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Abstract

This dissertation studies several problems in revenue management involving dynamic

pricing, assortment selection, and their joint optimization, through demand learning. The

setting in these problems is that customers’ responses to selling prices and product displays

are unknown a priori, and the only information the decision maker can observe is sales

data. Data-driven optimizing-while-learning algorithms are developed in this thesis for

these problems, and the theoretical performances of the algorithms are established. For

each algorithm, it is shown that as sales data accumulate, the average revenue achieved by

the algorithm converges to the optimal.

Chapter 2 studies the problem of context-based dynamic pricing of online products,

which have low sales. For these products, existing single-product dynamic pricing algo-

rithms do not work well due to insufficient data samples. To address this challenge, we

propose pricing policies that concurrently perform clustering over products and set indi-

vidual pricing decisions on the fly. By clustering data and identifying products that have

similar demand patterns, we utilize sales data from products within the same cluster to

improve demand estimation for better pricing decisions. We evaluate the algorithms us-

ing regret, and the result shows that when product demand functions come from multiple

clusters, our algorithms significantly outperform traditional single-product pricing policies.

Simulations with both synthetic and real data from Alibaba show that our algorithm per-

forms very well, and a field experiment at Alibaba shows that our algorithm increased the

overall revenue by 10.14%.

Chapter 3 investigates an online personalized assortment optimization problem where

ix



customers arrive sequentially and make their choices (e.g., click an ad, purchase a prod-

uct) following the multinomial logit (MNL) model with unknown parameters. We develop

several algorithms to tackle this problem where the number of data samples is huge and cus-

tomers’ data are possibly high dimensional. Theoretical performance for our algorithms in

terms of regret are derived, and numerical experiments on a real dataset from Yahoo! on

news article recommendation show that our algorithms perform very well compared with

benchmarks.

Chapter 4 considers a joint assortment optimization and pricing problem where cus-

tomers arrive sequentially and make purchasing decisions following the multinomial logit

(MNL) choice model. Not knowing the customer choice parameters a priori and sub-

jecting to a display capacity constraint, we dynamically determine the subset of products

for display and the selling prices to maximize the expected total revenue over a selling

horizon. We design a learning algorithm that balances the trade-off between demand learn-

ing and revenue extraction, and evaluate the performance of the algorithm using Bayesian

regret. This algorithm uses the method of random sampling to simultaneously learn the

demand and maximize the revenue on the fly. An instance-independent upper bound for

the Bayesian regret of the algorithm is obtained and numerical results show that it performs

very well.
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Chapter 1

Introduction

Revenue management has been a popular research area for decades (see e.g., Chen and
Chen 2015 for a recent survey) with many success stories in different industries such as
retail, airlines, and hotels (see, e.g., Smith et al. 1992, Cross 1995). There are two ma-
jor problems in the area of revenue management: pricing and assortment optimization.
In the problem of pricing, the firm aims to maximize the revenue/profit according to the
current understanding of supply and demand with respect to different prices. For assort-
ment optimization, the firm selects a subset from a whole universe of products to put on
its shelf/webpage for revenue/profit maximization. In most of the existing literature, both
problems are studied in the setting that demand is known to the firm until recently (den Boer
2015, Kök et al. 2015). However, this known demand information assumption is usually
not appropriate in today’s rapidly changing market. This thesis specifically addresses the
problems of dynamic pricing, assortment optimization, as well as their joint optimization
when demand is not known a priori.

In Chapter 2, we consider the problem of dynamic pricing for products with low sales
or popularity through demand learning. Data from Alibaba, the largest global online re-
tailer, shows that most of the products on its website belongs to the category of unpopular
products, i.e., very few customers view those products each day. Pricing low-sale products
is often challenging due to the limited sales records available for demand estimation. In
this chapter, we tackle this challenge using the method of clustering. More specifically,
although each low-sale product only has a few sales records, the total number of low-sale
products is usually quite large. Our starting point is that there are some set of products out
there, though we do not know which ones, that share similar underlying demand patterns.
For these products, information can be extracted from their collective sales data to improve
the estimation of their demand function. Using clustering, we develop adaptive learning
algorithms that identify the products exhibiting similar demand patterns and learn their de-
mand jointly for revenue maximization. Theoretical performances of our algorithms are
proved to be promising, and numerical experiments using both synthetic and real data from
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Alibaba also show that our algorithms outperform several benchmarks in the existing lit-
erature. In the end, we implemented our algorithm in a field experiment at Alibaba, and it
achieved a revenue increase of 10.14%.

Chapter 3 investigates a personalized assortment optimization problem. More specif-
ically, the firm needs to select a subset of items (e.g., products, ads) and offer to each
customer tailored to his/her personal preference. Using customer’s personal data including
gender, age, location, browsing history, the firm can extract useful information in order to
match with the most preferred items. However, in this problem the decision maker usually
faces the challenge of big data. That is, the number of customers is very large, making
the historical data accumulate as customers keep arriving. Moreover, the customer’s data is
usually extremely high dimensional, hence making the recommendation decision for each
customer time consuming. This chapter addresses this challenge of big data by developing
adaptive algorithms which combine the method of online convex optimization for demand
learning and dimension reduction through random projection. Both theoretical and empir-
ical performances of our algorithms are developed, and they are shown to be promising.

In Chapter 4, we study the joint pricing and assortment optimization with demand learn-
ing. As we have illustrated, both pricing and assortment optimization are important re-
search topics in revenue management with abundant literature. However, the research on
their joint optimization is surprisingly scarce. In this chapter, we study the dynamic joint
assortment optimization and pricing problem when customers follow the multinomial logit
(MNL) choice model. An algorithm based on Thompson sampling is developed which bal-
ances the trade-off between demand exploration and revenue exploitation. We evaluate the
performance of the algorithm using the so-called Bayesian regret, and results show that its
Bayesian regret upper bound is very close to the regret lower bound. Several numerical
experiments based on synthetic data are also conducted, and our algorithm significantly
outperforms the benchmarks.

The thesis concludes in Chapter 5 with a summary of the key findings and an outline of
some opportunities for future research that stem from this work.

2



Chapter 2

Context-Based Dynamic Pricing with Online
Clustering

2.1 Introduction

Over the past several decades, dynamic pricing has been widely adopted by industries, such
as retail, airlines, and hotels, with great success (see, e.g., Smith et al. 1992, Cross 1995).
Dynamic pricing has been recognized as an important lever not only for balancing supply
and demand, but also for increasing revenue and profit. Recent advances in online retailing
and increased availability of online sales data have created opportunities for firms to better
use customer information to make pricing decisions, see e.g., the survey paper by den Boer
(2015). Indeed, the advances in information technology have made the sales data easily
accessible, facilitating the estimation of demand and the adjustment of price in real time.
Increasing availability of demand data allows for more knowledge to be gained about the
market and customers, as well as the use of advanced analytics tools to make better pricing
decisions.

However, in practice, there are often products with low sales amount or user views. For
these products, few available data points exist. For example, Tmall Supermarket, a busi-
ness division of Alibaba, is a large-scale online store. In contrast to a typical consumer-
to-consumer (C2C) platform (e.g., Taobao under Alibaba) that has millions of products
available, Tmall Supermarket is designed to provide carefully selected high-quality prod-
ucts to customers. We reviewed the sales data from May to July of 2018 on Tmall Super-
market with nearly 75,000 products offered during this period of time, and it shows that
more than 16,000 products (21.6% of all products) have a daily average number of unique
visitors1 less than 10, and more than 10,000 products (14.3% of all products) have a daily
average number of unique visitors less than or equal to 2. Although each low-sale product

1A terminology used within Alibaba to represent a unique user login identification.
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alone may have little impact on the company’s revenue, the combined sales of all low-sale
products are significant.

Pricing low-sale products is often challenging due to the limited sales records avail-
able for demand estimation. In fast-evolving markets (e.g., fashion or online advertising),
demand data from the distant past may not be useful for predicting customers’ purchas-
ing behavior in the near future. Classical statistical estimation theory has shown that data
insufficiency leads to large estimation error of the underlying demand, which results in
sub-optimal pricing decisions. In fact, the research on dynamic pricing of products with
little sales data remains relatively unexplored. To the best of our knowledge, there exists no
dynamic pricing policy in the literature for low-sale products that admits theoretical perfor-
mance guarantee. Our research fills the gap by developing adaptive context-based dynamic
pricing learning algorithms for low-sale products, and our results show that the algorithms
perform well both theoretically and numerically (including a field experiment).

2.1.1 Contributions of the chapter

Although each low-sale product only has a few sales records, the total number of low-sale
products is usually quite large. In this chapter, we address the challenge of pricing low-sale
products using an important idea from machine learning — clustering. Our starting point
is that there are some set of products out there, though we do not know which ones, that
share similar underlying demand patterns. For these products, information can be extracted
from their collective sales data to improve the estimation of their demand function. The
problem is formulated as developing adaptive learning algorithms that identify the products
exhibiting similar demand patterns, and extract the hidden information from sales data of
seemingly unrelated products to improve the pricing decisions of low-sale products and
increase revenue.

We first consider a generalized linear demand model with stochastic contextual covari-
ate information about products and develop a learning algorithm that integrates product
clustering with pricing decisions. Our policy consists of two phases. The first phase
constructs confidence bounds on the distance between clusters, which enables dynamic
clustering without any prior knowledge of the cluster structure. The second phase care-
fully controls the price variation based on the estimated clusters, striking a proper balance
between price exploration and revenue maximization by exploiting the cluster structure.
Since the pricing part of the algorithm is inspired by semi-myopic policy proposed by
Keskin and Zeevi (2014), we refer to our algorithm as the Clustered Semi-Myopic Pric-

ing (CSMP) policy. We first establish the theoretical regret bound of the proposed policy.
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Specifically, when the demand functions of the products belong to m clusters, where m is
smaller than the total number of products (denoted by n), the performance of our algorithm
is better than that of existing dynamic pricing policies that treat each product separately.
Let T denote the length of the selling season; we show in Theorem 2.3.1 that our algorithm
achieves the regret of Õ(

√
mT ), where Õ(·) hides the logarithmic terms. This result, when

m is much smaller than n, is a significant improvement over the regret when applying a
single-product pricing policy to individual products, which is typically Õ(

√
nT ).

When the demand function is linear in terms of covariates of products and price, we
extend our result to the setting where the covariates are non-stochastic and even adversarial.
In this case, we develop a variant of the CSMP policy (called CSMP-L, where L stands
for “linear”), which handles a more general class of demand covariates. The parameter
estimation for the linear demand function is based on a scheme developed by Nambiar et al.
(2018), which is used to build separate confidence bounds for the parameters of demand
covariates and price sensitivity. Similar to the CSMP algorithm, our theoretical analysis in
Theorem 2.4.1 shows that the CSMP-L algorithm achieves the regret Õ(

√
mT ).

We carry out a thorough numerical experiment using both synthetic data and a real
dataset from Alibaba consisting of a large number of low-sale products. Several bench-
marks, one treats each product separately, one puts all products into a single cluster, and
the other one applies a classical clustering method (K-means method for illustration), are
compared with our algorithms under various scenarios. The numerical results show that our
algorithms are effective and their performances are consistent in different scenarios (e.g.,
with almost static covariates, model misspecification).

Our algorithm was tested in a field experiment conducted at Alibaba by a Tmall Super-
market team. The algorithm was tested on 40 products for 30 consecutive days. The results
from the field experiment show that the overall revenue was boosted by 10.14%.

It is well-known that providing a performance guarantee for a clustering method is
challenging due to the non-convexity of the loss function (e.g., in K-means), which is
why there exists no clustering and pricing policy with theoretical guarantees in the existing
literature. This is the first work to establish the regret bound for a dynamic clustering
and pricing policy. Instead of adopting an existing clustering algorithm from the machine
learning literature (e.g., K-means), which usually requires the number of clusters as an
input, our algorithms dynamically update the clusters based on the gathered information
about customers’ purchase behavior. In addition to significantly improving the theoretical
performance as compared to classical dynamic pricing algorithms without clustering, our
algorithms demonstrate excellent performance both in our simulation study and in our field
experiments with Alibaba.
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2.1.2 Literature review

In this subsection, we review some related research from both the revenue management and
machine learning literature.

Related literature in dynamic pricing. Due to increasing popularity of online re-
tailing, dynamic pricing has become an active research area in revenue management in the
past decade. We only briefly review a few of the most related works and refer the interested
readers to den Boer (2015) for a comprehensive literature survey. Earlier work and review
of dynamic pricing include Gallego and Van Ryzin (1994, 1997), Bitran and Caldentey
(2003), Elmaghraby and Keskinocak (2003). These papers assume that demand informa-
tion is known to the retailer a priori and either characterize or compute the optimal pricing
decisions. In some retailing industries, such as fast fashion, this assumption may not hold
due to the quickly changing market environment. As a result, with the recent development
of information technology, combining dynamic pricing with demand learning has attracted
much interest in research. Depending on the structure of the underlying demand functions,
these works can be roughly divided into two categories: parametric demand models (see,
e.g., Carvalho and Puterman 2005, Bertsimas and Perakis 2006, Besbes and Zeevi 2009,
Farias and Van Roy 2010, Broder and Rusmevichientong 2012, Harrison et al. 2012, den
Boer and Zwart 2013, Keskin and Zeevi 2014) and nonparametric demand models (see,
e.g., Araman and Caldentey 2009, Wang et al. 2014, Lei et al. 2014, Chen et al. 2015a,
Besbes and Zeevi 2015, Cheung et al. 2017, Chen and Shi 2019). The aforementioned pa-
pers assume that the price is continuous. Other works consider a discrete set of prices, see,
e.g., Ferreira et al. (2018a), and recent studies examine pricing problems in dynamically
changing environments, see, e.g., Besbes et al. (2015) and Keskin and Zeevi (2016).

Dynamic pricing and learning with demand covariates (or contextual information) has
received increasing attention in recent years because of its flexibility and clarity in mod-
eling customers and market environment. Research involving this information include,
among others, Chen et al. (2015b), Qiang and Bayati (2016), Nambiar et al. (2018), Ban
and Keskin (2017), Lobel et al. (2018), Chen and Gallego (2018), Javanmard and Naz-
erzadeh (2019). In many online-retailing applications, sellers have access to rich covariate
information reflecting the current market situation. Moreover, the covariate information is
not static but usually evolves over time. This work incorporates time-evolving covariate
information into the demand model. In particular, given the observable covariate infor-
mation of a product, we assume that the customer decision depends on both the selling
price and covariates. Although covariates provide richer information for accurate demand
estimation, a demand model that incorporates covariate information involves more param-
eters to be estimated. Therefore, it requires more data for estimation with the presence of
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covariates, which poses an additional challenge for low-sale products.
Related literature in clustering for pricing. To the best of our knowledge, we are not

aware of any operations literature that dynamically learns about the clustering structure on
the fly. There are, however, some interesting works that use historical data to determine
the cluster structure of demand functions in an offline manner, and then dynamically make
pricing decisions for another product by learning which cluster its demand belongs to.

Ferreira et al. (2015) study a pricing problem with flash sales on the Rue La La platform.
Using historical information and offline optimization, the authors classify the demand of
all products into multiple groups, and use demand information for products that did not
experience lost sales to estimate demand for products that had lost sales. They construct
“demand curves” on the percentage of total sales with respect to the number of hours after
the sales event starts, then classify these curves into four clusters. For a sold-out product,
they check which one of the four curves is the closest to its sales behavior and use that to
estimate the lost sales. Cheung et al. (2017) consider the single-product pricing problem,
where the demand of the product is assumed to be from one of the K demand functions
(called demand hypothesis in that paper). Those K demand functions are assumed to be
known, and the decision is to choose which of those functions is the true demand curve of
the product. In their field experiment with Groupon, they applied K-means clustering to
historical demand data to generate those K demand functions offline. That is, clustering
is conducted offline first using historical data, then dynamic pricing decisions are made in
an online fashion for a new product, assuming that its demand is one of the K demand
functions.

Related literature in other operations management problems. The method of clus-
tering is quite popular for many operations management problems such as demand forecast
for new products and customer segmentation. In the following, we give a brief review of
some recent papers on these two topics that are based on data clustering approach.

Demand forecasting for new products is a prevalent yet challenging problem. Since new
products at launch have no historical sales data, a commonly used approach is to borrow
data from “similar old products” for demand forecasting. To connect the new product with
old products, current literature typically use product features. For instance, Baardman et al.
(2017) assume a demand function which is a weighted sum of unknown functions (each
representing a cluster) of product features. While in Ban et al. (2018), similar products
are predefined such that common demand parameters are estimated using sales data of
old products. Hu et al. (2018) investigate the effectiveness of clustering based on product
category, features, or time series of demand respectively.

Customer segmentation is another application of clustering. Jagabathula et al. (2018)
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assume a general parametric model for customers’ features with unknown parameters, and
use K-means clustering to segment customers. Bernstein et al. (2018) consider the dy-
namic personalized assortment optimization using clustering of customers. They develop a
hierarchical Bayesian model for mapping from customer profiles to segments.

Compared with these literature, besides a totally different problem setting, this chapter
is also different in the approach. First, we consider an online clustering approach with
provable performance instead of an offline setting as in Baardman et al. (2017), Ban et al.
(2018), Hu et al. (2018), Jagabathula et al. (2018). Second, we know neither the number
of clusters (in contrast to Baardman et al. 2017, Bernstein et al. 2018 that assume known
number of clusters), nor the set of products in each cluster (as compared with Ban et al.
2018 who assume known products in each cluster). Finally, we do not assume any specific
probabilistic structure on the demand model and clusters (in contrast with Bernstein et al.
2018 who assign and update the probability for a product to belong to some cluster), but
define clusters using product neighborhood based on their estimated demand parameters.

Related literature in multi-arm bandit problem. A successful dynamic pricing
algorithm requires a careful balancing between exploration (i.e., learning the underlying
demand function) and exploitation (i.e., making the optimal pricing strategy based on the
learned information so far). The exploration-exploitation trade-off has been extensively
investigated in the multi-armed bandit (MAB) literature; see earlier works by Lai and Rob-
bins (1985), Auer et al. (2002), Auer (2002) and Bubeck et al. (2012) for a comprehensive
literature review. Among the vast MAB literature, there is a line of research on bandit clus-
tering that addresses a different but related problem (see, e.g., Cesa-Bianchi et al. 2013,
Gentile et al. 2014, Nguyen and Lauw 2014, Gentile et al. 2016). The setting is that there is
a finite number of arms which belong to several unknown clusters, where unknown reward
functions of arms in each cluster are the same. Under this assumption, the MAB algorithms
aim to cluster different arms and learn the reward function for each cluster.The setting of
the bandit-clustering problem is quite different from ours. In the bandit clustering problem,
the arms belong to different clusters and the decision for each period is which arm to play.
In our setting, the products belong to different clusters and the decision for each period is
what prices to charge for all products, and we have a continuum set of prices to choose from
for each product. In addition, in contrast to the linear reward in bandit-clustering problem,
the demand functions in our setting follow a generalized linear model. As will be seen in
Section 2.3, we design a price perturbation strategy based on the estimated cluster, which
is very different from the algorithms in bandit-clustering literature.

Related literature in clustering. We end this section by giving a brief overview of
clustering methods in the machine learning literature. To save space, we only discuss sev-
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eral popular clustering methods, and refer the interested reader to Saxena et al. (2017) for a
recent literature review on the topic. The first one is called hierarchical clustering (Murtagh
1983), which iteratively clusters objects (either bottom-up, from a single object to several
big clusters; or top-down, from a big cluster to single product). Comparable with hierar-
chical clustering, another class of clustering method is partitional clustering, in which the
objects do not have any hierarchical structure, but rather are grouped into different clusters
horizontally. Among these clustering methods, K-means clustering is probably the most
well-known and most widely applied method (see e.g., MacQueen et al. 1967, Hartigan and
Wong 1979). Several extensions and modifications of K-means clustering method have
been proposed in the literature, e.g., K-means++ (Arthur and Vassilvitskii 2007, Bahmani
et al. 2012) and fuzzy c-means clustering (Dunn 1973, Bezdek 2013). Another important
class of clustering method is based on graph theory. For instance, the spectral clustering
uses graph Laplacian to help determine clusters (Shi and Malik 2000, Von Luxburg 2007).
Beside these general methods for clustering, there are many clustering methods for spe-
cific problems such as decision tree, neural network, etc. It should be noted that nearly all
the clustering methods in the literature are based on offline data. This chapter, however,
integrates clustering into online learning and decision-making process.

2.1.3 Organization of the chapter

The remainder of this chapter is organized as follows. In Section 2.2, we present the prob-
lem formulation. Our main algorithm is presented in Section 2.3 together with the theo-
retical results for the algorithm performance. We develop another algorithm for the linear
demand model in Section 2.4 when the contextual covariates are non-stochastic or adver-
sarial. In Section 2.5, we report the results of several numerical experiments based on
both synthetic data and a real dataset in addition to the findings from a field experiment
carried out at Alibaba’s Tmall Supermarket. We conclude the chapter with a discussion
about future research in Section 2.7. Finally, all the technical proofs are presented in the
supplement.

2.2 Problem Formulation

We consider a retailer that sells n products, labeled by i = 1, 2, . . . , n, with unlimited inven-
tory (e.g., there is an inventory replenishment scheme such that products typically do not
run out of stock). Following the literature, we denote the set of these products by [n]. We
mainly focus on online retailing of low-sale products. These products are typically not of-
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fered to customers as a display; hence we do not consider substitutability/complementarity
of products in our model. Furthermore, these products are usually not recommended by
the retailer on the platform, and instead, customers search for them online. We let qi > 0

denote the percentage of potential customers who are interested in, or search for, product
i ∈ [n]. In this chapter, we will treat qi as the probability an arriving customer searches for
product i.

Customers arrive sequentially at time t = 1, 2, . . . , T , and we denote the set of all time
indices by [T ]. For simplicity, we assume without loss of generality that there is exactly one
arrival during each period. In each time period t, the firm first observes some covariates
for each product i, such as product rating, prices of competitors, average sales in past
few weeks, and promotion-related information (e.g., whether the product is currently on
sale). We denote the covariates of product i by zi,t ∈ Rd, where d is the dimension of the
covariates that is usually small (as compared to n or T ). The covariates zi,t change over
time and satisfy ||zi,t||2 ≤ 1 after normalization. Then, the retailer sets the price pi,t ∈ [p, p]

for each product i, where 0 ≤ p < p < ∞ (the assumption of the same price range for
all products is without loss of generality). Let it denote the product that the customer
searches in period t (or customer t). After observing the price and other details of product
it, customer t then decides whether or not to purchase it. The sequence of events in period
t is summarized as follows:

i) In time t, the retailer observes the covariates zi,t for each product i ∈ [n], then sets
the price pi,t for each i ∈ [n].

ii) Customer searches for product it ∈ [n] in period t with probability qit independent
of others and then observes its price pit,t.

iii) The customer decides whether or not to purchase product it.

The customer’s purchasing decision follows a generalized linear model (GLM, see e.g.,
McCullagh and Nelder 1989). That is, given price pit,t of product it at time t, the customer’s
purchase decision is represented by a Bernoulli random variable dit,t(pit,t; zit,t) ∈ {0, 1},
where dit,t(pit,t; zit,t) = 1 if the customer purchases product it and 0 otherwise. The pur-
chase probability, which is the expectation of dit,t(pit,t; zit,t), takes the form

E[dit,t(pit,t; zit,t)] = µ(α′itxit,t + βitpit,t), (2.1)

where µ(·) is the link function, x′it,t = (1, z′it,t) is the corresponding extended demand
covariate with the 1 in the first entry used to model the bias term in a GLM model, and the
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expectation is taken with respect to customer purchasing decision. Let θ′it = (α′it , βit) be
the unknown parameter of product it, which is assumed to be bounded. That is, ||θi||2 ≤ L

for some constant L for all i ∈ [n].

Remark 2.2.1 The commonly used linear and logistic models are special cases of GLM

with link function µ(x) = x and µ(x) = exp (x)/(1 + exp(x)), respectively. The paramet-

ric demand model (2.1) has been used in a number of papers on pricing with contextual

information, see, e.g., Qiang and Bayati (2016) (for a special case of linear demand with

µ(x) = x) and Ban and Keskin (2017).

For convenience and with a slight abuse of notation, we write

pt := pit,t, zt := zit,t, xt := xit,t, dt := dit,t,

where “ := ” stands for “defined as”. Let the feasible sets of xt and θi be denoted as X and
Θ, respectively. We further define

Ti,t := {s ≤ t : is = i} (2.2)

as the set of time periods before t in which product i is viewed, and Ti,t := |Ti,t| its
cardinality. With this demand model, the expected revenue rt(pt) of each round t is

rt(pt) := ptµ(α′itxt + βitpt). (2.3)

Note that we have made the dependency of rt(pt) on xt implicit.
The firm’s optimization problem and regret. The firm’s goal is to decide the price

pt ∈ [p, p] at each time t for each product to maximize the cumulative expected revenue∑T
t=1 E[rt(pt)], where the expectation is taken with respect to the randomness of the pricing

policy as well as the stream of it for t ∈ [T ], and for the next section, also the stochasticity
in contextual covariates zt, t ∈ [T ]. The goal of maximizing the expected cumulative
revenue is equivalent to minimizing the so-called regret, which is defined as the revenue
gap as compared with the clairvoyant decision maker who knew the underlying parameters
in the demand model a priori. With the known demand model, the optimal price can be
computed as

p∗t = arg max
p∈[p,p]

rt(p),

and the corresponding revenue gap at time t is E[rt(p
∗
t )− rt(pt)] (the dependency of p∗t on

xt is again made implicit). The cumulative regret of a policy π with prices {pt}Tt=1 is
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defined by the summation of revenue gaps over the entire time horizon, i.e.,

Rπ(T ) :=
T∑
t=1

E[rt(p
∗
t )− rt(pt)]. (2.4)

Remark 2.2.2 For consistency with the online pricing literature, see e.g., Chen et al.

(2015b), Qiang and Bayati (2016), Ban and Keskin (2017), Javanmard and Nazerzadeh

(2019), in this chapter we use expected revenue as the objective to maximize. However, we

point out that all our analyses and results carry over to the objective of profit maximization.

That is, if ct is the cost of the product in round t, then the expected profit in (2.3) can be

replaced by

rt(pt) = (pt − ct)µ(α′itxt + βitpt).

Cluster of products. Two products i1 and i2 are said to be “similar” if they have similar
underlying demand functions, i.e., θi1 and θi2 are close. In this chapter we assume that the
n products can be partitioned intom clusters,Nj for j = 1, 2, . . . ,m, such that for arbitrary
two products i1 and i2, we have θi1 = θi2 if i1 and i2 belong to the same cluster; otherwise,
||θi1 − θi2||2 ≥ γ > 0 for some constant γ. We refer to this cluster structure as the γ-gap
assumption, which will be relaxed in Remark 2.3.4 of Section 2.3.2. For convenience, we
denote the set of clusters by [m], and by a bit abuse of notation, let Ni be the cluster to
which product i belongs.

It is important to note that the number of clustersm and each clusterNj are unknown to
the decision maker a priori. Indeed, in some applications such structure may not exist at all.
If such structure does exist, then our policy can identify such a cluster structure and make
use of it to improve the practical performance and the regret bound. However, we point out
that the cluster structure is not a requirement for the pricing policy to be discussed. In other
words, our policy reduces to a standard dynamic pricing algorithm when demand functions
of the products are all different (i.e., when m = n).

It is also worthwhile to note that our clustering is based on demand parameters/patterns
and not on product categories or features, since it is the demand of the products that we
want to learn. The clustering approach based on demand is prevalent in the literature (be-
sides Ferreira et al. 2015, Cheung et al. 2017 and the references therein, we also refer to
Van Kampen et al. 2012 for a comprehensive review). Clustering based on category/feature
similarity is useful in some problems (see e.g., Su and Chen 2015 investigate customer seg-
mentation using features of clicking data), but it does not apply to our setting, because, for
instance, products with similar feature for different brands may have very different de-
mand.
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Remark 2.2.3 For its application to the online pricing problem, the contextual information

in our model is about the product. That is, at the beginning of each period, the firm observes

the contextual information about each product, then determines the pricing decision for

the product, and then the arriving customer makes a purchasing decisions. We point out

that our algorithm and result apply equally to personalized pricing in which the contextual

information is about the customer. That is, a customer arrives (e.g., logging on the website)

and reveals his/her contextual information, and then the firm makes a pricing decision

based on that information. The objective is to make personalized pricing decisions to

maximize total revenue (see e.g., Ban and Keskin 2017).

2.3 Pricing Policy and Main Results

In this section we discuss the specifics of the learning algorithm, its theoretical perfor-
mance, and a sketch of its proof. Specifically, we describe the policy procedure and discuss
its intuitions in Section 2.3.1 before presenting its regret and outlining the proof in Section
2.3.2.

2.3.1 Description of the pricing policy

Our policy consists of two phases for each period t ∈ [T ]: the first phase constructs a
neighborhood for each product i ∈ [n], and the second phase determines its selling price. In
the first step, our policy uses individual data of each product i ∈ [n] to estimate parameters
θ̂i,t−1. This estimation is used only for construction of the neighborhood N̂i,t for product i.
Once the neighborhood is defined, we consider all the products in this neighborhood as in
the same cluster and use clustered data to estimate the parameter vector θ̃N̂i,t,t−1. The latter
is used in computing the selling price of product i. We refer to Figure 2.1 for a flowchart
of our policy, and present the detailed procedure in Algorithm 1.

In the following, we discuss the parameter estimation of GLM demand functions and
the construction of a neighborhood in detail.

Parameter estimation of GLM. As shown in Figure 2.1, the parameter estimation is
an important part of our policy construction. We adopt the classical maximum likelihood
estimation (MLE) method for parameter estimation (see McCullagh and Nelder 1989). For
completeness, we briefly describe the MLE method here. Let ut := (x′t, pt)

′ ∈ Rd+2. The
conditional distribution of the demand realization dt, given ut, belongs to the exponential
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Figure 2.1: Flow chart of the algorithm.

family and can be written as

P(dt|ut) = exp

(
dtu
′
tθ −m(u′tθ)

g(η)
+ h(dt, η)

)
. (2.5)

Here m(·), g(·), and h(·) are some specific functions, where ṁ(u′tθ) = E[dt] = µ(u′tθ)

depends on µ(·) and h(dt, η) is the normalization part, and η is some known scale parame-
ter. Suppose that we have t samples (ds, ps) for s = 1, 2, . . . , t, the negative log-likelihood
function of θ under model (2.5) is

t∑
s=1

(
m(u′sθ)− dsu′sθ

g(η)
+ h(ds, η)

)
. (2.6)

By extracting the terms in (2.6) that involves θ, the maximum likelihood estimator θ̂ is

θ̂ = arg min
θ∈Θ

t∑
s=1

ls(θ), ls(θ) := m(u′sθ)− dsu′sθ. (2.7)

Since ∇2ls(θ) = µ̇(u′sθ)usu
′
s is positive semi-definite in a standard GLM model (by As-

sumption A-2 in the next subsection), the optimization problem in (2.7) is convex and can
be easily solved.

Determining the neighborhood of each product. The first phase of our policy deter-
mines which products to include in the neighborhood of each product i ∈ [n]. We use the
term “neighborhood” instead of cluster, though closely related, because clusters are usu-
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ally assumed to be disjoint in the machine learning literature. In contrast, by our definition
of neighborhood, some products can belong to different neighborhoods depending on the
estimated parameters. To define the neighborhood of i, which is denoted by N̂i,t, we first
estimate parameter θ̂i,t−1 of each product i ∈ [n] using their own data, i.e., θ̂i,t−1 is the
maximum likelihood estimator using data in Ti,t−1 defined in (2.2). Then, we include a
product i′ ∈ [n] in the neighborhood N̂i,t of i if their estimated parameters are sufficiently

close, which is defined as

||θ̂i′,t−1 − θ̂i,t−1||2 ≤ Bi′,t−1 +Bi,t−1,

where Bi,t−1 is a confidence bound for product i given by

Bi,t :=

√
c(d+ 2) log(1 + t)√

λmin(Vi,t)
. (2.8)

Here, Vi,t := I +
∑

s∈Ti,t usu
′
s is the empirical Fisher’s information matrix of product

i ∈ [n] at time t and c is some positive constant, which will be specified in our theory
development. Note that, by the γ-gap assumption discussed at the end of Section 2.2, the
method will work even when Ti,t−1 only contains a limited number of sales records.

Setting the price of each product. Once we define the (estimated) neighborhood N̂i,t
of i ∈ [n], we can pool the demand data of all products in N̂i,t to learn the parameter vector.
That is, we let

T̃N̂i,t,t−1 :=
⋃

i′∈N̂i,t

Ti′,t−1 and T̃N̂i,t,t−1 := |T̃N̂i,t,t−1|.

The clustered parameter vector θ̃N̂i,t,t−1 is the maximum likelihood estimator using data in
T̃N̂i,t,t−1.

To decide on the price, we first compute p′i,t, which is the “optimal price” based on the
estimated clustered parameters θ̃N̂i,t,t−1. Then we restrict p′i,t to the interval [p+ |∆i,t|, p−
|∆i,t|] by the projection operator. That is, we compute

p̃i,t = Proj[p+|∆i,t|,p−|∆i,t|](p
′
i,t), where Proj[a,b](x) := min{max{x, a}, b}.

The reasoning for this restriction is that our final price pi,t will be pi,t = p̃i,t + ∆i,t, and the
projection operator forces the final price pi,t to the range [p, p]. Here, the price perturbation
∆i,t = ±∆0T̃

−1/4

N̂i,t,t
takes a positive or a negative value with equal probability, where ∆0

is a positive constant. We add this price perturbation for the purpose of price exploration.
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Intuitively, the more price variation we have, the more accurate the parameter estimation
will be. However, too much price variation leads to loss of revenue because we deliberately
charged a “wrong” price. Therefore, it is crucial to find a balance between these two targets
by defining an appropriate ∆i,t.

We note that this pricing scheme belongs to the class of semi-myopic pricing poli-
cies defined in Keskin and Zeevi (2014). Since our policy combines clustering with semi-
myopic pricing, we refer to it as the Clustered Semi-Myopic Pricing (CSMP) algorithm.

Algorithm 1 The CSMP Algorithm
Require: c, the confidence bound parameter; ∆0, price perturbation parameter;

1: Step 0. Initialization. Initialize Ti,0 = ∅ and Vi,0 = I for all i ∈ [n]. Let t = 1 and go
to Step 1.

2: for t = 1, 2, . . . , T do
3: Step 1. Individual Parametric Estimation. Compute the MLE using individual

data
θ̂i,t−1 = arg min

θ∈Θ

∑
s∈Ti,t−1

ls(θ)

for all i ∈ [n]. Go to Step 2.
4: Step 2. Neighborhood Construction. Compute the neighborhood of each product
i as

N̂i,t = {i′ ∈ [n] : ||θ̂i′,t−1 − θ̂i,t−1||2 ≤ Bi′,t−1 +Bi,t−1}

where Bi,t−1 is defined in (2.8) for each i ∈ [n]. Go to Step 3.
5: Step 3. Clustered Parametric Estimation. Compute the MLE using clustered

data
(α̃′N̂i,t,t−1

, β̃N̂i,t,t−1)′ = θ̃N̂i,t,t−1 = arg min
θ∈Θ

∑
s∈T̃N̂i,t,t−1

ls(θ)

for each i ∈ [n]. Go to Step 4.
6: Step 4. Pricing. Compute price for each i ∈ [n] as

p′i,t = arg max
p∈[p,p]

µ(α′N̂i,t,t−1
xi,t + βN̂i,t,t−1p)p,

then project to p̃i,t = Proj[p+|∆i,t|,p−|∆i,t|](p
′
i,t) and offer to the customer price pi,t =

p̃i,t + ∆i,t where ∆i,t = ±∆0T̃
−1/4

N̂i,t,t
which takes two signs with equal probability.

7: Then, customer t arrives, searches for product it, and makes purchasing decision
dit,t(pit,t; zit,t). Update Tit,t = Tit,t−1 ∪ {t} and Vit,t = Vit,t−1 + utu

′
t.

8: end for

We briefly discuss each step of the algorithm and the intuition behind the theoretical
performance. For Steps 1 and 2, the main purpose is to identify the correct neighborhood
of the product searched in period t; i.e., N̂it,t = Nit with high probability (for brevity of
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notation, we let N̂t := N̂it,t). To achieve that, two conditions are necessary. First, the esti-
mator θ̂i,t should converge to θi as t grows for all i ∈ [n]. Second, the confidence boundBi,t

should converge to 0 as t grows, such that in Step 2, we are able to identify different neigh-
borhood by the γ-gap assumption among clusters. To satisfy these conditions, classical
statistical learning theory (see e.g., Lemma 2.6.2 in the supplement) requires the minimum
eigenvalue of the empirical Fisher’s information matrix Vi,t to be sufficiently above zero,
or more specifically, λmin(Vi,t) ≥ Ω(qi

√
t) (see Lemma 2.6.4 in the supplement). This re-

quirement is guaranteed by the stochastic assumption on demand covariates zi,t, which will
be imposed in Assumption A-3 in the next subsection, plus our choice of price perturbation
in Step 4.

Following the discussion above, when N̂t = Nit with high probability, we can cluster
the data within Nit to increase the number of samples for it. Because of the increased
data samples, it is expected that the estimator θ̃Nit ,t−1 for θit in Step 3 is more accu-
rate than θ̂i,t−1. Of course, the estimation accuracy again requires the minimum eigen-
value of the empirical Fisher’s information matrix over the clustered set T̃Nit ,t−1, i.e.,
λmin(I+

∑
s∈T̃Nit ,t−1

usu
′
s), to be sufficiently large, which is again guaranteed by stochastic

assumption of zi,t and the price perturbation in Step 4.
The design of the CSMP algorithm depends critically on two things. First, by taking an

appropriate price perturbation in Step 4, we balance the exploration and exploitation. If the
perturbation is too much, even though it helps to achieve good parameter estimation, it may
lead to loss of revenue (due to purposely charging the wrong price). Second, the sequence
of demand covariates zi,t has to satisfy an important stochastic assumption (Assumption A-
3) which is commonly seen in the pricing literature with demand covariates (see e.g., Chen
et al. 2015b, Qiang and Bayati 2016, Ban and Keskin 2017, Javanmard and Nazerzadeh
2019). In the next section, we will drop the stochastic assumption by focusing on a special
class of the generalized linear model, the linear demand model, in which the covariates zt
can be non-stochastic or even adversarial.

2.3.2 Theoretical performance of the CSMP algorithm

This section presents the regret of the CSMP pricing policy. Before proceeding to the main
result, we first make some technical assumptions that will be needed for the theorem.

Assumption A:

1. The expected revenue function pµ(α′x + βp) has a unique maximizer p∗(α′x, β) ∈
[p, p], which is Lipschitz in (α′x, β) with parameter L0 for all x ∈ X and θ ∈ Θ.
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Moreover, the unique maximizer is in the interior (p, p) for the true θi for all i ∈ [n]

and x ∈ X .

2. µ(·) is monotonically increasing and twice continuously differentiable in its feasible
region. Moreover, for all x ∈ X , θ ∈ Θ and p ∈ [p, p], we have that µ̇(α′x + βp) ∈
[l1, L1], and |µ̈(α′x+ βp)| ≤ L2 for some positive constants l1, L1, L2.

3. For each i ∈ [n] and t ∈ Ti,T , we have E[zi,t|Ft−1] = 0 and λmin(E[zi,tz
′
i,t|Ft−1]) ≥

λ0 for some λ0 > 0, where Ft−1 is the σ-algebra generated by history (for instance,
{is, zs, ps, dis,s : s ≤ t− 1}) until end of period t− 1.

The first assumption A-1 is a standard regularity condition on expected revenue, which
is prevalent in the pricing literature (see e.g., Broder and Rusmevichientong 2012). The
second assumption A-2 states that the purchasing probability will increase if and only if the
utility α′x+βp increases, which is plausible. One can easily verify that the commonly used
demand models, such as linear and logistic demand, satisfy these two assumptions with
appropriate choice ofX and Θ. The last assumption A-3 is a standard stochastic assumption
on demand covariates which has appeared in several pricing papers (see e.g., Qiang and
Bayati 2016, Ban and Keskin 2017, Nambiar et al. 2018, Javanmard and Nazerzadeh 2019).
In Section 2.4, we will relax this stochastic assumption in the setting of linear demand.
Note that A-3 does not require the feature sequence zi,t to be independent or identically
distributed, and only requires it to be an adapted sequence of filtration {Fs}s≥0. One may
argue that there can be static or nearly static features in zi,t such that λmin(E[zi,tz

′
i,t|Ft−1]) ≥

λ0 > 0 is violated. However, such static features can be removed from zi,t since the utility
corresponding to these static features can be in the constant term, i.e., the intercept in
α′it(1, zi,t). We will see in the numerical study in Section 2.5.1 that our algorithm performs
well even when some features are nearly static or slowly changing.

Under Assumption A, we have the following result on the regret of the CSMP algo-
rithm.

Theorem 2.3.1 Let input parameter c ≥ 20/l21; the expected regret of algorithm CSMP is

R(T ) = O

(
d2 log2(dT )

mini∈[n] q
2
i

+ d
√
mT log T

)
. (2.9)

In particular, if qi = Θ(1/n) for all i ∈ [n] and we hide the logarithmic terms, then when

T � n, the expected regret is at most Õ(d
√
mT ).

Sketch of proof. For ease of presentation and to highlight the main idea, we only provide
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a proof sketch for the “simplified” regret Õ(d
√
mT ). The proof of the general case (2.9) is

given in the supplement.
We show that there is a time threshold t̄ = O(d2 log2(dT )/mini∈[n] q

2
i ) such that for all

t > 2t̄, with high probability we will have N̂t = Nit (see Lemma 2.6.5 in the supplement).
This shows that parameters are accurately estimated when t is sufficiently large, which
leads to the desired regret. While for t ≤ 2t̄, the regret can be bounded by O(t̄), which
is only poly-logarithmic in T and n. To provide a more detailed argument, we first define
q̃j :=

∑
i∈Nj qi as the probability that a customer views a product belonging to cluster j, and

θ̃j,t−1 := θ̃Nj ,t−1 as the estimated parameter of cluster j using data in T̃j,t−1 :=
⋃
i∈Nj Ti,t−1,

and define T̃j,t−1 := |T̃j,t−1|. Then, we define

EN,t :={N̂t = Nit},

EBj ,t :={||θ̃j,t − θj||2 ≤ B̃j,t},

EV,t :=

λmin

 ∑
s∈T̃jt,t

usu
′
s

 ≥ λ1∆2
0

√
q̃jtt

8

 ,

where λ1 = min(1, λ0)/(1 + p2) is some constant. Moreover, define

B̃j,t =:

√
c(d+ 2) log(1 + t))√

λmin(Ṽj,t)
,

where Ṽj,t = I +
∑

s∈T̃j,t usu
′
s. We further define the event

Et :=
⋃
j∈[m]

EBj ,t ∪ EN,t ∪ EV,t.

In the supplement, we will show that Et holds with probability at least 1 − 10n/t when
t > 2t̄. So the regret on the event that Et fails is at most O(n log T ) because

T∑
t=1

E[(rt(p
∗
t )− rt(pt))111(Ēt)] ≤ p

T∑
t=1

P(Ēt) ≤ 10pn
T∑
t=1

1/t = O(n log T ).

We bound the regret for each period on Et as follows. On the event Et, we apply Taylor’s
theorem (note that p∗t is the interior point within the price bound), that under the event Et
and Assumption A (see also the derivation of (2.20) in the supplement):

E [rt(p
∗
t )− rt(pt)] ≤ O

(
E
[
B̃2
jt,t−1 + ∆2

t

])
(2.10)
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where
∆t = ∆it,t

for the sake of brevity. By plugging the value of B̃jt,t (with the lower bound of λmin(Ṽjt,t)

on the event EV,t), we obtain

∑
t>2t̄

E
[
B̃2
jt,t−1

]
≤ O(d log T )

∑
t>2t̄

E

[
1√
q̃jtt

]

≤ O(d log T )
∑
t>2t̄

∑
j∈[m]

√
q̃j√
t

≤ O(d log T )
∑
j∈[m]

√
q̃jT ≤ O(d log T )

√
mT,

(2.11)

where the first inequality follows from the definition of B̃jt,t−1 and event EV,t, the second
inequality is from realizations of jt (i.e., jt = j with probability q̃j for all j ∈ [m]), and
the last inequality is by Cauchy-Schwarz.

On the other hand, because N̂t = Nit for all t > 2t̄, we have

E

[∑
t>2t̄

∆2
t

]
≤
∑
j∈[m]

E

∑
t∈T̃j,T

∆2
0√
T̃j,t

 ≤ O

E

∑
j∈[m]

√
T̃j,T

 ≤ O
(√

mT
)
, (2.12)

where the first inequality follows from definition of ∆t and the event N̂t = Nit .
Putting (2.10), (2.11), and (2.12) together, we obtain∑

t≥2t̄

E[rt(p
∗
t )− rt(pt)] ≤ O(d log T

√
mT ).

Thus, the result is proved.
We have a number of remarks about the CSMP algorithm and the result on regret,

following in order.

Remark 2.3.1 (Comparison with single-product pricing) Our pricing policy achieves the

regret Õ(d
√
mT ). A question arises as to how it compares with the baseline single-product

pricing algorithm that treats each product separately. Ban and Keskin (2017) consider

a single-product pricing problem with demand covariates. According to Theorem 2 in

Ban and Keskin (2017), their algorithm, when applied to each product i in our setting

separately, achieves the regret Õ(d
√
Ti,T ). Therefore, adding together all products i ∈

[n], the upper bound of the total regret is Õ(d
√
nT ). When the number of clusters m is
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much smaller than n, the regret Õ(d
√
mT ) of CSMP significantly improves the total regret

obtained by treating each product separately.

Remark 2.3.2 (Lower bound of regret) To obtain a lower bound for the regret of our

problem, we consider a special case of our model in which the decision maker knows

the underlying true clusters Nj . Since this is a special case of our problem (which is

equivalent to single-product pricing for each cluster Nj), the regret lower bound of this

problem applies to ours as well. Theorem 1 in Ban and Keskin (2017) shows that the regret

lower bound for each cluster j has to be at least Ω

(
d
√
T̃j,t

)
. In the case that q̃j = 1/m

for all j ∈ [m], it can be derived that the regret lower bound for all clusters has to be at

least Ω(d
√
mT ). This implies that the regret of the proposed CSMP policy is optimal up to

a logarithmic factor.

Remark 2.3.3 (Improving the regret for large n) When n is large, the first term in our

regret bound O(d2 log2(dT )/mini∈[n] q
2
i ) will also become large. For instance, if qi =

O(1/n) for all i ∈ [n], then this term becomes O(d2n2 log2(dT )). One way to improve the

regret, although it requires prior knowledge of γ, is to conduct more price exploration dur-

ing the early stages. Specifically, if the confidence bound Bi,t−1 of product i is larger than

γ/4, in Step 4, we let the price perturbation ∆i,t be±∆0 to introduce sufficient price varia-

tion (otherwise let ∆t be the same as in the original algorithm CSMP). Following a similar

argument as in Lemma 2.6.4 in the supplement, it roughly takes O(d log(dT )/mini∈[n] qi)

time periods before all Bi,t−1 < γ/4, so the same proof used in Theorem 2.3.1 app-

plies. Therefore, when qi = O(1/n) for all i ∈ [n], the final regret upper bound is

O(dn log(dT ) + d log T
√
mT ).

Remark 2.3.4 (Relaxing the cluster assumption) Our theoretical development assumes

that products within the same cluster have exactly the same parameters θi. This assumption

can be relaxed as follows. Define two products i1, i2 as in the same cluster if they satisfy

||θi1 − θi2||2 ≤ γ0 for some positive constant γ0 with γ0 < γ/2 (as earlier, otherwise they

satisfy ||θi1 − θi2||2 > γ). Our policy in Algorithm 1 can adapt to this case by modifying

Step 2 to

N̂i,t = {i′ ∈ [n] : ||θ̂i′,t−1 − θ̂i,t−1||2 ≤ Bi′,t−1 +Bi,t−1 + γ0},

and we let

∆i,t = ±∆0 max
(
T̂
−1/4

N̂i,t,t
, υ
)
,
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where υ = Θ(γ
1/3
0 ) is a constant. Following almost the same analysis, we can show that

the regret is at most Õ(d
√
mT +γ

2/3
0 T ). We refer the interested reader to Theorem 2.6.1 in

the supplement for a more detailed discussion. The main difference between this regret and

the one obtained in Theorem 2.3.1 is the extra term Õ(γ
2/3
0 T ). It is clear that when γ0 = 0,

we have exactly the same regret as in Theorem 2.3.1. In general, if γ0 is small (e.g., in the

order of T−3/4), then Õ(d
√
mT +γ

2/3
0 T ) can still be a better regret than Õ(d

√
nT ), which

is the typical regret of single-product pricing problems for n products. As a result, the idea

of clustering can be useful even if the parameters within the same cluster are different.

2.4 Pricing Policy for Linear Model

The previous sections developed an adaptive policy for a generalized linear demand model
under a stochastic assumption on the covariates zt. This assumption may be too strong
in some applications. As argued in some of the adversarial bandit literature, some terms
in the reward function may not satisfy any stochastic distribution and can even appear ad-
versarially. In our model, the contextual covariate usually includes such information as
customer rating of the product, competitor’s price of similar products, promotion informa-
tion, and average demand of the product in the past few weeks, etc., which may not follow
any probability distribution.

In this section, we drop the stochastic assumption by focusing on the linear demand
model, which is an important and widely adopted special case of the generalized linear
demand model. With a linear demand function, the expected value in (2.1) with covariates
x′i,t = (1, zi,t)

′ takes the form

µ(α′ixi,t + βipi,t) = α′ixi,t + βipi,t. (2.13)

We point out that (2.13) is interpreted as purchasing probability in the previous section
when each period has a single customer. The linear demand model typically applies when
the demand size in period t is random and given by

di,t(xi,t, pi,t) = α′ixi,t + βipi,t + εi,t,

where εi,t is a zero-mean and sub-Gaussian random variable. Then (2.13) represents the
average demand in period t. While our pricing policy applies to both cases, we focus on
the case that (2.13) represents purchasing probability for the consistency and simplicity of
presentation.
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For the linear demand model, we can relax Assumption A to the following.

Assumption B:

1. There exists some compact interval of negative numbers B, such that βi ∈ B for each
i ∈ [n], and −α′ix/(2βi) ∈ (p, p) for all x ∈ X .

2. For any i ∈ [n] and t ∈ [T ] such that Ti,t ≥ t0, λmin(
∑

s∈Ti,t xsx
′
s) ≥ c0T

κ
i,t for some

constant c0, t0 > 0 and κ ∈ (1/2, 1].

We note that, compared with Assumption A, the first two assumptions in Assumption A
are automatically satisfied for the linear demand model with Assumption B-1. The condi-
tion βi < 0 is natural since βi is the coefficient of the price sensitivity in (2.13). Essentially,
Assumption B-2 relaxes the stochastic assumption on demand covariates in Assumption A-
3 such that covariates can be chosen arbitrarily as long as they have enough “variation”. The
reasons that Assumption B-2 is a relaxation of Assumption A-3 are the following. First,
as mentioned earlier, the covariates may not follow any distribution at all. Second, one
can verify that if Assumption A-3 is satisfied, then Assumption B-2 is also satisfied with
probability at least 1 − ∆ (for any ∆ > 0) given t0 = O(log(dn/∆)), c0 = 1/2, and
κ = 1 (according to the proof in Lemma 2.6.4 in the supplement). Third, in real appli-
cation, Assumption A-3 is difficult to verify, while Assumption B-2 can be verified from
the data by simply observing the historical demand covariates of each product. Finally, we
point out that Assumption B-2 is needed only for identifying clusters of products, so it is
not necessary and can be dropped for the single-product pricing problem.

For linear demand, we are able to separately estimate αi and βi. First, it can be
shown that βi can be estimated accurately using a simple estimation approach below.
Then, αi can be easily estimated using a regularized linear regression (e.g., ridge regres-
sion). To guarantee accurate parameter estimation for αi, classical regression theory re-
quires the minimum eigenvalue of empirical Fisher’s information matrix to be sufficiently
large. With αi estimated separately from βi, its empirical Fisher’s information matrix is
V̄i,t := I+

∑
s∈Ti,t xsx

′
s. This explains why Assumption B-2 on V̄i,t, instead of the stochas-

tic assumption on demand covariates A-3 for the GLM case, is required for the linear
demand model.

To conduct separate parameter estimation, we adopt the idea from Nambiar et al. (2018).
Let

β̂i,t := ProjB

(∑
s∈Ti,t ∆sds∑
s∈Ti,t ∆2

s

)
(2.14)

be the estimated parameter of βi using individual data in Ti,t. We will show that under
certain conditions, β̂i,t is an accurate estimation of βi. To estimate αi, we apply the idea of
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regularization. That is,

α̂i,t = arg min
∑
s∈Ti,t

(ds − α′xs − β̂i,tps)2 + λα||α||22. (2.15)

We notice that when β̂i,t is sufficiently close to βi, α̂i,t is essentially a ridge regression
estimator of αi, whose estimation error is well-studied (see, e.g., Abbasi-Yadkori et al.
2011). To simplify our presentation, in what follows we set the `2 regularization parameter
λα in (2.15) as 1. From our numerical studies, we observe that the performance is not
sensitive to the choice of λα when T is large. Similarly, using clustered data from T̃N̂i,t,t,
we can obtain the estimators β̃N̂i,t,t and α̃N̂i,t,t.

We refer to our algorithm in this section as Clustered Semi-Myopic Pricing for Linear
model (CSMP-L), which is presented in Algorithm 2. The structure of CSMP-L is similar
to CSMP in Algorithm 1. The main difference is that CSMP-L constructs different confi-
dence bounds to determine the neighborhood N̂i,t of product i. In particular, in Step 3 in
Algorithm 2, we define

Ci,t =
√

(C̃β
i,t)

2 + (C̃α
i,t)

2/λmin(V̄i,t), (2.16)

where

C̃β
i,t =c1

√
log t

∑
s∈Ti,t

∆2
s

−1/2

,

C̃α
i,t =c2

√
(d+ 1) log t

∑
s∈Ti,t

∆2
s

−1/2√
Ti,t,

(2.17)

for some constant c1 > 0, c2 > 0. The choice of c1 and c2 will be further discussed in the
numerical experiments section.

The next theorem presents the theoretical performance of the CSMP-L algorithm in
terms of the regret.

Theorem 2.4.1 The expected regret of algorithm CSMP-L is

R(T ) = O

( √
d log T

mini∈[n] q
κ/2
i

)4/(2κ−1)

+ d2
√
mT (log T )3

 . (2.18)

If we hide logarithmic terms and suppose mini∈[n] qi = Θ(1/n) with T � n, the expected
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Algorithm 2 The CSMP-L Algorithm
Require: c1, c2, confidence bound parameters; ∆0, price perturbation parameter;

1: Step 0. Initialization. Initialize Ti,0 = ∅ and V̄i,0 = I for all i ∈ [n]. Let t = 1, go to
Step 1.

2: for t = 1, 2, . . . , T do
3: Step 1. Individual Parametric Estimation. Compute the estimated parameters
θ̂′i,t−1 = (α̂i,t−1, β̂i,t−1) for all i ∈ [n] as

β̂i,t−1 = ProjB

(∑
s∈Ti,t−1

∆sds∑
s∈Ti,t−1

∆2
s

)

and
α̂i,t−1 = arg min

∑
s∈Ti,t−1

(ds − α′xs − β̂i,t−1ps)
2 + ||α||22.

Go to Step 2.
4: Step 2. Estimating Neighborhood. Compute the neighborhood of i as

N̂i,t = {i′ ∈ [n] : ||θ̂i′,t−1 − θ̂i,t−1||2 ≤ Ci′,t−1 + Ci,t−1}

where Ci,t−1 is defined in (2.16) for all i ∈ [n]. Go to Step 3.
5: Step 3. Clustered Parametric Estimation. Compute the estimated parameter
θ̃′N̂i,t,t−1

= (α̃′N̂i,t,t−1
, β̃N̂i,t,t−1) using clustered data

β̃N̂i,t,t−1 = ProjB

∑s∈T̃N̂i,t,t−1
∆sds∑

s∈T̃N̂i,t,t−1
∆2
s


and

α̃N̂i,t,t−1 = arg min
∑

s∈T̃N̂i,t,t−1

(ds − α′xs − β̃N̂i,t,t−1ps)
2 + ||α||22.

for each i ∈ [n]. Go to Step 4.
6: Step 4. Pricing. Compute price for each i ∈ [n] as

p′i,t = arg max
p∈[p,p]

(α̃′N̂i,t,t−1
xi,t + β̃N̂i,t,t−1p)p,

then project to p̃i,t = Proj[p+|∆i,t|,p−|∆i,t|](p
′
i,t) and offer to the customer price pi,t =

p̃i,t + ∆i,t where ∆i,t = ±∆0T̃
−1/4

N̂i,t,t
which takes two signs with equal probability.

7: Then, customer in period t searchers for product it, and makes purchase decision
dit,t(pit,t; zit,t), and update Tit,t = Tit,t−1 ∪ {t} and V̄it,t = V̄it,t−1 + xtx

′
t.

8: end for
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regret is at most Õ(d2
√
mT ).

Compared with Theorem 2.3.1, it is seen that the regret of CSMP-L is slightly worse
than that of CSMP by the dimension d and some logarithmic terms. This is attributed to the
weakened assumption on covariate vectors. However, in contrast to Theorem 2.3.1 where
the regret is taken over the expectation with regard to the stochastic feature zt, t ∈ [T ], the
regret in (2.18) holds for any feature vector, even when the feature vectors zt, t ∈ [T ], are
chosen adversarially.

Remark 2.4.1 Assumption B-2 (for linear model) and Assumption A-3 (for generalized

linear model) require the product features to have sufficient variations. These two assump-

tions are made only for the purpose of identifying product clusters. That is, if the clustering

of products is known a priori, e.g., the single-product dynamic pricing problem, then these

assumptions can be completely dropped (i.e., zt can be chosen completely arbitrarily), and

the results continue to hold. We offer a justification for making this assumption. By our

definition of cluster, we need E[||θ̂i,t − θi||2] ≤ γ to identify the right cluster for product

i. On the other hand, classic statistics theory (e.g., Cramér-Rao lower bound) states that

E[||θ̂i,t − θi||2] ≥ Ω(1/
√
λmin(Vi,t)). Therefore, if the product features do not have suffi-

cient variation, it is essentially not possible to have the estimation error bounded above by

γ to find the right cluster for i.

2.5 Simulation Results and Field Experiments

This section provides the simulation and field experiment results for algorithms CSMP
and CSMP-L. First, we conduct a simulation study using synthetic data in Section 2.5.1
to illustrate the effectiveness and robustness of our algorithms against several benchmark
approaches. Second, the simulation results using a real dataset from Alibaba are provided
in Section 2.5.2. Third, Section 2.5.3 reports the results from a field experiment at Alibaba.
Finally, we summarize all numerical experiment results in Section 2.5.4.

2.5.1 Simulation using synthetic data

In this section, we demonstrate the effectiveness of our algorithms using some synthetic
data simulation. We first show the performance of CSMP and CSMP-L against several
benchmark algorithms. Then, several robustness tests are conducted for CSMP. The first
test is for the case when clustering assumption is violated (i.e., parameters within the same
cluster are slightly different). The second test is when the demand covariates zi,t contain
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some features that change slowly in a deterministic manner. Finally, we test CSMP with a
misspecified demand model.

We shall compare the performance of our algorithms with the following benchmarks:

• The Semi-Myopic Pricing (SMP) algorithm, which treats each product independently
(IND), and we refer to it as SMP-IND.

• The Semi-Myopic Pricing (SMP) algorithm, which treats all products as one (ONE)
single cluster, and we refer to the algorithm as SMP-ONE.

• The Clustered Semi-Myopic Pricing with K-means Clustering (CSMP-KMeans),
which uses K-means clustering for product clustering in Step 2 of CSMP.

The first two benchmarks are natural special cases of our algorithm. Algorithm SMP-
IND skips the clustering step in our algorithm and always sets the neighborhood as N̂t =

{it}; while SMP-ONE keeps N̂t = N for all t ∈ [T ]. The last benchmark is to test the
effectiveness of other classical clustering approach for our setting, in which we choose
K-means clustering as an illustrative example because of its popularity.

Logistic demand with clusters. We first simulate the demand using a logistic func-
tion. We set the time horizon T = 30, 000, the searching probability qi = 1/n for all i ∈ [n]

where n = 100, and the price range p = 0 and p = 10. In this study, it is assumed that
all n = 100 products have m = 10 clusters (with products randomly assigned to clusters).
Within a cluster j, each entry in αj is generated uniformly from [−L/

√
d+ 2, L/

√
d+ 2]

with L = 10, and βj is generated uniformly from [−L/
√
d+ 2, 0) (to guarantee that

||θi||2 ≤ L). For demand covariates, each feature in zi,t, with dimension d = 5, is gener-
ated independently and uniformly from [−1/

√
d, 1/
√
d] (to guarantee that ||zi,t||2 ≤ 1).

For the parameters in the algorithms, we let ∆0 = 1; and for the confidence bound
Bi,t =

√
c(d+ 2) log(1 + t)/λmin(Vi,t), we first let c = 0.8 and then test other values

of c for sensitivity analysis. For the benchmark CSMP-KMeans, we need to specify the
number of clusters K; since the true number of clusters m is not known a priori, we test
different values of K in {5, 10, 20, 30}. Note that when K = 10, the performance of
CSMP-KMeans can be considered as an oracle since it correctly specifies the true number
of product clusters.

To evaluate the performance of algorithms, we adopt both the cumulative regret in (2.4)
and the percentage revenue loss defined by

Lπ(T ) =
Rπ(T )∑T

t=1 E[rt(p∗t )]
, (2.19)
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which measures the percentage of revenue loss with respect to the optimal revenue. Obvi-
ously, the percentage revenue loss and cumulative regret are equivalent, and a better policy
leads to a smaller regret and a smaller percentage revenue loss.

For each experiment, we conduct 30 independent runs and take their average as the
output. We also output the standard deviation of percentage revenue loss for all policies in
Table 2.1. It can be seen that our policy CSMP has quite small standard deviation, so we
will neglect standard deviation results in other experiments.

We recognize that a more appropriate measure for evaluating an algorithm is the regret
(and percentage of loss) of expected total profit (instead of expected total revenue). We
choose the latter for the following reasons. First, it is consistent with the objective of this
chapter, which is the choice of the existing literature. Second, it is revenue, not profit, that
is being evaluated at our industry partner, Alibaba. Third, even if we wish to measure it
using profit, the cost data of products are not available to us, since the true costs depend on
such critical things as terms of contracts with suppliers, that are confidential information.

(a) Plot of percentage revenue loss (b) Plot of cumulative regret

Figure 2.2: Performance of different policies for logistic demand with 10 clusters.

The results are shown in Figure 2.2. The graph on the left-hand side shows the per-
centage revenue loss of all algorithms, and the graph on the right-hand side shows the cu-
mulative regrets for each algorithm. The black solid line represents CSMP, the red dashed
line represents SMP-IND, the blue dash-dotted line represents SMP-ONE, the green dotted
line represents CSMP-KMeans with K = 5, the cyan solid line with round marks repre-
sents CSMP-KMeans with K = 10, the purple solid line with triangle marks represents
CSMP-KMeans with K = 20, and the yellow solid line with square marks represents
CSMP-KMeans with K = 30. According to this figure, our algorithm CSMP outperforms
all the benchmarks except for CSMP-KMeans when K = m = 10. CSMP-KMeans with
K = 10 has the best performance, which is not surprising because it uses the exact and
correct number of clusters. However, in reality the true cluster numberm is not known. We
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t = 5, 000 t = 10, 000 t = 15, 000 t = 20, 000 t = 25, 000 t = 30, 000
CSMP 1.83 0.97 0.70 0.57 0.47 0.40
SMP-IND 1.32 0.88 0.92 0.81 0.78 0.73
SMP-ONE 2.34 2.15 1.75 1.44 1.46 1.44
CSMP-KMeans:K = 5 2.08 1.97 1.95 2.26 2.22 2.19
CSMP-KMeans:K = 10 2.06 1.53 1.09 0.87 0.74 0.66
CSMP-KMeans:K = 20 2.12 1.36 1.15 1.02 0.91 0.82
CSMP-KMeans:K = 30 1.41 0.88 0.77 0.67 0.59 0.49

Table 2.1: Standard deviation (%) of percentage revenue loss corresponding to different
time periods for logistic demand with 10 clusters.

c = 0.5 c = 0.6 c = 0.7 c = 0.8 c = 0.9 c = 1.0
Mean 8.56 8.28 8.52 8.27 8.56 8.72
Standard deviation 0.73 0.51 0.73 0.40 0.66 0.35

Table 2.2: Mean and standard deviation (%) of percentage revenue loss of CSMP (logistic
demand with 10 clusters) with different parameters c.

also test CSMP-KMeans with K = 5, 20, 30. We find that when K = 20, its performance
is similar to (slightly worse than) our algorithm CSMP. When K = 5, 30, the performance
of CSMP-KMeans becomes much worse (especially when K = 5). For the other two
benchmarks SMP-ONE and SMP-IND, their performances are not satisfactory either, with
SMP-ONE has the worst performance because clustering all products together leads to sig-
nificant error. Sensivitiy results of CSMP with different parameters c are presented in Table
2.2, and it can be seen that CSMP is quite robust with different values of c.

Linear demand with clusters. Now we present the results of CSMP and CSMP-
L with linear demand function. For synthetic data, zi,t is generated the same way as
in the logistic demand case but with L = 1 (in order for the purchasing probability to
be within [0, 1]), and n,m, T, qi, d,∆0 and price ranges are also kept the same. For de-
mand parameters, αj,k ∈ [0, L/

√
d+ 2] for each entry k corresponding to context zt,

αj,k ∈ [L/
√
d+ 2, 2L/

√
d+ 2] for k corresponding to the intercept, and the price sensitiv-

ity βj ∈ [−1.05L/
√
d+ 2,−0.05L/

√
d+ 2]. The reason for this construction of data is to

guarantee that the linear purchasing probabilities are mostly within [0, 1]. Besides CSMP
(with c = 0.01), this experiment also tests the algorithm CSMP-L. For input parameters of
CSMP-L, the confidence bound Ci,t is set to√√√√√c

log t/
∑
s∈Ti,t

∆2
s + 0.05(d+ 1) log2 tTi,t/(λmin(V̄i,t)

∑
s∈Ti,t

∆2
s)

,
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with c = 0.04. The results are summarized in Figure 2.3 (the grey solid line with X marks
represents CSMP-L). It can be seen that our algorithm CSMP has the best performance,
even exceeding CSMP-KMeans with K = 10. The reason might be that since L = 1

(instead of L = 10 for the logistic demand case), the parameters are closer to each other,
hence it becomes more difficult to be clearly separated by K-means method. For algorithm
CSMP-L, its numerical performance is slightly worse than CSMP, but still performs better
than benchmarks SMP-IND and SMP-ONE.

Since logistic demand is more commonly used to model probability, in the following
robustness check of CSMP, we only test logistic demand as an illustration.

(a) Plot of percentage revenue loss (b) Plot of cumulative regret

Figure 2.3: Performance of different policies for linear demand with 10 clusters.

Logistic demand with relaxed clusters. As we discussed in Section 2.3.2, strict clus-
tering assumption might not hold and sometimes products within the same cluster are
slightly different. This experiment tests the robustness of CSMP when parameters of prod-
ucts in the same cluster are slightly different. To this end, after we generate the m = 10

centers of parameters (with each center represented by θj), for each product i in the cluster
j, we let θi = θj + ∆θi where ∆θi is a random vector such that each entry is uniformly
drawn from [−L/(10

√
d+ 2), L/(10

√
d+ 2)]. All the other parameters are the same as in

the case with 10 clusters. Results are summarized in Figure 2.4, and it can be seen that the
performances of all algorithms are quite similar as in Figure 2.2.

Logistic demand with almost static features. As we discussed after Assumption A-
3, in some applications there might be features that have little variations (nearly static).
We next test the robustness of our algorithm CSMP when the feature variations are small.
To this end, we assume that one feature in zi,t ∈ Rd for each i ∈ [n] is almost static.
More specifically, we let this feature be constantly 1/

√
d for 100 periods, then change

to −1/
√
d for another 100 periods, then switch back to 1/

√
d after 100 periods, and this
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(a) Plot of percentage revenue loss (b) Plot of cumulative regret

Figure 2.4: Performance of different policies for logistic demand with relaxed clusters.

process continues. The numerical results against benchmarks are summarized in Figure
2.5. It can be seen that with such an almost static feature, the performances of algorithms
with clustering become worse, but they still outperform the benchmark algorithms. In
particular, CSMP (with parameter c = 0.1 after a few trials of tuning) still has promising
performance, showing its robustness with small feature variations of some products.

(a) Plot of percentage revenue loss (b) Plot of cumulative regret

Figure 2.5: Performance of different policies for logistic demand with 10 clusters and
almost static features.

Logistic demand with model misspecification. In real applications, it may hap-
pen that the demand model is misspecified. In this experiment, we consider a misspec-
ified logistic demand model. Specifically, we let the expected demand of product i be
1/(1 + exp(fi(zt, pt))), where the utility function

fi(zt, pt) := ci,0 +
d∑

k=1

c1,i,kzt,k +
d∑

k=1

c2,i,kz
2
t,k +

d∑
k=1

c3,i,kz
3
t,k + β1,ipt + β2

2,ip
2
t + β3,ip

3
t
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is a third degree polynomial of zt, pt, where ci, βi are unknown parameters, and zt,k rep-
resents te k-th component of zt. To generate this misspecified demand model, we let cl,i,k ∈
[−L/

√
3(d+ 2), L/

√
3(d+ 2)] with l ∈ {1, 2, 3}, k ∈ [d], ci,0 ∈ [−L/

√
d+ 2, L/

√
d+ 2],

and βl,i ∈ [−L/
√

3(d+ 2), 0) with l ∈ {1, 2, 3}, be all drawn uniformly. All the other in-
put parameters for the problem instance are the same as in the case of logistic demand with
10 clusters.

To test the robustness of the misspecified CSMP, it is compared with CSMP which
correctly specifies the demand model. We call the benchmark the CSMP-Oracle. The nu-
merical results are summarized in Figure 2.6. As seen, when compared with the oracle, the
misspecified CSMP has slightly worse performance as expected. But the overall difference
in percentage revenue loss is only 3.48%, showing that our algorithm CSMP is rather robust
with such a model misspecification.

(a) Plot of percentage revenue loss (b) Plot of cumulative regret

Figure 2.6: Performance of CSMP with (misspecified) logistic demand versus the oracle.

2.5.2 Simulation using real data from Alibaba

This section presents the results of our algorithms (for illustration, we use CSMP with lo-
gistic demand) and other benchmarks using a real dataset provided by Alibaba. To better
simulate the real demand process, we fit the demand data to create a sophisticated ground
truth model (hence our algorithm CSMP may have a model misspecification). Before pre-
senting the results, we introduce the dataset and pre-processing of the data.

The dataset. The dataset is from Tmall Supermarket, which is an online store owned
by Alibaba. To motivate our study of pricing for low-sale products, we extract sales data
from 05/29/2018 to 07/28/2018. During this period, nearly 75,000 products were offered
by Tmall Supermarket. There are more than 21.6% (i.e., 16,000) products with average
numbers of daily unique visits less than 10. Among all these low-sale products, Alibaba
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provided us with a test dataset comprising 100 products that have at least one sale during
the 61-day period, and at least two prices charged with each price offered to more than
10% of all customers. Because these selected products have sufficient variation of prices
and different observations of customers’ purchases, demand parameters can be estimated
quite accurately using the sales data in the dataset.

For the features of products, we are provided by Alibaba with 5 features (hence d = 5),
that are described below:

• Average gross merchandise volume (GMV, i.e., product revenue) in past 30 days.

• Average demand in past 30 days.

• Average number of unique buyers (UB, i.e., unique IP which makes the purchase) in
past 30 days.

• Average number of unique visitors (UV) in past 30 days.

• Average number of independent product views (IPV, i.e., total number of views on
the product, including repetitive views from the same user) in past 30 days.

These features are selected by Alibaba’s feature engineering team2 (via a recursive fea-
ture elimination approach from a raw set of features). Note that these features are not
exogeneous, since features in the future can be affected by current pricing decision. Such
endogenous features are often used in the demand forecasting literature. For instance, a
time series model uses past demand to predict future demand (see e.g., Brown 1959); an ar-
tificial neural network (ANN) model uses historical demand data of composite products as
features for demand prediction (Chang et al. 2005). In the pricing literature, some endoge-
nous features have also been used. For example, in Ban and Keskin (2017), Bastani et al.
(2019), their model features include auto loan data, e.g., competitors’ rate, that are affected
by the rate offered by the decision maker (the auto loan company). Incorporating the im-
pact of pricing decisions on features leads to challenging dynamic programming problem
with partial information. Hence, features are considered as given and we only optimize for
current period (i.e., ignoring the long-run effect of the current pricing decision).

To run simulation using the real dataset, we first create a ground truth model for the
demand. We consider two ground truth models in this simulation study. The first one
is the commonly used logistic demand function (hence no model misspecification for our

2We requested to include some other features, such as number/score of customer ratings and competi-
tor’s price on similar product, but were unable to obtain such data due to technical reasons during the field
experiment.
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algorithm CSMP), and the second is a random forest model (as used in simulation study of
Nambiar et al. 2018, hence there is model misspecification for CSMP). We use the demand
data of each product to fit these two demand models, and then apply them to simulate the
demand process.

We want to generate customer’s arrival at each time t, i.e., the product it a customer
chooses to search. Since the dataset contains the daily number of unique visitors for each
product i, the arrival process it is simulated by randomly permuting the unique visitors of
each product on each day. For instance, if on day 1, product 1 and product 2 have 2 and 3

unique visitors respectively; then it for t = 1, . . . , 5 can be 1, 2, 2, 1, 2, which is a random
permutation of the unique visitors for product 1 and 2.

Numerical results for the algorithms. We first provide the specifications of the
parameters in the CSMP algorithm in Algorithm 1.

• The confidence bound Bi,t is
√
c(d+ 2) log(1 + t)/λmin(Vi,t), where c = 0.01 for

logistic demand and c = 0.05 for random forest demand (selected by a few trials of
different values).

• The price lower bound of each product is 50% lower than its lowest price during the
61-day period, and the price upper bound is 50% higher than its highest price during
this period of time.

• The basic price perturbation parameter ∆0 of each product is set as the length of price
range divided by 4, i.e., ∆0 = (p− p)/4.

For benchmark algorithms, they are the same as those in the previous subsection, with
CSMP-KMeans have K ∈ {5, 10, 20, 30}. In addition, we test another benchmark pro-
posed in Keskin and Zeevi (2016). More specifically, this benchmark assumes a simple
linear demand model as E[di,t] = αi,t + β′i,tpi,t with changing parameters αi,t, βi,t but with-
out demand covariates. Since this single-product pricing algorithm can be considered as
a modified version of semi-myopic pricing, we call it semi-myopic pricing (SMP) with
changing parameters (CP), or SMP-CP for short. We plot the results of cumulative revenue
at different dates in Figure 2.7.

It can be seen that all the methods using clustering have better performance, and their
performances are comparable. It is interesting to note that for clustering using K-means
method, their performances with different value of K are actually quite close. Finally, it is
observed that the advantage of using clustering with random forest model (i.e., misspecified
model) is more than that with logistic model.
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(a) Logistic demand model (without model misspecification)

(b) Random forest demand model (with model misspecification)

Figure 2.7: Plot of cumulative revenue over different dates for two demand models

2.5.3 Field experiment results from Alibaba

We have collaborated with Alibaba Group to implement our algorithm CSMP to a set of
products on Tmall Supermarket, and we report some of the findings in this subsection. Due
to the privacy policy of Alibaba, some details of the field experiment are not provided.

To conduct the experiment, we randomly selected 390 low-sale products from several
categories for our study. Then, 40 products were chosen randomly from them as the testing
group and CSMP algorithm were implemented for their pricing decisions, and the rest
were used as the control group that continued to use the original pricing policy at Alibaba.
Purchasing probability is assumed to be a logistic function, and we use the same input
parameters as in Section 2.5.2. We note two implementation details. First, according to
the requirement from Alibaba, the price lower and upper bounds of each product are the
minimum and maximum price of that product from the previous 30 days, respectively.
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Second, following the company’s policy, we can only change the price once a day for each
product (instead of changing the price for every customer).

We collect the testing data from 01/02/2019 to 01/31/2019 (a total of 30 days). To better
present the results, let g ∈ {0, 1} denote the index of groups such that g = 0 represents the
control group, and g = 1 represents the testing group. Then we calculate the average rev-
enue rg,t per customer in day t for products in group g. The average revenue per customer
is defined as the ratio between the collected revenue and the total number of unique visitors
(including those who did not make a purchase) for group g in day t. Due to the data pri-
vacy policy of Alibaba, we will not be able to present the raw data of rg,t. Instead, we will
compute the percentage change in average revenue per customer, rg,t, compared with the
average revenue per customer of group g during the previous month r̄g. More specifically,
we define

∆rg,t :=
rg,t − r̄g
r̄g

, g = 0, 1.

To take away possible seasonal effects, our comparison will be between ∆r1,t and ∆r0,t.
The results are presented in Figure 2.8.

Figure 2.8: Comparison of ∆rg,t between groups g = 0, 1 every day

As noted in the field experiment results in Figure 2.8, the percentage of increase of the
average revenue per customer in the testing group is higher than that of the control group in
26 of the 30 days tested. By calculating the overall average revenue per customer for each
group, we find that the average revenue per customer for the testing group is increased
by 10.14% compared with the previous month, while in the control group, the average
revenue per customer is increased by 4.39% compared with the previous month. Data
further shows that our pricing policy helps to achieve this revenue increase by attracting
more demand. Specifically, during the period of testing time, the purchasing probability
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01/02/19-01/31/19
Revenue Demand

Testing group 10.14% 14.85%
Control group 4.39% −0.05%

Table 2.3: Overall performance of two groups in the testing period. “Revenue” represents
percentage change of average revenue, and “Demand” represents percentage change of
purchasing probability.

of each customer is increased by 14.85% for the testing group, compared with −0.05%

increase for the control group (see Table 2.3 for the summary). These results illustrate the
effectiveness of our CSMP policy in boosting the revenue as compared with the current
pricing policy of Alibaba.

2.5.4 Summary of numerical experiments

In this section we first present the simulation results using synthetic data under various
scenarios to test the effectiveness and robustness of our algorithms, then we present the
simulation results with real data from Alibaba using a more sophisticated ground truth
demand model (for a more realistic simulation and robustness test under model misspeci-
fication). Finally we report the results from a field experiment conducted at Alibaba. The
main findings from the numerical study are summarized as follows.

• In all the numerical results, pricing with clustering (either using our method in CSMP
or classicalK-means clustering with appropriate choice ofK) outperforms the bench-
marks of applying single-product pricing algorithm on each product or naively putting
all products into a single cluster.

• Dynamic pricing with K-means clustering method sometimes works as effectively
as (and at times even better than) our algorithm CSMP/CSMP-L. But its performance
depends on the choice of the number of clustersK, which is unknown to the decision
maker.

• The CSMP algorithm is quite robust under different scenarios: slightly different de-
mand parameters within the same cluster, near static or slowly changing features, and
misspecified ground truth demand model.

• The CSMP algorithm (with logistic demand function) showed satisfactory perfor-
mance in the field experiment at Tmall Supermarket. Compared with products in the
control group that used the business-as-usual pricing policy of Alibaba, the CSMP
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algorithm significantly boosted the revenue of the testing products, demonstrating
the effectiveness of the algorithm.

2.6 Proofs of Technical Results

In this section, we present all the missing proofs earlier in this chapter. We also prove the
result discussed in Remark 2.3.4 of Section 2.3 for a more general definition of clusters.

2.6.1 Proof of Theorem 2.3.1

First of all, we define q̃j :=
∑

i∈Nj qi as the probability that a customer views a product
from cluster j. Then, define the events

EN,t :={N̂t = Nit},

EBj ,t :={||θ̃j,t − θj||2 ≤ B̃j,t},

EV,t :=

λmin

 ∑
s∈T̃jt,t

usu
′
s

 ≥ λ1∆2
0

√
q̃jtt

8

 ,

where λ1 = min(1, λ0)/(1 + p2) and θ̃j,t is the estimated parameters using data from T̃j,t,
and

B̃j,t =:

√
c(d+ 2) log(1 + t))√

λmin(Ṽj,t)

for some constant c ≥ 20/l21 and Ṽj,t = I +
∑

s∈T̃j,t usu
′
s. These events hold at least with

the following probabilities

P(EN,t) ≥1− 2n

t2
for t > t̄,

P(EBj ,t) ≥1− 1

t
for any j ∈ [m], t ∈ T ,

P(EV,t) ≥1− 7n

t
for t > 2t̄,

where t̄ is defined in (2.32). The first inequality is from our analysis after Lemma 2.6.5; the
second inequality is from Corollary 2.6.1; the third inequality is from Lemma 2.6.6. We
further define EB,t =

⋃
j∈[m] EBj ,t, then it holds with probability at least 1 − m/t for any

t ∈ T . Now we define the event Et as the union of EN,t, EB,t, and EV,t. This event holds
with probability at least 1− 10n/t obviously according to the probability of each event.
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We split the regret by considering t ≤ 2t̄ and t > 2t̄, i.e.,

T∑
t=1

E[rt(p
∗
t )− rt(pt)] =

∑
t≤2t̄

E[rt(p
∗
t )− rt(pt)] +

∑
t>2t̄

E[rt(p
∗
t )− rt(pt)].

Obviously, the regret of the first summation can be bounded above by 2pt̄. We focus on the
second summation. For arbitrary t > 2t̄,

E[rt(p
∗
t )− rt(pt)] =E[(rt(p

∗
t )− rt(pt))111(Et)] + E[(rt(p

∗
t )− rt(pt))111(Ēt)]

≤E[(p∗tµ(α′itxt + βitp
∗
t )− ptµ(α′itxt + βitpt))111(Et)] +

10pn

t

=E[(|2βitµ̇(α′itxt + βit p̄t) + β2
it p̄tµ̈(α′itxt + βit p̄t)|(p∗t − pt)2)111(Et)]

+
10pn

t

≤E[(L̃2(p∗t − p̃t −∆t)
2)111(Et)] +

10pn

t

≤2L̃2L
2
0E[||θ̃N̂t,t−1 − θit||

2
2111(Et)] + 4L̃2E[∆2

t111(Et)] +
10pn

t

=2L̃2L
2
0E[||θ̃jt,t−1 − θjt ||22111(Et)] + 4L̃2E[∆2

t111(Et)] +
10pn

t

≤2L̃2L
2
0E[B̃2

jt,t−1111(Et)] + 4L̃2E[∆2
t111(Et)] +

10pn

t
,

where the first inequality is from the probability of Ēt, the second equality is by applying
Taylor’s theorem (where p̄t is some price between p∗t and pt) with Assumption A-1 and
Assumption A-2, the second inequality is from Assumption A-2 and L̃2 is some constant
depending on L,L1, L2, p, and both the last equality and the last inequality are from the
definition of Et (i.e., events EN,t and EB,t). Therefore, we have

E[rt(p
∗
t )− rt(pt)] ≤ 2L̃2L

2
0E[B̃2

jt,t−1111(Et)] + 4L̃2E[∆2
t111(Et)] +

10pn

t
. (2.20)

Summing over t, the sum of the last terms above obviously lead to the regret O(n log T ).
For the rest, we have

∑
t>2t̄

E[B̃2
jt,t−1111(Et)] ≤

k2d log T

∆2
0

∑
t>2t̄

E

[
1√
q̃jtt

]
=
k2d log T

∆2
0

∑
t>2t̄

∑
j∈[m]

√
q̃j
t

≤ k2d log T

∆2
0

∑
j∈[m]

√
q̃jT ≤

k2d log T

∆2
0

√
mT

for some constant k2, where the first inequality is from Et (i.e., EV,t) and the definition of
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B̃2
jt,t, the equality is by conditioning on jt = j for all j ∈ [m], and the last inequality is

because
∑

j q̃j = 1 and apply Cauchy-Schwarz. Hence

∑
t>2t̄

E[B̃2
jt,t−1111(Et)] ≤

k2d log T

∆2
0

√
mT. (2.21)

On the other hand, because N̂t = Nit for all t > 2t̄ on Et,

∑
t>2t̄

E[∆2
t111(Et)] ≤

∑
j∈[m]

E

∑
t∈T̃j,T

∆2
0√
T̃j,t

 ≤ ∆2
0

∑
j∈[m]

E

[√
T̃j,T

]
≤ ∆2

0

√
mT. (2.22)

Putting (2.20), (2.21), and (2.22) together, we have∑
t>2t̄

E[(rt(p
∗
t )− rt(pt))] ≤ c5d log(T )

√
mT + c5n log T

for some constant c5, and together with the regret for t < 2t̄, we are done with the regret
upper bound.

In the rest of this subsection, we prove the lemmas used in the proof of Theorem 2.3.1.

Lemma 2.6.1 For each j ∈ [m] and t ∈ T , with probability at least 1 −∆, T̃j,t ∈ [q̃jt −
D̃(t), q̃jt+ D̃(t)] for all j ∈ [m], t ∈ T , where D̃(t) =

√
t log(2/∆).

Proof: Obviously T̃j,t is a binomial random variable with parameter t and q̃j . Then we
simply use Hoeffding inequality applied on sequence of i.i.d. Bernoulli random variable
and a simple union bound on all j ∈ [m] and t ∈ T . �

Lemma 2.6.2 For any i ∈ [n] and t ∈ T , let Vi,t = I +
∑

s∈Ti,t usu
′
s, we have that

||θ̂i,t − θi||Vi,t ≤
2
√

(d+ 2) log(1 + Ti,tR2/(d+ 2)) + 2 log(1/∆) + 2l1L

l1

with probability at least 1−∆.

Proof: We first fix some i ∈ [n], and we drop the index dependency on i for convenience
of notation. At round s, the gradient of likelihood function∇ls(φ) is equal to

∇ls(φ) = (µ(u′sφ)− ds)us. (2.23)
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And its Hessian is

∇2ls(φ) =µ̇(u′sφ)usu
′
s. (2.24)

Applying Taylor’s theorem, we obtain

0 ≥
∑
s

ls(θ̂t)− ls(θ)

=
∑
s

∇ls(θ)′(θ̂t − θ) +
1

2

∑
s

µ̇(u′sθ̄t)(u
′
s(θ̂t − θ))2 +

l1
2
||θ̂t − θ||22 −

l1
2
||θ̂t − θ||22,

(2.25)

where the first inequality is from the optimality of θ̂t, and θt is a point on line segment
between θ̂t and θ. Note that by our assumption and boundedness of us and θ, we have
µ̇(u′sθ̄t) ≥ l1. Therefore, we have∑

s

µ̇(u′sθ̄t)(u
′
s(θ̂t − θ))2 + l1||θ̂t − θ||22 ≥ l1||θ̂t − θ||2Vt , (2.26)

where Vt = I +
∑

s usu
′
s. On the other hand, we have

∇ls(θi) =− εsus, (2.27)

where εs is the zero-mean error, which is obviously sub-Gaussian with parameter 1 as it is
bounded.

Now combining (2.25), (2.26), and (2.27), we have

l1
2
||θ̂t − θ||2Vt ≤

∑
s

εsu
′
s(θ̂t − θ) + 2l1L

2 ≤ ||θ̂t − θ||Vt ||Zt||V −1
t

+ 2l1L
2, (2.28)

where Zt :=
∑

s εsus, and the second inequality is from Cauchy-Schwarz and ||θ̂t− θ||2 ≤
2L. This leads to ||θ̂t − θ||Vt ≤ 2

l1
||Zt||V −1

t
+ 2L.

To bound ||Zt||V −1
t

, according to Theorem 1 in Abbasi-Yadkori et al. (2011), we have

||Zt||V −1
t
≤
√

(d+ 2) log(1 +
Ti,tR2

d+ 2
) + 2 log(1/∆)

with probability at least 1−∆ and we are done. �
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Corollary 2.6.1 For any j ∈ [m] and t ∈ T , let Ṽj,t := I +
∑

s∈T̃j,t usu
′
s, we have that

||θ̃j,t − θj||Ṽj,t ≤
2
√

(d+ 2) log(1 + T̃j,tR2/(d+ 2)) + 2 log(1/∆) + 2l1L

l1

with probability at least 1−∆.

Next result is the minimum eigenvalue of the Fisher’s information matrix.

Lemma 2.6.3 Let u′t = (x′t, p̃t+∆t) where ∆t is a zero mean error with variance satisfying

E[∆2
t |Ft−1] = ωt > 0, we must have λmin(E[utu

′
t|Ft−1]) ≥ ωt min [1, λ0] /(1 + p2) > 0.

So we can set λmin(E[utu
′
t|Ft−1]) ≥ λ1ωt for some constant λ1 = min [1, λ0] /(1 + p2).

Proof: Note that the Fisher’s information matrix can be written as

E[utu
′
t|Ft−1] =

 1 0 p̃t

0 Σz 0

p̃t 0 p̃2
t + µt


which is a submatrix of the matrix

M :=


1 0 p̃t 0

0 Σz 0 p̃tΣz

p̃t 0 p̃2
t + ωt 0

0 p̃tΣz 0 (p̃2
t + ωt)Σz

 = Mp ⊗Mz

where

Mp =

[
1 p̃t

p̃t p̃2
t + ωt

]
, Mz =

[
1 0

0 Σz

]
,

and ⊗ is the Kronecker product.
To derive the minimum eigenvalue of Mp, note that it is just a 2 × 2 matrix so we can

easily compute that

λmin(Mp) =
(p̃2
t + ωt + 1)(1−

√
1− 4ωt/(p̃2

t + ωt + 1)2)

2
≥ ωt
p̃2
t + ωt + 1

≥ ωt
1 + p2 .

For Mz, let y′ = (y1, y
′
2) ∈ Rd+1 where y1 ∈ R and y2 ∈ Rd, then

y′Mzy =y2
1 + y′2Σzy2 ≥ y2

1 + λ0||y2||22 ≥ min [1, λ0] ||y||22.
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Therefore, λmin(Mz) ≥ min [1, λ0] > 0.
According to Theorem 4.2.12 in Horn et al. (1990), we have

λmin(M) = λmin(Mp)λmin(Mz) ≥
ωt

1 + p2 min [1, λ0] .

Then we obtain the result as E[utu
′
t] is the submatrix of M . �

We apply a matrix concentration inequality result and obtain the minimum eigenvalue
of the empirical Fisher’s information matrix.

Lemma 2.6.4 For any i ∈ [n] and

t >

(
8R log((d+ 2)T )

λ1∆2
0 mini∈[n] qi

)2

,

where R := 2 + p̄2, we have

P

(
λmin

( ∑
s∈Ti,t

usu
′
s

)
<
λ1∆2

0qi
√
t

2

)
<

1

t2
.

Proof: Note that λmax(usu
′
s) = ||us||22 ≤ R = 2 + p2. We find that

∑
s∈Ti,t

usu
′
s =

t∑
s=1

1(is = i)usu
′
s,

and, by Lemma 2.6.3,

λmin(E[1(is = i)usu
′
s|Fs−1]) = qiλmin(E[usu

′
s|Fs−1]) ≥ λ1qiωs.

Therefore,

λmin

(
t∑

s=1

E[1(is = i)usu
′
s|Fs−1]

)
≥

t∑
s=1

λmin (E[1(is = i)usu
′
s|Fs−1])

≥qiλ1

t∑
s=1

ωs ≥ qiλ1∆2
0

t√
t
≥ qiλ1∆2

0

√
t.
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As a result, we have that

P

λmin(
∑
s∈Ti,t

usu
′
s) <

λ1∆2
0qi
√
t

2


=P

λmin(
∑
s∈Ti,t

usu
′
s) <

λ1∆2
0qi
√
t

2
,

t∑
s=1

λmin (E[1(is = i)usu
′
s|Fs−1]) ≥ λ1∆2

0qi
√
t


≤P

λmin(
∑
s∈Ti,t

usu
′
s) <

λ1∆2
0qi
√
t

2
, λmin

(
t∑

s=1

E[1(is = i)usu
′
s|Fs−1]

)
≥ λ1∆2

0qi
√
t


≤(d+ 2)e−

λ1∆2
0qi
√
t

4R ,

where the last inequality is from Theorem 3.1 in Tropp (2011) with ζ = 1/2.
So for any i ∈ [n] and

t >

(
8R log(T (d+ 2))

λ1∆2
0 mini∈[n] qi

)2

,

we have the simple union bound over i ∈ [n], t ∈ T , (d + 2) exp(−λ1∆2
0qi
√
t/(4R)) <

1/t2, and the proof is complete. �

Clearly, if we combine Lemma 2.6.4 and Lemma 2.6.2, for any i ∈ [n], t > t̄1 where

t̄1 =

(
8R log(T (d+ 2))

λ1∆2
0 mini∈[n] qi

)2

, (2.29)

we have that

||θ̂i,t − θi||2 ≤
2
√

(d+ 2) log(1 + tR2/(d+ 2)) + 2 log t2 + 2l1L

l1
√
λmin(Vi,t)

(2.30)

≤
√
c(d+ 2) log(1 + t)√

λmin(Vi,t)
= Bi,t

for some constant c > 20/l21, and

Bi,t ≤
√

2c(d+ 2) log(1 + t)

∆0

√
λ1qi
√
t

(2.31)

with probability at least 1− 2/t2.
The next lemma states that when estimation errors are bounded, under certain condi-

tions we have N̂t = Nit .
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Lemma 2.6.5 Suppose for all i ∈ [n] it holds that ||θ̂i,t−1−θi||2 ≤ Bi,t−1 andBi,t−1 < γ/4.

Then

N̂t = Nit .

Proof: First of all, for i1, i2 ∈ [n], if they belong to different clusters and Bi1,t−1 +

Bi2,t−1 < γ/2, we must have ||θ̂i1,t−1 − θ̂i2,t−1||2 > Bi1,t−1 +Bi2,t−1 because

γ ≤||θi1 − θi2||2 ≤ ||θi1 − θ̂i1,t−1||2 + ||θ̂i1,t−1 − θ̂i2,t−1||2 + ||θ̂i2,t−1 − θi2||2
≤Bi1,t−1 + ||θ̂i1,t−1 − θ̂i2,t−1||2 +Bi2,t−1 < γ/2 + ||θ̂i1,t−1 − θ̂i2,t−1||2,

which implies that ||θ̂i1,t−1 − θ̂i2,t−1||2 > γ/2 > Bi1,t−1 +Bi2,t−1.
On the other hand, if ||θ̂i1,t−1− θ̂i2,t−1||2 > Bi1,t−1 +Bi2,t−1, we must have i1, i2 belongs

to different clusters because

Bi1,t−1 +Bi2,t−1 <||θ̂i1,t−1 − θ̂i2,t−1||2
≤||θi1 − θ̂i1,t−1||2 + ||θ̂i1,t−1 − θ̂i2,t−1||2 + ||θ̂i2,t−1 − θi2||2
≤Bi1,t−1 + ||θ̂i1,t−1 − θ̂i2,t−1||2 +Bi2,t−1,

which implies ||θ̂i1,t−1 − θ̂i2,t−1||2 > 0, i.e., they belong to different clusters.
Therefore, if i ∈ N̂t, i.e., ||θ̂it,t−1 − θ̂i,t−1|| ≤ Bit,t−1 + Bi,t−1, we must have that

i ∈ Nit as well or Bit,t−1 + Bi,t−1 ≥ γ/2 (which is impossible by our assumption that
Bi,t−1 < γ/4).

On the other hand, if i ∈ Nit , then we must have ||θ̂it,t−1 − θ̂i,t−1|| ≤ Bit,t−1 + Bi,t−1,
which implies that i ∈ N̂t as well.

Above all, we have shown that N̂it = Nit . �

Note that given (2.30) and (2.31), we have that Bi,t−1 < γ/4 for all i if

t > 1 +
k1((d+ 2) log(1 + T ))2

γ4λ2
1∆4

0 mini∈[n] q2
i

for some constant k1. Therefore, for each t > t̄ where

t̄ = max

{
4t̄1, 1 +

k1((d+ 2) log(1 + T ))2

γ4λ2
1∆4

0 mini∈[n] q
2
i

}
, (2.32)

and t̄1 is defined in (2.29), N̂t = Nit with probability at least 1− 2n/t2.
The next lemma shows that the clustered estimation will be quite accurate when most

of the N̂t is actually equal to Nit .
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Lemma 2.6.6 For any t such that t > 2t̄, we have

P

λmin

 ∑
s∈T̃jt,t

usu
′
s

 <
λ1∆2

0

√
q̃jtt

8

 <
7n

t
,

where t̄ is defined in (2.32).

Proof: The proof is analogous to Lemma 2.6.4. Let EN,t be the event such that N̂t = Nit ,
and Ẽj,t be the event such that T̃j,t ≤ 3q̃jt/2. From our previous analysis, we know that
given t > t̄, EN,t holds with probability at least 1−2n/t2. Also, according to Lemma 2.6.1,
event Ẽj,t holds with probability at least 1− 1/t2 given t ≥ 8 log(2T )/minj∈[m] q̃

2
j (which

is satisfied by taking t > t̄).
On event Ẽj,t and EN,s for all s ∈ [t/2, t] (which holds with probability at least 1−6n/t),

we have

λmin(E[1(js = j)usu
′
s|Fs−1]) ≥ λ1q̃jωs = λ1∆2

0q̃j(T̃j,s)
−1/2 ≥ λ1∆2

0

√
2q̃j
3t

by Lemma 2.6.3 and definition of q̃j . This implies that

λmin

(
t∑

s=1

E[1(js = j)usu
′
s|Fs−1]

)
≥

t∑
s=t/2

λmin (E[1(js = j)usu
′
s|Fs−1]) ≥ λ1∆2

0

√
q̃jt

4
.

Therefore, we have for any t > 2t̄,

P

λmin

 ∑
s∈T̃jt,t

usu
′
s

 <
λ1∆2

0

√
q̃jtt

8


=
∑
j∈[m]

P

λmin

 ∑
s∈T̃jt,t

usu
′
s

 <
λ1∆2

0

√
q̃jtt

8

∣∣∣∣∣jt = j

P(jt = j)

=
∑
j∈[m]

P

λmin

∑
s∈T̃j,t

usu
′
s

 <
λ1∆2

0

√
q̃jt

8

 q̃j.
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For each j ∈ [m], we have

P

λmin

∑
s∈T̃j,t

usu
′
s

 <
λ1∆2

0

√
q̃jt

8


≤P

λmin

∑
s∈T̃j,t

usu
′
s

 <
λ1∆2

0

√
q̃jt

8
,
⋃

s∈[t/2,t]

(EN,t ∪ Ẽj,t)

+
6n

t

=P

(
λmin

∑
s∈T̃j,t

usu
′
s

 <
λ1∆2

0

√
q̃jt

8
, λmin

∑
s∈T̃j,t

E[usu
′
s|Fs−1]

 ≥ λ1∆2
0

√
q̃jt

4
,

⋃
s∈[t/2,t]

(EN,t ∪ Ẽj,t)

)
+

6n

t
≤ 7n

t
,

where the first inequality is from the probability of the complement of
⋃
s∈[t/2,t](EN,t∪Ẽj,t),

and the last inequality is by Theorem 3.1 in Tropp (2011), and we take

t >

(
8R log(2(d+ 2)T )

λ1∆2
0 minj∈[m]

√
q̃j

)2

.

Since t̄ >
(
8R log(2(d+ 2)T )/(λ1∆2

0 minj∈[m]

√
q̃j)
)2

by definition, we complete the
proof. �

2.6.2 Proofs for the linear model

Proof of Theorem 2.4.1. First of all, we define event

Ẽt :=
{
|β̃jt,t − βjt | ≤ k8

√
log t(q̃jtt)

−1/4/∆0,

|α̃′jt,tx− α
′
jtx| ≤ k7

√
(d+ 1) log t(q̃jtt)

1/4/∆0||x||Ṽ −1
jt,t

}
.

According to Lemma 2.6.11, this event holds with probability at least 1 − 7n/t for any
t > 2t̄′ where

t̄′ = O

( √
d log T

mini∈[n] q
κ/2
i

)4/(2κ−1)


is defined in (2.36).
Therefore, we can split the regret into t ≤ 2t̄′ (which has regret at most O (t̄′)) and

t > 2t̄′. Note that for any t > 2t̄′, on event Ẽt and EN,t (such that N̂t = Nit , which holds
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with probability at least 1− 2n/t2 according to Lemma 2.6.10), we have

rt(p
∗
t )− rt(pt) ≤− βit(p∗t − p̃t −∆t)

2 ≤ −2βit(|p∗t − p′t|+ |∆t|)2 − 2βit∆
2
t

≤c7((α′itxt − α̃
′
jt,t−1xt)

2 + (βit − β̃jt,t−1)2 + ∆2
t )

≤c7(C̃α
jt,t−1(xt))

2 + c8 log T (∆2
0(T̃jt,t)

−1/2 + (q̃jtt)
−1/2/∆2

0)

for some constants c7, c8, where the third inequality is from the definition of optimal
price given demand parameters and covariates, and the fourth inequality is from Cauchy-
Schwarz, event Ẽt, and the definition of ∆t. Here C̃α

jt,t−1(xt) is defined as

C̃α
jt,t−1(xt) := k7

√
(d+ 1) log(t− 1)(q̃jt(t− 1))1/4/∆0||x||Ṽ −1

jt,t−1
.

For the second terms, if we sum them up over t, their summation can be bounded by
c9 log T

√
mT for some constant c9 as we did in the proof of Theorem 2.3.1. For the first

term, there is some constant c10 such that

(C̃α
jt,t−1(xt))

2 ≤ c10(d+ 1) log2 T
√
q̃jtt||x||2Ṽ −1

jt,t
. (2.33)

If we sum them over t, we have (on events Ẽt and EN,t)

∑
t>2t̄′

E
[√

q̃jtt||xt||2Ṽ −1
jt,t

]
≤
∑
j∈[m]

√
q̃jTE

 ∑
t>2t̄′,t∈T̃j,T

||xt||2Ṽ −1
j,t


≤c11(d+ 1) log T

∑
j∈[m]

√
q̃jT ≤ c11(d+ 1) log T

√
mT

for some constant c11 where the second inequality is by Lemma 11 in Abbasi-Yadkori
et al. (2011). Therefore, combined with (2.33), its summation over t > 2t̄′ is at most
O
(
d2 log3 T

√
mT
)

. Note that since the expected regret incurred on any of events Ẽt or
EN,t fail is at most O(n log T ), we finish the proof.

In the rest of this subsection, we prove several lemmas that are needed for the proof of
Theorem 2.4.1. The first lemma is about length of Ti,t.

Lemma 2.6.7 For any i ∈ [n], t ∈ T , with probability at least 1 − ∆, Ti,t ∈ [qit −
D(t), qit+D(t)], where D(t) =

√
t log(2/∆)/2.

Proof: Proof is the same as Lemma 2.6.1 hence neglected. �
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Lemma 2.6.8 For any Tt1,t2 := {t1 + 1, . . . , t2} and j ∈ [m], we have

|T̃j,t2 ∩ Tt1,t2 | ∈ [q̃j(t2 − t1) + D̃(t2 − t1), q̃j(t2 − t1)− D̃(t2 − t1)]

with probability at least 1−∆ where D̃(t) =
√
t log(2/∆).

Proof: This is an immediate result of Lemma 2.6.1 and Lemma 2.6.7. �

Lemma 2.6.9 For any i ∈ [n], t ∈ T , we have that

|β̂i,t − βi| ≤k4

√
log(1/∆) + log(1 + t)

∑
s∈Ti,t

∆2
s

−1/2

||α̂i,t − αi||Vi,t ≤k3

√
d+ 1(log(1/∆) + log(1 + t))

∑
s∈Ti,t

∆2
s

−1/2√
Ti,t

for some constant k3, k4 with probability at least 1 − ∆. In particular, we can show that

|β̂i,t − βi| ≤ C̃β
i,t and ||α̂i,t − αi||Vi,t ≤ C̃α

i,t with probability at least 1− 1/t2.

Proof: First of all, we drop the index dependency on i for the sake of convenience. Ac-
cording to definition of β̂t, we have that

β̂t − β =

∑
s∈Tt ks∆s∑
s∈Tt ∆2

s

,

where ks := α′xs + βp̃s + εs which satisfies |ks| ≤ L̃ := 2L+ pL+ 1 by the boundedness
assumption.

We can write ks∆s = |∆s|ksσs where σs = ±1 with probability 1/2, and

|β̂t − β|
√∑

s∈Tt

|∆s|2 =
|
∑

s∈Tt ksσs|∆s||√
∆2

0/
√
t+
∑

s∈Tt k
2
s |∆s|2

√
∆2

0/
√
t+
∑

s∈Tt k
2
s |∆s|2√∑

s∈Tt |∆s|2

≤
√

1 + L̃2
|
∑

s∈Tt ksσs|∆s||√
∆2

0/
√
t+
∑

s∈Tt k
2
s |∆s|2

,

where the inequality is because |∆s| ≥ ∆2
0/
√
t for any s ≤ t. Both σs and ks|∆s| are

adapted to filtration {Fs}, and σs, which is sub-Gaussian with parameter 1, form a mar-
tingale difference sequence. Then Theorem 1 in Abbasi-Yadkori et al. (2011) (applied on
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single dimensional case) gives us that

|β̂t − β|
√∑

s∈Tt

∆2
s ≤
√

1 + L̃2

√
log(

∑
s∈Tt

k2
s∆

2
s + ∆2

0/
√
t)− log(∆2

0/
√
t) + 2 log(2/∆)

≤k4

√
log(1/∆) + log(1 + t)

(2.34)

with probability at least 1−∆/2 for some constant k4.
On the other hand, by definition of α̂t,

(
∑
s∈Tt

xsx
′
s + I)(α̂t − α) = (

∑
s∈Tt

psxs)(β − β̂t) +
∑
s∈Tt

εsxs + α,

which implies that

||α̂t − α||Vt ≤||
∑
s∈Tt

psxs||V −1
t
|β − β̂t|+ ||

∑
s∈Tt

εsxs||V −1
t

+ L

≤p
∑
s∈Tt

||xs||V −1
t
|β − β̂t|+ ||

∑
s∈Tt

εsxs||V −1
t

+ L

≤p|β − β̂t|
√

2Tt(d+ 1) log(1 + 2Tt/(d+ 1))

+
√

(d+ 1) log(1 + 2Tt/(d+ 1)) + 2 log(2/∆) + L,

where Vt = I +
∑

s∈Tt xsx
′
s, and the last inequality hold with probability at least 1−∆/2

according to Theorem 1 and Lemma 11 in Abbasi-Yadkori et al. (2011). Then taking some
appropriate k′3 gives us the bound, i.e.,

||α̂t − α||Vt ≤ k′3(
√

(d+ 1)(log(1/∆) + log(1 + t))|β − β̂t|
√
Tt + 1). (2.35)

Therefore, events (2.34) and (2.35) hold together with probability at least 1−∆.
According to the result above, we can take ∆ = 1/t2 and let c1, c2 in (2.17) chosen

appropriately such that |β̂i,t − βi| ≤ C̃β
i,t and ||α̂i,t − αi||Vi,t ≤ C̃α

i,t with probability at least
1− 1/t2. �
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Corollary 2.6.2 For any j ∈ [m], t ∈ T , we have that

|β̃j,t − βi| ≤k4

√
log(1/∆) + log(1 + t)

∑
s∈T̃j,t

∆2
s

−1/2

||α̃j,t − αi||Ṽj,t ≤k3

√
d+ 1(log(1/∆) + log(1 + t))

∑
s∈T̃j,t

∆2
s

−1/2√
T̃j,t

with probability at least 1−∆.

Lemma 2.6.10 For any t such that

t > t̄′ := max

{
2t0

mini qi
,

4 log(2T )

mini∈[n] q
2
i

,

(
12k6

√
d+ 1 log T

γ∆0 mini∈[n] q
κ/2
i

)4/(2κ−1)

,(
12k6

γmini∈[n] q
κ/2
i

)2/κ}
,

(2.36)

where k6 is some constant, we have that N̂t = Nit with probability at least 1− 2n/t2.

Proof: We consider the estimation error of βi and αi, and we want to show that both of
them can be controlled. According to Lemma 2.6.7, if t > 4 log(2t)/mini∈[n] q

2
i , we have

that for any i ∈ [n] Ti,t ≥ qit/2 with probability at least 1 − 1/t2 (since D(t) < qit/2 for
all i ∈ [n]). If this this true, we have

∑
s∈Ti,t ∆2

s ≥ ∆2
0Ti,t/

√
t ≥ ∆2

0qi
√
t/2. Moreover,

because of Assumption B.2 and t > 2t0/mini qi (which implies that Ti,t > t0 for all
i ∈ [n]), λmin(Vi,t) ≥ c0T

κ
i,t. As a result,

Ci,t ≤k5

(
√
d+ 1 log t

√
2Ti,t

∆2
0qi
√
tλmin(Vi,t)

+

√
log t

∆2
0qi
√
t

+

√
1

λmin(Vi,t)

)

≤k6

(
√
d+ 1 log t

√
t1/2−κ

∆2
0q
κ
i

+

√
log t

∆2
0qi
√
t

+
√

(qit)−κ

)

for some constant k5, k6 with probability at least 1− 1/t2. Since Lemma 2.6.9 implies that
||θ̂i,t − θi||2 ≤ Ci,t with probability at least 1− 1/t2, if

t > max


(

12k6

√
d+ 1 log t

γ∆0 mini∈[n] q
κ/2
i

)4/(2κ−1)

,

(
12k6

γmini∈[n] q
κ/2
i

)2/κ
 ,
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we have ||θ̂i,t − θi||2 ≤ Ci,t < γ/4 for all i ∈ [n] with probability at least 1− 2n/t2. Then
using Lemma 2.6.5 leads to the result. �

Lemma 2.6.11 For any t > 2t̄′, we have that

|β̃jt,t − βjt | ≤ k8

√
log t(q̃jtt)

−1/4/∆0

|α̃′jt,tx− α
′
jtx| ≤ k7

√
(d+ 1) log t(q̃jtt)

1/4/∆0||x||Ṽ −1
jt,t

for some constants k7, k8 with probability at least 1− 7n/t.

Proof: According to Corollary 2.6.2 and Cauchy-Schwarz, we have

|β̃jt,t − βj| ≤k4

√
2 log(1 + t)

 ∑
s∈T̃jt,t

∆2
s

−1/2

|α̃′jt,tx− α
′
jx| ≤k3

√
d+ 12 log(1 + t)

 ∑
s∈T̃jt,t

∆2
s

−1/2√
T̃jt,t||x||Ṽ −1

jt,t

(2.37)

with probability at least 1− 1/t.
Define events EN,s = {N̂s = Nis}. According to Lemma 2.6.10, when s > t̄′, EN,s

holds with probability at least 1 − 2n/s2. Note that on events EN,s for all s ∈ [t/2, t]

(which holds with probability at least 1− 4n/t as t/2 > t̄′), we have that

∑
s∈T̃jt,t

∆2
s ≥

∑
s∈T̃jt,t:s>t/2

∆2
s ≥

∑
s∈T̃jt,t:s>t/2

∆2
0|T̃jt,t ∩ {s > t/2}|√

T̃jt,t

.

Then according to Lemma 2.6.8, |T̃jt,t ∩ {s > t/2}| ∈ [q̃jtt/2− D̃(t/2), q̃jtt/2 + D̃(t/2)]

where D̃(t/2) =
√
t log(2t)/2 ≤ q̃jtt/4 (because t > 2t̄′) with probability at least 1− 1/t

(hence |T̃jt,t ∩ {s > t/2}| ≥ q̃jtt/4). Similarly, we also have T̃jt,t ∈ [q̃jtt/2, 3q̃jtt/2] with
probability at least 1−1/t. As a result, combined with the above equation, with probability
at least 1− 6n/t, we have ∑

s∈T̃jt,t

∆2
s ≥

∆2
0

√
q̃jtt

4
.

Combining with (2.37), we obtain the desired result. �
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2.6.3 Different demand parameters for the same cluster

As mentioned in Remark 1 in Section 2.3, this section talks about some technical lemmas
in showing the regret of the modified CSMP when parameters θi within the same cluster
can be different. Note that we assume ||θi1 − θi2||2 ≤ γ0 for any i1, i2 in any cluster Nj .

The first result is an corollary of Lemma 2.6.5.

Corollary 2.6.3 Suppose for all i ∈ [n] it holds that ||θ̂i,t−1 − θi||2 ≤ Bi,t−1 and Bi,t−1 <

γ/8. Then in the modified algorithm (with γ > 2γ0), we have that N̂t = Nit .

Proof: The proof is almost identical to Lemma 2.6.5. First of all, for i1, i2 ∈ [n], if they
belong to different clusters andBi1,t−1 +Bi2,t−1 < γ/4, we must have ||θ̂i1,t−1− θ̂i2,t−1||2 >
Bi1,t−1 +Bi2,t−1 + γ0 because

γ ≤||θi1 − θi2||2 ≤ ||θi1 − θ̂i1,t−1||2 + ||θ̂i1,t−1 − θ̂i2,t−1||2 + ||θ̂i2,t−1 − θi2||2
≤Bi1,t−1 + ||θ̂i1,t−1 − θ̂i2,t−1||2 +Bi2,t−1 < γ/4 + ||θ̂i1,t−1 − θ̂i2,t−1||2,

which implies that ||θ̂i1,t−1 − θ̂i2,t−1||2 > 3γ/4 > γ/4 + γ0 > Bi1,t−1 +Bi2,t−1 + γ0.
On the other hand, if ||θ̂i1,t−1 − θ̂i2,t−1||2 > Bi1,t−1 + Bi2,t−1 + γ0, we must have i1, i2

belongs to different clusters because

Bi1,t−1 +Bi2,t−1 + γ0 <||θ̂i1,t−1 − θ̂i2,t−1||2
≤||θi1 − θ̂i1,t−1||2 + ||θi1,t−1 − θi2,t−1||2 + ||θ̂i2,t−1 − θi2||2
≤Bi1,t−1 + ||θi1,t−1 − θi2,t−1||2 +Bi2,t−1

which implies ||θi1,t−1 − θi2,t−1||2 > γ0, i.e., they belong to different clusters.
Therefore, if i ∈ N̂t, i.e., ||θ̂it,t−1 − θ̂i,t−1|| ≤ Bit,t−1 + Bi,t−1 + γ0, we must have that

i ∈ Nit as well or Bit,t−1 + Bi,t−1 ≥ γ/4 (which is impossible by our assumption that
Bi,t−1 < γ/8).

On the other hand, if i ∈ Nit , then we must have ||θ̂it,t−1−θ̂i,t−1|| ≤ Bit,t−1+Bi,t−1+γ0,
which implies that i ∈ N̂t as well. Summarizing, we have shown that N̂it = Nit . �

The next lemma measures the confidence bound of θ̃j,t compared with any true param-
eter θ̃i for i ∈ Nj , with respect to the empirical Fisher’s information matrix Ṽj,t.

Lemma 2.6.12 Let t satisfies that

t >

(
8R log((d+ 2)T )

λ1∆2
0 minj q̃j

)2

.
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On the event that T̃jt,t ≥ q̃jtt/2,

||θ̃jt,t − θ̄jt ||2 ≤
2
√

(d+ 2) log (1 + tR2/(d+ 2)) + 4 log t+ 2l1L

l1

√
λmin(Ṽt)

+
2L1R

2γ0

l1λ1∆2
0υ

2

with probability at least 1− 2/t2.

Proof: The proof is quite similar to Lemma 2.6.2. We drop the index jt for convenience.
Note that for an arbitrary parameter φ ∈ Θ, since θ̃t is the MLE, we have

0 ≥
∑
s

ls(θ̃t)−
∑
s

ls(φ) =
∑
s

∇ls(φ)′(θ̃t − φ) +
1

2

∑
s

µ̇(u′sφ̄t)(u
′
s(θ̃t − φ))2

+
l1
2
||θ̃t − φ||22 −

l1
2
||θ̃t − φ||22 ≥

∑
s

∇ls(φ)′(θ̃t − φ) +
l1
2
||θ̃t − φ||2Ṽt − 2l1L

2,

(2.38)

where the first inequality is from the optimality of θ̃t, and φt is a point on line segment
between θ̃t and φ.

Now we consider∇ls(φ). By Taylor’s theorem,∇ls(φ) = ∇ls(θs) +∇2ls(θ̌s)
′(φ− θs),

where θs is the true parameter at time s, and θ̌s is a point between φ and θs. As a result,

∇ls(φ) = −εsus + µ̇(u′sθ̌s)usu
′
s(φ− θs). (2.39)

Since φ ∈ Θ is an arbitrary vector, we can let φ = θi for any i ∈ Nj . Combining (2.38)
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and (2.39), we have that with probability at least 1− 1/t2.

l1
2
||θ̃t − θi||2Ṽt ≤

∑
s

εsu
′
s(θ̃t − θi)−

∑
s

µ̇(u′sθ̌s)(θi − θs)′usu′s(θ̃t − φ) + 2l1L
2

≤||
∑
s

εsus||Ṽ −1
t
||θ̃t − θi||Ṽt +

∑
s

||µ̇(u′sθ̌s)usu
′
s(θi − θs)||Ṽ −1

t
||θ̃t − θi||Ṽt

+ 2l1L
2

≤

√
(d+ 2) log

(
1 +

tR2

d+ 2

)
+ 4 log t||θ̃t − θi||Ṽt

+

∑
s ||µ̇(u′sθ̌s)usu

′
s(θi − θs)||2||θ̃t − θi||Ṽt√
λmin(Ṽt)

+ 2l1L
2

≤

√
(d+ 2) log

(
1 +

tR2

d+ 2

)
+ 4 log t||θ̃t − θi||Ṽt +

L1R
2γ0q̃jt||θ̃t − θi||Ṽt
2
√
λmin(Ṽt)

+ 2l1L
2,

where the second inequality is from Theorem 1 in Abbasi-Yadkori et al. (2011) and the last
inequality is because T̃jt,t ≥ q̃jtt/2. By some simple algebra, above inequality implies that

||θ̃t − θi||Ṽt ≤
2
√

(d+ 2) log
(
1 + tR2

d+2

)
+ 4 log t

l1
+

L1R
2γ0q̃jt

l1

√
λmin(Ṽt)

+ 2L.

This inequality further implies that

||θ̃t − θi||2 ≤
2
√

(d+ 2) log
(
1 + tR2

d+2

)
+ 4 log t

l1

√
λmin(Ṽt)

+
L1R

2γ0q̃jt

l1λmin(Ṽt)
+

2L√
λmin(Ṽt)

. (2.40)

Since in the modified algorithm, we let ∆t = ±∆0 max
(
T̃
−1/4

N̂t,t
, υ
)

, on the event d

Lemma 2.6.4 implies that λmin(Ṽt) ≥ λ1∆2
0q̃j max(

√
t, υ2t)/2 ≥ λ1∆2

0υ
2q̃jt/2 with prob-

ability at least 1− 1/t2 for any t satisfying t > (8R log((d+ 2)T )/(λ1∆2
0 minj q̃j))

2
. Plug

λmin(Ṽt) ≥ λ1∆2
0υ

2q̃jt/2 in L1R
2γ0q̃jt/(l1λmin(Ṽt)) in (2.40), we finally show that with

probability at least 1− 2/t2,

||θ̃t − θi||2 ≤
2
√

(d+ 2) log
(
1 + tR2

d+2

)
+ 4 log t+ 2l1L

l1

√
λmin(Ṽt)

+
2L1R

2γ0

l1λ1∆2
0υ

2
,
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and we finish the proof. � Now we provide the proof (sketch) of the theorem of regret of
modified algorithm.

Theorem 2.6.1 The expected regret of the modified algorithm CSMP is

R(T ) = O

(
d2 log2(dT )

mini∈[n] q
2
i

+ d log T
√
mT + γ

2/3
0 T

)
.

If we hide logarithmic terms and let mini∈[n] qi = Θ(1/n) with T � n, we have the

expected regret is at most R(T ) = Õ(d
√
mT + γ

2/3
0 T ).

Proof: The proof is almost identical to Theorem 2.3.1 so we neglect most part of the
proof. The only thing which requires extra investigation is that conditioned on various
events as in Theorem 2.3.1, and let t sufficiently large (larger than some time with the same
scale as the maximum of t̄), we want to bound rt(p∗t )− rt(pt) = O(rt(p

∗
t )− rt(p′t) + ∆2

t ).

Note that ∆2
t = O

(
max

(
T̃
−1/2

N̂t,t
, υ2
))
≤ O

(
T̃
−1/2

N̂t,t
+ υ2

)
, and for the part of regret∑

tO
(
T̃
−1/2

N̂t,t

)
, it is bounded as in Theorem 2.3.1. From υ2, the cumulative regret becomes

O(υ2T ).
To bound rt(p∗t )− rt(p′t), note that we have rt(p∗t )− rt(p′t) ≤ O

(
||θit − θ̃jt,t||22

)
. Now

we use the result in Lemma 2.6.12 and obtain that

rt(p
∗
t )− rt(p′t) ≤ O

(
d log t

λmin(Ṽt)
+
γ2

0

υ4

)
.

The cumulative regret by summing over O(d log t/λmin(Ṽt)) is the same as in Theorem
2.3.1, and the cumulative regret from O(γ2

0/υ
4) is obviously O(γ2

0T/υ
4).

Above all, adding up all parts of regret, we have that the expected regret is at most

R(T ) = O

(
d2 log2(dT )

mini∈[n] q
2
i

+ d log T
√
mT + υ2T +

γ2
0T

υ4

)
.

Taking value υ = Θ(γ
1/3
0 ) gives us the final result. �

2.7 Conclusion

With the rapid development of e-commerce, data-driven dynamic pricing is becoming in-
creasingly important due to the dynamic market environment and easy access to online
sales data. While there is abundant literature on dynamic pricing of normal products, the
pricing of products with low sales received little attention. The data from Alibaba Group
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shows that the number of such low-sale products is large, and that even though the demand
for each low-sale product is small, the total revenue for all the low-sale products is quite
significant. In this chapter, we present data clustering and dynamic pricing algorithms to
address this challenging problem. We believe that this chapter is the first to integrate online
clustering learning in dynamic pricing of low-sale products.

Two learning algorithms are developed in this chapter: one for a dynamic pricing prob-
lem with the generalized linear demand, and another for the special case of linear demand
functions under weaker assumptions on product covariates. We have established the regret
bounds for both algorithms under mild technical conditions. Moreover, we test our algo-
rithms on a real dataset from Alibaba Group by simulating the demand function. Numerical
results show that both algorithms outperform the benchmarks, where one either considers
all products separately, or treats all products as a single cluster. A field experiment was
conducted at Alibaba by implementing the CSMP algorithm on a set of products, and the
results show that our algorithm can significantly boost revenue.

There are several possible future research directions. The first one is an in-depth study
of the method for product clustering. For instance, in bandit clustering literature, Gentile
et al. (2014) use a graph-based method to cluster different arms, and Nguyen and Lauw
(2014) apply a K-means clustering method to identify different groups of arms. It will be
interesting to understand the various product clustering methods and analyze their advan-
tages and disadvantages under different scenarios. Second, to highlight the benefit of clus-
tering techniques for low-sale products, in this chapter we study a dynamic pricing problem
with sufficient inventory. One extension is to apply the clustering method for the revenue
management problem with inventory constraint. Third, in this chapter we consider the gen-
eralized linear demand. There are other general demand functions, such as the nonpara-
metric models in Araman and Caldentey (2009), Wang et al. (2014), Chen et al. (2015a),
Besbes and Zeevi (2015), Nambiar et al. (2018), Ferreira et al. (2018a), Chen and Gallego
(2018), and it is an interesting research direction to explore other, and broader, classes of
demand functions. To that end, an important step will be to define an appropriate metric
for clustering the products, which is a challenge especially for nonparametric models. In
the end, we believe that it will be interesting to include substitutability/complementarity of
products and even assortment decisions.
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Chapter 3

Online Personalized Assortment Optimization in
a Big Data Regime

3.1 Introduction

With the advancement of information technology, customization has become increasingly
important for e-business. Many internet firms face the problem of recommending items,
called an assortment, to a customer tailored to his/her personal preference. For example,
in online retailing, whenever a customer clicks into a website, e.g., Amazon.com, the cus-
tomer is shown a set of products that are generated according to that customer’s historical
clicking/purchasing records; in online video streaming websites like Youtube and Netflix,
a selection of videos are recommended to each customer on his/her homepage based on
that customer’s viewing history; in social media websites, e.g., Facebook, advertisement is
posted according to the user’s browsing records; in news websites such as Yahoo!, person-
alized recommendations of articles are made to each reader. The problem of recommend-
ing an assortment of items to a customer according to his/her preference using personal
data is known as personalized assortment optimization. A number of success stories have
been reported on the implementation of personalized assortment optimization algorithms.
For instance, according to Netflix executives Carlos A. Gomez-Uribe and Neil Hunt, their
recommendation system saves Netflix over $1 billion each year (Gomez-Uribe and Hunt
2016), and a Microsoft Research report estimated that 30% of Amazon.com’s page views
during a 10-month period were from personalized recommendation (Sharma et al. 2015).

A great deal of research have been done on recommendation systems (see e.g., Bobadilla
et al. 2013 for a comprehensive survey); each focuses on a specific class of problem with
restricted applications. The machine learning methods proposed for recommendation sys-
tems, e.g., collaborative filtering (Herlocker et al. 2000) and deep learning (Covington
et al. 2016), typically require abundant training data, which may not be available in dy-
namic online settings when new items (e.g., new fashion designs, new uploaded videos)
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are introduced frequently to the market. Personalized assortment optimization requires to
recommend a set of items, but most existing methods are concerned with single item recom-
mendation that give a score to each item and choose the “top K” items with highest scores
(see e.g., Sarwar et al. 2001, Davidson et al. 2010, Cremonesi et al. 2010). It is very likely
that there exist substitution effects among the items recommended, and failing to capture
these effects can lead to suboptimal solutions (see e.g., Feldman et al. 2018 for a recent
field experiment result at Alibaba for comparing choice-based model with single-product
recommendation algorithms). There are several recent papers on online personalized as-

sortment optimization, e.g., Cheung and Simchi-Levi (2017) and Chen et al. (2018a), that
study a similar problem as ours but their algorithms suffer from computational inefficiency.
More specifically, as data accumulates, the computational time in each round of their algo-
rithms increases. This makes it difficult to make fast decisions to each arriving customer in
real time and limits their applications. For instance, according to Yahoo! Front Page Today
Module User Click Log Data, the number of customer clicks during one time interval of
the day on May 4th, 2009 was already more than 5,000,000. Moreover, the data of each
user might have high dimension, slowing down the computation even further.

In this chapter, we address the issues discussed above by developing efficient algorithms
for online personalized assortment optimization problem when customer choice parameters
are not known a priori. Demand learning mechanism is designed that can handle big (and
high dimensional) data, thus it is amenable for applications in a big data regime. The
theoretical performances of the algorithms are shown to be near-optimal, and numerical
results based on real data outperform benchmark algorithms.

The decision process of our online personalized assortment optimization problem pro-
ceeds as follows: N products are sold over a time horizon of T periods. Each period
t = 1, 2, . . . represents an arrival that has an observable information data (e.g., profile data,
clicking/purchasing historical data), denoted by xt ∈ RD, where D is the dimension of the
vector which can be large. Based on the personalized information xt, the firm selects an
assortment of at most K items to display to the customer. Observing the set of products on
display, the customer makes a purchasing decision following a multinomial logit (MNL)
choice model. Not knowing the parameters of the choice model a priori, the firm wants
to maximize the expected total reward (e.g., clicking-through rate, revenue) over the time
horizon.
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3.1.1 Main contribution of the chapter

We design algorithms which simultaneously learn the demand and determine the assort-
ment on the fly, such that the total reward is maximized. The algorithms are easy to im-
plement with efficient computation no matter how much (possibly high dimensional) data
have been accumulated in a period. The algorithms are shown to perform very well in terms
of regret, defined as the total revenue loss compared with a clairvoyant who has complete
demand information a priori and always makes the best decision.

The main contributions in this chapter are summarized as follows.

• Our first learning algorithm, which we refer to as P-UCB, is designed based on max-
imum likelihood estimation and a personalized upper-confidence bound (UCB). The
personalized UCB allows us to simultaneously learn the parameters of different prod-
ucts and maximize the earned revenue. We show in Theorem 3.3.1 that the regret of
this algorithm is at most Õ(DNK

√
T ), where the notation Õ(·) hides the logarithmic

terms.

• To resolve the issue of slowing computation as demand data accumulate in a typical
demand learning problem, we develop another algorithm, called OLP-UCB which is
based on P-UCB, by incorporating an online convex optimization scheme to update
the estimated parameters. This algorithm has constant computational effort in each
iteration that is independent of the time period; thus its computation time does not
increase in the accumulated data size and is particularly useful when solving online
personalized assortment optimization problem in a big data regime. We prove in
Theorem 3.3.3 that the regret of OLP-UCB is at most Õ(DNK3/2

√
T ), which is

only slightly higher than that of the first algorithm.

• We present the third algorithm, called OLP-UCB-RP, for high dimensional person-
alized data setting. Assuming some sparsity structure of the high dimensional cus-
tomers’ data, which is prevalent in applications, we introduce a random projection
step for dimension reduction. As the dimension reduction step can usually be con-
ducted offline (the decision maker typically has access to the database), the OLP-
UCB-RP algorithm drastically speeds up the computation. With a significant re-
duction in computational cost, we prove that OLP-UCB-RP algorithm still achieves
satisfactory theoretical performance: Theorem 3.4.1 shows that its regret is at most
Õ(NK3/2

√
(d0 + d)LT + (d0 + d)NK3/2

√
T ), where d0 and L are parameters re-

lated to the data sparsity to be specified later, and d (which is much smaller than D)
is the dimension of data after random projection.
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• Our algorithms are tested on a real dataset from Yahoo! on news article recom-
mendation, and unbiased estimates are obtained on the clicking through rate (CTR).
The results show a 39.73% increase in CTR over Yahoo!’s current recommendation
method. We also test the algorithms using a synthetic data and the numerical results
demonstrate excellent performance.

We note that similar problem has been studied in Cheung and Simchi-Levi (2017) and
Chen et al. (2018a) (the latter is done concurrently and independently of ours). This chap-
ter has significant differences from those studies. First, Cheung and Simchi-Levi (2017)
present a Thompson Sampling algorithm and evaluate the algorithm using Bayesian regret,
a weaker measure than regret (see e.g., Russo and Van Roy 2014), and their Bayesian re-
gret is Õ(DNK5/2

√
T ); in this chapter we develop a learning algorithm and evaluate it

using regret, and our result is Õ(DNK
√
T ) for P-UCB. Second, unlike these references

that have linearly increasing computational time in period index, our OLP-UCB algorithm
has a constant computational time in each period. Third, compared with the references,
our OLP-UCB-RP algorithm can be used to solve problems with high dimensional data.
Fourth, our algorithms and results do not require any stochastic assumption on data, i.e.,
the sequence of data can be arbitrary or even adversarial, while Chen et al. (2018a) requires
stochastic assumption on (some of) personal information data. Finally, the assortment in
each iteration of our algorithm is computed using exact and efficient method, while the se-
lection of assortment in Chen et al. (2018a) has to rely on approximation algorithm, since
the optimization problem they formulate is too complex to adopt an exact method to find
an optimal solution.

3.1.2 Related literature

In this section, we briefly review some related research from both the operations manage-
ment and the machine learning literature.

Related literature on assortment optimization. Assortment optimization has been an
important research area for decades. Earlier work on this topic has mainly focused on the
static optimization problem (see e.g., Ryzin and Mahajan 1999, Mahajan and Van Ryzin
2001, Gaur and Honhon 2006, Cachon and Kök 2007, Davis et al. 2014, Gallego and
Topaloglu 2014, Rusmevichientong et al. 2014, Li et al. 2015.). We refer interested readers
to Kök et al. (2015) for a comprehensive literature review. In recent years, due to the pop-
ularity of data-driven revenue management problems, dynamic assortment with demand
learning has become increasingly popular. To the best of our knowledge, Caro and Gallien
(2007) is the first to study this type of problem, though they assume that demands for differ-
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ent products are independent of each other. Another popular demand model for assortment
optimization is the so-called multinomial logit (MNL) choice model, where customers’
choices are modeled by the perceived product utilities, which leads to demands of prod-
ucts in the assortment to be dependent. Several papers have used MNL model to study the
dynamic assortment optimization with demand learning, see e.g., Rusmevichientong et al.
(2010), Sauré and Zeevi (2013), Agrawal et al. (2017a,b), Wang et al. (2018); a slightly
more general model called nested logit (NL) has been studied, as well (Chen et al. 2018b).

The papers cited above assume homogeneous customers. Works on dynamic assort-
ment optimization with heterogeneous customers (i.e., online personalized assortment op-
timization) include Golrezaei et al. (2014), Chen et al. (2015b), Bernstein et al. (2015),
Kallus and Udell (2016), Gallego et al. (2016), Cheung and Simchi-Levi (2017), Bernstein
et al. (2018), Chen et al. (2018a). Among these papers, Golrezaei et al. (2014), Bern-
stein et al. (2015), Kallus and Udell (2016), Gallego et al. (2016), Bernstein et al. (2018)
model the heterogeneity of customers by customer segmentation. In particular, Golrezaei
et al. (2014), Bernstein et al. (2015), Gallego et al. (2016) study personalized assortment
optimization with initial capacity constraint and known demand information, and develop
heuristics with provable theoretical performance. In Kallus and Udell (2016) and Bernstein
et al. (2018), the authors study the problem of demand learning, and propose learning algo-
rithms tailored for different customer segments. Chen et al. (2015b), Cheung and Simchi-
Levi (2017), Chen et al. (2018a) represent personal information data of each arriving cus-
tomer using vector, which is the formulation we adopt in this chapter. The differences
between these papers and ours have been discussed in the the previous subsection.

Related literature on multi-armed bandit problem. Multi-armed bandit (MAB)
problems have received much attention in the literature, and a very important method is
called upper-confidence bound method (UCB, see e.g., Auer 2002). One area that is closely
related to ours is contextual bandits (see e.g., Zhou 2015, for a comprehensive survey),
which is an important topic in multi-armed bandit problem. Most of the research in this
area focuses on the linear contextual bandit problem (in which the objective function is
a linear function of context), such as Auer (2002), Dani et al. (2008), Rusmevichientong
and Tsitsiklis (2010), Chu et al. (2011), Abbasi-Yadkori et al. (2011), Agrawal and Goyal
(2013). Some recent work extends results to the generalized linear bandit (Filippi et al.
2010, Li et al. 2017b, Jun et al. 2017). For the generalized linear bandit problem, the ob-
jective function is a generalized linear function of the context, and the logistic function is
a special case. Although the MNL model is a generalization of the logistic function, our
problem is different from the contextual bandit problem because we choose an assortment
of items instead of a single arm. This combinatorial choice of items leads to significantly
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more complicated objective function in our problem than in generalized linear bandit. As a
result, the methods in contextual bandit literature cannot be directly applied in our problem.

One scenario considered in this chapter is the high dimensional online personalized
assortment optimization. There are some research on contextual bandits with high dimen-
sional data (Abbasi-Yadkori et al. 2012, Carpentier and Munos 2012, Bastani and Bayati
2015). In these papers, the underlying unknown parameter is assumed to be sparse. This
assumption is difficult to verify because the decision maker does not know the underlying
parameters. This chapter therefore takes a different approach, assuming that the customer
data is sparse. This assumption is observable from the dataset and prevalent in reality (see
e.g., our data analysis of a real dataset from Alibaba in Section 3.4).

3.1.3 Organization of the chapter

The remainder of this chapter is organized as follows. In Section 3.2 we introduce the
problem formulation and some basic assumptions. We develop our algorithms (P-UCB
and OLP-UCB) and present their theoretical performance in Section 3.3. We extend the
algorithms to high dimensional data setting using random projection in Section 3.4. Nu-
merical experiments of our algorithms are presented in Section 3.5, and several benchmark
algorithms are compared with our algorithms. In Section 3.6, we outline the main steps of
the proofs of the theorems, with technical details provided in the Section 3.7. Finally, we
conclude the chapter with some discussion and future research directions in Section 7.

3.2 Problem Formulation

A firm sells N products, labeled as i = 1, 2, . . . , N , over T periods. Denote the set of time
periods by T . The selling price (or reward) of product i is pi > 0, which is exogenous.
During each period t, the firm can display up to K products, called an assortment. As
described in the previous section, there is exactly one arrival (customer) in a period, that
either purchases one of the products on display or leaves without purchasing any product.
Each customer is associated with an observable personal (contextual) information vector
represented by xt ∈ RD. We do not make any stochasticity assumption on xt; i.e., they can
be arbitrary and might even depend on the assortment decisions in earlier periods. The firm
needs to determine, in each period, the assortment of products to offer, using customer’s
information xt, to maximize the expected total revenue over the time horizon T .

For convenience, we denote the set of all products by N := {1, 2, . . . , N}, and the
collection of all possible assortments by S := {S ⊂ N : |S| ≤ K}. Here, and in what
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follows, “:=” stands for “defined as”, and |S| denotes the number of elements in, or the
cardinality of, assortment S.

We adopt the widely accepted multinomial logit (MNL) model for customer’s choice
(see Feldman et al. 2018 for a field experiment result of assortment optimization using
MNL). Under MNL model, the probability for a customer with personal data xt to choose
product i ∈ S ∪ {0}, with 0 denoting the option of purchasing nothing, is

q(i|S, xt) :=
ex
′
tθi

1 +
∑

j∈S e
x′tθj

, ∀i ∈ S,

q(0|S, xt) :=
1

1 +
∑

j∈S e
x′tθj

,

where the parameters θi for i ∈ N are D-dimensional column vectors that are unknown to
the firm a priori, and need to be learned through sales data. Given the assortment S, the
expected revenue from a customer with information xt is

r(S, xt) :=
∑
i∈S

piq(i|S, xt). (3.1)

To emphasize its dependency on demand parameters θ′ := (θ′1, . . . , θ
′
N), where θ′i is the

transpose of (column) vector θi, we sometimes also write the revenue function as r(S, xt, θ).
By normalization, we assume without loss of generality that ||xt||2 ≤ 1 for all t ∈ T and
||θi||2 ≤ R for all i ∈ N , where R is a positive constant. For convenience, we define
the feasible set of θ as Θ =

⊗N
i=1 Θi where Θi := {θi ∈ RD : ||θi||2 ≤ R}. For the

convenience of subsequent discussion, we introduce notations

κ := eR, κ := e−R. (3.2)

Then, ex′tθi ∈ [κ, κ] for any xt and θi ∈ Θi. Finally, we will call a real number a constant if
it depends only on R and maxi∈N pi, but not on the specific values of θi and pi.

Clairvoyant solution and the firm’s objective. If the demand parameter θ is known a

priori, then the firm can choose an optimal S∗t ∈ S which maximizes the revenue function
(3.1). We call this optimal solution a clairvoyant solution, which can be computed effi-
ciently using algorithms in the existing literature (see e.g., Rusmevichientong et al. 2010,
Davis et al. 2013, but see Remark 1 below). Again to emphasize its dependency on θ and
xt, we will at times write it as S∗t = S∗(θ, xt) when necessary. The clairvoyant revenue
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over the time horizon is

J∗(T ) :=
T∑
t=1

r(S∗t , xt),

and it will be used as a benchmark to analyze the performance of our learning algorithm.

Remark 3.2.1 When customer information xt depends on earlier assortment decision, the

clairvoyant solution S∗(θ, xt) is the optimal solution to the Markov decision process. In

this chapter we follow the literature to take the clairvoyant solution S∗(θ, xt) as the myopic

optimal solution (see e.g., Auer 2002, Dani et al. 2008, Rusmevichientong and Tsitsiklis

2010, Chu et al. 2011, Abbasi-Yadkori et al. 2011, Agrawal and Goyal 2013, Cheung and

Simchi-Levi 2017, Chen et al. 2018a). That is, the benchmark is the solution optimizing the

present period. This is acceptable in our application since the dependency in our setting is

weak. This is because, for an individual customer, the chance of having another purchase

during the considered time horizon is usually small.

Since parameters θ are unknown at the beginning of the planning horizon, we need to
design an algorithm which learns the parameters on the fly and simultaneously maximize
the total revenue. The objective to maximize in this chapter is the expected cumulative
revenue

Jπ(T ) := E

[
T∑
t=1

r(St, xt)

]
,

where π denotes the algorithm, and St is the chosen assortment at time t. The algorithm π

has to be non-anticipative in that St depends only on the historyFt−1 which is the σ-algebra
generated by all random variables (e.g., chosen assortment, customer’s choice, personal
data) until the end of period t− 1.

The regret. As we discussed earlier, the firm’s objective is to design an algorithm
which maximizes the expected cumulative revenue Jπ(T ). This objective is equivalent to
minimizing the so-called regret, which is a commonly used metric to evaluate an online
learning algorithm (see e.g., Bubeck et al. 2012), defined as

Rπ(T ) := J∗(T )− Jπ(T ) = E

[
T∑
t=1

(
r(S∗t , xt)− r(St, xt)

)]
.

Briefly, the regret Rπ(T ) is the cumulative revenue loss of algorithm π compared with the
clairvoyant solution, and our goal is to design a learning algorithm whose regret rate is as
low as possible.
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3.3 Learning Algorithms and Theoretical Performance

In this section, we present two learning algorithms for the online personalized assortment
optimization problem and their regrets. Specifically, we discuss the P-UCB algorithm in
Section 3.3.1, and its theoretical performance analysis in Section 3.3.2. In Section 3.3.3, we
design a modified version of the P-UCB algorithm, OLP-UCB, which is computationally
much more efficient but has similar theoretical performance as P-UCB.

3.3.1 P-UCB algorithm

The main algorithm, which we refer to as Personalized Upper-Confidence-Bound algo-
rithm, or P-UCB algorithm for short, makes dynamic personalized assortment decision in
each period t for a customer with personal data xt. The algorithm for each iteration con-
sists of two steps: 1) Parameter estimation, and 2) Optimization with personalized upper-
confidence bound (UCB). Refer to Figure 3.1 for a graphical representation. The detailed
algorithm P-UCB is presented below.

Figure 3.1: The flowchart of algorithm P-UCB

Algorithm overview. In the following, we elaborate on the details of the P-UCB algo-
rithm. Recall that at the start of each iteration t = 1, . . . , T , the decision maker is presented
a personal information vector xt.

Parameter estimation. Using the personal information, the first step of the algorithm
estimates θ̂t ∈ RDN , where θ̂′t = (θ̂′1,t, . . . , θ̂

′
N,t), using maximum likelihood method based

on historical data {(Ss, is, xs) : s = 1, . . . , t − 1}, where is ∈ Ss ∪ {0} is the realized
customer purchasing decision at period s. More precisely, we have

θ̂t ∈ arg max
θ∈Θ

L(φ|Ft−1), (3.3)
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Algorithm 3 The P-UCB Algorithm
Require: Confidence bound parameter α.

1: Step 0. Initialization. Choose assortment S1 ∈ S randomly and offer to customer at
time t = 1. Go to Step 1 with time t = 2.

2: Step 1. Parameter Estimation. Compute the maximum likelihood estimator

θ̂t ∈ arg max
φ∈Θ

L(φ|Ft−1),

where L(φ|Ft−1) is defined in (3.4).
3: Step 2. Assortment Selection. Select the assortment St according to

St ∈ arg max
S∈S

r̂t(S, xt, θ̂t),

where r̂t(S, xt, θ̂t) is defined in (3.5).
Let t = t+ 1 and go to Step 1. The algorithm stops when the end of time horizon

is reached.

where L(φ|Ft−1) is the likelihood function until the end of period t− 1, given by

L(φ|Ft−1) :=
t−1∏
s=1

(
1

1 +
∑

j∈Ss e
x′tφj

)Y0,s ∏
i∈Ss

(
ex
′
tφi

1 +
∑

j∈Ss e
x′tφj

)Yi,s

, (3.4)

and Yi,s ∈ {0, 1} represents whether or not the customer purchased product i at time s,
i.e., Yi,s = 1 if is = i and Yi,s = 0 otherwise. In the proof of Lemma 3.7.1, we will show
that the optimization problem (3.3) is a convex optimization problem hence it can be easily
solved. For estimation accuracy, it will be shown that, given sufficient data samples, θ̂t
is quite close to the true parameter θ, implying that the estimated utility x′tθ̂i,t is accurate
(close to x′tθi) as well.

Assortment optimization with personalized UCB. The second step of the algorithm
is to select the personalized assortment St for customer t. Our approach to select St is by
optimizing a proxy objective function constructed using the personalized upper-confidence
bound. That is,

St ∈ arg max
S∈S

r̂t(S, xt, θ̂t),

where

r̂t(S, xt, θ̂t) :=

∑
i∈S piv̂i,t(xt, θ̂i,t)

1 +
∑

i∈S v̂i,t(xt, θ̂i,t)
, and (3.5)

v̂i,t(xt, θ̂i,t) := ex
′
tθ̂i,t + α||xt||V̄ −1

i,t
.
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In the equations above, v̂i,t(xt, θ̂i,t) is the estimated utility of product i at time t with per-
sonalized upper-confidence bound α||xt||V −1

i,t
, α is the upper-confidence parameter to be

specified later, and

V̄i,t := I + Vi,t ∈ RD×D,

Vi,t :=
∑
s∈Ti(t)

x′sxs/|Ss| ∈ RD×D,

where Ti(t) := {s < t : i ∈ Ss} is the set of time periods before t that i has been selected
in the assortment. Note that V̄i,t can be interpreted as the empirical Fisher’s information
matrix of product i.

Recall that ||xt||V̄ −1
i,t

is the induced norm by the positive semidefinite matrix V̄ −1
i,t , i.e.,

||xt||V̄ −1
i,t

:=
√
x′tV̄

−1
i,t xt.

Intuitively, when product i has been tested only for small number of periods, α||xt||V̄ −1
i,t

is
relatively large (since the minimum eigenvalue λmin(V̄i,t) of V̄i,t is small), which suggests
to include i in St for the purpose of exploration. On the other hand, when sufficient data
have been collected for all products i ∈ N , α||xt||V̄ −1

i,t
will be small for all i and r̂t(S, xt, θ̂t)

will be close to the real objective function; as a result, r(St, xt) will also be very close to
r(S∗t , xt). Therefore, in Step 2 of the algorithm, the objective function r̂t(S, xt, θ̂t) with
upper-confidence bound balances the exploration and exploitation by making use of the
personalized upper-confidence bound.

Remark 3.3.1 The assortment selection of St in each iteration t of our algorithm is com-

puted using exact and efficient method, see e.g., Rusmevichientong et al. (2010). This is in

contrast with Chen et al. (2018a), in which the authors apply an approximation algorithm

to compute St. This attributes to the different problem formulations for optimization. In

our formulation, the optimization problem is (3.5), which is a typical MNL assortment op-

timization problem with given v̂i,t, thus exact (and known) computation method is readily

applied; while in Chen et al. (2018a), the authors formulate the assortment optimization

problem using an assortment-dependent UCB term, which leads to a complex combina-

torial optimization problem destroying the MNL assortment optimization structure, hence

they resort to an approximation method to solve it.
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3.3.2 Theoretical performance of P-UCB

The following result presents the theoretical performance of the P-UCB algorithm in terms
of regret.

Theorem 3.3.1 Let α = cK
√
DN log(NT/δ) for any δ > 0, where c is some positive

constant, then with probability at least 1− δ, the regret of P-UCB algorithm satisfies

T∑
t=1

(r(S∗t , xt)− r(St, xt)) = O(α
√
DNT log T ).

Taking δ = 1/T , then the expected regret can be written compactly as

E

[
T∑
t=1

(r(S∗t , xt)− r(St, xt))

]
= Õ(DNK

√
T ).

We offer an explanation on the intuition behind the regret of the algorithm. As we
discussed earlier, an important step to bound the regret is to have an accurate estimation of
x′tθi. By Cauchy-Schwarz inequality, we have

|x′tθi − x′tθ̂i,t| ≤ ||θi − θ̂i,t||V̄i,t ||xt||V̄ −1
i,t
.

We call ||θi − θ̂i,t||V̄i,t the confidence bound of product i, and finding its upper bound
is crucial for the final regret analysis. It will be shown that this confidence bound is at
most O(K

√
DN log(NT/δ)) with high probability (i.e., at least 1− δ), which ensures the

effectiveness of Step 1. Step 2 of the algorithm, as mentioned above, is mainly to balance
the exploration and exploitation and bound the regret by the upper-confidence bound. More
specifically, for each product i, it will be shown that with high probability,

|ex′tθi − ex′tθ̂i,t | ≤ α||xt||V̄ −1
i,t
, (3.6)

where
α = O

(
K
√
DN log(NT/δ)

)
.

This means that the utility of each product ex′tθi is bounded above by

v̂i,t(xt, θ̂i,t) = ex
′
tθ̂i,t + α||xt||V −1

i,t
,

which is exactly the utility function (3.5) in objective function of Step 2. This result allows
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us to show that, when inequality (3.6) is satisfied, the regret in period t satisfies

r(S∗t , xt, θ)− r(St, xt, θ) = O

(
α

|St|
∑
i∈St

||xt||V̄ −1
i,t

)
.

Then, summing over t gives the final regret upper bound.
Lower bound on regret. An immediate question is, what is the lower bound for the

regret of our online personalized assortment optimization problem? We note that Chen
et al. (2018a) derive a lower bound for a similar problem with different formulation. They
formulate the information for each product i ∈ N as a D′ dimensional vector with all
products sharing a common parameter vector. To derive their lower bound, Chen et al.
(2018a) assume N = Ω(2D

′
), which, translating to our problem, would require N =

Ω(2ND). This is clearly not satisfied in our setting when N is large. In contrast to the lower
bound in Chen et al. (2018a), we have the following lower bound for our problem.

Theorem 3.3.2 Suppose D ≥ 4, N ≥ DK, T ≥ NDmax{1, 1/R2}/144, for each al-

gorithm π, there exists an instance of the personalized assortment selection problem, such

that

Rπ(T ) ≥ C
√
DNT/K,

where C is a universal constant.

This result implies that the regret of P-UCB algorithm is tight with respect to the time
horizon T . But there is some gap in terms of N,K,D (that are typically small compared
with T in real applications). We mark this gap as an opportunity for future research.

3.3.3 OLP-UCB: A faster algorithm with online Newton step

In each iteration t of the P-UCB algorithm, the maximum likelihood estimator θ̂t is com-
puted with computational time polynomial in N,D and iteration index t. When t becomes
large, the calculation of θ̂t using all data prior to time t becomes slow. Indeed, in many
applications there can be millions of customers in just a few hours, as seen from the Ya-
hoo! example discussed in the introduction section. To overcome this, we develop another
algorithm in which the computational cost in each iteration t is constant (i.e., independent
of t), and its regret is comparable to that of P-UCB.

The idea of the new algorithm is borrowed from the so-called online-to-confidence set
method introduced in Abbasi-Yadkori et al. (2012). Briefly, in each period t, the algorithm
calculates an estimated parameter θ̄t using an online learning algorithm (in this chapter, we
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use an online Newton step). Using parameters θ̄t, we construct another estimator θ̌t, which
will be shown to satisfy that, for any δ > 0 and i ∈ N ,

||θ̌i,t − θi||V̄i,t = O
(
K3/2

√
ND log(T/δ)

)
holds with probability at least 1 − δ. This allows us to use online learning algorithm to
create a small confidence bound for the parameter (this is precisely the reason that such a
method is referred to as online-to-confidence set method). Since this algorithm is based
on applying an Online (OL) Newton step to the P-UCB algorithm, we call it OLP-UCB
algorithm.

Compared with the P-UCB algorithm, the new algorithm OLP-UCB is different only
in the parameter estimation step. That is, in Step 1, the estimated parameter is calculated
based on a sequence of outputs from an online Newton step.

Online Newton (OL-NEW) step. To motivate, we note that the maximum likelihood
estimator θ̂t is obtained by minimizing the negative log-likelihood function

min
t−1∑
s=1

ls(φ, Ys), where

ls(φ, Ys) = log

(
1 +

∑
j∈Ss

ex
′
sφi

)
−
∑
j∈Ss

Yi,sx
′
sφi,

(3.7)

subjecting to constraint φ ∈ Θ, where Ys := (Yi,s : i ∈ N ) represents the customer’s
choice at time s. The computational cost of optimization problem (3.7) clearly depends
on t, which can be expensive as data accumulate, implying that we cannot make quick
decisions when t is large.

To accelerate the computation, we note that optimization problem (3.7) is amenable
for online convex optimization (see e.g., Hazan et al. 2016). That is, every time when the
new data {xt, St, Yt} arrives, we update the estimated parameter θ̄t+1 using the parameter
θ̄t in the previous iteration and the new available data. There are many online learning
algorithms in the literature that can be adopted to solve this problem, among which we
choose the so-called online Newton step as an illustrative example. To update the parameter
using online Newton step, we first define

xi,s := ei ⊗ xs ∈ RND, (3.8)

where ⊗ is the Kronecker product and ei ∈ RN is the unit vector with the entry at location
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i being 1 and others 0. Also, define

V̄t :=I + Vt ∈ RND×ND,

Vt :=
t−1∑
s=1

∑
i∈Ss

xi,sxi,s′/|Ss| ∈ RND×ND.
(3.9)

From these definitions, we can see that V̄t is a matrix with blocks V̄i,t for i ∈ N on its
diagonal. Then, the online Newton step updates the parameter recursively by

θ̄0
i,t+1 =θ̄i,t −

κ2K + 2κ+ 1

κ
V̄ −1
t+1

∑
i∈St

∂ilt(z̄t, Yt)xi,t, (3.10)

where z̄′t = (z̄i1,t,t, . . . , z̄i|St|,t,t) with z̄i,t = x′tθ̄i,t and i1,t < i2,t < · · · < i|St|,t are the
indices of products in St. With a slight abuse of notation lt(z̄t, Yt) = lt(θ̄t, Yt) is also a
function of z̄t, and we let ∂ilt(z̄t, Yt) denote the partial derivative of lt with respect to z̄i,t.
Clearly, after this update θ̄0

t+1 may be out of range, so a typical approach is to project it
onto the feasible set Θ by

θ̄t+1 = arg min
φ∈Θ

||φ− θ̄0
t+1||V̄t+1

, (3.11)

where the solution is unique because V̄t+1 is positive definite and Θ is convex and compact.
We refer to (3.10) and (3.11) as the Online Newton (OL-NEW) step, which is summa-

rized in the block.

Algorithm 4 The OL-NEW Step

Require: Time period t; Matrix V̄t+1; Data in time period t: {xt, St, Yt}; Updated param-
eter θ̄t in last period.

1: Step 1. Update Parameter. Update θ̄0
t+1 according to

θ̄0
t+1 = θ̄t −

κ2K + 2κ+ 1

κ
V̄ −1
t+1

∑
i∈St

∂ilt(z̄t, Yt)xi,t,

which is defined in (3.10).
Go to Step 2.

2: Step 2. Projection and Output. Project θ̄0
t+1 onto Θ to obtain the final updated

parameter θ̄t+1 by
θ̄t+1 = arg min

φ∈Θ
||φ− θ̄0

t+1||V̄t+1
.

Then we output θ̄t+1.
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Online-to-Confidence Set. In the OL-NEW step, a stream of parameters θ̄1, θ̄2, . . . are
generated. However, we do not directly take each θ̄t as the estimated parameter to obtain a
small confidence bound. Instead, we define

zzz′t :=

(
z̄′1√
|S1|

, . . . ,
z̄′t−1√
|St−1|

)
, (3.12)

and let XXX t be a matrix with
∑t−1

s=1 |Ss| rows and ND columns such that its rows (from the
first to last) are

x′i1,1,1/
√
|S1|, . . . , x′i|S1|,1,1

/
√
|S1|, x′i1,2,2/

√
|S2|, . . . , x′i|S2|,2,2

/
√
|S2|,

. . . , x′i|St−1|,t−1,t−1/
√
|St−1|.

That is, the (
∑l−1

s=1 |Ss|+ k)-th row of the matrix is x′ik,l,l/
√
|Sl|. Then, we define

θ̌0
t := V̄ −1

t XXX ′tzzzt ∈ RND.

Note that the computational cost of θ̌0
t at each time t is independent of t because

XXX ′tzzzt = XXX ′t−1zzzt−1 +
∑
i∈St−1

z̄i,t−1xi,t−1/|St−1|.

Hence the additional computation in iteration t is from
∑

i∈St−1
z̄i,t−1xi,t−1/|St−1|. Our

final estimator is then defined by projection

θ̌t := arg min
φ∈Θ

||φ− θ̌0
t ||V̄t .

The detailed OLP-UCB algorithm is presented in the block.

The following result presents the theoretical performance of OLP-UCB algorithm, which
is similar to that of P-UCB (except the factor

√
K and some constants).

Theorem 3.3.3 Let α = cK3/2
√
DN log(T/δ)) where c is some positive constant, then

with probability at least 1− δ, the regret of algorithm OLP-UCB is

T∑
t=1

(r(S∗t , xt)− r(St, xt)) = O(α
√
DNT log T ).
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Algorithm 5 The OLP-UCB Algorithm
Require: confidence bound α.

1: Step 0. Initialization. Choose assortment S1 ∈ S randomly and offer to customer at
time t = 1. Let θ̌1 ∈ Θ and θ̄1 ∈ Θ be selected uniformly randomly. Go to Step 1 with
time t = 2.

2: Step 1.1. Online Newton step. Given data in t− 1: V̄t, {xt−1, St−1, Yt−1}, θ̄t−1, apply
algorithm OL-NEW and output θ̄t. Update z̄′t = (z̄i1,t, . . . , z̄i|Ss|,t) with z̄i,t = x′tθ̄i,t and
i1, . . . , i|St| represents the indices of products in St.

3: Step 1.2. Parameter Estimation. Compute the estimator θ̌0
t := V̄ −1

t XXX ′tzzzt, where zzzt is
given by (3.12), and XXX t is a matrix with

∑t−1
s=1 |Ss| rows and ND columns such that

each row is x′i,s/
√
|Ss|. Then define

θ̌t := arg min
φ∈Θ

||φ− θ̌0
t ||V̄t .

4: Step 2. Assortment Selection. Select assortment St according to

St ∈ arg max
S∈S

r̂t(S, xt, θ̌t),

where r̂t(S, xt, θ̌t) is defined in (3.5).
Let t = t+ 1 and go to Step 1. The algorithm stops when the end of time horizon

is reached.

Taking δ = 1/T , the expected regret of the algorithm can be written compactly as

E

[
T∑
t=1

(r(S∗t , xt)− r(St, xt))

]
= Õ(DNK3/2

√
T ).

3.4 Solving High Dimensional Problem via Random
Projection

In real world applications of online personalized assortment optimization, customer’s per-
sonal information data can have high dimension (i.e., D is extremely large). Take online
shopping website as an example. The clicking/purchasing history of a customer can be rep-
resented by a vector of binary variables, in which each entry corresponds to a product of-
fered on the website. If a customer has clicked/purchased a specific product before (within
certain period of time), the corresponding entry of that product is marked as 1; otherwise
it is 0. Since online shopping websites, such as Amazon.com and Taobao.com (the largest
global C2C shopping website owned by Alibaba Group), contain millions of products, it
is conceivable that the vector of historical data has extremely high dimension. This high
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dimensionality of the personal information data (in particular, the historical data) leads to at
least two issues for the decision maker. First, if demand estimation is applied using generic
high dimensional data, the theoretical performance of the learning algorithms (e.g., results
in Theorem 3.3.1 and Theorem 3.3.3) is bad because of large D. Second, the computation
(even for a simple computation like vector addition or matrix-vector multiplication) using
high dimensional data becomes very inefficient.

To gain some understanding of the structure of personal information data, we have
conducted a data analysis of a real dataset of customers’ purchasing records from Alibaba
Group1. This dataset contains the purchasing records from 424, 170 customers and 372, 740

products with time spanned from May to November in 2014. Although this dataset indi-
cates that customer’s personal information data has a dimension of at least 372, 740, most
customers purchased very few products. In particular, data show that the most popular
product was purchased by 3145 customers (< 0.8% of all customers), and a majority of
the products (99% of the products) were purchased by fewer than 106 customers (< 0.03%

of all customers). Furthermore, the most active shopper purchased 606 products (only
< 0.17% of all products), and more than 99% of the customers purchased fewer than 31

products (< 0.009% of all products). Refer to Figure 3.2 for a graphic representation of
this sparsity structure. We can see that the two histograms are extremely skewed to the sce-
nario that the number of buyers/items is very small, implying that the customer’s (historical
purchasing) data is sparse.

From the example above, we see that although the data is extremely high dimensional, it
is quite sparse. Therefore in this section, we assume high dimensional sparse data, and ad-
dress the question that whether one can make personalized assortment decision effectively
(i.e., to maximize revenue) and efficiently (i.e., with low computational complexity). To
this end, we make the following assumption on the problem, which reflects the observation
from the real data. Here the notation xt;k represents the k-th entry of vector xt.
Assumption 1. There exist some nonnegative integers d0, L such that for any k > d0, the
data satisfy |{xt;k 6= 0 : t ∈ T }| ≤ L.

This sparsity assumption requires that for all but d0 features in the vector xt, at most L
customers have nonzero entries. For example, in our data analysis above in Figure 3.2(b),
this means that most of the items are purchased/clicked by relatively few users. This as-
sumption is different from sparsity of vectors xt. It can be argued that, when vectors xt
are sparse, i.e., all but a few xt for t ∈ T are sparse, there exist some d0 and L, which are
small compared with D and T , such that the above assumption is satisfied. To see that,
suppose for ease of discussion all xt are sparse, i.e., each xt has at most, say, a non-zero

1The dataset is publicly available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=47
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(a) Number of items each user purchased

(b) Number of users who purchased each item

Figure 3.2: Histogram of number of items each user purchased and number of users who
purchased each item

entries, where a is small compared with D and aT/D is small compared with T . When all
the non-zeros of xt are for the same features, then it becomes our model with d0 = a and
L = 0; while in the other extreme case that the non-zeros of xt are evenly allocated to the
features, then each column of data matrix (with rows as x′t for t ∈ T ) will have at most
aT/D non-zero elements, which is equivalent to our model with d0 = 0 and L = aT/D.
Generally, i.e., at most a elements in xt are nonzero and they form the rows of matrix X ,
since the total number of nonzero entries for all columns is at most aT , if there are at most
d0 columns with more than L nonzero entries, then we have d0L ≤ aT . Thus, if we let
d0 = dD/me for some positive number m, then we have L ≤ dmaT/De.
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Our approach and analysis differ from the existing literature on high dimensional esti-
mation using LASSO (see e.g., Tibshirani 1996, Bastani and Bayati 2015, Ban and Keskin
2017). First, LASSO theory typically assumes that the underlying parameter θ is sparse,
which cannot be verified in reality as they are not known a priori; we assume sparsity of
customers’ data which is observable to the firm. Second, LASSO is computationally ineffi-
cient, hence failing to address the challenge of high computational cost. In this chapter, we
apply a dimensionality reduction approach known as random projection (see e.g., Kaban
2015 for an introduction) to tackle this problem. Briefly, we project the high dimensional
data into a low dimensional space such that all computations (e.g., parameter estimation)
are performed in the low dimensional space. This dimension reduction obviously accel-
erates the computation, especially as the projection of data can be performed before the
algorithm starts because the firm has access to the database. Nonetheless, we will show
that the error caused by random projection is not significant when the data is sparse, and
that the performance of the new algorithm is very good.

It is worth noting that there are other methods of dimension reduction. For instance,
Chapelle and Li (2011) use principal component analysis (PCA, see e.g., Jolliffe 2011 for
an overview) to preprocess the high dimensional data into low dimensional vectors, and
then apply a common learning approach to the low dimensional data. However, to the best
of our knowledge, there exist no research in the literature on the effect of these dimension
reduction methods on the regret of online learning algorithms; thus this study will be the
first to fill this gap.

Note that although xt is assumed to be sparse, the indices of nonzero entries of each xt
are usually different. Thus the unknown vector θ has to be learned using all the cumulative
data xt. By Assumption 1, there is a dense portion in each xt, so a simple dimension
reduction method is to only keep the dense portion and ignore the sparse part. In our
numerical study, we will also test the performance of this simple heuristic based on a real
dataset, in Section 3.5.3.

Random projection. Let M ∈ R(d0+d)×D be a random matrix whose entry at row k

and column l is Mk,l, where d� D is a positive integer to be specified later. Let Mk,k = 1

and Mk,l = 0 for k 6= l and k and l no more than d0, and Mk,l = 0 for k ≤ d0, l > d0

or k > d0, l ≤ d0, For k, l > d0, Mk,l are i.i.d. sub-Gaussian random variables with mean
0 and variance 1/d. See Figure 3.3(a) for an illustration. Using random matrix M , we
project the high dimensional vector xt into low dimensional space of dimension d0 + d by
x̃t = Mxt. This projection keeps the dense portion (i.e., entries k ≤ d0) of each vector xt
unchanged, but projects the high dimensional sparse part to a d-dimensional space. Refer
to Figure 3.3 for an illustration of the random matrix and projection.
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(a) Block structure of matrix M using
Gaussian distribution as an example

(b) How matrix M projects xt to x̃t

Figure 3.3: A graph representation of random projection matrix M

With the projected (d0 + d)-dimensional data x̃t, we apply the OLP-UCB algorithm
from the previous section to solve this low-dimensional problem. We refer to this OLP-
UCB algorithm based on random projection (RP) as OLP-UCB-RP algorithm.

For brevity, we will not repeat the entire algorithm here, but only highlight the differ-
ences with the original algorithm. First of all, let ε ∈ (0, 1) be an input parameter related
to the random projection error with projected dimension d. Then define

Θ̃i := {φ ∈ Rd0+d : ||φ||2 ≤
√

1 + εR}, Θ̃ :=
N⊗
i=1

Θ̃i.

Next, let

W̄i,t := (1 + ε)I +Wi,t,

Wi,t :=
∑
s∈Ti(t)

x̃tx̃
′
t/|Ss|

be the empirical Fisher’s information matrix for all i ∈ N in the projected space. Then
algorithm OL-NEW and OLP-UCB are applied in the projected space in that all xt are
replaced by projected x̃t (and XXX t and zzzt are changed to their projected version X̃XX t and z̃zzt
respectively), V̄i,t replaced with W̄i,t for all i ∈ N and t ∈ T , and θ̄t and θ̌t are computed
in the low dimensional feasible set Θ̃.

Before presenting the theoretical result on the performance of OLP-UCB-RP algorithm,
we make the following technical assumption. Let xt;>d0 denote the sparse portion of xt, i.e.,
xt;>d0 = (xt;k : k > d0).
Assumption 2. There exists a constant γ > 0 such that |x′t;>d0

θi;>d0| ≥ γ||xt;>d0||2||θi;>d0||2
for all i ∈ N and t ∈ T .

Geometrically, this assumption requires that the cosine of the angle between xt;>d0 and
θi;>d0 be at least γ, so the two vectors are not orthogonal to each other. In our problem, this
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assumption implies that the information corresponding to the sparse portion of xt is useful
for all products i ∈ N and time t ∈ T . If this assumption is not satisfied, e.g., imagine
that for most t ∈ T with xt;>d0 6= 0, we have |x′t;>d0

θi;>d0| = 0, then the sparse portion
xt;>d0 can be ignored for i and the parameter θi is reduced to θi;≤d0 . We remark that, it is
possible to relax Assumption 2 such that for each i ∈ N , some xt violate this assumption,
and a modified performance bound can be obtained. However, for ease of presentation, we
shall assume Assumption 2 holds for all i and t. In Section 3.5.3, we will test the algorithm
using a real dataset when the entire sparse portion is dropped.

The theoretical performance of the algorithm using random projection is given in the
following result.

Theorem 3.4.1 Let α = cK3/2
√
N(ε/γ

√
L+

√
(d0 + d) log(T/δ)) where c is some posi-

tive constant, and d ≥ 8 log(8TN/δ)/ε2, then with probability at least 1− 5δ, the regret of

algorithm OLP-UCB-RP is

T∑
t=1

(r(S∗t , xt)− r(St, xt)) = O(ε/γ
√
LNT + α

√
(d+ d0)NT log T ).

In a more compact form, by letting δ = 1/T , we have

E

[
T∑
t=1

(r(S∗t , xt)− r(St, xt))

]
=Õ(ε/γNK3/2

√
(d0 + d)LT + (d0 + d)NK3/2

√
T ).

By Theorem 3.4.1, the regret of OLP-UCB-RP algorithm has two parts: the first part
O(ε/γ

√
LNT ) is the regret from projection, while the second partO(α

√
(d+ d0)NT log T )

is regret from the projected low dimensional space. For convenience we shall call them pro-
jection regret and projected space regret, respectively. We shall prove Theorem 3.4.1 by
separately analyzing these two regrets.

3.5 Numerical Experiments

In this section, we present the results for several numerical experiments on our algo-
rithms. To demonstrate their performances, we use the MNL-Bandit algorithm proposed in
Agrawal et al. (2017a) as a benchmark.

This section consists of three parts. In Section 3.5.1, an illustrative synthetic dataset is
used to simulate the customers’ selection behavior, and all algorithms are tested according
to this simulation. Besides showing the effectiveness of P-UCB and OLP-UCB algorithms,
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another purpose of this experiment is to show that OLP-UCB, that has slightly worse theo-
retical performance but runs much faster, performs nearly as good as P-UCB numerically.
In Section 3.5.2, we test all algorithms using a real dataset provided by Yahoo!. Because
of the similarity in numerical performance between P-UCB and OLP-UCB algorithms as
shown in Section 3.5.1, we will only test OLP-UCB on the real data due to its efficiency
in computation (as the real dataset is quite large). A method developed by Li et al. (2011)
will be used to estimate the unbiased performance of an online learning algorithm when ap-
plied in real life setting. Finally in Section 3.5.3, we test the performance of OLP-UCB-RP
algorithm on high dimensional personal data.

3.5.1 Numerical experiments with synthetic data

The synthetic dataset is generated as follows. Let the length of time horizon T = 10, 000,
and the original dimension of dataD = 6. Each xt is generated randomly such that xt;1 = 1

for all t ∈ T , and the rest of xt;k are drawn uniformly from [−1, 1]. For the products, we
let N = 10 and K = 4 with prices pi ∈ [0, 1] chosen uniformly for all i ∈ N . Each θi;k is
drawn uniformly from [0, 1]. After generating all the data, we normalize all xt to ||xt||2 ≤ 1

and all θi to ||θi||2 ≤ R = 10.
We run each algorithm for 30 experiments, and take their average as the output. Note

that both P-UCB and OLP-UCB need a tuning parameter c (or equivalently, α). Param-
eter tuning for machine learning algorithms is nontrivial and extensive research has been
conducted on this topic (for example, Bayesian optimization has been used for parameter
tuning, see e.g., Snoek et al. 2012, Frazier and Wang 2016). In this chapter, we choose
the tuning parameter c such that α = 0.5 ad-hoc for both algorithms. Note that except
the regret, we also use another metric called percentage revenue loss for each algorithm π

defined as
Lπ(T ) :=

Rπ(T )

J∗(T )
× 100%,

which is the percentage of revenue loss compared with the clairvoyant optimal solution.

P-UCB OLP-UCB MNL-Bandit
Mean 0.19% 0.22% 0.56%
Standard deviation 0.09% 0.03% 0.04%

Table 3.1: Mean and standard deviation of percentage revenue loss for all algorithms

The results are shown in Figure 3.4 (the blue dashed line is for P-UCB; the yellow
dotted line is for OLP-UCB; the green solid line is for MNL-Bandit), with the mean and
standard deviation of the percentage revenue loss for each algorithm given in Table 3.1.

80



(a) Cumulative regrets (b) Percentage revenue loss

Figure 3.4: Cumulative regrets and percentage revenue loss for different algorithms.

From these results, we can see that both P-UCB and OLP-UCB algorithms, whose per-
formances are quite close to each other, significantly outperform the benchmark algorithm
(MNL-Bandit) that ignores customers’ data. The standard deviation of percentage revenue
loss for our algorithms show that they are also very robust. In terms of computational time,
when t = 10, 000, the average computational time (of one time period) for OLP-UCB is
0.4105 seconds (compared with 0.0165 seconds when t = 100) on a personal laptop (Pro-
cessor: Intel(R) Core(TM) i7-4600M CPU @ 2.90 GHz 2.90 GHz; RAM: 8GB; System
type: 64-bit Operating System, x64-based processor), while for OLP-UCB, it is constantly
around 0.0021 seconds independently of t. Because P-UCB and OLP-UCB have perfor-
mances very close to each other but OLP-UCB is computationally much faster, we will
focus on OLP-UCB in the next subsection on our experimentation with real data.

3.5.2 Numerical experiments with real data

How to obtain the true (unbiased) performance of a new algorithm in a real setting without
implementing the algorithm on site? This is a difficult but important question. Fortunately,
Li et al. (2010) developed a method which achieves this using real historical data. But for
their method to work, the real data has to satisfy a strong “uniformly random selection”
condition. In this subsection, we use a dataset from Yahoo! that satisfies the required
condition; therefore it can be used to demonstrate the performance of our algorithms in the
real life setting.

The method is described as follows. Suppose we have a dataset of {(xt, Ŝt, ît)| t =

1, . . . , T} where xt is the context, Ŝt is the offered assortment, and ît is the customer’s
choice. The selling price of product i is pi. We aim to study the performance of a new
learning algorithm, say OLP-UCB, using this dataset. For each t = 1, 2, . . . , given xt in
period t as the input, suppose our learning algorithm suggests decision St. If St 6= Ŝt, then
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this data sample is ignored and we move to t+ 1; otherwise, our algorithm collects revenue
pît from customer choosing ît, and this data sample (xt, Ŝt, ît) is included as the outcome
of the learning algorithm. Let N(T ) denote the total number of data samples matched by
the algorithm, then the revenue accumulated from these matched samples represents the
revenue of the learning algorithm from N(T ) periods. Li et al. (2011) proved that, if for
each xt the assortment Ŝt in the dataset was selected uniformly randomly from all possible
choices, then the revenue generated according to this process replicates the revenue of our
algorithm in the real setting with no bias. We point out that this method has been applied
in studying the performance of bandit algorithms using real data in, e.g., Li et al. (2010),
Strehl et al. (2010), Li et al. (2011), May et al. (2012).

Description of the dataset. Yahoo! provided us with such a dataset which is called
Yahoo! Front Page Today Module User Click Log Dataset, version 2.0. This dataset con-
tains users’ clicking reactions to recommended news articles on the front page of Yahoo!’s
website from 10/2/2011 to 10/16/2011. In this dataset, each row is a user visit, e.g., in the
following row “1317513291 id-560620 0 | user 1 9 11 13 23 16 18 17 19 15 43 14 39 30
66 50 27 104 20 | id-552077 | id-555224 | · · · | id-565822”, each entry has the following
meaning:

• Time-stamp: 1317513291

• Displayed article ID: id-560620

• User action: 0 (representing that user did not click article id-560620, and 1 for click)

• The string “user” indicates the start of user’s feature xt

• User features: each user has a feature of 136 binary variables; each number after the
string “user” represents the index of nonzero entry in the feature

• The remaining | id-552077 | id-555224 | · · · | id-565822 is the set of article candidates
that can be recommended

To assess the performance of our algorithms, we select around 340, 000 rows from the
dataset in 10/09/2011, with each row having explicit feature information. We note that for
this day, 32 articles (i.e., N = 32) are constantly available to offer to users, and in this
dataset only one article is recommended (i.e., K = 1). As stated in the Yahoo!’s website2,
the recommended “articles were chosen uniformly at random”, thus allows us to obtain
unbiased evaluation of our algorithms.

2https://webscope.sandbox.yahoo.com\catalog.php?datatype=r. Accessed July 17, 2019.
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The measure we use to evaluate an learning algorithm is the average clicking through
rate (CTR) which is defined as the ratio between the total number of clicks observed by
the learning algorithm and the total number of recommendations (excluding those ignored
by the process because of unmatched recommendation). As indicated in the previous sub-
section, we will only test OLP-UCB because of its computational efficiency (especially
given that the number of customers in this dataset is large and the feature dimension 136 is
moderately high). For parameter tuning, after a few simple tries (i.e., using a small fraction
of data for testing different α), we set α = 0.01. Besides the benchmark MNL-Bandit al-
gorithm, we also plot the results of uniformly random selection algorithm which is exactly
how the item was recommended to each customer in this dataset.

Figure 3.5: CTR for different algorithms.

The results of the CTR for different algorithms are shown in Figure 3.5. The yellow
dotted line is for OLP-UCB; the green solid line is for MNL-Bandit; the red dash-dotted
line is for uniformly random selection algorithm. Note that the largest number 340,000 is
the number of customers (rows) we tested over the several hours of the day. According
to the experiment result, the uniformly random selection algorithm (which is what was
applied in reality) has an overall CTR equal to 2.97%; MNL-Bandit algorithm slightly
improves the result and has overall CTR equal to 3.15% (a 6.06% increase from the CTR of
uniformly random selection algorithm); our algorithm OLP-UCB has the best performance
with overall CTR equal to 4.15%, which is 39.73% higher than uniformly random selection
algorithm and 31.75% higher than MNL-Bandit algorithm.
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3.5.3 Numerical experiments for high dimensional data

In this section, we present the numerical results of OLP-UCB-RP algorithm on high dimen-
sional data. For parameter tuning, we simply choose the same c as in the low dimensional
case, and let the projected dimension d = 30 as an illustrating example. In addition to
comparing with the MNL-Bandit algorithm, we also compare the results with OLP-UCB
using original data (i.e., personalized high dimensional data before projection).

The synthetic dataset is generated as follows. The length of time horizon is T =

10, 000, and the original dimension of data D = 1, 001. For each xt, let xt;1 = 1 so
the first entry is 1; for the rest of its entries k > 1, we let xt;k = 0 with probability 0.9
and xt;k = 1 with probability 0.1. This construction guarantees the sparsity in that each
xt has roughly 10% of its entries not equal to zero. For all customers t ∈ T , we assume
that there are in general two different groups of customers (with equal probability). Specif-
ically, for the first group, if k ∈ {2, . . . , 501}, each nonzero xt;k = 1 with probability 0.9,
and xt;k = −1 with probability 0.1; if k ∈ {502, . . . , 1001}, each nonzero xt;k = −1

with probability 0.9, and xt;k = 1 with probability 0.1. For the second group, the nonzero
xt;k ∈ {±1} in the reverse manner, i.e., they are equal to 1 with probability 0.1 and -1
with probability 0.9 for k ∈ {2, . . . , 501} and the opposite for k ∈ {502, . . . , 1001}. This
synthetic customers’ data can be considered as in the following example. A music/movie
recommendation website has two genres of contents, A and B, that are dramatically dif-
ferent, to recommend to customers. The website has access to customers’ rating history of
similar contents, with 1 representing “like” for that content, −1 representing “dislike”, and
0 representing no rating history. In xt, xt;k for k ∈ {2, . . . , 501} represent similar contents
for genre A, and k ∈ {502, . . . , 1001} represent similar contents for genre B. Obviously,
customers in the first group have more positive ratings for genre A and negative ratings for
genre B; customers in the second group have the opposite opinion. Again, we normalize
the xt to ||xt||2 ≤ 1.

For the products, we let N = 10 and K = 4, with price pi ∈ [0, 1] chosen uniformly
for all i ∈ N again as in Section 3.5.1. As in the example above, these 10 products
belong to two genres A and B. Suppose products i = 1, . . . , 5 belong to genre A, and
products i = 6, . . . , 10 belong to genre B. For a product of genre A, we let θi;k be uniformly
from [1, 0] for all k ∈ {2, . . . , 501}, and θi;k generated uniformly from [−1, 0] for all
k ∈ {502, . . . , 1001}. For product i belonging to genre B, θi is generated oppositely.
Finally, we let θi;1 be generated from [−1, 1] uniformly for all i ∈ N . Again, we normalize
the θi to ||θi||2 ≤ R = 10.

The numerical results are summarized in Table 3.2. As seen, OLP-UCB-RP achieves
an average percentage revenue loss rate of 2.53% at the end of horizon, which is signifi-
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T = 1000 T = 3000 T = 6000 T = 10000

Mean Std Mean Std Mean Std Mean Std

OLP-UCB-RP 4.38% 0.49% 3.32% 0.46% 2.81% 0.46% 2.53% 0.46%
OLP-UCB 1.9% 0.33% 1.20% 0.17% 1.04% 0.12% 1.02% 0.09%

MNL-Bandit 7.39% 0.27% 7.23% 0.11% 7.20% 0.07% 7.15% 0.04%

Table 3.2: Percentage revenue loss for different algorithms

cantly lower than the 7.15% of the MNL-Bandit algorithm. It can be seen that OLP-UCB,
that uses the original high dimensional data, achieves a better percentage revenue loss rate
numerically. Indeed, the purpose of OLP-UCB-RP is to yield good performance in a short
computational time. The average computational time for each time period t of OLP-UCB-
RP is only 0.0027 seconds (on the same personal laptop as in the previous subsection),
while for OLP-UCB it is 1.5125 seconds. This implies that OLP-UCB-RP will be a pre-
ferred option in real applications when the problem dimension becomes extremely high.

We further test OLP-UCB-RP using the real dataset in Section 3.5.2. In this setting, the
dense portion of xt is picked such that for each entry xt;k, at least 40% of the time t have
xt;k 6= 0; since the dimension of xt is 136, which is not very high, we choose the projected
dimension d = 10 as an illustrating example. Besides OLP-UCB-RP, we also test another
benchmark named as OLP-UCB-Dense, which is just applying OLP-UCB on the dense
portion of xt (i.e., the sparse portion of each xt is completely ignored). The reason to add
this benchmark is to test whether the information in the sparse portion of xt can help in
decision making, or it introduces too much noise for making better decisions.

The numerical results are depicted in Figure 3.6. Compared with Figure 3.5, Figure
3.6 also includes results for OLP-UCB-RP (blue dashed line) and OLP-UCB-Dense (black
solid line with mark). According to these results, the overall CTR of OLP-UCB-RP is
4.15%, which is almost the same as OLP-UCB. Moreover, OLP-UCB-Dense achieves an
overall CTR 3.88%, which is worse than that of OLP-UCB-RP and OLP-UCB. This implies
that the sparse portion of the data does help with maximizing the overall CTR. Therefore,
we recommend practitioners to include sparse data using dimension reduction method in-
stead of ignoring them.

3.6 Sketches of Proofs

In this section we only outline the main steps in the proofs of Theorem 3.3.1 and Theorem
3.4.1, while leaving the technical details in a series of lemmas, together with the proof
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Figure 3.6: CTR for different algorithms.

of lower bound result, i.e., Theorem 3.3.2, in the section of proofs. Since the proof of
Theorem 3.3.3 is similar to that of Theorem 3.3.1 (with the only difference being the upper
bound for ||θ̌i,t − θi||V̄i,t which is established in Lemma 3.7.5 in the section of proofs), we
will omit it for brevity.

3.6.1 Outline of proof of Theorem 3.3.1

The cumulative regret can be expressed as

R(T ) =
T∑
t=1

(
r(S∗t , xt, θ)− r(St, xt, θ)

)
.

We define the event

E0 :=
{
||θi − θ̂i,t||V̄i,t ≤ k1K

√
DN log(NT/δ),∀i ∈ N , t ∈ T

}
for some constant k1. This is the event that the MLE is close to the true parameter esti-
mated, and in Lemma 3.7.1 in the section of proofs, we will show that it occurs with high
probability, or P(E0) ≥ 1−δ for any δ > 0. This allows us to construct an upper confidence
bound which is crucial for regret analysis.
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Conditioning on E0, we have that for all i ∈ N and t ∈ T ,

|ex′tθ̂i,t − ex′tθi | ≤ κ|x′tθ̂i,t − x′tθi| ≤ κ||θi − θ̂i,t||V̄i,t||xt||
−1
V̄i,t
≤ α||xt||−1

V̄i,t
,

where the second inequality follows from Cauchy-Schwarz and the last inequality is from
event E0 with our choice of α (by taking c ≥ κk1). As a result, v̂i,t(xt, θ̂i,t) ≥ exp(x′tθi) for
all i ∈ N , t ∈ T . This implies that

r(S∗t , xt, θ)− r(St, xt, θ) =r(S∗t , xt, θ)− r̂t(St, xt, θ̂t) + r̂t(St, xt, θ̂t)− r(St, xt, θ)

≤r̂t(St, xt, θ̂t)− r(St, xt, θ)

=

∑
i∈St piv̂i,t(xt, θ̂i,t)

1 +
∑

i∈St v̂i,t(xt, θ̂i,t)
−
∑

i∈St pie
x′tθi

1 +
∑

i∈St e
x′tθi

≤
∑

i∈St pi(v̂i,t(xt, θ̂i,t)− e
x′tθi)

1 +
∑

i∈St e
x′tθi

≤
2α
∑

i∈St pi||xt||V̄ −1
i,t

1 +
∑

i∈St e
x′tθi

≤2αmaxi∈N pi
κ|St|

∑
i∈St

||xt||V̄ −1
i,t
,

where the first inequality is from Lemma A.3 in Agrawal et al. (2017a) and the optimality
of St with respect to objective function r̂t(S, xt, θ̂t), and the second and third inequalities
are from event E0 such that

v̂i,t(xt, θ̂i,t) ≥ exp(x′tθi), and exp(x′tθ̂i,t)− exp(x′tθi) ≤ α||xt||V̄ −1
i,t
.

In Lemma 3.7.3 in the section of proofs, we will show that∑
t∈T

∑
i∈St

||xt||V −1
i,t
/|St| = O(

√
DNT log T ).

This leads to

T∑
t=1

(r(S∗t , xt, θ)− r(S∗t , xt, θ)) = O
(
α
√
DNT log T

)
.

The proof of Theorem 3.3.1 is thus complete.
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3.6.2 Outline of proof of Theorem 3.4.1

We split the regret into two parts: the projection regret, and the projected space regret. To
that end, we define

θ̃i := Mθi, θ̃′ = (θ̃1, . . . , θ̃N).

Then

R(T ) =
T∑
t=1

(r(S∗t , xt, θ)− r(St, xt, θ))

=
T∑
t=1

(r(S∗t , xt, θ)− r(S∗t , x̃t, θ̃)) +
T∑
t=1

(r(St, x̃t, θ̃)− r(St, xt, θ))

+
T∑
t=1

(r(S∗t , x̃t, θ̃)− r(St, x̃t, θ̃)).

(3.13)

The first two terms on the right hand side is the projection regret, and the third term is the
projected space regret.

Projection regret. Define the event

E1 :=
{
||θ̃i||2 ≤

√
1 + εR, ||x̃t||2 ≤

√
1 + ε, ∀i ∈ N , t ∈ T

}
. (3.14)

In Lemma 3.7.8 of the section of proofs, we show that this event holds with probability at
least 1 − δ when d ≥ 8 log((N + T )/δ)/ε2. This E1 essentially means that θ̃i and x̃t are
still in a bounded region after random projection. As a result, on E1

r(St, x̃t, θ̃)− r(St, xt, θ)

=

∑
i∈St pie

x̃′tθ̃i(1 +
∑

i∈St e
x′tθi)−

∑
i∈St pie

x′tθi(1 +
∑

i∈St e
x̃′tθ̃i)

(1 +
∑

i∈St e
x̃′tθ̃i)(1 +

∑
i∈St e

x′tθi)

=

∑
i∈St pie

x̃′tθ̃i
∑

i∈St(e
x′tθi − ex̃′tθ̃i)− (1 +

∑
i∈St e

x̃′tθ̃i)
∑

i∈St pi(e
x′tθi − ex̃′tθ̃i)

(1 +
∑

i∈St e
x̃′tθ̃i)(1 +

∑
i∈St e

x′tθi)

≤2 max
i∈N

pi

∑
i∈St |e

x′tθi − ex̃′tθ̃i |
1 +

∑
i∈St e

x′tθi
≤ 2 maxi∈N pi

κ|St|
∑
i∈St

|ex′tθi − ex̃′tθ̃i |

≤2 maxi∈N piκ
2

κ|St|
∑
i∈St

|x′tθi − x̃′tθ̃i|

where the last inequality is by Taylor’s theorem and event E1 such that exp(x̃′tθ̃i) ≤ exp(2R) =
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κ2. Summing over t yields

T∑
t=1

(r(St, x̃t, θ̃)− r(St, xt, θ)) ≤
2 maxi∈N piκ

2

κ

T∑
t=1

∑
i∈St

1

|St|
|x′tθi − x̃′tθ̃i|.

Now we define the second event

E2 :=
{
|x′tθi − x̃′tθ̃i| ≤ ε/γ|x′t;>d0

θi;>d0|2, ∀i ∈ N , t ∈ T
}
. (3.15)

In Lemma 3.7.9 of the section of proofs, we will show that event E2 holds with probability
at least 1− δ when d ≥ 8 log(TN/δ)/ε2. Then on this event, we have

T∑
t=1

(r(St, x̃t, θ̃)− r(St, xt, θ)) ≤
2 maxi∈N piκ

2

κ

ε

γ

T∑
t=1

∑
i∈St

1

|St|
|x′t;>d0

θi;>d0 |

≤2 maxi∈N piκ
2

κ

ε

γ

√√√√T
T∑
t=1

∑
i∈St

1

|St|
|x′t;>d0

θi;>d0|2,

where the first inequality is by the definition of even E2, and the last inequality is from
Cauchy-Schwarz. Since xt;>d0 is the sparse portion of context xt, its inner product with
θi;>d0 can be bounded above, using Cauchy-Schwarz, by

|x′t;>d0
θi;>d0| ≤ ||xt;Bt||2||θi;Bt ||2 ≤ ||θi;Bt||2,

where Bt := {k > d0 : xt;k 6= 0} is the support of the sparse portion of xt. Thus, we have

T∑
t=1

(r(St, x̃t, θ̃)− r(St, xt, θ)) ≤
2 maxi∈N piκ

2

κ

ε

γ

√√√√T

T∑
t=1

∑
i∈St

1

|St|
||θi;Bt||22

≤2 maxi∈N piκ
2

κ

ε

γ

√
T
∑
i∈N

∑
t∈Ti

||θi;Bt ||22

≤2Rmaxi∈N piκ
2

κ

ε

γ

√
LNT,

where the last inequality follows from the sparsity assumption on xt.
Similar upper bound can be derived for

∑T
t=1(r(S∗t , xt, θ) − r(S∗t , x̃t, θ̃)) and we omit
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the details. As a result, the projection error can be bounded as

T∑
t=1

(r(S∗t , xt, θ)− r(S∗t , x̃t, θ̃)) +
T∑
t=1

(r(St, x̃t, θ̃)− r(St, xt, θ)) = O
(
ε/γ
√
LNT

)
.

(3.16)
Projected space regret. We next bound

∑T
t=1(r(S∗t , x̃t, θ̃)− r(St, x̃t, θ̃)). To this end,

we first define the event

E3 :=
{
||θ̃i − θ̂i,t||V̄i,t ≤ k′1K

3/2(ε/γ
√
LN +

√
N(d0 + d) log(NT/δ)), ∀i ∈ N , t ∈ T

}
for some constant k′1. Then it follows from Lemma 3.7.10 in the section of proofs that
event E3, on the events E1 and E2, holds with probability at least 1− δ. This event leads to
an upper confidence bound which will be essential for our regret analysis.

The following derivations are all on the event E1, E3. On these events, we have that for
all i ∈ N and t ∈ T ,

|ex̃′tθ̂i,t − ex̃′tθ̃i | ≤ κ2|x̃′tθ̂i,t − x̃′tθ̃i| ≤ κ2||θ̃i − θ̂i,t||V̄i,t||x̃t||V̄ −1
i,t
≤ α||x̃t||V̄ −1

i,t
,

where the second inequality follows from Cauchy-Schwarz, and the last inequality is from
event E3 and appropriate choice of α (in particular, c). As a result, v̂i,t(x̃t, θ̂i,t) ≥ exp(x̃′tθ̃i)

for all i ∈ N , t ∈ T , and

r(S∗t , x̃t, θ̃)− r(St, x̃t, θ̃) =r(S∗t , x̃t, θ̃)− r̂t(St, x̃t, θ̂t) + r̂t(St, x̃t, θ̂t)− r(St, x̃t, θ̃)

≤r̂t(St, x̃t, θ̂t)− r(St, x̃t, θ̃)

=

∑
i∈St piv̂i,t(x̃t, θ̂i,t)

1 +
∑

i∈St v̂i,t(x̃t, θ̂i,t)
−
∑

i∈St pie
x̃′tθ̃i

1 +
∑

i∈St e
x̃′tθ̃i

≤
∑

i∈St pi(v̂i,t(x̃t, θ̂i,t)− e
x̃′tθ̃i)

1 +
∑

i∈St e
x̃′tθ̃i

≤
2α
∑

i∈St pi||x̃t||V̄ −1
i,t

1 +
∑

i∈St e
x̃′tθ̃i

≤2αmaxi∈N pi
κ|St|

∑
i∈St

||x̃t||V̄ −1
i,t
,

where the first inequality is from Lemma A.3 in Agrawal et al. (2017a) and the optimality
of St with respect to objective function r̂t(S, x̃t, θ̂t), and the second and third inequalities
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follow from event E3 such that

v̂i,t(x̃t, θ̂i,t) ≥ exp(x̃′tθ̃i), exp(x̃′tθ̂i,t)− exp(x̃′tθ̃i) ≤ α||x̃t||V̄ −1
i,t
.

By Lemma 3.7.3 from the section of proofs modified to projected space, we have∑
t∈T

∑
i∈St

||x̃t||V −1
i,t
/|St| = O(

√
(d0 + d)NT log T ).

Consequently,

T∑
t=1

(r(S∗t , xt, θ)− r(S∗t , x̃t, θ̃)) = O
(
α
√

(d0 + d)NT log T
)
. (3.17)

Then, combining (3.13), (3.16), and (3.17) gives us the desired result.
Note that the analysis above is based on three events E1, E2, E3. In the section of proofs

we will prove that each of E1 and E2 holds with probability at least 1 − δ, and E3 holds
with probability at least 1− δ given E1 ∩ E2. Theorem 3.4.1 is then proved by union bound
of (complements of) these events and applying law of total expectation (with δ = 1/T for
example).

3.7 Proofs of Technical Results

This section provides all the proofs. Subsection 3.7.1 includes the technical results used in
the proof of Theorem 3.3.1. Subsection 3.7.2 presents the proof of regret lower bound in
Theorem 3.3.2. Subsection 3.7.3 derives the confidence bound used in proving Theorem
3.3.3. And finally, Subsection 3.7.4 contains some results for the proof of Theorem 3.4.1.

3.7.1 Technical lemmas for Theorem 3.3.1

Lemma 3.7.1 Let δ > 0 be an arbitrary positive real number, for all t ∈ T ,

||θ̂t − θ||V̄t ≤ k1K
√
ND log(NT/δ)

for some constant k1 with probability at least 1− δ.
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Proof: Define the negative log-likelihood function at time period s as

ls(φ) := log

(
1 +

∑
i∈Ss

ex
′
sθi

)
−
∑
i∈Ss

Yi,sx
′
sθi. (3.18)

Then a maximum likelihood estimator θ̂t defined in (3.3) is also a minimum of the negative
log-likelihood functionLt(φ) := − logL(φ|Ft−1) =

∑t−1
s=1 ls(φ), i.e., θ̂t ∈ arg minφ∈Θ Lt(φ).

Consider at time s, the gradient of negative log-likelihood function∇ls(φ) is equal to

∇ls(φ) =
∑
i∈Ss

(qi,s(φ)− Yi,s)xi,s, (3.19)

where qi,s(φ) = exp(x′i,sφ)/(1 +
∑

j∈Ss exp(x′j,sφ)). We can compute its Hessian as

∇2ls(φ) =
(1 +

∑
j∈Ss e

x′j,sφ)
∑

i∈Ss e
x′i,sφxi,sx

′
i,s − (

∑
i∈Ss e

x′i,sφxi,s)(
∑

i∈Ss e
x′i,sφxi,s)

′

(1 +
∑

j∈Ss e
x′j,sφ)2

�
∑

i∈Ss e
x′i,sφxi,sx

′
i,s

(1 +
∑

j∈Ss e
x′j,sφ)2

=
∑
i

qi,s(φ)

(1 +
∑

j∈Ss e
x′j,sφ)

xi,sx
′
i,s,

(3.20)

where the inequality is from Jensen’s inequality. Here the notation A � B means that
A−B is a positive semidefinite matrix. Since θ̂t is an optimizer of the likelihood function,
we must have

0 ≥Lt(θ̂t)− Lt(θ)

=∇Lt(θ)′(θ̂t − θ) + (θ̂t − θ)′∇2Lt(θ̄t)(θ̂t − θ)

≥
t−1∑
s=1

∑
i∈Ss

(qi,s(θ)− Yi,s)x′i,s(θ̂t − θ) +
t−1∑
s=1

∑
i∈Ss

qi,s(θ̄t)

(1 +
∑

j∈Ss e
x′j,sθ̄t)

(x′i,s(θ̂t − θ))2,

where the equality is by Taylor’s theorem with θ̄t being some point on the line segment
connecting θ̂t and θ, and the second inequality is from (3.19) and (3.20). Now we analyze
the two terms in the last summation separately. First, we consider the second term. We
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have

t−1∑
s=1

∑
i∈Ss

qi,s(θ̄t)

(1 +
∑

j∈Ss e
x′j,sθ̄t)

(x′i,s(θ̂t − θ))2 ≥ κ

4κ2K

t−1∑
s=1

∑
i∈Ss

1

|Ss|
(x′i,s(θ̂t − θ))2

=
κ

4κ2K
||θ̂t − θ||2Vt

=
κ

4κ2K
||θ̂t − θ||2V̄t −

κ

4κ2K
||θ̂t − θ||22,

where the first inequality is from boundedness of parameters and xs and definition of κ, κ
in (3.2). For the first term, we have

t−1∑
s=1

∑
i∈Ss

(qi,s(θ)− Yi,s)x′i,s(θ̂t − θ) =−
t−1∑
s=1

∑
i∈Ss

εi,sx
′
i,s(θ̂t − θ)

≥− |Zt|,

where

Zt :=
t−1∑
s=1

∑
i∈Ss

εi,sx
′
i,s(θ̂t − θ). (3.21)

By Lemma 3.7.2, we have

|Zt| ≤k2

(
DN log(NT/δ) +

√
DN log(NT/δ)||θ̂t − θ||V̄t

)
for all t ∈ T with probability at least 1 − δ, where k2 is some constant. Combining the
results above, we have

κ

4κ2K
||θ̂t − θ||2V̄t −

κ

4κ2K
||θ̂t − θ||22 ≤ |Zt|,

which is equivalent to

||θ̂t − θ||2V̄t ≤
4κ2K

κ
|Zt|+ ||θ̂t − θ||22.
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Now plugging in the value of (upper bound of) |Zt|, we obtain, after some algebra,

||θ̂t − θ||V̄t ≤
4κ2K

κ
k2

√
DN log(NT/δ)

+

√
4κ2K

κ
k2DN log(NT/δ) + 2R

≤k1K
√
DN log(NT/δ)

for some constant k1 for all t ∈ T . This completes the proof of Lemma 3.7.1. �

Lemma 3.7.2 With probability at least 1− δ, for all t ∈ T ,

|Zt| ≤ k2

(
DN log(NT/δ) +

√
DN log(NT/δ)||θ̂t − θ||V̄t

)
for some constant k2.

Proof: Define

Zt(φ) :=
t−1∑
s=1

∑
i∈Ss

εi,sx
′
i,s(φ− θ).

Then it suffices to prove that with probability at least 1− δ,

|Zt(φ)| ≤ k2

(
DN log(NT/δ) +

√
DN log(NT/δ)||φ− θ||Vt

)
hold uniformly for all t ∈ T and φ ∈ Θ.

Let
Ms(φ) :=

∑
i∈Ss

εi,sx
′
i,s(φ− θ),

which form a martingale difference sequence for s ≤ t− 1 satisfying

||Ms(φ)||2 ≤ 4R.

Then we have

E[M2
s (φ)|Fs−1] =

∑
j∈Ss

qj,s(θ)(x
′
j,s(φ− θ))2 −

(∑
j∈Ss

qj,s(θ)x
′
j,s(φ− θ)

)2

≤
∑
j∈Ss

qj,s(θ)(x
′
j,s(φ− θ))2

≤κ/κ
∑
j∈Ss

1

|Ss|
(x′j,s(φ− θ))2,
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which implies that, noting the definition of Vt in (3.9),

t−1∑
s=1

E[M2
s (φ)|Fs−1] ≤ κ/κ||φ− θ||2Vt =: Wt(φ).

According to Theorem A in Fan et al. (2015), we must have that for any φ ∈ Θ and δ′ > 0,

P

(
|
t−1∑
s=1

Ms(φ)| > k3

(
4R log(1/δ′) +

√
Wt(φ) log(1/δ′)

))
< δ′

for some constant k3. Now we consider a finite coveringH(υ) of Θ such that for any φ ∈ Θ,
there exists a φ̄ ∈ H(υ) with ||φ − φ̄||2 ≤ υ (υ to be specified). Following the standard
covering number argument (see e.g., Van der Vaart 1998), we must have log |H(υ)| ≤
k4ND log(R/υ) for some constant k4. As a result, let δ′ = δ/(T (R/υ)k4DN), by a simple
union bound, we have that with probability at least 1− δ, for any t ∈ T , φ̄ ∈ H(υ),

|
t−1∑
s=1

Ms(φ̄)| ≤ k5

(
DN log(TR/(υδ)) +

√
Wt(φ̄)DN log(TR/(υδ))

)
(3.22)

for some constant k5. On the other hand, for any two φ, φ̄ such that ||φ − φ̄||2 ≤ υ, some
simple algebra shows that

|
∑
s

Ms(φ)−
∑
s

Ms(φ̄)| ≤ 2tυ. (3.23)

Applying Taylor’s theorem, we obtain

|Wt(φ)−Wt(φ̄)| ≤ 2κ||Vt(φ− θ)||2||φ− φ̄||2 ≤ 4κRNtυ, (3.24)

where φ is some point between φ, φ̄.
Let υ = min(1/(2T ), 1/(4κRNT )), with probability at least 1−δ, for arbitrary φ ∈ Θ,

let φ̄ ∈ H(υ) be the one in covering such that ||φ − φ̄||2 ≤ υ, we have that, noting
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Zt(φ) =
∑

sMs(φ),

|Zt(φ)| ≤|Zt(φ̄)|+ |Zt(φ̄)− Zt(φ)|

≤k′5
(
DN log(NT/δ) +

√
Wt(φ̄)DN log(NT/δ)

)
+ 1

≤k′5
(
DN log(NT/δ) +

√
(Wt(φ) + |Wt(φ)−Wt(φ̄)|)DN log(NT/δ)

)
+ 1

≤k2

(
DN log(NT/δ) +

√
DN log(NT/δ)||φ− θ||Vt

)
,

where k′5 is some constant, the second inequality is from (3.22) and (3.23) with definition
of ν, and the last inequality is from (3.24) with definition of ν. �

Lemma 3.7.3 For an arbitrary sequence of xt such that ||xt||2 ≤ 1 and St, we have∑
t∈T

∑
i∈St

||xt||V −1
i,t
/|St| = O(

√
DNT log T ).

Proof: By Cauchy-Schwarz, we have

∑
t∈T

∑
i∈St

||xt||V −1
i,t
/|St| ≤

√
T
∑
t∈T

∑
i∈St

||xt||2V −1
i,t

/|St|. (3.25)

Note that

det(V̄t+1) = det

(
V̄t +

∑
i∈St

xi,tx
′
i,t/|St|

)

= det(V̄t) det

(
I +

∑
i∈St

V̄
−1/2
t xi,t(V̄

−1/2
t xi,t)

′/|St|

)
.

Since ∑
i∈St

V̄
−1/2
t xi,t(V̄

−1/2
t xi,t)

′/|St|

is a positive semidefinite matrix with rank at most |St|, we assume without loss of generality
that its eigenvalues are λ1 ≥ . . . ≥ λ|St|, which are all nonnegative (note that if |St| > D,
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we let λk = 0 for any k > D). Then,

det

(
I +

∑
i∈St

V̄
−1/2
t xi,t(V̄

−1/2
t xi,t)

′/|St|

)

=

|St|∏
k=1

(1 + λk)

≥1 +

|St|∑
k=1

λk

=1 + tr

(∑
i∈St

V̄
−1/2
t xi,t(V̄

−1/2
t xi,t)

′/|St|

)
=1 +

∑
i∈St

||xi,t/
√
St||2V̄ −1

t

=1 + ||Xt||2V̄ −1
t
,

where

Xt :=
∑
i∈St

xi,t/
√
|St|.

As a result, by an iterative argument, we obtain that

det(V̄T+1) ≥ det(I)
T∏
s=1

(
1 + ||Xs||2V̄ −1

s

)
,

which is equivalent to

log det(V̄T+1) ≥ log det(I) +
T∑
s=1

log
(

1 + ||Xs||2V̄ −1
s

)
.

Since ||Xt||2 ≤
√∑

i∈Ss ||xt||
2
2/|St| ≤ 1, we must have ||Xs||2V̄ −1

s
≤ 1. Because x ≤

2 log(1 + x) for all x ∈ [0, 1], it follows that 2 log
(

1 + ||Xs||2V̄ −1
s

)
≥ ||Xs||2V̄ −1

s
. Conse-

quently,

T∑
s=1

||Xs||2V̄ −1
s
≤ 2 log det(V̄T+1)− 2 log det(I) ≤ 2DN log(1 + T/D),

where the last inequality is from Lemma 10 in Abbasi-Yadkori et al. (2011), and this, by
plugging in (3.25), completes the proof. �
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3.7.2 Proof of Theorem 3.3.2 on lower bound

The proof is to connect our problem to an ordinary MNL bandit instance. To do that, we
first split the time horizon T into D− 1 groups. In each group, we have T ′ = dT/(D− 1)e
time periods (except the last group). Index these D − 1 groups by g = 1, . . . , D − 1.

The first step to create the bandit problem instance is to construct the sequence of xt.
Let xt;k = 1 for all k = dt/T ′e and t ∈ T ; otherwise, xt;k = 0. This construction is
legitimate in two aspects. First, for any t, k such that xt;k = 1, we must have k ≤ D since
k = dt/T ′e ≤ dT/T ′e ≤ D − 1 so that the index is within the range of D. Second, we
obviously have ||xt||2 = 1 for all t ∈ T .

The second step is to create θi for all i ∈ N . We set θi;k = log(1 + ε) for all i ∈ N
and k = 1, . . . , D such that di/Ke = k. Otherwise θi;k = 0. To better understand this
construction, we have for i = 1, . . . , K, θi,1 = log(1 + ε); for i = K + 1, . . . , 2K,
θi,2 = log(1+ε);. . . ; for i = (D−1)K, . . . , DK, θi,D = log(1+ε). Again, this construction
is legitimate because N ≥ DK, and by taking ε =

√
N/(144T ′), we have ||θi||2 ≤ ε ≤ R

because T ≥ ND/(144R2).
We say that a time period t belongs to group g if dt/T ′e = g. By the construction of

xt and θ above, we have that for all time periods in each group g, the optimal assortment
is exactly i = (g − 1)K + 1, . . . , gK. So for each group g, we have an independent MNL
bandit instance in that the utility for products in optimal assortment are exactly ex′tθi = 1+ε,
and otherwise it is 1. Then by taking value of ε =

√
N/(144T ′), and since N ≥ 4K (by

assumption) and T ′ ≥ N/144 (since T ≥ ND/144), we apply results in Corollary 3.7.1,
to be proved below, to obtain that the expected regret of each group is bounded below by√
NT ′/(324K). As a result, the expected regret of our problem is at least

(D − 2)

√
NT ′

324K
= Ω

(√
DNT

K

)
,

and we obtain the desired result.
Adopting the techniques in Chen and Wang (2017), we derive a lower bound for MNL

bandit problem when each vi are bounded and independent of K. The construction used in
Chen and Wang (2017) assumes vi = Θ(1/K), and it does not fit our case since we assume
all parameters are bounded and independent of K. To resolve this issue, we consider the
following problem instance. Let S∗ be an assortment with |S∗| = K, we construct the
bandit instance as vi = 1 + ε for all i ∈ S∗ where ε is to be specified; otherwise vi = 1. For
all products, pi = 1. Then we have the following result similar to Theorem 1 of Chen and
Wang (2017), from which Theorem 3.3.2 follows.
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Proposition 3.7.1 For bandit problems with parameters N,K, T , suppose N/4 ≥ K and

T ≥ N/144, then for any policy π,

E[Rπ(T )] ≥
√
NT/K

324
,

where the expectation is taken with respect to both the randomness of the problem and the

uniformly generated optimal assortment S∗.

Proof: The proof is very similar to that of Theorem 1 in Chen and Wang (2017), with
the only difference being vi ∈ {1, 1 + ε} while vi ∈ {1/K, (1 + ε)/K} in Chen and Wang
(2017). Therefore, we will only discuss the parts that are different.

Using notation in Chen and Wang (2017), we let ES∗ [·] denote the expectation given
optimal assortment S∗ with S∗ ∈ SK := {S ∈ S : |S| = K}, and rv(S) denote the
expected revenue of assortment S given utility parameters v. Following the proof of Lemma
1 in Chen and Wang (2017), we can get that in our problem instance, for arbitrary St with
|St| = K,

rv(S
∗)− rv(St) ≥

δε

9K
,

where δ = 1 − |S∗ ∩ St|/K. Then following Chen and Wang (2017) and noting that
Ti := Ti(T ) in this chapter is equivalent to Ni in Chen and Wang (2017), we obtain

E[Rπ(T )] =
1

|SK |
∑
S∗∈SK

ES∗ [rv(S
∗)− rv(St)]

≥ ε

9K

(
T − 1

|SK |
∑
S∗∈SK

1

K

∑
i∈S∗

ES∗ [Ti]

)
.

(3.26)

The next step is to find an upper bound of 1
|SK |

∑
S∗∈SK

1
K

∑
i∈S∗ ES∗ [Ti]. Following the

same argument, we obtain that

1

|SK |
∑
S∗∈SK

1

K

∑
i∈S∗

ES∗ [Ti] ≤
1

K

∑
i∈N

1

|SK |
∑

S′∈S(i)
K−1

(
ES′ [Ti] + T

√
1

2
KL(P ||Q)

)

≤T
3

+
T

K

∑
i∈N

1

|SK |
∑

S′∈S(i)
K−1

√
1

2
KL(P ||Q),

(3.27)

where
S(i)
K−1 := {S ∈ SK−1 : i 6∈ S}, P = PS′ , Q = PS′∪{i}
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are the distribution generated by the algorithm given optimal assortment S ′, S ′ ∪ {i}, and
KL(·||·) is the Kullback-Leibler (KL) divergence. Now we need to bound the KL diver-
gence, and the upper bound is proved in Lemma 2 in Chen and Wang (2017). The results
will be slightly different, so we present the process here. First, for any St with |St| ≤ K

and i 6∈ St, the KL divergence of each period t conditioned on St is zero. So we only
focus on t such that i ∈ St. Define K ′ = |St| and J = |St ∩ S ′|, we must have that the
probabilities a customer chooses product j ∈ St ∪ {0} at time t under P,Q are

pj =
vj

1 +K ′ + Jε
,

qj =
vj

1 +K ′ + (J + 1)ε
.

Therefore,

|p0 − q0| =
∣∣∣∣ 1

1 +K ′ + Jε
− 1

1 +K ′ + (J + 1)ε

∣∣∣∣ ≤ ε

(1 +K ′)2
.

For j ∈ St such that j 6= i,

|pj − qj| ≤ (1 + ε)

∣∣∣∣ 1

1 +K ′ + Jε
− 1

1 +K ′ + (J + 1)ε

∣∣∣∣ ≤ 2ε

(1 +K ′)2
.

Then we obtain

|pi − qi| =
∣∣∣∣ 1

1 +K ′ + Jε
− 1 + ε

1 +K ′ + (J + 1)ε

∣∣∣∣ ≤ 2ε

(1 +K ′)
.

Note that qj ≥ 1/(2(1 +K ′)) for all j. Following Lemma 3 in Chen and Wang (2017), we
have

KL(P (·|St)||Q(·||St)) ≤
2ε2

(1 +K ′)3
+

8(K ′ − 1)ε2

(1 +K ′)3
+

8ε2

(1 +K ′)
≤ 16ε2

1 + |St|
,

which gives us

KL(P ||Q) ≤ ES′

 ∑
t∈Ti(T )

16ε2

1 + |St|

 .
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Then following the analysis in Section 3.4 of Chen and Wang (2017), we have

T

K

∑
i∈N

1

|SK |
∑

S′∈S(i)
K−1

√
1

2
KL(P ||Q) ≤T max

S′∈SK−1

√
1

2(N −K + 1)

∑
i 6∈S′

KL(P ||Q)

≤T max
S′∈SK−1

√√√√ 1

2(N −K + 1)

∑
i∈N

ES′

[∑
t∈Ti

16ε2

1 + |St|

]

=T max
S′∈SK−1

√√√√ 1

2(N −K + 1)
ES′

[∑
t∈T

∑
i∈St

18ε2

1 + |St|

]

≤T max
S′∈SK−1

√
16ε2T

2(N −K + 1)
≤ T

√
16ε2T/N.

Combining this inequality with (3.26) and (3.27), we have that

E[Rπ(T )] ≥ ε

9K

(
2T

3
− T

√
16ε2T/N

)
.

Taking ε =
√
N/(144T ) ≤ 1, we obtain the desired result. �

3.7.3 Online Newton Step for Theorem 3.3.3

The proof of Theorem 3.3.3 is a simple combination of Theorem 3.3.1 and the following
result on the confidence bound of θ̌t.

Lemma 3.7.4 The regret of online Newton step is bounded above by

β̄t = k6(d0 + d)NK2 log t+ k7/K

for some constant k6, k7. That is, for any t ∈ T ,

t∑
s=1

(
ls(θ̄s, xs)− ls(θ, xs)

)
≤ β̄t.

Proof: Note that ls(θ̄s, xs) can be expressed as a function of z̄i,s = x′sθ̄i,s for all i ∈ Ss
and Ys representing customer’s choice at time s, i.e.,

ls(θ̄s, xs) = ls(z̄s, Ys).
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Similarly, we can write
ls(θ, xs) = ls(zs, Ys),

where z′s = (zi1,s, . . . , zi|Ss|,s) with zi,s = x′sθi and i1, . . . , i|Ss| represent the indices of
products in Ss. One can verify that the Hessian of ls with respect to zs is

∇2
zls(zs, Ys) =

diag(ezs)(1 +
∑

i∈Ss e
zi,s)− ezs(ezs)′

(1 +
∑

i∈Ss e
zi,s)2

� diag(ezs)

(1 +
∑

i∈Ss e
zi,s)2

,

where (ezs)′ := (ezi1,s , . . . , e
zi|Ss|,s ), and diag(ezs) is a diagonal matrix with diagonal entries

ezs . The inequality above is from Jensen’s inequality. Let 1/Γs = κ/(1 + κ|Ss|)2 be the
lower bound of ezj,s

(1+
∑
i∈Ss e

zi,s )2 for all j ∈ Ss. We see that ls(zs, Ys) is a 1/Γs-strongly
convex function of zs, thus

ls(z̄s, Ys)− ls(zs, Ys) ≤∇ls(z̄s, Ys)′(z̄s − zs)−
1

2Γs
||z̄s − zs||22

=
∑
i∈Ss

∂ils(z̄s, Ys)(x
′
sθ̄i,s − x′sθi)−

|Ss|
2Γs

∑
i∈Ss

(x′sθ̄i,s − x′sθi)2/|Ss|

≤
∑
i∈Ss

∂ils(z̄s, Ys)(x
′
sθ̄i,s − x′sθi)−

1

2Γ0

∑
i∈Ss

(x′sθ̄i,s − x′sθi)2/|Ss|,

(3.28)

where ∂ils(z̄s, Ys) is the partial derivative with respect to z̄i,s, and Γ0 := (κ2K+2κ+1)/κ.
Note that by the updating rule in algorithm OL-NEW,

θ̄0
s+1 − θ = θ̄s − θ − Γ0V̄

−1
s+1

∑
i∈Ss

ci,sxi,s

where ci,s := ∂ils(z̄s, Ys). This implies

||θ̄0
s+1 − θ||2V̄s+1

= ||θ̄s − θ||2V̄s+1
− 2Γ0

∑
i∈Ss

ci,sx
′
i,s(θ̄s − θ) + Γ2

0||
∑
i∈Ss

ci,sxi,s||2V̄ −1
s+1
. (3.29)
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By the property of the generalized projection (Hazan et al. 2007), ||θ̄0
s+1−θ||2V̄s+1

≥ ||θ̄s+1−
θ||2

V̄s+1
. Combining with (3.29), we get

t∑
s=1

∑
i∈Ss

ci,sx
′
i,s(θ̄s − θ) ≤

t∑
s=1

Γ0

2
||
∑
i∈Ss

ci,sxi,s||2V̄ −1
s+1

+
t∑

s=1

1

2Γ0

(
||θ̄s − θ||2V̄s+1

− ||θ̄s+1 − θ||2V̄s+1

)
.

Note that the second sum on the right-hand side can be bounded as

t∑
s=1

1

2Γ0

(
||θ̄s − θ||2V̄s+1

− ||θ̄s+1 − θ||2V̄s+1

)
≤ 1

2Γ0

||θ̄1 − θ||2V̄2
+

t∑
s=2

1

2Γ0

(
||θ̄s − θ||2V̄s+1

− ||θ̄s − θ||2V̄s
)

=
1

2Γ0

||θ̄1 − θ||2V̄2
− 1

2Γ0

||θ̄1 − θ||2∑
i∈S1

xi,1x′i,1/|S1| +
t∑

s=1

1

2Γ0

||θ̄s − θ||2∑
i∈Ss xi,sx

′
i,s/|Ss|

=
1

2Γ0

||θ̄1 − θ||22 +
t∑

s=1

1

2Γ0

||θ̄s − θ||2∑
i∈Ss xi,sx

′
i,s/|Ss|

≤2R2/Γ0 +
t∑

s=1

1

2Γ0

||θ̄s − θ||2∑
i∈Ss xi,sx

′
i,s/|Ss|

,

where the first equality is from the definition of V̄s. Therefore, we have

t∑
s=1

∑
i∈Ss

ci,sx
′
i,s(θ̄s−θ) ≤

t∑
s=1

Γ0

2
||
∑
i∈Ss

ci,sxi,s||2V̄ −1
s+1

+k7/K+
t∑

s=1

1

2Γ0

||θ̄s−θ||2∑
i∈Ss xi,sx

′
i,s/|Ss|

for k7/K ≥ 2R2/Γ0. Rearranging this inequality, we have

t∑
s=1

∑
i∈Ss

ci,sx
′
i,s(θ̄s−θ)−

t∑
s=1

1

2Γ0

||θ̄s−θ||2∑
i∈Ss xi,sx

′
i,s/|Ss|

≤
t∑

s=1

Γ0

2
||
∑
i∈Ss

ci,sxi,s||2V̄ −1
s+1

+k7/K.

Combining with (3.28), we get

t∑
s=1

(ls(z̄s, Ys)− ls(zs, Ys)) ≤
t∑

s=1

Γ0

2
||
∑
i∈Ss

ci,sxi,s||2V̄ −1
s+1

+ k7/K

=
t∑

s=1

Γ0

2

∑
i∈Ss

c2
i,s||xs||2V̄ −1

i,s+1
+ k7/K,
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where the inequality follows from the definition of xi,s in (3.8) and V̄s in (3.9). To bound
the right-hand side of the inequality above, we note that c2

i,s = (qi,s(θ̄s)− Yi,s)2 ≤ 1, hence

t∑
s=1

Γ0

2

∑
i∈Ss

c2
i,s||xs||2V̄ −1

i,s+1
≤

t∑
s=1

Γ0|Ss|
2

∑
i∈Ss

||xs||2V̄ −1
i,s+1

/|Ss| ≤ k6DNK
2 log t

for some constant k6, where the last inequality is from the proof of Lemma 3.7.3 and the
fact that V̄i,s+1 � V̄i,s. As a result, we have

t∑
s=1

(ls(z̄s, Ys)− ls(zs, Ys)) ≤ k6DNK
2 log t+ k7/K = β̄t,

and the proof is complete. �

Lemma 3.7.4 presents the regret of the online Newton step with estimated parameters
θ̄s for s = 1, . . . , t. Note that these parameters are not directly used to construct the upper
confidence bounds. As seen in Section 3.3.3, θ̄s are used to construct another parameter θ̌t
and we need to prove that θ̌t has small confidence bound. The next lemma presents this
confidence bound result which is obtained based on the regret in Lemma 3.7.4.

Lemma 3.7.5 We have that with probability at least 1− δ, it holds that

||θ − θ̌t||V̄t ≤ ᾱT = O(K3/2
√
DN log(T/δ)).

Proof: By Taylor’s theorem and Lemma 3.7.4, we have

β̄t ≥
t∑

s=1

(ls(z̄s, Ys)− ls(zs, Ys)) ≥
t∑

s=1

∇ls(zs, Ys)′(z̄s − zs) +
t∑

s=1

1

2Γs
||z̄s − zs||22

=
t∑

s=1

∑
i∈Ss

(qi,s(θ)− Yi,s)x′s(θ̄i,s − θi) +
t∑

s=1

|Ss|
2Γs

∑
i∈Ss

(x′s(θ̄i,s − θi))2/|Ss|.

(3.30)

Since qi,s(θ)− Yi,s = −εi,s, we have∑
i∈Ss

(qi,s(θ)− Yi,s)x′s(θ̄i,s − θi) = −
∑
i∈Ss

εi,s.x
′
i,s(θ̄s − θ).

Let µi,s = x′i,s(θ̄s − θ). Then
∑t

s=1

∑
i∈Ss εi,sx

′
i,s(θ̄s − θ) =

∑t
s=1

∑
i∈Ss εi,sµi,s. Note

that for each s, we can write µ′s := (µi1,s, . . . , µi|Ss|,s) and ε′s := (εi1,s, . . . , εi|Ss|,s), where
i1, . . . , i|Ss| are the indices of products in Ss. Then we have

∑t
s=1

∑
i∈Ss εi,sµi,s =

∑t
s=1 ε

′
sµs.
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To develop a concentration inequality, we follow Theorem 7 and Corollary 8 in Abbasi-
Yadkori et al. (2012) to define

Dλ
t = exp(λε′tµt/2− λ2µ′tµt/2),

St =
t∑

s=1

ε′tµt,

Mλ
t = exp

(
λSt/2− λ2

t∑
s=1

µ′tµt/2

)
.

By the sub-Gaussianity of ε′tµt and |ε′tµt| ≤ 2 maxi∈St |µi,t|, we have, conditioning on
history,

E[Dλ
t ] ≤ exp(λ2 max

i∈Ss
|µi,t|2/2− λ2µ′tµt/2) ≤ 1.

Then following the proof of Theorem 7 and Corollary 8 of Abbasi-Yadkori et al. (2012),
we can show that for all t, with probability at least 1− δ,

t∑
s=1

∑
i∈Ss

εi,sx
′
i,s(θ̄s − θ) ≤ 2

√√√√√2

(
1 +

t∑
s=1

∑
i∈Ss

µ2
i,s

)
log

√√√√1 +
t∑

s=1

∑
i∈Ss

µ2
i,s/δ

. (3.31)

Combining (3.30) and (3.31), we have that with probability at least 1− δ, for all t ∈ T ,

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss| ≤k9Kβ̄t

+ k9K
3/2

√√√√√2

(
1 +

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss|

)
log

√√√√1 +
t∑

s=1

∑
i∈Ss

µ2
i,s/|Ss|/δ


for some constant k9. This implies, using Lemma 2 in Jun et al. (2017), that

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss| ≤ k10Kβ̄t + k10K

3 log(T/δ) (3.32)

for some constant k10. Then one can rewrite the above as

||z̄zzt −XXX tθ||22 ≤ k10Kβ̄t + k10K
3 log(T/δ)

⇐⇒||z̄zzt −XXX tθ||22 + ||θ||22 ≤ k10Kβ̄t + k10K
3 log(T/δ) + ||θ||22

=⇒||θ̌0
t − θ||2V̄t + ||z̄zzt||22 − (θ̌0

t )
′XXX ′tz̄zzt ≤ k10Kβ̄t + k10K

3 log(T/δ) +R2,
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where the last inequality is by

θ̌0
t = V̄ −1

t XXX ′tz̄zzt = arg min
φ
||z̄zzt −XXX tφ||22 + ||φ||22.

Note that from the definition of θ̌0
t andXXX ′tXXX t = Vt � V̄t, we have

||z̄zzt||22 − (θ̌0
t )
′XXX ′tz̄zzt ≥ 0.

Therefore,
||θ̌0

t − θ||2V̄t ≤ k10Kβ̄t + k10K
3 log(T/δ) +R2 =: ᾱ2

t .

Finally, we note the above inequality also holds by replacing θ̌0
t by θ̌t according to the

generalized projection property (Lemma 8 in Hazan et al. 2007). Thus the desired result is
proved. �

3.7.4 Technical lemmas for Theorem 3.4.1

In this subsection, we present the technical results used in the proof of Theorem 3.4.1. The
first two lemmas can be found in Kaban (2015).

Lemma 3.7.6 (Johnson-Lindenstrauss lemma) Let x be a vector in RD and M ∈ Rd×D

a random matrix with i.i.d. 0-mean subgaussian entries with parameter 1/d, then we have

P(||Mx||22 − ||x||22 > ε||x||22) < e−dε
2/8,

P(||Mx||22 − ||x||22 < −ε||x||22) < e−dε
2/8

for any ε ∈ (0, 1).

Lemma 3.7.7 (Dot product under random projection) Let x, y ∈ RD two arbitrary vec-

tors and M ∈ Rd×D a random matrix with i.i.d. 0-mean subgaussian entries with parame-

ter 1/d, then we have

P (〈Mx,My〉 − 〈x, y〉 > ε||x||2||y||2) < e−dε
2/8,

and

P (〈Mx,My〉 − 〈x, y〉 < −ε||x||2||y||2) < e−dε
2/8

for any ε ∈ (0, 1).

Lemma 3.7.8 We have that the event E1 defined in (3.14) holds with probability at least

1− δ if d ≥ 8 log((N + T )/δ)/ε2.
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Proof: This is actually a union bound using JL lemma (Lemma 3.7.6) applied on all θi
and xt. More specifically, we have

P

(⋃
i∈N

(
||θ̃i||22 > (1 + ε)||θi||22

)
∪
⋃
t∈T

(
||x̃t||22 > (1 + ε)||xt||22

))
≤
∑
i∈N

P
(
||θ̃i||22 > (1 + ε)||θi||22

)
+
∑
t∈T

P
(
||x̃t||22 > (1 + ε)||xt||22

)
<(N + T )e−dε

2/8,

where the second inequality is by union bound, and the third inequality is from Lemma
3.7.6. So when d ≥ 8 log((N + T )/δ)/ε2, we have that (N + T )e−dε

2/8 ≤ δ. �

Lemma 3.7.9 The event E2 defined in (3.15) holds with probability at least 1 − δ when

d ≥ 8 log(TN/δ)/ε2.

Proof: First, when xt;>d0 or θi;>d0 is equal to 0,

|〈xt, θi〉 − 〈x̃t, θ̃i〉| = 0 ≤ ε||xt;>d0||2||θi;>d0||2

holds trivially. So we focus on the case that xt;>d0 and θi;>d0 are nonzero. In this case, the γ
gap assumption implies that ||xt;>d0 ||2||θi;>d0||2 ≤ γ|x′t;>d0

θi;>d0|. Then the proof follows
almost identically as that in Lemma 3.7.8 except that we now apply the inner product error
of random projection in Lemma 3.7.7. �

Lemma 3.7.10 On event E1, E2, with probability at least 1− δ we have

||θ̃ − θ̌t||W̄t
≤ ᾱT = O

(
K3/2(

√
N(d0 + d) log(T/δ) + ε/γ

√
LN)

)
.

Proof: First of all, it is straightforward to check that results in Lemma 3.7.4 still hold
(with β̄t different only in constant factors) when θ is replaced by θ̃ and xt replaced by x̃t
because θ̃ix̃t are still bounded on event E1. Then by Taylor’s theorem, we have

β̄t ≥
t∑

s=1

(ls(z̄s, Ys)− ls(z̃s, Ys)) ≥
t∑

s=1

∇ls(z̃s, Ys)′(z̄s − z̃s) +
t∑

s=1

1

2Γs
||z̄s − z̃s||22

=
t∑

s=1

∑
i∈Ss

c̃i,sx̃
′
s(θ̄i,s − θ̃i) +

t∑
s=1

|Ss|
2Γs

∑
i∈Ss

(x̃′s(θ̄i,s − θ̃i))2/|Ss|,

(3.33)
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where

c̃i,s = q̃i,s(θ̃)− Yi,s = q̃i,s(θ̃)− qi,s(θ) + qi,s(θ)− Yi,s = q̃i,s(θ̃)− qi,s(θ)− εi,s.

As a result, we have∑
i∈Ss

c̃i,sx̃
′
s(θ̄i,s − θ̃i) =

∑
i∈Ss

(q̃i,s(θ̃)− qi,s(θ))x̃′i,s(θ̄s − θ̃)−
∑
i∈Ss

εi,sx̃
′
i,s(θ̄s − θ̃).

By a bit abuse of notation, we still let µi,s := x̃′i,s(θ̄s − θ̃). By Taylor’s theorem, we can
show that

t∑
s=1

∑
i∈Ss

(q̃i,s(θ̃)− qi,s(θ))x̃′i,s(θ̄s − θ̃)

=−
t∑

s=1

∑
i∈Ss

q̄i,s(µi,s −
∑
j∈Ss

q̄j,s)x
′
i,sθ +

t∑
s=1

∑
i∈Ss

q̄i,s(µi,s −
∑
j∈Ss

q̄j,sµj,s)x̃
′
i,sθ̃

=(B̃′1,tθ̃ −B′1,tθ)− (B̃′2,tθ̃ −B′2,tθ),

where q̄i,s is defined by finding a middle point between θ̃′ix̃i,s and θ′ixi,s for all i, s, and

B1,t :=
t∑

s=1

∑
i∈Ss

q̄i,sµi,sxi,s, B2,t :=
t∑

s=1

∑
i∈Ss

q̄i,sxi,s
∑
j∈Ss

q̄j,sµj,s.

Note that on event E1, q̄i,s ≤ (κ/κ)
√

2/|Ss|. So we have that

|B̃′1,tθ̃ −B′1,tθ| ≤
(
κ

κ

)√2 t−1∑
s=1

∑
i∈Ss

|µi,s|√
|Ss|
|x′i,sθ − x̃′i,sθ̃|√

|Ss|

≤
(
κ

κ

)√2

√√√√ t−1∑
s=1

∑
i∈Ss

µ2
i,s

|Ss|

√√√√ t−1∑
s=1

∑
i∈Ss

(x′i,sθ − x̃′i,sθ̃)2

|Ss|

≤
(
κ

κ

)√2

√√√√ t−1∑
s=1

∑
i∈Ss

µ2
i,s

|Ss|

√
ε2/γ2

∑
i∈N

∑
t∈Ti

||θi;Bt ||22

≤εκ
√

2R

κ
√

2γ

√
LN

√√√√ t−1∑
s=1

∑
i∈Ss

µ2
i,s

|Ss|
,

where the second inequality is by Cauchy-Schwarz, the third inequality is from the def-
inition of E2, and the last inequality is from the sparsity assumption. We can similarly
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show

|B̃′2,tθ̃ −B′2,tθ| ≤
εκ
√

2R

2κ
√

2γ

√
LN

√√√√ t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss|.

Thus, we obtain that on E1, E2, for all t ∈ T ,

∣∣∣∣∣
t∑

s=1

∑
i∈Ss

(q̃i,s(θ̃)− qi,s(θ))x̃′i,s(θ̄s − θ̃)

∣∣∣∣∣ ≤ κ
√

2εR/(κ
√

2γ)

√√√√LN

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss|.

The analysis of
∑t

s=1

∑
i∈Ss εi,sx̃

′
i,s(θ̄s − θ̃), is the same as that in Lemma 3.7.5 except

that, everything is in the projected space. We omit the details for brevity. As a result, like
what we did in Lemma 3.7.5, we have that

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss| ≤k′9K3/2

√√√√√2

(
1 +

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss|

)
log

√√√√1 +
t∑

s=1

∑
i∈Ss

µ2
i,s/|Ss|/δ


+ k′9Kβ̄t + 2κ

√
2εR/(κ

√
2γ)K

√√√√LN
t∑

s=1

∑
i∈Ss

µ2
i,s/|Ss|

for some constant k′9. Using Lemma 2 in Jun et al. (2017), we have that

t∑
s=1

∑
i∈Ss

µ2
i,s/|Ss| ≤ k′10Kβ̄t + k′10K

3 log(T/δ) + k′10K
2ε2LN/γ2

for some constant k′10. Then the rest of the proof just follows the steps after equation (3.32)
in Lemma 3.7.5.

�

3.8 Conclusion

With the rapid development of information technology, mass customization is becoming in-
creasingly popular in online retailing and online advertising, and personalized assortment
is one of the most important decisions for customization. In this chapter, we study an on-
line personalized assortment optimization problem, where customers’ preferences toward
products are not known a priori. To model customers’ preferences, we adopt the widely
accepted multinomial logit (MNL) model with unknown choice parameters. We design
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two adaptive algorithms that learn the demand on the fly. The first one, P-UCB, uses MLE
for parameter estimation and applies personalized UCB for assortment optimization in de-
mand exploration. We prove that the regret of P-UCB is at most Õ(DNK

√
T ). The second

algorithm, OLP-UCB, bears similar structure as P-UCB but applies an online convex op-
timization scheme for parameter optimization. OLP-UCB has a constant computational
time (in contrast to linearly increasing time of P-UCB) in each iteration, so it significantly
reduces computational cost when large historical data has been collected. With drastic
improvement in computational efficiency, we show that the OLP-UCB algorithm achieves
a regret of Õ(DNK3/2

√
T ). We then consider the online personalized assortment opti-

mization problem with high dimensional customers’ data. Motivated by our observation
of industry data that customers’ information has sparse structure, we apply random pro-
jection method to tackle the high dimensionality challenge, which significantly reduces
dimensionality and computational cost. The OLP-UCB-RP algorithm developed for high
dimensional problem achieves regret rate Õ(NK3/2

√
(d0 + d)LT + (d0 + d)NK3/2

√
T ),

where d0, L are parameters related to the data sparsity, and d (which is much smaller than
D) is the dimension of data after random projection.

There are several potential future research directions of this work. First, as we have
shown in Theorem 3.3.2, there are some gaps between the regret upper bound of our algo-
rithms and the regret lower bound. So closing these gaps will be a technical contribution
for online personalized assortment optimization problem. Another possible direction to
explore is alternative dimension reduction techniques in regret minimization. For example,
besides random projection method, principal component analysis (PCA) has been widely
used for dimension reduction. Analyzing the performance of learning algorithms with other
dimension reduction method such as PCA is an interesting research problem. Finally, in
this chapter we consider the case when customer choice follows an MNL model. Personal-
ized assortment optimization problem for other, and more general, choice models is worthy
of investigation.
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Chapter 4

Dynamic Joint Assortment and Pricing
Optimization with Demand Learning

4.1 Introduction

It is common in retailing, e-commerce and advertisement settings, that customers or users
are presented with a set of products simultaneously, known as an assortment, to induce
them to purchase. Due to system capacity (e.g., limited shelf space, budget constraint),
the firm can only display up to a certain number of products at a time. Thus, the firm has
to decide which assortment to offer at any time in order to maximize a certain objective
function (e.g., the number of clicks, expected revenue or profit). This is known as assort-
ment optimization. The assortment optimization problem has become an active research
area in the operations literature in recent years, especially with the increasing popularity of
online shopping. Equally important in retailing is dynamic pricing. Pricing enables firms
to increase revenue by better matching supply with demand and by responding quickly to
a demand pattern, and it also has attracted enormous research interest in the revenue man-
agement literature. We refer the reader to the comprehensive survey papers of Kök et al.
(2015) for assortment optimization and of Yano and Gilbert (2005) and Chen and Chen
(2015) for dynamic pricing.

Although both assortment optimization and dynamic pricing problems have been exten-
sively studied alone in the operations literature, there are relatively few papers on joint as-
sortment and pricing optimization. At the end of their survey paper, Kök et al. (2015) state
that “the joint pricing and assortment planning problem has not been studied in depth” and
list that as a future research direction. For some interesting studies on the joint optimization
of assortment planning and pricing, see Wang (2012), Jagabathula and Rusmevichientong
(2015) and the references therein (see Section 4.1.2 for more details).

Until recently, the majority of the existing literature on assortment optimization and/or
pricing are based on the assumption that the firm has exact prior knowledge about the
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demand distribution and customer choice behavior. This may not be true in many applica-
tions. For example, in the fast fashion industry, the random demand of products is affected
by both assortment and selling prices, but the extent to which the demand is affected may
not be precisely known at the start. Hence, it is important for the firm to understand how
customers make choices in order to dynamically set assortment and pricing decisions via
demand learning to maximize revenue.

In this chapter, we study the dynamic joint assortment optimization and pricing prob-
lem when customers follow the multinomial logit (MNL) choice model, but the choice
parameters are not known to the firm a priori. We choose the MNL model not only for
its computational tractability (see e.g., Ryzin and Mahajan 1999, Rusmevichientong et al.
2010, Wang 2012), but also for its practical significance (see Feldman et al. 2018 for a
recent field experiment result of assortment optimization using the MNL choice model).
Specifically, we consider a firm that sells N products over a planning horizon of T periods,
where T may or may not be known at the beginning. The firm can display up toK products
in an assortment at any time. There is exactly one arrival in each period that either buys a
product from the display, or leaves without any purchase. Therefore, a period can also be
considered as an arriving customer, and then T is interpreted as the total number of arrivals
in question. The objective of the firm is to maximize the expected total revenue over the
planning horizon. Not knowing the choice parameters in advance, the firm needs to learn
the demand information on the fly.

Intuitively, the firm has to spend sufficient time testing on each product in order to ade-
quately understand the customer’s taste to it. On the other hand, due to the finite planning
horizon, the more time the firm spends on demand learning (exploration), the less time
will be left for exploitation to extract revenue. Hence, the essence in achieving effective
demand learning is to strike a balance between exploration and exploitation. In this chapter
we design a learning algorithm that balances the trade-off between demand learning and
revenue extraction, and evaluate the performance of the algorithm using Bayesian regret,
which is the average (expected) revenue loss compared with a clairvoyant that has com-
plete information about customer choice parameters. We derive a theoretical upper bound
for the Bayesian regret of our algorithm, and it is independent of the specific choice pa-
rameters of the model. Numerical experiments are also conducted and the results show that
our algorithm outperforms the benchmarks. For brevity (and with some abuse of terms), in
this chapter if an algorithm has instance-independent performance upper bound, we will
say that this algorithm has instance-independent performance; otherwise, it has instance-
dependent performance.
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4.1.1 Main contributions of the chapter

The main contributions of this chapter are summarized as follows.

a) We present the first learning algorithm for dynamic joint assortment optimization
and pricing problem when customer choice follows the MNL model but choice pa-
rameters are not known a priori. The algorithm exploits the structure of the MNL
model using a concept of cycles introduced in Agrawal et al. (2017a), and it divides
the cycles into three distinct categories that are optimally designed for balancing
exploration and exploitation. The algorithm further incorporates Thompson Sam-
pling (see e.g., Russo and Van Roy 2014) in the appropriately defined, so-called,
“sufficiently tested and priced” cycles. We evaluate the algorithm using Bayesian
regret, and prove that it has an instance-independent Bayesian regret upper bound
O
(
N log (NT ) +

√
NT log(NT )

)
(Theorem 4.3.1). Numerical experiments show

that the algorithm exhibits excellent performance in terms of regret. In particular, the
algorithm is compared against several benchmarks, including a popular epsilon-First
algorithm (exploration then exploitation), a modified epsilon-First algorithm, and a
natural alternative of our algorithm based on parameter estimation. Our algorithm
outperforms the benchmarks in all numerical experiments.

b) We establish a concentration inequality for none i.i.d. sub-exponential random errors,
with stochastic contexts (Proposition 4.5.2). This concentration inequality plays a
pivotal role in establishing an important confidence bound of maximum likelihood
estimator which later leads to the Bayesian regret upper bound of our algorithm.
The concentration inequality extends a result of Abbasi-Yadkori et al. (2011) for
sub-Gaussian random errors (a stronger assumption than sub-exponential), and it is
expected to be useful in conducting regret analysis for other settings.

4.1.2 Related literature

We next review the related literature. Besides the literature on assortment optimization and
dynamic pricing, we will also discuss the relevant works in the area of multi-armed bandit

(MAB) problems. Following the literature, we use O(·) to denote the regret upper bound,
and use Ω(·) to denote the regret lower bound. We also use Õ(·) to represent the upper
bound which hides the logarithmic terms.

Static and dynamic assortment optimization. Assortment optimization has drawn
much attention in the operations literature especially in recent years. Traditional research
of assortment optimization focuses mainly on the static problem where the firm knows
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demand information a priori. Kök et al. (2015) is an extensive survey on static assortment
optimization problems. Thus here we only highlight some representative work. Ryzin
and Mahajan (1999) study a single period assortment optimization problem with the MNL
choice model. Assuming that the sale is lost whenever the customer finds that the product
he or she chooses is out of stock, they prove that the optimal assortment consists of a
certain number of the most popular products. When inventory planning is incorporated,
Goyal et al. (2016) prove that the static joint assortment and inventory planning problem
under dynamic substitution is NP-hard, and they present a polynomial-time approximation
algorithm. See Hopp and Xu (2008), Honhon et al. (2010) for analysis of similar problems.

Dynamic assortment optimization is another important class of revenue management
problem (see e.g., Aouad et al. 2018), and in particular, the problem with demand learn-
ing has attracted increasing interest in recent years. To the best of our knowledge, Caro
and Gallien (2007) are the first to study the dynamic assortment optimization problem.
The authors assume that the demand of each product is independent, and a Bayesian
updating is used to learn the demand information of each product. Rusmevichientong
et al. (2010) consider both static and dynamic optimization. Adopting the classical MNL
choice model for the demand but with unknown choice parameters, the authors propose
a learning algorithm with regret O(N2 log T ) which depends on the problem instance
(in particular, it depends on the minimum gap between the optimal revenue and the rev-
enue of any sub-optimal assortment). A more general model is proposed in Sauré and
Zeevi (2013) for which the MNL choice model is a special case. Their algorithm has
instance-dependent regret O(N/K log T ), which matches the instance-dependent lower
bound Ω(N/K log T ) established by the same authors. The dynamic assortment optimiza-
tion using the MNL choice model is further analyzed in Agrawal et al. (2017a), where the
special structure of the MNL model is exploited and an algorithm is developed based on
the upper confidence bound (UCB) algorithm from the multi-armed bandit literature (see
e.g., Auer et al. 2002). The performance of this algorithm does not depend on the prob-
lem instance, and it has an instance-independent regret bound O(

√
NT log T + N log3 T )

which almost matches the instance-independent lower bound Ω(
√
NT ) (given K ≤ N/4)

proved in Chen and Wang (2017). Another algorithm for the MNL choice model based
on Thompson Sampling is proposed in Agrawal et al. (2017b) with instance-independent
regret O(

√
NT log(TK) + N log2(TK)). Cheung and Simchi-Levi (2017) use Thomp-

son Sampling algorithm to solve the personalized dynamic assortment optimization prob-
lem. Assuming that the utility of each product depends on some time-varying contexts,
the authors show that their algorithm achieves an instance-independent Bayesian regret
Õ(DN

√
KT ) where D is the dimension of the context, and Õ(·) hides logarithmic terms
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of K,N, T . Selling prices are exogenous in these references.
Dynamic and multi-product pricing. Pricing is another important area of research in

the operations literature and we refer the reader to Chen and Chen (2015) for a recent sur-
vey on it. We first review the literature on dynamic pricing with demand learning. Most of
the works in the pricing literature with demand learning consider the single-product prob-
lem over the time horizon T . For instance, Broder and Rusmevichientong (2012) assume
the demand function is a parametric model with unknown parameters, and they propose al-
gorithms based on maximum likelihood estimation with regret O(

√
T ), matching with the

lower bound Ω(
√
T ). Furthermore, if the class of demand functions satisfy some “well-

separated” condition, they prove that the regret can be reduced to O(log T ), matching with
lower bound Ω(log T ). Later on, den Boer and Zwart (2013) also use a parametric model
and show that near-optimal regret rate can be achieved by controlling the variance of histor-
ical prices (via choosing prices from some carefully designed intervals). Keskin and Zeevi
(2014) generalize this result and provide some sufficient conditions on price variance con-
trol. Based on these conditions, they propose a class of pricing policies called semi-myopic

pricing policies which can achieve near-optimal regret rates. Besbes and Zeevi (2015)
investigate the impact of model misspecification, and show that under certain conditions,
linear demand approximation achieves near-optimal regret. For multi-product dynamic
pricing, one of the first papers is Gallego and Van Ryzin (1997). Assuming that there are
initial inventory of some common resources, and replenishment of resources is not allowed,
Gallego and Van Ryzin (1997) propose two heuristics to solve the multi-product dynamic
pricing problem, which are asymptotically optimal. Much follow-up work has been done
when the underlying demand process is not known a priori. For instance, assuming that
the demand follows a Poisson process with unknown arrival intensity, Besbes and Zeevi
(2012) propose a data-driven learning algorithm with regret O(

3
√
T 2
√

log T ), where T rep-
resents both the length of planning horizon and scale of initial inventory. Later, Ferreira
et al. (2018b) consider a similar problem but with arbitrary demand function and discrete
prices. They use Thompson Sampling and linear program to design a learning algorithm
with Bayesian regret O(

√
TK logK), where K is the number of feasible prices. If the

inventory is infinite, den Boer (2014) proposes an algorithm with regret O(
√
T log T ) in

the case of generalized linear demand with canonical link function.
In the operations and marketing literature, MNL is a well-accepted choice model for

multi-product pricing. Hanson and Martin (1996) consider the static multi-product pricing
problem with demand following the MNL model. They show that although the revenue
function is not concave with respect to prices, the global optimum can be computed effi-
ciently via a different convex optimization problem. A generalization of the MNL model
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is the so-called nested logit (NL) model, and Li and Huh (2011) consider the multiproduct
pricing with NL choice model. Both papers assume that the price sensitivities of different
products are identical, which simplifies their analysis. Dong et al. (2009) study a pricing
problem of multiple products, and Akday et al. (2010) study pricing and inventory control
of multiple products; both of these papers use the MNL model but do not have assortment
decisions. Gallego and Wang (2014) extend the problem to the NL model with different
price sensitivities and report structural results. They show that the high dimensional pric-
ing problem can be reduced to a one-dimensional problem, since the optimal prices of all
products can be given in terms of a single decision variable.

Joint assortment optimization and pricing. Assortment optimization and pricing op-
timization have been studied separately extensively in the literature, but there are relatively
few papers on the joint optimization problem. Among these, Wang (2012) has almost the
same model as ours except that the demand is known a priori. Wang (2012) shows that
the optimization problem with complete demand information exhibits an interesting spe-
cial structure that allows for efficient computational algorithm for the optimal assortment
and pricing decisions (using a certain bisection search method). Besbes and Sauré (2016)
also use the MNL choice model for joint assortment and pricing optimization, but in a com-
petitive environment. They show that there always exists a pure-strategy Nash equilibrium
when different retailers offer non-overlapping products to customers. When products of
different retailers have overlap, they show that a pure-strategy Nash equilibrium exists if
there is no display capacity constraint. Other papers in the literature on joint assortment
optimization and pricing problem include Chen and Hausman (2000), Kök and Xu (2011),
Rodrı́guez and Aydın (2011), Jagabathula and Rusmevichientong (2015), Alptekinoğlu and
Semple (2016), Chen and Jiang (2017), and others.

To the best of our knowledge, there is only one paper (Talebian et al. 2012) which
considers the joint optimization of assortment optimization and pricing when demand in-
formation is not known a priori. However, Talebian et al. (2012) assume that the demand
of each product is independent, which does not hold under the MNL choice model con-
sidered in this chapter. Our problem cannot be effectively solved by combining learning
algorithms for dynamic assortment optimization and pricing problems. Indeed, the optimal
assortments under different product prices are different, and the optimal prices of the same
product in different assortments are also different. Pure multi-product pricing algorithms
(e.g., den Boer 2014) cannot be applied to our problem either. One might hope to apply the
pure multi-product pricing algorithm to our problem by setting the price of certain product
extremely high, which can be viewed as not selecting this product in the assortment. This,
however, leads to two issues. First, multi-product pricing algorithms (e.g., den Boer 2014)
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require the prices to be chosen within a compact set, and their regrets depend critically on
the upper bound of the prices. So if the upper bound of the prices is very high, it will lead
to pretty bad regret. Second, the key for any assortment optimization problem is to select
a set of products to offer, which is combinatorial in nature, and it is not clear how to solve
a multi-product pricing algorithm with a constraint on the number of products (i.e., how to
use the existing algorithms for multiple-product problem with a constraint on the number
of products).

Related work in multi-armed bandit (MAB) problem. The MAB problem is a classic
research area that is attracting growing interest in recent years due to its broad application in
machine learning. Many of the online learning problems in operations can be formulated
as MAB. For a comprehensive literature review and introduction to available algorithms
for MAB, we refer the reader to Bubeck et al. (2012), Lattimore and Szepesvári (2018). In
fact, both assortment and pricing optimization problems can be formulated as MAB. For
instance, each assortment can be considered as an “arm” in the MAB setting, and classical
algorithms of discrete MAB can be directly applied (Bubeck et al. 2012). However, direct
application leads to the curse of dimensionality because the resulting MAB problem has(
N
K

)
arms where N is the total number of products, and K is the assortment capacity. For

multiproduct dynamic pricing, it can be considered as an online optimization with bandit
feedback, although the reward function (which is the revenue function in our setting) is
not concave with respect to prices even under the MNL choice model (Hanson and Martin
1996). Online convex optimization problem with bandit feedback is one of the most im-
portant problems in MAB research, and an algorithm with regret O(

√
T ) and polynomial

of space dimension has been recently derived in Bubeck et al. (2016).

4.1.3 Organization of the chapter

The remainder of this chapter is organized as follows. In Section 4.2 we introduce the
multinomial logit model and other model specifics. A Thompson Sampling based learning
algorithm, termed TS-PS, is developed in Section 3 and it is shown that the algorithm has
instance-independent Bayesian regret upper bound. Numerical experiments of the algo-
rithm and several benchmark algorithms are conducted in Section 4.4. The sketches for the
proofs of the main results are given in Section 5, but we leave some of the technical details
in the section of proofs. Finally, we conclude the chapter in Section 4.7.
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4.2 Problem Formulation

A firm has N products to sell over T periods, where T may be unknown a priori. The
products are labeled as i = 1, 2, . . . , N , and periods labeled by t = 1, 2, . . . , T . In each
period, the firm can display up to K products, called an assortment. During each period,
there is exactly one arrival that either purchases one of the products on display or leaves
without purchasing any product. We consider the scenario that the firm is able to replenish
its stock quickly and that the assortment can be changed with negligible time/cost. The firm
needs to determine, for each period, the set of products to display (assortment decision)
and the selling prices of the displayed products (pricing decision), and its objective is to
maximize the expected total revenue over the planning horizon.

For convenience, we denote the set of all products by N := {1, 2, . . . , N}, and the
collection of all possible assortments by S := {S ⊂ N : |S| ≤ K}. Here, and in what
follows, “:=” stands for “defined as”, and |S| denotes the number of elements in, or the
cardinality of, assortment S.

We adopt the popular multinomial logit (MNL) model for customer choice. It is well-
known that the MNL choice model is obtained from a common Gumbel utility value dis-
tribution. See, e.g., Ben-Akiva and Lerman (1985). Under the MNL model, when an
assortment S is offered at prices p := (pi : i ∈ N ) ∈ RN (with this definition of price
vector, customers only observe price pi for i ∈ S and prices of the other products are not
observable), the probability that an arriving customer purchases product i ∈ S ∪ {0}, with
0 representing the no-purchase option, is

q(i|S, p) :=
vi(pi)

v0 +
∑

j∈S vj(pj)
, i ∈ S,

q(0|S, p) :=
v0

v0 +
∑

j∈S vj(pj)
,

(4.1)

where vi(pi) := eαi−βipi and v0 := eα0 , and the customer choice parameters αi and βi

represent the feature utility and price sensitivity of product i, respectively. Without loss
of generality (by dividing v0 on both nominator and denominator of each q(i|S, p)), we
assume that α0 = 0 or v0 = 1. For ease of notation, we use θ′i = (αi, βi) to denote
the choice parameter of product i, where θ′i is the transpose of column vector θi, and use
θ′ = (θ′1, . . . , θ

′
N) to represent the parameters of all products. The parameters αi and βi

take values in [αi, αi] and [β
i
, βi], respectively, with β

i
> 0. This assumption is plausible

as it basically states that, everything else being equal, a customer prefers lower price than
higher price.
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For convenience we denote the feasible set of parameters of θi as Θi, the feasible set
of θ as Θ =

⊗
i∈N Θi. Furthermore, we assume that the selling price pi is in the range

Pi := [p
i
, pi] for some 0 ≤ p

i
< pi < ∞. Let P =

⊗
i∈N Pi denote the region of feasible

selling prices. For ease of presentation, we let

α := min
i∈N

αi, β := min
i∈N

β
i
, α := max

i∈N
αi, β := max

i∈N
βi, p := min

i∈N
p
i
, p := max

i∈N
pi.

(4.2)
In this chapter, we call a number constant if it depends only on the range of possible
parameters Θ and P , and not on the specific values of the problem parameters.

Given an assortment S and selling prices p, the expected revenue from an arriving
customer, denoted by r(S, p, θ), is

r(S, p, θ) :=
∑
i∈S

pi · q(i|S, p). (4.3)

We include θ here because the revenue function depends on customer choice parameters.
However, we often omit θ when no confusions may arise, i.e., simply write it as r(S, p).

Clairvoyant problem. If all the choice parameters θi, i = 1, . . . , N , are known a

priori, then the revenue function (4.3) can be maximized to find an optimal solution S∗ and
price p∗ = (p∗i : i ∈ N ), i.e.,

(S∗, p∗) ∈ arg max
S∈S,p∈P

r(S, p). (4.4)

We refer to (S∗, p∗) as a clairvoyant solution. To emphasize its dependency on parameters
θ, we often write it as (S∗(θ), p∗(θ)). The clairvoyant maximum total revenue over the
planning horizon is

J∗θ (T ) :=
T∑
t=1

r(S∗, p∗) = T · r(S∗, p∗),

and it will be used as a benchmark for analyzing the performance of our learning algorithm.
Note that the optimal assortment and pricing problem (4.4) with known customer choice
parameters has been studied in the literature, and efficient computational algorithms are
available to find an optimal solution (see e.g., Wang 2012).

In many applications, it is unlikely that all parameters αi and βi are known to the firm
a priori but nonetheless, the firm has to make assortment and pricing decisions in every
period. Then, how to design a learning mechanism to extract revenue that is as close to that
of the clairvoyant solution as possible? This is the problem we study in this chapter.

The firm’s optimization problem. Not knowing the customer preference parameters
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of the choice model a priori and subjecting to display capacity constraint, the firm’s prob-
lem is to determine a dynamic policy π which sets the display St and their selling prices
pt = (pi,t : i ∈ N ) for each period t, based on information up to t− 1, for t = 1, 2, . . . , T ,
so that the expected total revenue

Jπθ (T ) := E
[ T∑
t=1

r(St, pt)
∣∣∣ θ]

is as large as possible, where the expectation is taken over the randomness introduced by π
and customer’s choice. The policy π is nonanticipative in that the choice of (St, pt) can de-
pend only on the history Ft−1 which is defined as the σ-algebra generated by {(Ss, ps, is) :

s = 1, . . . , t− 1}, where is ∈ Ss ∪ {0} is customer’s choice at time s.
Bayesian regret. Before introducing Bayesian regret, we first note that another com-

monly used metric to measure the effectiveness of a learning algorithm π is regret, see e.g.,
Bubeck et al. (2012), defined as the expected revenue loss of the algorithm π compared
with a clairvoyant optimal solution. That is,

Rπ
θ (T ) := J∗θ (T )− Jπθ (T ) = E

[ T∑
t=1

(r(S∗, p∗)− r(St, pt))
∣∣∣ θ].

For Bayesian regret, it is assumed that the unknown parameter θ is randomly drawn from its
domain Θ according to a prior distribution Φ1 (which is arbitrary but is known to the firm,
for the numerical experiment in Section 4.4, we use uniform distribution for illustration).
Thus the Bayesian regret is the expected regret, defined as

BRπ := Eθ[R
π
θ (T )],

where the expectation Eθ[·] is taken with respect to the prior distribution Φ1 over θ. There-
fore, regret can be considered as the performance of the algorithm given (a realization
of) θ, while Bayesian regret is the average regret over all θ from its prior distribution Φ1.
Bayesian regret is a weaker notion than regret, because if the regret can be bounded above
by some number for all θ in Θ, then the expected regret is also upper bounded by the same
number. For more discussion on Bayesian regret and its relationship with regret, we refer
the interested readers to Russo and Van Roy (2014).

Clearly, the smaller the Bayesian regret, the better the learning algorithm performs.
Our goal in this chapter is to design an adaptive algorithm that learns the customer choice
behavior on the fly, and that the rate of its Bayesian regret is as small as possible.

We end this section by pointing out that, in principle it is possible to solve this problem
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using Markov decision process (MDP) through Bayesian updating. However, the MDP
approach suffers from curse of dimensionality, hence Thompson Sampling is adopted in
our online learning scheme of this chapter.

4.3 Algorithm and Main Result

In this section, we present a learning algorithm with instance-independent Bayesian regret
upper bound for the dynamic joint assortment and pricing optimization problem. We de-
scribe the detailed algorithm in Section 4.3.1, and then we present the theoretical result on
the performance of the algorithm, followed by a discussion on intuitions and insights, in
Section 4.3.2.

4.3.1 Algorithm description

Our algorithm design is inspired by a cycle-based approach for pure dynamic assortment
optimization problem in Agrawal et al. (2017a), and we integrate it with an online learn-
ing procedure known as Thompson Sampling (or posterior sampling, see e.g., Russo and
Van Roy 2014). Before presenting the algorithm, we first introduce some important con-
cepts.

Cycle approach. The idea of cycle was developed in Agrawal et al. (2017a) for a pure
assortment optimization problem. Using cycle approach, the time horizon T is divided into
cycles indexed by l = 1, 2, . . ..

A cycle is defined as the set of time periods that we repeatedly offer an assortment with
given prices until a no-purchase outcome occurs. More specifically, in a cycle l, we offer an
assortment Sl with prices pl repeatedly until a no-purchase happens in response to offering
Sl, including the time period in which there is no purchase. Therefore each cycle, except
the last one of the planning horizon, ends with a period of no-purchase. Let El denote the
set of time periods in cycle l, and tl denotes the first time period of cycle l. In each cycle l,
we record the number of customers who purchase product i ∈ Sl by v̂i,l, i.e.,

v̂i,l :=
∑
t∈El

111(it = i),

where it is the product (including the no-purchase) that customer chooses to purchase at
time t, and 111(A) denotes the indicator function that takes value 1 if statement A is true
and 0 otherwise. This approach decomposes the T periods into LT cycles, with the last
cycle possibly being incomplete. Note that LT is a random variable and mathematically,
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LT is the cycle l that satisfies it 6= 0 for t = tl, tl + 1, . . . , T if iT 6= 0, and it 6= 0 for
t = tl, tl + 1, . . . T − 1 if iT = 0.

An important property of this cycle approach is that the marginal distribution of v̂i,l
depends only on the price pi,l of product i itself, and not on any other products (Agrawal
et al. 2017a; also see Lemma 4.3.1). To emphasize this, we often write v̂i,l as v̂i,l = v̂i,l(pi,l).
This property will be used later in establishing the performance bound of our algorithm.

Posterior sampling of θ. As in a typical Thompson Sampling algorithm, in a cycle
l, we sample the unknown parameter θ̃l according to a posterior distribution Φl, which
satisfies

Φl(θ) ∝ Φ1(θ)L(θ|Fl−1), (4.5)

where “∝” stands for “proportional”, Fl−1 is the history until the end of cycle l − 1, and
L(θ|Fl−1) is the (joint) likelihood function given history Fl−1. Therefore, besides depend-
ing on the prior distribution, Φl also depends on the likelihood function and the history
Fl−1. To illustrate, we present two examples.
Example 1. If we let Fl−1 be the σ-algebra generated by (St, pt, it) for t = 1, . . . , tl − 1,
then the likelihood function can be defined as

L(θ|Fl−1) =

tl−1∏
t=1

q(it|St, pt, θ), (4.6)

where q(it|St, pt, θ), given in (4.1), is the purchasing probability of product it, given pa-
rameter θ, when assortment St and selling prices pt are offered.
Example 2. If we only record the number of purchases of product i as v̂i,τ (pi,τ ) in each
cycle τ , and let Fl−1 be the σ-algebra generated by (Sτ , pτ , {v̂i,τ (pi,τ )}i∈Sτ ) for τ ≤ l − 1,
then the likelihood function will be different from the previous example because we do not
have any information about it. In this case, the likelihood function is defined as

L(θ|Fl−1) =
l−1∏
τ=1

P
(
{v̂i,τ (pi,τ )}i∈Sτ |Sτ , pτ , θ

)
,

where the probability P
(
{v̂i,τ (pi,τ )}i∈Sτ |Sτ , pτ , θ

)
(which depends on the realization of

{v̂i,τ (pi,τ )}i∈Sτ ) can be derived as

P
(
{v̂i,τ (pi,τ )}i∈Sτ |Sτ , pτ , θ

)
=

(
∑

i∈Sτ v̂i,τ (pi,τ ))!∏
i∈Sτ v̂i,τ (pi,τ )!

(∏
i∈Sτ

q(i|Sτ , pτ , θ)v̂i,τ (pi,τ )

)
q(0|Sτ , pτ , θ).

This is because, for each cycle τ , the realized data is {v̂i,τ (pi,τ )}i∈Sτ , and its probability
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follows the standard multinomial distribution.
Random price shock. An important mechanism we utilize in learning customer choice

parameters is price shock. That is, for some cycles, we add a random price perturbation
to the selling price of an offered product. Essentially, in cycle l, we first calculate an
“optimal” price p̂l (for assortment Sl chosen by the algorithm in cycle l, see Algorithm 6)
derived according to the sampled parameter θ̃l, i.e.,

p̂l ∈ arg max
p∈P

r(Sl, p, θ̃l).

Then, if it is determined (using the criterion in the algorithm) that some product i ∈ Sl

requires further “price exploration”, then we set its selling price to pi,l = p′i,l + ωi,l, where
p′i,l := Proj[p

i
+ω0,pi−ω0](p̂i,l) with Proj[a,b](x) := max(min(x, b), a), that maps p̂i,l to the

range [p
i
+ ω0, p̄i − ω0] in case it falls outside of it, ω0 is a parameter satisfying 0 < ω0 ≤

mini∈N (pi−pi)/2, and ωi,l is an independent random variable taking value±ω0 with equal
probability. Of course, if it is determined that no price exploration is necessary for product
i, then we simply set pi,l = p̂i,l.

As a result, in any period, the selling price of a product can be either subject to random
price shock, or no price shock. To facilitate our subsequent discussion, at the beginning of
each cycle l, we define two sets of cycles for each product i ∈ N :

Ti(l) :={τ < l : i ∈ Sτ}, ti(l) := |Ti(l)|,

T̃i(l) :={τ ∈ Ti(l) : we set pi,l = p′i,l + ωi,l}, t̃i(l) := |T̃i(l)|.

In words, Ti(l) is the set of cycles before cycle l that i is included in the assortment, while
T̃i(l) ⊂ Ti(l) is the subset of cycles that we impose random price shocks on product i.

The structure of the algorithm. Following our discussion above, the time horizon
has been divided into cycles. Next, we further classify the cycles into three categories:
i) insufficiently tested cycle, ii) sufficiently tested but insufficiently priced cycle; and iii)
sufficiently tested and sufficiently priced cycle. For brevity, we shall simply call the second
and third types of cycles insufficiently priced and sufficiently priced cycles. We refer to
Figure 4.1 for a graphical illustration of the three categories of cycles.

The precise definitions of the three categories of cycles are as follows. We first define a
product i ∈ N as an insufficiently tested product at cycle l if it satisfies

t̃i(l) < c1 log(8lN),

where c1 is some constant to be defined later. Then, a cycle l is called an insufficiently
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Figure 4.1: Three categories of cycles

tested cycle if there exists at least one product i ∈ N that is insufficiently tested at the
beginning of cycle l. If all products in cycle l have been sufficiently tested, then l is called
a sufficiently tested cycle.

We then classify the products as insufficiently priced products and sufficiently priced

products. Specifically, we call a product i in cycle l an insufficiently priced product if it
satisfies

λmin(Wi,l) < c2

√
ti(l) log(8lN),

where c2 is some constant to be specified later, and λmin(Wi,l) is the minimum eigenvalue
of the 2× 2 symmetric matrix Wi,l, given by

Wi,l :=
∑
τ∈Ti(l)

zi,τz
′
i,τ ∈ R2×2,

with

z′i,τ :=

(
1

1 + exp(αi − βipi,τ )
,− pi,τ

1 + exp(αi − βipi,τ )

)
. (4.7)

Then, a cycle l is called an insufficiently priced cycle if all products are sufficiently tested
but some product i ∈ N is insufficiently priced; if all products are sufficiently tested and
also sufficiently priced, then cycle l is called a sufficiently priced cycle.

Sufficiently/insufficiently tested/priced cycles are defined as criteria for checking whether
more exploration of assortments and prices is needed. The structure of our algorithm is
outlined as follows. For an insufficiently tested cycle l, we include in the assortment as
many insufficiently tested products as possible and impose a random price shock on all the
included products. For an insufficiently priced cycle l, we select as many insufficiently
priced products as possible in the assortment and impose random price shock on the in-
sufficiently priced products. Otherwise, i.e., the cycle is sufficiently priced, we select an
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assortment and its prices based on a sampled parameter θ̃l. After each cycle, i.e., at the
end of each iteration in the algorithm, we utilize the collected data to update the posterior
parameter distribution, and then repeat this procedure. See Figure 4.2 for a flowchart of our
algorithm, and we shall refer to it as Thompson Sampling with Price Shock (TS-PS). The
detailed procedure is given in Algorithm 6.

Parametric 
estimation

Any insufficiently 
tested products?Loop l

Include 
insufficiently 

tested products, 
perturb prices

Any insufficiently 
priced products?

Choose the 
“optimal” 

assortment and 
prices

Include 
insufficiently 

priced products, 
perturb prices

Yes

YesNo

No

l=l+1

Figure 4.2: The flowchart of algorithm TS-PS

Next we give an overview of the TS-PS algorithm together with an explanation on the
intuitions behind each step.

Overview of TS-PS algorithm. As discussed in the introduction section, it is cru-
cial for a learning algorithm to balance the exploration-exploitation trade-off. That is,
we need to spend sufficient but not too much time learning the unknown parameter θ,
and concurrently exploit the learned information to extract as much revenue as possible.
This is achieved through the criterion for sufficiently/insufficiently tested cycles. In addi-
tion, to accurately estimate the two choice parameters for each product, the testing prices
for each product need to be varied, and that is achieved through the criterion for suffi-
ciently/insufficiently priced cycles. The classification of products and cycles into different
categories is done in Step 2 in the TS-PS algorithm. We will show that the total number of
insufficiently tested cycles for the algorithm is in the order of log T , while the number of
insufficiently priced cycles is in the order of

√
T . In other words, all but O(

√
T ) cycles are

sufficiently priced cycles that are spent on exploitation.
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Algorithm 6 The TS-PS Algorithm
Require: Parameters c1, c2; price shock parameter ω0.

1: Step 0. Initialization. Initialize Wi,1 to be a 2 × 2 zero matrix and Ti(1) = T̃i(1) = ∅
for each product i ∈ N . Go to Step 1 with l = 1.

2: Step 1. Sampling. We sample the parameter θ̃l from the posterior distribution Φl defined
in (4.5). Go to Step 2.

3: Step 2. Classification of cycle.
Initialize the set of insufficiently tested products N0(l) = ∅, and initialize the set of

insufficiently priced products Ñ0(l) = ∅.
Substep 2.1. Find Insufficiently Tested Products. For each i ∈ N , if t̃i(l) <

c1 log(8lN), include i inN0(l). Go to Substep 2.2.
Substep 2.2. Find Insufficiently Priced Products. For each i ∈ N , if λmin(Wi,l) <

c2

√
ti(l) log(8lN), include i in Ñ0(l).
Denote the sufficiently priced products as N1(l) = N\(N0(l) ∪ Ñ0(l)). Go to Step

3.
4: Step 3. Determine Assortment and Price. From Step 2, we have three cases.

Case 1. IfN0(l) 6= ∅, then select min{K, |N0(l)|} products uniformly random from
N0(l) into Sl. Solve for optimal p̂l given Sl and θ̃l by p̂l ∈ arg maxp∈P r(Sl, p, θ̃l).

Case 2. If N0(l) = ∅ and Ñ0(l) 6= ∅, then select min{K, |Ñ0(l)|} prod-
ucts uniformly random from Ñ0(l) into Sl. Solve for optimal p̂l given Sl and θ̃l by
p̂l ∈ arg maxp∈P r(Sl, p, θ̃l).

Case 3. IfN0(l) = ∅ and Ñ0(l) = ∅, then let (Sl, p̂l) ∈ arg maxS∈S,p∈P r(S, p, θ̃l).
Note that in all the maximization problems above, if there are multiple optimal solu-

tions, then we select one arbitrarily.
Go to Step 4.

5: Step 4. Price Shock. We still consider the three cases in Step 3.
Case 1 and 2. For all i ∈ Sl, define p′i,l = Proj[p

i
+ω0,pi−ω0](p̂i,l). Let ωi,l = ±ω0 a

random variable which takes positive and negative value with equal probability. Then set
final price to pi,l = p′i,l + ωi,l.

Case 3. For all i ∈ Sl, set pi,l = p̂i,l.
Go to Step 5.

6: Step 5. Implement Decisions. Initialize v̂i,l = 0 for all i ∈ N . Offer assortment Sl
and pl to customers until the first no-purchase occurs. That is, let El denote the set of time
periods of cycle l, do

For t ∈ El:
Offer (St, pt) to customer t where St = Sl and pt = pl;
Observe customer’s choice it, and update v̂it,l = v̂it,l + 1;
If t = T : exit the algorithm;

End For
For all i ∈ Sl, let Ti(l + 1) = Ti(l) ∪ {l}. If this cycle belongs to Case 1 or 2, for all
i ∈ Sl, let T̃i(l + l) = T̃i(l) ∪ {l}. Let Wi,l+1 = Wi,l + zi,lz

′
i,l for all i ∈ Sl, where zi,l is

given by (4.7).
Update l = l + 1 and return to Step 1.

126



In Steps 3 and 4, we select the assortment and prices to offer to the customer based on
the classification of cycle l, and this will guarantee that all products eventually get explored
sufficiently and adequately for optimized decisions. Specifically, if cycle l is insufficiently
tested or priced, we include those products for further exploration in the assortment, and for
insufficiently priced products, we impose price shocks. Although in TS-PS algorithm, we
use parameter sampling instead of solving an optimization problem to determine the choice
parameters, we will see later that its performance depends critically on and connects closely
with the maximum likelihood estimator for each θi.

At the end of each cycle, we utilize the observed data and update the posterior distribu-
tion of parameter θ, which will be used to sample the parameter θ̃l in (Step 1 of) the next
cycle. The main idea behind our use of parameter sampling is the following. The essence of
Thompson Sampling is that it replaces the optimization-based estimation (e.g., maximum
likelihood estimation) of parameter θ in each iteration l by selecting a θ̃l according to Φl.
When l is small, it is conceivable that the distribution of Φl is not very concentrated around
the true parameter θ. Therefore, it is likely that the sampled θ̃l is not close to θ, resulting
in suboptimal (Sl, pl). When l grows large, with the gaining of information the distribution
Φl will be concentrated around the true value of θ, and the corresponding choice of (Sl, pl)

will be close to the true optimal solution, leading to near-optimal performance.

Remark 4.3.1 For the TS-PS algorithm, a major computational task is to sample θ̃l ac-

cording to the posterior distribution Φl defined in (4.5) with the joint likelihood function

L(θ|Fl−1) (e.g., the one given in Example 1). Although in our model the posterior distri-

bution Φl may not be conjugate to the prior Φ1, the value of θ̃l can still be sampled quite

efficiently with high accuracy using some sampling techniques such as the Metropolis-

Hastings algorithm. Briefly speaking, the Metropolis-Hastings algorithm can draw sam-

ples from any distribution P (x), provided a function f(x) proportional to P (x) can be

calculated. Refer to, e.g., Andrieu et al. (2003). In our numerical experiments in Section

4.4, we will use Metropolis-Hastings algorithm to sample θ̃l.

Remark 4.3.2 We point out that our TS-PS algorithm is based on Thompson Sampling,

but it is not a pure Thompson Sampling algorithm. In our TS-PS algorithm, there are some

cycles (i.e., insufficiently tested/priced cycles) that are forced to test some products, while

the pure Thompson Sampling algorithm does not have such steps. Therefore, TS-PS can be

considered as a modified Thompson Sampling algorithm. These forced exploration cycles

are imposed for the purpose of proving theoretical performance. In Section 4.4 we will

numerically test the performance of the algorithm when the forced exploration cycles are
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dropped. We note that Cheung and Simchi-Levi (2017) use a pure Thompson Sampling al-

gorithm for personalized assortment optimization. A main difference between our work and

theirs is that we adopt a cycle approach that separately estimates the parameters for each

product, while Cheung and Simchi-Levi (2017) estimate all parameters together. Hence

in terms of the number of product N , our algorithm has Bayesian regret Õ(
√
N) while

Cheung and Simchi-Levi (2017) have Bayesian regret Õ(N).

4.3.2 Theoretical result

The following result presents the theoretical performance of TS-PS algorithm in terms of
Bayesian regret.

Theorem 4.3.1 Let

c1 ≥ max

{
max{1, 1/p4}4κ4Λ2

µ2
,
8κ2κ2L2

ω2
0

}
, c2 ≥

4L

µΛ
,

where κ, κ, µ,Λ, L are constants to be specified later in (4.16-4.18) of Section 4.5. Then,

there exists some constant c0 such that the Bayesian regret of TS-PS algorithm is upper

bounded by

BR(T ) ≤ c0

(
(1 + c1)N log(NT ) + (1 + c2)

√
NT log(NT )

)
. (4.8)

The proof of Theorem 4.3.1 will be given in Section 5. Briefly, to bound the Bayesian
regret of the algorithm we shall separately analyze each of the three categories of cycles:
insufficiently tested cycles, insufficiently priced cycles, and sufficiently priced cycles, and
derive the Bayesian regret for each of them. In particular, we will prove that the Bayesian
regret from insufficiently tested cycles is at most O(N log(NT )), the Bayesian regret for
insufficiently priced cycles is at mostO(

√
NT log(TN)+N+K log T ), and the Bayesian

regret for sufficiently priced cycles is at most O(
√
NT log(NT ) +K log T ).

To gain some intuition on the design of TS-PS algorithm and the performance bound
in Theorem 4.3.1, it is important to understand why the cycle approach is adopted, es-
pecially given that the TS-PS algorithm (in particular, the sampling of θ̃l) does not need
to rely on the cycle structure. According to Russo and Van Roy (2014), a crucial step
in bounding the Bayesian regret of a Thompson Sampling algorithm is to use its con-
nection with the estimation error of maximum likelihood estimators. Translating to our
setting, it means that for the sampled parameter θ̃l, the upper bound of the Bayesian regret
E[r(S∗(θ), p∗(θ), θ) − r(S∗(θ̃l), p

∗(θ̃l), θ)] depends on the estimation error of the maxi-
mum likelihood estimator θ̂i,l for each i ∈ N . Without using a cycle approach, we can only
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estimate θ̂′l = (θ̂′1,l, . . . , θ̂
′
N,l) jointly using all historical data, and by standard statistical

estimation theory (see e.g., Cheung and Simchi-Levi 2017), we obtain an upper bound for
the estimation error of θ̂l, which is proportional to the square root of its dimension

√
2N .

This leads to a Bayesian regret Õ(N
√
T ), which is unfavorable when N is large. Using the

cycle approach, the maximum likelihood estimations of choice parameters can be decou-
pled. That is, for each i ∈ N , the estimator θ̂i,l depends only on the historical sales data
v̂i,τ of product i, which is the number of purchases of product i in cycle τ for τ ∈ Ti(l).
This result attributes to Agrawal et al. (2017a) and is stated below (which holds without
their Assumption 4.1).

Lemma 4.3.1 Conditioned on (Sl, pl), the moment generating function of v̂i,l(pi,l) is given

by

E[eλv̂i,l(pi,l)|Sl, pl] =
1

1− vi(pi,l)(eλ − 1)
, λ ≤ log

(
1 + vi(pi,l)

vi(pi,l)

)
, i ∈ N ,

where in our setting vi(pi,l) = exp(αi − βipi,l).

This result implies that conditioned on (Sl, pl), v̂i,l + 1 is geometrically distributed with
parameter 1/(1 + vi,l), thus E[v̂i,l|Sl, pl] = vi,l and v̂i,l is an unbiased estimator of vi,l.
Since the marginal distribution of v̂i,l does not depend on the parameters of other products,
we can decompose the estimation of choice parameters, and it gives an estimation error
proportional to

√
logN . This allows us to obtain a Bayesian regret upper bound Õ(

√
NT )

and it is the main reason for our adopting the cycle approach. However, it is important to
note that, although the marginal distribution of v̂i,l depends only on choice parameters of
product i, it does not mean that v̂i,l, i ∈ Sl, are independent across products. Therefore,
the sampling of parameters θ̃l in cycle l conditioned on history Fl−1 has to be done jointly
(i.e., using their joint distribution). This explains why we cannot separately sample each
θ̃i,l using the likelihood function of data {v̂i,τ : τ ∈ Ti(l)} for each product i ∈ N .

We next elaborate on the definitions for sufficiently/insufficiently tested/priced cycles
and their connections with the theoretical result on Bayesian regret. As mentioned earlier,
the evaluation of the sampled parameter θ̃l in TS-PS algorithm is through its connection
with the maximum likelihood estimator θ̂i,l. Hence it is essential to evaluate the distribution
of θ̂i,l − θi and construct a confidence bound for θi, where θi is the true choice parameter
of product i. The right metric for measuring estimation error turns out to be ||θ̂i,l − θi||V̄i,l ,
where for vector x and positive semidefinite matrix A, ||x||A :=

√
x′Ax, and V̄i,l is the
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2× 2 empirical Fisher’s information matrix of product i at cycle l, defined by

V̄i,l := I +
∑
τ∈Ti(l)

zi,τz
′
i,τ ∈ R2×2, (4.9)

where
z′i,τ :=

(
1

1 + exp(αi − βipi,τ )
,− pi,τ

1 + exp(αi − βipi,τ )

)
.

It will be seen that a key step in constructing a upper bound for ||θ̂i,l − θi||V̄i,l is to develop
a concentration inequality for ||Zi,l||V̄ −1

i,l
, where

Zi,l :=
∑
τ∈Ti(l)

εi,τzi,τ , (4.10)

and εi,τ are random errors of the estimated utilities given by

εi,τ := v̂i,τ − vi, i = 1, 2, . . . , N, τ ∈ Ti(l). (4.11)

Conditioned on (Sl, pl), the error terms εi,l are (centered) geometrically distributed, and
they are sub-exponential, but not sub-Gaussian, random variables. Thus, to bound the
estimation error we need to first establish a concentration inequality for sub-exponential
random variables, which is given in Section 5. Note that the results in Agrawal et al.
(2017a) cannot be applied in our setting since, our model involves context information for
customers, hence a more general concentration inequality with changing context is needed.
This new concentration inequality allows us to relate estimation error with sample size.
This explains the logic for defining a sufficiently tested product i by t̃i(l) ≥ c1 log(8lN). A
similar reasoning holds for defining sufficiently priced product according to λmin(Wi,l) ≥
c2

√
ti(l) log(8lN), which follows from the connection between the parameter estimation

error and the minimum eigenvalue of Wi,l. We refer the reader to Section 4.5 for details.
Theorem 4.3.1 presents the performance of TS-PS, which is a Thompson Sampling

based algorithm, in terms of Bayesian regret. One question is whether we can characterize
its performance in terms of regret, instead of Bayesian regret. Actually, there is a strong
connection between the Thompson Sampling algorithm and the Upper-Confidence-Bound
(UCB) algorithm (see also Russo and Van Roy 2014). In principle, every Thompson Sam-
pling algorithm can be modified into a UCB algorithm with the same performance in terms
of regret. In our setting, the main difficulty comes from the complication in solving the
resulting optimization problem. In our TS-PS algorithm, the optimization problem to solve
is arg maxS∈S,p∈P r(S, p, θ̃l) which can be computed efficiently (see e.g., Wang 2012). If
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we transform it into a UCB algorithm, then let θ̂l = ((α̂i,l, β̂i,l) : i ∈ N ) be the estimated
parameter in cycle l. As a result, in a sufficiently priced cycle l, we will need to solve the
following optimization problem:

(Sl, pl) ∈ arg max
S⊂S,p⊂P

∑
i∈S wi,l(pi)pi

1 +
∑

i∈S wi,l(pi)
, (4.12)

where
wi,l(pi) := eα̂i,l−β̂i,lpi + ci(l)||(1,−pi)||V −1

i,l

is the estimated utility with upper-confidence bound for some ci(l) = O(
√

log(lN)). The
term ci(l)||(1,−pi)||V −1

i,l
is known as the UCB term because with high probability, we have

| exp(αi,l − βi,lpi)− exp(α̂i,l − β̂i,lpi)| ≤ ci(l)||(1,−pi)||V −1
i,l
,

hence exp(αi,l − βi,lpi) ≤ wi,l(pi). If there is an oracle that can be called upon to solve
problem (4.12), then we can show that the regret rate of this modified UCB algorithm is
given by the upper bound in (4.8). Unfortunately, the joint optimization problem (4.12)
is very complex because of the term ci(l)||(1,−pi)||V̄ −1

i,l
, which makes the optimization

problem very hard to solve.

Remark 4.3.3 Theorem 4.3.1 provides an upper bound for the Bayesian regret of TS-PS

algorithm. An immediate question is what is the lower bound for the Bayesian regret of

learning algorithms of the joint assortment and pricing optimization problem. We do not

have the lower bound for the Bayesian regret but point out that Chen and Wang (2017)

study a pure assortment optimization problem, and they obtain an instance-independent

lower bound of Ω(
√
NT ) for the minimax regret (not Bayesian regret). Since the pure

assortment optimization problem in Chen and Wang (2017) can be considered as a special

case of ours by setting p
i

= pi = pi, our TS-PS algorithm solves their problem with the

same Bayesian regret (compared with the regret O(
√
NT log T + N log3 T ) in Agrawal

et al. 2017a and O(
√
NT log(KT ) + N log2(KT )) in Agrawal et al. 2017b) by simply

dropping the insufficiently priced cycles and random price shocks. Thus Ω(
√
NT ) is a

lower bound for the minimax regret of our problem as well.

Remark 4.3.4 Our method of price exploration via random price shock is similar to the

so-called semi-myopic pricing policy (see e.g., Keskin and Zeevi 2014, den Boer 2014) in

dynamic pricing problem. In dynamic pricing problem, a sufficient condition for develop-

ing an efficient algorithm is to ensure that the empirical Fisher’s information matrix has
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sufficiently large minimum eigenvalue. In our problem, we require the minimum eigenvalue

of matrix V̄i,l defined in (4.9) to be at least c2

√
ti(l) log(8lN).

4.4 Numerical Experiments

In this section, we conduct a numerical study on the performance of TS-PS algorithm. For
consistency with the literature (e.g., Kaufmann et al. 2012, Bubeck and Liu 2013, Russo
and Van Roy 2014), we numerically evaluate the algorithm using regret, even though the
theoretical performance of TS-PS is given in terms of Bayesian regret. Another reason
for using regret is that in real application, the unknown parameter θ is prefixed, hence the
performance using the exact parameter value is more informative than the average perfor-
mance over its prior or belief distribution. Moreover, we compute the percentage of revenue
loss (of an algorithm π), which is the ratio of the regret and the optimal revenue given by

Lπθ (T ) :=
Rπ
θ (T )

J∗θ (T )
.

We will demonstrate the effectiveness of the TS-PS algorithm using the percentage of rev-
enue loss compared with the clairvoyant optimal policy.

To the best of our knowledge, this chapter presents the first algorithm for the dynamic
joint assortment and pricing problem based on the MNL choice model with unknown pa-
rameters. Thus, we do not have algorithms from the literature to directly compare with.
Instead, we test several benchmark algorithms, which might be considered by practition-
ers, described below.

• Cycle-based Maximum Likelihood Estimation with Price Shock (CMLE-PS): This
algorithm is exactly the same as TS-PS except that the sampled parameter θ̃i,l in each
cycle l is replaced by maximum likelihood estimators θ̂i,l using data {v̂i,τ : τ ∈
Ti(l)}, for all i ∈ N .

• Epsilon-First: This is a simple heuristic that first spends certain number of cycles
for pure exploration, then spend the rest of the time for exploitation. In each cycle
l of the exploration phase, we test an assortment Sl with product prices pl randomly
drawn from their feasible region. After that, the parameters θ̂i,l are estimated using
maximum likelihood method. In the remaining time periods, the “best” assortment
and prices are selected based on θ̂i for all i ∈ N and implemented until the end of
the horizon.
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• Epsilon-First with Price Optimization (epsilon-First-PO): This algorithm can be con-
sidered as the combination of epsilon-First and CMLE-PS. Specifically, after pure
exploration as in epsilon-First, we fix the “optimal” assortment Sl. In the remain-
ing time periods, we solve a multi-product pricing problem (with fixed Sl) using the
random price shock method as in CMLE-PS.

The intuitions for using these three benchmark algorithms are as follows. CMLE-PS
is a natural alternative of our TS-PS algorithm because we expect that, when more data is
gained, the estimated parameter θ̂l will be closer to the real parameter θ so that the revenue
will also be closer to the optimal revenue. The second benchmark, epsilon-First, is a clas-
sical method used in many online learning problems. This heuristic, though very simple,
can sometimes be effective in solving certain problems requiring exploration-exploitation
trade-off (see e.g., Tran-Thanh et al. 2010). Finally, in the epsilon-First-PO method, when
the assortment is fixed, the problem is reduced to a multi-product pricing problem which
has been well-studied.

In the following, we first test all the algorithms on a problem instance similar to the one
used in Agrawal et al. (2017a). Then, the performance of these algorithms are compared
on several randomly generated problem instances. As will be seen, the numerical results
show that TS-PS algorithm constantly outperforms the three benchmark algorithms in all
the instances we tested, and moreover, its performance is also quite robust across different
instances and different tuning parameters.

Problem instance from Agrawal et al. (2017a). We first generate the synthetic data
following the numerical experiments in Agrawal et al. (2017a). We consider N = 10

products and let the assortment capacity be K = 4. For i ∈ N such that i ∈ {1, 2, 3, 4},
we let αi = −1 + ε where ε ∈ {0.5, 2.5}; for others, we let αi = −1. All products i ∈ N
have the same price sensitivity βi = 0.25. By this construction, the optimal assortment
is obviously S∗ = {1, 2, 3, 4} since they have higher product utility under the same price
(see also Wang 2012). The parameter ε ∈ {0.5, 2.5} is to create the “gap” between the
optimal revenue and the revenue of any other assortment S 6= S∗. We have two choices
of ε to illustrate the cases of small gap (ε = 0.5) and large gap (ε = 2.5). The purpose
of creating gaps is to show that the performance of TS-PS algorithm is indeed instance-
independent, while the performance of other benchmark algorithms might depend on the
gap, hence instance-dependent. For other model parameters, we let the feasible regions of
parameters and prices be [α, α] = [−2, 2], [β, β] = [0.1, 0.5], [p, p] = [0, 20], and the price
perturbation parameter ω0 = 1 (this choice is ad-hoc for illustration, as the value of ω0

only affects the constant term in the regret; and the optimal tuning of this parameter is not
the focus of this chapter). The length of time horizon for all the numerical experiments is
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T = 10, 000, and each algorithm runs 50 times in the experiment and their mean is taken
as the final output. For the TS-PS algorithm, a prior distribution needs to be specified and,
in each step the posterior distribution has to be computed and sampled. As an illustrative
example, we take the prior distribution Φ1 to be Uniform (thus uninformative) over the
feasible region Θ, and use the likelihood function defined in (4.6) for sampling. For the
sampling technique, we use the Metropolis-Hastings algorithm (see e.g., Andrieu et al.
2003 for an introduction) with normal (with covariance 0.1I) as the proposal distribution,
and the number of iterations is 2000. The Metropolis-Hastings algorithm has computational
complexity linear in time and the sampling iteration, so it gets slower when T becomes
large.

For the tuning parameters of our TS-PS algorithm, we remark that the choices of c1

and c2 given in Theorem 4.3.1 are for worst-case Bayesian regret bounds. For computa-
tional implementation, we do not have to choose them so conservatively. In our numerical
experiments, we choose c1 = 5, c2 = 0.02 in TS-PS algorithm (hence in CMLE-PS as
well) ad-hoc for both small gap and large gap cases. We note that parameter tuning for
learning algorithms is a nontrivial problem and methods have been developed in the litera-
ture to tackle it (see e.g., for method of Bayesian optimization, Snoek et al. 2012, Frazier
and Wang 2016). Since our focus is not on parameter tuning, we will only present some
sensitivity analysis on other combinations of c1 and c2 in the TS-PS algorithm at the end
of this subsection. For epsilon-First, the only tuning parameter is the number of cycles for
exploration. To find a good one, we tested all the numbers from {100, 200, 300, . . . , 2000}
for the small gap case, and found that 400 is the best choice. Similarly, we found that
400 periods of pure exploration is also the best choice for epsilon-First-PO (which, after
fixing the assortment, applies a multi-product pure pricing algorithm as in CMLE-PS with
c2 = 0.02). We then fix input parameters of all algorithms for both small and large gap
cases. The reason that we do not separately tune the parameter for two cases is that we
want to test the robustness of algorithms under different problem instances (indeed, in the
real application we may not have the opportunity for specific parameter tuning for each
instance).

The numerical results of TS-PS and the benchmark algorithms are summarized in Fig-
ure 4.3. Note that for both ε = 0.5 and ε = 2.5, TS-PS (the dash-dotted line) clearly has the
best performance. CMLE-PS (the solid line) has good performance in the case of ε = 2.5,
but performs relatively poorly when ε = 0.5. This discrepancy shows that the performance
of CMLE-PS is dependent on problem instances. The reason for this discrepancy is that
for CMLE-PS, if the number of insufficiently tested cycles is not enough for the small gap,
it cannot accurately identify the optimal assortment S∗; hence it repeatedly chooses sub-
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(a) Cumulative regrets with ε = 0.5
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(b) Percentage revenue loss with ε = 0.5
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(c) Cumulative regrets with ε = 2.5
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(d) Percentage revenue loss with ε = 2.5

Figure 4.3: Performances of algorithms in small gap and large gap cases

epsilon-First epsilon-First-PO

10th percentile Mean 90th percentile 10th percentile Mean 90th percentile

ε = 0.5 4.14% 12.43% 22.39% 4.08% 10.66% 17.14%
ε = 2.5 5.21% 5.81% 6.39% 5.23% 5.61% 6.16%

CMLE-PS TS-PS

10th percentile Mean 90th percentile 10th percentile Mean 90th percentile

ε = 0.5 4.62% 10.44% 21.00% 4.71% 5.91% 7.40%
ε = 2.5 2.00% 3.85% 7.15% 2.09% 2.33% 2.76%

Table 4.1: The mean, 10th percentile, and 90th percentile of percentage of revenue loss for
all algorithms when ε = 0.5 and ε = 2.5.

optimal assortments in other cycles. The other two benchmarks, epsilon-First (the dashed
line) and epsilon-First-PO (the dotted line), have quite similar (poor) performances in both
cases. As observed from their curves, we can see that when ε = 0.5 is small, 400 cycles
of pure exploration cannot identify S∗ very well, causing the subsequent revenue loss. On
the other hand, when ε = 2.5, though the algorithm can identify S∗ quite well after pure
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exploration, the revenue loss during the exploration cycles is very significant (because of
the large gap), making the overall performance quite bad. Moreover, comparing epsilon-
First with epsilon-First-PO, we observe that price optimization after fixing assortment does
bring some benefit, but this benefit is not very significant compared with the revenue loss.

In Table 4.1, we present the results on the total revenue for the mean, 10th percentile,
and 90th percentile of samples of the percentage of revenue loss for each algorithm. From
these results, it can be seen that, compared with other benchmarks, TS-PS is much more
robust. For instance, when ε = 0.5, the difference between 10th and 90th percentile of
TS-PS is only 2.69%, while it is more than 13% for other algorithms.

c2 = 0.02 c2 = 0.06

10th percentile Mean 90th percentile 10th percentile Mean 90th percentile

c1 = 5 4.71% 5.91% 7.40% 5.19% 6.19% 7.56%
c1 = 30 6.34% 7.25% 8.37% 6.54% 7.20% 8.13%

Table 4.2: The mean, 10th percentile, and 90th percentile of percentage of revenue loss for
TS-PS (when ε = 0.5) with different combinations of c1 and c2.

To understand the sensitivity of TS-PS algorithm with respect to the tuning parameters
c1 and c2, we tested all combinations of c1 ∈ {5, 30} and c2 ∈ {0.02, 0.06} for ε = 0.5

(since the algorithm performance with ε = 0.5 has more variation than that with ε = 2.5

as seen from Table 4.1), and the results are summarized in Table 4.2. We observe that
performance of TS-PS algorithm is quite consistent (and all better than other methods) in
all combinations of c1 and c2, though it generally performs somewhat better when c1 and
c2 are smaller. This shows the robustness of the algorithm on the tuning parameters.

The theoretical performance of TS-PS algorithm in Theorem 4.3.1 is obtained based
on lower bound conditions on tuning parameters c1 and c2. One question that arises is,
how does the algorithm perform when these conditions are not satisfied, e.g., c1 = c2 = 0

(i.e., pure Thompson Sampling)? We did another numerical experiment with ε = 0.5 and
c1 = c2 = 0, and found that the mean percentage revenue loss is 6.27% with 10th percentile
4.97% and 90th percentile 7.31%. This shows that the TS-PS algorithm still performs very
well, though slightly worse than that with c1 = 5, c2 = 0.02 or c1 = 5, c2 = 0.06. We
draw two insights from this test. First, appropriate forced exploration may still be preferred
to obtain the best empirical performance, and second, pure Thompson Sampling algorithm
also works well for joint pricing and assortment optimization. It is not clear to us whether
the theoretical performance of the algorithm remains to hold when the conditions on c1 and
c2 are dropped.

Randomly generated instances. In this section, we present the numerical results of
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TS-PS and the three benchmark algorithms on four randomly generated instances. These
problems have the same feasible regions for parameters Θ and prices P as in the previous
instances, and the parameters θ of the four instances are generated uniformly from Θ. For
brevity, we will not present the regret curves and only summarize the numerical results on
the percentage of revenue loss in Table 4.3.

epsilon-First epsilon-First-PO

10th percentile Mean 90th percentile 10th percentile Mean 90th percentile

Instance 1 8.39% 9.20% 10.31% 7.88% 8.80% 9.85%
Instance 2 4.63% 5.94% 8.34% 4.41% 5.00% 5.86%
Instance 3 6.18% 7.25% 9.08% 5.92% 6.61% 8.23%
Instance 4 5.39% 6.42% 7.46% 5.27% 5.98% 6.96%

CMLE-PS TS-PS

10th percentile Mean 90th percentile 10th percentile Mean 90th percentile

Instance 1 2.44% 3.90% 5.84% 2.01% 2.24% 2.50%
Instance 2 2.47% 4.56% 8.13% 2.44% 2.80% 3.50%
Instance 3 2.61% 6.25% 13.10% 2.09% 2.32% 2.67%
Instance 4 2.26% 4.09% 6.35% 2.43% 2.85% 3.32%

Table 4.3: The mean, 10th percentile, and 90th percentile of percentage of revenue loss for
all algorithms on four random instances.

We observe similar results as in the previous testings. The TS-PS algorithm has the best
performance for all instances, and its performances have very small variations as seen from
its 10th and 90th percentiles. So once again, the numerical experiments show that TS-PS
algorithm has instance-independent performance, and that it consistently outperforms the
three benchmark algorithms.

4.5 Proof of Main Result

In this section, we present the main steps in the proof of Theorem 4.3.1. As mentioned
in Section 4.3.2, a critical step to analyze the Bayesian regret is to evaluate the confidence
bound ||θ̂i,l−θi||V̄i,l , where θ̂i,l is the maximum likelihood estimator and V̄i,l is the empirical
Fisher’s information matrix of product i in cycle l defined in (4.9). This confidence bound
further requires a concentration inequality result for ||Zi,l||V̄ −1

i,l
, where Zi,l is a sum of sub-

exponential random errors defined in (4.10). Therefore, in this section we first present the
confidence bound and a general concentration inequality result for sub-exponential random
variables in Section 4.5.1, for which ||Zi,l||V̄ −1

i,l
is a special case. Then, in Section 4.5.2, we
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prove Theorem 4.3.1. All the missing proofs of the technical results can be found in the
section of proofs.

4.5.1 Confidence bound and concentration inequalities

The proof of Theorem 4.3.1 is based on the relationship between the sampled parameter
θ̃l and the maximum likelihood estimator (see e.g., Russo and Van Roy 2014). By Lemma
4.3.1, the likelihood function of θi of product i before cycle l with history Fl−1, which
includes v̂i,τ (pi,τ ), is

Li(φ|Fl−1) :=
∏

τ∈Ti(l)

(
eφ
′xi,τ

1 + eφ′xi,τ

)v̂i,τ
1

1 + eφ′xi,τ
.

The maximum likelihood estimator θ̂i,l for product i can be computed separately from other
products by

θ̂i,l ∈ arg max
φ∈Θi

Li(φ|Fl−1).

Note that arg maxφ∈Θi
Li(φ|Fl−1) exists because, by its definition, Li(φ|Fl−1) is obviously

a continuous function of φ, and Θi is a compact set in R2. Then an important upper bound
for ||θ̂i,l − θi||V̄i,l is proved in the following proposition.

Proposition 4.5.1 For any i ∈ N and l a sufficiently priced loop, we have

||θ̂i,l − θi||V̄i,l ≤ k1

√
log(lN) (4.13)

for some constant k1 with probability at least 1− 1/(lN ).

The rest of this subsection is to show the main steps of proving the above result (with
all the details in the section of proofs). The main technical step to prove Proposition 4.5.1
is an important concentration inequality of sub-exponential random variable. In particular,
we want to bound ||Zi,l||V̄ −1

i,l
.

Recall that a random variable X is said to be sub-exponential if there exists a constant
b > 0, such that for all a ≥ 0,

P(|X| ≥ a) ≤ 2e−ba.

It is known (see e.g., Wainwright 2019) that X is sub-exponential if and only if there exist
positive parameters (Λ, µ), such that for any λ with |λ| ≤ Λ, it satisfies

E[eλX ] ≤ eµ
2λ2/2.
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To bound ||Zi,l||V̄ −1
i,l

, we need to resolve two main technical difficulties. First, the ordi-
nary concentration inequalities such as Azuma’s inequality cannot be applied in our setting
because the term V̄ −1

i,l makes the errors dependent on each other, i.e., the sequence

||Zi,l||V̄ −1
i,l

=

√( ∑
τ∈Ti(l)

εi,τz′i,τ

)(
I +

∑
τ∈Ti(l)

zi,τz′i,τ

)−1( ∑
τ∈Ti(l)

εi,τzi,τ

)
cannot be written as the sum of some adapted random errors for applying concentration
inequalities (see e.g., Auer 2002, for more detailed discussion of this issue). Second, to the
best of our knowledge, all the concentration inequalities established in the literature (see
e.g., Abbasi-Yadkori et al. 2011, Cheung and Simchi-Levi 2017, Li et al. 2017a) require
the random errors to be sub-Gaussian, but in our problem εi,l are only sub-exponential, not
sub-Gaussian. We resolve these challenges using the following proposition.

Proposition 4.5.2 Let {Ft}∞t=1 be a filtration, and {εt}∞t=1 be a real-valued stochastic pro-

cess such that εt is Ft-measurable and εt is conditionally sub-exponential with parameters

(Λ, µ) for all t, i.e., for any λ satisfying |λ| ≤ Λ,

E[eλεt|Ft−1] ≤ eµ
2λ2/2, t = 1, 2, . . . .

Let {zt}∞t=1 be an Rd-valued stochastic process such that zt isFt−1-measurable and ||zt||22 ≤
L for some constant L > 0. Let V be an arbitrary d × d positive definite matrix. For any

t > 0, define

V̄t = V +
t−1∑
s=1

zsz
′
s, Zt =

t−1∑
s=1

εszs. (4.14)

Suppose τ is a stopping time with respect to the filtration {Ft}∞t=1, and define the event

Eτ =
{
||Zτ ||2/λmin(V̄τ ) ≤ µ2Λ/(2

√
L)
}
. (4.15)

Then we have that for any δ > 0,

P

(
||Zτ ||2V̄ −1

τ
> 2µ2log

(
det(V̄τ )

1/2

δk(µ,Λ, L, V ) det(V )1/2

)
, Eτ
)
< δ,

where k(µ,Λ, L, V ) is a positive constant depending on µ,Λ, L, V .

This proposition is similar in spirit to Theorem 1 in Abbasi-Yadkori et al. (2011), which
develops a concentration inequality for sub-Gaussian errors. Compared to that result, a key
difference is that the bound for sub-exponential random errors is on event (4.15). The
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intuition is that locally, sub-exponential distribution has similar bound on its moment gen-
erating function as a sub-Gaussian distribution, which plays an extremely important role
in developing concentration inequalities. Specifically, by the definition of sub-Gaussian
distribution, for any real λ, it satisfies E[exp(λX)] ≤ exp(µ2λ2/2). For sub-exponential
distribution, however, this inequality is satisfied only on |λ| ≤ Λ for some Λ > 0. As a
result, the concentration inequality can be established only on the event (4.15) (which is
nonetheless sufficient for our regret analysis).

An immediate corollary of Proposition 4.5.2, by specifying the bound det(V̄t) ≤ (1 +

τL/d)d with V̄t defined in (4.14) and setting V = I , is the following result (see Lemma 10
of Abbasi-Yadkori et al. 2011 for a similar result for sub-Gaussian errors).

Corollary 4.5.1 When the random errors satisfy the conditions in Proposition 4.5.2, we

have, for any δ > 0,

P
(
||Zτ ||V̄ −1

τ
> µ

√
d log(1 + τL/d) + dlog (1/(δk(µ,Λ, L, V ))), Eτ

)
< δ.

We now demonstrate how to (conditionally) bound ||Zi,l||V̄ −1
i,l

using Proposition 4.5.2
and Corollary 4.5.1. As mentioned earlier, the estimation errors εi,l defined in (4.11) are
sub-exponential because v̂i,l+1 are geometrically distributed with mean vi,l+1. By Lemma
4.3.1, for given θi and price pi,l, there exist constants µ(θi, pi,l) and Λ(θi, pi,l), that depend
on θi and pi,l, such that for any i ∈ N and l < LT , it holds that

E[eεi,lλ|Fl−1] ≤ eµ(θi,pi,l)
2λ2/2, |λ| ≤ Λ(θi, pi,l).

Since the prices pi,l and parameters θi are all bounded, there must exist constants µ and Λ

that satisfy

µ ≥ µ(θi, pi,l), Λ ≤ Λ(θi, pi,l), for all θi ∈ Θi, pi,l ∈ [p
i
, pi], i ∈ N , l ∈ {1, . . . , LT}.

(4.16)
Therefore, for any i ∈ N and l < LT , it holds that

E[eεi,lλ|Fl−1] ≤ eµ
2λ2/2, for all |λ| ≤ Λ. (4.17)

To present an upper bound for ||zi,l||22, we define notations

L := (1 + p2)/κ2, κ := 1 + eα−βp, κ := 1 + eα−βp. (4.18)

Then ||zi,l||22 ≤ L. Applying Corollary 4.5.1 with τ = ti(l) and δ = 1/(2lN), we obtain
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the following result for ||Zi,l||V̄ −1
i,l

.

Corollary 4.5.2 For any l > 1, define the event

Ei,l =
{
||Zi,l||2/λmin(V̄i,l) ≤ µ2Λ/(2

√
L)
}
. (4.19)

Then we have

P
(
||Zi,l||V̄ −1

i,l
> µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN), Ei,l

)
< 1/(2lN),

where k2 := 2/k(µ,Λ, L, I) and k(µ,Λ, L, I) is given in Proposition 4.5.2.

Thus, Proposition 4.5.1 is proved using Corollary 4.5.2. In particular, we can show
that conditioned on ||Zi,l||V̄ −1

i,l
≤ µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN), we have ||θ̂i,l −

θi||V̄i,l ≤ k1

√
log(lN). The detailed argument can be found in the section of proofs.

4.5.2 Proof of Theorem 4.3.1

The cumulative Bayesian regret of the TS-PS algorithm can be written as (recall that LT is
the index of the last cycle)

E

[
LT∑
l=1

|El|(r(S∗, p∗)− r(Sl, pl))

]
= E

[
LT∑
l=1

E[|El|(r(S∗, p∗)− r(Sl, pl))|Sl, pl]

]

≤E

[
LT∑
l=1

(1 +
∑
i∈Sl

eαi−βipi,l)(r(S∗, p∗)− r(Sl, pl))

]
≤ κE

[
LT∑
l=1

|Sl|(r(S∗, p∗)− r(Sl, pl))

]
,

where κ is a constant defined in (4.18), and El is the set of periods in cycle l, i.e., El :=

{tl, tl + 1, . . . , tl+1 − 1} for l < LT and ELT := {tLT , tLT + 1, . . . , T}. Note that the
first inequality follows that by definition, |El| (for all l < LT ) is geometrically distributed
with parameter 1/(1 +

∑
i∈Sl e

αi−βipi,l). For l = LT , by definition of LT , in the last
period T it might be possible that iT 6= 0, so we have that E[|ELT ||SLT , pLT ] ≤ 1/(1 +∑

i∈SLT
eαi−βipi,l).

To bound the Bayesian regret, we consider the three categories of cycles separately:
the set of insufficiently tested cycles (denoted by C0), the set of insufficiently priced cycles
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(denoted by C̃0), and the set of sufficiently priced cycles (denoted by C1). That is,

C0 :={l ≤ LT : for some i ∈ N , t̃i(l) < c1 log(8lN)};

C̃0 :={l ≤ LT : t̃i(l) ≥ c1 log(8lN) ∀i ∈ N ,

but for some i ∈ N , λmin(Wi,l) < c2

√
ti(l) log(8lN)};

C0 :={l ≤ LT : t̃i(l) ≥ c1 log(8lN), λmin(Wi,l) ≥ c2

√
ti(l) log(8lN) ∀i ∈ N}.

Bayesian regret from insufficiently tested cycles. By definition, for any cycle l ∈ C0

and any product i ∈ Sl, it holds that t̃i(l) < c1 log(8lN). Since all products in C0 have
price shock, we have∑

l∈C0

|Sl| ≤
∑
i∈N

(t̃i(l0,i) + 1) < c1N log(8TN) +N,

where l0,i is the last insufficiently tested cycle in which product i is included in the assort-
ment, i.e., i ∈ Sl0,i for l0,i ∈ C0, but for any l > l0,i such that l ∈ C0, i 6∈ Sl. To see the
above inequality, first note that by the definition of C0, for any l ∈ C0, the selected products
in assortment Sl are all insufficiently tested. Since in each l ∈ C0, product i ∈ Sl has price
shock,

∑
l∈C0 |Sl| is bounded above by the sum of number of price shocks of each product

i until its last time selected in Sl0,i with l0,i ∈ C0 (including period l0,i). This number is
exactly t̃i(l0,i) + 1 (recall that, by definition, t̃i(l0,i) does not include period l0,i).

This shows that, the cumulative Bayesian regret of insufficiently tested cycles is at most
(c1 + 1)N log(8TN).

Bayesian regret from insufficiently priced cycles. To bound the Bayesian regret of
insufficiently priced cycles, we first define an important event

EVi,l :=

{
λmin(Wi,l) ≥

t̃i(l)ω
2
0

2κ2κ2L

}
,

which gives a lower bound of λmin(Wi,l). This event holds with probability at least 1 −
1/(2lN) by the following lemma, which is proved in the section of proofs.

Lemma 4.5.1 For any product i ∈ N in cycle l with t̃i(l) ≥ c1 log(8lN), when c1 ≥
8κ2κ2L2/ω2

0 , we have

λmin

( ∑
τ∈Ti(l)

zi,τz
′
i,τ

)
≥ t̃i(l)ω

2
0

2κ2κ2L

with probability at least 1− 1/(2lN).

Denote C̃0,i(l) as the number of insufficiently priced cycles before l in which i is in-
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cluded in the assortment, i.e. C̃0,i(l) :=
∣∣∣{τ ∈ C̃0 : τ < l, i ∈ Sτ}

∣∣∣ . Note that we can
bound the Bayesian regret of insufficiently tested cycles by

κE

∑
l∈C̃0

|Sl|(r(S∗, p∗)− r(Sl, pl))

 ≤ κpE

∑
l∈C̃0

|Sl|

 .
Define the event EVl :=

⋂
i∈N EVi,l , we have

E

∑
l∈C̃0

|Sl|

 =E

∑
l∈C̃0

|Sl|111(EVl)

+ E

∑
l∈C̃0

|Sl|111(E ′Vl)


≤E

[∑
i∈N

(C̃0,i(l1,i) + 1)111(EVl1,i )

]
+K

LT∑
l=1

1

2l

≤E

[∑
i∈N

C̃0,i(l1,i)111(EVl1,i )

]
+N +K(log(T ) + 1)/2,

where l1,i denotes the last insufficiently priced cycle in which event EVl1,i holds and i ∈ Sl1,i ,
and A′ is the complement of event A. The first inequality above is from the union bound
of events E ′Vi,l for all i ∈ N such that E ′Vl holds with probability at most N/(2lN) = 1/(2l)

in any insufficiently priced loop l.
To bound E

[∑
i∈N C̃0,i(l1,i)111(EVl1,i )

]
, we note that on EVl1,i , because C̃0,i(l1,i) ≤ t̃i(l1,i)

by definition, λmin(Wi,l1,i) ≥ C̃0,i(l1,i)ω
2
0/(2κ

2κ2L), i ∈ N ; since l1,i ∈ C̃0, by definition,
λmin(Wi,l1,i) < c2

√
ti(l1,i) log(8l1,iN) for all i ∈ N . As a result, on event EVl1,i , we have

C̃0,i(l1,i) < c2(2κ2κ2L)
√
ti(l1,i) log(8l1,iN)/ω2

0 ≤ c2(2κ2κ2L)
√
ti(LT ) log(8TN)/ω2

0.

(4.20)
Combining (4.20) with E

[∑
i∈N C̃0,i(l1,i)111(EVl1,i )

]
, we obtain

E

[∑
i∈N

C̃0,i(l1,i)111(EVl1,i )

]
≤c2k4

√
log(TN)

∑
i∈N

√
E[ti(LT )]

≤c2k4

√
NT log(TN)/(κ− 1)

for some constant k4 defined such that (2κ2κ2L)
√

log(8TN)/ω2
0 ≤ k4

√
log(TN). In

the inequalities above, the first inequality is from (4.20) and Jensen’s inequality, and the
last inequality follows from

∑
i∈N E[ti(LT )] ≤ T/(κ − 1) (see (A.20) in the proof of

Theorem 1 of Agrawal et al. 2017a; note that this result does not depend on Assumption
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4.1.1 in Agrawal et al. 2017a, so it is applicable to our setting), and
∑

i∈N

√
E[ti(LT )] ≤√

N
∑

i∈N E[ti(LT )] ≤
√
NT/(κ− 1). This shows that, the expected regret of insuffi-

ciently priced cycles is at most O(c2

√
NT log(TN) +N +K log T ).

Bayesian regret from sufficiently priced cycles. The proof of this part borrows ideas
from Russo and Van Roy (2014). Conditioning on Fl−1, it follows from the definition
of posterior sampling in (4.5) that θl has the same distribution as θ (see e.g., Russo and
Van Roy 2014). Therefore, the chosen (Sl, pl) according to θl is also identically distributed
as (S∗, p∗) (which is chosen according to θ) given Fl−1. The next step is from the so-called
UCB function Ul(S, p) : S × P → R which is defined as

Ul(S, p) := r(S, p, θ̂l) +
2p̄(κ− 1)

|S|(κ− 1)

∑
i∈S

||θ̂i,l − θi||V̄i,l ||(1,−pi)||V̄ −1
i,l
. (4.21)

We have that

E[r(S∗, p∗, θ)− r(Sl, pl, θ)] = E[E[r(S∗, p∗, θ)− r(Sl, pl, θ)|Fl−1]]

=E[E[r(S∗, p∗, θ)− Ul(S∗, p∗) + Ul(Sl, pl)− r(Sl, pl, θ)|Fl−1]]

=E[r(S∗, p∗, θ)− Ul(S∗, p∗)] + E[Ul(Sl, pl)− r(Sl, pl, θ)],

(4.22)

where the second equality is because (S∗, p∗) and (Sl, pl) are identically distributed given
Fl−1 and E[Ul(Sl, pl)|Fl−1] = E[Ul(S

∗, p∗)|Fl−1] by definition of Ul(S, p) (as Ul(S, p) is a
deterministic function of (S, p) given history Fl−1).

To proceed, we need the following lemma, which is proved in the section of proofs.

Lemma 4.5.2 For any true parameter θ ∈ Θ and a sufficiently priced cycle l, on event

(4.13) we have, for all i ∈ N ,

r(S, p, θ) ≤ Ul(S, p),

Ul(S, p) ≤ r(S, p, θ) +
4p̄(κ− 1)k1

√
log(lN)

|S|(κ− 1)

∑
i∈S

||(1,−pi)||V̄ −1
i,l
,

for any S ∈ S, p ∈ P .

Applying Lemma 4.5.2, we have that

r(S∗, p∗, θ)− Ul(S∗, p∗) ≤ 0

Ul(Sl, pl)− r(Sl, pl, θ) ≤
4p̄(κ− 1)k1

√
log(lN)

|S|(κ− 1)

∑
i∈S

||(1,−pi)||V̄ −1
i,l

on event (4.13) for all i ∈ N , where k1 is a constant defined in Proposition 4.5.1. Define the
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event (4.13) as Eθ̂i,l , i.e, Eθ̂i,l :=
{
||θ̂i,l − θi||V̄i,l ≤ k1

√
log(8lN)

}
. Then it follows from

Proposition 4.5.1 that P(E ′
θ̂i,l

) ≤ 1/(lN), and for event Eθ̂l :=
⋂
i∈N Eθ̂i,l , we apply union

bound to obtain P(E ′
θ̂l

) ≤ 1/l.
Now we are ready to derive the final Bayesian regret upper bound according to (4.22).

For the first term in the last equation of (4.22), on event Eθ̂l , we have r(S∗, p∗, θ) ≤
Ul(S

∗, p∗). Thus,

E

[∑
l∈C1

|Sl|(r(S∗, p∗, θ)− Ul(S∗, p∗))

]
=E

[∑
l∈C1

|Sl|(r(S∗, p∗, θ)− Ul(S∗, p∗))111(Eθ̂l)

]

+ E

[∑
l∈C1

|Sl|(r(S∗, p∗, θ)− Ul(S∗, p∗))111(E ′
θ̂l

)

]

≤pK
LT∑
l=1

1

l
≤ pK(log(T ) + 1).

For the second term in the last equation of (4.22), on event Eθ̂l we have that for any fixed θ,

Ul(Sl, pl)− r(Sl, pl, θ) ≤
4p̄k1(κ− 1)κ

√
log(lN)

|Sl|(κ− 1)

∑
i∈Sl

||zi,l||V̄ −1
i,l
.

By Lemma 11 in Abbasi-Yadkori et al. (2011), we have∑
l∈Ti(LT+1)

||zi,l||V̄ −1
i,l
≤ 2
√
Lti(LT + 1) log(1 + ti(LT + 1)L/2) ≤ k5

√
ti(LT + 1) log(NT ),

(4.23)
where k5 is some constant chosen such that the second inequality above holds. Hence, we
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have

E

[∑
l∈C1

|Sl|(Ul(Sl, pl)− r(Sl, pl, θ))

]

=E

[∑
l∈C1

|Sl|(Ul(Sl, pl, θ)− r(Sl, pl))111(Eθ̂l)

]
+ E

[∑
l∈C1

|Sl|(Ul(Sl, pl, θ)− r(Sl, pl))111(E ′
θ̂l

)

]

≤k6

√
log(NT )E

[∑
l∈C1

∑
i∈Sl

||zi,l||V̄ −1
i,l

]
+ pK(log T + 1)

≤k6

√
log(NT )E

∑
i∈N

∑
l∈Ti(LT+1)

||zi,l||V̄ −1
i,l

+ pK(log T + 1)

≤k7 log(NT )
∑
i∈N

√
E[ti(LT + 1)] + pK(log T + 1)

=k7 log(NT )
√
NT/(κ− 1) + pK(log T + 1),

where k6 = 4p̄k2(κ− 1)κ/(κ− 1), and k7 = k5k6 are some constants, the first inequality
is from Lemma 4.5.2, the third inequality follows from (4.23) and Jensen’s inequality, and
the last equality is from (A.20) in Agrawal et al. (2017a). As a result, the Bayesian regret
from sufficiently priced cycles can be bounded above by O(

√
NT log(NT ) +K log T ).

Combining the Bayesian regrets for all three cases above yields the desired result, which
completes the proof of Theorem 4.3.1.

4.6 Proofs of Technical Results

In this section, we provide all the missing proofs in the main body of the chapter, i.e.,
Proposition 4.5.1, Proposition 4.5.2, Corollary 4.5.1, Lemma 4.5.1, and Lemma 4.5.2.

4.6.1 Proof of Proposition 4.5.1

By definition, θ̂i,l is the maximizer of the likelihood function, i.e., the minimizer of the
negative log-likelihood function within feasible region Θi := [αi, αi] × [β

i
, βi]: θ̂i,l ∈

arg minφ∈Θi
Li,l(φ), where

Li,l(φ) =
∑
τ∈Ti(l)

(
− v̂i,τ (x′i,τφ) + (1 + v̂i,τ ) log(1 + ex

′
i,τφ)

)
.
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By Taylor’s theorem, we have for some θ̌i,l on the line segment between θi and θ̂i,l,

0 ≥Li,l(θ̂i,l)− Li,l(θi) = ∇Li,l(θi)′(θ̂i,l − θi) +
1

2
(θ̂i,l − θi)′∇2Li,l(θ̌i,l)(θ̂i,l − θi)

=

 ∑
τ∈Ti(l)

−v̂i,τ + ex
′
i,τ θi

1 + ex
′
i,τ θi

xi,τ

′ (θ̂i,l − θi)
+

1

2
(θ̂i,l − θi)′

 ∑
τ∈Ti(l)

(1 + v̂i,τ )e
x′i,τ θ̌i,l

(1 + ex
′
i,τ θ̌i,l)2

xi,τx
′
i,τ

 (θ̂i,l − θi)

≥−

 ∑
τ∈Ti(l)

εi,τxi,τ

1 + ex
′
i,τ θi

′ (θ̂i,l − θi) +
(κ− 1)κ2

2κ2 (θ̂i,l − θi)′Vi,l(θ̂i,l − θi)

=−

 ∑
τ∈Ti(l)

εi,τxi,τ

1 + ex
′
i,τ θi

′ (θ̂i,l − θi) +
(κ− 1)κ2

2κ2 ||θ̂i,l − θi||2V̄i,l −
(κ− 1)κ2

2κ2 ||θ̂i,l − θi||22,

where Vi,l := V̄i,l − I =
∑

τ∈Ti(l) zi,τz
′
i,τ . Consequently, by Cauchy-Schwarz inequality,

(κ− 1)κ2

2κ2 ||θ̂i,l − θi||2V̄i,l ≤
(κ− 1)κ2

2κ2 ||θ̂i,l − θi||22 + ||Zi,l||V̄ −1
i,l
||θ̂i,l − θi||V̄i,l .

Now let us consider the event

EZi,l := {||Zi,l||V̄ −1
i,l
≤ µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN)}

as we highlighted in Section 4.5.1. Note that on this event, we have

||θ̂i,l−θi||2V̄i,l ≤ (α−α)2+(β−β)2+
2µκ2

(κ− 1)κ2

√
2 log(1 + ti(l)L/2) + 2log (k2lN)||θ̂i,l−θi||V̄i,l .

This implies

||θ̂i,l − θi||V̄i,l ≤
√

(α− α)2 + (β − β)2 +
2µκ2

(κ− 1)κ2

√
2 log(1 + ti(l)L/2) + 2log (k2lN)

≤k1

√
log(lN),

where the second inequality is obtained by choosing appropriate constant k1.
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As a result, we have

P
(
||θ̂i,l − θi||V̄i,l > k1

√
log(lN)

)
=P
(
||θ̂i,l − θi||V̄i,l > k1

√
log(lN), EZi,l

)
+ P

(
||θ̂i,l − θi||V̄i,l > k1

√
log(lN), E ′Zi,l

)
=P
(
||θ̂i,l − θi||V̄i,l > k1

√
log(lN), E ′Zi,l

)
≤P
(
E ′Zi,l

)
=P
(
||Zi,l||V̄ −1

i,l
> µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN)

)
,

where the notation A′ is the complement of event A. Then all remaining is to prove

P
(
||Zi,l||V̄ −1

i,l
> µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN)

)
≤ 1/(lN).

To prove the above inequality, we need another result that is stated below, whose proof
is postponed to the end of this section of proofs.

Lemma 4.6.1 Let l be an arbitrary cycle with ti(l) ≥ c1 log(8lN), where

c1 ≥ max{1, 1/p4}4κ4Λ2/µ2

. If c2 ≥ 4L/(µΛ), then

||Zi,l||2 ≤ c2µ
2Λ/(2

√
L)
√
ti(l) log(8lN)

holds with probability at least 1− 1/(2lN).

By Lemma 4.6.1, when c2 ≥ 4L/(µΛ), in a sufficiently priced loop l we must have that
P(E ′i,l) < 1/(2lN) (recall that Ei,l is defined in (4.19)) because by definition of sufficiently
priced loop,

λmin(V̄i,l) ≥ λmin(Wi,l) ≥ c2

√
ti(l) log(8lN).

Therefore,

P
(
||Zi,l||V̄ −1

i,l
> µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN)

)
=P
(
||Zi,l||V̄ −1

i,l
> µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN), Ei,l

)
+ P

(
||Zi,l||V̄ −1

i,l
> µ

√
2 log(1 + ti(l)L/2) + 2log (k2lN), E ′i,l

)
≤1/(2lN) + P(E ′i,l)

≤1/(lN),
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where the inequalities follow from Corollary 4.5.2 and Lemma 4.6.1. This completes the
proof.

4.6.2 Proof of Proposition 4.5.2

We adopt an argument similar to that of Theorem 1 in Abbasi-Yadkori et al. (2011). First,
we define

Mσ
t =: exp

(
t−1∑
s=1

[
εs〈σ, zs〉

µ
− 〈σ, zs〉

2

2

])
= exp(〈σ, Z̄t〉 − ||σ||2Vt/2),

where Z̄t := Zt/µ and σ is a vector chosen such that ||σ||2 · ||zs||2/µ ≤ Λ (by choosing
||σ||2 ≤ µΛ/

√
L). It is not difficult to see that E[Mσ

t ] ≤ 1 following the same argument
as in Abbasi-Yadkori et al. (2011) and the fact that εs is sub-exponential with parameters
(µ,Λ). Specifically, let

Dσ
t := exp

(
εs〈σ, zs〉

µ
− 〈σ, zs〉

2

2

)
.

By the definition of sub-exponential distribution and our choice of σ, we have E[Dσ
t |Ft−1] ≤

1. Furthermore,

E[Mσ
t |Ft−2] = E[Mσ

1 · · ·Dσ
t−2D

σ
t−1|Ft−2] = Dσ

1 · · ·Dσ
t−2E[Dσ

t−1|Ft−2] ≤Mσ
t−1.

This shows that Mσ
t is supermartingale with E[Mσ

t ] ≤ 1. For a stopping time τ , we
can follow Abbasi-Yadkori et al. (2011) to show that Mσ

τ is almost surely well-defined
with E[Mσ

τ ] ≤ 1. By the convergence theorem for nonnegative supermartingales, Mσ
∞ =

limt→∞M
σ
t is almost surely well-defined. Hence, Mσ

τ is well-defined regardless of τ <∞
or not. To see E[Mσ

τ ] ≤ 1, we let Qσ
t = Mσ

min{τ,t} be a stopped version of (Mσ
t )t. Then by

Fatou’s Lemma, we have E[Mσ
τ ] = E[lim inft→∞Q

σ
t ] ≤ lim inft→∞ E[Qσ

t ] ≤ 1.
Now, let Σ be a truncated multivariate normal random variable with covariance matrix

V −1 which is truncated within ||σ||2 ≤ µΛ/
√
L and it is independent of all other random

variables. Define Mτ = E[MΣ
τ |F∞], where the expectation is taken over σ and F∞ is the

tail σ-algebra of the filtration. Then by the definition of conditional expectation, E[Mτ ] =

E[E[MΣ
τ |Σ]] ≤ 1.

We then present a lower bound forMτ on Eτ . Let f(σ) denote the density function of Σ,
and for a positive definite matrix P , define c(P ) =

√
(2π)d/ det(P ) =

∫
exp(−x′Px/2)dx.
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Then it can be seen that

f(σ) =
exp(−||σ||2V /2)∫

||σ||2≤µΛ/L
exp(−||σ||2V /2)dσ

≥ exp(−||σ||2V /2)∫
Rd exp(−||σ||2V /2)dσ

=
exp(−||σ||2V /2)

c(V )
.

Thus, on the event Eτ , we have

Mτ =

∫
||σ||2≤µΛ/

√
L

exp(〈σ, Z̄τ 〉 − ||σ||2Vτ/2)f(σ)dσ

=

∫
||σ||2≤µΛ/

√
L

exp(−||σ − V −1
τ Z̄τ ||2Vτ/2 + ||Z̄τ ||2V −1

τ
/2)f(σ)dσ

≥
exp(||Z̄τ ||2V −1

τ
/2)

c(V )

∫
||σ||2≤µΛ/L

exp(−||σ − V −1
τ Zτ ||2Vτ/2− ||σ||

2
V /2)dσ.

It can be checked that

||σ − V −1
τ Z̄τ ||2Vτ + ||σ||2V = ||σ − (Vτ + V )−1Z̄τ ||2V+Vτ + ||Z̄τ ||2V −1

τ
− ||Z̄τ ||2(V+Vτ )−1 ,

which implies

Mτ ≥
exp(||Z̄τ ||2(V+Vτ )−1/2)

c(V )

∫
||σ||2≤µΛ/

√
L

exp(−||σ − (Vτ + V )−1Z̄τ ||2V+Vτ/2)dσ

≥
exp(||Z̄τ ||2(V+Vτ )−1/2)

c(V )

∫
||σ||2≤µΛ/(2

√
L)

exp(−||σ||2V+Vτ/2)dσ,

where the second inequality is due to that fact that on Eτ , ||(Vτ +V )−1Z̄τ ||2 ≤ µΛ/(2
√
L).

Note that ∫
||σ||2≤µΛ/(2

√
L)

exp(−||σ||2V+Vτ/2)dσ

=c(V + Vτ )

∫
||σ||2≤µΛ/(2

√
L)

exp(−||σ||2V+Vτ/2)/c(V + Vτ )dσ

=c(V + Vτ )

∫
||σ||(V+Vτ )−1≤µΛ/(2

√
L)

exp(−||σ||22/2)/c(I)dσ

≥c(V + Vτ )

∫
||σ||V−1≤µΛ/(2

√
L)

exp(−||σ||22/2)/c(I)dσ

=k(µ,Λ, L, V )c(V + Vτ ),

where the second equality follows from change of variable, and the first inequality is by
V + Vτ � V (recall that A � B if A − B is a semi-definite matrix), and k(µ,Λ, L, V ) ∈
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(0, 1) is a constant given by

k(µ,Λ, L, V ) :=

∫
||σ||V−1≤µΛ/(2

√
L)

exp(−||σ||22/2)/c(I)dσ.

Putting things together, we get that

Mτ ≥k(µ,Λ, L, V )
c(V + Vτ )

c(V )
exp(||Z̄τ ||2(V+Vτ )−1/2)

=k(µ,Λ, L, V )

(
det(V )

det(V + Vτ )

)1/2

exp(||Z̄τ ||2(V+Vτ )−1/2).

Finally, we obtain that

P

(
||Z̄τ ||2V̄ −1

τ
> 2 log

(
det(V̄τ )

1/2

k(µ,Λ, L, V )δ det(V )1/2

)
, Eτ
)

= P

(
exp(||Z̄τ ||2V̄ −1

τ
/2)k(µ,Λ, L, V )

δ−1(det(V̄τ )/ det(V ))1/2
> 1, Eτ

)

≤ E

[
exp(||Z̄τ ||V̄ −1

τ
/2)k(µ,Λ, L, V )

δ−1(det(V̄τ )/ det(V ))1/2
111(Eτ )

]
≤ E[Mτ111(Eτ )]δ ≤ δ,

where the first inequality is by Markov inequality. The proof of Proposition 4.5.2 is thus
complete.

4.6.3 Proof of Corollary 4.5.1

Let λi, i = 1, . . . , d, be the eigenvalues of V̄τ , that are positive because V̄τ is positive
definite. By the inequality of arithmetic and geometric means,

(
d∏
i=1

λi

)1/d

≤
∑d

i=1 λi
d

=
trace(V̄τ )

d
=

trace(I)

d
+

τ∑
t=1

trace(ztz
′
t)

d

= 1 +
τ∑
t=1

||zt||22/d ≤ 1 + τL/d.

Thus,

det(V̄t)

detV
≤ (1 + τL/d)d.

Combining with the results in Proposition 4.5.2 proves the desired result.
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4.6.4 Proof of Lemma 4.5.1

To prove this lemma, we first establish a result on the minimum eigenvalue of the expected
matrix: For any product i ∈ N and cycle l, let price pi,l = p′i,l + ωi,l, where p′i,l ∈ [p

i
+

|ωi,l|, pi− |ωi,l|] is an arbitrary price, and ωi,l is a random variable taking value ±|ωi,l| with
equal probability. Then we have λmin

(
E[zi,lz

′
i,l|Fl−1]

)
≥ ω2

i,l/(κ
2κ2L) > 0.

The Fisher’s information matrix for our problem can be written as

E[zi,lz
′
i,l|Fl−1] ≥ 1

κ2 E[xi,lx
′
i,l|Fl−1] =

1

κ2

[
1 −p′i,l
−p′i,l (p′i,l)

2 + ω2
i,l

]
.

The minimum eigenvalue of this 2× 2 matrix can be easily found as

λmin(E[xi,lx
′
i,l|Fl−1])

=
((p′i,l)

2 + ω2
i,l + 1)− ((p′i,l)

2 + ω2
i,l + 1)

√
1− 4ω2

i,l/((p
′
i,l)

2 + ω2
i,l + 1)2

2
.

Simple algebra shows that

λmin(E[xi,lx
′
i,l|Fl−1]) ≥

ω2
i,l

(p′i,l)
2 + ω2

i,l + 1
≥

ω2
i,l

p2
i + 1

≥
ω2
i,l

Lκ2
.

Applying this result, we obtain λmin(E[zi,lz
′
i,l|Fl−1]) ≥ ω2

i,l/(κ
2κ2L). As a result,

λmin

( ∑
τ∈Ti(l)

E[zi,τz
′
i,τ |Fτ−1]

)
≥
∑
τ∈Ti(l)

λmin(E[zi,τz
′
i,τ |Fτ−1]) ≥ t̃i(l)ω

2
0/(κ

2κ2L).
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Therefore, we have that

P

λmin

 ∑
τ∈Ti(l)

zi,τz
′
i,τ

 <
t̃i(l)ω

2
0

2κ2κ2L


=P

(
λmin
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τ∈Ti(l)

zi,τz
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t̃i(l)ω

2
0

2κ2κ2L
, λmin
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τ∈Ti(l)

E[zi,τz
′
i,τ |Fτ−1]

 ≥ t̃i(l)ω
2
0

κ2κ2L
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k=dc1 log(8lN)e

P

(
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τ∈Ti(l)

zi,τz
′
i,τ

 <
kω2

0

2κ2κ2L
,
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 ∑
τ∈Ti(l)

E[zi,τz
′
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 ≥ kω2
0

κ2κ2L
, t̃i(l) = k
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k=dc1 log(8lN)e

2 exp

(
− kω2

0

4κ2κ2L2

)
≤ 1/(2lN),

where the first inequality is due to t̃i(l) ∈ [c1 log(8lN), l], the second inequality follows
from Theorem 3.1 in Tropp (2011) with δ = 1/2, and the last inequality is by our choice
of c1. The proof is complete.

4.6.5 Proof of Lemma 4.5.2

For any S, p and i ∈ N on event (4.13), Cauchy-Schwarz implies that

|eαi−βipi − eα̂i,l−β̂i,lpi | ≤ (κ− 1)||θ̂i,l − θi||V̄i,l||(1,−pi)||V̄ −1
i,l
.

Applying Taylor’s theorem, we obtain

|r(S, p, θ)− r(S, p, θ̂l)| ≤
2p̄

|S|(κ− 1)

∑
i∈S

|eαi−βipi − eα̂i,l−β̂i,lpi |

≤ 2p̄(κ− 1)

|S|(κ− 1)

∑
i∈S

||θ̂i,l − θi||V̄i,l||(1,−pi)||V̄ −1
i,l
.

By the definition of Ul(S, p) in (4.21), the inequality above implies (4.23) and

Ul(S, p) ≤ r(S, p, θ) +
4p̄(κ− 1)

|S|(κ− 1)

∑
i∈S

||θ̂i,l − θi||V̄i,l ||(1,−pi)||V̄ −1
i,l
.
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Since ||θ̂i,l − θi||V̄i,l ≤ k1

√
log(lN) from event (4.13) for all i ∈ N , this completes the

proof of Lemma 4.5.2.

4.6.6 Proof of Lemma 4.6.1

Note that

||Zi,l||2 =

√( ∑
τ∈Ti(l)

εi,τ/(1 + ex
′
i,τ θi)

)2

+
( ∑
τ∈Ti(l)

εi,τpi,τ/(1 + ex
′
i,τ θi)

)2

,

so it suffices to bound
∣∣∑

τ εi,τ/(1 + exp(x′i,τθi))
∣∣ and

∣∣∑
τ εi,τpi,τ/(1 + exp(x′i,τθi))

∣∣. De-
fine ε̃i,τ := εi,τ/(1 + exp(x′i,τθi). Note that the sequence of εi,τ is a martingale difference
sequence with E[exp(λεi,τ )|Fτ−1] ≤ exp(µ2λ2/2) for all |λ| ≤ Λ and τ . As a result, ε̃i,τ is
also a martingale difference sequence such that E[exp(λε̃i,τ )|Fτ−1] ≤ exp(µ̃2λ2/2) for all
|λ| ≤ Λ̃, where µ̃ = µ/κ and Λ̃ = κΛ.

On the range of ti(l), we have

P

∣∣∣∣∣∣
∑
τ∈Ti(l)

ε̃i,τ

∣∣∣∣∣∣ > 2µ̃
√

log(8lN)ti(l)


≤

l∑
k=dc1 log(8lN)e

P

∣∣∣∣∣∣
∑
τ∈Ti(l)

ε̃i,τ

∣∣∣∣∣∣ > 2µ̃
√

log(8lN)k, ti(l) = k


<

l∑
k=dc1 log(8lN)e

2e−2 log(8lN) ≤ 1/(4lN),

where the first inequality follows from ti(l) ∈ [c1 log(8lN), l], and the second inequality is
from Theorem 15 in Petrov (2012) adapted to martingale difference sequence and the fact
that 2µ̃

√
log(8lN)k ≤ kµ̃2/Λ̃ for all k ≥ c1 log(8lN) with c1 ≥ 4Λ̃2/µ̃2.

Similarly, we obtain bound

P

(∣∣∣∣∣∑
τ

ε̃i,τpi,τ

∣∣∣∣∣ > 2µ̃
√

log(8lN)ti(l)p
2

)
< 1/(4lN)

when ti(l) ≥ 4Λ̃2 log(8lN)/(µ̃2p4).
Combining the two inequalities above together with the assumption c2 ≥ 4L/(µΛ)

completes the proof of the lemma.
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4.7 Conclusion

With the rapid development in e-commerce, assortment optimization and pricing are receiv-
ing increasingly more attention from both academia and industry. Even though voluminous
literature exists on pricing or assortment optimization separately, there exist few studies on
their joint optimization. In this work we have studied a version of the joint assortment
and pricing optimization problem where customer purchasing behavior is not completely
known a priori, and developed a learning algorithm that maximizes the expected revenue
on the fly. To our best knowledge, this is the first work on joint dynamic assortment opti-
mization and pricing problem with no prior information about customer demand.

The multinomial logit (MNL) model is employed in this chapter but customer choice
parameters are unknown. We develop a learning algorithm that adaptively updates these
parameters in carefully designed cycles. Our algorithm is based on Thompson Sampling
in choosing parameters to avoid complicated optimization procedure (see the discussion
of equation (4.12)) in each stage and enforces product testing and price perturbation. We
show that its Bayesian regret is bounded above by O(N log(NT )+

√
NT log(NT )) which

is independent of problem instance. Numerical experiments are conducted and the results
show that the algorithm performs very well and in particular, it outperforms the benchmark
algorithms. Thus, both the theoretical result and numerical result indicate that the TS-PS
algorithm can be an effective method for solving practical dynamic joint assortment and
pricing optimization problem, and in particular, they suggest that simultaneously exploring
and learning about the optimal assortment and pricing decisions is preferable over sequen-
tially finding the optimal assortment and then restricting the price exploration to the latter
subset.
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Chapter 5

Summary and Conclusion

The overall objective of this thesis is to develop data-driven algorithms for dynamic deci-
sion making problems in revenue management with unknown demand. In particular, we
tackle three different problems which are prevalent in industry: dynamic pricing, personal-
ized assortment optimization, and joint dynamic pricing and assortment optimization. The
following is a summary of the most important findings of Chapters 2, 3, and 4, correspond-
ing to these three problems, respectively.

Chapter 2 studied the problem of dynamic pricing for products with low sales and pop-
ularity. Based on the idea of product clustering, two learning algorithms were developed
in this chapter: one for a dynamic pricing problem with the generalized linear demand,
and another for the special case of linear demand functions under weaker assumptions on
product covariates. Regrets of both algorithms were established under mild technical con-
ditions. We tested our algorithms on a real dataset from Alibaba Group by simulating the
demand function. Results showed that in all numerical experiments, both algorithms out-
performed several benchmarks, where one considered all products separately, and another
one treated all products as a single cluster. A field experiment was conducted at Alibaba
by implementing the CSMP algorithm on a set of products, and the results showed that our
algorithm could significantly increase revenue.

In Chapter 3, we presented several algorithms for personalized assortment optimiza-
tion where customer’s choice model follows from MNL. In this study, we designed two
adaptive algorithms that learn the demand on the fly. The first one, P-UCB, uses MLE
for parameter estimation and applies personalized UCB for assortment optimization in de-
mand exploration. The second algorithm, OLP-UCB, bears similar structure as P-UCB but
applies an online convex optimization scheme for parameter optimization. OLP-UCB has
a constant computational time (in contrast to linearly increasing time of P-UCB) in each
iteration, so it significantly reduces computational cost when large historical data has been
collected. We proved that OLP-UCB, with significant improvement in computational com-
plexity, achieved similar performance as P-UCB both theoretically and numerically, hence
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addressing the challenge of large number of data samples. We then considered the online
personalized assortment optimization problem with high dimensional customers’ data. To
tackle the data high dimensionality challenge, we applied random projection method to
reduce the dimension for the sake of accelerated computation. The theoretical and numer-
ical performances of the developed algorithm OLP-UCB-RP were proved to be promising
given sparsity structure of customers’ data.

In Chapter 4, we investigated the dynamic joint pricing and assortment optimization.
Customer’s choice again follows from MNL model with unknown parameters. A learning
algorithms was developed based on a modification of Thompson sampling. More specifi-
cally, we divided the time horizon into carefully designed cycles, and divided these cycles
into cycles of forced testing of prices and assortments, and the ones of applying Thomp-
son sampling. Theoretical performance upper bound was proved to be promising, and
numerical experiments based on synthetic data were conducted and results showed that our
algorithm outperformed several important benchmarks.

There are several directions for future research. The first one is to investigate the per-
formance of dynamic pricing with product clustering in a more general setting. Chapter 2
essentially assumes a natural clustering structure existing among all products. In a more
general setting, for instance, we can investigate the case that the parameters of each product
are generated from a common prior distribution. Moreover, we can study the best strategy
of clustering as individual data of each product ranges from very scarce to very abundant.
The second direction of future research is to develop data-driven algorithms for personal-
ized assortment optimization with more general choice models than MNL. For instance,
when customer choice model is from nested logit (NL) or any nonparametric model, one
will need to modify the algorithm to adapt to that specific setting. The third direction
is a further study of the joint pricing and assortment optimization problem. Our current
algorithm is based on Thompson sampling, which is a randomized policy. While in real-
ity, sometimes the decision maker prefers a deterministic policy so further investigation is
needed for such a policy with comparable theoretical and numerical performance.
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