induced colon cancer and chronically active STAT3 increases susceptibility to 

colon tumorigenesis (17). Deletion of the STAT3 activating cytokine IL-6 also reduced CAC 

(18). STAT3 activation downstream of microbial sensing pathways is also an important 

mechanism linking inflammation and colon cancer (19). Under normal circumstances, 

mechanisms exist to rapidly dampen STAT3 activation (20). In tumors STAT3 is chronically 

activated, suggesting tumor-specific factors maintain high STAT3 and drive neoplastic 

progression. Discovering factors essential in sustaining high STAT3 activation may provide 

novel druggable targets for the treatment of colon cancer.  

In the current study, it was demonstrated that MAZ was restricted to epithelial cells and 

was highly expressed in both inflammatory disease as well as neoplastic disease of the colon. To 

dissect the role of MAZ in colitis and colon cancer, a novel model of transgenic epithelial-

specific MAZ overexpressing mice was generated. RNA-sequence analysis from the transgenic 

mice found that MAZ regulates a novel repertoire of HIF-2a-independent genes. MAZ was an 

important driver of the inflammatory response in complementary models of chemically-induced 

and infectious colitis models. Moreover, MAZ expression significantly increased tumorigenesis 

in an inflammation-induced colon tumor model, suggesting MAZ was a novel link between 

inflammation and cancer of the colon. Mechanistically, a novel function for MAZ in the 

maintenance of STAT3 signaling both in vivo and in vitro was observed. This work delineates 

and important role for MAZ in the inflammatory response in colitis and colon cancer and 

suggests MAZ as a novel therapeutic target to dampen STAT3.  
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Methods 

Animals and treatments 

Mice expressing MAZ under control of the 12.4kb villin-promoter were generated (21). 

The mouse MAZ cDNA was subcloned from pET-16B plasmid into the Mlu1 and Kpn1 sites of 

the pUC12.4kb-villin promoter construct. The plasmid was then digested with Pme1 and used to 

generate vilMAZ mice in collaboration with the University of Michigan Transgenic Animal Core. 

vilMAZ mice were backcrossed to C57BL/6 mice for 5 generations. For all experiments, male 

and female mice aged 6 to 8-weeks were used. For dextran sulfate sodium (DSS)-colitis, vilMAZ 

and WT littermate controls were treated with 2.5% wt/vol DSS in drinking water for 7-days. For 

Salmonella enterica serovar Typhimurium (S. Typhi) colitis, mice were pretreated by oral 

gavage with streptomycin (7.5mg/mouse) and 24-hours later were orally gavaged with 1x107 

colony-forming units of S. Typhi. Citrobacter rodentium-colitis was induced with oral gavage of 

1x107 colony-forming units of C. rod in 6- to 8-week old mice WT mice. Azoxymethane 

(AOM)/DSS-induced tumorigenesis was induced in 6- to 8-week old vilMAZ and WT littermate 

controls. Mice were I.P. injected with AOM at (10mg/kg) then cycled on and off 2% DSS in 

their drinking water beginning 5-days following intial injection of AOM for 7-days with 14-days 

of regular drinking water interspersed between. Mice were sacrificed 100-days after AOM 

injection. For subcutaneous tumor growth, 1x106 HCT116 cells were prepped in 37oC 1x PBS 

and injected subcutaneously into the flanks of Nude mice. Nude mice were housed in autoclaved 

cages in facility specifically designed for housing immunodeficient mice and fed irradiated food 

and autoclaved water. Germ free mice were housed in the University of Michigan Germ Free 

core and treated with AOM/DSS as described above. Germ free mice were conventionalized with 

a single gavage of feces from WT mice. TLR2/4 double knockout mice were previously 



	 112 

described (22). All experiments were carried out using guidelines and approved by the 

University Committee on the Use and Care of Animals at the University of Michigan.  

 

Human tissue 

Human IBD and colon cancer tissue was procured at the University of Michigan per 

Institutional Review Board approval and guidelines. 

 

Cell culture and cell treatments 

HCT116, MCA38, and human embryonic kidney (HEK) cells were cultured in 

Dulbecco’s Modified Eagle Media (DMEM) supplemented with 10% FBS and 1% anti-

biotic/anti-mycotic. Cells were cultured at 370C and 5% CO2 and 21% O2. STAT3 response 

luciferase assay (SIE) was conducted by co-transfection of SIE luciferase plasmid with pCDNA 

MAZ1 or MAZ3 into cells using polyethylinimine (PEI) reagent. 24-hours after transfection, 

cells were treated with IL-6 (10ng/ml) for 12-hours. Standard luciferase assay was performed as 

previously described and normalized to ß-galactosidase activity (12). MAZ knockdown HCT116 

cells were generated as previously described (11). For IL-6 treatments, cells were seeded in 6-

well plates at a density of 3x10^5/well. 24 hours later, cells were treated with IL-6 (10ng/ml) for 

30, 60, and 120 minutes. For JAK1/2 inhibition studies, HEK293T or HCT116 cells were 

transfected 500ng of pCDNA MAZ1 and MAZ3 for 24-hours then treated with 3!M Ruxolitinib 

or DMSO for 12-hours. For co-immunoprecipitation experiments, MAZ was co-transfected with 

human myc-JAK1 or myc-JAK2 expression construct for 48-hours. Cells were lysed and myc-

immunoprecipitation was performed using Myc-TRAP beads as described in manufacturers 

protocol (Chromotek). For S. Typhi treatment, HCT116 and HT29 cells were seeded at a density 
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of 3x10^5 cells/well in a 6-well plate. 24-hours later cells were washed 3x with PBS then treated 

with 1x10^6 CFUs of S. Typhi for 4- and 8-hours. siRNA transfection was performed using 

Lipofectamine 2000 reagent (Thermo Fisher Scientific) and 5µM MAZ or Ctrl siRNAs (Santa 

Cruz Biotechnology). Cell growth was monitored using 3-(4,5-dimethyl-2-thiazoly)-2,5-

diphenyl-2H-tetrazolium bromide (MTT) reagent.  

 

Histology and immunofluorescence 

Colon tissue was excised, washed with cold PBS, and cut longitudinally. Tumors were 

sized and counted and then colon tissue was rolled and fixed in 10% formalin for 12-hours. 

Tissues were then embedded in paraffin. 5µm tissue sections were stained with hematoxylin and 

eosin and all histological analysis was done in a blinded manner as previously described (11). 

Inflammation scoring was based on crypt damage, inflammation, depth of injury, and percentage 

of tissue affected. Immunofluorescence of human ulcerative colitis was performed with frozen 

sections which were fixed with 10% formalin for 10-minutes, permeabilized with 0.5% Triton X-

100 for 10-minutes, then blocked with 5% goat serum for 1-hour. Slides were then incubated 

with primary antibody for MAZ overnight (1:100, Abcam). Proliferation analysis was performed 

on paraffin embedded tissue slides following citrate buffer antigen retrieval using Ki67 antibody 

(Vector Laboratories). 

 

Protein isolation and western blotting 

Western blots were performed as previously described (11). Antibodies against MAZ 

(1:1000, Active Motif), GAPDH (1:1000, Santa Cruz Biotechnology), phospho-STAT3 (1:1000, 

Cell Signaling Technologies), total-STAT3 (1:1000, Cell Signaling Technologies), phosho-P38 
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(1:1000, Cell Signaling Technologies), total-P38 (1:1000, Cell Signaling Technologies), 

phospho-AKT (1:1000, Cell Signaling Technologies), total-AKT (1:1000, Cell Signaling 

Technologies), pJNK (1:1000, Cell Signaling Technologies), total-JNK (1:1000, Cell Signaling 

Technologies), phospho-JAK (1:1000, Cell Signaling Technologies), and total-JAK (1:1000, 

Cell Signaling Technologies) were used for blotting. Secondary horseradish peroxidase-

conjugated antibodies (Cell Signaling Technologies) were used for protein detection.  

 

Colon tumor enteroids 

Patient-derived colon tumor and normal tissue enteroids were generated as previously 

described (23). 

 

RNA isolation and qPCR analysis 

RNA was isolated using isol-RNA lysis reagent and qPCR analysis was performed as 

previously described (24). Primers are listed in Supplemental Table 3.1. Expression analysis was 

normalized to $-Actin expression.  

 

RNA-seq and RNA-seq data analysis 

RNA sequencing was performed as previously described (10). Briefly, the TruSeq RNA 

library prep kit v2 (Illumina) was used to prepare RNA sequencing libraries The libraries were 

sequenced using single-end 50-cycle reads on a HiSeq 2500 sequencer (Illumina).  The Flux 

high-performance computer cluster at the University of Michigan was used for computational 

analysis. RNA-seq read quality was assessed utilizing FastQC. Reads were aligned to a splice 

junction aware build of the mouse genome (mm10) using STAR(25) with the options 
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“outFilterMultimapNmax 10” and “sjdbScore 2”. Differential expression testing between WT 

and vilMAZ colon samples was conducted with CuffDiff v 2.1.1 with the parameter settings “-

compatible-hits-norm,” and “–frag-bias-correct”. We used UCSC mm10.fa and the GENCODE 

mouse M12 primary assembly annotation GTF as the reference genome and reference 

transcriptome, respectively. Genes were considered differentially expressed at a false-discovery 

rate-adjusted (FDR) P value of <0.05. 

 

Statistical analysis 

P-values were calculated by students t-test, paried t-test, or one-way ANOVA. 

Differential expression of mRNA expression with qPCR was calculated using deltadeltaCT 

method. Error bars represent standard error of the mean.  

 

Results 
 
Intestine epithelial MAZ regulates a novel repertoire of genes 

 MAZ is an important transcriptional cofactor in the hypoxic inflammatory response 

through direct interaction with HIF-2a and directing the pro-inflammatory HIF-2a 

transcriptional response (11). However, the precise functional role for MAZ in the progression of 

inflammation in colitis has not been assessed. To delineate the function of MAZ in the 

inflammatory progression of colitis a mouse model of intestinal epithelial-specific MAZ 

overexpressing transgenic mice was generated. cDNA for MAZ expressing a N-terminal FLAG-

tag was cloned into the previously described 12.4kb Villin-promoter construct to drive MAZ 

expression to the intestine epithelium; hereby referred to as vilMAZ mice (21). MAZ and FLAG 

protein expression were verified from colon and small intestine lysates from WT and vilMAZ 
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mice (Fig. 4.1A). Maz transcript expression was 3-fold higher in colonic tissue and 12-fold 

higher in small intestine tissue from vilMAZ mice (Fig. 4.1B). Histologic analysis shows no 

observable differences in colonic architecture in untreated mice (Fig. 4.1C). Subcellular 

fractionation of colon tissue from WT and vilMAZ mice showed the vast majority of MAZ 

protein in vilMAZ mice was localized to the nucleus (Fig. 4.1D). No changes in expression of 

inflammatory cytokines Tnfa and Il1$, or colon lineage markers Muc2, Tff3, Chga, or Cdh1 were 

observed (Fig. 4.1E). RNA-sequencing analysis was performed on colon tissue to determine 

genes differentially expressed in intestinal tissue of vilMAZ mice. Several novel genes including 

a number of inflammation-associated genes regulated by epithelial MAZ expression were 

identified (Fig. 4.1F). Interestingly, only 24% of significantly changed genes identified in 

vilMAZ RNA-seq corresponded with identified genes in RNA-seq from colon tissue of HIF-2a 

expressing animals (10) suggesting a repertoire of HIF-2a-independent target genes (Fig. 4.1G). 

qPCR validation of several targets confirmed MAZ expression significantly increases expression 

of Gatsl3, which encodes an arginine sensing protein, as well as the lncRNA Fer1l4. Moreover, 

MAZ expression decreased expression of the antimicrobial peptide Ang4 and the zinc transporter 

Slc30a10 (Fig. 4.1H). These results identify a novel repertoire of MAZ-regulated genes in colon 

epithelial cells, most of which do not overlap with genes directly regulated with HIF-2a.  

 

MAZ potentiates the acute inflammatory response in colitis 

 MAZ protein is highly expressed in several inflammatory models including inflammatory 

arthritis (9). However, MAZ protein expression has never been analyzed in inflammatory disease 

of the colon. MAZ protein was significantly upregulated in mucosal biopsy specimens from 

patients with ulcerative colitis (UC) compared to normal patient controls (Fig. 4.2A). The vast 
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majority of MAZ protein in UC was localized to inflamed colon epithelial cells (Fig. 4.2B). 

Interestingly, increased MAZ protein expression was not observed in ileal biopsy specimens 

from Crohn’s Disease (CD) (Fig. 4.2C). This suggests a potential role for colon epithelial MAZ 

in the inflammatory progression of colitis. The RNA-seq data demonstrates that MAZ regulates 

several genes known to be important inflammatory targets. An acute model of colitis was 

initiated by treatment of WT and vilMAZ mice with 2.5% dextran sulfate sodium (DSS) in the 

drinking water for seven days then changed back to regular drinking water for three days. 

Compared to WT animals, vilMAZ animals lost significantly more weight and failed to recover 

body weight (Fig. 4.2D). MAZ-expressing mice had moderately shorter colon lengths after DSS-

colitis suggesting heightened inflammation (Fig. 4.2E). Histologic analysis shows a robust 

inflammatory cell infiltrate and disruption of colonic architecture and histological scoring 

confirmed that MAZ-expressing transgenic animals had robustly higher inflammation in DSS-

induced colitis compared to WT mice (Fig. 4.2F & G). These data suggest that epithelial MAZ 

expression is sufficient to increase inflammation in acute DSS-colitis and that MAZ upregulation 

in human ulcerative colitis may potentiate disease progression. 

 

MAZ is regulated by colon microbiota and sensitizes mice to bacteria-induced colitis 

Microbial dysbiosis is now well appreciated as a critical driver of inflammation and 

disease progression in IBD (26). MAZ expression has previously been shown to be regulated by 

microbial products (27). To assess the role for pathogenic microbes in the regulation of MAZ 

protein in colitis, a Salmonella enterica serovar Typhimurium (S. Typhi) murine model of colitis 

was assessed. The S. Typhi model of murine colitis can recapitulate many of the aspects 

observed in human colitis (28). WT mice were pretreated with streptomycin and then inoculated 
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with S. Typhi. Robust MAZ protein expression is observed in a time-dependent manner at 5 and 

10-days following inoculation (Fig. 4.3A).  

To further delineate the role for pathogenic microbes in MAZ induction, we used the 

Citrobacter rodentium (C. Rod) model of colitis (29). In mice treated with C. Rod for 10-days, 

MAZ protein was also robustly induced (Fig. 4.3B). Both S. Typhi and C. rod induce robust 

colonic inflammation, therefore, it is possible the activation of MAZ in these tissues may be 

indirect through inflammatory mediators.  

To determine if bacteria directly activated MAZ, colon cancer-derived cell lines HCT116 

and HT29 were infected with S. Typhi in vitro. MAZ protein was increased as early as 4-hours 

and was sustained through 8-hours after infection (Fig. 4.3C). To address if basal maintenance of 

MAZ protein is microbiota-dependent, germ free (GF) and conventionalized (Conv) mice were 

assessed. Compared to GF colon tissue, microbiota conventionalization upregulated MAZ 

protein in colon tissue suggesting that microbiota are critical for basal expression of MAZ (Fig. 

4.3D). Futhermore S. Typhi was sufficient to promote robust MAZ expression in WT mice but 

not toll-like receptor (TLR)2/4 double KO mice (Fig. 4.3E) suggesting that LPS-dependent TLR 

signaling is a key-mediator of MAZ upregulation in colitis. To assess the role for MAZ in 

bacterial-derived colitis, WT and vilMAZ mice were treated with S. Typhi for 10-days. vilMAZ 

mice had significantly enhanced inflammation in bacterial colitis compared to WT mice, 

suggesting activation of MAZ in bacterial-colitis is a critical step in the inflammatory response 

(Fig. 4.3F & G). 

 

MAZ expression increases colitis-associated colon tumorigenesis 
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Inflammation and cancer of the colon are linked (30). Our data show that MAZ 

expression is sufficient to increase inflammation in models of acute colitis. To model 

inflammation-dependent colon tumorigenesis, an AOM/DSS colon tumor model was assessed 

(Fig. 4.4A) (31). Compared to WT mice, vilMAZ mice develop significantly more colon tumors 

and had higher tumor burden in the inflammation-induced AOM/DSS model (Fig. 4.4B-D). 

Moreover, tumors from vilMAZ mice had a higher proportion of actively proliferating cells (Fig. 

4.4E). This observation suggests an important role for activation of epithelial MAZ in the 

transition from chronic inflammation to colon cancer.   

We next assessed the requirement for microbiota in MAZ protein induction in 

inflammation induced colon tumors. GF and SPF mice were subjected to AOM/DSS-induced 

tumorigenesis. SPF mice demonstrated a robust MAZ expression in colon tumors compared to 

adjacent normal colon tissue, MAZ expression in GF mice was dramatically reduced in the 

adjacent normal colon tissue, compared to SPF mice, and the increased tumor-associated MAZ 

expression was ablated (Fig. 4.4F). Collectively, these data suggest microbial-mechanisms are 

essential for MAZ activation in inflammation-induced colon tumors and that this axis increases 

disease severity.  

 

MAZ protein is highly expressed in human colon cancer and has cell autonomous roles in 

colon cancer growth. 

MAZ has an important role in the induction of inflammation-driven colon cancer in vivo. 

Moreover, increased MAZ protein expression is observed in tumor tissue compared to adjacent 

normal colon tissue in ten colorectal cancer (CRC) patients (Fig. 4.5A). MAZ protein expression 

was assessed in human normal tissue or colon tumor enteroids. Colon tumor enteroids are 



	 120 

derived from primary patient colon tumor epithelial cells and maintain three-dimensional 

structure and cell polarity (23). Interestingly, MAZ protein was highly induced in patient-derived 

colon tumor enteroids compared to normal colon enteroids suggesting MAZ is upregulated in 

epithelial cells of colon cancer patients (Fig. 4.5B). Oncomine data analysis suggests MAZ 

mRNA is decreased in human colon tumors compared to normal colon (Fig. 4.5C). The Cancer 

Genome Atlas (TCGA) analysis shows significant decrease of MAZ mRNA in human colon 

cancer relative to normal colon tissue (Fig. 4.5D). qPCR analysis of matched patient normal and 

colon tumor tissue shows that 7/10 patients have a relative decrease in the tumor MAZ mRNA 

(Fig. 4.5E). Collectively, these data suggest that in human colon cancer, novel mechanisms 

promoting the activation of MAZ protein are established independent of MAZ transcripts to 

promote tumorigenesis and tumor growth. 

MAZ protein was expressed in varying degrees across a panel of several different human 

colon cancer cell lines (Fig. 4.5F). To determine if MAZ is important for colon cancer growth, 

siRNAs that robustly reduced expression of MAZ in cell lines were tested (Fig. 5G). In HCT116, 

SW480, and HT29 cells, siRNA-mediated MAZ knockdown significantly reduced colon cancer 

cell growth in vitro (Fig. 4.5H). Furthermore, HCT116 cells with shRNA-mediated MAZ 

knockdown grow significantly slower than control shRNA (shCtrl) expressing HCT116 cells in 

subcutaneous tumor model in Nude mice (Fig. 4.5I). These data suggest MAZ has important 

functions for regulating colon cancer growth independent of the enhanced inflammatory 

response in the AOM/DSS model.   

 

MAZ expression induces STAT3 activation in acute colitis 
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No direct regulator of MAZ-mediated cell growth was identified in the RNA-sequence 

analysis. To address mechanisms by which MAZ expression enhances colon cancer growth 

colon tissue from WT and vilMAZ mice were screened to analyze pathways that are important in 

driving colon tumorigenesis in both sporadic and CAC models (Fig. 4.6A). Epithelial MAZ 

expression correlated with heightened STAT3 phosphorylation (Fig. 4.6A). STAT3 is an 

inflammation-induced transcription factor that is an essential driver of tumorigenesis in CAC and 

sporadic colon cancer (17, 32). To determine if MAZ-induced STAT3 activation was cell 

autonomous, MAZ transcript variants 1 and 3 (MAZ1 & MAZ3) were expressed in HEK cells. 

Western blot analysis shows both MAZ1 and MAZ3 expression robustly induced STAT3 

phosphorylation (Fig. 4.6B). To delineate if this led to heightened STAT3 transcriptional 

activity, STAT3-responses element luciferase reporter (SIE) was assessed. In colon-cancer 

HCT116 cells, expression of MAZ1 and MAZ3 dramatically potentiated IL-6-induced STAT3 

transcriptional activity (Fig. 4.6C). These data suggested that MAZ-induced STAT3 activation 

was independent of enhanced inflammation in colitis. Interestingly, no difference in STAT3 

activation was observed in tumor tissue from WT or vilMAZ mice. However, colon tumor 

induced MAZ expression in WT mice was relatively equivalent to the observed MAZ protein 

expression in tumors of vilMAZ mice (Fig. 4.6D). Furthermore, knockdown of MAZ in HCT116 

cells dramatically reduced STAT3 phosphorylation in response to IL-6 at all time points assessed 

(Fig. 4.6E). This also led to decreased STAT3 transcriptional response as MAZ knockdown 

significantly blunted SIE luciferase activity in response to IL-6 (Fig. 6F). In colon cancer, IL-6 

and IL-11 are key cytokines in STAT3 activation and tumor progression (33). However, bacterial 

products also regulate STAT3 signaling, specifically products derived from Salmonella (34). 

Treatment with S. Typhi in MAZ knockdown cells led to significantly reduced STAT3 activation 
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compared to control cells (Fig. 4.6G). Additionally, siRNA knockdown of MAZ in mouse colon 

cancer cell line MCA38 and HEK cells also show reduced STAT3 responsiveness to IL-6 (Fig. 

4.6H & I). These results delineate an essential role for MAZ in regulation of STAT3 activation in 

colon cancer cells in response to both cytokine and bacterial stimuli. Moreover, the data suggests 

MAZ serves as a link between inflammation-induced STAT3 signaling and colon cancer.  

 

MAZ regulates STAT3 signaling in a JAK-dependent manner 

 STAT3 is activated in response to extracellular cytokines whose receptors promote the 

activation of Janus Kinases (JAKs) through the adaptor protein GP130 (35). Under normal 

circumstances, JAK-mediated STAT3 activation was rapidly inhibited by various negative 

feedback mechanisms. To assess the requirement for JAK in MAZ-dependent STAT3 activation, 

the JAK1/2 inhibitor Ruxolitinib was assessed. In HCT116 and HEK cells, expression of both 

MAZ1 and MAZ3 were sufficient to induce STAT3 phosphorylation. However, in cells treated 

with Ruxolitinib, the increased STAT3 phosphorylation was completely ablated (Fig. 4.7A & B). 

MAZ knockdown decreased phosphorylated JAK in colon cancer cells suggesting MAZ is a 

novel regulator of JAK activation (Fig. 4.7C). Interestingly, MAZ knockdown did not decrease 

mRNA expression of any of the major components of the STAT3 signaling cascade (Fig. 4.7D). 

Furthermore, no direct interaction of MAZ with either JAK1 or JAK2 could be detected by co-

immunoprecipitation in vitro (Fig. 4.7E & F).  
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Discussion 
 

MAZ was discovered more than two decades ago, however, relatively little is known 

about the function of MAZ in normal physiology or the disease state. MAZ was first described as 

a factor binding to the cMYC promoter (36). Since then several MAZ direct target genes have 

been described. Our previous work has shown an essential role for MAZ in the hypoxic 

progression of colitis and MAZ is a direct protein interactor of HIF-2a (12). HIF-2a 

transcription of the pro-inflammatory cytokine Tnfa was MAZ-dependent (11). Moreover, HIF-

2a dependent expression of Caveolin-1, which increased acute inflammation in colitis through 

decreased epithelial barrier integrity, was MAZ-dependent (12). Our previous data suggested that 

MAZ was an important HIF-2a cofactor and directed HIF-2a to promoters of inflammatory 

target genes. Using a novel mouse model of intestine epithelial specific MAZ expression, our 

current data suggest HIF-2a-independent functions of MAZ in the inflammatory progression of 

colitis and colon cancer. A novel repertoire of MAZ regulated genes and pathways have been 

identified.  

 MAZ was highly active in inflammatory foci and was highly expressed in inflamed 

tissues of rheumatoid arthritis patients. Transgenic MAZ expressing mice have previously been 

shown to potentiate the inflammatory response in an infectious model of arthritis (3). 

Mechanistically, MAZ regulates transcription of mmp1 and mmp9 in inflamed joint tissue (37, 

38). MAZ expressing animals have heightened susceptibility to develop serum amyloidosis, a 

condition associated with chronic inflammation due to rheumatoid arthritis and Crohn’s disease 

(39). Consistent with the previous data, we have shown that intestine epithelial MAZ expression 

is sufficient to enhance the acute inflammatory response in complementary models of infectious 

and chemically induced colitis. Previous work has identified MAZ regulation through 
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inflammatory stimuli including IL-6, IL-1B, and LPS (40, 41). In monocytic cells, direct LPS 

treatment is sufficient to drive MAZ expression (27). Moreover, these studies have identified 

inflammation-dependent phosphorylation events which regulate MAZ transcriptional potential 

(42). In the current study, we propose that pathogenic microbes are key regulators of MAZ 

protein expression. We find that MAZ is robustly induced in two separate bacterial models of 

colitis. MAZ protein was also induced in GF mice when colonized with microbiota from SPF 

mice. Pathogenic bacteria can directly induce MAZ protein in colon cancer cells independent of 

an underlying inflammatory response. Furthermore, microbiota are essential for MAZ protein 

expression in colon tumors. Microbial dysbiosis is critical in activating inflammation in human 

colitis and human colon cancer (43). Thus, it is perhaps possible that the increased MAZ protein 

we observed in human ulcerative colitis patients is in part due to microbial dysbiosis and direct 

activation by colon microbiota. Increased MAZ expression observed in colitis may serve to 

enhance the inflammatory response through HIF-2a-dependent as well as independent 

mechanisms and provide a critical link between chronic inflammation and colon cancer.  

Several mechanisms for MAZ-dependent regulation of tumor growth and progression 

have been proposed. In hepatocellular carcinoma, MAZ was shown to regulate EMT signature 

genes to promote tumor invasion (4). In breast cancer, MAZ was shown to transcriptionally 

regulate expression of both HRAS and KRAS to direct tumor angiogenesis (44). Additionally, 

MAZ can directly drive angiogenesis in triple negative breast cancer cells through direct 

transcriptional regulation of VEGF (7). In prostate cancer, MAZ can regulate tumor cell growth 

through activation of androgen receptor expression (5). Furthermore, in pancreatic cancer MAZ 

is a regulator of KRAS transcription and therapeutic targeting of MAZ interaction with KRAS 

promoter using decoy oligonucleotides shows efficacy in decreasing tumor growth (45). This 
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method also showed efficacy in preclinical bladder cancer models (46). In the current study, 

using novel epithelial specific transgenic MAZ overexpressing mice, MAZ expression is 

sufficient to enhance tumorigenesis in an inflammation-induced model. Furthermore, MAZ was 

shown to have cell autonomous regulation of cell growth in colon cancer cell both in vitro and in 

vivo. Recently, our work suggested an important role for MAZ in the inflammatory progression 

of colon cancer by regulating HIF-2a-mediated expression of the potent neutrophil chemokine 

Cxcl1 (10). In the current study, we have discovered a novel HIF-2a-independent function for 

MAZ in the regulation of STAT3 signaling.  

Persistent STAT3 activation is observed in human colon cancer and epithelial expression 

of STAT3 is a crucial link between inflammation and cancer of the colon. Intestine epithelial 

specific STAT3 knockout mice develop very few tumors in CAC (17). Conversely, transgenic 

mice with a constitutive activation of intestinal epithelial STAT3 develop significantly more 

tumors in the same model (17). STAT3 activation is transient and negatively regulated by 

various intracellular proteins including SOCS3. In tumors STAT3 is persistently elevated 

through unknown mechanisms. Previous studies have suggested intra-tumoral iron as an 

important mediator of STAT3 maintenance in colon tumors (47). Furthermore, the negative TLR 

signaling regulator IRAK-M has been shown to maintain STAT3 signaling through increased 

STAT3 protein stability, linking microbial sensing to STAT3 maintenance (19). MAZ was found 

to be sufficient to increase STAT3 phosphorylation in acute colitis in vivo as well as in cell lines. 

Moreover, MAZ was essential for the activation of STAT3 in response to both cytokine and 

bacterial stimuli. MAZ protein was highly upregulated in human colon cancer, suggesting that 

MAZ upregulation in colon cancer is a necessary event to maintain STAT3 activation at high 

levels. Recent evidence suggests MAZ is a key regulator of both AKT signaling pathways in 
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pancreatic cancer cells (48). However, no changes to AKT activation were detected in the 

vilMAZ mice (Fig. 6A). Our combination of in vivo and in vitro data suggest MAZ may provide a 

novel therapeutic target to dampen colon cancer associated inflammatory responses through 

reduction of STAT3 signaling and may have efficacy for treatment of patients. Interestingly, 

MAZ did not transcriptionally alter any key components of the JAK/STAT3 signaling pathway 

and no known direct regulators of this pathway were discovered in RNA-sequence data. 

Moreover, MAZ did not directly interact with JAK1 or JAK2, suggesting novel mechanisms 

integrating MAZ and JAK/STAT3 signaling. Interestingly, JAKs have several post-translational 

modifications including phosphorylation, acetylation, and ubiquitylation, most of which are not 

well understood or characterized in their functional regulation of JAK activity (49). Further 

investigation aimed at understanding how MAZ may regulate JAK activity and protein 

modifications will be important to address how MAZ modulates the activation of STAT3.  
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Figures 

 
Figure 4.1. Generation of intestine-epithelial specific MAZ transgenic mice. (A) Western 
blot analysis of MAZ and FLAG expression in colon and small intestine (S.I.) extracts from WT 
and vilMAZ mice. (B) qPCR analysis of MAZ transcript and (C) representative images of 
hematoxylin and eosin (H&E) staining from colon tissue of WT and vilMAZ mice. (D) Western 
analysis of MAZ protein expression in cytosolic (C) and nuclear (N) extracts from colon tissue 
of WT and vilMAZ mice. Lamin A/C and GAPDH are nuclear and cytosolic markers 
respectively. (E) qPCR analysis of indicated genes from colon tissue of WT and vilMAZ mice. 
(F) Heat map of RNA-seq data WT and vilMAZ. (G) Venn diagram of genes identified as 
overlapping with HIF-2a RNA-seq and vilMAZ-independent genes. (H) qPCR confirmation of 
several MAZ target genes identified in (F) from WT and vilMAZ colon tissue. Statistical analysis 
was performed with Student’s t test. The error bars represent standard error. *** p=0.001; ** 
p<0.01; * p<0.01 
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Figure 4.2. MAZ expression enhances the acute inflammatory response in colitis. (A) 
Western blot analysis of MAZ expression in human ulcerative colitis (UC) and normal tissue 
biopsy samples. Each lane represents a different patient. (B) Immunofluorescence of MAZ in 
human UC frozen tissue section. (C) Western blot analysis of MAZ expression in human 
Normal, UC, and Crohn’s Disease (CD) biopsy specimens. (D) Body weight (E) colon length (F) 
histologic inflammation score and (G) H&E analysis from WT and vilMAZ mice treated with 
2.5% DSS. Statistical analysis was performed with Student’s t test. The error bars represent 
standard error. ** p<0.01; *p<0.05 
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Figure 4.3. MAZ is regulated by microbiota and increases inflammation in bacterial-driven 
colitis. (A) Western blot analysis of MAZ expression in mice treated with S. Typhi colitis for 5-
days and 10-days. (B) Western analysis of MAZ expression in mice treated with C. rod colitis 
for 10-days. (C) Western blot analysis of MAZ expression in HT29 and HCT116 cells treated 
with S. Typhi for 4-hours and 8-hours. (D) Western blot analysis of MAZ expression in colon 
tissue from germ free mice and germ free (GF) mice reconstituted with microbiota (Conv). (E) 
Western blot analysis of MAZ expression in colon tissue from WT and TLR2/4DKO mice 
treated with and without S. Typhi colitis for 10-days. (F) H&E and (G) total inflammation score 
of WT and vilMAZ mice treated with S. Typhi colitis for 10-days. Statistical analysis was 
performed with Student’s t test. The error bars represent standard error. *** p<0.001 
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Figure 4.4. MAZ expression increases colitis-associated colon tumorigenesis. (A) Schematic 
of AOM/DSS model. (B) Tumor number (C) tumor burden (D) and H&E analysis of WT and 
vilMAZ animals treated with AOM/DSS colon tumorigenesis. (E) Representative 
immunofluorescence staining of Ki67 in indicated tumor tissue. (F) Western blot analysis of 
MAZ expression in tumor and adjacent normal tissue from specific pathogen free (SPF) and 
germ free (GF) mice with AOM/DSS-induced colon tumorigenesis. Statistical analysis was 
performed with Student’s t test. The error bars represent standard error. **p<0.01; *p<0.05 
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Figure 4.5. MAZ is important for human colon cancer growth. (A) Western blot analysis of 
MAZ expression in human colon tumor (T) biopsies compared to adjacent normal tissue (N). (B) 
Western blot analysis of MAZ expression normal colon tissue (NT) (n=2) and colon tumor 
enteroids (n=2). (C) Oncomine database analysis of MAZ expression in human colon cancer 
relative to normal colon controls in independent microarrays. (D) MAZ gene expression from 
The Cancer Genome Atlas. (E) MAZ expression in a matched set of 10 colon tumors and 
adjacent normal. (F) Western blot analysis of MAZ expression in indicated human colon cancer 
cell lines assessed in duplicate. (G) Western blot analysis of MAZ expression in HEK cells 
treated with Ctrl or MAZ-targeting siRNAs. (H) MTT assay of cell growth in HCT116, HT29, & 
SW480 cells treated with Ctrl or MAZ targeting siRNAs. (% of Day 0). (I) Tumor weight of 28-
days after subcutaneous injection of HCT116 cells stably transfected with control shRNA 
(shCtrl) or two different MAZ shRNAs (shMAZa or shMAZb) into nude mice. Statistical 
analysis was performed with Student’s t test. The error bars represent standard error. 
****p<0.0001; *** p<0.001; **p<0.01; *p<0.05 
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Figure 4.6. MAZ is a novel regulator of STAT3 signaling. (A) Western blot analysis of 
phosphorylated AKT, STAT3, JNK, and P38 in WT and vilMAZ mice treated with 2.5% DSS for 
7-days. (B) Western blot analysis of pSTAT3 in HEK cells expressing MAZ transcript variants 1 
& 3. (C) STAT3 luciferase activity analysis of HCT116 cells expressing MAZ transcript variants 
1 & 3 treated with PBS or IL-6 (10ng/ml) for 12-hours. Data shown as fold change over control 
****p<0.0001. (D) Western blot analysis of pSTAT3 expression in tumor and adjacent normal 
tissue from WT and vilMAZ mice. (E) pSTAT3 analysis in HCT116 cells expressing MAZ 
shRNAs treated with IL-6 (10ng/ml) for 30, 60, and 120 minutes. (F) STAT3 luciferase activity 
analysis of HCT116 cells expressing MAZ shRNAs treated with IL-6 (10ng/ml) for twelve 
hours. Data shown as fold change over control. ****p<0.0001. (G) pSTAT3 western blot 
analysis in HCT116 cells expressing MAZ shRNAs treated with S. Typhi for 4-hours. 
Phosphorylated STAT3 western blot analysis in (H) MCA38 cells or (I) HEK cells transfected 
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with MAZ siRNAs for 24-hours then treated with IL-6 (10ng/ml) for 60-minutes. Statistical 
analysis was performed with one-way ANOVA.  
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Figure 4.7. MAZ regulates JAK-mediated STAT3 activation. Western blot analysis of (A) 
HCT116 and (B) HEK cells expressing MAZ transcript variants 1 & 3 pretreated with Ctrl or the 
JAK inhibitor for 12-hours. (C). pJAK and pSTAT3 western blot analysis in HCT116 cells 
expressing MAZ shRNAs treated IL-6 (10ng/ml) for 30, 60, and 120 minutes. (D) qPCR analysis 
of STAT3 signaling component genes in MAZ knockdown HCT116 cells. (E) Western blot 
analysis of myc-immunoprecipitation from HEK cells expressing myc-JAK1 and MAZ or (F) 
myc-JAK2 and MAZ. 
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Table 3.1 Primer list 

 

 

 

 

 

 

 

 

Table S1: qPCR Primers 

Mouse 
Primers Forward (5'-3') Reverse (5'-3') 
!-Actin TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG 
Maz ACCACCTGAACCGACATAAGCT GGCACACAGGGCACTGGTA 
Fer1l4 CCGTGTTGAGGTGCTGTTC GGCAAGTCCACTGTCAGATG 
Slc30a10 TGTGGTCATCACGGCTATCAT ATGTAGCACTGCCAGTTACAC 
Ang4 ACAACAAAGGACATGGGCTC TCTCCAGGAGCACACAGCTA 
Gatsl3 CACGGAGCCACTGTGAGATA ACACTCTCATGGTGGATGAGG 
Tnf! AGGGTCTGGGCCATAGAACT CCACCACGCTCTTCTGTCTAC 
Il1! AAGAGCTTCAGGCAGGCAGTATCA TGCAGCTGTCTAGGAACGTCA 
Tff3 GCACCATACATTGGCTTGG AGAGCCCTCTGGCTAATGCT 
Muc2 CCTGAAGACTGTCGTGCTGT GGGTAGGGTCACCTCCATCT 
Chga GTCTCCAGACACTCAGGGCT ATGACAAAAGGGGACACCAA 
Cdh1 AAAAGAAGGCTGTCCTTGGCC GAGGTCTACACCTTCCCGGT 

   Human Primers Forward (5'-3') Reverse (5'-3') 
!-Actin TATTGGCAACGAGCGGTTCC GGCATAGAGGTCTTTACGGATGT 
hMAZ TCGGCTTATATTTCGGACCA CATTGGACAAACCTCACCAGT 
hJAK1 GAATGACGCCACACTGACTG GATGACAAGATGTCCCTCCG 
hJAK2 CCATTCCCATGCAGAGTCTT CAGGCAACAGGAACAAGATG 
hJAK3 GGACAAGAGGCTGCATGAAC CTTCGAAAGTCCAGGGTCC 

hGP130 CGGACAGCTTGAACAGAATGT ACCATCCCACTCACACCTCA 
hSTAT3 CTGCTCCAGGTACCGTGTGT CCTCTGCCGGAGAAACAG 

hIL6R ACTGGTCAGCACGCCTCT GGGACCATGGAGTGGTAGC 
SOCS3 GAGCCAGCGTGGATCTG GGCTCAGCCCCAAGGAC 
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Chapter 5 

Conclusions and Future Directions 

Epithelial HIF-2a is a well characterized activator of the intestinal inflammatory 

response in the setting of colitis. HIF-2a directly targets expression of a battery of cytokines and 

chemokines to promote mucosal inflammatory responses. In addition to its role in colitis, the 

work in this thesis provides convincing evidence of the role of the colon epithelial hypoxic 

response and HIF-2a activation as critical regulators of inflammation-induced colon 

tumorigenesis. Disruption of intestinal epithelial HIF-2a significantly reduces colon 

tumorigenesis in complementary inflammation-induced tumor models. Moreover, constitutive 

activation of HIF-2a in mice with epithelial deletion of Vhl enhanced colon tumorigenesis, 

suggesting HIF-2a is both an essential and sufficient regulator of colitis-associated colon 

tumorigenesis in mice.  

Our previous work has shown that HIF-2a can modulate the colon tumor inflammatory 

response via distinct pathways. HIF-2a is a direct transcriptional regulator of cyclooxygenase-2 

(COX-2) and microsomal prostaglandin e synthase (mPGES) to increase tumor-associated 

inflammation and inflammatory prostaglandin production (1). Moreover, HIF-2a is essential for 

colon tumor uptake of iron and intra-tumoral iron increases tumor associated inflammation and 

oncogenic cytokine production (2). The work in this thesis extends this data to show that HIF-2a 

can directly modulate the tumor immune microenvironment through recruitment of PMNs. 

Deletion of intestinal epithelial HIF-2a led to significant reduction of colon tumor-associated 
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PMNs in complementary models of colitis-associated colon cancer. Furthermore, expression of 

epithelial HIF-2a is sufficient to increase PMN recruitment into colon tissue and colon tumors. 

Mechanistically, this was downstream of HIF-2a transcription of the potent PMN chemokine 

Cxcl1.  

CXCL1 is highly expressed in sites of inflammation and several solid tumor through 

unknown mechanisms. This thesis shows that the colon tumor epithelium is an important and 

major source of CXCL1 in a HIF-2a-dependent manner. Deletion of epithelial HIF-2a 

significantly reduced colon tumor CXCL1 mRNA and protein abundance. The Cxcl1 proximal 

promoter contains several hypoxia response elements (HREs) and HIF-2a activation of the 

Cxcl1 promoter is HRE-dependent. Inhibition of the CXCL1 receptor, CXCR2, using inhibited 

tumorigenesis in a HIF-2a-driven tumor model. These data demonstrate an essential role for 

epithelial HIF-2a in modulating the tumor microenvironment and suggest targeting HIF-2a 

therapeutically may show benefit in colon cancer patients. Our work also extends previous data 

showing that epithelial HIF-1a does not play a significant role in inflammation-induced colon 

cancer. This is consistent with our prior work which showed hyper-activation of HIF-1a did not 

promote colon tumorigenesis (3). Taken together, the work in this thesis to extend upon the 

function of HIF-2a in colitis-associated colon cancer and identifies HIF-2a as an important link 

between inflammation and cancer. Furthermore, this work defines HIF-2a as a master regulator 

of Cxcl1 expression and PMN recruitment into colon tumors. With the development of novel 

HIF-2a-specific inhibitors, future studies in our lab will be aimed at modulating HIF-2a activity 

in preclinical murine colitis and colon cancer models with an impetus toward clinical 

development of these drugs.  
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HIF-based therapeutics in cancer 

Due to the highly complex role of HIF in tumorigenesis, HIF-based therapies need to be 

assessed on an individual tumor basis. The best-characterized approach to alter HIF signaling is 

through inhibiting PHDs, which leads to activation of HIF signaling (4). PHD inhibitors have 

been assessed in models of inflammation-induced tissue injury and were shown to be effective 

and safe (5-7). Through a decrease in inflammation-induced tissue injury, PHD inhibitors may 

have a beneficial role in several cancers. Recent work has clearly demonstrated that PHD 

inhibitors can selectively activate HIF-1a (8). This suggests the possibility of finding novel 

agents that may target each isoform. However, there are concerns about therapeutic activation of 

HIF signaling, as most data suggest that HIF pathways lead to enhanced tumor progression. 

Currently, there are several drugs that inhibit HIF-1a and many of them are in clinical trials (9). 

Most of the compounds that are in clinical trials were originally discovered as targeting other 

pathways. 2-methoxyestradiol, a metabolite of estradiol, can decrease tumor growth through 

inhibition of HIF-1a but simultaneously can decrease angiogenesis and disrupt microtubules 

(10). Cardiac glycosides, including Digoxin, can robustly reduce tumor growth through 

inhibition of HIF-1a (11). Furthermore, several topoisomerase inhibitors have been shown to 

decrease tumor growth through HIF-1a inhibition (12, 13). However, no HIF-1a specific 

inhibitors have been discovered.  

Selective inhibition of HIF-2a can be achieved through targeting the iron response 

element in the 5’-UTR of HIF-2a (14). Additionally, through structural analysis of HIF-2a, a 

ligand-binding cavity located within its PAS-B domain, which contains a b-sheet that mediates 

interaction with ARNT. This cavity is not present on HIF-1a. (15). No endogenous ligands are 

known for HIF-2a, but this cavity has been targeted for drug development and several promising 
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highly specific small molecule inhibitors have been identified as efficaciously disrupting HIF-2a 

heterodimerization with ARNT and blocking DNA binding and transcription of target genes in 

cultured cells (16). These inhibitors have shown efficacy in preclinical models of renal cell 

carcinoma, which is driven by HIF-2a (17, 18). Our data in colon cancer suggest inhibition of 

HIF-2a may dampen tumor growth and progression through several mechanisms. HIF-2a has 

cell-autonomous effects in colon cancer cells through hyper-activation of iron uptake via divalent 

metal transporter 1 (Dmt1) (2). Interestingly, our lab has recently discovered a unique HIF-2a-

dependent mechanism of colon tumor iron trapping through a local hepcidin axis (Andrew 

Schwartz, unpublished data). These data in addition to the data in this thesis show HIF-2a can 

inhibit cell-autonomous growth and decrease tumor-associated inflammation. The current 

available reagents coupled with recent HIF structural analysis provide a framework to 

specifically regulate HIF-1a and HIF-2a and provide clinical tools to alter tumor pro-tumor 

inflammatory response or anti-tumor-immune response in both colitis and colon cancer (19). 

 

Neutrophils and colon cancer 

The data in this thesis extends previous work suggesting that PMNs are critical drivers of 

tumor growth and progression. However, most studies rely upon PMN trafficking receptor 

inhibitors or antibody-mediated PMN depletion in established tumors. Inhibition of PMNs using 

CXCR2 blocking peptide suggested that PMNs play an important role in tumorigenesis in 

hypoxic-driven and established tumors (20). The primary contribution of PMNs to the induction 

of colon tumors is less clear. Our studies suggest that complete PMN ablation prior to the 

induction of colon tumorigenesis using LysM-Cre-driven Mcl1 deletion dramatically enhances 

colon tumor growth and progression. In the AOM/DSS colitis-associated colon cancer model, 
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greater than 60% of PMN-deficient animals developed highly invasive adenocarcinoma. This 

was able to be recapitulated in sporadic colon tumor models by generating PMN-deficient 

chimeric Cdx2-CreERT2; Apcfl/fl mice. Strikingly, we observed invasive adenocarcinoma in this 

model at 14-days after colon tumor induction. Mechanistically, PMN-deficiency increased colon 

tumor-associated bacteria, genetic instability, and heightened inflammatory response through IL-

17 expression and NF-"B signaling. Furthermore, antibiotics treatment was able to reverse the 

increased tumor growth and progression in PMN-deficient mice in the AOM/DSS model of 

colitis-associated colon cancer. These studies suggest an important role for PMNs in the 

restriction of tumor-associated microbes to decrease colon tumor progression. This thesis 

suggests divergent and even opposing functions of PMNs in colon cancer and suggest more 

study into PMN heterogeneity and kinetics of PMN are warranted.  

Limitations to our studies include the LysM-Cre used for Mcl1 deletion. Cre expression 

downstream of the LysM promoter is activated in all myeloid cells, therefore although only 

PMNs are depleted in this model, off target effects cannot be completely excluded. However, the 

PMN-specific Mrp8-Cre and the myeloid LysM-Cre phenocopied each other in a sporadic colon 

tumor model suggesting this effect was due specifically to PMN depletion and not off target 

effects in other myeloid cells. Other genetic models of PMN depletion have been generated, 

including the Csf3r knockout mouse which fails to develop PMNs (21).  

Our data suggest that temporal regulation of PMNs may be critical to exert either pro- or 

anti-tumor effects. Interestingly, human studies of early stage lung cancer have suggested that 

PMNs from early stage tumors are T-cell stimulatory and as lung cancers progress PMNs 

become less T-cell stimulatory (22). In mouse-models of colon cancer, inhibition of PMNs after 

the initiation of colon tumorigenesis suggests PMNs promote tumor growth and progression. 



	 145 

However, in human colon cancer, it has been proposed that early PMN infiltration into colon 

tumors is associated with positive prognosis (23). Future studies should be aimed at identifying 

temporal evolution of intra-tumoral PMNs in colon cancer. This could be done using Cre-

dependent Diphtheria Toxin Receptor (DTR) expressing mice for PMN depletion (24). Mrp8-Cre 

expressing mice can be crossed to mice expressing DTR down-stream of a loxp-STOP-loxp 

cassette that has been previously described. For these experiments three groups in which PMNs 

are depleted with Diphtheria Toxin prior to AOM/DSS-induced tumorigenesis, PMN depletion 

after the third cycle of DSS, and a group in which PMNs are depleted after induction of colon 

tumorigenesis. Moreover, temporal control of PMN depletion could be achieved by generation of 

a tamoxifen-inducible LysM-Cre or Mrp8-Cre mouse. These studies and mouse models will more 

precisely define the dependence of PMNs during different stages of colon tumorigenesis.  

 Depletion of PMNs prior to the initiation of colon tumorigenesis increases colon tumor 

progression through limiting microbiota-dependent responses. However, other anti-tumor 

mechanisms of PMNs in early stage colon cancer are largely undefined. Previous studies have 

suggested that PMNs in early stage lung cancers acquire antigen presenting cell (APC) functions 

and can activate anti-tumor T-cell responses (25). It has also been reported that PMNs in acute 

colitis acquire APC functions suggesting PMNs may inhibit initiation of colon tumorigenesis 

through activation of T-cell responses (26). It would be interesting to examine the contribution of 

PMN-APCs in the initiation of colitis-associated colon tumorigenesis. For these studies, 

previously described mice with floxed major histocompatibility complex II (MhcII) alleles are 

being crossed to Mrp8-Cre mice (27). Coupling AOM/DSS as well as sporadic colon cancer 

models may provide clues into the role of PMN-dependent antigen presentation in the initiation 

of colon tumorigenesis.  
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MAZ and regulation of STAT3 signaling 

Our lab has suggested that the cellular microenvironment can modulate the hypoxic 

response and HIF-2a target gene specificity. For example, low iron status activates intestinal 

epithelial HIF-2a. In this setting, HIF-2a activates transcription of numerous genes related to 

iron absorption but not inflammatory target genes. Current work in our lab suggest this effect is 

in part mediated by SMAD3/4 signaling (Nupur Das, unpublished data). Interestingly, in the 

inflamed state epithelial HIF-2a activates transcription of inflammatory target genes but not iron 

absorption. We have previously identified Myc-associated zinc finger (MAZ) as a direct HIF-2a 

interacting protein (28). MAZ is a cys2-his2 type zinc finger transcription factor that is highly 

upregulated in chronic inflammatory diseases and several human cancers. Although its 

expression is induced in several models, very little is known of its function in inflammation and 

cancer. We have shown that MAZ is crucial for HIF-2a-dependent inflammatory target gene 

specificity in colitis and colon cancer. We first identified MAZ as an essential factor for HIF-2a-

dependent transcription of Tnfa (29). Interestingly, although HIF-2a directly binds to and 

regulates activation of the Tnfa promoter, no HIF-2a binding site is present in the Tnfa proximal 

promoter. Deletion of a MAZ binding site in the Tnfa proximal promoter completely ablated 

HIF-2a-dependent Tnfa induction (29). This thesis extends on our previous data to show that 

MAZ is also important for HIF-2a-dependent Cxcl1 activation. However, the precise functional 

role and HIF-2a-independent functions of MAZ are not known.  

The work in this thesis demonstrates that MAZ is highly induced in human ulcerative 

colitis and colon cancer. To delineate the function of MAZ, we generated a novel mouse model 

of intestine epithelial-specific MAZ expression. MAZ expression dramatically enhanced 
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susceptibility to colitis and complementary models of chemically-induced and bacterial colitis 

(DSS & S. Typhi). Moreover, MAZ expression enhanced the susceptibility to colitis-associated 

colon tumorigenesis in the AOM/DSS model and was important for the growth of human colon 

cancer cells both in vitro and in vivo. Mechanistically, we have identified an important role for 

MAZ in the regulation of oncogenic STAT3 signaling. STAT3 is an inflammation-induced 

transcription factor that is absolutely essential for the initiation and maintenance of colon 

tumorigenesis (30). STAT3 is highly activated and maintained in human colon cancer through 

unknown mechanisms. We show that both in vivo and in vitro MAZ promotes increased 

activation of STAT3. Moreover, knockdown of MAZ in colon cancer cells reduces 

responsiveness of STAT3 to inflammatory stimuli. These data suggest targeting MAZ may 

provide a novel therapeutic avenue to dampening STAT3 activation in colon cancer.  

To address more mechanistically the role of MAZ in inflammation and cancer we have 

used CRISPR/CAS9 to generate full body knockout mice. Guide RNAs targeting the first exon 

of MAZ and founders were identified that were heterozygous for an 11-base pair deletion of 

exon 1 (Fig. 5.1A). Interestingly, MAZ protein expression downregulated but is not completely 

lost in these mice, suggesting hypomorphic expression (Fig. 5.1B). This is perhaps the result of 

alternative splicing. MAZ has an upstream exon used in alternative splicing, which bypasses 

MAZ exon 1, may bypass the deletion of MAZ in our knockout mice. Interestingly, basal STAT3 

phosphorylation in the small intestine and colon of these mice is reduced relative to WT 

littermate controls suggesting that these mice still may provide an effective model for the study 

of MAZ in colitis and colon cancer (Fig. 5.1C). Additionally, the lab is generating mice with 

floxed Maz alleles. These mice will be crossed to intestine epithelial Villin-Cre expressing mice 

to be used for further analysis of MAZ in colitis and colitis-associated colon tumor models.  
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The exact mechanism of MAZ-dependent STAT3 activation is unknown. The work in 

this thesis suggests MAZ activates STAT3 in a JAK-dependent mechanism. However, MAZ 

does not transcriptionally regulate expression of JAK1, JAK2, or JAK3 or have direct interaction 

with JAK1 or JAK2 suggesting a novel mechanism of JAK regulation. Future experiments in the 

lab including screening for novel MAZ protein interactors using BioID, a method which allows 

identification of protein interactors by conjugating a protein of interest to a biotin ligase which 

biotynylates interacting proteins (31). Furthermore, the lab is investigating genome wide MAZ 

binding sites using MAZ chromatin immunoprecripitation (ChIP). Further delineation of the 

mechanism by which MAZ regulates the STAT3 signaling cascade may provide insight into 

mechanisms maintaining high STAT3 phosphorylation in colon cancer.  

 

Final thoughts 

 The data in this thesis clearly shows that epithelial HIF-2a is essential in inflammation-

induced colon tumorigenesis. The present work demonstrates that PMN inhibition in established 

tumors can therapeutically decrease tumor growth. Interestingly, evidence suggest that HIF-2a 

expression in immune cells is also important in colon tumorigenesis (32). Therefore, this work 

combined with previous work provides rationale for the continued development of HIF-2a-

specific inhibitors in the treatment of colon cancer. The data in this thesis also challenges the role 

of intra-tumoral PMNs in colon cancer. We show that inhibition of PMNs in established tumors 

reduces tumor progression. However, we also show that depletion of all PMNs prior to initiation 

of tumorigenesis increases colon tumor growth and progression in complementary inflammation-

induced and sporadic colon tumor models. Our data suggest an important role for intra-tumoral 

PMNs in restricting microbe-dependent tumor responses. Therefore, more evaluation of PMN 
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evolution and heterogeneity in colon cancer must be considered before initiating clinical trials in 

human colon cancer patients. This thesis also delineates a novel function for the HIF-2a 

interacting protein MAZ in the regulation of oncogenic STAT3 signaling. Therefore, targeting 

MAZ may be effective in dampening the pro-inflammatory HIF-2a response as well as reduce 

STAT3 signaling in colon cancer.  
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Figure 5.1 Generation of full-body MAZ knockout mice. (A) Sanger sequencing analysis of 
11-bp deletion in Exon 1 of MAZ. + = MAZ positive control. (B) Western blot analysis of MAZ 
expression in duodenum, ileum, and colon tissue of one WT mouse and two separate 11-bp MAZ 
knockout mice. (C) pSTAT3 western blot analysis in small intestine (S.I.) and colon tissue from 
indicated mice.  
 

 


