
Efficient Algorithms for Large Scale Network
Problems

by

Dawei Huang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2020

Doctoral Committee:

Professor Seth Pettie, Chair
Assistant Professor Mahdi Cheraghchi
Associate Professor Barzan Mozafari
Assistant Professor Viswanath Nagarajan

Dawei Huang

hdawei@umich.edu

ORCID iD: 0000-0002-4496-2354

© Dawei Huang 2020

ACKNOWLEDGMENTS

First I would like to express my gratitude to my advisor Seth Pettie, who is the best
advisor I can ever hope for. Throughout my 6 years as his students, he provided me
numerous counselling in research, teaching and in learning to become professional.
He provided me every opportunity he can for me to establish my research career and
network. I cannot overstate the importance of his teachings in my career.
I would also like to thank Professor Barzan Mazafari and Professor Alex Pothen, who
have exposed me to a more practical side of computer science and guided me in some
very interesting and successful projects. They also taught me how to become a good
collaborator.
I want to thank all my collaborators and coauthors, Shang-En Huang, Tsvi
Kopelowitz, Dong Young Yoon, Zhijun Zhang, Yixiang Zhang, Shivaram Gopal for
every bit of endeavors in our projects. I want to thank my office-mates Fang-yi Yu,
Biaoshuai Tao, Yuqing Kong, Huck Bennett, Yi-Jun Chang, Hsin-Hao Su and Jimmy
Zhu, with whom I have learnt things in research and life that I cannot learn on my
own.
Finally, I want to thank my parents who have backed me in my path for almost 3
decades and provided me help and counsel when paths become difficult. I cannot
imagine becoming the person I am now without their love and help.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vi

List of Tables . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Communication Complexity . 2
1.2 Matching Theory . 3

1.2.1 Generalized Matching Problems 3
1.2.2 Perfect Matching with Metric Constraint 4

1.3 Join . 6

2 Communication Complexity . 8

2.1 Introduction . 8
2.1.1 Contributions . 9

2.2 Preliminaries . 11
2.2.1 Notational Conventions . 11
2.2.2 Information Theory . 12
2.2.3 Communication Complexity 13

2.3 Lower Bounds on ExistsEqual and EqualityTesting 14
2.3.1 Structure of the Proof . 14
2.3.2 A Lower Bound on EqualityTesting 17
2.3.3 A Lower Bound on ExistsEqual 28

2.4 Upper Bounds on EqualityTesting and ExistsEqual 32
2.4.1 Overview and Preliminaries 33
2.4.2 An O(k + rEk1/r)-bit EqualityTesting Protocol 37
2.4.3 An O(k + Ek1/r)-bit ExistsEqual Protocol 39
2.4.4 A Communication Optimal EqualityTesting Protocol 41

2.5 An O(k + Ek1/r log r + Er log r) bits protocol 49
2.6 Distributed Triangle Enumeration 55
2.7 Reductions and Near Equivalences 58
2.8 Conclusions and Open Problems . 59

3 Generalized Matching . 61

iii

3.1 Introduction . 61
3.2 Basis of f -Matching and f -Edge Cover 66

3.2.1 LP Formulation . 66
3.2.2 Blossoms . 68
3.2.3 Augmenting/Reducing Walks 72
3.2.4 Complementary Slackness 75

3.3 Connection Between f -Matchings and f -Edge Covers 78
3.3.1 Approximate Preserving Reduction from 1-Edge Cover to 1-

Matchings . 78
3.3.2 From f -Edge Cover to f -Matching 80

3.4 Approximation Algorithms for f -Matching and f -Edge Cover 81
3.4.1 Approximation for Small Weights 82
3.4.2 A Scaling Algorithm for General Weights 93
3.4.3 A Linear Time Algorithm 96

3.5 A Linear Time Augmenting Walk Algorithm 97
3.6 Algorithms for Unweighted f -Matching and f -Edge Cover 108
3.7 Conclusion and Open Problems . 109

4 Metric Matching . 111

4.1 Introduction . 111
4.2 Primal, Duals and Complementary Slackness 115

4.2.1 Blossoms . 116
4.2.2 Complementary Slackness 117

4.3 Scaling for Approximate Min weight Perfect Matching 118
4.3.1 Edmonds’ Search in a nutshell 118
4.3.2 The Main Algorithm . 121

4.4 Implementing Edmonds’ Search in Graph Metrics 126
4.5 Exact Algorithm for Bounded Treewidth Graph 131

4.5.1 Treewidth and Hierarchical Separators 131
4.5.2 The Divide-and-Conquer Framework for MWPM 133

5 Join . 139

5.1 Introduction . 139
5.2 Background . 142

5.2.1 Sampling in Databases . 142
5.2.2 Quality Metrics . 143
5.2.3 Problem Statement . 143
5.2.4 Scope and Limitations . 145

5.3 Hardness . 145
5.3.1 Output Size . 145
5.3.2 Approximating Aggregate Queries 146

5.4 Generic Sampling Scheme . 147
5.5 Optimal Sampling . 150

5.5.1 Join Size Estimation: Count on Joins 152
5.5.2 Sum on Joins . 159

iv

5.5.3 Average on Joins . 166
5.6 Multiple Queries and Filters . 170
5.7 Experiments . 172

5.7.1 Experiment Setup . 172
5.7.2 Join Approximation: Centralized Setting 174
5.7.3 Join Approximation: Decentralized 176
5.7.4 Join Approximation with Filters 177
5.7.5 Combining Samples . 178
5.7.6 Stratified Sampling . 179
5.7.7 Overhead: Centralized vs. Decentralized 179
5.7.8 UBS vs. Two-Level Sampling 180

5.8 Related Work . 181

Bibliography . 184

v

LIST OF FIGURES

Figure Page

3.1 Two examples of contractible blossoms: Bold edges are matched and thin
ones are unmatched. Blossoms are circled with a border. Base edges are
represented with arrow pointing away from the blossom. 73

3.2 An example for how a blossom changes with an augmentation: here the
augmenting walk is 〈v0, v1, v3, v5, v4, v6〉. Notice that after rematching, the
base edge of the blossom changes from (v0, v1) to (v4, u6), and the blossom
turns from a heavy blossom to a light one. 74

3.3 Illustration on relation between I-set of an f -matching and the I-set of its
complementary f ′-edge cover. Left: an f -matching and its blossom set.
Right: Its complementary f -edge cover. Their I-sets are circled (dashed). 81

3.4 A (1− ε)-approximate f -matching algorithm for small integer weights. . 83
3.5 An example of an eligible alternating search tree. Outer blossoms and

singletons are labeled using solid boundaries while inner blossoms and
singletons have dashed boundaries. 86

3.6 Example of a self-intersecting search structure and nonsimple augmenting
walk. Here v0 is the root of the search structure and {v0, v2, v4, v5} is the
set of outer vertices and {v1, v3} is the set of inner vertices. The search
begins with v0 and proceed to v1, v2, v3, v4 in order. The procedure then
scan the edge (v4, v1) and because it connect an outer vertex to an inner
vertex that is already visited, it might ignore the edge and backtrack
to v1 and return the augmenting walk 〈v0, v1, v5, v6〉. However, although
(v1, v4) is scanned and ignored, it cannot be discarded from future search
as another augmenting walk, such as the dashed walk 〈v7, v8, v1, v4, v9, v10〉
might make use of the edge (v1, v4) and Ψ will not be maximal if (v1, v4)
participating in some augmenting walks. 99

5.1 A toy example of joining two uniform samples (left) versus a uniform
sample of the join (right). 140

5.2 OPT’s improvement in terms of variance for COUNT over six baselines with
synthetic dataset (percentages are relative error). 174

5.3 OPT’s improvement in terms of variance for SUM over six baselines with
synthetic dataset (percentages are relative error). 174

5.4 OPT’s improvement in terms of variance for AVG over six baselines with
synthetic dataset (percentages are relative error). 175

vi

5.5 OPT’s improvement in terms of variance over the baselines on benchmark
datasets (percentages are relative error). 175

5.6 Variances of the query estimators for OPT in the centralized and decen-
tralized settings. 177

5.7 OPT’s improvement in terms of the estimator’s variance over six baselines
in the presence of filters. 177

5.8 Variance of the query estimators for OPT (individual) and OPT (combined)
for the S{normal,normal} dataset. 178

5.9 Query estimator variance per group for for a group-by join aggregate using
SUBS versus SS UF . 179

5.10 Time taken to generate samples for Instacart and TPC-H in centralized
vs. decentralized setting. 179

5.11 Total network and disk bandwidth used to generate samples for Instacart
and TPC-H. 180

5.12 Optimal UBS vs. two-level sampling . 181

vii

LIST OF TABLES

Table Page

5.1 Notations. 144
5.2 Six UBS baselines, each with different p and q. 173
5.3 Optimal sampling parameters (centralized setting). 176
5.4 Optimal sampling parameters for S{uniform,uniform} for different distri-

butions of the filtered column C. 177
5.5 Sampling parameters (p and q) of OPT using individual samples for differ-

ent aggregates versus a combined sample (S{normal,normal} dataset). . 178

viii

ABSTRACT

In recent years, the growing scale of data has renewed our understanding of what is
an efficient algorithm and poses many essential challenges for the algorithm designers.
This thesis aims to improve our understanding of many algorithmic problems in this
context. These include problems in communication complexity, matching theory, and
approximate query processing for database systems.
We first study the fundamental and well-known question of SetIntersection in com-
munication complexity. We give a result that incorporates the error probability as
an independent parameter into the classical trade-off between round complexity and
communication complexity. We show that any r-round protocol that errs with error
probability 2−E requires Ω(Ek1/r) bits of communication. We also give several almost
matching upper bounds.
In matching theory, we first study several generalizations of the ordinary matching
problem, namely the f -matching and f -edge cover problem. We also consider the
problem of computing a minimum weight perfect matching in a metric space with
moderate expansion. We give almost linear time approximation algorithms for all
these problems.
Finally, we study the sample-based join problem in approximate query processing. We
present a result that improves our understanding of the effectiveness and limitations in
using sampling to approximate join queries and provides a guideline for practitioners
in building AQP systems from a theory perspective.

ix

CHAPTER 1

Introduction

In computer science, efficiency is one of the core objectives faced by both theorists and

practitioners. In his seminal papers, Edmonds[59, 60] first proposed the complexity

class P and defined polynomial time as a metric for efficiency, i.e., any algorithms

that run in time polynomial in its input size is considered efficient. This metric has

become the rule of thumbs in determining which problems are tractable for more than

three decades.

After the 90s, the notion of “efficiency” has quickly evolved due to the advance-

ment of network technology and the growing scale of computer systems. The size of

computer networks has multiplied from hundreds of nodes in the 80s, to millions of

nodes in the 90s. By 2020, the internet contains more than 1010 nodes, and inputs

to classical graph algorithms often consist of millions of nodes and billions of edges.

For large scale inputs, complexities such as O(n3) or O(n2) are no longer considered

efficient or even practical. For this reason, there has been a significant interest in

designing extremely efficient algorithms that run in linear or almost linear time in

recent years, e.g., [55, 96, 104, 125, 95, 116].

In some other computing regime such as distributed computing and database

management, communication and space can become a more precious and limited

resource compared to time. This puts forward new challenges for algorithm designers

to make efficient or even optimal use of these resources and for theorists to understand

the limitations of algorithms in these contexts.

In this thesis, we study three problems in three different regimes of theoretical

computer science that are motivated by the quest for more efficient or optimal al-

gorithms. The first part studies several fundamental problems in communication

complexity. The second part studies almost linear-time algorithms for different vari-

ants of matching and edge cover problems. The third part is dedicated to database

join problems and studies the effectiveness and limitations of the sampling-based

approach.

1

1.1 Communication Complexity

Communication complexity was first proposed by Yao[142, 143] and proved to be

an indispensable tool for both proving lower bounds in many different models of

computation, and providing efficient protocols for effective communication between

multiple network parties. The model consists of two parties Alice and Bob. Alice holds

input x ∈ X, and Bob holds y ∈ Y . Their goal is to compute a function f : X×Y 7→ Z

at the point (x, y) while minimizing their interaction. To compute f(x, y), the two

parties engage in a communication protocol that proceeds in synchronous rounds. In

each round, Alice and Bob take turns to transmit a message to the other party. Each

message is allowed to depend on the sender’s input as well as all previous messages.

The receiver of the last message declares the output of the protocol.

We often use two metrics to measure the amount of interaction in a protocol. Given

a protocol Π, the communication complexity is the worst-case total messages length

of the protocol, while the round complexity is the number of messages exchanged

of the protocol. Protocols can also be randomized, i.e., each message can also be

dependent on a string of public or private random bits. In this case, we also use the

error probability, i.e., the worst-case probability that the protocol does not output

f(x, y) given input (x, y) over all possible inputs, to measure the performance of the

protocol.

In this thesis, we study two of the most well-known and well-understood problems

in communication complexity: the SetIntersection problem and the EqualityTesting

problem. In SetIntersection, the input are two sets S, T ⊂ U of size at most k in some

universe U and the goal is to compute S ∩ T . The problem finds many applications

in computer science, especially in a distributed database, such as computing join,

finding duplicates, and measuring Jaccard similarity[50]. Its lower bounds also find

surprising applications in streaming algorithms[13] and combinatorial auctions[115].

A closely related problem is the EqualityTesting problem. Here Alice and Bob are

given two k-dimensional vectors x, y ∈ Uk and they wish to decide for each i ∈ [k],

whether xi = yi. Notice that this problem can be seen as the direct sum of the

Equality problem, where we have input x, y ∈ U and wish to decide whether x = y.

Given a communication problem for computing a function f , the direct sum problem

asks whether the communication complexity for computing k independent instance

of f is k times the complexity for computing one single copy of f .

We also study two potentially easier versions of the problems, the SetDisjointness

problem and the ExistsEqual problem. The SetDisjointness problem has the same

2

input as SetIntersection except that the goal is to determine whether S and T are

disjoint or not. Similarly, the ExistsEqual problem is the corresponding problem for

EqualityTesting that ask whether there exists an i ∈ [k] such that xi = yi.

The deterministic complexity for these problems is well understood, see [103]. For

randomized complexity, Kalyanasundaram and Schnitger[91] showed that the com-

munication complexity for the SetDisjointness is at least Ω(k). H̊astad and Wigder-

son [85] gave a matching O(k)-bit and O(log k)-round protocol. In the seminal work

of Sağlam and Tardos [130], as well as independently by Brody et al. [23], they gave

a tight trade-off between communication complexity and round complexity for these

problems, showing that any r-round protocols for ExistsEqual or SetDisjointness must

use O(k log(r) k) bits. Their lower bounds hold for protocols that succeed with Ω(1)

probability, and the upper bound has failure probability at least exp(−
√
k). This

implies there is an optimal protocol with communication complexity O(k) and round

complexity log∗ k. It is easy to show that the error probability of such protocol is at

least exp(−O(k)) [103]. However, it is open that whether we can improve the error

probability from exp(−
√
k) to exp(−Θ(k)).

In Chapter 2, we address this problem, providing a tight three-way trade-off be-

tween communication complexity, round complexity, and error probability for Exist-

sEqual and SetDisjointness, and an almost tight trade-off for EqualityTesting and Set-

Intersection. In particular, we showed that any r-round protocol that succeeds with

probability at least 1 − 2−E requires communication complexity at least Ω(Ek1/r).

As a corollary, we show that there is no universally optimal protocol simultaneously

achieves the optimal trade-off between round complexity and communication com-

plexity, as well as between error probability and communication complexity. In par-

ticular, there do not exist protocols with communication complexity O(k+E), round

complexity log∗ k, and error probability 2−E. We also show that all these problems

do not exhibit the direct sum properties in the regime of extremely small error prob-

ability.

1.2 Matching Theory

1.2.1 Generalized Matching Problems

In Chapter 3, we consider variants of matching problems in sequential settings. Given

a graph G = (V,E), possibly having a weight function w : E 7→ R on edges, a

matching is a set of vertex disjoint edges. The maximum weight/cardinality

3

matching (MWM/MCM) problem asks for a matching with the maximum total

weight/size, while a minimum weight perfect matching (MWPM)) problem

asks for a minimum weight matching that matches every single vertex. The MWM

and MWPM problems are a special case of the degree constrained subgraph prob-

lem, where at each vertex, we look for a subset of edges F ⊂ E that satisfy a cer-

tain degree constraint. Another common degree constraint problem is the minimum

weight/cardinality edge cover (MWEC/MCEC) problem, which asks for a

minimum weight/size subset of edges such that each vertex is adjacent to at least of

edge in the subset. It is known that MWEC and MWM are reducible to each other

for graphs with nonnegative weight, see [132].

The best algorithm for MCM is by Micali and Vazirani [110, 137, 138] that runs in

timeO(m
√
n). For integral weight, Duan Pettie and Su gave anO(m

√
n log(nW)) [56].

For many years, O(m
√
n) seems to be a barrier for exact matching algorithm. Approx-

imation is one way to bypass the barrier. For MCM, the O(m
√
n) algorithm by Micali

and Vazirani [110, 137, 138] is secretly a (1 − ε)-approximate MCM algorithm that

runs in O(m/ε) time. For MWM, Duan and Pettie [55] gave an (1− ε)-approximate

algorithm in time O(m/ε log(1/ε)).

A possible generalization of the matching/edge cover problems is called f -matching

and f -edge cover. In this problem, f is a nonnegative integral function on vertices,

which specifies the degree constraint. An f -matching/f -edge cover/f -factor is a sub-

set of edges where each vertex v is matched to at most/at least/exactly f(v) edges.

The state of the art approach to solving the Maximum weight f-matching prob-

lem or the minimum weight f-edge cover problem is via a two-steps reduction

with an intermediate problem called uncapacitated b-matching. Such a reduc-

tion blows up the size of the graph and is not approximation preserving. Gabow [71]

gave a direct algorithm for f -matching and f -factor in time O(f(V)(m+ n log n)).

We give an almost linear time (1 ± ε)-approximate algorithm for the Maximum

weight f-matching problem and the minimum weight f-edge cover problem.

This generalizes the result of Duan and Pettie [55] and is the first (1±ε)-approximate

algorithm for generalized matching/edge cover problems that run in almost linear

time.

1.2.2 Perfect Matching with Metric Constraint

In Chapter 4, we study the approximate minimum weight perfect matching problem

with metric weights. Many high profile applications for the MWPMproblem are

4

not intended for graphs with general weights, but for distance metrics induced by

certain graphs or geometries. For example, the famous Chritofides algorithm for

metric traveling salesman problem requires us to first compute a minimum spanning

tree in the metric space, then compute an MWPMamong the odd degree vertices in

the MST. To solve the Chinese Postman Problem, we look for an MWPMin a

distance metric induced by the odd degree vertices in a graph. The canonical way to

solving this type of problem is to compute an APSP in a graph to obtain the distance

function, and then run any MWPMalgorithm, e.g., [75, 78, 56]. This makes solving

the MWPM problem the bottleneck for a near-linear time implementation of the

Christofides algorithm [33].

The graph metric minimum weight perfect matching can be defined as

follows: Given a graph G = (V,E), weighted or unweighted, and an even subset

T ⊆ V of terminals, compute a perfect matching for vertices in T where the weight

on any pair (u, v), u, v ∈ T is defined as the distance between u and v on G. This

problem is equivalent to the minimum weight T -join problem, in which we want

to find a subgraph F ⊆ E such that T is precisely the set of vertices with odd degrees

in the subgraph (V, F).

The state of the art approach for a nearly linear time approximation is by using

the Goemans-Williamson algorithm [78] and its linear time implementation [40]. The

algorithm solved the more general degree constraint forest problem and only gives a

2-approximation. For Euclidean metrics, e.g., when the graph is induced by n points

on a Euclidean plane, Agarwal and Varadarajan [136] gave a (1 + ε)-approximation

with time complexity O(nε−3 log6 n).

Growth of a Metric Expansion property is an important concept in the algorith-

mic study of metric space [5, 102, 87, 94, 25, 20]. It captures the geometry of the

underlying metric space by characterizing the relation between the volume and diam-

eter. Many problems such as nearest neighbor [94] or traveling salesman [20] are hard

for general metrics. This is because general metrics simply do not provide enough

geometric structure for exploitation. Yet instances that arise from practice, such as

database queries or geometric optimization, are often far from general, and expansion,

growth, and dimensionality are used to characterize the geometric properties of these

instances.

We showed that the Graph metric minimum weight perfect matching

problem admits an almost linear time (1− ε)-approximation if the metric has slightly

superlinear growth. In particular, if every ball in the metric space with radius d

5

has volume at least d log2 d, we can obtain a (1 − ε)-approximation solution in time

O(2O(1/ε)m log n) time. If the ball has volume is d1+τ for some τ > 0, such as in a

Euclidean grid of dimension 1 + τ , the running time improves to O(m log n(1/ε)1/τ).

1.3 Join

Join is a common operation in relational algebra which takes in two or more relations,

and a subset of common attributes, called join attributes on these relations. The

output of the join operation consists of all combinations of tuples in these relations

where the join attributes satisfy certain join conditions, such as equality, inequality,

or more complex relations. A simple example is a natural binary join, where we take

in two relations R and S and output a relation R ./ S, which consists of all tuples

(r ∈ R, s ∈ S) with equal value on their shared attribute(s). Joins are ever-present

in analytical queries. However, they are considered an expensive query in terms of

execution times and storage consumption, especially when joining large tables. For

instance, the join of two relations can be as large as the Cartesian product of the two

relations, which is costly to produce and store.

Approximate Query Processing (AQP) studies how to provide approximate an-

swers with certain quality guarantees using a fraction of the resources that are re-

quired to compute an exact answer. In recent years, approximate query processing

has regained major attention due to the growing size of data sets and the separation

of computing and storage resources over networks, all of which make it much more

difficult to perform exact data analytics with high speed and small space [111]. AQP

provides a way to achieve high efficiency and interactivity in scenarios when a per-

fect answer is not required. Some of the high profile applications in AQP include

relational data management [6, 7], sensor networks [99], visualization [45] and Adhoc

analytic [10].

Sampling is one of the most commonly used techniques in AQP. The idea for

sample-based AQP is to execute the original query on a small sample of the original

relation in order to obtain a fast and approximate answer. Due to the cost of executing

a plain join operation, sampling provides a promising alternative for approximating

join queries. There are two different approaches for sample-based join approximation,

the online approach, and the offline approach. The former refers to the methods of

sampling directly from the join at query time. This method often involves directly

computing the join or building complex indexes beforehand [107], which defeat the

purpose of sampling. The offline sampling approach [6, 8, 11, 77] samples from each

6

individual relation offline, and execute the query on the samples of the relations.

Although the offline approach leads to higher speedups [93], it is shown that sampling

schemes without access to a large amount of statistical information to the other

relation produce samples with poor quality [30]. More specifically, join of uniform

and independent samples are no longer an independent sample of the join.

In Chapter 5, we study the effectiveness as well as limitations of sampling in

approximating join queries. We formalize the problem as the join sampling prob-

lem, which captures the notion of sample quality under two popular metrics, the

number of tuples retained from the join, and the accuracy of the query estimator

generated from the sample. We formalize a hybrid sampling scheme called Strati-

fied Universe-Bernoulli Sampling (SUBS), which allows for a smooth combination of

stratified, universe, and Bernoulli sampling. We observed the connection between ap-

proximating join queries and the one-way communication complexity of approximate

set intersection and gave an impossibility result for the join sampling problem. We

also showed that under optimal parameters, the performance of the SUBS sampling

is optimal with respect to our lower bound.

7

CHAPTER 2

Communication Complexity

2.1 Introduction

Communication Complexity was defined by Yao [143] in 1979 and has become an

indispensible tool for proving lower bounds in models of computation in which the

notions of parties and communication are not direct. See, e.g., books and mono-

graphs [129, 127, 103] and surveys [29, 108] on the subject. In this chapter we con-

sider some of the most fundamental and well-studied problems in this model, such as

SetDisjointness, SetIntersection, ExistsEqual, and EqualityTesting. Let us briefly define

these problems formally since the terminology is not completely standard.

SetDisjointness and SetIntersection. In the SetDisjointness problem Alice and Bob

receive sets A ⊂ U and B ⊂ U where |A|, |B| ≤ k and must determine whether

A∩B = ∅. Define SetDisj(k, r, perr) to be the minimum communication complex-

ity of an r-round randomized protocol for this problem that errs with probability

at most perr. We can assume that |U | = O(k2/perr) without loss of generality.1

The input to the SetIntersection problem is the same, except that the parties

must report the entire set A ∩ B. Define SetInt(k, r, perr) to be the minimum

communication complexity of an r-round protocol for SetIntersection.

EqualityTesting and ExistsEqual. In the EqualityTesting problem Alice and Bob

hold vectors x ∈ Uk and y ∈ Uk and must determine, for each index i ∈ [k],

whether xi = yi or xi 6= yi. A potentially easier version of the problem, Ex-

istsEqual, is to determine if there exists at least one index i ∈ [k] for which

xi = yi. Define Eq(k, r, perr) to be the randomized communication complexity

1Before the first round of communication, pick a pairwise independent h : U 7→ [O(k2/perr)]
and check whether h(A) ∩ h(B) = ∅ with error probability perr/2. Thus, having SetDisj depend
additionally on |U | is somewhat redundant, at least when |U | is large.

8

of any r-round protocol for EqualityTesting that errs with probability perr, and

∃Eq(k, r, perr) the corresponding complexity of ExistsEqual. Once again, we can

assume that |U | = O(k/perr) without loss of generality.

The deterministic communication complexity of these problems is well under-

stood [103],2 so we consider randomized complexity exclusively. Although these

problems are well studied [85, 63, 23, 130, 91], most prior work has focused on the

relationship between round complexity and communication volume, and has paid com-

paratively little attention to the role of perr.

History. H̊astad and Wigderson [85] gave anO(log k)-round protocol for SetDisjoint-

ness in which Alice and Bob communicate O(k) bits, which matched an Ω(k) lower

bound of Kalyanasundaram and Schnitger [91]; see also [128, 24, 49]. Feder et al. [63]

proved that EqualityTesting can be solved with O(k) communication by an O(
√
k)-

round protocol that errs with probability exp(−
√
k). Nikishkin [114] later improved

the round complexity and the error probability to log k and exp(−k/ polylog(k)). Im-

proving [85], Sağlam and Tardos [130] gave an r-round protocol for SetDisjointness

that uses O(k log(r) k) communication, where log(r) is the r-fold iterated logarithm

function. For r = log∗ k the error probability of this algorithm is exp(−
√
k), co-

incidentally matching [63]. In independent work, Brody et al. [23] gave r-round

and O(r)-round protocols for ExistsEqual and SetIntersection, respectively, that use

O(k log(r) k) communication and err with probability 1/ poly(k).

Sağlam and Tardos [130] were the first to show that thisO(k log(r) k) round vs com-

munication tradeoff is optimal, using a combinatorial round elimination technique. In

particular, this lower bound applies to any ExistsEqual protocol with constant error

probability. Independently, Brody et al. [22, 23] gave a simpler proof for the Equali-

tyTesting problem with the same tradeoff curve, but the lower bound assumes an error

probability of 1/ poly(k). Brody et al. [23] also introduced a randomized reduction

from SetIntersection to EqualityTesting, which carries a probability of error that is only

tolerable if perr > exp(−Õ(
√
k)).

2.1.1 Contributions

First, we observe that a simple deterministic reduction shows that SetIntersection is es-

sentially equivalent to EqualityTesting for any perr, up to one round of communication,

2When perr = 0, the deterministic complexity must be expressed in terms of k and |U |.

9

and SetDisjointness is essentially equivalent to ExistsEqual for any perr. Theorem 2.1 is

proved in Section 2.7; it is inspired by the randomized reduction of Brody et al. [23].

Theorem 2.1. For any parameters k ≥ 1, r ≥ 1, and perr > 0, it holds that

Eq(k, r, perr) ≤ SetInt(k, r, perr), SetInt(k, r + 1, perr) ≤ Eq(k, r, perr) + ζ,

∃Eq(k, r, perr) ≤ SetDisj(k, r, perr), SetDisj(k, r + 1, perr) ≤ ∃Eq(k, r, perr) + ζ,

where ζ = O(k + log log p−1
err).

Second, we prove that in any of the four problems, it is impossible to simultane-

ously achieve communication volume O(k+ log p−1
err) in O(log∗ k) rounds for all k, perr.

Specifically, if perr = 2−E, any r-round protocol needs Ω(Ek1/r) communication. In

other words, if we insist on having O(k) communication and O(log∗ k) rounds, the

smallest error probability that can be achieved is perr = exp(−k1−Θ(1/ log∗ k)). We com-

plement this lower bound with an upper bound showing that in r+log∗(k/E) rounds,

we can solve EqualityTesting with O(k + rEk1/r) communication. This matches our

lower bound when E ≥ k and r is constant, but is slightly suboptimal when r = ω(1).

We illustrate two ways to shave off this factor of r. We give an (r + log∗(k/E))-

round ExistsEqual protocol that communicates O(k+Ek1/r) bits, as well as an Equal-

ityTesting protocol that communicates O(k+Ek1/r) bits, but with round complexity

O(r) + log∗(k/E).

Our original interest in SetIntersection came from distributed subgraph detection

in CONGEST3 networks, which has garnered significant interest in recent years [26,

27, 89, 4, 54, 101, 64, 48, 79]. Izumi and LeGall [89] proved that triangle enumeration4

requires Ω(n1/3/ log n) rounds in the CONGEST model, and further showed that local

triangle enumeration5 requires Ω(∆/ log n) rounds in CONGEST, which can be as

large as Ω(n/ log n).

The most natural way to solve (local) triangle enumeration is, for every edge

{u, v} ∈ E(G), to have u and v run a two-party SetIntersection protocol in which

they compute N(u) ∩ N(v), where N(u) = {ID(x) | {u, x} ∈ E(G)} and ID(x) ∈
3In the CONGEST model there is a graph G = (V,E) whose vertices are identified with processors

and whose edges represent bidirectional communication links. Each vertex v does not know G, and
is only initially aware of an O(log n)-bit ID(v), deg(v), and global parameters n ≥ |V | and ∆ ≥
maxu∈V deg(u). Communication proceeds in synchronized rounds; in each round, each processor
can send a (different) O(log n)-bit message to each of its neighbors.

4Every triangle (3-cycle) in G must be reported by some vertex.
5Every triangle in G must be reported by at least one of the three constituent vertices. Izumi

and LeGall [89] only stated the Ω(n/ log n) lower bound but it can also be expressed in terms of ∆.

10

{0, 1}O(logn) is x’s unique identifier. Any r-round protocol with communication vol-

ume O(∆) can be simulated in CONGEST in O(∆/ log n + r) rounds since the mes-

sage size is O(log n) bits. However, to guarantee a global probability of success at

least 1 − 1/ poly(n), the failure probability of each SetIntersection instance must be

perr = 2−E, E = Θ(log n), which is independent of ∆. Our communication com-

plexity lower bound suggests that to achieve this error probability, we would need

Ω((∆ + E∆1/r)/ log n + r) CONGEST rounds, i.e., with r = log ∆ we should not be

able to do better than O(∆/ log n+ log ∆). We prove that (local) triangle enumera-

tion can actually be solved exponentially faster, in O(∆/ log n+ log log ∆) CONGEST

rounds, without necessarily solving every SetIntersection instance.

Organization. The proof of Theorem 2.1 on the near-equivalence of SetIntersec-

tion/SetDisjointness and EqualityTesting/ExistsEqual appears in Section 2.7. Section 2.2

reviews concepts from information theory and communication complexity. In Sec-

tion 2.3 we present new lower bounds for both EqualityTesting and ExistsEqual that

incorporate rounds, communication, and error probability. Section 2.4 presents nearly

matching upper bounds for EqualityTesting and ExistsEqual, and Section 2.6 applies

them to the distributed triangle enumeration problem. We conclude with some open

problems in Section 2.8.

2.2 Preliminaries

2.2.1 Notational Conventions

The set of positive integers at most t is denoted [t]. Random variables are typi-

cally written as capital letters (X, Y,M , etc.) and the values they take on are lower

case (x, y,m, etc.). The letters p, q, µ,D are reserved for probability mass functions

(p.m.f.). E.g., D(x) denotes the probability that X = x whenever X ∼ D. The

support supp(D) of a distribution D is the set of all x for which D(x) > 0. If

X ⊆ supp(D), D(X) =
∑

x∈X D(x).

Many of our random variables are vectors. If x is a k-dimensional vector and

I ⊆ [k], xI is the projection of x onto the coordinates in I and xi is short for x{i}.

Similarly, if D is the p.m.f. of a k-dimensional random variable, DI is the marginal

distribution of D on the index set I ⊆ [k].

Throughout the paper, log and exp are the base-2 logarithm and exponential

11

functions, and log(r) and exp(r) their r-fold iterated versions:

log(0)(x) = exp(0)(x) = x, log(r)(x) = log(log(r−1)(x)), exp(r)(x) = exp(exp(r−1)(x)).

The log-star function is defined to be log∗(x) = min{r | log(r)(x) ≤ 1}. In particular,

log∗(x) = 0 if x ≤ 1.

2.2.2 Information Theory

The most fundamental concept in information theory is Shannon entropy. The Shan-

non entropy of a discrete random variable X is defined as

H(X) = −
∑

x∈supp(X)

Pr[X = x] log Pr[X = x].

Since there may be cases in which different distributions are defined for the “same”

random variable, we use H(p) in place of H(X) if X is drawn from a p.m.f. p. We

also write H(α), α ∈ (0, 1), to be the entropy of a Bernoulli random variable with

success probability α. In general, we freely use a random variable and its p.m.f. in-

terchangeably.

The joint entropy H(X, Y) of two random variables X and Y is simply

H(X, Y) = −
∑

x∈supp(X)

∑
y∈supp(Y)

Pr[X = x ∧ Y = y] log Pr[X = x ∧ Y = y].

This notion can be easily extended to cases of more than two random variables. Here,

we state a well known fact about joint entropy.

Fact 2.2. For any random variables X1, X2, ... , Xn, their joint entropy is at most the

sum of their individual entropies, i.e., H(X1, X2, ... , Xn) ≤
∑n

i=1 H(Xi).

The conditional entropy of Y conditioned on another random variable X, denoted

H(Y | X), measures the expected amount of extra information required to fully

describe Y if X is known. It is defined to be

H(Y | X) = H(X, Y)− H(X)

= −
∑

x∈supp(X)

Pr[X = x]
∑

y∈supp(Y)

Pr[Y = y | X = x] log Pr[Y = y | X = x]

≥ 0,

12

which can be viewed as a weighted sum of entropies of a number of conditional

distributions.

Finally, the mutual information I(X ; Y) between two random variables X and

Y quantifies the amount of information that is revealed about one random variable

through knowing the other one:

I(X ; Y)

= H(X)− H(X | Y)

= H(X) +
∑

y∈supp(Y)

Pr[Y = y]
∑

x∈supp(X)

Pr[X = x | Y = y] log Pr[X = x | Y = y].

2.2.3 Communication Complexity

Let f(x, y) be a function over domain X × Y , and consider any two-party commu-

nication protocol Q(x, y) that computes f(x, y), where one party holds x and the

other holds y. The transcript of Q on (x, y) is defined to be the concatenation of all

messages exchanged by the two parties, in order, as they execute on input (x, y). The

communication cost of Q is the maximum transcript length produced by Q over all

possible inputs.

Let Qd be a deterministic protocol for f and suppose µ is a distribution over

X × Y . The distributional error probability of Qd with respect to µ is the probability

Pr(x,y)∼µ[Qd(x, y) 6= f(x, y)]. For any 0 < ε < 1, the (µ, ε)-distributional deterministic

communication complexity of the function f is the minimum communication cost of

any protocol Qd that has distributional error probability at most ε with respect to

the distribution µ.

A randomized protocol Qr(x, y, w) also takes a public random string w ∼ W as

input. The error probability of Qr is calculated as max(x,y)∈X×Y Prw∼W [Qr(x, y, w) 6=
f(x, y)]. The ε-randomized communication complexity of f is the minimum commu-

nication cost of Qr over all protocols Qr with error probability at most ε.

Yao’s minimax principle [142] is a common starting point for lower bound proofs

in randomized communication complexity. The easy direction of Yao’s minimax prin-

ciple states that the communication cost of the best deterministic protocol specific

to any particular distribution is at most the communication cost of any randomized

protocol on its worst case input.

Lemma 2.3 (Yao’s minimax principle [142]). Let f : X × Y 7→ Z be the function

to be computed. Let Dµ,ε(f) be the (µ, ε)-distributional deterministic communication

13

complexity of f , and let Rε(f) be the ε-randomized communication complexity of f .

Then for any 0 < ε < 1/2,

max
µ

Dµ,ε(f) ≤ Rε(f).

Therefore, to show a lower bound on the ε-randomized communication complexity

of a function f , it suffices to find a hard distribution µ on the input set and prove

a lower bound for the communication cost of any deterministic protocol that has

distributional error probability at most 2ε with respect to µ.

2.3 Lower Bounds on ExistsEqual and EqualityTesting

In this section we prove lower bounds on EqualityTesting and ExistsEqual. Theo-

rem 2.4 obviously follows directly from Theorem 2.5, but we prove them in that order

nonetheless because Theorem 2.4 is a bit simpler.

Theorem 2.4. Any r-round randomized protocol for EqualityTesting on vectors of

length k that errs with probability perr = 2−E requires at least Ω(Ek1/r) bits of com-

munication.

Theorem 2.5. Any r-round randomized protocol for ExistsEqual on vectors of length k

that errs with probability perr = 2−E requires at least Ω(Ek1/r) bits of communication.

Without any constraint on the number of rounds, EqualityTesting trivially requires

Ω(k) communication. ExistsEqual also requires Ω(k) communication, through a small

modification to the SetDisjointness lower bounds [91, 128]. Even when k = 1, we

need at least Ω(E) communication to solve EqualityTesting/ExistsEqual with error

probability 2−E [103]. Thus, we can assume that E = Ω(k1−1/r), k1/r = Ω(1), and

hence r = O(log k). For example, some calculations later in our proof hold when

r ≤ (log k)/6. When proving Theorem 2.5, we will further assume E = Ω(log k) when

r = 1, which is reasonable because of Sağlam and Tardos’ Ω(k log(r) k) = Ω(k log k)

lower bound [130].

2.3.1 Structure of the Proof

We consider deterministic strategies for ExistsEqual/EqualityTesting when Alice and

Bob pick their input vectors independently from the uniform distribution on [t]k,

where t = 2cE and c = 1/2. Although the probability of seeing a collision in any

particular coordinate is small, it is still much larger than the tolerable error probability

14

(since c < 1), so it is incorrect to declare “not equal in every coordinate” without

performing any communication.

We suppose, for the purpose of obtaining a contradiction, that there is a protocol

for EqualityTesting with error probability 2−E and communication complexity c′Ek1/r,

where c′ = c/100. The length of the jth message is lj, which could depend on the

parameters (E, r, k, etc.) and possibly in some complicated way on the transcript of

the protocol before round j.6

Our proof must necessarily consider transcripts of the protocol that are extremely

unlikely (occurring with probability close to 2−E) and also maintain a high level of

uncertainty about which coordinates of Alice’s and Bob’s vectors might be equal.

Consider the first message. Alice picks her input vector x ∈ [t]k, which dictates the

first message m1. Suppose, for simplicity, that it betrays exactly l1/k < c′Ek1/r−1

bits of information per coordinate of x. Before Bob can respond with a message m2

he must commit to his input, say y. Most values of y result in “good” outcomes:

nearly all non-equal coordinates get detected immediately and the effective size of

the problem is dramatically reduced. We are not interested in these values of y, only

very “bad” values. Let I1 be the first k1−1/r coordinates (or, more generally, k1−1/r

coordinates that m1 revealed below-average information about). With probability

about (2−c
′Ek1/r−1

)|I1| = 2−c
′E, Bob picks an input y that is completely consistent

with Alice’s on I1, i.e., as far as he can tell yi = xi for every i ∈ I1. Rather than

sample y uniformly from [t]k, we sample it from a “hybrid” distribution: yI1 is sampled

from the same distribution that m1 revealed about xI1 (forcing the above event to

happen with probability 1), and y[k]\I1 is sampled from Bob’s former distribution (in

this case, the uniform distribution on [t]k−|I1|), conditioned on the value of yI1 .

This process continues round by round. Bob’s message m2 betrays at most

l2/|I1| < c′Ek2/r−1 bits of information on each coordinate of yI1 , and there must

be an index set I2 ⊂ I1 with |I2| = k1−2/r such that, with probability around 2−c
′E, it

is completely consistent that xI2 = yI2 . Alice resamples her input so that this (rare)

event occurs with probability 1, generates m3, and continues.

At the end of this process |Ir| = k1−r/r = 1, and yet Alice and Bob have revealed

less than the full cE bits of entropy about xIr and yIr . Regardless of whether they

report “equal” or “not equal” (on Ir), they are wrong with probability greater than

2−E. Are we done? Absolutely not! The problem is that this strange process for

6In the context of ExistsEqual/EqualityTesting, it is natural to think about uniform-length mes-
sages, lj = c′Ek1/r/r, or lengths that decay according to some convergent series, e.g., lj ∝ c′Ek1/r/2j
or lj ∝ c′Ek1/r/j2.

15

sampling a possible transcript of the protocol might itself only find transcripts that

occur with probability� 2−E, making any conclusions we make about its (probability

of) correctness moot. Generally speaking, we need to show that Alice’s and Bob’s

actions are consistent with events that occur with probability � 2−E.

Let us first make every step of the above process a bit more formal. It is helpful

to think about Alice’s and Bob’s inputs not being fixed vectors selected at time zero,

but simply distributions over vectors that change as messages progressively reveal

more information about them.

• Before the jth round of communication, the sender of the jth message’s input

is drawn from a discrete distribution D̂(j−1) over [t]k. The receiver of the jth

message’s input is drawn from the distribution D(j−1). For example, when

j = 1, if Alice speaks first then her initial distribution, D̂(0), and Bob’s initial

distribution, D(0), are both uniform over [t]k.

• Before the jth round of communication both parties are aware of an index

set Ij−1 such that, informally, (i) the distributions D(j−1)
Ij−1

and D̂(j−1)
Ij−1

are very

similar, and in particular, it is consistent that their inputs are identical on

Ij−1, and (ii) the messages transmitted so far reveal “average” or below-average

information about these coordinates. For example, I0 = [k] and it is consistent

with the empty transcript that Alice’s and Bob’s inputs are identical on every

coordinate.

• The jth message is a random variable Mj ∈ {0, 1}lj . In order to pick an mj

according to the right distribution, the sender picks an input x ∼ D̂(j−1) which,

together with the history m1, ... ,mj−1, determines mj. The sender transmits

mj to the receiver and promptly forgets x. The sender’s new distribution (i.e.,

D̂(j−1), conditioned on Mj = mj) is called D(j).

• The distribution D(j) may reveal information about the coordinates Ij−1 in an

irregular fashion. We find a subset Ij ⊂ Ij−1 of coordinates, |Ij| = k1−j/r,

for which the amount of information revealed by D(j)
Ij

is at most average. The

receiver of mj changes his input distribution to D̂(j), which is defined so that it

basically agrees with D(j)
Ij

and the marginal distribution D̂(j)
[k]\Ij , conditioned on

the value selected by D(j)
Ij

, is identical to D(j−1)
[k]\Ij .

• The reason D(j)
Ij

and D̂(j)
Ij

are not identical is due to two filtering steps. To

generate D̂(j), we remove points from the support that have tiny (but non-

zero) probability, which may be too close to the error probability. Intuitively

16

these rare events necessarily represent a small fraction of the probability mass.

Second, we remove points from the support if the ratio of their probability

occurring under D(j) over D(j−1) is too high. Intuitively, we want to conclude

that if there is a high probability of an error occurring under D(j) then the

probability is also high under D(j−1) (and by unrolling this further, under D(0)).

This argument only works if the ratios are what we would expect, given how

much information is being revealed about these coordinates by mj. As a result

of these two filtering steps, D(j)
Ij

(xIj) and D̂(j)
Ij

(xIj) differ by at most a constant

factor, for any particular vector xIj ∈ [t]|Ij |.

2.3.2 A Lower Bound on EqualityTesting

We begin with two general lemmas about discrete probability distributions that play

an important role in our proof.

Roughly speaking, Lemma 2.6 captures and generalizes the following intuition:

Suppose p is a high entropy distribution on some universe U and q is obtained from

p by conditioning on an event X ⊆ U such that p(X) is large, say some constant like

1/4. If p’s entropy is close to log |U |, then q’s entropy should not be much smaller

than that of p. As our proof goes on round by round, we will constantly throw away

part of the input distribution’s support to meet certain conditions. It is Lemma 2.6

that guarantees that the input distributions continue to have relatively high entropy.

Lemma 2.7 comes into play because the error probability will be calculated back-

ward in a round-by-round manner. Suppose the old distribution (p) has no extremely

low probability point and the new distribution (q) has almost full entropy. Lemma 2.7

provides us with a useful tool to transfer a lower bound on the probability of any event

w.r.t. q to a lower bound on the same event w.r.t. p.

Lemma 2.6. Let p and q be distributions defined on a universe of size 2s. Suppose

both of the following properties are satisfied:

1. The entropy of p is H(p) ≥ s− g, where 0 ≤ g ≤ s;

2. There exists 0 < α < 1 such that q(x) ≤ p(x)/α holds for every value x ∈
supp(q).

The entropy of q is lower bounded by:

H(q) ≥ s− g/α− H(α)/α.

17

Proof. Let X be the whole universe. From our assumptions, the entropy of q can be

lower bounded as follows.

H(q) =
∑
x∈X

q(x) log
1

q(x)
(Defn. of H(q).)

=
1

α

∑
x∈X

αq(x) log
1

αq(x)
+ logα (

∑
x∈X q(x) = 1.)

≥ 1

α

∑
x∈X

[
p(x) log

1

p(x)
− (p(x)− αq(x)) log

1

p(x)− αq(x)

]
+ logα

The previous step follows from Assumption 2 and the fact that x log x−1 +y log y−1 ≥
(x+ y) log(x+ y)−1 for any x, y ≥ 0. Continuing,

≥ 1

α

[
s− g −

∑
x∈X

(p(x)− αq(x)) log
1

p(x)− αq(x)

]
+ logα (Assumption 1.)

≥ 1

α

[
s− g − (1− α) log

2s

1− α

]
+ logα (Concavity of logarithm.)

= s− g

α
+

1− α
α

log(1− α) + logα = s− g

α
− H(α)

α
.

Lemma 2.7. Let p and q be distributions defined on a universe of size 2s. Suppose

both of the following properties are satisfied:

1. The entropy of q is H(q) ≥ s− g1, where 0 ≤ g1 ≤ s;

2. There exists g2 ≥ 0 such that p(x) ≥ 2−s−g2 holds for every value x ∈ supp(q).

Then, for any 0 < α < 1,

Pr
x∼q

[
q(x)

p(x)
> 2g1/α+g2−(1−α) log(1−α)/α

]
≤ α.

Proof. Let X0 = {x ∈ supp(q) | q(x)/p(x) ≤ 2g1/α+g2−(1−α) log(1−α)/α} and X1 =

supp(q) \ X0. Suppose, for the purpose of obtaining a contradiction, that the conclu-

sion of the lemma is false, i.e., q(X1) = α0, for some α0 > α. Notice that for each

value x ∈ X1, Assumption 2 implies that

q(x) > p(x) · 2g1/α+g2−(1−α) log(1−α)/α ≥ 2−s+g1/α−(1−α) log(1−α)/α. (2.1)

18

Then we can upper bound the entropy of q as follows.

H(q) =
∑
x∈X0

q(x) log
1

q(x)
+
∑
x∈X1

q(x) log
1

q(x)
(Defn. of H(q).)

<
∑
x∈X0

q(x) log
1

q(x)
+ α0

[
s− g1

α
+

1− α
α

log(1− α)

]
(Eqn. (2.1).)

≤ (1− α0) log
2s

1− α0

+ α0

[
s− g1

α
+

1− α
α

log(1− α)

]
(Concavity of logarithm.)

= s− α0

α
· g1 + α0

[
1− α
α

log(1− α)− 1− α0

α0

log(1− α0)

]
< s− g1,

where the last step follows from the monotonicity of (1 − α) log(1 − α)/α. This

contradicts Assumption 1.

We are now ready to begin the proof of Theorem 2.4 proper. Fix a round j

and a particular history (m1, ... ,mj−1) up to round j − 1. We let µj(mj) denote the

probability that the jth message is mj, if the input to the sender is drawn from D̂(j−1).

Define D(j)[mj] to be the new input distribution of the sender after he commits to

mj. When mj is clear from context, it is denoted D(j). (The process for deriving D̂(j)

from D(j) and D(j−1) on the receiver’s end will be explained in detail later.)

We will prove by induction that the following Invariant 2.8 holds for each j ∈ [0, r],

where the particular values of Ij, D(j), D̂(j), and l1, ... , lj depend on the transcript

m1, ... ,mj that is sampled. In the base case, Invariant 2.8 clearly holds when j =

0, I0 = [k], and both D̂(0),D(0) are the uniform distribution over [t]k.

Invariant 2.8. After round j ∈ [0, r] the partial transcript is m1, ... ,mj, which de-

termines the values {lj′ , D̂(j′),D(j′), Ij′}j′≤j. The index set Ij ⊆ [k] satisfies all of the

following:

1. |Ij| = k1−j/r.

2. Each value xIj ∈ [t]|Ij | satisfies D̂(j)
Ij

(xIj) ≤ 4D(j)
Ij

(xIj).

3. Each nonempty subset I ′ ⊆ Ij satisfies

H(D̂(j)
I′) ≥

(
cE −

j∑
u=1

16j−u+1lu
k1−(u−1)/r

− 22j

)
|I ′|.

19

In accordance with our informal discussion in Section 2.3.1, Ij is a subset of

indices on which both parties have learned little information about each other from

the partial transcript m1, ... ,mj. Invariant 2.8(2) ensures that the two parties draw

their inputs after the jth round from similar distributions. Invariant 2.8(3) is the

most important property. It says that the information revealed by D̂(j) about I ′ is

roughly what one would expect, given the message lengths l1, ... , lj. Note that the

uth message conveys information about |Iu−1| = k1−(u−1)/r indices so the average

information-per-index should be lu/k
1−(u−1)/r. The factor 16j−u+1 and the extra term

22j come from Lemma 2.6, which throws away part of the input distribution in each

round, progressively distorting the distributions in minor ways.

To begin our induction, at round j we find a large fraction of possible messages

mj that reveal little information about the sender’s input, projected onto Ij−1. This

is possible because the length of the message lj = |mj| reflects an upper bound on

the expected information gain. This idea is formalized in the following Lemma 2.9.

Lemma 2.9. Fix j ∈ [1, r] and suppose Invariant 2.8 holds for j − 1. Then there

exists a subset of messages M′
j with µj(M′

j) ≥ 1/2 such that each message mj ∈M′
j

satisfies

H(D(j)
Ij−1

[mj]) ≥

(
cE − 2

j∑
u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1|.

Proof. Let M′
j contain all messages mj satisfying the above inequality and M′

j be

its complement. Suppose, for the purpose of obtaining a contradiction, that the

conclusion of the lemma is not true, i.e., µj(M′
j) = α > 1/2. Then the entropy of

20

D̂(j−1)
Ij−1

can be upper bounded as follows.

H(D̂(j−1)
Ij−1

)

= I(D̂(j−1)
Ij−1

; Mj) +
∑

mj∈(M′j∪M′j)

µj(mj)H(D(j)
Ij−1

[mj]) (Defn. of I(·, ·).)

≤ H(Mj) +
∑

mj∈(M′j∪M′j)

µj(mj)H(D(j)
Ij−1

[mj]) (I(X ; ·) ≤ H(X).)

≤ lj +
∑

mj∈M′j

µj(mj)H(D(j)
Ij−1

[mj]) +
∑

mj∈M′j

µj(mj)H(D(j)
Ij−1

[mj])

(H(Mj) ≤ |Mj| = lj.)

< lj + (1− α)cE|Ij−1|+ α

(
cE − 2

j∑
u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1|

(Defn. of M′
j.)

= lj +

(
cE − 2α

j∑
u=1

16j−ulu
k1−(u−1)/r

− 2α · 22j−1

)
|Ij−1|

<

(
cE −

j−1∑
u=1

16j−ulu
k1−(u−1)/r

− 22j−1

)
|Ij−1|, (Because α > 1/2.)

This contradicts Invariant 2.8(3) at index j − 1.

After the jth message mj is sent, the next step is to identify a set of coordinates Ij

such that D(j) still reveals little information about Ij and every subset of Ij, since we

need this property to hold for Ij+1, ... , Ir in the future, all of which are subsets of Ij.

We also want Ij not to contain many low probability points w.r.t. D(j−1), since this

may stop us from applying Lemma 2.7 later on. These two constraints are captured

by parts (2) and (1), respectively, of Lemma 2.10.

Lemma 2.10. Fix j ∈ [1, r] and suppose Invariant 2.8 holds for j − 1. Then there

exists a subset of messages Mj ⊆ M′
j (from Lemma 2.9) with µj(Mj) ≥ 1/4 such

that for each message mj ∈ Mj, there exists a subset Ij ⊆ Ij−1 of size |Ij| = k1−j/r

satisfying both of the following properties:

1. Pr
xIj∼D

(j)
Ij

[
D(j−1)
Ij

(xIj) < (4t)−|Ij |/32
]
≤ 1/2;

2. Each nonempty subset I ′ ⊆ Ij satisfies

H(D(j)
I′) ≥

(
cE − 4

j∑
u=1

16j−ulu
k1−(u−1)/r

− 4 · 22j−1

)
|I ′|.

21

Proof. We first prove that for each message mj ∈M′
j (from Lemma 2.9), there exists

a subset J0 ⊆ Ij−1 of size |J0| ≥ |Ij−1|/2 such that each nonempty subset I ′ ⊆ J0

satisfies part (2) of the lemma. Suppose J1, J2, ... , Jw are disjoint subsets of Ij−1,

each of which violates the inequality of part (2), whereas none of the subsets of

J0 = Ij−1 \ (
⋃w
v=1 Jv) do. Then we can upper bound the entropy of D(j)

Ij−1
as follows.

H(D(j)
Ij−1

) ≤
w∑
v=0

H(D(j)
Jv

) (Fact 2.2.)

< cE|J0|+
w∑
v=1

(
cE − 4

j∑
u=1

16j−ulu
k1−(u−1)/r

− 4 · 22j−1

)
|Jv| (Defn. of Jv.)

= cE|Ij−1| − 4|Ij−1 \ J0|

(
j∑

u=1

16j−ulu
k1−(u−1)/r

+ 22j−1

)
.

On the other hand, from Lemma 2.9, having mj ∈M′
j guarantees that

H(D(j)
Ij−1

) ≥

(
cE − 2

j∑
u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1|.

The two inequalities above are only consistent if |Ij−1 \J0| ≤ |Ij−1|/2, or equivalently

|J0| ≥ |Ij−1|/2. Thus, J0 exists with the right cardinality, as claimed.

Now suppose, for the purpose of obtaining a contradiction, that the lemma is false.

For every mj ∈ M′
j there is a corresponding index set J0 whose subsets satisfy part

(2) of the lemma. If the lemma is false, that means there is a subset M′′
j ⊆ M′

j of

“bad” messages with µj(M′′
j) > 1/4 such that, for each mj ∈ M′′

j , none of the
(|J0|
|Ij |

)
choices for Ij ⊆ J0 satisfy part (1) of the lemma. (Remember that J0 depends on mj

but the lower bound on |J0| ≥ |Ij−1|/2 is independent of mj.) Consider the following

summation:

Z =
∑

Ij⊆Ij−1 :

|Ij |=k1−j/r

∑
xIj∈[t]|Ij | :

D(j−1)
Ij

(xIj)< (4t)−|Ij |/32

D(j−1)
Ij

(xIj).

We can easily upper bound Z as follows.

Z <

(
|Ij−1|
|Ij|

)
· t|Ij | · (4t)−|Ij |

32
=

(
|Ij−1|
|Ij|

)
2−2|Ij |−5.

22

Invariant 2.8(2) relates D(j−1) and D̂(j−1), which lets us lower bound Z.

Z ≥ 1

4

∑
Ij⊆Ij−1 :

|Ij |=k1−j/r

∑
xIj∈[t]|Ij | :

D(j−1)
Ij

(xIj)< (4t)−|Ij |/32

D̂(j−1)
Ij

(xIj) (Invariant 2.8(2).)

By definition, D̂(j−1) is a convex combination of the D(j)[mj] distributions, weighted

according to µj(·). Hence, the expression above is lower bounded by

≥ 1

4

∑
Ij⊆Ij−1 :

|Ij |=k1−j/r

∑
xIj∈[t]|Ij | :

D(j−1)
Ij

(xIj)< (4t)−|Ij |/32

∑
mj∈M′′j

µj(mj) · D(j)
Ij

[mj](xIj)

≥ 1

4

∑
mj∈M′′j

µj(mj)
∑
Ij⊆J0 :

|Ij |=k1−j/r

∑
xIj∈[t]|Ij | :

D(j−1)
Ij

(xIj)< (4t)−|Ij |/32

D(j)
Ij

[mj](xIj)

(Rearrange sums.)

By definition, for every mj ∈M′′
j and every choice of Ij ⊆ J0, part (1) of the lemma

is violated. Continuing with the inequalities,

>
1

4

∑
mj∈M′′j

µj(mj) ·
(
|J0|
|Ij|

)
· 1

2

>
1

32

(
|Ij−1|/2
|Ij|

)
. (Because µj(M′′

j) > 1/4.)

This contradicts the upper bound on Z whenever k1/r is at least some sufficiently

large constant.

The receiver of mj constructs a new distribution D̂(j) in two steps. After fixing Ij,

we construct D̃(j) by combining D(j−1) and D(j), filtering out some points in the space

whose probability mass is too low. We then construct D̂(j) from D̃(j) and D(j−1) by

filtering out points that occur under D̃(j) with substantially larger probability than

they do under D(j−1).

Formally, suppose Invariant 2.8 holds for j− 1. For each message mj ∈Mj (from

Lemma 2.10), let Ij be selected to satisfy both properties of Lemma 2.10. Define the

23

probability mass of a vector x ∈ [t]k under D̃(j) as follows:

D̃(j)(x) =


0, if D(j−1)

Ij
(xIj) <

(4t)−|Ij |

32
;

D(j)
Ij

(xIj)

β1
· D

(j−1)(x)

D(j−1)
Ij

(xIj)
, otherwise.

where β1 is

β1 = Pr
xIj∼D

(j)
Ij

[
D(j−1)
Ij

(xIj) ≥
(4t)−|Ij |

32

]
.

In other words, we discard a 1 − β1 fraction of the distribution D(j), but ignoring

this effect, the projection of D̃(j) onto Ij has the same distribution as D(j) onto Ij,

and conditioned on the value of xIj , the distribution D̃(j) (projected onto [k]\Ij) is

identical to D(j−1). We derive D̂(j) from D̃(j) with a similar transformation.

D̂(j)(x) =


0, if

D̃(j)
Ij

(xIj)

D(j−1)
Ij

(xIj)
> 2γj ;

D̃(j)
Ij

(xIj)

β2
· D

(j−1)(x)

D(j−1)
Ij

(xIj)
, otherwise.

where β2 and γj are defined to be

β2 = Pr
xIj∼D̃

(j)
Ij

[
D̃(j)
Ij

(xIj)

D(j−1)
Ij

(xIj)
≤ 2γj

]
,

γj =

j∑
u=1

lu

(
16

k1/r

)j−u+1

+ (16 · 22j−1 + 6)|Ij|+ 6

≤
j∑

u=1

lu

(
16

k1/r

)j−u+1

+ 22j|Ij|+ 6.

The proofs of Lemmas 2.11 and 2.12 use several simple observations about D̃(j)

and D̂(j):

1. Lemma 2.10(1) states that β1 ≥ 1/2. Lemma 2.10(2) lower bounds the entropy

of D(j)
Ij

. We apply Lemma 2.6 to D(j)
Ij

and D̃(j)
Ij

(taking the roles of p and q,

respectively) with parameter α = 1/2 ≤ β1, and obtain the following lower

24

bound on the entropy of D̃(j)
Ij

.

H(D̃(j)
Ij

) ≥

(
cE − 8

j∑
u=1

16j−ulu
k1−(u−1)/r

− 8 · 22j−1 − 2

)
|Ij|.

2. We can then apply Lemma 2.7 to D(j−1)
Ij

and D̃(j)
Ij

(taking the roles of p and q,

respectively) with parameters

g1 = 8

j∑
u=1

16j−ulu
k(j−u+1)/r

+ (8 · 22j−1 + 2)|Ij|,

g2 = 2|Ij|+ 5,

and α = 1/2.

Since g1/α+ g2− (1−α) log(1−α)/α = γj, we conclude that β2 ≥ 1−α = 1/2.

Thus, for each value xIj ∈ supp(D̂(j)
Ij

),

D̂(j)
Ij

(xIj) =
D̃(j)
Ij

(xIj)

β2

=
D(j)
Ij

(xIj)

β1β2

≤ 4D(j)
Ij

(xIj). (2.2)

Lemma 2.11 completes the inductive step by lower bounding the entropy of D̂(j)
I′ for

every nonempty subset I ′ ⊆ Ij. To put it another way, it ensures that the coordinates

in Ij remain almost completely unknown to both parties.

Lemma 2.11. Fix j ∈ [1, r] and suppose Invariant 2.8 holds for j − 1. Then, for

each message mj ∈Mj (from Lemma 2.10), Invariant 2.8 also holds for j.

Proof. Due to Lemma 2.10 and Eqn. (2.2), the first two properties of Invariant 2.8 are

satisfied. For each nonempty subset I ′ ⊆ Ij, the third property of Invariant 2.8 can

be derived from the second property of Lemma 2.10 and an application of Lemma 2.6

to D(j)
I′ and D̂(j)

I′ (taking the roles of p and q, respectively) with parameter α = 1/4

as follows.

H(D̂(j)
I′) ≥

(
cE − 16

j∑
u=1

16j−ulu
k1−(u−1)/r

− 16 · 22j−1 − 4

)
|I ′|

≥

(
cE −

j∑
u=1

16j−u+1lu
k1−(u−1)/r

− 22j

)
|I ′|.

25

Aside from maintaining Invariant 2.8 round by round, another important part of

our proof is to compute the error probability. Lemma 2.12 shows how the error prob-

abilities of two consecutive rounds are related after our modification to the protocol.

More importantly, it also illustrates the reason to bound the pointwise ratio between

D̃(j)
Ij

and D(j−1)
Ij

.

Lemma 2.12. Fix a round j ∈ [1, r] and suppose Invariant 2.8 holds for j − 1. Fix

any specific message mj ∈ Mj (from Lemma 2.10). Define p to be the probability

of error, when the protocol begins after round j with the inputs drawn from D(j) and

D̂(j), respectively. Then the probability of error is at least 2−γj−1p when the inputs

are instead drawn from D(j) and D(j−1), respectively.

Proof. From the definition of D̂(j), for each value x ∈ supp(D̂(j)), we have

D̂(j)(x)

D(j−1)(x)
=

D̃(j)
Ij

(xIj)

β2D(j−1)
Ij

(xIj)
≤ 2γj

β2

≤ 2γj+1. (2.3)

This essentially concludes the proof.

Finally, with all lemmas proved above, we have reached the point to calculate the

initial error probability.

Lemma 2.13. Recall that c = 1/2, c′ = c/100. Fix any r ∈ [1, (log k)/6] and E ≥
100k1−1/r/c. Suppose the initial input vectors are drawn independently and uniformly

from [t]k, where t = 2cE. Then the error probability of the EqualityTesting protocol,

perr, is greater than 2−E.

Proof. First suppose Invariant 2.8 holds for r and consider the situation after the

final round, where the inputs are drawn from D(r) and D̂(r), respectively. Notice that

Ir is a singleton set, so the entropy of D̂(r)
Ir

can be lower bounded as follows.

H(D̂(r)
Ir

) ≥ cE −
r∑

u=1

16r−u+1lu
k1−(u−1)/r

− 22r Invariant 2.8(3).

= cE − 16

k1/r

r∑
u=1

lu

(
16

k1/r

)r−u
− 22r

≥ cE − 16

k1/r

r∑
u=1

lu − 22k1−1/r k1/r ≥ 26 due to r ≤ (log k)/6.

≥ cE − 16c′E − 22k1−1/r >
cE

2
. Because

∑r
u=1 lu ≤ c′Ek1/r.

26

From the lower bound on the entropy of D̂(r)
Ir

, we can easily show that there exists

no value xIr such that D̂(r)
Ir

(xIr) = α > 3/4. If there were such a value, then the

entropy of D̂(r)
Ir

can also be upper bounded as

H(D̂(r)
Ir

) ≤ α log
1

α
+ (1− α) log

t

1− α
<

cE

4
+ α log

1

α
+ (1− α) log

1

1− α
<

cE

2
,

contradicting the lower bound on H(D̂(r)
Ir

).

After all r rounds of communication, the receiver of the last message has to make

the decision on Ir depending only on his own input on Ir. Let X0 ⊆ [t] be the subset

of values xIr such that the protocol outputs “not equal” on Ir upon seeing the input

xIr after r rounds of communication, X1 = [t] \X0, and β = D̂(r)
Ir

(X0). Then, the final

error probability is at least∑
xIr∈X0

D̂(r)
Ir

(xIr)D
(r)
Ir

(xIr) +
∑

xIr∈X1

D̂(r)
Ir

(xIr)
(

1−D(r)
Ir

(xIr)
)

=
∑

xIr∈X0

D̂(r)
Ir

(xIr)D
(r)
Ir

(xIr) +
∑

xIr∈X1

D̂(r)
Ir

(xIr)
∑

x′Ir 6=xIr

D(r)
Ir

(x′Ir)

≥ 1

4

∑
xIr∈X0

D̂(r)
Ir

(xIr)
2 +

1

4

∑
xIr∈X1

D̂(r)
Ir

(xIr)
∑

x′Ir 6=xIr

D̂(r)
Ir

(x′Ir) (Invariant 2.8(2).)

=
1

4

∑
xIr∈X0

D̂(r)
Ir

(xIr)
2 +

1

4

∑
xIr∈X1

D̂(r)
Ir

(xIr)
(

1− D̂(r)
Ir

(xIr)
)

≥ 1

4

∑
xIr∈X0

D̂(r)
Ir

(xIr)
2 +

1

16

∑
xIr∈X1

D̂(r)
Ir

(xIr) (Because D̂(r)
Ir

(xIr) ≤ 3/4.)

≥ β2

4t
+

1− β
16

≥ 1

4t
. (Convexity of x2.)

This result also meets the simple intuition that when the inputs to the two parties

are almost uniformly random and no communication is allowed, the best strategy

would be guessing “not equal” regardless of the actual input.

Finally, we are ready to transfer the error probability back round by round. From

Lemma 2.10 through Lemma 2.12, the error probability w.r.t. D(j) and D̂(j) differs

from the error probability w.r.t. D(j−1) and D̂(j−1) by at most a 4 · 2γj+1 = 2γj+3

factor. In particular, Lemma 2.10 and Lemma 2.11 say that the jth message mj

satisfies Invariant 2.8 at index j with probability at least 1/4, provided Invariant 2.8

holds for j − 1, and Lemma 2.12 says the error probabilities under the two measures

differ by a 2γj+1 factor for any such mj. Repeating this for each j ∈ [1, r], we conclude

27

that the initial error probability perr is lower bounded by

perr ≥
1

4t
· exp

(
−3r −

r∑
j=1

γj

)
= exp

(
−cE − 2− 3r −

r∑
j=1

γj

)
> 2−E,

since

cE + 2 + 3r +
r∑
j=1

γj

≤ cE + 2 + 3r + 6r +
r∑
j=1

j∑
u=1

lu

(
16

k1/r

)j−u+1

+
r∑
j=1

22j|Ij|

≤ cE + 11r +
r∑

u=1

16lu
k1/r

r∑
j=u

(
16

k1/r

)j−u
+22k1−1/r

r∑
j=1

(
22

k1/r

)j−1

(Rearrange sums.)

≤ cE + 11r +
32

k1/r

r∑
u=1

lu + 44k1−1/r (k1/r ≥ 26 since r ≤ (log k)/6.)

≤ cE +
11cE

100
+

32cE

100
+

44cE

100
< E. (Because

∑r
u=1 lu ≤ c′Ek1/r.)

Proof of Theorem 2.4. Lemma 2.13 actually shows that given integers k ≥ 1 and

r ≤ (log k)/6, any r-round deterministic protocol for EqualityTesting on vectors of

length k that has distributional error probability perr = 2−E with respect to the

uniform input distribution on [t]k, where t = 2cE, requires at least Ω(Ek1/r) bits

of communication. Notice that the additional assumption E ≥ 100k1−1/r/c always

makes sense since there is a trivial Ω(k) lower bound on the communication complexity

of EqualityTesting, regardless of r. Thus, Theorem 2.4 follows directly from Yao’s

minimax principle.

2.3.3 A Lower Bound on ExistsEqual

The proof of Theorem 2.5 is almost the same as that of Theorem 2.4, except for the

final step, namely Lemma 2.13, in which we first compute the final error probability

after all r rounds of communication and then transfer it backward round by round

using Lemma 2.12. The problem with applying the same argument to ExistsEqual

protocols is that the receiver of the last message may be able to announce the cor-

rect answer, even though it knows little information about the inputs on the single

coordinate Ir.

28

In order to prove Theorem 2.5, first notice that Lemma 2.9 through Lemma 2.12

also hold perfectly well for ExistsEqual protocols as no modification is required in

their proofs. Therefore, it is sufficient to prove the following Lemma 2.14, which is

an analog of Lemma 2.13 for ExistsEqual. It is based mainly on Markov’s inequality.

Lemma 2.14. Recall that c = 1/2, c′ = c/100. Consider an execution of a de-

terministic r-round ExistsEqual protocol, r ∈ [1, (log k)/6], on input vectors drawn

independently and uniformly from [t]k, where t = 2cE. Here E ≥ 100k1−1/r/c if r > 1

and E ≥ (100 log k)/c otherwise. Then the protocol errs with probability perr > 2−E.

Proof. Similarly to the proof of Lemma 2.13, we first consider the situation after the

final round. In the ExistsEqual protocol, the receiver of the last message can make

the decision depending on every coordinate of his own input. Let X0 ⊆ [t]k be the

subset of values x such that the protocol outputs “no” upon seeing the input x after r

rounds of communication, X1 = [t]k \ X0. Then, the final error probability is at least

∑
x∈X0

D̂(r)(x)D(r)
Ir

(xIr) +
∑
x∈X1

D̂(r)(x)

1−
∑

y∈N (x)

D(r)(y)

 ,

where N (x) = {y ∈ [t]k | there exists some i ∈ [k] such that xi = yi} is the subset of

input vectors that agree with x on at least one coordinate.

The main difficulty here is to lower bound 1−
∑

y∈N (x)D(r)(y), which is potentially

quite small. Consider the following summation Z0 over all transcripts m1, ... ,mr in

which mj ∈Mj (from Lemma 2.10), where the set Mj depends on m1, ... ,mj−1:

Z0 =
∑

m1∈M1

µ1(m1)
∑

m2∈M2

µ2(m2) · · ·
∑

mr∈Mr

µr(mr)
∑
x∈[t]k

D̂(r)(x)
∑

y∈N (x)

D(r)(y).

From the proof of Lemma 2.12 (Eqn. (2.3)), we can upper bound Z0 as follows.

Z0 ≤
∑

m1∈M1

µ1(m1) · · ·
∑

mr∈Mr

µr(mr)
∑
x∈[t]k,
y∈N (x)

2γr+1D(r−1)(x)D(r)(y)

Notice that γr and D(r−1) are independent of the choice of mr, hence by rearranging

sums, this is equal to

=
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)
∑
x∈[t]k,
y∈N (x)

2γr+1D(r−1)(x)
∑

mr∈Mr

µr(mr)D(r)(y)

29

By definition, D̂(r−1) is a convex combination of the D(r)[mr] distributions, weighted

according to µr(·). Hence, the expression above is upper bounded by

≤
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)
∑
x∈[t]k,
y∈N (x)

2γr+1D(r−1)(x)D̂(r−1)(y)

By the symmetry of x and y, this is equal to

=
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)
∑
x∈[t]k,
y∈N (x)

2γr+1D̂(r−1)(x)D(r−1)(y)

We repeat the same argument for rounds r − 1 down to 1, upper bounding Z0 by

≤ exp

(
r +

r∑
j=1

γj

) ∑
x∈[t]k,
y∈N(x)

D̂(0)(x)D(0)(y)

≤ exp

(
r +

r∑
j=1

γj

)
k

t

The last inequality above follows from a union bound since, under the initial distri-

butions D̂(0),D(0), each of the k coordinates is equal with probability 1/t. Recall that

E ≥ 100k1−1/r/c when r > 1 and E ≥ (100 log k)/c otherwise. Hence, using the same

argument as that in the proof of Lemma 2.13, we can further bound this as

≤ 20.83cE · 20.02cE2−cE = 2−0.15cE,

since

r+
r∑
j=1

γj ≤ 7r+
r∑
j=1

j∑
u=1

lu

(
16

k1/r

)j−u+1

+
r∑
j=1

22j|Ij| ≤
7cE

100
+

32cE

100
+

44cE

100
=

83cE

100
,

and k ≤ (cE/100)r/(r−1) ≤ (cE/100)2 ≤ 20.02cE when r > 1 and k ≤ 20.01cE otherwise.

Now fix a round j and a particular history (m1, ... ,mj) up to round j such that

mj′ ∈Mj′ holds for every j′ ≤ j. Define Zj as follows.

Zj =
∑

mj+1∈Mj+1

µj+1(mj+1) · · ·
∑

mr∈Mr

µr(mr)
∑
x∈[t]k

D̂(r)(x)
∑

y∈N (x)

D(r)(y).

30

By Markov’s inequality, there exists a subset of messages M̂1 ⊆M1 with µ1(M̂1) ≥
µ1(M1)/2 ≥ 1/8 such that each message m1 ∈ M̂1 satisfies Z1 ≤ 2Z0/µ1(M1) ≤
8Z0 since µ1(M1) ≥ 1/4 from Lemma 2.10. Similarly, conditioned on any spe-

cific m1 ∈ M̂1, by Markov’s inequality, there exists a subset of messages M̂2 ⊆
M2 with µ2(M̂2) ≥ µ2(M2)/2 ≥ 1/8 such that each message m2 ∈ M̂2 satisfies

Z2 ≤ 2Z1/µ2(M2) ≤ 82Z0. In general, conditioned on any specific partial transcript

m1, ... ,mj−1 such that mj′ ∈ M̂j′ holds for every j′ < j, there exists a subset of mes-

sages M̂j ⊆ Mj with µj(M̂j) ≥ µj(Mj)/2 ≥ 1/8 such that each message mj ∈ M̂j

satisfies Zj ≤ 8jZj.

After repeating the same argument r times, we get M̂1, ... ,M̂r in sequence. For

any sampled transcript m1, ... ,mr such that mj ∈ M̂j for all j ≤ r, we have

Zr ≤ 8rZ0 ≤ 23r · 2−0.15cE ≤ 2−0.12cE ≤ 1

4
,

as r ≤ cE/100 and cE ≥ 100. Further, one more application of Markov’s inequality

shows that there exists a subset of values X ′ ⊆ [t]k with D̂(r)(X ′) = α ≥ 1/2 such

that
∑

y∈N (x)D(r)(y) ≤ 1/2 holds for every x ∈ X ′.
As a result, we can then lower bound the final error probability as follows, where

β = D̂(r)(X0 ∩ X ′).

∑
x∈X0

D̂(r)(x)D(r)
Ir

(xIr) +
∑
x∈X1

D̂(r)(x)

1−
∑

y∈N (x)

D(r)(y)


≥

∑
x∈(X0∩X ′)

D̂(r)(x)D(r)
Ir

(xIr) +
∑

x∈(X1∩X ′)

D̂(r)(x)

1−
∑

y∈N (x)

D(r)(y)


≥ 1

4

∑
x∈(X0∩X ′)

D̂(r)(x)D̂(r)
Ir

(xIr) +
∑

x∈(X1∩X ′)

D̂(r)(x)

1−
∑

y∈N (x)

D(r)(y)


(Invariant 2.8(2).)

≥ 1

4

∑
x∈(X0∩X ′)

D̂(r)(x)D̂(r)
Ir

(xIr) +
1

2

∑
x∈(X1∩X ′)

D̂(r)(x) (Defn. of X ′.)

31

In order to minimize the above expression, we can now assume without loss of gen-

erality that the partition between X0 ∩X ′ and X1 ∩X ′ depends solely on xIr as only

the relative magnitude of D̂(r)
Ir

(xIr)/4 and 1/2 matters. Continuing,

≥ β2

4t
+
α− β

2
≥ α2

4t
≥ 1

16t
. (Convexity of x2.)

Finally, we are ready to transfer the error probability back in exactly the same

manner as we did in the proof of Lemma 2.13. Using a similar argument, the existence

of M̂j guarantees that

perr ≥
1

16t
· exp

(
−4r −

r∑
j=1

γj

)
= exp

(
−cE − 4− 4r −

r∑
j=1

γj

)
> 2−E,

since

cE + 4 + 4r +
r∑
j=1

γj ≤ cE +
14cE

100
+

32cE

100
+

44cE

100
< E.

Proof of Theorem 2.5. Similarly to the proof of Theorem 2.4, Theorem 2.5 follows

from Lemma 2.14 and a direct application of Yao’s minimax principle.

2.4 Upper Bounds on EqualityTesting and ExistsE-

qual

In this section, we prove upper bounds on both EqualityTesting and ExistsEqual. We

first give a (log∗(k/E) + r)-round EqualityTesting protocol (Theorem 2.15) that uses

O(k + rEk1/r) bits of communication and errs with probability at most perr = 2−E.

The log∗(k/E) term cannot be completely eliminated, due to the lower bounds of [130,

23]. Our lower bound implies that when E ≥ k (so log∗(k/E) = 0), the second term

is optimal up to a factor of r.

A natural goal is to achieve optimal communication Θ(k + E) and minimize the

number of rounds subject to that constraint. When E ≥ k our lower bound says

r = Ω(log k), but in this case the algorithm of Theorem 2.15 only achieves O(E log k)

communication. Theorems 2.16 and 2.17 illustrate two ways to shave off this factor

of r. Theorem 2.16 applies to the easier ExistsEqual problem, and Theorem 2.17

applies to the general EqualityTesting problem, but blows up the round complexity to

log∗(k/E) +O(r).

32

Theorem 2.15. There exists a (log∗(k/E) + r)-round randomized protocol for Equal-

ityTesting on vectors of length k that errs with probability perr = 2−E, using O(k +

rEk1/r) bits of communication.

Theorem 2.16. There exists a (log∗(k/E) + r)-round randomized protocol for Exist-

sEqual on vectors of length k that errs with probability perr = 2−E, using O(k+Ek1/r)

bits of communication.

Theorem 2.17. There exists a (log∗(k/E) + O(r))-round randomized protocol for

EqualityTesting on vectors of length k that errs with probability perr = 2−E, using

O(k + Ek1/r) bits of communication.

Theorem 2.18. There exists a (log∗(k/E) + r)-round randomized protocol for Equal-

ityTesting on vectors of length k that errs with probability perr = 2−E, using O(k +

Ek1/r log r + Er log r) bits of communication.

Remark 2.19. The log∗(k/E) terms in the round complexity of Theorems 2.15–2.17

are not absolute. They can each be replaced with max{0, log∗(k/E)− log∗(C)}, at the

cost of increasing the communication by O(Ck).

2.4.1 Overview and Preliminaries

We start by giving a generic protocol for EqualityTesting. The protocol uses a simple

subroutine for ExistsEqual/EqualityTesting when k = 1. Suppose Alice and Bob hold

x, y ∈ U = {0, 1}l, respectively. Alice picks a random w ∈ {0, 1}l from the shared

random source and sends Bob x̌ = 〈x,w〉 mod 2, where 〈·, ·〉 is the inner product

operator. Bob computes y̌ = 〈y, w〉 mod 2 and declares “x = y” iff x̌ = y̌. Clearly,

Bob never errs if x = y; it is straightforward to show that the probability of error is

exactly 1/2 when x 6= y. We call this protocol an inner product test and x̌, y̌ test bits.

A b-bit inner product test on x and y refers to b independent inner product tests on

x and y.

The entire protocol is divided into several phases. Before phase j, j ≥ 1, Alice and

Bob agree on a subset Ij−1 of coordinates on which all previous inner product tests

have passed. In other words, they have not yet witnessed that any of the coordinates

in Ij−1 are not equal. Each coordinate i ∈ Ij−1 represents either an actual equality

(xi = yi), or a false positive (xi 6= yi). At the beginning of the protocol, I0 = [k]. In

phase j, we perform lj independent inner product tests on each coordinate in Ij−1 and

let Ij ⊆ Ij−1 be the remaining coordinates that pass all their respective inner product

tests. Notice that each coordinate in Ij−1 corresponding to equality will always pass

33

all the tests and enter Ij, while those corresponding to inequalities will only enter

Ij with probability 2−lj . At the end of the protocol, we declare all coordinates in Ir

equal and all other coordinates not equal.

This finishes the description of our generic protocol. Theorems 2.15–2.17 all use

the framework of the generic protocol and mainly differ in the details, such as how

Alice and Bob exchange their test bits, how they decide lj, and when the protocol

terminates.

2.4.1.1 A protocol for exchanging test bits

For EqualityTesting, it is possible that a constant fraction of the coordinates are ac-

tually equalities, which makes |Ij| = Θ(k) for every j. The naive implementation

explicitly exchanges all lj|Ij−1| test bits and uses Ω(kE) bits of communication in

total. All the test bits corresponding to equalities are “wasted” in a sense.

For our application, it is important that the communication volume that Alice

and Bob use to exchange their test bits in phase j be proportional to the number

of false positives in Ij−1, instead of the size of Ij−1. We will use a slightly improved

version of a protocol of Feder et al. [63] for exchanging the test bits.

Imagine packing the test bits into vectors x̂, ŷ ∈ B|Ij−1| where B = {0, 1}lj .
Lemma 2.20 shows that Alice can transmit x̂ to Bob, at a cost that depends on

an a priori upper bound on the Hamming distance dist(x̂, ŷ), i.e.,, the number of the

coordinates in Ij−1 where they differ.

Lemma 2.20 (Cf. Feder et al. [63].). Suppose Alice and Bob hold length-K vectors

x, y ∈ BK, where B = {0, 1}L. Alice can send one O(dL+d log(K/d))-bit message to

Bob, who generates a string x′ ∈ BK such that the following holds. If the Hamming

distance dist(x, y) ≤ d then x = x′; if dist(x, y) > d then there is no guarantee.

Proof. Define G = (V,E) to be the graph on V = BK such that {u, v} ∈ E iff

dist(u, v) ≤ 2d. The maximum degree in G is clearly at most ∆ =
(
K
2d

)
· 22Ld since

there are
(
K
2d

)
ways to select the 2d indices and 22Ld ways to change the coordinates

at those indices so that there are at most 2d different coordinates. Let φ : V 7→
[∆ + 1] be a proper (∆ + 1)-coloring of G. Alice sends φ(x) to Bob, which requires

log(∆ + 1) = O(dL + d log(K/d)) bits. Every string in the radius-d ball around y

(w.r.t. dist) is colored differently since they are all at distance at most 2d, hence if

dist(x, y) ≤ d, Bob can reconstruct x without error.

34

Corollary 2.21. Suppose at phase j, it is guaranteed that the number of false pos-

itives in Ij−1 is at most kj−1. Then phase j can be implemented with O(kj−1lj +

kj−1 log(k/kj−1)) bits in 2 rounds.

Finally, a naive implementation of the protocol requires 2r rounds if the generic

protocol has r phases. In fact, the protocol can be compressed into exactly r rounds in

the following way. At the beginning, both parties agree that I0 = [k]. Alice generates

her l1|I0| test bits x̂(1) for phase 1 and communicates them to Bob; Bob first generates

his own test bits ŷ(1) for phase 1 and determines I1, then generates l2|I1| test bits ŷ(2)

for phase 2 and transmits both ŷ(1) and ŷ(2) to Alice. Alice computes I1, generates

x̂(2), computes I2, generates x̂(3), and sends x̂(2) and x̂(3) to Bob, and so on. There is

no asymptotic increase in the communication volume.

2.4.1.2 Reducing the number of false positives

Our protocols for EqualityTesting and ExistsEqual are divided into two parts. The goal

of the first part is to reduce the number of false positives from at most k to at most

E; if E ≥ k, we can skip this part. Since the number of false positives is large in this

part, we can use standard Chernoff bounds to control the number of false positives

surviving each phase. The details are very similar to the upper bound in Sağlam and

Tardos [130].

Theorem 2.22. Let (x, y) be an instance of ExistsEqual with |x| = |y| = k. In

log∗(k/E) rounds, we can reduce this to a new instance (x′, y′) of ExistsEqual where

|x′| = |y′| ≤ E, using O(k) communication. The failure probability of this protocol is

at most 2−(E+1).

For EqualityTesting, we can reduce the initial instance to a new instance (x′, y′)

such that the Hamming distance dist(x′, y′) ≤ E, with the same round complexity,

communication volume, and error probability.

Proof. We first give the protocol for ExistsEqual, then apply the necessary changes to

make it work for EqualityTesting.

The protocol for ExistsEqual uses our generic protocol, and imposes a strict upper

bound kj on |Ij|. Whenever |Ij| exceeds this upper bound, we halt the entire protocol

and answer yes (there exists a coordinate where the input vectors are equal). We

35

start by setting the parameters kj and lj for any j ∈ [1, log∗(k/E)] as follows.

k0 = k,

kj = max

{
k

2j−1 exp(j)(2)
, E

}
,

lj = 3 + exp(j−1)(2).

Note that it is reasonable to assume kj > E before the last phase, since whenever we

find kj ≤ E, we can simply terminate the protocol prematurely after phase j, and

our goal would be achieved.

Now suppose the input vectors share no equal coordinates. We know that |Ij−1| ≤
kj−1 at the beginning of phase j. The probability of any particular coordinate in Ij−1

passing all tests in phase j is exactly pj = exp(−lj). Thus, the expected size of Ij is

at most

kj−1pj =
k

2j−2 exp(j−1)(2)
· 1

23 exp(j)(2)
≤ k

2j+2 exp(j)(2)
≤ kj

8
.

Recall the statement of the usual Chernoff bound.

Fact 2.23 (See [58]). Let X =
∑n

i=1 Xi, where each Xi is an i.i.d. Bernoulli random

variable. Letting µ = E[X], the following inequality holds for any δ > 0.

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

In our case Xi = 1 iff the ith coordinate in Ij−1 survives to Ij. By linearity of

expectation, µ ≤ kj/8. Setting δ = kj/µ− 1 ≥ 7, we have

Pr[X ≥ kj] = Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

) kj
1+δ

< 0.3kj < 2−1.7kj .

The second to last inequality holds since
(

eδ

(1+δ)1+δ

) 1
1+δ

< 0.3 when δ ≥ 7.

Hence, the probability that there are at least kj coordinates remaining after

phase j is at most 2−1.7kj , and the probability this happens in any phase is at most∑
j 2−1.7kj ≤ 2−(E+1). Notice that when x and y share at least one equal coordinate,

the error probability of this protocol is 0 because if it fails to reduce the number

of coordinates to E it (correctly) answers yes. The communication volume of the

36

protocol is asymptotic to∑
j

lj|Ij−1| ≤
∑
j

ljkj−1 =
∑
j

O(k/2j) = O(k).

For EqualityTesting, we use the same kj as an upper bound on the number of false

positives in Ij, instead of the size of Ij. Since the number of false positives is at

most k at the beginning, we can still use the same argument to show that with the

same choice of kj and lj, after log∗(k/E) phases, the number of false positives is at

most E with error probability 2−(E+1). By Corollary 2.21, the number of bits we need

to exchange in phase j is O(kj−1lj + kj−1 log(k/kj−1)). Notice that log(k/kj−1) =

j − 2 + exp(j−2)(2) = O(lj), so the total communication volume is still O(k).

In all of our protocols, we first apply Theorem 2.22 to reduce the number of coor-

dinates (in the case of ExistsEqual) or false positives (in the case of EqualityTesting)

to be at most E. This requires no communication if E ≥ k to begin with. Hence,

with log∗(k/E) extra rounds and O(k) communication, we will assume henceforth

that all instances of ExistsEqual have E ≥ k and instances of EqualityTesting have

dist(x, y) ≤ E.

2.4.2 An O(k + rEk1/r)-bit EqualityTesting Protocol

In light of Theorem 2.22, we can assume that the input vectors to EqualityTesting are

guaranteed to differ in at most k0 = min{k,E} coordinates.

Theorem 2.24. Fix any k ≥ 1, E ≥ 1, and r ∈ [1, (log k0)/2], where k0 = min{k,E}.
There exists a randomized protocol for EqualityTesting length-k vectors x, y with Ham-

ming distance dist(x, y) ≤ k0 that uses r rounds, O(k+rEk
1/r
0) bits of communication,

and errs with probability perr = 2−(E+1).

Proof. We begin by giving the parameters kj and lj.

kj = k
1−j/r
0 ,

lj = 4Ek
j/r−1
0 .

Now fix a phase j ∈ [1, r] and suppose at the beginning of phase j that the number

of false positives in Ij−1 is at most kj−1. By assumption this holds for j = 1. The

37

probability that at least kj false positives survive phase j is upper bounded by(
kj−1

kj

)
2−kj lj ≤

(
ekj−1

kj

)kj
2−kj lj Because

(
n
k

)
≤
(
en
k

)k
.

≤ 22kj log(kj−1/kj)−kj lj e ≤ k
1/r
0 =

kj−1

kj
due to r ≤ log k0

2
.

≤ 2−2E. Because log
kj−1

kj
≤ kj−1

kj
= k

1/r
0 ≤ lj

4
.

Thus, by a union bound, the number of false positives surviving phase j is strictly

less than kj, for all j ∈ [1, r], with probability at least 1 − 2−(E+1). In particular,

there are no false positives at the end since kr = 1.

Meanwhile, by Corollary 2.21, the total communication volume is O(k + rEk
1/r
0)

since

r∑
j=1

kj−1lj = 4rEk
1/r
0 ,

and

r∑
j=1

kj−1 log
k

kj−1

= k0

r−1∑
j=0

1

k
j/r
0

(
log

k

k0

+ log k
j/r
0

)

≤ 2k0 log
k

k0

+ k0

r−1∑
j=0

log k
j/r
0

k
j/r
0

k
1/r
0 ≥ 22 due to r ≤ log k0

2
.

= O(k). Because k
1/r
0 ≥ 22 and k0 ≤ k.

Proof of Theorem 2.15. Applying Theorem 2.22 and Theorem 2.24 in sequence, we

obtain a (log∗(k/E) + r)-round randomized protocol for EqualityTesting on vectors of

length k that errs with probability perr = 2−E and uses O(k + rEmin{k,E}1/r) bits

of communication. When E ≥ k the protocol is obtained directly from Theorem 2.24

and uses O(rEk1/r) communication. When E < k the communication implied by

Theorems 2.22 and 2.24 is O(k + rE1+1/r) = O(k + rEk1/r).7

7It appears as if rE1+1/r is an improvement over rEk1/r when E < k, but this is basically an
illusion. In light of Remark 2.19, we can always dedicate log∗(k/E)− 2 rounds to the first part and
r + 2 rounds to the second part while increasing the communication by O(k). When E ≥ k1−1/r,
rE1+1/r = Ω((r + 2)Ek1/(r+2)), meaning there is no clear benefit to use the rE1+1/r expression.

38

2.4.3 An O(k + Ek1/r)-bit ExistsEqual Protocol

2.4.3.1 Overview of the protocol

In this section, we show that we can obtain a (log∗(k/E)+r)-round, O(k+Ek1/r)-bit

protocol for ExistsEqual. This matches the lower bound of Theorem 2.5, asymptoti-

cally, when E ≥ k. Theorem 2.22 covers the first part of the protocol, so we assume

without loss of generality that E ≥ k.

Suppose the inputs x and y share no equal coordinates. Imagine writing down all

the possible results of the inner product tests in a matrix A of dimension (E+log k)×k,

where Aj,i is “=” if xi, yi pass the jth inner product test, and “6=” otherwise. By a

union bound, with probability 1− 2−E, each column contains at least one “6=”. Now

consider the area above the first “6=” in each column. The probability that this area

is at least E ′ is, by a union bound, at most(
E ′ + k − 1

k − 1

)
2−E

′
< exp(k log(e(E ′ + k)/k)− E ′). (2.4)

For E ′ = E + O(k log(E/k)) = O(E), this probability is � 2−E. In our analysis

it suffices to consider a situation where an adversary can decide the contents of A,

subject to the constraint that its error budget (the area above the curve defined by

the first “ 6=” in each column) never exceeds E ′ = O(E). The notion of an error

budget is also essential for analyzing the protocol of Section 2.4.4.

In the jth phase, j ≥ 1, our protocol exposes the fragment of A consisting of the

next lj rows of columns in Ij−1. The set Ij consists of those columns without any

“6=” exposed so far. The communication budget for phase j is equal to lj|Ij−1|. In the

worst case, the first exposed value in each column of Ij−1 \ Ij is “6=”, so the adversary

spends at least lj|Ij| of its error budget in phase j.

If we witness at least one “ 6=” in every column, we can correctly declare there

does not exist an equal coordinate and answer no. Otherwise, if the adversary has

not exceeded his error budget but there is some column without any “6=”, we answer

yes. If the adversary ever exhausts his error budget, we terminate the protocol and

answer yes. Recall that the notion of an error budget tacitly assumed that x and y

differ in all coordinates. If they do not, the protocol always answers correctly, whether

it halts prematurely or not. The probability that the error budget is exhausted when

x and y differ in all coordinates (a false positive) is � 2−E, according to Eqn. (2.4).

39

2.4.3.2 Analysis

In this section we give a formal proof to the following Theorem:

Theorem 2.25. Fix any k ≥ 1, E ≥ k, and r ∈ [1, (log k)/2]. There exists an r-round

randomized protocol for ExistsEqual on vectors of length k that errs with probability

perr = 2−(E+1), using O(Ek1/r) bits of communication.

Proof. The number of tests per coordinate in phase j is lj:

lj = 2Ekj/r−1.

Define Ej =
∑j

j′=1 lj′|Ij′| to be the portion of the error budget spent in phases 1

through j. We can express the asymptotic communication cost of the protocol in

terms of the error budget as follows.

r∑
j=1

lj|Ij−1| ≤ l1|I0|+ k1/r

r∑
j=2

lj−1|Ij−1| lj = k1/rlj−1.

≤ 2Ek1/r + Er−1k
1/r Defn. of Er−1.

Recall that the protocol terminates immediately after phase j if Ej ≥ E ′, which

indicates Er−1 < E ′. Hence, the total cost is bounded by

≤ (2E + E ′)k1/r = O(Ek1/r).

The protocol can only err if x and y differ in every coordinate. In this case, there

are two possible sources of error. The first possibility is that the protocol answers yes

because |Ir| ≥ 1. By a union bound, this happens with probability at most

k2−
∑r
j=1 lj ≤ k2−2E.

The second possibility is that the protocol terminates prematurely and answers

yes if Ej ≥ E ′ for some j ∈ [1, r]. The probability of this event occuring is also

� 2−E; see Eqn. (2.4). This concludes the proof.

Proof of Theorem 2.16. Theorem 2.16 follows directly by combining Theorem 2.22

and Theorem 2.25.

Remark 2.26. By applying the reduction of Theorem 2.1 to Theorem 2.25, we con-

clude that SetDisjointness can be solved in r+1 rounds using O(Ek1/r) bits of commu-

nication. In this particular case we actually do not need Theorem 2.1; it is possible

40

to solve SetDisjointness directly in r rounds with O(Ek1/r) communication by an al-

gorithm along the lines of Theorem 2.25 or [130]. Theorem 2.1 can also be applied

to Theorem 2.24 to yield a SetIntersection protocol using r+ 1 rounds and O(rEk1/r)

communication, but here we do not see how to solve the problem directly in r rounds.

It seems we would need some analogue of Lemma 2.20 tailored to the SetIntersection

problem.

2.4.4 A Communication Optimal EqualityTesting Protocol

Suppose we want a communication optimal EqualityTesting protocol using O(k + E)

bits. When E ≥ k we need r = Ω(log k) rounds, by Theorem 2.4. In this section, we

give a protocol for EqualityTesting that uses O(r) rounds (rather than r) and O(Ek1/r)

bits of communication, assuming E ≥ k. Observe that when r = Θ(log k), there is

no (asymptotic) difference between r rounds and O(r) rounds as this only influences

the leading constant in the communication volume.

2.4.4.1 Overview of the protocol

The protocol uses the concept of an error budget introduced in Section 2.4.3. To

shave the factor r off the communication volume, we cannot afford to use Ekj/r−1

test bits for each coordinate that participates in phase j. Consequently, we cannot

guarantee with high probability (say 1− 2−E/r) that the number of false positives is

less than k1−j/r.

Our protocol needs to be able to respond to the rare event that the number of

false positives in Ij is larger than kj. Notice that this type of error cannot be detected

in the first j phases, and is not easily detectable in the following phases. The danger

in the number of false positives in Ij exceeding kj is that when the test bits for phase

j + 1 are exchanged using Lemma 2.20, the protocol may silently fail, with all test

bits potentially corrupted.

To address these challenges, Alice and Bob each keep a history of all the test bits

they have generated so far. They also keep a history of the test bits they have received

from the other party, which may have been corrupted. Define TA and TB to be the

true history of the test bits generated by Alice and Bob, respectively. Define T
(A)
B

to be what Alice believes Bob’s history to be, and define T
(B)
A analogously. Observe

that if every invocation of Lemma 2.20 succeeds, then TA = T
(B)
A and TB = T

(A)
B .

To detect inconsistencies, after Alice and Bob generate and exchange their test bits

for phase j, they accumulate their views of the history into strings T (A) = TA ◦ T (A)
B

41

and T (B) = T
(B)
A ◦ TB, respectively, where ◦ is the concatenation operator, and verify

that T (A) = T (B) with a certain number of inner product tests. This is called a history

check. If the history check passes, they can proceed to phase j + 1. If the history

check fails then the results of phase j are junk, and we can infer that one of two types

of low probability events occurred in phase j− 1. The first possibility is that the test

bits at phase j − 1 were exchanged successfully (and consequently, the history check

succeeded), but Ij−1 contains more than kj−1 false positives. The second possibility

is that Alice’s and Bob’s histories were already inconsistent at phase j − 1, but the

phase-(j − 1) history check failed to detect this. Notice that Alice and Bob cannot

detect which of these types of errors occurred. In either case, we must undo the effects

of phases j and j− 1 and restart the protocol at the beginning of phase j− 1. It may

be that the history check then fails at the re-execution of phase j − 1, in which case

we would continue to rewind to the beginning of phase j − 2, and so on. Being able

to rewind multiple phases is important because we do not know which phase suffered

the first error.

Both parties maintain an empirical error meter E ′′ that measures the sum of

logarithms of probabilities of low probability (error) events that have been detected.

If the error meter ever exceeds the error budget E ′ = Θ(E) we terminate the protocol,

which we show occurs with probability � 2−E. Thus, the process above (proceeding

iteratively with phases, undoing and redoing them when errors are detected) must

end by either successfully completing phase r or exceeding the error budget.

If Alice and Bob successfully finish phase r, we are still not done. This is because

an error can happen in the later phases but we do not have sufficiently high (1−2−E)

confidence that they all succeeded. To build this confidence, Alice and Bob do inner

product tests on the whole history, gradually increasing their number until Θ(E) tests

have been done. If one of these history checks fails, we increase the error meter E ′′

appropriately and rewind the protocol to a suitable phase j in the first stage of the

protocol.

Let us make every step of this protocol more quantitatively precise.

• The protocol has two stages, the Refutation Stage (in which potential equalities

are refuted) and the Verification Stage, each consisting of a series of phases.

Although the Refutation Stage logically precedes the Verification Stage, be-

cause phases can be undone, an execution of the protocol may oscillate between

Refutation and Verification multiple times.

• The Refutation Stage is similar to the protocol in Section 2.4.2 except Alice and

42

Bob will verify whether the messages conveyed by Lemma 2.20 are successfully

received with further inner product tests. The budget of phase j is

Bj =
Ek

1/r
0

min{j2, r}
.

Observe that
∑r

j′=1 Bj′ = O(Ek
1/r
0). Thus, in phase j, we perform lj = Bj/kj−1

independent inner product tests on each coordinate in Ij−1. As usual, I0 is

initially [k] and kj = k
1−j/r
0 , where k0 ≤ E. All histories TA, TB, T

(A)
B , T

(B)
A are

initially empty, and the error meter E ′′ is initially zero.

• Phase j has two steps, the test step and the history check step. In the test step,

Alice and Bob conduct inner product tests as in Section 2.4.2, i.e.,, they generate

lj test bits for each coordinate in Ij−1 and exchange them using Lemma 2.20,

assuming their Hamming distance is at most kj−1. Alice appends the test bits

she generates onto the history TA, and appends the test bits she receives from

Bob onto T
(A)
B . Bob does likewise. In the history check step, they use Bj

independent inner product tests to check whether T (A) = T (B), where T (A) =

TA◦T (A)
B , and T (B) = T

(B)
A ◦TB. The history check fails if they detect inequality

and passes otherwise. Since Bj is, in general, less than E, we are still skeptical

of history checks that pass.

• If the history check for phase j passes, Alice and Bob proceed to phase j+ 1, or

proceed to the Verification Stage if j = r. Otherwise, an error has been detected:

either the number of false positives in Ij−1 is at least kj−1, or the history check

at phase j−1 mistakenly passed. The latter occurs with probability exp(−Bj−1)

and we show the former occurs with probability exp(−3k
−1/r
0 Bj−1/4). Not

knowing which occurred, we increment the error meter E ′′ by k
−1/r
0 Bj−1/2 due

to a union bound. If E ′′ exceeds the error budget E ′ = cE then we halt, where

c ≥ 2 is a suitable constant. Otherwise we retract the effects of phases j and

j − 1 and continue the protocol at the beginning of phase j − 1, with “fresh”

random bits so as not to recreate previous errors.

• Observe that after phase r of the Refutation Stage, each coordinate in Ir has

only passed about Br/kr−1 = E/r inner product tests, which is not high enough.

Before the Verification Stage begins, Alice and Bob each generate E ′ test bits

for each coordinate in Ir and append them to T (A) and T (B). (This can be

viewed as a degenerate instantiation of Lemma 2.20 with d = 0, which requires

43

no communication.) If there are no false positives in Ir, these test bits must be

identical.

• In the Verification Stage the phases are indexed in reverse order: r, r− 1, ... , 1.

In each successive phase j, Alice and Bob test the equality T (A) = T (B) with

Bj independent inner product tests. This process stops if it passes a total of

E ′ tests, in which case they report that x and y are equal on Ir and not equal

on [k]\Ir, or some Verification phase j detects that T (A) 6= T (B). In this case,

we know Verification phases r, r − 1, ... , j + 1 passed in error, and that there

must also have been an error in Refutation phase r. Therefore, Alice and Bob

increment E ′′ by k
−1/r
0 Br/2 +

∑r
j′=j+1 Bj′ and halt if E ′′ ≥ E ′. If not, they

rewind the execution of the protocol to phase j of the Refutation Stage and

continue.

Algorithm 1 recapitulates this description in the form of pseudocode, from the

perspective of Alice. Here TA[j, i] refers to the sequence of Alice’s test bits in TA for

the ith coordinate produced in the most recent execution of phase j, and TA[j1 · · · j2, ·]
refers to the test bits generated from phase j1 to phase j2. Phase r + 1 refers to the

E ′× |Ir| test bits generated between the Refutation and Verification stages. T (A)[j, i]

refers to the concatenation of TA[j, i] and T
(A)
B [j, i]. What remains is to analyze the

error probability of the protocol.

2.4.4.2 Analysis

To prove Theorem 2.17, it suffices to prove the following Theorem 2.27.

Theorem 2.27. Fix any k ≥ 1, E ≥ 1, and r ∈ [1, (log k0)/6], where k0 = min{k,E}.
There exists a randomized protocol for EqualityTesting length-k vectors x, y with Ham-

ming distance dist(x, y) ≤ k0 that uses O(r) rounds, O(k + Ek
1/r
0) bits of communi-

cation, and errs with probability perr = 2−(E+1).

The protocol of Lemma 2.20 fails if Bob does not generate the correct x′ = x,

which indicates that the precondition is not met, i.e.,, dist(x, y) > d. Refutation

phase j fails if the condition in line 29 is not satisfied and the else branch at line 39

is executed in order to resume the protocol from phase j − 1. Similarly, we say

Verification phase j fails if the condition in line 47 is not satisfied, which also indicates

the else branch at line 51 is executed and the protocol is resumed from Refutation

phase j.

44

We begin the proof by showing that the extra communication caused by redoing

some of the Refutation/Verification phases is properly covered by the total error

budget. The following two lemmas actually prove that the error budget spent so far

is correctly lower bounded in line 40 and line 52, and then Lemma 2.30 upper bounds

the total number of extra phases by O(r) and the overall extra communication by

O(k + Ek
1/r
0).

Lemma 2.28. Fix any j ∈ [2, r]. If phase j of the Refutation Stage fails, then the

outcome of the most recent execution of phase j−1 happened with probability at most

exp(−k−1/r
0 Bj−1/2).

Proof. Recall that there are two types of errors at phase j−1. If the (j−1)th history

check erroneously passed, this occurred with probability exp(−Bj−1). The probability

that more than kj−1 false positives survive in Ij−1 is less than(
k0

kj−1

)
2−kj−1lj−1 ≤

(
ek0

kj−1

)kj−1

2−kj−1lj−1 Because
(
n
k

)
≤
(
en
k

)k
.

≤ 22kj−1 log(k0/kj−1)−kj−1lj−1 e ≤ k
1/r
0 ≤ k0

kj−1
due to r ≤ log k0

6
.

≤ 2−3lj−1kj−1/4,

Algorithm 1 An EqualityTesting protocol for Theorem 2.27 (from the perspective of
Alice).

1: procedure EqualityTesting . main procedure
2: I0 ← [k]
3: k0 ← min{k,E} . initial bound on Hamming distance
4: E ′ ← cE . error budget
5: E ′′ ← 0 . error meter
6: for j ← 1, ... , r do

7: Bj ←
Ek

1/r
0

min{j2, r}
. phase j communication budget

8: kj ← k
1−j/r
0 . ideal upper bound on Hamming distance

9: lj ← Bj/kj−1 . tests per coordinate
10: end for
11: Refutation(1)
12: Verification(r)
13: for i← 1, ... , k do
14: output equal on coordinates Ir and not equal on [k]\Ir
15: end for
16: end procedure

45

Algorithm 1 An EqualityTesting protocol for Theorem 2.27 (from the perspective of
Alice).(cont.)

17: procedure InnerProductTest(w,b)
18: perform b independent inner product tests on w and return the test bits
19: end procedure

20: procedure Refutation(j) . phase j of the Refutation Stage
21: TA[j, ·]←⊥
22: for all i ∈ Ij−1 do
23: TA[j, i]← InnerProductTest(xi, lj)
24: end for
25: send TA[j, ·] to Bob and receive T

(A)
B [j, ·] from Bob via Corollary 2.21

26: T (A)[j, ·]← TA[j, ·] ◦ T (A)
B [j, ·]

27: T̂ (A) ← InnerProductTest(T (A)[1 · · · j, ·], Bj)

28: send T̂ (A) to Bob and receive T̂ (B) from Bob directly
29: if T̂ (A) = T̂ (B) then
30: Ij ← {i ∈ Ij−1 | TA[j, i] = T

(A)
B [j, i]}

31: if j < r then
32: Refutation(j + 1)
33: else
34: T (A)[r + 1, ·]←⊥
35: for all i ∈ Ir do
36: T (A)[r + 1, i]← InnerProductTest(xi, E

′)
37: end for
38: end if
39: else
40: E ′′ ← E ′′ + k

−1/r
0 Bj−1/2, and terminate if E ′′ ≥ E ′

41: Refutation(j − 1)
42: end if
43: end procedure

44: procedure Verification(j) . phase j of the Verification Stage
45: T̂ (A) ← InnerProductTest(T (A)[·, ·], Bj)

46: send T̂ (A) to Bob and receive T̂ (B) from Bob directly
47: if T̂ (A) = T̂ (B) then
48: if

∑r
j′=j Bj′ < E ′ then

49: Verification(j − 1)
50: end if
51: else
52: E ′′ ← E ′′ + k

−1/r
0 Br/2 +

∑r
j′=j+1 Bj′ , and terminate if E ′′ ≥ E ′

53: Refutation(j)
54: Verification(r)
55: end if
56: end procedure

46

where the last step follows from the inequality

2 log
k0

kj−1

= 2(j − 1) log k
1/r
0

≤ 8j−1 log k
1/r
0

4(j − 1)2
Because 8x3 ≤ 8x for x ∈ N.

≤ k
(j−1)/r
0

4(j − 1)2
log k

1/r
0 ≤ k

1/r
0

8
due to k

1/r
0 ≥ 26.

≤ Bj−1

4kj−2

Defn. of Bj−1.

=
lj−1

4
. Defn. of lj−1.

Combining the above two cases, by a union bound, the outcome of the most

recent execution of phase j − 1 of the Refutation Stage happens with probability

at most exp(−Bj−1) + exp(−3lj−1kj−1/4) = exp(−Bj−1) + exp(−3k
−1/r
0 Bj−1/4) ≤

exp(−k−1/r
0 Bj−1/2), as claimed.

Lemma 2.29. Fix any j ∈ [1, r]. If phase j of the Verification Stage fails, then the

outcomes of the most recent execution of phases r, r − 1, ... , j + 1 of the Verification

Stage and phase r of the Refutation Stage happened with overall probability at most

exp(−k−1/r
0 Br/2−

∑r
j′=j+1Bj′).

Proof. Notice that the failure of Verification phase j means all previous Verification

phases r, r− 1, ... , j + 1 failed to detect an inconsistency in the history, which occurs

with probability exp(−
∑r

j′=j+1Bj′). Meanwhile, the inconsistency is caused by an

error of some type in Refutation phase r, which, according to Lemma 2.28, occurs with

probability at most exp(−k−1/r
0 Br/2). Therefore, the outcomes of the most recent

execution of Verification phases r, r − 1, ... , j + 1 and Refutation phase r happened

with overall probability at most exp(−k−1/r
0 Br/2−

∑r
j′=j+1Bj′).

Lemma 2.30. Algorithm 1 executes O(r) extra Refutation/Verification phases and

uses O(k + Ek
1/r
0) extra bits of communication.

Proof. We first consider the total number of extra phases. Each failure of Refutation

phase j uses at least k
−1/r
0 Bj−1/2 ≥ E/(2r) of the error budget and causes the re-

execution of two phases, namely j − 1 and j. Similarly, each failure of Verification

phase j uses k
−1/r
0 Br/2 +

∑r
j′=j+1Bj′ ≥ (r − j + 1)E/(2r) of the error budget and

causes the re-execution of 2(r− j+1) phases. Thus, the total number of extra phases

is at most 4cr = O(r), where the error budget E ′ = cE.

47

Turning to the overall extra communication, notice that phase j of the Refutation

Stage has communication volume O(Bj + kj−1 log(k/kj−1)) and phase j of the Veri-

fication Stage has communication volume O(Bj). For any j ∈ [2, r], also notice that

Bj−1/Bj ≤ j2/(j−1)2 ≤ 4 ≤ k
1/r
0 . Thus, the communication caused by each failure is

at most O(k
1/r
0) times the error budget spent by that failure, if we temporarily ignore

the kj−1 log(k/kj−1) term.

In order to upper bound the communication contributed by the kj−1 log(k/kj−1)

term, observe that Refutation phase j can only be repeated O(j2) times before the

error budget is exhausted. Thus, the overall extra communication is upper bounded

by O(k + Ek
1/r
0) since

O(k
1/r
0) · E ′ +

r∑
j=1

O(j2) · kj−1 log
k

kj−1

= O(k
1/r
0) · E ′ + k0

r∑
j=1

O(j2)

k
(j−1)/r
0

(
log

k

k0

+ log k
(j−1)/r
0

)

= O(k
1/r
0) · E ′ + k0 log

k

k0

r∑
j=1

O(j2)

k
(j−1)/r
0

+ k0

r∑
j=1

O(j2) · log k
(j−1)/r
0

k
(j−1)/r
0

= O(k + Ek
1/r
0). (Because k

1/r
0 ≥ 26 and k0 ≤ k.)

Now we are ready to prove Theorem 2.27.

Proof of Theorem 2.27. If there are no errors, Algorithm 1 has at most 2r phases

and uses O(
∑r

j=1(Bj +kj−1 log(k/kj−1))) = O(k+Ek
1/r
0) communication, where each

phase can be implemented in O(1) rounds. Together with Lemma 2.30, we have shown

that it is an O(r)-round randomized EqualityTesting protocol using O(k+Ek
1/r
0) bits

of communication. Thus, it suffices to calculate the error probability of the protocol.

Consider a possible execution of the protocol, i.e.,, the sequence of the Refuta-

tion/Verification phases that are performed. It can be represented by a unique 0-1

string of length at most 4cr + 2r (by the proof of Lemma 2.30) such that each “1”

corresponds to a failed phase. In particular, each execution of the protocol that termi-

nates prematurely because E ′′ ≥ E ′ is represented as a 0-1 string, which occurs with

probability at most 2−E
′
, by Lemmas 2.28 and 2.29. Hence the overall probability of

terminating prematurely is 24cr+2r · 2−E′ .
An error can also be caused by at least one false positive surviving all E ′ indepen-

dent inner product tests generated after Refutation phase r. The probability of this

48

happening is at most k02−E
′
. The last possible source of error is that all Verification

phases fail to detect the inequality T (A) 6= T (B). According to line 48, the probability

of this happening is at most 2−E
′
. Hence, the overall probability of error is upper

bounded by

24cr+2r · 2−E′ + k02−E
′
+ 2−E

′
= poly(k0)2−E

′
,

which is at most 2−E for, say, E ′ = 2E. This concludes the proof.

Proof of Theorem 2.17. Theorem 2.17 subsequently follows by applying Theorem 2.22

and Theorem 2.27 in sequence.

2.5 An O(k + Ek1/r log r + Er log r) bits protocol

As demonstrated in the previous two sections, there are several difficulties in using the

notion of error budget from our ExistsEqual equal protocol to shave off the factor r in

our O(rEk1/r+k) bits protocol for EqualityTesting. First, since we cannot distinguish

between equal coordinates from false positives, it is difficult to measure the fraction

of the error budget spent in a particular round as soon as the round finishes. Recall

that in ExistsEqual, we can assume every coordinate in Ij are false positives by making

the default answer of the protocol “yes”. Second, the test bit exchange protocol in

Corollary 2.21 requires an apriori upper bound d on the Hamming distance of the

test bits, i.e., the number of false positives discovered in the current round. It can

fail silently when the actual number of discovered false positives is larger than d.

Detecting failed test bit exchange protocols with high enough confidence, i.e., 1−2−E

can be difficult given our communication budget.

In this section, we present another approach to address these two problems. To

address the first problem, for each communication round j starting from the second

round, we carry out log r parallel and independent tests with different “kj−1’s” and

“lj’s” to accommodate different number of false positives left in Ij−1. More specifically,

the first parallel test uses kj−1 as the Hamming distance bound and lj as the number

of test bits per element. For simplicity, we refer to these two parameters as the width

and the height of a test. The i-th parallel test will use a width k
(i)
j−1 = kj−1/2

i−1 and

height l
(i)
j = 2i−1lj. The “area” of each test is always kj−1lj. The main purpose of

these parallel tests is to measure the amount of error budget we spent on the previous

round. In particular, if the actual number of false positives discovered is small so the

adversary has only spent little error budget in the previous round, the parallel tests

with smaller width and larger height will succeed and we can obtain more test bits per

49

element for Ij−1, which in turn decreases the maximum possible width to compensate

for the bigger leftover error budget. On the other hand, a larger Hamming distance

will imply a larger error budget spent in the previous round and less error budget

remains, which also get us closer to the finish line.

To address the second problem, with each parallel test, we also transmit a θ(E)

bits hash on the test bit we are to exchange. After receiver receives the test bits

using Corollary 2.21, he will hash the test bits using the same randomness and verify

it against the hash sent by the sender. Hence, with confidence at least 1− 2−Ω(E), if

the exchange protocol fails, this test will be able to detect the event.

Now let us state the protocol more formally. Similar to before, we first invoke

Theorem 2.22 to reduce the number of false positive to be at most E using O(k)

communication and log∗(k/E) rounds. Hence, k0 ≤ min{k,E} is an initial upper

bound on the number of false positives. Then we state the main theorem:

Theorem 2.31. Fix any k ≥ 1, E ≥ 1, and r ∈ [1, (log k0)/2], where k0 ≤ min{k,E}.
There exists a randomized protocol for EqualityTesting length-k vectors x, y with Ham-

ming distance dist(x, y) ≤ k0 that uses r rounds, O(k+Ek
1/r
0 log r+Er log r) bits of

communication, and errs with probability perr = 2−(E+1).

Now let E ′ denote the initial total error budget and we choose E ′ = 7E here. For

the first round, we only conduct one single parallel test with width k0 and height

l1 = 7Ek
1/r−1
0 . Since the overall error budget is 7E, the maximum number of false

positives allowed at the end of the first round is E ′/l1 = k
1−1/r
0 . Suppose the actual

number of false positives at the end of the round j is k∗j = β′jkj for some 0 ≤ β′j ≤ 1.

Then at round j+1, the first i∗ = max{blog 1
β′j
c+1, log r} parallel tests must succeed

because they all have valid widths, and the (i∗ + 1)-th parallel test might fail since

their width is too small8. Let βj = max{β′j, 1/(2r)}.Hence, we can obtain at least

l
(i∗)
j+1 ≥ lj+1/(2βj) test bits per element in Ij in round j + 1. For simplicity, we set

l∗j+1 = lj+1/(2βj) and l∗1 = l1. This in turns allow us to calculate the maximum

number of allowed positive for round j by setting kj = E ′/l∗j .

Now we let kj−1lj = 14αjEk
1/r
0 for some constant αj. The protocol can be seen

as a scheme where in round j ≥ 2, the receiver learns (an upper bound to) βj−1 and

uses the information to decide the communication budget the receiver should spend

next round, i.e., αj+1. We set α1 = 1 and α2 = 1/2. Suppose we wish the total

communication budget to be 14CEk1/r log r for some constant C, then we wish to set

8These tests can still succeed because some number of false positives last round can still remain
false positives this round and not contributing to the Hamming distance.

50

αj in a way that
∑r

j=1 αj ≤ C and moreover, the number of test bits per element in

Ir−1 is at least Ω(E) so no false positives survive with high probability.

This leads to the following equalities:

kj =

j−1∏
i=1

βi
αi+1

k
1−j/r
0 .

k∗j = β′jkj

= β′j

j−1∏
i=1

βi
αi+1

k
1−j/r
0 .

lj = 14αjEk
1/r
0 /kj−1

= 14αj

j−2∏
i=1

αi+1

βi
Ekj/r−1.

l∗j = lj/(2βj−1)

= 7

j−1∏
i=1

αi+1

βi
Ekj/r−1.

Recall that our goal for setting αj is to maximize the test bits per elements in Ir−1

while obeying the budget constraint
∑r

j=1 αj ≤ C. By AM-GM inequality, setting

αj = C/r can achieve the maximum. On the other hand, the goal of the adversary,

who is setting βj, is to make the number of test bits per element in the last round as

small as possible, i.e., to maximize
∏j

j=1 βj. Again, his best strategy is to let all βj

be equal. Since we have
∑

j β
′
j ≤ 1 and

∑
j βj ≤

∑
j(β
′
j + 1/r) ≤ 2. By setting C = 2

and αj = βj−2, we can achieve the goal of making the height of the final test at least

7E. Under this scheme, we have:

51

kj =

k1−1/r when j = 1.

βj−1k
1−j/r otherwise.

k∗j =

β′1k1−1/r when j = 1.

β′jβj−1k
1−j/r otherwise.

lj =

7Ek1/r−1 when j = 1.

14Ekj/r−1 otherwise.

l∗j =

7Ek1/r−1 when j = 1.

14/βj−1Ek
j/r−1 otherwise.

Now we show the total communication volume of the entire protocol isO(Ek1/r log r+

k+Er log r). The communication is divided into three parts: 1. The O(k) communi-

cation introduced by applying the protocol in Theorem 2.22 to reduce the number of

false positive to be at most E. 2. The O(Ek
1/r
0 log r + k) communication introduced

by using Corollary 2.21 to exchange test bits across all r rounds. 3. The O(Er log r)

bits check bitss used to verify the result of the test bits exchange protocol. The first

part is proved in Theorem 2.22 and the third part follows naturally from construction.

Now we prove the second part.

Lemma 2.32. The total communication volume of the protocol introduced by ex-

changing all the test bits using Corollary 2.21 is O(Ek1/r log r + k).

Proof. Recall that Corollary 2.21 stated that the cost of exchanging two strings of

block size l, length k and Hamming distance at most d is at most O(dl+ d log(k/d)).

As previously, we will bound two terms separately. First we bound the first term:

52

Since k0l1 = k ·7Ek1/r−1 = 7Ek1/r, we start to bound the sum from the second round:

r∑
j=2

log r∑
i=1

k
(i)
j−1l

(i)
j

=
r∑
j=2

log r∑
i=1

kj−1/2
i−1 · (2i−1lj)

=
r∑
j=2

log r · kj−1lj

= log r · k1−1/r · (14Ek
2/r−1
0) + log r

r∑
j=3

βj−2k
1−(j−1)/r
0 14Ek

j/r−1
0

(Extracting the first term.)

= 14Ek
1/r
0 log r + 14Ek

1/r
0 log r

r−2∑
j=1

βj (Replacing j − 2 with j.)

≤ 14Ek
1/r
0 log r + 14Ek

1/r
0 log r

r−2∑
j=1

(β′j + 1/r) (βj ≤ β′j + 1/r.)

≤ 14Ek
1/r
0 log r + 28Ek

1/r
0 log r (

∑r
j=1 β

′
j ≤ 1)

= 42Ek
1/r
0 log r.

Next we bound the second term. Since for any j ≥ 2, we have

log r∑
i=1

k
(i)
j−1 log(k/k

(i)
j−1)

=

log r∑
i=1

kj−1

2i−1
log

2i−1k

kj−1

= kj−1 log
k

kj−1

log r∑
i=1

1

2i−1
+ kj−1

log r∑
i=1

i− 1

2i−1

= O(kj−1 log
k

kj−1

).

It suffices to only consider the first parallel test from each round. Now we bound

the overall communication across all rounds. For the first two rounds, we have:

k0 log k/k0 < k and k1 log k/k1 = k1−1/r log k/k1−1/r < k for any k1/r ≥ 2. So we start

the bound from j = 3.

53

r∑
j=3

kj−1 log
k

kj−1

=
r−1∑
j=2

βj−1k
1−j/r
0 log

k

βj−1k
1−j/r
0

≤
r−1∑
j=2

βj−1k
log kj/r

βj−1

kj/r

≤ k

r−1∑
j=2

log kj/r

kj/r
+ k

r−1∑
j=2

βj−1 log 1
βj−1

kj/r
(βj ≤ 1.)

≤ k
r−1∑
j=2

log kj/r

kj/r
+
k

e

r−1∑
j=2

1

kj/r

= O(k). (k1/r ≥ 2.)

This shows that the total communication volume introduced by applying Corol-

lary 2.21 is O(Ek
1/r
0 log r + k) = O(Ek1/r log r + k), finishing the proof.

Now we show that the error probability of our protocol is less than 2−E.

Lemma 2.33. The protocol errs with probability at most 2−E−1.

Proof. First we bound the probability of any test-bit exchange protocol fails un-

noticed. A failed parallel test passes the check bits test with probability at most

2−3E. Taking union bound, the probability of any check bits test fails is at most

2−3Er log r ≤ 2−E/6 for r ≤ log k/2 ≤ logE.

Now we bound the probability that we exceed the error budget at any particular

stage of the algorithm. Similar to the ExistsEqual protocol, we want to argue that

“configurations” of test bit that contains > 3E false positives happen with probability

at most 2−E/3. Here by “configuration” we mean the outcome of all test bits for a

particular unequal coordinate until the first unequal test bit is observed. The equal

test bits are considered false positives. Each configuration can be uniquely described

by the number of false positive we see for each coordinate. Since each configuration

happens with probability at most 2−3E, the ovarall probability, by union bound, is at

most: (
E ′ + k − 1

k − 1

)
2−E

′ ≤ exp(k log (e(E ′ + k)/k)− E ′) < 2−E/6.

54

For E ′ ≥ 7E.

Finally we bound the probability that any unequal coordinate goes through the

entire protocol unnoticed. Notice that in the final round, any coordinate in Ir−1 goes

through at least lr = 6E test bits. The probability that any of them passing all 6E

test bits is at most k02−6E ≤ 2−E/6 for k0 ≤ E. Then by union bound, the probability

that the protocol errs is at most 2−E−1.

This finishes the proof to Theorem 2.31, hence finishing the proof to Theorem 2.18.

2.6 Distributed Triangle Enumeration

One way to solve local triangle enumeration in the CONGEST model is to execute,

in parallel, a SetIntersection protocol across every edge of the graph, where the set

associated with a vertex is a list of its neighbors. Since there are at most ∆n/2 edges,

we need the SetIntersection error probability to be 2−E, E = Θ(log n), in order to

guarantee a global success probability of 1 − 1/ poly(n). Our lower bound says any

algorithm taking this approach must take Ω((∆+E∆1/r)/ log n+r) rounds since each

round of CONGEST allows for one O(log n)-bit message. The hardest situation seems

to be when ∆ = E = Θ(log n), in which case the optimum choice is to set r = log ∆,

making the triangle enumeration algorithm run in O(log ∆) = O(log log n) time.

In Theorem 2.34 we show that it is possible to handle this situation exponentially

faster, in O(log log ∆) = O(log log log n) time, and in general, to solve local triangle

enumeration [89] in optimal O(∆/ log n) time so long as ∆ > log n log log log n.

Theorem 2.34. Local triangle enumeration can be solved in a CONGEST network

G = (V,E) with maximum degree ∆ in O(∆/ log n+log log ∆) rounds with probability

1− 1/ poly(n). This is optimal for all ∆ = Ω(log n log log log n).

Proof. The algorithm consists of min{log log ∆, log log log n} phases. The goal of the

first phase is to transform the original triangle enumeration problem into one with

maximum degree ∆1 < (log n)o(1), in O(log∗ n) rounds of communication. The goal of

every subsequent phase is to reduce the maximum degree from ∆′ ≤
√

log n to
√

∆′,

in O(1) rounds of communication. Thus, the total number of rounds is O(log log ∆)

rounds if the first round is skipped, and O(log∗ n + log log(∆1)) = O(log log log n)

otherwise.

Phase One. Suppose ∆ ≥
√

log n. Each vertex u is identified with the set Au =

{ID(v) | {v, u} ∈ E} having size ∆. For each {u, v} ∈ E we reduce SetIntersection

55

to EqualityTesting by applying Theorem 2.1, then run the two-party EqualityTesting

protocol of Theorem 2.15, with k = max{∆, log n}, r = log∗ n, and E = r−1k1−1/r.

(I.e., if ∆ < log n we imagine padding each set to size log n with dummy elements.)

One undesirable property of this protocol is that it can fail “silently” if the precondi-

tions of Lemma 2.20 are not met. When the Hamming distance between two strings

exceeds the threshold d, Bob generates a garbage string x′ 6= x but fails to detect this.

To rectify this problem, we change the Lemma 2.20 protocol slightly: Alice sends the

color φ(x) of her string, as well as an O(log n)-bit hash h(x). Bob reconstructs x′

as usual and terminates the protocol if h(x) 6= h(x′). Clearly the probability of an

undetected failure (i.e., x 6= x′ but h(x) = h(x′)) is 1/ poly(n). Define G1 = (V,E1)

such that {u, v} ∈ E1 iff the SetIntersection protocol over {u, v} detected a failure. In

other words, with high probability, all triangles in G have been discovered, except for

those contained entirely inside G1. The probability that any particular edge appears

in E1 is 2−E = 2−k
1−1/ log∗ n/ log∗ n and independent of all other edges. In particular, if

∆� (log n)1+1/ log∗ n then no errors occur, with probability 1−1/ poly(n). Define ∆1

to be the maximum degree in G1. Thus,

Pr
[
∆1 ≥ (log n)2ε

]
≤ n ·

(
∆

(log n)2ε

)
·
(
2−E

)(logn)2ε

(ε = 1/r = 1/ log∗ n)

≤ n · exp(O((log n)2ε log log n)) · 2−ε(logn)1−ε·(logn)2ε

≤ 1/ poly(n).

Phases Two and Above. Suppose that at some round, we have detected all tri-

angles except for those contained in some subgraph G′ = (V,E ′) having maximum

degree ∆′ <
√

log n. Express ∆′ as (log n)γ, where γ < 1/2. We execute the Equal-

ityTesting protocol of Theorem 2.24 with k = ∆′, r = 2, and E = C(log n)1−γ/2

for a sufficiently large constant C. Note that 1 − γ/2 > γ, so E > k, as required

by Theorem 2.24. The protocol takes O(Ek1/2/ log n + r) = O(1) rounds since the

communication volume is O(Ek1/2) = O(log n) and r = 2. Let G′′ be the subgraph

of G′ consisting of edges whose protocols detected a failure and ∆′′ be the maximum

degree in G′′. Once again,

Pr
[
∆′′ ≥ (log n)γ/2

]
≤ n ·

(
∆′

(log n)γ/2

)
·
(
2−E

)(logn)γ/2

≤ n · exp(O((log n)γ/2 log log n)) · 2−C(logn)1−γ/2·(logn)γ/2

≤ 1/ poly(n).

56

Thus, once ∆ ≤
√

log n, log log ∆ ≤ log log log n − 1 of these 2-round phases suffice

to find all remaining triangles in G.

Theorem 2.34 depends critically on the duality between edges and SetIntersection

instances, and between edge endpoints and elements of sets. In particular, when an

execution of a SetIntersection over {u, v} is successful, this effectively removes {u, v}
from the graph, thereby removing many occurrences of ID(u) and ID(v) from adjacent

sets.

Consider a slightly more general situation where we have a graph of arboricity λ

(but unbounded ∆), witnessed by a given acyclic orientation having out-degree at

most λ. Redefine the set Au to be the set of out-neighbors of u.

Au = {ID(v) | {u, v} ∈ E with orientation u→ v}.

By definition |Au| ≤ λ. Because the orientation is acyclic, every triangle on {x, y, z}
is (up to renaming) oriented as x→ y, x→ z, y → z. Thus, it will only be detectable

by the SetIntersection instance associated with {x, y}.

Theorem 2.35. Let G = (V,E) be a CONGEST network equipped with an acyclic

orientation with outdegree at most λ. We can solve local triangle enumeration on G

in O(λ/ log n+ log λ) time.

Proof. We apply Theorem 2.1 to reduce each SetIntersection instance to an Equali-

tyTesting instance, then apply Theorem 2.17 with E = Θ(log n) and r = log λ to

solve each with O(λ+Eλ1/r) = O(λ+E) communication in O((λ+E)/ log n+ r) =

O(λ/ log n+ log λ) time. Note that the dependence on λ here is exponentially worse

than the dependence on ∆ in Theorem 2.34.

It may be that G is known to have arboricity λ, but an acyclic orientation is

unavailable. The well known “peeling algorithm” (see [37] or [19]) computes a Cλ

orientation in O(logC n) time for C sufficiently large, say C ≥ 3. Using this algorithm

as a preprocessing step, we can solve local triangle enumeration optimally when λ =

Ω(log2 n).

Theorem 2.36. Let G = (V,E) be a CONGEST network having arboricity λ (with no

upper bound on ∆). Local triangle enumeration can be solved in optimal O(λ/ log n)

time when λ = Ω(log2 n), and sublogarithmic time O(log n/ log(log2 n/λ)) otherwise.

Proof. The algorithm computes a γ ·λ orientation in O(logγ n) time and then applies

Theorem 2.35 to solve local triangle enumeration in O(γλ/ log n+log(γλ)) time. The

57

only question is how to set γ. If λ = Ω(log2 n) we set γ = 3, making the total time

O(λ/ log n), which is optimal [89]. Otherwise we choose γ to balance the logγ n and

γλ/ log n terms, so that

γ log γ = log2 n/λ

Thus, the total running time is slightly sublogarithmicO(log n/ log(log2 n/λ)). Specif-

ically, it is O(log n/ log log n) whenever λ < log2−ε n.

2.7 Reductions and Near Equivalences

Brody et al. [23] proved that SetIntersection on sets of size k is reducible to Equali-

tyTesting on vectors of length O(k), at the cost of one round and O(k) bits of com-

munication. However, the reduction is randomized and fails with probability at least

exp(−Õ(
√
k)). This is the probability that when k balls are thrown uniformly at

random into k bins, some bin contains ω(
√
k) balls.

Recall the statement of Theorem 2.1:

Eq(k, r, perr) ≤ SetInt(k, r, perr), SetInt(k, r + 1, perr) ≤ Eq(k, r, perr) + ζ,

∃Eq(k, r, perr) ≤ SetDisj(k, r, perr), SetDisj(k, r + 1, perr) ≤ ∃Eq(k, r, perr) + ζ,

where ζ = O(k + log log p−1
err). In other words, under any error regime perr, the com-

munication complexity of SetIntersection and EqualityTesting are the same, up to one

round and O(k + log log p−1
err) bits of communication, and that the same relationship

holds between SetDisjointness and ExistsEqual. The proof is inspired by the proba-

bilistic reduction of Brody et al. [23], but uses succinct encodings of perfect hash

functions rather than random hash functions.

Proof of Theorem 2.1. The leftmost inequalities have been observed before [130, 23].

Given inputs x, y to ExistsEqual or EqualityTesting, Alice and Bob generate sets

A = {(1, x1), ... , (k, xk)} and B = {(1, y1), ... , (k, yk)} before the first round of com-

munication and then proceed to solve SetIntersection or SetDisjointness on (A,B).

Knowing A ∩ B or whether A ∩ B = ∅ clearly allows them to determine the correct

output of EqualityTesting or ExistsEqual on (x, y).

The reverse direction is slightly more complicated. Let (A,B) be the instance of

SetIntersection or SetDisjointness over a universe U with size at most |U | = O(k2/perr).

Alice examines her set A, and picks a perfect hash function h : U 7→ [k] for A, i.e.,

h is injective on A. (This can be done in O(k) time, in expectation, using only

58

private randomness. In principle Alice could do this step deterministically, given

sufficient time.) Most importantly, h can be described using O(k + log log |U |) =

O(k + log log p−1
err) bits [131], using a variant of the Fredman-Komlós-Szemerédi [66]

2-level perfect hashing scheme.9 Alice sends the O(k + log log p−1
err)-bit description of

h to Bob. Bob calculates Bj = B∩h−1(j) and responds to Alice with the distribution

|B0|, |B1|, ... , |Bk−1|, which takes at most 2k bits. They can now generate an instance

of Equality Testing where the k equality tests are the pairs A0×B0, A1×B1, ... , Ak−1×
Bk−1. By construction, Aj = A ∩ h−1(j) is a 1-element set. There is clearly a 1-1

correspondence between equal pairs and elements in A∩B. We have Bob speak first

in the EqualityTesting/ExistsEqual protocol; thus, the overhead for this reduction is

just 1 round of communication and O(k + log log p−1
err) bits.

2.8 Conclusions and Open Problems

We have established a new three-way tradeoff between rounds, communication, and

error probability for many fundamental problems in communication complexity such

as SetDisjointness and EqualityTesting. Our lower bound is largely incomparable to

the round-communication lower bounds of [130, 23], and stylistically very different

from both [130] and [23]. We believe that our method can be extended to recover

Sağlam and Tardos’s [130] tradeoff (in the constant error probability regime), but

with a more “direct” proof that avoids some technical difficulties arising from their

round-elimination technique. It is still open whether EqualityTesting can be solved in

r rounds with precisely O(Ek1/r) communication and error probability 2−E < 2−k.

Our algorithms match this lower bound only when r = O(1) or r = Ω(log k), or for

9We sketch how the encoding of h works, for completeness. First, pick a function h′ : U 7→ [O(k2)]
that is collision-free on A. Fredman et al. [66] proved that a function of the form h′(x) = (ax
mod p) mod O(k2) works with constant probability, where p = Ω(k2 log |U |) is prime and a ∈ [0, p)
is random. Pick another function h∗ : [O(k2)] 7→ [k] that has at most twice the expected number
of collisions on A, namely 2 ·

(
k
2

)
/k < k, and partition A into k buckets Aj = A ∩ h−1∗ (j). The

sizes |A0|, |A1|, ... , |Ak−1| can be encoded with 2k bits. We now pick O(log k) pairwise independent
hash functions h1, h2, ... , hO(log k) : [O(k2)] 7→ [O(k2)]. For each bucket Aj , we define h(j) to be the
function with the minimum i for which h(j)(x) = hi(x) mod |Aj |2 is injective on Aj . In order to
encode which function h(j) is (given that h1, ... , hO(log k) are fixed and that |Aj | is known), we simply
need to write i in unary, i.e., using the bit-string 0i−11. This takes less than 2 bits per j in expectation
since each hi is collision-free on Aj with probability at least 1/2. Combining h′, h∗, |A0|, ... , |Ak−1|
and h(0), ... , h(k−1) into a single injective function from U 7→ [O(k)] is straightforward, and done
exactly as in [66]. By marking which elements in this range are actually used (O(k) more bits),
we can generate the perfect h : U 7→ [k] whose range has size precisely k. Encoding h′ takes
O(log k + log log |U |) bits and encoding h∗ takes O(log k) bits. The distribution |A0|, ... , |Ak−1| can
be encoded with 2k bits. The functions h1, ... , hO(log k) can be encoded in O(log2 k) bits, and the
functions h(0), ... , h(k−1) with less than 2k bits in expectation.

59

any r when solving the easier ExistsEqual problem.

We developed some CONGEST algorithms for triangle enumeration that employ

two-party SetIntersection protocols. It is known that this strategy is suboptimal

when ∆ � n1/3 [27, 26]. However, for the local triangle enumeration problem10, our

O(∆/ log n+ log log ∆) algorithm is optimal [89] for every ∆ = Ω(log n log log log n).

Whether there are faster algorithms for triangle detection11 is an intriguing open prob-

lem. It is known that 1-round LOCAL algorithms must send messages of Ω(∆ log n)

bits deterministically [4] or Ω(∆) bits randomized [64]. Even for 2-round triangle

detection algorithms, there are no nontrivial communication lower bounds known.

10Every triangle must be reported by one of its three constituent vertices.
11At least one vertex must announce there is a triangle; there is no obligation to list them all.

60

CHAPTER 3

Generalized Matching

3.1 Introduction

Many combinatorial optimization problems are known to be reducible to computing

optimal matchings in non-bipartite graphs [59, 60]. These problems include comput-

ing b-matchings, f -factors, f -edge covers, T -joins, undirected shortest paths (with no

negative cycles), and bidirected flows, see [105, 72, 132, 61]. These problems have

been investigated heavily since Tutte’s work in the 1950s [135, 123]. However, the ex-

isting reductions to graph matching are often inadequate: they blow up the size of the

input [105], use auxiliary space [69], or piggyback on specific matching algorithms [69]

like the Micali-Vazirani algorithm [110, 137, 138]. Moreover, most existing reductions

destroy the dual structure of optimal solutions and are therefore not approximation

preserving.

In this paper we design algorithms for computing f -matchings and f -edge cov-

ers (both defined below) in a direct fashion, or through efficient, approximation-

preserving reductions. Because our algorithms are based on the LP formulations of

these problems (in contrast to approaches using shortest augmenting walks [69, 110,

137, 138]), they easily adapt to weighted and approximate variants of the problems.

Let us define these problems formally. Let G = (V,E) be a graph that possibly

contains parallel edges and self loops. For any subset F of edges, we use degF (v)

to indicate the degree of vertex v in the subgraph induced by F . Notice that each

self-loop on v that is in F contributes 2 to this degree. We use n to denote the number

of vertices and m to denote the number of edges, counting multiplicities. We define

f -matching and f -edge covers as follows.

f-matching An f -matching is a subset F ⊆ E such that degF (v) ≤ f(v). F is

perfect if the degree constraints hold with equality. In this case it is also called

an f -factor.

61

f-edge cover An f -edge cover is a subset F ⊆ E such that degF (v) ≥ f(v). It is

perfect if all degree constraints hold with equality.

The maximum weight f -matching problem asks that, given a graph G = (V,E)

and a weight function w on E, to find an f -matching F that maximize
∑

e∈F w(e).

Similarly, the minimum weight f -edge cover problem and the minimum weight f -

factor problem ask for an f -edge cover and an f -factor that minimize their respective

weight.

For these three problems, we can assume, without lost of generality, that all the

weights are nonnegative for different reasons. For maximum weight f -matching, it

is safe to ignore any negative weight edges as discarding negative weight edges from

F can only improve the solution. For minimum weight f -edge cover, any optimum

solution must include the set of all negative weight edges. Hence we can include them

into the solution and update the degree constraint accordingly. For minimum weight

f -factor, since all f -factors are of the same size, we can translate all the weights by

−mine∈E w(e) without changing the optimal solution so that the resulting graph has

only nonnegative weights.

Classic Reductions. The classical reduction from f -matching to standard graph

matching uses the b-matching problem as a stepping stone. A b-matching is a function

x : E → Z≥0 (where x(e) indicates how many copies of e are in the matching) such

that
∑

e∈δ(v) x(e) ≤ b(v), i.e., the number of matched edges incident to v, counting

multiplicity, is at most b(v). The maximum weight f -matching problem on G =

(V,E,w) can be reduced to b-matching by subdividing each edge e = (u, v) ∈ E into

a path (u, ue, ve, v). Here ue, ve are new vertices. We set the weight of the new edges to

be w(u, ue) = w(ve, v) = w(u, v) +W and w(ue, ve) = 2W , where W is the maximum

weight in the original graph. The capacity function b is given by b(ue) = b(ve) = 1

for the new vertices and b(u) = f(u) for the original vertices.

To see this reduction correctly reduces the maximum weight f -matching problem

to the maximum weight b-matching problem, we first notice that if the original graph

has an f -matching M of weight W ∗, then the new graph must contain a b-matching

of weight at least 2W ∗ + 2Wm, where m is the number of edges in the original

graph: for every unmatched edge (u, v), we take the edge (ue, ve) into the b-matching

and leave the two edges (u, ue) and (v, ve) unmatched. Otherwise we take only the

edges (u, ue) and (v, ve). For the other direction, we notice that if M is a maximum

weight b-matching in the new graph, for each subdivision of original edge (u, v), we

can assume without lost of generality that M ′ must either take only the middle edge

62

(ue, ve), or the two side edges (u, ue) and (v, ve): This is because by degree constraint

on ue and ve, taking the middle edge will prevent the b-matching from taking any of

the side edges, and vice versa. Moreover, we cannot take only one of the side edges

since in that case we can swap it for the middle edge without decreasing the total

weight. Therefore, a b-matching of weight 2W ∗ + 2mW must also correspond to an

f -matching of weight W ∗ of the original graph.

This reduction blows up the number of vertices to O(m) and is not approxima-

tion preserving. The b-matching problem is easily reduced to standard matching by

replicating each vertex u b(u) times, and replacing each edge (u, v) with a bipartite

b(u)×b(v) clique on its endpoints’ replicas. This step of the reduction is approximation

preserving, but blows up the number of vertices and edges. Both reductions together

reduce f -matching to a graph matching problem on O(m) vertices and O(fmaxm)

edges. Gabow [69] gave a method for solving f -matching in O(m
√
f(V)) time using

black-box calls to single iterations of the Micali-Vazirani [110, 137, 138] algorithm.

Observe that f -matching and f -edge cover are complementary problems: if C is an

fC-edge cover, the complementary edge set F = E\C is necessarily an fF -matching,

where fF (v) = deg(v) − fC(v). Complementarity implies that any polynomial-time

algorithm for one problem solves the other in polynomial time, but it says noth-

ing about the precise complexity of solving them exactly or approximately. Indeed,

this phenomenon is very well known in the realm of NP-complete problems. For ex-

ample, Maximum Independent Set and Minimum Vertex Cover are complementary

problems, but have completely different approximation profiles: Minimum Vertex

Cover has a well-known polynomial time 2-approximation algorithm, while it is NP-

hard to approximate Maximum Independent Set within n1−ε for any ε > 0 [84, 145].

Gabow’s O(m
√
fF (V)) cardinality fF -matching algorithm [69] implies that fC-edge

cover is computed in O(m
√

2m− fC(V)) = O(m3/2) time, and says nothing about

the approximability of fC-edge cover. As far as we are aware, the fastest approxima-

tion algorithms for fC-edge cover (see [97]) treat it as a general weighted Set Cover

problem on 2-element sets. Chvátal’s analysis [39] shows the greedy algorithm is an

H(2)-approximation, where H(2) = 3/2 is the 2nd harmonic number.

Our interest in the approximate f -edge cover problem is inspired by a new ap-

plication to anonymizing data in environments where users have different privacy

demands; see [97, 38, 98]. Here the data records correspond to edges and the privacy

demand of v is measured by f(v); the goal is to anonymize as few records to satisfy

everyone’s privacy demands.

63

New Results. We give new algorithms for computing f -matchings and f -edge

covers approximately and exactly.

• We give an Oε(m)-time (1 − ε)-approximation algorithm for maximum weight

f -matching problem. The algorithm generalizes the (1− ε)-approximate maxi-

mum weight matching algorithm by Duan and Pettie [55] and improves on the

O(f(V)(m + n log n)) running time of Gabow [71]. The main technical con-

tribution is the application of relaxed complementary slackness [74, 75, 55] on

f -matchings, and a new version of DFS-based search procedure algorithm for

looking for a maximal set of edge-disjoint augmenting paths in linear time.

• We show that a folklore reduction from minimum weight 1-edge cover to max-

imum weight 1-matching (matching) is approximation-preserving, in the sense

that any (1− ε)-approximation for matching gives a (1 + ε)-approximation for

edge cover. This implies that 1-edge cover can be (1 + ε)-approximated in

Oε(m) time [55], and that one can apply any number of simple and practical

algorithms [53, 120, 55] to approximate 1-edge cover. This simple reduction

does not extend to f -matchings/f -edge covers when f is arbitrary.

• We give an Oε(m)-time (1 + ε)-approximation algorithm for weighted fC-edge

cover, for any fC . Our algorithm follows from two results, both of which are

somewhat surprising. First, any approximate weighted fF -matching algorithm

that reports a (1±ε)-optimal dual solution can be transformed into a (1+O(ε))-

approximate weighted fC-edge cover algorithm. Second, such an fF -matching

algorithm exists, and its running time is Oε(m). The first claim is clearly false

if we drop the approximate dual solution requirement (for the same reason that

an O(1)-approximate vertex cover does not translate into an O(1)-approximate

maximum independent set), and the second is surprising because the running

time is independent of the demand function fF and the magnitude of the edge

weights.

• As corollaries of these reductions, we obtain a new exact algorithm for min-

imum cardinality fC-edge cover running in O(m
√
fC(V)) time, rather than

O(m3/2) time ([69]), and a direct algorithm for cardinality fF -matching that

runs in O(m
√
fF (V)) time, without reduction [69] to the Micali-Vazirani algo-

rithm [110, 137, 138].

The blossom structure and LP characterization of b-matching is considerably sim-

pler than the corresponding blossoms/LPs for f -matching and f -edge cover. In

64

the interest of simplicity, one might want efficient code that solves (approximate)

b-matching directly, without viewing it as a special case of the f -matching problem.1

We do not know of such a direct algorithm. Indeed, the structure of b-matching blos-

soms seems to rely on strict complementary slackness, and is incompatible with our

main technical tool, relaxed complementary slackness.2 Thus, for somewhat technical

reasons, we are forced to solve approximation b-matching using more sophisticated

f -matching tools.

Comparison to Previous Results. Our linear time (1 − ε)-approximation algo-

rithm for maximum weight f -matching can be seen as a direct generalization of the

Duan-Pettie algorithm for approximate maximum weight matching (1-matching) [55].

The key technical ingredient is the generalization of relaxed complementary slack-

ness, see [74, 75, 55], to f -matching, and a corresponding implementation of Ed-

monds’ Search with relaxed complementary slackness. The former relies heavily on

the ideas (blossoms, augmenting walks) defined in [71]. Our implementation of Ed-

monds’ search involves finding augmenting walks in batches. The procedure of [75,

§8] for matching finds a maximal set of vertex-disjoint augmenting paths. We develop

a corresponding procedure that finds a maximal set of edge-disjoint augmenting walks

and cycles. Including alternating cycles in the output allows us to conduct the search

in linear time, and keep the search more organized and tree-structured.3

Organization. In Section 3.2 we give an introduction to the LP-formulation of gen-

eralized matching problems and Gabow’s formulation [71] for their blossoms and aug-

menting walks. In Section 3.3.1 we show that a folklore reduction from 1-edge cover to

1-matching is approximation-preserving and in Section 3.3.2 we reduce approximate

f -edge cover to approximate f -matching. In Section 3.4 we give an O(Wmε−1)-time

algorithm for (1 − ε)-approximate f -matching in graphs with weights in [0,W] and

then speed it up to O(mε−1 log ε−1), independent of the weight function. Section 3.5

gives a linear time algorithm to compute a maximal set of augmenting walks and

alternating cycles; cf. [75, §8].

1The b-matching problem can be regarded as an f -matching problem on a multigraph in which
there is implicitly an infinite supply of each edge.

2Using relaxed complementary slackness, matched and unmatched edges have different eligibility
criteria (to be included in augmenting paths and blossoms) whereas b-matching blossoms require
that all copies of an edge—matched and unmatched alike—are all eligible or all ineligible.

3These issues only arise when finding augmenting paths in batches, not one-at-a-time [71], and
when the problem is f -matching, not matching.

65

3.2 Basis of f-Matching and f-Edge Cover

This section reviews basic algorithmic concepts from matching theory and their gen-

eralizations to the f -matching and f -edge cover problems, e.g., LPs, blossoms, and

augmenting walks. These ideas lay the foundation for generalizing the Duan-Pettie al-

gorithm [55] for Approximate Maximum Weight Matching to Approximate Maximum

Weight f -Matching and Approximate Minimum Weight f -Edge Cover.

Notation. The input is a multigraphG = (V,E) with a nonnegative weight function

w : E 7→ R≥0. For any vertex v, define δ(v) and δ0(v) be the set of non-loop edges

and self-loops, respectively, incident on v. For S ⊆ V , let δ(S) and γ(S) be the

sets of edges with exactly one endpoint and both endpoints in S, respectively, so

δ0(v) ⊆ γ(S) if v ∈ S. For T ⊆ E, δT (S) denotes the intersection of δ(S) and T . By

definition, degT (S) = |δT (S)|.

3.2.1 LP Formulation

The maximum weight f -matching problem can be expressed as maximizing
∑

e∈E w(e)x(e),

subject to the following constraints:∑
e∈δ(v)

x(e) +
∑

e∈δ0(v)

2x(e) ≤ f(v), for all v ∈ V ,

∑
e∈γ(B)∪I

x(e) ≤
⌊
f(B) + |I|

2

⌋
, for all B ⊆ V, I ⊆ δ(B),

0 ≤ x(e) ≤ 1, for all e ∈ E.

(3.1)

Here, the blossom constraint
∑

e∈γ(B)∪I x(e) ≤
⌊
f(B)+|I|

2

⌋
is a generalization of

blossom constraint
∑

e∈γ(B) x(e) ≤
⌊
|B|
2

⌋
in ordinary matching. The reason that we

have a subset I of incident edges in the sum is that the subset allows us to distinguish

between matched edges that have both endpoints inside B with those with exactly

one endpoint. Any basic feasible solution x of this LP is integral [132, §33], and

can therefore be interpreted as a membership vector of an f -matching F . To certify

(approximate) optimality of a solution, the algorithm works with the dual LP, which

is:

66

minimize
∑
v∈V

f(v)y(v) +
∑

B⊆V,I⊆δ(B)

⌊
f(B) + |I|

2

⌋
z(B, I) +

∑
e

u(e),

subject to yzF (e) + u(e) ≥ w(e), for all e ∈ E,

y(v) ≥ 0, z(B, I) ≥ 0, u(e) ≥ 0.

(3.2)

Here the aggregated dual yzF : E 7→ R≥0 is defined as:

yzF (u, v) = y(u) + y(v) +
∑

B,I:(u,v)∈γ(B)∪I,
I⊆δ(B))

z(B, I).

Notice that here u can be equal to v when the edge is a self-loop. Unlike matching,

each z-value here is associated with the combination of a vertex set B and a subset

I of its incident edges.

The minimum weight f -edge cover problem can be expressed as minimizing
∑

e∈E w(e)x(e),

subject to:∑
e∈δ(v)

x(e) +
∑

e∈δ0(v)

2x(e) ≥ f(v), for all v ∈ V ,

∑
e∈γ(B)∪(δ(B)\I)

x(e) ≥
⌈
f(B)− |I|

2

⌉
, for all B ⊆ V and I ⊆ δ(B),

0 ≤ x(e) ≤ 1, for all e ∈ E.

(3.3)

With the dual program being:

maximize
∑
v∈V

f(v)y(v) +
∑

B⊆V,I⊆δ(B)

⌈
f(B)− |I|

2

⌉
z(B, I)−

∑
e∈E

u(e),

subject to yzC(e)− u(e) ≤ w(e), for all e ∈ E,

y(v) ≥ 0, z(B, I) ≥ 0, u(e) ≥ 0,

(3.4)

where

yzC(u, v) = y(u) + y(v) +
∑

B,I:(u,v)∈γ(B)∪(δ(B)\I)
I⊆δ(B)

z(B, I).4

4We use yzF and yzC to denote the aggregated dual yz for f -matching and f -edge cover respec-
tively. We will omit the subscript if it is clear from the context.

67

Both of our f -matching and f -edge cover algorithms maintain a dynamic feasible

solution F ⊆ E that satisfies the primal constraints following Gabow[71]. We call

edges in F matched and all other edges unmatched, which is referred to as the type of

an edge. A vertex v is saturated if degF (v) = f(v). It is unsaturated/oversaturated if

degF (v) is smaller/greater than f(v). Given an f -matching F , the deficiency def(v)

of a vertex v is defined as def(v) = f(v)− degF (v). Similarly, for an f -edge cover C,

the surplus of a vertex is defined as surp(v) = degC(v)− f(v).

3.2.2 Blossoms

We follow Gabow’s [71] definitions and terminology for f -matching blossoms, aug-

menting walks, etc. A blossom is a tuple (B,EB, β(B), η(B)) where B is the vertex

set, EB is the edge set, β(B) ∈ B is the base vertex, and η(B) ⊂ δ(β(B)) ∩ δ(B),

|η(B)| ≤ 1, is the base edge set, which may be empty. We often refer to the blossom

by referring to its vertex set B. Blossoms can be defined inductively as follows.

Definition 3.1. [71, Definition 4.2] A single vertex v forms a trivial blossom, or a

singleton. Here B = {v}, EB = ∅, β(B) = v, and η(B) = ∅.
Inductively, let B0, B1, ... , Bl−1 be a sequence of disjoint singletons or nontrivial

blossoms. Suppose there exists a closed walk CB = {e0, e1, ... , el−1} ⊆ E starting

and ending with B0 such that ei ∈ Bi × Bi+1 (mod l). The vertex set B =
⋃l−1
i=0 Bi is

identified with a blossom if the following are satisfied:

1. Base Requirement: If B0 is a singleton, the two edges incident to B0 on CB,

i.e., e0 and el−1, must both be matched or both be unmatched.

2. Alternation Requirement: Fix a Bi, i 6= 0. If Bi is a singleton, exactly one of

ei−1 and ei is matched. If Bi is a nontrivial blossom, then η(Bi) 6= ∅ and must

be either {ei−1} or {ei}.

The edge set of the blossom B is EB = CB ∪ (
⋃l−1
i=0 EBi) and its base is β(B) =

β(B0). If B0 is not a singleton, η(B) = η(B0). If B0 is a singleton, η(B) may either

be empty or contain one edge, which is in δ(B)∩ δ(B0) that is the opposite type of e0

and el−1.

Blossoms are classified as light/heavy [71, p. 32]. If B0 is a singleton, B is

light/heavy if e0 and el−1 are both unmatched/matched. Otherwise, B is light/heavy

if B0 is light/heavy. Note that blossoms in the ordinary matching problem (1-

matching) are always light, since no vertex is adjacent to 2 matched edges.

68

One purpose of blossoms is to identify parts of graph that can be contracted and

treated similar to individual vertices when searching for augmenting walks. This is

formalized by Lemma 3.2, which can be seen as a restatement of Lemma 4.4 from

[71] for f -matchings.

Lemma 3.2. Let v be an arbitrary vertex in B. There exists an even length alter-

nating walk P0(v) (whose length could be 0) and an odd length alternating walk P1(v)

from β(B) to v using edges in EB. Moreover, the terminal edge incident to β(B), if

it exists, must have a different type than the edge in η(B), if any. In other words,

this edge must be matched if B is heavy and unmatched if B is light.

Proof. We prove this by induction. The base case is a blossom B consisting of sin-

gletons 〈v0, v1, ... , vl−1〉, where v = vi for some 0 ≤ i < l. Then one of the two walks

〈v0, v1, ... , vi〉 and 〈v0, vl−1, vl−2 ... , vi〉 must be odd and the other must be even.

Now for the inductive step: Consider the cycle CB = 〈B0, e0, B1, ... , el−2, Bl−1el−1, B0〉
where Bi’s are singletons or contracted blossoms. Suppose the claim holds inductively

for all nontrivial blossoms in B0, B1, ... , Bl−1. Let v be an arbitrary vertex in B. We

use PBi,j(u) (0 ≤ i < l, j ∈ {0, 1}, u ∈ Bi) to denote the walk P0(u) and P1(u)

guaranteed in blossom Bi. There are two cases:

Case 1: When v is contained in a singleton Bk. We examine the two walks P̂ =

〈B0, e0, B1, e1, ... , ek−1, Bk〉 and P̂ ′ = 〈B0, el−1, Bl−1, el−2, ... , ek, Bk〉. Notice that P̂

and P̂ ′ are walks in the graph obtained by contracting all subblossoms B0, B1, ... , Bl−1

of B. By the inductive hypothesis, we can extend P̂ and P̂ ′ to P and P ′ in the

original graph G by replacing each Bi with the walk in the original graph connecting

the endpoints of ei−1 and ei of the appropriate parity. In particular, if ei−1 and ei

are of different types, we replace Bi with the even length walk guaranteed by the

induction hypothesis. Otherwise, we replace it with the odd length walk. Notice that

by the alternation requirement, one of P and P ′ must be odd and the other must be

even.

Case 2: When v is contained in a non-trivial blossom Bk, 0 ≤ k < l. Without

loss of generality, ek−1 = η(Bk). Consider the contracted walk P̂ = 〈e0, e1, ... , ek−1〉.
We extend P̂ to an alternating walk P in EB terminating at ek−1 similar to Case

1. Then P0(v) and P1(v) are obtained by concatenating P with the alternating walk

PBk,0(v) or PBk,1(v), whichever has the right parity.

Notice that in both cases, the base requirement in Definition 3.1 guarantees the

starting edge of both alternating walks P1(v) and P0(v) alternates with the base edge

η(B).

69

The main difference between blossoms in generalized matching problems and blos-

soms in ordinary matching is that P0(v) and P1(v) are both meaningful for finding

augmenting walks or blossoms. In ordinary matching, since each vertex has at most 1

matched edge incident to it, an alternating walk enters the blossom at the base vertex

via a matched edge and must leave with an unmatched edge. As a result the subwalk

inside the blossom is always even. In generalized matching problems, this subwalk

can be either even or odd, and may contain a cycle. In general, an alternating walk

enters the blossom at the base edge and can leave the blossom at any nonbase edge.

Similar to ordinary matching algorithms, we contract blossoms in order to find

augmenting structures to improve our f -matching. Contracting a blossom B means

replacing B with a single vertex v with an f -value f(v) =
∑

v′∈B f(v′)−2|M ∩E[B]|.
Here E[B] is the set of edges induced by the vertex set B.

Next we extend to notion of maturity from [71, p. 43] to f -matching and f -edge

cover. Let us focus on f -matching first. Due to complementary slackness, we can only

assign a positive z-value for the pair (B, I) if it satisfies the constraint |F ∩ (γ(B) ∪
I)| ≤ b(f(B) + |I|)/2c with equality. For ordinary matching, this requirement is

implied by the combinatorial definition of blossoms. However, this is not the case for

generalized matching, so we need a blossom to be mature to fulfill the complementary

slackness property.

Definition 3.3 (Mature Blossom). A blossom is mature w.r.t an f -matching F if it

satisfies the following:

1. Every vertex v ∈ B \ {β(B)} is saturated.

2. def(β(B)) = 0 or 1. If def(β(B)) = 1, B must be a light blossom and η(B) = ∅;
If def(β(B)) = 0, η(B) 6= ∅.

The algorithm only contracts and manipulates mature blossoms. The definition for

maturity is motivated by the requirement that a blossom processed by the algorithm

must satisfy the following two properties:

• Complementary slackness: A dual variable can be positive only if its primal

constraint is satisfied with equality. In our algorithm, a blossom can have a

positive z-value only if |F ∩ (γ(B) ∪ I(B))| =
⌊
f(B)+|I(B)|

2

⌋
, for a particular

I(B) ⊆ δ(B) that we are going to define momentarily.

• Topology of augmenting walks: An augmenting walk in G can only start with

an unmatched edge. As a result, an augmenting walk in the contracted graph

must start with a singleton or an unsaturated light blossom. If a blossom is

70

unsaturated, it must be eligible to start an augmenting walk, and thus must be

light.

According to Definition 3.3, a mature blossom cannot be both heavy and un-

saturated. Now we show that a mature blossom satisfies its corresponding primal

constraint with equality. To show this fact, we first define the I-set of a blossom

B [71, p.44], which is the set I(B) associated with blossom B for which we will assign

a positive z-value, given by:

I(B) = δF (B)⊕ η(B),

where ⊕ is the symmetric difference operator (XOR). All other subsets I of δ(B) will

have z(B, I) = 0. If B is a mature blossom, then we have |F ∩ (γ(B) ∪ I(B))| =⌊
f(B)+|I(B)|

2

⌋
Lemma 3.4. If an f -matching blossom B is mature, we have |F ∩ (γ(B)∪ I(B))| =⌊
f(B)+|I(B)|

2

⌋
.

Proof. We first sketch the idea of the proof. Assume for simplicity that the deficiency

is 0 for every vertex v ∈ B, i.e., there are exactly f(v) matched edges incident to v,

and every edge in I(B) is matched. Then every matched edge e ∈ F∩γ(B) contributes

2 to f(B), one for each endpoint, and every edge e ∈ I(B)∩F contributes 1 to f(B)

and 1 to |I(B)|. Thus we have:

2|F ∩ (γ(B) ∪ I(B))| = f(B) + |I(B)|.

Now we eliminate the assumption by a case analysis for the deficiency of β(B).

If def(β(B)) = 0, the assumption on deficiency holds, while all but possibly 1 edge

in I(B), namely the base edge, are matched. This makes f(B) + |I(B)| at least

2|F ∩ (γ(B) ∪ I(B))| and at most 2|F ∩ (γ(B) ∪ I(B))| + 1, and the equality |F ∩
(γ(B) ∪ I(B))| =

⌊
f(B)+|I(B)|

2

⌋
follows.

When def(β(B)) = 1, since η(B) = ∅, the assumption that I(B) only contains

matched edges holds. Since exactly 1 of B’s vertices has deficiency 1, we have:

2|F ∩ (γ(B) ∪ I(B))|+ 1 = f(B) + |I(B)|

And the equality |F ∩ (γ(B) ∪ I(B))| =
⌊
f(B)+|I(B)|

2

⌋
follows.

We complete the discussion by giving the definition for maturity and the corre-

sponding properties for mature blossoms in f -edge cover. The details are similar to

71

f -matching.

Definition 3.5 (Mature Blossom for f -edge cover). A blossom is mature w.r.t an

f -edge cover F if it satisfies the following:

1. Every vertex v ∈ B \ {β(B)} is saturated: degF (v) = f(v).

2. surp(β(B)) = 0 or 1. If surp(β(B)) = 1, B must be a heavy blossom and

η(B) = ∅; If surp(β(B)) = 0, η(B) 6= ∅.

Lemma 3.6. If an f -edge-cover blosom B is mature, we have |F ∩ (γ(B) ∪ (δ(B) \
I(B)))| =

⌈
f(B)−|I(B)|

2

⌉
.

3.2.3 Augmenting/Reducing Walks

Augmenting walks are analagous to augmenting paths from ordinary matching. Com-

plications arise from the fact that an f -matching blossom cannot be treated identically

to a single vertex after it is contracted. For example, in Figure 2, the two edges (v0, v1)

and (v4, v6) incident to blossom {v1, v2, v4, v5, v3} are of the same type, both before

and after augmenting along the walk 〈v0, v1, v3, v5, v4, v6〉. This can never happen

in ordinary matching! Moreover, augmenting walks can begin and end at the same

vertex and can visit the same vertex multiple times. Hence a naive contraction of

a blossom into a single vertex loses key information about the internal structure of

blossoms. Definition 3.7, taken from Gabow [71, p.28, p.44] characterizes when a

walk in the contracted graph can be extended to an augmenting walk.

Definition 3.7. Let Ĝ be the graph obtained from G by contracting a laminar set

Ω of blossoms. Let P̂ = 〈B0, e0, B1, e1, ... , Bl−1, el−1, Bl〉 be a walk in Ĝ. Here {ei}
are edges and {Bi} are nontrivial blossoms or singletons, with ei ∈ Bi × Bi+1 for all

0 ≤ i < l. We say P̂ is an augmenting walk with respect to the f -matching F if the

following requirements are satisfied:

1. Terminal Vertices Requirement: The terminals B0 and Bl must be unsaturated

singletons or unsaturated light nontrivial blossoms. If P is a closed walk (B0 =

Bl), B0 must be a singleton and def(β(B0)) ≥ 2.

2. Terminal Edges Requirement: If the terminal vertex B0 (Bl) is a singleton, the

incident terminal edge e0 (el−1) must be unmatched. Otherwise it can be either

matched or unmatched.

72

v0

v1

v2

v3 v4

v5 v6

v7

v8 v9

v10 v11

v12

v13

v14 v15

v16

v0

v1

v2

v3 v4

v5 v6

v7 v8

v9v10

v11

v12

v13

v14 v15

v16

Figure 3.1: Two examples of contractible blossoms: Bold edges are matched and thin
ones are unmatched. Blossoms are circled with a border. Base edges are represented
with arrow pointing away from the blossom.

73

v0

v1

v2 v3

v4 v5

v6

v0

v1

v2 v3

v4 v5

v6

Figure 3.2: An example for how a blossom changes with an augmentation: here the
augmenting walk is 〈v0, v1, v3, v5, v4, v6〉. Notice that after rematching, the base edge
of the blossom changes from (v0, v1) to (v4, u6), and the blossom turns from a heavy
blossom to a light one.

3. Alternation Requirement: Let Bi, 0 < i < l, be an internal blossom. If Bi is a

singleton, exactly one of ei−1 and ei is matched. If Bi is a nontrivial blossom,

η(Bi) 6= ∅ and must be one of {ei−1} or {ei}.

A natural consequence of the above definition is that an augmenting walk P̂ in

Ĝ can be extended to an augmenting walk P in G. This is proved exactly as in

Lemma 3.2. We call P the preimage of P̂ in G and P̂ the image of P in Ĝ.

Definition 3.8. Let P̂ be an augmenting walk in Ĝ. An augmentation along P̂ makes

the following changes to F and Ω.

1. Let P be the preimage of P̂ in G. Update F to F ⊕ P .

2. If B ∈ Ω is a blossom intersecting P , we set η(B) ← (P ∩ δ(B)) \ η(B) and

set β(B) to the vertex in B that is incident to the edge in η(B). Notice that

|P ∩ δ(B)| = 1 or 2, and in the case when |P ∩ δ(B)| = 1, we must have

η(B) = ∅.

Some remarks can be made here regarding connection to augmenting walks and

mature blossoms.

• A blossom that is not mature may contain an augmenting walk. Specifically,

suppose B is light and unsaturated. If any nonbase vertex v 6= β(B) in B is

also unsaturated, the odd length alternating walk from β(B) to v satisfies the

definition of an augmenting walk. Alternatively, if β(B) has deficiency of 2 or

more, the odd length alternating walk from β(B) to β(B) is also augmenting.

74

For these reasons, the algorithm is designed such that immature blossoms are

never contracted.

• Augmentation never destroys maturity. In particular, it never creates an un-

saturated heavy blossom. As a result, all blossoms we maintain stay mature

throughout the entirety of the algorithm.

In f -edge cover, the corresponding notion is called reducing walk. The definition

of reducing walk can be naturally obtained from Definition 3.7 while replacing “un-

saturated”, “deficiency”, and “light” with “oversaturated”, “surplus”, and “heavy”,

and exchanging “matched” and “unmatched”. It is also worth pointing out that if an

f -matching F and an f ′-edge cover F ′ are complement to each other, i.e., F ′ = E \F
and f(v)+f ′(v) = deg(v), and they have the same blossom set Ω, then an augmenting

walk P̂ for F is also a reducing walk for F ′.

3.2.4 Complementary Slackness

To characterize an (approximately) optimal solution, we maintain dual functions:

y : V 7→ R≥0 and z : 2V 7→ R≥0. Here z(B) is short for z(B, I(B)). We do not

explicitly maintain the edge dual u : E 7→ R≥0 since its minimizing value can be

explicitly given by u(e) = max{w(e) − yz(e), 0}. For f -matching F , the following

property characterizes an approximate maximum weight f -matching:

Property 3.9 (Approximate Complementary Slackness for f -matching). Let δ1, δ2 ≥
0 be nonnegative parameters. We say an f -matching F , duals y, z, and the set of blos-

soms Ω satisfies (δ1, δ2)-approximate complementary slackness if the following hold:

1. Approximate Domination. For each unmatched edge e ∈ E \F , yz(e) ≥ w(e)−
δ1.

2. Approximate Tightness. For each matched edge e ∈ F , yz(e) ≤ w(e) + δ2.

3. Blossom Maturity. For each blossom B ∈ Ω, |F∩(γ(B)∪I(B))| =
⌊
f(B)+|I(B)|

2

⌋
.

4. Unsaturated Vertices’ Duals. For each unsaturated vertex v, y(v) = 0.

Lemma 3.10. Let F be an f -matching in G along with duals y, z and let F ∗ be

the maximum weight f -matching. If F,Ω, y, z satisfy Property 3.9 with parameters δ1

and δ2, we have

w(F) ≥ w(F ∗)− δ1|F ∗| − δ2|F |.

75

Proof. We first define u : E 7→ R as

u(e) =

w(e)− yz(e) + δ2, if e ∈ F .

0, otherwise.

From approximate tightness, we have u(e) ≥ 0 for all e ∈ E. Therefore, yz(e)+u(e) ≥
w(e) − δ1 for all e ∈ E and yz(e) + u(e) = w(e) + δ2 for all e ∈ F . This gives the

following:

w(F) =
∑
e∈F

w(e) =
∑
e∈F

(yz(e) + u(e)− δ2)

=
∑
v∈V

degF (v)y(v) +
∑
B∈Ω

|F ∩ (γ(B) ∪ I(B))|z(B) +
∑
e∈F

u(e)− |F |δ2

By Property 3.9 (Unsaturated Vertices’ Duals, Blossom Maturity, and the definition

of u), this is equal to

=
∑
v∈V

f(v)y(v) +
∑
B∈Ω

⌊
f(B) + |I(B)|

2

⌋
z(B) +

∑
e∈E

u(e)− |F |δ2

≥
∑
v∈V

degF ∗(v)y(v) +
∑
B∈Ω

|F ∗ ∩ (γ(B) ∪ I(B))|z(B) +
∑
e∈F ∗

u(e)− |F |δ2

=
∑
e∈F ∗

(yz(e) + u(e))− |F |δ2

≥
∑
e∈F ∗

(w(e)− δ1)− |F |δ2 = w(F ∗)− |F ∗|δ1 − |F |δ2.

We can easily extend the proof of Lemma 3.10 to show that if we have multiplica-

tive errors for approximate domination/tightness, F is an approximately optimal

solution. Formally, if we have the following multiplicative version of Property 3.9:

Property 3.11 (Approximate Complementary Slackness for f -matching with Mul-

tiplicative Error). Let 0 ≤ ε1, ε2 < 1 be nonnegative parameters. We say an

f -matching F , duals y, z, and the set of blossoms Ω satisfies (ε1, ε2)-multiplicative

approximate complementary slackness if it satisfies Property 3.9(3,4), with Prop-

erty 3.9(1,2) being replaced with:

1. Approximate Domination. For each unmatched edge e ∈ E \ F , yz(e) ≥ (1 −
ε1)w(e).

76

2. Approximate Tightness. For each matched edge e ∈ F , yz(e) ≤ (1 + ε2)w(e).

We can show the following:

Lemma 3.12. Let F be an f -matching in G along with duals y, z and let F ∗ be

the maximum weight f -matching. If F,Ω, y, z satisfy Property 3.11 with parameters

ε1 and ε2, we have

w(F) ≥ (1− ε1)(1 + ε2)−1w(F ∗)

We also give the corresponding theorems for f -edge covers:

Property 3.13 (Approximate Complementary Slackness for f -edge cover). Let

δ1, δ2 ≥ 0 be positive parameters. We say an f -edge cover C, with duals y, z and

blossom family Ω satisfies the (δ1, δ2)-approximate complementary slackness if the

following requirements holds:

1. Approximate Domination. For each unmatched edge e ∈ E \ C, yzC(e) ≤
w(e) + δ1.

2. Approximate Tightness. For each matched edge e ∈ C, yzC(e) ≥ w(e)− δ2.

3. Blossom Maturity. For each blossom B ∈ Ω, |C ∩ (γ(B) ∪ (δ(B) \ IC(B)))| =⌈
f(B)−|IC(B)|

2

⌉
.

4. Oversaturated Vertices’ Duals. For each oversaturated vertex v, y(v) = 0.

Property 3.14 (Approximate Complementary Slackness for f -edge cover with Mul-

tiplicative Error). Let 0 ≤ ε1, ε2 < 1 be positive parameters. We say an f -edge cover

C, with duals y, z and blossom family Ω satisfies the (ε1, ε2)-approximate complemen-

tary slackness if it satisfies Property 3.13(3,4), with Property 3.13(1,2) being replaced

with:

1. Approximate Domination. For each unmatched edge e ∈ E \ C, yzC(e) ≤
(1 + ε1)w(e).

2. Approximate Tightness. For each matched edge e ∈ C, yzC(e) ≥ (1− ε2)w(e).

Recall that we are using the aggregated duals yzC for f -edge cover:

yzC(u, v) = y(u) + y(v) +
∑

B:(u,v)∈γ(B)∪(δ(B)\IC(B))

z(B)

Lemma 3.15. Let C be an f -edge cover with duals y, z,Ω satisfying Property 3.13

with parameters δ1 and δ2, and let C∗ be the minimum weight f -edge cover. We have

w(C) ≤ w(C∗) + δ1|C∗|+ δ2|C|.

77

Lemma 3.16. Let C be an f -edge cover with duals y, z,Ω satisfying Property 3.14

with parameters ε1 and ε2, and let C∗ be the minimum weight f -edge cover. We have

w(C) ≤ (1 + ε1)(1− ε2)−1w(C∗).

3.3 Connection Between f-Matchings and f-Edge

Covers

The classical approach to solve the f -edge cover problem is to reduce it to f -matching.

Specifically, looking for a minimum weight fC-edge cover C for some function fC can

be seen as choosing edges that are not in C, which is a maximum weight fF -matching

where fF (u) = deg(u)− fC(u).

The main drawback of this reduction is that it yields inefficient algorithms. For

example, Gabow’s algorithms [71] for solving maximum weight fF -matching scales

linearly with fF (V), which makes it undesirable when fC is small. Even when fC(V) =

O(n), Gabow’s algorithm runs in O(m2 + mn log n) time. Moreover, this reduction

is not approximation-preserving. In other words, the complement of an arbitrary

(1− ε)-approximate maximum weight fF -matching is not guaranteed to be a (1 + ε)-

approximate fC-edge cover.

In this section we establish two results: First we prove that a folklore reduc-

tion from 1-edge cover to matching in nonnegative weight graphs is approximation

preserving. This allows us to use an efficient approximate matching algorithm for

ordinary matching, such as [55], to solve the weighted 1-edge cover problem. Then

we establish the connection between approximate fF -matching and approximate fC-

edge cover using approximate complementary slackness from the previous section.

This will give a (1 + ε)-approximate minimum weight f -edge cover algorithm from

our (1− ε) approximate maximum weight f -matching algorithm.

3.3.1 Approximate Preserving Reduction from 1-Edge Cover

to 1-Matchings

The edge cover problem is a special case of f -edge cover where f is 1 everywhere.

The minimum weight edge cover problem is reducible to maximum weight matching,

simply by reweighting edges [132]. The reduction is as follows: Let e(v) be any edge

with minimum weight incident to v and let µ(v) = w(e(v)). Define a new weight

78

function w′ as follows

w′(u, v) = µ(u) + µ(v)− w(u, v).

Schrijver [132, §27] showed the following theorem:

Theorem 3.17. Let M∗ be a maximum weight matching with respect to a nonnegative

weight function w′, and C = M∗ ∪ {e(v) : v ∈ V \ V (M)}. Then C is a minimum

weight edge cover with respect to weight function w.

We show this reduction is also approximation preserving. Recall that the generally

weighted versions of these problems are reducible to the non-negatively weighted

versions in linear time.

Theorem 3.18. Let M ′ be a (1− ε)-maximum weight matching with respect to non-

negative weight function w′, and C ′ = M ′ ∪ {e(v) : v ∈ V \ V (M ′)}. Then C ′ is a

(1 + ε)-minimum weight edge cover with respect to weight function w.

Proof. Let C∗ and M∗ be the optimal edge cover and matching defined previously.

By construction, we have

w(C ′) = w(M ′) + µ(V \ V (M ′))

= µ(V (M ′))− w′(M ′) + µ(V \ V (M ′))

= µ(V)− w′(M ′)

Similarly, we have w(C∗) = µ(V)− w′(M∗). Then

w(C ′) =µ(V)− w′(M)

≤µ(V)− (1− ε)w′(M∗)

=w(C∗) + εw′(M∗)

≤w(C∗) + εw(C∗)

=(1 + ε)w(C∗).

The second to last inequality holds because M∗ ⊆ C∗ and, by definition, w′(u, v) =

µ(u) + µ(v)− w(u, v) ≤ 2w(u, v)− w(u, v) = w(u, v).

The reduction does not naturally extend to f -edge cover. In the next section

we will show how to obtain a (1 + ε)-approximate f -edge cover algorithm from a

(1− ε)-approximate f -matching within the primal-dual framework.

79

3.3.2 From f-Edge Cover to f-Matching

We show that a primal-dual algorithm computing a (1− ε)-approximate f -matching

can be used to compute a (1 + ε)-approximate f -edge cover. In particular, we show

that if we have an f ′-matching F with blossoms Ω and duals y, z satisfying Prop-

erty 3.9, and an f -edge cover C that is F ’s complement, then the same blossom set

Ω and duals y, z can be also used to certify Property 3.13 for C with a same set of

parameters. This is formally stated in the following lemma:

Lemma 3.19. If the duals y, z,Ω and an f ′-matching F satisfy Property 3.9 with

parameters δ′1, δ
′
2, then the same duals y, z,Ω and the complementary f -edge cover

C = E \ F satisfies Property 3.13 with parameters δ1 = δ′2 and δ2 = δ′1.

Proof. It is easy to see a vertex is oversatured in an f -edge cover if and only if

it is unsaturated in its complementary f -matchings. Therefore, Property 3.13(4)

(Oversaturated Vertices’ Duals) and Property 3.9(4) (Unsaturated Vertices’ Duals)

are equivalent to each other.

To show Property 3.13(1) is equivalent to Property 3.9(2), and Property 3.13(2) is

equivalent to Property 3.9(1), it suffices to show that the function yzF for f ′-matching

F agrees with the function yzC for its complementary f -edge cover C. Recall that

yzC(u, v) = y(u) + y(v) +
∑

B:(u,v)∈γ(B)∪(δ(B)\IC(B))

z(B),

yzF (u, v) = y(u) + y(v) +
∑

B:(u,v)∈γ(B)∪IF (B)

z(B).

Here IC and IF refer to the I-sets of a blossom with respect to the f -edge cover

C and the f ′-matching F . This reduces to showing that IF (B) = δ(B) \ IC(B):

IF (B) = η(B)⊕ δF (B) = η(B)⊕ (δ(B)⊕ δC(B))

= δ(B)⊕ (η(B)⊕ δC(B)) = δ(B) \ IC(B).

Therefore, in yzF (e) and yzC(e), z-values are summed up over the same set of blossoms

in Ω. In other words, yzF (e) = yzC(e) for each e ∈ E and the claim follows

To prove that Property 3.9(3) implies Property 3.13(3), we argue by definition that

the maturity of an f ′-matching blossom implies the maturity of the corresponding f -

edge-cover blossom. Equality is then implied by Lemma 3.4 and Lemma 3.6. Indeed,

by how we define our f ′-matching F and f -edge cover C, a vertex’s surplus with

respect to C and f is equal to a vertex’s deficiency with respect to F and f ′. Moreover,

80

v0

v1

v2 v3

v4 v5v6

v7

v8

v9

v0

v1

v2 v3

v4 v5v6

v7

v8

v9

Figure 3.3: Illustration on relation between I-set of an f -matching and the I-set of
its complementary f ′-edge cover. Left: an f -matching and its blossom set. Right:
Its complementary f -edge cover. Their I-sets are circled (dashed).

the blossom is heavy/light for f ′-matching iff it is light/heavy for the corresponding

f -edge cover. Since the base edge is defined to be the same, maturity of one blossom

implies the other. This completes the proof.

3.4 Approximation Algorithms for f-Matching and

f-Edge Cover

In this section, we prove the main result by giving an approximation algorithm for

computing (1− ε)-approximate maximum weight f -matching. The crux of the result

is an implementation of Edmonds’ search with relaxed complementary slackness as

the eligibility criterion. The notion of approximate complementary slackness was in-

troduced by Gabow and Tarjan for both bipartite matching [74] and general matching

[75]. Gabow gave an implementation of Edmonds’ search with exact complementary

slackness for the f -matching problem [71], which finds augmenting walks one at a

time. The main contribution of this section is to adapt [71] to approximate comple-

mentary slackness to facilitate finding augmenting walks in batches.

To illustrate how this works, we will first give an approximation algorithm for

f -matching in graphs with small edge weights. Let w(·) be a positive weight function

w : E 7→ {0, ... ,W}. The algorithm computes a (1−ε)-approximate maximum weight

f -matching in O(mWε−1) time, independent of f . We also show how to use scaling

techniques to transform this algorithm to run in O(mε−1 log ε−1) time, independent

of W .

81

3.4.1 Approximation for Small Weights

The main procedure in our O(mWε−1) time algorithm is a variation on Edmonds’

search. In one iteration, Edmonds’ search finds a set of augmenting walks using

eligible edges, creates and dissolves blossoms, and performs dual adjustments on y

and z while maintaining the following Invariant:

Invariant 3.20 (Approximate Complementary Slackness). Let δ > 0 be some param-

eter such that w(e) is a multiple of δ, for all e ∈ E:

1. Granularity. y-values are multiples of δ/2 and z-values are multiples of δ.

2. Approximate Domination. For each unmatched edge and each blossom edge

e ∈ (E \ F) ∪ (
⋃
B∈ΩEB), yz(e) ≥ w(e)− δ.

3. Approximate Tightness. For each matched and each blossom edge e ∈ F ∪
(
⋃
B∈ΩEB), yz(e) ≤ w(e).

4. Blossom Maturity. For each blossom B ∈ Ω, |F∩(γ(B)∪I(B))| =
⌊
f(B)+|I(B)|

2

⌋
.

Root blossoms in Ω have positive z-values.

5. Unsaturated Vertices. All unsaturated vertices have the same y-value; their y-

values are strictly less than the y-values of other vertices.

Notice that here we relax Property 3.9(4) to allow unsaturated vertices to have

positive y-values. The purpose of Edmonds’ search is to decrease the y-values for

all unsaturated vertices while maintaining Invariant 3.20. Following [75, 55, 56], we

define the following eligibility criterion:

Criterion 3.21. An edge (u, v) is eligible if it satisfies one of the following:

1. e ∈ EB for some B ∈ Ω.

2. e 6∈ F and yz(e) = w(e)− δ.

3. e ∈ F and yz(e) = w(e).

A key property of this definition is that it is asymmetric for matched and un-

matched edges that are not in any blossom. As a result, if we augment along an

eligible augmenting walk P , all edges in P , except for those in contracted blossoms,

will become ineligible; and its image in the contracted graph will become entirely

ineligible.

We define Gelig to be the graph obtained from G by discarding all ineligible edges,

and let Ĝelig = Gelig/Ω be obtained from Gelig by contracting all blossoms in Ω. For

initialization, we set F = ∅, y = W/2, z = 0, Ω = ∅. Edmonds’ search repeatedly

82

1. Augmentation. Find a set of edge-disjoint augmenting walks Ψ̂ and a set of
alternating cycles Ĉ in Ĝelig, such that after removing their edges from Ĝelig,

Ĝelig does not contain any augmenting walk. Let Ψ and C be the preimages

of Ψ̂ and Ĉ in Gelig. Update F ← F ⊕

((⋃
P∈Ψ

P

)
∪

(⋃
C∈C

C

))
. After this

step, the new Ĝelig contains no augmenting walk.

2. Blossom Formation. Find a maximal set Ω′ of nested blossoms reachable
from an unsaturated vertex/blossom in Ĝelig. Update Ω← Ω ∪ Ω′ and then

update Ĝelig to be G/Ω. After this step, Ĝelig contains no blossom reachable
from an unsaturated vertex/blossom.

3. Dual Adjustment. Let Ŝ be the set of vertices from Ĝelig reachable from an
unsaturated vertex via an eligible alternating walk. We classify vertices in
Ŝ into V̂in, the set of inner vertices and V̂out, the set of outer vertices.5 Let
Vin and Vout be the set of original vertices in V represented by V̂in and V̂out.
Adjust the y and z values as follows:

y(v)← y(v)− δ/2, if v ∈ Vout
y(v)← y(v) + δ/2, if v ∈ Vin
z(B)← z(B) + δ, if B is a root blossom in V̂out

z(B)← z(B)− δ, if B is a root blossom in V̂in

Here a root blossom is an inclusionwise maximal blossom in Ω.

4. Blossom Dissolution. After Dual Adjustment some root blossoms in Ω might
have 0 z-values. Remove them from Ω until none exists. Update Ω and Ĝelig.

Figure 3.4: A (1− ε)-approximate f -matching algorithm for small integer weights.

83

executes the following steps: Augmentation, Blossom Formation, Dual Adjustment,

and Blossom Dissolution until all unsaturated vertices have 0 y-values. See Figure 3.4.

Now we define what we mean by reachable vertices in Steps 1–3 of the algo-

rithm, as well as the inner/outer labelling of nontrivial blossoms and singletons. This

is analogous to the reachable/inner/outer vertices in Edmonds’ Search for ordinary

matching [55, 56], except that we cannot simply treat a contracted blossom like a

single vertex. The corresponding definition for f -matching is given in Gabow [71, p.

46]. For completeness, we restate these definitions and further supplement them with

the notion of alternation, which provides further insights for reachability.

We start by defining alternation which follows from Definition 3.7 of an augment-

ing walk. We say two distinct edges e, e′ incident to a blossom/singleton B alternate

if either B is a singleton and e and e′ are of different types, or B is a nontrivial

blossom and |η(B) ∩ {e, e′}| = 1. An alternating walk/cycle in the contracted graph

is a walk/cycle where every two consecutive edges alternates. An augmenting walk

is an alternating walk with its terminal edges and terminal vertices satisfying the

requirement specified in Definition 3.7.

Ŝ is the set of blossoms and vertices in Ĝelig that are reachable from an unsatu-

rated singleton or an unsaturated light blossom via an eligible alternating walk. It

can be obtained by inductively constructing an alternating search tree rooted at an

unsaturated singleton or an unsaturated light blossom. We label the root nodes outer.

For a nonroot vertices v in Ŝ , let τ(v) be the edge in Ŝ pointing to the parent of v.

The inner/outer status of v is defined as follows:

Definition 3.22. [71, p. 46] A vertex v is outer if one of the following is satisfied:

1. v is the root of a search tree.

2. v is a singleton and τ(v) ∈ F .

3. v is a nontrivial blossom and {τ(v)} = η(v).

Otherwise, one the the following holds and v is classified as inner:

1. v is a singleton and τ(v) ∈ E\F .

2. v is a nontrivial blossom and {τ(v)} 6= η(v).

An individual search tree in Ŝ, call it T̂ , can be grown by repeatedly attaching a

child v to its parent u using an edge (u, v) that is eligible for u in Ŝ; See Gabow [71,

p. 46]. Let Bu denote the root blossom in Ω containing u. We say an edge (u, v) ∈ E
5In an actual implementation, the inner/outer labelling can be computed in the search in Blossom

Formation step. The labelling continues to be valid after contracting a maximal set of blossoms.

84

is eligible for u if it is eligible according to Criterion 3.21 and one of the following is

satisfied:

1. u is an outer singleton and e 6∈ F .

2. Bu is an outer blossom and {e} 6= η(Bu).

3. u is an inner singleton and e ∈ F .

4. Bu is an inner blossom and {e} = η(Bu).

Hence, Ŝ consists of singletons and blossoms that are reachable from an unsat-

urated singleton or light blossom, via an eligible alternating path. We call such

blossoms and singletons reachable, and all other singletons and blossoms unreachable.

A vertex v from the original graph Gelig is reachable (unreachable) if Bv is reachable

(unreachable) in Ĝelig.6

In Edmonds’ Search, primal and dual variables are initialized in a way that Prop-

erty 3.9(1) (Approximate Domination) is always satisfied, and Property 3.9 (Approxi-

mate Tightness) is vacuous (as the f -matching is initially empty) but Property 3.9(4)

(Unsaturated Vertices) is not. For this reason, there is a large gap between primal and

dual objective, besides the error introduced by approximate tightness and domina-

tion, at the beginning of the algorithm. This gap is given by the following, assuming

exact tightness and domination is satisfied (i.e. δ1 = δ2 = 0 in Property 3.9):

yz(V)− w(F) =
∑
v∈V

f(v)y(v) +
∑
B∈Ω

⌊
f(B) + |I(B)|

2

⌋
z(B) +

∑
e∈E

u(e)−
∑
e∈F

w(e)

=
∑
v∈V

def(v)y(v).

The goal of the algorithm can be seen as bridging the gap between the primal ob-

jective and dual objective while preserving all other complementary slackness prop-

erties. It can be achieve in two ways. Augmentations enlarge the f -matching by

augmenting F along some augmenting walk P . This will reduce the total deficiency

on the vertex set V . Dual Adjustments change the dual variables in a way that

decreases the y-value on unsaturated vertices while maintaining other approximate

complementary slackness conditions. In this algorithm, the progress of Edmonds’

Search is measured by the latter, i.e., the overall reduction in y-values of unsaturated

vertices.

6Of course, if Bv is inner and reachable in Ĝ, this only implies that β(Bv) is reachable from an
unsaturated vertex in G; other vertices in Bv may not be reachable in G.

85

v0

v1

v2

v3 v4

v5 v6 v7

v8 v9 v10

v11 v12 v13

v14 v15 v16

v17

v18

v19 v20

v21 v22

v23 v24

v25

v26

v27

Figure 3.5: An example of an eligible alternating search tree. Outer blossoms and
singletons are labeled using solid boundaries while inner blossoms and singletons have
dashed boundaries.

86

The correctness of our algorithm reduces to showing that Augmentation, Blossom

Formation, Blossom Dissolution, and Dual Adjustment all preserve Invariant 3.20.

Lemma 3.23. The Augmentation step, Blossom Formation step and Blossom Dis-

solution step preserve Invariant 3.20.

Proof. We first show that the identity of I(B) is invariant under an augmentation; in

particular, augmenting along an augmenting walk that intersects B does not change

I(B). As a result, the function yz(·) is invariant under augmentation. This is a

restatement of Lemma 5.3 in [71], for completeness, we restate the proof.

We use I(B), η(B) and I ′(B), η′(B) to denote the I-set and base edge of B before

and after the augmentation. By Definition 3.7 (augmenting walks), if P intersects B,

then

δP (B) = η(B) ∪ η′(B) = η(B)⊕ η′(B).

Let F and F ′ be the f -matching before and after augmentation. We have

δF ′(B) = δF (B)⊕ δP (B)

Combining both equations, we have

δF ′(B) = δF (B)⊕ (η(B)⊕ η′(B))

Hence

I ′(B) = δF ′(B)⊕ η′(B) = δF (B)⊕ η(B) = I(B).

By Invariant 3.20, any blossom edge e ∈
⋃
B∈Ω EB satisfies both approximate dom-

ination as well as approximate tightness, so it continues to satisfy these Invariants

after augmentation. For any eligible edge not in EB for any B ∈ Ω, by Criterion 3.21,

if e is matched, yz(e) = w(e) − δ, thus after the Augmentation step its duals sat-

isfy approximate domination. If e is unmatched, yz(e) = w(e), so its duals satisfy

approximate tightness after the Augmentation step.

Augmentation also preserves the maturity of blossoms. For any vertex v in a

nonterminal blossom B, degF (v) = degF ′(v) = f(v), so maturity is naturally pre-

served. If B is a terminal blossom, we have degF (v) = f(v) − 1 for v = β(B) and

degF (v) = f(v) for all v 6= β(B). Moreover, after augmentation B always has a base

edge η(B) = δP (B). Therefore, B is also mature after augmentation.

All the newly formed blossoms in this step must be mature and have 0 z-values,

so the value of the yz function is unchanged and all the invariants are preserved.

87

For blossom dissolution step, discarding blossoms with zero z-values preserves the

value of the yz function and hence preserves the invariants.

The crux of the proof is to show that Dual Adjustment also preserves Invari-

ant 3.20, in particular approximate domination and approximate tightness. Before

proving the correctness of Dual Adjustment, we first prove the following parity lemma,

which was first used in [75]; we generalize it to f -matching:

Lemma 3.24 (Parity). Let Ŝ be the search forest defined as above. Let S be the

preimage of Ŝ in G. The y-value of every vertex in S has the same parity, as a

multiple of δ/2.

Proof. The claim clearly holds after initialization as all vertices have the same y-

values. Now notice that every eligible edges e = (u, v) that straddles two distinct

singletons or nontrivial blossom must have its yz-value being w(e) or w(e)− δ. Since

w(e) is by assumption an integral multiple of δ, yz(e) is also a multiple of δ. Because

z-values are always multiples of δ, y(u) and y(v) must both be odd or even as a

multiple of δ/2.

Therefore it suffices to show that every vertex in a blossom B ∈ Ω has the same

parity.

To prove this, we only need to show that the Blossom Formation step only

groups vertices with the same parity together. This is because new blossoms B

are formed when we encounter a cycle of nontrivial blossoms and singletons CB =

〈B0, e0, B1, e1, ... , Bl−1, el−1〉 whose edges are eligible. Therefore the endpoints of those

edges share the same parity. Hence by induction, all vertices in B also share the same

parity. The Dual Adjustment step also preserves this property as vertices in a blos-

som will have the same inner/outer classification and thus have their y-values all

incremented or decremented by δ/2.

The following theorem is a generalization of Lemma 5.8 in [71] to approximate

complementary slackness. The proof follows from the same framework but has a

slightly more complicated case analysis.

Lemma 3.25. Dual Adjustment and Blossom Dissolution preserves Invariant 3.20.

Proof. We focus on part 2 (Approximate Domination) and part 3 (Tightness) of Prop-

erty 3.9. Part 1 (Granularity) is naturally preserved since we are adjusting y-values

by δ/2 and z-values by δ. Part 5 (Unsaturated vertices duals) is also preserved be-

cause unsaturated vertices are labelled as outer and their dual is adjusted by the same

88

amount. Maturity of blossoms is not affected by Dual Adjustment. Although after

dual adjustment, some (inner) root blossoms might have 0 z-values, such blossoms

are removed in Blossom Dissolution step so part 4 for Invariant 3.20 is restored at

the end of the iteration.

Similar to ordinary matching, preservation of approximate domination and tight-

ness can be argued using a case analysis on vertices and blossoms dual. Notice

that there are more cases to consider in f -matching compared to ordinary matching.

Different cases can be generated for an edge (u, v) by considering the inner/outer

classification of both endpoints, whether (u, v) is matched, whether (u, v) is the base

edge for its respective endpoints, if they are in blossoms, and whether (u, v) is eligible.

In the following analysis, we follow the framework in Lemma 5.8 [71] to narrow down

the number of meaningful cases to just 8. Notice that Lemma 5.8 [71] can be seen as

a version of this lemma for exact complementary slackness. Although one can expect

the same conclusion to hold, the proof still differs in details.

We consider an edge e = (u, v). If u and v are both unreachable, or both in the

same root blossom, yz(u, v) clearly remains unchanged after Dual Adjustment.

Therefore we can assume Bu 6= Bv and at least one of them, say Bu, is reachable.

Every reachable endpoint will contribute a change of ±δ/2 to yz(u, v). This is the

adjustment of y(u), plus the adjustment of z(Bu) if e ∈ I(Bu). Define ∆(u) to be the

net change of the quantity y(u) +
∑

e∈I(Bu) z(Bu). By definition of Dual Adjustment,

we have the following scenarios:

• ∆(u) = +δ/2: This occurs if u is an inner singleton, or Bu is an outer blossom

with e ∈ I(Bu), or an inner blossom with e 6∈ I(Bu).

• ∆(u) = −δ/2: This occurs if u is an outer singleton, or Bu is an inner blossom

with e ∈ I(Bu), or an outer blossom with e 6∈ I(Bu).

Then we consider the effect of a Dual Adjustment on the edge e = (u, v). First

we consider the case when exactly one of Bu and Bv, say Bu, is in Ŝ. In this case

only u will introduce a change on yz(u, v):

Case 1: u is an inner singleton: Here ∆(u) = +δ/2. In this case approximate

domination is preserved, so we only need to worry about approximate tightness and

hence assume e ∈ F . Since Bv is not in Ŝ, e cannot be eligible for Bu or Bv would

have been included in Ŝ as a child of Bu. Because e ∈ F , e cannot be eligible. Hence

yz(e) < w(e). By Granularity, yz(e) ≤ w(e) − δ/2. Therefore we have yz(e) ≤ w(e)

after the Dual Adjustment.

89

Case 2: u is an outer singleton: Here ∆(u) = −δ/2. In this case tightness is

preserved and we only need to worry about approximate dominination when e 6∈ F .

Similar to Case 1, e must be ineligible and yz(e) ≥ w(e)−δ/2. After Dual Adjustment

we have yz(e) ≥ w(e)− δ.

Case 3: Bu is an inner blossom: We divide the cases according to whether e is

matched or not.

Subcase 3.1: e ∈ F . If e 6∈ η(Bu), then e ∈ I(Bu) and ∆(u) = −δ/2. In

this case tightness is preserved. If e ∈ η(Bu), then e 6∈ I(Bu) and ∆(u) = +δ/2.

But e cannot be eligible since otherwise Bv would be in the search tree, so we have

yz(e) ≤ w(e)− δ/2 and yz(e) ≤ w(e) after Dual Adjustment.

Subcase 3.2: e 6∈ F . This is basically symmetric to Subcase 3.1. If e ∈ η(Bu),

then e ∈ I(Bu) and ∆(u) = −δ/2. But e cannot be eligible therefore yz(e) ≥
w(e)−δ/2, and yz(e) ≥ w(e)−δ after Dual Adjustment. If e 6∈ η(Bu), then e 6∈ I(Bu)

and ∆(u) = +δ/2, so approximate Domination is preserved.

Case 4: Bu is an outer blossom:

Subcase 4.1: e ∈ F . If e ∈ η(Bu), then Bv must be the parent of Bu in the

search tree, contradicting the fact that Bv 6∈ Ŝ. Thus e 6∈ η(Bu), so e ∈ I(Bu) and

∆(u) = +δ/2. Since Bv is not reachable, e cannot be eligible, so yz(u, v) ≤ w(e)−δ/2
before Dual Adjustment and yz(u, v) ≤ w(e) afterward.

Subcase 4.2: e 6∈ F . Similarly, e 6∈ η(Bu), so e 6∈ I(Bu) and ∆(u) = −δ/2.

Similarly Bv is not reachable so e cannot be eligible. Therefore we have yz(u, v) ≥
w(e)− δ/2 and yz(u, v) ≥ w(e)− δ after Dual Adjustment.

This completes the case when exactly one of e’s endpoints is reachable. The

following part will complete the argument for when both endpoints are reachable. We

argue that three scenarios can happen: either ∆(u) and ∆(v) are of opposite signs and

cancel each other out, or ∆(u) and ∆(v) are of the same sign and the sign aligns with

the property we wish to keep, or if neither case holds, we use Lemma 3.24 (Parity)

to argue that there is enough room for dual adjustment not to violate approximate

domination or tightness.

We first examine tree edges in Ŝ. In this case we assume Bu is the parent of Bv

and e is the parent edge of Bv. Hence e must be eligible for Bu. We argue by the

sign of ∆(u).

Case 5: If e is a tree edge and ∆(u) = +δ/2:

90

There are three cases here: u is an inner singleton, Bu is an outer blossom with

e ∈ I(Bu), or Bu is an inner blossom with e 6∈ I(Bu). We first observe that in all

three cases, e ∈ F . This is straightforward when u is an inner singleton. If Bu is an

outer blossom with e ∈ I(Bu), we know that since Bu is outer, e 6∈ η(Bu), so therefore

e ∈ F . If Bu is an inner singleton with e 6∈ I(Bu), since Bu is inner, e ∈ η(Bu), so

combined with the fact that e 6∈ I(Bu) we have e ∈ F .

Notice that since Bu is the parent of Bv, and e ∈ F , v can be an outer singleton,

or Bv is an outer blossom with e ∈ η(Bv), or Bv is an inner blossom with e 6∈ η(Bv).

In the second case e 6∈ I(Bv) and in the third case e ∈ I(Bv). In all three cases we

have ∆(v) = −δ/2, and yz(e) remains unchanged.

Case 6: If e is a tree edge and ∆(u) = −δ/2: Case 6 is symmetric to Case 5.

Bu can either be an outer singleton, an inner blossom with e ∈ I(Bu), or an outer

blossom with e 6∈ I(Bu). In all cases, the fact that e must be eligible for Bu implies

e 6∈ F , and Bv can only be an inner singleton, an outer blossom with e ∈ I(Bu),

or an inner blossom with e 6∈ I(Bv). Hence we have ∆(v) = +δ/2 so yz(e) remains

unchanged.

Now suppose Bu and Bv are both in Ŝ but (u, v) is not a tree edge. We still break

the cases according to the sign of ∆(u) and ∆(v). Here we only need to consider when

∆(u) = ∆(v), since otherwise they cancel each other and yz(e) remains constant.

Case 7: If e is a tree edge and ∆(u) = ∆(v) = δ/2. In this case yz(e) is

incremented by δ. Therefore we only need to worry about tightness when e ∈ F .

Notice that Bu can only be an inner singleton, an outer blossom with e ∈ I(Bu) or

an inner blossom with e 6∈ I(Bu). When Bu is an outer blossom, e 6∈ η(Bu). When

Bu is an inner blossom, since e ∈ F and e 6∈ I(Bu), e ∈ η(Bu). The same holds for

the other endpoint Bv.

It is easy to verify that in all cases, e is eligible for Bu (or Bv) if and only if e is

eligible. But notice that after Augmentation and Blossom Formation steps, there is no

augmenting walk or reachable blossom in Ĝelig, i.e., there cannot be an edge (u, v) that

is eligible for both endpoints Bu and Bv since otherwise one can find an augmenting

walk or a new reachable blossom. Thus e is ineligible and yz(e) < w(e). But by

Invariant 3.20(1) (Granularity) and Lemma 3.24 (Parity), both w(e) and yz(e) must

be multiples of δ. Therefore we have yz(e) ≤ w(e) − δ. This implies yz(e) ≤ w(e)

after Dual Adjustment.

Case 8: If e is a tree edge and ∆(u) = ∆(v) = −δ/2. Here yz(e) is decremented

by δ. Similar to the case above, we can assume e 6∈ F and only focus on approximate

91

domination. Bu can be an outer singleton, inner blossom with e ∈ I(Bu), or outer

blossom with e 6∈ I(Bu). Since e 6∈ F , e ∈ I(Bu) if and only if e ∈ η(Bu). Therefore

if e is eligible, e must be eligible for both Bu and Bv. But similar to Case 7, e

being eligible for both endpoints will lead to the discovery of an additional blossom

or augmenting walk in Gelig, which is impossible after Augmentation and Blossom

Formation. Therefore we conclude in this case e is ineligible and yz(e) > w(e)−δ. By

Lemma 3.24 (Parity), we have yz(e) ≥ w(e) before Dual Adjustment, so approximate

domination still holds after Dual Adjustment.

Theorem 3.26. A (1− ε)-approximate f -matching can be computed in O(Wmε−1)

time.

Proof. We initialize the f -matching to be ∅ and y(v) = W/2 for all v. Set δ =

1/ dε−1e ≤ ε. Since each iteration decreases y-values by δ/2, y-values of unsaturated

vertices takes (W/2)/(δ/2) = O(Wε−1) iterations to reach 0, thereby satisfying Prop-

erty 3.9 with δ1 = δ, δ2 = 0. By invoking Lemma 3.10, with F ∗ being the optimum

f -matching, we have

w(F) ≥ w(F ∗)− |F ∗|δ ≥ w(F ∗)− w(F ∗)δ ≥ (1− ε)w(F ∗).

For the running time, each iteration of Augmentation, Blossom Formation, Dual

Adjustment, and Blossom Dissolution can be implemented in linear time. We defer

the detailed implementation to Section 3.5. There are a total of W/δ = O(Wε−1)

iterations, so the running time is O(Wmε−1).

As a result of Lemma 3.19 and Lemma 3.15, we also obtain the following result:

Corollary 3.27. A (1+ε)-approximate f -edge cover can be computed in O(Wmε−1)

time.

Proof. Given a weighted graph G and degree constraint function f , let f ′ = deg−f be

the complement of f . With some paramter δ we run the algorithm from Theorem 3.26

to find an f ′-matching F ′ that satisfies Property 3.9 with parameters (δ, 0). By

Lemma 3.19, its complement F = E \ F ′ satisfies Property 3.13 with parameter

(0, δ). By Lemma 3.15, we have

w(F)− δ|F | ≤ w(F ∗)

(1− δ)w(F) ≤ w(F ∗)

92

Then we can choose a δ = Θ(ε) to guarantee that we get an (1 + ε)-approximate

minimum weight f -edge cover.

Also notice that when W = O(1) is constant, Theorem 3.26 and Corollary 3.27

are the fastest known approximation algorithms for these problems.

3.4.2 A Scaling Algorithm for General Weights

In this section, we can modify the O(Wmε−1) weighted f -matching algorithm to

work on graphs with general real weights. The modification is based on the scaling

framework in [55]. If the weights are arbitrary reals, we can round them to integers

in [W], W = poly(n), with negligible loss in accuracy. Thus we can assume without

loss of generality that all weights are O(log n)-bit integers. The idea is to divide the

algorithm into into L = logW + 1 scales that execute Edmonds’ search with expo-

nentially diminishing δ. The goal of each scale is to use O(ε−1) Edmonds’ searches

to halve the y-values of all unsaturated vertices while maintaining a more relaxed

version of approximate complementary slackness. By manipulating the weight func-

tion, approximate domination, which is weak at the beginning, is strengthened over

scales, while approximate tightness is weakened in exchange. Assume without loss of

generality that W > 1 and ε < 1 are powers of two. We define δi, 0 ≤ i ≤ L be the

error parameter for each scale, where δ0 = εW and δi = δi−1/2 for 0 < i ≤ L. Each

scale works with a new weight function wi which is the old weight function rounded

down to the nearest multiple of δi, i.e, wi(e) = δi bw(e)/δic. In the last scale WL = w.

We maintain a scaled version of Invariant 3.20 at each scale:

Invariant 3.28 (Scaled approximate complementary slackness with positive unsat-

urated vertices). At scale i = 0, 1, ... , L = logW , we maintain the f -matching F ,

blossoms Ω, and duals y, z to satisfy the following invariant:

1. Granularity. All y-values are multiples of δi/2, and z-values are multiples of δi.

2. Approximate Domination. For each e 6∈ F or e ∈ EB for some B ∈ Ω, yz(e) ≥
wi(e)− δi.

3. Approximate Tightness. For each e ∈ F ∪ (
⋃
B∈Ω EB), let je ≤ i be the index of

last scale that e joined the set F ∪
⋃
B∈Ω EB. We have yz(e) ≤ wi(e)+2δje−2δi.

4. Mature Blossoms. For each blossom B ∈ Ω, |F ∩(γ(B)∪I(B))| =
⌊
f(B)+|I(B)|

2

⌋
.

5. Unsaturated Vertices’ Duals. The y-values of all unsaturated vertices are the

same and less than the y-values of other vertices.

93

Based on Invariant 3.28, Edmonds’ search will use the following Eligibility crite-

rion:

Criterion 3.29. At scale i, an edge e ∈ E is eligible if one of the following holds

1. e ∈ EB for some B ∈ Ω.

2. e 6∈ F and yz(e) = wi(e)− δi.

3. e ∈ F and yz(e)− wi(e) is a nonnegative integer multiple of δi.

This is similar to Criterion 3.21 except for we have a relaxed criterion for when

e ∈ F . This relaxation is due to the fact that tightness is weakened at termination of

each scale, and the eligibility criterion is then relaxed to accommodate it. We argue

below that this relaxation does not affect the correctness of Edmonds’ Search.

Before the start of scale 0, the algorithm initializes F,Ω, y, z similar to the algo-

rithm for small edge weights: y(u) ← W/2, Ω ← ∅, F ← ∅. At scale i, the duals

of unsaturated vertices start at W/2i+1. We execute (W/2i+2)/(δi/2) = O(ε−1) iter-

ations of Edmonds’ search with parameter δi, using Criterion 3.29 of eligibility. The

scale terminates when the y-values of unsaturated vertices are reduced to W/2i+2, or

in the last iteration, as they reach 0.

Notice that although the invariant and the eligibility criterion are changed, the

fact that Edmonds’ search preserves the complementary slackness invariant still holds.

The proof of Lemma 3.25 goes through, as long as the definition of eligibility guar-

antees the following parity property:

Lemma 3.30. At any point of scale i, let S be the set of vertices in Gelig reachable

from an unsaturated vertex using eligible edges. The y-value of any vertex v ∈ V with

Bv ∈ S has the same parity as a multiple of δi/2.

We omit the proof of Lemma 3.30. The details are similar to Lemma 3.25, using

Criterion 3.29 in lieu of Criterion 3.21.

Now we sketch why Criterion 3.29 ensures Invariant 3.28, in particular, how it

ensures approximate domination and approximate tightness. We will not prove it

formally as the details are very similar to Lemma 3.25 and Lemma 3.23.

Observe that primal and dual variables initially satisfy Invariant 3.28, in particular

parts 2 and 3. This is because all edges have yz-values equal to W , and no edge is in

M
⋃
B∈Ω EB.

Notice that dual adjustment never changes the yz-values of edges inside any blos-

som B ∈ Ω, while it will have the following effect on edge e if its endpoints lie in

different blossoms.

94

1. If e 6∈ F and is ineligible, yz(e) might decrease but will never drop below the

threshold for eligibility, i.e., it will not drop below wi(e)− δi.

2. If e 6∈ F and is eligible, yz(e) will never decrease.

3. If e ∈ F and is ineligible, yz(e) might increase but will never exceed the thresh-

old for eligibility, i.e., it will not raise above wi(e) + 2δje − 2δi.

4. If e ∈ F and is eligible, yz(e) will never increase.

In other words, with the proper definition of Eligibility, Dual Adjustment will not

destroy approximate domination and approximate tightness. Therefore Edmonds’

search within scale i will preserve Invariant 3.28.

We also need to manipulate the duals between different scales to ensure Invari-

ant 3.28. Formally, after completion of scale i, we increment all the y-values by

δi+1, i.e., if yz′ and yz are the function before and after dual adjustment, yz(e) =

yz′(e) + 2δi+1. No change is made to F,Ω and z. This will ensure both approximate

domination and approximate tightness hold at scale i + 1. At the previous scale we

have approximate domination yz(e) ≥ wi(e) − δi. The weights at scale i and i + 1

satisfy wi+1(e) ≤ wi(e) + δi+1. Thus, after dual adjustment,

yz(e) = yz′(e) + 2δi+1

≥ wi(e)− δi + 2δi+1

≥ wi+1(e)− δi+1 − δi + 2δi+1

= wi+1(e)− δi+1

For approximate tightness, we have

yz(e)− wi+1(e) ≤ yz(e)− wi(e) ≤ 2δje − 2δi + 2δi+1 = 2δje − 2δi+1,

since δi+1 = δi/2.

This step is the main motivation for the definition of Invariant 3.28 (3), as ap-

proximate tightness is gradually relaxed in this step. The algorithm terminates when

the y-values of all unsaturated vertices reach 0. It terminates with an f -matching F

and its corresponding duals y, z and Ω satisfying the following property:

Property 3.31 (Final Complementary Slackness).

1. Approximate Domination. For all e 6∈ F or e ∈ EB for any B ∈ Ω, yz(e) ≥
w(e)− δL.

95

2. Approximate Tightness. For all e ∈ F ∪ (
⋃
B∈ΩEB), let je be the index of the

last scale that e joined F ∪ (
⋃
B∈ΩEB). We have yz(e) ≤ w(e) + 2δje.

3. Blossom Maturity. For all blossoms B ∈ Ω, |F∩(γ(B)∪I(B))| =
⌊
f(V)+|I(B)|

2

⌋
).

4. Unsaturated Vertices’ Duals. The y-values of all unsaturated vertices are 0.

This implies approximate domination and approximate tightness are satisfied

within some factor 1 ± O(ε). For approximate domination this is easy to see since

w(e) ≥ 1 and δL = ε/2, thus yz(e) ≥ (1 − ε/2)w(e) if e 6∈ F . For approxi-

mate tightness, we can lower bound the weight of e if e last entered F or a blos-

som at scale j = je. Throughout scale j, the y-values are at least W/2j+2, so

w(e) ≥ wj(e) ≥ 2(W/2j+2)− δj. Since δj = εW/2j, yz(e) ≤ w(e) + 2δj ≤ (1 + 4ε)w(e)

when e ∈ F .

This implies we have O(ε) multiplicative error for both approximate domination

and approximate tightness. Together with the Lemma 3.12, we can show F is a

(1− ε)-approximate maximum weight f -matching.

The running time of the algorithm is O(mε−1 logW) because there are logW + 1

scales, and each scale consists of O(ε−1) iterations of Edmonds’ search, which can be

implemented in linear time.

Theorem 3.32. A (1 − ε)-approximate maximum weight f -matching can be com-

puted in O(mε−1 logW) time.

Corollary 3.33. A (1 + ε)-approximate minimum weight f -edge cover can be com-

puted in O(mε−1 logW) time.

3.4.3 A Linear Time Algorithm

We also point out that by applying techniques in [55, §3.2], the algorithm can be

modified to run in time independent of W . The main idea is to force the algorithm to

ignore an edge e for all but O(log ε−1) scales. First, we index edges by the first scale

that it can ever become eligible. Since at scale i, y-values can drop at most to W/2i+1,

any edge with weight below W/2i cannot be eligible at scale i. Let µi = W/2i and

scale(e) be the unique i such that w(e) ∈ [µi, µi−1). Notice that we can ignore e in any

scale j < scale(e). Moreover, we will also forcibly ignore e at scale j > scale(e) + λ

where λ = log ε−1 +O(1). Ignoring an otherwise eligible edge might cause violations

of approximate tightness and approximate domination. However, since the y-values

of free vertices are O(εw(e)) at this point, this violation will only amount to O(εw(e)).

96

To see this, notice that µi is also an upper bound to the amount of change to

yz(e) caused by all Dual Adjustment after scale i. Hence, after scale scale(e) +λ, the

total amount of violation to approximate tightness and approximate domination on

e can be bounded by µscale(e)+λ = O(ε)µscale(e) = O(ε)w(e), which guarantees we still

get a (1−O(ε))-approximate solution.

Therefore, every edge takes part in at most log ε−1 +O(1) scales, with O(ε−1) cost

per scale. The total running time is O(mε−1 log ε−1). We are omitting the full proof

of Theorem 3.34.

Theorem 3.34. A (1− ε)-approximate maximum weight f -matching and a (1 + ε)-

approximate minimum weight f -edge cover can be computed in O(mε−1 log ε−1) time,

independent of the weight function.

3.5 A Linear Time Augmenting Walk Algorithm

In this section, we show how to implement the augmentation and blossom formation

steps in linear time. The goal of the augmentation step is to find a set of augmenting

walks and alternating cycles in the contracted eligible subgraph, such that after the

removal of these cycles and walks, the subgraph no longer contains any augmenting

walks. In the blossom formation step, we are given a contracted graph without any

augmenting walks. The goal is to find a maximal set of reachable and contractable

blossoms, i.e., a set of blossoms whose contraction will leave the graph without any

reachable and contractable blossoms.

We formalize this problem, called Disjoint Paths and Blossoms Problem, as fol-

lows:

Definition 3.35. In the Disjoint Path and Blossoms Problem, we are given a graph

G = (V,E), where V is partitioned into two sets Vs, Vb, an f -matching M , and a

partial function η : Vb 7→ E such that η(v) ∈ δ(v) if η(v) exists. Here v ∈ Vb represents

a contracted blossom and η(v) the incident base edge, if any. The goal is to find a set

of alternating cycles C, a set of augmenting walks Ψ where all cycles and walks are

mutually edge disjoint, such that after removing all edges in C and Ψ, the remaining

graph G does not contain any augmenting walks. Moreover, we also output a laminar

set of nested blossoms Ω′ on V , such that after contracting blossoms in Ω′, the new

contracted graph no longer contains any reachable and contractable blossom.

There are several subtleties in this definition. G here is used as a contracted graph

obtained by contracting a set of nested blossoms Ω from an underlying graph. There-

97

fore, augmenting walks and alternating cycles are defined according to Definition 3.7

and the definition of alternation from Section 3.4.1, by treating η(v) as v’s base edge

when v represents a nontrivial blossom. As a result, an alternating cycle in G might

not have even length in G and an augmenting walk might not have odd length in G.

It is guaranteed, by Lemma 3.2, that the pre-images of these walks and cycles in the

underlying graph are odd and even, respectively. Moreover, it is not guaranteed that

no augmenting walk exists in the underlying graph after removing the image of Ψ

and C in it.7 However, it is sufficient since in the proof of Lemma 3.25, we only use

the fact that the contracted graph does not contain any augmenting walks.

This problem is noticeably different from the problem solved in [75, §8] for 1-

matching. Instead of looking for a maximal set of vertex disjoint augmenting paths,

we look for a set of edge disjoint augmenting walks Ψ in conjunction with a set of

alternating cycles C whose removal removes all augmenting walks from G.

Both algorithms try to search for a set of augmenting paths/walks by building

an alternating structure S (not necessarily tree) whose topology is defined in Sec-

tion 3.4.1. However, in 1-matching, the search structure branches only at outer

singletons and blossoms, while in f -matching, it also branches at inner singletons. As

a result, when a search process arrives at a vertex v, it also carries an inner/outer

tag to remind the algorithm whether it is looking for an unmatched/non-η edge, or a

matched/η edge to continue extending the structure.

A key difference between 1-matching and f -matching is that augmenting walks can

be non-simple, i.e., they may contain an alternating cycle as a subwalk. Consequently,

when the search process reaches an outer (inner) singleton u, it can potentially find,

through an unmatched (matched) edge an inner (outer) singleton v that has already

been visited before in the same search, and proceed to discover an augmenting walk.

This phenomenon is illustrated in Figure 3.6. If the algorithm intends to discover

(v0, v1, v2, v3, v4, v1, v5, v6) as an augmenting walk, it will reach v1 with inner tag twice;

first from v0, then from v4. Notice that in ordinary matching, edge (v1, v5) cannot exist

and edge (v4, v1) is ignored as it provides no useful information regarding whether v1

is an inner/outer vertex.

One might propose to ignore and discard the edge (v4, v1) and return the simple

path (v0, v1, v5, v6). However, edges like (v4, v1) cannot simply be discarded from fu-

ture searches as they might participate in other augmenting walks, say (v10, v9, v4, v1, v8, v7)

7This is because multiple augmenting walks in the underlying graph can intersect a single blossom
in Ω before we contract the blossom, while after contracting a blossom, any augmenting walk or
alternating cycle going through the blossom will forbid the other walks and cycle to use the same
blossom again (as it must go through the base edge).

98

v0

v1

v2

v3

v4

v5v6

v7

v8

v9 v10

Figure 3.6: Example of a self-intersecting search structure and nonsimple augmenting
walk. Here v0 is the root of the search structure and {v0, v2, v4, v5} is the set of outer
vertices and {v1, v3} is the set of inner vertices. The search begins with v0 and proceed
to v1, v2, v3, v4 in order. The procedure then scan the edge (v4, v1) and because it
connect an outer vertex to an inner vertex that is already visited, it might ignore the
edge and backtrack to v1 and return the augmenting walk 〈v0, v1, v5, v6〉. However,
although (v1, v4) is scanned and ignored, it cannot be discarded from future search as
another augmenting walk, such as the dashed walk 〈v7, v8, v1, v4, v9, v10〉 might make
use of the edge (v1, v4) and Ψ will not be maximal if (v1, v4) participating in some
augmenting walks.

that is edge disjoint from (v0, v1, v5, v6). To achieve a linear running time, it is essen-

tial that edges of this type only get scanned a constant number of times.

Following the spirit of DFS, we wish to maintain that the search structure is

not self-intersecting, i.e., each vertex is visited at most once with an inner tag, and

once with an outer tag. Whenever we discover an edge that leads to a self-intersection

(e.g. (v4, v1) in Figure 3.6), we augment along the alternating cycle introduced by this

edge (e.g. (v1, v2, v3, v4, v1)) and thereby remove every edge on the cycle from eligible

subgraph. We backtrack to v1 and the search continues (to the edge (v1, v5)). This

action has the same effect as allowing augmentation along the non-simple augmenting

walk ((v0, v1, v2, v3, v4, v1, v5, v6)), but conceptually avoids a self-intersecting search

structure and thus makes the analysis much simpler.

Overview of the algorithm. In this algorithm, we follow a standard recursive

framework for computing a maximal set of edge disjoint paths, see [132, §9]. The

algorithm proceeds in phases. In phase i, i ≥ 1, we choose a vertex r that is still un-

saturated after augmentations in phase 1, 2, ... , i−1, and call a procedure SEARCH-ONE

from this vertex. SEARCH-ONE searches for an augmenting walk from r, and termi-

nates by either discovering an augmenting walk Pi, or correctly concluding that no

99

augmenting walk can be found starting from r, in which case we let Pi be empty.

Along the way it may find a set of alternating cycles Ci. It then augments along

the augmenting walk as well as the set of alternating cycles it encounters during the

search. The phase ends by discarding the set of edges encountered by the search

procedure.

Formally, the input to SEARCH-ONE is a subgraph Gi = (Vi, Ei) of G, an fi-

matching Mi where fi(v) ≤ f(v) for all v ∈ Vi and Mi ⊆ M , and an unsaturated

vertex r ∈ Vi with respect to fi and M . SEARCH-ONE finds a augmenting walk Pi

(possibly empty), a set of alternating cycles Ci and a set of edges Hi ⊆ Ei that satisfy

the following property, in O(|Hi|) time.

Property 3.36. Any augmenting walk that intersects Hi must also intersect Pi or a

cycle in Ci.

After SEARCH-ONE terminates, we terminate the phase by removing Hi from Gi.

If Pi is empty, we also remove the vertex r from Gi. Let the resulting graph be Gi+1.

Define the fi+1-matching Mi+1 by Mi+1 = Mi \Hi and

fi+1(v) =



fi(v)− |Mi ∩Hi ∩ δ(v)| − 2|Mi ∩Hi ∩ δ0(Mi)| If v is not a ter-

minal vertex of

Pi.

fi(v)− |Mi ∩Hi ∩ δ(v)| − 2|Mi ∩Hi ∩ δ0(Mi)| − 1 If Pi is a

nonempty non-

closed augment-

ing walk and v

is one of the two

terminal vertices

of Pi.

fi(v)− |Mi ∩Hi ∩ δ(v)| − 2|Mi ∩Hi ∩ δ0(Mi)| − 2 If Pi is a

nonempty closed

augmenting walk

that starts and

ends with v.

Conceptually, this change restricts the fi-matching Mi to the subgraph Gi+1 while

maintaining the property that each vertex still has the same deficiency, except for the

terminal vertices of Pi, whose deficiencies are decremented by 1 (or 2 for closed walks)

after augmenting along Pi. Finally, the algorithm adds the path Pi and cycles Ci to

100

Ψ and C, respectively, and terminates phase i.

A detailed illustration of SEARCH-ONE. The call to SEARCH-ONE in phase i main-

tains a laminar set of blossoms Ωi over vertices in Gi. Here Ωi only contains the

blossoms newly discovered in the search procedure and does not include the already

contracted blossoms inherited from the input (vertices in Vb). In this section, we use

the word blossom solely for the newly discovered blossoms in Ωi and blossom vertices

for blossoms inherited from the input, i.e., vertices in Vb. Singletons still refer to

vertices in Vs. We use B(v) to denote the inclusion-wise maximal blossom in Ωi that

contains v and β(v) to denote the base of B(v). If v is not contained in any nontrivial

blossom in Ωi, we define B(v) = {v} and β(v) = v. We denote the search structure on

Gi with Si, and use Ti to denote the search structure obtained from Si by contracting

all blossoms in Ωi. Similar to [75, §8], the search structure Si is a subgraph of Gi but

not necessarily a tree, while we maintain that Ti must be a tree. Each blossom also

might have a base edge η(B). Base edge of a blossom, if exists, always connects it to

its parent in Ti.

Blossoms are maintained using a data structure that supports the following op-

eration: given a blossom B, a vertex v in blossom B, and a bit s ∈ {0, 1}, the data

structure returns the alternating walk Ps(v) from v to β(B) whose existence is guar-

anteed in Lemma 3.2, in time linear in the length of the walk. This can be done using

simple bookkeeping as in Gabow’s implementation for Edmonds algorithm [68] and

we leave the details to the readers.

SEARCH-ONE explores the graph in a depth first fashion: The search begins at an

unsaturated singleton or an unsaturated blossom vertex r in Gi. Similar to DFS,

when the locus of the search is at u we have an alternating walk P (u) from r to u in

Gi. We call u the active vertex and P (u) the active walk. For efficiency purposes, we

do not maintain the active walk explicitly. Instead, we maintain a contracted active

walk P̂ (u). The contracted active walk P̂ (u) is of the form 〈B0, e0, B1, e1, ... , ek−1, Bk〉,
where r ∈ B1, u ∈ Bk and each Bj are either singletons or blossoms (not necessarily

maximal) in Ωi. Each edge ej connects Bj−1 to Bj and edge ej and ej+1 alternates

at Bj for all 0 ≤ j < k − 1.

Moreover, we can without lost of generality assume the last element Bk on the

contracted walk must be a trivial blossom. This is because in our algorithm when a

new blossom is created, all edges with exactly one endpoint inside the blossom will

be made eligible and explored. Therefore, any nontrivial blossom must have all its

incident edges explored and exhausted and we can backtrack along the active walk

101

until we get to the trivial blossom on the walk.

The active walk P (u) can be reconstructed from P̂ (u) in time O(|P (u)|) using the

blossom data structure mentioned above. Moreover, all blossoms in Ωi are outer from

the perspective of definition 3.22, i.e. every blossom’s base edge, if it exists, always

connects it to its parent. Moreover, given any vertex u, it also support finding β(u)

in constant time[73].

To maintain the property that the active walk is alternating, the algorithm also

maintains tags for each vertex in Si, which is either inner or outer, or both. When the

search reaches the vertex u, u is labelled as outer if the active walk to u terminates

with an matched edge in the case when u is a singleton, or the base edge when u ∈ Vb
is a blossom vertex. A vertex in a blossom can be simultaneously inner and outer.

Initially, the contracted active walk consists of a single vertex r, and r is labelled

outer. At each iteration, the algorithm explores a new edge (u, v) incident to the

active vertex u that is eligible for u with respect to its current tag. On exploring

the edge (u, v), the algorithm does one of the following six steps depending on the

location of v with respect to the search structure, and the tag v is carrying:

1. Augmentation: When v is an unsaturated singleton and (u, v) is unmatched, or

v is an unsaturated blossom vertex, or when v = r is the root of the search tree

and the deficiency of v is at least 2, P (u)◦(u, v) forms an augmenting walk. We

extend the active path with (u, v), terminate the search and set the active walk

P (v) = P (u) ◦ (u, v) and Pi = P (v). In this step, the edge (u, v) is considered

explored from u.

2. DFS Extension: If v is not in the search structure Si, and the condition for

Augmentation is not satisfied, i.e., v is saturated or v is an unsaturated singleton

and (u, v) is matched, add (u, v) to the search structure Si and make v a child

of B(u) in Ti. Set the active vertex to v and extend the contracted active walk

P̂ (v) = P (u) ◦ (u, v) accordingly. Tag v inner if v ∈ Vs and (u, v) 6∈ M , or if

v ∈ Vb and {(u, v)} 6= η(v), and outer otherwise. In this step, edge (u, v) is

considered explored from u.

3. Blossom Formation: If we fail to enter the previous two cases, v must be inside

the search structure Si. If B(u) 6= B(v) and B(v) is a descendant of B(u) in Ti,

and edge (u, v) is also eligible for v, then we can form a new blossom. The new

blossom B consists of subblossoms on the Ti alternating path P̃ from B(u) to

B(v). When we form this blossom, every singleton and blossom vertex in the

Ti path from B(u) to B(v) becomes simultaneously inner and outer. It is then

102

necessary for the DFS procedure to visit these vertices again and explore a new

set of eligible edges.

We add the blossom B to Ωi and set B(w) = B and β(w) = β(u) for each vertex

w that is inside a blossom in P̃ and label all these vertices simultaneously inner

and outer. We also define the base edge of B to be the base edge of B(u) if

B(u) is a nontrivial blossom, or the last edge in the active walk P (u) otherwise.

Now let 〈B(u) = B1, e1, B2, e2, ... , ek−1, Bk = B(v)〉 be the tree path from B(u)

to B(v). We extend the contracted active walk from B(u) around the blossom

and back to B(u) as follows: First go from B(u) to B(v) via edge (u, v), then

follow the tree path back to B(u). The new contracted active walk P̂ (u) is

P̂ ′(u) ◦ (u, v) ◦ 〈Bk, ek−1, Bk−1, ... , e1, B1〉, where P̂ ′(u) is the old contracted

active walk from B(r) to B(u). Notice that this step can be implemented in

O(k) time where k, defined above, is the number of immediate subblossoms of

B.

We then start exploring edges incident to vertices in B that become eligible

for its endpoint in B during this step. As mentioned before, vertices that are

already in some nontrivial blossom before contracting B are already both inner

and outer and do not get any new eligible edges. Therefore, it suffices to only

examine those nontrivial blossoms.

In this step, edges on the walk P̃ are regarded as explored from endpoint closer

to v as we extend the contracted active walk back to B(u), then exhausted

after the search backtracks over the edge. Notice that these edges are already

exhausted from the endpoint closer to u.

4. DFS Retraction: If every edge (u, v) eligible for u has already been explored,

retract from u to its predecessor on the (contracted) active walk. If u = r is the

only vertex in the search path, terminate the search with Pi = ∅. Otherwise, let

w (B(w)) be the parent of u in the (contracted) active walk. The edge (w, u)

is now considered exhausted from w. This means that every edge eligible for u

is recursively exhausted and no augmenting walk can be found by following the

active walk via the edge (w, u). (It may still be possible to find an augmenting

walk via edge (w, u) when the search visits u again in a blossom formation step

and explore (u,w) from u).

5. Cycle Cancellation: If B(v) is an ancestor of B(u) and (u, v) is not eligible for

v, we know that v must not be in any nontrivial blossom or (u, v) will also be

eligible for v. Therefore, the tree path from B(v) = {v} to B(u), along with the

103

edge (u, v), forms an alternating cycle C. We add C to Ci. Retract the active

walk back to v. After this step, all edges e ∈ C will be categorized as explored

from both endpoints.

6. Null Exploration: This step includes all scenarios where we explore the edge

(u, v) to no effect. This includes: when B(v) is a descendant of B(u) and (u, v)

is not eligible for v; when B(v) is an ancestor of B(u) and (u, v) is eligible for

v; or when (u, v) is a cross edge in Ti. In these cases, we ignore the edge (u, v)

while still categorizing it as exhausted from u.

As stated above, each edge (u, v) along with an endpoint of it, say u, has one of

three statuses at any point in the algorithm:

1. Explored from u: This means the search has visited the vertex u, extended

the active walk from u to v using edge (u, v), in either Augmentation, DFS

extension, Blossom Formation or Cycle Cancellation step.

2. Exhausted from u: This means the search has visited the vertex u, extended

the search path to v via (u, v) and then backtracked to u in DFS Retraction or

Null Exploration steps.

3. Unexplored from u: If (u, v) is not considered explored or exhausted from u, it

is then unexplored from u. This means the search has either yet to visit u; or

the search has visited u but never extended the active walk using the edge (u, v)

because it is ineligible for u; or it is eligible but the search has yet to explore

(u, v).

Finally, we specify that the edge set Hi is the set of edges that are explored or

exhausted from at least one of its endpoints. Recall this is the set we remove from

the graph Gi before termination of a phase. This completes our description of the

SEARCH-ONE procedure.

Now we state the set of invariants satisfied by SEARCH-ONE.

Invariant 3.37.

1. Structural Invariant of Si: Si consists of all vertices in Gi that are visited during

the search. Every vertex in Si is either inner, outer, or both. If v is an inner

vertex in Si, there exists an alternating walk from r to v that ends with an

unmatched edge if v ∈ Vs or a non-η edge if v ∈ Vb. If v is outer, the alternating

walk terminates with a matched edge if v ∈ Vs or an η edge if v ∈ Vb.

2. Structural Invariant of Ti: Ti is a contracted graph obtained from Si by con-

tracting all inclusionwise-maximal blossoms in Ωi. Ti must be a tree.

104

3. Depth-first property of Si: The union of the active walk and the set of alternat-

ing cycles C consists of precisely the edges that are explored but not exhausted

from at least one endpoint. If (u, v) is an edge in Hi but not in the active walk

or alternating cycles, then (u, v) must be exhausted from u.

4. Maximality of Si: If (u, v) is marked exhausted from u while (v, w) is an edge

eligible for v, then the algorithm must have exhausted (v, w) from v.

Lemma 3.38. Augmentation, DFS Extension, Blossom Formation, DFS Retraction,

Null Exploration and Cycle Cancellation all preserve Invariant 3.37.

Proof. The first invariant follows from how we grow the search structure Si and active

walk. When the active walk extends to a vertex v with the current tag outer, the

active walk must be an alternating walk ending with a matched edge or an η edge. If

the tag is inner, the active walk ends with a unmatched edge or an non-η edge. This

ensures that there exists an alternating walk from the root to each vertex in Si with

a terminal edge corresponding to its tag.

The second invariant follows from the fact that when we form a blossom in the

Blossom Formation step, the constituent (subblossoms) in Ωi always come from a

connected ancestor-descendant path in Ti. Contracting a connected component in

the tree will not create any cycle and thus Ti remains a tree.

For the third invariant, observe that an edge becomes explored from an endpoint

when it joins the active walk in a DFS Extension, Blossom Formation, or Augmen-

tation step. It becomes exhausted when it leaves the active walk at DFS Retraction,

Null Exploration, and Cycle Cancellation step. Moreover, in the Blossom Formation

step, since we are visiting vertices in descendant-to-ancestor direction, all edges in

the active walk must remain explored and edges outside active walk are exhausted.

Therefore, any edge in Hi that is not in the active walk must be exhausted.

For the fourth invariant, first notice that (u, v) becomes exhausted via a DFS

Retraction step or a Null Exploration step. In both cases the search must have

retracted from v to some vertices and therefore has explored and exhausted every

edge eligible for v, including (v, w). If w is an unsaturated singleton and (v, w) is

unmatched, or w is an unsaturated blossom vertex, an Augmentation step would have

occurred when the algorithm explores (v, w) and left the edge (v, w) explored and not

exhausted.

The next lemma states that if one edge is once explored/exhausted from both

directions, then both endpoints must be in the same blossom in Ω′. This is analogous

to Property (i) in [75, §8].

105

Lemma 3.39. If (u, v) is an edge that is once explored from both u and v, then u

and v must be in the same blossom in Ω′.

Proof. Notice that in depth-first search, when the algorithm explores (u, v) from both

directions, B(u) and B(v) must be ancestor/descendant of one another in Ti. Now

without loss of generality, we assume (u, v) is first explored from u. If v is a descendant

of u, since the search has already backtracked from v, the only way that v enters the

search again is by a blossom formation step from ancestor of u to a descendant of v,

making them in the same blossom. If v is an ancestor of u, when (u, v) is explored

from v, i.e., when the search backtracks from u to v, u must still be a descendant of

v because any blossom step in this process will not change the ancestor-descendant

relation between u and v. Then we have a blossom step triggered by (u, v) and put

them in the same blossom.

Now we state the correctness of SEARCH-ONE:

Lemma 3.40. When SEARCH-ONE terminates, if there is an augmenting path P ′ that

intersects Hi at some edge e, then P ′ must intersect Pi or Ci at some edge.

Proof. Assume for contradiction that P ′ is edge-disjoint with Pi and Ci. Let P ′

intersect Hi at some edge (u0, u1). Since (u0, u1) is not in Pi or Ci, (u0, u1) must be

exhausted in one of its directions, say from u0. This makes (u0, u1) eligible for u0.

Now let (u0, u1, ... , uk) be the subpath of P ′ from u0 to the terminal vertex uk of P ′

in the (u0, u1) direction. We use induction to show that for all 0 ≤ i < k, edges

(ui, ui+1) must be eligible for ui and exhausted from ui:

The base case i = 0 holds by our assumption. Now suppose (ui, ui+1) is exhausted

from ui for some i ≥ 0. Consider the edge (ui+1, ui+2). It is necessary that ui+1

be in the search structure S and is either inner or outer or both. By the alterna-

tion requirement in Definition 3.7 and the definition of eligibility, either (ui, ui+1) or

(ui+1, ui+2) (or both) must be eligible for ui+1. If (ui+1, ui+2) is eligible for ui+1, then

by Invariant 3.37, (ui+1, ui+2) must be exhausted from ui+1.

If (ui, ui+1) is eligible for ui+1, by Invariant 3.37 (3), edge (ui, ui+1) must be

exhausted from both directions. By Lemma 3.39, they must be in the same blossom

and must have both inner outer tags. This makes (ui+1, ui+2) also eligible for ui+1,

and thus must be exhausted from ui+1.

This means the edge (uk−1, uk) must be eligible for uk−1 and exhausted from uk−1.

Notice that the vertex uk and edge (uk−1, uk) must satisfy the terminal vertex and

edge requirement in Definition 3.7. But in this case, an augmenting walk would have

106

been formed when the algorithm was exploring the edge (uk−1, uk) from uk−1, which

put the edge in Pi, which is a contradiction.

This gives the following Lemma:

Lemma 3.41. SEARCH-ONE finds in time O(|Hi|) an edge set Hi, a set of alternating

cycles Ci and an augmenting walk Pi such that any augmenting walk P ′ disjoint from

Ci that intersects Hi must also intersect Pi

Proof. The correctness of SEARCH-ONE is argued in Lemma 3.40. For running time,

notice that each edge we examined is always classified as explored or exhausted from

at least one of its endpoints. Thus, the total number of edge examinations is O(|Hi|).
The only non-trivial data structure needed is one for maintaining the set of blossoms,

in particular β(·), which can be solved in O(n+mα(m,n)) with the standard union-

find algorithm [134] or in optimal O(m+n) time with the incremental-tree union-find

algorithm of Gabow and Tarjan [73]. For reconstructing the active walk, we can use

the bookkeeping labelling in [75, §8], which enable reconstruction of the augmenting

walk in time linear in terms of the length of the walk.

Lemma 3.42. We can find in linear time a set of augmenting walks Ψ and a set of

alternating cycles C such that any augmenting walk P ′ must intersect Ψ or C.

Proof. This algorithm can be seen as a recursive algorithm that first calls SEARCH-ONE

on an input graph G1 = G, finding an edge set H1, a set of alternating cycles C1 and

an augmenting walk P1. It removes H1 from G1 and the corresponding part in the

f -matching to obtain G2. Then it recurses on G2. Let C ′ and Ψ′ be the output of the

recursive call. We output C = C1 ∪ C ′ and Ψ = Ψ′ ∪ {P1}.
By induction, any augmenting walk P ′ in G2 must intersect Ψ′ or C ′. Now suppose

the augmenting walk P ′ contains an edge in H1. By Lemma 3.41, P ′ must intersect

P1 or C1. Therefore P ′ must intersect Ψ or C.

Finding a maximal set of nested blossoms We can also show that, when the

graphG does not contain any augmenting walk, the union Ω′ =
⋃
i Ωi forms a maximal

set of nested blossoms. The maximality is characterized by Lemma 3.39: a blossom

step can be performed only if we discover an edge (u, v) that is eligible for both u and v

while searching from a same root. By Lemma 3.39, we would have already contracted

it into one blossom. This means no more reachable and contractable blossom exists

after we contract Ω′.

107

We also need to argue that Ω′ is a laminar family, in particular, blossoms from

Ωi and Ωj for j > i does not intersect. This is because when we form a blossom in

Ωi, all its constituents must have all their incident edges explored and thus removed

from any future searches and thus any future blossoms.

3.6 Algorithms for Unweighted f-Matching and f-

Edge Cover

In this section we will give an O(
√
f(V)m) algorithm for both maximum cardinality

f -matching and minimum cardinality f -edge cover. This is a direct consequence

of the O(Wmε−1) algorithm for the weighted problem. This algorithm matches the

running time of [69] but does not rely on reduction to iterations of the Micali-Vazirani

algorithm [110, 137, 138]. Moreover, it is much simpler to state and to analyze.

For illustration purposes we focus on maximum cardinality f -matching. The al-

gorithm consists of two phases. The first phase, referred to as batch augmentation,

finds an f -matching F that is close to optimal using an instance of the O(Wmε−1)

algorithm. After F is close to optimum, we discard all dual variables y and z, dissolve

all the blossoms in Ω and use our linear time augmenting walk algorithm to increase

the cardinality of F until F becomes optimum.

This is stated formally in the following theorem:

Theorem 3.43. A maximum cardinality f -matching can be computed in O(
√
f(V)m)

time.

Proof. We can view the maximum cardinality f -matching problem as a maximum

weight problem with weight function w(e) = 1. Choose ε = 1/
√
f(V), by Theo-

rem 3.26, we can compute a (1− 1√
f(V)

)-approximate maximum cardinality matching

F in O(
√
f(V)m) time. If F ∗ is the maximum cardinality f -matching, we have

|F | ≥

(
1− 1√

f(V)

)
|F ∗| > |F ∗| − 1√

f(V)
· f(V)

2
> |F ∗| −

√
f(V)/2.

This means F is only O(
√
f(V)) augmentations away from optimal. Hence we

can then discard the blossom structure Ω with duals y and z from the approximate

f -matching and run the linear time augmenting walk algorithm of Lemma 3.42 in G

108

with respect to F until F is optimal. By the discussion above, O(
√
f(V)) iterations

suffice. The total running time of the algorithm is O(
√
f(V)m).

Theorem 3.44. A minimum cardinality f -edge cover can be computed in O(
√
f(V)m)

time.

Proof. This is similar to Theorem 3.43. We first use the O(Wmε−1) algorithm for f -

edge cover in Corollary 3.27 to find an (1+
√
f(V)

−1
)-approximate minimum cardinal-

ity f -edge cover F by viewing the graph as a weighted graph with weight 1 everywhere.

Choosing ε = 1/
√
f(V) will give us an f -edge cover F with |F | ≤ |F ∗|+

√
f(V)

−1|F ∗|.
Notice that we always have |F ∗| ≤ f(V) because taking f(v) arbitrary incident edges

for each v and taking their union will always give a trivial f -edge cover with car-

dinality at most f(V). Hence we have |F | ≤ |F ∗| +
√
f(V), which means at most

O(
√
f(V)) reductions are needed to make F optimal. Therefore we can run the aug-

menting path algorithm from Lemma 3.42 to find reducing paths (P is a reducing

path w.r.t. F if and only if it is an augmenting path w.r.t. E \ F) until no reducing

path can be found. There are
√
f(V) iterations in this phase. The total running

time of the algorithm is O(
√
f(V)m).

3.7 Conclusion and Open Problems

We give the first almost linear time approximation schemes for both maximum

weight f-matching and minimum weight f-edge cover problem. This result

generalizes the algorithm by Duan and Pettie [55] for approximate weighted match-

ing problems. We also establish approximation preserving reductions between the

two problem inside the primal-dual framework for weighted matching, showing that

any approximation algorithm that also produces an approximately optimal dual solu-

tion to one problem can be transformed to an approximation algorithm to the other

problem.

We demonstrate that with the appropriate generalization of key concepts such

as blossoms and augmenting paths, we can derive direct algorithm for generalized

matching problems from its corresponding version for 1-matching, instead of relying

on inefficient reductions. Thus, it is natural to ask whether other algorithm for 1-

matching, such as [57] can be generalized to f -matching.

Another key open problem is whether we can obtain linear dependency in graph

size for our algorithm, i.e. eliminating the factor α(m,n) in the time complexity. The

109

key challenge here is to give a union find data structure for maintaining blossoms on

a dynamic tree as specified in Section 3.5.

110

CHAPTER 4

Metric Matching

4.1 Introduction

The minimum weight perfect matching problem (MWPM) is another im-

portant problem in matching theory. It asks for minimum weight solution among

the set of all perfect matching. The MWPM and MWM problems are known to

be reducible to each other. Given an algorithm for MWM in with running time

f(n,m,W), it can be used to solve MWPM in time f(n,m, nW) time. On the other

hand, given an MWPM algorithm in time g(n,m,W), we can obtain an algorithm for

MWM in time g(O(n), O(m),W). As a result, most algorithmic results for weighted

matching [60, 76, 70, 75, 47, 56] apply to both problems.

However, since the reduction above from MWPM to MWM is not approximation-

preserving, similar conclusion does not hold for approximate-MWPM and approximate-

MWM. In particular, approximate-MWM in almost linear time has a long his-

tory [122, 53, 55] starting from a greedy algorithm which give a 1/2-approximation.

However, there is no known approximate-MWPM algorithm in almost linear time for

general graph. This is because an approximate-MWPM needs to be a perfect match-

ing, so we cannot hope for a linear time approximation algorithm without improving

the Micali-Vazirani algorithm for maximum cardinality matching, which resists any

improvement for 40 years. Moreover, even for graphs where a perfect matching is

easy to compute, such as complete graph with arbitrary weight function, an finding a

o(W/n)-approximate solution is as hard as computing a perfect matching in a general

graph.

However, many of the high profile applications of MWPM problem are not for

general weighted graphs, but the distance metric induced by an underlying graph.

For example, in solving the Chinese Postman Problem[132], one needs to find a min

cost perfect matching between the odd degree vertices to make a graph Eulerian. In

111

Christofides’ well known 3/2-approximation algorithm for metric TSP problem, we

compute a min weight perfect matching among a subset of vertices where the cost

function is induced by distances in the graph. The canonical way to solve the problem

is to run any APSP algorithm to obtain the distance matrix, and then run any exact

MWPM algorithm, say [56]. This makes computing perfect matchings the bottleneck

for a near linear time implementation for Christofides algorithm [33]. Alternatively,

one can run the 2-approximation algorithm by Goemans and Williamson[78] and

its almost linear time implementation by Cole et al. [40] or Gabow and Pettie [67]

for dense graph. We are not aware of any alternate solution to this problem for

obtaining a near linear time implementation for Christofides algorithm with ε-sacrifice

in approximation ratio. Alternatively, one can achieve a (3/2+ε) approximate by first

applying an LP based cut sparsifier before computing the metric perfect matching [34].

Specifically, for metrics induced by geometric spaces, e.g., points in Euclidean

plane, Varadarajan and Agarwal [136] gave an almost linear time approximation

scheme that returns a (1 + ε)-approximate solution in O(nε−3 log6 n) time. The algo-

rithm is based on the plane decomposition scheme by Arora [16].

Problem Statement and Terminologies. In this paper, we consider the met-

ric min cost perfect matching problem where the metric is induced by an

unweighted and undirected graph G and a subset of terminals T . The problem can

be defined as follows: Let G = (V,E) be an unweighted and undirected graph, and

T ⊆ V be an even set of terminals. We use n and m to denote the number of vertices

and edges respectively. Fix the set of terminals T , let G be the metric completion

induced by the graph G and the terminal set T , i.e., G = (T,
(
T
2

)
, dG) is a weighted

complete graph on vertex set T and weight function dG which is the distance function

for G restricted to T × T .

Metric Matching and T -join The Graph Metric Min Weight Perfect

Matching Problem (abbr. Graphic-MWPM) ask the following question: Given

an unweighted and undirected graph G = (V,E) and an even set of terminal T ⊆ V ,

find the minimum weight perfect matching in the metric graph G.

This problem is equivalent to the T -join problem. Given a graph G = (V,E)

and a subset T of vertices, a T -join is a subset F ⊂ E of edges such that in the

subgraph (V, F), T is precisely the subset of vertices with odd degree. The Minimum

Cardinality T -join Problem ask for the following: Given an unweighted graph

G = (V,E) and an even subset T ⊆ V of vertices, find a T -join in G of minimum

112

size.

It can be shown that the two problem are equivalent [33] for even weighted graph.

More precisely, a minimum weight T -join consists of |T |/2 edge disjoint shortest paths

between disjoint pairs of terminals in T which forms a perfect matching. And for any

minimum weight perfect matching in G consists of |T |/2 edge disjoint shortest paths

between pairs of terminals in T which also forms a T -join.

Notice that if n is even and we set T = V , the problem is equivalent to the

MWPM problem on unweighted graph.

Growth Expansion property is an important concept in algorithmic study of metric

space [5, 102, 87, 94, 25, 20]. It captures the geometry of the underlying metric space

via characterizing the relation between the volume and diameter. Many problems

such as nearest neighbor [94] or travelling salesman [20] are hard for general metrics

since general metrics simply do not provide enough geometric structure for exploita-

tion. Yet instances that arise from practice, such as database queries or geometric

optimization are often far from general, and expansion, growth and dimensionality

are used to characterize the geometric properties of these instances.

Here, we define the growth as the number of vertices you see from a vertex’s

neighborhood as a function of the neighborhood radius. More formally, in a metric

space (V, d), the ball B(u, r) with center u and radius r is the set {v ∈ V : d(u, v) ≤ r},
denoted by B(u, r). We define the growth of the graph G as the minimum size of

B(u, r) as a function of r.

Definition 4.1. Let f : R≥0 7→ R≥0 be a nondecreasing nonnegative function. We

say G has growth f if for all v ∈ V and r ≥ 1, |B(v, r)| ≥ min{f(r), n}.

For example, an unweighted line metric has linear growth r, while a d-dimensional

grid has growth rd.

Treewidth Treewidth is a fundamental graph parameter that measures how well a

graph resembles a tree. In particular, it measures how well a graph can be decom-

posed in a treelike manner. Similar to growth, many graphs from practical instances

are known to have bounded treewidth [109], and many problems are known to be

efficiently solvable on graphs with small treewidth, such as reachability and short-

est paths [12, 28, 121], multi-commodity flow [82] and various matching and matrix

problems [65]. Many classical NP-hard problems such as vertex cover and dominat-

ing set also admit polynomial algorithms for graphs with bounded treewidth; see [46].

Treewidth can be defined from a tree decomposition as follows:

113

Definition 4.2. A tree decomposition of a graph G is a pair (T , {Bx}x∈V (T)), where

T is a tree and each node x in T is associated with a set of vertices Bx ⊆ V (G),

called the bag of x, that satisfies the following conditions:

1. For each edge (u, v) ∈ E(G), there exists x ∈ V (T) such that {u, v} ⊂ Bx.

2. For each u ∈ V (G), let T [u] be subtree of T induced by the set of bags containing

u. Then T [u] is nonempty and connected.

Given a tree decomposition (T , {Bx}), its width can be defined as:

Definition 4.3. The width of (T , {Bx}) is maxv∈V (T) |Bx| − 1.

The tree width of a graph G is the minimum width of any tree decomposition of

G.

It is NP-hard to compute the treewidth of a graph exact [15]. However, there

are plenty of FPT and approximation algorithms that compute an optimal or near

optimal tree decomposition. For instance, the approximation algorithm by Fomin et

al. [65] suits our study:

Theorem 4.4 ([65] Theorem 1.1). There is an algorithm that given a graph G of n

vertices and a positive integer k, in time O(k6n log n) either finds a tree decomposition

of width O(k2), or correctly concludes the treewidth of G is at least k.

Matching has been studied in graphs with bounded treewidth. Courcelle’s cele-

brated theorem [44] states that any (optimization variant of) decision problems ex-

pressible with Monadic Second Order Logic admits a Õ(f(k)n) algorithm for some

function f if we are given a tree decomposition of width k. For the maximum match-

ing problem, it is not hard to obtain an algorithm running in time Õ(3kn). Fomin et

al. [65] gives an algorithm for MWM and MWPM with time complexity O(k3n log n).

However, we are not aware of FPT algorithm for Graphic-MWPM for graphs with

bounded treewidth.

Our Contribution: In this paper, we show that the graphic-MWPM admits a

linear time approximation scheme if the graph has slightly superlinear growth:

Theorem 4.5. Let G = (V,E) be an unweighted and undirected graph that has n

vertices and m edges, and growth f(d) ≥ d log2 d. Let T ⊆ V be a set of terminals

and d : T × T 7→ Z≥0 be the distance metric on G restricted to T . Then an εn

additive approximate solution to the graphic-MWPM problem can be computed in

time O(m log n2O(1/ε)) time. For a graph with polynomial growth, i.e., f(d) ≥ d1+τ ,

an εn additive approximate solution can be obtained in time O(m log n(1/ε)1/τ).

114

We also show that if we are also given a tree decomposition of width k, we can

solve the graphic-MWPM in O(mk log2 n) time, improving the result of Fomin et

al [65] on unweighted graph.

Theorem 4.6. Given an unweighted and undirected graph G = (V,E) along with a

tree decomposition of width k, and a set of terminals T ⊆ V , we can solve the graphic-

MWPM problem in time O(mkp log n), where p is the update amortized time for a

priority queue that supports insert and delete-min.

Organization In Section 4.2, we are going to review the LP framework of Edmonds

for matching and perfect matching. Section 4.3 will first review the main algorith-

mic component of our approximate min cost perfect matching algorithm, Edmonds’

Search. It then presents our scaling algorithm for approximate min cost perfect

matching algorithm on graphs with moderate growth. Section 4.4 will solve the data

structure problem left in Section 3, namely the implementation of Edmonds’s Search

implicitly on a graph metric. In Section 4.5, we present our algorithm for computing

exact min cost perfect matching for metrics generated by bounded treewidth graphs.

4.2 Primal, Duals and Complementary Slackness

In this section we review Edmonds’ primal-dual framework for weighted matching.

The min weight perfect matching problem can be formulated as the following LP:

minimize
∑
e∈E

wexe

subject to
∑
e∈δ(u)

xe = 1, ∀u ∈ V∑
e∈δ(B)

xe ≥ 1, ∀B ⊂ V, |B| odd

0 ≤ xe ≤ 1, ∀e ∈ E

(4.1)

For the corresponding dual program, we have a dual variable y associated with each

vertex and a dual variable z with each odd set, formulated as follows:

maximize
∑
v∈V

yv +
∑

B⊆V,B odd

zB

subject to yu + yv +
∑

B:(u,v)∈δ(B)

zB ≤ w(u, v), ∀(u, v) ∈ E

zB ≥ 0, ∀B ⊆ V, |B| odd

115

In the algorithm we maintain a specific set of blossoms Ω ⊂ 2T . This is the set

of odd sets that could have positive z-values during the algorithm. We define an

aggregate dual on a single edge (u, v) to be:

yz(u, v) = y(u) + y(v) +
∑

B∈Ω:|B∩{u,v}|=1

zB

And the aggregate dual for a vertex u is:

λ(u) = y(u) +
∑

B∈Ω:u∈B

z(B)

Observe that in general, we have yz(u, v) ≤ λ(u) + λ(v). The equality holds if

there is no blossom in Ω containing both u and v.

4.2.1 Blossoms

During the algorithm certain odd sets of vertices are designated as blossoms. For-

mally, a blossom can be inductively defined as follows: A blossom is a set of ver-

tices B associated with an edge set EB. A single vertex v forms a trivial blos-

som,1 or singleton. Its edge set is the empty set. Suppose for some odd l ≥ 3,

B0, B1, ... , Bl−1 are disjoint blossoms. Then we call their union B =
⋃l−1
i=0 Bi a blos-

som if there exists edges and an alternating cycle C = 〈e0, e1, ... , el−1〉 such that

ei ∈ Ai × Ai+1 (mod l) and ei is matched if and only i is odd. The associated edge

set is EB = (
⋃l−1
i=0 EBi) ∪ {e0, e2, ... , el−1}. Here we call Bi’s the subblossoms of B. If

Ω is a laminar family of blossoms, we can represent the inclusion relation of blossoms

with a collection of blossom trees, or blossom forest. The leaves are singletons and

all nontrival blossoms have their subblossoms as their children. We refer to the root

blossoms as the outermost blossom. For a terminal u, we use B(u) to denote the

outermost blossom that contains u.

Each blossom also has a designated vertex known as the base. The base of a

singleton is itself. For blossom B =
⋃l−1
i=0 Bi defined inductively as above its base is

inductively the base of B0. We call a blossom matched if its base is matched and free

if its base is free.

If Ω is a laminar family of blossoms, the contracted graph G/Ω is obtained by

contracting all outermost blossoms into a single vertex. To dissolve an outermost

blossom means to remove the blossom from Ω and replace it with all its immediate

1For simplicity from this point we will only refer to nontrivial blossom as blossom.

116

subblossom in the contracted graph. A crucial property for blossoms is that any

augmenting path in the contracted graph can be extended to an augmenting path in

original graph. We refer readers to [59, 75] for details.

4.2.2 Complementary Slackness

Similar to matching algorithms using Edmonds’ primal-dual frameworks [55, 75, 136],

we characterize the optimality with the following approximate complementary slack-

ness property.

Property 4.7 (Approximate Complementary Slackness). Let ∆ ≥ 0 be an error

parameter and d(u, v) the edge weight function:

1. Domination. For all u, v ∈ T , yz(u, v) ≤ d(u, v).

2. Approximate Tightness. For all (u, v) ∈M ∪
⋃
B∈Ω EB, yz(u, v) ≥ d(u, v)−∆.

3. Nonnegative Dual. The z-values of all blossoms in Ω are nonnegative.

4. Structural Blossoms. Ω forms a laminar family of blossoms and for each blossom

B ∈ Ω, the matching M is maximal inside B, i.e. |M ∩ E(B)| = (|B| − 1)/2.

The main task of our algorithm is to maintain Property 4.7 without direct access

to G[T]. To present all the duals explicitly on G, we introduce notion of dual balls. For

any terminal u, we define the dual ball of u being the set Bu = {v | d(u, v) ≤ λ(u)}.
For any outermost blossom B ∈ Ω, the dual ball of B is the union of the dual balls

of all its vertices.

A single dual ball of a blossom B is represented in our algorithm by a breath

first search forest FB. The roots of FB are the terminals in B and we denote the

tree rooted at u as Tu. In principle Tu extends to all vertices in Bu but this will lead

to intersections of distinct trees and thus is too expensive to maintain. Hence when

growing the tree we retract from all but one tree whenever multiple tree intersect at

one vertex. As we will see in next section this still allows us to correctly maintain

BB, whenever the dual variables changes.

Notice that if d is the exact distance function and y, z is a set of duals that satisfy

Property 4.7, dual balls of distinct outermost blossoms will only intersect at their

boundaries, i.e., their intersection vertices must be leaves of the corresponding trees.

117

4.3 Scaling for Approximate Min weight Perfect

Matching

In this section we first review Edmonds’ Search, the main algorithm component of

our scaling algorithm. We note that similar search procedures are studied in the

context of maximum weight matching [75, 55, 56], for min weight perfect matching

with a different LP formulation [75] or different complementary slackness criterion

[136]. However we are not aware of any study of Edmonds’ Search under precisely

our setting. The structure of our proof is similar to that of [55].

4.3.1 Edmonds’ Search in a nutshell

Conceptually, Edmonds’ Search operates on a subgraph of G defined by a subset of

eligible edges. In the metric graph G, we call an edge (u, v) eligible if it satisfies one

of the following:

1. (u, v) ∈ EB for any B ∈ Ω.

2. (u, v) /∈M and yz(u, v) = d(u, v).

3. (u, v) ∈M and yz(u, v) = d(u, v)−∆.

The eligible subgraph Gelig of the metric graph contains only eligible edges. We

use Gelig to denote the contracted eligible graph Gelig/Ω obtained by contracting all

outermost blossoms in Ω. To contrast them we will refer to vertices in Gelig as vertices

and vertices in the contacted graph as nodes. Notice that the asymmetric eligibility

criterion for matched edges and unmatched edges are motivated by the fact that every

edge in an eligible augmenting path becomes ineligible if we augment the matching

along this path. This will be formally stated later in this section.

Let ∆ ≥ 0 be some granularity parameter and suppose d is a distance metric such

that all distances are multiples of ∆. One iteration of Edmonds’ Search starts with

some matching M and duals y, z, Ω that satisfy Property 4.7 as well as the following

property:

Property 4.8 (Granularity). All y-values and z-values are multiple of ∆/2 Further-

more, the λ-values of all free vertices are the same.

The algorithm operates in iterations. Each iteration consists of four steps: Aug-

mentation, Blossom Formation, Dual Adjustment, and Blossom Dissolution.

1. Augmentation. Find a maximal set Ψ of vertex disjoint eligible augmenting

paths in Gelig. Update the matching M ←M ⊕
⋃
P∈Ψ P . Update Gelig.

118

2. Blossom Formation. Let Tout be a the set of nodes reachable from a free node

via an even length alternating path. Find a maximal set of nested blossoms

Ω′ on Tout. The maximality here means after contracting blossoms in Ω′, the

contracted graph does not contain any blossom reachable via an eligible alter-

nating path. Update Ω ← Ω ∪ Ω′. Set z(B) ← 0 for any blossom in Ω′. Gelig

does not change in this step.

3. Dual Adjustment. Let Tin be the set of nodes not in Tout still reachable from a

free nodes via an eligible (odd length) alternating path. Let Tout and Tin be the

set of terminals in T that is contained in some nodes in Tout and Tin respectively.

Change the dual variables as follows:

y(u)← y(u) + ∆/2 if u is in Tout but not in any blossom

z(B)← z(B) + ∆/2 if B is outermost blossom in Tout

y(u)← y(u)−∆/2 if u is in Tin but not in any blossom

z(B)← z(B)−∆/2 if B is outermost blossom in Tin

Update Gelig.

4. Blossom Dissolution. After dual adjustment some outermost blossoms have 0

z-values. Dissolve those blossom as long as they exists. Update Ω and Gelig.

We will also refer to vertices/nodes in Tout as outer vertices and vertices/nodes

in Tin as inner vertices/nodes. The correctness of Edmonds’ Search is stated in the

following Lemma:

Lemma 4.9. Suppose d is a weight function whose values are all multiple of ∆.

If M, y, z,Ω are primal and duals that satisfy Property 4.7 and Property 4.8, they

continues to satisfy Property 4.7 and Property 4.8 after one iteration of Edmonds’

Search.

One can prove the following standard fact that after augmenting along a maximal

set of augmenting path, the eligible subgraph Gelig contains no augmenting path.

Similarly after the blossom formation step there is no contractable blossom in Gelig

reachable from a free vertex.

Lemma 4.10 ([55, 75]). After augmentation and blossom formation, Gelig contains

no augmenting path, nor any blossom reachable from a free vertex via an alternating

path.

119

The correctness of dual adjustment step also relies on the following parity lemma,

which states that the λ-values of all reachable vertices in the eligible subgraph have

the same parity:

Lemma 4.11. Let Tr be the set of nodes that is reachable from a free nodes via an

eligible alternating path, and Tr be its image in Gelig. Then the λ-values of all vertices

in Tr have the same parity as a multiple of ∆/2.

Proof. By definition of eligibility, the slack on each eligible edge, d(u, v) − yz(u, v),

must be an integer multiple of ∆. Suppose λ-value of all vertices in the same outer-

most blossom has the same parity as multiples of ∆/2, then adjacent blossoms in Gelig

must have all of their terminals having the same λ-values parities. Furthermore, since

each blossom is initially formed using only eligible edges, we can show by induction

on nested blossoms that all vertices in the same outermost blossom must have the

same parity in their λ-values. This finishes the claim.

Lemma 4.12. Suppose the values of the distance function d are all multiples of ∆.

If M, y, z,Ω satisfy Property 4.7 and Property 4.8 before an iteration of Edmonds’

Search, then they continue to satisfy Property 4.7 and Property 4.8 after Edmonds’

Search.

Proof. For Property 4.8, the only place that it can be violated is at dual adjustment.

Notice that the net change in λ value for a vertex u is +∆/2 if u ∈ Tout, −∆/2 if

u ∈ Tin and 0 if u is unreachable. Since all the free vertices are in Tout, Property 4.8

is preserved.

For Property 4.7, we discuss its invariance by steps. In augmentation, Property 4.7

is preserved because we only augment along eligible augmenting paths, which satisfy

yz(u, v) ≤ d(u, v) for matched edges and yz(u, v) ≥ d(u, v)−∆ for unmatched edges.

After they exchange status they satisfy both domination and approximate tightness,

hence preserving Property 4.7.

Similarly, since the slack yz(u, v)−d(u, v) of eligible edges satisfies the criterion for

both domination and approximate tightness, blossom formation step also preserves

Property 4.7. The nonnegative dual property is not endangered at both steps.

For dual adjustment, let (u, v) be an edge. If both of u and v are not reachable

(outside Tin ∪ Tout), then yz(u, v) remains unchanged. Similarly if both u and v are

in the same outermost blossom, yz(u, v) remains unchanged.

Hence we now assume u, v are in distinct outermost blossoms and we have yz(u, v) =

λ(u) + λ(v). Suppose one of u and v, say u is reachable and v is not. Suppose

120

u ∈ Tout, hence (u, v) is unmatched otherwise v must be the unique predecessor ver-

tex in Tin, making v reachable. Since v is unreachable (u, v) must be ineligible, so

yz(u, v) ≤ d(u, v)−∆/2 so it satisfy domination after dual adjustment. When v ∈ Tin,

only approximate tightness can be violated so we can assume (u, v) ∈M . But since v

is unreachable, (u, v) is ineligible, yz(u, v) ≥ d(u, v)−∆/2, so approximate tightness

yz(u, v) ≥ d(u, v)−∆/2 holds after dual adjustment.

When both u and v are reachable, if u ∈ Tin and v ∈ Tout (or vice versa), yz(u, v)

is unchanged. For the other two cases, (u, v) must be unmatched. If both u and v is

in Tout, yz(u, v) is incremented by ∆ and we only need to worry about domination.

But since at the time of dual adjustment there is no reachable blossom or augmenting

path, (u, v) cannot be eligible, meaning that yz(u, v) < d(u, v). By Lemma 4.11, this

will imply yz(u, v) ≤ d(u, v) −∆ and dual adjustment does not violate domination.

When u, v ∈ Tin, since yz(u, v) is decremented by ∆, so domination on (u, v) is

preserved. This finishes the proof.

We claim that the search procedure can be implemented in graph metric in O(m)

time, without directly computing the distance matrix. We will show this in Sec-

tion 4.4. With this claim, we are going to present our scaling algorithm for approxi-

mate min weight perfect matching.

4.3.2 The Main Algorithm

In this section, we show that for graphs with slightly super linear growth, one

can achieve an additive εn approximation for the graphic-MWPMproblem. For

Christofides algorithm, this suffices to yield a (3/2 + ε)-approximate solution in near

linear time since the objective value is at least n. Our algorithm uses a scaling tech-

nique similar to [9] for bipartite graph. The algorithm consists of L scales. Each scale

will run on a subset Ti ⊆ T of terminals and produce a matching Mi (not necessarily

perfect) on Ti. Initially T1 = T . At the end of each scale, we commit Mi to the final

solution and start the next scale with Ti+1 = Ti\V [Mi], i.e., matched vertices become

non-terminals, but are not removed from the metric. In the last scale, ML will be a

perfect matching on TL

The goal of each scale is to use Edmonds’ Search to sparsify the set of unmatched

vertices. Specifically, we produce primals and duals Mi, yi, zi,Ωi that satisfy Prop-

erty 4.7 with some exponentially increasing error parameter ∆i. Notice that, in

Edmonds’ Search we work with the rounded metric, i.e., every distance is rounded up

to its nearest multiple of ∆i, di(u, v) = ∆idd(u, v)∆ie. Then we have:

121

Invariant 4.13. Mi, yi, zi,Ωi satisfy Property 4.7 with respect to distance function di

with parameter ∆i.

The main goal is for Ti+1 to be sparse in terms of Ti. At each scale, the radius of

the dual ball λi of a free terminal will increase from Di−1 to some target radius Ri.

Property 4.14. For every v ∈ Ti, λi(v) ≤ Di. At the end of each scale, λi(v) = Di

if v ∈ Ti \ V [Mi].

Each scale starts with terminals Ti, and yi(u) = Di−1
2 (we define D0 = 0), re-

peatedly runs Edmonds’ Search with granularity ∆i until yi for all the free terminals

reaches Di. This will produce a partial matching Mi. We commit the matching Mi

to the final solution and the remaining free terminals goes to the next scale.

The final solution will be the union M̂ =
⋃L
i=1Mi. To analyze its quality, we define

its corresponding duals ŷ, ẑ, Ω̂ as follows: For ŷ values, let ∆yi(u) be the change in

yi(u) during scale i, we define ŷ =
∑L

i=1 ∆yi. We take Ω̂ =
⋃L
i=1 Ωi. Notice that Ωi

and Ωj are disjoint for every i < j. This is because no blossom in Ωi can contain

more than 1 free Ti vertex with respect to Mi, while Ωj is on Tj ⊆ Ti+1. This give

the natural definition for ẑ values:

ẑ(B) =
L∑
i=1

zi(B)

Notice that at most one term in the summation is positive. The corresponding

aggregations of duals is defined similarly:

ŷz(u, v) = ŷ(u) + ŷ(v) +
∑

B∈Ω̂∧|B∩{u,v}|=1

ẑ(B)

And

λ̂(u) = ŷ(u) +
∑

B∈Ω̂:u∈B

ẑ(B)

Similarly we have ŷz(u, v) ≤ λ̂(u) + λ̂(v).

Lemma 4.15 (Approximate Domination). Let (u, v) be a pair such that u ∈ Ti\V [Mi]

and v ∈ V [Mj] and i ≤ j. We have

ŷz(u, v) ≤ d(u, v) + ei + ej (4.2)

2This is the value that sums out all the λj values from all previous scales j.

122

where

ei =

∆i when i = 1

Di when i > 1

Proof. When i = j = 1, by Invariant 4.13 and Property 4.7, we have

yz1(u, v) ≤ d1(u, v) ≤ d(u, v) + ∆1 < d(u, v) + 2e1

Moreover, we have ŷz(u, v) = yz1(u, v). This is because both u and v get matched

in the first scale and thus do not participate in any further scale and their y-values

remain unchanged. For the same reason, no blossoms in Ωi for i > 1 contain u or v,

proving the claim.

When 1 = i < j, we have λ̂(u) = λ1(u) ≤ yz1(u, v) ≤ d1(u, v) ≤ d(u, v) + ∆1. The

first equality is because u only participate in scale 1. λ̂(v) = λj(v) ≤ Dj. Adding the

two inequalities proves the claim.

The case when 1 < i ≤ j follows similarly by observing λ̂(u) = λi(u) ≤ Di and

λ̂(u) = λj(v) ≤ Dj.

Lemma 4.16 (Approximate Tightness). For all (u, v) ∈Mi, we have ŷz ≥ d(u, v)−
∆i.

Proof. Since u and v does not take part in any scale greater than i, we have ŷz =

yzi(u, v). By Invariant 4.13 and Property 4.7, ŷz(u, v) ≥ di(u, v) − ∆i ≥ d(u, v) −
∆i.

Moreover, although we lose laminarity, blossoms in Ω̂ still retain their structural

properties.

Lemma 4.17. For any B ∈ Ω̂, |M̂ ∩ δ(B)| = 1.

Proof. Let B ∈ Ωi. No matched edges from below scale i touches B. If B is matched

in scale i the claim is trivial. Otherwise its base is the unique vertex in B that is

unmatched and goes into Ti+1 and its incident matched edge will cross B.

Define Ni = |V [Mi]|. We can bound the error term as:

123

w(Mopt) =
∑

(u,v)∈Mopt

d(u, v)

≥
∑

(u,v)∈Mopt

ŷz(u, v)−
L∑
i=1

|V [Mi]|ei (Lemma 4.15)

≥
∑
u

ŷ(u) +
∑
B∈Ω̂

ẑ(B)−
L∑
i=1

Niei (definition of yz)

≥
L∑
i=1

∑
(u,v)∈Mi

(ŷz(u, v))−
L∑
i=1

Niei (Lemma 4.17, ẑ ≥ 0)

≥
L∑
i=1

∑
(u,v)∈Mi

(d(u, v)−∆i)−
L∑
i=1

Niei (Lemma 4.16)

= w(M̂)−
L∑
i=1

Ni(ei + ∆i/2) (4.3)

We can now prove the main theorem:

Theorem 4.5. Let G = (V,E) be an unweighted and undirected graph that has n

vertices and m edges, and growth f(d) ≥ d log2 d. Let T ⊆ V be a set of terminals

and d : T × T 7→ Z≥0 be the distance metric on G restricted to T . Then an εn

additive approximate solution to the graphic-MWPM problem can be computed in

time O(m log n2O(1/ε)) time. For a graph with polynomial growth, i.e., f(d) ≥ d1+τ ,

an εn additive approximate solution can be obtained in time O(m log n(1/ε)1/τ).

Proof. We set ∆1 = 1/d1/εe and ∆i = 2∆i−1 for 1 < i ≤ L. For 0 < ε < 1,

ε/2 < ∆0 < ε. We also set D1 = d21/ε+1e+ ∆1 and Di = 2Di−1. For the algorithm to

find a perfect matching in the last scale, the radius DL should satisfy DL > n/2, i.e.

L < d| log(n/2)/(21/ε)e ≤ log n.

The growth assumption allows us to bound the density of free terminals at each

scale:

Lemma 4.18. For i > 1, Ni ≤ n/(21/ε+i−1(1/ε+ i− 1)2).

Proof. By Property 4.14, at the end of scale i − 1, we have for every pair free of

vertices u and v: d(u, v) ≥ di(u, v) − ∆i = λi(u) + λi(v) − ∆i = 2Di − ∆i > 21/ε+i.

124

Hence the balls B(u, 21/ε+i−1) and B(v, 21/ε+i−1) must be disjoint, so we have:

n ≥

∣∣∣∣∣ ⋃
u∈Ti

B(u, 21/ε+i−1)

∣∣∣∣∣
=
∑
u∈Ti

B(u, 21/ε+i−1)

≥ Ni(2
1/ε+i−1) log2(21/ε+i−1)

Hence Ni ≤ n/(21/ε+i−1(1/ε+ i− 1)2).

Then the error term
∑L

i=1 Ni(ei + ∆i/2) in (4.3) can be bounded by:

L∑
i=1

Ni(ei + ∆i/2) = N1
3

2
ε+

L∑
i=2

Ni(Di + ∆i)

≤ 3

2
εn+

L∑
i=2

n

21/ε+i−1(1/ε+ i− 1)2
(2i−1d21/εe+ 2iε)

≤ 3

2
εn+

L∑
i=2

n

21/ε+i−1(1/ε+ i− 1)2
(1 + ε)(21/ε+i)

=
3

2
εn+ 4(1 + ε)

L∑
i=1

n

(1/ε+ i)2

≤ 3

2
εn+ 5εn

The fourth line is by d21/εe ≤ 21/ε+1 and 21/ε + ε ≤ (1 + ε)21/ε for 0 < ε < 1. And

the last line is by
∑∞

i=1
1

(ε+i)2
≤
∫∞

1/ε
1
x2
dx = ε. Hence setting ε = 2/13ε′ we get an

algorithm of additive error ε′n.

Time complexity We interchange the notation and let ε be the additive approxi-

mation ratio in εn we are looking for and let ε′ = 2/13ε as in the proof. At each scale

the number of iteration in Edmonds’ Search is Di/∆i = O(21/ε′/ε′) = 2O(1/ε). Hence

one scale can be implemented in O(m2O(1/ε)) time. Since there are a total of O(log n)

scales, the total running time is O(m log n2O(1/ε))

With similar technique, if we allow the growth to be polynomially super linear, say

the growth function is f(d) = d1+τ for some constant τ > 0, we can achieve running

time that is polynomial in 1/ε. This can be done by changing the initial radius to

D1 = d(1/ε)1/τe. This gives the following theorem:

125

Theorem 4.19. Let G = (V,E) be an unweighted and undirected graph that has n

vertices and m edges, and growth f(d) = d1+τ for some constant τ > 0. Let T ⊆ V

be a set of terminals and dG : T × T 7→ Z≥0 be the distance metric on G. Then

an εn additive approximation to a min weight perfect matching on metric dG can be

computed in time O(m log n(1/ε)1/τ) time.

4.4 Implementing Edmonds’ Search in Graph Met-

rics

In this section we introduce a near linear time implementation of Edmonds’ Search.

The goal is to implement each step of Edmonds’ Search directly on the original graph

G without computing the distance matrix among terminals and explicitly constructing

of the metric graph G. This avoids having to compute an instance of all pairs shortest

paths, which is too costly when we look for a near linear time algorithm.

Granularity and Rounded Metric Throughout this section we will assume there

exists some constant ∆0 such that all granularity parameters ∆ in the Edmonds’

Search are multiples of ∆0. Moreover, ∆0/2 must be a divisor of 1. To carry out dual

adjustment by ∆ when ∆ is a small integral divisor of 1, we will first subdivide all

edges in G into paths of length 2/∆0, such that a unit of dual adjustment by ∆0/2

can be represented by growing or shrinking BFS trees T by one layer. In this section,

we use n and m to denote the number of vertices and edges in the subdivided graph.

However when ∆ > 1, the distance in the original graph metric d might not always

be a multiple of ∆, as assumed in Lemma 4.9. This can invalidate the correctness

of Edmonds’ Search. To circumvent the issue, for a fixed ∆, we define the rounded

metric d′ on the same vertex set as d′(u, v) = ∆dd(u, v)/∆e. For the rounded metric

the granularity assumption holds. We will show that we can simulate Edmonds’

Search on rounded metrics with a truncated Edmonds’ Search on the original metric.

Data Structures Throughout the entire process of Edmonds’ Search we maintain

all dual values x and y, as well as a blossom tree representing Ω. We also maintain

all dual balls for each outermost blossom, using a collection of truncated breadth first

search trees rooted at each vertex of blossom as discussed in Section 4.2.2. The BFS

tree is truncated in the sense that we also enforce the following invariant:

Invariant 4.20. Two distinct BFS trees only intersect at their leaves.

126

Therefore, a BFS tree might only contain a subset of vertices in its correspond-

ing dual ball. Nevertheless, we can show that the truncated BFS tree still possess

enough information to recover the eligibility subgraph Gelig. This is captured in the

Invariant 4.21.

Invariant 4.21. If u and v are two vertices not in the same blossom and d′(u, v) =

λ(u) + λ(v), the BFS trees Tu and Tv must intersect at some vertex. Conversely, if

BFS trees Tu and Tv intersect at some vertex, we must have d′(u, v) = λ(u) + λ(v).

We say an outermost blossom B owns a vertex v in G, terminal or nonterminal,

if v is a vertex in the tree Tu for some terminal u ∈ B. Invariant 4.20 implies that for

any vertex v in G, it has at most deg(v) + 1 owners. This is because if v has one than

1 owner, for each edge (v, w) such that v and w share an owner, w must be a nonleaf

at its corresponding BFS tree and thus has exactly 1 owner. Hence we can use a

linked-list at each vertex to keep track of its set of owners. Moreover, Invariant 4.21

implies that if a vertex w in G has owners u1 and u2 such that (u1, u2) is unmatched

and u1, u2 are in distinct outermost blossoms, the edge (u1, u2) must be eligible. The

converse is also true.

In the end, we also keep track of the matching pairs in M .

Augmentation. The implementation is based on the depth first search algorithm

in [75]. We will state their algorithm and its invariant but due to limitation of space

we will refer the reader to [75] for the proof of correctness. We will then describe how

to simulate the procedure on the original graph without explicitly construct G.

The input to the algorithm is the contracted graph Gelig. The algorithm maintains

a depth first search forest F = 〈T1,T2, ... ,Tk〉 rooted at free vertices. Each search

tree is grown in a greedy and depth first fashion to find all vertices reachable from

its root via an alternating path.

Similar to depth first search, T1,T2, ... ,Tk−1 are search trees from previously ter-

minated searches, and Tk is the active tree. The active tree is grown in a depth first

manner, i.e., its “rightmost” path consists of vertices currently in the DFS stack. The

path is always an even length alternating path that starts at the root and ends at the

current vertex we are examining. Each node in the graph has one of 3 statuses: Unvis-

ited, meaning the node is not visited by the search algorithm; Inner/outer, meaning

the node has been visited by the search algorithm and labelled as Inner/Outer.

Each terminated search terminates by either discovering an augmenting path, or

concluding no augmenting path exists from its root to a free node that has not been

127

searched yet. We use Ψ to denote the set of augmenting paths discovered by the

algorithm.

The algorithm also maintains a set of nested blossoms Ω′ on Gelig discovered during

the search.

A search start at a free node as the root of the search tree and the only node in

the active path. This node marked outer node. Suppose u is the last (outer) node on

the active path. We scan all the unmatched edges (u, v) incident to u and depending

on the status of v, we do one of the following:

1. Augmentation. If v is unvisited and unmatched, extend the active path to v

and conclude the active path form an augmenting path. Mark v as outer and

terminate the search.

2. DFS Extension. If v is unvisited and matched to v′, we extend the active path

and active tree with edge (u, v) and (v, v′), where v is the parent of v′ and u is

the parent of v. We label v as inner and v′ as outer. Now v′ is the last node on

the active path and we continue the search from v′.

3. Blossom Formation. If v is visited and is an outer descendant of u in the active

tree Tk. Let P = 〈u = v1, v2, ... , vl = v〉 be the sequence of vertices or shrunken

blossoms on the tree path from u to v. Extend the active path from u to v2 by

going from u to v, then back in ancestral direction up to v2. Notice that all the

nodes with even indexes are originally inner. Label them now as outer. Now

v2 is the last node in the active tree. Finally, form and contract a blossom B

consisting of all the nodes in P and add it to Ω′. Notice that inner nodes on

the path are all singletons and outer nodes can be singleton or blossoms. Data

structures such as [73] allows us to keep track of all the blossoms in a total of

linear time.

4. DFS retraction. If all unmatched edges (u, v) are explored without finding an

augmenting path, we retract from u by removing u and its parent from the

active path. Its grandparent, which must be outer, is now the last vertex on

the active path. If u is the root of the tree terminate the search.

Notice that we ignore the edge (u, v) when v is an inner node, or when v is an

outer ancestor of u. The process maintains the following properties:

Lemma 4.22. Suppose u and v are outer vertices and (u, v) is scanned from both of

its endpoints. Then (u, v) must be in the same blossom in Ω′.

128

The search terminates by performing a search from all unvisited free nodes. When

the algorithm terminates, each free node is either a root of a terminated search tree

or involve in some augmenting path in Ψ.

The correctness of the algorithm is stated in [75].

Lemma 4.23 ([75] Lemma 8.1). When the algorithm terminate, Ψ is a maximal set

of vertex disjoint augmenting path.

Now we discuss its implementation on graph metrics. The main issue we need

to handle is that a nonterminal with s owners can generate
(
s
2

)
edges in Gelig, and

constructing them explicitly can lead to Ω(n2) running time regardless of the density

of G. To resolve the issue, each nonterminal keeps track of all its owners along with

their inner/outer status. By previous discussion, for each edge (u, v) in the original

graph, u and v shares at most one owner, we refers to a specific owner of u by one of

its neighboring edges.

Notice that the status of a node in Gelig can only transition from unvisited to inner,

unvisited to outer, and inner to outer. Moreover a node’s transition from inner to

outer only occurs at the blossom formation step. Hence for each nonterminal v, we

keep track of 3 sets, S
(U)
v , the set of unvisited owners, S

(I)
v , the set of inner owners,

and S
(O)
v , the set of outer owners.

For DFS extension, the current outer vertex u visits all the nonterminals v it owns,

finds one of its unvisited owners w ∈ S(U)
v and continues the search by extending to

w and w′ where w′ is matched to w′. Doing so will move w from the unvisited set to

inner set and w′ to the outer set. The cost is charged to moving w and w′ to their

respective sets.

Similarly for augmentation, when the node w is unmatched, we terminate the

search and simply remove it from the unvisited set since it no longer participates in

any future search.

For blossom formation, the current node u finds an nonterminal v that it owns

and a outer node w in S
(O)
v . If w is u’s descendant, we perform a blossom formation

step and convert all inner nodes in the tree path from u to w to outer. This step

will not change the status of w, but it will put u and w into the same outermost

blossom, which can be simulated by a concatenating two linked lists in S
(O)
v that each

containing u or w into a single linked list. The cost for inspecting w when w is an

ancestor of u can be charged to the cost when we inspect u from w later in the search.

Notice that this search must happen because an outer node will always remain outer.

At last, implementing DFS retraction is trivially done by retracting from the DFS

tree after exhausting all the unvisited sets and outer sets.

129

This leads to the following lemma:

Lemma 4.24. A maximal set of augmenting path in Gelig can be found in time O((n+

m)) time where n and m are the number of vertices and edges in the G.

Proof. By Invariant 4.20, the total number of owners of a nonterminal v is at most

deg(v) + 1. Hence the total number of (owner, ownee) pairs, i.e. the total size of

S
(U)
v at the start of the algorithm is O(m + n). Because we explicitly keep track of

the set of unvisited and outer owners, no exploration will be done from the current

node to the inner node. Each exploration to unvisited node will be charged to the

removal of the node from the unvisited set, and each exploration to an outer node

will be charged to the concatenation operation that merges the two owners. Hence

each operation can be done in constant time and we can perform all operations in

O(n+m) time.

Blossom Formation. Blossom formation can also be implemented by the augmen-

tation algorithm above. By Lemma 4.22, Ω′ forms a maximal set of nested blossom

on Gelig. Therefore, we can simply run the algorithm for augmentation (which will

not return any augmenting path), and use Ω′ as a maximal set of reachable blossom.

Dual Adjustment. Dual adjustment can be simulated by extending or retracting

the breadth first search trees. Specifically, if vertex u is reachable, each dual ad-

justment either increments or decrements λ(u) by ∆/2. We simulate this change by

∆/∆0 extensions or retractions of breadth first search tree, i.e. growing or shrinking

the depth first search tree by ∆/∆0 layers. After the entire process, the distance from

root and the outermost layers of the tree increases or decreases by ∆/2.

However since the distance function might not always be multiple of ∆, growing

breadth first search tree by ∆/∆0 might violate Invariant 4.20. To enforce Invari-

ant 4.20, when growing a tree, a vertex v will stop searching for its children once its

layer is at the target distance of the dual adjustment, or v is in more than 1 breadth

first search tree.

Shrinking is more straightforward, we shrink the outermost layer of breadth first

search tree Tu until its outermost layer is at the distance λ(u) after the dual adjust-

ment. No violation of Invariant 4.20 or Invariant 4.21 can be caused in this stage.

The total running time for implementing one dual adjustment, regardless of the

magnitude of ∆, is linear in terms of the size of the graph after subdivisions of edges.

This is because each edge can be visited at most twice, one from shrinking a tree, one

from growing the tree. As a result, the total running time is O(n+m).

130

Lemma 4.25. One step of dual adjustment can be implemented in O(n+m) time.

Blossom Dissolution Blossom Dissolution does not change the dual balls or the

breadth first search tree at a terminal level. The changes happen only at the blossom

tree and can be easily implemented in linear time.

Corollary 4.26. One iteration of Edmonds’ Search can be implemented in O(m)

time.

4.5 Exact Algorithm for Bounded Treewidth Graph

In this section, we prove that if we are given a tree decomposition of width k, we

can solve the graphic-MWPMproblem in O(mk log2 n) time. The high level idea

is straightforward: we use the tree decomposition to construct a hierarchy of small

balanced separator. This allows us to apply the divide and conquer algorithm from[16]

and [136] using the balanced separator as portals.

4.5.1 Treewidth and Hierarchical Separators

We first prove the fact that we can obtain a hierarchy of balanced separator from a

tree decomposition.

Definition 4.27. Given G = (V,E), a set of vertices S ⊂ V is a separator if G− S
contains more than 1 connected component.

Definition 4.28. Given G = (V,E), and α : V 7→ {0, 1}, a separator S is balanced

if every component Vi in G− S has α(Vi) at most (2/3)α(V).

Lemma 4.29 (Separator for tree decomposition). Let (T , {Bx}x∈V (T)) be a tree de-

composition for G. Let (x, y) ⊂ E(T) be an edge in T . Then Bx ∩ By is a separator

for G.

Proof. Let Tx and Ty denote the set of vertices in the connected component of T −
{(x, y)} that contains x and y respectively. Let Vx, Vy ⊆ V (G) denote the union

of their corresponding bags. We show that for every edge (u, v) ∈ E(G) such that

u ∈ Vx, v ∈ Vy, either u or v or both belongs to Bx ∩ By. This proves that Bx ∩ By

is a separator.

By definition we know there exists w ∈ V (T) such that Bw contains both u and

v. Without lost of generality assume w ∈ Tx. Notice that there is also v′ ∈ Ty that

131

Bv′ contains v. Since T [v] is connected v must be contained in the bags on the T
path from w to u′, in particular in both Bx and By.

Corollary 4.30. Any bag Bx is a separator.

Lemma 4.31. Let G = (V,E) be a graph of treewidth k, and α : V 7→ {0, 1}. G

has a balanced separator of size at most k + 1. Moreover, given a tree decomposition

(T , {Bx}x∈V (T)) of width k, one can find such a separator in linear time.

Proof. Select an arbitrary node r of T as root. Let Tx denote the subtree rooted at

x. Let α(Tx) =
∑

u∈
⋃
y:y∈V (Tx)

α(u). Using linear time, we can find a node w (possibly

r) such that:

1. α(Tw) ≥ (2/3)α(T)

2. Any child w′ of w has α(T ′w) ≤ (2/3)α(T).

Then Bw is a balanced separator.

Corollary 4.32. Given a graph G of treewidth k = o(n), we can in linear time

decompose its vertex set into two components V1, V2 and an interface set I such that:

1. V1 ∪ V2 = V .

2. ∅ 6= I ⊂ V1 ∩ V2.

3. For every pair of vertices u1, u2 such that u1 ∈ V1 and u2 ∈ V2, every path

between u1 and u2 contain a vertex in I.

4. |V1|, |V2| ≤ (2/3 + o(1))n.

Moreover, V1 and V2 can be obtained in linear time.

Proof. Let S be the separator guaranteed by Lemma 4.31, and C1, C2, ... , Ck be con-

nected components in G − S. If there is a component, say C1, have size (1/3)n ≤
|C1| ≤ (2/3)n, can set V1 = C1 ∪S and V2 = (C2 ∪C3 ∪ ...∪Ck)∪S and we are done.

Otherwise, all Ci has size at most (1/3)n. Take 1 ≤ p < k be the maximum number

such that |C1 ∪ C2 ∪ ... ∪ Cp| ≤ (2/3)n. We have |Cp+1 ∪ Cp+2 ∪ ... ∪ Cl| = |Cp+1| +
|Cp+2∪Cp+3∪...∪Ck| ≤ (1/3)n+(1/3)n = (2/3)n. Setting V1 = (C1∪C2∪...∪Cp)∪S
and V2 = (Cp ∪Cp+1 ∪ ... ∪Ck) ∪ S guarantees the bound. The rest of the properties

follows from the construction and Lemma 4.31. This procedure takes linear time.

Corollary 4.32 provides a recursive decomposition scheme that decomposes a graph

G of treewidth k into a hierarchy of components connected by a small vertex cut. The

hierarchy consists of L ≤ log3/2 n levels, we use H = {K1,K2, ... ,KL} to denote the

132

class of components at each level. The first level K1 consists of a single component,

the whole graph G. For level i ≥ 2, suppose Ki−1 = {G1, G2, ... , Gt}, then the level

i components in Ki is obtained by applying Corollary 4.32 to each Gj ∈ Ki−1. The

procedure splits each Gj into exactly two induced subgraphs that intersect at most

k+1 vertices. We call these vertices portals, as in Arora’s algorithm. Let Pi be the set

of portals introduced when splitting components in Ki−1 to Ki and define P1 = ∅. For

any components H ∈ Ki, the portals of H, ρ(H) is the set (P1 ∪P2 ∪ ...∪Pi)∩ V (H)

and let P denote the set of all portals. The following bound follows immediately from

construction.

Lemma 4.33. For any component H in the hierarchy, |ρ(H)| ≤ (k + 1) log n.

Notice that the set of components in the hierarchy H form a complete binary tree

with root G. Components in Ki are nodes at depth i and KL are the set of leaves.

4.5.2 The Divide-and-Conquer Framework for MWPM

In Varadarajan and Agarwal’s paper[136], they present an divide and conquer frame-

work for plane min weight perfect matching [136]. In this section, we review their

framework and describe how to apply the framework in graph metrics with low

treewidth.

Recall that in the graphic-MWPMproblem, we are given an unweighted undi-

rected graph G and a set of terminal T . Suppose G has treewidth k and we have a

hierarchical decomposition specified as above. We now define the metric graph G as

the metric completion on the set of terminals T and portals P . We first construct

a new weighted graph G as follows: The vertex set of G is the set of terminals T

and the set of all portals P . First we clean up the instance such that each terminal

belongs to exactly one leaf component. This can be done by assigning the terminal

to an arbitrary leaf component when it is shared by two leaf components (when the

terminal is also a portal in the decomposition). Then for each leaf component H and

each terminal u in H, add an edge between u and each portal p ∈ ρ(H) of weight

dG(u, p). Moreover, for each pair of portals p, q ∈ ρ(H), add an edge (p, q) of weight

dG(p, q). The total number of vertices is O(n). Each terminal has degree at most

k+ 1, and each portal has degree at most 2k (each portal is shared by at most 2 leaf

components), so the total number of edges is O(kn).

The algorithm maintains a matching M ⊂ T × T , a laminar set Ω of blossoms

and dual functions y, z and their aggregation λ that satisfy the following:

133

Property 4.34 (Exact Complementary Slackness). Let M be a matching on T × T
and y, z, λ be the dual functions and Ω be the set of blossoms:

1. Domination. For all (u, v) ∈ T × T , yz(u, v) ≤ d(u, v).

2. Tightness. For all (u, v) ∈M ∪ (
⋃
B∈Ω EB), yz(u, v) = d(u, v).

3. Nonnegative Dual. For each blossom B in Ω, z(B) ≥ 0.

4. Structural Blossoms. Ω forms a laminar family of blossom and for each blossom

B ∈ Ω, the matching M is maximal inside B, i.e., |M ∩E(B)| = (|B| − 1)/2.

Fact 4.35. Suppose M is a perfect matching along with duals y, z and Ω that satisfies

Property 4.34. Then M is a min weight perfect matching.

The property was introduced by Edmonds [59] and used in a series of subsequent

works[76, 70]. Following this line of work, the set of eligible pairs is defined as the

set of pairs (u, v) ∈ T × T such that yz(u, v) = d(u, v). The eligible subgraph Gelig is

defined similarly as in Section 4.2. The main implication of such definition is that the

version of Edmonds’ Search here no longer performs dual adjustment in a uniform rate

as in Section 4.4. Here we use a priority queue to keep track of the minimum amount

of dual adjustment needed to trigger a set of combinatorial events, e.g. discovery

of an augmenting path or a blossom consists of eligible edges and dissolution of a

blossom. The progress of the algorithm is now measured by the number free vertices

remaining, rather than their λ-values.

Before we describe the priority queue data structure and the algorithm, we need

to introduce some additional property that the partial primal and dual solution need

to satisfy in order for the algorithm to efficiently take advantage of the hierarchical

decomposition H. Following the work of [136], we use a divide-and-conquer scheme

to compute the matching. This requires the dual values to satisfy one additional

property:

Property 4.36 (Portal Constraint). Let H be a component in hierarchy H, and let

M,Ω, y, z be defined in Property 4.34. We require that for all pairs of (u, p) where

u ∈ T and p ∈ ρ(H) that λ(u) ≤ d(u, p).

This property guarantees that once recursive calls for children components finishes,

the partial solution for both children components still combine to satisfy Property 4.34

and Property 4.36 for their parent component. We say an unmatched terminal u is

tied to a portal p if λ(u) = d(u, p). The recursive call for a component H returns

with a matching M and duals y, z,Ω satisfying the following invariant:

134

Invariant 4.37. The matching M , and duals y, z,Ω satisfy the Property 4.34 and

Property 4.36 for component H. Moreover, each terminal in H is either matched or

tied to a portal in ρ(H). Moreover, at any moment, no two terminals are tied to the

same portal.

For any portal p, we use c(p) to denote the terminal that is tied to p.

Now we state the recursive procedure, call it Edmonds(H). It first recursively

calls Edmonds(H1) and Edmonds(H2) for its childrenH1 andH2. Let (M1, y1, z1,Ω1)

and (M2, y2, z2,Ω2) be the partial solution returned. The procedure starts with the

initial solution (M0, y0, z0,Ω0) obtained by taking M = M1 ∪M2, Ω = Ω1 ∪ Ω2 and

y, z being the function taking the disjoint union of y1, y2 and z1, z2 respectively. If H

is a leaf component, then M = ∅, Ω = ∅, y(u) = 0 and z(B) = 0.

Before we state the iterative search procedure, we define several terminologies

first. At any moment, terminals are either matched, free, or tied, meaning that it is

tied to a portal. A tied terminal is not considered free. A blossom is tied if its base

is tied. We use F and C to denote the sets of free and tied terminals. A portal is

tied if there is a terminal tied to it and free otherwise. An augmenting path is an odd

length alternating path from a free terminal to a free terminal, a tied terminal, or a

free portal. We call them T to T , T to C and T to P augmenting path respectively.

We run the following procedures until there are no more free terminals:

1. Augmentation. While there is a eligible T to T or T to C augmenting path,

find a type-T augmenting path P in Gelig and augment M ← M ⊕ P . Update

Gelig.

2. Portal Binding. While there is a T to P eligible augmenting path, find a type-P

augmenting path P . Let (u, p) be the edge on P incident to the portal end p.

Set M ←M ⊕ (P \ {u, p}). Set c(p) = u.

3. Blossom Formation. Let Tout be the set of nodes reachable from a free node

via an even length alternating path. Find a maximal set of nested blossoms

Ω′ on Tout. The maximality here means after contracting blossoms in Ω′, the

contracted graph does not contain any blossom reachable via an eligible alter-

nating path. Update Ω ← Ω ∪ Ω′. Set z(B) ← 0 for any blossom in Ω′. Gelig

does not change in this step.

4. Dual Adjustment. Find the set of Tout and let T in be the set of nodes not in

T out reachable from a free vertex via an odd length alternating path. Let Tout

and Tin be the set terminals in T that is contained in some nodes in Tout and

Tin respectively. The set of remaining terminals that are not in C are labelled

135

as unreachable, denoted by Tun. let Ωout and Ωin be the set of blossoms in T out

and T in.

δ1 = minB:B∈Ωin z(B)

δ2 = minu,v:u∈Tout,v∈Tun(d(u, v)− yz(u, v))

δ3 = minu,v:u,v∈Tout,B(u)6=B(v)(d(u, v)− yz(u, v))/2

δ4 = minu,v:u∈Tout,v∈C(d(u, v)− yz(u, v))

δ5 = minu,p:u∈Tout,p∈P (d(u, p)− λ(u))

Set δ = min{δ1, δ2, δ3, δ4, δ5}. Update the dual variable as follows:

y(u)← y(u) + δ if u is in Tout but not in any blossom.

z(B)← z(B) + δ if B is outermost blossom in Tout.

y(u)← y(u)− δ if u in Tin but not in any blossom.

z(B)← z(B)− δ if B is outermost blossom in Tin.

5. Blossom Dissolution. After dual adjustment some outermost blossoms might

have 0 z-values. Dissolve those blossom as long as they exists. Update Ω and

Gelig.

Notice that if we maintain Property 4.34 and Property 4.36, we have δ ≥ 0. And

in the event of δ = δi < +∞, performing a dual adjustment by δ makes it possible to

perform one of augmentation, portal binding, blossom formation, or blossom dissolu-

tion. Specifically, when δ = δ1, an outermost blossom in Tin has 0 z-value, in which

case we will perform a blossom dissolution. When δ = δ2 or δ = δ4, dual adjustment

creates a new eligible edge (u, v) between an outer terminal and unmatched terminal,

which creates a type-T augmenting path. When δ = δ3, an edge between two outer

terminals become eligible, meaning that we have either discover an augmenting path

or we have discovered a new outer blossom.

To bound the total running time, we divide the algorithm into phases. Each phase

ends when an augmentation or a portal binding operation is performed. In both cases

the number of free terminals decreases by at least 1.

Lemma 4.38. In the initial solution (M0,Ω0, y0, z0), the number of free terminals is

at most 2(k + 1).

Proof. By Invariant 4.37, in the partial solution returned by the recursive call, every

terminal is either matched or tied to a portal. Then every matched terminal will still

be matched in M0, the set of terminals stop being tied is the set of terminal in H1

136

and H2 that is tied to the cut set portal shared by H1 and H2. By construction, the

cut set has size at most k+1, so the set of free terminal has size at most 2(k+1).

Observe that if two terminals u1, u2 from H1 and H2, respectively, is tied to the

same portal, one can add (u, v) to the matching and still satisfy Property 4.36, and

the bound can be improved to k + 1.

Corollary 4.39. The number of phases in each Edmonds(H) is at most k + 1.

To efficiently implement one phase, we need a priority queue to quickly keep track

of {δ1, δ2, δ3, δ4, δ5} within a phase, especially when blossoms form and dissolve. The

following theorem can be obtained by adapting the construction in Appendix 5 in

[56], which states that for a weighted graph G with n vertices and m edges, one phase

of EDMONDS can be implemented in O(mp) time, where p is the amortized time

for a priority queue that supports insert and delete-min.

Theorem 4.40. Given a priority queue data structure that supports INSERT and

delete-min in amortized time O(q), one can implement one phase in EDMONDS in

O(mq) time.

The implementation of this data structure can be adapted to both accommodate

portals constraint as well as the implicit representation of graph G. The main idea

is as follows:

δ1 can be maintained explicitly with O(nH) variables. Maintaining δ2, δ3, δ4 es-

sentially reduces to maintaining for each pair of terminals u and v, when does their

dual ball start touching or stop touching each other. Recall that we say a dual ball

Bu owns a portal if it contains it and u is an owner of p. Then we need to answer

the following two questions:

1. If a portal p does not have an owner, after how many units of dual adjustment

does it start to have an owner?

2. If a portal p currently have an owner u, after how many units of dual adjustment

will u stop being the owner of p?

To answer the first question, notice that only dual balls of outer terminals are

growing, and once a terminal becomes outer it will never become inner or unreachable

until the next augmentation. Hence a portal, once it gains an owner, the owner will

not change within a phase. Therefore, we only need to keep track of O(mH) events in

the following form: For an edge (p1, p2) where p1 has an owner and p2 does not have

an owner, when will the dual ball containing p1 touch p2.

137

To answer the second question one just needs to use a priority queue with O(nH)

events corresponding to each (owner, ownee) pair such that the ownee is not on the

boundary of the owner’s dual ball. There are a total of nH events.

Hence the total running time of Edmonds(H) is O(kmHp). Summing up all

the recursive calls on the same level, since |V (G)| = O(n) and |E(G)| = O(kn),

the conquer step at each level takes O(mkp log n). The total running time of the

algorithm is O(mkp log n), when the tree decomposition is given.

Theorem 4.6. Given an unweighted and undirected graph G = (V,E) along with a

tree decomposition of width k, and a set of terminals T ⊆ V , we can solve the graphic-

MWPM problem in time O(mkp log n), where p is the update amortized time for a

priority queue that supports insert and delete-min.

138

CHAPTER 5

Join

5.1 Introduction

In this chapter, we study the effectiveness as well as limitation of sampling in ap-

proximating join queries. Sampling is one of the most widely-used techniques for

general-purpose AQP [43]. The high level idea is to execute the query on a small

sample of the original table(s) to provide a fast, but approximate, answer. While

effective for simple aggregates, using samples for join queries has long remained an

open problem [8]. There are two main approaches to AQP: offline or online. Of-

fline approaches [6, 8, 11, 32, 77, 119] build samples (or other synopses) prior to

query arrival. At run time, they simply choose appropriate samples that can yield

the best accuracy/performance for each incoming query. Online approaches, on the

other hand, such as wander-join perform much of their sampling at run time based

on the query at hand [18, 41, 86, 93, 118, 140]. Naturally, offline sampling leads to

significantly higher speedup, while online techniques can support a much wider class

of queries [93]. The same taxonomy applies to join approximation: offline techniques

perform joins on previously-prepared samples [8, 30, 107, 119, 35], while online ap-

proaches seek to produce a sample of the output of the join at run time [80, 52, 107].

As mentioned, the latter often means more modest speedups (e.g., 2× [93]) which

may not be sufficient to justify approximation, or additional requirements (e.g., an

index for each join column [107]) which may not be acceptable to many applications.

Thus, our focus in this paper—and what is considered an open-problem—is the offline

approach: joins on samples, not sampling the join’s output.

Joins on Samples The simplest strategy is as follows. Given two large tables T1

and T2, create a uniform random sample of each, say S1 and S2 respectively, and

then use S1 ./ S2 to approximate aggregate statistics of T1 ./ T2. This will lead to

139

A B
a 1
b 2

T1 C D
a 3
a 4
b 5
b 6

T2

A B C D
a 1 a 3
a 1 a 4
b 2 b 5
b 2 b 6

T1 ⨝ T2

A B C D
a 1 a 3
b 2 b 5

S(T1 ⨝ T2)A B
a 1

S1
C D
a 3
b 5

S2

A B C D
a 1 a 3

S1 ⨝ S2

50% Uniform
Sample

50% Uniform
Sample

⨝
A=C

50% Uniform
Sample

Figure 5.1: A toy example of joining two uniform samples (left) versus a uniform
sample of the join (right).

significant speedup if samples are much smaller than original tables, i.e., |Ti| � |Si|.
One of the earliest results in this area shows that this simple strategy is futile

for two reasons [6]. First, joining two uniform samples leads to quadratically fewer

output tuples, i.e., joining two uniform samples that are each p fraction (0 ≤ p < 1)

of the original tables will only produce p2 of the output tuples of the original join

(see Figure 5.1). Second, joining uniform samples of two tables does not yield an

independent sample of their join1 (see Section 5.2.1 for details). The dependence of

the output tuples can drastically lower the approximation accuracy [6, 30].

Prior Work Universe sampling [81, 93, 119] addresses the first drawback of uni-

form sampling. Although universe sampling avoids quadratic reduction of output,

its creates even more correlation in its output, leading to much lower accuracy (see

Section 5.3.1).

Atserias et al. provide a worst case lower bound for any query involving equi-

joins on multiple relations, showing that computing exact joins with a small memory

or time budget is hard [17]. For instance, the maximum possible join size for any

cyclic join on three n-tuple relations is Θ(n1.5). Thus, a natural question is whether

approximating joins is also hard with small memory or time.

Our Contribution This paper focuses on understanding the limitation of using

offline samples in approximating join queries. Given a sampling budget, how well

can we approximate the join of two tables using their offline samples? To answer

1Prior work has stated that joining uniform samples is not a uniform sample of the join [8]. We
avoid this terminology since uniform means equal probability of inclusion, and in this case each tuple
does appear in the join of the uniform samples with equal probability, but not independently. In
other words, joining two i.i.d. samples is an identical, but not independent, sample of the join.

140

this question, we must first define what constitutes a “good” approximation of a join.

We consider two metrics: (1) output cardinality and (2) aggregation accuracy. The

former is the number of tuples of the original join that also appear in the join of the

samples, whereas the latter is the error of the aggregates estimated from the sample-

based join with respect to their true values, if computed on the original join. Because

in this paper we only consider unbiased estimators, we measure approximation error

in terms of the variance of our estimators.

For the first metric, we provide a simple proof showing that universe sampling

is optimal, i.e. no sampling scheme with the same sampling rate can outperform

universe sampling in terms of the (expected) output cardinality. However, as we

show in Section 5.3.1, retaining a large number of join tuples does not imply accurate

aggregates. It is therefore natural to also ask about the lowest variance that can be

achieved given a sampling rate. To the best of our knowledge, this has remained

an open problem to date. For the first time, we formally study this problem and

offer an information-theoretical lower bound to this question. We also present a

hybrid sampling scheme that matches this lower bound within a constant factor. This

scheme involves a centralized computation, which can become prohibitive for large

tables due to large amounts of statistics that need to be shuffled across the network.

Thus, we also propose a decentralized variant that only shuffles a minimal amount of

information across the nodes—such as the table size and maximum frequency—but

still achieves the same worst case guarantees. Finally, we generalize our sampling

scheme to accommodate a priori information about filters (i.e., WHERE clause).

In this paper, we make the following contributions:

1. We discuss two metrics—output size and estimator’s variance —for measuring

the quality of join approximation, and show that universe sampling is optimal

for output size and there is an information-theoretical lower bound for variance

(Section 5.3).

2. We formalize a hybrid scheme, called Stratified-Universe-Bernoulli Sampling

(SUBS), which allows for different combinations of stratified, universe, and

Bernoulli sampling. We derive optimal sampling parameters within this scheme,

and show that they achieve the theoretical lower bound of variance within a con-

stant factor (Section 5.4–5.5.3). We also extend our analysis to accommodate

additional information regarding the WHERE clause (Section 5.6).

3. Through extensive experiments, we also empirically show that our optimal sam-

pling parameters achieve lower error than existing sampling schemes in both

centralized and decentralized scenarios (Section 5.7).

141

5.2 Background

In this section, we provide the necessary background on sampling-based join approx-

imation. We also formally state our problem setting and assumptions.

5.2.1 Sampling in Databases

The following are the three main popular sampling strategies (operators) used in AQP

engines and database systems.

1. Uniform/Bernoulli Sampling. Any strategy that samples all tuples with

the same probability is considered a uniform (random) sample. Since enforc-

ing fixed-size sampling without replacement is expensive in distributed systems,

Bernoulli sampling is considered a more efficient strategy [93]. In Bernoulli sam-

pling, each tuple is included in the sample independently, with a fixed sampling

probability p. In this paper, for simplicity, we use “uniform” and “Bernoulli”

interchangeably. As mentioned in Section 5.1, joining two uniform samples leads

to quadratically fewer output tuples. Further, it does not guarantee an i.i.d.

sample of the original join [8]: the output is a uniform sample of the join but

not an independent one. Consider an arbitrary tuple of the join, say (t1, t2),

where t1 is from the first table and t2 is from the second. The probability of

this tuple appearing in the join of the samples is always the same value, i.e., p2.

The output is thus a uniform sample. However, the tuples are not independent:

consider another tuple of the join, say (t1, t
′
2) where t′2 is another tuple from the

second table joining with t1. If (t1, t2) appears in the output, the probability of

(t1, t
′
2) also appearing becomes p instead of p2, which would be the probability

if they were independent.

2. Universe Sampling. Given a column2 J , a (perfect) hash function h : J 7→
[0, 1], and a sampling rate p, this strategy includes a tuple t in the table if

h(t.J) ≤ p. Universe sampling is often used for equi-joins, in which the same

p value and hash function h are applied to the join columns in both tables.

This ensures that when a tuple t1 is sampled from one table, any matching

tuple t2 from the other table is also sampled, simply because t1.J = t2.J ⇔
h(t1.J) = h(t2.J). This is why joining two universe samples of rate p produces

p fraction of the original join output in expectation. The output is a uniform

sample of the original join, as each join tuple appears with the same probability

2J can also be a set of multiple columns.

142

p. However, there is more dependence among the output tuples. Consider two

join tuples (t1, t2) and (t′1, t
′
2) where t1, t

′
1, t2, t

′
2 all share the same join key. Then,

if (t1, t2) appears, the probability of (t′1, t
′
2) also appearing will be 1. Likewise,

if (t1, t2) does not appear, the probability of (t′1, t
′
2) appearing will be 0. Higher

dependence means lower accuracy (see Section 5.3.1).

3. Stratified Sampling. The goal of stratified sampling is to ensure that minority

groups are sufficiently represented in the sample. Groups are defined according

to one or multiple columns, called the stratified columns. A group (a.k.a. a

stratum) is a set of tuples that share the same value under those stratified

columns. Given a set of stratified columns C and an integer parameter ktuple, a

stratified sampling is a scheme that guarantees at least ktuple tuples are sampled

uniformly at random from each group. When a group has fewer than ktuple

tuples, all of them are retained.

5.2.2 Quality Metrics

Different metrics can be used to assess the quality of a join approximation. In this

paper, we focus on the following two, which are used by most AQP systems.

Output Size/Cardinality This metric is the number of tuples of the original join

that also appear in the join of the samples. It is mostly relevant for exploratory

usecases, where users visualize or examine a subset of the output. In other cases,

where an aggregate is computed from the join output, retaining a large number of

output tuples does not guarantee accurate answers (we show this in Section 5.3.1).

Variance In scenarios where an aggregate function needs to be calculated from

the join output, the error of the aggregate approximation is more relevant than the

number of intermediate tuples generated. For most non-extreme statistics, there are

readily available unbiased estimators, e.g., Horvitz-Thompson estimator [88]. Thus, a

popular indicator of accuracy is the variance of the estimator [11], which determines

the size of the confidence interval given a sample size.

5.2.3 Problem Statement

In this section, we formally state the problem of sample-based join approximation.

The notations used throughout the paper are listed in Table 5.1.

143

Notation Definition
T1, T2 Two tables for the join
Si A sample generated from table Ti
J Column(s) used for the join between T1 and T2

W Column being aggregated (e.g., SUM, AVG)
C Column(s) used for filters (i.e., WHERE clause)
U Set of all possible values of J
a, b Frequency vectors of T1 and T2’s join columns, resp.
av, bv Number of tuples with join value v in

T1 and T2, resp.

Ĵagg Estimator for a join query with
aggregate function agg

ε Sampling budget w.r.t. the original table size
n1, n2 Number of tuples in T1 and T2, resp.
h A (perfect) hash function

ktuple Minimum number of tuples to be kept per group
in stratified sampling

kkey Minimum number of join keys per group to apply

universe sampling (universe sampling is not applied
to groups with fewer than kkey join keys)

p Sampling rate of universe sampling
q Sampling rate of uniform sampling

Table 5.1: Notations.

Query Estimator Let S1 and S2 be two samples generated offline from tables T1

and T2, respectively, and qagg be a query that computes an aggregate function agg on

the join of T1 and T2. A query estimator Ĵagg(S1, S2) is a function that estimates the

value of agg using two samples rather than the original tables.

Join Sampling Problem Given a query estimator Ĵagg and a sampling budget

ε ∈ (0, 1], our goal is to create a pair of samples S1 and S2—from tables T1 and T2,

respectively— that are optimal in terms of a given success metric, while respecting a

given storage budget epsilon on average. Specifically, we seek S1 and S2 that minimize

Ĵagg’s variance or maximize its output size such that E[|S1|+ |S2|] ≤ ε× (|T1|+ |T2|).
To formally study this problem, we first need to define a class of reasonable sam-

pling strategies. In Section 5.4, we define a hybrid scheme that can capture different

combinations of stratified, universe, and uniform sampling.

144

5.2.4 Scope and Limitations

To simplify our analysis, we limit our scope in this paper.

Flat Equi-joins We focus on equi (inner) joins as the most common form of joins

in practice. We also support both WHERE and GROUPBY clauses. Because our focus is

on the join itself, we ignore nested queries and only consider flat (or flattened) queries.

We primarily focus on two-way joins. However, our results extend to multi-way joins

with the same join column(s).

Aggregate Functions Most AQP systems do not support extreme statistics, such

as MIN or MAX [112]. Likewise, we only consider non-extreme aggregates, and primarily

focus on the three basic functions, COUNT, SUM, and AVG. However, we expect our

techniques to easily extend to other mean-like statistics as well, such as VAR, STDEV,

and PERCENTILE.

5.3 Hardness

In this section, we explain why providing a large output size is insufficient for approx-

imating joins, and formally show the hardness of approximating common aggregates

based on the theory of communication complexity.

5.3.1 Output Size

Uniform sampling leads to small output size. If we sample at a rate q from both

table T1 and table T2, the join of samples contains only q2 fraction of T1 ./ T2 in

expectation. Moreover, the join of two independent samples of the original tables is

in general not an independent sample of T1 ./ T2, which hurts the sample quality. In

contrast, universe sampling [93] with sample rate p can, in expectation, sample a p

fraction of T1 ./ T2. We prove that this is optimal:

Theorem 5.1. No sampling scheme with sample rate α can guarantee more than α

fraction of T1 ./ T2 in expectation for all possible inputs.

Proof. We can simply consider two identical tables T1, T2 of n tuples, each having

join key 1, 2, ... , n. Their join has size n. Since each tuple of T1 joins with exactly

one tuple of T2, the size of the join of the samples must not be larger than the size of

sample of T1. Since, by assumption, the expected size of the sample of T1 is at most

αn, the expected size of the join of the samples must also be at most αn.

145

However, a large number of tuples retained in the join does not imply that the

original join query can be accurately approximated. As pointed out in [35], universe

sampling shows poor performance in approximating queries when the frequencies of

keys are concentrated on a few elements. Consider the following extreme example with

tables T1 and T2, each comprised of n tuples with a single value 1 in their join key.

In this example, universe sampling with the sampling rate p produces an estimator of

variance n4/p, while uniform sampling with rate q has a variance of n2/q2, which is

much lower when p = q and n is large. Thus, a larger output size does not necessarily

lead to a better approximation of the query.

5.3.2 Approximating Aggregate Queries

In this section, we focus on the core question: why is approximating common aggre-

gates (e.g., COUNT, SUM and AVG) hard when using a small sample (or more generally, a

small summary)? We address this question using the theory of communication com-

plexity. Specifically, to show that computing COUNT on a join is hard, we reduce it to

set intersection, a canonically hard problem in communication complexity. Consider

two parties, Alice and Bob, holding information x and y, respectively. They want

to evaluate some function f(x, y) while exchanging as little information as possible.

Assume that both Alice and Bob each hold a set of size k, say A and B, respectively.

They aim to estimate the size of t = |A ∩ B|. Pagh et. al [117] show that if Alice

only sends a small summary to Bob, any unbiased estimator that Bob uses will have

a large variance.

Theorem 5.2 (See [117]). Any one-way communication protocol that estimates t

within relative error δ with probability at least 2/3 must send at least Ω(k/(tδ2))n

bits.

Corollary 5.3. Any estimator to |A ∩B| produced by Bob that is based on an s-bits

summary by Alice must have a variance of at least Ω(kt/s).

Any sample of size s can be encoded using O(log
(
k
s

)
) bits, implying that any

estimator to COUNT that is based on a sample of size s from one of the tables must

have a variance of at least Ω(kt/s).

Estimating SUM queries is at least as hard as estimating COUNT queries, since any

COUNT can be reduced to a SUM by setting all entries in the SUM column to 1.

From the hard instance of set intersection, we can also derive a hard instance for

AVG queries. Based on Theorem 5.2, any summary of T1 that can distinguish between

146

intersection size t(1 + δ) and t(1 − δ) must be at least of size Ω(k/(tδ2)) bits. Now

we reduce this problem to estimating an AVG query.

Here, the two tables consist of k+
√
t tuples each. The first k tuples of T1 and T2

are from the hard instance of set intersection, and the values of their AVG column are

set to 2r. The join column of the last
√
t tuples is set to some common key v′ that is

in the first k tuples, and their AVG column is set to 0. Therefore, the intersection size

from the first k tuples is at least t(1+δ) (or at most (t(1−δ))) if and only if the result

of the AVG query is at least 2rt(1+δ)
t(2+δ)

= (1 +O(δ))r (or at most 2rt(1+δ)
t(2+δ)

= (1−O(δ)r)).

By re-scaling δ by a constant factor, we can get the following theorem:

Theorem 5.4. Any summary of T1 that can estimate an AVG query with precision δ

with probability at least 2/3 must have a size of at least Ω(n/(tδ2)).

5.4 Generic Sampling Scheme

To formally argue about the optimality of a sampling strategy, we must first define a

class of sampling schemes. As discussed in Section 5.2.1, there are three well-known

sampling operators: stratified, universe, and Bernoulli (uniform). However, these

atomic operators can themselves be combined. For example, one can apply universe

sampling of rate 0.1 and then Bernoulli sampling of rate 0.2 for an overall effective

sampling rate of 0.02.3 To account for such hybrid schemes, we define a generic

scheme that combines universe and Bernoulli sampling, called UBS.4 We also define

a more generic scheme that combines all three of stratified, universe and Bernoulli

sampling, called SUBS. It is easy to show that the basic sampling operators are a

special case of SUBS. First, we define the effective sample rate.

Definition 5.5 (Effective sampling rate). We define the effective sampling rate of a

sampling scheme as the expected ratio of the size of the resulting sample to that of the

original table.

Definition 5.6 (Universe-Bernoulli Sampling (UBS)). Given a table T and a column

(or set of columns) J in T , a UBS scheme is defined by a pair (p, q), where 0 <p≤ 1

3Statistically, it does not matter which sampling is applied first: whether a tuple passes the
universe sampler and whether it passes the Bernoulli sampler are completely independent decisions,
and hence, the output distribution is the same. Here, we apply universe sampling first only for
convenience and without loss of generality.

4Even if we do not care about output cardinality, universe sampling can still help improve the
approximation quality. For example, given two tables of size n with a one-to-one join relationship,
the count estimator’s variance is n/q2 under Bernoulli sampling but n/p under universe sampling,
which is much lower when p=q.

147

is a universe sampling rate and 0 <q≤ 1 is a Bernoulli (or uniform) sampling rate.

Let h : U 7→ [0, 1] be a perfect hash function. Then, a sample of T produced by this

scheme, S = UBSp,q(T, J), is produced as follows:

1: function UBSp,q((T, J))

2: S ← ∅
3: for each t ∈ T do

4: if h(t.J) ≤ p then

5: Include t into S independently with probability q.

6: end if

7: end for

8: end function

It is easy to see that the effective sampling rate of a UBS scheme (p, q) is p · q.
Thus, the effective sampling rate here is independent of the actual distribution of the

values in the table (and column(s) J).

The goal of this sampling paradigm is to optimize the trade-off between universe

sampling and Bernoulli sampling in different instances. At one extreme, when each

join value appears exactly once in both table, universe sampling leads to lower vari-

ance than Bernoulli sampling. This is because independent Bernoulli sampling has

trouble matching tuples with the same join value, while universe sampling guarantees

that when a tuple is sampled, all matching tuples in the other table are also sampled.

At the other extreme, if all tuples have the same join value in both tables (i.e., the

join becomes a Cartesian product of the two tables), universe sampling will either

sample the entire join, or sample nothing at all, while uniform sampling will have a

sample size concentrated around qN , thus giving an estimator of much lower variance.

In section 5.5.1 to 5.5.3, we give a comprehensive discussion on how to optimize p

and q for different tables and different queries.

The Stratified-Universe-Bernoulli Sampling Scheme applies to a table T that is

divided into K groups (i.e., strata), denoted as G1, G2, ... , Gk.

Definition 5.7 (Stratified-Universe-Bernoulli Sampling (SUBS)). Given a table T of

N rows and a column (or set of columns) J in T , a SUBS scheme is defined by a

tuple (p1, p2, ... , pK , q1, q2, ... , qK), where 0 < pi, qi ≤ 1 are the universe and Bernoulli

sampling rates. Given a perfect hash function h: U 7→ [0, 1], a sample of T produced

by this scheme, S = UBSp,q(T, J), is produced as follows:

148

1: function SUBSp1,p2,...,pK ,q1,q2,...,qK ((T,G, J))

2: S ← ∅
3: for each group Gi do

4: for each tuple t ∈ Gi do

5: if h(t.J) ≤ pi then

6: Include t into S independently with probability qi.

7: end if

8: end for

9: end for

10: end function

Let |Gi| denote the number of tuples in group Gi. Then the effective sampling

rate of a SUBS scheme is
∑

i pi · qi · |Gi|/N . We call εi = p · qi the effective sampling

rate for group Gi.

In both UBS and SUBS schemes, the user specifies ε as their desired sampling

budget, given which our goal is to determine optimal sampling parameters p and q

(or pi and qi values) such that the variance of our join estimator is minimized. In

Section 5.5, we derive the optimal p and q for UBS. For SUBS, in addition to ε, the

user also provides two additional parameters kkey and ktuple (explained below). Next,

we show how to determine the effective sampling rate εi for each group Gi based on

these parameters in SUBS. Given εi for each group, the problem is then reduced to

finding the optimal parameters for UBS for that group (i.e., pi and qi). Moreover, as

we will show in Sections 5.5.1–5.5.3, particularly in Lemma 5.9, the universe sampling

rate for every group must be the same, and must be the same as the universe sampling

rate of the other table in two-way joins. Hence, we use a single universe sampling

rate p = p1 = ... = pk across all groups.

As mentioned in Section 5.2.1, ktuple is a user-specified lower bound on the mini-

mum number of tuples5 in each group the sample must retain. kkey is an additional

user-specified parameter required for the SUBS scheme. It specifies a threshold at

which to activate the universe sampler. In particular, if a group contains too few (i.e.,

less than kkey) join keys, we do not perform any universe sampling as it will have

a high chance of filtering out all tuples. Hence, we apply universe sampling only to

those groups with ≥ kkey join keys. For groups with fewer than kkey join keys, we

will only apply Bernoulli sampling with rate εi.

We call a group large if it contains at least kkey join keys, otherwise, we call it a

5The lower bound holds only on average, due to the probabilistic nature of sampling.

149

small group. We use Nb to denote the total number of tuples in all large groups, and

Ns to denote the total number of tuples in all small groups. Similarly, let Mb and

Ms denote the number of large and small groups, respectively. Then, we decide the

sampling budget εi for each group Gi as follows:

1. If Msktuple > εNs or Mbktuple > εNb, we notify the user that creating a sample

given their parameters is infeasible.

2. Otherwise,

• Let ε′s =
Ks·ktuple

Ns
and let ε′′s = ε − ε′s. Then for each small group Gi, the

sampling budget is εi =
ktuple
|Gi| + ε′′s .

• Let ε′b =
Kb·ktuple

Nb
and let ε′′b = ε − ε′b. Then for each large group Gi, the

sampling budget is εi =
ktuple
|Gi| + ε′′b .

Once εi is determined for each group, the problem of deciding optimal SUBS pa-

rameters is reduced to deciding the optimal SUBS parameters for K separate groups.

This effective sampling rate εi guarantees that each large group will have at least t

tuples in the sample on average, and the remaining budget is divided evenly. Thus,

the corresponding uniform sampling rate for each large group is qi = εi/p. Moreover,

we pose the constraint that the universe sampling rate p should be at least 1/s to

guarantee that, on average, there is at least one join key passing through the universe

sampler.

For small groups, we simply apply uniform sampling with rate εi. This is equiva-

lent to setting p = 1 for these groups.

Overall, this strategy provides the following guarantees:

1. Each group will have at least t tuples in the sample, on average.

2. The probability of each group being missed is at most (1 − 1/s)s < 0.367. In

general, if we set p>c/s for some constant c>1, this probability will become

0.367c.

3. The approximation of the original query will be optimal in terms of its variance

(see Sections 5.5.1–5.5.3).

5.5 Optimal Sampling

As shown in Section 5.4, finding the optimal sampling parameters within the SUBS

scheme can be reduced to finding those within the UBS scheme. Thus, in this section,

150

we focus on deriving the UBS parameters that minimize error for each aggregation

type (COUNT, SUM, and AVG). Initially, we also assume there is no WHERE clause. Later,

in Section 5.6, we show how to handle WHERE conditions and how to create a single

sample instead of creating one per each aggregation type and WHERE condition.

Centralized vs. Decentralized For each aggregation type, we analyze two sce-

narios: centralized and decentralized. Centralized setting is when the frequencies of

the join keys in both tables are known. This represents situations where both tables

are stored on the same server, or each server communicates its full frequency statistics

to other parties. Decentralized setting is a scenario where the two tables are each

stored on a separate server [144], and exchanging full frequency statistics across the

network is costly.6

Decentralized Protocols In a decentralized setting, each party (i.e., server) only

has access to full statistics of its own table (e.g., frequencies, join column distribution).

The goal then is for each party to determine its sampling strategy, while minimizing

communications with the other party. Depending on the amount of information

exchanged, one can pursue different protocols for achieving this goal. In this paper,

we study a simple sampling protocol, which we call Dictatorship. Here, one server,

say party1, is chosen as the dictator. We also assume that the parties know each

other’s sampling budgets and table sizes (ε1, ε2, |T1|, and |T2|). The dictator observes

the distributional information of its own table, say T1, and decides a shared universe

sampling rate p between max{ε1, ε2} and 1. This p is sent to the other server (party2)

and both servers use p as their universe sampling rate.7 Their uniform sampling rates

will thus be q1 = ε1/p and q2 = ε2/p, respectively.

Since party1 only has T1’s frequency information, it chooses an optimal value of p

that minimizes the worst case variance of Ĵagg, i.e., the variance when the frequencies

in T2 are chosen adversarially. This can be formulated as a robust optimization [113]:

p∗ = arg min
max{ε1,ε2}≤p≤1

max
b

Var[Ĵagg] (5.1)

where b ranges over all possible frequency vectors of T2.

An alternative protocol is a Voter protocol, where each party proposes (i) a

universe sampling rate and (ii) a worst case variance if this rate were to be adopted

6Here, we focus on two servers, but the math can easily be generalized to decentralized networks
of multiple servers.

7Using the same universe sampling rate is justified by Lemma 5.9.

151

by everyone. Once this information is exchanged, all parties adopt the rate with

the best worst case variance. While offering a better worst case variance by design,

Voter does not guarantee that the actual variance will indeed be lower than that of

Dictatorship. This is because the actual variance depends on the local statistics

of the other parties as well.

Moreover, for SUM and AVG queries, which unlike COUNT queries involve an aggregate

column, one can show that Voter is unnecessary: it is always better to simply

adopt the rate proposed by the party with has the aggregate column. This is because

the party without this information can only assume an arbitrary distribution of the

aggregate column, leading to overestimation of the worst case variance.

Note that, if one modifies Voter such that each party also shares their full

statistics with others, the protocol then reduces to a centralized setting but with

significantly more communication.

There is yet a more complex protocol that one can apply in a decentralized setting:

an iterative, multi-round protocol, called Explorer. In this protocol, the parties

each choose an arbitrary value as their initial sampling parameter, say p0
1 and p0

2,

and produce a sample of their own table using their own parameter, say S0
1 and S0

2 ,

respectively. Then, they each share their chosen sampling rate and sample with the

other party. Then, each party uses its own local table and the sample received from

the other party to derive a new sampling parameter, say p1
1 and p1

2, respectively. This

process continues iteratively until the sampling parameters converge, or the amount

of communication exceeds a fixed budget. Explorer, however, is significantly more

expensive than both Dictatorship and Voter. A full analysis of the Explorer

protocol is beyond the scope of the current paper, and we leave to future work.

In the rest of this paper, we use Dictatorship in our decentralized analysis.

Voter and Explorer are also viable protocols in the decentralized setting and we

defer their theoretical and experimental study to any future works.

5.5.1 Join Size Estimation: Count on Joins

We start by considering the following simplified query:

select count(*) from T1 join T2 on J

where T1 and T2 are two tables joined on column(s) J . Consider S1 = UBS(p1,q1)(T1, J)

and S2 = UBS(p2,q2)(T2, J). Then, we can define an unbiased estimator for the above

query, Ecount = |T1 ./J T2|, using S1 and S2 as follows. Observe that given any pair

of tuples t1 ∈ T1 and t2 ∈ T2, where t1.J = t2.J , the probability that (t1, t2) enters

152

S1./S2 is pminq1q2, where pmin=min{p1, p2}. Hence, the following is an unbiased

estimator for Ecount.

Ĵcount(p1, q1, p2, q2, S1, S2) =
1

pminq1q2

|S1 ./ S2|. (5.2)

When the arguments p1, q1, p2, q2, S1, S2 are clear from the context, we omit them and

simply write Ĵcount.

Lemma 5.8. Let S1 = UBSp1,q1(T1, J) and

S2 = UBSp2,q2(T2, J). The variance of Ĵcount is as follows:

Var(Ĵcount) =
1− p
p

γ2,2 +
1− q2

pq2

γ2,1

+
1− q1

pq1

γ1,2 +
(1− q1)(1− q2)

pq1q2

γ1,1.

where γi,j =
∑

v a
i
vb
j
v.

Proof. Let Xv and Yv be the random variable denoting the number of tuple in S1 and

S2 with value v given that h(v) ≤ pmin. Therefore, Xv and Yv are binomial random

variables with parameter (av, q1) and (bv, q2). Let Zv be defined as the number of

tuples in S1 ./ S2 with join value v. By construction, we have:

Zv
def
=

XvYv with probability p

0 otherwise

And

Ĵ =
1

pq1q2

∑
v∈U

Zv.

To analyze the variance of Zv, we use the law of total variance: Let Wv = XvYv,

we have

Var(Zv) = E[Var(Zv | Wv) + Var(E[Zv | Wv])

We have

E[Var(Zv | Wv)] = p(1− p)E[W 2
v]

= p(1− p)(Var(Wv) + E2[Wv])

153

And

Var(E[Zv | Wv]) = p2Var(Wv)

Combining the two terms we have

Var(Zv) = pVar(Wv) + p(1− p)E2[Wv]

where

Var(Wv) =E[X2
v]E[Y 2

v]− E2[Xv]E
2[Yv]

=(avq1(avq1 + 1− q1))(bvq2(bvq2 + 1− q2))

− q2
1q

2
2a

2
vb

2
v

=a2
vbvq

2
1q2(1− q2) + avb

2
vq1(1− q1)q2

2

+ avbvq1(1− q1)q2(1− q2)

and

E2[Wv] = q2
1q

2
2a

2
vb

2
v.

Therefore,

Var[Zv] = p(a2
vbvq

2
1q2(1− q2) + avb

2
vq1(1− q1)q2

2

+ avbvq1(1− q1)q2(1− q2)) + p(1− p)q2
1q

2
2a

2
vb

2
v

Using our notation for frequency vectors and its moments. The variance of the

join size estimator Ĵ can be written as:

Var(Ĵcount)

=
∑
v∈U

1

p2q2
1q

2
2

Var(Zv)

=
1− p
p

∑
v

a2
vb

2
v +

1− q2

pq2

∑
v

a2
vbv

+
1− q1

pq1

∑
v

avb
2
v +

(1− q1)(1− q2)

pq1q2

∑
v

avbv)

154

To minimize Var(Ĵcount) under a fixed sampling budget, the two tables should

always use the same universe sampling rate. If p1>p2, the effective universe sampling

rate is only p2, i.e., only p2 fraction of the join keys inside T1 appear in the join of the

samples, and the remaining p1−p2 fraction is simply wasted. Then, we can change the

universe sampling rate of T1 to p2 and increase its uniform sampling rate to obtain a

lower variance.

Lemma 5.9. Given tables T1, T2 joined on column(s) J , a fixed sampling parameter

(p1, q1) for T1, and a fixed effective sampling rate ε2 for T2, the variance of Ĵcount is

minimized when T2 uses p1 as its universe sampling rate and correspondingly ε2/p1

as its uniform sampling rate.

Proof. Define p2 and q2 to be the universe and Bernoulli sampling rate for T2 and

p = min{p1, p2}. For fixed p1, q1 and ε2, we write Var[Ĵcount] as a function of p2.

If p2 ≥ p1, we have p = p1:

Var(Ĵcount)

=
1− p
p

∑
v

a2
vb

2
v +

1− q2

pq2

∑
v

a2
vbv

+
1− q1

pq1

∑
v

avb
2
v +

(1− q1)(1− q2)

pq1q2

∑
v

avbv

=
1− p
p

∑
v

a2
vb

2
v + (1ε2 −

1

p2

)
∑
v

a2
vbv

+
1− q1

q1

∑
v

avb
2
v +

1− q1

q1

(
p2

ε
− 1)

∑
v

avbv)

which is nondecreasing in terms of p2. Therefore, the minimum is attained when

p2 = p1. Intuitively, increasing p2 when p2 ≥ p1 decreases the Bernoulli sampling rate

without increasing the universe sampling rate over join, and Hence only decrease the

quality of samples.

155

When p2 ≤ p1, p = p2:

Var(Ĵcount)

=
1− p
p

∑
v

a2
vb

2
v +

1− q2

pq2

∑
v

a2
vbv

+
1− q1

pq1

∑
v

avb
2
v +

(1− q1)(1− q2)

pq1q2

∑
v

avbv

=(
1

p2

− 1)
∑
v

a2
vb

2
v + (

1

ε2
− 1

p2

)
∑
v

a2
vbv

+
1

p2

1− q1

q1

∑
v

avb
2
v +

1

ε2

1− q1

q1

(1− ε2
p2

)
∑
v

avbv

=
1

p2

∑
v

(a2
vb

2
v − a2

vbv) +
1

p2

1− q1

q1

∑
v

(avb
2
v − avbv)

−
∑
v

a2
vb

2
v +

1

ε2

∑
v

a2
vbv −

1

ε2

1− q1

q1

∑
v

avbv

Since 0 < q1 ≥ 1, and a2
vb

2
v−a2

vbv, avb
2
v−avbv ≥ 0 since both av and bv are nonnegative

integers. The variance function is nonincreasing in terms of p2, thereby attains its

minimum when p2 = p1.

Note that Lemma 5.9 applies to both centralized and decentralized settings, i.e.,

it applies to any feasible sampling parameter (p1, q1) and (p2, q2), regardless of how

the sampling parameter is decided. Next, we analyze each setting.

5.5.1.1 Centralized Sampling for Count

Since in optimal sampling scheme, we always use the same (say p) universe sampling

scheme across the tables, we have the following result.

Theorem 5.10. When T1 and T2 use sampling parameters (p, ε1/p) and (p, ε2/p),

Ĵcount’s variance is given by:

Var[Ĵcount] = (
1

p
− 1)γ2,2 + (

1

ε2
− 1

p
)γ2,1

+ (
1

ε1
− 1

p
)γ1,2 + (

p

ε1ε2
− 1

ε1
− 1

ε2
+

1

p
)γ1,1.

Proof. This is simply obtained by plugging in q1 = ε1/p and q2 = ε2/p to Lemma 5.8.

156

Since each term in Theorem 5.10 that depends on p is proportional either to p

or 1/p, to find a p that minimizes the variance, one can simply set the first order

derivatives (with respect to p) to 0.

Theorem 5.11. Let T1 and T2 be two tables joined on column(s) J . Let av and bv

be the frequency of value v in column(s) J of tables T1 and T2, respectively. Given

their sampling rates ε1 and ε2, the optimal sampling parameters (p1, q1) and (p2, q2)

are given by:

p1=p2= min{1,max{ε1, ε2,
√
ε1ε2γ2,2 − γ1,2 − γ2,1 + γ1,1

γ1,1

}}

and q1=ε1/p, q2=ε2/p.

Proof. By Lemma 5.9, the two table has equal universe sampling rate in the optimal

sampling scheme. Thus we assume p1 = p2 = p and p is a real number between

max{ε1, ε2} and 1, and q1 = ε1/p and p2 = ε2/p. Thus we have:

Var(Ĵcount)

=
1− p
p

∑
v

a2
vb

2
v + (

1

ε2
− 1

p
)
∑
v

a2
vbv + (

1

ε1
− 1

p
)
∑
v

avb
2
v

+ (
p

ε1ε2
− 1

ε1
− 1

ε2
− 1

p
)
∑
v

avbv

=
1

p
(
∑
v

a2
vb

2
v −

∑
v

a2
vbv −

∑
v

avb
2
v +

∑
v

avbv)

+
p

ε1ε2

∑
v

avbv −
∑
v

a2
vb

2
v +

1

ε2

∑
v

a2
vbv

+
1

ε1

∑
v

avb
2
v − (

1

ε1
− 1

ε2
)
∑
v

avbv

Notice only the first two terms 1
p
(
∑

v a
2
vb

2
v −

∑
v a

2
vbv −

∑
v avb

2
v +

∑
v avbv) +

1
q

1
ε1ε2

∑
v avbv depends on q. Moreover, both terms has nonnegative coefficients:

∑
v

a2
vb

2
v −

∑
v

a2
vbv −

∑
v

avb
2
v +

∑
v

avbv

=
∑
v

(a2
v − av)(b2

v − bv)

≥0 (av, bv are nonnegative integers.)

Since p takes on value between max{ε1, ε} and 1, by AM-GM inequality and

157

monotonicity of the variance function, the term is minimized when

p = min{1,max{ε1, ε2,√
ε1ε2

∑
v(a

2
vb

2
v − a2

vbv − avb2
v + avbv)∑

v avbv
}}

Substituting this into Lemma 5.8, the resulting variance is only a constant factor

of Theorem 5.2’s theoretical limit. For instance, consider a primary-key-foreign-key

join query where av ∈ {0, 1} and bv is smaller than some constant, say 5, and ε1=ε2=ε

for any ε, Theorem 5.11 chooses p1=p2=ε. Then the variance given by Theorem 5.10

becomes (1/ε− 1)J where J =
∑

v avbv is the size of the join. Since ε is the expected

ratio of the sample to table size, the expression (1/ε− 1)J matches the lower bound

in Corollary 5.3 except for a constant factor.

5.5.1.2 Decentralized Sampling for Count

Motivated by Lemma 5.9, the Dictatorship protocol uses the same universe sam-

pling rate p for both parties in the decentralized setting, by solving the following

robust optimization problem:

arg min
max{ε1,ε2}≤p≤1

max
b

Var[Ĵcount]

Based on Lemma 5.8 and 5.11, given the effective sampling rates ε1 and ε2, we can

express Var[Ĵcount] as a function of frequencies {av} and {bv}, and universe sampling

rate p as follows.

Var[Ĵcount] = (
1

p
− 1)γ2,2 + (

1

ε2
− 1

p
)γ2,1

+(
1

ε1
− 1

p
)γ1,2 + (

p

ε1ε2
− 1

ε1
− 1

ε2
+

1

p
)γ1,1.

(5.3)

Lemma 5.12. Let a∗ be the maximum frequency in table T1, v∗ be any value that

has that frequency, and nb be the total number of tuples in T2. The optimal value for

maxb∈Knb Var[Ĵcount] is given by (1
p
− 1)a2

∗n
2
b + (1

ε2
− 1

p
)a2
∗nb + (1

ε1
− 1

p
)a∗n

2
b + (p

ε1ε2
−

1
ε1
− 1

ε2
− 1

p
)a∗nb

Proof. Since Var[Ĵcount] is strictly convex as a function bv’s in its domain. To max-

imize this function, it suffices to consider only the extreme points in its feasible

158

polytope. These are the all 0 vector 0, and the vector b̂v for each join key v ∈ U
that has nb at its v-th entries and 0 everywhere else. It is easy to see that since all

coefficients for are positive, the maximizing value is achieved by the vector b̂v∗

In equation (5.3), given {av} and a fixed p, the variance is a convex function

of the frequency vector {bv}. Thus, the frequency vector {bv} that maximizes the

variance, i.e., the worst case {bv}, is one where exactly one join key has a non zero

frequency. This join key should be the one with the maximum frequency in T1. This

is not a representative case and using it to decide a sampling rate might drastically

hinder the performance on average. We therefore require that both servers also share

a simple piece of information regarding the maximum frequency of the join keys in

each table, say Fa = maxv av and Fb = maxv bv. With this information, the new

optimal sampling rate is given by:

Theorem 5.13. Given ε1 and ε2, the optimal UBS parameter (p, q1) and (p, q2) for

COUNT in the decentralized setting are given by

p = min{1,max{ε1, ε2,
√
ε1ε2(FaFb − Fa − Fb + 1)}}

and q1 = ε1/p, q2 = ε2/p.

Proof. Consider the variance of our count estimator given by Theorem 5.10:

Var[Ĵcount] = (
1

p
− 1)

∑
v

a2
vb

2
v + (

1

ε2
− 1

p
)
∑
v

a2
vbv

+(
1

ε1
− 1

p
)
∑
v

avb
2
v + (

p

ε1ε2
− 1

ε1
− 1

ε2
+

1

p
)
∑
v

avbv.
(5.4)

Fixed any p, under the constraint that for all v, av ≤ Fa and bv ≤ Fb, the variance is

maximized when av = Fa and bv = Fb. This defines the worst case input under such

constraint. So to obtain the optimate sampling rate for the worst case input, it suffice

to substitute av = Fa and bv = Fb to Theorem 5.11, and the theorem follows.

5.5.2 Sum on Joins

Let Esum be the output of the following simplified query:

select sum(T1.W)

from T1 join T2 on J

159

Let F be the sum of column W in the joined samples S1 ./ S2. Then, the following

is an unbiased estimator for Esum:

Ĵsum =
1

pminq1q2

F (5.5)

where pmin = min{p1, p2}.
We first show that the estimator is unbiased.

Lemma 5.14. E[Ĵsum] = Esum.

Proof. Similar to Ĵcount, each pair of tuples (t1, t2) in the join appears in the join of

the sample with probability pminq1q2. We have:

E[Ĵsum] =
1

pminq1q2

E[SUMW]

=
1

pminq1q2

∑
(t1,t2):

t1∈T1,t2∈T2
t1.J=t2.J

((pminq1q2)t1.c+ (1− pminq1q2) · 0)

=
∑

(t1,t2):t1∈T1,t2∈T2
t1.J=t2.J

t1.c

Let µv and σ2
v be respectively the mean and variance of attribute W of the tuples

in S1 that have the join value v. Further, recall that av is the number of tuples in T1

with join value v. The following lemma gives the variance of Ĵsum.

Lemma 5.15. The variance of Ĵsum is given by:

Var[Ĵsum] =
1− q2

pq2

β1 +
1− q1

pq1

β2

+
(1− q1)(1− q2)

pq1q2

β3 +
1− p
p

β4

(5.6)

where β1 =
∑

v a
2
vµ

2
vbv, β2 = av(µ

2
v + σ2

v)b
2
v, β3 = av(µ

2
v + σ2

v)bv and β4 = a2
vµ

2
vb

2
v.

Proof. We analyze the variance of Ĵsum using a similar process as COUNT(*). For

each join value v, define Xv to be the sum of the c values in S1, and Yv to be the

number of tuples in S2 whose value for column J is v. Define Wv = XvYv and

Zv =

Wv with probability p

0 otherwise

160

We have:

E[Xv] = q1avµv

and

E[X2
v] = (q1(1− q1)av(µ

2
v + σ2

v) + q2
1a

2
vµ

2
v

Recall that E[Yv] = q2av and E[Y 2
v] = bvq2(bvq2 + 1− q2). Hence

Var[Wv]

=E[X2
v]E[Y 2

v]− E2[Xv]E
2[Yv]

=((q1(1− q1)av(µ
2
v + σ2

v)

+ q2
1a

2
vµ

2
v)(bvq2(bvq2 + 1− q2))− q2

1a
2
vµ

2
vq

2
2b

2
v

And

Var(Zv)

=pVar(Wv) + p(1− p)E2[Wv]

=p((q1(1− q1)av(µ
2
v + σ2

v)− q2
1a

2
vµ

2
v)(bvq2(bvq2 + 1− q2))

− q2
1a

2
vµ

2
vq

2
2b

2
v) + p(1− p)q2

1q
2
2a

2
vµ

2
vb

2
v

Hence

Var(Ĵsum)

=
1

p2q2
1q

2
2

∑
v

Var(Zv)

=
1− q2

pq2

a2
vµ

2
vbv +

1− q1

pq1

av(µ
2
v + σ2

v)b
2
v

+
(1− q1)(1− q2)

pq1q2

av(µ
2
v + σ2

v)bv +
1− p
p

a2
vµ

2
vb

2
v

Analogous to Lemma 5.9, we have the following result.

Lemma 5.16. Given tables T1, T2 joined on column(s) J , fixed sampling parameters

(p1, q1) for T1, and a fixed effective sampling rate ε2 ≤ p1 for T2, the variance of Ĵsum

is minimized when T2 also uses p1 as its universe sampling rate and correspondingly,

ε2/p1 as its uniform sampling rate.

Proof. Similar to Lemma 5.9, we show that for any fixed p1 between 1 and maxε1,ε2

161

and q1 = ε1/p1, the variance of the optimal sampling parameters is minimized when

the universe sampling p2 rate of T2 is the same as p1:

Case 1:: If p2 ≥ p1: This case has simple intuition. When p2 ≥ p1, the join

universe sampling rate for both table p = min{p1, p2} = p1. Hence increasing p2

beyond p1 do not increase the join universe sampling rate, and only decreases the

Bernoulli sampling rate for table T2 and increases the variance of the overall estimator.

In particular, we have p = p1 and pq1 = ε1, we have:

Var(Ĵsum)

=
∑
v

(
1− q2

pq2

a2
vµ

2
vbv +

1− q1

pq1

av(µ
2
v + σ2

v)b
2
v

+
(1− q1)(1− q2)

pq1q2

av(µ
2
v + σ2

v)bv +
1− p
p

a2
vµ

2
vb

2
v)

=
∑
v

(
p2

ε2
− 1) · 1

p
a2
vµ

2
vbv +

1− q1

pq1

av(µ
2
v + σ2

v)b
2
v

+ (
p2

ε2
− 1)

(1− q1)

pq1

av(µ
2
v + σ2

v)bv +
1− p
p

a2
vµ

2
vb

2
v)

which is a non-decreasing function in terms of p2 and it is minimized when p2 = p1.

Case 2:: If p2 ≤ p1: Here, a smaller p2 can result in smaller join universe sampling

rate in exchange of large Bernoulli sampling rate for T2, We want to show overall

decreasing p2 will result in a large variance of Ĵsum. In this case, p = p2 and pq2 = ε,

162

we have:

Var(Ĵsum)

=
∑
v

(
1

p
a2
vµ

2
vb

2
v +

1− q2

pq2

a2
vµ

2
vbv +

1− q1

pq1

av(µ
2
v + σ2

v)b
2
v

+
(1− q1)(1− q2)

pq1q2

av(µ
2
v + σ2

v)bv − a2
vµ

2
vb

2
v)

=
∑
v

(
1

p2

a2
vµ

2
vb

2
v + (

1

ε2
− 1

p2

)a2
vµ

2
vbv

+
1

p2

· 1− q1

q1

av(µ
2
v + σ2

v)b
2
v

+ (
1

ε2
− 1

p2

)
(1− q1)

q1

av(µ
2
v + σ2

v)bv − a2
vµ

2
vb

2
v)

=
∑
v

(
1

p2

a2
vµ

2
v(b

2
v − bv) +

1

ε2
a2
vµ

2
vbv

+
1

p2

1− q1

q1

av(µ
2
v + σ2

v)(b
2
v − bv)

+
1

ε2

(1− q1)

q1

av(µ
2
v + σ2

v)bv − a2
vµ

2
vb

2
v)

Since bv’s are nonnegative integers so b2
v ≥ bv, Var(Ĵsum) is a non-increasing function

in terms of p2 and is minimized when p2 = p1.

5.5.2.1 Centralized Sampling for Sum

Based on Lemma 5.16, we use the same universe sampling rate p ≥ ε1, ε2 for both

tables, with their corresponding uniform sampling rates being q1 = ε1/p and q2 = ε2/p.

Then we can further simplify equation 5.6 into:

Theorem 5.17. When T1 and T2 both use the universe sampling rate p and respec-

tively use the uniform sampling rate q1 = ε1/p and q2 = ε2/p, the variance of Ĵsum

is given by:

Var[Ĵsum] =
∑
v

(
1

ε2
− 1

p
)β1 + (

1

ε1
− 1

p
)β2

+ (
p

ε1ε2
− 1

ε1
− 1

ε2
+

1

p
)β3 + (

1

p
− 1)β4.

Proof. Similar to Theorem 5.10, this expression can be obtained by substituting q1 =

ε1/p and q2 = ε2/p back to the variance given in Theorem 5.15.

163

The proof of the following theorem is similar to Theorem 5.11.

Theorem 5.18. Given effective sampling rates ε1, ε2, the optimal sampling parame-

ters for SUM in a centralized setting are given by p= min{1,max{ε1, ε2,
√
ε1ε2

β1+β3−β2−β4
β3

}},
q1= ε1

p
and q2= ε2

p
.

Proof. This is analogous to Theorem 5.11. Since p takes on value between max{ε1, ε}
and 1, by AM-GM inequality and monotonicity of the variance function, the variance

is minimized when

p = min{1,max{ε1, ε2,

(ε1ε2(
∑
v

(a2
vµ

2
vb

2
v − a2

vµ
2
vbv − av(µ2

v + σ2
v)b

2
v

+ av(µ
2
v + σ2

v)bv))/(
∑
v

av(µ
2
v + σ2

v)bv))
1/2}}.

5.5.2.2 Decentralized Sampling for Sum

Lemma 5.16 implies that, in a decentralized setting for SUM estimation, the universe

sampling rate p must be decided by the party that has T1, i.e., the table with the

aggregate column.

Given a fixed T1 and p, Var[Ĵsum] is a strictly convex function of T2’s frequency

vector. Hence, the worst case instance is a point distribution where all tuples in T2

share the same join key. However, for SUM, the worst case distributions in T2 are not

the same for all possible sampling parameters p. Define hv(p) to be Var[Ĵsum] as a

function of p where T2’s frequency vector is all concentrated on the join key v, and

define h∗(p) = maxv hv(p). Since all hv(p)’s are convex in p, h∗(p) is still convex and

its exact minimum can be computed using a sweep line algorithm (see [42, §8] for

details). In a nutshell, the algorithm sweeps all possible values of p and uses a data

structure to keep track of maxv hv(p) at that particular value. The data structure

uses O(|U|) memory, which can be costly in practice.

Therefore, we propose a simple sampling scheme whose worst case variance is at

most twice the variance of the optimal scheme. Instead of using h∗(p) to keep track of

the maximum of all hv(p), we use an approximate h′(p) = max{hv1(p), hv2(p)}, where

v1 = arg maxv a
2
vµ

2 and v2 = arg maxv av(µ
2
v + σ2

v) to approximate h∗(p). Since hv(p)

is a function in the form of h(p) = Ap+B/p+C for some constant A,B,C > 0, the

value of p∗ = arg min{ε1,ε2≤p≤1} h
′(p) can be easily solved using quadratic equations

164

and basic case analysis. The function h′ is much simpler and its minimum can be

easily found using quadratic equations and basic case analysis.

Let p′ = arg minh′(p) and p∗ = arg minh∗(p). We claim that choosing p′ as our

sampling parameter can only increase the optimal worst case variance by a factor of 2.

This is follows from the simple fact that hv1(p) uppers bounds the terms in hv(p) that

depends on a2
vµ

2
v, and hv2(p) upper bounds the terms that depends on av(µ

2
v + σ2

v).

Hence their maximum is at least half of hv(p), for any v and p.

Lemma 5.19. For any p≥ε1,ε2, we have h∗(p)
2
≤h′(p)≤h∗(p).

Proof. We focus on the first inequality 1/2h∗(p) ≤ h′(p). The second inequality holds

since it is h∗(p) is obtained by maximizing over a larger subset.

Observe that we can group the terms in 5.6 into f1(b) and f2(b), where

f1(b, p) =
∑
v

(
1

ε2
− 1

p
)a2
vµ

2
vbv + (

1

p
− 1)a2

vµ
2
vb

2
v

and

f2(b, p) =(
1

ε1
− 1

p
)av(µ

2
v + σ2

v)b
2
v

+ (
p

ε1ε2
− 1

ε1
− 1

ε2
+

1

p
)av(µ

2
v + σ2

v)bv

That is, f1 consists of combinations of a2
vµ

2
v’s and f2 consists of combinations of

av(µ
2
v + σ2

v). Define bv to be the vector that has nb on its v-th coordinate and 0

everywhere else. We can rewrite hi as:

hv(p) = f1(bv, p) + f2(bv, p)

By the choice of v1 and v2, we have for every v that f1(bv, p) ≤ f1(bv1 , p) and

f2(bv, p) ≤ f2(bv2 , p). Therefore, we have for all v that

f1(bv, p) + f2(bv, p) ≤ 2 max{f1(bv1 , p), f2(bv2 , p)}

Hence we have

h∗(p) = max
v
f1(bv, p) + f2(bv, p)

≤ 2 max{f1(bv1 , p), f2(bv2 , p)} ≤ 2h′(p)

165

Corollary 5.20. We have: h∗(p′) ≤ 2h∗(p∗).

5.5.3 Average on Joins

Let Eavg be the output of the following simplified query:

select avg(T1.W)

from T1 join T2 on J

In general, producing an unbiased estimator for AVG is hard.8 Instead, we define and

analyze the following estimator. Let S and C be the SUM and COUNT of column W in

S1 ./ S2. We define our estimator as Ĵavg = S/C. There are two advantages over

using separate samples to evaluate SUM and COUNT: (1) we can use a larger sample to

estimate both queries, and (2) since SUM and COUNT will be positively correlated, the

variance of their ratio will be lower. Due to the lack of a close form expression for the

variance of the ratio of two random variables, next we present a first order bivariate

Taylor expansion to approximate the ratio.

For any f(X, Y), the bivariate Taylor expansion around (θx, θy) is:

f(X, Y) = f(θx, θy) + f ′x(θx, θy)(x− θx) + f ′(θx, θy)(y − θy) +R.

where R is a remainder of lower order terms. The expectation of f(X, Y) can be

approximated using the expansion around the expectation of X and Y , µX and µY :

E[f(, Y)]

≈E[f(µX , µY) + f ′x(µX , µY)(x− µx) + f ′(µx, µy)(y − µy)]

=E[f(µX , µY)] + 0 + 0

=f(µX , µY)].

Let S and C be the random variables denoting the sum and the size of the join

of samples, and let f(X, Y) = X/Y . This shows that E[S/C] ≈ E[S]/E[C], which is

exactly equal to the average over join. Although, the estimator is not unbiased, its

expectation tends to the truth value when the join size tends to infinity.

Now we can analyze its variance, and with some more involved analysis we can

8The denominator, i.e., the size of the sampled join, can even be zero. Furthermore, the expec-
tation of a random variable’s reciprocal is not equal to the reciprocal of its expectation.

166

show that:

Var[S/C] ≈ (
E[S]2

E[C]2
)(

Var[S]

E[S]2
− 2Cov[S,C]

E[S]E[C]
+

Var[C]

E[C]2
). (5.7)

Theorem 5.21. Let S and C be random variables denoting the sum and cardinality

of the join of two samples produced by applying UBS sampling parameters (p1, q1) to

T1 and (p2, q2) to T2. Let pmin = min{p1, p2}. We have:

Var[S/C] ≈ (
E[S]2

E[C]2
)(

Var[S]

E[S]2
− 2Cov[S,C]

E[S]E[C]
+

Var[C]

E[C]2
) (5.8)

where

E[S] =pminq1q2

∑
v

µvavbv

E[C] =pminq1q2

∑
v

avbv

Var[S] =pminq1q2(1− q2)[q1

∑
v

a2
vµ

2
vbv + q2

∑
v

av(µ
2
v + σ2

v)b
2
v

+(1−q1)
∑
v

av(µ
2
v+σ

2
v)bv] +pmin(1−pmin)q2

1q
2
2a

2
vµ

2
vb

2
v

Var[C] =pminq1q2[(1− q2)
∑
v

a2
vbv + (1− q1)q2

∑
v

avb
2
v

+ (1− q1)(1− q2)
∑
v

avbv + (1− pmin)q1q2

∑
v

a2
vb

2
v]

Cov[S,C] =pminq1q2[(1− q2)q1

∑
v

a2
vµvbv + (1− q1)q2

∑
v

avµvb
2
v

+ (1−q1)(1−q2)
∑
v

avµvbv+(1−pmin)q1q2

∑
v

a2
vµvb

2
v]

Proof. For any function f(x, y), the bivariate first order Taylor expansion about any

(x0, y0) is

f(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) +R

where R is a remainder of smaller order terms. Consider X, Y as two random variables

with mean µx and µy, , we can approximate E[f(X, Y)] by a expanding E[f(x, y)]

167

around (µx, µy):

E[f(X, Y)] ≈ E[f(µx, µy)] + E[
∂f

∂X
(µx, µy)(X − µx)]

+
∂f

∂Y
(µx, µy)(X − µy)

= f(µx, µy)

Now consider a second order Taylor expansion around (x0, y0):

f(x, y) = f(x0, y0) +
∂f

∂X
(x0, y0)(x− x0) +

∂f

∂Y
(x0, y0)(y − y0)

+
1

2
(
∂2f

∂X2
(x0, y0)(X − x0)2 +

∂2f

∂Y 2
(x0, y0)(Y − y0)2

+
∂2f

∂X∂Y
(x0, y0)(X − x0)(Y − y0))

We can similar expand E[f(X, Y)] around (µx, µy) and obtain

E[f(X, Y)] = f(µx, µy) +
1

2
(E[

∂2f

∂X2
(µx, µy)(X − µx)2]

+ E[
∂2f

∂Y 2
(x0, y0)(y − y0))2]

+ E[
∂2f

∂X∂Y
(µx, µy)(X − µx)(Y − µy)]

= f(µx, µy) +
1

2
(
∂2f

∂X2
(µx, µy)Var[X]

+
∂2f

∂Y 2
(x0, y0)Var[Y]

+
∂2f

∂X∂Y
(µx, µy)Cov[X, Y]

Plugging in f(S,C) = S/C, we have

Var[S/C] ≈ (
E[S]2

E[C]2
)(

Var[S]

E[S]2
− 2Cov[S,C]

E[S]E[C]
+

Var[C]

E[C]2
) (5.9)

Notice that the expression of E[S], E[C], Var[S] and Var[C] has already been given

in Theorem 5.10, Theorem 5.17. The term Cov[X, Y] = E[(X − µx)(Y − µy)] can be

obtained similar to Theorem 5.10. Hence the theorem follows.

168

5.5.3.1 Centralized Sampling for Average

In a centralized setting where av, bv, µv and σv are given for all v, every term in the

expression E[S]2

E[C]2
(Var[S]
E[S]2

− 2 Cov[S,C]
E[S]E[C]

+ Var[C]
E[C]2

that depends on p is proportional to either

p or 1/p.9 The terms proportional to 1
p

are 1
p
(A− 2B + C) where

A =

∑
v av(µ

2
v + σ2

v)bv
(
∑

v avµvbv)
2

+
a2
vµ

2
vb

2
v

(
∑

v avµvbv)
2

−
∑

v a
2
vµ

2
vbv

(
∑

v avµvbv)
2
−
∑

v av(µ
2
v + σ2

v)b
2
v

(
∑

v avµvbv)
2

B =
1∑
v avbv

+

∑
v a

2
vb

2
vµv

(
∑

v avbv)(
∑

v avµvbv)

−
∑

v a
2
vµvbv

(
∑

v avbv)(
∑

v avµvbv)
−

∑
v avµvb

2
v

(
∑

v avbv)(
∑

v avµvbv)

C =

∑
v avbv

(
∑

v avbv)
2

+

∑
v a

2
vb

2
v

(
∑

v avbv)
2
−

∑
v a

2
vbv

(
∑

v avbv)
2
−

∑
v avb

2
v

(
∑

v avbv)
2

The term proportional to p is pD where:

D =
1

ε2ε2
(

∑
v av(µ

2
v + σ2

v)bv
(
∑

v avµvbv)
2
− 2∑

v avbv
+

∑
v avbv

(
∑

v avbv)
2
).

We can find a p that minimizes 1
p
(A−2B+C)+pD as follows.

Theorem 5.22. In the centralized setting, set p− = max{ε1, ε2}, p+ = 1 and

p∗ = min{1,max{ε1, ε2,
√

A−2B+C
D
}}. Then the optimal sampling parameter is given

by:

p =



p− if A− 2B + C ≤ 0 and D > 0

p+ if A− 2B + C > 0 and D ≤ 0

p∗ if both A− 2B + C and D > 0

arg minp∈{p−,p+}
1
p
(A− 2B + C) + pD. otherwise

Proof. The proof is identical to Theorem 5.11 and Theorem 5.18.

5.5.3.2 Decentralized Sampling for Average

Minimizing the worst case variance for AVG (for the decentralized setting) is much

more involved than the average case. In most cases, the objective function (variance)

9Notice that E[S]/E[C] is independent of p.

169

is neither convex nor concave in T2’s frequencies. However, note that every term

in Theorem 5.22 is an inner product 〈x, y〉, where x and y are two vectors stored on

party1 and party2, respectively. Fortunately, inner products can be approximated by

transferring a very small amount of information using the AMS sketch[13, 51]. With

such a sketch, we can derive an approximate sampling rate without communicating

the full frequency statistics.

5.6 Multiple Queries and Filters

Creating a separate sample for each combination of aggregation function, aggregation

column, and WHERE clause is clearly impractical. In this section, we show how to create

a single sample per join pattern that supports multiple queries at the cost of some

possible loss of approximation quality. First, we ignore the WHERE clauses and then

show how they can be handled too.

Multiple Tables and Queries We formulate our input as a graph G=〈V,E〉. The

vertex set V is the set of all table and join key pairs, and the edge set E corresponds

to all join queries of interest. Specifically, for every join query between tables T1

and T2 on J1 = J2, we have a corresponding edge e between vertices (T1, J1) ∈
V and (T2, J2) ∈ V (henceforth, we will use a query and its corresponding edge

interchangeably). This means G is a multigraph, with potentially parallel edges or

self-loops. For each vertex v = (T, J) ∈ V , we must output a sampling budget εv as

well as the corresponding universe sampling rate pv, which will be used to create a

sample S = UBSpv ,εv/pv(T, J). This sample will be used for any query that involves a

join with T on column(s) J .

According to Lemmas 5.8 and 5.15, and Theorem 5.21, for each edge e=(v1,v2)∈E,

we can express the estimator variance of its corresponding query as a function of

εv1 , εv2 , pv1 , pv2 and pe, where pe is an auxiliary variable denoting the minimum of p1

and p2:

fe(p, εv1 , εv2 , pv1 , pv2)=
1

pe
(Ae+Be

p1

εv1
+Ce

p2

εv2
+De

p1p2

εv1εv2
) (5.10)

where Ae, Be, Ce, De are constants that depend on the distributional information of

the tables in v1 and v2. To cast this as an optimization problem, we also take in a

user specified weight ωe for each edge e and express our objective as:

F =
∑

e=(v1,v2)∈E

ωefe(pe, εv1 , εv2 , pv1 , pv2) (5.11)

170

The choice of ωe values is up to the user. For example, they can all be set to 1,

or to the relative frequency, importance, or probability of appearance (e.g., based on

past workloads) of the query corresponding to e. Then, to find the optimal sampling

parameters we solve the following optimization:

min
εv ,pv ,pe

F subject to Σ
v=(T,J)∈V

εv · size(T) ≤ B (5.12)

where size(T) is the storage footprint of table T , and B is the overall storage bud-

get for creating samples. Note that by replacing the non-linear pe = min(pv1 , pv1)

constraints with pe ≤ pv1 and pe ≤ pv2 , (5.12) is reduced to a smooth optimization

problem, which can be solved numerically with off-the-shelf solvers [21].

Known Filters To incorporate WHERE clauses, we simply regard a query with a

filter c on T1 ./ T2 as a query without a filter but on a sub-table that satisfies c,

namely T ′ = σc(T1 ./ T2).

Unknown Filters with Distributional Information When the columns ap-

pearing in the WHERE clause can be predicted but the exact constants are unknown,

a similar technique can be applied. For example, if an equality constraint C > x is

anticipated but x may take on 100 different values, we can conceptually treat it as

100 separate queries, each with a different value of x in its WHERE clause. This reduces

our problem to that of sampling for multiple queries without a WHERE clause, which

we know how to handle using equation (5.11).10 Here, the weight ωi can be used to

exploit any distributional information that might be available. In general, ωi should

be set to reflect the probability of each possible WHERE clause appearing in the future.

For example, if there are R possible WHERE clauses and all are equally likely, we can

set ωi = 1/R, but if popular values in a column are more likely to appear in the

filters, we can use the column’s histogram to assign ωi.

Unknown Filters When there is no information regarding the columns (or their

values) in future filters, we can take a different approach. Since the estimator variance

is a monotone function in the frequencies of each join key (see Theorem 5.10, Theo-

rems 5.17 and 5.21), the larger the frequencies, the larger the variance. This means

the worst case variance always happens when the WHERE clause selects all tuples from

the original table. Hence, in the absence of any distributional information regarding

10Note that, even though each query in this case is on a different table, they are all sub-tables of
the same original table, and hence their sampling rate p is the same.

171

future WHERE clauses, we can simply focus on the original query without any filters to

minimize our worst case variance.

5.7 Experiments

Our experiments aim to answer the following questions:

1. How does our optimal sampling compare to other baselines in centralized and

decentralized settings? (§5.7.2, §5.7.3)

2. How well does our optimal UBS sampling handle join queries with filters?

(§5.7.4)

3. How does our optimal UBS sampling perform when using a single sample for

multiple queries? (§5.7.5)

4. How does our optimal SUBS sampling compare to existing stratified sampling

strategies? (§5.7.6)

5. How much does a decentralized setting reduce the resource consumption and

sample creation overhead? (§5.7.7)

6. How does our optimal sampling compare to a more general sampling scheme,

namely two-level sampling [35]? (§5.7.8)

5.7.1 Experiment Setup

Hardware and Software We borrowed a cluster of 18 c220g5 nodes from Cloud-

Lab [3]. Each node was equipped with an Intel Xeon Silver 4114 processor with

10 cores (2.2Ghz each) and 192GB of RAM. We used Impala 2.12.0 as our backend

database to store data and execute queries.

Datasets We used several real-life and synthetic datasets:

1. Instacart [1]. This is a real-world dataset from an online grocery. We used

their orders and order products tables (3M and 32M tuples, resp.), joined on

order id.

2. Movielens [83] This is a real-world movie rating dataset. We used their ratings

and movies tables (27M and 58K tuples, resp.), joined on movieid.

3. TPC-H [2]. We used a scale factor of 1000, and joined l orderkey of the fact table

(lineitem, 6B tuples) with o orderkey of the largest dimension table (orders,

1.5B tuples).

172

Table 5.2: Six UBS baselines, each with different p and q.

B1 B2 B3 B4 B5 B6

p 0.001 0.0015 0.003 0.333 0.6667 1.000
q 1.000 0.6667 0.333 0.003 0.0015 0.001

4. Synthetic. To better control the join key distribution, we also generated sev-

eral synthetic datasets, where tables T1 and T2 each had 100M tuples and a join

column J . T1 had an additional column W for aggregation, drawn from a power

law distribution with range [1, 1000] and α=3.5. We varied the distribution of

the join key in each table to be one of uniform, normal, or power law, creating

different datasets (listed in Table 5.3). The values of column J were integers

randomly drawn from [1, 10M] according to the chosen distribution. Whenever

joining with power2 (see below), we used 100K join keys in both relations. For

normal distribution, we used a truncated distribution with σ=1000/5. We used

two different variants of power law distribution for J , one with α=1.5 and 10M

join keys (referred to as power1), and one with α=2.0 and 100K join keys (re-

ferred to as power2). We denote each synthetic dataset according to its tables’

distributions, S{distribution of T1,distribution of T2}, e.g., S{uniform,uniform}.

Queries For each dataset, we tested a set of three queries that join two tables and

calculate aggregates. The aggregates in each of three queries for a dataset correspond

to one of the three most frequently used (non-extreme) aggregates, COUNT, SUM, and

AVG, respectively.

Baselines We compared our optimal UBS parameters (referred to as OPT) against

six baselines. The UBS parameters of these baselines, B1, ... , B6, are listed in Table

5.2. B1 and B6 are simply universe and uniform sampling, respectively. B2, ... , B5

represent different hybrid variants of these sampling schemes. Sampling budgets

were ε1 = ε2 = 0.001, except for Instacart and Movielens where, due to their

small number of tuples, we used 0.01 and 0.1, respectively. In Section 5.7.8, we also

compare against a more general scheme, called two-level sampling [35], which utilizes

significantly more parameters than UBS (see Section 5.8 for an overview of two-level

sampling).

Implementation We implemented our optimal parameter calculations in Python

application. Our sample generation logic read required information, such as table size

173

0.5% 0.6% 128% 43% 0.6% 0.6% 143% 43% 128% 143% 109% 43% 43% 51%
0.9% 1.0%

181%

279%

1.0% 1.2%

175%

232%

181% 175%

195%

279% 232%

201%

0.7% 0.9%

156%

162%

0.9% 1.0%
128%

150%

156%
128%

228% 162%

150%
206%

0.6% 0.7%
141%

195%

0.7% 0.8%
160%

159%

141%
160%

215%

195%
159% 217%

1.6% 1.6% 129%
89%

1.6% 1.7%

141%

85%
129% 141%

144%
89% 85% 97%

2.2% 2.2%

130%

58%

2.2% 2.3%

129% 57% 130%

129%
120% 58% 57%

71%2.7% 2.7%

129%
44%

2.7% 2.7%

145%
43%

129%
145% 113% 44% 43% 51%

0.10x
1.00x

10.00x
100.00x

1000.00x
10000.00x

{Uniform,
Uniform}

{Uniform,
Normal}

{Uniform,
Power1}

{Uniform,
Power2}

{Normal,
Uniform}

{Normal,
Normal}

{Normal,
Power1}

{Normal,
Power2}

{Power1,
Uniform}

{Power1,
Normal}

{Power1,
Power1}

{Power2,
Uniform}

{Power2,
Normal}

{Power2,
Power2}

O
PT

's
Im

pr
ov

em
en

t
ov

er
 B

as
el

in
es

(lo

g
sc

al
e)

OPT B1 B2 B3 B4 B5 B6

Figure 5.2: OPT’s improvement in terms of variance for COUNT over six baselines with
synthetic dataset (percentages are relative error).

0.9% 1.0% 137% 45% 0.6% 0.7% 142% 44% 130% 131% 112% 42% 34% 54%

1.0% 1.2% 187%

279%

1.0% 1.2%
176%

232%

138%
208%

195%

207%
166% 201%

1.0% 1.1%

153%

161%

0.9% 1.1%
125%

150%

150%
176%

228%
177%

178% 206%

0.9% 1.0%

131%

195%

0.7% 0.8%
161%

159%

159% 145%

215%
166% 187%

216%

3.7% 3.8%
136%

89%

2.0%
2.1%

140%

85%
140%

133%

145% 64% 61%
97%

5.1% 5.2%

141%
60%

2.8% 2.9%

134% 57% 135%

127%

122% 51% 44%
71%

6.5% 6.4%

147% 46%

3.5% 3.5%

142%
44%

131% 124%
114% 43% 34%

51%

0.10x
1.00x

10.00x
100.00x

1000.00x
10000.00x

{Uniform,
Uniform}

{Uniform,
Normal}

{Uniform,
Power1}

{Uniform,
Power2}

{Normal,
Uniform}

{Normal,
Normal}

{Normal,
Power1}

{Normal,
Power2}

{Power1,
Uniform}

{Power1,
Normal}

{Power1,
Power1}

{Power2,
Uniform}

{Power2,
Normal}

{Power2,
Power2}

O
PT

's
Im

pr
ov

em
en

t
ov

er
 B

as
el

in
es

(lo

g
sc

al
e)

OPT B1 B2 B3 B4 B5 B6

Figure 5.3: OPT’s improvement in terms of variance for SUM over six baselines with
synthetic dataset (percentages are relative error).

and join key frequencies, from the database, and then constructed SQL statements

to build appropriate samples in the target database. We used Python to compute

approximate answers from sample-based queries.

Variance Calculations We generated β=500 pairs of samples for each experiment,

and re-ran the queries on each pair, to calculate the variance of our approximations.

5.7.2 Join Approximation: Centralized Setting

Table 5.3 shows the sampling rates used by OPT for each dataset and aggregate func-

tion in the centralized setting. For Synthetic, the optimal parameters were some

mixture of uniform and universe sampling when both tables were only moderately

skewed (i.e., uniform or normal distributions) for COUNT and SUM, whereas it reduced

to a simple uniform sampling for power law distribution. This is due to the higher

probability of missing extremely popular join keys with universe sampling. To the

contrary, for AVG, OPT reduced to a simple universe sampling in most cases. This is

because maximizing the output size in this case was the best way to reduce variance.

For the other datasets (Instacart, Movielens, and TPC-H), the optimal parameters

led to universe sampling, regardless of aggregate type, and their joins were PK-FK,

hence making uniform sampling less useful for the table with primary keys.

Figure 5.2 shows OPT’s improvement over the baselines in terms of variance for

174

0.6% 0.7% 97% 0.6% 0.2% 0.3% 11% 0.2% 0.2% 0.2% 4% 0.5% 0.6% 11%

0.6% 0.7% 42%
0.6% 0.2% 0.3% 11% 0.2% 0.2% 0.2% 4% 0.5% 0.6% 11%

0.6% 0.7%

46%

0.8% 0.2% 0.3% 13% 0.3%
0.2% 0.2% 4% 0.5% 0.5% 10%

0.7% 0.8%

60%

1.0%

0.2%

0.3%
17%

0.4%
0.2% 0.2%

4% 0.3%

0.4% 8%

3.4% 3.4%

101%

8.4%

1.2% 1.2%

24%

2.3%

0.6% 0.6%

21%

0.1% 0.1%
5%

4.7% 4.6%

95%

11.0%

1.7% 1.8%

24%

2.9%

0.9% 0.9%

30%

0.1% 0.04%

4%

5.7% 5.8%

101%

12.6%

2.2% 2.1%

24%

3.1%

1.1%
1.0%

33%

0.1%

0.05% 3%0.10x

1.00x

10.00x

100.00x

1000.00x

{Uniform,
Uniform}

{Uniform,
Normal}

{Uniform,
Power1}

{Uniform,
Power2}

{Normal,
Uniform}

{Normal,
Normal}

{Normal,
Power1}

{Normal,
Power2}

{Power1,
Uniform}

{Power1,
Normal}

{Power1,
Power1}

{Power2,
Uniform}

{Power2,
Normal}

{Power2,
Power2}

O
PT

's
Im

pr
ov

em
en

t
ov

er
 B

as
el

in
es

(lo

g
sc

al
e)

OPT B1 B2 B3 B4 B5 B6

Figure 5.4: OPT’s improvement in terms of variance for AVG over six baselines with
synthetic dataset (percentages are relative error).

0.6% 0.8% 0.4%
0.6% 0.8% 0.4%
0.6% 0.8% 0.4%
0.6% 0.8% 0.4%
1.0% 1.3%

0.7%
1.3% 1.6%

1.0%1.6% 2.1%
1.2%

0.00x

5.00x

10.00x

15.00x

COUNT SUM AVG
O

PT
's

Im
pr

ov
em

en
t o

ve
r

Ba
se

lin
es

OPT B1 B2 B3 B4 B5 B6

(a) Instacart

5.77% 6.42% 0.98%
5.70% 6.26% 0.98%

5.98% 6.42% 1.00%

6.17% 6.56% 0.99%

6.18%
6.52% 1.00%

5.96% 6.35% 1.01%

5.91% 6.37%

1.04%

0.50x

1.00x

1.50x

2.00x

COUNT SUM AVG

O
PT

's
Im

pr
ov

em
en

t o
ve

r
Ba

se
lin

es

OPT B1 B2 B3 B4 B5 B6

(b) Movielens

0.07% 0.07% 0.02%
0.07% 0.07% 0.02%
0.08% 0.09% 0.02%
0.10% 0.11% 0.04%
1.00% 1.02% 0.35%
1.38% 1.48% 0.52%
1.75% 1.80% 0.65%

0.1x
1.0x

10.0x
100.0x

1000.0x
10000.0x

COUNT SUM AVG

O
PT

's
Im

pr
ov

em
en

t
ov

er
 B

as
el

in
es

(lo
g

sc
al

e)

OPT B1 B2 B3 B4 B5 B6

(c) TPC-H

Figure 5.5: OPT’s improvement in terms of variance over the baselines on benchmark
datasets (percentages are relative error).

COUNT queries. Each bar is also annotated with the relative percentage error of the

corresponding baseline. OPT outperformed all baselines in most cases, achieving over

10x lower variance than the worst baseline. Figures 5.3 and 5.4 show the same

experiment for SUM and AVG. In both cases, OPT achieved the minimum variance across

all sampling strategies, except for AVG when T1 or T2 was a power law distribution.

This is because OPT for AVG was calculated using a Taylor approximation, which is

accurate only when the estimators of SUM and COUNT are both within the proximity

of their true values. Moreover, sample variance converges slowly to the theoretical

variance, particularly for skew distributions, such as power law. This is why estimated

variances for OPT were not optimal for some Synthetic datasets. However, OPT still

achieved the lowest variance across all real-world datasets, as shown in Figure 5.5.

Here, for the selected join key, OPT determined that a full universe sampling was the

175

Table 5.3: Optimal sampling parameters (centralized setting).

Dataset COUNT SUM AVG

p q p q p q
S{uniform,uniform} 0.010 0.1 0.004 0.264 0.001 1.000
S{uniform,normal} 0.012 0.083 0.005 0.220 0.001 1.000
S{uniform,power1} 1.000 0.001 1.000 0.001 0.692 0.001
S{uniform,power2} 1.000 0.001 1.000 0.001 0.001 1.000
S{normal,uniform} 0.012 0.083 0.009 0.111 0.001 1.000
S{normal,normal} 0.014 0.069 0.011 0.093 0.001 1.000
S{normal,power1} 1.000 0.001 1.000 0.001 0.001 1.000
S{normal,power2} 1.000 0.001 1.000 0.001 0.001 1.000
S{power1,uniform} 1.000 0.001 1.000 0.001 0.001 1.000
S{power1,normal} 1.000 0.001 1.000 0.001 0.001 1.000
S{power1,power1} 1.000 0.001 1.000 0.001 0.001 1.000
S{power2,uniform} 1.000 0.001 1.000 0.001 0.001 1.000
S{power2,normal} 1.000 0.001 1.000 0.001 0.001 1.000
S{power2,power2} 1.000 0.001 1.000 0.001 0.001 1.000

Instacart 0.01 1.00 0.01 1.00 0.01 1.00
Movielens 0.1 1.00 0.1 1.00 0.1 1.00
TPC-H 0.001 1.00 0.001 1.00 0.001 1.00

best sampling scheme.

In summary, this experiment highlights OPT’s ability in outperforming simple uni-

form or universe sampling—or choosing one of them, when optimal—for aggregates

on joins.

5.7.3 Join Approximation: Decentralized

We evaluated both OPT and other baselines under a decentralized setting using Instacart

and Synthetic datasets. Here, we constructed a possible worst case distribution for

T2 that was still somewhat realistic, given the distribution of T1 and minimal infor-

mation about T2 (i..e, T2’s cardinality). To do this, we used the following steps: 1)

let JMAX(T1) be the most frequent join key value in T1; 2) assign 75% of the join key

values of T2 to have the value of JMAX(T1) and draw the rest of the join key values

from a uniform distribution.

Figure 5.6 shows the results. For Synthetic, the OPT was the same under both

settings whenever there was a power law distribution or the aggregate was AVG. This is

because our assumption of the worst case distribution for T2 was close to a power law

distribution. For COUNT and SUM with Synthetic dataset, OPT in the decentralized

setting had a much higher variance than OPT in the centralized setting when there

was no power law distribution. With Instacart, OPT in the decentralized setting was

176

Table 5.4: Optimal sampling parameters for S{uniform,uniform} for different distri-
butions of the filtered column C.

Dist. of C COUNT SUM AVG

p q p q p q
Uniform 0.010 1.000 0.010 1.000 0.010 1.000
Normal 0.018 0.555 0.015 0.648 0.010 1.000

Power law 0.051 0.195 0.050 0.201 0.010 1.000

the same as OPT in the centralized setting, which had the minimum variance among

the baselines. This illustrates that OPT in the decentralized setting can perform well

with real-world data where the joins are mostly PK-FK. This also shows that if a

reasonable assumption is possible on the distribution of T2, OPT can be as effective in

the decentralized setting as it is in a centralized one, while requiring significantly less

communication.

1.00E+08

1.00E+12

1.00E+16

1.00E+20

{U
nifo

rm
, U

nifo
rm

}

{U
nifo

rm
, N

orm
al}

{U
nifo

rm
, P

ower
law

}

{N
orm

al,
 Unifo

rm
}

{N
orm

al,
 Norm

al}

{N
orm

al,
 Power

law
}

{Power la
w, U

nifo
rm

}

{Power la
w, N

orm
al}

{Power la
w, P

ower la
w}

Insta
ca

rt

Va
ria

nc
e

(lo
g

sc
al

e)

OPT (Centralized) OPT (Decentralized)

(a) COUNT

1.00E+10

1.00E+14

1.00E+18

1.00E+22

1.00E+26

{U
nifo

rm
, U

nifo
rm

}

{U
nifo

rm
, N

orm
al}

{U
nifo

rm
, P

ower
law

}

{N
orm

al,
 Unifo

rm
}

{N
orm

al,
 Norm

al}

{N
orm

al,
 Power

law
}

{Power la
w, U

nifo
rm

}

{Power la
w, N

orm
al}

{Power la
w, P

ower la
w}

Insta
ca

rt

Va
ria

nc
e

(lo
g

sc
al

e)

OPT (Centralized) OPT (Decentralized)

(b) SUM

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04

1.00E+06

{U
nifo

rm
, U

nifo
rm

}

{U
nifo

rm
, N

orm
al}

{U
nifo

rm
, P

ower
law

}

{N
orm

al,
 Unifo

rm
}

{N
orm

al,
 Norm

al}

{N
orm

al,
 Power

law
}

{Power la
w, U

nifo
rm

}

{Power la
w, N

orm
al}

{Power la
w, P

ower la
w}

Insta
ca

rt

Va
ria

nc
e

(lo
g

sc
al

e)

OPT (Centralized) OPT (Decentralized)

(c) AVG

Figure 5.6: Variances of the query estimators for OPT in the centralized and decen-
tralized settings.

5.7.4 Join Approximation with Filters

0.00x

2.00x

4.00x

6.00x

8.00x

10.00x

12.00x

Uniform Normal Powerlaw

O
PT

's
Im

pr
ov

em
en

t o
ve

r
Ba

se
lin

es

B1 B2 B3 B4 B5 B6

(a) COUNT

0.00x

2.00x

4.00x

6.00x

8.00x

10.00x

12.00x

Uniform Normal Powerlaw

O
PT

's
Im

pr
ov

em
en

t o
ve

r
Ba

se
lin

es

B1 B2 B3 B4 B5 B6

(b) SUM

0.00x

2.00x

4.00x

6.00x

8.00x

10.00x

12.00x

Uniform Normal Powerlaw

O
PT

's
Im

pr
ov

em
en

t o
ve

r
Ba

se
lin

es

B1 B2 B3 B4 B5 B6

(c) AVG

0.00x

2.00x

4.00x

6.00x

8.00x

10.00x

12.00x

COUNT SUM AVG

O
PT

's
Im

pr
ov

em
en

t o
ve

r
Ba

se
lin

es

B1 B2 B3 B4 B5 B6

(d) Instacart

Figure 5.7: OPT’s improvement in terms of the estimator’s variance over six baselines
in the presence of filters.

To study OPT’s effectiveness in the presence of filters, we used S{uniform,uniform}
and Instacart datasets with ε=0.01. We added an extra column C to T1 in S{uniform,uniform},

177

Table 5.5: Sampling parameters (p and q) of OPT using individual samples for different
aggregates versus a combined sample (S{normal,normal} dataset).

Scheme COUNT SUM AVG

p q p q p q
OPT (individual) 0.145 0.069 0.125 0.080 0.010 1.000
OPT (combined) 0.133 0.075 0.133 0.075 0.133 0.075

with integers in [1, 100], and tried three distributions (uniform, normal, power law).

For Instacart, we used the order hour of day column for filtering, which had an

almost normal distribution. We used an equality operator and chose the comparison

value x uniformly at random. We calculated the average variance over all possible

values of c.

Table 5.4 shows the sampling rates chosen by OPT, while Figure 5.7 shows OPT’s

improvement over baselines in terms of average variance. Again, OPT successfully

achieved the lowest average variance among all baselines in all cases, up to 10x im-

provement compared to the worst baseline. This experiment confirms that UBS with

OPT is highly effective for join approximation, even in the presence of filters.

5.7.5 Combining Samples

1.00E-02

1.00E+03

1.00E+08

1.00E+13

1.00E+18

COUNT SUM AVG

Va
ria

nc
e

(lo
g

sc
al

e)

OPT (individual)
OPT (combined)

Figure 5.8: Variance of the query estimators for OPT (individual) and OPT (combined)
for the S{normal,normal} dataset.

We evaluated the idea of using a single sample for multiple queries instead of

generating individual samples for each query, as discussed in Section 5.6. Here, we

use OPT (individual) and OPT (combined) to denote the use of one-sample-per-query

and one-sample-for-multiple-queries, respectively. For OPT (combined), we considered

a scenario where each of COUNT, SUM, and AVG is equally likely to appear. Table 5.5

reports the sampling rates chosen in each case. As shown in Figure 5.8, without hav-

ing to generate an individual sample for each query, the variances of OPT (combined)

were only slightly higher than those of OPT (individual). This experiment shows that

it is possible to create a single sample for multiple queries without sacrificing too

much optimality.

178

5.7.6 Stratified Sampling

1.00E+10

1.00E+11

1.00E+12

1.00E+13

0 1 2 3 4 5 6 7 8 9

Va
ria

nc
e

(lo
g

sc
al

e)

OPT SS_UF

(a) COUNT

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

0 1 2 3 4 5 6 7 8 9

Va
ria

nc
e

(lo
g

sc
al

e)

OPT SS_UF

(b) SUM

0.00E+00
1.00E+00
2.00E+00
3.00E+00
4.00E+00
5.00E+00
6.00E+00
7.00E+00
8.00E+00
9.00E+00
1.00E+01

0 1 2 3 4 5 6 7 8 9

Va
ria

nc
e

OPT SS_UF

(c) AVG

Figure 5.9: Query estimator variance per group for for a group-by join aggregate
using SUBS versus SS UF .

We also evaluated SUBS for join queries with group-by. Here, we used the

S{normal,normal} dataset, and added an extra group column G to T1 with inte-

gers from 0 to 9 drawn from a power law distribution with α = 1.5. This time we did

not randomize the groups, i.e., G=0 had the most tuples and G=9 had the fewest.

This was to study SUBS performance with respect to the different group sizes. As

a baseline, we generated stratified samples for T1 on G with kkey = 100, 000 and

uniform samples for T2 with a 0.01 sampling budget. We denote this baseline as

SS UF . For SUBS, we used parameters that matched the sample size of SS UF , i.e.,

kkey = 100, ktuple = 100, 000. Figure 5.9 shows the variance of query estimators

for each of the 10 groups for different aggregations. As expected, SUBS with OPT

achieved lower variances than SS UF across all aggregates and groups with different

sizes.

5.7.7 Overhead: Centralized vs. Decentralized

0

50

100

150

Instacart
(Centrailized)

Instacart
(Decentralized)

Ti
m

e
(s

)

Sample Table Creation
Sampling Rate Calculation
Statistics Acquisition

(a) Instacart

0

2000

4000

6000

TPC-H
(Centrailized)

TPC-H
(Decentralized)

Ti
m

e
(s

)

Sample Table Creation
Sampling Rate Calculation
Statistics Acquisition

(b) TPC-H

Figure 5.10: Time taken to generate samples for Instacart and TPC-H in centralized
vs. decentralized setting.

We compared the overhead of OPT in centralized versus decentralized settings, in

terms of the sample creation time and resources, such as network and disk. OPT should

have a much higher overhead in the centralized setting, as it requires full frequency

179

0
5

10
15
20

Instacart
(Centrailized)

Instacart
(Decentralized)

Da
ta

 U
sa

ge
 (M

B) Network
Disk

(a) Instacart

0
200
400
600
800

1000

TPC-H
(Centrailized)

TPC-H
(Decentralized)

Da
ta

 U
sa

ge
 (M

B) Network
Disk

(b) TPC-H

Figure 5.11: Total network and disk bandwidth used to generate samples for
Instacart and TPC-H.

information of every join key value in both tables. To quantify their overhead differ-

ence, we used Instacart and TPC-H, and created a pair of samples for SUM in each

case. Here, the aggregation type did not matter, as the time spent calculating p and

q was negligible compared to the time taken by transmitting the frequency vectors.

As shown in Figure 5.10, we measured the time for statistics acquisition, sampling

rate calculation, and sample table creation. Here, the time taken by collecting the

frequencies was the dominant factor. For Instacart, it took 65.16 secs from start to

finish in the decentralized setting, compared to 99.98 secs in the centralized setting,

showing 1.53x improvement in time. For TPC-H, it took 59.5 min in the decentralized

setting, compared to 91.7 mins in the centralized, showing a speedup of 1.54x.

We also measured the total network and disk I/O usage across the entire cluster,

as shown in Figure 5.11. For Instacart, compared to the decentralized setting, the

centralized one used 3.66x (0.9 → 3.29 MB) more network and 2.22x (7.59 → 16.9

MB) more disk bandwidth. Overall, the overhead was less for TPC-H. The centralized

in this case used 1.38x (243.39 → 337.04 MB) more network and 1.49x (519.03 →
776.58 MB) more disk bandwidth than the decentralized setting.

This experiment shows the graceful tradeoff between the optimality of sampling

and its overhead, making the decentralized variant an attractive choice for large

datasets and distributed systems.

5.7.8 UBS vs. Two-Level Sampling

Two-level sampling (2LV) [35] is similar to our UBS scheme in that it also applies

stratified sampling before Bernoulli sampling. However, unlike UBS which applies the

same sampling rate to all tuples, 2LV uses a different universe sampling rate for each

join key, i.e., 2LV is strictly more expressive than UBS. Thus, by using significantly

more parameters (i.e., number of distinct join keys), 2LV should be able to achieve a

lower variance than any UBS scheme (which uses only two parameters p and q). To

empirically measure this gap, we compared the relative error of 2LV versus OPT. Since

180

Figure 5.12: Optimal UBS vs. two-level sampling

2LV is originally designed for cardinality estimation, we compared their COUNT error

on our Synthetic datasets (since COUNT is symmetric, we only have 6 combinations),

with 100K tuples, 100 keys, and ε=1% budget. Here, we used As shown in Figure 5.12,

2LV’s error was slightly lower than OPT, and both errors increased with the skew in

the join keys, e.g., when a power law was involved. This was as expected: having a

separate parameter for each join key means more complexity, but also allows 2LV to

better adopt to the distribution of the data.

5.8 Related Work

Online Sample-based Join Approximation Ripple Join [80] is an online join

algorithm that operates under the assumption that the tuples of the original tables

are processed in a random order. Each time, it retrieves a random tuple (or a set of

random tuples) from the tables, and then joins the new tuples with the previously

read tuples and with each other. SMS [90] speeds up the hashed version of Ripple Join

when hash tables exceed memory. Wander Join [107] tackles the problem of k-way

chain join and eliminates the random order requirement of Ripple Join. However, it

requires an index on every join column in each of the tables. Using indexes, Wander

Join performs a set of random walks and obtains a non-uniform but independent

sample of the join. Maintaining an approximation of the size of all partial joins can

help overcome the non-uniformity problem [107].

Offline Sample-based Join Approximation AQUA [6] acknowledges the quadratic

reduction and the non-uniformity of the output when joining two uniform random

samples. The same authors propose Join Synopsis [8], which computes a sample of

one of the tables and joins it with the other tables as a sample of the actual join.

Chaudhuri et al. [30] also point out that a join of independent samples from two

relations does not yield an independent sample of their join, and propose using pre-

computed statistics to overcome this problem. However, their solution can be quite

costly, as it requires collecting full frequency information of the relation. Zhao et

al. [107] provide a better trade-off between sampling efficiency and the join size upper

181

bound. Hashed sampling (a.k.a. universe) [81] is proposed in the context of selec-

tivity estimation for set similarity queries. Block-level uniform sampling [31] is less

accurate but more efficient than tuple-level sampling. Bi-level sampling [36] performs

Bernoulli sampling at both the block- and tuple-level, as a trade-off between accu-

racy and I/O cost of sample generation. Kamat and Nandi [92] use simple stratified

sampling on join column but with an objective function measuring the amount of

randomness of the sample scheme, which shows improvement over simple correlated

sampling.

AQP Systems on Join Most AQP systems rely on sampling and support certain

types of joins [93, 119, 6, 32, 11, 77, 107]. STRAT [32] discusses the use of uniform

and stratified sampling, and how those can support certain types of join queries. More

specifically, STRAT only supports PK-FK joins between a fact table and one or more

dimension table(s). BlinkDB [11] extends STRAT and considers multiple stratified

samples instead of a single one. As previously mentioned, AQUA [6] supports foreign

key joins using join synopses. Icicles [77] samples tuples that are more likely to be

required by future queries, but, similar to AQUA, only supports foreign key joins.

PF-OLA [124] is a framework for parallel online aggregation. It studies parallel

joins with group-bys, when partitions of the two tables fit in memory. XDB [107]

integrates Wander Join in PostgreSQL. Quickr [93] does not create offline samples.

Instead, it uses universe sampling to support equi-joins, where the group-by columns

and the value of aggregates are not correlated with the join keys. VerdictDB [119] is a

universal AQP framework that supports all three types of samples (uniform, universe,

and stratified). VerdictDB utilizes a technique called variational subsampling, which

creates subsamples of the sample such that it only requires a single join—instead

of repeatedly joining the subsamples multiple times—to produce accurate aggregate

approximations. ApproxJoin [126] uses Bloom Filters in conjunction with stratified

sampling to efficiently produce a sample to the join when relations are distributed

across different nodes.

Join Cardinality Estimation There is extensive work on join cardinality esti-

mation (i.e.,count(*)) in the database community [139, 141, 62, 14, 133, 106, 100]

as an important step of the query optimization process for joins. Two-level sam-

pling [35] first applies universe sampling to the join values, and then, for each join

value sampled, it performs Bernoulli sampling. However, unlike our UBS scheme

which applies the same rate to all keys, two-level sampling uses a different rate dur-

182

ing its universe sampling for each join key. In other words, two-level sampling is a

more complex scheme with significantly more parameters than UBS (which requires

only two parameters, p and q), and is thus less amenable to efficient and decentral-

ized implementation. Furthermore, two-level sampling applies two different sampling

methods, whereas bi-level sampling [36] uses only Bernoulli sampling but at different

granularity levels. End-biased sampling [62] samples each tuple with a probability

proportional to the frequency of its join key. Index-based sampling [106] and deep

learning [100] have also been utilized to improve cardinality estimates.

Theoretical Studies The question about the limitation of sample-based approx-

imation of joins, to the best of our knowledge, has not been asked in the theory

community. However, the past work in communication complexity on set intersection

and inner product estimation has implications for join approximation. In this prob-

lem, the Alice and Bob possess respectively two vectors x and y and they wish to

compute their inner product t = 〈x, y〉 without exchanging the vector x and y. In

the one-way model, Alice computes a summary β(x) and sends it to Bob, who will

estimate 〈x, y〉 using y and β(x). For this problem, [117] shows that any estimator

produced by s bits of communication has variance at least Ω(dt/s). Estimating inner

product for 0, 1 vectors is directly related to estimating SUM and COUNT for a PK-FK

join. A natural question is whether the join is still hard even if frequencies are all

larger than 1. Further, the question of whether estimating AVG is also hard is not

answered by prior work.

183

BIBLIOGRAPHY

[1] The instacart online grocery shopping dataset 2017. https://www.instacart.
com/datasets/grocery-shopping-2017. Accessed: 2019-07-20.

[2] TPC-H Benchmark. http://www.tpc.org/tpch/.

[3] Cloudlab. https://www.cloudlab.us, 2019.

[4] A. Abboud, K. Censor-Hillel, S. Khoury, and C. Lenzen. Fooling views: A new
lower bound technique for distributed computations under congestion. CoRR,
abs/1711.01623, 2017.

[5] I. Abraham, Y. Bartal, and O. Neiman. Local embeddings of metric spaces.
Algorithmica, 72(2):539–606, 2015.

[6] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A fast decision support
systems using approximate query answers. In Proceedings of 25th International
Conference on Very Large Data Bases (VLDB), pages 754–757, 1999.

[7] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua approx-
imate query answering system. In Proceedings of the 1999 ACM International
Conference on Management of Data, SIGMOD, pages 574–576, 1999.

[8] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for
approximate query answering. In Proceedings of the 1999 ACM International
Conference on Management of Data, SIGMOD, pages 275–286, 1999.

[9] P. K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite
matching with metric and geometric costs. In D. B. Shmoys, editor, Proceeding
of Symposium on Theory of Computing, STOC, pages 555–564. ACM, 2014.

[10] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden, and I. Stoica. Blink
and it’s done: Interactive queries on very large data. PVLDB, 5(12):1902–1905,
2012.

[11] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on very large
data. In Eighth Eurosys Conference 2013, EuroSys ’13, pages 29–42, 2013.

184

https://www.instacart.com/datasets/grocery-shopping-2017
https://www.instacart.com/datasets/grocery-shopping-2017
https://www.cloudlab.us

[12] T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-path queries for com-
plex networks: exploiting low tree-width outside the core. In Proceedings of
15th International Conference on Extending Database Technology, EDBT, pages
144–155, 2012.

[13] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[14] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join
sizes in limited storage. J. Comput. Syst. Sci., 64(3):719–747, 2002.

[15] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987.

[16] S. Arora. Nearly linear time approximation schemes for euclidean TSP and
other geometric problems. In Proceedings of the 38th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 554–563, 1997.

[17] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational
joins. SIAM J. Comput., 42(4):1737–1767, 2013.

[18] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for ap-
proximate query processing. In Proceedings of the 2003 ACM International
Conference on Management of Data, SIGMOD, pages 539–550, 2003.

[19] L. Barenboim and M. Elkin. Sublogarithmic distributed MIS algorithm for
sparse graphs using Nash-Williams decomposition. Distributed Computing, 22
(5-6):363–379, 2010.

[20] Y. Bartal, L. Gottlieb, and R. Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J.
Comput., 45(4):1563–1581, 2016.

[21] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2014.

[22] J. Brody, A. Chakrabarti, R. Kondapally, D. P. Woodruff, and G. Yaroslavtsev.
Beyond set disjointness: the communication complexity of finding the intersec-
tion. In Proceedings of the 33rd ACM Symposium on Principles of Distributed
Computing (PODC), pages 106–113, 2014.

[23] J. Brody, A. Chakrabarti, R. Kondapally, D. P. Woodruff, and G. Yaroslavtsev.
Certifying equality with limited interaction. Algorithmica, 76(3):796–845, 2016.

[24] H. Buhrman, D. Garćıa-Soriano, A. Matsliah, and R. de Wolf. The non-adaptive
query complexity of testing k-parities. Chicago J. Theor. Comput. Sci., 2013,
2013.

185

[25] T. H. Chan and A. Gupta. Approximating TSP on metrics with bounded global
growth. SIAM J. Comput., 41(3):587–617, 2012.

[26] Y. Chang and T. Saranurak. Improved distributed expander decomposition and
nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 66–73, 2019.

[27] Y. Chang, S. Pettie, and H. Zhang. Distributed triangle detection via expander
decomposition. In Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 821–840, 2019.

[28] K. Chatterjee and J. Lacki. Faster algorithms for markov decision processes
with low treewidth. In Proceedings of Computer Aided Verification - 25th In-
ternational Conference, CAV, pages 543–558, 2013.

[29] A. Chattopadhyay and T. Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

[30] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random sampling over
joins. In Proceedings of the 19999 ACM International Conference on Manage-
ment of Data, SIGMOD, pages 263–274, 1999.

[31] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of block-level sampling in
statistics estimation. In Proceedings of the 2004 ACM International Conference
on Management of Data, SIGMOD, pages 287–298, 2004.

[32] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized stratified sampling for
approximate query processing. ACM Trans. Database Syst., 32(2):9, 2007.

[33] C. Chekuri and K. Quanrud. Approximating the Held-Karp bound for metric
TSP in nearly-linear time. In Proceedings of the 58th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 789–800, 2017.

[34] C. Chekuri and K. Quanrud. Fast approximations for metric-tsp via linear
programming. CoRR, abs/1802.01242, 2018. URL http://arxiv.org/abs/

1802.01242.

[35] Y. Chen and K. Yi. Two-level sampling for join size estimation. In Proceedings
of the 2017 ACM International Conference on Management of Data, pages 759–
774, 2017.

[36] Y. Cheng, W. Zhao, and F. Rusu. Bi-level online aggregation on raw data. In
Proceedings of the 29th International Conference on Scientific and Statistical
Database Management, pages 10:1–10:12, 2017.

[37] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM
J. Comput., 14(1):210–223, 1985.

186

http://arxiv.org/abs/1802.01242
http://arxiv.org/abs/1802.01242

[38] K. Choromanski, T. Jebara, and K. Tang. Adaptive anonymity via b-matching.
In Advances in Neural Information Processing Systems 27: 27th Annual Con-
ference on Neural Information Processing System, NIPS 2013, pages 3192–3200,
2013.

[39] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4:233–235, 1979.

[40] R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. A faster implementation
of the goemans-williamson clustering algorithm. In Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

[41] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. In Proceedings of the 7th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, pages 313–328, 2010.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

[43] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for
massive data: Samples, histograms, wavelets, sketches. Foundations and Trends
in Databases, 4(1-3):1–294, 2012.

[44] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order
Logic - A Language-Theoretic Approach, volume 138 of Encyclopedia of mathe-
matics and its applications. Cambridge University Press, 2012.

[45] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. Vizdom:
Interactive analytics through pen and touch. PVLDB, 8(12):2024–2027, 2015.

[46] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[47] M. Cygan, H. N. Gabow, and P. Sankowski. Algorithmic applications of baur-
strassen’s theorem: Shortest cycles, diameter, and matchings. J. ACM, 62(4):
28:1–28:30, 2015.

[48] A. Czumaj and C. Konrad. Detecting cliques in CONGEST networks. In
Proceedings of the 32nd International Symposium on Distributed Comput-
ing (DISC), volume 121 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:15, 2018.

[49] A. Dasgupta, R. Kumar, and D. Sivakumar. Sparse and lopsided set disjointness
via information theory. In Proceedings of the 15th International Workshop on
Approximation, Randomization, and Combinatorial Optimization (APPROX),
pages 517–528, 2012.

187

[50] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data
stream windows. In Proceedings of 10th Annual European Symposium (ESA),
pages 323–334, 2002.

[51] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex
aggregate queries over data streams. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 61–72, 2002.

[52] A. Dobra, C. Jermaine, F. Rusu, and F. Xu. Turbo-charging estimate conver-
gence in DBO. PVLDB, 2(1):419–430, 2009.

[53] D. E. Drake and S. Hougardy. A simple approximation algorithm for the
weighted matching problem. Inf. Process. Lett., 85:211–213, 2003.

[54] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique
model. In Proceedings of the 33rd ACM Symposium on Principles of Distributed
Computing (PODC), pages 367–376, 2014.

[55] R. Duan and S. Pettie. Linear-time approximation for maximum weight match-
ing. J. ACM, 61:1:1–1:23, 2014.

[56] R. Duan, S. Pettie, and H. Su. Scaling algorithms for weighted matching in
general graphs. ACM Trans. Algorithms, 14:8:1–8:35, 2018.

[57] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in
general graphs. ACM Transactions on Algorithms, 14, 2018.

[58] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

[59] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:
449–467, 1965.

[60] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal
of Research of the National Bureau of Standards: Section B Mathematics and
Mathematical Physics, 69B:125–130, 1965.

[61] J. Edmonds and E. L. Johnson. Matching: A well-solved class of integer lin-
ear programs. In Combinatorial Optimization - Eureka, You Shrink!, Papers
Dedicated to Jack Edmonds, 5th International Workshop, pages 27–30, 2001.

[62] C. Estan and J. F. Naughton. End-biased samples for join cardinality estima-
tion. In Proceedings of the 22nd International Conference on Data Engineering,
ICDE, page 20, 2006.

[63] T. Feder, E. Kushilevitz, M. Naor, and N. Nisan. Amortized communication
complexity. SIAM J. Comput., 24(4):736–750, 1995.

188

[64] O. Fischer, T. Gonen, F. Kuhn, and R. Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 153–162, 2018.

[65] F. V. Fomin, D. Lokshtanov, S. Saurabh, M. Pilipczuk, and M. Wrochna. Fully
polynomial-time parameterized computations for graphs and matrices of low
treewidth. ACM Trans. Algorithms, 14(3):34:1–34:45, 2018.

[66] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984.

[67] H. Gabow and S. Pettie. The dynamic vertex minimum problem and its applica-
tion to clustering-type approximation algorithms. In Proceedings 8th Scandina-
vian Workshop on Algorithm Theory (SWAT), LNCS Vol. 2368, pages 190–199,
2002.

[68] H. N. Gabow. An efficient implementation of edmonds’ algorithm for maximum
matching on graphs. J. ACM, 23(2):221–234, 1976.

[69] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, STOC, pages 448–456, 1983.

[70] H. N. Gabow. Scaling algorithms for network problems. J. Comput. Syst. Sci.,
31, Sept. 1985.

[71] H. N. Gabow. Data structures for weighted matching and extensions to b-
matching and f -factors. ACM Trans. Algorithms, 14:39:1–39:80, 2018.

[72] H. N. Gabow and P. Sankowski. Algebraic algorithms for b-matching, short-
est undirected paths, and f-factors. In Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 137–146, 2013.

[73] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. J. Comput. Syst. Sci., 30:209–221, 1985.

[74] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems.
SIAM J. Comput., 18:1013–1036, 1989.

[75] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-
matching problems. J. ACM, 38:815–853, 1991.

[76] Z. Galil, S. Micali, and H. N. Gabow. Priority queues with variable priority and
an O(EV log V) algorithm for finding a maximal weighted matching in general
graphs. In Proceedings of the 23th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 255–261, 1982.

[77] V. Ganti, M. Lee, and R. Ramakrishnan. ICICLES: self-tuning samples for
approximate query answering. In VLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, pages 176–187, 2000.

189

[78] M. Goemans and D. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[79] T. Gonen and R. Oshman. Lower bounds for subgraph detection in the CON-
GEST model. In Proceedings of the 21st International Conference on Principles
of Distributed Systems (OPODIS), volume 95 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 6:1–6:16, 2018.

[80] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation. In Pro-
ceedings of the 1999 ACM International Conference on Management of Data,
SIGMOD, pages 287–298, 1999.

[81] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava. Hashed samples:
selectivity estimators for set similarity selection queries. PVLDB, 1(1):201–
212, 2008.

[82] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing mul-
titerminal flow networks and computing flows in networks of small treewidth.
J. Comput. Syst. Sci., 57(3):366–375, 1998.

[83] F. M. Harper and J. A. Konstan. The movielens datasets: History and context.
TiiS, 5(4):19:1–19:19, 2016.

[84] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):
105–142, 1999.

[85] J. H̊astad and A. Wigderson. The randomized communication complexity of
set disjointness. Theory of Computing, 3(1):211–219, 2007.

[86] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In Proceedings
of the 1997 ACM International Conference on Management of Data, SIGMOD,
pages 171–182, 1997.

[87] K. Hildrum, J. Kubiatowicz, S. Ma, and S. Rao. A note on the nearest neighbor
in growth-restricted metrics. In Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2004, pages 560–561, 2004.

[88] D. G. Horvitz and D. J. Thompson. A generalization of sampling without
replacement from a finite universe. Journal of the American statistical Associ-
ation, 47, 1952.

[89] T. Izumi and F. L. Gall. Triangle finding and listing in CONGEST networks.
In Proceedings of the 36th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 381–389, 2017.

[90] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol. A disk-based join
with probabilistic guarantees. In Proceedings of the 2005 ACM International
Conference on Management of Data, SIGMOD, pages 563–574, 2005.

190

[91] B. Kalyanasundaram and G. Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

[92] N. Kamat and A. Nandi. A unified correlation-based approach to sampling
over joins. In Proceedings of the 29th International Conference on Scientific
and Statistical Database Management, pages 20:1–20:12, 2017.

[93] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri,
and B. Ding. Quickr: Lazily approximating complex adhoc queries in bigdata
clusters. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD, pages 631–646, 2016.

[94] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted met-
rics. In Proceedings on 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 741–750, 2002.

[95] K. Kawarabayashi and B. A. Reed. A nearly linear time algorithm for the
half integral disjoint paths packing. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 446–454, 2008.

[96] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicom-
modity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 217–226, 2014.

[97] A. Khan, K. Choromanski, A. Pothen, S. M. Ferdous, M. Halappanavar, and
A. Tumeo. Adaptive anonymization of data using b-edge cover. In Proceedings
of the International Conference for High Performance Computing,Networking,
Storage, and Analysis, SC, pages 59:1–59:11, 2018.

[98] A. M. Khan and A. Pothen. A new 3/2-approximation algorithm for the b-
edge cover problem. In 2016 Proceedings of the Seventh SIAM Workshop on
Combinatorial Scientific Computing, CSC, pages 52–61, 2016.

[99] D. Kim, L. Liu, S. I. In-Su, J. Kim, and K. Han. Spatial tinydb: A spatial
sensor database system for the USN environment. IJDSN, 9, 2013.

[100] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. In Proceedings
of the 9th Biennial Conference on Innovative Data Systems Research, CIDR,
2019.

[101] J. H. Korhonen and J. Rybicki. Deterministic subgraph detection in broadcast
CONGEST. In Proceedings of the 21st International Conference on Principles
of Distributed Systems (OPODIS), Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 4:1–4:16, 2018.

191

[102] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast deterministic
distributed maximal independent set computation on growth-bounded graphs.
In Distributed Computing, pages 273–287, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[103] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Univer-
sity Press, 1997.

[104] R. Kyng, R. Peng, S. Sachdeva, and D. Wang. Flows in almost linear time
via adaptive preconditioning. In Proceedings of the 51st Annual Symposium on
Theory of Computing, STOC, pages 902–913, 2019.

[105] E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Books
on Mathematics Series. 2001. ISBN 9780486414539.

[106] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann. Cardinality
estimation done right: Index-based join sampling. In Proceedings of the 8th
Biennial Conference on Innovative Data Systems Research, CIDR, 2017.

[107] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join and XDB: online aggregation
via random walks. ACM Trans. Database Syst., 44(1):2:1–2:41, 2019.

[108] L. Lovasz. Communication complexity: A survey. Technical Report TR-204-89,
Computer Science Dept., Princeton University, 1989.

[109] S. Maniu, P. Senellart, and S. Jog. An experimental study of the treewidth of
real-world graph data. In 22nd International Conference on Database Theory,
ICDT, pages 12:1–12:18, 2019.

[110] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum

matching in general graphs. In Proceedings of the 21th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 17–27, 1980.

[111] B. Mozafari. Approximate query engines: Commercial challenges and research
opportunities. In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD, pages 521–524, 2017.

[112] B. Mozafari and N. Niu. A handbook for building an approximate query engine.
IEEE Data Eng. Bull., 2015.

[113] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon. Cliffguard: A principled framework
for finding robust database designs. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1167–1182, 2015.

[114] V. Nikishkin. Amortized communication complexity of an equality predicate.
In Computer Science – Theory and Applications, pages 212–223, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg.

192

[115] N. Nisan and I. Segal. The communication requirements of efficient allocations
and supporting prices. J. Economic Theory, 129(1):192–224, 2006.

[116] L. Orecchia and N. K. Vishnoi. Towards an sdp-based approach to spectral
methods: A nearly-linear-time algorithm for graph partitioning and decompo-
sition. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 532–545, 2011.

[117] R. Pagh, M. Stöckel, and D. P. Woodruff. Is min-wise hashing optimal for
summarizing set intersection? In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS, pages
109–120, 2014.

[118] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for
large mapreduce jobs. PVLDB, 4(11):1135–1145, 2011.

[119] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing
approximate query processing. In Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD, pages 1461–1476, 2018.

[120] S. Pettie and P. Sanders. A simpler linear time 2/3 − ε approximation for
maximum weight matching. Inf. Process. Lett., 91:271–276, 2004.

[121] L. Planken, M. M. de Weerdt, and R. van der Krogt. Computing all-pairs
shortest paths by leveraging low treewidth. CoRR, abs/1401.4609, 2014.

[122] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In Proceedings of 16th Annual Symposium on The-
oretical Aspects of Computer Science, STACS, pages 259–269, 1999.

[123] W. Pulleyblank. Faces of matching polyhedra. PhD thesis, University of Wa-
terloo, Ontario, Canada, 1973.

[124] C. Qin and F. Rusu. PF-OLA: a high-performance framework for parallel online
aggregation. Distributed and Parallel Databases, 32(3):337–375, 2014.

[125] K. Quanrud. Nearly linear time approximations for mixed packing and cover-
ing problems without data structures or randomization. In 3rd Symposium on
Simplicity in Algorithms, SOSA@SODA, pages 69–80, 2020.

[126] D. L. Quoc, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, and
T. Strufe. Approxjoin: Approximate distributed joins. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC, pages 426–438, 2018.

[127] A. Rao and A. Yehudayoff. Communication complexity. (unpublished
manuscript; available from the authors’ homepages), 2019.

[128] A. A. Razborov. On the distributional complexity of disjointness. Theor. Com-
put. Sci., 106(2):385–390, 1992.

193

[129] T. Roughgarden. Communication complexity (for algorithm designers). Foun-
dations and Trends in Theoretical Computer Science, 11(3-4):217–404, 2016.

[130] M. Sağlam and G. Tardos. On the communication complexity of sparse set
disjointness and exists-equal problems. In Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 678–687, 2013.

[131] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM J. Comput., 19(5):775–786, 1990.

[132] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algo-
rithms and Combinatorics. Springer, 2002. ISBN 9783540443896.

[133] A. N. Swami and K. B. Schiefer. On the estimation of join result sizes. In
Proceedings of 4th International Conference on Extending Database Technology
EDBT, pages 287–300, 1994.

[134] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22:215–225, 1975.

[135] W. T. Tutte. On the problem of decomposing a graph into n connected factors.
Journal of the London Mathematical Society, s1-36:221–230, 1961.

[136] K. R. Varadarajan and P. K. Agarwal. Approximation algorithms for bipartite
and non-bipartite matching in the plane. In Proceedings of the Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, pages 805–814,
1999.

[137] V. V. Vazirani. A theory of alternating paths and blossoms for proving correct-
ness of the O(

√
|V ||E|) general graph maximum matching algorithm. Combi-

natorica, 14(1):71–109, 1994.

[138] V. V. Vazirani. An improved definition of blossoms and a simpler proof of the
MV matching algorithm. CoRR, abs/1210.4594, 2012.

[139] D. Vengerov, A. C. Menck, M. Zäıt, and S. Chakkappen. Join size estimation
subject to filter conditions. PVLDB, 8(12):1530–1541, 2015.

[140] S. Wu, B. C. Ooi, and K. Tan. Continuous sampling for online aggregation over
multiple queries. In Proceedings of the 2010 ACM International Conference on
Management of Data, SIGMOD, pages 651–662, 2010.

[141] W. Wu, J. F. Naughton, and H. Singh. Sampling-based query re-optimization.
In Proceedings of the 2016 ACM International Conference on Management of
Data, SIGMOD, pages 1721–1736, 2016.

[142] A. C. Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings of the 18th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 222–227, 1977.

194

[143] A. C. Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Proceedings of the 11th Annual ACM Symposium on Theory
of Computing (STOC), pages 209–213, 1979.

[144] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Distributed lock management
with RDMA: decentralization without starvation. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD, pages 1571–1586,
2018.

[145] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(1):103–128, 2007.

195

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Communication Complexity
	Matching Theory
	Generalized Matching Problems
	Perfect Matching with Metric Constraint

	Join

	Communication Complexity
	Introduction
	Contributions

	Preliminaries
	Notational Conventions
	Information Theory
	Communication Complexity

	Lower Bounds on ExistsEqual and EqualityTesting
	Structure of the Proof
	A Lower Bound on EqualityTesting
	A Lower Bound on ExistsEqual

	Upper Bounds on EqualityTesting and ExistsEqual
	Overview and Preliminaries
	A protocol for exchanging test bits
	Reducing the number of false positives

	An O(k+rEk1/r)-bit EqualityTesting Protocol
	An O(k+Ek1/r)-bit ExistsEqual Protocol
	Overview of the protocol
	Analysis

	A Communication Optimal EqualityTesting Protocol
	Overview of the protocol
	Analysis

	An O(k + Ek1/rlogr +Erlogr) bits protocol
	Distributed Triangle Enumeration
	Reductions and Near Equivalences
	Conclusions and Open Problems

	Generalized Matching
	Introduction
	Basis of f-Matching and f-Edge Cover
	LP Formulation
	Blossoms
	Augmenting/Reducing Walks
	Complementary Slackness

	Connection Between f-Matchings and f-Edge Covers
	Approximate Preserving Reduction from 1-Edge Cover to 1-Matchings
	From f-Edge Cover to f-Matching

	Approximation Algorithms for f-Matching and f-Edge Cover
	Approximation for Small Weights
	A Scaling Algorithm for General Weights
	A Linear Time Algorithm

	A Linear Time Augmenting Walk Algorithm
	Algorithms for Unweighted f-Matching and f-Edge Cover
	Conclusion and Open Problems

	Metric Matching
	Introduction
	Primal, Duals and Complementary Slackness
	Blossoms
	Complementary Slackness

	Scaling for Approximate Min weight Perfect Matching
	Edmonds' Search in a nutshell
	The Main Algorithm

	Implementing Edmonds' Search in Graph Metrics
	Exact Algorithm for Bounded Treewidth Graph
	Treewidth and Hierarchical Separators
	The Divide-and-Conquer Framework for MWPM

	Join
	Introduction
	Background
	Sampling in Databases
	Quality Metrics
	Problem Statement
	Scope and Limitations

	Hardness
	Output Size
	Approximating Aggregate Queries

	Generic Sampling Scheme
	Optimal Sampling
	Join Size Estimation: Count on Joins
	Centralized Sampling for Count
	Decentralized Sampling for Count

	Sum on Joins
	Centralized Sampling for Sum
	Decentralized Sampling for Sum

	Average on Joins
	Centralized Sampling for Average
	Decentralized Sampling for Average

	Multiple Queries and Filters
	Experiments
	Experiment Setup
	Join Approximation: Centralized Setting
	Join Approximation: Decentralized
	Join Approximation with Filters
	Combining Samples
	Stratified Sampling
	Overhead: Centralized vs. Decentralized
	UBS vs. Two-Level Sampling

	Related Work

	Bibliography

