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Abstract 

 

Diabetic patients suffer from a long-term condition that results in high blood glucose levels 

(hyperglycemia). Many medications for diabetes lose their glycemic control effectiveness over 

time and patient compliance to these medications is a major challenge. Glycemic control is a vital 

continuous process and is innately regulated by the endocrine and autonomic nervous systems. 

There is an opportunity for developing an implantable and automated treatment for diabetic 

patients by accurately detecting and altering neural activity in autonomic nerves. Renal nerves 

provide neural control for glucose reabsorption in the kidneys, and the vagus nerve conveys 

important glucose regulation signals to and from the liver and pancreas. This dissertation 

investigated stimulation of renal nerves for glycemic control, assembled an implantation procedure 

for neural interface arrays designed for autonomic nerves, and recorded physiological action 

potential signals in the vagus nerve. 

In a first study, stimulation of renal nerves in anesthetized, normal rats at kilohertz 

frequency (33 kHz) showed a notable average increase in urine glucose excretion (+24.5%). In 

contrast, low frequency (5 Hz) stimulation of renal nerves showed a substantial decrease in urine 

glucose excretion (−40.4%). However, these responses may be associated with urine flow rate. 

In a second study, kilohertz frequency stimulation (50 kHz) of renal nerves in anesthetized, 

diabetic rats showed a significant average decrease (-168.4%) in blood glucose concentration rate, 

and an increase (+18.9%) in the overall average area under the curve for urine glucose 

concentration, with respect to values before stimulation.  
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In a third study, an innovative procedure was assembled for the chronic implantation of 

novel intraneural MIcroneedle Nerve Arrays (MINAs) in rat vagus nerves. Two array attachment 

approaches (fibrin sealant and rose-bengal bonding) were investigated to secure non-wired MINAs 

in nerves. The fibrin sealant approach was unsuccessful in securing the MINA-nerve interface for 

4- and 8-week implant durations. The rose-bengal coated MINAs were in close proximity to axons 

(≤ 50 μm) in 75% of 1-week and 14% of 6-week implants with no significant harm to the implanted 

nerves or the overall health of the rats. 

In a fourth study, physiological neural activity in the vagus nerve of anesthetized rats was 

recorded using Carbon Fiber Microelectrode Arrays (CFMAs). Neural activity was observed on 

51% of inserted functional carbon fibers, and 1-2 neural clusters were sorted on each carbon fiber 

with activity. The mean peak-to-peak amplitudes of the sorted clusters were 15.1-91.7 µV with 

SNR of 2.0-7.0. Conducting signals were detected in the afferent direction (0.7-1.0 m/sec 

conduction velocities) and efferent direction (0.7-8.8 m/sec). These conduction velocities are 

within the conduction velocity range of unmyelinated and myelinated vagus fibers. Furthermore, 

changes in vagal nerve activity were monitored in breathing and blood glucose modulated 

conditions. 

This dissertation, to our knowledge, was the first to demonstrate glucose regulation benefits 

by stimulation of renal nerves, chronically implant intraneural arrays in rat vagus nerves, and 

record physiological action potential in vagus nerves using multi-channel intraneural electrodes. 

Future work is needed to evaluate the long-term glucose regulation benefits of stimulation of renal 

nerves, and assess the tissue reactivity and recording integrity of implanted intraneural electrodes 

in autonomic nerves. This work supports the potential development of an alternative implantable 
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treatment modality for diabetic patients by modulating and monitoring neural activity in autonomic 

nerves. 
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Chapter 1: Introduction 

 

 

1.1 Diabetes Mellitus 

Diabetes mellitus is a chronic progressive disease that requires continuous monitoring and 

medical care to prevent severe complications associated with the disease (American Diabetes 

Association 2020). Over 450 million people around the world are affected by diabetes and the 

global healthcare expenditure is estimated to be more than $850 billion (Cho et al. 2018). Many 

diabetic patients struggle with glycemic control and are in high risk of morbidity and mortality. 

This worldwide disease is characterized by the impairment of insulin secretion (type-1 diabetes) 

or defective cell response to insulin (type-2 diabetes) (World Health Organization 2016). Insulin 

is a hormone produced by the pancreas and has a key-like function that facilitates the transport of 

glucose from blood into cells. Consequently, diabetic patients suffer from a long-term condition 

of high blood glucose levels (hyperglycemia) (Nathan 1993). The World Health Organization 

reported an estimate of 1.5 million deaths in 2012 caused by diabetes and an additional 2.2 million 

deaths caused by high blood glucose conditions (World Health Organization 2016).  

1.1.1 Type-1 Diabetes 

Patients with type-1 diabetes suffer from hyperglycemia due to environmental and/or 

genetic factors that lead to an autoimmune response that destroys insulin-secreting β-cells in the 

islets of Langerhans of the pancreas (Forbes and Cooper 2013). This autoimmune response is not 

fully understood and patients rely on the administration of insulin for their survival. Type-1 
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diabetes represent 5-15% of the diabetic population (Centers for Disease Control and Prevention 

2020). The incidence rate of type-1 diabetes in children is annually increasing by 3-5%, which 

may be influenced by environmental triggers or the rising increase of insulin resistance 

(Harjutsalo, Sjöberg, and Tuomilehto 2008; Taplin et al. 2005).      

1.1.2 Type-2 Diabetes 

Type-2 diabetes is the most common form of diabetes and comprises over 85% of the 

diabetic population (Centers for Disease Control and Prevention 2020). Patients with type-2 

diabetes have insulin resistance, which is a defective tissue cell response to insulin. The pancreas 

initially increases insulin secretion to compensate this insulin resistance, but eventually the 

secretion of insulin declines (Forbes and Cooper 2013; Lew and Wick 2015). Although insulin 

resistance of skeletal muscle, liver and adipose tissue impairs the glucose metabolism process, the 

reduction of insulin secretion is considered the final stage leading to hyperglycemia (Forbes and 

Cooper 2013; Kahn et al. 1993). The concerning increase in the prevalence of type-2 diabetes is 

believed to be mostly influenced by environmental factors and lifestyle changes that are associated 

with obesity (Henry, Chilton, and Garvey 2013; Wallenius and Maleckas 2015).        

1.2 Physiology of Glucose Regulation  

Glucose regulation is a vital continuous process for maintaining a healthy biological state. 

The body tightly regulates blood glucose levels at an average concentration of 90 mg/dL, peak 

concentration around 165 mg/dL after meals, and minimum of 55 mg/dL after exercise or fasting 

(Shrayyef and Gerich 2010). Glucose is the main metabolic fuel for the brain, which cannot 

synthesize or store glucose more than a few minutes of supply, and therefore, requires a continuous 

source of glucose from the blood (Shrayyef and Gerich 2010; Yi et al. 2010). This critical 

regulation requires complicated coordination between the endocrine and nervous systems 
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(Shrayyef and Gerich 2010; Niijima 1989; Thorens 2011). After meal consumption (absorptive 

state), the level of insulin secretion from the pancreas is increased to facilitate glucose uptake, and 

glucose is consumed by glycolysis or stored in the liver as glycogen. In the post-absorptive state, 

the breakdown of glycogen in the liver (glycogenolysis) is the main source for circulating glucose. 

This breakdown is promoted by glucagon, which is a hormone released from α-cells of the 

pancreas. When glycogen is depleted (12-18 hours of fasting), glucose production 

(gluconeogenesis) in the liver and kidney become the main source of blood glucose (Shrayyef and 

Gerich 2010; Tirone and Brunicardi 2001; El Bacha, Luz, and Da Poian 2010). 

The nervous system has a major role in glucose regulation. Glucose sensors are present in 

the hepatic portal vein, gastrointestinal tract, carotid body and oral cavity, and trigger sensory 

signals through parasympathetic and sympathetic afferent neurons. Glucose sensors are also found 

in the hindbrain and hypothalamus of the brain (Watts and Donovan 2010; Verberne, 

Sabetghadam, and Korim 2014; Yi et al. 2010; Berthoud 2008; Soty et al. 2017). The liver is 

supplied by sympathetic splanchnic nerves that originate from celiac and superior mesenteric 

ganglia and are connected to the spinal cord. The liver is also supplied by parasympathetic nerves 

from the dorsal motor nucleus of the vagus (DMV) in the brainstem. (Yi et al. 2010; Mizuno and 

Ueno 2017). Decreased glucose levels in the portal vein of the liver activates vagal afferent 

neurons, which signal for the initiation of food intake (Yi et al. 2010; Mizuno and Ueno 2017). 

Stimulation of the splanchnic nerves increases blood glucose and decreases glycogen content in 

the liver (Shimazu and Fukuda 1965), while stimulation of the vagus nerve enhances glycogen 

synthesis (Shimazu 1967). The pancreas is also innervated by sympathetic and parasympathetic 

nerves. Activation of sympathetic nerves reduces insulin secretion and increases secretion of 

glucagon (Verberne, Sabetghadam, and Korim 2014), while excitation of parasympathetic nerves 
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increases the level of plasma insulin (Ionescu et al. 1983). Although many studies suggest the 

importance of the nervous system in glucose regulation, the physiological signaling and specific 

function of the nerves is somewhat controversial and far from well understood. 

1.3 Management of Diabetes Mellitus 

1.3.1 Insulin Replacement Therapy 

The most effective treatment for patients with diabetes is insulin replacement therapy, 

which was first introduced in 1922 by Banting and Best (Lew and Wick 2015). Since β-cell 

function is absent or near-absent in type-1 diabetes, insulin administration is critical for the 

survival of these patients. Insulin is administered by multiple daily injections of rapid-acting and/or 

long-acting insulin, or by the continuous subcutaneous infusion of insulin with a pump (American 

Diabetes Association 2020). Insulin therapy is usually initiated for type-2 diabetic patients when 

hyperglycemia is severe (≥ 300 mg/dL) (American Diabetes Association 2020; Wallia and Molitch 

2014). The main risk associated with insulin therapy is hypoglycemia, which is the reduction of 

blood glucose levels. Hypoglycemia complications include nervousness and irritability at first, and 

may lead to more serious consequences, such as impaired cognitive function, coma or death if not  

treated within a few hours (Donovan and Watts 2014; Shrayyef and Gerich 2010). Studies on 

insulin-treated patients showed that type-1 diabetic patients have much higher incidents of 

hypoglycemia (91.0-136.8 episodes/person/year) than patients with type-2 diabetes (0.2-35.3 

episodes/person/year) (Elliott et al. 2016). 

1.3.2 Medications for Diabetes Mellitus 

Medications for diabetic management are numerous and have various mechanisms of 

action (Lew and Wick 2015; Grempler et al. 2012; Matthaei et al. 2009; American Diabetes 

Association 2020). The first recommended therapy for diabetic patients today after diet and 
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exercise is metformin, which reduces glucose production in the liver. Sulfonylureas and 

Meglitinides bind to pancreatic cells to stimulate insulin secretion, while thiazolidinediones 

(TZDs) increase the sensitivity of skeletal muscle and adipose tissue to insulin. Glucagon-like 

peptide-1 (GLP-1) receptor agonists promote insulin secretion and increase satiety signals. A 

recently approved medication is sodium-glucose co-transporter 2 (SGLT-2) inhibitors, which 

prevent the activity of SGLT-2 transporters in proximal tubules of kidneys, reducing glucose 

reuptake by the kidneys and increasing glucose excretion into urine. 

Despite the progress of medications for diabetes, many of these medications are associated 

with undesirable side effects, such as diarrhea in up to 50% of patients initiating therapy with 

metformin, urinary tract infections with SGLT-2 inhibitors, and risk of hypoglycemia with insulin-

dependent medications (Lew and Wick 2015). Furthermore, many medications lose their glycemic 

control effectiveness over time and the combination of therapies is necessary for a large number 

of patients (Blak et al. 2012; Khunti et al. 2013; American Diabetes Association 2020). 

Consequently, almost half of adults with diabetes in the US did not meet the recommended goals 

for diabetic care (Ali et al. 2013). Moreover, sustained patient adherence to these diabetic 

medications in a lifelong therapy is a major challenge (García-Pérez et al. 2013; Ali et al. 2013). 

The World Health Organization reported that adherence to long-term therapies in developed 

countries is around 50% and is much lower in developing countries (Sabaté 2003). Therefore, there 

is a crucial need for alternative diabetic therapies that overcome these pharmaceutical limitations. 

1.4 Diabetic Therapies that Target the Autonomic Nervous System 

The autonomic nervous system has a major role in the regulation of unconscious functions 

that are essential to the body, such as breathing, blood pressure regulation, immune responses, 

digestion, bladder function and glucose regulation, among others (McCorry 2007; Browning, 
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Verheijden, and Boeckxstaens 2017; de Groat, Griffiths, and Yoshimura 2015; Niijima 1989). The 

system is divided into the sympathetic nervous system, which controls “fight-or-flight” responses, 

and the parasympathetic nervous system, which regulates “rest-and-digest” functions (McCorry 

2007). 

1.4.1 Renal Denervation 

Overactivity of renal sympathetic nerves has been linked to the pathogenesis of 

hypertension (Esler et al. 2012). In recent years, a global interest has emerged for catheter-based 

renal denervation as a potential treatment for drug-resistant hypertension patients (Pan, Guo, and 

Teng 2015; Bhatt et al. 2014). Early renal denervation clinical trials showed significant blood 

pressure improvements (Esler et al. 2010; Krum et al. 2009). Interestingly, renal denervation also 

showed a significant decrease in blood glucose levels in pilot studies (Mahfoud et al. 2011; 

Witkowski et al. 2011). Renal denervation studies on animals align with the observed blood 

glucose control improvements reported in clinical trials (Rafiq et al. 2015; Iyer et al. 2016). 

However, a large, randomized, single-blinded, and sham-controlled clinical trial did not show 

significant improvements in blood pressure between treated and control patients (Bhatt et al. 2014). 

Furthermore, more recent studies did not show significant improvements in glucose regulation 

(Verloop et al. 2015; Matous et al. 2015). 

1.4.2 Bioelectronic Medicine 

An emerging class of therapies that rely on targeted detection and modulation of neural 

activity in autonomic nerves is bioelectronic medicine (Tracey 2014; Birmingham et al. 2014; 

Pavlov and Tracey 2019). A variety of bioelectronic medicine applications target the vagus nerve, 

which innervates many critical visceral organs (e.g. heart, lungs, stomach, liver, pancreas and 

intestines) (Agostoni et al. 1957; Andrews 1986). Clinical studies on vagus nerve stimulation 
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(VNS) have shown improvements in patients with epilepsy (Ben-Menachem 2002), stroke 

(Dawson et al. 2016), depression (Spindler et al. 2019), rheumatoid arthritis (Koopman et al. 2016) 

and impaired glucose tolerance (Huang et al. 2016). Vagal nerve block (vBloc) therapy was 

approved in 2015 by the Food and Drug Administration (FDA) for certain patients with morbid 

obesity (Ikramuddin et al. 2014). Interestingly, clinical trials on vBloc therapy reported 

improvements in blood glucose control for patients with obesity and type-2 diabetes (Shikora et 

al. 2013) but were not sustained after 24 months (Shikora et al. 2015). 

1.4.2.1 Renal Nerves 

Renal nerves are predominantly efferent sympathetic nerves that form axonal junctions on 

renal arterioles, juxtaglomerular renin-secreting cells and epithelial cells of proximal tubules, the 

glucose reabsorption region in the kidney nephron (Gattone, Marfurt, and Dallie 1986; Luff et al. 

1992; Muller and Barajas 1972; DeFronzo, Davidson, and Del Prato 2012). A recent study reported 

that mutant (neuronal POMC-deficient) mice showed improved capability for tolerating high blood 

glucose levels by exaggerating urine glucose excretion (glycosuria) compared to wild-type mice 

at similar induced blood glucose concentrations (Chhabra et al. 2016). A following study 

determined that the observed glycosuria and improved glucose tolerance were a result of reduced 

activity in renal sympathetic nerves (Chhabra et al. 2017). Therefore, a treatment that reduces renal 

nerve activity may provide glycemic control benefits for diabetic patients. 

1.4.2.2 The Vagus Nerve 

The vagus nerve is a main parasympathetic nerve that innervates many visceral organs, 

such as the heart, lungs, stomach, intestines liver and pancreas (Agostoni et al. 1957; Andrews 

1986), and contributes in the regulation of numerous autonomic functions, which include 

breathing, immune responses, digestion, and glucose regulation, among others (Berthoud and 
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Neuhuber 2000; Borovikova et al. 2000; Browning, Verheijden, and Boeckxstaens 2017; Berthoud 

2008; Waise, Dranse, and Lam 2018). The fibers in the vagus nerve predominantly convey afferent 

(sensory) signals from the innervated organs to the central nervous system (Foley and DuBois 

1937). The vagus nerve conveys important neural signals for glucose regulation. Neural signals in 

the hepatic branch of the vagus nerve are important in the regulation of glucose uptake, storage 

and production in the liver (Matsuhisa et al. 2000; López-Soldado et al. 2017; Masi, Valdés-Ferrer, 

and Steinberg 2018). Neurons that originate in the dorsal motor nucleus of the vagus (DMV) were 

found to innervate the pancreas (Jansen, Hoffman, and Loewy 1997), and excitation of these 

neurons increased the level of plasma insulin (Ionescu et al. 1983). Hence, the vagus nerve is a 

potential nerve target for the development of an effective bioelectronic medicine for diabetic 

patients by monitoring and controlling glucose regulation signals.  

1.5 Opportunity for Bioelectronic Medicine for Diabetic Patients 

Although clinical trials on VNS therapies have shown improvements in glucose regulation 

(Shikora et al. 2015; Huang et al. 2016), to our knowledge, no clinical studies have investigated 

organ-targeted bioelectronic medicine as a treatment approach for diabetes. Furthermore, 

bioelectronic medicine stimulation patterns are generally selected by experimenting with different 

parameters without monitoring the physiological signaling in the nerve. Recording neural activity 

from autonomic nerves is very challenging due to the small nature of these nerves and the low-

amplitude waveforms generated from unmyelinated C-fibers that dominate autonomic nerves 

(Jones 1937; DiBona, Sawin, and Jones 1996). Another difficult challenge is the chronic 

implantation of intraneural electrodes that penetrate a nerve, and maintaining recording sites 

closely to axons for high-fidelity long-term recordings while enduring the foreign body response 

(de la Oliva, Navarro, and del Valle 2018; Wurth et al. 2017). 
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Bioelectronic medicine therapies are becoming more accepted by patients and healthcare 

practitioners due to their effectiveness, reversibility and automation of treatment (Johnson 2014; 

Kumar et al. 2007). Developing a bioelectronic medicine for diabetic patients that can accurately 

detect and alter neural signals for effective glycemic control will assist patients overcome 

therapeutic limitations with current medications. The renal and vagus nerves are potential targets 

for this bioelectronic medicine treatment. Effective glycemic control will help diabetic patients 

avoid complications associated with the disease, such as blindness, cardiovascular events, kidney 

failure and limb amputations (World Health Organization 2016; Inzucchi et al. 2012). 

1.6 Research Specific Aims 

Diabetic medications are critical for the treatment of current patients with diabetes 

(American Diabetes Association 2020). However, many patients fail to achieve the recommended 

glycemic control goals (Hoerger, Segel, and Gregg 2008) and sustained patient adherence to these 

medications in a continuing therapy is an ongoing major challenge (García-Pérez et al. 2013). Our 

long-term goal is to develop a reversible, automated and effective treatment that will assist patients 

and healthcare providers in the commitment of a lifelong therapy for diabetes. The objective of 

this dissertation is to demonstrate bioelectronic medicine as a potential treatment approach for 

diabetic patients. We hypothesized that alteration of renal nerve activity by electrical stimulation 

would regulate blood glucose levels, and newly developed intraneural electrodes would cause 

minimal tissue damage and obtain high-fidelity physiological recordings in autonomic nerves. The 

Specific Aims of this dissertation are:  
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1.6.1 Determine Effective Stimulation Parameters for the Modulation of Urine Glucose 

by Stimulation of Renal Nerves in Normal Rats 

In this aim study, we stimulated renal nerves at kilohertz frequencies (1-50 kHz) or low 

frequencies (2-5 Hz), and observed the response on urine glucose excretion and urine flow rate. 

We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can block 

propagation of action potentials, would increase urine glucose excretion. Conversely, we 

hypothesized that low frequency stimulation, which has been shown to increase renal nerve 

activity, would decrease urine glucose excretion. Our experimental results showed that stimulation 

of renal nerves may modulate urine glucose excretion, however, this response may be associated 

with urine flow rate. This aim is covered in Chapter 2 and has been published (Jiman et al. 2018). 

1.6.2 Evaluate Impact of Kilohertz Frequency Stimulation of Renal Nerves on Blood 

Glucose Concentration in Diabetic Rats 

In this research, we hypothesized that kilohertz frequency stimulation of renal nerves 

would reduce blood glucose concentration levels in diabetic animals by increasing urinary glucose 

excretion. We applied bilateral kilohertz frequency stimulation (50 kHz) of renal nerves in diabetic 

streptozotocin (STZ)-induced rats. Our results showed that kilohertz frequency stimulation of renal 

nerves is a possible approach for the modulation of blood glucose concentration and may introduce 

an alternative treatment modality for glycemic control in patients with diabetes. This research aim 

is covered in Chapter 3 and has been published (Jiman et al. 2019).  

1.6.3 Develop Surgical Procedure for the Chronic Implantation of Microneedle Nerve 

Arrays in Rat Vagus Nerves 

We assembled an innovative chronic implantation procedure for novel intraneural 

MIcroneedle Nerve Arrays (MINAs). We investigated two array attachment approaches (fibrin 
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sealant and rose-bengal bonding) to secure non-wired MINAs in rat vagus nerves. We assessed 

the approaches by determining the proximity of the MINA to the nerve and evaluated the nerve 

condition by electrophysiology testing. Our results suggest that a future functional rose bengal-

bonded MINA will have excellent promise for yielding high-fidelity neural signals through one 

week of implant and may provide novel insights in neural signaling of autonomic nerves. This aim 

is covered in Chapter 4 and is in the process for submission as a publication.  

1.6.4 Demonstrate Intraneural Recordings in Rat Vagus Nerves Using Carbon Fiber 

Microelectrode Arrays 

We hypothesized that Carbon Fiber Microelectrode Arrays (CFMAs), which have shown 

excellent intracortical recordings with minimal impact on neural tissue, would obtain intraneural 

physiological recordings in an autonomic nerve. We inserted CFMA in rat cervical vagus nerves, 

recorded physiological neural activity on multiple channels in spontaneous and triggered 

conditions, and determined propagation direction and conduction velocity of vagal signals. Our 

experiments demonstrated CFMA as a viable multi-channel intraneural electrode for recording 

neural activity in an autonomic nerve. This work is a milestone towards the comprehensive 

understanding of physiological signaling in autonomic nerves, which may lead to the development 

of innovative treatment modalities for restoring autonomic regulatory functions. This specific aim 

is covered in Chapter 5 and is in preparation for publication. 

These specific aims, to our knowledge, were the first to demonstrate stimulation of renal 

nerves as a potential treatment modality for glycemic control, assemble a chronic implantation 

procedure for novel intraneural arrays in small autonomic nerves and record physiological signals 

in vagus nerves using multi-channel intraneural arrays. Future work is needed to evaluate the long-

term glycemic control benefits of stimulation of renal nerves, and assess the tissue reactivity and 
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recording integrity of implanted intraneural arrays in small autonomic nerves. The development 

of a reversible, automated and effective treatment for glycemic control will assist many patients 

suffering from diabetes in the commitment of a lifelong therapy. The findings of all the specific 

aims, impact on the field and future directions are summarized in Chapter 6. 
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Chapter 2: Electrical Stimulation of Renal Nerves for Modulating Urine Glucose Excretion 

in Rats 

 

 

This chapter has been published: 

A. A. Jiman, K. H. Chhabra, A. G. Lewis, P. S. Cederna, R. J. Seeley, M. J. Low, and T. M. Bruns, 

“Electrical stimulation of renal nerves for modulating urine glucose excretion in rats,” Bioelectron. 

Med., vol. 4, no. 7, 2018. 

 

2.1 Abstract 

The role of the kidney in glucose homeostasis has gained global interest. Kidneys are 

innervated by renal nerves, and renal denervation animal models have shown improved glucose 

regulation. We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can 

block propagation of action potentials, would increase urine glucose excretion. Conversely, we 

hypothesized that low frequency stimulation, which has been shown to increase renal nerve 

activity, would decrease urine glucose excretion.  

We performed non-survival experiments on male rats under thiobutabarbital anesthesia. A 

cuff electrode was placed around the left renal artery, encircling the renal nerves. Ureters were 

cannulated bilaterally to obtain urine samples from each kidney independently for comparison. 

Renal nerves were stimulated at kilohertz frequencies (1-50 kHz) or low frequencies (2-5 Hz), 

with intravenous administration of a glucose bolus shortly into the 25-40-minute stimulation 
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period. Urine samples were collected at 5-10-minute intervals, and colorimetric assays were used 

to quantify glucose excretion and concentration between stimulated and non-stimulated kidneys. 

A Kruskal-Wallis test was performed across all stimulation frequencies (α = 0.05), followed by a 

post-hoc Wilcoxon rank sum test with Bonferroni correction (α = 0.005). 

For kilohertz frequency trials, the stimulated kidney yielded a higher average total urine 

glucose excretion at 33 kHz (+24.5%; n=9) than 1 kHz (-5.9%; n=6) and 50 kHz (+2.3%; n=14). 

In low frequency stimulation trials, 5 Hz stimulation led to a lower average total urine glucose 

excretion (-40.4%; n=6) than 2 Hz (-27.2%; n=5). The average total urine glucose excretion 

between 33 kHz and 5 Hz was statistically significant (p < 0.005). Similar outcomes were observed 

for urine flow rate, which may suggest an associated response. No trends or statistical significance 

were observed for urine glucose concentrations. 

To our knowledge, this is the first study to investigate electrical stimulation of renal nerves 

to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves 

may modulate urine glucose excretion, however, this response may be associated with urine flow 

rate. Future work is needed to examine the underlying mechanisms and identify approaches for 

enhancing regulation of glucose excretion. 

2.2 Introduction 

Diabetes mellitus is a chronic progressive disease that requires continuous monitoring and 

medical care to prevent the development of severe complications (American Diabetes Association 

(ADA) 2018). Medications for diabetic management are numerous and have different mechanisms 

of action (Chatterjee and Davies 2015). Recently, sodium-glucose co-transporter 2 (SGLT-2) 

inhibitors were approved by the US Food and Drug Administration (FDA) for patients with type 

2 diabetes. SGLT-2 inhibitors prevent the activity of SGLT-2 transporters in the renal proximal 
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tubule, thereby reducing glucose reuptake by the kidneys and increasing glucose excretion into 

urine (Lew and Wick 2015). Despite the progress in the development of diabetic medications, 

many lose their effectiveness over time, which makes achieving blood glucose control targets 

difficult for many diabetic patients (Blak et al. 2012; Khunti et al. 2013; Ali et al. 2013). 

Furthermore, sustained patient adherence to these diabetic medications in a lifelong therapy is a 

major challenge (García-Pérez et al. 2013; Sabaté 2003). Therefore, there is a crucial need for 

alternative diabetic therapies that overcome these pharmaceutical limitations.    

In recent years, a global interest has emerged for catheter-based renal denervation as a 

potential treatment for drug-resistant hypertension (Pan, Guo, and Teng 2015; Bhatt et al. 2014). 

Early clinical trials of renal denervation showed significant blood pressure improvements (Esler 

et al. 2010; Krum et al. 2009). Interestingly, renal denervation was also associated with significant 

decreases in blood glucose levels (Mahfoud et al. 2011; Witkowski et al. 2011). Renal denervation 

studies in animals align with the observed blood glucose control improvements reported in clinical 

trials (Rafiq et al. 2015; Iyer et al. 2016). Furthermore, a recent study reported that mutant 

(neuronal POMC-deficient) mice showed improved capability for tolerating high blood glucose 

levels by exaggerating urine glucose excretion (glycosuria) compared to wild-type mice at similar 

induced blood glucose concentrations (Chhabra et al. 2016). A following study determined that 

the observed glycosuria and improved glucose tolerance were a result of reduced activity in renal 

sympathetic nerves (Chhabra et al. 2017). A non-pharmaceutical and reversible approach that has 

emerged in recent years for reducing nerve activity is kilohertz frequency stimulation, which has 

demonstrated nerve conduction block on multiple types of nerves (Kilgore and Bhadra 2014; 

Joseph and Butera 2009; 2011). We hypothesized that kilohertz frequency stimulation (1-50 kHz) 

on renal nerves would attain similar results to renal denervation and induce urine glucose 
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excretion. 

Several studies have successfully influenced renal nerve activity in humans and animals by 

applying electrical stimulation. Electrical stimulation of renal nerves with an intra-arterial catheter 

electrode demonstrated increased blood pressure, and was considered as a method for locating 

suitable renal denervation targets for the treatment of drug-resistant hypertensive patients 

(Chinushi et al. 2013; Madhavan et al. 2014; Gal et al. 2015). Direct stimulation of renal nerves in 

rats using wire hook electrodes at low frequencies (0.5-10 Hz) showed increased renin secretion 

and water reabsorption, and decreased renal blood flow and sodium excretion responses (DiBona 

and Kopp 1997; DiBona and Sawin 1982; Bello-Reuss, Trevino, and Gottschalk 1976; 

Hermansson et al. 1981; Van Vliet, Smith, and Guyton 1991). Sodium and glucose reabsorption 

are partially associated due to the presence of sodium-glucose co-transporters (SGLTs) in the renal 

proximal tubule (Mather and Pollock 2011). Our hypothesis was that direct stimulation of renal 

nerves at low frequencies (0.5-10 Hz) would decrease urine glucose excretion.  

Therapies that directly alter neural activity (neuromodulation) are commonly prescribed as 

treatments for a variety of conditions (Krames, Peckham, and Rezai 2009; Famm et al. 2013). 

Gastric electrical stimulation is used to help patients with delayed stomach-emptying of solid foods 

(gastroparesis), which is commonly observed in patients with diabetes (Abell et al. 2003). Vagal 

nerve block (vBloc) therapy was recently approved by the FDA for certain patients with morbid 

obesity (Apovian et al. 2017). Clinical trials on vBloc therapy reported improvements in blood 

glucose control for patients with obesity and type 2 diabetes but were not sustained after 24 months 

(Herrera et al. 2017). Despite the success of neuromodulation therapies, to our knowledge, no 

clinical studies have investigated organ-targeted neuromodulation as a treatment approach for 

diabetes. In this study, we investigated modulation of urine glucose excretion with kilohertz and 
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low frequency stimulation on renal nerves.  

2.3 Methods 

All experimental procedures were approved by the University of Michigan Institutional 

Animal Care and Use Committee (IACUC). 

2.3.1 Animals and Housing 

Rats have a similar urinary system to humans and rat renal nerves have been visualized by 

several research groups (Stocker and Muntzel 2013; Miki, Kosho, and Hayashida 2002). Non-

survival, anesthetized experiments were performed on 24 male 290-550 g Long-Evans and 

Sprague-Dawley rats (Charles Rivers Laboratories, Wilmington, MA, USA). All animals were 

housed in ventilated cages under controlled temperature, humidity and photoperiod (12-h 

light/dark cycle). The animals were provided with laboratory chow (5L0D, LabDiet, St. Louis, 

MO, USA) and tap water ad libitum.    

2.3.2 Experimental Preparation 

For anesthesia, a single dose of thiobutabarbital sodium salt hydrate (Inactin, T133-1G, 

Sigma-Aldrich Corp., St. Louis, MO, USA) was injected intraperitoneally (110 mg/kg BW). 

Thiobutabarbital is commonly used in renal studies and is known to preserve renal function during 

anesthesia (Walter, Zewde, and Shirley 1989; Sohtell, Karlmark, and Ulfendahl 1983). Rats were 

placed on a heating pad (ReptiTherm, Zoo Med Laboratories Inc., San Luis Obispo, CA, USA) 

and temperature was monitored through a rectal temperature sensor (SurgiVet, Smiths Medical, 

Norwell, MA, USA). Under a dissection microscope (Lynx EVO, Vision Engineering Inc., New 

Milford, CT, USA), a midline cervical incision was made and the jugular vein was cannulated with 

polyethylene tubing (BTPE-50, Instech Laboratories Inc., Plymouth Meeting, PA, USA). Through 
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the jugular vein, 0.9% NaCl (saline), equivalent to 10% body weight, was infused over 30 minutes, 

and then followed by a continuous infusion of 0.2 mL/min using a syringe pump (NE-1000, New 

Era Pump Systems Inc., Farmingdale, NY, USA) (Bello-Reuss, Trevino, and Gottschalk 1976). A 

tracheotomy was performed to ensure a clear airway. Ureters were cannulated bilaterally with 

polyethylene tubing (BTPE-10, Instech Laboratories Inc., Plymouth Meeting, PA, USA) to obtain 

urine samples from each kidney independently. The left kidney was exposed through a midline 

abdominal incision. Fat and connective tissue surrounding the kidney were separated using cotton-

tipped applicators to further expose the kidney and renal artery. A bipolar nerve cuff electrode 

(1.00 mm inner-diameter, 100 µm platinum contacts, Microprobes for Life Science, Gaithersburg, 

MD, USA) was placed around the renal artery, encircling renal nerves that run along the artery 

(Miki, Kosho, and Hayashida 2002; Stocker and Muntzel 2013). Care was taken not to damage the 

renal nerve branches and not to occlude blood flow in the renal artery. To ensure that the renal 

nerves were intact, biphasic stimulation pulses at 10 Hz, 10 V were applied for approximately 1 

minute through the nerve cuff electrode. This resulted in temporary kidney ischemia, which was 

confirmed by the observation of kidney surface blanching (Hermansson et al. 1981). This 

stimulation-driven ischemia occurred in all the experiments in which we performed the test (n=18). 

Prior to implant, electrode impedance measurements (4.77 ± 1.53 kΩ) were taken using an 

impedance tester (nanoZ, White Matter LLC, Seattle, WA, USA) at 1 kHz in saline to confirm 

functionality of the nerve cuff electrode.   

2.3.3 Electrical Stimulation 

The nerve cuff electrode placed on the renal nerves was connected to an isolated pulse 

stimulator (Model 4100, A-M Systems, Loop Sequim, WA, USA). For kilohertz frequency 

stimulation, a function generator (33220A, Agilent Technologies, Santa Clara, CA, USA) was 
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connected to the isolated pulse stimulator to generate sinusoidal waveforms at 1, 33 or 50 kHz. 

The stimulation amplitude was fixed at 15 V, which has been shown to provide nerve conduction 

block for all selected frequencies on unmyelinated nerves (Joseph and Butera 2009; 2011). For 

low frequency stimulation, the isolated pulse stimulator generated biphasic pulses at 2 or 5 Hz. 

The stimulation amplitude and pulse width was fixed at 10 V and 0.5 msec, respectively, which is 

above the activation threshold for rat C-fibers using cuff electrodes (Woodbury and Woodbury 

1990). The stimulation frequencies were randomly ordered between trials across all experiments 

to mitigate sequential effects. 

2.3.4 Experimental Protocol 

After completion of surgery, a stabilization period of 10-60 minutes was provided. In each 

experiment, 1-3 trials with different stimulation frequencies were applied on the nerve cuff 

electrode. Stimulation was applied at the start of a trial and remained on for 25-40 minutes. To 

elevate blood glucose levels beyond the expected renal threshold for glucose excretion (400 

mg/dL) (Liang et al. 2012), a 0.30-1.00 g bolus dose of glucose (50% Dextrose Injection USP, 

Hospira Inc., Lake Forest, IL, USA) was delivered through the jugular vein at 2-16 minutes into 

each trial. To confirm blood glucose increase and to monitor blood glucose levels over time, drops 

of blood (< 0.1 mL) from a tail cut were used to obtain blood glucose concentration measurements 

using a glucometer (AlphaTRAK 2, Abbott, Abbott Park, IL, USA) before glucose infusion and 

every 5-10 minutes after glucose infusion. Urine samples from each kidney were collected in pre-

weighed sampling tubes (3448, Thermo Fisher Scientific, Waltham, WA, USA) at 5-10-minute 

intervals. Ten minutes after the end of a trial, blood glucose measurements were expected to be 

around baseline levels. If not, a longer washout period was provided to the rat before proceeding 

to the next experimental trial. The collected urine samples were weighed on a scale (AE 160, 
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Mettler Toledo, Columbus, OH, USA) for volume estimations (1 µL/mg). Urine glucose 

concentrations were measured using colorimetric assays (10009582, Cayman Chemical, Ann 

Arbor, MI, USA). The experimental setup and protocol timeline are summarized in Figure 2.1. 

 

 

Figure 2.1 Experimental setup diagram and protocol timeline. (a) Experimental setup: Jugular vein was 

cannulated for saline and glucose infusion. Nerve cuff electrode was placed on renal nerves of the left kidney and 

connected to a stimulation generator. Ureters were cannulated bilaterally, and urine samples were collected in 

sampling vials. (b) Nerve cuff electrode was placed around the renal artery, encapsulating the renal nerve branches 

that run along the renal artery. (c) Timeline for experimental protocol: Each experiment consisted of 1-3 stimulation 

trials (T1-T3), with a rest period (R) before each trial. A glucose bolus was infused in each trial. Blood glucose 

measurements and urine samples were obtained periodically throughout the trials. 
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From the urine sample volumes and glucose concentration measurements, the total urine 

glucose excretion (UGE) was calculated and compared between the stimulated and non-stimulated 

kidney [∆UGE = (UGEstimulated – UGEnon-stimulated)/UGEnon-stimulated x 100] for each trial. For urine 

glucose concentration (UGC) and urine flow rate (UFR), the area under the curve (AUC) was 

calculated for each trial by trapezoidal numerical integration and compared between the kidneys 

in a similar manner as UGE. From blood glucose concentration (BGC) values, a BGC decrease 

rate (BGCDR) was obtained by calculating the linear regression slope of BGC values starting 

approximately 10 minutes after the glucose bolus infusion and ending with the final value in the 

trial. The glucometer was unable to read blood glucose concentrations above 750 mg/dL, which 

occasionally occurred during the first 10 minutes after a glucose bolus infusion. Therefore, BGC 

values within 10 minutes after a glucose bolus infusion were excluded in BGCDR calculations for 

all stimulation trials.  

2.3.5 Statistical Analysis  

Across all experiments, data sets did not follow a normal distribution (confirmed by one-

sample Kolmogorov-Smirnov test). Therefore, a non-parametric Kruskal-Wallis test was 

performed to measure statistical significance across stimulation frequencies. Statistical 

significance was considered at p < 0.05. A two-sided Wilcoxon rank sum test was then applied 

between pairs of stimulation frequencies. The significance level (α) was adjusted according to a 

Bonferroni correction, where α was divided by the number of stimulation pairs (10). Thus, 

statistical significance for the Wilcoxon rank sum test was considered at p < 0.005. All data 

analysis and statistical tests were performed using MATLAB software (R2014b, MathWorks, 

Natick, MA, USA).  
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2.4 Results 

Across the 24 experiments on male rats, we performed stimulation trials at kilohertz 

frequencies (1 kHz [n = 6], 33 kHz [n = 9] and 50 kHz [n = 14]) and low frequencies (2 Hz [n = 

5] and 5 Hz [n = 6]). We obtained measurements of urine glucose excretion, urine glucose 

concentration, urine flow rate, and blood glucose concentration in each trial.     

2.4.1 Urine Glucose Excretion 

Glucose excretion was analyzed and compared between the urine samples obtained from 

the stimulated and non-stimulated kidneys. The percentage difference of urine glucose excretion 

(∆UGE) between the stimulated and non-stimulated kidneys for all stimulation frequencies are 

shown in Figure 2.2a. Overall, stimulation frequency had a statistically significant effect on ∆UGE 

(Kruskal-Wallis test, p < 0.05). In kilohertz frequency trials, 33 kHz yielded a higher average 

∆UGE (+24.5%; n = 9) than 1 kHz (-5.9%; n = 6) and 50 kHz (+2.3%; n = 14). In low frequency 

trials, 5 Hz stimulation led to a lower average ∆UGE (-40.4%; n = 6) than 2 Hz (-27.2%; n = 5). 

Statistical significance only occurred between the ∆UGE of 33 kHz and 5 Hz trials (Wilcoxon rank 

sum test, p < 0.005). Stimulation at kilohertz frequencies met our hypothesis of increased UGE in 

14 trials (48.2%), had no apparent effect (|∆UGE| < 5%) in 10 trials (34.5%), and showed a 

decrease in UGE in 5 trials (17.2%) out of the 29 total kilohertz frequency trials. In low frequency 

stimulation trials, we observed a decrease of UGE in 9 trials (81.8%), no apparent effect in 1 trial 

(9.1%), and an increase of UGE in 1 trial (9.1%) out of 11 trials in total. Examples of stimulation 

trials at 33 kHz that displayed an increase, no apparent effect, or a decrease in UGE are shown in 

Figure 2.2b-d. 
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Figure 2.2 Changes in urine glucose excretion. (a) The percentage difference in urine glucose excretion between 

the stimulated and non-stimulated kidney (∆UGE) at the applied stimulation frequencies. Stimulation frequency had 

a statistically significant main effect (Kruskal-Wallis test, p < 0.05), with one within-frequency comparison being 

significant (5 Hz and 33 kHz; post-hoc Wilcoxon rank sum test, * = p < 0.005). (b) Representative stimulation trial 

at 33 kHz that showed an increase in UGE. (c) Representative stimulation trial at 33 kHz that showed no apparent 

effect on UGE. (d) Representative stimulation trial at 33 kHz that showed a decrease in UGE.  

 

2.4.2 Urine Glucose Concentration 

The urine glucose concentration (UGC) differences between the urine samples obtained 

from the stimulated and non-stimulated kidneys at all stimulation frequencies are shown in Figure 

2.3a. The average UGC difference was +5.9% at 2 Hz (n = 5), +12.6% at 5 Hz (n = 6), +3.7% at 1 

kHz (n = 6), +3.7% at 33 kHz (n = 9), and -6.2% at 50 kHz (n = 14). Stimulation frequency did 

not have an overall significant effect on UGC (Kruskal-Wallis test, p = 0. 2365). 
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Figure 2.3 Changes in urine glucose concentration. (a) The percentage difference between the area under the 

curve for urine glucose concentration of the stimulated and non-stimulated kidney (∆AUCUGC) at the applied 

stimulation frequencies. (b) Urine glucose concentration (UGC) measurements for the trial shown in Figure 2.2b. (c) 

UGC measurements for the trial shown in Figure 2.2c. (d) UGC measurements for the trial shown in Figure 2.2d.     

 

2.4.3 Urine Flow Rate 

The urine flow rate (UFR) differences between the urine samples obtained from the 

stimulated and non-stimulated kidneys at all stimulation frequencies are shown in Figure 2.4a. The 

average UFR difference was -27.7% at 2 Hz (n = 5), -40.6% at 5 Hz (n = 6), -6.0% at 1 kHz (n = 

6), +14.6% at 33 kHz (n = 9), and +9.8% at 50 kHz (n = 14). Stimulation frequency had a 

statistically significant main effect on UFR (Kruskal-Wallis test, p < 0.05), with trials at 33 kHz 

and 5 Hz significantly different from one another (post-hoc Wilcoxon rank sum test, p < 0.005). 
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Figure 2.4 Changes in urine flow. (a) The percentage difference between the area under the curve for urine flow 

rate of the stimulated and non-stimulated kidney (∆AUCUFR) at the applied stimulation frequencies. Stimulation 

frequency had a significant main effect (Kruskal-Wallis test, p < 0.05), with 5 Hz and 33 kHz trials significantly 

different from each other (post-hoc Wilcoxon rank sum test, * = p < 0.005). (b) Urine flow rate (UFR) 

measurements for the trial shown in Figure 2.2b. (c) UFR measurements for the trial shown in Figure 2.2c. (d) UFR 

measurements for the trial shown in Figure 2.2d. 

 

2.4.4 Blood Glucose Concentration 

The blood glucose concentration decrease rates (BGCDRs) during stimulation at all 

frequencies are shown in Figure 2.5a. The average BGCDR was -9.1 mg/dL/min at 2 Hz (n = 4), 

-13.5 mg/dL/min at 5 Hz (n = 5), -13.5 mg/dL/min at 1 kHz (n = 6), -12.0 mg/dL/min at 33 kHz 

(n = 9), and -12.5 mg/dL/min at 50 kHz (n = 13). No statistically significant main effect occurred 

across all stimulation frequencies (Kruskal-Wallis test, p = 0.4708). BGCDR at some stimulation 

trials [2 Hz (n = 1), 5 Hz (n = 1) and 50 kHz (n = 1)] were not calculated due to insufficient BGC 

values. 
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Figure 2.5 Changes in blood glucose concentration. (a) The blood glucose concentration decrease rate (BGCDR) 

at the applied stimulation frequencies. (b) Blood glucose concentration (BGC) measurements and BGCDR (slope) 

for the trial shown in Figure 2.2b. (c) BGC and BGCDR measurements for the trial shown in Figure 2.2c. (d) BGC 

and BGCDR measurements for the trial shown in Figure 2.2d. BGC measurements above 750 mg/dL were not 

available due to the limitations of the glucometer. 

 

2.5 Discussion 

The aim of this study was to investigate modulation of urine glucose excretion by electrical 

stimulation of renal nerves. We hypothesized that stimulation of renal nerves at kilohertz 

frequencies (1-50 kHz) would increase urine glucose excretion (UGE), while low frequency 

stimulation (2-5 Hz) would decrease UGE. Although stimulation at kilohertz frequencies did not 

always lead to an increase in UGE, 33 kHz showed a notable average increase in UGE in 

accordance with our hypothesis. In contrast, low frequency stimulation typically showed a 

decrease in UGE, with the strongest effect observed at 5 Hz stimulation (Figure 2.2). To our 

knowledge, this study is the first to demonstrate influence of electrical stimulation of renal nerves 
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on glucose excretion. 

The average differences in UGE were similar to the average differences observed in urine 

flow rate (UFR), as shown in Figure 2.4. This associated response may suggest that either UGE or 

UFR was the primary effect of stimulation, while the other was a secondary response. Previous 

studies that applied stimulation of renal nerves at low frequencies observed a 25-52% reduction in 

UFR (Bello-Reuss, Trevino, and Gottschalk 1976; Pontes et al. 2015). Those percentages align 

with the average reduction of UFR we observed at low frequency stimulation (28% at 2 Hz, 41% 

at 5 Hz), suggesting that UFR may be the primary response of stimulation at low frequencies. On 

the other hand, we observed an increase in UFR at 33 and 50 kHz stimulation. To our knowledge, 

no studies have reported an increase in UFR by stimulation of renal nerves. Although it is possible 

that changes in UFR may have directly led to corresponding changes in UGE, the primary response 

of UFR or UGE to stimulation at kilohertz frequencies cannot be determined in this study. UFR 

and UGE are normally associated, as increased urination is a common adverse event in diabetic 

patients treated with sodium-glucose co-transporter 2 (SGLT2) inhibitors that primarily increase 

urine glucose excretion (Seufert 2015; Wilding 2014). Additional studies are required to 

distinguish the glucose excretion and urine flow effects for stimulation of renal nerves.   

Stimulation of renal nerves did not have a clear effect on urine glucose concentration (UGC), 

as no statistical significance occurred across stimulation frequencies (Figure 2.3). Furthermore, we 

did not observe a clear difference between kilohertz or low frequency stimulation on the decrease 

rate for blood glucose concentration (BGC) after infusion of an artificial glucose bolus (Figure 

2.5). Typically, BGC would reach a peak value within the first 10 minutes after glucose bolus 

infusion. Then, BGC values would gradually decrease and return to around baseline values at 30-

40 minutes after the glucose infusion, regardless of the stimulation parameters. The variation in 
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the sample size of the stimulation frequency groups may have also contributed to these unclear 

responses. Modifications and improvements in experimental design may be necessary to capture 

clear and consistent responses to stimulation of renal nerves. 

Renal nerve branches are distributed around the renal artery in a plexus form. Ultrastructural 

studies using electron microscopy techniques have shown that renal nerve fibers innervate 

epithelial cells of proximal tubules, the glucose reabsorption region of the kidney (Muller and 

Barajas 1972; Luff et al. 1992; Mather and Pollock 2011). Although studies have examined the 

distribution of renal nerves around the renal artery (Maeda et al. 2014; Sakakura et al. 2014; van 

Amsterdam et al. 2016), we could not determine the renal nerve branches that innervate the 

proximal tubules in this study. Therefore, we utilized a cuff electrode with the purpose of 

encircling all the renal nerve branches surrounding the renal artery. In order to place a cuff 

electrode, the renal artery was isolated by removing adjacent connective tissue that may have 

contained fine renal nerve branches. Although we ensured that the renal nerves were moderately 

intact by observing temporary kidney surface blanching at 10 Hz stimulation (Hermansson et al. 

1981; Yao et al. 2014), the variations in connective tissue removal and relative shifts in the 

electrode placement along the renal artery across experiments may have contributed to the 

variability of our outcome results. This inconsistency in outcomes has also been observed in renal 

denervation studies, where conflicting results were reported in clinical studies (Mahfoud et al. 

2011; Bhatt et al. 2014; Witkowski et al. 2011). The reported variability is suspected to be from 

variations in ablation locations across renal denervation procedures performed in multiple centers 

(Mahfoud, Edelman, and Böhm 2014). Experimental improvements in electrode placement and 

the plexus-electrode interface may be required to obtain more consistent results. 

An anatomical analysis in rats showed that 96% of renal nerve axons are unmyelinated C-
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fibers (DiBona, Sawin, and Jones 1996). Although nerve conduction block experiments using 

kilohertz frequency stimulation were typically performed using cuff electrodes encircling 

myelinated motor neurons while monitoring muscle tension for block validation (Kilgore and 

Bhadra 2014; Bhadra and Kilgore 2005), nerve block has also been demonstrated on purely 

unmyelinated fibers using suction electrodes and confirmed by direct recordings of action potential 

propagation (Joseph and Butera 2009). In this study, the amplitude of sinusoidal kilohertz 

frequency stimulation was fixed at 15 V, which is expected to be above the threshold for nerve 

conduction block at the selected frequencies (Joseph and Butera 2011; Y. A. Patel and Butera 

2015; Bhadra and Kilgore 2005). On the other hand, previous studies increased renal nerve activity 

by low frequency stimulation (Bello-Reuss, Trevino, and Gottschalk 1976; DiBona 2000). The 

stimulation amplitude and pulse width in this study at low frequencies was consistent at 10 V and 

0.5 msec, respectively, which is above the activation threshold for rat C-fibers using cuff electrodes 

(Woodbury and Woodbury 1990). However, to validate the true presence of nerve conduction 

block or increased neural activity, multiple recording and stimulating electrodes must be placed 

along the renal nerves. Unfortunately, this was difficult to accomplish in this study due to our 

limited ability to expose and isolate the renal nerves (~2-4 mm), in addition to the anticipated noise 

contamination issues between adjacent stimulating and recording electrodes (Kilgore and Bhadra 

2014). Additional experiments are required to examine the mechanism of action for stimulation of 

renal nerves. 

The work presented here was a feasibility study to investigate glucose excretion modulation 

by stimulation of renal nerves. There are numerous limitations to this study. Although changes in 

UGE were observed in response to stimulation of renal nerves, this study does not provide any 

evidence on the underlying mechanisms for these changes. It is unknown if the observed changes 
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in UGE were a consequence of changes in UFR, or directly related to the gluconeogenesis process 

or the glucose transport pathways in the proximal tubules that are innervated by renal nerves 

(Mather and Pollock 2011; Muller and Barajas 1972; Luff et al. 1992). Measurements of renal 

function, such as glomerular filtration rate, renal plasma flow and sodium excretion (Toto 1995; 

Phillips and Hamilton 1948) were not obtained in this feasibility study. The assessment of renal 

function is an absolute necessity for the progression of this research. The large variation in the 

results of this study may have been due to multiple reasons. In addition to the variability in 

electrode placement, the unilateral stimulation approach in this study may have provoked reno-

renal reflexes, where the non-stimulated kidney modifies its activity based on changes in the 

stimulated kidney (Zanchetti et al. 1984). The possible presence of these reflexes may have altered 

the outcomes of this study. Further experiments with reno-renal reflex elimination procedures, 

such as bilateral stimulation or denervation of non-stimulated kidneys, may be necessary to obtain 

unhindered stimulation outcomes. 

Although further experiments are required to examine the underlying mechanisms for 

stimulation of renal nerves, this study may introduce a new approach for regulation of glucose 

excretion. Recently approved medications for patients with type 2 diabetes are SGLT-2 inhibitors, 

which prevent the activity of glucose transporters in the kidney and lead to increased glucose 

excretion into urine (Lew and Wick 2015). Stimulation of renal nerves may provide an alternative 

treatment approach for glycemic control that avoids patient compliance issues typically seen with 

medications (Polonsky and Henry 2016).  

2.6 Conclusion 

To our knowledge, this is the first study to investigate electrical stimulation of renal nerves 

to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves 
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may modulate urine glucose excretion, however, this outcome may be associated with urine flow 

rate. Future work is needed to examine the underlying mechanisms and identify approaches for 

enhancing regulation of glucose excretion. 
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Chapter 3: Kilohertz Frequency Stimulation of Renal Nerves for Modulating Blood 

Glucose Concentration in Diabetic Rats 

 

 

This chapter has been published: 

A. A. Jiman, K. H. Chhabra, D. C. Ratze, A. G. Lewis, P. S. Cederna, R. J. Seeley, M. J. Low, and 

T. M. Bruns, “Kilohertz Frequency Stimulation of Renal Nerves for Modulating Blood Glucose 

Concentration in Diabetic Rats,” Proc. 9th Int. IEEE EMBS Conf. Neural Eng., pp. 746–749, 2019. 

 

3.1 Abstract 

In recent years, the role of the kidney in glucose homeostasis has gained global interest. The 

kidneys are innervated by renal nerves, and renal denervation studies to control hypertension have 

shown improved glucose regulation. We hypothesized that kilohertz frequency stimulation, which 

can block propagation of action potentials, applied to renal nerves would reduce blood glucose 

concentration levels by increasing urinary glucose excretion.  

We performed experiments (n = 8) on anesthetized, diabetic streptozotocin-induced male 

Long-Evans rats. The renal nerves of each kidney were encircled by a nerve cuff electrode. Blood 

samples were obtained from the tail for blood glucose concentration measurements. Ureters were 

cannulated bilaterally for collection of urine samples, and colorimetric assays were used to 

measure urine glucose concentrations. Electrical stimulation (sinusoidal, 50 kHz, 15 V) of the renal 

nerves was applied for 60 minutes.  
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The average blood glucose concentration rate (BGCR) was lower during kilohertz frequency 

stimulation (-0.78 ± 1.20 mg/dL/min; mean ± standard deviation), compared to BGCR before 

stimulation (+1.14 ± 1.83 mg/dL/min; p < 0.05) and after stimulation (+0.63 ± 1.32 mg/dL/min). 

The average area under the curve for urine glucose concentration over the time period (AUCUGC/t) 

was higher during kilohertz frequency stimulation (7687.4 ± 4006.1 mg/dL), compared to 

AUCUGC/t before stimulation (6466.9 ± 2772.8 mg/dL) and after stimulation (5277.2 ± 3381.5 

mg/dL). 

Overall, our results show that kilohertz frequency stimulation of renal nerves is a possible 

approach for the modulation of blood glucose concentration and may introduce an alternative 

treatment modality for glycemic control in patients with diabetes. 

3.2 Introduction 

Diabetes is a chronic progressive disease that affects the lives of millions of people around 

the world (Cho et al. 2018). Many diabetic patients struggle with glycemic control and are at high 

risk of severe disease complications (American Diabetes Association (ADA) 2018). In recent 

years, the role of the kidney in glucose homeostasis has gained considerable interest (DeFronzo, 

Davidson, and Del Prato 2012). The kidneys are innervated by renal nerves that form axonal 

junctions on epithelial cells of proximal tubules, the glucose reabsorption region in the kidney 

nephron (DeFronzo, Davidson, and Del Prato 2012; Luff et al. 1992). Early clinical trials of renal 

denervation on patients with drug-resistant hypertension showed significant improvements in 

blood glucose control (Mahfoud et al. 2011), and subsequent animal studies of renal denervation 

supported this observation (Chhabra et al. 2017). A reversible approach that has demonstrated 

nerve conduction block on various types of nerves is kilohertz frequency stimulation (Kilgore and 

Bhadra 2014). Our previous study showed that electrical stimulation of renal nerves may modulate 
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urinary glucose excretion in glucose-bolus infusion experiments (Jiman et al. 2018). In this study, 

we hypothesized that kilohertz frequency stimulation of renal nerves would reduce blood glucose 

concentration levels in diabetic animals by increasing urinary glucose excretion. 

3.3 Methods 

All experimental procedures were approved by the University of Michigan Institutional 

Animal Care and Use Committee (IACUC). 

3.3.1 Animals and Housing 

We performed non-survival, anesthetized experiments on 8 male 310-420 g Long-Evans 

rats (Charles Rivers Laboratories, Wilmington, MA, USA). The animals were housed in ventilated 

cages under controlled temperature, humidity and photoperiod (12-h light/dark cycle), and were 

provided with laboratory chow (5L0D, LabDiet, St. Louis, MO, USA) and tap water ad libitum. 

The animals were injected with streptozotocin (S0130-1G, Sigma-Aldrich Corp., St. Louis, MO, 

USA) intravenously through the tail vein (50 mg/kg BW), which is a common research approach 

for developing an animal model for diabetes (Wei et al. 2003). A period of 2-4 weeks was allowed 

between streptozotocin administration and the experimental procedure in order to obtain stable 

non-fasting blood glucose concentration levels above 400 mg/dL. 

3.3.2 Experimental Preparation 

For anesthesia, a single intraperitoneal injection of thiobutabarbital sodium salt hydrate 

(Inactin, T133-1G, Sigma-Aldrich Corp., St. Louis, MO, USA) was administered (110 mg/kg 

BW), which is commonly used in renal studies to preserve renal function (Walter, Zewde, and 

Shirley 1989). Animal temperature was maintained using a heating pad (ReptiTherm, Zoo Med 

Laboratories Inc., San Luis Obispo, CA, USA) and was monitored through a rectal temperature 



 35 

sensor (SurgiVet, Smiths Medical, Norwell, MA, USA). Under a dissection microscope (Lynx 

EVO, Vision Engineering Inc., New Milford, CT, USA), a midline cervical incision was made and 

the jugular vein was cannulated with polyethylene tubing (BTPE-50, Instech Laboratories Inc., 

Plymouth Meeting, PA, USA) to continuously infuse 0.9% NaCl (saline) through the jugular vein 

at 0.2 mL/min using a syringe pump (NE-1000, New Era Pump Systems Inc., Farmingdale, NY, 

USA). A tracheotomy was performed to ensure a clear airway. Through a midline abdominal 

incision, ureters were cannulated bilaterally with polyethylene tubing (BTPE-10, Instech 

Laboratories Inc., Plymouth Meeting, PA, USA). The kidneys and renal arteries were exposed by 

removing surrounding fat and connective tissue. A bipolar nerve cuff electrode (1.00 mm inner-

diameter, 100 µm platinum contacts, Microprobes for Life Science, Gaithersburg, MD, USA) was 

placed around each renal artery, encircling renal nerves that run along the artery. Care was taken 

to not damage the renal nerve branches and to not occlude blood flow in the renal artery. To ensure 

that the cuff electrodes were in contact with intact renal nerves, biphasic stimulation pulses at 10 

Hz, 10 V were applied for approximately 1 minute through the nerve cuff electrode. This resulted 

in temporary kidney ischemia, which was confirmed by the observation of kidney surface 

blanching (Hermansson et al. 1981). Before surgery, electrode impedance measurements (5.75 ± 

2.81 kΩ) were obtained using an impedance tester (nanoZ, White Matter LLC, Seattle, WA, USA) 

at 1 kHz in saline to confirm functionality of the nerve cuff electrode.   

3.3.3 Electrical Stimulation 

Each nerve cuff electrode was connected to a stimulus isolation unit (Model 4100 or Model 

2200, A-M Systems, Loop Sequim, WA, USA). A function generator (33220A, Agilent 

Technologies, Santa Clara, CA, USA) was connected to each stimulus isolation unit to generate 

sinusoidal waveforms at 50 kHz, 15 V. 
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3.3.4 Experimental Protocol 

After completion of the experimental preparation, a stabilization period of at least 10 

minutes was allowed before obtaining blood and urine samples. Blood samples were acquired from 

a tail cut every 10-25 minutes for blood glucose concentration measurements using a glucometer 

(AlphaTRAK 2, Abbott, Abbott Park, IL, USA). Urine samples from each kidney were collected 

in pre-weighed sampling tubes (3448, Thermo Fisher Scientific, Waltham, WA, USA) at 10-

minute intervals. The collected urine samples were weighed on a scale (AE 160, Mettler Toledo, 

Columbus, OH, USA) for volume estimations (1 µL/mg), and urine glucose concentration 

measurements were obtained using colorimetric assays (10009582, Cayman Chemical, Ann Arbor, 

MI, USA). Blood and urine samples were obtained before stimulation for 30-40 minutes, during 

kilohertz frequency stimulation that continued for 60 minutes, and after stimulation for another 

30-40 minutes. A diagram of the experimental setup is shown in Figure 3.1. 

 

 

Figure 3.1 Diagram of the experimental setup. Electrical stimulation was applied to renal nerves bilaterally in 

streptozotocin-induced diabetic rats, with the ureters cannulated bilaterally. 
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3.3.5 Data Analysis 

The blood glucose concentration rate (BGCR) was obtained by calculating the linear 

regression slope of blood glucose concentration measurements over the time periods before, 

during, and after stimulation. The total amount of glucose excreted was calculated from the urine 

glucose concentration measurements and the urine sample volumes of each kidney. The total 

amount of glucose excreted was divided by the total volume of the urine samples to obtain the 

average urine glucose concentration value between the two kidneys. The average area under the 

curve for urine glucose concentration (AUCUGC) over the time period (t) before, during, and after 

stimulation was calculated by the trapezoidal numerical integration method. To test statistical 

significance for the BGCR data set, a one-way analysis of variance (ANOVA) was performed 

across all periods (before, during, and after stimulation), followed by a Tukey-Kramer multiple 

comparison post-hoc test. The AUCUGC/t data set did not follow a normal distribution (confirmed 

by one-sample Kolmogorov-Smirnov test). Therefore, a non-parametric Kruskal-Wallis test was 

performed to assess statistical significance across all periods. Statistical significance was 

considered at p < 0.05. Values are presented as mean ± standard deviation. All data analysis and 

statistical tests were performed using MATLAB software (R2014b, MathWorks, Natick, MA, 

USA). 

3.4 Results 

We performed 8 experiments on streptozotocin-induced diabetic rats and applied bilateral 

kilohertz frequency stimulation of renal nerves. Measurements of blood and urine glucose 

concentrations were obtained before, during, and after stimulation. An example of an experiment 

is shown in Figure 3.2. 
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Figure 3.2 Blood and urine glucose concentration measurements in an example experiment. Here, the blood 

glucose concentration rate (BGCR) was +0.99 mg/dL/min before stimulation, -2.81 mg/dL/min during stimulation, 

and +2.35 mg/dL/min after stimulation. The area under the curve for urine glucose concentration over the time 

period (AUCUGC/t) was 3329.2 mg/dL before stimulation, 9215.5 mg/dL during stimulation, and 10359.2 mg/dL 

after stimulation. 

 

3.4.1 Blood Glucose Concentration 

The blood glucose concentration rate (BGCR) was calculated for the periods before, 

during, and after stimulation. The mean BGCR was lower during kilohertz frequency stimulation 

(-0.78 ± 1.20 mg/dL/min), compared to the mean BGCR before stimulation (+1.14 ± 1.83 

mg/dL/min), and after stimulation (+0.63 ± 1.32 mg/dL/min), as shown in Figure 3.3. Statistical 

significance occurred across all periods (ANOVA test, p < 0.05), and between the BGCR values 

before and during stimulation (Tukey-Kramer test, p < 0.05). 
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Figure 3.3 Blood Glucose Concentration Rates (BGCRs) before, during and after stimulation for all 

individual experiments. Statistical significance occurred across all periods (ANOVA test, p < 0.05), and between 

the BGCR values before and during stimulation (Tukey-Kramer test, * = p < 0.05). 

 

3.4.2 Urine Glucose Concentration 

The average area under the curve was calculated for urine glucose concentrations over the 

time period (AUCUGC/t) before, during, and after stimulation. The mean AUCUGC/t was higher 

during kilohertz frequency stimulation (7687.4 ± 4006.1 mg/dL), compared to the mean AUCUGC/t 

before stimulation (6466.9 ± 2772.8 mg/dL), and after stimulation (5277.2 ± 3381.5 mg/dL), as 

shown in Fig. 3.4. In one of the experiments, urine glucose concentrations before stimulation were 

not obtained. No statistical significance occurred across all the periods (Kruskal-Wallis test, p = 

0.46). 
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Figure 3.4 Area under the curve for urine glucose concentration over the time period (AUCUGC/t) before, 

during, and after stimulation for all individual experiments. An AUCUGC/t value was not obtained in one of the 

experiments before stimulation. No statistical significance occurred across all the periods (Kruskal-Wallis test, p = 

0.46). 

 

3.5 Discussion 

The objective of this study was to investigate modulation of blood glucose concentration and 

urinary glucose excretion in diabetic rats in response to bilateral kilohertz frequency stimulation 

of renal nerves. We hypothesized that kilohertz frequency stimulation of renal nerves would reduce 

blood glucose concentration levels by increasing urinary glucose excretion. Kilohertz frequency 

stimulation of renal nerves showed a significant decrease (-168.4%) in blood glucose concentration 

rate (BGCR), and an increase (+18.9%) in the overall average area under the curve for urine 

glucose concentration (AUCUGC/t), with respect to values before stimulation, as shown in Figure 

3.3 and Figure 3.4, respectively. The experimental results of this study suggest that kilohertz 
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frequency stimulation of renal nerves is a potential approach for glycemic control in diabetic 

conditions. 

Renal nerves are distributed around the renal artery in a plexus form. Therefore, we placed 

a cuff electrode around the renal artery to encircle the renal nerves that surround the artery. It is 

possible that stimulation may have disrupted blood flow in the renal artery. However, the selected 

stimulation parameters in this study (50 kHz, 15 V, sinusoidal) showed minimal effect on renal 

blood flow measured by a perivascular flow meter system and kidney perfusion (Appendix A). 

Further studies are needed to examine the safety of kilohertz frequency stimulation and explore 

the optimal effective stimulation parameters for reducing blood glucose concentration levels.   

Although changes in blood glucose concentrations were observed in response to kilohertz 

frequency stimulation of renal nerves, it is unknown if these changes were directly related to the 

glucose reabsorption pathways in the renal proximal tubules that are innervated by renal nerves 

(DeFronzo, Davidson, and Del Prato 2012; Luff et al. 1992). Renal function measurements, such 

as glomerular filtration rate and renal plasma flow (Toto 1995), were not evaluated in this study. 

The variation in the results of this study may be due to the dissimilarities in the process of removing 

connective tissue around the renal artery, which may have contained fine renal nerve branches. 

Improvements in the electrode interface may be necessary to obtain more consistent results.       

In recent years, there is an emerging interest in the development of bioelectronic medicine 

that directly modulates neural activity to alleviate various diseases (Tracey 2014). Clinical trials 

on vagal nerve stimulation and gastric electrical stimulation have reported improvements in 

glycemic control for patients with obesity and type 2 diabetes (Herrera et al. 2017; Lebovitz et al. 

2015). Although further experiments are necessary to examine the underlying mechanisms for 

kilohertz frequency stimulation of renal nerves, this study and our prior work (Jiman et al. 2018) 
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may introduce a novel approach for glycemic control in diabetic patients through glucose 

regulation at the kidneys, which occupy a vital role in glucose homeostasis (DeFronzo, Davidson, 

and Del Prato 2012). 

3.6 Conclusion 

This study investigates the modulation of blood glucose concentration and urinary glucose 

excretion in diabetic rats by kilohertz frequency stimulation of renal nerves. Our experimental 

results show that kilohertz frequency stimulation of renal nerves may reduce blood glucose 

concentration levels in diabetic conditions. This study suggests that kilohertz frequency 

stimulation of renal nerves is a potential treatment modality for glycemic control. 
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Chapter 4: Development and Assessment of Surgical Procedure for the Chronic 

Implantation of Intraneural Microneedle Nerve Arrays in Rat Vagus Nerves     

 

 

4.1 Abstract 

Autonomic nerves of the peripheral nervous system conduct essential neural signals that 

regulate vital body functions, such as breathing, metabolism and immune responses. Interfacing 

with autonomic nerves to detect physiological neural signaling will help researchers identify 

potential stimulation patterns to restore regulatory functions. Among electrodes that interface with 

peripheral nerves, intraneural electrodes provide a balance between selectivity and invasiveness. 

Intraneural electrode arrays have been chronically implanted in various peripheral nerves but not 

in fine autonomic nerves (diameter ≤ 0.5 mm), due to challenges associated with the small size of 

these nerves. We developed a novel intraneural Microneedle Nerve Array (MINA) for fine 

autonomic nerves, and assembled an innovative implantation procedure. We investigated two array 

attachment approaches (fibrin sealant and rose-bengal bonding) to secure non-wired MINAs in rat 

vagus nerves (diameter of 300-500 µm), and assessed the approaches by determining the proximity 

of the MINA to the nerve. Furthermore, we evaluated the nerve condition by electrophysiology 

testing. The fibrin sealant approach was unsuccessful in maintaining the MINA-nerve interface for 

4- and 8-week implant durations. The rose-bengal coated MINAs were in close proximity to axons 

(≤ 50 μm) in 75% of 1-week and 14% of 6-week implants. The electrophysiology testing showed 

evoked neural responses in MINA-implanted nerves. No statistical significance occurred for body 
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weight, blood glucose concentration, or stimulation threshold values between MINA-implanted 

and sham-implant animals. Further work is needed to implement and demonstrate recording-

capabilities of functional MINA. Overall, we demonstrated a new chronic implantation procedure 

for a novel intraneural array in a fine autonomic nerve. The complete development of this 

intraneural array may provide novel insights in neural signaling of autonomic nerves and may 

assist in the development of innovative treatments to restore vital regulatory functions.         

4.2 Introduction 

The peripheral nervous system conveys sensory and motor information between the central 

nervous system and the organs of the body. Peripheral nerves are classified as somatic nerves, 

which control conscious voluntary movements, or autonomic nerves, that regulate essential 

unconscious bodily functions, such as breathing, blood pressure regulation, immune responses, 

digestion and bladder function, among others (McCorry 2007; Browning, Verheijden, and 

Boeckxstaens 2017; de Groat, Griffiths, and Yoshimura 2015). Irregular activity in these 

autonomic nerves may lead to chronic disorders (e.g. hypertension, diabetes, obesity and bladder 

dysfunction) that likely require a lifelong therapy (Mathias and Bannister 2013; Goldstein et al. 

2002). Existing treatments may have undesirable side effects or limited efficacy, and many patients 

struggle with managing these disorders (Mahfoud et al. 2011; Ali et al. 2013; Gaunt and Prochazka 

2006). An alternative treatment modality is a direct electrode interface with autonomic nerves to 

detect and alter neural activity. An emerging class of therapies that revolve around this targeted 

interface concept to restore regulatory functions is bioelectronic medicine (Tracey 2014; Pavlov 

and Tracey 2019; Birmingham et al. 2014). 

Interfacing electrodes for peripheral nerves are categorized into three main types: 

extraneural, intraneural, and regenerative electrodes (Micera and Navarro 2009; Larson and Meng 
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2019). Extraneural electrodes (Silverman et al. 2018; Ward et al. 2015; Lee et al. 2017; González-

González et al. 2018; Shikano et al. 2019) are the most commonly used and least invasive among 

the three main electrode types. However, the main disadvantage for these electrodes is the lack of 

spatial selectivity, as these electrodes are positioned outside of the nerve and cannot detect or alter 

individual or local axon activity through the protective, highly-resistive epineurium layer that 

surrounds the nerve, and the perineurium layer that surrounds the bundle of axons (Garai et al. 

2017; Weerasuriya et al. 1984). In contrast, regenerative electrodes (Srinivasan et al. 2016; 

Ramachandran et al. 2006; Spearman et al. 2018) may provide high selectivity but require 

transection of a nerve, and depend on the possibility of the nerve to regenerate and reconnect 

through the electrode. This transection may lead to severe permanent nerve damage, and these 

electrodes are more suitable for neuroprosthetic applications with severed nerves in amputee limbs. 

Intraneural electrodes, such as microelectrode arrays (Wark et al. 2014; Mathews et al. 2014; Byun 

et al. 2017) and intrafascicular electrodes (Wurth et al. 2017; de la Oliva, Navarro, and del Valle 

2018; Badia et al. 2011), provide a balance between selectivity and invasiveness, and have 

demonstrated chronic interface stability on peripheral nerves with a diameter of 1 mm or larger. A 

research group has developed intrafascicular carbon nanotube (CNT) electrodes that were 

chronically implanted in fine autonomic nerves (diameter ≤ 0.5 mm) (McCallum et al. 2017). They 

obtained excellent signal-to-noise ratio recordings (SNR > 10 dB) for 10 weeks by implanting two 

single-channel CNT electrodes in a nerve target. Although the CNT electrode was 10 μm in 

diameter, a large tungsten needle (outer diameter ≥ 75 μm) was used to insert each CNT electrode. 

Another research group developed a 4-channel carbon fiber microelectrode array (electrode 

diameter ≤ 15 μm) that was directly inserted in fine autonomic nerves (Gillis et al. 2018). However, 

to our knowledge, these carbon fiber arrays have not yet been chronically implanted in autonomic 
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nerves. Chronically implanting an intraneural electrode in fine autonomic nerves is extremely 

challenging due to the difficulty of handling sub-millimeter nerves, the precision necessary to 

insert an electrode through the protective epineurium layer of the nerve, and the difficulty of 

securing the electrode without causing damage to the nerve.        

We have developed an intraneural, multi-channel Microneedle Nerve Array (MINA) with 

ultra-miniaturized needles (average diameter of 11.6 μm). The individual MINA needles are 

silicon-based to provide sufficient robustness to penetrate the epineurium layer of a nerve, and the 

needles are connected together with a highly compliant, biocompatible polydimethylsiloxane 

(PDMS) substrate (Park et al. 2014) that allows the MINA to conform and reduce the mechanical 

mismatch with a nerve. We hypothesize that a chronically-implanted MINA with ultra-

miniaturized needles would cause minimal damage and tissue response in fine autonomic nerves. 

Carbon fiber electrodes with similar dimensions as MINA microneedles were successfully 

implanted in the rat cerebral cortex with minimal to no tissue reactivity around these electrodes 

(Kozai et al. 2012; P. R. Patel et al. 2016). This was achieved after removing the dura, which is 

equivalent to the epineurium, and securing the electrode position by anchoring it to the skull. 

Studies have shown that tissue reactivity in the rat cerebral cortex is significantly diminished as 

the dimensions of a neural probe are reduced (Seymour and Kipke 2007). 

The objective of this study was to develop a reliable procedure to chronically implant MINA 

arrays in fine autonomic nerves and evaluate the nerve condition. We implanted non-wired MINAs 

in rat vagus nerves to evaluate the tissue response to the MINA itself and eliminate any 

accompanying factors, such as connector and wire tethering forces. We investigated two 

attachment approaches to secure the implanted MINA: 1) fibrin sealant and 2) rose-bengal coating. 

Fibrin sealant is a biocompatible and biodegradable tissue adhesive that is commonly used in 
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surgical practice (Jackson 2001). The sealant requires the mixture of fibrinogen and thrombin 

compounds to activate a coagulation cascade that forms the fibrin sealant (Tse and Ko 2012). Rose-

bengal is a photochemical tissue bonding technique used in tissue adhesion applications, such as 

skin closure (Chan, Kochevar, and Redmond 2002) and nerve repair (Sliow et al. 2019; Barton et 

al. 2013; Fairbairn et al. 2015). The technique involves using a green laser beam to activate the 

rose-bengal solution applied between two tissue surfaces and form crosslink bonding of collagen 

fibers with minimal heat production (Lauto et al. 2011). We assessed the fibrin sealant and rose-

bengal attachment approaches by determining the proximity of the MINA to the implanted vagus 

nerve at the terminal procedure, and evaluated the nerve condition by testing for stimulation-

evoked neural responses.  

4.3 Methods  

We chronically implanted MINAs in rat cervical vagus nerves using two attachment 

approaches: 1) fibrin sealant and 2) rose-bengal coating. The implanted rats were regularly 

monitored and terminated after 1-8 weeks to evaluate the nerve condition and MINA proximity to 

the nerve using electrophysiology testing and microscopic computed tomography imaging. 

4.3.1 Fabrication of Microneedle Nerve Array (MINA) 

The MINAs were fabricated at the Lurie Nanofabrication Facility (LNF) at the University 

of Michigan, and described in detail in Appendix B (D. Yan et al. 2019) with modifications on 

needle configuration and dimensions. Briefly, the base of the MINA was a silicon-on-insulator 

(SOI) wafer, and the needles were fabricated through masking, depositing and etching techniques. 

High-quality insulation of the silicon was provided by thermal oxidation. A polydimethylsiloxane 

(PDMS) substrate with a thickness of 80 μm was formed at the base of the needles. The exposed 

needles had an average length, overall diameter, tip diameter and pitch of 140 μm, 11.6 μm, 6.3 
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μm and 150 μm, respectively. A MINA had 24 needles in total. The needle configuration for 

MINAs implanted with the fibrin sealant approach was 3x8 (Figure 4.1a). However, we noticed 

that the width of the needle-region (239 µm) was very close to the diameter of a typical rat vagus 

nerve (300 µm). Therefore, the needle-region width was reduced in half by adjusting the needle 

configuration to 2x12 for rose-bengal coated MINAs (Figure 4.2a). 

4.3.2 Rose-Bengal Coated MINA  

A set of MINAs were coated with a solution of rose-bengal to adhere the MINA to a nerve. 

The rose-bengal coating process is described in detail in Appendix B (D. Yan et al. 2019). Briefly, 

collagen and rose-bengal were dissolved separately in 30% ethanol. The collagen and rose-bengal 

ethanol solutions were mixed at a 10:1 ratio. The MINA surface was treated with oxygen plasma 

to allow bonding of the MINA surface to the applied rose-bengal solution. The MINAs were then 

dried at 50°C to allow evaporation of the solution and form the rose-bengal coating on the MINA 

surface. The individual MINAs were cut with a scalpel blade under a microscope as narrow as 

possible (~0.5x3.0 mm) with slight extensions on the edges of the needle region to allow handling 

of the MINA with fine forceps, as shown in Figure 4.2a. The rose-bengal coated MINAs were 

sterilized at low temperature (37°C) ethylene oxide (EtO) in preparation for implantation.  

4.3.3 Design of Vacuum Suction Adaptor 

To handle the MINA, a vacuum suction pen (71894-01, Electron Microscopy Sciences, 

Hatfield, PA, USA) was used with a custom designed 3D-printed tip adaptor, shown in Figure 

4.2b. Between the vacuum suction pen and the tip adaptor was a blunt needle (22G, SAI Infusion 

Technologies, Lake Villa, IL, USA). Suction was provided by an aspirator machine (S430A, 

Schuco, Bielefeld, Germany) at a pressure of 100-200 psi. The tip adaptor was designed with a 

computer-aided design (CAD) software (Fusion 360, Autodesk, San Rafael, CA, USA) and 
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fabricated using a 3D-printer with clear resin (Form 2, Formlabs, Somerville, MA, USA). The 

suction surface had two suction holes with a diameter of 0.5 mm, which was the smallest printable 

hollow diameter with the 3D printer. The vacuum suction adaptor was coated with mineral oil 

(S25439, Fisher Scientific, Hampton, NH, USA) to eliminate the residual adhesiveness from the 

resin-printing process. The MINA was centered on the suction surface using fine forceps under a 

microscope. A center-post on the side of the adaptor was designed to assist the MINA-centering 

process (Figure 4.2a) and aligning the centered MINA with a vagus nerve before insertion (Figure 

4.2f). The detailed CAD design of the vacuum suction adaptor is shown in Appendix C Figure C.1.  

4.3.4 Nerve-Holder Design 

Inserting the MINA directly into the vagus nerve without a nerve-holder was challenging 

due to the movement of the vagus nerve when applying insertion force, fluid and breathing motion 

of the cervical cavity, and the difficulty of positioning a camera at the same level as the MINA-

nerve interface to visualize the alignment and insertion of MINA needles. To address these 

challenges, we designed a custom nerve-holder that secures the nerve in place during insertion, 

elevates the nerve away from fluids and breathing motions of the cervical cavity, and enables 

accurate positioning of a small camera to visualize the MINA needles during insertion. Multiple 

design iterations were developed using the same CAD software and 3D printer as the vacuum 

suction adaptor. 

The nerve-holder for the fibrin sealant attachment approach was designed to allow fibrin 

to form around the implanted MINA region on the vagus nerve, as shown in Figure 4.1b. The 

nerve-holder had slots at the edges to secure the nerve in place. The center of the holder provided 

a contained space for a ~3.5 mm-diameter encapsulation of fibrin to form around the MINA-

implanted region of the nerve. The detailed CAD design is shown in the Appendix C (Figure C.2).  
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The design of the nerve-holder for rose-bengal coated MINAs had a solid surface at the 

bottom of nerve trench to firmly secure the nerve in place, as shown in Figure 4.2c. A lens flap 

was added to the design to distribute the intensity of a laser beam across the surface area of the 

rose-bengal coated MINA. The holder contained circular magnets to secure the flap in an open or 

closed position. A flat surface that was perpendicular to the bottom surface of the nerve trench was 

designed to provide a benchmark surface for aligning the nerve-holder with the vacuum suction 

adaptor. This allowed accurate insertion of the MINA at the appropriate transverse and 

longitudinal angles along the vagus nerve. The dimensions of the nerve-holder (Figure C.3) and 

lens flap (Figure C.4) designs are shown in Appendix C. 

4.3.5 Design of Nerve-Release Tool 

The process of releasing a MINA-implanted vagus nerve from the nerve-holder required 

extremely accurate handling and could result in applying excess tension on the nerve that led to a 

MINA detaching from the nerve. Thus, a nerve-release tool that could be controlled precisely with 

a micromanipulator (KITE-R, World Precision Instruments, Sarasota, FL, USA) was designed to 

facilitate the release process, as shown in Figure 4.2d. The nerve-release tool has two extended 

rods that hold the MINA-implanted vagus nerve while the nerve-holder is separated and removed 

away from the nerve by accurately controlling a manipulator arm (51600, Stoelting Co., Wood 

Dale, IL, USA) that is connected to the nerve-holder. The dimensions of the nerve-release tool are 

shown in Appendix C Figure C.5. 

4.3.6 Animal Surgery 

All experimental procedures were approved by the University of Michigan Institutional 

Animal Care and Use Committee (IACUC). Experiments were performed on male (0.45-0.64 kg) 

and female (0.21-0.24 kg) Sprague-Dawley rats (Charles Rivers Laboratories, Wilmington, MA, 
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USA). One day prior to surgery, animals were injected subcutaneously with dexamethasone (0.2 

mg/kg, VetOne, Boise, ID, USA). On the day of the procedure, a blood sample was obtained from 

a cut at the tip of the tail to measure blood glucose concentration with a glucometer (AlphaTRAK 

2, Abbott, Abbott Park, IL, USA). Animals were anesthetized with isoflurane (1-5%, Fluriso, 

VetOne, Boise, ID, USA) and injected subcutaneously with carprofen (5 mg/kg, Rimadyl, Zoetis 

Animal Health, Parsippany, NJ, USA), lidocaine (0.4%, VetOne, Boise, ID, USA), and 

dexamethasone (0.2 mg/kg, VetOne, Boise, ID, USA). Rats were placed on a heating pad 

(ReptiTherm, Zoo Med Laboratories Inc., San Luis Obispo, CA, USA). Temperature and oxygen 

saturation (SpO2) were measured with a vitals-monitor (SurgiVet, Smiths Medical, Norwell, MA, 

USA). A midline cervical incision was made to access the cervical vagus nerve. Under a dissection 

microscope (Lynx EVO, Vision Engineering Inc., New Milford, CT, USA), the vagus nerve (8-10 

mm in length) was isolated from the carotid artery and surrounding tissue. Using the dissection 

microscope camera, an image of the isolated vagus nerve next to a scale-bar ruler was captured in 

some experiments for later nerve strain calculations (described below).     

4.3.7 Implantation of MINA with Fibrin Sealant  

The MINA arrays for the fibrin sealant approach were cut to a dimension of 2x3 mm that 

provided sufficient surface area for fibrin to form on top of the MINA. In the animal procedure, 

the right cervical vagus nerve was lifted on the nerve-holder designed for the fibrin sealant 

approach. The MINA was held on a vacuum suction pen, which was accurately controlled by a 

micromanipulator (KITE-R, World Precision Instruments, Sarasota, FL, USA). A small pen-

shaped camera (MS100, Teslong, Shenzhen, China) was positioned in the surgical opening to 

visualize alignment of the MINA needles with the vagus nerve. Once aligned, the MINA was 

inserted into the vagus nerve. Fibrin sealant (Evicel, Ethicon Inc., Somerville, NJ, USA) was 
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applied to surround the MINA-nerve interface. The fibrin sealant compounds of fibrinogen and 

thrombin were mixed at a 2:1 ratio (60-80 µL fibrinogen, 30-40 µL thrombin) using pipettes 

(Finnpipette F2, Thermo Fisher Scientific, Waltham, WA, USA) due to our desire for a stronger 

sealant than the recommended fibrin sealant formed at a 1:1 ratio mixture of fibrinogen and 

thrombin (Tse and Ko 2012). A duration of at least 5 minutes was provided for the fibrin sealant 

to form. The fibrin sealant was released from the suction adaptor and nerve-holder using fine 

forceps. The nerve, MINA and fibrin sealant encapsulation was encircled in most experiments by 

a nerve protector (~5 x 10 mm, AxoGuard, AxoGen, Alachua, FL, USA) made of porcine small 

intestinal submucosa (SIS), which is commonly used for tissue repair (Papatheodorou, Williams, 

and Sotereanos 2015; Mosala Nezhad et al. 2016). The purpose of the nerve protector (Figure 4.1d) 

was to promote connective tissue encapsulation, and stabilize the MINA on the nerve as the fibrin 

sealant gradually degraded. The encircling nerve protector was fastened with a suture knot (7-0 

vicryl, Ethicon Inc., Somerville, NJ, USA). The cervical skin incision was closed with surgical 

clips (AutoClip, MikRon Precision Inc., Gardena, CA, USA) and triple antibiotic topical ointment 

(Actavis, Parsippany-Troy Hills, NJ, USA) was applied on the closed incision. A subcutaneous 

injection of carprofen (5 mg/kg) and dexamethasone (0.2-0.05 mg/kg) were administered daily 

after surgery for 2-3 days, and the animal’s health was checked regularly. One week after the 

implant procedure, the incision clips were removed under isoflurane anesthesia. Body weight and 

blood glucose concentration were measured on a weekly basis. 
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Figure 4.1 Implantation of microneedle nerve array (MINA) with fibrin sealant approach. (a) MINA with 3x8 

needle configuration next to a high-density Utah slanted electrode array. (b) Nerve-holder design for fibrin sealant 

approach. Design dimensions are shown in Appendix C Figure C.2. (c) Surgical setup for implantation of MINA. (d) 

MINA-implanted vagus nerve surrounded by fibrin and a nerve protector at the implant procedure of rat FA. (e) 

MINA-implanted vagus nerve at the terminal procedure of rat FA. 

 

4.3.8 Implantation of Rose-Bengal Coated MINA 

Similarly to the fibrin sealant approach, the MINA was held on a vacuum suction adaptor 

that was controlled by a micromanipulator. The left cervical vagus nerve was placed in the nerve 

trench of a rose-bengal nerve-holder, which was connected to a manipulator arm (51600, Stoelting 

Co., Wood Dale, IL, USA). The left vagus nerve was targeted in these animals to facilitate a 

modified implantation setup, which was secured on an optical breadboard (MB1218, Thorlabs Inc., 

Newton, NJ, USA), as shown in Figure 4.2e. The vacuum suction adaptor and nerve-holder were 
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aligned together. The MINA was accurately aligned and aimed towards the nerve using a pen-

camera (Figure 4.2e, f). The nerve was rinsed with saline (0.9% NaCl, Nurse Assist Inc., Haltom 

City, TX, USA), and the excess fluid around the nerve was removed with an absorbent triangle 

(18105-03, Fine Science Tools Inc., Foster City, CA, USA). The initial temperature of the nerve 

was measured with an infrared sensor (IRT0421, Kintrex, Vienna, VA, USA). The MINA was 

inserted in the vagus nerve (Figure 4.2g) and the lens flap of the nerve-holder was closed on the 

MINA-nerve interface. The rose-bengal adhesion coating was activated by applying a green laser 

beam (532 nm, 85 mW, 0.8 mm beam-diameter, Civil Laser, Hangzhou, China) for 6 minutes on 

the lens, which distributed the intensity of the beam across the MINA (Figure 4.2h). The lens flap 

was removed and the temperature of the nerve was measured again with the infrared sensor to 

calculate the difference in nerve temperature [∆ Nerve Temperature = Nerve Temperature (Post-

Laser) – Nerve Temperature (Pre-Laser)]. The vagus nerve was released from the nerve holder 

using the nerve-release tool (Figure 4.2i). In experiments with a captured image of the nerve 

immediately after the isolation process, another image was captured of the MINA-implanted vagus 

nerve to assess the nerve strain caused by the implantation procedure. The length of the whole 

isolated nerve was measured using an image analysis software (ImageJ, National Institute of 

Health, Bethesda, MD, USA) and the nerve strain was calculated with the following equation: 

Nerve Strain = [Nerve Length (Post-Implant) – Nerve Length (Pre-Implant)] / Nerve Length (Pre-

Implant) x100. The cervical skin incision was closed with surgical clips and triple antibiotic topical 

ointment was applied along the closed incision. A subcutaneous injection of carprofen (5 mg/kg) 

and dexamethasone (0.2-0.05 mg/kg) were administered daily after surgery for 2-3 days, and the 

animal’s health was checked regularly. One week after the implant procedure, body weight and 

blood glucose concentration were measured, and the surgical clips were removed from the incision 
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under isoflurane anesthesia. Sham animals underwent procedures that were identical to the 

implantation procedure but without a MINA. No implantation procedures were performed on the 

control animals.  
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Figure 4.2 Implantation of rose-bengal coated MINA. (a) Rose-Bengal coated MINA with 2x12 needle 

configuration. MINA centered on vacuum suction adaptor (bottom). (b) Design of vacuum suction adaptor. Design 

dimensions are shown in Appendix C Figure C.1. (c) Nerve-holder design for rose-bengal coated MINA. Yellow 

arrow shows movement path of lens flap. Dimensions of the design are shown in Appendix C Figure C.3 and 4. (d) 

Design of nerve-release tool. Dimensions of the design are in Appendix C Figure C.5. (e) Surgical setup for 

implantation. (f) View from pen-shaped camera for aligning MINA with the vagus nerve. (g) MINA inserted in the 

vagus nerve. (h) Placement of lens flap and activation of rose-bengal coating with green laser. (i) Release of MINA-

implanted vagus nerve from the nerve-holder using the nerve-release tool. 
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4.3.9 Terminal Procedure 

Terminal procedures were performed on all animals to assess nerve condition and extract 

the vagus nerve. The cervical vagus nerve was accessed similarly to the implant procedure. To 

assess nerve condition, an electrophysiology test was performed (Figure 4.3a and b). A stimulation 

probe (017509, Natus Neuro, Middleton, WI, USA) was placed on the vagus nerve proximal to 

the implant region and connected to an isolated pulse generator (Model 2100, A-M Systems, Loop 

Sequim, WA, USA). Electrical stimulation (1-10 mA, 2 Hz, 200 μs pulse-width) was applied to 

evoke neural activity that was recorded with a data acquisition system (PowerLab, ADInstruments, 

Sydney, Australia) through a bipolar cuff electrode (0.75 mm inner-diameter, 0.5 mm contact 

separation, Microprobes for Life Science, Gaithersburg, MD, USA) that was placed on the nerve 

distal to the implant region. The neural recordings were analyzed using MATLAB (R2014b, 

MathWorks, Natick, MA, USA) to determine the stimulation amplitude threshold, and the 

conduction velocity for each peak of the evoked responses.  

Animals were euthanized with an overdose of sodium pentobarbital (400 mg/kg, 

Euthanasia Solution, VetOne, Boise, ID, USA). The vagus nerve was extracted and soaked in 3% 

glutaraldehyde overnight (12-20 hours) and stored in 0.15 M cacodylic acid for at least 24 hours.  

The body weight, blood glucose concentration, and electrophysiology stimulation threshold values 

for each group did not follow a normal distribution (confirmed with Kolmogorov-Smirnov test). 

To test for statistical significance, two-sided Wilcoxon rank sum tests were performed between 

the data set values of MINA-implanted and sham animals using MATLAB. Statistical significance 

was considered at p < 0.05. Summary data are presented as mean ± standard deviation (SD). 
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Figure 4.3 Electrophysiology testing and nerve extraction at a terminal procedure. (a) Setup diagram for 

electrophysiology testing. (b) Stimulation-evoked neural responses in Rat FB. (c) Isolation (top-down view) and (d) 

extraction (side view) of MINA-implanted vagus nerve at the 1-week terminal procedure of rat RC. 

 

4.3.10 3D Microscopic Computed Tomography Imaging 

The vagus nerve samples were stained with osmium-tetroxide and imaged using a 3D 

microscopic computed tomography (micro-CT) scanner (Xradia 520 Versa, Zeiss, Oberkochen, 

Germany) at the Michigan Center for Materials Characterization at the University of Michigan. 

The samples were prepared in pipette tips (10 μL barrier tip, Thomas Scientific, Swedesboro, NJ, 

USA) filled with phosphate-buffered saline (PBS), sealed with laboratory parafilm (Parafilm M, 

Bemis Company Inc., Oshkosh, WI, USA), and placed on a rotating platform. The micro-CT 

device scanned the nerve samples at 30 kV, 2 W, with an exposure time of 1.8-3.0 sec for a single 

scan, and resolution of 1.7-5.5 μm/pixel. The total number of scans for each sample was 1601 
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projections with a 360° platform rotation. The images were visualized with a 3D-analysis software 

(Dragonfly Pro, Objective Research Systems Inc., Montreal, Canada) and 2D cross-section 

segmentations along the nerve were exported with an image thickness of 1.7-5.5 μm. From these 

segmentation images and using an image analysis software (FIJI, ImageJ, National Institute of 

Health, Bethesda, MD, USA) (Schindelin et al. 2012), the perimeter of the nerve fascicle (bundle 

of axons) was specified from the micro-CT image (L. Yan et al. 2017) for the software to compute 

the fascicle area. Additionally, the shortest distance of each MINA needle tip to the fascicle region 

was determined. 

4.4 Results  

We performed a total of 32 experiments: 7 animals were implanted with MINAs using the 

fibrin sealant approach, 16 animals were implanted with rose-bengal coated MINAs, 6 animals 

had sham rose-bengal procedures, and 3 were control animals.    

4.4.1 Implantation of MINA with Fibrin Sealant  

We implanted 7 animals with MINA arrays using the fibrin sealant approach (Table 4.1). 

The animals were terminated at either 4 weeks (n=5) or 8 weeks (n=2). The MINAs were mostly 

found away from the nerve (e.g. Figure 4.1e) but the animals recovered well from the implantation 

procedures based on body weight and blood glucose concentration measurements. The 

electrophysiology testing on the MINA-implanted nerves confirmed that the nerves were relatively 

healthy, based on the observed stimulation-evoked neural responses.  
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Table 4.1 Summary of animals implanted with the fibrin sealant approach. 

Rat 
ID 

Implant Terminal Electrophys. Test 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 

Nerve 
Protector 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 
MINA Substrate 

Stim. 
Thres. 
(mA) 

Cond. Vel. 
(m/s) 

4-Week Implant 

FA 0.24 150 Yes 0.28 115 
On nerve but away from nerve 
protector 

Not performed 

FB 0.21 111 Yes 0.28 124 Within nerve protector encapsulation 2 2.4-8.2 

FC 0.25 150 No 0.28 124 Away from nerve Not performed 

FD 0.23 121 No 0.25 118 
Within fibrin encapsulation but away 
from nerve 

1 2.1-4.3 

FE 0.24 126 Yes 0.29 98 
Within nerve protector encapsulation 
but away from nerve 

2 2.8-3.7 

Mean 
± SD 

0.23 ± 
0.02 

131.6 ± 
17.6 

- 
0.28 ± 
0.02 

115.8 ± 
10.7 

- 
1.7 ± 
0.6 

- 

8-Week Implant 

FF 0.24 112 Yes 0.29 98 
Within nerve protector encapsulation. 
Micro-CT showed needles were close 
but not in fascicle 

1 2.1-7.6 

FG 0.24 151 Yes 0.33 112 Within nerve protector encapsulation 2 3.2-6.5 

Mean 
± SD 

0.24 ± 
0.00 

131.5 ± 
27.6 

- 
0.31 ± 
0.03 

105.0 ± 
9.9 

- 
1.5 ± 
0.7 

- 

 

4.4.2 Implantation of Rose-Bengal Coated MINA 

We implanted 16 animals with rose-bengal coated MINAs. The animals were terminated 

at either 1 week (n=8; e.g. Figure 4.3c and d; Table 4.2) or 6 weeks (n=8; Table 4.3). One of the 

6-week implanted animals expired unexpectedly at 4.5 weeks (rat RY), and was not included in 

further analysis. Sham implant procedures were performed on animals which were terminated at 

1 week (n=5) or 6 weeks (n=3), and terminal procedures were performed on control animals (n=3; 

Table 4.4). No statistical significance occurred between the MINA-implanted and sham animals 

for body weight, blood glucose concentration and stimulation threshold values.  
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Table 4.2 Summary of 1-week rose-bengal coated MINA-implanted and sham procedure animals. 

Rat 
ID 

Implant Terminal Electrophys. Test 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 

∆ Nerve 
Temp 
(°C) 

Nerve 
Strain 

(%) 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 
MINA Substrate 

Stim. 
Thres. 
(mA) 

Cond. 
Vel. 

(m/s) 

1-Week Implant 

RA 0.44 137 NR NR 0.45 97 Attached to nerve 2 4.0-7.0 

RB 0.44 102 NR NR 0.40 107 Attached to nerve 2 1.8-11.0 

RC 0.55 100 0.4 NR 0.50 104 Attached to nerve 2 3.8-9.1 

RD 0.57 118 -0.1 NR 0.54 NR Attached to nerve 3 3.1-4.9 

RE 0.58 101 1.1 NR 0.54 NR Attached to nerve 2 2.6-4.1 

RQ 0.53 155 1.5 9.5 0.51 105 
Partially attached to 

nerve 
5 2.4-4.7 

RS 0.56 162 1.9 4.7 0.51 114 Attached to nerve 4 2.6-3.3 

RZ 0.64 166 4.4 3.5 0.58 140 
Detached from 

nerve 
10 2.1-7.4 

Mean 
± SD  

0.54 ± 
0.07 

130.1 ± 
28.4 

1.5 ± 1.6 5.9 ± 3.2 
0.50 ± 
0.06 

111.2 ± 
15.1 

- 3.8 ± 2.8 - 

1-Week Sham 

RF 0.60 148 2.7 NR 0.54 109 - 1 2.3-7.0 

RH 0.45 97 1.2 NR 0.42 NR - high noise 

RR 0.53 142 1.4 8.9 0.51 92 - 2 3.2-9.2 

RT 0.56 104 0.7 2.7 0.53 141 - 1 2.3-4.7 

RU 0.58 138 2.3 1.1 0.54 112 - 2 3.2-3.6 

Mean 
± SD 

0.54 ± 
0.06 

125.8 ± 
23.5 

1.7 ± 0.8 4.2 ± 4.1 
0.51 ± 
0.05 

113.5 ± 
20.3 - 1.5 ± 0.6 - 

Implant vs Sham 

p 0.76 0.83 - - 0.80 0.76 - 0.06 - 

NR: the value was not recorded. 
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Table 4.3 Summary of 6-week rose-bengal coated MINA-implanted and sham procedure animals. 

Rat 
ID 

Implant Terminal Electrophys. Test 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 

∆ Nerve 
Temp 
(°C) 

Nerve 
Strain 

(%) 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 
MINA Substrate 

Stim. 
Thres. 
(mA) 

Cond. 
Vel. 

(m/s) 

6-Week Implant 

RG 0.45 103 0.8 NR 0.62 99 Attached to nerve 1 3.4-5.7 

RI 0.45 146 1.0 NR 0.53 109 Attached to nerve high noise 

RK 0.45 112 -0.3 NR 0.58 109 Attached to nerve 2 3.9-10.0 

RL 0.43 111 0.3 NR 0.55 109 Detached from nerve 1 2.3-6.7 

RO 0.59 113 0.2 8.3 0.62 137 Detached from nerve 4 2.6-7.8 

RW 0.49 109 1.7 6.2 0.62 91 Detached from nerve 2 3.8-7.4 

RX 0.54 150 1.1 3.4 0.63 130 Attached to nerve 2 3.0-8.8 

RY* 0.57* 125* 4.9* 2.8* 0.64* - 
Attached to nerve but 

expired early at 4.5 weeks 
- - 

Mean 
± SD  

0.49 ± 
0.06 

120.6 ± 
19.1 

0.7 ± 
0.7 

5.9 ± 
2.4 

0.59 ± 
0.04 

112.0 ± 
16.3 

- 
 2.0 ± 

1.1 
- 

6-Week Sham 

RM 0.46 137 1.1 NR 0.55 NR - 2 1.6-5.0 

RN 0.60 132 1.2 1.7 0.66 118 - 1 3.5-4.8 

RP 0.47 151 -0.7 1.5 0.55 119 - 3 3.1-10.6 

Mean 
± SD 

0.51 ± 
0.08 

140.0 ± 
9.8 

0.5 ± 
1.0 

1.6 ± 
0.1 

0.59 ± 
0.06 

118.5 ± 
0.7 

- 
2.0 ± 
1.0 - 

Implant vs Sham 

p 0.50 0.13 - - 0.95 0.50 - 1.00 - 

NR: the value was not recorded.  

* Animal expired early (4.5 weeks) and values are not included in summary statistics. 

Table 4.4 Summary of control animals. 

Rat 
ID 

Weight 
(kg) 

Blood 
Gluc. 

(mg/dL) 

Electrophys. Test 

Stim. 
Thres. 
(mA) 

Cond. 
Vel. 

(m/s) 

RJ 0.45 NR high artifacts 

RV 0.59 104 3 5.7 

RAA 0.58 125 2 3.6-8.9 

Mean 
± SD 

0.54 ± 
0.08 

114.5 ± 
14.9 

2.5 ± 
0.7 

-  

NR: the value was not recorded. 
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4.4.3 3D Microscopic Computed Tomography Imaging 

From the segmentation micro-CT images of animals implanted with rose-bengal coated 

MINAs, the distance between the tip of each needle and the nerve fascicle was determined. The 

rose-bengal coated MINAs had a needle configuration of 2 columns, with 12 needles in each 

column. We noticed that typically one column was longitudinally centered with the nerve (e.g. 

Figure 4.4b) while the other column was misaligned (e.g. Figure 4.4c). Therefore, the average 

distance for the aligned and misaligned columns of each animal were separately determined 

(Figure 4.4d). At least one column was in close proximity (≤ 50 µm) to the nerve fascicle in 75% 

of the animals terminated at 1 week and 14% of the animals terminated at 6 weeks. The average 

fascicle area for the MINA-implanted, sham and control nerves are shown in Figure 4.4e. 

4.5 Discussion 

We developed a novel intraneural Microneedle Nerve Array (MINA), and formed an 

innovative procedure for the chronic implantation of the array in small-diameter (300-500 µm) rat 

vagus nerves. We investigated two attachment approaches to secure the implanted MINA (fibrin 

sealant and rose-bengal bonding), assessed the attachment approaches by determining the 

proximity of the MINA to the nerve, and evaluated the nerve condition by testing for stimulation-

evoked neural responses. Our results suggest that a future functional rose bengal-bonded MINA 

will have excellent promise for yielding high-fidelity neural signals through one week of implant 

and near-nerve signals through six weeks. The chronic implantation of fully-functional intraneural 

arrays in autonomic nerves will provide novel insights in physiological neural signaling that 

regulate autonomic functions, which may assist in the development of new treatment modalities 

to restore these vital functions.    
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Figure 4.4 Microscopic Computed Tomography (Micro-CT) imaging of MINA-implanted, sham and control 

vagus nerves. (a) Reconstructed 3D image of 1-week implanted MINA attached to the vagus nerve in rat RB. (b) 

Cross-section segmentation image of MINA needle in the vagus nerve fascicle of rat RD. Highlighted in yellow is 

the perimeter of the fascicle (fascicle area = 107314.4 μm2). (c) Segmentation image of MINA needle from a 

misaligned column, which was 21.1 μm from the nerve fascicle in rat RD. (d) Average distance to nerve fascicle for 

aligned and misaligned needle columns in each MINA-implanted animal. Each rose-bengal coated MINA has 2 

columns, with 12 needles in each column. Error bars show standard deviation. (e) Average fascicle area for MINA-

implanted, sham and control nerves. Error bars show standard deviation. 
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Animals were implanted with non-wired MINA arrays with fibrin sealant to secure the 

interface, or MINAs with an innovative adhesive rose-bengal coating. The fibrin sealant approach 

failed to secure the MINA-nerve interface for 4- and 8-week implant durations. The rose-bengal 

coating approach was successful in maintaining MINA needles with close proximity to the axons 

(≤ 50 μm) for 1-week and 6-week implants in 75% and 14% of the implanted animals, respectively 

(Figure 4.4d). We monitored the body weight, blood glucose concentration and performed 

electrophysiology testing for rose-bengal MINA-implanted and sham (implant procedure with no 

MINA) animals to assess the animal and nerve condition. The body weight changes (-6.3 ± 4.0% 

at 1 week, +22.9 ± 10.6% at 6 weeks) and blood glucose concentration measurements (111.2 ± 

15.1 mg/dL at 1 week, 112.0 ± 16.3 mg/dL at 6 weeks) were within previously reported ranges for 

vagus nerve sham procedures (Hao et al. 2014; Chambers et al. 2011), and there was no statistical 

difference between the MINA-implanted and sham animals (Table 4.2 and Table 4.3). The 

conduction velocities of the evoked responses were within the range of myelinated Aδ and B fibers, 

and unmyelinated C fibers, which are all present in the rat cervical vagus nerve (Qing et al. 2018; 

Waataja, Tweden, and Honda 2011).  

Intraneural electrodes for peripheral nerves provide superior selectivity than extraneural 

electrodes, and are considerably less invasive than regenerative electrodes (Micera and Navarro 

2009; Spearman et al. 2018). We demonstrated the chronic implantation of a non-wired intraneural 

electrode array in a fine autonomic nerve (diameter ≤ 0.5 mm). Multiple intraneural electrodes 

have been implanted in somatic or large autonomic nerves (diameter ≥ 1 mm) (Wark et al. 2014; 

Mathews et al. 2014; Byun et al. 2017), but only a few were developed for fine autonomic nerves. 

Carbon nanotube (CNT) electrodes (McCallum et al. 2017) were chronically implanted in fine 

autonomic nerves (diameter of 100-300 µm), but a relatively-large tungsten needle (diameter ≥ 75 
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μm) was used to insert each of the two single-channel CNT electrodes in a nerve target. A carbon 

fiber array (Gillis et al. 2018) was directly inserted in a fine autonomic nerve (diameter of 125 

µm), but was only demonstrated in an acute setup. Securing a multi-channel array in a small-

diameter autonomic nerve is extremely challenging due to the fine structure of autonomic nerves. 

We assembled a new implantation procedure that involved the design of a vacuum suction adaptor 

to handle the array, nerve-holder to facilitate the array insertion process, and nerve-release tool to 

accurately relocate the implanted nerve. The MINA array was inserted directly into a rat vagus 

nerve (diameter of 300-500 µm) with a manual micromanipulator, without a shuttle or high-

pressure insertion tool (e.g. tungsten needle for CNT electrode, pneumatic inserter for Utah array). 

The procedure also incorporated an innovative attachment approach to secure the array interface 

by applying a rose-bengal coating on the MINA, which promotes crosslink bonding between 

collagen fibers in the MINA coating and nerve once activated with a laser (Figure 4.2). These 

implantation components are easily adjustable and may be useful for implanting other electrodes 

in or on various nerves across the peripheral nervous system or to attach devices to other locations 

such as on organ surfaces. 

The rose-bengal coated MINAs remained attached to the vagus nerve in 47% of the overall 

implanted animals. However, there was a clear discrepancy in the attachment success rate (needle 

proximity ≤ 50 μm) of 1-week (75%) and 6-week (14%) rose-bengal MINA implanted animals. 

The close proximity of the MINA needles to axons at 1 week was highly encouraging. A previous 

study followed the tissue response (infiltration of microphages and tissue encapsulation) to 

longitudinal-intrafascicular electrode (LIFE) implants in rat sciatic nerves from 1 day to 8 months, 

and reported that the tissue response gradually increased and reached a peak at 2 weeks (de la 

Oliva, Navarro, and del Valle 2018). Therefore, we anticipated the MINA-implants that endured 
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the tissue response for 1 week would overcome the peak tissue response and appear stable at 6 

weeks. However, the difference in the MINA design may have led to a different outcome than the 

LIFE electrode implants. Another study investigated the implantation of a non-wired high-density 

Utah slanted electrode array (HD-USEA) in rat sciatic nerves for 4 and 8 weeks (Wark et al. 2014). 

Although the majority (80%) of the implanted arrays had electrodes with close proximity (≤ 100 

μm) to axons, sensorimotor deficits were observed in most of the rats and “waffle-like” tissue 

damage was clearly visible on the extracted nerves. This was likely due to the large size of these 

electrodes (shank diameter of ~70 μm at 50% from the tip) compared to the axon diameters (1-11 

μm) in the implanted sciatic nerves (Wark et al. 2013; 2014). The HD-USEA was implanted in a 

relatively large sciatic nerve (overall diameter of 1-2 mm) and also encircled with a nerve protector 

that attracted encapsulation tissue to secure the implanted array, which may explain their excellent 

attachment success rate. Encircling this nerve protector around a rose-bengal coated MINA, or 

coating the outer surface of a MINA with the same material as the nerve protector may lead to 

improved outcomes for long-term MINA implants. 

Modifications to the implantation procedure of rose-bengal coated MINAs also may lead 

to an improved success rate. First, refinement of the alignment process between the MINA and 

nerve would provide more interface surface area for rose-bengal adhesion to occur and firmly 

secure the MINA. The difference in the proximity-distance of aligned and misaligned needle-

columns (Figure 4.4d) shows the need for this adjustment. The alignment may be improved by 

using higher-resolution cameras from multiple angles but must overcome the limited space in the 

rat cervical cavity. Second, developing an advanced nerve-holder integrated with a precise MINA 

insertion process may eliminate the need for elevating the nerve and would reduce the observed 

strain on the nerve (Table 4.2 and Table 4.3). Although the strain in nerves implanted with rose-
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bengal coated MINAs (5.9 ± 2.5%) was within the tolerable limit (~12%) for peripheral nerve 

function (Wall et al. 1992), this may have compromised the structure of the nerve and reduced our 

chronic attachment success. The nerve-holder designed in this study was necessary to position a 

camera and visualize the MINA-nerve interface during insertion but could be upgraded with 

further design advancements. Third, the MINA had a substrate layer of polydimethylsiloxane 

(PDMS), which was selected for its biocompatible and flexible features (Park et al. 2014). We 

observed in later benchtop testing (data not shown) that a polyurethane (PU) substrate, which could 

be formed to have similar biocompatible and flexible features as PDMS (Singhal et al. 2012), 

enhanced rose-bengal bonding strength to a nerve. However, replacing the PDMS substrate with 

PU would require substantial modifications in the MINA fabrication process.          

Although the chronically-implanted MINAs in this study were not functional and had no 

connection wires, the close proximity of the MINA needles to the axons is highly encouraging. A 

study in the rat hippocampus showed that neural recordings from an electrode that had a distance 

of 50 μm or less from a neuron were detectable and separable from the activity of other nearby 

neurons (Henze et al. 2000). Although the source of neural signals in the hippocampus are mainly 

from neuron cell bodies, which generate larger-amplitude waveforms than axons in peripheral 

nerves, a close proximity with functional intraneural MINAs may provide novel insights into 

axonal recordings from the vagus nerve. The motor and sensory fibers of the vagus nerve innervate 

multiple critical organs, such as the heart, lungs, liver, stomach and pancreas, and convey neural 

signals that regulate numerous essential autonomic bodily functions (Berthoud and Neuhuber 

2000; Browning, Verheijden, and Boeckxstaens 2017; Waise, Dranse, and Lam 2018; Masi et al. 

2019). This information would likely help us better understand physiological vagal signaling, and 

may allow us to study the changes in signaling as certain diseases progress, which may help us 
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provide improved treatments for patients suffering from these diseases. Furthermore, the vagus 

nerve is an important target in bioelectronic medicine (Pavlov and Tracey 2019), and an improved 

electrode interface with this nerve would immensely benefit this emerging class of therapies. 

This work demonstrated the chronic implantation of an intraneural array in a small-

diameter autonomic nerve, but had numerous limitations. The implanted MINAs were non-

functional devices and were not fabricated with a connection setup for signal recording. While 

connection components will be necessary for neural recording studies, a primary objective of this 

study was to evaluate the nerve condition in response to the array itself, similar to studies that 

evaluated the tissue response to other electrodes (de la Oliva, Navarro, and del Valle 2018; Wark 

et al. 2014). Further work is needed to demonstrate the fabrication and recording-capabilities of 

fully functional MINAs as well as to assess the progression of the tissue response in chronic 

implants over time. The fibrin sealant approach was unsuccessful in maintaining the MINA 

attachment to the nerve. A possible reason for this failure is the large width of the MINA substrate 

(2 mm) in the fibrin sealant implants, compared to the small diameter of the vagus nerve (300-500 

µm). This may have facilitated the migration of the MINA as the fibrin degraded and connective 

tissue formed between the MINA and nerve. Reducing the width of the MINA substrate closer to 

the nerve diameter, as we did with the rose-bengal coated MINA, may lead to better array 

attachment outcomes with the fibrin sealant approach. Another limitation was the recorded 

temperature increase at the surface of nerves implanted with rose-bengal coated MINAs (1.1 ± 

1.2°C) due to the laser exposure. To mitigate this issue, we designed the nerve-holder lens flap 

(Figure 4.2c) to distribute the laser beam and dissipate the generated heat. Despite this residual 

increase in nerve temperature, all the nerve temperature measurements before and after the laser 

exposure (26-35°C) were within a functional range for peripheral nerves (over 50% of normal 
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conduction velocity at 24-37°C) (Paintal 1965; Rasminsky 1973). An additional limitation was the 

termination of animals implanted with rose-bengal coated MINAs at only two timepoints (1 week 

and 6 weeks). As mentioned earlier, we anticipated the peak tissue response to occur at 2 weeks 

and aimed to assess the implant condition before and after this peak response. Further studies of 

chronic implants with multiple terminal timepoints and thorough histological analysis are needed 

to evaluate the progression of tissue reactivity surrounding this novel MINA array.  

The complete development of a multi-channel intraneural array suitable for chronic 

implantation in fine autonomic nerves will provide a valuable research tool for the advancement 

of neuroscience. Monitoring neural signals in autonomic nerves will help us better understand the 

physiological communication between the nervous system and innervated organs to regulate 

essential bodily functions. This may assist in identifying signal patterns that can potentially restore 

these regulatory functions, and provide an innovative treatment modality for patients with 

neurological deficiencies.    

4.6 Conclusion 

We developed a novel intraneural, multi-channel Microneedle Nerve Array (MINA), and 

assembled an innovative approach for the chronic implantation of the array in the rat vagus nerve. 

We are, to the best of our knowledge, the first to chronically implant an intraneural electrode array 

in a fine autonomic nerve (diameter ≤ 0.5 mm). The complete development of such array will 

provide a valuable research tool for studying the neural signaling in autonomic nerves, which 

regulate a variety of essential bodily functions. Further work is needed to demonstrate the neural 

recording capabilities of functional MINA and to evaluate the chronic tissue reactivity surrounding 

this novel intraneural array at different timepoints. 
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Chapter 5: Intraneural Recordings in Rat Vagus Nerves Using Carbon Fiber 

Microelectrode Arrays 

 

 

5.1 Abstract 

Autonomic nerves are essential in the regulation of many vital organs in the body. Recording 

physiological neural signals from autonomic nerves is very challenging due to the small nature of 

these nerves and the low-amplitude signals from their small axons. Our research group has 

developed a multi-channel, intraneural carbon fiber microelectrode array (CFMA), which has 

demonstrated high signal-to-noise ratio (SNR) recordings in the brain. We hypothesized that 

CFMA can obtain physiological recordings with high SNR in a small, peripheral autonomic nerve. 

In this study, we inserted CFMA in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We 

recorded physiological neural activity, determined propagation direction and conduction velocity 

of vagal signals, and monitored changes in vagal activity in breathing and blood glucose modulated 

conditions. We observed neural activity on 167 out of 326 inserted functional carbon fibers, and 

sorted 1-2 neural clusters on each carbon fiber with activity. The mean peak-to-peak amplitudes 

of the sorted clusters were 15.1-91.7 µV with SNR of 2.0-7.0. We detected propagation of vagal 

signals in the afferent direction at conduction velocities of 0.7-1.0 m/sec (n=10), and efferent 

signals at 0.7-8.8 m/sec (n=5), which are within the conduction velocity range of myelinated and 

unmyelinated vagus fibers. We observed vagal signals with periodic firing-burst behavior at an 

average repetition rate of 39.4 ± 10.8 cycles/min, which was similar to the measured average 
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breathing rate of 39.3 ± 9.9 breaths/min (n=6). We modulated breathing rates by increasing 

anesthesia depth (n=3) and observed reduced firing-burst behavior at repetition rates (19.1 ± 10.3 

cycles/min) similar to the reduced breathing rates (20.0 ± 8.0 breaths/min). Recorded neural 

activity were sorted into 174 clusters. The firing rates of these clusters showed moderate or high 

correlation coefficients (|ρ| ≥ 0.3) with one (n=16), two (n=35), or all three (n=95) of the measured 

physiological parameters (blood glucose concentrations, breathing rate, and heart rate). Overall, 

our experiments demonstrated CFMA as a viable multi-channel intraneural electrode array for 

autonomic nerves. Further work is needed to refine the selectivity of CFMA and validate CFMA 

recordings in various autonomic nerves. This work is a milestone towards the comprehensive 

understanding of physiological signaling in autonomic nerves, which may lead to the development 

of innovative treatment modalities for restoring autonomic functions. 

5.2 Introduction 

The autonomic nervous system has a major role in the regulation of unconscious functions 

that are essential to the body. The system is divided into the sympathetic nervous system, which 

controls “fight-or-flight” responses, and the parasympathetic nervous system, which regulates 

“rest-and-digest” functions (McCorry 2007). A main parasympathetic nerve is the vagus nerve, 

which innervates many visceral organs, such as the heart, lungs, stomach, liver, pancreas and 

intestines (Agostoni et al. 1957; Andrews 1986), and contributes to the regulation of numerous 

autonomic functions, which include breathing, immune responses, digestion, glucose metabolism 

and others (Berthoud and Neuhuber 2000; Borovikova et al. 2000; Browning, Verheijden, and 

Boeckxstaens 2017; Berthoud 2008; Waise, Dranse, and Lam 2018). The vagus nerve at the 

cervical level is partially composed of myelinated Aδ and B fibers (Qing et al. 2018; Kajekar et 

al. 1999), but the great majority of axons (over 80%) are unmyelinated C-fibers (Hoffman and 



 74 

Schnitzlein 1961; Evans and Murray 1954; Agostoni et al. 1957). These fibers predominantly 

convey afferent (sensory) signals from the innervated organs to the central nervous system (Foley 

and DuBois 1937). 

A class of therapies that has gained considerable interest in recent years is bioelectronic 

medicine, which targets autonomic nerves to detect and alter neural activity for restoring 

autonomic functions (Tracey 2014; Birmingham et al. 2014; Pavlov and Tracey 2019). The variety 

of bioelectronic medicine applications that target the vagus nerve have led to clinical trials on 

vagus nerve stimulation (VNS) for patients with epilepsy (Ben-Menachem 2002), stroke (Dawson 

et al. 2016), depression (Spindler et al. 2019), rheumatoid arthritis (Koopman et al. 2016), obesity 

(Apovian et al. 2017), and type-2 diabetes (Shikora et al. 2015), among others. Despite the 

therapeutic benefits of VNS and bioelectronic medicine, stimulation patterns are generally selected 

by experimenting with different parameters without monitoring the physiological signaling in the 

nerve. A key element that is needed to achieve the full potential of bioelectronic medicine is a 

better understanding of neural signaling in normal and triggered physiological conditions. 

Recording neural activity from autonomic nerves is very challenging due to the often sub-

millimeter nature of these nerves and the low-amplitude waveforms generated from small 

unmyelinated C-fibers that dominate autonomic nerves. Studies have applied electrical stimulation 

on autonomic nerves to record evoked neural activity using extraneural electrodes, which record 

from outside the nerve (Qing et al. 2018; Ward et al. 2015), and intraneural electrodes, which 

penetrate the nerve (Gillis et al. 2018). Although evoked responses like these can be useful in 

determining the type of activated fibers, these responses do not represent physiological neural 

signaling. Research groups have obtained physiological neural recordings from autonomic nerves 

using extraneural cuff electrodes (Silverman et al. 2018; Zanos et al. 2018; Shikano et al. 2019; 
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González-González et al. 2018). A study decoded vagal signals using cuff electrodes to predict 

blood glucose levels at hypoglycemic (reduced blood glucose) conditions (Masi et al. 2019). 

However, extraneural electrodes lack spatial selectivity, as these electrodes record the compound 

activity of hundreds to thousands of axons from outside the nerve. Intraneural electrodes penetrate 

the nerve to be closer to axons and provide better selectivity and higher signal-to-noise ratio (SNR) 

recordings than extraneural electrodes (Micera and Navarro 2009; Larson and Meng 2019). 

Intraneural high-density Utah slanted electrode arrays (HD-USEAs) have been used to record 

signals in cat pudendal nerves, which have an approximate diameter of 1 mm, (Mathews et al. 

2014). The silicon-based HD-USEA is considered large (1x2 mm) and rigid for smaller autonomic 

nerves. For recording from fine autonomic nerves (diameter ≤ 0.5 mm), carbon nanotube (CNT) 

electrodes have demonstrated high SNR recordings (> 10 dB) in rat glossopharyngeal and vagus 

nerves (diameter of 100-300 µm) by inserting two single-channel CNT electrodes in a nerve target 

(McCallum et al. 2017). Another research group inserted 4-channel carbon fiber arrays in 

tracheosyringeal nerves (diameter of 125 µm) of zebra finch birds (Gillis et al. 2018) and recorded 

spontaneous and stimulation-evoked compound neural responses. However, a need remains for an 

intraneural array that can record physiological single-neuron activity in fine autonomic nerves.  

Our research group has developed a multi-channel, intraneural carbon fiber microelectrode 

array (CFMA), which has ultra-small recording electrodes (8-9 µm in diameter). The CFMA has 

demonstrated high SNR recordings with minimal tissue damage in the cerebral cortex of rats 

(Kozai et al. 2012; P. R. Patel et al. 2015; 2016). We hypothesized that CFMA would obtain 

physiological recordings with high SNR in a small autonomic nerve. In this study, we inserted 

CFMA in rat cervical vagus nerves (diameter of 300-500 µm), recorded physiological neural 
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activity in spontaneous and triggered conditions, and determined propagation direction and 

conduction velocity of vagal signals. 

5.3 Methods 

We performed 22 non-survival rat experiments to obtain and analyze intraneural CFMA 

recordings of vagal nerve activity in spontaneous and modulated conditions.  

5.3.1 Fabrication of Carbon Fiber Microelectrode Array 

The CFMA arrays were fabricated at the Cortical Neural Prosthetics Lab at the University 

of Michigan (P. R. Patel et al. 2015; 2016; Welle et al. 2020). Briefly, a printed circuit board (PCB) 

was custom manufactured (MicroConnex, Snoqualmie, WA, USA). A connector (A79024-001, 

Omnetics Connector Corp., Minneapolis, MN, USA) was soldered on one end of the PCB with 

epoxy. On the other end, 16 bare carbon fibers (T-650/35 3 K, Cytec Industries, Woodland Park, 

NJ, USA) with a length of 2-3 mm were attached to the PCB in a 2x8 configuration and a pitch of 

132 µm. The array was coated with approximately 800 nm of parylene-c (PDS 2035, Specialty 

Coating Systems Inc., Indianapolis, IN, USA) for insulation. The insulated carbon fibers had a 

diameter of 8-9 µm and were cut down to 150-250 µm in length. The carbon fiber tips were 

sharpened with a microtorch (MT-51, Master Appliance Corp., Racine, WI, USA) while the base 

of the fibers were submerged in water (Gillis et al. 2018). The exposed carbon on the sharpened 

tips (135-160 µm) were electrodeposited with poly(3,4-ethylene-dioxythiophene):sodium p-

toluenesulfonate (PEDOT:pTS). A fabricated CFMA is shown in Figure 5.1. 
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Figure 5.1 Carbon Fiber Microelectrode Array (CFMA). (a) CFMA with 16 blowtorch-sharpened carbon fibers 

in a 2x8 configuration. (b) Scanning Electron Microscopy (SEM) images of sharpened carbon fibers. Arrows 

indicate an exposed (non-insulated) carbon fiber region with a length of ~140 µm from the tip. 

 

5.3.2 Design of Nerve-Holder 

To facilitate the insertion of a CFMA in a vagus nerve, we designed a nerve-holder to 

secure and elevate the vagus nerve away from fluid and breathing motions of the cervical cavity, 

and allow accurate positioning of a small camera to visualize the CFMA-nerve interface during 

insertion (Figure 5.2a). The nerve-holder had a hollow center to allow insertion of carbon fibers 

without breakage, and to drain excess fluid around the nerve which may obscure the camera view. 

To handle the nerve-holder, a circular threaded rod (21YN67, Grainger Inc., Lake Forest, IL, USA) 

was inserted in the holder and was connected to a soldering arm (900-015, Eclipse, Amelia Court 

House, VA, USA). The nerve-holder was designed using a computer-aided design (CAD) software 
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(Fusion 360, Autodesk, San Rafael, CA, USA) and 3D-printed with clear resin (Form 2, Formlabs. 

Somerville, MA, USA). The dimensions of the design are shown in the Appendix C (Figure C.6). 

5.3.3 Animal Surgery 

All experimental procedures were approved by the University of Michigan Institutional 

Animal Care and Use Committee (IACUC). Non-survival experiments were performed on male 

(0.48-0.83 kg) and female (0.36-0.42 kg) Sprague-Dawley rats (Charles Rivers Laboratories, 

Wilmington, MA, USA). The animals were housed in ventilated cages under controlled 

temperature, humidity, and photoperiod (12-h light/dark cycle), and provided with laboratory 

chow (5L0D, LabDiet, St. Louis, MO, USA) and tap water ad libitum. The rats were fasted for 3 

hours before the procedure. Anesthesia was induced by 5% isoflurane (Fluriso, VetOne, Boise, ID, 

USA) and maintained at 2-3% isoflurane. Rats were placed on a heating pad (ReptiTherm, Zoo 

Med Laboratories Inc., San Luis Obispo, CA, USA). A vitals-monitor (SurgiVet, Smiths Medical, 

Norwell, MA, USA) was used to monitor heart rate with an oxygen saturation (SpO2) sensor. A 

midline ventral cervical incision was made, and retractors (17009-07, Fine Science Tools Inc., 

Foster City, CA, USA) were used to maintain the cervical opening. Using a dissection microscope 

(Lynx EVO, Vision Engineering Inc., New Milford, CT, USA), the left cervical vagus nerve (9-

12 mm in length) was isolated from the carotid artery and surrounding tissue using fine forceps 

(00632-11, Fine Science Tools Inc., Foster City, CA, USA). The vagus nerve was lifted (~2 mm) 

and placed on the nerve-holder to facilitate CFMA insertion. The heating pad and dissection 

microscope were disconnected to reduce electrical noise.  

5.3.4 CFMA Insertion 

The CFMA was accurately controlled by a micromanipulator (KITE-R, World Precision 

Instruments, Sarasota, FL, USA) that was secured on an optical breadboard (MB1218, Thorlabs 
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Inc., Newton, NJ, USA) under the animal. A small pen-shaped camera (MS100, Teslong 

Shenzhen, China) was placed in the cervical opening to visualize and align the CFMA fibers for 

insertion. The nerve was rinsed with saline (0.9% NaCl, Baxter International Inc., Deerfield, IL, 

USA) and the CFMA was inserted in the vagus nerve. The experimental setup is shown in Figure 

5.2b. 

The CFMA was connected to a neural interface processor (Grapevine, Ripple LLC, Salt 

Lake City, UT, USA) that recorded signals at a sampling rate of 30 kHz on a linked desktop 

computer. Impedances were measured with the neural interface processor at 1 kHz in saline before 

the procedure, and in the nerve immediately after insertion and at the end of the experiment. 

5.3.5 Experimental Protocol 

After completion of surgery and insertion of the CFMA, a baseline recording period of at 

least 5 minutes was obtained. A dose of glucose (n=6; 1 g, Dextrose 50%, Hospira, Lake Forest, 

IL, USA), insulin (n=6; 20 U, Vetsulin, Merck Animal Health, Madison, NJ, USA), 2-deoxy-D-

glucose (2-DG, n=6; 60 mg, D8375-1G, Sigma-Aldrich, St. Louis, MO, USA), or saline (n=4; 

0.9% NaCl, Baxter International Inc., Deerfield, IL, USA) was injected intraperitoneally (IP). 

Recordings from the CFMA were continued for 60 minutes after the injection. Measurements of 

blood glucose concentration with a glucometer (AlphaTRAK 2, Abbott, Abbott Park, IL, USA), 

heart rate with the SpO2 sensor, and breathing rate with a timer were obtained every 5 minutes. 

The glucometer was unable to measure blood glucose concentrations above 750 mg/dL in one 

experiment due to the limitations of the glucometer. The experimental protocol is summarized in 

Figure 5.2c. In experiments with observed breathing-related neural signals (n=3), a recording 

period of 1 minute was obtained at 2% isoflurane, followed by a 5-minute recording at 5% 
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isoflurane. At the end of the experiment, animals were euthanized with an overdose of sodium 

pentobarbital (400 mg/kg, Euthanasia Solution, VetOne, Boise, ID, USA). 

 

Figure 5.2 Experimental setup and protocol. (a) Design of the nerve-holder. Dimensions of the design are shown 

in Appendix C Figure C.6. (b) Surgical setup for CFMA insertion. (c) Timeline for the experimental protocol. 

 

5.3.6 Analysis of Neural Recordings 

The recorded signals were sorted into clusters using Wave_clus (Chaure, Rey, and Quian 

Quiroga 2018), which is a spike-sorting MATLAB-based algorithm that uses wavelet 

decomposition to extract waveform features and superparamagnetic clustering to cluster the 

spikes. The signals were filtered with a band-pass filter at 300-10,000 Hz. The spike detection 
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threshold was set between 3.3 and 10.1σ [σ = median( |filtered signal| / 0.6745 )] (Chaure, Rey, 

and Quian Quiroga 2018). The sorted clusters were exported to MATLAB (R2014b, MathWorks, 

Natick, MA, USA) for analysis. Firing rates were calculated with a bin duration of 1 sec. To 

calculate signal-to-noise ratio (SNR), the mean peak-to-peak amplitude (Vpp) of a sorted cluster 

was determined and noise intervals with a total duration of at least 7 sec were specified at periods 

with no occurring spikes or artifacts [SNR = Vpp / (2 x standard deviation of noise)] (Kozai et al. 

2012; P. R. Patel et al. 2016). Cross-correlation was performed between the sorted clusters across 

all the recording carbon fibers of a CFMA to inspect the latency of spikes along the CFMA. 

Latencies with high occurrences (count >> mean occurrence) were determined, and conduction 

velocity and signal propagation direction were computed for those latencies. The bin-size for the 

latency counts was set at 0.2 msec, except for one experiment that had multiple high counts at zero 

latency with this 0.2 msec bin-size resolution. For this experiment only (experiment 10), the bin-

size was set at 0.01 msec to provide latency counts with higher resolution. The correlation 

coefficient (ρ) was calculated for all sorted clusters between the firing rate of each cluster and the 

measured physiological parameters (breathing rate, heart rate and blood glucose concentration) for 

that experiment. Since the physiological measurements were much less frequent (every 5 minutes) 

than cluster firing rates (every second), the average cluster firing rate for 1 minute, centered at the 

time of each physiological measurement, was determined and used for the correlation coefficient 

computations. When appropriate, data are presented as mean ± standard deviation (SD). 

5.4 Results 

We inserted 6 CFMA arrays in the left cervical vagus nerve of 22 rats. We observed neural 

activity on 167 out of 326 inserted functional carbon fibers (impedance < 1 MΩ). The neural 

activity on each carbon fiber was sorted into 1 neural cluster (n=160) or 2 neural clusters (n=7). 
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The functional carbon fibers had an average impedance of 31.2 ± 42.0 kΩ in saline before an 

experiment, 70.8 ± 81.9 kΩ in the nerve immediately after insertion, and 94.7 ± 146.7 kΩ in the 

nerve at the end of the experiment. Three of the CFMAs were used in more than one experiment 

(4-8 experiments per CFMA), which initially had a total of 48 functional carbon fibers (16 carbon 

fibers per CFMA) with an average impedance of 52.8 ± 36.8 kΩ after insertion in the first 

experiment. After insertion in the fourth experiment, 45 of the functional carbon fibers on these 

three CFMAs (14-16 carbon fibers per CFMA) remained with an average impedance of 92.6 ± 

149.5 kΩ. On average for a single experiment, we made 2.3 ± 2.9 attempts to insert a CFMA with 

14.9 ± 1.8 functional carbon fibers and observed neural activity on 7.7 ± 5.9 carbon fibers. There 

were no distinctive differences among the recordings of rats with different gender or sizes.  

5.4.1 Multi-Channel Recordings of Vagal Nerve Activity 

We observed physiological neural activity in the vagus nerve on at least one recording 

carbon fiber in 19 of the total 22 experiments. The recorded neural activity was sorted into clusters 

and the mean peak-to-peak amplitudes of the sorted clusters were between 15.1 and 91.7 µV with 

SNR of 2.0-7.0. An example of vagal nerve activity on multiple recording carbon fibers from the 

same experiment is shown in Figure 5.3. 
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Figure 5.3 Representative recordings of physiological vagal nerve activity using 16-channel CFMA. 

Recordings on 4 adjacent carbon fibers (CF) in experiment 15 showing distinctive signals. The markers (x) indicate 

the occurrence of a sorted spike on each CF, which are unique across CFs. The spike waveforms and inter-spike 

intervals (ISIs) are shown for CF 1. Other CFMA CFs that also recorded neural activity are marked (*). 

 

5.4.2 Signal Propagation and Conduction Velocity 

Propagation of vagal signals were detected along adjacent recording carbon fibers in some 

experiments. We observed neural signals in 10 experiments propagating in the afferent direction 

with conduction velocities of 0.7-1.0 m/sec over the span of 2-7 carbon fibers (132-792 µm). 

Furthermore, we monitored efferent signals conducting at 0.7-8.8 m/sec along 2-4 carbon fibers 

(132-396 µm) in 5 experiments. Examples of propagating afferent signals are shown in Figure 5.4.  
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Figure 5.4 Signal propagation along CFMA carbon fibers (CF). (a) Instances of signal propagation along CF 1 – 

CF 4 (experiment 15). (b) Cross correlation of spikes on CF 1 and CF 4. The prevalent latency occurred at -0.6 msec 

with a count of 174 spikes (55.8% of spikes on CF 4). (c) At latency of -0.6 msec, the spikes occurred on CF 4 

before CF 1, suggesting that the signal is propagating in the afferent direction at a conduction velocity of 0.7 m/sec. 

 

5.4.3 Breathing-Related Neural Activity 

We observed vagal signals with periodic bursting firing behavior (n=6 experiments) at 

repetition rates of 39.4 ± 10.8 cycles/min, which were similar to the animals’ breathing rates of 

39.3 ± 9.9 breaths/min (Figure 5.5). In a subset of experiments (n=3), we reduced the breathing 

rate to 20.0 ± 8.0 breaths/min by increasing the depth of anesthesia, and the firing-burst repetition 

rates reduced to a similar level at 19.1 ± 10.3 cycles/min, with maintained peak-to-peak amplitudes 
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(31.7 ± 11.6 µV to 29.3 ±10.1 µV) and inter-spike interval (ISI) values (9.2 ±1.6 msec to 10.5 ± 

1.6 msec), as shown in the example in Figure 5.5a. The periodic bursting behaviors were usually 

firing at one ISI peak of 9.5 ± 1.3 msec. However, in two experiments, two distinct ISI peaks were 

observed at 9.8 ± 1.8 msec and 24.2 ± 6.0 msec (e.g. Figure 5.5b). 
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Figure 5.5 Breathing-related neural activity. (a) Recordings of vagus nerve activity at 2% and 5% isoflurane 

(experiment 16). The bursting firing behavior had a repetition rate of 32.2 cycles/min (1/T1) during animal’s 

breathing rate of 32 breaths/min at 2% isoflurane. The firing-behavior repetition rate reduced to 14.2 cycles/min 

(1/T2) as the breathing rate reduced to ~12 breaths/min at 5% isoflurane. The waveform amplitude and inter-spike 

interval (ISI) peaks were similar at 2% and 5% isoflurane. (b) Bursting firing behavior at two distinct ISIs indicated 

at t1 and t2. The animal’s breathing rate was ~44 breaths/min and the repetition rate for the bursting firing behavior 

was 47.3 cycles/min (experiment 4). 
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5.4.4 Neural Firing Rate Behavior with Physiological Parameters in Blood Glucose 

Modulation Conditions 

In each experiment, we recorded vagal nerve activity for 60 minutes after administration 

of a blood glucose modulation dose (glucose, insulin, 2-DG, or saline), while monitoring 

physiological parameters (blood glucose concentration, breathing rate, and heart rate). The 

recorded neural activity were sorted into 174 clusters. The firing rate of these clusters showed 

moderate or high correlation coefficients (|ρ| ≥ 0.3) with one (n=16), two (n=35), or all three (n=95) 

of the tracked physiological parameters. Across experiments, correlation coefficients did not show 

clear associations between any glucose modulation dosing and any of the physiological 

parameters. An experiment with a carbon fiber that recorded the activity of 2 sorted clusters, along 

with the physiological measurements (blood glucose concentration, breathing rate and heart rate) 

and correlation coefficients, is shown in Figure 5.6. 

Although correlation coefficients did not show a clear relationship between any of the 

glucose modulation doses and physiological parameters, we observed clusters with interesting 

firing rate behaviors after injection of a modulation dose, as shown in Figure 5.7. In some glucose 

injection experiments (n=4), we observed neural clusters (n=11) with an average peak-to-peak 

amplitude of 24.7 ± 6.4 μV with an initial firing rate of 6.8 ± 8.9 spikes/sec that decreased after 

administration of glucose to 1.8 ± 2.4 spikes/sec (e.g. Figure 5.7a). In some experiments with an 

insulin injection (n=4), neural clusters (n=4) with amplitudes of 53.3 ± 28.0 μV peak-to-peak 

increased their firing rates from 1.2 ± 1.8 spikes/sec to 7.6 ± 10.4 spikes/sec at 1-13 minutes after 

insulin administration (e.g. Figure 5.7b). Injection of 2-DG induced a similar neural response to 

insulin in some experiments (n=2). Starting at 5.6 ± 3.7 minutes after 2-DG administration, clusters 

(n=6) with an average amplitude of 29.2 ± 8.1 μV peak-to-peak increased their firing rates from 
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3.8 ± 4.6 spikes/sec to 9.8 ± 10.1 spikes/sec (e.g. Figure 5.7c). A summary of all the performed 

experiments is shown in Table 5.1. 
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Figure 5.6 Vagus nerve recordings with sorted clusters in an insulin-injected experiment (15). (a) Filtered 

signal, firing rate of two sorted clusters, blood glucose (BG) concentration, breathing rate (BR) and heart rate (HR) 

measurements. The waveforms of the sorted clusters are shown with the average peak-to-peak amplitude (Vpp), 

signal-to-noise ratio (SNR), and correlation coefficients (ρ) between cluster firing rate and blood glucose (BG), 

breathing rate (BR) and heart rate (HR). The red boxes in the voltage plot indicate the time-window for the plots in 

b. (b) Filtered signals before and after insulin injection, and the spike waveforms of the two sorted clusters within 

each 10-sec window. 
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Figure 5.7 Examples of sorted clusters with interesting firing rate behavior in blood glucose modulated 

conditions. The clusters were observed in glucose modulation experiments with an injection of (a) glucose, (b) 

insulin, (c) 2-deoxy-D-glucose (2-DG), or (d) saline. The waveforms of the sorted clusters are shown with the 

average peak-to-peak amplitude (Vpp), signal-to-noise ratio (SNR), correlation coefficients (ρ) between cluster 

firing rate (FR) and blood glucose (BG), breathing rate (BR) and heart rate (HR). BG measurements above 750 

mg/dL were not available due to the limitations of the glucometer. 
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Table 5.1 Summary for all the experiments with inserted CFMA in the vagus nerve. 

ID IP Dose Array 
Functional 

CF 
CF with 
Activity 

Clusters 
Vpp 
(µV) 

SNR 

Clusters with 
|ρ| ≥ 0.3 

Signal Propagation (m/sec) 

BG BR HR Afferent Efferent 
Max 
Span 
(µm) 

1 Glucose A 16 16 16 
21.7 - 
27.5 

2.0 - 
2.9 

0 0 0 - - - 

2 2-DG A 16 6 6 
18.4 - 
34.9 

2.3 - 
3.4 

6 6 3 - - - 

3 Glucose A 15 5 5 
17.8 - 
30.3 

2.0 - 
2.8 

3 2 1 - - - 

4 Insulin A 15 14 15 
23.2 - 
91.7 

2.2 - 
6.9 

14 15 15 0.7 0.7 - 1.0 396 

5 Saline A 15 7 8 
22.0 - 
43.9 

2.8 - 
3.6 

7 7 6 0.7 0.7 264 

6 Insulin A 14 0 0 - - - - - - - - 

7 Glucose B 16 0 0 - - - - - - - - 

8 Insulin C 16 7 8 
20.4 - 
40.4 

2.7 - 
4.6 

8 8 8 - - - 

9 Saline C 16 6 7 
20.7 - 
59.1 

3.1 - 
6.5 

2 2 5 - 0.7 132 

10 2-DG C 16 16 16 
21.0 - 
58.7 

2.7 - 
5.4 

13 11 14 0.7 0.7 - 8.8 264 

11 Glucose D 16 6 6 
15.1 - 
38.3 

2.6 - 
3.6 

6 6 4 0.7 - 132 

12 Insulin E 14 5 6 
17.7 - 
78.2 

2.6 - 
7.0 

2 6 5 - - - 

13 2-DG C 14 2 2 
27.4 - 
44.0 

2.9 - 
4.3 

2 2 2 - - - 

14 Saline A 14 14 14 
27.4 - 
62.5 

2.5 - 
4.9 

13 14 14 0.7-0.9 - 792 

15 Insulin D 16 14 16 
18.8 - 
54.3 

2.4 - 
6.4 

11 11 12 0.7 - 660 

16 2-DG D 16 13 13 
17.3 - 
35.6 

2.4 - 
4.1 

10 9 4 0.7 - 792 

17 Insulin D 16 14 14 
20.0 - 
26.6 

2.8 - 
3.5 

11 12 11 0.7-1.0 - 528 

18 Glucose D 15 2 2 
18.8 - 
26.0 

2.8 - 
3.2 

2 0 2 0.7 - 132 

19 2-DG D 15 4 4 
19.3 - 
36.5 

2.9 - 
4.7 

4 4 4 - - - 

20 Saline F 8 0 0 - - - - - - - - 

21 Glucose A 12 1 1 26.8 2.8 1 1 1 - - - 

22 2-DG D 15 15 15 
27.5 - 
54.0 

3.0 - 
5.5 

8 10 11 0.7 - 0.9 0.7 528 

Total 326 167 174 
15.0 - 
91.7 

2.0 - 
7.0 

123 126 122 0.7-1.0 0.7 - 8.8 
132 - 
792 

Correlation coefficients (ρ) were calculated between cluster firing rates and blood glucose (BG) concentrations, 
breathing rate (BR) and heart rate (HR). 
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5.5 Discussion 

We developed a multi-channel, intraneural carbon fiber microelectrode array (CFMA) for 

recording neural signals in autonomic nerves (Figure 5.1). Using the CFMA, we obtained axonal 

recordings in rat cervical vagus nerves with signal-to-noise ratio (SNR) of 2.0-7.0. We recorded 

physiological vagal nerve activity on multiple channels per experiment (Figure 5.3), determined 

the propagation direction and conduction velocity of some vagal signals (Figure 5.4), and 

monitored changes in neural activity in physiologically modulated conditions (Figures 5.5-7). 

These findings suggest that CFMA is a viable electrode for obtaining intraneural recordings in 

small autonomic nerves. Monitoring physiological signaling in autonomic nerves will help 

researchers better understand the neural control and feedback processes, which may assist in the 

development of innovative treatment modalities to restore vital body functions regulated by these 

nerves.      

Our experimental recordings demonstrated CFMA as a multi-channel, intraneural array for 

small-diameter (≤ 0.5 mm) autonomic nerves. In prior work, intraneural carbon nanotube (CNT) 

electrodes obtained high SNR (>10 dB) physiological recordings in small diameter (100-300 µm) 

rat glossopharyngeal and vagus nerves (McCallum et al. 2017). Two single-channel CNT 

electrodes were inserted in a nerve target to obtain only a single differential recording. In our study, 

16-channel CFMAs were inserted in rat vagus nerves (diameter of 300-500 µm) and recorded 

physiological neural activity (SNR of 2.0-7.0) on multiple channels (up to 16), which also provided 

information on the propagation direction and conduction velocity of some signals (Figure 5.4). 

The recording exposure site on a carbon fiber spanned 135-160 µm in length from the tip, which 

provided better spatial selectivity recordings than CNT electrodes that had an exposed recording 

segment of ~500 µm. Another research group developed an intraneural 4-channel carbon fiber 
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array that recorded from tracheosyringeal nerves (diameter of 125 µm) of zebra finch birds (Gillis 

et al. 2018). They demonstrated an innovative blowtorching technique for sharpening carbon fibers 

to directly insert carbon fibers in a nerve, which we adopted. Although an example of spontaneous 

activity was shown using the 4-channel array, the majority of the demonstrated signals were 

evoked responses from electrical stimulation, and no information was reported on physiologically-

modulated activity or signal propagation along the array. 

The observed spike waveforms in CFMA recordings from the vagus nerve (e.g. Figures 5.3-

7) closely resemble action potentials generated by an individual neuron (Moffitt and McIntyre 

2005; Henze et al. 2000), based on the waveform shape and time scale (~1-2 msec). Furthermore, 

we observed propagation of signals in the afferent and efferent direction within the conduction 

velocity range for myelinated (Aδ and B) and unmyelinated (C) fibers (Figure 5.4), which are 

present in the vagus nerve (Qing et al. 2018; Kajekar et al. 1999). However, due to the similarity 

in the waveform shape and the normal variations in waveform amplitudes, we were not able to sort 

the action potentials into clear single units, with only a few channels yielding more than one 

sortable cluster. The active recording site for a CFMA carbon fiber spans 135-160 µm in length 

from the tip (Figure 5.1), which exposes the recording site to an estimation of over 200 axons 

within a distance of 5 µm from the recording site (Figure 5.8). This estimation is based on the 

approximate axon density in the rat vagus nerve, which has around 11,000 axons (Gabella and 

Pease 1973; Prechtl and Powley 1990) and a nerve diameter of about 300 µm. Further work on 

reducing the exposed recording site area may assist in monitoring more localized axon activity 

with a lower background noise level (P. R. Patel et al. 2015; Welle et al. 2020; D. Yan et al. 2019). 

Moreover, current spike-sorting algorithms are mostly designed for central nervous system 

recordings (Rey, Pedreira, and Quian Quiroga 2015), which assume the waveforms are from 
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neuron cell bodies that generate higher amplitude waveforms and have more diverse shapes than 

axons. Future work is needed to study the recording nature in autonomic nerves and develop spike-

sorting algorithms for axonal recordings.     

  

 

Figure 5.8 Immunohistochemistry (IHC) image of a rat cervical vagus nerve with a diagram of an inserted 

CFMA carbon fiber. The dashed lines show a region with a distance of 5 µm from the exposed recording site of a 

CFMA carbon fiber. The region is estimated to be occupied by over 200 axons based on the typical axon density of 

a rat vagus nerve (~11,000 axons in 300 µm diameter nerve) (Gabella and Pease 1973; Prechtl and Powley 1990). 

The nerve sample in this image was stained with 4’, 6-diamino-2-phenylindole (DAPI), myelin basic protein (MBP), 

and anti-beta III tubuline (TUJ1) to show nucleotides (blue), myelin (green) and axons (red), respectively. 

 

Sorted clusters from our recorded vagal nerve activity showed interesting firing rate 

behavior that may be related to the measured physiological parameters of breathing rate, heart rate 

and blood glucose concentrations. We observed neural clusters with periodic firing-burst behavior 

at repetition rates similar to the measured breathing rates (Figure 5.5). Vagus nerve fibers innervate 

the lungs, with critical relevance for breathing control (Chang et al. 2015; Berthoud and Neuhuber 

2000; McAllen et al. 2018). Our observed vagal signals may be related to the neural control over 
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breathing or an afferent response to chest and/or lung expansion (Chang et al. 2015). We also 

observed interesting changes in vagal firing rate behavior after injection of blood glucose 

modulation doses (Figure 5.7). These experiments were performed on fasted rats, and neural 

signals before the dose injection may represent vagal afferent signals to drive an increase in 

glucose intake. The firing rate of clusters decreased after administration of glucose (e.g. Figure 

5.7a), which may suggest that the signaling for glucose intake was met. This observation aligns 

with previous studies that showed neural recordings in the afferent hepatic branch of the vagus 

nerve (Niijima 1983) and overall cervical vagus activity (Masi et al. 2019) which changed in a 

similar manner following glucose injection. The increase in firing rate observed after insulin or 2-

deoxy-D-glucose (2-DG) injection, which induces insulin-like symptoms, may represent a surge 

of afferent activity to enhance the request for glucose intake (e.g. Figure 5.7b,c), which aligns with 

previous studies that showed increased afferent activity in the hepatic branch or cervical vagus 

nerve within 10 minutes after administration of insulin or 2-DG (Niijima 1983; Masi et al. 2019). 

However, these observed responses were inconsistent across our experiments with identical 

injection doses, which may be due to the variation in CMFA sampling of neural activity within the 

nerve. Moreover, there were similarities in the blood glucose concentration trends during an 

experiment to other measured physiological parameters (i.e. breathing rate and heart rate) in most 

experiments (e.g. Figure 5.6-7). The anesthetic agent we used in our experiments was isoflurane, 

which maintained consistent and stable depth of anesthesia for recording vagal nerve activity with 

ultra-small carbon fibers. In preliminary experiments using other agents (e.g. ketamine), 

occasional muscle twitches would lead to CFMA movement or carbon fiber breakage, which were 

not observed under isoflurane. However, isoflurane anesthesia suppresses neural activity in the 

central and autonomic nervous systems and impacts multiple physiological parameters, including 
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blood glucose concentrations, respiration, and arterial pressure (Skovsted and Sapthavichaikul 

1977; Carli et al. 1993). Experiments with minimal or no anesthesia would allow more 

physiological activities to occur and may be necessary to clearly link vagal nerve activity to 

physiological changes. 

This work had numerous limitations. The exact insertion location for the CFMA arrays in 

the vagus nerve varied between our experiments. The rat cervical vagus nerve is estimated to 

contain around 11,000 axons (Gabella and Pease 1973; Prechtl and Powley 1990) that regulate 

many autonomic functions (Berthoud and Neuhuber 2000). To illustrate this variation, potential 

breathing-related signals (e.g. Figure 5.5) were only observed in 6 out of the 22 experiments, 

although all the rats were breathing normally during the experiments. Additional work on 

redesigning the electrode configuration may be needed to cover a wider range of axonal activity 

while providing high selectivity for individual recording sites, such as with staggered rows of 

carbon fibers with variable lengths. Another limitation is the requirement to lift the nerve for 

CFMA insertion, which applies tension on the nerve, during the implantation procedure due to the 

nerve-holder design. Although the nerve-holder added the risk of nerve injury, the nerve-holder 

was necessary to position a camera to visualize the accurate alignment of CFMA carbon fibers 

with the vagus nerve for insertion (Figure 5.2). Redesigning the nerve-holder and possibly 

restructuring the implantation procedure may be needed to eliminate the applied tension and avoid 

the risk of injuring the nerve. 

Overall, our experiments demonstrated CFMA as a viable multi-channel intraneural 

electrode for recording neural activity in autonomic nerves. Further work is needed to refine the 

selectivity of CFMA and develop a chronic form to monitor long-term recordings in autonomic 

nerves without the presence of anesthesia. This work provided insights in intraneural axonal 
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recordings and is a milestone towards the comprehensive understanding of physiological signaling 

in autonomic nerves, which may lead to the development of innovative treatment modalities for 

restoring regulatory functions. 

5.6 Conclusion 

The aim of this study was to demonstrate intraneural recordings in a small autonomic nerve 

using the carbon fiber microelectrode array (CFMA). Our results showed axonal recordings in the 

rat cervical vagus nerve. We recorded physiological vagal nerve activity on multiple channels, 

determined the propagation direction and conduction velocity of vagal signals, and observed 

changes in firing rate behavior in modulated conditions. Future work is needed to enhance the 

selectivity of CFMA and validate CFMA recordings in various autonomic nerves. This work 

suggests that CFMA may be used to better understand neural regulation signaling in various 

physiological and pathophysiological conditions, which may assist in the development of new 

treatments. 

5.7 Acknowledgements 

The work in this chapter is in preparation for publication. The author list will be: Ahmad A. 

Jiman, David C. Ratze, Elissa J. Welle, Paras R. Patel, Julianna M. Richie, Elizabeth C. Bottorff, 

John P. Seymour, Cynthia A. Chestek and Tim M. Bruns. 

We thank Dr. Randy Seeley and Dr. Malcolm Low for their expert advice on designing the 

experiments, Zach Sperry, Aileen Ouyang, Eric Kennedy and Lauren Zimmerman for their 

assistance in surgical preparation, Joey Letner for his guidance on data analysis, and Steve Kemp 

and Dan Ursu for preparing and imaging the immunohistochemistry nerve sample. This research 

was supported by the National Institute of Health (NIH) Stimulating Peripheral Activity to Relieve 



 98 

Conditions (SPARC) Program (Award OT2OD024907) and the National Science Foundation 

(Award 1707316). 



 99 

Chapter 6: Conclusions 

 

 

6.1 Summary of Results 

Diabetes is a global disease that has altered the lives of millions of people around the world. 

Although diabetic medications are critical for the treatment of current patients with diabetes 

(American Diabetes Association 2020), many of these medications are associated with undesirable 

side effects and lose their glycemic control effectiveness over time (Blak et al. 2012; Khunti et al. 

2013; American Diabetes Association 2020). Furthermore, sustained patient adherence to these 

medications in a lifelong therapy is a major challenge (García-Pérez et al. 2013). There is an 

opportunity for developing an implantable and automated treatment for diabetic patients by 

accurately detecting and altering neural activity in autonomic nerves for effective glycemic 

control. This will help patients overcome therapeutic limitations with current medications and is 

the core motivation for the research presented in this dissertation. 

The dissertation investigated alteration of renal nerve activity for glucose regulation in 

normal (Aim 1) and diabetic animals (Aim 2), assembled a new chronic implantation procedure 

for neural interface arrays designed for small autonomic nerves (Aim 3), and detected 

physiological action potential signals in an autonomic nerve (Aim 4). The results of this work 

support the potential development of an alternative implantable treatment modality for diabetic 

patients by altering and detecting neural activity in autonomic nerves. 
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6.1.1 Specific Aim 1 - Determine Effective Stimulation Parameters for the Modulation of 

Urine Glucose by Stimulation of Renal Nerves in Normal Rats 

The accomplishment of specific aim 1 is detailed in Chapter 2. To our knowledge, this was 

the first study to investigate electrical stimulation of renal nerves to modulate urine glucose 

excretion. We hypothesized that stimulation of renal nerves in rats at kilohertz frequencies (1–50 

kHz) would increase urine glucose excretion (UGE), while low frequency stimulation (2–5 Hz) 

would decrease UGE. Although stimulation at kilohertz frequencies did not always lead to an 

increase in UGE, 33 kHz showed a notable average increase in UGE (+ 24.5%). In contrast, low 

frequency stimulation typically showed a decrease in UGE, with the strongest effect observed at 5 

Hz stimulation (− 40.4%). The average differences in UGE were similar to the average differences 

observed in urine flow rate (UFR), suggesting an associated response. Although this may indicate 

that either UGE or UFR was the primary effect of stimulation, UFR and UGE are normally 

associated, as increased urination is a common adverse event in diabetic patients treated with 

sodium-glucose co-transporter 2 (SGLT2) inhibitors that primarily increase urine glucose 

excretion (Seufert 2015; Wilding 2014). Overall, the experiments in this aim showed that 

stimulation of renal nerves may modulate urine glucose excretion. Future work is needed to 

distinguish the glucose excretion and urine flow effects for stimulation of renal nerves and examine 

the underlying mechanisms. Stimulation of renal nerves may provide an alternative treatment 

approach for glycemic control that avoids patient compliance issues typically seen with current 

medications (Polonsky and Henry 2016). 
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6.1.2 Specific Aim 2 - Evaluate Impact of Kilohertz Frequency Stimulation of Renal 

Nerves on Blood Glucose Concentration in Diabetic Rats 

The work in Chapter 3 described the accomplishment of this aim. The study of the previous 

aim showed that electrical stimulation of renal nerves may modulate urinary glucose excretion in 

glucose-bolus infusion experiments. In this aim, we hypothesized that bilateral kilohertz frequency 

stimulation of renal nerves would reduce blood glucose concentration levels in diabetic rats by 

increasing urinary glucose excretion. Kilohertz frequency stimulation of renal nerves showed a 

significant average decrease (-168.4%) in blood glucose concentration rate, and an increase 

(+18.9%) in the overall average area under the curve for urine glucose concentration, with respect 

to values before stimulation. The experimental results of this study suggest that kilohertz frequency 

stimulation of renal nerves is a potential approach for glycemic control in diabetic 

conditions. Although further studies are necessary to inspect the safety of kilohertz frequency 

stimulation of renal nerves, the work in this aim and the previous aim introduce a novel approach 

for glycemic control in diabetic patients through glucose regulation at the kidneys, which occupy 

a vital role in glucose homeostasis.  

6.1.3 Specific Aim 3 - Develop Surgical Procedure for the Chronic Implantation of 

Microneedle Nerve Arrays in Rat Vagus Nerves 

The accomplishment of this specific aim is detailed in Chapter 4. In this aim, we assembled 

an innovative chronic implantation procedure for novel intraneural MIcroneedle Nerve Arrays 

(MINAs) in rat vagus nerves. We investigated two array attachment approaches (fibrin sealant and 

rose-bengal bonding) to secure non-wired MINAs in rat vagus nerves. The fibrin sealant approach 

was unsuccessful in securing the MINA-nerve interface for 4- and 8-week implant durations. The 

rose-bengal coated MINAs were in close proximity to axons (≤ 50 μm) in 75% of 1-week and 14% 
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of 6-week implants. The MINA-implanted nerves showed stimulation-evoked neural responses, 

with no statistical significant differences between body weight, blood glucose concentration, or 

stimulation threshold values between MINA-implanted and sham-implant animals, suggesting that 

the MINA implants did not cause significant harm to the overall health of the rats. This work, to 

the best of our knowledge, was the first to demonstrate the chronic implantation of an intraneural 

electrode array in a fine autonomic nerve (diameter ≤ 0.5 mm). Further work is needed to 

demonstrate the neural recording capabilities of functional MINA. The chronic implantation of 

fully-functional intraneural arrays in autonomic nerves may provide novel insights in physiological 

neural signaling and allow selective microstimulation of function-specific axons to restore vital 

functions regulated by autonomic nerves.    

6.1.4 Specific Aim 4 - Demonstrate Intraneural Recordings in Rat Vagus Nerves Using 

Carbon Fiber Microelectrode Arrays 

The accomplishment of this aim is detailed in Chapter 5. In this aim, we hypothesized that 

Carbon Fiber Microelectrode Arrays (CFMAs) can obtain physiological recordings with high 

signal-to-noise ratio (SNR) in a small autonomic nerve. Using the CFMA, we obtained axonal 

recordings in rat cervical vagus nerves. We observed physiological neural activity on 51% of 

inserted functional carbon fibers, and sorted 1-2 neural clusters on each carbon fiber with activity. 

The mean peak-to-peak amplitudes of the sorted clusters were 15.1-91.7 µV with SNR of 2.0-7.0. 

We detected propagation of vagal signals in the afferent direction at conduction velocities of 0.7-

1.0 m/sec, and efferent signals at 0.7-8.8 m/sec, which are within the conduction velocity range of 

myelinated and unmyelinated vagus fibers. Furthermore, we monitored changes in vagal activity 

in breathing and blood glucose modulated conditions. The observed spike waveforms in CFMA 

recordings closely resemble action potentials generated by an individual neuron, based on the 
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waveform shape and time scale (Moffitt and McIntyre 2005; Henze et al. 2000), supporting our 

hypothesis that they are from individual axons. However, due to the similarity in the waveform 

shapes and the normal variations in waveform amplitudes, we were not able to differentiate the 

action potentials into clear single units from putative individual axons. Further work is needed to 

refine the selectivity of CFMA and validate CFMA recordings in various autonomic nerves. 

Overall, our experiments demonstrated CFMA as a viable multi-channel intraneural electrode for 

recording neural activity in autonomic nerves. This work provided insights in intraneural axonal 

recordings and is a milestone towards the comprehensive understanding of physiological signaling 

in autonomic nerves for glycemic control. 

6.2 Impact on the Field 

6.2.1 Kilohertz Frequency Stimulation of Renal Nerves 

To our knowledge, our work in Chapter 2 and Chapter 3 was the first to investigate 

kilohertz frequency stimulation of renal nerves. Our experimental results showed that kilohertz 

frequency stimulation of renal nerves may reduce blood glucose concentration levels in diabetic 

conditions. Prior studies have shown the influence of renal nerves on glucose regulation by renal 

denervation (Mahfoud et al. 2011; Rafiq et al. 2015), which is considered an irreversible 

procedure. The finding of this work is impactful by demonstrating a reversible and controllable 

glycemic control approach that alters renal nerve activity in desired conditions (i.e. hyperglycemia) 

without removing the renal nerves, which provide neural control of complex functions performed 

by the kidneys (DiBona 2000). Although further work is needed to improve the electrode interface 

and evaluate the safety of this approach, this work initiated a potential alternative treatment 

modality for diabetic patients by kilohertz frequency stimulation of renal nerves.     
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6.2.2 Chronic Implantation Procedure for Intraneural Arrays 

The work in Chapter 4 demonstrated a new chronic implantation procedure for an 

intraneural array in a fine autonomic nerve (diameter ≤ 0.5 mm). Multiple intraneural electrodes 

have been implanted in somatic or large autonomic nerves (diameter ≥ 1 mm) (Wark et al. 2014; 

Mathews et al. 2014; Byun et al. 2017), but only a few have been developed for fine autonomic 

nerves. Carbon nanotube (CNT) electrodes (McCallum et al. 2017) were chronically implanted in 

fine autonomic nerves (diameter of 100-300 µm), but a relatively-large tungsten needle (diameter 

≥ 75 μm) was used to insert each of the two single-channel CNT electrodes in a nerve target, which 

may have caused permanent nerve damage. A carbon fiber array (Gillis et al. 2018) was directly 

inserted in a fine autonomic nerve (diameter of 125 µm), but was only demonstrated in an acute 

setup. Securing a multi-channel array in a small-diameter autonomic nerve is extremely 

challenging due to the fine structure of autonomic nerves. We developed a new implantation 

procedure that involved the design of a vacuum suction adaptor to handle the array, a nerve-holder 

to facilitate the array insertion process, and a nerve-release tool to accurately and safely relocate 

the implanted nerve. The MINA array was inserted directly into a rat vagus nerve (diameter of 

300-500 µm) with a manual micromanipulator, without a shuttle or high-pressure insertion tool 

(e.g. tungsten needle for CNT electrode, pneumatic inserter for Utah array). The procedure also 

incorporated an innovative attachment approach to secure an array interface on a nerve by applying 

a coating of rose-bengal on the array. Once the rose-bengal is activated with a laser, crosslink 

bonding between collagen fibers in the array coating and the nerve are formed. These implantation 

components are easily adjustable and may be useful for implanting other electrodes in or on various 

nerves across the peripheral nervous system. 
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6.2.3 Intraneural Recordings in an Autonomic Nerve 

The work detailed in Chapter 5 demonstrated CFMA as a multi-channel, intraneural array 

for small-diameter (≤ 0.5 mm) autonomic nerves. Recording physiological neural signals from 

autonomic nerves is very challenging due to the small nature of these nerves, and the low-

amplitude signals from their micron-diameter axons (Gabella and Pease 1973; Prechtl and Powley 

1990). As mentioned earlier, intraneural carbon nanotube (CNT) electrodes obtained high SNR 

(>10 dB) physiological recordings in small diameter (100-300 µm) rat glossopharyngeal and vagus 

nerves (McCallum et al. 2017). Two single-channel CNT electrodes were inserted in a nerve target 

to obtain only a single differential recording. In the work of this aim, 16-channel CFMAs were 

inserted in rat vagus nerves (diameter of 300-500 µm) and recorded physiological neural activity 

(SNR of 2.0-7.0) on multiple channels, which also provided information on the propagation 

direction and conduction velocity of some signals. Another research group developed an 

intraneural 4-channel carbon fiber array that recorded from tracheosyringeal nerves (diameter of 

125 µm) of zebra finch birds (Gillis et al. 2018). Although an example of spontaneous activity was 

shown using the 4-channel array, the majority of their demonstrated signals were evoked responses 

from electrical stimulation, and no information was reported on physiologically-modulated 

activity or signal propagation along the array. Moreover, our intraneural axonal recordings provide 

a source of reference for designing future intraneural electrodes for autonomic nerves, which are 

currently sparse in the field despite the immense benefit that could be gained from monitoring and 

controlling signals in these nerves. A class of therapies that has gained considerable interest in 

recent years is bioelectronic medicine, which targets autonomic nerves to detect and alter neural 

activity for restoring autonomic functions (Tracey 2014; Birmingham et al. 2014; Pavlov and 

Tracey 2019). The variety of bioelectronic medicine applications that target the vagus nerve have 
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led to clinical trials on vagus nerve stimulation (VNS) for patients with rheumatoid arthritis 

(Koopman et al. 2016), obesity (Apovian et al. 2017), and type-2 diabetes (Shikora et al. 2015), 

among others. Despite the therapeutic benefits of VNS and bioelectronic medicine, stimulation 

patterns are generally selected by experimenting with different parameters without monitoring the 

physiological signaling in the nerve. A key element that is needed to achieve the full potential of 

bioelectronic medicine is a better understanding of neural signaling in physiological and 

pathophysiological conditions. Our obtained intraneural CFMA recordings from the vagus nerve, 

which conveys important glucose regulation signals (Berthoud 2008; Waise, Dranse, and Lam 

2018), is an advancement towards a better understanding of neural signaling and may assist in the 

development of an effective bioelectronic medicine for diabetic patients.  

6.3 Future Studies 

6.3.1 Additional Studies on Stimulation of Renal Nerves for Glycemic Control 

Although glucose regulation changes were observed in response to kilohertz frequency 

stimulation of renal nerves (Chapter 2 and Chapter 3), further studies are needed to examine the 

underlying mechanisms. It is unknown if the observed glucose regulation responses to stimulation 

of renal nerves were consequences of changes in urine flow rate, or directly related to the glucose 

transport pathways in the proximal tubules, which are innervated by renal nerves (Mather and 

Pollock 2011; Muller and Barajas 1972; Luff et al. 1992). Additionally, exploring longer and more 

complex stimulation patterns may be needed to enhance the glucose regulation response. Kilohertz 

frequency stimulation at 50 kHz, which is the same frequency used in our experiments, was applied 

continuously for 9 weeks on the carotid sinus nerve in diabetic rats (Sacramento et al. 2018). 

Improvements in insulin sensitivity and glucose tolerance were observed at the end of the 9-week 

stimulation period. The study reported no behavioral alterations for the rats, and carotid sinus nerve 
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responses to hypoxia returned to baseline after continuous 1-week stimulation of carotid sinus 

nerve. Although the nerve targets are different, these findings are encouraging for kilohertz 

frequency stimulation of renal nerves at long continuous durations. Above all, safety studies on 

stimulation of renal nerve is an absolute necessity for the advancement of this approach.  

Continuous measurements to assess renal function, such as glomerular filtration rate, renal plasma 

flow and sodium excretion measurements (Toto 1995; Phillips and Hamilton 1948), are necessary 

to evaluate the safety of kilohertz frequency stimulation of renal nerves and to proceed with 

confidence towards clinical trials on this potential treatment modality for diabetic patients. 

6.3.2 Long-Term Recordings of Autonomic Nerves for Glucose Regulation Signaling 

The work in Chapter 4 demonstrated a chronic procedure for implanting non-wired 

intraneural arrays in small-diameter autonomic nerves, while Chapter 5 showed intraneural 

recordings from a small autonomic nerve in an acute setting. Although previously mentioned 

carbon nanotube electrodes were chronically implanted in small-diameter autonomic nerves 

(McCallum et al. 2017), a need remains for the chronic implantation of highly-selective intraneural 

arrays that can record physiological single-neuron activity in fine autonomic nerves. Monitoring 

physiological signaling in autonomic nerves will help researchers better understand the neural 

control process, which may assist in the development of innovative treatment modalities to restore 

vital body functions regulated by these nerves. Furthermore, future studies on physiological neural 

activity recordings from various autonomic nerves that contribute in the glucose regulation 

process, such as renal nerves, splanchnic nerves, and hepatic and pancreas branches of the vagus 

nerve (Chhabra et al. 2017; Yi et al. 2010; Verberne, Sabetghadam, and Korim 2014), may provide 

novel perspectives on neural glycemic control. Recording neural activity may also be useful in 

monitoring physiological changes by decoding neural signals and providing sensory feedback for 
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closed-loop stimulation applications (Ouyang et al. 2019; Vu et al. 2018; Horbach et al. 2016). 

Additionally, monitoring changes in neural activity during the progression of diabetes in diabetic 

animal models (Has-Georg Joost and Al-Hasani 2012; King 2012) may provide new information 

that will assist in the development of new diabetic treatments.  

6.3.3 Closed-Loop Bioelectronic Medicine for Glycemic Control 

Our ultimate goal is to provide a reversible, automated and effective treatment that will assist 

diabetic patients in the commitment of a lifelong therapy. Our envisioned diabetic therapy is an 

implantable bioelectronic medicine that targets autonomic nerves to accurately detect elevations 

in blood glucose levels and trigger effective stimulation patterns to regulate blood glucose 

concentration levels. As detailed in Chapters 2 and 3, the renal nerve is a potential target for this 

therapy. Reduced renal nerve activity in mutant (hypothalamic POMC-deficient) mice (Chhabra 

et al. 2016; 2017) and renal denervation animal models (Rafiq et al. 2015; Iyer et al. 2016) showed 

improvements in glucose regulation. A potential bioelectronic medicine approach for glycemic 

control is the detection of neural patterns in renal nerve activity in hyperglycemia conditions to 

trigger selective stimulation of renal nerve fibers to regulate the glucose homeostasis functions of 

the kidney (DeFronzo, Davidson, and Del Prato 2012; Mather and Pollock 2011). Alternatively, 

the vagus nerve conveys important afferent and efferent neural signals for glucose regulation 

(Waise, Dranse, and Lam 2018; Matsuhisa et al. 2000). Fibers of the vagus nerve supply the liver, 

pancreas, gastrointestinal tract (Powley et al. 1983; Berthoud and Neuhuber 2000), and also 

conduct glucose sensing signals from the oral cavity and portal vein (Berthoud 2008; Watts and 

Donovan 2010). Consequently, the vagus nerve is an attractive nerve target for glycemic control 

in bioelectronic medicine. Patients enrolled in clinical trials on vagal nerve block (vBloc) therapy 

and transcutaneous auricular vagus nerve stimulation (taVNS) showed improvements in glycemic 
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control (Shikora et al. 2015; Huang et al. 2016). However, stimulation in vBloc therapy is applied 

by placing cuff electrodes on abdominal vagus nerves, while taVNS uses non-invasive stimulator 

electrodes that are placed on the auricular concha area of the ear to target vagus nerve branches in 

that area. The electrodes used in both therapies lack selectivity, which is critical for an effective 

bioelectronic medicine treatment that targets function-specific fibers in the vagus nerve. The 

development of an efficient bioelectronic medicine that targets the vagus nerve requires 

incorporating the chronic implantation of selective electrodes in the vagus nerve, which was 

demonstrated with MINA in Chapter 4, and can detect physiological action potential signals, as 

shown using CFMA in Chapter 5, along with highly-selective stimulation techniques, which may 

be achieved with MINA or CFMA, to precisely target axons in the vagus nerve that control specific 

regulation functions. The complete development of this bioelectronic medicine application may 

provide a reversible, automated and effective treatment that will assist diabetic patients in the 

commitment of a lifelong therapy and overcome the therapeutic limitations and compliance issues 

associated with current medications for diabetes. 

6.4 Conclusions 

This dissertation investigated modulation of neural activity for glucose regulation, 

assembled a new chronic implantation procedure for intraneural arrays, and monitored 

physiological signaling in an autonomic nerve. Future work is needed to evaluate the long-term 

efficacy and safety of these approaches. Overall, this work supports the potential development of 

an alternative implantable treatment modality for diabetic patients by modulating and monitoring 

neural activity in autonomic nerves. 

Over 450 million people around the world are diabetic, and an estimate of 1.5 million deaths 

in a year are caused by diabetes (Cho et al. 2018; World Health Organization 2016). My 
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dissertation is devoted to these patients. My ultimate hope is to see this research, and future work 

built on this research, contributing, even in the slightest way, to limit the suffering and deaths 

caused by diabetes, and to improve the lives of the millions who are currently struggling with this 

disease.   
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Appendix A: Stimulation of Renal Nerves on Renal Artery Blood Flow and Kidney 

Perfusion 

 

 

In the experiments of Chapter 2 and Chapter 3, stimulation of renal nerves was applied 

through a bipolar nerve cuff electrode (1.00 mm inner-diameter, 100 µm platinum contacts, 

Microprobes for Life Science, Gaithersburg, MD, USA), which was placed around the renal artery, 

encircling renal nerves that run along the artery. A main concern with this stimulation approach is 

the occlusion or disruption of blood flow during stimulation. To evaluate this concern, renal artery 

blood flow during stimulation was measured using a perivascular flow meter system (TS420, 

Transonic Systems Inc., Ithaca, NY, USA) in one experiment. A nerve cuff electrode was placed 

on the renal artery, encircling the renal nerves. Proximal to the nerve cuff electrode, a flow sensor 

probe (1.5 mm inner-diameter, 1.5PS) was placed on the renal artery. Measurements of renal artery 

blood flow were obtained during stimulation of renal nerves at kilohertz frequencies (1-100 kHz) 

and low frequencies (2-10 Hz) at different amplitudes (10-50 V). The mean renal blood flow 

(mRBF) ratio was calculated for each stimulation trial [mRBF ratio = mRBFstim/mRBFpre-stim]. The 

mRBF values were computed at manually-identified steady-state conditions, with a minimum time 

interval of 7 sec for mRBFpre-stim, and 19 sec for mRBFstim. 

Similarly, we monitored kidney perfusion in another experiment using a laser speckle 

contrast imager (moorFLPI-2, Moor Instruments Ltd, Devon, UK). The kidney was exposed, and 

a nerve cuff electrode was placed on the renal artery as in other experiments. The imager was 



 113 

positioned directly above the exposed kidney. The kidney superficial blood perfusion (flux) was 

measured at a specified region of interest (kidney perimeter manually traced) during stimulation 

at kilohertz frequencies (1-100 kHz, 15 V) and low frequencies (2-10 Hz, 10 V). The mean flux 

(mFlux) ratio was calculated in the same manner as mRBF ratio, with a minimum time interval of 

30 sec for mFluxpre-stim, and 14 sec for mFluxstim. 

The mean renal blood flow (mRBF) ratio for all stimulation parameters are shown in Figure 

A.1a. Stimulation at kilohertz frequencies (1-100 kHz, 15-30 V) had minimal effect on renal blood 

flow (mRBF ratio ≥ 0.95) except at 1 kHz, 30 V (mRBF ratio = 0.57) and 5 kHz, 30 V (mRBF 

ratio = 0.91). Similarly, low frequency, low-amplitude stimulation (2-10 Hz, 10-20 V) had minimal 

effect on renal blood flow (mRBF ratio ≥ 0.98). However, 10 Hz stimulation at 40 V and 50 V 

showed a major reduction in renal blood flow (mRBF ratio of 0.69 and 0.47, respectively). 

 

 

Figure A.1 Renal artery blood flow at applied stimulation. (a) Mean renal blood flow (mRBF) ratio for 

performed stimulation trials. (b) Renal blood flow measurements in three example trials. The double arrows indicate 

the manually-identified steady-state intervals for mRBFpre-stim and mRBFstim. 
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The mean flux (mFlux) ratio for all stimulation parameters are shown in Figure A.2a. A 

minimal effect on kidney perfusion was observed for kilohertz frequency stimulation at 10 kHz 

and above with an amplitude of 15 V (mFlux ratio ≥ 0.97). However, at 1 and 5 kHz stimulation, 

mFlux ratio was 0.59 and 0.42, respectively. In low frequency stimulation trials with an amplitude 

of 10 V, mFlux ratio was 0.94, 0.79 and 0.39 at 2, 5 and 10 Hz, respectively.  

 

 

 

Figure A.2 Kidney perfusion at applied stimulation. (a) Mean kidney perfusion (mFlux) ratio for performed 

stimulation trials. (b) Perfusion (flux) measurements in arbitrary perfusion units (PU) for three example trials. Single 

arrows indicate the timing of the perfusion images shown in c. Double arrows indicate the manually-identified 

steady-state intervals for mFluxpre-stim and mFluxstim. (c) Corresponding perfusion images at time points indicated in 

b. The kidney perimeter was specified manually as the region of interest for analysis. 
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Renal blood flow (Figure A.1) and kidney perfusion (Figure A.2) were monitored in 

separate one-off pilot experiments, and minimal-to-moderate changes were observed at the 

specified stimulation parameters in this study. We cannot specifically determine if these changes 

were a consequence of neural control of renal nerves or vasoconstriction of renal arteries. 

However, it was promising that 5 Hz stimulation at our typical stimulus amplitude did not affect 

blood flow and 33 and 50 kHz did not affect blood flow or renal perfusion, suggesting that blood 

flow to the kidneys themselves was not significantly limited in the experimental trials of Chapters 

2 and 3. Additional imaging experiments involving Doppler ultrasound or angiography techniques 

on renal vessels at stimulation locations may provide further insight (Greene et al. 1981).  
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Appendix B: Microneedle Penetrating Array with Axon-Sized Dimensions for Cuff-less 

Peripheral Nerve Interfacing 

 

 

D. Yan, A. Jiman, D. Ratze, S. Huang, S. Parizi, E. Welle, Z. Ouyang, P. Patel, M. J. Kushner, C. 

Chestek, T. M. Bruns, E. Yoon, and J. Seymour, “Microneedle Penetrating Array with Axon-Sized 

Dimensions for Cuff-less Peripheral Nerve Interfacing,” Proc. 9th Int. IEEE EMBS Conf. Neural 

Eng., pp. 827–830, 2019. 

 

This work was published as a conference proceeding paper at the 9th International IEEE 

EMBS Conference on Neural Engineering, San Francisco, CA, USA, March 20-23, 2019, and 

shows preliminary experiments for the work presented in Chapter 4. I am a second author on this 

publication for significant contributions in the surgical procedures performed in this study. 

 

Abstract 

Autonomic nerves are typically only hundreds of microns in diameter near their organ 

targets and these carry all of the sympathetic and parasympathetic control signals. We present a 

cuff-less microneedle array specifically designed to potentially map small autonomic nerves. The 

focus of this paper is the design and fabrication of an ultra-miniaturized silicon needle array on a 

silicone substrate. We demonstrate arrays having 25 to 100 microneedles. Each needle has a 1-

micron tip and dual-taper shaft. We demonstrate an ability to control the tip shape, angle, and shaft 
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angle which is important for balancing sharpness and stiffness. These high-density arrays also 

include a special backside anchor embedded in silicone for stability in the elastic substrate, yet the 

array freely wraps over a 300-µm nerve. Another critical method presented here is a surgical 

technique for inserting and securing an array without a cuff (as small as 0.3 mm wide and 1.2 mm 

long) by photochemical bonding of collagen/Rose Bengal adhesive agents to epineurium. Future 

work will focus on device functionalization and histological characterization in a rat vagus model. 

Introduction 

Implantable peripheral nerve interfaces can be categorized as cuff (surrounding the 

epineurial surface), intrafascicular (through the perineurium), and regenerative (bridging two 

nerve ends). Cuff devices do not have the ability to detect individual or local axon activity through 

the highly resistive epineurium and thus lack spatial resolution. Intrafascicular arrays, by contrast, 

implant electrodes transversely or longitudinally to the nerve and may have significant tissue 

damage. Even thin polymer arrays, which for the last decade represent the state-of-the-art in this 

field, result in tissue encapsulation around the microelectrodes on the order of 50-100 µm (Wurth 

et al. 2017). While an improvement over past technologies such as the high-density Utah electrode 

array (HD-UEA) (Wark et al. 2014) which showed excellent longevity for stimulation in larger 

nerves, flexible polymer arrays are greatly oversized for most autonomic nerves, which are often 

below 1 mm in diameter. 

The goal of MIcroneedle Nerve Array (MINA) is to offer a minimally invasive 

intrafascicular penetrating technology that ideally extends just beyond the epineurium and 

perineurium of a fascicular bundle and with recording needles similar in size to large axons (~20 

µm). We hypothesize that the size of each individual penetrating structure is a critical factor 
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influencing the tissue response. Additionally, the way in which the array is secured to the nerve is 

also a critical factor. 

Methods 

Each individual penetrating microneedle of MINA has a total height of 180 µm. As they 

are anchored onto the neutral plane of an 80-μm thick PDMS layer, the exposed needle bodies 

have an average length of 140 μm. The average diameter of the needle tip and whole needle body 

is 6.3 μm and 17.6 μm. Table B.1 shows a comparison of the individual needle diameter of MINA 

with the current state-of-the-art silicon needle array, HD-UEA. As shown in Figure B.1, the ultra-

fine silicon microneedles were placed in a honeycomb pattern with 150 μm spacing. 

 

 

 

Figure B.1 Microneedle Nerve Array (MINA). (a) Size comparison between MINA and high-density Utah slant 

array. MINA wrapped around a metal rod (0.56-mm diameter). (b) SEM image of 100-site silicon microneedle array 

in a 0.9mm×1.8mm rectangular area. (c) Conceptual image of a future functional version of MINA. 
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Axon-Dimension Microneedle Design, Simulation and Microfabrication 

The process of scaling down the cross-section of the penetrating structures requires careful 

design to ensure mechanical robustness. A ~10μm diameter high-aspect-ratio silicon structure can 

be extremely fragile during penetration or while implanted. To optimize the structural mechanics 

of the ultra-fine silicon microneedle, we used finite element methods (FEM) in COMSOL to 

evaluate tip angles and shaft angles while trying to keep the upper portion in particular smaller 

than a large axon diameter (< 20 µm). A dual-taper-profile (i.e. a full tip angle of 30° degrees and 

a shaft side-wall angle of 3°) with a cylindrical backside anchor provided us with the greatest 

stability inside the soft bulk material of the array body.  

The yield stress of silicon is around 7 GPa. Simulation using COMSOL predicted a 

maximum stress of only 13.4 MPa under 1 gram force applied both lateral and longitudinal on a 

nerve phantom laying over the top of the needle with non-slip boundary condition. (Figure B.2) 

The Young’s module of the nerve was set at 300 kPa. 

 

Table B.1 Needle comparison of MINA vs HD-UEA 

Device 

Average Diameter at % Distance to the Tip (μm) 

5% 20% 50% 90% 

MINA 4.3 
13.3 16.9 24.2 

HD-UEA - 
41.2 73.3 107.3 

 

Deep reactive ion etching (DRIE) of silicon creates a negative sidewall angle unsuitable 

for microneedles if a modification is not introduced. In our case we used a thin, protective ring to 

create a micro-loading effect in the etch around our needles (Figure B.3), which is a modified 

approach from Hanein 2003 (Hanein et al. 2003). A computational study of DRIE of silicon 
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microneedles was conducted to improve our understanding of the etching and resulting sidewall 

profiles. We modeled the fabrication process in two steps: reactor scale modeling of the inductively 

coupled plasma (ICP) providing reactive fluxes to the substrate and single microneedle scale 

etching process simulation. The reactor scale modeling was performed using the Hybrid Plasma 

Equipment Model (HPEM), from which the neutral and ion fluxes and ion energy and angular 

distributions (IEADs) to the wafer surface were obtained (Kushner 2009). The resulting 

microneedle profiles were predicted using the Monte Carlo Feature Profile Model (MCFPM) 

(Huard et al. 2018). 

MINA was fabricated starting with a Silicon on Insulator (SOI) wafer where the buried 

oxide layer depth defines the desired needle length. A silicon dioxide hard mask was deposited 

and patterned through lithography and oxide etching. Next the silicon was etched in a series of 

isotropic-anisotropic-isotropic conditions. The buried oxide layer was used as an etch-stop layer. 

High-quality insulation of the silicon was grown using thermal oxidation. Future versions of the 

microneedle electrode will require tip etching, metallization, and interconnection. Next, silicone 

was formed over the needles. Specifically, 1:1 diluted 20:1 PDMS (Sylgard 184) was spun over 

the microneedle arrays. Next, a PDMS stamp was pressed over the arrays to improve planarity of 

the uncured silicone. The wafer was then temporarily bonded onto a glass wafer to protect the 

topside. Finally, the handling layer of the SOI wafer was dissolved in 20% KOH solution and the 

arrays were released.  

Photochemical Device-Epineurium Bonding Agent 

Collagen (C9791 Sigma) and Rose Bengal (330000 Aldrich) were dissolved in 30% 

ethanol separately at 0.1 wt.%. Then the collagen ethanol solution was ultrasonicated for 10 min 

at room temperature. Next, the collagen and RB ethanol solution were mixed at a 10:1 ratio. Next, 
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the device was treated by oxygen plasma for surface activation. Oxygen plasma generated Si-O- 

groups on the silicone surface to bond with collagen matrices. The obtained collagen/RB ethanol 

solution was drop-cast onto the MINA surface shortly after plasma exposure. Finally, the devices 

were air-dried at 50℃ and sterilized using low-temperature (37.7°C) ethylene oxide (EtO). 

Surgical Method to Access Cervical Vagus Nerve 

All experimental procedures were approved by the University of Michigan Institutional 

Animal Care and Use Committee. Experiments were performed on female 220-270 g Sprague-

Dawley rats (Charles Rivers Laboratories). One day prior to surgery, animals were injected 

subcutaneously with dexamethasone (0.2 mg/kg). For the implant procedure, animals were 

anesthetized with isoflurane (1-5%) and injected subcutaneously with carprofen (5 mg/kg), 

lidocaine (0.4%), and dexamethasone (0.20 mg/kg). A midline cervical incision was made to 

access the right cervical vagus nerve. Under a dissection microscope (Lynx EVO, Vision 

Engineering Inc.), the vagus nerve was isolated (5-7 mm) from the carotid artery and surrounding 

tissue and placed on a custom 3D-printed nerve holder (Figure 4). MINA was held on a custom 

vacuum adapter connected to a micromanipulator for accurate placement. A small pencil-shaped 

camera (MS100, Teslong) was positioned in the surgical opening to allow for visualization of 

device implantation.  

Cuff-less Technique for MINA implantation 

The key to achieving cuff-free implantation was the novel photochemical bonding of the 

nerve epineurium to the surface of the MINA. This approach was inspired by previous work 

demonstrating a Rose Bengal-chitosan patch as a means to adhere two halves of tissue (Lauto et 

al. 2012). Previously, Rose Bengal was demonstrated as a suture-less wound closure technique 

(Chan, Kochevar, and Redmond 2002) and more recently for nerve grafting (Fairbairn et al. 2015). 
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The mechanism of action is covalent cross-linking of collagen molecules facilitated by light 

activation of Rose Bengal (a fluorescein-like molecule). Light activation at the MINA/nerve 

interface was by a laser beam (532 nm, 85 mW) for 2-3 minutes. A 0.8-mm diameter beam was 

positioned along MINA on 3-4 spots, moving to new position every two seconds. Saline was 

periodically rinsed over the nerve to dissipate heat after laser exposure. After adhesion, the vagus 

nerve was removed from the nerve holder and surgical clips were used to close the skin incision. 

A subcutaneous injection of carprofen (5 mg/kg) and dexamethasone (0.2-0.05 mg/kg) were 

administered daily after surgery for 2-3 days. Animal’s health was checked daily. 

Terminal Electrophysiology Assessment 

A terminal procedure under isoflurane anesthesia (1-5%) was performed to assess nerve 

function prior to sample removal for imaging. A bipolar cuff electrode (0.75 mm inner-diameter, 

Microprobes for Life Science,) was placed on the vagus nerve distal to the implant region to record 

neural activity (PowerLab, ADInstruments). A stimulation probe was placed on the vagus nerve 

proximal to the implant region and connected to an isolated pulse generator (Model 2100, A-M 

Systems). Electrical stimulation (1-8 mA, 2 Hz) was applied to evoke neural activity. After testing 

animals were euthanized with an overdose of sodium pentobarbital (400 mg/kg). The implanted 

nerves were extracted and kept in 3% glutaraldehyde. 

Micro-CT Imaging 

Microscopic X-Ray Computed Tomography (micro-CT, Zeiss Versa 520), where X-rays 

are emitted from an X-ray generator, travel through a rotating nerve sample, and are recorded by 

a detector on the other side to produce a radiograph series, was used to visualize chronic MINA 

nerve implants. By varying the focus depth, the 3D tomography was constructed from 2.0~3.5 μm 
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cubic pixels. Osmium-tetroxide staining of samples after soaking in glutaraldehyde provided 

greatly improved contrast (Figure B.4c, d). 

Results and Discussion 

Axon-dimension Microneedle in Ultra-flexible Array 

We successfully fabricated silicon microneedles having the three stress-reducing features 

predicted by COMSOL simulations: a large angle on the tip, modest tapering on the sidewall, and 

a wide base (Figure B.2) to minimize lateral and angular movement of the stand-alone needles 

embedded in a soft, thin elastomer. These low-stress features still allowed us to maintain an 

average diameter of 7 µm over the tip segment, which we hypothesize will mitigate axon damage, 

demyelination, and collagenous encapsulation. Results from COMSOL simulation illustrated the 

stress distribution along one individual silicon microneedle under longitudinal and lateral forces. 

The maximum local stress, which reflect the most fragile point of the structure, along the needle 

body was compared between different needle shapes. For a cylindrical profile microneedle, high 

stress is localized around the “foot” (Figure B.2, top). For a simple cone profile microneedle, high 

stress is localized around the “neck”. By introducing a dual-taper (tip and shaft separated), the 

stress is distributed more evenly across the whole microneedle. The simulation results suggest that 

more than an order of magnitude maximum stress can be reduced by introducing a couple of micro-

engineered features (Fig. B.2). The size of each dot represents a different shaft diameter and angles. 

Each needle has a total length of 160 µm and a backside anchor base of 20 µm thickness. Three 

sub-groups for the dual-taper shape (Figure 2, lower right) represent three different shaft angles, 

2.5°, 3.5° and 5°. With approximately equal average cross-section diameter at 17.6 µm, a dual-

taper shape design (3.5° shaft angle and 15° tip angle) has 20.8 times less maximum stress than 
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cylindrical shape and 7 times less than the simple conical shape. Moreover, the backside anchor 

structure significantly prevents rotational movement.  

 

 

Figure B.2 Summary of maximum local stress comparison among different needle shapes. Dot sizes represent 

the average cross-section diameter. The gray-filled circle in the legend gives a scale bar of 20 µm diameter. Heat 

maps on needle shapes show where the stress. 

 

Integrated plasma reactor and microneedle scale modeling helped us improve our 

fabrication process. The model predicted time evolution of profiles defining the needles are shown 

in Figure 3 (lower right). The first pseudo-isotropic etch step creates a straight angle taper on the 

cylinder beneath the SiO2 mask (Figure B.3a). As the etching proceeds, the surrounding ring 

becomes thinner (Figure B.3b & c) and is eventually removed (Figure B.3d). The gap between the 

needle and the ring forms a trench with an aspect ratio of 8, which limits the transport of F atoms 

to the bottom and results in a micro-loading effect. The decreasing height of the surrounding ring 
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during the etching increases access to the central needle by F atoms, eventually trimming the 

needle shaft from a cylinder into a cone (Figure B.3d, f). Experimentally, the first two steps of the 

plasma etching created the vertical structure shown in in Figure 3a. The last-step isotropic silicon 

plasma etching process resulted in a profile close to the prediction. The microneedle tip was shaped 

into an average 13.8° taper while the microneedle body had a 3.3° shaft angle.  

 

 

Figure B.3 Reactive ion etching model and results. (a)-(d) Time evolution of etching profile during the removal of 

surrounding rings using ICP sustained in SF6 at relative time points approximately: t=0, 30s, 60s and 90s. (e) & (f) 

SEM of image of one single structure corresponding to model steps (b) and (d). 

 

Implantation and Device-Nerve Adhesion Using Photochemical Bonding  

We demonstrate MINA can also be reliably inserted at a higher needle density 61/mm2, 

compared with the high-density Utah array (Wark et al. 2013) at 25/mm2, and a flexible penetrating 

microelectrode array (FPMA) (Byun et al. 2017) at 3.3/mm2. We have implanted MINA into the 
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rat vagus nerve (300-500 µm) 4 out of 4 times with no observed needle damage or fracture. This 

robustness of such a fine silicon structure was expected from the short length and tapered shaft 

(Euler’s buckling equation and COMSOL model). While higher density MINA arrays have been 

fabricated (100 µm pitch) we hypothesize the current pitch of 150 µm has a higher likelihood of 

minimizing tissue reactivity—but this important question should be tested in future work. 

During terminal electrophysiology tests (not recorded from MINA) evoked compound action 

potentials (CAPs) were observed in all implanted nerves, demonstrating that nerves remained 

functional. Stimulation thresholds for eliciting CAP responses were 1-4 mA. Primary CAP features 

had conduction velocities of 2.1-6.8 m/s, which aligns with prior recordings from the vagus nerve. 

 

Figure B.4 MINA implantation and nerve sample at 1-week time point. (a) Top view of MINA and vagus nerve 

after implantation. (b) Side view photo during implantation. (c) A reconstructed 3D image from micro-CT showing 

unbroken needles implanted into the nerve. (d) Micro-CT scanned longitudinal nerve section with MINA implanted. 
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MINA implantation results were investigated through micro-CT imaging. Figure B.4b 

shows the cross-section views of a one-week implanted nerve sample. While some needles are in 

the nerve, we currently observe epineurium reactivity of connective tissue growth pushes some of 

the needles out. This may be due to damage from the needles, damage from the laser photochemical 

activation, or a foreign body reaction. We are currently testing improvements to the insertion 

process and laser application. 

Ex vivo Evaluation of Device-Epineurium Adhesion 

Similar to our in vivo implantation protocol, four freshly explanted rat nerves were 

implanted with a MINA and placed in a vial of held at either or 50℃ for at least 5 weeks. No 

detachment of MINA was observed during soaking for any samples, providing further evidence 

this form of photochemical bonding creates a strong nerve-device bonding interface that remains 

flexible.  

Conclusion 

We demonstrate that axon-dimension needles can be precisely machined and implanted 

into fine autonomic nerves. We also demonstrate these small, flexible arrays remain on the nerve 

at a 1-week time point without the use of a cuff. The novel use of Rose Bengal to putatively form 

thin covalent bonding between a nerve and a sensor array has the advantage of being flexible, 

unlike cyanoacrylate and other glues. Our future work will demonstrate fully functional arrays and 

improved surgical techniques. 
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Appendix C: Computer-Aided Designs for 3D-Printed Components Used in Surgical 

Procedures 

 

 

The computer-aided designs (CAD) for the 3D-printed components in Chapter 4 and 

Chapter 5 are shown in this appendix. For the microneedle nerve array (MINA) implantation 

procedure, we used a vacuum suction adaptor (Figure C.1), a nerve-holder for the fibrin sealant 

approach (Figure C.2), a nerve-holder and lens flap for the rose-bengal coating approach (Figure 

C.3 and 4), and a nerve-release tool (Figure C.5). For inserting a carbon fiber microelectrode array 

(CFMA) in the vagus nerve, we used a CFMA nerve-holder (Figure C.6).  
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Figure C.1 Design of the vacuum suction adaptor. All dimensions are in millimeters (mm). 
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Figure C.2 Design of the nerve-holder for the fibrin sealant approach. All dimensions are in millimeters (mm). 
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Figure C.3 Design of the nerve-holder for rose-bengal coated MINA. All dimensions are in millimeters (mm). 
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Figure C.4 Design of the laser lens flap. All dimensions are in millimeters (mm). 
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Figure C.5 Design of the nerve-release tool. All dimensions are in millimeters (mm). 
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Figure C.6 Nerve-holder design for the carbon fiber microelectrode array (CFMA). The dimensions are in 

millimeters (mm). 
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