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ABSTRACT

In the design and analysis of nuclear fission reactor systems, simulations are an essential tool for

improving efficiency and safety. Neutronics simulations have always been limited by the available

computational resources. This is because of the large discretizations necessary for the neutron

transport equation, which has a 6-dimensional phase space for steady-state eigenvalue problems.

The “gold standard” for 3-D neutron transport simulations is Monte Carlo with explicit ge-

ometry representation because it treats all dependent variables continuously. However, there are

significant remaining challenges for Monte Carlo methods that prohibit widespread use and put

them at a disadvantage compared to deterministic methods. The “gold standard” for deterministic

3-D neutron transport is the MoC. Numerous deterministic methods exist for solving the transport

equation. Each of them has their own drawback. MoC is considered the “best” due to its ability

to accurately model the exact geometry and approximate anisotropic scattering (other methods do

just one of these well or become undesirably complex). The downside of the 3-D MoC method is

the substantial computational resources required to discretize the problem.

There has been renewed interest in assessing the state of the art for MoC and the tractability

of this problem on the newest computer architectures. Previous work made significant strides in

parallelizing the 3-D MoC algorithm for 100,000’s of processors, but ultimately did not prove vi-

able due to the extreme compute resources required. Since then there has been progress in making

3-D MoC less computationally burdensome by adopting more advanced discretization methods

that lead to fewer spatial mesh regions and rays; namely the linear-source approximation (LSA),

and chord-classification or on-the-fly ray-tracing. The goal of this thesis is to continue progress

in reducing the computational burden of MoC calculations, with a focus on three-dimensional cal-
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culation. This thesis tries to reach this goal through three related contributions: the utilization of

graph-theory for spatial decomposition, improvements to the LSA for multiphysics calculations,

and a novel 3-D ray-tracing method with advanced transverse integration.

Spatial decomposition is typically very beneficial, if not necessary, for whole-core direct trans-

port methods. Previous works on 3-D MoC calculations have used simple spatial decomposition

schemes, that often resulted in poor load-balancing, particularly when using the LSA. This work

addresses this issue by utilizing graph partitioning methods to give better load-balance, even in

cases where the number of computational cells is very different in different regions of the reactor.

The LSA has previously been shown to allow for the use of a coarser mesh while maintaining

accuracy in pure neutronics calculations. However, typically the problems of interest involve multi-

ple physics such as isotopic depletion and thermal-hydraulic (T/H) feedback. This work improves

the LSA method for such problems by re-formulating the equations to eliminate an inefficiency

in cases with non-constant cross sections. This is shown to significantly improve run-times and

reduce memory usage, even in such cases.

Finally, a novel 3-D ray-tracing method, based on the macroband, is developed to reduce the

number of characteristic tracks necessary for accurate results. The method is compared against

a traditional ray-tracing method for several benchmark problems. In several of these cases, the

method is shown to significantly reduce the number of segments necessary for similar accuracy.

The ray-tracing method is also shown to have very desirable properties such as near-monotonic

convergence, and can act as more of a “black-box” solver.
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CHAPTER 1

Introduction

1.1 Motivation and Historical Review

Computer simulations have played an important role in the design and analysis of nuclear reactor
systems over the past 60 years [1]. The methods used by these simulations have always been limited
by the available computational resources; as such, in the 1950’s two-group diffusion theory was
used as a basis for simulation tools [1]. As computers became more powerful, multigroup diffusion
calculations became the method of choice for Light Water Reactor (LWR) design calculations.

More accurate and detailed simulation tools allow for designs to have higher power density,
and thus be more profitable, without compromising safety. However, computational resources have
always limited the level of detail of simulation tools. Exponential increases in computing power,
and high-performance computing clusters have made whole-core transport calculations possible
[2–9]. Programs such as Consortium for the Advanced Simulation of Light Water Reactors (CASL)
and Nuclear Energy Advanced Modeling and Simulation Program (NEAMS) have focused on
development of modern advanced simulation tools to address certain challenge problems. Large
computing clusters are generally unavailable to reactor analysts in industry, and so using direct
whole-core 3-D transport methods is not common outside academia or national laboratories.

The “gold standard” of deterministic methods has been the 3-D Method of Characteristics (MoC)
[10] due to its’ ability to accurately model complicated geometries. At the time of writing, whole-
core 3-D MoC calculations are generally not possible without the use of large computing clusters.
This is due to the large discretizations that are necessary for the neutron transport equation, which
has a 6-dimensional phase space for steady-state eigenvalue problems. In the past decade, there has
been renewed interest in making 3-D MoC more efficient and performant by using parallelism [11],
modern graphics processing unit (GPU) architectures [7], and ray-tracing storage techniques [12,
13]. Work has also been done to make MoC faster by improving the efficiency of the calculations,
using higher-order (primarily linear) source approximations [9, 14].

The bulk of this thesis work is comprised of three distinct, yet connected, topics, all with a focus
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on improving the feasibility of 3-D MoC calculations. The first topic is related to improving the
parallel efficiency of MoC calculations. It is the author’s opinion that improving the efficiency of
3-D MoC calculations should be the primary focus of current/future research, as it is not currently
feasible for industry to use thousands of processors. Thus, two techniques are utilized as part of this
thesis work: the linear-source approximation (LSA), and the macroray.

The first contribution of this thesis is work in improving parallel efficiency. While large
scale parallelism on thousands of processors may not be feasible for industry, some degree of
parallelism is necessary for whole-core calculations due to memory constraints. An automated
spatial decomposition scheme based on graph theory, is developed leading to significantly improved
parallel efficiency [15, 16]. While graph partitioning libraries such as METIS [17] exist, due to
restrictions on the spatial decomposition in MPACT (see Chapter 4), these libraries could not be
directly used for this work. The spatial decomposition scheme developed utilizes existing methods
such as the recursive spectral bisection (RSB) and recursive intertial bisection (RIB) methods, as
well as introduces new methods.

The second contribution focuses on improvements to a method previously researched by other
groups, the linear-source approximation (LSA) [9, 14, 18]. Specifically, this work has led to
improvements of the method for stability in near-void regions [19], and efficiency in multi-physics
simulations [20]. The LSA is an approximation that is used to improve MoC efficiency by reducing
the number of computational cells required for accurate results.

The first instance of the LSA was the gradient source approximation introduced by Halsall
[21]. This early linear-source method of characteristics (LSMoC) was based on the averaging of the
angular flux gradient along tracks, and was implemented in the WIMS [21], and PEACH [22] MoC
transport codes. These averaged gradients were then used as estimates to the gradient of the scalar
flux, which were used to compute the source shape as spatially linear.

Petkov and Takeda devised a LSA that estimated the gradient of the scalar flux based on the P1

approximation in the MARIKO code [23, 24]. In this approximation, the gradient of the scalar flux
is computed from the neutron current, the total cross section, and the linearly anisotropic scattering
matrix. A similar approach, using the diffusion approximation to compute the scalar flux gradient,
was used in the so called “quasi-linear” source implemented by Rabiti et al. [25]. In this approach,
the Σs1 matrix is diagonalized, turning the P1 approximation into the diffusion approximation. Due
to their basis on the P1 and diffusion approximations, these early LSAs are inaccurate in situations
where more transport-like effects are present. It can be shown, even in simple cases, that this
approximation can be predict the opposite direction for the scalar flux gradient.

Santandrea and Sanchez [26] introduced the positive linear and nonlinear surface characteristics
scheme, which constructed a linear source by interpolating between source values on the surfaces
of cell regions. Various improvements have been made to this surface characteristics scheme for
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conservation [26], as well as coupling in APOLLO2 [27]. Le Tellier and Hébert [28] introduced a
simplification to the linear characteristics scheme for conservation, by using a diamond-differencing
scheme. This work was extended by Hébert [29], to include higher-order diamond difference
schemes, as well as allowing for acceleration [30].

The most recent LSA examined in this work was introduced as a 2-D general high-order method
for unstructured meshes by Masiello et al. [31]. The approximation uses track-based integration,
defined in Section 3.1.1, in order to compute spatial moments of the angular flux. This LSA was
shown to reduce memory and computation times in 3-D MoC calculations [32]. The general method
was simplified in the case of the isotropic and anisotropic linear source (LS) by Ferrer and Rhodes
[14]; this also introduced the “LS-P0” method in which the isotropic source is spatially linear, but
the anisotropic source components are spatially uniform within each cell. This LSA was also shown
to be consistent with particle conservation, under certain constraints, and to be compatible with
coarse mesh finite-difference (CMFD) acceleration [18].

The macroray is a novel ray-tracing technique developed as part of this thesis work; this
technique is an extension of the two-dimensional macroband [33] ray-tracing technique. The
macroband was first used in the Collision Probability (CP) code HELIOS, and was considered to be
essential for the stability of the method [33]. Unlike the traditional uniform/equidistant ray-tracing
methods, the macroband method guarantees that each ray within a macroband will pass through the
same regions in the same sequence, and not have any regions within its bounds that are not crossed
by the rays. This means that the placement of rays, and their widths, are determined by the internal
geometry of the pin or subdomain that is being traced. Each ray within a macroband passes through
the same regions albeit with different lengths; if the incident flux for the macroband is smooth, this
means that the track-segment average flux will also be smooth. This allows for the use of more
advanced transverse integration, such as Gauss-Legendre quadrature integration [34]. A similar
method was also developed by Févotte et al. [35] where coarse equidistant ray calculations were
performed by using a macroband approach within the ray’s transverse area (with a single ray per
band).

However, prior to this work, there has been no effort to extend the macroband method to 3-D
MoC calculations. The author seeks to fill this gap, as the number of rays in 3-D MoC calculations
is generally much higher than in 2-D, so the possible benefits of the method are larger. Additionally,
the method is expected to be even more efficient when using a coarse mesh with the LSA.

1.2 Outline

The remainder of this dissertation is structured as follows. Chapter 2 introduces the neutron
transport equation, and the forms of it that this work is interested in. The key approximations and
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discretization techniques for deterministic transport methods are listed. A brief overview of the
current state-of-the-art methods used to solve the 3-D transport equation is given. Finally, Chapter 2
provides a description of iterative methods for applying these transport methods for solving the
transport equation.

The focus of this work, the MoC, is derived in full detail in Chapter 3. The chapter provides
the fundamental mathematics of the MoC, as well as full derivations of the flat-source approxima-
tion (FSA) equations and the linear-source approximation (LSA) equations before the improvements
of this work. Additionally, a section describing current state-of-the-art ray-tracing methods nec-
essary for MoC calculations is present. A brief overview of possible approaches to parallel MoC
calculations is also given, which motivates the work of the next chapter.

Chapter 4 details the use of graph partitioning methods for the spatial decomposition of nuclear
reactor simulations in MPACT. A historical review and description of several graph partitioning
methods are listed. The application of these methods for decomposing the spatial domain in MPACT
simulations is provided, including a description of how these methods can be forced to conform
with restrictions imposed by MPACT. Results are presented for a 2-D and 3-D reactor problem, and
comparisons are made between the original decomposition method and the new graph methods.

Chapter 5 lists significant improvements to the moment-based linear-source approximation
(LSA) made by this work. Exponential tabulation has been shown to significantly improve compu-
tational performance of FSA MoC calculations [36]. However, applied to the LSA the tabulation
may cause instabilities; this work details techniques for addressing the numerical instability while
maintaining performance. Next, a change in the formulation of the LSA is provided that significantly
improves the calculation efficiency in multiphysics problems. Results are presented for a wide range
of realistic lattice calculations, and a cycle depletion for a realistic quarter core.

A novel ray-tracing technique, using advanced transverse integration, intended to decrease
the amount of computational work while maintaining accuracy is presented in Chapter 6. The
ray-tracing method is applied to several different test problems. Studies are performed on the
convergence behavior of the method as the number of rays increases. Finally, Chapter 7 gives a
summary of the work done as part of this dissertation, the conclusions that can be made from these
studies, and possible paths for future research on related topics.
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[29] Alain Hébert. “High-Order Linear Discontinuous and Diamond Differencing Schemes Along
Cyclic Characteristics”. In: Nuclear Science and Engineering 184.4 (2016), pp. 591–603.
ISSN: 0029-5639. DOI: 10.13182/nse16-82.
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CHAPTER 2

Neutron Transport Theory

In this chapter, the basic theory behind the neutron transport equation, and the numerical methods
used to solve it, are introduced.

2.1 Neutron Transport Equation

The mean behavior of neutrons in a (steady-state) system is described by the Boltzmann transport
equation: [

Ω̂ · ∇+ Σt(x, E)
]
ψ(x, Ω̂, E) =

1

4π

[
Q(x, Ω̂, E)

+

∫ ∞
0

∫
4π

Σs(x, Ω̂
′
· Ω̂, E ′ → E)ψ(x, Ω̂

′
, E ′) dΩ′ dE ′

+ χ(x, E)

∫ ∞
0

νΣf (x, E
′)

∫
4π

ψ(x, Ω̂
′
, E ′) dΩ′ dE ′

]
,

(2.1a)

∀x ∈ V, ∀Ω̂ ∈ 4π, ∀E ∈ [0,∞),

ψ(x, Ω̂, E) = ψb(x, Ω̂, E), (2.1b)

∀x ∈ δV, ∀Ω̂ · n̂ < 0, ,∀E ∈ [0,∞),

where x is the position vector, Ω̂ is the direction vector, E is the neutron energy, Σ quantities are
the macroscopic cross sections, ψ is the angular flux, ν is the average number of neutrons produced
per fission, χ is the fission neutron energy spectrum, δV is the problem boundary, and n̂ is the
outward surface normal vector.
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The position vector, x, is a column vector of the spatial coordinates:

x ≡

xy
z

 . (2.2)

The direction vector, Ω̂, is a column unit-vector that gives the direction of flight for neutrons, and is
defined by

Ω̂ ≡

Ωx

Ωy

Ωz

 =


√

1− µ2 cos(ϕ)√
1− µ2 sin(ϕ)

µ

 , (2.3a)

where ϕ is the azimuthal angle, and µ is the cosine of the polar angle θ,

µ ≡ cos(θ). (2.3b)

The spatial and angular coordinates systems are depicted visually in Fig. 2.1.

Figure 2.1: Depiction of the spatial and directional coordinate system used in the neutron transport
equation.

The transport equation, given by Eq. (2.1a), is an equation that represents the balance of
neutrons. The streaming term, Ω̂ · ∇ψ(x, Ω̂, E), gives the rate at which neutrons are moving
in or out of the of an infinitesimal volume in phase-space due to motion. The collision term,
Σt(x, E)ψ(x, Ω̂, E), gives the rate at which neutrons have interactions (collisions) with a nucleus
of the surrounding material. The source terms make up the right-hand side of the equation, and
are separated into three components: an external source, the scattering source, and the fission
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source. The scattering source,
∫∞

0

∫
4π

Σs(x, Ω̂
′
· Ω̂, E ′ → E)ψ(x, Ω̂

′
, E ′) dΩ′ dE ′, gives the rate at

which neutrons are scattered into the given direction and energy at a set point in space. The fission
source, χ(x, E)

∫∞
0
νΣf (x, E

′)
∫

4π
ψ(x, Ω̂

′
, E ′) dΩ′ dE ′, gives the production rate of neutrons due

to fission events. The vast majority of fission events are prompt, though a small fraction of fission
events emit delayed neutrons. Generally, in steady-state calculations the difference between prompt
and delayed fission neutrons is ignored. However, for transient calculations, capturing this difference
is essential. The external source, Q(x, Ω̂, E), is a generic term that accounts for neutrons produced
by all other processes that are not dependent on the angular flux.

Generally, reactor physicists are interested in reaction rates, that are useful for determining
power production, rather than the angular flux. A reaction rate at a specific point, direction, and
energy can be computed as the product of the reaction cross section and the angular flux,

Rr(x, Ω̂, E) = Σr(x, E)ψ(x, Ω̂, E). (2.4)

Integration over a volume, energy range, and direction gives a total reaction rate. These quantities
are the primary figures of merit for engineering applications. For convenience, it is useful to define
derived quantities that are used in these calculations. The scalar flux

φ(x, E) ≡
∫

4π

ψ(x, Ω̂, E) dΩ, (2.5)

is the zeroth order angular moment. The neutron current is a vector quantity, and is the first order
angular moment of the angular flux

J(x, E) ≡
∫

4π

Ω̂ψ(x, Ω̂, E) dΩ. (2.6)

Generally, the angular moments of the angular flux are defined as

Φn
` (x, E) ≡

∫
4π

Rn
` (Ω̂)ψ(x, Ω̂, E) dΩ, (2.7)

where Rn
` (Ω̂) are the real spherical harmonics functions defined by

Rn
` (Ω̂) ≡

√
(2− δn,0)

(`− |n|)!
(`+ |n|)!

P
|n|
` (µ)T (ϕ), (2.8a)
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where P |n|` (µ) is the Ferrer definition [1] of the associated Legendre Polynomial defined as

P
|n|
` (µ) ≡

(
1− µ2

)n/2 dn

dµn
P`(µ), n ≥ 0, (2.8b)

and

T (ϕ) ≡

cos(nϕ), if n ≥ 0,

sin(|n|ϕ), otherwise.
(2.8c)

2.2 k-Eigenvalue Problems

One of the most common calculations in reactor analysis is the simulation of reactor systems
at operating conditions. A reactor operating at normal conditions is effectively unchanging in
time. The common technique for solving this class of problems is to transform Eq. (2.1a) into an
eigenvalue problem, such that the fission source is scaled to preserve neutron balance:

[
Ω̂ · ∇+ Σt(x, E)

]
ψ(x, Ω̂, E) =

1

4π

[
Q(x, Ω̂, E)

+

∫ ∞
0

∫
4π

Σs(x, Ω̂
′
· Ω̂, E ′ → E)ψ(x, Ω̂

′
, E ′) dΩ′ dE ′

+
χ(x, E)

keff

∫ ∞
0

νΣf (x, E
′)φ(x, E ′) dE ′

]
,

(2.9a)

∀x ∈ V, ∀Ω̂ ∈ 4π, ∀E ∈ [0,∞),

ψ(x, Ω̂, E) = ψb(x, Ω̂, E), (2.9b)

∀x ∈ δV, ∀Ω̂ · n̂ < 0, ,∀E ∈ [0,∞),

where keff is the inverse of the largest eigenvalue of the system λ1. The multiplication factor, keff,
indicates the criticality of the system. If keff is one, then the system is critical and will remain
at the current conditions unless otherwise changed. A keff less than one means that the system is
subcritical and indicates the reactor system is unable to sustain the chain reaction of nuclear fission
reactions to produce power. Finally, a keff greater than one indicates that a system is supercritical

and, if not changed, the neutron population will increase.
Generally, this class of problems are solved iteratively. This will be discussed in more detail in

Section 2.5, which lists algorithms for this iteration process. Still, Eq. (2.9a) has a six-dimensional
phase space and cannot, in general systems, be solved exactly. Numerical techniques must be used
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to obtain approximate solutions to this equation in calculations for realistic reactor systems. In the
Section 2.3, an overview of several methods for solving this equation, or approximate forms of this
equation, is provided.

2.3 Computational Transport Methods

Generally, transport methods are divided into two broad categories: stochastic and deterministic.
Stochastic methods, also called “Monte Carlo” methods, rely on random sampling to emulate the
“life” of individual neutrons. Deterministic methods rely on discretization of the transport equation.
The process of discretization introduces approximations. An overview of these different approaches
is given in the following subsections.

2.3.1 Monte Carlo

Stochastic, or “Monte Carlo” methods are methods that simulate individual neutrons in the system.
The simulation of each neutron relies on the random sampling of probability distributions for all
aspects such as, where the free neutron is born, the direction it is traveling in, the energy of the
neutron, the distance to the next collision, and the type of collision event. This process is repeated
until the neutron leaks out of the system or is absorbed, possibly inducing a fission event with other
neutrons to simulate, for many different neutrons.

Monte Carlo methods give a probabilistic estimate of the true solution as well as an associated
uncertainty in that result. This class of methods is generally considered to be the most accurate
because it is capable of representing the phase-space continuously. As more particles are simulated,
the uncertainty in the estimated solution is reduced.

For whole-core reactor analysis, the quantities of interest would typically require an extremely
large number of individual neutron histories to be simulated, typically trillions. Variance reduction
techniques are an area of active research that allow for quantities of interest to be estimated
accurately with fewer histories. However, Monte Carlo methods generally remain too expensive for
whole-core calculations, and have challenges with multiphysics and time-dependent problems.

2.3.2 Deterministic Methods

In deterministic methods, it is generally not possible to represent the phase-space continuously.
Thus these methods rely on discretization of the transport equation. In particular, spatial, directional,
and energy discretization are common in these methods.
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The Multigroup Approximation

The multigroup approximation is common in nearly every deterministic neutron transport method.
This approximation discretizes the energy variable into discrete energy groups. Generally, cross
sections have strong dependence on the energy of incident neutrons; this dependence is typically not
smooth, due to the presence of resonances. Around resonance energies, the cross sections increase
significantly, as observed in Fig. 2.2. The data of this plot was provided by the ENDF/B-VIII.0
nuclear reaction data library [2].

10 4 10 2 100 102 104 106 108

Energy (MeV)

100

101

102

103

104

t (
b)

U-235
U-235

Figure 2.2: Uranium 235 and 238 total microscopic cross sections as a function of energy. Data
provided through the ENDF/B-VIII.0 nuclear reaction data library.

The complicated dependence on energy would require hundreds of thousands of energy points
to faithfully represent all the resonances of interest in thermal reactors. Modeling of this many
energy points in whole-core simulations would be computationally impractical. The multigroup
eigenvalue transport equation can be found by integrating the Eq. (2.9a) over an energy energy
interval [Eg, Eg−1), where Eg > Eg−1.

[
Ω̂ · ∇+ Σg

t (x, Ω̂)
]
ψg(x, Ω̂) =

1

4π

[
G∑

g′=1

∫
4π

Σg′→g
s (x, Ω̂, Ω̂

′
)ψg

′
(x, Ω̂

′
) dΩ′

+
χg(x)

keff

G∑
g′=1

νΣg′

f (x, Ω̂)φg
′
(x)

]
,

(2.10)

∀x, ∀Ω̂ ∈ 4π, ∀g ∈ {1, 2, . . . , G},
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where the multigroup quantities are defined by

ψg(x, Ω̂) ≡
∫ Eg−1

Eg

ψ(x, Ω̂, E) dE, (2.11a)

χg(x) ≡
∫ Eg−1

Eg

χ(x, E) dE, (2.11b)

Σg
t (x, Ω̂) ≡

∫ Eg−1

Eg
Σt(x, E)ψ(x, Ω̂, E) dE

ψg(x, Ω̂)
, (2.11c)

νΣg
f (x, Ω̂) ≡

∫ Eg−1

Eg
νΣf (x, E)ψ(x, Ω̂, E) dE

ψg(x, Ω̂)
, (2.11d)

Σg′→g
s (x, Ω̂, Ω̂

′
) ≡

∫ Eg−1

Eg

∫ Eg′−1

Eg′
Σs(x, Ω̂

′
· Ω̂, E ′ → E)ψ(x, Ω̂

′
, E ′) dE ′ dE

ψg′(x, Ω̂
′
)

. (2.11e)

By defining the cross sections in this way, no approximations have been made, and the reaction
rates of each energy group are preserved. However, this approach has two issues: the cross sections
are dependent on the angular flux which is not known a priori, and have dependence on the neutron
direction of flight. Generally, the dependence on the angular flux is addressed by solving a spatially

simplified problem to generate a continuous or fine-group neutron energy spectrum. This spectrum
is then used as the weighting function (in place of ψg(x, Ω̂)) to “collapse” the cross sections into
coarser multigroup values [3]. This introduces an approximation into the transport equation.

To eliminate the directional dependence of the multigroup cross sections, an additional approxi-
mation is made: isotropic angular flux spectrum,

ψ(x, Ω̂, E) ≈ 1

4π
Φ(x, E). (2.12)

Using this approximate angular flux as the weighting function for multigroup cross sections in
Eq. (2.10) and Eqs. (2.11) can be simplified to

[
Ω̂ · ∇+ Σg

t (x)
]
ψg(x, Ω̂) =

1

4π

[
G∑

g′=1

∫
4π

Σg′→g
s (x, Ω̂

′
· Ω̂)ψg

′
(x, Ω̂

′
) dΩ′

+
χg(x)

keff

G∑
g′=1

νΣg′

f (x)

∫
4π

ψg
′
(x, Ω̂

′
) dΩ′

]
,

(2.13)

∀x, ∀Ω̂ ∈ 4π, ∀g ∈ {1, 2, . . . , G},
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where the approximated multigroup cross sections are defined as

Σg
t (x) ≡

∫ Eg−1

Eg
Σt(x, E)Φ(x, E) dE∫ Eg−1

Eg
Φ(x, E) dE

, (2.14a)

νΣg
f (x) ≡

∫ Eg−1

Eg
νΣf (x, E)Φ(x, E) dE∫ Eg−1

Eg
Φ(x, E) dE

, (2.14b)

Σg′→g
s (x, Ω̂

′
· Ω̂) ≡

∫ Eg−1

Eg

∫ Eg′−1

Eg′
Σs(x, Ω̂

′
· Ω̂, E ′ → E)Φ(x, E ′) dE ′ dE∫ Eg′−1

Eg′
Φ(x, E ′) dE ′

. (2.14c)

For thermal reactors, the weighting spectrum, Φ(x, E), is well approximated by a spatially
uniform spectrum, Φ(E). This justifies the use of the spectrum of the spatially simplified system.
However, this is not the case for other systems, such as fast reactors. In such systems, the spatial
dependence of the weighting spectrum plays is important to capture accurately, and the above
methods cannot be used.

Spatial Discretization

Nearly all computational transport methods involve some form of spatial discretization. Reactor
designs include many different material regions, and nearly all simulation tools will discretize the
spatial domain into these different material regions. Deterministic methods will generally apply a
finer meshing within these material regions, to discretize them into transport cells. For the purposes
of this work, a cellRi is indexed with i. A visualization of the material and hypothetical meshing of
a characteristics based transport method for a single pin-cell are shown in Fig. 2.3. In deterministic
codes, the typical assumption is that material properties (cross sections) are constant within each
computational cell.

Directional Discretization

Typically, the directional variable cannot be treated exactly in deterministic methods. There are two
common methods of approximating the solution as a function of direction Ω̂:

1. Spherical Harmonics (PN ) Expansion

2. Discrete Ordinates (SN )

Spherical Harmonics (PN ) Expansion Expansion in spherical harmonics, often referred to as
PN , is one of the oldest transport methods, where N indicates the order of the expansion. In this

16



(a) Material regions (b) Hypothetical computational cell mesh

Figure 2.3: Material and mesh spatial discretization examples for a single pin cell.

method, the angular flux is expanded as a linear combination of spherical harmonics moments:

ψgm(x) =
∞∑
l=0

l∑
n=−l

Φn
` (x, E)Rn

` (Ω̂), (2.15)

where the spherical harmonics,Rn
` (Ω̂), are defined by Eqs. (2.8). No approximation has been

introduced at this point, but in practice this series is truncated at some finite number N :

ψgm(x) ≈
N∑
l=0

l∑
n=−l

Φn
` (x, E)Rn

` (Ω̂). (2.16)

The PN equations can be obtained by multiplying the multi-group transport equation (Eq. (2.13))
by Rn

` (Ω̂) for each valid (l, n) pair under the specified order, and integrating over 4π. This yields a
system of (N+1)2 equations for each energy group; the number of equations increases quadratically
with increasing orders, making PN methods less feasible for large calculations.

Discrete Ordinates (SN ) The Discrete Ordinates (SN ) method is a discretization of the directional
variable Ω̂ by a quadrature. Let theMN be the set of discrete directions, and weights,

MN ≡
{

Ω̂m ∈ {Ω̂1, Ω̂2, . . . , Ω̂N}, wm ∈ {w1, w2, . . . , wN}
}
, (2.17a)
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such that a directional integration can be approximated as∫
4π

f(Ω̂) dΩ ≈ 4π
∑

m∈MN

wmf(Ω̂m), (2.17b)

where ∑
m∈MN

wm = 1. (2.17c)

There are two common forms of quadrature sets that are commonly used in transport calculations:
level-symmetric and product quadratures. The level-symmetric quadratures include directions that
are (roughly) evenly distributed over the unit-sphere; this is optimal in situations where each
direction has similar variation. However, typical reactor designs have significantly less variation in
the axial (z) direction, along which fuel rods are oriented. In this situation, neutrons with directions
close to the z-axis are modeled poorly because there are few azimuthal angles at these polar levels,
as is demonstrated in Fig. 2.4a. These steep polar angles are important in reactor analysis due to
self-shielding effects, which are strongly dependent on polar angle.

Product quadratures are generated by a multiplicative combination of separate quadrature sets
in the azimuthal and polar directions. The azimuthal quadrature set is generated over the domain
[0, 2π], while the polar quadrature set is generated for the polar cosine, µ, over the domain [−1, 1].
This quadrature generation technique does not suffer from the same issue for steep polar directions,
as each polar level has the same number of azimuthal directions. A common choice for the azimuthal
quadrature generation is the Chebyshev quadrature, which gives evenly spaced azimuthal angles
with equal weights. The polar cosine quadrature set typically uses a Gauss-Legendre quadrature,
or an optimized quadrature such as the Tabuchi-Yamamoto quadrature [4]. Figure 2.4b shows an
example of a product quadrature’s set of directions using a Chebyshev azimuthal quadrature and
Gauss-Legendre polar quadrature.

2.4 State-of-the-Art 3-D Computational Transport Methods

Until recently, whole-core neutronics calculations were carried out primarily through a two-step
procedure. First, a transport method was used to compute homogenized cross section data for
assemblies, and then 3-D diffusion was used to solve the problem. More recently, research has
focused on a one-step approach, so-called direct whole-core transport. In this approach, the 3-D
reactor is directly modeled using transport methods. There are many different transport methods
that are currently being researched; this section seeks to give an overview of several state-of-the-art
3-D transport methods.
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(a) Level-Symmetric Quadrature (S8)
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(b) Chebyshev-Gauss Product Quadrature with 4
azimuthal and 3 polar angles

Figure 2.4: (a) Level-Symmetric and (b) product quadrature direction set examples shown for a
single octant of the unit-sphere.

2.4.1 SPN

The Simplified PN (SPN ) method was introduced by Gelbard [5] in 1961, and was seen as a middle
ground between diffusion and transport [6]. The SPN equations were first derived by examining
the form of the 1-D PN equations; in fact, the 1-D SPN and PN equations are equivalent. While
the original derivation Gelbard [5] lacked theoretical justification, the SPN method has since been
shown to be an asymptotic correction to standard diffusion theory [7].

The mono-energetic planar geometry PN equations can be written as

d

dz

[
l

2l + 1
φl−1 +

l + 1

2l + 1
φl+1

]
+ Σtφl = Σs,lφl +Qδl,0, for 0 ≤ l ≤ N, (2.18a)

where Σs,l is the lth order scattering moment and Q is either an external source or fission source.
The expansion is generally truncated by assuming that φN+1 = 0.

The 1-D P1 equation can be written as

− d

dz
D

d

dz
φ0 + Σtφ0 = Σs,0φ0 +Q, (2.19)

where
D ≡ 1

3(Σt − Σs,1)
. (2.20)

The 3-D P1 equations simply replace the derivative term operator of Eq. (2.19) with the 3-D diffusion
operator,

d

dz
D

d

dz
→∇ ·D∇,
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yielding the 3-D P1 (diffusion) equation:

−∇ ·D∇φ0 + Σtφ0 = Σs,0φ0 +Q. (2.21)

This simple relation between 1-D and 3-D equations only holds for the special P1 case. The
SPN method uses a similar modification for higher-order PN equations. This results in some lost
accuracy compared to PN , but the SPN equations are significantly simpler to solve [5, 6]. Unlike
PN , SPN equations do not converge to the transport solution as N →∞, but they do generally have
higher accuracy than diffusion (for orders of N > 1). Generally, SP3 or SP5 are considered to have
sufficient accuracy, and are generally less computationally intensive than transport methods.

The mono-energetic SPN equations can be written as

−∇ · 1

3Σtr,1

∇φ0 −∇ ·
2

3Σtr,1

∇φ2 + Σtr,0φ0 = Q, (2.22a)

−∇ ·
(

n(n− 1)

(2n+ 1)(2n− 1)Σtr,n−1

)
∇φn−2

−∇ ·
(

(n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)Σtr,n+1

)
∇φn+2

−∇ ·
(

n2

(2n+ 1)(2n− 1)Σtr,n−1

+
(n+ 1)2

(2n+ 1)(2n+ 3)Σtr,n+1

)
∇φn

+ Σtr,nφn = 0, for n = 2, 4, ..., N − 1,

(2.22b)

where
Σtr,n ≡ Σt − Σs,n. (2.22c)

2.4.2 Method of Characteristics

The Method of Characteristics (MoC) is a technique used to solve first-order Partial Differential
Equations (PDEs), by transforming the PDE into a system of Ordinary Differential Equations
(ODEs). The method was first applied to the neutron transport problem by Askew in 1972 [8], but
it only began to see real use in the 1980’s [9]. The MoC transforms the transport equation into
the characteristic form, by examining the equation along straight neutron paths through the spatial
domain. By examining the equation along one of these characteristic “tracks” or “rays”, the average
angular flux along the track within a cell can be calculated. The scalar flux can then be found
by collecting the average angular flux along all tracks passing through this region, in a numerical
integration over space and angle.

Like the CP method, MoC is able to handle completely arbitrary geometry; however, unlike
the CP method, it is also able to account for anisotropic scattering in a straightforward manner.
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Additionally, the MoC does not produce the large matrices in realistic applications as the CP method
does. For problems that contain more than a few hundred cells, the MoC is generally preferred over
CP methods [10].

The method of Characteristic Direction Probabilities (CDP) is a method similar to both CP
method and the MoC [11, 12]. The CDP uses ray-tracing to evaluate transmission probabilities
between cells. However, it only considers transmission probabilities between cells that are traversed
by a shared characteristic ray, rather than considering the transmission probability between all cells
as in the CP methods. This significantly reduces the computational resources required by traditional
CP methods. This method has also shown improvements over MoC in cases with few unique
geometries and constant material properties throughout the simulation; however these conditions
are not applicable in problems of interest to industry.

MoC has seen extensive use as a 2-D transport method in lattice codes [13, 14], and as a
radial transport method in 2D/1D method [15–18]. However, due to the large number of segments
generated by 3-D ray-tracing, the MoC has been viewed as too expensive for realistic applications
[19]. Nonetheless, 3-D MoC is typically seen as the “gold-standard” of transport methods due to
its general treatment of geometry, ability to handle anisotropic scattering, and accuracy. For this
reason, there has been active research on improving the 3-D MoC.

Kochunas [20] developed a hybrid shared/distributed parallel algorithm for 3-D MoC. This
contribution significantly increased the ability to parallelize 3-D MoC on modern computer clusters,
and showed good parallel scaling on thousands of cores. Other works investigated the linear-source
approximation (LSA) for 3-D MoC applications [21], which reduces the number of segments
generated during ray-tracing. Sciannandrone et al. [22] developed optimized tracking strategies
(chord-classification) for locally extruded geometries for 3-D MoC calculations. These optimized
strategies did not reduce the number of tracks or segments generated, but they significantly reduced
the memory required to store them. Still, 3-D MoC remains too expensive for usage outside work
in academia or national laboratories.

The MoC is the primary subject of this thesis work. Chapter 3 is devoted to the details of the
method, and Section 3.4 expands upon the details of current ray-tracing techniques used in MoC.
Chapter 5 details improvements made to the MoC in this thesis work, and Chapter 6 describes a
newly investigated ray-tracing method.

2.4.3 2D/1D Methods

The 2D/1D methods were first developed by researchers at Korea Advanced Institute of Science
and Technology (KAIST) [23] and Korea Atomic Energy Research Institute (KAERI) [17], in the
CRX and DeCART codes, respectively. Though different, these two methods followed the same
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fundamental approach to solving 3-D reactor transport problems:

1. Divide the core into separate axial slices/planes,

2. Perform 2-D transport calculations within each plane,

3. Couple the planes with transverse leakages.

These methods were based on the assumption that reactors may be very heterogeneous in the
radial direction, but in the axial direction they are relatively homogeneous. The primary difference
between the two methods is in the transverse leakage terms; in CRX the transverse leakages are
anisotropic, but in DeCART the leakages are isotropic. To distinguish these methods, they will be
referred to as anisotropic and isotropic 2D/1D methods.

Following the relative success of these methods, other research groups have followed in their
paths. nTRACER [24], and MPACT [15] used the isotropic 2D/1D method. The STREAM [25],
and APOLLO3 [26] have also implemented 2D/1D methods.

Stimpson [27] implemented an anisotropic 2D/1D method in MPACT using a Fourier expansion
of the azimuthal angles for the axial and radial transverse leakages. Jarrett [28] further improved
upon Stimpson’s [27] work by introducing a 2D/1D method using P3 in the axial direction. 2D/1D
methods are fundamentally based on the idea that heterogeneity in the axial direction is low; in
cases where this is not true these methods have been observed to break down, or yield solutions
with larger errors.

Derivation

The details of the 2D/1D equations have implications on results in Chapter 5. In this section, the
2D/1D equations are derived. We begin with the mono-energetic transport equation

Ω · ∇ψ(x,Ω) + Σt(x)ψ(x,Ω) =
Q(x)

4π
, (2.23)

where Q(x) is the source.
2D/1D methods divide the transport equation into radial (2-D) and axial (1-D) equations. The

streaming term, Ω · ∇ψ can be divided into the radial and axial components:

Ω · ∇ψ = (Ω · ∇)xyψ + µ
∂ψ

∂z
. (2.24)

The radial equation is obtained by first separating the axial derivative from the streaming term:

[(Ω · ∇)xy + Σt]ψ(x,Ω) =
Q(x)

4π
− µ∂ψ

∂z
. (2.25)
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Equation (2.25) is then integrated over an axial plane k, over the interval [zk−1/2, zk+1/2], yielding

[(Ω · ∇)xy + Σt,k(xxy)]ψk(xxy,Ω) =
Qk(xxy)

4π
− J̃z,k(xxy,Ω), (2.26a)

where
ψk(xxy,Ω) ≡ 1

hk

∫ zk+1/2

zk−1/2

ψ(x,Ω) dz, (2.26b)

Qk(xxy) ≡
1

hk

∫ zk+1/2

zk−1/2

Q(x,Ω) dz, (2.26c)

J̃z,k(xxy,Ω) =
µ

hk

[
ψ(xxy, zk+1/2,Ω)− ψ(xxy, zk−1/2)

]
, (2.26d)

and hk = zk+1/2 − zk−1/2. Generally, the difference between isotropic and anisotropic 2D/1D
methods is in the treatment of the transverse leakages, J̃z,k. In MPACT, the axial transverse leakage
is typically discretized over the coarse radial mesh (typically a pin cell), and is assumed to be
isotropic.

The axial equations are found by moving the radial streaming term to the right hand side of
Eq. (2.23), [

µ
∂

∂z
+ Σt

]
ψ(x,Ω) =

Q(x)

4π
− (Ω · ∇)xyψ(x,Ω), (2.27)

and integrating over a radial area. This radial area can be a fine cell (transport cell), but is typically
a coarser discretization such as a pin cell [28]. We operate on Eq. (2.27) by

1

Aij

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(·) dx dy =
1

Aij

∫∫
ij

(·) dx dy,

to obtain:[
µ
∂

∂z
+ Σt,k,ij(z,Ω)

]
ψij(z,Ω) =

Qij(z)

4π
− 1

Aij

∑
s∈{N,S,E,W}

(Ω · n̂s)ψij,s(z,Ω), (2.28a)

where

Σt,k,ij(z,Ω) ≡
∫∫

ij
Σt,k(xxy)ψk(xxy,Ω) dx dy∫∫

ij
ψk(xxy,Ω) dx dy

, (2.28b)

where s indicates a surface for the cardinal directions {N,S,E,W}. For hexagonal pins there
would instead be six directions to loop over; for simplicity this work assumes cartesian pin cells.
Typically the coarse cell cross sections are taken to be isotropic, but polar dependence has been
investigated [28].

The radial equations, Eqs. (2.26), are solved by a 2-D transport method, such as MoC, while
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the axial equations, Eqs. (2.28), are solved by either a transport method or approximate method
such as diffusion [16, 28]. The radial equations yield surface fluxes on the pin faces, while the axial
equations yield surface fluxes on the axial planar faces. The radial equations are, however, integrated
over an axial plane which results in an axial flat solution within each plane. These methods then
require many axial planes to resolve the axial behavior in a system, particularly if there is significant
axial variation in the solution.

Transverse Leakage Splitting

Eqs. (2.26) give no guarantee that the right-hand-sides are positive. Negative sources present
considerable challenges to iteration stability when using non-linear acceleration methods such
as CMFD [28]. The transverse leakage splitting method [27, 29] was developed to “split” the
transverse leakage term such that the total source (Q + J̃) is non-negative. A split term, L̃z, is
defined

L̃z ≡ −
[
Qk(xxy)

4π
− J̃z,k(xxy,Ω)

]
, (2.29)

and is added to both sides of Eq. (2.26a). The left hand side (the 2-D transport operator) cannot
have a free-source term, so it is necessary to merge this split term into the cross section term. The
angular flux is not known a priori, so a approximation is used, typically isotropic flux:

ψk(xxy,Ω) ≈ φk(xxy)

4π
. (2.30)

This approximation is introduced only to combine the left-hand-side leakage term into the cross
section term as

Σ̃t,k(xxy) ≡ Σt,k(xxy) + 4π
L̃z

φk(xxy)
. (2.31)

The radial equation then becomes[
(Ω · ∇)xy + Σ̃t,k(xxy)

]
ψk(xxy,Ω) = 0. (2.32)

Because splitting introduces an approximation, it generally decreases the accuracy of the solution.
Thus, the transverse splitting method is typically use only in cells that have a negative source. More
recently, alternative methods have been investigated [30], but they will not be covered in this work.

2.4.4 Extruded 3-D Methods

Due to the wide adoption of 2D/1D methods in recent years, some current research paths have
turned towards extruded mesh 3-D transport methods. An axially extruded mesh is a mesh that uses
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the same radial discretization for all axial positions in the domain. These methods generally rely on
the mesh of the problem to be an axially extruded mesh, and use 3-D transport methods that rely on
that assumption. This an active area of research and while they usually rely on similar assumptions,
many different approaches have been taken.

The PROTEUS [31] code introduced a new transport methodology that combined 2-D MoC
with a discontinuous Galerkin method (finite-elements) for treatment of the axial variable. Other
groups have used similar approaches, but with different axial basis functions; STREAM [25] uses
linear orthogonal functions, and recent work at University of Michigan (UM) [32] has utilized
the Legendre polynomials. Recent work on STREAM has used a diamond-difference method for
approximating axial behavior.Generally, these methods do not suffer from the same inaccuracies of
standard 2D/1D methods, but they do still assume the use of extruded meshes.

The Legendre polynomial expansion of angular flux (LEAF) method, developed by Yamamoto
et al. [33] in the GENESIS code, is an extruded method that is distinct from the PROTEUS-like
methods. This method is the successor of the ASMOC3D method [34]. The LEAF method performs
2-D radial ray-tracing to generate a set of characteristic planes. The angular flux on the left,
right, top, and bottom surfaces of each characteristic plane is given an assumed shape as a linear
combination of Legendre polynomials. A transport calculation is then carried out in each of these
characteristic planes by the method of short characteristics.

The extruded 3-D transport methods seem to have accuracy benefits over the more traditional
2D/1D methods; however, they are usually more computationally expensive, though reducing this
cost is an active area of research. Unlike general 3-D transport methods, such as 3-D MoC, these
extruded methods are unable to handle general geometries. This may be of concern in future reactor
designs, but in most modern reactor designs this is an appropriate simplification to make.

2.5 Source Iteration

Generally, the k-eigenvalue transport problems, introduced in Section 2.2, are solved iteratively.
Given an initial guess for the k-eigenvalue, boundary conditions, and interior flux-moments, an
estimate of the source can be computed. A transport “sweep” can be performed, in which updated
boundary conditions and flux-moments are computed. Given these updated flux-moments a new
estimate of the eigenvalue can be calculated. This process can be repeated until the eigenvalue
and flux-moments are converged within some tolerance. This procedure is referred to as either
source iteration, or power iteration; typically, power iteration is used to refer to this procedure in
problems with a fixed source. For simplicity, this process is shown for a isotropic mono-energetic,
continuous-space, one-dimensional transport problem in Algorithm 2.1.
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Algorithm 2.1 Source Iteration algorithm for the k-eigenvalue transport problem.

1: Begin iteration j with a known boundary conditions, scalar flux estimate, φ(j)(x), and a k-
eigenvalue estimate, kjeff.

2: Perform a transport sweep:[
µ
∂

∂x
+ Σt(x)

]
ψ(j+1)(x, µ) =

1

2

[
Σs(x) +

1

k
(j)
eff

νΣf (x)

]
φ(j)(x), (2.33a)

∀x ∈ [0, X], ∀µ ∈ [−1, 1],

ψ(j)(0, µ) = ψb(µ), µ ∈ [0, 1], (2.33b)

ψ(j)(X,µ) = ψb(µ), µ ∈ [−1, 0]. (2.33c)

3: Update the scalar flux, and the eigenvalue for the next iteration:

φ(j+1)(x) =

(∫ 1

−1

ψ(j+1)(x, µ) dµ

)
Φ0

1
X

∫ X
0

∫ 1

−1
ψ(j+1)(x′, µ) dµ dx′

, (2.34a)

k
(j+1)
eff =

∫ X
0
νΣfφ

(j+1)(x) dx∫ X
0

Σaφ(j+1)(x) dx+
∫ 0

−1
ψ(j+1)(0, µ) dµ+

∫ 1

0
ψ(j+1)(X,µ) dµ

. (2.34b)

4: Repeat steps 1. - 3. until sufficient convergence.

2.5.1 Transport Acceleration

While Algorithm 2.1 is valid, it typically converges very slowly, requiring many iterations to obtain
reasonable results. In full-core calculations, a single transport sweep is typically the most computa-
tionally expensive operation. For this reason, solving practical problems using Algorithm 2.1 is not
feasible. There has been considerable effort in developing methods that accelerate the convergence
of transport calculations by using a lower-order calculation, typically based on the diffusion approx-
imation. These methods often reduce the number of iterations from O(1000) to O(10) for thermal
reactor systems.

While other acceleration methods exist [35], the most common for k-eigenvalue problems are
non-linear diffusion acceleration (NDA) methods [36], typically using the CMFD method [37].
Algorithm 2.2 lists the standard NDA algorithm for a 1-D mono-energetic k-eigenvalue problem.
The primary difference between CMFD and NDA is that CMFD introduces the concept of a second,
coarser spatial grid, while NDA uses the same spatial mesh as the transport problem.

The CMFD acceleration method has been shown to significantly reduce computational transport
run-times [16, 36, 38]. There have been several improvements upon the original CMFD formulation
[37], such as pCMFD [23] and odCMFD [39]. The pCMFD method preserves partial currents rather
than net currents, and has been shown to be unconditionally stable for transport problems at fixed
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conditions [23]. The odCMFD method generalizes the CMFD and pCMFD methods by adding
an artificial term to the diffusion coefficient, and has faster convergence properties than pCMFD
[39]. Recently, it was shown that the theoretical reason for this is the that most MoC methods do
not preserve the linear solutions of the transport equation, resulting in the need for an unphysical
correction to the diffusion coefficient to account for truncation error in the transport discretization.

Utilization of CMFD acceleration in transport calculations with thermal-hydraulic (T/H) feed-
back has not had the favorable stability and convergence properties as calculations without feedback
[40]. Many transport codes have required under-relaxation of the scalar flux in the iteration schemes
for stability in these calculations; there is ongoing research investigating a less ad-hoc approach
[40]. This instability and convergence slow-down in problems with feedback has prevented full
utilization of more advanced multi-level solvers [40, 41].
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Algorithm 2.2 Non-linear Diffusion Acceleration (NDA) algorithm for the k-eigenvalue transport
problem.

1: Begin iteration i with known boundary conditions, scalar flux estimate, φ(j)(x), a net current
estimate, J (j)(x), and a k-eigenvalue estimate, keff.

2: Compute linear and non-linear correction factors for low-order diffusion equation:

D̂(j)(x) =

d
dx

[
J (j)(x) + 1

3Σt(x)
dφ(j)(x)

dx

]
φ(j)(x)

(2.35)

3: Solve the low-order diffusion eigenvalue problem:

− d

dx

1

3Σt(x)

dφ(j+1/2)(x)

dx
+
[
Σa(x) + D̂(j)(x)

]
φ(j+1/2)(x) =

1

keff
νΣf (x)φ(j+1/2)(x). (2.36)

4: Perform a transport sweep using the scalar flux, and eigenvalue estimates from the low-order
diffusion calculation:[

µ
∂

∂x
+ Σt(x)

]
ψ(j+1)(x, µ) =

1

2

[
Σs(x) +

1

k
(j)
eff

νΣf (x)

]
φ(j)(x), (2.37)

∀x ∈ [0, X], ∀µ ∈ [−1, 1].

5: Update the scalar flux, current, and eigenvalue estimates for next iteration:

φ(j+1)(x) =

∫ 1

−1

ψ(j+1)(x, µ) dµ
Φ0

1
X

∫ X
0

∫ 1

−1
ψ(j+1)(x′, µ) dµ dx′

, (2.38a)

J (j+1)(x) =

∫ 1

−1

µψ(j+1)(x, µ) dµ
Φ0

1
X

∫ X
0

∫ 1

−1
ψ(j+1)(x′, µ) dµ dx′

, (2.38b)

k
(j+1)
eff =

∫ X
0
νΣfφ

(j+1)(x) dx∫ X
0

Σaφ(j+1)(x) dx+
∫ 0

−1
ψ(j+1)(0, µ) dµ+

∫ 1

0
ψ(j+1)(X,µ) dµ

. (2.38c)
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CHAPTER 3

The Method of Characteristics

3.1 Fundamentals

The Method of Characteristics (MoC) is a technique used to solve first-order PDEs, by transforming
the PDE into a system of ODEs. The method was first applied to the neutron transport equation
by Askew in 1972 [1], but only began to see real use in the 1980’s [2]. The MoC transforms the
transport equation into the characteristic form, by following the equation along straight neutron paths
through the spatial domain. For brevity, the derivation of this method will begin with the multigroup
SN k-eigenvalue transport equation with spatially discretized mesh with constant material properties
within each cell. Here, the spatial derivatives have not yet been discretized.[

Ω̂m · ∇+ Σg
t,i

]
ψgmi(x) =

1

4π
qgmi(x) , (3.1)

∀x ∈ Ri, ∀m ∈MN , ∀i, g,

whereRi is the spatial cell,MN is the directional quadrature, as described in Section 2.3.2, and the
fixed-source, qgmi(x) can be found by applying the discrete-to-moment operator, Sgi,m, defined by

Sgi,m(f) ≡
∑
g′

L∑
`=0

∑̀
n=−`

Rn
` (Ω̂m)Σg′→g

s,`,i f
`,g′

n,i (x) +
χg
i

keff

∑
g′

νΣg′

f,if
g′

i (x), (3.2)

to get

qgmi(x) ≡

[∑
g′

L∑
`=0

∑̀
n=−`

Rn
` (Ω̂)Σg′→g

s,`,i Φ`,g
i,n(x) +

χg
i

keff

∑
g′

νΣg′

f,iφ
g′

i (x)

]
, (3.3)

where L is the maximum scattering order. If L were infinite, there would not any additional
approximation to the scattering source; however, the first several orders have the most effect on the
figures of merit, and in practice the sum is truncated with L typically being less than five.

Consider a point, x0, and a line passing through this point in direction Ω̂m. Any location along
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this characteristic line (also referred to as a ray, or track), can be described as

x = x0 + sΩ̂m, (3.4)

where s is the distance along the track from x0. Applying this transformation, Eq. (3.1) is put into
the characteristic form[

d

ds
+ Σg

t,i

]
ψgmi

(
x0 + sΩ̂m

)
=

1

4π
qgmi

(
x0 + sΩ̂m

)
. (3.5)

As stated in Section 2.1, reactor physicists are generally interested in spatially and directionally
integrated angular flux quantities rather than the angular flux along a single path. Thus typical in the
MoC to have many different characteristic tracks through our problem; in this work separate tracks
will be subscripted with the index k. Each track is broken up into track-segments by considering
the segments contained within each computational cell. The characteristic form of the transport
equation then becomes [

d

ds
+ Σg

t,i

]
ψgmki(s) =

1

4π
qgmi(s) , (3.6)

∀s ∈ [0, smki],∀m ∈MN , ∀i, k, g,

where smki is the total length of the track-segment, as depicted in Fig. 3.1.

Figure 3.1: Depiction of a single characteristic track through a cell i.

Equation (3.6) can be solved analytically along a characteristic track-segment using an integrat-
ing factor,

M(s) = exp

(∫ s

0

Σg
t,i ds

′
)

= exp(τ gm) , (3.7)
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where the optical thickness, τ gm, can be simplified as

τ gm ≡ Σg
t,is, (3.8)

∀s ∈ [0, smki],

assuming constant properties along the track-segment. Using this integrating factor, the generic
solution to the MoC equation, given in Eq. (3.6), is

ψgmki(s) = ψg,inmki exp(−τ gm) +

∫ s

0

1

4π
qgmi(s

′) exp
(
−Σg

t,i [s − s′]
)

ds′, (3.9)

where ψg,inmki is the incident angular flux, ψgmki(0). If a source shape is provided, Eq. (3.9) can be
evaluated for every track-segment in the problem. The next subsection introduces formal methods
to approximate the integration of quantities over both space and direction. These procedures can be
used to determine the scalar flux or other quantities necessary in MoC calculations.

3.1.1 Track-Based Integration

Determining the angular flux along a single characteristic track is typically not the goal of reactor
physics calculations. It is most often necessary to evaluate reaction rates, and therefore the scalar
flux through integration of the angular flux. This section aims to provide a formal basis for the
integration process used in the MoC for transport calculations.

Figure 3.2: Example characteristic tracks (2D) through a cell for a single direction.

The MoC is based on the Discrete Ordinates (SN ) approximation; integration over the directional
variable simply becomes a quadrature integration:∫

4π

f(Ω̂) dΩ ≈ 4π
∑
m

wmf(Ω̂m). (3.10)
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Within a cell,Ri, there are many characteristic track-segments for each direction in the directional
quadrature, as is shown for a single direction in Fig. 3.2. Thus, the spatial discretization is different
for each direction, and spatial integration is linked with the directional integration. For a single
direction, the integration over the spatial domain can be approximated by the weighted summation
of track-averaged values, with the weight being equal to the area of the track-segment. The average
value of a function, f(x, Ω̂m), along a track-segment is denoted as〈

f(x, Ω̂m)
〉
mki
≡ 1

smki

∫ smki

0

f(s, Ω̂m) ds, (3.11)

where smki is the total length of the track-segment. The spatial integration for a single direction
becomes

1

Vi

∫
x∈Ri

f(x, Ω̂m) d3x ≈
〈
f(x, Ω̂m)

〉
mi
≡ 1

Vi

∑
k

δAmkismki

〈
f(x, Ω̂m)

〉
mki

, (3.12)

where δAmki is the cross-sectional area of the track (width in 2-D). In this notation, the integral
is divided by the volume such that 〈f〉mi is approximately the mean value in the region, for the
direction Ω̂m. Finally, an integration over both space and angle can be defined as〈

f(x, Ω̂)
〉
i

= 4π
∑
m

wm

〈
f(x, Ω̂m)

〉
mi
. (3.13)

These integrations have been expressed as 3-D MoC equations. The general form remains the
same for 2-D calculations, with minor changes. The spatial integration, Eq. (3.12), requires an
additional scaling factor (sin(θp)), and the volume, Vi, is the area of the cell:

1

Vi

∫
x∈Ri

f(x, Ω̂m) d3x ≈
〈
f(x, Ω̂m)

〉
mi
≡ sin(θp)

Vi

∑
k

δAmkismki

〈
f(x, Ω̂m)

〉
mki

(3.14)

The scaling factor is necessary (but not sufficient) for the integrated cell area to be preserved for each
polar angle; if sin(θp) is factored into the summation, smki becomes saki (the 2-D track-length).

3.1.2 Track-Length Renormalization

In general, the spatial integration described in Section 3.1.1 does not preserve the cell volume; this
is visually apparent in Fig. 3.2. In order to preserve spatial volumes within a cell, track-lengths are
often “renormalized”. As the area of each ray, δAmki approaches zero, the renormalization becomes
irrelevant; thus it is only of consequence when rays have relatively coarse spacing between each
other. There are three renormalization methods that become obvious through the notation presented
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in Section 3.1.1:

1. segment-volume preservation

2. direction-volume preservation

3. volume preservation

Track-length renormalization involves adjusting the lengths of track-segments such that volume
is preserved. Let us define a renormalization factor, ξmki, such that the renormalized track-length is
given by

tmki = ξmkismki. (3.15)

The spatial integration schemes given by Eqs. (3.11) and (3.12) become

〈
f(x, Ω̂m)

〉
mki
≡ 1

tmki

∫ tmki

0

f(s, Ω̂m) dtm, (3.16a)

and 〈
f(x, Ω̂m)

〉
mi
≡ 1

Vi

∑
k

δAmkitmki

〈
f(x, Ω̂m)

〉
mki

, (3.16b)

where the spatial variable x can now be written as a function of the renormalized track-distance, tm,
as

x = xin
mki + tmΩ̂m/ξmki, (3.16c)

where xin
mki is the starting point of the track-segment.

Segment-volume preservation is a renormalization method that adjusts the track-length such
that the analytic volume within the cross-sectional area of each track-segment is preserved. This
renormalization technique is the most “correct” method of renormalization, but is very expensive as
each track is renormalized separately. It is also more difficult to implement, as the analytic area of
each track-segment must be found. To the best of our knowledge, this method is not implemented
in any production-level MoC code.

Direction-volume preservation is the next “most-correct” renormalization technique. In this
method, every mono-directional spatial integration should preserve the cell volume, i.e.

〈1〉mi = 1. (3.17)

This constraint leads to the renormalization factor given by

ξmi =
Vi∑

k

δAmkismki
. (3.18)
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This method is significantly less expensive in terms of memory, computational time, and difficulty
of implementation.

The simplest renormalization technique, volume preservation, only preserves the volume over
the spatial and directional integration, i.e.

〈1〉i = 4π. (3.19)

This constraint leads to the renormalization factor given by

ξi =
Vi∑

m

wm
∑
k

δAmkismki
. (3.20)

Renormalization is not the only technique used for volume preservation. Another method is
to use the numerical volume,

∑
k

δAmkismki in place of Vi in Eq. (3.12). A detailed comparison of

these different approaches has not taken place, to the best of our knowledge. The renormalization
technique generally seems to be the faster approach, and is the approach used in MPACT [3], which
is used extensively in this work.

3.2 The Flat-Source Approximation

The simplest approximation to the spatial shape of the source, qgmi(x), within each cell is the
flat-source approximation (FSA). The MoC has been widely used in lattice physics and neutron
transport codes [4], many of which have utilized the flat-source method of characteristics (FSMoC)
[2, 3, 5–10].

3.2.1 Derivation

The FSA is simply the assumption that within each cell,Ri, the source, qgmi(x), is uniform. This
can be expressed as

qgmi(x) ≈ qgmi = qgi +
L∑
`=0

∑̀
n=−`

Rn
` (Ω̂m)qg,ni,` (3.21)

To obtain a source in this form, Eq. (3.3) requires that the region averaged scalar flux and higher-
order angular moments (up to order L) be determined. In mathematical terms, the flat-source can be
determined as

qgmi =

[∑
g′

L∑
`=0

∑̀
n=−`

Rn
` (Ω̂m)Σg′→g

s,`,i Φ`,g′

i,n +
χg
i

keff

∑
g′

νΣg′

f,iφ
g′

i

]
, (3.22)
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where the φg
′

i is the region-averaged scalar flux, and Φ`,g′

i,n are the region-averaged angular moments
of the flux.

In order to get these region-averaged flux moments, the spatial and directional integration
operators, introduced in Section 3.1.1, are used. The region-averaged scalar flux is given by

φgi = 〈ψg〉i =
4π

Vi

∑
m

wm
∑
k

tmkiδAmki〈ψg〉mki, (3.23a)

and the higher-order angular moments of the flux are given by

Φ`,g
i,n =

〈
Rn
` (Ω̂)ψg

〉
i

=
4π

Vi

∑
m

wmR
n
` (Ω̂m)

∑
k

tmkiδAmki〈ψg〉mki. (3.23b)

To evaluate these flux moments, the track-averaged angular flux, 〈ψg〉mki, must be found. By
applying the FSA, Eq. (3.6) becomes[

d

dtm
+ Σg

t,i

]
ψgmki(tm) = qgmi, (3.24)

where
qgmi ≡

1

4π
qgmi. (3.25)

This can be solved analytically for the angular flux along the track,

ψgmki(tm) = ψg,inmki +

(
qgmi
Σg
t,i

− ψg,inmki

)
F1(τ gm), (3.26a)

where
F1(τ gm) ≡ 1− exp(−τ gm), (3.26b)

and τ gm is the (renormalized) optical thickness,

τ gm ≡ tmΣg
t,i. (3.26c)

One approach to find 〈ψg〉mki, is to perform integration of Eq. (3.26a) to evaluate the track-
average value, resulting in

〈ψg〉mki =
qgmi
Σg
t,i

−
(
qgmi
Σg
t,i

− ψg,inmki

)
F1(τ gmki)

τ gmki
. (3.27)

This approach will be referred to as explicit, as the moment’s integral is explicitly evaluated. Another
approach, which in the author’s opinion is simpler, is to use the track-averaging operator on the
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characteristic form of the transport equation, Eq. (3.24), that simplifies to

〈ψg〉mki =
qgmi
Σg
t,i

+
ψg,inmki − ψ

g,out
mki

τ gmki
. (3.28)

This approach will be referred to as implicit, as the moment’s integral is not explicitly evaluated.
We note that the resulting forms of these two approaches are equivalent; by evaluating the outgoing
flux in Eq. (3.26a) at the outgoing position, Eq. (3.28) can be put into the form of Eq. (3.27). By
substituting the track-averaged angular flux in Eqs. (3.23), the flux moments can be evaluated, and
used to compute the source. A transport calculation may be carried out using the source iteration
algorithm defined by Algorithm 2.1.

3.2.2 Particle Conservation

The neutron transport equation, Eq. (2.1a), is a statement of particle balance within the defined phase-
space. Previous works [11, 12] have examined the FSMoC with respect to particle conservation.
Le Tellier and Hébert [11] defined necessary constraints on the directional quadrature and the
characteristic tracks (trajectories) in order to ensure particle conservation for the anisotropic FSMoC.
The constraints can be found by requiring

1

4π

〈
Rn
` (Ω̂)qgmi

〉
i

= qg,ni,` . (3.29)

Substituting Eq. (3.21) into Eq. (3.29), requires that∑
m

wmR
n
` (Ω̂m)Rn′

`′ (Ω̂m) = δ``′δnn′ , (3.30a)

and ∑
k

tmkiδAmki = Vi. (3.30b)

Equation (3.30a) is a constraint on the directional quadrature, requiring orthogonality of the real
spherical harmonics [11]. Equation (3.30b) requires that at least direction-dependent renormaliza-
tion, Eq. (3.18), be used.

If the constraints on directional quadrature and characteristic tracks are satisfied, several simpli-
fications to Eqs. (3.23) are possible.

φgi =
qgi

Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wm
∑
k

δAmki∆ψ
g
mki, (3.31a)
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Φ`,g
i,n =

qg,ni,`
Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wmR
n
` (Ω̂m)

∑
k

δAmki∆ψ
g
mki, (3.31b)

where
∆ψgmki ≡ ψg,inmki − ψ

g,out
mki . (3.31c)

3.2.3 Isotropic Simplifications

While anisotropic scattering is necessary for accurate calculations, it is also common for isotropic
source calculations to be performed. Typically, these account for anisotropic behavior by using
the transport-corrected P0 (TCP0) approximation [13]. While not as accurate as truly anisotropic
calculations, use of an isotropic source results in significantly fewer calculations, and allows for
additional simplifications to be made.

Equation (3.29) is now only of concern for the isotropic component of the source. This results
in the following constraint, ∑

m

wm
∑
k

tmkiδAmki = Vi, (3.32)

which is equivalent to the direction-independent renormalization, given by Eq. (3.20). These
isotropic calculations become significantly less expensive, as only the scalar flux needs to be
computed.

3.2.4 Applications

The FSMoC has been utilized in many MoC production codes [2, 3, 5–10]. However, previous
studies on the FSMoC have found that a fine mesh must be used to obtain accurate results, par-
ticularly in the presence of control rods or blades, strong absorber rods, gadolinia poisoned fuel
rods [14], and large reflector regions (such as in critical experiments) [15]. As the number of mesh
elements increase, so does the number of track-segments (on which the MoC computations are
performed). This results in large run-times, and has motivated the development of linear-source
approximations (LSAs) to the MoC, that are discussed in detail in Section 3.3.
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3.3 The Linear-Source Approximation

3.3.1 Overview

The linear-source approximation (LSA), in the MoC, assumes the shape of the source along a
characteristic track-segment is linear. There has long been motivation for the development of LSAs
for the MoC, as previous work [16] indicated that a spatially linear source was able to achieve faster
computational performance in SN calculations. There have been many different variants of this
approximation. The first instance of the LSA was the gradient source approximation introduced
by Halsall [17]. This early LSMoC was based on the averaging of the angular flux gradient along
tracks, and was implemented in the WIMS [17], and PEACH [18] MoC transport codes. These
averaged gradients were then used as estimates to the gradient of the scalar flux, that were used to
compute the source shape as spatially linear.

Petkov and Takeda devised a LSA that estimated the gradient of the scalar flux based on the P1

approximation in the MARIKO code [14, 19]. In this approximation, the gradient of the scalar flux
is computed from the neutron current, the total cross section, and the linearly anisotropic scattering
matrix:

∇φgi ≈ −3

(
Σg
t,iJ

g
i −

∑
g′

Σg′→g
s,1,i J

g′

i

)
. (3.33)

A similar approach, using the diffusion approximation to compute the scalar flux gradient, was
used in the so called “quasi-linear” source implemented by Rabiti et al. [20]. In this approach, the
Σg′→g
s,1,i matrix is diagonalized, turning the P1 approximation into the diffusion approximation. Due

to their basis on the P1 and diffusion approximations, these early LSAs are inaccurate in situations
where more transport-like effects are present. It can be shown, even in simple cases, that this
approximation can be predict the opposite direction for the scalar flux gradient.

Santandrea and Sanchez [21] introduced the positive linear and nonlinear surface characteristics
scheme, which constructed a linear source by interpolating between source values on the surfaces
of cell regions. Various improvements have been made to this surface characteristics scheme for
conservation [21], as well as coupling in APOLLO2 [22]. Le Tellier and Hébert [23] introduced a
simplification to the linear characteristics scheme for conservation, by using a diamond-differencing
scheme. This work was extended by Hébert [24], to include higher-order diamond difference
schemes, as well as allowing for acceleration [25].

The most recent LSA examined in this work was introduced as a 2-D general high-order method
for unstructured meshes by Masiello et al. [26]. The approximation uses track-based integration,
defined in Section 3.1.1, in order to compute spatial moments of the angular flux. This LSA was
shown to reduce memory and computation times in 3-D MoC calculations [27]. The general method
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was simplified in the case of the isotropic and anisotropic LS by Ferrer and Rhodes [15]; this also
introduced the “LS-P0” method in which the isotropic source is spatially linear, but the anisotropic
source components are spatially uniform within each cell. This LSA was also shown to be consistent
with particle conservation, under certain constraints, and to be compatible with CMFD acceleration
[12].

This thesis work has made extensive use of this LSA, and has made improvements upon the
method. For this reason, in the following section the formulation prior to the work of this thesis is
derived.

3.3.2 Derivation

The moment-based LSA assumes the shape of the source, qgmi(x), is spatially linear within each
cell,Ri. This can be expressed as

qgmi(x) ≈ qgmi + x · q̂g
mi
, (3.34a)

where q̂g
mi

is a column vector of source spatial expansion coefficients,

q̂g
mi
≡

q̂
g
mi,x

q̂gmi,y
q̂gmi,z

 , (3.34b)

and x is the position in local coordinates. A similar spatial expansion of the angular moments of
the flux can be performed,

φ`,gi,n(x) = φ
`,g

i,n + x · φ̂
`,g

i,n
, (3.35)

the source can then be expressed as

qgmi(x) =
∑
g′

L∑
`=0

∑̀
n=−`

Rn
` (Ω̂m)Σg′→g

s,`,i φ
`,g′

i,n (x) +
χg
i

keff

∑
g′

νΣg′

f,iφ
g′

i (x), (3.36)

and the linear expansion coefficients are explicitly given by

q̂g
mi

=
∑
g′

L∑
`=0

∑̀
n=−`

Rn
` (Ω̂m)Σg′→g

s,`,i φ̂
`,g′

i,n
+
χg
i

keff

∑
g′

νΣg′

f,iφ̂
g

g′
. (3.37)

In the spatial moment-base LSA, it is convenient to define the spatially linear source (and flux)
in terms of a cell-local coordinate system. We allow X to be the position variable in the global
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coordinate system, the local coordinates are then defined as

x = X −Xc
mi, (3.38)

whereXc
mi is the numerical centroid of the cell i.

These numerical centroids can be defined as either direction-dependent, or direction-independent,
which will have implications on particle conservation, as is discussed in Section 3.3.3. The direction-
dependent centroids are defined by

Xc
mi ≡ 〈X〉mi =

1

Vi

∑
k

δAmkitmkiX
c
mki, (3.39)

whereXc
mki is the global coordinate vector of the track-segment mid-point. Similarly, the direction-

independent centroids are defined by

Xc
i ≡

1

4π
〈X〉i =

1

Vi

∑
m

wm
∑
k

δAmkitmkiX
c
mki. (3.40)

Following the same approach as the FSMoC derivation, in Section 3.2.1, computing the source
requires the region-averaged flux moments, φ

`,g

i,n, and the flux expansion coefficients, φ̂
`,g

i,n
. The

region-averaged flux moment can be found using the same definition as previously,

φ
`,g

i,n ≡
〈
Rn
` (Ω̂)ψg

〉
i

=
4π

Vi

∑
m

wmR
n
` (Ω̂m)

∑
k

δAmkitmki〈ψg〉mki. (3.41a)

In order to determine the spatial expansion coefficients of the flux moments, Eq. (3.35) is operated
on by

〈
Rn
` (Ω̂)x(·)

〉
i
. Recognizing that this should be directly proportional to angular flux operated

on by
〈
Rn
` (Ω̂)xψg

〉
i
, a system of equations is found

M iφ̂
`,g

i,n
=
〈
Rn
` (Ω̂)xψg

〉
i
, (3.41b)

where
M i ≡

〈
xxT

〉
i
. (3.41c)

The spatial angular flux moments,
〈
Rn
` (Ω̂)xψg

〉
i
, are then defined as

〈
Rn
` (Ω̂)xψg

〉
i

=
4π

Vi

∑
m

wmR
n
` (Ω̂m)

∑
k

δAmkitmki

(
xin
mki〈ψg〉mki + Ω̂m〈tmψg〉mki/ξmi

)
.

(3.41d)
In order to evaluate the flux moments defined in Eqs. (3.41), the track-averaged angular flux
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values, 〈ψg〉mki, and 〈tmψg〉mki, must be determined. First, the transport equation must be put into
characteristic form, using Eq. (3.16c) the spatially expanded source, Eq. (3.34a), can be defined
along the characteristic. The characteristic transport equation becomes[

d

dtm
+ Σg

t,i

]
ψgmki(s) = qgmki + q̂gmi

(
tm −

tmki
2

)
, (3.42a)

where
qgmki ≡

1

4π

[
qgmi + xc

mki · q̂
g

mi

]
, (3.42b)

q̂gmi ≡
1

4π

[
Ω̂m · q̂gmi
ξmi

]
, (3.42c)

and xc
mki is the local-coordinate centroid of the track-segment. Substituting this assumed source

shape (linear) into the generic MoC solution, given by Eq. (3.9), the angular flux along a track-
segment is found to be

ψgmki(s) = ψg,inmki +

(
qgmki
Σg
t,i

− ψg,inmki

)
F1(τ gm) +

q̂gmi
2(Σg

t,i)
2
F2(τ gm), (3.43a)

where
F1(τ gm) ≡ 1− exp(−τ gm), (3.43b)

and
F2(τ gm) ≡ 2[τ gm − F1(τ gm)]− τ gmkiF1(τ gm). (3.43c)

As discussed in Section 3.2.1, there are two equivalent methods with which one could determine
the track-averaged angular flux values. The original derivation of the LSA method by Ferrer and
Rhodes [15] used the implicit definition for the track-average angular flux, but the explicit definition
for the first spatial moment of the angular flux. In Chapter 5, the implicit definition is taken for
the first spatial moment of the angular flux as well, which allows for additional improvements
for the method in multi-physics and 2D/1D applications. For the remainder of this section, the
formulation as it was originally derived by Ferrer and Rhodes [15] is shown, using the explicit form
of 〈tmψg〉mki.

The implicitly defined track-average flux is given by operating on Eq. (3.42a) by 〈(·)〉mki, and
the explicitly defined first spatial moment of the angular flux is given by operating on Eq. (3.43a)
by 〈tm(·)〉mki. These are shown in Eqs. (3.44).

〈ψg〉mki =
qgmki
Σg
t,i

+
∆ψgmki
τ gmki

, (3.44a)
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and

〈tmψg〉mki = ψg,inmki

tmki
2

+

(
qgmki
Σg
t,i

− ψg,inmki

)
G1(τ gmki)

Σg
t,i

+
q̂gmi

2(Σg
t,i)

2
tmkiG2(τ gmki). (3.44b)

Here
G1(τ gmki) ≡ 1 +

τ gmki
2
−
(

1 +
1

τ gmki

)
F1(τ gmki), (3.45a)

and
G2(τ gmki) ≡

2

3
τ gmki −

(
1 +

2

τ gmki

)
G1(τ gmki). (3.45b)

The original derivation further simplified Eqs. (3.41) into the following forms.

φ
`,g

i,n =
4π

Σg
t,iVi

∑
m

wmR
n
` (Ω̂m)Σg

t,iΨ
g
mi, (3.46a)

〈
xRn

` (Ω̂)ψg
〉
i

=
4π

Σg
t,iVi

∑
m

wmR
n
` (Ω̂m)Σg

t,i

(
Ψg
mi + Ω̂mΨ̂g

mi/ξi

)
, (3.46b)

where

Ψg
mi ≡

1

Σg
t,i

[
qgmi
4π

∑
k

δAmkitmki +
q̂g
mi

4π
·
∑
k

δAmkix
c
mkitmki +

∑
k

δAmki∆ψ
g
mki

]
, (3.47a)

Ψg
mi ≡

1

Σg
t,i

[(∑
k

δAmkitmkix
in
mki

)
qgmi
4π

+

(∑
k

δAmkitmkix
in
mki(x

c
mki)

T

)
q̂g
mi

4π

+
∑
k

δAmkix
in
mki∆ψ

g
mki

]
,

(3.47b)

and

Ψ̂g
mi ≡

1

Σg
t,i

[
qgmi
4π

Cg
mi +

q̂g
mi

4π
·Cg

mi +
∑
k

δAmkitmkiψ
g,in
mkiH(τ gmki)

]
, (3.47c)

where
Cg
mi ≡

1

Σg
t,i

∑
k

δAmkitmkiG1(τ gmki), (3.48a)

Cg
mi ≡

1

Σg
t,i

∑
k

δAmkitmki

(
xc
mkiG1(τ gmki) + Ω̂m

smki
2
G2(τ gmki)

)
, (3.48b)

and
H(τ gmki) ≡

τ gmki
2
−G1(τ gmki). (3.49)

The Cg
mi andCg

mi are dependent on both the energy group, g, and direction m, for each region, i.
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If these terms are stored, this leads to considerable memory usage, and will often use more memory
than the flux moments that are of interest. If cross sections are constant in the problem (no feedback,
or 2D/1D transverse leakage splitting), these coefficients can be pre-computed once at the outset of
the simulation. If this is not the case, these coefficients must be re-evaluated each time there is a
change in cross sections. The re-evaluation of these coefficients can lead to significant overhead. In
cases with T/H feedback, cross sections typically change each iteration.

3.3.3 Particle Conservation

When considering particle conservation, use of the LSA results in additional constraints on the
calculations. Similarly to Section 3.2.2, the track-based integration of the source must exactly
integrate to the spatial and angular moments of the source. The conservation of spatial moments
is the basis of this LSA [12], so this constraint is satisfied without additional constraints on the
method. The angular moment constraint is expressed as

1

4π

〈
Rn
` (Ω̂)qgmi(x)

〉
i

= qg,ni,` . (3.50)

In addition to the constraints introduced in Section 3.2.2, namely direction-dependent renormal-
ization, and directional quadrature restrictions, there is a constraint on the definition of the local
coordinate system:

〈x〉mi = 0. (3.51)

This is equivalent to stating that the local coordinate system must be defined with respect to
direction-dependent global centroids, as is given by Eq. (3.39).

3.3.4 Isotropic Simplifications

Ferrer and Rhodes [15] suggested that allowing only the flat source components to consider
anisotropic scattering has performance benefits, while not significantly affecting accuracy. It was
demonstrated for the Babcox and Wilcox (B&W) experiments [28] that considering anisotropic
scattering only with spatially flat flux moments resulted in approximately 10 pcm error. Furthermore,
by making this simplification, run-times were reduced significantly (up to 45%), while memory
savings were even more significant (up to 89%) [15].

As stated in Section 3.2.3, it is very common in reactor simulations to use TCP0 cross-sections
(which are isotropic). Assuming isotropic scattering, Eqs. (3.46) become

φgi =
qgi

Σg
t,i

+
4π

Σg
t,iVi

∑
m

wm
∑
k

δAmki∆ψ
g
mki, (3.52a)
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where
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These Cg
i coefficients are no longer dependent on the direction, but still require significant

memory usage. They require more memory than the scalar flux coefficients. If cross sections are
not constant through the simulation, the previously mentioned inefficiencies are still present.

3.3.5 Applications

Various different LSAs to the MoC have been developed and implemented in transport codes [10, 14,
15, 17, 18, 20, 21, 29]. Results have indicated that by using a LSA, the spatial mesh discretization
can be made coarser, relative to the FSA, while maintaining transport accuracy. Although each
segment calculation is more expensive when using a LSA, the number of calculations (due to the
coarser spatial mesh) can be significantly reduced, leading to reduced run-times. Additionally,
the reduction in spatial mesh elements generally reduces the amount of memory required by the
calculation.

3.4 Ray-Tracing

The Method of Characteristics (MoC) [1] is based on solving the transport equation along many
characteristic tracks or rays. These rays are followed through the reactor geometry in a process
generally referred to as “ray-tracing”. The placement and storage of these tracks is significant with
respect to both calculation accuracy as well as computational performance. This section serves to
give an overview of the current state-of-the-art ray-tracing methods used for MoC-like transport
calculations.

3.4.1 Fundamentals

This section covers the fundamentals of why ray-tracing is necessary for MoC calculations, what
data is necessary, and possible constraints. Unless a neutron has an interaction with surrounding
media, it will travel in a straight line. This idea is represented in the characteristic form of the
transport equation (Eq. (3.6)), which follows a generic characteristic through the problem domain.
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The MoC is based on solving the Eq. (3.6) along many of these characteristic paths, performing
spatial/directional integrations using Eqs. (3.16).

For a MoC iteration, it is necessary to compute the integrated quantities of the angular flux
(Eqs. 3.31 and 3.46). This requires that the angular flux along a track-segment, the path-segment of
a characteristic path bounded within a spatial cell, is known. Determining the angular flux along a
track-segment (Eq. (3.9)) can be done only if the incident angular flux is known, and the length of
the track-segment is known. Generally, characteristic paths will not be constructed independently
for each spatial cell because then the incident flux on the surface would need to be approximated.
Thus, a long characteristic path (ray) is generated to pass through the domain (or sub-system of
the domain), and the lengths of each segment (bounded by spatial cells) are recorded. This way,
given the incident flux at one end of the characteristic ray, the ray can be followed and the angular
flux can be determined for each segment of the ray. Because the incident flux of one segment is the
outgoing flux of the previous segment, the segments must be “swept” in order.

3.4.2 Modular Ray-Tracing

The most straight-forward approach to perform a MoC calculation is to create rays that span the
domain of the transport problem being solved. However, in this approach, the information of each
ray-segment must be stored, or computed on-the-fly. In large problems the number of ray-segments
can become exceedingly large, and this approach is not feasible due to memory constraints.

This led to the development of so-called “modular” ray-tracing methods [6, 30–32], in which the
regularity of reactor designs is utilized to reduce memory requirements. In typical reactor designs,
certain geometries (like assemblies) are repeated throughout the core. Rather than laying tracks
down for the global geometry, the transport problem is partitioned into “modules” that represent
small often-repeated geometries in the problem. The ray-tracing data is generated for each module,
in such a way there is direct linking of tracks on module interfaces; this is the direct neutron path
linking (DNPL) technique devised by Kosaka and Saji [6]. This significantly reduces the amount
of ray-tracing data that needs to be stored in MoC calculations, and has been widely adopted in
MoC transport codes [5, 18, 33–37]. Tracks spanning the global domain are then constructed by
connecting multiple modular rays, as is depicted in Fig. 3.3.

The modular ray-tracing technique, with DNPL, requires that the number of tracks on a modular
boundary be an integer. This additionally requires that all modules have the same spatial dimensions,
given by the pitches Px and Py, and that the spacing between all tracks in a direction are constant.
Let δAa0 be the desired ray-spacing for an azimuthal angle a, and ϕa0 be the desired azimuthal
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Figure 3.3: Depiction of modular ray-tracing method. Global (long) rays can be constructed by
connecting multiple modular rays, as is shown in red.

angle. The number of rays on the x and y module boundaries can be determined as

Nx =

⌈
Px sin(ϕa0)

δAa0

⌉
, (3.54a)

and
Ny =

⌈
Px cos(ϕa0)

δAa0

⌉
. (3.54b)

The x and y distance between rays is then determined by

δx =
Px
Nx

, (3.55a)

and
δy =

Py
Ny

. (3.55b)

The azimuthal angle is then “corrected” to represent the true angle at which the rays are placed,

ϕa = tan−1

(
δy
δx

)
, (3.56)

and the corrected ray-spacing is then given by

δAa = δx sin(ϕa). (3.57)

Another approach that has been taken in MPACT is to use a rational fraction to approximate tan( δy
δx

).
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Due to the constraint of DNPL, the directional quadrature is perturbed in the process of ray-
tracing. As described in Section 3.2.2, this has implications on particle conservation in calculations.
In order to maintain accuracy, it may become necessary to use a higher-order directional quadrature
than would have been necessary if the directions were not perturbed by modular ray-tracing (MRT).

3.4.3 Mobile Chords

The mobile chord method was introduced by Villarino et al. [38] in the HELIOS code for CP
calculations, and adapted to the MoC by Yamamoto [39]. In the typical equidistant ray-tracing
method, a ray is placed at the center of the ray-width. The mobile chord method offsets the ray
from the center, with differing offsets in each direction. The offset is typically a fraction of the ray
width that increases linearly with the azimuthal angle index. This has generally shown to be more
accurate than the typical equidistant ray-tracing method [39], but is not directly compatible with
the DNPL technique. While ray widths are still linked, the ray-traces are not; though, this does not
seem to introduce significant discretization errors [39]. An example illustration of mobile chords is
given in Fig. 3.4.

(a) Centered Chords (b) Mobile Chords

Figure 3.4: Example illustration of centered chords (traditional approach) and mobile chords for a
single direction.

3.4.4 Random Rays

The random ray method was developed in the ARRC code by Tramm et al. [40], and is a hybrid
method between Monte Carlo and MoC methods. This ray-tracing method uses stochastic dis-
cretizations of the directions and space (characteristic rays). The method uses a unique directional
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quadrature and ray-trace each iteration; this significantly decreases the memory usage, as tracking
storage is completely eliminated. The use of random rays on boundaries also allows for the storage
of boundary/interface flux to be eliminated entirely; this is due to the consideration of cyclic-tracks,
and cancellation of errors due to stochastic ray placement [40].

This also significantly increases the amount of work that needs to be done for each track, as
intersection data needs to be recomputed for each track each iteration. There are claims that the
cache benefits of not storing the rays out-weighs the increased computational work [40]. Initial
results for this method have been promising, but no CMFD acceleration for this method has been
utilized at this time.

3.4.5 Macroband

The macroband method was originally proposed by Villarino et al. [38] for CP calculations in
HELIOS. In this method, characteristic rays placed within “macrobands” are separated by tangential
and intersection points in the mesh. There is no material or geometric discontinuities within each
macroband segment (macrosegment), thus the direction-of-flight averaged angular flux in each
macrosegment is smooth with regards to the transverse direction. Since integration in the MoC is
akin to a quadrature integration, this indicates that a more advanced quadrature, for ray placement
and width, can be used to reduce discretization error [41].

(a) Equidistant (b) Macroband

Figure 3.5: Visualization of hypothetical tracks for (a) equidistant and (b) macroband ray-tracing
methods. Boundaries between macrobands are shown as red dotted lines.

The MRT ray-tracing technique does not consider the internal geometry when laying down
tracks. For a specified ray-spacing and module size, the tracks are the same regardless of the internal
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mesh. The macroband takes an entirely different approach, and the internal mesh is the primary
guide for laying down the tracks.

Macrobands are determined by the computational mesh; for large heterogeneous assemblies,
this results in very thin macrobands, that would result in significantly increased computation time.
In the related method of Characteristic Direction Probabilities (CDP) Hong and Cho [42] proposed
that macroband ray-tracing data only be generated on unique subsystems. Similarly, Yamamoto et al.
[41] proposed the memory reduction technique for macroband (MRMB) in which macroband ray-
tracing data is only generated for unit-cells. These techniques are similar to the modular ray-tracing
technique in that ray-tracing data is only generated for unique subsystems, which significantly
reduces the amount of ray-tracing data. The macroband ray-tracing process is displayed for a single
pin-cell mesh in Fig. 3.6.

(a) Determine intersection and tan-
gent points

(b) Determine macroband bound-
aries (through identified points)

(c) Perform ray-tracing within mac-
roband boundaries

Figure 3.6: Ray-tracing process for macroband.

However, these techniques are fundamentally incompatible with the DNPL technique, thus
an approximation of angular flux must be made on subsystem interfaces. Yamamoto et al. [41]
proposed linearly interpolating the angular flux on cell boundaries, though other techniques involving
averaging the angular flux on sub-boundaries have been utilized in the CDP [43]. Additionally,
these methods do not require adjustment to the angular quadrature.

Yamamoto et al. [41] found that the macroband method (using a Gauss-Legendre quadrature
for ray placement), was more accurate than conventional ray-tracing methods with equidistant
ray-spacing. Févotte et al. [44] proposed a new tracking technique similar to the macroband
method, in which rays (placed equidistantly) are divided into sub-bands, which are effectively
locally projected macrobands, and the average flux of the sub-bands is propagated along each ray.
Studies of ray-spacing with macroband, and Févotte et al.’s [44] method, have indicated that coarser
ray-spacing can be used while maintaining accuracy [39, 41, 44].
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Interface Flux Approximations

The macroband ray-tracing method is fundamentally incompatible with direct neutron path linking
(DNPL); therefore, it requires an approximation at the subsystem interfaces. Although ray-tracing
can be performed on small unique subsystems, similarly to the MRT method, the rays on module
interfaces are no longer guaranteed to align. This makes it necessary for an approximation of the
spatial dependence of the angular flux on these interfaces. However, there are multiple different
options for performing this approximation.

Yamamoto et al. [41] proposed performing a linear of the flux on these interfaces. However,
without adjustment, linear interpolation will not preserve the total flux passing through the surface;
which is an important aspect when considering acceleration techniques such as CMFD. For 3-D
CDP with uniformly spaced rays, Liu et al. [43] proposed a sub-boundary averaging method. This
method partitioned each interface into sub-boundaries, with the size depending on the interface
and the direction; each sub-boundary represented a single angular flux value for each energy group,
that was the average of the angular flux of all rays with centroids that intersected the sub-boundary.
However, because only the centroids of each ray are considered using ray-spacing that is coarse
compared to the sub-boundary size it not feasible.

An earlier work [42] used a similar 2-D sub-boundary averaging (though not directionally
dependent); but rather than only considering the ray centroids, it considered the “projection” of
rays. The “projection” being the area on the surface that would be intersected by the ray if it were
infinite in length. Then, partial intersections of the projection and sub-boundaries are considered.
This allows for coarse ray-spacing to be used without as much accuracy on the interfaces as the
previously mentioned method.

Figure 3.7 visually depicts the surface projections of 2-D rays on a single surface. This figure
will be used as an example for the equations of this sub-boundary averaging method. ψ1

s should
be a linear combination of the ray fluxes ψ1

r and ψ2
r , based on their fractional areas, A1

1 and A1
2,

respectively. Let us denote a sub-boundary as Si where i is some index, and a ray projection as Rj

where j is some index. We expect the surface flux to be a linear combination of the ray fluxes that
intersect it; this can be expressed mathematically as

ψis =
∑
j

A(Si ∩Rj)

A(Si)
ψjr , (3.58)

where A denotes a function returning the area of the argument, and ∩ indicates the intersection of
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two objects. To show that this preserves the leakage through the surface, consider

L = Ω̂ · n̂
∑
i

A(Si)ψ
i
s

= Ω̂ · n̂
∑
i

A(Si)
∑
j

A(Si ∩Rj)

A(Si)
ψjr

= Ω̂ · n̂
∑
i

∑
j

A(Si ∩Rj)ψ
j
r

= Ω̂ · n̂
∑
j

A(Rj)ψ
j
r ,

(3.59)

where this last line is simply the summation of all ray fluxes. The reverse problem, computing the
ray fluxes from the sub-boundary fluxes, is found to be

ψjr =
∑
i

A(Si ∩Rj)

A(Rj)
ψis. (3.60)

Figure 3.7 also highlights a problem with only considering the centroids of each ray. Ray 2 is split
nearly evenly between sub-boundaries 1 and 2. If only the centroids are considered, all ray 2’s flux
would be put into sub-boundary 2. If the flux is relatively uniform along the surface direction, this is
fine; however, if there are discontinuities in the flux then this can lead to considerable inaccuracies.

Liu et al. [43] introduced a useful concept to sub-boundary averaging, with the direction-
dependence in the number of sub-boundaries on each surface. Rather than using a fixed number of
sub-boundaries on each surface, it is expected that directions that are closer to being perpendicular
to the surface will have larger variation, and thus need more sub-boundaries. The number of
sub-boundaries on each surface can be computed using the dimensions of the surface, and the
direction. Similarly to MRT, the number of sub-boundaries on a surface is constrained to be an
integer. The MRT equations, Eqs. (3.54), can be used to determine the number of sub-boundaries
on the x and y surfaces.

3.4.6 Three-Dimensional Ray-Tracing Techniques

The MoC is naturally extended to three-dimensional calculations along characteristic tracks spanning
three-dimensions. However, 3-D MoC presents significant computational challenges. This has
led to significant research effort into developing more efficient approaches to three-dimensional
MoC [32, 45–48]. One of the main focuses of this research has been in reducing the complexity
introduced by three-dimensional ray-tracing.
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Figure 3.7: Example of sub-boundary surface flux for a single surface. Ray flux denoted with the r
subscript, and surface flux denoted with s subscript. Ray projection areas are split by sub-boundaries
in the line to the right of the impacted surface.
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3-D Modular Ray-Tracing

In three-dimensional MoC calculations, characteristic rays must be laid down through the three-
dimensional domain; Generally, three-dimensional tracks are generated by first creating a set
of two-dimensional tracks, and generating three-dimensional tracks that project onto these two-
dimensional tracks [32, 49]. The generation of the two-dimensional tracks can be simplified as
viewing each of the two-dimensional tracks as a plane in the axial and characteristic directions, z
and s respectively. Three-dimensional tracks are then produced by performing two-dimensional
ray-tracing on this characteristic plane [32], as is shown in Fig. 3.8

Figure 3.8: 3-D ray-tracing process. Generate 2-D tracks, these become characteristic planes. Along
each plane, perform 2-D ray-tracing. The highlighted (red) characteristic track in the 2-D pin-cell
on the left becomes the characteristic plane on the right.

There are subtleties in the generation of three-dimensional tracks, which have led to the devel-
opment of different 3-D modular ray-tracing techniques [32, 49, 50]. Previous work had reported
that direct use of the MRT method in 3-D, required that tracks be stored separately for the forward
and backward directions [32]; this has, however, been shown not to be the case [49]. The simplified
MRT was developed to avoid this issue [32], but it generates significantly more characteristic tracks
[49].

As discussed in Section 3.4.2, 2-D MRT perturbs the azimuthal angles in the directional
quadrature to ensure DNPL. For 3-D MRT, this also perturbs the polar angles in the directional
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quadrature. Kochunas [32] and Jarrett et al. [50] also found that modularization of the directional
quadratures led to clustering of the discrete directions, which introduces significant error in the
integration of spherical harmonics moments [32], and has implications on particle conservation in
anisotropic calculations (Section 3.2.2). In order to avoid this issue, the axial ray-spacing can be
reduced until the modularized polar angle is only perturbed within some error criteria [32]; however,
this leads to significant increases in the number of tracks (and thus increases the computational
costs).

Chord-Classification

While MRT significantly reduces the storage requirements of ray-tracing data, in realistic calcula-
tions, the data cannot fully be stored in a processors cache. Loading this data from main memory
is slow, and in general, the movement of this ray-tracing data into different levels of cache uses
significant amounts of time in these calculations. This led to the development of a technique called
chord-classification for locally axially extruded geometries [51]. Chord-classification recognizes
that reactors typically have regularities in the 3-D geometries; this allows for characteristic track-
segments to be classified into sets which share the same length. As shown in Fig. 3.9, rays on the
same characteristic plane that intersect two vertical mesh boundaries will have the same lengths.
Similarly for rays that intersect horizontal planes (though, as axial meshes are usually tall, this is
not as common).

By classifying chords of the same length, the length can be stored only once. Additionally, this
means that the exponential functions (F1(τ gmki) for FSMoC), only need to be calculated once as
well. This adds irregularity to the data accessing, that is generally not optimal for computation, and
thus is only expected to improve calculation speeds if a large number of chords can be classified
[51]. Indeed, it was observed that most rays (96%) could be categorized as “V-chords”, which
that intersect two vertical surfaces. This led to a 40% reduction in transport sweep time [51].
Additionally, chord-classification allows for reduced track-storage, reducing memory by up to 93%.

On-the-Fly Ray-Tracing

The on-the-fly ray-tracing technique [52] uses some of the ideas of the chord-classification method
[51], but only stores two-dimensional track information. All three-dimensional tracks are generated
and temporarily stored during the transport sweep (on-the-fly), leading to significant memory
savings (94% reduction), with minimal computational overhead [52]. While leading to significant
(compared to the storage of all rays) memory reduction, this approach does not see the 40% run-time
improvement that the chord-classification method has. It would also be a fairer comparison to
compare the memory storage compared to the chord-classification method, which also showed

58



Figure 3.9: 3-D example of chord-classification. Colored (red and blue) characteristic tracks
represent groups of “V-chords”, rays between two vertical surfaces.

significant improvement over traditional storage techniques. The chord-classification technique
already boasted a 93% reduction in track-storage memory [51]; while on-the-fly ray-tracing allows
for additional reduction, it is not a significant improvement over chord-classification.

3.4.7 Transport Sweeping with the Method of Characteristics

The MoC is solved iteratively, each iteration is typically referred to as a transport sweep. For given
boundary conditions and a source, a transport sweep is used to compute estimates of the scalar flux
and other moments using equations in the form Eqs. (3.31) for FSMoC and Eqs. (3.46) for LSMoC.
This is an overly generalized description of a transport sweep, and there are considerations that
arise from the different ray-tracing techniques discussed.

In global ray-tracking procedures, calculations are most often carried out by examining a ray
from end to end. The angular flux at the incident end can be found from the boundary conditions.
Along each segment, a transmission calculation can be carried out (Eqs. 3.26 and 3.43), and flux
moments can be accumulated. This procedure is shared by the MRT, which constructs global rays
(long rays) by linking modular rays, as shown in Fig. 3.3. This allows for each ray calculation to be
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carried out in parallel, since each ray calculation is effectively independent [32]; though special
considerations must be taken to avoid race-conditions in the accumulation of moments.

However, in the macroband method, transport sweeping is carried out in a different manner. It is
not possible to generate a continuous characteristic track spanning the global domain when using
MRMB techniques. Thus, transport calculations are carried out in a pin-by-pin (assuming pins are
the subsystems on which track data is generated) basis. For each pin calculation, boundary or inter-
face angular fluxes can be computed as described in Section 3.4.5, and transmission/accumulation
calculations are carried out by sweeping over the tracks. This can be done by considering each track
separately, or by considering each ray with a macroband that is guaranteed to pass through the same
regions. The resulting angular flux on the exiting interface must be then approximated, this can be
done as described in Section 3.4.5.

Pin-by-pin transport calculations must be carried out in a specific order, by considering the
dependencies of the angular flux. Figure 3.10 displays the sweeping order for a 2 × 2 array of
pins in 2-D; this order is significantly different than the ray-by-ray order used in traditional MRT-
based MoC calculations. Sweeping in this manner limits parallelism, though it may be possible to
construct a dependency graph to get an optimal sweeping order considering macrorays individually,
rather than on the pin-by-pin basis; a similar idea was recently implemnted in a SN code[53]. The
dependency graph will be different for each direction of flight 1.

Figure 3.10: Pin-by-pin sweeping order for a 2 × 2 domain with colors representing the order
starting from the bottom left pin.

1if done in a pin-by-pin manner, this can be done per octant
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3.5 Parallelism

High-fidelity transport methods, such as the MoC, can require significant computational resources
for full core calculations; this is particularly true for 3-D calculations. While processing power
has increased exponentially since the MoC was first conceived in 1972 [1], since the early 2000’s,
single-core processing power has largely leveled off. System architectures, as well as code design,
have become more focused on parallel computations. Previous works [32] made significant progress
in the efficient parallelization of the MoC.

Kochunas [32] developed a hybrid-parallel algorithm for the MoC that included thread-based
parallelism over characteristic tracks, as well as spatial and angular decomposition. This work
showed that the MoC was able to scale well up to 10000’s of processors. While this work is
important, and has led to significant advancement, the use of 1000’s of processors is not feasible for
industrial use. It is the author’s opinion that the primary focus of research on 3-D MoC techniques
should be on serial efficiency, such as the linear-source approximation (LSA) (Chapter 5), and
macroray (Chapter 6); however, moderate levels of parallelism are feasible for industry, and so more
efficient use of parallel resources should also be a focus of research (Chapter 4).

In MoC calculations, each characteristic track calculation is nearly independent from others;
previous works have indicated that loops over characteristic tracks can be parallelized efficiently by
using threads on traditional central processing units (CPUs) [32] or on general purpose graphics
processing units (GPGPUs) [10]. This type of parallelism is called shared-data parallelism, as data
is shared between the parallel threads.

Large neutronics calculations may require significant amounts of memory, and thus distributed-

data parallelism is necessary. In general, this type of parallelism separates (partitions) a domain of
the problem, and separate computing nodes are assigned a subdomain. Only data for the assigned
subdomain is stored, and thus whole-core simulations become possible; additionally, because each
subdomain can be processed in parallel, overall runtimes typically decrease with increasing numbers
of subdomains (processors).

MPACT has the capabilities for domain decomposition/parallelism over two separate domains:
space and direction. In MPACT, each discrete direction has an easily calculable amount of work,
and the decomposition is trivial; in general the same cannot be said of the spatial domain. As part
of this thesis work, a more efficient method of spatial decomposition has been investigated and
developed in MPACT [54]. Details on the spatial decomposition techniques used in this work are
given in Chapter 4.
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CHAPTER 4

Spatial Decomposition

4.1 Introduction

Until relatively recently, the method of choice for whole-core neutronics calculations has been
neutron diffusion. Neutron diffusion codes can perform whole-core calculations, on a typical
workstation, in relatively short run-times. However, with the recent shift towards higher fidelity
methods such as SN , and MoC [1], more significant computational resources are necessary. These
high fidelity methods allow for more detailed analysis, through finer resolution and use of fewer
approximations, but typically take far more time to perform calculations. Although processor clock-
speeds have significantly improved, in the past several years computer cores have, for the most part,
not become faster. Instead, computers have adopted multi-core architectures to continue to improve
performance through parallel computations. Therefore, to reduce the run-times (real-time) of high
fidelity simulations, it is thus necessary to rely on parallelism.

There are many different aspects of parallelism, and thread-based parallelism has been discussed
previously Section 3.5. Shared-data parallelism (threads), is limited to the resources of a single
computational node. In order to utilize more resources, it is necessary to use a technique called
domain decomposition. Even without considerations for run-times, these high-fidelity simulations
typically use more memory than is available on a single node, and domain decomposition becomes
necessary. In general, domain decomposition involves decomposing one domain of the problem
into smaller subdomains; the domains to decompose are the independent variables of the solution
e.g. space, direction, and energy. Each smaller subdomain is assigned to a separate processor, and
run in parallel. This model also requires communication between the processors/subdomains.

In Monte-Carlo simulations, it is common that spatial decomposition involves duplication of
some spatial locations. However, in deterministic transport methods, each domain is typically
partitioned; the spatial domain is split with no overlap between subdomains. The MPACT [2]
code has the ability to decompose two domains: space and direction. In MPACT, each discrete
direction has a calculable amount of work, and the decomposition can simply be performed by a
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greedy algorithm; in general, the same cannot be said of the spatial domain. This chapter focuses
on improvements to the spatial decomposition techniques used in MPACT. These techniques are
also applicable to other deterministic transport codes and similar results would be expected. The
contents of this chapter are adapted from an article published on this work [3].

As diffusion has been the method of choice for so long in the reactor physics field, spatial
partitioning techniques common in other fields have, largely, not been applied. Transport codes such
as MPACT [2], or OpenMOC [4] used simple spatial partitioning methods that divided the core
into uniformly sized blocks. However, the spatial partitioning of a reactor can be abstracted to a
graph partitioning problem [5], which has been well-studied in computer science [6] and applied to
other simulation fields such as computational fluid dynamics [7]. In general, the graph partitioning
problem is NP-complete, meaning that a partitioning cannot be easily verified as optimal; therefore,
graph partitioning relies on approximate heuristic methods. Many different methods have been
developed for graph partitioning, several of which are discussed in Section 4.3.

There are also existing libraries for graph partitioning, such as METIS[8] and Zoltan [9]. These
libraries have been used by codes such as PROTEUS and Rattlesnake [10, 11]. However, due to
constraints on the spatial decomposition that may not be satisfied by these libraries, this work has
opted not to use these libraries. This is discussed in detail in Section 4.2.

The remainder of this chapter is structured as follows: in Section 4.2, a description of spatial
decomposition in MPACT is given. Section 4.3 introduces relevant graph theory concepts, and
the methods used for spatial partitioning in this work. Section 4.4 describes the applications of
these graph theory methods in MPACT. Section 4.5 compares methods for 2-D and 3-D reactor
simulations. Finally, Section 4.7 lists the conclusions that are drawn from this work.

4.2 Spatial Decomposition in MPACT

The MPACT code uses the MoC for neutronics calculations, and was originally developed for
direct whole-core simulation of LWRs. As mentioned in Section 3.4.2, MPACT uses the modular
ray-tracing [12] to significantly reduce track memory usage. The ray-tracing modules are small
geometries that are often repeated in the reactor; these ray-tracing modules are used as the smallest
unit for spatial decomposition in MPACT [13]. The ray-tracing modules are typically an axial slice
of a quarter of a full Pressurized Water Reactor (PWR) fuel assembly, as shown in Fig. 4.1 The core
consists of a structured grid of these modules in which each module has the same dimensions but
may have different numbers of computational cells. Therefore, in MPACT, the spatial decomposition
is a structured grid partitioning problem.

In general, it is possible to use the computational cells as the smallest unit in the decomposition.
However, this causes the decomposition problem to become an unstructured mesh partitioning
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(a) fine mesh (b) ray-tracing module mesh

Figure 4.1: Example quarter core configuration and corresponding ray-tracing modular mesh in
MPACT.

problem. This has not been done in MPACT because communication would become significantly
more complicated. Additionally, there would be more re-entrant rays, which would negatively affect
the rate of convergence.

MPACT has had two spatial decomposition methods in the past: manual decomposition, and
assembly-based decomposition. A user may manually enter a decomposition [13], but it is time-
consuming to construct a balanced decomposition, and the result will likely be suboptimal. An
automated method exists that recursively bisects the core using Morton-ordering [14] applied to
the reactor assembly geometries. While this method is automated, it often yields very imbalanced
domains, and it also restricts the number of subdomains that can be used.

Previous work has shown that spatial decomposition of reactors can be abstracted to a graph
partitioning problem [5]. The use of graph partitioning methods in MPACT is expected to solve the
issues encountered in each of the two approaches described above. These methods can be used to
decompose into an arbitrary number of domains with high quality results, without user input.

Existing graph partitioning libraries such as METIS [8] partition graphs efficiently and have
high quality results. To use all given processors, MPACT requires that each spatial subdomain
contains at least one module, i.e. no partition can be empty. However, in some cases, particularly
when the number of partitions is high, METIS may generate empty partitions. This means METIS
cannot be used to decompose the core into an arbitrary number of subdomains without modifying
the resulting partitions. For this reason, MPACT does not rely on third-party libraries for graph
partitioning in the spatial decomposition process.
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4.3 Applied Graph Theory

The spatial decomposition of a reactor core can be abstracted to the partitioning of a graph. Specif-
ically, this would be a weighted graph, G(V,E), that is comprised of a set of vertices, V , and
a set of edges, E, that connect pairs of vertices. In general, these vertices and edges may have
weights; a vertex vi will have weight wi, and an edge ei between vertices vi and vj will have weight
cij . In MPACT, a vertex represents a ray-tracing module, and the edges represent communication
between adjacent modules in the MoC. The graphs are undirected because communication between
ray-tracing modules is two-way.

Previous work [5] applied unweighted graph partitioning techniques to the reactor spatial
decomposition problem; the work presented here applies generalizations and improvements to the
methods used for graphs with weighted vertices and edges. A vertex’s weight indicates the amount
of computational work that is needed; as one might expect, this is highly correlated with the number
of computational cells. This is shown in Section 4.5. In general, the edges may also be weighted to
account for different amounts of data transfer. This is discussed in more detail in Section 4.4.

The goal of partitioning is for each subdomain to have equal weight, with minimal weight of
edges cut by partition boundaries. This is equivalent to each subdomain having the same amount of
computational work with minimized communication between processes. If each process has roughly
the same amount of work to perform, then less time will be spent waiting for other processes, thus
improving parallel efficiency. Also, with less communication, less time will be spent passing data
between processes, so the parallel overhead will be reduced.

In this work, methods were separated into two distinct categories: partitioning methods and
partition refinement (improvement) methods. Partitioning methods give a near-balanced partitioning
for a given graph. Refinement methods attempt to reduce communication between existing partitions
in a graph. As applied in MPACT, refinement methods typically did not significantly reduce
communication. These methods and results are presented in Section 4.6.

4.3.1 Graph Partitioning Methods

In this work, recursive partition methods were considered due to their capability to partition into
arbitrary numbers of domains. Each of these recursive partitioning methods sorts the graph, using
different methods, and then divides or “cuts” the graph into two sub-graphs with approximately
equal vertex weights. Once a graph’s vertices are sorted into a list, Vs, the graph can be bisected
using Algorithm 4.1.

Multi-level partitioning methods are widely used in other fields such as networking, where graphs
can become very large; however, in MPACT, the number of ray-tracing modules is on the order of a
few hundred to several thousand, which directly correlates to the size of the graph. Additionally, for
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MPACT, the decomposition problem is static, so the computation time for partitioning is expected
to be negligible as it can simply be performed one time at the outset. Due to the small graph size,
multi-level methods were not considered as part of this work.

Algorithm 4.1 The algorithm used to determine how to cut a graph, G(V,E), into two sub-graphs
based on a sorted vertex list Vs, and that the graph will be recursively partitioned into N groups.

1: procedure GRAPH CUT(G(V,E), Vs, N )
2: N1 ← bN/2c . Desired number of recursive partitions for first subgraph
3: W1 ← N1

N

∑
vi∈V

wi . Ideal weight of first subgraph

4: Let V1 be a set of vertices such that:
• V1 ⊂ V
• The vertices V1 are taken in order from Vs
• W1 −

∑
vi∈V1

wi is minimized

5: Let V2 be the subset V \ V1

6: Optionally call a refinement method
7: Create a graph G1 from V1

8: Create a graph G2 from V2

9: end procedure

Recursive Spectral Bisection

The RSB method, originally developed by Pothen et al. [15], has been highly successful and widely
used in graph partitioning [16, 17]. This method relies entirely on the connectivity of the graph
and not on its geometry. The RSB method has been improved to allow for partitioning of weighted

graphs into any number of domains [18].
The RSB method makes use of the Laplacian matrix of a graph; specifically the second-smallest

eigenvalue of this matrix, referred to by Fiedler as the algebraic connectivity [19]. The eigenvector
associated with this eigenvalue has also been known as the Fiedler vector. For weighted graphs, the
weighted Laplacian matrix is used in lieu of the Laplacian matrix; matrix elements are given by

Lij =


di, i = j,

−cij, i 6= j,

0, else,

(4.1)

where di is the sum of edge weights from vertex vi, and cij is the weight of the edge between
vertices vi and vj . The Fiedler vector is found from this weighted Laplacian matrix; by sorting the
values of the Fiedler vector, the vertices can be reordered in a one-dimensional list Vs. This list of
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vertices is then divided into two sets, based on weight and total number of partitions needed (see
Algorithm 4.1). The recursive spectral bisection algorithm is listed in Algorithm 4.2.

Algorithm 4.2 The recursive spectral bisection (RSB) algorithm.

1: procedure RSB(G(V,E))
2: Let L be the weighted Laplacian of G(V,E)
3: Compute eigenvectors of L
4: Use the Fiedler vector to sort V → Vs . If tie, use larger eigenvectors
5: Cut graph into G1(V1, E1), G2(V2, E2): Algorithm 4.1
6: RSB(G1(V1, E1))
7: RSB(G2(V2, E2))
8: end procedure

Recursive Inertial Bisection

Another class of recursive partitioning methods are coordinate or geometric methods. There are
many different geometric partitioning methods in existence; in this study, the RIB method [6, 20]
was investigated. This method uses only the geometry of the graph to construct a bisector and does
not consider the connectivity (edges) in any way.

The RIB method determines a bisector that cuts the graph into two approximately equally-sized
subdomains. This is easily generalized for weighted graphs. The bisector should have approximately
equal amounts of weight on each side. The RIB makes no assumption of the orientation of the
graph in space, unlike some other coordinate partitioning methods. The principle axes of the graph
are equivalent to the eigenvectors of the inertial matrix given by

I ≡
n∑
i=1

wi (xi − x)T (xi − x) , (4.2)

where n is the number of vertices, xi is a row-vector containing coordinates of vertex vi, and x is
the mean coordinate vector given by

x ≡

n∑
i=1

wixi

n∑
i=1

wi

. (4.3)

An approximate bisector is given as passing through the weighted centroid with normal vector given
as one of the eigenvectors of I .

Other works [6, 20] have used the smallest eigenvalue’s eigenvector as a normal vector to
minimize the mean-square distance of vertices from the bisecting line or plane. However, in this
work, the largest eigenvalue’s eigenvector is used, so a smaller cut-size is typically given while still
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bisecting the graph into two subdomains of approximately equal weight. This is the case because in
the MoC, communication scales with the surface area between adjacent ray-tracing modules. This
may not be the case for other computational methods.

In general, a line or plane passing through the weighted centroid with the eigenvector normals
will not cut the graph into two equally weighted subdomains. Instead, the vertices will be sorted
according to their distance from the approximate bisectors, and then a cut will be made so that near
equal amounts of weight are in each set using Algorithm 4.1. This sorting and cutting based on
weights is equivalent to shifting the bisector in the direction of the normal vector. An example is
visualized in Fig. 4.2. The RIB algorithm is listed in Algorithm 4.3.

Algorithm 4.3 The basic recursive intertial bisection (RIB) algorithm.

1: procedure RIB(G(V,E))
2: Compute the weighted centroid of the graph x, given by Eq. (4.3)
3: Shift coordinates relative to centroid: xci = xi − x ∀i ∈ V
4: Compute inertial matrix I , given by Eq. (4.2)
5: Compute eigenvectors of I . Largest eigenvalue’s eigenvector e1

6: Compute distance from largest eigen-pair bisector: di = xci · e1

7: Sort V → Vs based on di. . In ties use smaller eigenvalue’s eigenvector
8: Cut graph into G1(V1, E1), G2(V2, E2): Algorithm 4.1
9: RIB(G1(V1, E1))

10: RIB(G2(V2, E2))
11: end procedure

Recursive Expansion-Based Methods

The recursive expansion bisection (REB) methods comprise the last class of partitioning methods
examined in this work. These methods begin a bisection step by selecting a vertex as the starting
point of a subdomain. This subdomain is then expanded until it is approximately half the size of the
graph [5, 6, 21, 22]. In this work, the method outlined by Fitzgerald et al. [5] was slightly modified
and generalized to weighted graphs. For the remainder of this work, the acronym REB will be used
to denote this specific expansion-based method rather than the entire class of methods.

This REB method considers both the geometry and connectivity of the graph. The method
begins by choosing a starting vertex for the subdomain and then expands based on a set of prioritized
rules. At each expansion step, the next vertex is chosen to be geometrically close to the vertices
within the subdomain, and to minimize edges between the subdomain and the remaining graph.
This method makes the assumes that the mesh is structured, and that every mesh element is the
same shape and size. For the application in MPACT, this is always true.

This REB method uses the concept of a sphere of influence (SOI) around a vertex. The SOI
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Figure 4.2: Example of an inertial bisection. Vertices are shown as black points, the bisectors of the
largest eigen-pair is shown by the black solid, and the bisector of the smallest eigen-pair is shown
by the black dashed line. The “shifted” bisector used in the partitioning is shown in grey. While the
communication between vertices is not drawn, it is clear that the length (proportional to cut size) of
the smallest eigen-pair bisector is larger than that of the largest eigen-pair bisector.

includes directly neighboring vertices and vertices that neighbor more than one of the direct
neighbors or that would if the direct neighbor were present in each structured position around the
primary vertex. This is shown for 2-D rectangular structured mesh in Fig. 4.3. In the implementation,
the sphere of influence is calculated using a geometric distance rather than connectivity.

The starting vertex in this REB method is chosen using a set of prioritized rules:

1. it must be on a graph boundary, i.e. at least one direct neighbor is not present,

2. it must have the lowest summed weight of edges, and

3. it must be located furthest from the weighted centroid (given by Eq. (4.3)).

These rules prioritize the domain beginning its expansion in a “corner” of the graph; this helps to
avoid the creation of disjoint subdomains. Vertices within the expanding subdomain are considered
internal vertices, and the remaining vertices are considered to be external vertices. During expansion,
the next vertex is determined using a set of prioritized rules:

1. it must be neighboring at least one internal vertex,

2. it must have the highest summed weight of edges with internal vertices,
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Figure 4.3: “Sphere of influence” example for 2-D rectangular structured grid. The primary vertex
is shown in black, direct neighbors are blue, and additional vertices in the sphere are white.

3. it must have the lowest summed weight of edges with external vertices,

4. it must have the largest number of internal SOI vertices,

5. it must have the largest number of external SOI vertices, and

6. it must have the smallest distance from reference vertex.

The reference vertex is in the expanding subdomain, which begins as the first vertex but changes
during expansion; the reference vertex is the most recently added vertex with less external commu-
nication than the previously added vertex. An example of the expansion order is shown in Fig. 4.4.
The rules ensure that the next vertex is connected to the current domain, and prioritizes minimizing
communication, and avoids creating disjoint subdomains.

Algorithm 4.4 The chosen Recursive Expansion Bisection (REB) algorithm.

1: procedure REB(G(V,E))
2: Compute weighted centroid of the graph
3: Choose a starting vertex for the expanding domain: See rules in Section 4.3.1
4: Expand the domain from the starting vertex. Let Vs be the list of vertices in order of the

expansion: See rules in Section 4.3.1
5: Cut graph into G1(V1, E1), G2(V2, E2): Algorithm 4.1
6: REB(G1(V1, E1))
7: REB(G2(V2, E2))
8: end procedure
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Figure 4.4: An example of the REB method expansion on a small graph. The black lines show the
square mesh cells. The expansion begins at the large black point in the center of a cell, and the red
line from this shows the expansion’s order. Each small black dot in the upper left of a cell indicates
the reference vertices during expansion. The thick black dashed line shows the bisecting cut.
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4.4 Applications for MPACT

As described in Section 4.2, MPACT’s spatial decomposition is performed on the ray-tracing
module mesh. However, there are several restrictions on spatial subdomains in MPACT. Each spatial
subdomain must be contiguous, and cannot wrap around other spatial subdomains. To account for
these restrictions, adaptations are made to the graph partitioning process.

Due to restrictions in MPACT, at each recursive step, each subdomain in a bisection is made
contiguous. If a partitioning method results in a noncontiguous subdomain, then each noncontiguous
group of modules will be moved into the other subdomain except for the largest group. This fix is
done at the expense of load-balance, but is necessary for these methods to be robust in MPACT. To
ensure that no subdomain wraps around another, a fix is applied after the graph partitioning process.
If a subdomain wraps around another (3 surrounding sides), the portion of the subdomain that is
wrapped is moved into the wrapping subdomain.

The ray-tracing modules that make up the core in MPACT can be abstracted into a weighted
graph, where vertex weights are the number of computational cells in a module, and edges con-
necting neighboring modules. These edges represent the communication in MPACT’s MoC solver.
However, MPACT typically relies on the CMFD acceleration method [23], which involves solving
a sparse linear system. The work-load and communication of the CMFD solver, in MPACT this is a
linear system solver from PETSc [24], are different than than of the MoC. Thus, what may be an
optimal decomposition for the MoC solver, is likely not for the CMFD solver. As the MoC solver is
expected to take longer than the CMFD solver, the graph is constructed based on the work-load and
communication of MoC.

For 2-D simulations, the application of graph partitioning methods is clear: abstract the 2-D
mesh into a graph for partitioning. However, for 3-D, there are additional concerns. MPACT’s
primary 3-D transport method is the 2D-1D method, in which the MoC is used in the radial
directions, and a lower-order solver couples axial planes [25]. For 2D-1D simulations, MPACT
currently restricts spatial domains to be aligned in both the radial and axial directions; this is due to
implementation, and is not a general requirement of the methods.

To comply with MPACT’s restrictions on 3-D spatial domains, the current approach is to axially
average module weights (numbers of cells), perform a 2-D graph partitioning on a single plane, and
apply the resulting partitioning to all axial planes. This approach restricts the number of spatial
domains to be an integer multiple of the number of planes. This axially and radially aligned scheme
is expected to work well in many cases, since reactor cores do not typically vary significantly in the
axial direction. However, for some designs, this may not be true, and planes near the top or bottom
of the core may have significantly fewer cells; in these cases, high load imbalance is to be expected.

It is possible to change MPACT’s implementation to lift these alignment restrictions, but that is
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Figure 4.5: Sample decompositions for (a) axially aligned, (b) radially aligned, and (c) generalized
decomposition strategies. Rows represent axial planes. Numbers are the vertex weights.

beyond the scope of this work. If spatial domains were aligned in only the radial direction, there may
be some benefit to load-balance. In this scheme, each axial plane can be assigned an appropriate
number of processes, and a separate 2-D decomposition can be performed for each plane. This also
lifts restrictions on the number of domains; the number of domains must only be greater than or
equal to the number of planes.

If all alignment restrictions were lifted on MPACT’s spatial domains, then a direct partitioning
of the 3-D core can be performed by abstracting the entire core to a graph. This scheme provides the
most freedom and would be expected to give the most balanced decompositions. In MPACT’s 2D-
1D solver, the amount of data communicated radially is significantly larger than that communicated
axially, so it may be advantageous to assign the edges connecting the neighboring modules in the
axial direction lower weights than those in radial directions. By doing so, the overall communication
would be expected to be decreased.

Figure 4.5 shows a comparison of the three hypothetical decomposition schemes, for the
purposes of illustration. Looking at the maximum-to-minimum ratio (MMR), as an indicator of
load-balance, the strategies have clear differences. The MMR for the axially aligned, radially
aligned, and generalized strategies in this example are 4.00, 2.67, and 2.00, respectively. However,
it is important to note that the largest domain in each case has the same weight (16), so while the
different schemes give different balances, the overall run-times are not expected to be different.
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Figure 4.6: VERA progression problem 5a-2d core configuration.

4.5 Results

4.5.1 2-D Results

Results were generated for the planar 2-D version of VERA progression problem 5a [26]. This
problem is a quarter core with reflector, barrel, and neutron pad regions surrounding several fuel
assemblies, as shown in Fig. 4.6. In the model, there are 257 ray-tracing modules in total, which
provides the upper bound for the number of domains. Each subdomain is assigned to a single
processor, with a maximum of 36 processors (subdomains) per computational node. Each of the
graph decomposition methods was applied to the geometry of this problem, and MPACT was run
for each case without applying refinement methods. The assembly-based decomposition was run
for all possible numbers of subdomains: 1, 4, 16, 73, and 257. The possible numbers of subdomains
are limited by powers of 4 (8 in 3-D), until subdomains would be located entirely outside the core
shape. It is also possible to decompose into the fuel assemblies or ray-tracing modules, in this case
73 and 257 respectively. Example decompositions for 73 subdomains are shown in Fig. 4.7.
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(a) Assembly-based decomposition method. (b) REB partitioning method.

Figure 4.7: Example decompositions for 73 subdomains for VERA progression problem 5a-2d.
Each color represents a different subdomain.

Load-Balance

In MPACT, each spatial subdomain is simulated concurrently. After each iteration, parallel boundary
conditions are communicated and updated in parallel. The time for solve routines is measured for
each subdomain, as is the MoC communication time. However, the communication time includes
time spent waiting for other subdomains to finish computation; that is, blocking communication.

This parallel iteration scheme means that the wall-time of each iteration is controlled by the
subdomain with the longest run-time; this is expected to be the subdomain with the largest number
of cells. However, the wall-time is not the only important consideration; it is important to consider
how well the computational resources are used. A measure for how well computational resources
are used is the parallel efficiency, as defined by

E ≡ Ts
N · T

, (4.4)

where Ts is the time in serial, and T is the time in parallel with N processes.
If runtime is highly correlated with the largest number of cells in a subdomain, then this

efficiency is expected to be related to the largest fraction of cells in a subdomain. Specifically, the
parallel efficiency is expected to be inversely proportional to the ratio of the largest fraction of cells
to the optimal fraction of cells. In an ideally balanced decomposition, each subdomain would have
1/N cell fraction. By comparing the maximum cell fraction to this optimal value, one can estimate
how much longer the simulation will take compared to an ideal decomposition, neglecting serial
code sections and overhead.
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Figure 4.8: Ratio of largest fraction of cells to the optimal fraction of cells as a function of number
of subdomains for each partitioning method without refinement.

Higher parallel efficiency indicates better utilization of the available computational resources,
and lower runtime. The expectation is that higher parallel efficiency can be obtained by having
the largest cell fraction closer to the optimal cell fraction. As seen in Fig. 4.8, the REB method
is expected to have slightly better parallel efficiency than the other methods for many cases. It
is also expected that for a low number of subdomains, the assembly-based decomposition will
result in significantly lower parallel efficiency. However, for large numbers of subdomains, the
assembly-based decomposition is expected to result in comparable parallel efficiency to the graph
partitioning methods.

Communication

In MPACT, parallel boundary conditions are communicated concurrently. However, the measure-
ment of communication time includes any time spent waiting for other subdomains to complete their
calculations. Generally, the time spent sending or receiving parallel boundary conditions is relatively
small. This time is expected to increase with the weight of edges cut by parallel boundaries.

Figure 4.9 shows that the number of edges cut increases as the number of domains increases.
This indicates that time sending and receiving parallel boundary conditions is expected to increase
with the number of subdomains. As the number of subdomains increases, the time spent sending
and receiving parallel boundary conditions is expected to increase as more data is communicated.
However, the time difference between the slowest and fastest subdomains decreases, so the overall
communication time measurement is expected to decrease. Because subdomains in the assembly-
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Figure 4.9: Number of edges cut as a fraction of number of domains for each partitioning method
without refinement.

based decomposition are rectangular, the number of edges cut is typically lower than in the graph
partitioning methods.

MPACT Results

As expected, the total and MoC run-times are highly correlated with the largest fraction of cells in
any subdomain, as shown in Fig. 4.10. Both total and MoC run-times are very highly correlated
with the largest fraction of cells in a subdomain, indicating that this metric can be used to estimate
the relative run-times of decompositions. The assembly-based decomposition method was not used
in this correlation, as there are only a few data points available.

Utilization of computational resources is also an important aspect for a high performance
simulation code; this can be measured by the parallel efficiency. The total parallel efficiency is
shown in Fig. 4.11 for each decomposition method. As the core becomes more decomposed, the
parallel efficiency drops off rapidly, approaching around 20%. Generally, the graph partitioning
methods result in similar parallel efficiency, though the REB method appears to give very slightly
higher efficiency in many cases. The assembly-based decomposition method has significantly lower
parallel efficiency when there are few subdomains. However, for the moderately decomposed
problem (73 subdomains) the assembly-based decomposition method results in significantly higher
parallel efficiency. This was not initially expected, as the largest subdomain has a cell fraction
similar to that of the graph partitioning methods.

As parallel boundary conditions have a more significant effect on the solution within each subdo-
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for each partitioning method.
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Figure 4.11: The total parallel efficiency for each partitioning method as a function of the number
of domains.
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Figure 4.12: The number of iterations used by each decomposition method as a function of the
number of subdomains.

main, the convergence rate decreases. This occurs as subdomains become smaller (geometrically),
or as they become more “jagged.” These jagged parallel boundaries cause re-entrant rays, in which a
single ray in the MoC will re-enter the subdomain after leaving. These re-entrant rays will not occur
in the assembly-based decomposition, because subdomains are forced to be rectangular. This can be
observed in Fig. 4.7. The number of MoC iterations required for convergence in each case is shown
in Fig. 4.12. There is not a significant increase in the number of outer iterations as the subdomains
become smaller, this is consistent with previous results in parallel accelerated transport calculations
[27–29]. The increase in number of iterations would be expected to be much more significant in
an unaccelerated transport calculation. It may be possible to consider spectral information, such
as subdomain optical thickness or scattering ratios, during decomposition to allow for a smaller
increase in required iterations; however, this will only have an effect at moderately decomposed
problems.

By examining the parallel efficiency of runtime per iteration, these spectral effects and the
scaling of the solvers in parallel can be determined. As shown in Fig. 4.13, the total parallel
efficiency per iteration decreases as the core becomes more decomposed, limiting toward 25%. If
only the MoC solver time is being examined, the parallel efficiency per iteration decreases at a
much slower rate, as shown in Fig. 4.14. This indicates that the MoC solver in MPACT is highly
efficient in parallel, and that other components of MPACT are the bottleneck in parallel simulations.
Furthermore, for both total and MoC run-times, the graph partitioning methods give comparable
parallel efficiencies. The assembly-based decomposition method still results in lower efficiency
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Figure 4.13: The total parallel efficiency per iteration for each partitioning method as a function of
the number of domains.

when using few subdomains, but for high numbers of subdomains, it is comparable with the graph
partitioning methods.

Finally, the ratio of the optimal cell fraction to the maximum cell fraction is expected to be
proportional to the parallel efficiency per iteration of the MoC solver. As shown in Fig. 4.15, the
parallel efficiency is correlated with the the ratio of optimal-to-maximum cell fractions, though it is
not correlated as strongly as the runtime with the maximum cell fraction. This indicates that this
ratio can be used to estimate the parallel efficiency of the MoC solver for a decomposition. Even
isolating the effect due to increased numbers of iterations, there is a significant spread in parallel
efficiency as a function of the optimal to maximum cell fraction ratio; this can be explained by the
fact that significantly different numbers of domains (processes) can result in similar fractions. This
is clearly observed in Fig. 4.8.

CMFD Acceleration

In MPACT, the two main solvers contributing to runtime of a steady-state eigenvalue calculation are
the MoC solver and CMFD acceleration, each of which is parallelized using the same computational
resources. From Fig. 4.16, the MoC and CMFD solvers take similar amounts of time in serial;
however, as more subdomains are used, the fractional runtime of CMFD increases to almost 70% of
the total. This may be partially alleviated by using a multigrid method [30] to more efficiently solve
the CMFD system. This indicates that the parallel efficiency is quite low for MPACT’s CMFD
linear system solvers, which heavily leverage PETSc [24] for parallelism.
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Figure 4.14: The MoC parallel efficiency per iteration for each partitioning method as a function of
the number of domains.
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Figure 4.15: Correlation of the MoC parallel efficiency per iteration and the ratio of optimal and
maximum cell fractions for each of the partitioning methods.
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Figure 4.16: Fractional runtime of the MoC solver and CMFD acceleration method in MPACT for
varying number of domains with the REB partitioning method.

Similar as the number of outer transport iterations, as subdomains become smaller, it is expected
the CMFD linear system will require more iterations for convergence; this is shown for the REB
partitioning method in Fig. 4.17. This is because the pre-conditioner used in MPACT is less efficient
with more domains. However, by considering the parallel efficiency per inner iteration, these
convergence effects can be eliminated, and the parallel scaling of the linear system solvers can be
examined. Figure 4.17 shows that the parallel efficiency of the linear system solvers used in MPACT
for CMFD calculations is quite low, limiting to around 30%. By using a linear system solver that has
better parallel scaling [31], the overall parallel efficiency of MPACT may be increased. However,
these results also indicate that the parallel efficiency is, in part, lowered by spectral effects, that will
not be eliminated by a more efficient parallel linear solver.

4.5.2 3-D Results

As shown in Section 4.5.1, decomposition metrics can be used to estimate the runtime and parallel
efficiency without needing to run the simulations. There are different approaches to decomposition
in 3-D; these are discussed in more detail in Section 4.4. Decompositions were performed without
refinement for three different 3-D decomposition schemes: axially and radially aligned (ARA),
radially aligned (RA), and unrestricted (UR). Given fewer restrictions, the resulting decompositions
were expected to be more balanced. Decompositions were performed on VERA progression problem
5a-0 in 3-D [26] with 58 axial planes, but the simulations for this problem were not run.

The ratio of maximum cell fraction to optimal cell fraction can easily be converted to the
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Figure 4.17: The total number of CMFD inner iterations, parallel efficiency, and parallel efficiency
per inner iteration for varying number of domains with the REB partitioning method.

maximum cell fraction by dividing by N . For brevity, only this load balance metric is shown herein.
The resulting decompositions from the ARA approach are very similar to those in the 2-D case.
Just as in the 2-D case, the maximum-to-optimal cell fraction ratio is lowest for the REB method as
compared to the other partitioning methods for many cases, as seen in Fig. 4.18. This indicates that,
barring any differences in the number of iterations, the REB method is expected to have slightly
higher parallel efficiencies.

In the RA scheme, a separate decomposition is performed for each axial plane, with an appro-
priate number of subdomains based on the number of cells in the plane. Unlike in the 2-D case, the
REB method seems to perform significantly worse than the other two methods for low numbers of
subdomains. For highly decomposed cores, the REB method seems to perform slightly better than
the other partitioning methods. Additionally, by comparing the magnitude of the ratios in Fig. 4.19
and Fig. 4.18, it is clear that the RA approach typically has less imbalance.

Finally, the UR approach decomposes the 3-D core by directly abstracting the entire core into a
graph. The REB method is significantly more imbalanced than other methods for lower numbers
of subdomains; however, for highly decomposed cores, the REB method outperforms the other
methods, as shown in Fig. 4.20. Additionally, for highly decomposed problems, both the RSB and
RIB methods seem to have worse balance when using the UR scheme compared to the RA scheme.

The approach currently used in MPACT is the axially and radially aligned 3-D decomposition
scheme. If other approaches were to be used, the implementation of parallel communication in the
2D-1D method would need to be made more general. To justify these changes, the less restricted
approaches would need to offer significant advantages over the current approach. Figures 4.21
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Figure 4.18: Maximum-to-optimal cell fraction ratio for each partitioning method as a function of
number of domains in the axially and radially aligned (ARA) scheme.
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Figure 4.19: Maximum-to-optimal cell fraction ratio for each partitioning method as a function of
number of domains in the radially aligned (RA) scheme.
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Figure 4.20: Maximum-to-optimal cell fraction ratio for each partitioning method as a function of
number of domains in the unrestricted (UR) scheme.

to 4.23 examine the maximum cell fraction of each scheme relative to the current scheme. The
smaller the relative maximum cell fraction, the lower the expected runtime will be.

For most applications, reactor cores in MPACT are not highly decomposed. At maximum, on
the order of 30 subdomains per axial plane are unrestricted. In this context, modestly decomposed
cores are defined as those with fewer than 2,000 subdomains; otherwise, the core is considered
highly decomposed. For the RSB and RIB methods, the RA approach is expected to give 10% better
performance than the ARA approach on average. For highly decomposed cases, these partitioning
methods are only expected to give an average of 2 – 3% better performance. On average, the UR
approach is expected to give worse performance by more than 10% using these partitioning methods.
However, for the REB partitioning method, the RA approach is only expected to give 3% better
performance on average. Typically, the UR approach is still expected to result in worse performance.
This may be a result of the problem examined in this work which had axial planes that were fairly
well balanced. By giving the graph partitioning methods more degrees of freedom the heuristic
graph partitioning methods perform worse overall. Multi-level partitioning methods reduce the
degrees of freedom during coarsening and may be more appropriate in these cases.
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Figure 4.21: Maximum cell fraction relative to the axially and radially aligned (ARA) approach for
the RSB partitioning method.
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Figure 4.22: Maximum cell fraction relative to the axially and radially aligned (ARA) approach for
the RIB partitioning method.
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Figure 4.23: Maximum cell fraction relative to the axially and radially aligned (ARA) approach for
the REB partitioning method.

4.6 Partition Refinement

4.6.1 Partition Refinement Methods

The Kernighan-Lin algorithm [32] is often described as one of the earliest developed graph parti-
tioning algorithms; however, the algorithm does not actually create a partitioning of the graph, it
improves, or refines, the quality by reducing the number of edges cut between existing partitions
[6]. Therefore, in this work, this method and a modified version of it are called refinement methods.

As suggested by Pothen [15], the RSB method or other partitioning methods can create a high
quality initial partitioning to use in the Kernighan-Lin algorithm. Significant improvements have
been made to the efficiency of the original Kernighan-Lin algorithm [33]; however, the graphs
of concern in this work are relatively small, and graph decomposition time is negligible when
compared to the overall simulation runtime. Two partition refinement methods were examined: the
Kernighan-Lin algorithm [32] and a modification to the Kernighan-Lin algorithm which takes some
geometric information of the graph into account [5].

The investigated partition refinement algorithms reduce the weight of edges cut between two
partitions by swapping vertex pairs between the partitions iteratively. The original Kernighan-Lin
algorithm operates entirely on the connectivity of the graph, while the modified Spatial Kernighan-
Lin algorithm uses both connectivity and geometric information from the graph.
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For each vertex in the graph, D is defined as

Di ≡ EE,i − EI,i, (4.5)

where EE,i is the sum of edge weights from vertex i connecting with vertices outside the partition
containing vertex i, and EI,i is the sum of edge weights from vertex i connecting with vertices
within the partition containing vertex i. The reduction in communication or “gain,” from swapping
a pair of vertices (a, b) is defined as

g(a,b) ≡ Da +Db − 2ca,b. (4.6)

The Kernighan-Lin algorithm, given in Algorithm 4.5, is a greedy algorithm, in that it will
swap a pair (a, b) with maximal g at the current step. The idea is that by doing this iteratively, the
algorithm will lead to a minimized cut-size; in reality, the algorithm will often get stuck in local
minima that do not have a global minimized cut-size. Additionally, there may be multiple pairs
(a, b) with the same maximal gain value: the algorithm will only consider one of these pairs.

The Spatial Kernighan-Lin algorithm, given in Algorithm 4.6, is an adaptation of the Kernighan-
Lin algorithm that accounts for the multiple pairs with maximal gain. This algorithm was developed
as part of this work, in an attempt to improve the original Kernighan-Lin algorithm for this specific
application. This algorithm prioritizes vertex pairs that are geometrically distant from one another.
The idea behind this modification is that to minimize the edge-cut, the cut should be as straight
as possible. By prioritizing distant vertex pairs, the bisector is typically “straightened out”; this
process can be likened to pulling on the ends of a string in order to straighten it.

4.6.2 Partition Refinement Results

In Section 4.6.1, refinement methods are introduced as a method for further reducing communication.
Figure 4.24 shows that both refinement methods are able to slightly reduce the number of edges
cut compared to the cases without refinement for RSB. Similar trends are observed for the other
partitioning methods. While these refinement methods offer a slight reduction in communication,
the parallel efficiency due to load imbalance may be negatively affected by applying refinement,
as shown in Fig. 4.25. Communication is not expected to have as significant of an effect as load
imbalance, so for the simulations in MPACT, partitioning methods were used without refinement.
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Algorithm 4.5 Kernighan-Lin Algorithm, with input graphG(V,E), and vertex setsA andB within
the graph.

1: procedure KERNIGHAN-LIN(G(V,E), A,B)
2: gm = 1
3: while gm > 0 do
4: WA =

∑
i∈A

wi

5: WB =
∑
i∈B

wi

6: Compute D ∀ V (Equation (4.5))
7: Let av, bv, gv be empty sets
8: for n = 1 to N/2 do
9: Find unmarked pair (a, b) such that:

1. a ∈ A and b ∈ B
2. g is maximized (Equation (4.6))

10: ŴA = WA + wb − wa
11: ŴB = WB + wa − wb
12: if MAX(WA, WB) ≥MAX(ŴA, ŴB) then
13: Append a to av, b to bv, and g to gv
14: Update D values as if a, b have been swapped
15: WA = ŴA

16: WA = ŴB

17: else
18: End search
19: end if
20: end for
21: Find k maximizing gm =

k∑
i=1

gv(i)

22: if gm > 0 then
23: Exchange vertices in av(1 : k) and bv(1 : k)
24: end if
25: end while
26: end procedure
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Algorithm 4.6 Spatial Kernighan-Lin Algorithm, with input graph G(V,E), and vertex sets A and
B within the graph.

1: procedure SPATIAL KERNIGHAN-LIN(G(V,E), A,B)
2: gm = 1
3: while gm > 0 do
4: WA =

∑
i∈A

wi

5: WB =
∑
i∈B

wi

6: Compute D ∀ V (Equation (4.5))
7: Let av, bv, gv be empty sets
8: for n = 1 to N/2 do
9: Allow (fa, fb) to be sets from A,B satisfying:

1. a ∈ A, b ∈ B
2. g is maximized (Equation (4.6))

3. a and b are on the boundary between A and B

10: Find pair (f ′a, f
′
b) such that distance is maximized

11: if No pair found then
12: Search using standard Kernighan-Lin rules
13: end if
14: ŴA = WA + wb − wa
15: ŴB = WB + wa − wb
16: if MAX(WA, WB) ≥MAX(ŴA, ŴB) then
17: Append a to av, b to bv, and g to gv
18: Update D values as if a, b have been swapped
19: WA = ŴA

20: WA = ŴB

21: else
22: End search
23: end if
24: end for
25: Find k maximizing gm =

k∑
i=1

gv(i)

26: if gm > 0 then
27: Exchange vertices in av(1 : k) and bv(1 : k)
28: end if
29: end while
30: end procedure

96



0 50 100 150 200 250
Number of Domains

0.94

0.96

0.98

1.00

1.02

Re
la

tiv
e 

Co
m

m
un

ica
tio

n 
(E

dg
es

 C
ut

)
RSB_KL RSB_SKL

Figure 4.24: Communication relative to the RSB method without refinement as a function of number
of domains for each refinement method using the RSB partitioning method.
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Figure 4.25: Ratio of maximum cell fraction to optimal cell fraction for the RSB partitioning
method with each refinement method.
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4.7 Conclusions

Spatial decomposition is a useful technique for reducing the runtime of simulations and is necessary
to run whole-core high fidelity reactor calculations. Using graph partitioning methods to decompose
the spatial domain of a core has significant advantages when compared to previous decomposition
methods. Graph partitioning allows for the usage of an arbitrary number of spatial subdomains,
and it generalizes to different module geometries such as a hexagonal lattice. Graph partitioning
methods generally provide high quality decompositions that increase parallel efficiency. These
automated spatial decomposition methods improve code usability and flexibility by allowing users
to easily fit simulations to any number of processors.

However, for highly decomposed cores, the convergence rate decreases due to jagged subdomain
boundaries. This caused graph partitioning methods to significantly reduce runtime for problems
that were not highly decomposed but actually increase runtime for highly decomposed problems.
Additionally, the graph partitioning methods allow for an arbitrary number of domains to be used,
unlike the previous method, giving the user significantly more options. This is because the assembly-
based decomposition method used rectangular (non-jagged) subdomains. This indicates that it
may be advantageous to create a high quality decomposition method that enforces rectangular
subdomains. However, this approach will not generalize to other lattice types, such as hexagonal
lattices.

In the current MPACT implementation, there is no significant difference in run-times when
using any of the three partitioning methods discussed, although REB typically results in slightly
lower MoC run-times. The 2-D results indicate that the maximum fraction of cells in a subdomain
is highly correlated with the runtime of the simulation. Furthermore, 2-D results indicate that
the parallel efficiency of MoC is highly correlated with the ratio of the optimal cell fraction per
subdomain to the maximum cell fraction in a subdomain.

In 3-D, MPACT currently requires spatial domains to be axially and radially aligned, for the
2D/1D method. If these restrictions are lifted, then other approaches can be used to perform the 3-D
spatial decomposition. Three 3-D decomposition approaches were investigated in this work: radial
and axial aligned subdomains, radially aligned subdomains, and an approach with no alignment
restrictions. The radially aligned approach is expected to out perform the current approach by an
average of 10% for typical cases. However, the unrestricted approach is actually expected to perform
worse than the current approach on average because the problem is well balanced axially. This
analysis was performed on a 3-D core, that was relatively homogeneous in the axial direction; if a
core design were to be more axially heterogeneous, then a more significant increase in performance
might be expected.

The parallel efficiency is a measure of how well computational resources are utilized in parallel
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applications. MPACT’s overall parallel efficiency decreases rapidly as more domains are used due
to two factors: increased number of iterations, and the inefficiency of the parallel CMFD solve. For
the 2-D VERA progression problem 5a, the overall parallel efficiency of MPACT dropped to nearly
20%. The parallel efficiency of only the MoC computations in MPACT drops to between 40–60%,
while the parallel efficiency of the CMFD computation drops to <20%. This causes the CMFD
computation to dominate runtime in spatially decomposed cases, and motivates the implementation
of a more efficient parallel linear system operator in MPACT rather than using a third-party library.

The graph-based partitioning methods provide significant benefits in the quality of spatial
decomposition (compared to the previous method), and user experience. For a realistic 2-D quarter
core calculation with a typical number of subdomains, the graph based methods were able to
increase total parallel efficiency by more than 20%, and MoC efficiency by 35%. The graph-based
methods also allow for the user to use any number of subdomains, rather than a small subset of
choices with the previous method. The methods also require no additional input from the user.
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CHAPTER 5

Improved Linear Source Formulation for
Multi-physics and 2D/1D Applications

The studies performed in this thesis have made extensive use of the linear-source approximation
(LSA) introduced by Ferrer and Rhodes [1]. Through the use of the approximation, as presented in
the original work, instabilities (due to implementation) and inefficiencies were found. This chapter
aims to present two improvements made to this approximation that are a focus of this research:
improved exponential tabulation [2], and an improved formulation for multi-physics and 2D/1D
applications [3].

5.1 Exponential Tabulation

The original moment-based LSMoC formulation [1], detailed in Section 3.3, uses several exponential
functions:

F1(τ gm) ≡ 1− eτ
g
m , (5.1a)

F2(τ gm) ≡ 2 [τ gm − F1(τ gm)]− τ gmkiF1(τ gm), (5.1b)

G1(τ gmki) ≡ 1 +
τ gmki

2
−
(

1 +
1

τ gmki

)
F1(τ gmki), (5.1c)

G2(τ gmki) ≡
2

3
τ gmki −

(
1 +

2

τ gmki

)
G1(τ gmki), (5.1d)

and
H(τ gmki) ≡

τ gmki
2
−G1(τ gmki), (5.1e)

where τ gmki is the total optical thickness of a segment, and τ gm is the variable optical thickness at any
point along the track-segment. Although the functions F1(τ gm), and F2(τ gm) are functions of variable
τ gm, in the implementation of this method in the code they are only ever evaluated over the total
segment optical thickness, τ gmki. The functions, G1(τ gmki), G2(τ gmki), and H(τ gmki) all require special
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Figure 5.1: The exponential functions, Eqs. (5.1), from 0 to 10.

treatment around τ gmki = 0, in this work this is handled via Taylor expansion about τ gmki = 0.
These functions all involve an exponential, e−τ

g
mki; although this does not present a problem

mathematically, the exponential function is a transcendental function that tends to be slow when
evaluated analytically on computers. A single exponential evaluation may take more than 10 floating
point operations (FLOPs). For transport codes to be efficient, this presents a challenge. Previous
works have demonstrated that tabulation of the exponential and interpolation in the table can provide
significant run-time reduction [4], reducing exponential calculation times by up to a factor of 3. The
original formulation [1] suggested the use of tabulation for each the functions Eqs. (5.1) (though no
details were provided).

5.1.1 First Approach: Improved Accuracy

With the implementation of LSA into MPACT, stability issues were observed in problems with very
small transport cross sections, such as the fuel-clad gap in LWRs. These stability issues were only
observed when exponential function interpolation was used, and the simplest method for addressing
the issue was to increase the accuracy of the exponential evaluation. It was discovered that the root
of the problem was the F2(τ gmki) function in the transmission equation

ψg,out
mki = ψg,inmki +

(
qgmki
Σg
t,i

− ψg,inmki

)
F1(τ gmki) +

q̂gmi

2
(
Σg
t,i

)2F2(τ gmki). (5.2)

In MPACT, source terms are actually computed and stored as q/Σg
t,i; however the F2(τ gmki) term

has an additional inverse Σg
t,i. In problems with near-void regions, where Σg

t,i is small, any error in
F2(τ gmki) interpolation will be magnified. The simplest approach is to increase the accuracy of the
exponential interpolation to account for the lowest expected cross sections; in the test problem this
was on the order of 10−5. Thus, the expectation is that an interpolation 5 orders of magnitude more
accurate than previous accuracy would be sufficient. Previous work [4] indicated that for FSMoC
calculations a max interpolation error of 10−7 was sufficient, i.e. for LSMoC the max error would
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Figure 5.2: Example of linear interpolation with uniform interval widths and interpolation points on
the edge of the domain.

need to be approximately 10−12.
Creating interpolation tables with the necessary accuracy for these problems requires some care.

The original investigation of exponential interpolation for transport calculations done by Yamamoto
et al. [4] indicated two methods of controlling interpolation accuracy. One method to increase
interpolation accuracy is to increase the number of intervals (decreased interval width); however,
this increases the memory required to store the table. Alternatively, higher order polynomials can be
used in the interpolation, that overall tends to reduce memory at the expense of increased run-times.

In this investigation, two additional methods for controlling accuracy were investigated: interpo-
lation node choice, and non-uniform interval widths.

Interpolation Points

Within each interval of an interpolation table, the function is computed at interpolation points and
an approximation of the function is made as the polynomial passing through these points. The
placement of these points within each interval can greatly affect the accuracy of the approximation.
Previous works [4, 5] used evenly-spaced interpolation points within each interval; however, this
does not minimize the error in the approximation. An example is shown in Fig. 5.2.

For Pn(x), a polynomial of order n, approximating a function, f(x), on an arbitrary interval
[a, b], the maximum error, ε, within an interval is given by

ε =
1

(n+ 1)!

(
max
ξ∈[a,b]

∣∣f (n+1)(ξ)
∣∣)(max

x∈[a,b]

∣∣∣∣∣
n+1∏
j=1

(x− xj)

∣∣∣∣∣
)
, (5.3)

for some value ξ ∈ [a, b], where f (n+1) is the n+1-th derivative of f(x). The choice of interpolation
points will only affect the last term enclosed in parentheses.

The Chebyshev points [6] are a set of values in [a, b] that minimize maxx∈[a,b]

∣∣∣∣∣n+1∏
j=1

(x− xj)

∣∣∣∣∣, and
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Table 5.1: Maximum error in F1(τ) for interval width ∆.

Polynomial Order Uniform points Chebyshev points

1 ∆2

8
∆2

16

2 ∆3

72
√

3
∆3

192

3 ∆4

1536
∆4

3072

are given by

xk =
1

2

[
(a+ b) + (b− 1) cos

(
2k − 1

2(n+ 1)
π

)]
,∀k ∈ {1, 2, ..., n, n+ 1}. (5.4)

By using the Chebyshev points, the maximum interpolation error, ε, can be simplified to

ε =
1

2n(n+ 1)!

(
b− a

2

)n+1

max
ξ∈[a,b]

∣∣f (n+1)(ξ)
∣∣. (5.5)

Because the Chebyshev points do not include the end-points of the interval, there is additional cost
in setting up the interpolation table, but this is negligible to typical MoC calculation times. An
interpolation table using Chebyshev points reduces error at no run-time cost compared to a table
using evenly spaced points. For this reason, Chebyshev points will be assumed for the remainder of
this section. Table 5.1 shows maximum errors for F1(τ gm) interpolation for uniformly spaced points
and Chebyshev points for an interval width ∆ = b− a.

Interval Width

The conventional approach for interpolation tables has been to use a constant interval width, ∆,
for all intervals in the domain. This interval width is then used to control the error of the table.
Equation (5.3) shows that the interval bounds affect the interpolation error through the derivative
term. The second and higher order derivatives of each of the exponential functions (Eqs. (5.1))
approach zero as τ gmki approaches infinity. This indicates that the interpolation error typically
decreases as the optical thickness increases in the conventional approach.

However, it is possible to maintain the same maximum error over each interval if a variable
interval width, ∆i, is used, where i indicates the interval index. By using a variable interval width,
a table can use fewer intervals while maintaining the same maximum error. However, since the
widths are no longer constant, there is no longer a simple/direct conversion from τ gmki to i. Although
there may be better ways to address this, for this work the smallest interval is used to divide the
domain into a map that points to the correct interval for that range of values.
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Figure 5.3: The memory usage of a single interpolation table (polar independent) for F1(τ gmki) is
shown as a function of the maximum error for different interpolation orders and tabulation methods.

It was found that the use of non-uniform interval widths allowed for significantly fewer total
intervals, reducing the memory usage, but it incurs overhead for the additional mapping to index.
Figure 5.3 shows the memory usage for a polar-independent interpolation table for F1(τ gmki). Using
a non-uniform table typically decreases the memory usage by nearly an order of magnitude. For
polar-dependent tables, the memory usage is multiplied by the largest inverse sine of the polar angle,
and the number of polar angles.

Because all the functions of Eqs. (5.1) are related, it is possible to tabulate only a single function
and compute the others from the resulting interpolated value. However, if F1(τ gmki) is known
accurately, it is not possible to compute H(τ gmki) for very small τ gmki due to round-off errors. Instead
one can tabulate H(τ gmki) and use the result to compute the other functions.

Results for this approach are detailed in Section 5.1.3. In cases with near-void regions, the
function tables are required to be very accurate. This has an adverse affect on performance, and is
not a robust solution as if cross sections change the required accuracy might also change. In the
next section, an alternative approach will be provided.
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5.1.2 Function Modification

A second approach for addressing the instability due to inaccurate function interpolation was taken:
change the functions. Recall that the highly accurate interpolation tables of Section 5.1.1 were
necessary due to the inverse total (or transport) cross section on the F2(τ gmki) term of Eq. (5.2).
Manipulating this term, we define a new function

F2(τ gmki)

Σg
t,i

= tmF̂2(τ gmki), (5.6)

where
F̂2(τ gmki) ≡ 2

(
1− F1(τ gmki)

τ gmki

)
− F1(τ gmki). (5.7)

The F̂2(τ gmki) function can be tabulated in place of F2(τ gmki); however, this does require an additional
multiplication by the segment length tmki. But, by using the modified F̂2(τ gmki) function, the
underlying cause of the numerical instability of the LSMoC transport sweep with near-void regions
is addressed, and the more accurate interpolation (e.g. larger interpolation tables) is no longer
necessary. This modification of the function is not presented in the original work [1], but a similar
modification is made in the implementation of the method in CASMO5 [7].

Although one approach is to tabulate the F̂2(τ gmki) function in place of the F2(τ gmki) function,
and multiply by tmki during evaluation, it is possible to tabulate a single function and compute the
others. As stated in the previous section, the H(τ gmki) function could be tabulated again; however,
tabulating an intermediate function,

E1(τ gmki) ≡
1− e−τ

g
mki

τ gmki
, (5.8)

uses the same number of operations to compute the other functions. This E1(τ gmki) function also
has smaller derivative terms around τ gmki = 0, allowing for larger interval widths with no loss
in accuracy. Therefore, it is expected that E1(τ gmki) tabulation is more efficient than tabulating
H(τ gmki).

5.1.3 Results

The results of this section were generated in serial on a Linux system with an Intel Xeon E3-1241
v3 (3.50 GHz) processors with 8 MB L3 cache. Results were generated for a 2-D MoC transport
calculation. In 2-D it is sometimes convenient to store separate interpolation tables for each polar
angle. Both polar dependent and independent tables were tested. In both of the results sections,
results were generated using tables for the three functions (F1(τ gmki), F2(τ gmki), H(τ gmki)), or a single
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function (which is then used to compute the others).

Results using More Accurate Tables

Table 5.2 shows results for the different interpolation methods in a 2-D MoC calculation. The
use of non-uniform intervals significantly reduced the memory usage, but the run-times generally
increased. This is likely due to the overhead from the additional index mapping operation; it is
possible that a more efficient index mapping could change these results.

The linear tables were significantly slower than higher-order interpolations, and the non-uniform
linear tables were actually slower than just using the builtin transcendental functions. The poor
performance is due to the main memory accesses caused by the table size exceeding the largest
(L3) cache size. The polar independent tables were faster only in the case of the linear tables, due
primarily to the reduction in memory. In all other cases the polar-dependent tables were able to more
efficiently approximate the functions. Using either second or third order tables gave reasonably low
run-times; compared to the analytic evaluations the order 2 uniform polar dependent table led to
∼ 3.5x speed-up in the exponential time, and ∼ 1.9x speed-up in the overall MoC run-time. The
results for both second and third order interpolation tables did not vary significantly, the second
order was slightly faster for uniform tables.

However, if a single function is tabulated and used to compute the others, the memory footprint
of the interpolation tables can be significantly reduced. Moreover, the memory accesses are reduced
in favor of floating point operations which increases the computational intensity and temporal
cache locality of the implementation. Generally, this is a favorable strategy for improving code
performance as a memory access is expected to take at minimum the same time as a single FLOP,
with cache-misses increasing that time. Indeed, Table 5.2 shows that tabulating the single function
reduced run-time in all cases.

Results using Modified Function

Results were generated for the same cases as the more accurate table, but the interpolation accuracy
was 10−7 rather than 10−12, as the function modification addressed the cause of the instability. The
results are summarized in Table 5.3. In one approach the three functions are tabulated, in the other
E1(τ gmki) is tabulated and used to compute the three functions. Previous results showed that the
polar-independent and non-uniform interval width tables were slower than uniform polar-dependent
tables; here the results are only shown for the uniform polar-dependent interpolation tables.

The interpolation accuracy is not required to be as high as in the previous cases, thus the tables
are significantly smaller in memory size. The linear tables no longer exceed the L3 cache size and
are not prohibitively slow to use. In fact, the linear tables are the fastest option for both 3-table and
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Table 5.2: Results for different exponential function evaluation methods. Maximum interpolation
error of 10−12. “w/ pol” indicates a table with polar dependence, and “w/o pol” indicates a table
without polar dependence.

Method Table Type Order
Exponential

Time (s) MoC Time (s) Memory

w/ pol w/o pol w/ pol w/o pol w/ pol w/o pol

Analytic N/A N/A 432.5 654.7 N/A

3-Functions

Uniform
1 382.6 360.3 622.5 591.0 8.04 GB 458 MB
2 121.3 151.7 343.2 372.1 85.7 MB 4.8 MB
3 124.1 169.0 347.5 388.7 9079 KB 506 KB

Non-Uniform
1 592.9 559.2 825.8 800.6 878 MB 76.6 MB
2 144.6 178.5 364.3 397.8 10.9 MB 835 KB
3 139.6 199.8 358.5 420.0 1.4 MB 85.2 KB

1-Function

Uniform
1 296.2 259.3 523.9 484.5 2.68 GB 153 MB
2 91.4 123.2 310.2 345.7 28.6 MB 1.59 MB
3 87.2 133.2 305.4 353.6 2.96 MB 169 KB

Non-Uniform
1 474.6 424.0 714.6 653.9 415 MB 49.2 MB
2 105.8 146.4 326.6 367.7 4.4 MB 443 KB
3 98.9 153.3 318.8 373.2 515 KB 33.5 KB

single-table interpolation methods. Interpolating E1(τ gmki) and computing the other functions from
the result was the fastest approach overall. As before, this is expected because this method favors
FLOPs over memory accesses.

This approach also significantly reduces the number of intervals necessary (by about 3 orders
of magnitude). Although the higher-order interpolation ended up not being more efficient than
the linear interpolation tables, the number of intervals is extremely small. These methods may
be useful on different architectures (such as GPGPUs1) where memory is more limited than on a
single-threaded CPU calculation.

5.1.4 Conclusions

This study focused on the investigation of efficient approximation of the exponential functions
in the LSMoC. Methods for efficiently approximating the exponential function for FSMoC have
previously been investigated. However, these methods, applied without modification to the LSMoC
can lead to numerical instability in problems with near-void regions. One approach to deal with
these instabilities is to improve the accuracy of the interpolation tables based on the lowest cross
section in the problem. While this approach can be made efficient, if cross sections become too
small the tables may become exceedingly large and significantly hamper performance.

1this statement was not confirmed as part of this study, and is speculation based on knowledge of architecture
constraints.
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Table 5.3: Results using the modified function, with maximum interpolation error of 10−7. Memory
is under 1 MB in all cases.

Method Order Exp. MoC # Intervals
Time (s) Time (s)

3-Functions
1 88.4 307.9 4774
2 99.7 316.8 225
3 116.5 333.1 46

E1(τ gm) Only
1 80.5 299.0 2739
2 87.6 307.3 158
3 99.0 317.7 38

This investigation indicated that the cause of the instability was the F2(τ gmki) function in the
transmission equation. By instead manipulating the term including this function, the cause of the
instabilities can be addressed. This approach no longer requires excessively large interpolation
tables; however, some key-findings from the first approach can be applied to make this approach
faster. First, the use of Chebyshev points significantly increases interpolation accuracy for the same
number of intervals as uniformly spaced points, at no run-time cost. Additionally, by interpolating a
single function and using the result to compute the other functions performance can be significantly
improved.

5.2 Improved Linear Source Formulation for Multi-physics and
2D/1D Applications

As stated in Section 3.3, the original derivation of the moment-based linear-source approximation
(LSA) from Ferrer and Rhodes [1] faced inefficiencies in problems with non-constant cross sections.
Multiphysics applications were not of interest to the original authors [1]. The inefficiencies arose
from the use of pre-computed coefficients, Eq. (3.53), that must be re-computed if the cross sections
change. The computation of these coefficients was approximately 10-20% the run-time cost of
a MoC sweep. In multiphysics calculations, such as with T/H feedback, cross sections typically
change every iteration, leading to significant overhead from re-computing these terms. This section
presents an equivalent formulation, that eliminates the need to re-compute these terms if cross
sections change, without additional operations.
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5.2.1 Derivation

The notation used in this section is described in detail in Chapter 3. The derivation of this improved
formulation begins with the same initial steps as the LSMoC derivation detailed in Section 3.3.2.
Several of these equations are repeated in this section for clarity. The source is assumed to have a
spatially linear shape

qgmi(x) ≈ qgmi + x · q̂g
mi
, (5.9)

and the angular flux moments can be similarly expanded

φ`,gi,n(x) = φ
`,g

i,n + x · φ̂
`,g

i,n
. (5.10)

The source can be computed from the flux moments using Eq. (3.36).
Computing the source requires the flux to be evaluated during the transport sweep. The angular

flux moments are given by Eqs. (3.41), and are repeated here in Eq. (5.11a). The spatially flat
angular flux moments are defined by integrating the flux multiplied by a spherical harmonics
moment function over space and directions,

φ
`,g

i,n ≡
〈
Rn
` (Ω̂)ψg

〉
i

=
4π

Vi

∑
m

wmR
n
` (Ω̂m)

∑
k

δAmkitmki〈ψg〉mki. (5.11a)

To determine the spatial expansion coefficients of the flux moments, Eq. (5.10) is operated on by〈
Rn
` (Ω̂)x(·)

〉
i
. As before, this should be directly proportional to the angular flux operated on by〈

Rn
` (Ω̂)xψg

〉
i
. From this a system of equations is found

M iφ̂
`,g

i,n
=
〈
Rn
` (Ω̂)xψg

〉
i
, (5.11b)

where
M i ≡

〈
xxT

〉
i
. (5.11c)

The spatial-angular flux moments,
〈
Rn
` (Ω̂)xψg

〉
i
, are then defined as

〈
Rn
` (Ω̂)xψg

〉
i

=
4π

Vi

∑
m

wmR
n
` (Ω̂m)

∑
k

δAmkitmki

(
xin
mki〈ψg〉mki + Ω̂m〈tmψg〉mki/ξmi

)
.

(5.11d)
With the assumed source shape, Eq. (5.9), the characteristic transport equation becomes[

d

dtm
+ Σg

t,i

]
ψgmki(s) = qgmki + q̂gmi

(
tm −

tmki
2

)
, (5.12a)
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where
qgmki ≡

1

4π

[
qgmi + xc

mki · q̂
g

mi

]
, (5.12b)

q̂gmi ≡
1

4π

[
Ω̂m · q̂gmi
ξmi

]
, (5.12c)

and xc
mki is the centroid of the track-segment in local-coordinates. Substituting this assumed

source shape (linear) into the generic MoC solution, given by Eq. (3.9), the angular flux along a
track-segment is found to be

ψgmki(s) = ψg,inmki +

(
qgmki
Σg
t,i

− ψg,inmki

)
F1(τ gm) +

q̂gmi
2(Σg

t,i)
2
F2(τ gm), (5.13a)

where
F1(τ gm) ≡ 1− exp(−τ gm), (5.13b)

and
F2(τ gm) ≡ 2[τ gm − F1(τ gm)]− τ gmkiF1(τ gm). (5.13c)

To evaluate the moments defined in Eqs. (5.11), the track-average flux and first spatial moment
of the angular flux must be determined. The track-average flux is determined as it was before, by
operating on Eq. (5.12a) by tmki〈(·)〉mki, yielding

〈ψg〉mki =
qgmki
Σg
t,i

+
∆ψgmki
τ gmki

. (5.14a)

At this point the two derivations diverge from one another. In the previous formulation, the integral
in 〈tmψg〉mki is explicitly evaluated by substituting in the solution of the angular flux along the
track (Eqs. (3.43)). Here, the moment will be found implicitly by operating on Eq. (5.12a) by
tmki〈tm(·)〉mki, just as was done for the 0th moment. This results in

〈tmψg〉mki =
〈ψg〉mki − ψ

g,out
mki

Σg
t,i

+
tmki

2

[
qgmki
Σg
t,i

+
q̂gmi
Σg
t,i

tmki
6

]
. (5.14b)

Unlike Eq. (3.44b), there a not any new exponential functions introduced in this form.
Previously, the average track flux, 〈ψg〉mki, was expanded to find a simpler final form. This

is the case here as well; however, the out-going flux, ψg,out
mki , will not be expanded, as this must

necessarily be computed during transmission. Eqs. (5.11) are then simplified into

φ
`,g

i,n =
4π

ViΣ
g
t,i

∑
m

wmR
n
` (Ω̂)

∑
k

δAmki (tmkiq
g
mki + ∆ψgmki) , (5.15a)
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and〈
Rn
` (Ω̂)xψg

〉
i

=
1

Vi

∑
m

wmR
n
` (Ω̂)

∑
k

δAmkitmki

[
xc
mkiq

g
i +

(
xc
mki(x

c
mki)

T +
s2
mki

12
Ω̂mΩ̂

T

m

)
q̂g
i

]
+

4π

ViΣ
g
t,i

∑
m

wmR
n
` (Ω̂)

∑
k

δAmki

[
xin
mki∆ψ

g
mki + Ω̂msmki

(
∆ψgmki
τ gmki

− ψg,out
mki +

qgmki
Σg
t,i

)]
.

(5.15b)

Equation (5.15b) contains ∆ψgmki/τ
g
mki terms, rather than only ∆ψgmki terms. For numerical

stability, it is beneficial to compute this quantity directly, rather than ∆ψgmki and performing division.
This can be found by evaluating the transmission equation, Eq. (5.13a), giving

∆ψgmki
τ gmki

=

(
ψg,inmki −

qgmki
Σg
t,i

)
E1(τ gmki)−

tmki
2

q̂gmi
Σg
t,i

T2(τ gmki), (5.16a)

where
E1(τ gmki) ≡

F1(τ gmki)

τ gmki
, (5.16b)

T2(τ gmki) ≡ 2E2(τ gmki)− E1(τ gmki), (5.16c)

and
E2(τ gmki) ≡

1− E1(τ gmki)

τ gmki
. (5.16d)

Here, E2(τ gmki) is defined as an intermediate function which has smaller derivative terms, meaning
higher accuracy with fewer interpolation intervals (see Section 5.1). Following the conclusions of
Section 5.1, only the E2(τ gmki) function needs to be tabulated, and then is used to compute the other
two exponential functions, E1(τ gmki), and T2(τ gmki). The outgoing flux can then be evaluated as

ψg,out
mki = ψg,inmki − τ

g
mki

∆ψgmki
τ gmki

. (5.17)

5.2.2 Particle Conservation

As described in Section 3.3.3, particle conservation puts the constraint of using direction-dependent
renormalization and centroids, in addition to directional quadrature constraints. If these constraints
are satisfied, Eqs. (5.15) can be simplified into

φ
`,g

i,n =
∑
m

wmR
n
` (Ω̂)

qgi
Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wmR
n
` (Ω̂)

∑
k

δAmki∆ψ
g
mki, (5.18a)
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and〈
Rn
` (Ω̂)xψg

〉
i

=
∑
m

wmR
n
` (Ω̂)Mmi

q̂g
i

Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wmR
n
` (Ω̂)

∑
k

δAmki

[
xin
mki∆ψ

g
mki + Ω̂msmki

(
∆ψgmki
τ gmki

− ψg,out
mki +

qgmki
Σg
t,i

)]
,

(5.18b)

where
Mmi ≡

1

Vi

∑
k

δAmki

[
xc
mki(x

c
mki)

T +
s2
mki

12
Ω̂mΩ̂

T

m

]
. (5.18c)

Although the above form seems to be more computationally efficient, it would be negligent to
not include a more mathematically elegant form of Eq. (5.15b). The terms in the second summation
may be rewritten as

〈
Rn
` (Ω̂)xψg

〉
i

=
∑
m

wmR
n
` (Ω̂)Mmi

q̂g
i

Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wmR
n
` (Ω̂)

∑
k

δAmki

[
xin
mki

(
ψg,inmki − ψ

g

mki

)
− xout

mki

(
ψg,out
mki − ψ

g

mki

)]
,

(5.19a)

where ψ
g

mki is the average track flux,

ψ
g

mki ≡ 〈ψg〉mki. (5.19b)

In this form, the interior summation over track-segments becomes a spatially weighted average of
the incident and outlet flux differences from the average flux.

5.2.3 Isotropic Simplifications

If the so called linear-isotropic-flat-anisotropic (LIFA) scheme is used, the spatially flat moment
equations do not change, however, Eq. (5.15b) can be simplified to

〈
Rn
` (Ω̂)xψg

〉
i

= M i

q̂g
i

Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wm
∑
k

δAmki

[
xin
mki∆ψ

g
mki + Ω̂msmki

(
∆ψgmki
τ gmki

− ψg,out
mki +

qgmki
Σg
t,i

)]
.

(5.20)
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If isotropic scattering is used, the the scalar flux moments can be found as

〈xψg〉i = M i

q̂g
i

Σg
t,i

+
4π

ViΣ
g
t,i

∑
m

wm
∑
k

δAmki

[
xin
mki∆ψ

g
mki + Ω̂msmki

(
∆ψgmki
τ gmki

− ψg,out
mki

)]
.

(5.21)

5.3 Results

This section highlights several of the key results found using the LSA solver implemented in
MPACT. Only results using 2-D transport or the 2D/1D method in MPACT are shown, as 3-D
transport results will be discussed in Chapter 6. Isotopic depletion is performed using the ORIGEN
code [8], and T/H feedback is performed using COBRA-TF (CTF) [9]. Although Section 5.2
provides the derivation of a spatially linear anisotropic source, the initial implementation in MPACT
was limited to the isotropic scattering approximation. With the use of the TCP0 approximation,
problems of interest are able to be simulated with acceptable levels of error. However, one of our
recent works [10] has implemented the LIFA approximation in MPACT, but these results are not
presented here.

5.3.1 C5G7 Benchmark

The 2-D C5G7 benchmark [11] is a neutronics benchmark used by various codes to help verify the
correctness of the solvers used. A 7-group cross section library of macroscopic cross sections is
provided by the benchmark. The benchmark consists of two uranium oxide (UO2) assemblies and
two mixed oxide (MOX) assemblies surrounded by a large radial reflector, as shown in Fig. 5.4.
Reflective boundary conditions are used on the north and west faces, while vacuum conditions are
used on the south and east faces. The benchmark provides reference MCNP calculation results, that
can be used to determine the accuracy of the methods used to solve the benchmark cases.

This problem was studied in order to verify that the implementation of the LSA derived in this
chapter yields similar results to those found by Ferrer and Rhodes [1]. Similar meshing, ray, and
direction parameters were used in this study as were used in the original study [1]; some parameters
could not be replicated exactly due to differences in the MPACT and CASMO5 codes. All cases
used a uniform ray-spacing of 0.05 cm, and directional quadrature using 128 azimuthal angles and
6 polar angles in 4π. Each case was run using odCMFD [12], and converged to within 1.0·10−5 for
the eigenvalue, and 1.0·10−4 for flux 2-norm.
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Figure 5.4: Geometry and materials of the 2-D C5G7 benchmark.

The fine pin cell mesh used 5 rings in the fuel region, 10 in the moderator region, and 16
azimuthal divisions in all regions. The fine reflector cell mesh was divided into 0.105×0.105
cm2 cells. The coarse pin cell mesh used a single fuel ring with four azimuthal divisions, and no
moderator rings, using 8 azimuthal divisions in the surrounding moderator. The coarse reflector cell
mesh was divided into 0.42×0.42 cm2 cells.

Three cases were run in this study: fine mesh with FSA, coarse mesh with FSA, and coarse
mesh with LSA. To be consistent with the Ferrer and Rhodes [1] results, it is expected that the LSA
on the coarse mesh should reduce run-time while maintaining accuracy compared to the finely mesh
FSA calculation. Additionally, the coarse mesh FSA calculation should have significantly worse
accuracy, thus justifying the use of the LSA.

Table 5.4 shows very clearly that the LSA on the coarse mesh is more accurate than the FSA on
the fine mesh. While FSA on the fine mesh provides reasonable accuracy, the FSA on the coarse
mesh shows significant errors compared to the MCNP reference. In terms of accuracy, the results
agree very closely with those reported for the original derivation of the moment-based LSA. The
reference pin-powers are visualized in Fig. 5.5, and the differences are shown in Figs. 5.6 to 5.8.
The largest pin-power differences for the fine mesh with flat source (FS) and coarse mesh with
LS are in the center assembly where pin-powers are higher. Interestingly, the largest pin-power
differences for the coarse mesh with FS case are in the pins bordering the radial reflector region;
this indicates that the mesh in the reflector was not sufficient. Errors in the interior of the assemblies
are still larger for this case than the others.

Table 5.5 indicates that the LSA on the coarse mesh significantly out-performs the FSA on the
fine mesh; MoC run-time is reduced by approximately 50%, and memory usage is reduced by 45%.
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However, this also shows that for this problem the LSA solver takes just under 2 times the time of
the FSA on the same mesh (coarse). It is also shown, that there is very little memory overhead from
using the LSA on the same mesh as the FSA. The number of iterations is quite different of that
reported by Ferrer and Rhodes [1]; however, the iteration scheme in CASMO5 is different than that
of MPACT [13]. In MPACT, each iteration (transport sweep) loops over all energy groups a single
time, but in CASMO5 the thermal energy groups are iterated over multiple times within a single
transport sweep.

Table 5.4: Accuracy comparisons for the C5G7 2-D benchmark calculation using different source
approximations and meshes. In addition to eigenvalue difference, several metrics for comparing
pin-powers are provided. The abbreviations are as follows: MPP+ = difference in maximum
pin-power, MPP- = difference in minimum pin-power, AVE = average pin-power error, RMS =
root-mean-square pin-power error, MRE = mean relative error. The number of pins with power
within 68% and 95% of the MCNP reference results are also listed.

Pin Powers (%) # Pins within
Solver Mesh ∆keff (pcm) MPP+ MPP- MPE AVE RMS MRE 68% 95%

FSA Fine 8 -0.13 0.89 0.98 0.18 0.24 0.15 494 763
FSA Coarse 65 -0.76 3.74 4.23 0.78 1.16 0.61 142 217
LSA Coarse 2 0.02 0.30 0.66 0.12 0.16 0.10 663 901

Table 5.5: Performance comparisons for the C5G7 2-D benchmark calculation using different source
approximations and meshes.

Run-time (s)
Solver Mesh Iterations MoC MoC / iter Memory (MB)

FSA Fine 13 435 33 409
FSA Coarse 11 89 8 213
LSA Coarse 13 209 16 223

5.3.2 PWR Pin Cell Depletion

In order to evaluate the benefits of this new formulation, the first multiphysics case studied was
a typical UO2 pin cell, as specified by the Virtual Environment for Reactor Analysis (VERA)
progression problem 1A [14]. Isotopic depletion calculations were run up to 70 gigawatt-days
per metric ton heavy metal (GWDMT) (∼1820 effective full power days (EFPD)) at hot full
power (HFP) conditions. Using the current default meshing parameters in MPACT as a starting
point, various mesh parameters were coarsened to study their affect when using the LSMoC. These
cases were compared against a reference case, which was very finely meshed with fine ray-spacing
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(a) core (b) center assembly

Figure 5.5: Reference pin powers shown for the core and center assembly.

(a) core (b) center assembly

Figure 5.6: Pin power differences from reference shown for the core and center assembly for the
fine mesh using the FSA solver.
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(a) core (b) center assembly

Figure 5.7: Pin power differences from reference shown for the core and center assembly for the
coarse mesh using the FSA solver.

(a) core (b) center assembly

Figure 5.8: Pin power differences from reference shown for the core and center assembly for the
coarse mesh using the LSA solver.
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Figure 5.9: Reference eigenvalues and differences for the default mesh pin cell case with isotopic
depletion.

(0.001 cm), and a Tabuchi-Yamamoto [15] quadrature using 128 azimuthal angles and 4 polar angles
over 4π All other cases were run using a Tabuchi-Yamamoto quadrature with 64 azimuthal angles
and 4 polar angles, with a uniform ray-spacing of 0.05 cm. This case used the TCP0 scattering
approximation.

Default Mesh MPACT’s current default meshing parameters were used as a starting point. Flat
and linear source calculations were run on this mesh, to set a baseline for “acceptable” levels of
error in the eigenvalue. Compared to the reference case, the LS calculation had a larger maximum
error in eigenvalue of 89 per cent mille (pcm), whereas the FS calculation had a maximum error of
66 pcm. However, the average errors over the depletion were approximately the same: 32and 34
pcm, for the FS and LS calculations, respectively. The eigenvalue differences over the depletion
calculation are shown in Fig. 5.9. The goal in this mesh refinement study is to determine acceptable
meshing parameters without worse maximum or average eigenvalue errors.

Fuel Radius During isotopic depletion, it is important to accurately capture the radial distribution
of plutonium, due to self-shielding effects. Plutonium is primarily produced in the outer rim of the
pin (this is well known as the rim-effect). The default mesh uses three equal-volume rings in the
fuel region; however, we expect that two rings will be sufficient, when using the LSA, if the extra
ring is placed in such a way that it captures this rim-effect. Experimental studies of the rim-effect
[16] have found that there is a sharp rise in plutonium at about 80-90% of the outer radius of the
fuel.

A series of calculations were run using two fuel rings with varying inner radius. The eigenvalue
and Plutonium comparisons are shown in Figs. 5.10 and 5.11. Comparing eigenvalues, a fractional
radius between 0.825 and 0.875 seems to have little effect on the mean or worst-case eigenvalue
difference. By comparing the concentration of Pu-239, these radii are again shown to be the most
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Figure 5.10: Eigenvalue comparisons for problem 1A using various inner fuel radii.

accurate; a fractional radius of 0.875 was chosen to be sufficient, and used in the remainder of the
studies.

Moderator Ring and Azimuthal Divisions The remaining mesh parameters are the azimuthal
divisions in the fuel, clad, gap, and moderator regions, and the presence of an additional surrounding
ring of moderator. While it may be sufficient to use a single azimuthal division in some regions in
larger cases, due to symmetry of this single pin case, using a single azimuthal region would cause
the linear components of the source to be zero (i.e. it is equivalent to the FSA). It was found that the
coarsening of these parameters has an insignificant affect on the resulting eigenvalue when using
the LSA, with less than 1 pcm difference over the entire depletion. Thus, four azimuthal divisions
in each material region, and no additional surrounding moderator ring was found to be sufficiently
accurate in this case. The coarse default and coarse meshes are displayed in Fig. 5.12.

5.3.3 VERA Problem 2A and 2P Depletion

A mesh study similar to that done in Section 5.3.2 was performed on modified VERA problems
2A and 2P [14] with isotopic depletion up to 70 GWDMT. This was done to verify that the
meshing parameters previously found were valid for larger problems, and determine if even coarser
parameters were sufficient. First, problem 2A was studied; the meshing parameters of the fuel cell
and guide-tube cells were studied independently. Both problems were simulated using the TCP0
scattering approximation. This study was performed to determine whether or not coarse meshing
parameters with the LSA yield similar accuracy in a case with non-constant cross sections.
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Figure 5.11: Pu-239 concentration comparisons for problem 1A using various inner fuel radii.

Problem 2A

2A - Default Mesh For this problem, a reference calculation was carried out on the lattice with a
very fine mesh. This reference calclation also used a finer directional quadrature of 128 azimuthal
angles and 4 polar angles, with a uniform ray-spacing of 0.001 cm. Again, MPACT’s current default
mesh was used as a starting point for the mesh study; the results of the FS and LS calculations on
this default mesh are used as a baseline. Eigenvalue and pin-power comparisons are provided in
Figs. 5.13 and 5.14.

The trend in eigenvalue is similar to that found for problem 1A with the default mesh; the LS
calculation has a higher absolute eigenvalue difference of 51 pcm compared to the FS calculation
with 43 pcm. However, the average eigenvalue differences are similar at 24 and 21 pcm for the
FS and LS calculations, respectively. Additionally, Fig. 5.14 shows that the maximum pin power
differences are consistently lower for the linear source calculation. This indicates that local effects
are predicted better by the linear source, and there is some cancellation of errors occurring in the
eigenvalue.

2A - Fuel Radius and Azimuthal Divisions For this problem, only the fractional radius found in
Section 5.3.2 is tested against the current default mesh. There was no significant affect in eigenvalue
or pin powers by using the 2-ring model with an inner radius fraction of 0.875. Even at 0 EFPD
(before Plutonium production), the eigenvalue difference can be large for the 2-ring models; this is
hypothesized to be due to self-shielding affects.

Next, the varied azimuthal divisions in the fuel were tested; this time testing a single azimuthal
division. Figure 5.15 shows that there is a noticeable affect moving to a single azimuthal division;
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(a) default mesh (b) coarse mesh

Figure 5.12: VERA problem 1A (a) default and (b) coarse meshes.
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Figure 5.13: VERA Problem 2A default mesh eigenvalue comparison.

however, the mean difference is changed by less than 1 pcm, and the max difference is actually
improved by 3 pcm. We acknowledge that this improvement is likely due to cancellation of errors.
Regardless, the net effect of this change is small, and a single azimuthal sector is used moving
forward in this work.

2A - Moderator Azimuthal Divisions The azimuthal divisions of the surrounding moderator
seems to have a more significant effect on the accuracy of the calculation. As shown by Fig. 5.16,
using 4 azimuthal divisions seems to be sufficient; but moving to a single division is not feasible. A
single division more than doubles the mean eigenvalue difference, and shows a consistent positive
bias.
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Figure 5.14: VERA Problem 2A default mesh pin power comparison.
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Figure 5.15: VERA Problem 2A eigenvalue comparison for varied fuel azimuthal divisions.
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Figure 5.16: VERA Problem 2A eigenvalue comparison for varied number of surrounding moderator
azimuthal divisions in the fuel cells.
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Figure 5.17: VERA Problem 2A eigenvalue comparison for varied number of the cladding/gap
azimuthal divisions in the fuel cells.
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Figure 5.18: VERA Problem 2A eigenvalue comparison for varied number of inner moderator
azimuthal divisions in the guide-tube cells.

2A - Cladding and Gap Azimuthal Divisions The azimuthal divisions of the cladding and gap
regions do not seem to play a significant role, as seen in Fig. 5.17.

2A - Guide-Tube Azimuthal Divisions In the 2A lattice, guide-tube pins are present; each guide-
tube consists of three regions: inner moderator, cladding, and outer moderator. The effect of
different azimuthal divisions in each of these regions was tested; the resulting eigenvalues are shown
in Figs. 5.18 to 5.20. A single azimuthal division in each of these regions seems to be sufficient,
with no significant affect on eigenvalue accuracy. However, 4 azimuthal divisions in the surrounding
moderator was selected for moving forward, due to limitations in the mesh mapping with CTF.

2A - Coarse Mesh Summary Coarse mesh parameters were found using this isotopic depletion
calculation on VERA problem 2A. The fuel cell
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Figure 5.19: VERA Problem 2A eigenvalue comparison for varied number of cladding azimuthal
divisions in the guide-tube cells.
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Figure 5.20: VERA Problem 2A eigenvalue comparison for varied number of outer moderator
azimuthal divisions in the guide-tube cells.

128



• has 2 fuel rings, with the inner radius being 0.875 fraction of the outer,
• no additional moderator ring in the surrounding moderator,
• a single azimuthal sector in the fuel, clad, and gap regions,
• and four azimuthal sectors in the surrounding moderator.

The guide-tube cell
• has no additional moderator ring in the surrounding moderator,
• has a single azimuthal sector for the inner moderator, and cladding,
• and four azimuthal sectors for the surrounding moderator.

The lattice meshes are shown in Fig. 5.21.

(a) default mesh (b) coarse mesh

Figure 5.21: VERA problem 2A (a) default and (b) coarse meshes.

Eigenvalue comparisons are shown in Fig. 5.22, and pin power comparisons are made in
Fig. 5.23. While it is visually apparent that the accuracy is made slightly worse than the default
mesh LS calculation, the entire goal of the this mesh study was to maintain error with the FS
calculation. This goal has been met, while reducing the number of fine mesh source regions
from 3946 to 579. A discussion and comparison of computational performance is presented in
Section 5.3.3.

Problem 2P

2P - Applying Coarse Mesh Parameters VERA problem 2P contains several gadolinia-enriched
fuel rods; as the lattice is depleted, these fuel rods “burn” the gadolinia. The gadolinia is primarily
burned away starting at the outer radius and moving inwards as time progresses. This is called the
“onion skin” effect; it is analogous to a moving boundary layer. This inward burning makes the
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Figure 5.22: VERA Problem 2A coarse mesh eigenvalue comparison.
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Figure 5.23: VERA Problem 2A coarse mesh pin power comparison.
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Figure 5.24: Eigenvalue comparisons for VERA problem 2P with default mesh parameters and
coarse mesh parameters for the fuel and guide-tube cells.
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Figure 5.25: Pin power comparisons for VERA problem 2P with default mesh parameters and
coarse mesh parameters for the fuel and guide-tube cells.

pins difficult to model, and requires many radial divisions for accurate calculations. Additionally,
because of the presence of these small radial regions, a finer ray-spacing (0.01 cm) is necessary.

To evaluate if the previously determined coarse mesh parameters are sufficient in this problem,
they are applied to the regular fuel and guide-tube cells, while the gadolinia rods use the default
meshing parameters. The default mesh parameters for gadolinia rods are the same as for the fuel
rods except that 10 equal-volume rings are used in the fuel region. Figures 5.24 and 5.25 show
that applying the coarse mesh parameters to the fuel and guide-tube cells does not significantly
worsen the eigenvalue or pin power results. It is worth observing that errors in this cases are
significantly higher than in the problem 2A; this is likely due to the complicated radial dependence
of the gadolinia rods during depletion.

2P - Azimuthal Divisions It is not expected that the radial divisions in the gadolinia rods can be
significantly coarsened. However, this is not true for the azimuthal divisions. We apply the same
azimuthal divisions as we did for the fuel: 1 in the fuel, clad, and gap, and 4 in the surrounding
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Figure 5.26: Eigenvalue comparisons for VERA problem 2P for the default mesh, previous coarse
mesh, and gadolinia rods with fewer azimuthal divisions.
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Figure 5.27: Eigenvalue comparisons for VERA problem 2P for varied number of radii in gadolinia
rods.

moderator. Figure 5.26 shows the eigenvalue results are similar at all but the initial state to the
previous coarse mesh parameters. Even at the initial state, the error is between the flat and linear
source calculations on the default mesh. Thus, it is “acceptable” to coarsen the azimuthal divisions
in the gadolinia pins.

2P - Radial Divisions While it is unexpected that significant radial coarsening can occur in these
pins, it is best to test this assumption. Figure 5.27 shows the eigenvalue errors for several different
numbers of equal volume radii in the gadolinia fuel rods. It is clear that the number of radii can
significantly affect the accuracy. For 8 radial divisions, the error is higher near the reactivity peak, it
is still between the flat and linear source calculation errors on the default mesh. The goal of these
mesh reduction studies was not to preserve the accuracy of the linear source on the default mesh,
but to nearly match the accuracy of the flat source calculation on the default mesh. For this goal, 8
radial divisions seems to be sufficient.
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2P - Coarse Mesh Summary The coarse mesh parameters for the fuel and guide-tube cells
previously found were also found to be sufficient for VERA problem 2P. For the gadolinia rods, it
was found to be sufficient to

• have no additional moderator ring,
• use 8 equal volume radial fuel divisions,
• a single azimuthal sector in the fuel, clad, and gap regions,
• and four azimuthal sectors in the surrounding moderator.
Eigenvalue comparisons are shown in Fig. 5.29, and pin power comparisons are made in

Fig. 5.30. Using these coarse mesh parameters reduces the number of cells from 4282 to 621. The
lattice meshes are visualized in Fig. 5.28.

(a) default mesh (b) coarse mesh

Figure 5.28: VERA problem 2P (a) default and (b) coarse meshes.
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Figure 5.29: VERA Problem 2P coarse mesh eigenvalue comparison.
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Figure 5.30: VERA Problem 2P coarse mesh pin power comparison.

Performance

Several performance metrics for the 2A and 2P lattice depletion calculations are listed in Table 5.6.
All calculations were performed on a Intel E3-1241 v3 (3.50 GHz) processor with 4 threads (ray
parallelism). For these two cases, compared to the default FSA calculation, the coarse mesh LSA
calculation reduced total run-time by 17% and 11%. Total memory requirements were reduced
by 14% and 9.3%, and also shows there is very little memory overhead from the use of the LSA.
Interestingly, the MoC calculations seem to be slowed in these cases with run-times increased by 7%
and 6%. The majority of the time saved comes from the reduction in the depletion calculation time;
this time is reduced because with the coarse mesh, there are fewer material regions. The material
region reduction comes only from the elimination of radial rings, not the azimuthal coarsening.

Table 5.6: VERA Problems 2A and 2P: Performance metrics.

Time (s)
Problem Solver Mesh Total MoC calcMacro CMFD Depl Memory (MB)

2A

FSA Default 665 92 76 102 328 232
FSA Coarse 483 55 53 98 227 196
LSA Default 845 219 79 108 344 255
LSA Coarse 553 98 56 104 238 200

2P

FSA Default 1370 548 101 202 415 558
FSA Coarse 1070 401 79 196 313 504
LSA Default 1834 965 103 200 428 591
LSA Coarse 1217 579 74 190 294 506
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5.3.4 2-D Lattices

To evaluate the effect on accuracy these these coarse mesh parameters result in, they were applied to
the VERA problem 2 lattice series. This series contains 17 common lattice configurations, and it is
expected that if the meshing parameters are sufficient for these cases, they will be sufficient in most
applications. The eigenvalue and pin-power results compared to a very finely meshed reference
case are shown in Table 5.7 and Table 5.8, respectively. A finely meshed reference case is used,
rather than a Monte Carlo reference, as the sole focus of this study is on the error due to spatial
discretization.

On average, the LS on the coarse mesh, using the parameters found in the previous sections,
had accuracy comparable to the FS on the default mesh. Additionally, the worst case errors were
lower for the LS on the coarse mesh. These results also show that the FS on the coarse mesh is not
sufficient, with significantly worse eigenvalue and pin-power comparisons.

The run-time per iteration and number of iterations are listed in Table 5.9 and Table 5.10,
respectively. In most cases, the number of iterations is approximately the same; however, the LSA
solver often takes an additional iteration or two to converge for the same problem. As discussed
in Section 5.3.1 and iteration scheme that performs more thermal-group sweeps, as is done in
CASMO5, may help to improve performance of both solvers [13]. In terms of computational
performance, the LSA solver reduces total run-time per iteration by 7% on average.

Coarse Rays

In each of the these lattice calculations, the MoC calculation takes up the majority of the runtime.
The MoC runtime is directly proportional to the number of track-segments that are generated during
the ray-tracing. This number is reduced as the mesh becomes coarser; however, due to material and
geometric limitations, the mesh can only be coarsened so much. Another parameter that affects the
number of track-segments is the ray-spacing, or how far apart each ray is. The rays can be spaced
more coarsely, but this may cause some regions to not be integrated as accurately, thus degrading
overall accuracy.

In this section, the use of coarser ray-spacing is investigated for the VERA problem 2 series.
Results were generated using ray-spacings of 0.1 and 0.2 cm for the default mesh with the FS
solver, and the coarse mesh with the LS solver. Eigenvalue and pin power comparisons are shown in
Table 5.12 and Table 5.13, respectively. The original hypothesis was that by using a coarser mesh,
it would also be possible to use coarser ray-spacing with maintained accuracy. This hypothesis
turned out to be incorrect. Most of the cases it was possible to use a coarser ray-spacing while
maintaining similar accuracy with both the default and coarse meshes; however, some cases showed
significant errors when using coarse rays. The determining factor for whether or not coarse rays can
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Table 5.7: VERA Problem 2: Eigenvalue errors for each mesh and source approximation.

∆keff (pcm)
Case FS Default LS Default FS Coarse LS Coarse

A -17 -51 44 -36
B -15 -49 46 -34
C -17 -51 44 -36
D -25 -59 39 -41
E -49 -40 -52 -27
F -74 -32 -120 -26
G -98 -45 -210 -43
H -78 17 -206 18
I 2 -43 82 -24
J -74 -32 -119 -26

K -61 -26 -97 -19
L 60 37 105 52

M 74 54 124 71
N -1 31 -45 43
O -21 9 -109 7
P -115 -42 -311 -64
Q -12 -48 54 -30

AVG 47 39 106 35
MAX 115 59 311 71
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Table 5.8: VERA Problem 2: Maximum pin-power errors for each mesh and source approximation.

Max Pin Power Difference (%)
Case FS Default LS Default FS Coarse LS Coarse

A 0.07 0.05 0.24 0.08
B 0.07 0.05 0.24 0.08
C 0.07 0.05 0.24 0.08
D 0.07 0.05 0.24 0.08
E 0.12 0.05 0.37 0.08
F 0.15 0.05 0.51 0.08
G 0.19 0.09 0.59 0.10
H 0.25 0.15 0.58 0.15
I 0.09 0.05 0.29 0.08
J 0.10 0.05 0.34 0.08

K 0.17 0.06 0.55 0.08
L 0.13 0.07 0.35 0.12

M 0.11 0.06 0.26 0.11
N 0.18 0.05 0.51 0.11
O 0.15 0.06 0.43 0.08
P 0.17 0.08 0.69 0.14
Q 0.08 0.05 0.28 0.08

AVG 0.13 0.06 0.39 0.09
MAX 0.25 0.15 0.69 0.15

Table 5.9: VERA Problem 2: Number of iterations.

Iterations
Case FS Default LS Default FS Coarse LS Coarse

A 10 10 9 10
B 10 10 9 10
C 10 10 9 10
D 10 10 9 10
E 12 12 11 12
F 12 13 11 13
G 12 12 11 12
H 12 12 11 12
I 10 11 10 11
J 12 13 11 13

K 12 13 11 13
L 8 10 8 10

M 8 10 8 10
N 13 13 12 13
O 12 12 11 12
P 12 12 11 12
Q 10 10 9 11
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Table 5.10: VERA Problem 2: Run-time per iteration.

Run-time per iteration (s)
Case FS Default LS Default FS Coarse LS Coarse

A 0.56 0.76 0.46 0.51
B 0.56 0.77 0.46 0.52
C 0.56 0.77 0.46 0.51
D 0.56 0.77 0.45 0.51
E 0.53 0.74 0.43 0.52
F 0.54 0.76 0.44 0.51
G 0.57 0.78 0.49 0.55
H 0.56 0.79 0.47 0.55
I 0.56 0.77 0.44 0.50
J 0.54 0.75 0.44 0.51

K 0.54 0.75 0.45 0.51
L 1.57 2.07 1.20 1.43

M 1.58 2.10 1.19 1.44
N 1.46 2.09 1.16 1.49
O 0.56 0.78 0.45 0.51
P 0.56 0.78 0.44 0.51
Q 0.63 0.99 0.48 0.52

htbp

Table 5.11: VERA Problem 2: Mesh and ray-segment metrics.

# Source Regions # Ray-Segments
Case Default Coarse Reduction Default Coarse Reduction

A 3946 595 85% 715699 402620 44%
B 3946 595 85% 715699 402620 44%
C 3946 595 85% 715699 402620 44%
D 3946 595 85% 715699 402620 44%
E 4102 851 79% 728469 428444 41%
F 4258 1107 74% 741268 454290 39%
G 4114 963 77% 733619 446641 39%
H 4114 963 77% 733204 446226 39%
I 3951 607 85% 715923 403726 44%
J 4263 1119 74% 741492 455396 39%

K 4258 1107 74% 741268 454290 39%
L 4106 675 84% 3632023 2097604 42%

M 4202 723 83% 3695367 2166086 41%
N 4414 1125 75% 3792640 2367134 38%
O 4114 613 85% 730899 415100 43%
P 4282 637 85% 745991 427608 43%
Q 3946 595 85% 715699 402620 44%
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be used, while maintaining accuracy, is the presence of the fine material discretizations in some rods.
However, Table 5.15 shows that the use of a coarse mesh and coarse rays reduces the number of
ray-segments (from the default parameters) by a much more significant fraction than simply using a
coarser spatial mesh; meaning the expected run-time will be considerably lower.

Table 5.12: VERA Problem 2: Eigenvalue errors with coarse-rays.

Case ∆keff (pcm)
FS (0.1 cm) FS (0.2 cm) LS (0.1 cm) LS (0.2cm)

A 42 34 21 18
B 41 33 19 16
C 42 34 21 18
D 45 38 23 20
E 4 -59 25 -29
F -22 -32 26 28
G 27 73 98 162
H -37 71 59 180
I 54 45 25 22
J -22 -31 26 28

K -5 -15 37 38
L -30 -171 70 -40

M -140 -220 -43 -15
N -95 -227 23 -103
O 4 -36 27 -21
P -7 -35 39 -7
Q 43 35 22 19

AVG 39 70 36 45
MAX 140 227 98 180

5.3.5 Assembly with Feedback

VERA problem 6 is a single 3-D PWR assembly with T/H feedback [14], as visualized in Fig. 5.31.
COBRA-TF (CTF) [9] is a T/H code that can be coupled to the neutronics solver in MPACT to
perform multiphysics calculations. The coarse meshing parameters from the previous sections
were applied to this problem; these results will help to determine whether or not the coarse mesh
parameters are also sufficient when T/H feedback is present. As a 3-D assembly, this problem has
lower and upper plates, and nozzles. These elements were models as rectilinear grids of 0.42×0.42
cm2 sized cells.

This problem was run with the default and coarse meshes using the FSA and LSA solvers. A
parallel spatial decomposition was applied into 58 sub-domains, each consisting of a single axial
plane. Each case was compared against a very finely meshed case run using the LSA solver. Each
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Table 5.13: VERA Problem 2: Maximum pin-power errors with coarse-rays.

Case ∆keff (pcm)
FS (0.1 cm) FS (0.2 cm) LS (0.1 cm) LS (0.2cm)

A 0.15 0.45 0.10 0.33
B 0.15 0.45 0.10 0.33
C 0.15 0.45 0.10 0.33
D 0.15 0.45 0.10 0.33
E 0.22 0.28 0.09 0.28
F 0.19 0.31 0.09 0.42
G 0.31 0.49 0.24 0.44
H 0.35 0.52 0.24 0.51
I 0.16 0.47 0.10 0.32
J 0.19 0.31 0.08 0.42

K 0.20 0.33 0.10 0.43
L 0.79 0.90 0.80 1.30

M 1.08 0.94 1.11 1.20
N 0.91 0.85 0.98 0.98
O 0.25 0.62 0.14 0.43
P 0.30 0.61 0.20 0.40
Q 0.15 0.46 0.11 0.32

AVG 0.34 0.52 0.28 0.52
MAX 1.08 0.94 1.11 1.30

Table 5.14: VERA Problem 2: Run-time per iteration with coarse rays.

Run-time per iteration (s)
Case FS (0.1 cm) FS (0.2 cm) LS (0.1 cm) LS (0.2cm)

A 0.46 0.41 0.43 0.37
B 0.47 0.42 0.41 0.38
C 0.46 0.41 0.42 0.37
D 0.47 0.41 0.42 0.37
E 0.43 0.38 0.41 0.40
F 0.49 0.39 0.42 0.36
G 0.47 0.42 0.44 0.40
H 0.47 0.43 0.45 0.40
I 0.46 0.40 0.41 0.37
J 0.45 0.40 0.42 0.42

K 0.49 0.43 0.45 0.37
L 0.49 0.45 0.46 0.38

M 0.47 0.43 0.41 0.35
N 0.45 0.39 0.43 0.38
O 0.46 0.41 0.42 0.37
P 0.46 0.43 0.46 0.40
Q 0.61 0.44 0.43 0.37
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Table 5.15: VERA Problem 2: Number of ray-segments with coarse rays. Also shows reduction in
number of segments from the default mesh with default ray parameters.

# Segments (% Reduction from default)
Case Default (0.1 cm) Default (0.2 cm) Coarse (0.1 cm) Coarse (0.2cm)

A 371468 (48%) 187746 (74%) 208804 (71%) 105532 (85%)
B 371468 (48%) 187746 (74%) 208804 (71%) 105532 (85%)
C 371468 (48%) 187746 (74%) 208804 (71%) 105532 (85%)
D 371468 (48%) 187746 (74%) 208804 (71%) 105532 (85%)
E 378076 (48%) 191152 (74%) 222210 (69%) 112348 (85%)
F 384682 (48%) 194434 (74%) 235618 (68%) 119092 (84%)
G 380680 (48%) 192394 (74%) 231616 (68%) 117052 (84%)
H 380484 (48%) 192300 (74%) 231420 (68%) 116958 (84%)
I 371564 (48%) 187786 (74%) 209360 (71%) 105804 (85%)
J 384778 (48%) 194474 (74%) 236174 (68%) 119364 (84%)

K 384682 (48%) 194434 (74%) 235618 (68%) 119092 (84%)
L 382584 (89%) 193342 (95%) 220850 (94%) 111590 (97%)

M 389264 (89%) 196682 (95%) 228044 (94%) 115230 (97%)
N 399506 (89%) 201840 (95%) 249250 (93%) 125894 (97%)
O 379328 (48%) 191718 (74%) 215300 (71%) 108824 (85%)
P 387276 (48%) 195650 (74%) 221776 (70%) 112124 (85%)
Q 371468 (48%) 187746 (74%) 208804 (71%) 105532 (85%)

case used a Tabuchi-Yamamoto quadrature with 64 azimuthal angles and 4 polar angles, with a
uniform ray-spacing of 0.05 cm. An additional case was run using the coarse mesh, LSA solver,
and 0.1 cm ray-spacing.

Results are summarized in Table 5.16, and performance metrics are listed in Table 5.17. It is
quite clear that the LSA solver on the coarse mesh is at least as accurate, for this problem, as the
FSA on the default mesh. Additionally, the FSA on the coarse mesh performs significantly worse in
every metric of Table 5.16. Finally, it was shown that for this problem the use of coarser ray-spacing
was possible and had very little affect on the results. Problem 6 has no inserted control rods or other
finely meshed elements, and this is likely why using coarsely spaced rays is possible in this case.

Table 5.17 might seem to imply that the LSA solvers outperformed the FSA solvers on the same
mesh. This is not the case, as the LSA cases required fewer iterations to converge. The iterations
may differ due to non-uniform iterative convergence 2 that has previously been observed in problems
with CMFD acceleration and feedback [17]. If the MoC run-time per iteration is compared, the
LSA solver takes 79% longer than the FSA solver on the default mesh, but only 35% longer on
the coarse mesh. Compared to the FSA on the default mesh, the LSA on the coarse mesh MoC
calculation is actually slower (1.62 vs 1.46 s/iteration), but the time is reduced in other routines

2due to complex eigenvalues in the spectral radius
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Figure 5.31: VERA Problem 6: Geometry.

such as depletion.
Because CTF takes far longer in the first several iterations, it is not fair to compare total run-time

per iteration. Rather, we can look at the time that the FSA solver cases took to complete the same
number of iterations the LSA solver cases needed. The times to complete 9 iterations are shown in
Table 5.17. These results still show that the use of the LSA on the coarse mesh is advantageous
compared to the default mesh with FSA. The coarse mesh LSA case reduced the run-time for 9
iterations by 4.8%, but reduced MoC run-time per iteration by 9.3%. By also using coarse rays the
run-time is reduced by 8.4% for total time, and 72.7% for MoC time per iteration.

The reduction in memory usage from using a coarser mesh is also an important aspect of the
LSA solvers. The coarse mesh LSA case reduced total memory usage, compared to the default mesh
FSA case, by 15.5%, and maximum process memory usage by 4.2%. By using coarser ray-spacing,
the reduction in total memory is significantly higher at 33.6%, and 20.8% reduction in maximum
process memory.

Figure 5.32 shows the radial shape of the pin-power for two axial planes of the references
solution. These planes were chosen as the highest power plane, and the plane with the highest
pin-power error in the calculation using the default mesh with FSA solver. The planes with the
largest pin-power errors for each of the cases run are shown in Fig. 5.33. The pin-power errors
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in the case using the LSA with coarse mesh are shown to be lower than that using the FSA with
default mesh.

The axial power shape can be found by taking the mean radial pin-power for each axial plane.
This reference axial power shape, and the errors in it for each of the calculations run are shown in
Fig. 5.34. Though the errors might seem low (<0.5% in the worst case), it should be remembered that
these are the radially averaged power and thus a 0.5% error means the entire plane is mispredicted
by an average of 0.5%. It is also clear that the using the coarse mesh significantly worsens accuracy
when using the FSA. However, the LSA calculation errors do not change significantly from changing
from default to coarse mesh parameters. Additionally, the LSA calculations improve accuracy
considerably compared to the FSA, with errors <0.1%.

Table 5.16: Results for VERA problem 6 simulations using different source approximations
and mesh parameters. MPPE is the maximum pin-power error, and MPT is the maximum pin
temperature.

Solver Mesh (Ray-Spacing) ∆keff (pcm) MPPE (%) ∆ MPT (K)

FSA Default (0.05 cm) 34 0.31 -0.9
LSA Default (0.05 cm) -7 0.08 -0.3
FSA Coarse (0.05 cm) 109 0.85 -3.5
LSA Coarse (0.05 cm) 13 0.09 0.0
LSA Coarse (0.10 cm) 12 0.17 0.1

Table 5.17: Performance metrics for VERA problem 6 using different source approximations and
mesh parameters.

Run-time (s) Memory (MB)
Solver Mesh (Ray-Spacing) Iterations Total 9 Iter. MoC Total Max.

FSA Default (0.05 cm) 11 391 393 16.1 12438 264
LSA Default (0.05 cm) 9 390 399 23.6 13156 272
FSA Coarse (0.05 cm) 11 379 379 10.8 10381 248
LSA Coarse (0.05 cm) 9 366 374 14.6 10506 253
LSA Coarse (0.10 cm) 9 354 360 4.4 7887 209

5.3.6 Core Depletion with Feedback

The VERA progression problem 9 is based on the Watts Bar reactor and models a typical 18-month
power cycle, though with simplified power changes [14, 18]. Simplified changes in power are used
such that transient calculations are not necessary. The power levels, inlet coolant temperature, and
bank D position over the cycle depletion are shown in Fig. 5.35. The radial materials are shown in
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(a) Plane (193.6 cm) (b) Plane (89.2 cm)

Figure 5.32: Reference pin-powers from two planes of VERA problem 6.

Fig. 5.36. This problem models a 3-D quarter core with isotopic depletion and T/H feedback, and
performs a critical boron search at each state. As with Section 5.3.5, the calculations performed in
this section use the 2D/1D method [18, 19]. The Virtual Environment for Reactor Analysis Core
Simulator (VERA-CS) has previously been used to simulate problem 9 using the traditional FSA on
the default mesh in MPACT, and compared well against Watts Bar plant data [18]. In this section,
the use of the coarse mesh with LSA solver will be compared against the previous results.

The simulation used the graph partitioning spatial decomposition methods described in Chapter 4
with 692 spatial domains. A Tabuchi-Yamamoto quadrature set with 32 azimuthal and 4 polar angles
over 4π was used with 0.05 cm ray-spacing. The TCP0 scattering approximation was also used in
this case. These parameters are the same as those that were previously shown to yield results that
agree closely with plant data [18]. The default mesh contains a total of 51,513,673 source-regions,
while the coarse mesh contains a total of 14,932,511 source-regions. The initial coarse mesh results
were generated using a fine reflector region, with coarse fuel rod meshes; this mesh had a total of
19743263 source-regions. These initial coarse mesh results were generated due to a mistake by the
author, but these show close agreement in terms of accuracy with the actual coarse mesh results.

Transverse leakage splitting, sometimes used to help iteration stability (Section 2.4.3) [20, 21],
was disabled for these simulations. In this problem, transverse leakage splitting was confirmed not
to be necessary for convergence, and generally has negative impacts on accuracy. Additionally,
the use of transverse leakage splitting caused instability when using the LSA. In MPACT, the
splitting factor is determined by the average source in a region; however, when this is applied to the
linear source, it guarantees that half the region will still have a negative source. This appears to be
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(a) Default - FS (b) Coarse - FS

(c) Coarse - LS

Figure 5.33: VERA problem 6, planes with largest pin power errors for different meshes and source
approximations.
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Figure 5.34: VERA problem 6: radially averaged pin-power errors for each axial plane using
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Figure 5.35: VERA problem 9 power, inlet temperature, and bank D position over the 18-month
cycle.

sufficient to destroy the already tenuous stability of the 2D/1D iterations.
Figure 5.37 shows the reference critical boron levels and the errors of the coarse mesh solutions

over the cycle. The FSA coarse mesh solution tends to over-predict the boron levels, while the LSA
coarse mesh solution tends to under-predict. The maximum boron difference is about 3 ppm for the
FSA solution, and about 1.75 for the LSA solution. Each calculation finds that the core becomes
sub-critical at the same state; for the last five sub-critical states the maximum eigenvalues are within
10 pcm of the reference.

The maximum pin-power errors are shown in Fig. 5.38. The LSA shows clear benefits over
the FSA, with the maximum pin-power difference being lower for all but two states where errors
are similar. Additionally, the maximum error is within 1% using the LSA solver, but reaches over
1.2% for the FSA solver. Figure 5.39 shows the maximum pin temperature, and the errors for the
coarse mesh cases. The errors for each of the coarse mesh solutions follows similar trends, but the
FSA results seem to show a slight negative bias. Generally, the temperatures are within 2 K of the
reference maximum.

Detailed profiles of the pin-powers are provided for the beginning, middle, and end of cycles in
Figs. 5.40 to 5.42, respectively. A radial profile is shown for the mid-plane, and an axial profile is
shown for the assembly that was hottest at the beginning of the cycle. The pin-power difference
profiles for the coarse mesh solutions are shown in Figs. 5.43 to 5.45 for the FSA solver, and
Figs. 5.46 to 5.48 for the LSA solver. At the beginning of the cycle, the FSA solver tends to
over-predict power near the center of the core and under predict near the periphery, while the LSA
solver shows the opposite trend. These figures, along with Fig. 5.49, also show that using the radial
LSA is able to better capture the power-shape axially.

Several performance metrics are listed in Table 5.18. For the calculations with 696 spatial
domains, the coarse LSA uses 20% more core-hours than the default FSA calculation. However,
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Figure 5.36: VERA problem 9: Visualization of the radial core materials.

the use of the coarse mesh saves a considerable amount of memory: 249 GB. Each of the coarse
mesh cases required nearly 10% more iterations, likely because of iterative inefficiency from the
spatial decomposition (see Chapter 4), which is different for the different meshes. In fact, even the
FSA coarse mesh calculation was slightly slower than the FSA calculation on the default mesh even
though the number of mesh elements had been significantly reduced.

Table 5.18: VERA problem 9: Performance metrics.

Iterations Memory (GB)
Solver Mesh Outer CTF Total Time (hrs) Core-Hours Average Max. Total

FSA Default 895 58180 57.4 39954 2.67 3.21 1858
FSA Coarse1 969 58788 58.5 40681 2.16 3.00 1505
LSA Coarse1 958 59167 68.7 47835 2.31 3.19 1609

LSA3 Coarse 963 59397 76.7 35607 2.79 3.25 1295

These results have shown that the mesh that was found in the previous mesh-convergence study
is sufficient for this quarter-core cycle depletion with T/H feedback. This, along with the results of
previous sections, have shown that the coarse mesh parameters are sufficient for a large range of
problems, and should be considered as new default parameters when using the LSA in MPACT. The
use of the coarse mesh with the LSA was able to reduce the number of core-hours by 10.8%, and
total memory usage by 30.3%. This represents significant advantage of the LSA even in simulations
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Figure 5.37: VERA problem 9: Critical boron levels for the FSA solver on the default mesh, and
errors for the coarse mesh solutions.
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Figure 5.38: VERA problem 9: Maximum pin-power errors (compared to default mesh with FSA
solver) for coarse mesh solutions.
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Figure 5.39: VERA problem 9: Maximum pin temperature for the FSA solver on the default mesh,
and errors for the coarse mesh solutions.
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(a) Radial (b) Axial

Figure 5.40: VERA Problem 9: (Reference) Default mesh with FSA solver pin-powers for the
beginning of the cycle.

(a) Radial (b) Axial

Figure 5.41: VERA Problem 9: (Reference) Default mesh with FSA solver pin-powers for a state in
the middle of the cycle.

(a) Radial (b) Axial

Figure 5.42: VERA Problem 9: (Reference) Default mesh with FSA solver pin-powers for the end
of the cycle.
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(a) Radial (b) Axial

Figure 5.43: VERA Problem 9: Coarse mesh with FSA solver pin-power errors for the beginning of
the cycle.

(a) Radial (b) Axial

Figure 5.44: VERA Problem 9: Coarse mesh with FSA solver pin-power errors for a state in the
middle of the cycle.

(a) Radial (b) Axial

Figure 5.45: VERA Problem 9: Coarse mesh with FSA solver pin-power errors for the end of the
cycle.
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(a) Radial (b) Axial

Figure 5.46: VERA Problem 9: Coarse mesh with LSA solver pin-power errors for the beginning of
the cycle.

(a) Radial (b) Axial

Figure 5.47: VERA Problem 9: Coarse mesh with LSA solver pin-power errors for a state in the
middle of the cycle.

(a) Radial (b) Axial

Figure 5.48: VERA Problem 9: Coarse mesh with LSA solver pin-power errors for the end of the
cycle.
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with multiple physics.
The results presented in this section did not use the recently added capability for radial power,

temperature, and burnup between MPACT and CTF. In initial testing with the coarse mesh parame-
ters, it appears that the capability assumed that each radial division in the fuel was equal volume;
that is not the case for the coarse mesh parameters developed in this work. Further testing on the
coarse mesh with LSA and radial coupling will be required once this assumption is lifted from the
new capability.

5.4 Conclusions

In this chapter, techniques for more stable and efficient exponential calculations for the LSMoC,
and a new formulation of the LSMoC that is more efficient in calculations with non-constant
cross-sections, were presented. Previously, due to the tabulation error, the exponential functions
in LSMoC could cause problems to become unstable when they contained near-void regions, such
as the fuel-clad gap. This could be solved by using more accurate tables, but at the expense of
performance. Instead, a different function, that is not scaled by the inverse transport cross section in
the transmission calculation, can be tabulated and used to calculate the other exponential functions.
This solved the issue that caused the instability and reduced the cost of exponential computations in
LSMoC calculations by 10% and total MoC time by 3%.

The improved formulation is equivalent to the previous formulation, but is found in such a way
that the group-dependent coefficients,Cg

i , can be eliminated. This reduces memory usage, as theCg
i

terms no longer need to be stored, which was at least as expensive as storing an additional current
term on the fine mesh. Additionally, the Cg

i terms no longer need to be computed (previous results
have indicated this takes around 15-20% of the time a transport sweep [3]). This is particularly
advantageous in cases with non-constant cross sections, such as multi-physics calculations. In
calculations with T/H feedback, the cross sections essentially change each iteration, meaning the
new formulation removes a 15-20% MoC overhead.

The improved LSMoC formulation was used in calculations to generate results for a variety of
steady-state single and multi-physics calculations. These cases were used to determine possible
default meshing parameters for MPACT. The determined coarse meshing parameters were shown
to be sufficient for a 3-D quarter core cycle depletion with T/H feedback. It was also shown that
the LSA allowed for a significant reduction in the number of source regions, memory usage, and
reduced overall run-time in many of these cases.

While it is known the use of the LSA allows for a coarser mesh while maintaining accuracy
and typically reducing run-times, this work has led to two additional conclusions. First, the
maintained accuracy and reduced run-times seem to hold even in the presence of additional physics
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such as isotopic depletion, and T/H feedback. Additionally, it was hypothesized that the use of
a coarser mesh may allow for coarser ray-spacing. However, this work has demonstrated that
this is not the case; the determining factor for whether or not coarse rays are possible, without
negatively impacting accuracy, is the presence of fine material discretizations such as control rods,
or other strong absorbing elements (e.g. integral fuel burnable absorber (IFBA)). In reactors, these
challenging geometric features only make up a small fraction of the total number of pins, and it
is expected that the additional detail provided by using finer ray-spacing is needed only locally
within these features. This motivates the use of a ray-tracing technique that allows for finer effective

ray-spacing to be used locally where necessary, while coarser ray-spacing is used elsewhere. The
macroband method previously developed for 2-D calculations, is suitable in this regard; however,
there exists no similar ray-tracing technique for 3-D calculations. Chapter 6 will provide details on
the extension of the macroband method for 3-D calculations.
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Figure 5.49: VERA problem 9: Radially averaged pin-power at beginning, middle, and end of the
cycle for the reference solution. Errors are shown for the coarse mesh solutions.
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CHAPTER 6

MacroRay Three-Dimensional Ray-tracing
Technique

The primary motivation of the three-dimensional macroray ray-tracing technique is to reduce the
number of tracks generated for 3-D MoC applications. The number of track-segments is very
strongly correlated with the run-time of a MoC calculation 1. The 2-D macroband ray-tracing
method had been shown to allow for coarser ray-spacing compared to traditional methods, but it has
never been extended for use in 3-D MoC calculations. This work seeks to fill that gap, and perform
an investigation into the extension from 2-D to 3-D macroband-like ray-tracing. The ray-tracing
technique is referred to as the macroray, because the 3-D “macro”paths are no longer bands, but
instead parallel-pipes.

This work implemented a 3-D ray-tracing and transport solver library in MPACT based on the
macroray method. The initial step in this implementation was to implement a 2-D version 2. This
also serves to confirm the results of previous studies on 2-D macroband [1, 2].

6.1 MacroRay Technique

The macroray ray-tracing technique is a 3-D extension of the macroband method; in order to
describe this new ray-tracing technique it is first necessary to describe the macroband method.
Section 3.4.5 gave a brief summary of the history of macroband, as well as some benefits of the
method. This section will describes the macroband method in more detail, and shows how the
method is extended to 3-D.

1if the MoC calculation performs an entirely separate calculation (i.e does not use the chord-classification method)
for each track-segment, this is expected to be directly proportional (ignoring overhead)

2which does not currently support CMFD acceleration
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6.1.1 Macroband Technique

The macroband was first used in the Collision Probability (CP) code HELIOS, and was considered to
be essential for the stability of the method [3]. Unlike the traditional uniform/equidistant ray-tracing
methods, the macroband method guarantees that each ray within a macroband will pass through
the same regions in the same sequence, and not have any regions within its bounds that are not
crossed by the rays. This means that the placement of rays, and their widths, are determined by
the internal geometry of the pin or subdomain that is being traced. Each ray within a macroband
passes through the same regions albeit with different lengths; if the incident flux for the macroband
is smooth, this means that the track-segment average flux will also be smooth. This allows for the
use of more advanced transverse integration, such as Gauss-Legendre quadrature integration [1]. A
similar method was also developed by Févotte et al. [2] where coarse equidistant ray calculations
were performed by using a macroband approach within the ray’s transverse area (with a single ray
per band).

The macroband method ray-tracing is described in Algorithm 6.1. A downside of this method
is that each ray has a unique width that requires additional storage. However, all rays within a
macroband pass through the same segments, so the region index for each segment only needs to be
stored once, reducing memory by a larger amount. The process is shown visually in Fig. 6.1.

Algorithm 6.1 Macroband ray-tracing procedure for a pin-cell.

1: Begin with a pin-cell geometry/mesh, and a direction of flight Ω̂m.
2: Create a list of points, P , containing:

1. corners,

2. mesh intersections,

3. and tangent points.

3: Sort the points by signed distance in the normal direction, n̂m, from center of pin
4: The macrobands are bounded in the transverse direction by these distances
5: for all Macrobands do
6: Determine quadrature points and widths in transverse direction
7: Place rays at these points with these widths
8: Trace each ray
9: end for

As it is difficult to visualize 3-D ray-tracing data in a 2-D textual media, a quarter IFBA fuel pin
will be used as an example to demonstrate the differences between ray-tracing methods. Figures 6.2
and 6.3 compare the traditional MRT ray-tracing technique with the macroband method with Gauss-
Legendre spacing. The rays for a single direction make it clear that the MRT in no way accounts
for the internal geometry. In the macroband method, there are clearly regions that have more rays
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(a) Determine intersection and tan-
gent points

(b) Determine macroband bound-
aries (through identified points)

(c) Perform ray-tracing within mac-
roband boundaries

Figure 6.1: Ray-tracing process for macroband.

passing through them; in this case, it is the boron layer coating the fuel. When all directions are
visualized, again the MRT would use this same pattern of rays whether this was an IFBA rod, or a
rectangular reflector (of the same size). In the macroband methods, some of the geometry becomes
very apparent, the outline of the pin can clearly be seen due to the methods forcing rays through the
thin coating.

(a) MRT (b) Macroband (Gauss-Legendre)

Figure 6.2: 2-D single angle ray-tracing comparison for quarter IFBA pin.

There have been different approaches to 3-D ray-tracing for MoC; the most common approach
is to first generate 2-D tracking data, forming characteristic planes. Then 2-D tracking data is
generated for each of the characteristic planes. This process was described in detail in Section 3.4.6,
and will be referred to as the 2D/2D ray-tracing approach. This was the approach taken for this
thesis work, but other approaches may have significant advantages; these will be discussed in
Section 6.1.3.

Although previous works have investigated the 2-D macroband ray-tracing method [1, 2, 4],
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(a) MRT (b) Macroband (Gauss-Legendre)

(c) Macroband-fixed (Gauss-Legendre)

Figure 6.3: 2-D ray-tracing comparison for quarter IFBA pin.
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there have not been any studies in the extension of macroband to 3-D MoC calculations. Here, the
macroray ray-tracing technique uses the macroband method for both the 2-D radial track generation,
and 2-D track generation within each characteristic plane. The setup procedure of the macrorays
guarantee that their rays pass through the same regions, just as the macroband’s did. However, it is
no longer guaranteed that any region contained within the volume of a macroray will be traversed
by the ray. This leads to some issues that are discussed in Section 6.1.3.

Similarly to the macroband method, the macroray method is fundamentally incompatible with
the direct neutron path linking (DNPL) ray-tracing technique [5]. The memory reduction technique
for macroband (MRMB) technique [1] can be used to store tracking data for unique geometric
subsystems (typically a pin cell), greatly reducing memory usage. Although tracking data can be
generated for unique geometry subsystems (MRMB [1]), some approximation of the angular flux
is necessary on interfaces. Generally, the macroray and macroband methods, which provide more
accurate integration, exchange regional numerical dispersion for interface numerical dispersion [6].
It is the point of view of the author that this is generally a favorable trade-off, as the engineering
quantities of interest are primarily determined through regional integration.

6.1.2 Chord-Classification

The chord-classification ray-tracing method [7] was described in detail in Section 3.4.6. One of the
key criticisms of this method, by Gunow [8], was that full 3-D tracking data needed to be generated
prior to the classification of rays. However, with the addition of the macroray ray-tracing method,
classification can be done automatically.

During the axial ray-tracing along a characteristic plane, the computational mesh is used to
determine the axial macrobands. Each ray within the macroray is guaranteed to pass through the
same regions and surfaces; this means that each ray within an axial macroband is guaranteed to be
of the same chord classification. This is demonstrated visually in Fig. 6.4. The chord-classification
drastically cuts down on the amount of memory used to store 3-D tracking data, and also may
reduce the amount of computational work. The work is reduced because the exponential functions
(see Section 5.1) are determined by the material and segment length. For vertical-to-vertical or
horizontal-to-horizontal macroray segments, the segment lengths of all rays are the same, thus only
a single exponential calculation is necessary.

The chord-classification approach was taken in this work, rather than on-the-fly ray-tracing [8].
This was done due to the ease of implementation (since the classification is automatic), and because
of the criticisms of on-the-fly ray-tracing described in Section 3.4.6.
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Figure 6.4: 3-D example of chord-classification with Macroray ray-tracing. Colored (red and blue)
characteristic tracks represent groups of “V-chords”, rays between two vertical surfaces.

6.1.3 Interface Angular Flux Approximation

In Section 3.4.5 different approaches to approximating the angular flux on the boundaries were
outlined for a 2-D macroband-based MoC calculation. A “fraction contribution” sub-boundary
averaging technique was described and chosen as the approach for this work. In this approach, each
surface of the subsystems (pin cells) is divided into sub-boundaries based on the direction of flight.
Each ray’s width is considered, and partial intersections with each surface are computed and used to
determine the ray’s fractional contribution to each sub-boundary. In the reverse direction (going
from sub-boundary to ray), each sub-boundaries fractional contribution to each ray is determined. It
was shown that this method conserved the total area-integrated angular flux on each surface.

However, in 3-D this approach becomes considerably more complicated, due to the nature of
3-D geometries and the 2D/2D ray-tracing approach. An issue arises from the fact that each ray,
as viewed in the direction of flight, is rectangular. Each ray is rectangular because in the radial
ray-tracing step, the ray is considered within the bounds of the width in the radially transverse
direction, and in the axial ray-tracing on the characteristic plane the ray is again constrained in a
height in the axially transverse direction. The rectangular ray projection is demonstrated for a single
ray in Fig. 6.5.
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For 3-D extruded cartesian pin cells, it is impossible (in arbitrary directions) to “span”3 the
surfaces of our system. Because each ray is rectangular, parts of the pin cell’s surfaces will not
be “hit” by the projection of any ray, and parts of some rays will live entirely outside the problem
domain. This issue is visualized in Fig. 6.6; it should also be noted that the area outside the domain,
and the surface area without any covering rays are not equal in area unless the ray is in the center of
the radial width.

(a) 2-D ray viewed from above (b) 3-D ray viewed in direction of flight

Figure 6.5: Example of the projected rectangular area formed in the 2D/2D ray-tracing approach.

The rays not “spanning” our system causes issues with the conservation of surface flux and
leakages as described in Section 3.4.5. Previously, the average angular flux in a sub-boundary was
determined by

ψis =
∑
j

A(Si ∩Rj)

A(Si)
ψjr . (6.1)

It was shown that by summing over all sub-boundaries, the leakage through the surface was
conserved. However, because the rays are no longer guaranteed to span the system’s surfaces, the
summation of intersected ray areas is no longer equal to the sub-boundary areas:∑

j

A(Si ∩Rj) ≤ A(Si). (6.2)

Generally, these areas are very close, and in the limit of infinite rays they are equivalent; but, the

3in this context, “span” will be used to describe the idea that each ray’s entire area projects onto some surface, and
the entire surface is filled with ray projections.
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Figure 6.6: An example of a ray that causes issues with the fractional contribution interface flux
approximation when using 2D/2D ray-tracing. The highlighted red area is the area of the ray outside
the domain (that projects to no surface), and the blue highlighted area is an area on the surface that
will not be hit by any ray.

motivation of this work has been to reduce the number of rays, so this issue needs to be addressed.
Section 6.1.3 describes how this issue was addressed in this work, and Section 6.1.3 describes
possible alternative approaches.

MacroRay Area Correction

Two ideas were investigated in order to address the issue of the rays not spanning the surface areas.
Here, it should be emphasized that the first approach is incorrect. It is described in this section
because it seems like a reasonable choice for this correction; in fact, it was not realized for some
time in this work that the first approach was incorrect.

The sub-boundary averaging method of this work has been referred to as a “fractional contribu-
tion” approach. This comes from Eq. (6.1) where A(Si ∩Rj)/A(Si) is the fractional contribution
of flux from ray j into sub-boundary i. In 2-D, these fractions will sum to one, because our rays
span the surfaces of our system: ∑

j

A(Si ∩Rj)

A(Si)
= 1. (6.3)

The first approach taken attempted to preserve this property of fractional contributions summing
to unity. This is done by ignoring ray areas outside the domain and surface areas that are not covered
by ray projections; the sub-boundary and ray fluxes are determined by

ψis =
∑
j

A(Si ∩Rj)∑
k

A(Si ∩Rk)
ψjr =

∑
j

A(Si ∩Rj)

Ap(Si)
ψjr , (6.4a)
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ψjr =
∑
i

A(Si ∩Rj)∑
k

A(Sk ∩Rj)
ψis =

∑
i

A(Si ∩Rj)

Ap(Rj)
ψis, (6.4b)

respectively. For convenience, let us define the “total projected area” as the sum of intersections for
that object, for example the total projected area of a ray would be defined by

Ap(Rj) ≡
∑
i

A(Si ∩Rj), (6.5)

and similarly for Ap(Si). Through these definitions the new fractional contributions sum to unity:

∑
j

A(Si ∩Rj)

Ap(Si)
= 1, (6.6a)

and ∑
i

A(Si ∩Rj)

Ap(Rj)
= 1. (6.6b)

While this may seem reasonable 4, this is not actually the property we need to preserve for
compatibility with CMFD acceleration. The leakage needs to be preserved, but in this first approach
this is not the case.

Ls = Ω̂ · n̂
∑
i

A(Si)ψ
i
s = Ω̂ · n̂

∑
i

A(Si)
∑
j

A(Si ∩Rj)

Ap(Si)
ψjr 6= ψrt , (6.7a)

Lr = Ω̂ · n̂
∑
j

A(Rj)ψ
j
r = Ω̂ · n̂

∑
j

A(Rj)
∑
i

A(Si ∩Rj)

Ap(Rj)
ψis. 6= ψst , (6.7b)

Note that the true areas A(Si) and A(Rj) must be used to sum the fluxes in order to integrate over
the entire surface (or ray areas).

This approach actually works for many problems, and while small differences between the
solutions of transport and accelerated transport calculations exist, they are usually small. However,
for larger problems, the CMFD acceleration may become unstable and cause the iteration scheme
to diverge; though this generally only occurs if the convergence criteria is relatively low (≤ 10−6).
Nevertheless, compatibility with CMFD acceleration, or other acceleration methods, is necessary if
this method is ever to be used. This leads to the approach used for the remainder of this work.

As this section has emphasized, the property that is important to conserve is the leakage. The
leakage can be found by integrating over sub-boundaries, or over rays; it is necessary for these to be

4at least at first to the author
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equal:
L = Ω̂ · n̂

∑
i

A(Si)ψ
i
s =

∑
j

A(Rj)ψ
j
r . (6.8)

The sub-boundary flux, ψis, should be dependent on the ray fluxes, ψjr , and should also follow a
similar form as Eq. (6.1).

Let us examine the sub-boundary flux in order to show how the leakage may be preserved. Insert
a corrective multiplicative term into the summation of Eq. (6.1),

ψis =
∑
j

kjs
A(Si ∩Rj)

A(Si)
ψjr . (6.9)

Substituting this form into Eq. (6.8) yields,

L = Ω̂ · n̂
∑
i

A(Si)
∑
j

kjs
A(Si ∩Rj)

A(Si)
ψjr = Ω̂ · n̂

∑
j

A(Rj)ψ
j
r . (6.10)

So, kjs should be chosen such that ∑
i

kjsA(Si ∩Rj) = A(Rj), (6.11)

solved by

kjs =
A(Rj)∑

i

A(Si ∩Rj)
=

A(Rj)

Ap(Rj)
. (6.12)

The sub-boundary flux can then be determined by

ψis =
∑
j

A(Rj)

Ap(Rj)

A(Si ∩Rj)

A(Si)
ψjr , (6.13a)

and similarly, the ray flux can be determined by

ψjr =
∑
i

A(Si)

Ap(Si)

A(Si ∩Rj)

A(Rj)
ψis. (6.13b)

As this was derived from Eq. (6.8), these forms guarantee that the leakage is conserved. It should also
be noted that if the surfaces are spanned by the rays the factors, A(Rj)/Ap(Rj) and A(Si)/Ap(Si),
are one, giving back the original form of the equations.

Another consequence of the rays not spanning the problems surfaces, is that larger sub-boundary
sizes become necessary to ensure that each sub-boundary is intersected by at least one ray. If sub-
boundary sizes are too large, it will negatively affect the accuracy of the simulations, particularly
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in cases where neighboring pins are significantly different (e.g. there are large gradients along the
interface).

Alternative Approaches

The approach described in Section 6.1.3 provided a correction to Eq. (6.1) such that the surface-
integrated angular flux is conserved. This approach seems to be valid when operating in the 2D/2D
(rectangular) ray-tracing procedure, but there are alternative options. The reason a correction is
necessary is the rays are no longer guaranteed to span the system’s surfaces. It is possible to have an
alternative ray-tracing approach (still based on the macroray) that does span the system’s surfaces.

The choice of rectangular rays was arbitrary, but this choice may be exchanged for any shape,
such as triangular, or even arbitrarily shaped rays. Non-rectangular rays were not investigated
as part of this work, and to the best of our knowledge, have not been investigated by any works.
As previously mentioned, 3-D MoC codes up to this point have used the uniform ray-spacing
assumption in order to comply with constraints of MRT and DNPL. When rays are uniformly
spaced and have DNPL, the shape of the ray is largely ignored because the procedures only care
about the ray’s centroid. It only becomes important when considering the integration volume of the
ray, such as in the sub-boundary averaging method with fractional contributions.

If rays are constructed so that they span the system’s surfaces, there is no need to correct
Eq. (6.1). It is not clear at this point whether or not this would have benefits for the accuracy of
the method. However, it is possible to also preserve some of the desirable features for general
geometries of the macroband that were lost in the transition to 3-D (in the 2D/2D ray-tracing
framework). If the geometry is not locally extruded (in this work this was an assumption), then it is
possible for macrorays to have some of their transverse area in a region that none of its rays pass
through. Examples of how non-rectangular rays might be used are shown in Fig. 6.7.

6.2 Results

This section presents results using the macroray ray-tracing method, and comparisons against the
modular ray-tracing (MRT) method. All results presented use the LSA approximation developed in
Chapter 5.

6.2.1 VERA Problem 1E

VERA progression problem 1E [9] is a single IFBA pin with a very thin coating of boron on the
fuel. The boron will shield the pin from incident thermal neutrons, significantly dampening the
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(a) geometry (b) Axially stacked rays (c) General triangular rays

Figure 6.7: Two alternative (non-rectangular) ray-tracing ideas. (a) shows the geometry for clarity.
(b) shows an example of rays that are generated to be axially aligned in a characteristic plane, but
consider the full volume they pass through. (c) shows an example of triangulated rays. In both (b)
and (c) the rays are formed by rhombuses or triangles, but if there were a cylinder in this pin, they
could have curved boundaries as well.

reactivity. These rods are used in reactor designs to lower reactivity at the beginning of cycle; as the
fuel cycle continues, the boron will be depleted and the reactivity will increase.

Such a thin coating that has a very significant impact on the reactivity can be a difficult problem
for transport methods. The MoC is able to handle this case, but generally requires very fine ray-
spacing in order to resolve these thin annular regions. This makes VERA problem 1E a perfect
test case for the macroband and macroray methods, which will automatically place rays through
these thin regions. Ideally, this would allow coarser ray-spacing to be used elsewhere in the pin.
Furthermore, for larger problems with IFBA pins in a few locations rays do not need to be refined
globally.

VERA Problem 1E: 2-D

Each calculation in this section used a Tabuchi-Yamamoto [10] directional quadrature with 64
azimuthal angles and 4 polar angles over 4π. Additionally, a self-shielding calculation was run to
compute macroscopic cross sections for the problem. The reference case uses the same directional
quadrature and mesh with a very fine ray-spacing; this was chosen as the reference as this study is
intended to isolate effects due to ray-tracing discretizations. Two different approaches were tested
to determine the number of rays within a macroband: first, the width of the band is divided by the
ray-spacing and the ceiling is taken. The second approach is to place a fixed number of rays within
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each band.
Figures 6.8 and 6.9 show the eigenvalue results for a variety of effective ray-spacing, and

the eigenvalue errors for the the number of ray-segments. Effective ray-spacing is computed by
averaging the widths of all rays in the problem. In this case, the eigenvalue error is taken as the
difference from the converged MRT result. These figures show a clear advantage for the macroband
ray-tracing method; even for the coarsest macroband spacing, the resulting eigenvalue was within
150 pcm of the converged result. The method using a fixed number of rays in each macroband
seems to have an advantage when using coarse ray-spacings, and converges slightly faster than the
width-determined number of rays per band.

The convergence of the eigenvalue as more rays (segments) are added is very close to monotonic
for the macroband methods. This is certainly not the case for the MRT method, which sees very
large swings in the eigenvalue from small changes in the ray-spacing, as shown by the large spikes
in Fig. 6.10. The large spikes on the right of this plot show that for small changes in the ray-spacing,
a large (> 2000 pcm) reactivity swing can occur when using MRT, whereas both macroband
approaches have low differences between cases with similar ray-spacing. The lack of these large
changes, allows the solver to act as more of a “black box”, where the user does not need knowledge
of the method to use it. Additionally, because of the near monotonic convergence behavior, it may
be possible to use Richardson extrapolation to further reduce costs.
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Figure 6.8: VERA Problem 1E: Eigenvalue results for different 2-D ray-tracing methods.

VERA Problem 1E: 3-D

MPACT currently lacks a multigroup sweeper for 3-D self-shielding calculations, so this calculation
was run without self-shielding. This will lead to a significantly different converged eigenvalue than
for the 2-D case. However, even without self-shielding, this case can be used to show the benefits
of the macroray ray-tracing method in 3-D MoC calculations. Due to the 3-D rays, it is no longer
useful to compare the results as a function of ray-spacing, as there is now the effective axial and
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Figure 6.9: VERA Problem 1E: Eigenvalue errors for different 2-D ray-tracing methods.
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Figure 6.10: VERA Problem 1E: Convergence of eigenvalue for different 2-D ray-tracing methods.
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effective radial ray-spacing. As it is a far better metric for the amount of work, all the 3-D results
will simply use the number of track-segments for accuracy comparisons. Each calculation was run
using odCMFD acceleration [11], and a directional quadrature with 64 azimuthal angles and 6 polar
angles over 4π.

Figures 6.11 and 6.12 show the k-eigenvalue as a function of the number of track segments,
and the sequential differences in eigenvalue for each refinement of rays. These results compare the
traditional MRT method against the macroray method with a fixed number of rays in each radial
and axial band (different amounts in radial and axial). A Gauss-Legendre quadrature was used to
determine ray placement and width within each band. As this problem is axially homogeneous, a
single ray was used in each axial band, and an axial ray-spacing of 0.75 cm was used for the MRT
method.

These results suggest that the macroray method’s ray-mesh convergence rate is higher than the
traditional MRT method’s; the eigenvalue change between successive calculations (refining the
number of rays) drops below 10 pcm with around 5.6 million segments, whereas the MRT method
was unable to converge within 10 pcm even using 14 million. Additionally, it is clear that the
near-monotonic convergence behavior that the macroband had in 2-D holds in 3-D.

The MRT calculations were not continued past 14 million segments, as using finer ray-spacing
resulted in significantly increased run-times, much of which was spent in the actual ray-tracing
procedures. While the macroray does significantly simplify the ray-tracing procedure, the author
believes that these long ray-tracing run-times in MRT are likely due to unoptimized code, rather
than an inherent flaw in the method. For 5.6 million segments, the macroray ray-tracing procedures
took under 10 seconds, while for 4.8 million segments in the MRT took 190 seconds.
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Figure 6.11: VERA Problem 1E: Eigenvalue results for different ray-tracing methods.
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Figure 6.12: VERA Problem 1E: Convergence of eigenvalue for different ray-tracing methods.

6.2.2 Shielded Fuel Box

The shielded fuel-box problem was created for this work to more clearly demonstrate the benefits of
the macroray method for problems that pose challenges to the traditional ray-tracing methods. This
problem consists of a 0.4×0.4×0.4 cm3 fuel block surrounded on all sides by 0.1 cm of a shielding
material. This entire shielded cube is surrounded by 0.5×0.5×0.5 cm3 cubes of moderator (26 in
total). The calculation uses the C5G7 benchmark cross sections; the fuel is the 8.7% MOX, the
shielding material uses the control rod cross sections. A 2-D cross-sectional view of the problem
is shown in Fig. 6.13, and reflective boundary conditions are used on each face. This problem is
meant to be similar to VERA problem 1E, though the surrounding material was made thicker so
that resolving the region did not require an extreme number of rays.

The OpenMC Monte Carlo code [12] was used to generate a reference eigenvalue to compare
the results against. The reference solution was generated with 500 batches of 50000 particles, with
50 inactive batches. This yielded a reference eigenvalue with 4 pcm uncertainty. For MPACT, each
calculation used a Chebyshev-Chebyshev directional quadrature with 24 azimuthal and 12 polar
angles over 4π; this quadrature was chosen, rather than a Chebyshev-Gauss, as the problem has the
same axial and radial descriptions. Similarly, the radial and axial ray-spacing used by the MRT are
the same for each calculation, and the number of rays per radial or axial band are the same.

The results of the ray-tracing methods are summarized in Figs. 6.14 and 6.15. The traditional
MRT method generates very large eigenvalue errors when a coarse ray-spacing is used; in fact, for
the first several ray-spacing values used, the eigenvalue estimate was near critical even though the
reference is very sub-critical. This shows a major flaw in the MRT methods, they do not consider
the internal geometry and allow for such coarse spacings that the results can be entirely useless. In
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Figure 6.13: Cross-sectional diagram of the shielded-box problem from x-y, x-z, or y-z directions.

contrast, the macroray method enforces a minimum number of rays, which seems to give somewhat
reasonable results.

Figure 6.16 shows the change in eigenvalue for each sequential calculation (a refinement in the
number of rays/segments). This figure also shows that for very coarse ray-spacings (resulting in near
critical eigenvalues) do not have large differences in the resulting eigenvalues. An inexperienced
user may believe that the solution is near convergence, which is certainly not the case. Once the
ray-spacing is smaller than the thickness of the shielding, the results become reasonable. Although,
they are still further off from the reference than the macroray method for the same number of
segments. However, a user without knowledge of the MoC would likely not be aware that this is a
requirement of the user input. Although this was demonstrated with very coarse ray-spacings, a
similar effect would likely be present if the shielding were thinner than the default ray-spacing of
MPACT. This shows a clear advantage for the macroray method, in that it allows the user to more
safely use the method without detailed knowledge of the method.

6.2.3 C5G7

The C5G7 [13, 14] benchmarks are a set of benchmark problems commonly used to help the
verification of 2-D and 3-D transport methods. The benchmarks provide a reference Monte Carlo
solution that can be used to evaluate the accuracy of methods used to solve the problems. The
original benchmark specified a 3-D problem, and a second benchmark reduced the axial size of
this problem and added configurations with inserted control rods. In this work, each of the three
extended 3-D benchmark problems are solved using both the traditional ray-tracing method (MRT),
and the new macroray ray-tracing method. Fig. 6.17 shows the configuration of the C5G7 core
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Figure 6.14: Shielded-Box Problem: Eigenvalue results for different 3-D ray-tracing methods.
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Figure 6.15: Shielded-Box Problem: Eigenvalue errors for different 3-D ray-tracing methods.
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Figure 6.16: Shielded-Box Problem: Convergence of eigenvalue for different 3-D ray-tracing
methods.
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benchmark cases; the different problems differ only in their axial description. The radial layout of
each fuel assembly is shown in Fig. 6.18.

The LSA was used for all of the calculations in this work, and the meshing parameters used
were found to be sufficient in previous studies on the LSA [15]. In the axial direction, the problem
was meshed into 2.38 cm slices. The rods (fuel, guide-tubes, and control rods), used a single radius
of 0.540 cm, with 4 azimuthal divisions, and 8 azimuthal divisions in the surrounding moderator.
The reflector pins used a radial mesh of 0.42×0.42 cm2. A Chebyshev-Gauss directional quadrature
with 64 azimuthal angles and 8 polar angles over 4π was used, as it was shown to yield good
agreement in previous works with 3-D MoC [16]. A pin-wise modular ray-tracing was used, with
each ray-tracing module being 1.26×1.26×2.38 cm3. Convergence criteria of 1e-6 and 1e-5 were
used for the eigenvalue and fission norm respectively. 1080 spatial domains, determined by the
RSB graph-partitioning method, were used for each calculation.

The macroray method calculations used 3 rays in each radial band and 5 rays in each axial band.
The MRT method calculations used 0.05 cm ray-spacing in the radial direction, and 0.15 cm in the
axial direction. Massachusetts Institute of Technology (MIT) has reported that for these problems
they were able to use 1.5 cm ray-spacing [15], but in this study this was not found to be sufficient.
This is most likely due to differences in how rays are set up within the MRT procedures in MPACT
and OpenMOC.

Unfortunately, due to an inefficient implementation determining surface indices on parallel
boundaries for 3-D MoC in MPACT, CMFD could not be utilized for the MRT calculations.
However, the time that the accelerated method would take can be estimated roughly by the ratio of
iterations from the MRT to the macrorray calculations (that used CMFD accleration).
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Figure 6.17: C5G7 extended benchmark core layouts.
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Figure 6.18: C5G7 Assembly layouts.

C5G7 Benchmark: Unrodded

The unrodded case has no control rods inserted into the fuel, but control rods are present in the axial
reflector region above the fuel region. This is shown in Fig. 6.19.

Eigenvalue and errors are listed in Table 6.1, and pin-power results are summarized in Tables 6.2
and 6.3. The eigenvalues for either ray-tracing method are within 100 pcm of the reference value.
Although there is an 8 pcm difference between the two methods, this is not a significant difference.

Overall, the macroray method results in better pin-power comparisons in each metric except
for slightly higher error in the maximum pin-power. Additionally, the number of pins within the
uncertainty levels of the reference is much higher for the macroray method, indicating better overall
predictions in pin-power. However, the macroray method seems to have a bias in the top 1/3 of
the fuel, where the power level is lower. The pin-power comparisons within this axial level are
significantly worse than in the lower 2/3.

Table 6.1: C5G7 Benchmark: Unrodded eigenvalue comparisons.

Case Eigenvalue Error (pcm)

Reference 1.143080 ± 7
MRT 1.142453 -63

MacroRay 1.142366 -71

Table 6.4 lists the total run-time of each calculation. The MRT calculation took 911 iterations to
converge (unaccelerated), while the macroray method took 30 to converge. This gives an estimate
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Figure 6.19: C5G7 Benchmark: Unrodded core configuration.

Table 6.2: C5G7 Benchmark: Unrodded pin-power comparisons for the MRT method.

Z Slice # 1 Z Slice # 2 Z Slice # 3 Overall
Reference MRT Reference MRT Reference MRT Reference MRT

Maximum Pin Power 1.108 1.107 0.882 0.881 0.491 0.488 2.481 2.476
Percent Error 0.090 -0.093 0.100 -0.184 0.130 -0.545 0.060 -0.215

Maximum Error 0.290 2.483 0.320 2.538 0.430 2.618 0.192 2.454
AVG Error 0.164 0.354 0.183 0.358 0.245 0.363 0.109 0.329
RMS Error 0.171 0.522 0.190 0.518 0.255 0.505 0.114 0.486
MRE Error 0.062 0.114 0.055 0.094 0.042 0.058 0.093 0.241

# Pins within 68% 371 177 371 197 371 234 371 142
# Pins within 95% 518 323 518 335 518 392 518 248
# Pins within 99% 540 388 540 414 540 457 540 310

# Pins within 99.9% 544 438 544 456 544 499 544 368

UO2-1 Power 219.04 218.63 174.24 173.91 97.93 97.73 491.21 490.27
MOX Power 94.53 94.61 75.25 75.27 42.92 42.97 212.70 212.85

UO2-2 Power 62.12 62.43 49.45 49.68 27.82 27.91 139.39 140.02
UO2-1 Power % Error 0.082 -0.185 0.073 -0.188 0.055 -0.212 0.123 -0.192
MOX Power % Error 0.061 0.082 0.054 0.032 0.041 0.116 0.092 0.071

UO2-2 Power % Error 0.043 0.508 0.038 0.466 0.029 0.334 0.065 0.458
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Table 6.3: C5G7 Benchmark: Unrodded pin-power comparisons for the macroray method.

Z Slice # 1 Z Slice # 2 Z Slice # 3 Overall
Reference MacroRay Reference MacroRay Reference MacroRay Reference MacroRay

Maximum Pin Power 1.108 1.105 0.882 0.880 0.491 0.491 2.481 2.475
Percent Error 0.090 -0.331 0.100 -0.309 0.130 0.108 0.060 -0.236

Maximum Error 0.280 0.862 0.250 1.131 0.330 2.014 0.192 0.910
AVG Error 0.164 0.257 0.183 0.235 0.245 0.830 0.109 0.190
RMS Error 0.171 0.300 0.190 0.294 0.255 0.902 0.114 0.248
MRE Error 0.062 0.130 0.055 0.083 0.042 0.149 0.093 0.161

# Pins within 68% 371 188 371 229 371 9 371 180
# Pins within 95% 518 328 518 396 518 74 518 342
# Pins within 99% 540 399 540 462 540 132 540 411

# Pins within 99.9% 544 441 544 508 544 232 544 480

UO2-1 Power 219.04 218.21 174.24 173.79 97.93 98.48 491.21 490.47
MOX Power 94.53 94.40 75.25 75.23 42.92 43.33 212.70 212.97

UO2-2 Power 62.12 62.09 49.45 49.48 27.82 28.03 139.39 139.59
UO2-1 Power % Error 0.082 -0.380 0.073 -0.259 0.055 0.554 0.123 -0.151
MOX Power % Error 0.061 -0.134 0.054 -0.021 0.041 0.957 0.092 0.126

UO2-2 Power % Error 0.043 -0.047 0.038 0.053 0.029 0.744 0.065 0.147

for the accelerated MRT method at 240 core-hours. Unfortunately, this is quite significantly better
in terms of run-time than the macroray method. A further discussion of this will be presented in
Section 6.3.

Table 6.4: C5G7 Benchmark: Unrodded Performance.

Case Acclerated? Time (core-hours)

LSMoC - MRT F 7293
LSMoC - MacroRay T 618

By refining the axial mesh height the accuracy of the macroray calculations can be increased.
The previous mesh used an axial source region height of 2.38 cm; by using a height of 1.785 cm,
the eigenvalue error is reduced to -54 pcm. By further reducing to an axial source height of 1.428
cm the eigenvalue error becomes -49 pcm. While a similar study was not performed on the rodded
B case, the same trend is expected.

C5G7 Benchmark: Rodded A

The C5G7 rodded A case has control rods partially inserted 14.28 cm, one third of the fuel height,
into the central UO2 assembly. The remaining UO2 assembly and MOX assemblies have no inserted
control rods. The core layout is depicted in Fig. 6.20.

Eigenvalue and errors are listed in Table 6.5, and pin-power results are summarized in Tables 6.6
and 6.7. Similarly to the unrodded case, the eigenvalues for each ray-tracing method are within 100
pcm; however, the error is 34 pcm higher for the macroray method. Again, in overall pin-power
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comparisons, the macroray method outperforms the MRT method in all except the error in the
maximum pin-power. Additionally, the number of pins predicted within the uncertainty levels of
the reference are significantly higher for the macroray method. But, just like in the unrodded case,
the macroray method performs significantly worse in the low-power upper third of the fuel.
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Figure 6.20: C5G7 Benchmark: Rodded A core configuration.

Table 6.5: C5G7 Benchmark: Rodded A eigenvalue comparisons.

Case Eigenvalue Error (pcm)

Reference 1.128060 ± 7
MRT 1.127585 -47

MacroRay 1.127248 -81

Table 6.8 lists the total run-time of each calculation. The MRT calculation took 936 iterations to
converge (unaccelerated), while the macroray method took 31 to converge. This gives an estimate
for the accelerated MRT method at 246 core-hours. Again, this is much better than how the macroray
method performed.

C5G7 Benchmark: Rodded B

The C5G7 rodded B case has control rods partially inserted into three of the four fuel assemblies.
Each of the MOX assemblies has control rods inserted 14.28 cm. The center UO2 assembly has
control rods inserted 28.56 cm, two thirds of the fuel height; the outer UO2 assembly has no inserted
control rods. This layout is depicted in Fig. 6.21.

Eigenvalue and errors are listed in Table 6.9, and pin-power results are summarized in Tables 6.10
and 6.11. In this case, the macroray method yields eigenvalue error just over 100 pcm, while the
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Table 6.6: C5G7 Benchmark: Rodded A pin-power comparisons for the MRT method.

Z Slice # 1 Z Slice # 2 Z Slice # 3 Overall
Reference MRT Reference MRT Reference MRT Reference MRT

Maximum Pin Power 1.197 1.198 0.832 0.830 0.304 0.300 2.253 2.249
Percent Error 0.080 0.085 0.100 -0.151 0.200 -1.237 0.059 -0.211

Maximum Error 0.270 1.948 0.310 2.168 0.180 2.014 0.183 1.934
AVG Error 0.157 0.429 0.180 0.334 0.260 0.837 0.108 0.294
RMS Error 0.163 0.566 0.186 0.471 0.266 0.962 0.111 0.430
MRE Error 0.066 0.156 0.056 0.093 0.037 0.146 0.094 0.220

# Pins within 68% 371 106 371 197 371 93 371 151
# Pins within 95% 518 237 518 350 518 175 518 270
# Pins within 99% 540 312 540 415 540 223 540 338

# Pins within 99.9% 544 386 544 471 544 281 544 391

UO2-1 Power 237.41 237.80 167.51 167.23 56.26 55.47 461.18 460.49
MOX Power 104.48 104.85 78.01 77.99 39.23 38.95 221.71 221.78

UO2-2 Power 69.80 70.22 53.39 53.58 28.21 28.14 151.39 151.94
UO2-1 Power % Error 0.087 0.164 0.071 -0.170 0.040 -1.404 0.119 -0.149
MOX Power % Error 0.065 0.351 0.056 -0.022 0.040 -0.716 0.094 0.031

UO2-2 Power % Error 0.047 0.608 0.040 0.356 0.029 -0.232 0.068 0.363

Table 6.7: C5G7 Benchmark: Rodded A pin-power comparisons for the macrorray method.

Z Slice # 1 Z Slice # 2 Z Slice # 3 Overall
Reference MacroRay Reference MacroRay Reference MacroRay Reference MacroRay

Maximum Pin Power 1.197 1.190 0.832 0.828 0.304 0.307 2.253 2.245
Percent Error 0.080 -0.542 0.100 -0.387 0.200 1.088 0.059 -0.387

Maximum Error 0.210 0.976 0.240 1.120 0.350 1.881 0.143 0.985
AVG Error 0.157 0.240 0.180 0.256 0.260 0.937 0.108 0.222
RMS Error 0.163 0.288 0.186 0.320 0.266 0.986 0.111 0.275
MRE Error 0.066 0.136 0.056 0.091 0.037 0.140 0.094 0.198

# Pins within 68% 371 212 371 229 371 8 371 145
# Pins within 95% 518 341 518 369 518 38 518 272
# Pins within 99% 540 390 540 429 540 100 540 360

# Pins within 99.9% 544 433 544 490 544 194 544 439

UO2-1 Power 237.41 236.50 167.51 167.00 56.26 56.74 461.18 460.24
MOX Power 104.48 104.40 78.01 78.04 39.23 39.61 221.71 222.04

UO2-2 Power 69.80 69.76 53.39 53.46 28.21 28.45 151.39 151.67
UO2-1 Power % Error 0.087 -0.382 0.071 -0.305 0.040 0.855 0.119 -0.203
MOX Power % Error 0.065 -0.077 0.056 0.040 0.040 0.972 0.094 0.150

UO2-2 Power % Error 0.047 -0.050 0.040 0.128 0.029 0.849 0.068 0.180

Table 6.8: C5G7 Benchmark: Rodded A Performance.

Case Acclerated? Time (core-hours)

LSMoC - MRT F 7433
LSMoC - MacroRay T 587
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MRT method is well under 100. The difference in eigenvalue error is likely primarily due to the
fact that the MRT benefits from cancellation of errors, while the macrorray generally does not.

Interestingly, the overall pin-power comparisons are much closer in this case compared to the
unrodded and rodded A configurations. The average, RMS and mean relative errors are all similar
compared to the MRT method; the error in the maximum power is higher for the macroray method,
just as in the previous cases. The macroray method also does not outperform the MRT method in the
number of pins within each uncertainty level of the reference. Finally, the macroray method again
shows the most significant errors in the upper 1/3 of the fuel, as in previous cases. As mentioned in
Section 6.2.3, if the axial mesh was refined, lower errors would be expected.
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Figure 6.21: C5G7 Benchmark: Rodded B core configuration.

Table 6.9: C5G7 Benchmark: Rodded B eigenvalue comparisons.

Case Eigenvalue Error (pcm)

Reference 1.077770 ± 7
MRT 1.077268 -50

MacroRay 1.076628 -114

Table 6.12 lists the total run-time of each calculation. The MRT calculation took 933 iterations to
converge (unaccelerated), while the macroray method took 30 to converge. This gives an estimate for
the accelerated MRT method at 241 core-hours. Just as the previous two cases, this is significantly
lower than the time the macroray method took.
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Table 6.10: C5G7 Benchmark: Unrodded pin-power comparisons for the MRT method.

Z Slice # 1 Z Slice # 2 Z Slice # 3 Overall
Reference MRT Reference MRT Reference MRT Reference MRT

Maximum Pin Power 1.200 1.208 0.554 0.549 0.217 0.211 1.835 1.834
Percent Error 0.090 0.691 0.150 -0.909 0.240 -2.738 0.083 -0.065

Maximum Error 0.240 2.449 0.270 1.641 0.240 2.738 0.163 1.850
AVG Error 0.146 0.639 0.181 0.546 0.285 1.593 0.105 0.251
RMS Error 0.150 0.730 0.184 0.619 0.290 1.712 0.108 0.366
MRE Error 0.073 0.348 0.055 0.183 0.034 0.208 0.098 0.203

# Pins within 68% 371 28 371 78 371 25 371 167
# Pins within 95% 518 83 518 161 518 61 518 308
# Pins within 99% 540 124 540 225 540 80 540 375

# Pins within 99.9% 544 183 544 290 544 110 544 427

UO2-1 Power 247.75 249.43 106.56 105.72 41.12 40.23 395.43 395.38
MOX Power 125.78 126.48 81.41 81.09 29.42 28.94 236.62 236.51

UO2-2 Power 91.64 92.22 65.02 65.02 30.68 30.36 187.34 187.60
UO2-1 Power % Error 0.091 0.681 0.056 -0.791 0.035 -2.180 0.112 -0.013
MOX Power % Error 0.073 0.556 0.058 -0.394 0.034 -1.635 0.100 -0.043

UO2-2 Power % Error 0.055 0.636 0.046 -0.010 0.032 -1.046 0.078 0.137

Table 6.11: C5G7 Benchmark: Rodded B pin-power comparisons for the macroray method.

Z Slice # 1 Z Slice # 2 Z Slice # 3 Overall
Reference MacroRay Reference MacroRay Reference MacroRay Reference MacroRay

Maximum Pin Power 1.200 1.190 0.554 0.553 0.217 0.219 1.835 1.831
Percent Error 0.090 -0.801 0.150 -0.128 0.240 0.832 0.083 -0.215

Maximum Error 0.100 0.925 0.240 1.207 0.370 2.771 0.157 1.100
AVG Error 0.146 0.329 0.181 0.216 0.285 1.322 0.105 0.222
RMS Error 0.150 0.391 0.184 0.291 0.290 1.367 0.108 0.290
MRE Error 0.073 0.225 0.055 0.060 0.034 0.160 0.098 0.203

# Pins within 68% 371 133 371 286 371 1 371 172
# Pins within 95% 518 268 518 444 518 3 518 288
# Pins within 99% 540 332 540 501 540 14 540 342

# Pins within 99.9% 544 385 544 530 544 65 544 405

UO2-1 Power 247.75 246.26 106.56 106.63 41.12 41.63 395.43 394.51
MOX Power 125.78 125.56 81.41 81.48 29.42 29.84 236.62 236.89

UO2-2 Power 91.64 91.55 65.02 65.15 30.68 31.02 187.34 187.71
UO2-1 Power % Error 0.091 -0.600 0.056 0.063 0.035 1.227 0.112 -0.231
MOX Power % Error 0.073 -0.179 0.058 0.095 0.034 1.423 0.100 0.115

UO2-2 Power % Error 0.055 -0.104 0.046 0.192 0.032 1.120 0.078 0.199

Table 6.12: C5G7 Benchmark: Rodded B Performance.

Case Acclerated? Time (core-hours)

LSMoC - MRT F 7493
LSMoC - MacroRay T 579
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6.3 Discussion on the Performance of MacroRay

While the macroray method was able to reduce the number of segments in some cases, macroray
calculations generally took longer for the same number of segments compared to the MRT method.
To determine where the performance was lacking, a miniaturized C5G7 unrodded case was profiled,
without using CMFD acceleration, and with 18 spatial domains, using both the MRT and macroray
methods. For each calculation, nearly all the time was spent in the transport routines (>95%). The
transmission calculations and moment accumulation are typically the largest run-time contributors
in MRT calculations, and the profiler revealed that 61.8% of the time was spent in these loops. An
additional 33% was spent on waiting for messages from other domains.

The message-passing interface (MPI) [17] is a standard for communication in distributed
computations that communicates data by passing messages between computational nodes; it was
used by this work for communication between spatial subdomains. Messages require information
about the size of the message, data type, data buffer, and a tag that uniquely identifies the message.
The data passing between spatial domains was accomplished using asynchronous messages, where
multiple messages may be queued for sending/receiving while the program continues running until
a wait or waitall call.

In the macroray calculation, only 22% of the total time was spent in the transmission and
accumulation loops and 15.1 % was spent on the conversion between ray fluxes and surface fluxes.
The largest contributor to run-time was waiting for MPI messages, at 57.4%. In the current
implementation, a MPI waitall command is used after sweeping each direction. The fractional
run-time can be reduced to 26% if the waitall is moved to after sweeping all directions. This is the
same approach used by the MRT sweepers in MPACT. However, the method of generating unique
message tags must be improved for the macrorray sweepers, because the current method results in a
tag overflow on larger cases such as the C5G7 benchmarks.

While the conversion between ray and surface fluxes will never be zero, it is unlikely that the
naive implementation of these routines in this work are nearly optimal. A better implementation of
these routines may significantly cut down on run-time costs.

6.4 Conclusions

The macroray method was motivated by previous studies on the macroband method that claimed
significantly reduced number of rays with maintained accuracy. It was expected that the method,
if extended to 3-D, would allow for significantly fewer track-segments, and thus lead to less
computational work. For some problems, this is certainly the case; for VERA progression problem
1E, a single IFBA rod, this method was able to significantly reduce the number of segments to reach
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a converged result. Additionally, for the shielded-box problem, this method is able to act as more of
a “black box” solver, allowing for users without deep knowledge of the method to use it.

The method was then tested on the extended 3-D C5G7 benchmarks, and proved it was able to
handle larger calculations. Compared to the MRT method on the same mesh, the macroray method
typically better-predicted the pin-powers, even when eigenvalue errors were larger. Additionally,
the macroray method consistently showed the highest errors in the upper 1/3 of the fuel in the C5G7
benchmark cases, where the pin-powers are lower.

In the C5G7 benchmark cases, which do not have small absorber regions, the method was
unable to significantly reduce the number of segments for similar accuracy. It is expected that the
macroray method may show more beneficial results in cases where there are small strong absorber
regions present. Additionally, the macroray method may show significant benefits for more arbitrary
geometries, such as the shielded-box.

This work is the first implementation of the macroray method for 3-D MoC calculations. Due to
the significantly different ray-tracing data structure, and sweeping order, separate routines needed
to be written for this work. It is not surprising that the initial performance of these routines is
worse than that of the MRT-based routines, for similar numbers of segments, given that the MRT
sweeping routines have been optimized over the past several years of the CASL project. The
original performance of the 3-D MoC using MRT in MPACT was significantly worse [16]. While
some of the improvements made to these methods were utilized in this work, it is very likely that
optimization work on this method would significantly reduce run-times.
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CHAPTER 7

Summary, Conclusions, and Future Work

This chapter provides a brief summary of the motivation for this work, and what was accomplished.
The key findings for each study are listed. Also, possible paths for future research in these topics
are given.

7.1 Summary of Work

7.1.1 Summary of Spatial Decomposition

Prior to this work, MPACT [1] used an automated spatial decomposition method based on the fuel
assemblies. This method was limited, and only allowed for specific numbers of spatial domains
to be used. Additionally, such methods have been shown, in other codes, to result in poor load
balance, particularly when a large coarsely-meshed radial reflector is present [2]. Stimpson [3]
improved MPACT’s parallel capabilities, allowing for a problem to be decomposed into groups of
ray-tracing modules. However, that work did not introduce a method for generating better spatial
decompositions, and relied on the user to enter a decomposition map. This was tedious for the user,
and ofter resulted in non-optimal decompositions.

This dissertation’s work on spatial decomposition sought to develop decomposition methods to

1. improve load-balance,

2. improve user experience (no additional work),

3. and, allow for less restrictions on the number of domains.

These improvements were made by utilizing graph partitioning methods, which have been highly
studied in computer science [4]. Software libraries exist for performing graph partitioning (METIS
[5], Zoltan [6], etc.). However, due to MPACT’s strict requirements on the decomposition (see
Section 4.2), these libraries could not easily be used in MPACT. Several graph partitioning methods
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were implemented in MPACT. For unweighted graphs, and not conforming to MPACT’s restrictions,
these method were shown to be comparable to METIS [7], which is widely considered to give high
quality partitions.

The methods were then applied to MPACT and made to conform with the restrictions MPACT
places on its spatial decomposition [8]. This work introduced a new graph partitioning algorithm
based on recursive expansion, and an improvement to the Kernighan-Lin [9] refinement for the
application to the MoC. These new methods, as well as the recursive spectral bisection (RSB) and
recursive intertial bisection (RIB), were used to decompose a 2-D transport problem, and resource
comparisons of the simulations were presented. In 3-D, several different decomposition approaches
were investigated, and a 3-D core was decomposed. For the 3-D calculations, only metrics of the
decomposition were compared, rather than actual simulation results.

7.1.2 Summary of Linear Source

Traditionally, MoC codes have used the flat-source approximation (FSA), however, more recently
a few codes transitioned to using a linear-source approximation (LSA) [2, 10–16]. The general
goal of these LSAs is to coarsen the computational mesh, leading to overall improved run-times.
However, many of these previous LSAs have been ad-hoc. Several of these methods [12, 15, 16]
have been based on particle conservation. The LSA developed by Ferrer and Rhodes [16] was
implemented into the MPACT code [17, 18].

Once implemented in MPACT, the LSA was tested on several problems, and two flaws were
observed. The first was an implementation detail; typically, exponential functions in the MoC are
approximated to reduce run-time [19]. However, when the exponential functions in the LSA were
approximated in problems with near-void regions, such as the fuel-clad gap, iterative instability was
observed. Different methods for addressing this instability were studied in this work [17].

The second flaw was that for problems with multiple physics (thermal-hydraulic (T/H) feedback,
or isotropic depletion) or in the 2D/1D approximation [20], the method was far less efficient.
This was due to the changing macroscopic cross sections, which led to coefficients needing to be
recalculated at every state-point, or even every iteration. This work sought to eliminate the need
to recompute these coefficients by eliminating their direct dependence on the cross section [18].
The elimination of the group-dependent coefficients in the LSA was achieved by re-formulating the
method, as shown inChapter 5.

7.1.3 Summary of MacroRay

Three-dimensional MoC calculations are generally considered to be too expensive for use in routine
design calculations or even reference solutions; the methods rarely see use outside academia or
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national laboratories. The primary factor in determining MoC run-time is the number of track seg-
ments. By using a coarser ray-spacing, far fewer track-segments are generated; this can significantly
improve run-times (Section 5.2). However, the presence of small strong absorber regions anywhere
in a problem can prevent the use of coarser rays. This motivates the use of a ray-tracing method that
is able to use different effective ray-spacings in different regions with different requirements.

The macroband [11, 21–23] is a ray-tracing method that bases the placement of rays on the
computational mesh of the problem. This method forces the use of finer ray-spacing where
small regions are present, and allows for coarser ray-spacing where there are not small regions.
With the use of non-uniform ray-spacing [22], these methods can reduce the number of rays
necessary for accurate integration. However, the method is not compatible with direct neutron path
linking (DNPL), meaning that an approximation of the angular flux at interfaces is necessary, unlike
the traditional modular ray-tracing (MRT) ray-tracing methods.

While the macroband has been previously studied for 2-D MoC, there has been no extension or
investigation of the method for 3-D MoC calculations. This dissertation seeks to fill that gap, and
provides one possible extension of the macroband to 3-D problems. This extension, the macroray
ray-tracing method, was implemented in a library dependent on MPACT, and tested on several 3-D
transport problems. The method was compared against the traditional MRT ray-tracing method,
with a particular focus on accuracy versus the number of track-segments.

7.2 Conclusions

7.2.1 Conclusions: Spatial Decomposition

The use of graph partitioning for spatial decomposition in MPACT has been very successful. The
methods have greatly improved user experience, as they allow for an arbitrary number of radial
domains in 2D/1D calculations 1. Unlike previous capabilities in MPACT, these methods also
require no additional effort from the user. User feedback has been very positive on these methods,
and the default partitioning in MPACT is now the REB graph partitioning method.

For 2-D (or 2D/1D) calculations, the three graph partitioning methods tested did not yield
significantly different results. However, for general 3-D decompositions, the RSB and RIB methods
generally performed better than the REB method for low to medium numbers of domains. The
REB method showed significant advantage for highly decomposed cores. These methods greatly
improved the parallel efficiency of the MoC calculation (per iteration).

However, as more spatial domains are used, the convergence rate decreases and more iterations
are necessary. This problem is present in previous methods, but seems to be worsened by using the

1or an arbitrary number of domains in 3-D MoC calculations
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graph partitioning methods; this could be explained by more re-entrant rays becoming possible in
these methods. Additionally, the parallel scaling of the CMFD solvers in MPACT is worse than that
of the MoC solvers. In fact, for highly decomposed cores, the CMFD acceleration takes up more
run-time than the MoC.

7.2.2 Conclusions: Linear Source

The modified exponential function used to address the instability in LSMoC calculations with
near-void regions was successful. Problems that previously demonstrated instabilities were no
longer unstable, even when using an interpolation table with the same accuracy as that used with
FS calculations. Additionally, the study performed on more accurate tables showed that using an
interpolation table for a single function and computing other functions was more efficient than
tabulating the three functions. This was able to improve the exponential calculation time by 9% and
the total MoC run-time by 3%, compared to the previous method of tabulating all three functions.

The improved formulation of the LSA was able to entirely eliminate the group-dependent
coefficients by reducing them to only spatially dependent terms. In fact, these terms were reduced
to a form of the same matrix used to transform from the spatial moments to the spatial expansion
coefficients. It is the author’s opinion that the form found in this work is more elegant than
those previously presented, and does not introduce any additional operations (assuming a modern
computer architecture, with fused multiply add (FMA) instructions). The elimination of the group-
dependence in these coefficients was able to reduce run-times in multiphysics calculations by up to
15%, as the recomputation of these coefficients was no longer necessary.

Mesh sensitivity studies were performed on several VERA progression problems [24]. Coarse
mesh parameters were found, that maintained accuracy, while reducing the number of source
regions in realistic calculations by up to 85%. On VERA problem 9, a 3-D cycle depletion of a
quarter core with T/H feedback showed 10% improvement in total run-time, and 30% reduction in
memory. Previous studies have shown that the LSA was able to improve run-times in neutronics
only calculations [2, 16]; this work has shown that the use of the improved formulation allows for
advantages over the FSA even in cases with multiple physics.

7.2.3 Conclusions: MacroRay

The macroray ray-tracing method is a novel ray-tracing method studied as part of this dissertation
work. The aim of this method is to allow for maintained accuracy while reducing the number
of track-segments generated during ray-tracing, and thus reducing the amount of work during
computation. The underlying idea is to use advanced transverse integration methods to improve the

191



integration accuracy within each region. A similar idea, the macroband, had been studied in 2-D,
but no extension to 3-D has been made.

The method was shown to reduce the number of track-segments necessary for calculations with
thin absorber regions. Though, in benchmarks without these features, the method did not show
significant advantages over traditional ray-tracing methods. Unlike traditional ray-tracing methods,
this method exhibits near uniform convergence with number of segments. This means as the number
of rays is increased, the user can expect that the result will become closer to the converged result.
This is a notable example of the advantages of the macroray method. Additionally, because of the
dependence on internal geometry for ray-tracing, rays are forced through thin regions; this means
the method can be used as more of a “black box” solver, without requiring as much knowledge of
the method by the user.

7.3 Future Work

7.3.1 Future Work: Spatial Decomposition

The spatial decomposition in MPACT has several avenues for future improvement. This most
obvious is to improve the parallel efficiency of the CMFD solvers; CMFD begins to dominate
run-time as large numbers of spatial domains are used. The use of a multigrid CMFD solver [25],
may reduce the total run-time fraction of CMFD relative to what was found in this work, but the
multigrid solver does not address the poor parallel scaling. The next is that, the methods of this
work created and partitioned a graph that only considered the computational expenses of MoC. As
CMFD becomes a significant component of run-time in highly decomposed cases, it is warranted
to investigate constructing a graph that considers both MoC and CMFD costs. Finally, it may be
possible to modify the graph partitioning methods to avoid “jagged” domains, which negatively
impact convergence, without negatively affecting load-balance.

7.3.2 Future Work: Linear Source

The LSA has been shown to allow for significantly coarser meshes while maintaining accuracy.
While unlikely to improve run-times for 2-D calculations, some groups have begun to investigate
quadratic axial sources for 3-D MoC calculations. The use of these methods would allow the axial
mesh to be significantly coarsened. Due to the success of the LSA, a quadratic axial source may be
able to improve run-times for axially large calculations, such as reactors. It may also be possible to
extend Ferrer and Azmy’s [26] work for an arbitrary source-order MoC for general geometries.
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Finally, the use of GPGPUs has been studied for FSMoC calculations, but not for the LSMoC.
Many recent computing clusters require codes to utilize GPGPUs; if this method is to see continued
use, the efficient implementation on GPGPUs is a necessity. Even if clusters are ignored, GPGPUs
allow for significant speed-up of MoC calculations, and it is the author’s opinion that all modern
MoC codes should utilize them.

7.3.3 Future Work: MacroRay

While the macroray was shown to reduce the number of segments for some cases, it is generally
still slower than the solvers using the traditional ray-tracing methods. This is not entirely surprising,
as the traditional solvers have been highly optimized over the past decade of the CASL project,
whereas the macroray solver was a first-pass implementation for this research. Nonetheless, if the
method is to be used, the efficiency of the implementation must be improved; in particular, the
MPI communication, and the cost of the interface approximations must be made more efficient.
One possibility to improve these is to use a different approximation of the flux on the interfaces.
While this work has been initial research into the use of the macroray method, if the method is to be
considered for use in production, it will need to be implemented efficiently on GPGPUs.

Additionally, one of the primary difficulties in this work was due to the choice of rectangular
rays in the 2D-2D ray-tracing approach. The use of 2D-2D ray-tracing is common for MRT method
but may not be the best choice for macroray methods. Indeed, there is a good argument against its
use due to the fact that rays are guaranteed not to “span” the problem’s surfaces. A reasonable next
step for this work would be to investigate the use of non-rectangular rays, which eliminate the need
for some of the fix-ups used in this work.
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