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Abstract

Traffic problems are becoming a burden on cities across the world. To prevent traf-

fic accidents, mitigate congestion, and reduce fuel consumption, a critical step is to have

a good understanding of traffic. Traditionally, traffic conditions are monitored primarily

by fixed-location sensors. However, fixed-location sensors only provide information about

specific locations, and the installation and maintenance cost is very high. The advances

in GPS-based technologies, such as connected vehicles and ride-hailing services, provide us

an alternative approach to traffic monitoring. While these types of GPS-equipped probe

vehicles travel on the road, a vast amount of trajectory data are being collected. As probe

vehicle data contain rich information about traffic conditions, they have drawn much atten-

tion from both researchers and practitioners in the field of traffic management and control.

Extensive literature has studied the estimation of traffic speeds and travel times using probe

vehicle data. However, as for queue lengths and traffic volumes, which are critical for traffic

signal control and performance measures, most of the existing estimation methods based on

probe vehicles can hardly be implemented in practice. The main obstacle is the low mar-

ket penetration of probe vehicles. Therefore, in this dissertation, we aim to develop probe

vehicle based traffic state estimation methods that are suitable for the low penetration rate

environment and can potentially be implemented in the real world.

First, we treat the traffic state in each location and each time point independently.

We focus on estimating the queues forming at isolated intersections under light or moderate

traffic. The existing methods often require prior knowledge of the queue length distribution or

the probe vehicle penetration rate. However, these parameters are not available beforehand

xvii



in real life. Therefore, we propose a series of methods to estimate these parameters from

historical probe vehicle data. Some of the methods have been validated using real-world

probe vehicle data.

Second, we study traffic state estimation considering temporal correlations. The correla-

tion of queue lengths in different traffic signal cycles is often ignored by the existing studies,

although the phenomenon is commonly-observed in real life, such as the overflow queues

induced by oversaturated traffic. To fill the gap, we model such queueing processes and ob-

servation processes using a hidden Markov model (HMM). Based on the HMM, we develop

two cycle-by-cycle queue length estimation methods and an algorithm that can estimate the

parameters of the HMM from historical probe vehicle data.

Lastly, we consider the spatiotemporal correlations of traffic states, with a focus on the

estimation of traffic volumes. With limited probe vehicle data, it is difficult to estimate traffic

volumes accurately if we treat each location and each time slot independently. Noticing that

traffic volumes in different locations and different time slots are correlated, we propose to find

the low-rank representation of traffic volumes and then reconstruct the unknown values by

fusing probe vehicle data and fixed-location sensor data. Test results show that the proposed

methods can reconstruct the traffic volumes accurately, and they have great potential for

real-world applications.

In summary, this thesis systematically studies traffic state estimation based on probe

vehicle data. Some of the proposed methods have been implemented in real life. We expect

the methods to be implemented on an even larger scale and help transportation agencies

solve more real-world traffic problems.
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Chapter 1

Introduction

1.1 Background

The expansion of cities and the growth of urban populations impose a burden on the

existing transportation infrastructure. Traffic congestion results in safety issues, long com-

mutes, and a waste of energy. It is estimated that in 2017 alone, traffic congestion in the US

caused 8.8 billion hours of total travel delay, wasted 3.3 billion gallons of fuel, and led to an

economic loss of more than 305 billion dollars (Cookson, 2018; Schrank et al., 2019). Mean-

while, 37,133 people were killed in various motor vehicle traffic crashes in the US (National

Highway Traffic Safety Administration, 2018).

Currently, many components of the transportation infrastructure are not well managed.

For example, most transportation agencies in the US only retime their traffic signals every

three to five years (Gordon, 2010; Lavrenz et al., 2016; Dunn et al., 2019). To prevent traffic

accidents, mitigate traffic congestion, and reduce fuel consumption, intelligent transportation

systems (ITS) are in great need. For better management of transportation infrastructure

and improvement of traffic conditions, a critical step is to have a better understanding of

traffic flows and transportation networks.

Traditionally, traffic conditions are monitored primarily by fixed-location sensors, such as

loop detectors and cameras (Wang et al., 2019). Although fixed-location sensors are widely

applied in current practice, there are a few drawbacks of these sensors, caused by the high

installation and maintenance cost (Yoon et al., 2007; Work et al., 2008). First, the coverage

of fixed-location sensors in transportation networks is usually low (Seo and Kusakabe, 2018;
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Takenouchi et al., 2019). The sensors can only provide traffic information about locations

where they are installed (Yoon et al., 2007; Seo et al., 2015; Guo et al., 2019). Second,

although the sensors might measure traffic volumes directly, estimating other traffic states

such as queue lengths is not straightforward if only fixed-location sensor data are available.

Third, the lack of maintenance sometimes gives rise to missing data problems (Qu et al., 2009;

Ran et al., 2016). The consequence is that a large number of intersections are still controlled

by fixed-time signals and do not respond to short-term traffic fluctuations. Even for the

intersections installed with adaptive traffic controllers, the performance often deteriorates

due to sensor malfunction and missing data (Zheng and Liu, 2020).

Because of the drawbacks of fixed-location sensors, various alternative data sources have

been proposed for traffic monitoring, including cellular signaling data (Tettamanti et al.,

2012; Ran, 2013), probe vehicle data (Turner et al., 1998; Chen and Chien, 2001; Guo et al.,

2019), and even satellite images (Seo and Kusakabe, 2018). Among all the alternatives,

probe vehicle data have attracted the most attention from researchers and practitioners in

recent years because of the advances in connected vehicle (CV) technologies, the prevalence

of online navigation systems, and the emergence of ride-hailing services.

1.2 Traffic state estimation

1.2.1 Definition

Traffic states represent traffic conditions at a given location and time. Commonly used

traffic state variables include traffic flow, traffic density, travel speed, travel time, and queue

length. Some of the variables can be directly measured by sensors, although the measurement

usually contains some errors. Some other variables, such as the queue length, often have to

be inferred from the collected traffic data. Traffic state estimation refers to the process of

estimating traffic state variables using the data collected by sensors such as loop detectors,

cameras, and probe vehicles (Seo et al., 2017).
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1.2.2 Importance

The estimation of traffic states is critical for many transportation-related applications.

In order to respond to the change in traffic conditions, the adaptive control of traffic signals

or ramp meters requires the information about traffic flows or queue lengths of different

movements (Papageorgiou et al., 2003). Network-level traffic control strategies, such as

perimeter control, rely heavily on the estimation of traffic states inside and outside the

controlled region (Geroliminis et al., 2012). The performance measures of transportation

systems also depend on the measurement or estimation of indices such as travel speed, travel

time, and traffic flow (Cheng et al., 2012; Wang et al., 2019). The annual average daily

traffic (AADT) on different roads are critical inputs to transportation planning and roadway

design (Seo et al., 2015). Driving behavior advisory, which can potentially prevent traffic

accidents and alleviate traffic congestion, is expected to utilize the information about traffic

states as well (Zheng, 2016; Seo et al., 2017). Even for evacuation planning and management

during natural disasters, monitoring the traffic states is also crucial (Wolshon et al., 2005a,b;

Liu et al., 2007).

1.2.3 Challenges

There are a few challenges for traffic state estimation, especially in urban areas. First,

real-world traffic is highly dynamic. Varying in space and time (Shahrbabaki et al., 2018),

traffic conditions can also be influenced by other factors such as weather conditions, traffic

incidents, and road construction.

Second, traffic models usually oversimplify real-world scenarios. Many traffic flow mod-

els consider traffic as a continuum. It might be a good approximation in highway-related

scenarios. However, in urban areas, the existence of traffic signals and stop signs makes the

approximation inappropriate (van Zuylen et al., 2010; Cheng et al., 2012; Shahrbabaki et al.,

2018). At the microscopic level, car-following models often ignore the randomness in driving

behaviors. In terms of travel behaviors, most classical models impose rationality assumptions
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to travelers. Nevertheless, human behaviors are sometimes irrational and arbitrary.

Third, available traffic data are often limited and contain measurement errors (Seo and

Bayen, 2017). The widely applied loop detectors can only record information about specific

locations (Guo et al., 2019). Besides, due to the lack of maintenance, loop detector data

often contain missing values (Qu et al., 2009; Kawasaki et al., 2019). Cameras used for traffic

monitoring usually only cover intersections and arterials. The accuracy of vehicle automatic

identification can be significantly influenced by weather and lighting conditions. As for probe

vehicles, although their trajectories can cover a large area, the market penetration rate is still

very low currently (Zheng and Liu, 2017; Wang et al., 2019; Zhao et al., 2019a). Therefore,

probe vehicle data cannot directly provide us volume-related traffic state variables such as

traffic flows and traffic densities (Seo et al., 2015).

1.3 Probe vehicle

1.3.1 Definition and types

Probe vehicles, sometimes called floating cars, refer to the vehicles that observe traffic

conditions while floating in the traffic flow (Seo et al., 2015). Depending on the purposes

why they are traveling on the road, probe vehicles can be divided into active probe vehicles

and passive probe vehicles. Active probe vehicles refer to the vehicles that are intentionally

sent into the traffic for data collection. On the contrary, passive probe vehicles collect traffic

information while they travel for their own purposes (Turner et al., 1998). An example of

passive probe vehicles is ride-hailing vehicles, of which the purpose of traveling is to pick

up and deliver passengers, although meanwhile their locations are recorded and reported to

the ride-hailing platforms. The platforms then use the data for applications such as vehicle

routing and arrival time prediction (Li et al., 2018).

Probe vehicle technologies can be implemented in different ways. Early implementation

includes mounting transmitters on signpost structures to track public transits, equipping ve-

hicles with electronic tags for electronic toll collection (ETC), or identifying vehicle locations
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using cellular geolocation (Turner et al., 1998). The most popular probe vehicles nowadays

are enabled by the Global Positioning System (GPS).

GPS-based probe vehicles can be further classified into a few categories. Online nav-

igation systems such as Google Maps offer navigation services to travelers who have the

applications installed on their cellphones. In return, the locations of the travelers might be

reported to the platform to improve the performance of the navigation systems. Connected

vehicles can conduct vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-

cations. When connected vehicles travel in transportation networks, the information about

the vehicles is broadcast to the ambient environment. The broadcast information can help

the surrounding vehicles make planning and control decisions. Traffic controllers can also

adjust their control strategies and signal timing parameters accordingly, once the road side

units (RSU) receive the information. The recently emerging ride-hailing platforms, such

as Uber and DiDi, represent another type of GPS-based probe vehicle. In order to match

drivers and riders and monitor the trips, the platforms collect the location data of the ride-

hailing vehicles in real time. Other types of GPS-based probe vehicles include the vehicles

equipped with the OnStar system (https://www.onstar.com), the buses or emergency vehi-

cles equipped with GPS devices, and so on. The probe vehicles referred to in this thesis are

mainly passive and GPS-based probe vehicles.

1.3.2 Probe vehicle data for ITS applications

In most cases, the information collected by a GPS device is the trajectories represented

by a series of timestamps and locations (Zheng et al., 2009). Depending upon the com-

munication protocol and the instrumentation of probe vehicles, we may also collect other

information from probe vehicles. For instance, besides the vehicle location and status, the

basic safety message (BSM) broadcast by connected vehicles may contain additional infor-

mation such as the ambient air pressure and temperature (SAE J2735).

For traffic state estimation, the most commonly used probe vehicle data are the GPS
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trajectories. However, due to random GPS errors, the longitude and latitude collected by

the GPS devices usually do not perfectly match the roads on maps. Therefore, preprocessing

is needed before using the trajectory data for traffic state estimation. The step that maps

GPS points to the links of a transportation network is called map matching. Most popu-

lar map matching algorithms are graph-based algorithms (Newson and Krumm, 2009; Lou

et al., 2009). Although GPS errors can be corrected to some extent during the map matching

process, the accuracy of the matched trajectories is still hard to reach the lane level. To

improve the quality of the GPS data, one may consider applying Differential GPS (DGPS),

which reduces positioning errors using reference stations (Parkinson and Enge, 1996). An-

other factor influencing the quality of trajectory data is the sampling rate. The frequency

for a connected vehicle to broadcast the BSM is 10 Hz. Ride-hailing vehicles mostly report

their locations to central servers every few seconds (Zhao et al., 2019a). The trajectory data

sampled at such rates are sufficient for most ITS applications.

From the perspective of information collection, one of the most remarkable characteristics

of probe vehicle data is that each trajectory can cover different locations and different time

slots. The three-dimensional time-space diagram in Figure 1.1 illustrates the information

that can be extracted from several typical data sources. The straight lines in orange repre-

sent loop detectors that collect traffic information at specific locations throughout the entire

time horizon. The horizontal plane in light blue stands for a snapshot of the transportation

network taken by imaging satellites. The traffic information at the moment when the snap-

shot is taken can be extracted from the images by applying computer vision techniques. The

blue curves represent the trajectories of probe vehicles, which extend in both spatial and

temporal dimensions.
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Figure 1.1: Traffic data collected by different sensors.

1.3.3 Pros and cons of using probe vehicle data

Using probe vehicle data as a data source for traffic state estimation has several advan-

tages. First, the cost of collecting probe vehicle data is relatively low (Seo et al., 2015),

especially when we consider the marginal cost of adding a new probe vehicle into an existing

system. Also, compared to fixed-location sensors, maintaining a probe vehicle system is less

expensive. Since the data collection process can be implemented in a crowd-sourcing man-

ner, even if a few probe vehicles stop to work, the performance of the entire system is rarely

influenced. Second, the coverage of probe vehicle data is broad. Probe vehicle trajectories

cover times and locations whenever and wherever travelers drive the vehicles. Furthermore,

at the places where the travel demand is higher or the traffic is more congested, usually more

data can be collected, which gives us more insights into the traffic and helps us better solve

the traffic problems. Third, with the rapid development of telecommunication technologies
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(5G, LTE-V), connected vehicle technologies, and the Internet of Things (IoT), the market

penetration of probe vehicles is likely to go up significantly. In the future, probe vehicle

data may become more and more accessible (Zheng et al., 2018). Fourth, by adding other

types of sensors, probe vehicles can collect abundant data other than just GPS trajectories,

which would be beneficial to ITS applications. For example, if probe vehicles are equipped

with spacing measurement devices, the spacing data can be easily used for estimating traffic

densities (Seo et al., 2015).

On the other hand, however, a few concerns have been raised in terms of using probe

vehicle data for traffic management and control. First, probe vehicle data may contain some

privacy-sensitive information about personal mobility patterns. This kind of information

can be potentially used to infer where the travelers live, when they go to work, and even

who they are, which gives rise to privacy issues. Second, the current penetration rate of

probe vehicles is still low in most areas. When using the data for traffic state estimation, the

reliability has not yet been studied systematically, less some efforts on travel time estimation

(Patire et al., 2015). Third, some probe vehicle data are very sparse due to low sampling

rates, which can undermine the accuracy of map matching and lead to erroneous traffic state

estimation results.

1.4 Literature overview

Since the early deployment of probe vehicles, the estimation of travel times and travel

speeds has been studied extensively, mainly because it requires relatively low market pene-

tration to achieve satisfactory accuracy (Srinivasan and Jovanis, 1996; Turner et al., 1998;

Nakata and Takeuchi, 2004; Ramezani and Geroliminis, 2012; Zheng and Van Zuylen, 2013;

Jenelius and Koutsopoulos, 2017). With the growth of probe vehicle market penetration in

the past decade, researchers have started to pay more and more attention to the estimation

of queue lengths and traffic volumes.
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1.4.1 Queue length estimation

Queue length estimation is critical for traffic signal control and performance measures.

Traditionally, queue lengths at signalized intersections are estimated by applying the shock-

wave theory to fixed-location sensor data (Skabardonis and Geroliminis, 2008; Liu et al.,

2009; Lee et al., 2015; An et al., 2018). In recent years, a broad range of probe vehicle

based methods was proposed. According to the methodologies applied, the existing studies

on probe vehicle based queue length estimation can be classified into two main categories.

The first category of studies estimated queue lengths by applying the traffic flow theory to

probe vehicle data. Ban et al. (2011) identified the break points of travel delays using probe

vehicle data and estimated queue lengths in real time, with the assumption of uniform vehicle

arrivals. Cetin (2012) focused on the oversaturated traffic conditions and estimated the back

of the queue by determining the shockwave speed from probe vehicle trajectories. Li et al.

(2013a) treated the cycle-by-cycle queue length evolution as a dynamic system and applied

a Kalman filter to estimate the queue lengths. Hao et al. (2015) exploited the travel times of

queueing vehicles to infer their positions and then estimated queue lengths using the inferred

positions. Instead of estimating queue lengths, Ramezani and Geroliminis (2015) estimated

the queue profiles using probe vehicle data, with a focus on the congested traffic conditions.

Li et al. (2017) reconstructed the queue forming and discharging processes without additional

signal timing information and found the maximum queue length accordingly. For most of

the methods in this category, a sufficient high penetration rate is required to identify the

shockwaves successfully.

The second category of studies tackled the problem from the perspective of the probability

theory and statistics. Comert and Cetin (2009) showed that given the penetration rate of

probe vehicles and the distribution of queue lengths, the position of the last probe vehicle in

the queue alone would be sufficient for cycle-by-cycle queue length estimation. The authors

also analyzed the relationship between the probe vehicle market penetration and estimation

accuracy. Comert and Cetin (2011) extended the work by further considering the time when
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the probe vehicles joined the queues. Following the early work, Comert (2013a,b) studied

the effect of the data from stop line detection and also investigated the scenario when the

penetration rate is not given. Instead of using the stopping positions of probe vehicles,

Hao et al. (2014) proposed a Bayesian network to use the travel time information for queue

length estimation and validated the proposed method using real-world data. By combining

probe vehicle data and loop detector data, Shahrbabaki et al. (2018) developed a method

that could estimate queue lengths and vehicle accumulations in links in real time. Mei et al.

(2019) took a Bayesian approach and calculated the posterior distribution of queue lengths

under the observations from probe vehicles.

From another point of view, almost all the existing probability theory based methods

treated each intersection and each signal cycle independently, without considering the cor-

relation of queue lengths in adjacent intersections and cycles. Among the methods based on

the traffic flow theory, a few methods considered the temporal correlation of queue lengths

in different cycles. Specifically, Li et al. (2013a) formulated the queueing dynamics into

state-space equations; Cetin (2012) and Ramezani and Geroliminis (2015) considered the

probe vehicle data in adjacent cycles when the traffic is oversaturated.

Table 1.1 summarizes the existing studies introduced above.
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Table 1.1: Existing literature on probe vehicle based queue length estimation.

Literature Methodology Data source Correlation

Ban et al. (2011) Shockwave PV None

Cetin (2012) Shockwave PV Temporal

Li et al. (2013a) Shockwave, Kalman filter PV, LD Temporal

Hao et al. (2015) Kinematic equation PV None

Ramezani and Geroliminis (2015) Shockwave, Linear regression PV Temporal

Li et al. (2017) Shockwave PV None

Comert and Cetin (2009) Probability PV None

Comert and Cetin (2011) Probability PV None

Comert (2013a) Probability PV, LD None

Comert (2013b) Probability PV None

Hao et al. (2014) Bayesian network PV None

Shahrbabaki et al. (2018) Probability PV, LD None

Mei et al. (2019) Shockwave, Probability PV None

Note: PV - Probe vehicle, LD - Loop detector

1.4.2 Traffic volume estimation

As another important traffic state variable, the information of traffic volumes is of signifi-

cance for traffic management and control as well. In current practice, traffic volume data are

mainly collected by the costly fixed-location sensors. The growth of the market penetration

of probe vehicles provides us a promising alternative data source. Over the past few years,

diverse types of probe vehicle based methods have been proposed.

Some researchers estimated travel speeds from probe vehicle data for each road and then

converted the intermediate results to traffic volumes by exploiting the relationship between

travel speeds and traffic volumes (Shang et al., 2014; Lai and Huang, 2017). Some studies

approached the problem from the perspective of the probability theory and statistics. Zheng

and Liu (2017) proposed to estimate the vehicle arrival rate from the arrival times of probe
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vehicles through maximum likelihood estimation (MLE), assuming vehicle arrivals at isolated

intersections follow time-varying Poisson processes. Wang et al. (2019) combined shockwave

analyses and Bayesian networks to estimate the average arrival rate of the assumed Poisson

process. The estimated arrival rate was then used to calculate the posterior distribution of

the cycle-based traffic volume. Similarly, Yao et al. (2019) integrated the shockwave theory

and the probability theory and estimated cycle-based traffic volumes by using the trajectories

of both the stopped and non-stopped vehicles. Almost all the methods of these types did not

consider the correlation of traffic volumes either in nearby locations or in adjacent time slots,

except the work by Luo et al. (2019), where the authors improved the estimation accuracy

by considering the information from adjacent intersections.

A few Kalman filtering based methods took the temporal correlation of traffic volumes

into account by formulating the estimation problems as dynamic systems (Aljamal et al.,

2019; Chen and Levin, 2019). Besides, some recent studies attempted to estimate traffic

volumes at a citywide level by considering the spatiotemporal correlation of traffic volumes

in transportation networks. Cui et al. (2017) estimated the unknown traffic volumes by

applying compressive sensing techniques. The correlation of traffic volumes in adjacent

time slots was captured by a Toeplitz matrix; the correlation of traffic volumes in nearby

locations was learned by fitting linear regression models to probe vehicle counts. Zhan et al.

(2017) developed a hybrid framework that extracted some high-level features from calibrated

fundamental diagrams and estimated traffic volumes by machine learning techniques. The

model depends on various data sources, including probe vehicle data, partial loop detector

data, points of interest (POI) data, and meteorology data. Using similar data sources,

Meng et al. (2017a) modeled the spatiotemporal correlation of traffic volumes by a multi-

layer affinity graph. Tang et al. (2019) focused on the fusion of probe vehicle data and

surveillance camera data instead. The authors recovered vehicle trajectory data from the

incomplete observations from cameras and captured multi-hop correlations between different

roads and time slots by applying multi-view graph embedding.
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Table 1.2 summarizes the existing studies in the literature.

Table 1.2: Existing literature on probe vehicle based traffic volume estimation.

Literature Methodology Data source Correlation

Shang et al. (2014) FD PV None

Lai and Huang (2017) FD PV None

Zheng and Liu (2017) MLE PV None

Wang et al. (2019) Shockwave, MLE PV None

Yao et al. (2019) Shockwave, MLE PV None

Luo et al. (2019) Shockwave, MLE PV Spatial

Aljamal et al. (2019) Kalman filter PV Temporal

Chen and Levin (2019) Kalman filter PV Temporal

Cui et al. (2017) Compressive sensing PV, LD Spatiotemporal

Zhan et al. (2017) FD, Data-driven PV, LD, POI, Weather Spatiotemporal

Meng et al. (2017a) Data-driven PV, LD, POI, Weather Spatiotemporal

Tang et al. (2019) Data-driven PV, LD, POI, Weather Spatiotemporal

Note: PV - Probe vehicle, LD - Loop detector, FD - Fundamental diagram

1.5 Research scope

As discussed above, the vast amount of probe vehicle trajectory data is a promising

substitute for the widely used fixed-location sensors. Extensive literature has shown that

probe vehicle data can be used for estimating travel times or travel speeds. Nevertheless,

although there are some existing methods for queue length and traffic volume estimation

based on probe vehicle data, most of the methods impose strict assumptions and cannot be

implemented on a large scale in real life. Therefore, the research scope of this thesis is to

develop traffic state estimation methods that can avoid the restrictions and be potentially

implemented on a large scale.

For queue length estimation using probe vehicle data, the traffic flow theory based meth-
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ods usually assume the penetration rate is sufficiently high, and vehicle arrivals follow certain

given processes such as uniform arrivals or Poisson arrivals (Ban et al., 2011; Cheng et al.,

2012; Hao et al., 2014); the probability theory based methods not only assume the queue

lengths in different traffic signal cycles are independent but also require the knowledge of the

penetration rate and (or) queue length distribution. However, when implementing the meth-

ods in real life, prior information about the penetration rate and queue length distribution

are not available beforehand. To fill the gap, one part of this thesis is dedicated to estimating

the probe vehicle penetration rate and queue length distribution at the movement level for

each signalized intersection. To this end, we propose a series of approximate estimators (AE)

and a maximum likelihood estimator, which have been validated using both simulation and

real-world datasets.

When it comes to cycle-by-cycle queue length estimation, another aspect that is often

ignored by the existing literature is the possible correlation of queue lengths in different

traffic signal cycles. For example, in oversaturated traffic conditions, the queue length in

the next cycle will be dependent on the queue length in the current cycle because of the

overflow (residual) queue (Wang et al., 2019). Studying such scenarios is of both theoretical

and practical significance. Therefore, another part of the thesis aims to develop queue length

estimation methods that are suitable for this kind of scenario. We model the queue evolu-

tion and observation processes in a probe vehicle environment by using a hidden Markov

model (HMM), where queue lengths are hidden states and probe vehicle data are observa-

tions. Accordingly, we propose two cycle-by-cycle queue length estimation methods, which

take advantage of the observed information in multiple cycles and improve the estimation

accuracy. We also develop an algorithm to estimate the key parameters of the HMM from

historical probe vehicle data.

For traffic volume estimation, as mentioned in the previous subsections, the high cost of

fixed-location sensors leads to the missing data problem and low coverage problem (Zhan

et al., 2017; Cui et al., 2017). Nevertheless, when only low-market-penetration probe vehicle
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data are available, it is difficult to estimate real-time traffic volume information if we consider

each time slot and each road separately (Zheng and Liu, 2017). Noticing that traffic volumes

in a transportation network are correlated spatially and temporally, we try to capture the

correlation by fusing probe vehicle data and partial fixed-location sensor data, which are

complementary to each other, as demonstrated by Figure 1.1. To approach the problem by

data fusion, we apply both the singular value decomposition (SVD) and the probabilistic

principal component analysis (PPCA) to estimate the unknown traffic volumes. These meth-

ods exploit the correlation of traffic volumes in different locations and different time slots

and thereby achieve good estimation accuracy even if the probe vehicle data are sparse. Dif-

ferent from the existing methods, the spatiotemporal correlation is captured without using

any other data sources such as POI data or weather data.

The three research topics introduced above are summarized in Figure 1.2. In the first

topic, we treat different movements and different traffic signal cycles independently. The

traffic state sij at time i and location j is estimated using the associated observation oij. In

the second topic, we consider the correlation of queue lengths in different cycles. Specifically,

the temporal correlation is captured by a Markov chain. The traffic state sij is estimated by

also using the observations in the adjacent cycles. The correlation in the temporal dimension

turns out to help us improve the queue length estimation accuracy. In the third topic, we

consider the correlation not only in the temporal dimension but also in the spatial dimension.

The spatiotemporal correlation is captured by low-rank representation methods, including

the SVD and the PPCA. In this way, unknown traffic states are estimated by combing the

data collected in different time slots and different roads.
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Figure 1.2: The framework of the three studied topics.

1.6 Contributions

This thesis systematically studies traffic state estimation in different scenarios and pro-

poses a series of methodologies. For traffic state estimation with the independence assump-

tion, we propose to estimate the queue length cycle by cycle using the observed stopping

positions of probe vehicles. To obtain the penetration rate and the queue length distribution,

which are required parameters, we aggregate historical probe vehicle data and develop a se-
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ries of estimators. For traffic state estimation considering temporal correlations, we model

the queueing process as a Markov chain and propose cycle-by-cycle queue length estimation

methods that can be carried out by dynamic programming (DP). We also estimate the re-

quired parameters by aggregating the observation sequences over different days. For traffic

state estimation considering spatiotemporal correlations, we achieve real-time traffic volume

estimation by fusing probe vehicle data and partial fixed-location sensor data. Although the

focus of this thesis is on the estimation of queue lengths and traffic volumes, the methodolo-

gies can be easily extended to the estimation of other traffic state variables. By aggregating

historical data or exploiting spatiotemporal correlations, we overcome the obstacle to probe

vehicle based traffic state estimation caused by the low penetration rate.

Besides the methodological contributions, this thesis also makes practical contributions.

Developed with the aim of real-world implementation, all the methods in this thesis are

suitable for the current low-penetration-rate probe vehicle environment. Some of the methods

have already been implemented in real life. For example, the methods in Chapter 3 have been

implemented by Didi Chuxing as part of their dynamic traffic control system. All the other

methods have been validated using either real-world datasets or simulated datasets under

reasonable assumptions. We expect the proposed methods in this thesis to be implemented on

an even larger scale and help transportation agencies solve more real-world traffic problems.

1.7 Thesis overview

This thesis focuses on the application of probe vehicle data to traffic state estimation,

particularly, the estimation of queue lengths and traffic volumes in different scenarios. The

rest of this thesis is organized as follows.

In Chapter 2, we describe the queue length estimation problem and introduce several

cycle-by-cycle queue length estimation methods. We first focus on the case where queue

lengths in different cycles are assumed to be independent and identically distributed (i.i.d.).

We introduce a few methods that can estimate queue lengths from probe vehicle observations
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in this case. Then, we generalize the methods to the non-i.i.d. case, where we propose a

hidden Markov model to solve the queue length estimation problem. Most of the content of

this chapter can be found in Zhao and Liu (2020) and Zhao et al. (2020a).

In the i.i.d. case, the queue length distribution and probe vehicle penetration rate are

required for queue length estimation. Chapters 3 and 4 present the approximate estimation

and maximum likelihood estimation of these key parameters, respectively. Most of the work

in these two chapters can be found in Zhao et al. (2019a,b) and Zhao and Liu (2020).

Chapter 5 focuses on the estimation of the parameters needed in the non-i.i.d. case. The

parameters of the HMM, which include the penetration rate, initial probabilities, and transi-

tion probabilities, are estimated by applying the Expectation-Maximization (EM) algorithm

and dynamic programming. The work can be found in Zhao et al. (2020a).

In Chapter 6, we present two data fusion based methods for traffic volume estimation.

The first method captures the correlation of traffic volumes by applying the singular value

decomposition to probe vehicle data. In the second method, we capture the correlation by

generalizing the framework of the probabilistic principal component analysis. Most of the

work can be found in Zhao et al. (2020b,c).

Finally, we provide concluding remarks and discuss some future research directions in

Chapter 7.
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Chapter 2

Cycle-by-cycle queue length estimation

2.1 Introduction

2.1.1 Background

Since traffic signals serve as critical components in urban traffic management systems, a

better understanding of the performance of traffic signals can help transportation agencies

better solve traffic problems. Queue length is one of the parameters that can be used for

traffic signal control and performance measures. To estimate queue lengths, conventional

approaches apply the shockwave theory to the data collected by fixed-location sensors, such

as loop detectors (Skabardonis and Geroliminis, 2008; Liu et al., 2009; Lee et al., 2015; An

et al., 2018). However, as the installation and maintenance cost of fixed-location sensors is

very high, only a small portion of roadways are covered by the sensors.

With the emergence of connected vehicles and ride-hailing services, the deficiency of

fixed-location sensors could potentially be overcome by the new data source: probe vehicle

data. Although the current market penetration of probe vehicles is still low, probe vehicle

data have a much broader coverage of roadways, and the cost is much lower compared to

fixed-location sensors.

2.1.2 Related work

As introduced in Section 1.4, the existing methods for probe vehicle based queue length

estimation can be classified into two categories. One category of literature estimated queue
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lengths by applying the traffic flow theory to probe vehicle data (Ban et al., 2011; Cetin,

2012; Li et al., 2013a; Ramezani and Geroliminis, 2015; Li et al., 2017). Most of the liter-

ature in this branch requires a sufficient high penetration rate to identify the shockwaves.

Another category of literature tackled the problem based on the probability theory and

statistics (Comert and Cetin, 2009, 2011; Comert, 2013a,b; Hao et al., 2014; Comert, 2016;

Shahrbabaki et al., 2018). The methods in this category usually require the knowledge of

the probe vehicle penetration rate or the vehicle arrival process.

Most of the relevant studies summarized above focused on isolated intersections under

moderate traffic conditions and treated the queues in different cycles independently. How-

ever, when there are overflow queues, or when the number of vehicle arrivals is correlated in

different cycles, the queue lengths in different cycles are not independent anymore. These

kinds of scenarios occur frequently in real life. In fact, although the estimation of queue

lengths in such scenarios is not well studied in the context of probe vehicles, the model-

ing of dependent queues has drawn much attention from researchers since the 1950s. The

modeling of overflow queues, an example of dependent queues, has been studied extensively.

The ultimate goal for most literature on overflow queue modeling was to study the delay

caused by traffic signals. Some early studies focused on the calculation of the mean overflow

queue length, given the vehicle arrival process (Miller, 1963; Newell, 1965; McNeil, 1968).

Some other studies attempted to obtain the distribution of the queue lengths (Haight, 1959;

Darroch, 1964; Ohno, 1978; Heidemann, 1994; Mung et al., 1996; van Leeuwaarden, 2006),

under the assumption of Poisson arrivals. In particular, a few studies modeled the cycle-to-

cycle queue evolution using Markov chains (Newell, 1971; Olszewski, 1990, 1994; Viti and

Van Zuylen, 2010; Igbinosun and Omosigho, 2016).

2.1.3 Contribution and organization of the chapter

As introduced above, most of the existing methods focused on the undersaturated traffic

conditions and treated the queues in different cycles independently. There is litter literature
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considering the correlation of queues when using probe vehicle data to estimate queue lengths.

In fact, considering the correlation could potentially improve the estimation accuracy, as the

observations in adjacent cycles contain additional information. Following the branch of

literature based on the probability theory, this chapter systematically studies both the i.i.d.

and non-i.i.d. cases. Specifically, in the i.i.d. case, we extend the work of Comert and Cetin

(2009) by providing several queue length estimators; in the non-i.i.d. case, we propose a

hidden Markov model to capture the correlation of queues in different cycles. Further, the

hidden Markov model is also compatible with the i.i.d. case. When there is no correlation,

the model will give the same results as the i.i.d. case. Such a unified framework for probe

vehicle based queue length estimation is of both theoretical and practical importance.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the obser-

vations that can be used for queue length estimation in a probe vehicle environment. In

Section 2.3, we present several queue length estimators under the i.i.d. assumption. In Sec-

tion 2.4, we propose a hidden Markov model that relaxes the i.i.d. assumption and considers

the correlation of different cycles. Based on the HMM, we propose two cycle-by-cycle queue

length estimation methods. In Section 2.5, we validate the proposed methods by numerical

experiments. Finally, Section 2.6 provides some concluding remarks.

2.2 Observation of queues in a probe vehicle environment

At a signalized intersection, a queue will form when the traffic signal turns red. Without

loss of generality, we restrict our discussion to a specific time-of-day (TOD) and a specific

single-lane movement controlled by fixed-time traffic signals. Here, the queue length refers to

the number of vehicles in the queue at a given time point of the signal cycle, for instance, at

the start of the green phase or the start of the red phase (overflow queue). Denote the queue

length in the ith cycle by li. Denote the maximum possible queue length by Lmax. Assume

the probe vehicles are homogeneously mixed in the traffic flow. The trajectories of the probe

vehicles can be recorded by GPS devices and stored in a database. From the trajectory
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data, the stopping positions of the probe vehicles can be extracted. Denote the number of

queueing probe vehicles in the ith cycle by ni. By assuming a uniform space headway, we

can infer the number of regular vehicles before the last probe vehicle in the queue. Denote

the pattern of the observed partial queue by a tuple qi, which consists of binary elements

indicating the vehicle types. Denote the length of the tuple by |qi|. ∀k = 1, 2, . . . , |qi|, if the

kth vehicle in the queue is a probe vehicle, the kth element of qi is set to 1; otherwise 0.

Figure 2.1 illustrates the observation process in the probe vehicle environment. The

diagram on the left shows a queue formed by two probe vehicles (in yellow) and four regular

vehicles (in white). The diagram on the right shows the pattern of the partial queue that can

be observed or inferred directly. Specifically, the positions of the two probe vehicles can be

easily extracted from the trajectory data; the three regular vehicles are inferred by dividing

the distance between the two probe vehicles by the space headway. In this example, the

pattern of the observed partial queue is represented by the tuple (1, 0, 0, 0, 1).

Real queue length 𝑙𝑖 Observation 𝑞𝑖

Probe vehicles Inferred by assuming 
a constant space headway

Figure 2.1: Queueing vehicles at a signalized intersection.

It is worth mentioning that in this thesis, the observation we use for queue length estima-

tion only includes the stopping positions. Nevertheless, more information can be potentially

used. For example, if the green phase starts immediately after a probe vehicle stops, it

implies that the probe vehicle is the back of the queue.

2.3 Cycle-by-cycle queue length estimation in the i.i.d. case

Suppose the queue lengths in different cycles are independent and identically distributed,

following a probability distribution denoted by a vector π. The jth element of π represents
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P (li = j),∀j = 0, 1, . . . , Lmax. Assume the queue length distribution π and probe vehicle

penetration rate p remain roughly the same during the studied TOD. The patterns of the

partially observed queues are governed by the queue length distribution and the penetration

rate.

If the penetration rate p and the queue length distribution π are given, the queue lengths

can be estimated cycle by cycle. From the perspective of the probability theory, we may

apply the following two estimators. The first estimator is the maximum likelihood estimator,

given by

l̂i = argmax
j

P (qi | li = j) = argmax
j:|qi|≤j≤Lmax

πjp
ni (1− p)j−ni = argmax

j:|qi|≤j≤Lmax
πj (1− p)j . (2.1)

The second estimator is the expected queue length conditional on the observed partial queue,

given by

l̂i = E (li | qi) =
Lmax∑
j=|qi|

πjp
ni (1− p)j−ni∑Lmax

k=|qi| πkp
ni (1− p)k−ni

j =
Lmax∑
j=|qi|

πj∑Lmax
k=|qi| πk (1− p)k−j

j. (2.2)

Similar formulations of equation (2.2) were introduced in Comert and Cetin (2009). Given

p and π, both of the estimators only depend on the position of the last probe vehicle |qi|.

Figure 2.2 shows the mean absolute errors (MAE) when the two methods are used for

queue length estimation under different penetration rates. The queue length distribution is

chosen as Poisson(λ = 10). The mean absolute errors of the three methods are calculated

by

E
(∣∣∣l̂i − li∣∣∣) =

Lmax∑
li=0

li∑
|qi|=0

P (li, |qi|)
∣∣∣l̂i − li∣∣∣ , (2.3)

where

P (|qi| , li) =


πli (1− p)li , |qi| = 0

πlip (1− p)li−|qi| , |qi| 6= 0

. (2.4)

The baseline method used for comparison is the naive estimation method which takes the
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position of the last probe vehicle as an estimate of the queue length, that is, l̂i = |qi|.

Apparently, the naive estimation method usually leads to an underestimation. In general, the

maximum likelihood estimator performs better when the penetration rate is high, because it

gives the “most likely” estimate; the conditional expectation yields better estimation accuracy

when the penetration rate is low, because it is essentially a weighted average and thus gives

a more conservative estimate. Similar patterns are observed when setting λ to other values.

0.0 0.2 0.4 0.6 0.8 1.0
Penetration rate

0

2

4

6

8

10

M
AE

Naive estimation
Max likelihood estimation
Conditional expectation

Figure 2.2: Estimation accuracy of the cycle-by-cycle estimation methods in the i.i.d. case.

Both of the estimators given by equation (2.1) and (2.2) require the knowledge of the

penetration rate p and the queue length distribution π. In Chapters 3 and 4, we will discuss

how to estimate the required parameters from historical probe vehicle data.
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2.4 Cycle-by-cycle queue length estimation in the non-i.i.d. case

2.4.1 A hidden Markov model for queue evolution in the probe vehicle envi-

ronment

Now we relax the i.i.d. assumption imposed in Section 2.3. To capture the correlation of

different traffic signal cycles, we assume the stochastic process {li} is a time-homogeneous

Markov chain, that is

P (l2 | l1) = P (li+1 | li) = P (li+1 | l1, l2, . . . , li) , ∀i = 1, 2, . . . , C − 1. (2.5)

An example that follows such properties is the overflow queue scenario described by Viti and

Van Zuylen (2010), where the overflow queue at a signalized intersection is induced by an

exogenous arrival process. Also, assume a vehicle will be served within two cycles, which is

a sufficient condition for

P (qi | li) = P (qi | q1, q2, . . . , qi−1, l1, l2, . . . , li) ,∀i = 1, 2, . . . , C. (2.6)

After C cycles of observations, the hidden values of our interest are the sequence of queue

lengths l = {l1, l2, . . . , lC}. The observations we have are the sequence of observed partial

queues q = {q1, q2, . . . , qC}. Under the assumptions listed above, the queueing process and

the observation process can be modeled by a hidden Markov model, where the hidden states

are l and the observations are q, as illustrated in Figure 2.3.

Hidden states:  
𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐶)

Observations:  
𝑞 = (𝑞1, 𝑞2, … , 𝑞𝐶)

𝑙1 𝑙2 𝑙3 𝑙𝐶

𝑞1 𝑞2 𝑞3 𝑞𝐶

Cycle 1 Cycle 2 Cycle 3 Cycle C

Figure 2.3: A hidden Markov model for the queueing process and observation process.
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Denote the probabilities of the initial queue length by π, of which the jth element repre-

sents P (l1 = j) ,∀j = 0, 1, . . . , Lmax. Denote the transition probability matrix of the HMM

by T . The element in the jth row and the kth column of T is

Tjk = P (li+1 = k | li = j) ,∀i = 1, 2, . . . , C − 1,∀j, k = 0, 1, . . . , Lmax. (2.7)

The probability of observing qi from the hidden state li (emission probability) is

Eliqi = P (qi | li) =


pni (1− p)li−ni , li ≥ |qi|

0, li < |qi|
, ∀i = 1, 2, . . . , C. (2.8)

As equation (2.8) suggests, given the observations, the emission probabilities only depend

on the penetration rate p. Therefore, the parameters of the HMM include π, T , and p. The

hidden Markov model is also compatible with the i.i.d. case, where each row of T will be

identical to the transpose of π, that is,

P (li = j | li−1 = k) = P (li = j) = πj,∀i = 2, 3, . . . , C,∀j, k = 0, 1, . . . , Lmax. (2.9)

2.4.2 Queue length estimation methods

When the parameters of the HMM are given, the observations from the probe vehicle

data can be used to estimate the sequence of queue lengths. In this section, we propose two

methods for cycle-by-cycle queue length estimation.

The first estimator is the maximum likelihood estimator, given by

l̂ = argmax
l

P (q1, q2, . . . , qC | l) = argmax
l

P (l1)
C∏
i=2

P (li | li−1)
C∏
i=1

P (qi | li). (2.10)

The MLE can be obtained by applying the Viterbi algorithm (Viterbi, 1967; Forney, 1973).

In the corresponding trellis diagram, as shown by Figure 2.4, each vertex represents a pos-
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sible value of the hidden state, with which an emission probability is associated. Each arc

represents a cycle-to-cycle state transition, with which a transition probability is associated.

The Viterbi algorithm essentially finds the path that traverses all the stages (traffic signal

cycles) on the graph with the largest product of transition and emission probabilities, which

is represented by the red path in Figure 2.4. This process is also called HMM decoding in

the literature.

0

Cycle 1 Cycle 2 Cycle 3 Cycle C

0 0
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𝑙𝑖 = 2
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0

1

2

Cycle 4 Cycle C-1

Figure 2.4: Graph representation of the maximum likelihood estimator in the non-i.i.d.
case.

Another estimator is given by the expected queue length conditional on the sequential

observations, that is,

E (li | q1, q2, . . . , qi) =
Lmax∑
j=1

P (q1, q2, . . . , qi, li = j)∑Lmax
k=0 P (q1, q2, . . . , qi, li = k)

j,∀i = 1, 2, . . . , C. (2.11)

∀j = 0, 1, . . . , Lmax,∀i = 1, 2, . . . , C, the joint probability P (q1, q2, . . . , qi, li = j) can be

carried out recursively using the following equations (Baum et al., 1970).

P (q1, l1 = j) = πjEjq1 ; (2.12)

P (q1, q2, . . . , qi, li = j) =
Lmax∑
k=0

P (q1, q2, . . . , qi−1, li−1 = k)TkjEjqi . (2.13)

Both of the estimators given by equations (2.10) and (2.11) require the knowledge of the
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penetration rate p, the initial queue length distribution π, and the transition matrix T . In

Chapter 5, we will discuss how to estimate the required parameters from historical probe

vehicle data.

2.5 Case studies

2.5.1 Simulation settings

To validate the proposed methods for queue length estimation, in the case study, we

generate simulated data using a state-of-the-art overflow queue model proposed by Viti and

Van Zuylen (2010). The model assumes that the number of vehicle arrivals in each traffic

signal cycle is i.i.d., following a Poisson distribution. However, the number of vehicles that

can be discharged in each cycle is limited. In some cycles, the number of vehicles arriving

at the intersection might exceed the capacity, which leads to overflow queues. With the

potential existence of overflow queues, the resultant cycle-to-cycle queueing process is a

Markov chain, which makes it suitable for testing the proposed methods. The parameters of

the queue model and their values are summarized in Table 2.1.

Table 2.1: The parameters of the Viti and Van Zuylen (2010) model and their values in the
case study.

Parameters Description Value

λ Average arrival rate 10

amax Maximum number of vehicle arrivals in each cycle 15

s Maximum number of vehicles that can be served in each cycle 10

Lmax Maximum queue length 20

In the case study, we focus on the queues at the beginning of the (effective) red phases,

namely, the overflow queues. The queues at the beginning of the green phases can be studied

similarly. Figure 2.5 illustrates the queueing process characterized by the model. The colors

of the vehicles indicate the traffic signal phases when the vehicles join the queue. At the
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beginning of the ith cycle, there are five vehicles (li) in the overflow queue. During the red

phase, six more vehicles (ari ) join the queue, resulting in a queue of size 11 when the traffic

signal turns green. In the green phase, ten vehicles in the queue are discharged, while three

more vehicles (agi ) join the queue. Consequently, the size of the overflow queue (li+1) is four

at the beginning of cycle i+1. Obviously, the queue lengths in different cycles are correlated,

and the stochastic process {li} is a Markov chain.

Figure 2.5: A typical scenario of overflow queues.

According to the derivations by Viti and Van Zuylen (2010), the transition probabilities

of the Markov chain can be expressed as

Tj0 =


∑min(s−j,amax)

n=0 P (n), j ≤ s

0, j > s

; (2.14)

TjLmax =


∑amax

n=Lmax−j+s P (n), Lmax − j + s ≤ amax

0, otherwise
; (2.15)

Tjk =


P (s+ k − j), 0 ≤ s+ k − j ≤ amax

0, otherwise
, (2.16)
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where P (·) denotes the probability mass function of the Poisson distribution, which is

P (n) =
λne−λ

n!
,∀n = 0, 1, . . . (2.17)

The initial distribution π is considered as the stationary distribution of the Markov chain,

which can be obtained by solving the following linear equations

πj =
Lmax∑
k=0

πkTkj, ∀j = 0, 1, . . . , Lmax; (2.18)

Lmax∑
j=0

πj = 1. (2.19)

With the initial probabilities and transition probabilities specified above, we generate the

ground-truth queues and their lengths {l1, l2, . . . , lC}. The penetration rate is set to 20%.

With the penetration rate, we perform a Bernoulli trial for each vehicle in the queue to

determine if it is a probe vehicle or a regular vehicle. Then, from the simulation data, we

extract the observed partial queues {q1, q2, . . . , qC}, which are used as the input to the queue

length estimation methods.

2.5.2 Results of cycle-by-cycle queue length estimation

Figure 2.5 shows the cycle-by-cycle queue length estimation results when four different

methods are applied to a 30-cycle observation sequence. The used measure of estimation

accuracy is the mean absolute error. In Figure 2.5(a), the naive estimation refers to the

estimator that takes the position of the last probe vehicle in the queue as an estimate of

the queue length. Figure 2.5(b) shows the results when the correlation of different cycles is

ignored. The queue length in each cycle is estimated independently by using the observation

in the same cycle, which corresponds to equation (2.2) in the i.i.d. case. These two methods

are considered as baseline methods.

Figures 2.5(c) and 2.5(d) show the estimation results of the methods proposed by equa-
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tions (2.10) and (2.11), respectively. The results indicate that the HMM-based methods

outperform the two baseline methods. The reason for the improvement is that the HMM-

based methods exploit the additional information in other cycles.
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Figure 2.5: Cycle-by-cycle queue length estimation results with the given parameters using
four different methods: (a) naive estimation; (b) expectation conditional on the observa-
tion in the current cycle; (c) maximum likelihood estimation (HMM decoding); and (d)
expectation conditional on sequential observations.

The results above demonstrate how the algorithms perform when the penetration rate

of probe vehicles is 20%. We run the experiments repeatedly to get the average estimation

accuracy under different penetration rates. As Figure 2.6 shows, the HMM expectation

method outperforms other methods when the penetration rate is low. When the penetration

rate is high, both the HMM decoding method and the naive estimation method perform

better than the other two methods. In general, the results indicate that considering the

correlation of different cycles is beneficial to queue length estimation if the queueing process

does not follow the i.i.d. assumption, especially when the penetration rate of probe vehicles

is low.
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Figure 2.6: The comparison of the proposed methods and two baseline methods.

2.6 Conclusions

In this chapter, we systematically study the cycle-by-cycle queue length estimation using

probe vehicle data. We first describe the queue length estimation problem in a probe vehicle

environment and present two estimators in the case where queue lengths in different cycles are

assumed to be independent and identically distributed. The i.i.d. assumption is appropriate

for isolated intersections under light or moderate traffic conditions.

However, in some other scenarios, for example, when there are overflow queues, the i.i.d.

assumption does not hold anymore. Such scenarios are often ignored by the existing literature

in the context of probe vehicles. Therefore, the second part of this chapter focuses on the

estimation of queue lengths in the non-i.i.d. case. We capture the correlation of the queues

in different cycles by a hidden Markov model. Based on the HMM, we propose two cycle-by-

cycle queue length estimation methods for the non-i.i.d. scenarios. We also compare their

estimation accuracy with two baseline methods by numerical experiments. In the numerical

experiments, we generate queue sequences using a state-of-the-art overflow queue model and

obtain probe vehicle data by random sampling. The results of the experiments indicate that
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considering the correlation of different cycles is beneficial for queue length estimation.

Throughout this chapter, we assume all the parameters, such as the penetration rate

and queue length distribution, are given to us, as most of the relevant literature does. In

the real world, when we implement the queue length estimation methods, the values of the

parameters are not available beforehand. Instead, we need to estimate them from historical

data. In the next few chapters, we will focus on the estimation of the required parameters.
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Chapter 3

Parameter estimation for independent queues:

approximate estimation

3.1 Introduction

3.1.1 Background

In chapter 2, we introduced the cycle-by-cycle queue length estimation methods enabled

by probe vehicle data. When queue lengths in different cycles are assumed to be i.i.d., the

probability theory based methods require the knowledge of the penetration rate of the probe

vehicles and the distribution of queue lengths. Even for another category of methods in

the existing literature, the traffic flow theory based methods, prior information about the

penetration rate and queue length distribution is useful. However, the information is usually

not available beforehand in real life.

Some recent studies attempted to estimate the probe vehicle penetration rate and queue

length distribution. Comert (2016) derived several estimators of the penetration rate un-

der the assumption of Poisson vehicle arrivals. Zheng and Liu (2017) proposed a maximum

likelihood estimation method that can estimate the average arrival rate at signalized intersec-

tions. The authors assumed that the vehicle arrivals follow a time-varying Poisson process.

However, the imposed Poisson arrival assumption limited its practical applications. Wong

and Wong (2019) and Wong et al. (2019b) used the loop detector data and probe vehicle

data collected in adjacent links to find the mean penetration rate, assuming there exists

a probability distribution describing the penetration rates on adjacent links. Meng et al.
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(2017b) also quantified the penetration rate variability based on land use variables using

data collected in Hong Kong. The established model can be used to estimate penetration

rates of links without detectors. However, the method might not be generalized to other

locations. Wong et al. (2019a) proposed an unbiased estimator for the probe vehicle pene-

tration rate. Nevertheless, the method cannot handle the cases when some of the queues are

empty. In summary, most of the existing methods impose strong assumptions and can only

be applied to a limited range of scenarios.

3.1.2 Contribution and organization of the chapter

In this chapter, we try to estimate the probe vehicle penetration rate and queue length

distribution by making use of the stopping positions of probe vehicles. When the traffic

is flowing, it is difficult to infer how many regular vehicles are around the probe vehicles.

Consequently, it is almost impossible to estimate the penetration rate of the probe vehicles

in the traffic. However, when the vehicles are stopping at the intersections, based on the

empirical value of the space headway, we can roughly infer the number of vehicles in front

of the last probe vehicle. Although the number of vehicles behind the last probe vehicle is

still unknown, the incomplete information can still provide us an opportunity to estimate

the required parameters. Since the proposed methods in this chapter have few external

dependencies compared to the existing methods, they could overcome the limitations of the

existing methods and be applied to a broader range of scenarios. The methods have been

validated by both simulation and real-world data, showing good accuracy.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the general

methodologies to estimate the required parameters. Specifically, we demonstrate how to

obtain an approximated queue length distribution from the aggregated stopping positions of

probe vehicles. We also classify queues into observable queues and hidden queues and show

that the penetration rate can be estimated once we have an estimator of the total queue

length. In Sections 3.3 and 3.4, we propose several estimators for observable queues and
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hidden queues, respectively. In Section 3.5, we revisit the methodologies of estimating the

penetration rate and queue length distribution and propose two general methods by making

use of the results in Sections 3.3 and 3.4. We validate the proposed methods using simulation

data and real-world probe vehicle data in Section 3.6. Finally, we summarize this chapter

and discuss the limitations of the proposed methods in Section 3.7.

3.2 Methodology

As discussed in Chapter 2, if we assume the queue lengths in different cycles are i.i.d.,

the patterns of the observations from probe vehicles are governed by the penetration rate

of probe vehicles and the queue length distribution. In this section, we present a general

methodology for estimating the two governing parameters from historical data.

3.2.1 Approximate estimation of the queue length distribution

Suppose the trajectory data of the probe vehicles are collected for C traffic signal cycles.

Denote the number of queues of length j in all the cycles by Cj. Then, according to the

definition of the queue length distribution, we have

πj =
E (Cj)

C
,∀j = 0, 1, . . . , Lmax. (3.1)

Assuming the traffic signal timing is available, the value of C can be easily obtained. There-

fore, if we can infer the value of E (Cj), then we can get an estimate of the queue length

distribution.

One key insight is that the queue length distribution can be obtained from the aggregated

data of vehicle queueing locations. Suppose the distribution of the stopping positions of all

the vehicles (both probe vehicles and regular vehicles) is given. As illustrated by the left and

middle diagrams in Figure 3.1, if the maximum queue length is 6, then the count of stopping

vehicles at position 6 (the sixth stopping position behind the stop bar) is equal to the count
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of queues of length 6, namely, C6. Similarly, the count of stopping vehicles at position 5 is

equal to the total count of queues of length 5 or 6, that is, C5 + C6; the count of stopping

vehicles at position 4 is equal to the total count of queues of length 4, 5, or 6, so on and

so forth. As a result, the distribution of the stopping positions has a decreasing trend with

respect to the distance to the stop bar.

Queue Length
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Figure 3.1: The relationship between the distributions of queue lengths and stopping posi-
tions.

Based on the reasoning above, if the distribution of the stopping positions of all the

vehicles is given, E(Cj) can be approximated by the difference between the counts of stopping

vehicles at position j and position j+1. Nevertheless, in reality, only the stopping positions of

the probe vehicles are observable. Since the probe vehicles are assumed to be homogeneously

mixed with other vehicles, the histogram of the stopping positions of the probe vehicles is a

scaled-down version of the histogram of the stopping positions of all the vehicles. Therefore,

as illustrated by the middle and right diagrams in Figure 3.1, Ĉj, the difference between c̄j,

the count of stopping probe vehicles at position j, and c̄j+1, the count of stopping probe

vehicles at position j + 1, can be used to approximate pE(Cj). Thus, we can estimate the

queue length distribution by

πj =
pE (Cj)

pC
≈ Ĉj
pC

, ∀j = 1, 2, . . . , Lmax. (3.2)
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It is worth noting that due to randomness, the distribution of the stopping positions of

the probe vehicles might not always follow the decreasing trend. When the decreasing trend

is violated, the distribution cannot be directly used to calculate Ĉj, because otherwise some

of the values will be negative. In this case, Ĉj can be calculated by solving the following

optimization problem.

minimize
Lmax∑
k=1

ωk

(
Lmax∑
j=k

Ĉj − c̄k

)2

(3.3)

subject to Ĉj ≥ 0,∀l = 1, 2, ...Lmax. (3.4)

The objective of the optimization problem is to minimize the difference between the ideal

counts of stopping probe vehicles
∑Lmax

j=k Ĉj and the observed counts c̄k for each location

k, weighted by a coefficient ωk. The constraints ensure the non-negativity of Ĉj. From

another perspective, the optimization problem tries to modify the distribution of the stopping

positions of the probe vehicles to the least extent, so that non-negative Ĉj could be obtained.

3.2.2 Approximate estimation of the penetration rate

Denote the total number of probe vehicles in all the queues by Qprobe. Since the value

of Qprobe can be easily obtained from the probe vehicle data, if we can get an estimate of

the total queue length Q̂all or express it as a function of p, the penetration rate of the probe

vehicles can be easily obtained from the following equation

p =
Qprobe

Q̂all
. (3.5)

To estimate the total queue length, we classify the queues into two categories: observable

queues and hidden queues. Observable queues refer to the queues where there is at least

one probe vehicle; hidden queues refer to the queues without any probe vehicles. Let si and

ti denote the positions of the first and the last probe vehicles in the ith cycle, respectively,

if the queue is observable. Figure 3.2 shows an example of the queues in a probe vehicle
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environment. In this example, l1, l2, l4, l5, l7, and l9 are (partially) observable because of the

probe vehicles in the queues. l3, l6, and l8 are hidden because there are no probe vehicles.

Denote the total length of the observable queues and the total length of the hidden queues

by Qobs and Qhid, respectively. In Figure 3.2, Qobs = l1 + l2 + l4 + l5 + l7 + l9 = 30 and

Qhid = l3 + l6 + l8 = 7.
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Observation
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𝑞1

𝑞2

𝑞6

𝑞5

𝑞3

𝑞4

𝑞7

𝑞9

𝑞8

Observations

Figure 3.2: Observation process.

Estimating the total queue length is equivalent to estimating the sum of Qobs and Qhid. In

the following two sections, we will discuss how to estimate the observable queues and hidden

queues, respectively. Then, we will revisit the methodologies of estimating the penetration

rate and queue length distribution in Section 3.5.

3.3 Estimation of observable queues

Qobs can be estimated through two general approaches. Estimator 1, 2, and 3 are based

on the fact that the queueing probe vehicles are expected to segregate the regular vehicles

equally. These estimators only require the number of queueing probe vehicles and their

stopping positions in each cycle, which can be easily obtained from the trajectory data.

Therefore, the estimators give constant values. By contrast, estimator 4 is based on Bayes’

theorem, which relies on the penetration rate p. Thus, estimator 4 is a function of p.
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3.3.1 Estimator 1 using the first probe vehicles in the queues

Theorem 1.

Given that ni ≥ 1 in the ith cycle,

E(li | ni) = E(si | ni)(ni + 1)− 1. (3.6)

The proof is in Appendix A.

Theorem 1 states that given the number of probe vehicles in an observable queue, the

expected queue length can be obtained from the expected stopping position of the first probe

vehicle. Based on Theorem 1, given the number of probe vehicles in each cycle, the expected

total length of the observable queues can be expressed as

∑
i:ni 6=0

E(li | ni) =
∑
i:ni 6=0

(E (si | ni) (ni + 1)− 1) . (3.7)

=
∑
i:ni 6=0

E (si | ni) (ni + 1)−
∑
i:ni 6=0

1 (3.8)

=
Lmax∑
j=1

∑
i:ni=j

E (si | ni = j) (j + 1)−
∑
i:ni 6=0

1 (3.9)

=
Lmax∑
j=1

(j + 1)
∑
i:ni=j

E (si | ni = j)−
∑
i:ni 6=0

1. (3.10)

Therefore, given the position of the first stopping probe vehicle si in the ith cycle, ∀i ∈

{1, 2, , . . . , C}, by replacing the expected value E (si | ni = j) by the sample mean
∑
i:ni=j

si∑
i:ni=j

1
,

∀j ≥ 1, Qobs can be estimated by

Q̂obs
1 =

Lmax∑
j=1

(j + 1)
∑
i:ni=j

si −
∑
i:ni 6=0

1 (3.11)

=
Lmax∑
j=1

∑
i:ni=j

si (j + 1)−
∑
i:ni 6=0

1 (3.12)
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=
∑
i:ni 6=0

si (ni + 1)−
∑
i:ni 6=0

1 (3.13)

=
∑
i:ni 6=0

(si (ni + 1)− 1) . (3.14)

3.3.2 Estimator 2 using the last probe vehicles in the queues

Theorem 2.

Given that ni ≥ 1 in the ith cycle,

E(li | ni) = E(ti | ni)
ni + 1

ni
− 1. (3.15)

The proof is in Appendix A.

Theorem 2 states that given the number of probe vehicles in an observable queue, the

expected queue length can be obtained from the expected stopping position of the last probe

vehicle. Based on Theorem 2, given the number of probe vehicles in each cycle, the expected

total length of observable queues can be expressed as

∑
i:ni 6=0

E(li | ni) =
∑
i:ni 6=0

(
E(ti | ni)

ni + 1

ni
− 1

)
(3.16)

=
Lmax∑
j=1

(
j + 1

j

) ∑
i:ni=j

E (ti | ni = j)−
∑
i:ni 6=0

1. (3.17)

Following the similar derivations as estimator 1, given the position of the last stopping probe

vehicle ti in the ith cycle, ∀i ∈ {1, 2, . . . , C}, by substituting the sample mean
∑
i:ni=j

ti∑
i:ni=j

1
for

the expected value E (ti | ni = j) ,∀j ≥ 1, Qobs can be estimated by

Q̂obs
2 =

∑
i:ni 6=0

(
ti
ni + 1

ni
− 1

)
. (3.18)
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3.3.3 Estimator 3 using the first and the last probe vehicles in the queues

Theorem 3.

Given that ni ≥ 1 in the ith cycle,

E(li | ni) = E(si | ni) + E(ti | ni)− 1, (3.19)

E(li | ni ≥ 1) = E(si | ni ≥ 1) + E(ti | ni ≥ 1)− 1. (3.20)

The proof is in Appendix A.

Theorem 3 states that given the number of probe vehicles in an observable queue, the

expected queue length can be obtained from the expected stopping positions of the first and

the last probe vehicles. Based on Theorem 3, given the number of probe vehicles in each

cycle, the expected total length of the observable queues can be expressed as

∑
i:ni 6=0

E(li | ni) =
∑
i:ni 6=0

(E(si | ni) + E(ti | ni)− 1) . (3.21)

=
Lmax∑
j=1

∑
i:ni=j

(E (si | ni = j) + E (ti | ni = j)− 1) (3.22)

Therefore, by substituting the sample means
∑
i:ni=j

si∑
i:ni=j

1
and

∑
i:ni=j

ti∑
i:ni=j

1
for the expected values

E(si | ni = j) and E(ti | ni = j),∀j ≥ 1, respectively, Qobs can be estimated by

Q̂obs
3 =

∑
i:ni 6=0

(si + ti − 1) . (3.23)

The mechanism behind Q̂obs
3 is intuitive. Figure 3.3 shows an example, where the queue

in the kth cycle is the reverse of the queue in the jth cycle. It implies that the number of

vehicles behind the last probe vehicle in the jth cycle is equal to the number of vehicles in

front of the first probe vehicle in the kth cycle. Because of the symmetry, these two queues

have the same probability of occurring. Therefore, even though the number of vehicles
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behind the last probe vehicle in a cycle is unknown, as long as the sample size is sufficient,

the missing number could be compensated by the number of vehicles in front of the first

probe vehicle in another cycle. Essentially, Q̂obs
3 is obtained by summing up the position of

the last probe vehicle ti and the number of vehicles in front of the first probe vehicle si − 1,

which can be regarded as a compensation of the missing vehicles in the rear.

Observation
𝑙𝑗

𝑙𝑘

𝑞𝑗

𝑞𝑘

?

Figure 3.3: The missing part compensated by another queue.

3.3.4 Estimator 4 based on Bayes’ theorem

Given all the observed partial queues, according to equation (2.2), the conditional expec-

tation of the total length of the observable queues can be expressed as

∑
i:ni 6=0

E(li | qi) =
∑
i:ni 6=0

Lmax∑
j=|qi|

πj∑Lmax
k=|qi| πk (1− p)k−j

j. (3.24)

Substituting equation (3.2) into equation (3.24) gives an estimate of Qobs

Q̂obs
4 (p) =

∑
i:ni 6=0

Lmax∑
j=|qi|

Ĉj∑Lmax
k=|qi| Ĉk (1− p)k−j

j, (3.25)

which is a function of the penetration rate p.

3.4 Estimation of hidden queues

After estimating Qobs, the following question is how to estimate Qhid, as there is no

probe vehicle in the corresponding cycles. Fortunately, the fact that no probe vehicle is in

the queues also contains information. In this section, two estimators ofQhid will be presented.

Similar to Q̂obs
4 (p), estimator 1 of Qhid applies Bayes’ theorem to the hidden queues directly.
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Estimator 2 utilizes the ratio between the probability of being observable and the probability

of being hidden for each queue, to estimate the total length of the hidden queues.

3.4.1 Estimator 1 based on Bayes’ theorem

Similar to equation (3.24), given the fact that no probe vehicle is observed in the hidden

queues, the expected total length of the hidden queues can be expressed as

∑
i:ni=0

E(li | qi) =
∑
i:ni=0

Lmax∑
j=0

πj∑Lmax
k=0 πk (1− p)k−j

j. (3.26)

Therefore, an estimator of Qhid can be given by

Q̂hid
1 (p) =

∑
i:ni=0

Lmax∑
j=0

Ĉj∑Lmax
k=0 Ĉk (1− p)k−j

j. (3.27)

Please note that different from equation (3.25), the summation over j in equation (3.27)

starts from 0. Here shows how to find Ĉ0, an estimate of pE(C0).

In all the queues, the expected number of queues of length 0 is

E(C0) = C −
Lmax∑
j=1

E(Cj). (3.28)

Therefore, multiplying p on the two sides of the equation gives

pE(C0) = pC −
Lmax∑
j=1

pE(Cj). (3.29)

Ĉ0, an estimate of pE(C0), can be easily given by

Ĉ0 = pC −
Lmax∑
j=1

Ĉj. (3.30)

Now, all the parameters except p on the right-hand side of equation (3.27) can be calculated.
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Therefore, Q̂hid
1 (p) is a function of only p.

3.4.2 Estimator 2 using the probabilities of being observed and being hidden

Define a binary variable Xj
i to indicate if the queue length in the ith cycle is j, that is,

Xj
i =


1, li = j

0, li 6= j

, (3.31)

where j = 0, 1, . . . , Lmax. Obviously, Cj =
∑C

i=1 X
j
i .

Among the observable queues, ∀j = 1, 2, . . . , Lmax, the expected number of queues of

length j can be expressed as

∑
i:ni 6=0

E
(
Xj
i | qi

)
=
∑
i:ni 6=0

(
P (Xj

i = 1 | qi) · 1 + P (Xj
i = 0 | qi) · 0

)
(3.32)

=
∑
i:ni 6=0

(P (li = j | qi) · 1 + P (li 6= j | qi) · 0) (3.33)

=
∑
i:ni 6=0

P (li = j | qi). (3.34)

For a queue of length j, the probability of being hidden (without any probe vehicle) is

(1− p)j; the probability of being observable (with at least one probe vehicle) is 1− (1− p)j.

Therefore, the expected total length of the hidden queues can be estimated by

Lmax∑
j=1

(
(1− p)j

1− (1− p)j
∑
i:ni 6=0

E
(
Xj
i | qi

))
j =

Lmax∑
j=1

(1− p)j

1− (1− p)j
∑
i:ni 6=0

P (li = j | qi)j (3.35)

=
∑
i:ni 6=0

Lmax∑
j=|qi|

(1− p)j

1− (1− p)j
πj∑Lmax

k=|qi| πk (1− p)k−j
j

(3.36)
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Then, an estimator of Qhid, the total length of the hidden queues, can be defined as

Q̂hid
2 (p) =

∑
i:ni 6=0

Lmax∑
j=|qi|

(1− p)j

1− (1− p)j
Ĉj∑Lmax

k=|qi| Ĉk (1− p)k−j
j. (3.37)

3.5 Estimation of the parameters

In this section, we propose two different methods for penetration rate estimation. Ex-

tending the methodology presented in Section 3.2.2, we estimate p by establishing and solving

a single-variable equation. Method 1 is based upon the equivalence between the different

estimators. Method 2 exploits the fact that the proportion of probe vehicles in the queues

is approximately equal to the penetration rate. Once p is estimated, we can easily estimate

the queue length distribution using equation (3.2).

3.5.1 Method 1

When estimating Qobs, estimator 1, 2, and 3 can generate constant results, whereas

estimator 4 is a function of p. Since the four estimators are of the same variable Qobs, it is

intuitive to establish the following single-variable equation

Q̂obs
i = Q̂obs

4 (p),∀i = 1, 2, 3. (3.38)

Solving the equation will yield an estimate of the penetration rate p. Similarly, when es-

timating Qhid, both estimator 1 and estimator 2 are functions of p. Therefore, another

single-variable equation can be given by

Q̂hid
1 (p) = Q̂hid

2 (p). (3.39)
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A more general formulation of this method can be expressed as follows.

Q̂obs
i (p) + Q̂hid

j (p) = Q̂obs
m (p) + Q̂hid

n (p). (3.40)

As long as it is an equation with a single unknown variable p, solving it will give an estimate

of the penetration rate. Both the left-hand side and the right-hand side of equation (3.40)

can be regarded as estimators of the total queue length.

3.5.2 Method 2

Another way to establish a single-variable equation for p is shown by equation (3.41).

Qprobe

Q̂obs
i (p) + Q̂hid

j (p)
= p, ∀i = 1, 2, 3, 4,∀j = 1, 2, (3.41)

The left-hand side of equation (3.41) can be interpreted as an estimate of the frequency of

observing a probe vehicle in the queues. The right-hand side is the probability of observing

a probe vehicle. When the sample size is large enough, the two sides will be very close to

each other. Similarly, solving the equation yields an estimate of p.

In practice, it is usually hard to find the analytical solutions of equations (3.38), (3.39),

(3.40), or (3.41). Instead, an iterative algorithm should be applied. One may search p from

an upper bound to 0 with a small step size until the difference between the left-hand side

and the right-hand side reaches certain stopping criteria. The upper bound can be taken as
Qprobe∑Lmax
i=1 |qi|

since it is an overestimate of the penetration rate p.

3.6 Validation and evaluation

3.6.1 Simulation

This test mainly focuses on the estimation of the penetration rate. For demonstration

purposes, the testing dataset is generated by a simulation of Poisson processes, although any

other stochastic process can also be applied. In order to study the robustness of the proposed

48



methods, in each test, we test the methods under different penetration rates, ranging from

1% to 99%.

The comparison of different methods

Figure 3.4 shows the results of penetration rate estimation using six different submethods

introduced in Section 3.5. We generate the 1000-cycle simulation data by a Poisson process

with an average arrival rate of 10 during the red phase. The horizontal axes represent the

ground truth of the penetration rates. The vertical axes represent the estimated values. The

used measure of the estimation accuracy is the mean absolute percentage error (MAPE). As

Figure 3.4 shows, the dots in blue are very close to the diagonals, which implies that the

methods can estimate the penetration rate very accurately. The results show that the higher

the penetration rate is, the better the estimation results tend to be. It is intuitive because

when the penetration rate is very low, only a tiny portion of vehicles can be observed. By

contrast, if the penetration rate is very close to 100%, there will be little missing information,

and the estimation results would be more accurate.
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Figure 3.4: The results of penetration rate estimation using different methods.

In general, method 2 outperforms method 1. To better understand the mechanism behind

method 2, we define an inverse proportional function

f(x) =
M

x
, (3.42)
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where M is a positive constant. When x �
√
M , the absolute value of the derivative is

|f ′(x)| = M
x2
� 1. In method 2, as equation (3.41) shows, the denominator of the left-hand

side is Q̂obs
i (p) + Q̂hid

j (p), which is much larger than
√
Qprobe. Therefore, due to the property

of the inverse proportional function, the error in Q̂obs
i (p) + Q̂hid

j (p) only results in an error of

p that is orders of magnitude smaller.

The effect of sample size

In order to demonstrate the impact of sample size on the estimation accuracy, the data of

100 cycles, 200 cycles, 500 cycles, and 1000 cycles are used in four rounds of tests, respectively.

The submethod Qprobe

Q̂obs3 (p)+Q̂hid2 (p)
= p is applied. The results in Figure 3.5 show that better

results can be obtained when the sample size is larger.
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Figure 3.5: The results of penetration rate estimation with different sample sizes.

The effect of the arrival rate during the red phase

To study the impact of the arrival rate on the estimation accuracy, we apply the same

submethod to four different Poisson processes, of which the average arrival rates in the red

phase are 3, 5, 10, and 15, respectively. In each test, 1000 cycles of data are used. The results

in Figure 3.6 show that the larger the arrival rate is, the more accurate the estimation tends

to be. The reason is that a higher arrival rate implies more observations of the probe vehicles,

which can generally improve the estimation accuracy.
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Figure 3.6: The results of penetration rate estimation with different arrival rates.

Results of queue length distribution

To investigate the estimation accuracy of the queue length distribution, we fix the arrival

rate to 5 and use 1000 cycles of data. We use the Hellinger distance to measure the dissimi-

larity between the estimated distribution and the true distribution. For discrete probability

distributions F = (f1, f2, . . . fk) and G = (g1, g2, . . . , gk) defined on the same probability
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space, the Hellinger distance between F and G is defined as

H(F,G) =
1√
2

√√√√ k∑
i=1

(√
fi −
√
gi

)2

. (3.43)

Figure 3.7 shows the comparison of the true distribution and estimated distribution under

four different penetration rates. In general, with a higher penetration rate, we can get a more

accurate estimate of the queue length distribution. More results will be presented in Section

4.4 when we compare the approximate estimator and the maximum likelihood estimator.
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Figure 3.7: Estimation results of queue length distributions under different probe vehicle
penetration rates: (a) 5%; (b) 15%; (c) 30%; and (d) 60%.
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3.6.2 Real-world data

We also test the proposed methods using real-world probe vehicle data. The probe vehicle

data were collected by DiDi Chuxing from the vehicles offering its ride-hailing services in an

area in Suzhou, Jiangsu Province, China, shown in Figure 3.8. The data of the 15 workdays

from May 8, 2018, to May 28, 2018, are used for validation. The GPS trajectories of the DiDi

vehicles in the selected area are mapped onto the transportation network by a map matching

algorithm (Newson and Krumm, 2009). For each movement and each one-hour time slot,

the “snapshots” of the trajectory data are taken to extract the observed partial queues. Due

to the accuracy of the trajectory data, the average space headway for the queueing vehicles

could not be easily estimated. Therefore, its value is empirically set to 7.5 m/veh. For the

movements with multiple lanes, since the accuracy of the trajectory data cannot reach the

lane level, the stopping vehicles are randomly assigned to the different lanes. The random

assignment process is repeated 50 times to get an average estimate.

Figure 3.8: The studied movements in Suzhou.

The methodology in this chapter does not apply to the right-turn movements, as there

might not be queues. Also, due to the accuracy of the data, it is almost impossible to deal
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with the lanes with mixed movements. The studied movements are represented by the arrows

in Figure 3.8. In total, 22 through movements and 31 left-turn movements are studied.

Most of the signalized intersections in the selected area are monitored by the camera-

based automatic vehicle identification systems (AVIS) that can record the timestamps when

vehicles go through the intersections. Nevertheless, not all the vehicles could be successfully

identified by the cameras, and thus the vehicle counts often underestimate the actual traffic

volumes. Therefore, for each camera, its identification rate is estimated by the ratio of the

number of identified DiDi Vehicles and the total number of DiDi vehicles passing the camera.

Then, the real “ground truth” of the traffic volumes are projected by dividing the vehicle

counts by the estimated identification rates. Then, with the ground-truth traffic volume V all

and the traffic volume of probe vehicles V probe, we obtained the ground-truth penetration

rate using the following equation

p =
V probe

V all
. (3.44)

Results

Figure 3.9 shows the results of penetration rate estimation for the studied movements for

the TOD 18:00-19:00. The estimation results show that the applied method Qprobe

Q̂obs4 +Q̂hid2 (p)
= p

can estimate penetration rates accurately. Figures 3.9(a) and 3.9(b) show the results for

the through and left-turn movements, respectively. Since the traffic volumes of the through

movements are much larger compared to the left-turn movements, more probe vehicle samples

can be used for estimation, and the corresponding performance is better.
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Figure 3.9: The penetration rates of the probe vehicles in: (a) through movements; and (b)
left-turn movements.

Compared to the results of the simulation data, the estimation accuracy is undermined

when the method is applied to the real-world data, due to multiple reasons. First, although

the map matching algorithm can mitigate the effect of GPS errors at the data preprocessing
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stage, the errors in the real-world trajectory data could still influence the estimation accuracy.

Second, in the real world, for each movement and each one-hour time slot, the penetration

rate and the queueing pattern might vary slightly during the studied 15 workdays. Third,

the average space headway for the queueing vehicles is set empirically, which might introduce

some biases into the results. If the data with higher accuracy are available, the value of the

average space headway should be estimated independently for each movement and each time

slot.

3.7 Conclusions

In this chapter, we propose a general framework and a series of methods for estimating the

parameters needed for queue length estimation in the i.i.d. case. For each specific movement

and each specific time slot, the penetration rate of the probe vehicles and the queue length

distribution are estimated by using the aggregated historical trajectory data of the probe

vehicles.

The proposed methods do not assume the type of vehicle arrival process or the queueing

process. The proposed methods do not require high penetration rates and would be feasible

for use in reality nowadays. Therefore, compared to the existing methods in the literature,

they can be applied to a broader range of scenarios. The tests by both the simulation and

the real-world data show good estimation accuracy, indicating that the proposed methods

could be used for traffic signal control and performance measures at signalized intersections.

A few issues should be considered when implementing the method in real life. Although

the GPS errors can be partially corrected by map matching algorithms (Newson and Krumm,

2009; Lou et al., 2009), the error in the longitudinal direction might still undermine the

estimation accuracy. For movements with multiple lanes, since the accuracy of the current

GPS data usually cannot reach the lane level, it is difficult to know which vehicle is stopping

on which lane. To walk around the issue, one may randomly assign the observed probe

vehicles into different lanes, by assuming that the queue lengths in different lanes of the
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same movement share similar patterns. For a specific TOD and movement, the data in one

day are usually not sufficient to give accurate estimation results. Since the penetration rate

and queue length distribution in different days is often similar, aggregating the data over

several days can augment the dataset.
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Chapter 4

Parameter estimation for independent queues: maximum

likelihood estimation

4.1 Introduction

4.1.1 Background

In Chapter 2, we systematically introduced cycle-by-cycle queue length estimation meth-

ods using probe vehicle data. It was shown that the penetration rate of probe vehicles and

the queue length distribution are the key parameters required by the estimation methods in

the i.i.d. case. However, the values of these critical parameters are usually not given. There-

fore, in Chapter 3, we tried to estimate the parameters from historical probe vehicle data

and proposed a series of approximate estimators. We first obtained the approximated distri-

bution of queue lengths from the aggregated data of stopping positions and then constructed

the single-variable equation to solve for the penetration rate. The penetration rate could not

be used to readjust the shape of the queue length distribution, as the two parameters were

almost estimated independently.

4.1.2 Contribution and organization of the chapter

In this chapter, we propose to estimate the penetration rate and the queue length dis-

tribution simultaneously using maximum likelihood estimation. Similar to the approximate

estimators presented in Chapter 3, the proposed method in this chapter does not impose any

assumptions on the magnitude of the penetration rate or the form of the queue length distri-
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bution. Therefore, the method can be applied to a wider range of scenarios compared to the

existing methods in the literature. Based on the properties of the MLE, we also analyze the

asymptotic standard error of the estimator, which can be regarded as the theoretical limit

of its accuracy. Validation results from numerical experiments show that the proposed MLE

improves the overall estimation accuracy compared to the approximate estimators. We also

investigate the impact of the traffic intensity and sample size on the estimation accuracy.

The estimated penetration rate and queue length estimation could enable many existing

methods to estimate queue lengths cycle by cycle.

The rest of this chapter is organized as follows. In Section 4.2, we present the formulation

of the maximum likelihood estimation problem. In Section 4.3, we elaborate on how to solve

the MLE problem by applying the EM algorithm. In Section 4.4, we systematically test

the performance of the proposed estimator in different scenarios and compare it with the

approximate estimators introduced in Chapter 3. We provide discussion and concluding

remarks in Section 4.5.

4.2 Maximum likelihood estimation of the penetration rate and

queue length distribution

The objective of this section is to formulate the maximum likelihood estimation of the

penetration rate of probe vehicles p and the queue length distribution π. For compactness,

we denote the collection of parameters by θ, namely, θ = (p, π). Suppose we are given C

cycles of historical probe vehicle data, from which we can extract the observed partial queues

q = {q1, q2, . . . , qC}. The latent variables are the actual queue lengths l = {l1, l2, . . . , lC}.

Based on the assumption that queue lengths in different traffic signal cycles are i.i.d., the

likelihood function with respect to (w.r.t.) θ is

L(θ; q) =
C∏
i=1

P (qi; θ) =
C∏
i=1

Lmax∑
li=0

P (li, qi; θ) , (4.1)
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where the joint probability of the queue length li and the observed partial queue qi is

P (li, qi; θ) =


πlip

ni (1− p)li−ni , li ≥ |qi|

0, li < |qi|
. (4.2)

Therefore, the maximum likelihood estimation of θ can be obtained by maximizing the log-

likelihood function logL (θ; q), that is,

maximize
C∑
i=1

log

Lmax∑
j=|qi|

πj(1− p)j−nipni
 (4.3)

subject to πj ≥ 0,∀j = 0, 1, . . . , Lmax (4.4)
Lmax∑
j=0

πj = 1 (4.5)

0 < p < 1. (4.6)

Constraints (4.4) and (4.5) ensure the validity of the queue length distribution. Constraint

(4.6) guarantees that the penetration rate is in the range of (0, 1).

The asymptotic normality of the maximum likelihood estimator can be used to analyze

the ideal performance of the estimator. For the parameter p, given the log-likelihood function

logL (θ; q), the corresponding Fisher information is

I(p) = −Eθ
(
∂2

∂p2
logL (θ; q)

)
(4.7)

= −CEθ
(
L′′L − L′2

L2

)
(4.8)

= −C
Lmax∑
|qi|=0

|qi|∑
ni=0

Lmax∑
li=|qi|

P (|qi|, ni, li)
L′′L − L′2

L2
, (4.9)

where

P (|qi|, ni, li) =


πliC

ni−1
|qi|−1p

ni (1− p)li−ni |qi| > 0

πli (1− p)li |qi| = 0

. (4.10)
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The asymptotic normality property states that the maximum likelihood estimator p̂ con-

verges in distribution to a normal distribution, that is,

p̂→ N
(
p∗,

1

I(p∗)C

)
, (4.11)

where p∗ represents the true value of the penetration rate.

The objective of the optimization problem is to maximize the log-likelihood function w.r.t.

θ. The log-likelihood function is concave w.r.t. π, but not concave w.r.t. p. Therefore, convex

optimization methods cannot be directly applied here. To solve the problem, we resort to

the EM algorithm.

4.3 The EM algorithm

As an iterative algorithm for solving maximum likelihood estimation problems, the EM

algorithm is commonly used when there are latent variables in the likelihood function (Demp-

ster et al., 1977). Instead of solving the original optimization problem, the EM algorithm

converts it into a series of problems that can be more easily solved.

4.3.1 E-step

Given a feasible solution θ(t), we evaluate the expectation of the complete-data log-

likelihood function logP (qi, li; θ) under the posterior distribution of the latent variable li.

Q
(
θ; θ(t)

)
=

C∑
i=1

Eli|qi,θ(t) (logP (qi, li; θ)) (4.12)

=
C∑
i=1

Lmax∑
li=0

P
(
li | qi; θ(t)

)
logP (qi, li; θ) (4.13)

=
C∑
i=1

Lmax∑
li=|qi|

P
(
qi, li; θ

(t)
)∑Lmax

k=|qi| P (qi, k; θ(t))
logP (qi, li; θ) . (4.14)
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This step is equivalent to constructing a lower bound of the original log-likelihood function

(Jain et al., 2017; Balakrishnan et al., 2017). Substituting equation (4.2) into (4.14) gives

Q
(
θ; θ(t)

)
=

C∑
i=1

Lmax∑
j=|qi|

π
(t)
j (ni log p+ (j − ni) log(1− p) + log πj)∑Lmax

k=|qi| (1− p(t))
k−j

π
(t)
k

, (4.15)

which is a concave function of θ.

4.3.2 M-step

The M-step updates the estimate of θ by maximizing Q
(
θ; θ(t)

)
, that is,

maximize
C∑
i=1

Lmax∑
j=|qi|

π
(t)
j (ni log p+ (j − ni) log(1− p) + log πj)∑Lmax

k=|qi| (1− p(t))
k−j

π
(t)
k

(4.16)

subject to πj ≥ 0,∀j = 0, 1, . . . , Lmax (4.17)
Lmax∑
j=0

πj = 1 (4.18)

0 < p < 1. (4.19)

As long as θ(t) is in the feasible region, the optimization problem will be feasible. The

analytical solutions can be expressed as

p(t+1) =

∑C
i=1

∑Lmax
j=|qi|

π
(t)
j ni∑Lmax

k=|qi|(
1−p(t))

k−j
π
(t)
k∑C

i=1

∑Lmax
j=|qi|

π
(t)
j j∑Lmax

k=|qi|(
1−p(t))

k−j
π
(t)
k

, (4.20)

π
(t+1)
j =

∑C
i:|qi|≤j

π
(t)
j∑Lmax

k=|qi|(
1−p(t))

k−j
π
(t)
k∑Lmax

m=0

∑C
i:|qi|≤m

π
(t)
m∑Lmax

k=|qi|(
1−p(t))

k−m
π
(t)
k

, ∀j = 0, 1, . . . , Lmax. (4.21)

The detailed solving process can be found in Appendix B.

The EM algorithm guarantees logL
(
θ(t+1); q

)
≥ logL

(
θ(t); q

)
. In other words, the up-

dated estimate will be no worse than the previous estimate in the sense of likelihood (Demp-
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ster et al., 1977). Since the log-likelihood function is bounded from above, according to the

monotone convergence theorem, the solution will always converge after iterating the E-steps

and M-steps (Wu et al., 1983).

4.3.3 Initial point

The previous subsections have elaborated the E-step and the M-step. This subsection

describes how to select an initial guess of the parameters. In Chapter 3, we proposed a

series of approximate estimators for the probe vehicle penetration rate. Applying any of

the methods will give an initial estimate of the penetration rate p(0). As explained in the

previous sections, when p is fixed to p(0), logL
(
π; q, p(0)

)
will be a concave function w.r.t.

π. Therefore, solving the following optimization problem gives an initial guess of the queue

length distribution, namely, π(0) = argmaxπ logL
(
π; q, p(0)

)
.

maximize
C∑
i=1

log

Lmax∑
j=|qi|

πj
(
1− p(0)

)j−ni (
p(0)
)ni (4.22)

subject to πj ≥ 0,∀j = 0, 1, . . . , Lmax (4.23)
Lmax∑
j=0

πj = 1. (4.24)

Then, θ(0) =
(
p(0), π(0)

)
can be used as an initial estimate of θ to start the EM algorithm.

The steps of the EM algorithm is summarized in Algorithm 4.1.
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Algorithm 4.1 The EM algorithm for estimating the penetration rate and queue length
distribution.
Calculate p(0)

π(0) ← argmaxπ logL(π; q, p(0))
θ(0) ←

(
p(0), π(0)

)
t← 0
Set a stopping threshold ε
while True do
E-step: Q

(
θ; θ(t)

)
←
∑C

i=1 Eli|qi,θ(t) logP (qi, li; θ)

M-step: θ(t+1) ← argmaxθQ
(
θ; θ(t)

)
if |logL(θ(t+1); q)− logL(θ(t); q)|/|logL(θ(t); q)| < ε then

break
end if
t← t+ 1

end while

4.4 Numerical experiments

4.4.1 Simulation environment and performance measures

The proposed method is validated using numerical experiments. Although the proposed

method is not restricted in terms of the form of the queue length distribution, we focus

on Poisson distributions, which is commonly used in the relevant literature. Similar to the

settings introduced in Section 3.6, we draw queue length samples from the pre-determined

distribution. For each vehicle in the queue drawn from the distribution, its vehicle type is

determined by a Bernoulli trial based on the penetration rate. Then, from each queue sample,

the pattern in front of (including) the last probe vehicle is extracted as the observed partial

queue. Finally, such partial queues are considered as the input to the proposed estimator.

We measure the accuracy of the estimated penetration rate using the mean absolute

percentage error. For queue length distributions, we use the Hellinger distance, which has

been introduced in Section 3.6.
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4.4.2 Results

We generate 1000 cycles of queues from the distribution Poisson(λ = 5), which corre-

sponds to the case where the average arrival rate in the red phase is five. The box plot in

Figure 4.1 shows the estimation results when the numerical experiments are repeated 500

times. The horizontal axis represents the ground-truth penetration rates used for generating

the simulation data. The vertical axis represents the estimated penetration rates. The ends

of the boxes indicate the first and third quartiles. The ends of whiskers are the min and

max. The dashed line in red is a reference line. Figure 4.1 shows that the proposed method

could estimate penetration rates accurately.
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Figure 4.1: Estimation results for penetration rates.

By applying the property of asymptotic normality, we can obtain the asymptotic stan-

dard error of the MLE. Figure 4.2 shows the comparison between the calculated asymptotic

standard errors and the actual errors generated by the EM algorithm. The asymptotic val-

ues represent what the MLE should asymptotically achieve when the sample size goes to
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infinity and the problem is perfectly solved. One reason why there exist gaps between the

two curves is that the likelihood function is non-concave, and the EM algorithm does not

guarantee global optimum. Figure 4.2 also shows that when the penetration rate is higher,

the gaps between the asymptotic values and the actual values tend to be smaller.
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Figure 4.2: The comparison of asymptotic standard errors and the actual errors given by
the EM algorithm.

Figure 4.3 shows the estimation results of queue length distributions in four representative

scenarios. In each plot, the distribution in blue stands for the ground-truth queue length

distribution. The distribution in orange represents the estimated queue length distribution.

When the penetration rate is low, the information contained in the observations is limited,

which results in a rough estimate of the queue length distribution. When the penetration

rate gets higher, the proposed method could reconstruct the distribution more accurately.
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Figure 4.3: Estimation results of queue length distributions under different probe vehicle
penetration rates: (a) 5%; (b) 15%; (c) 30%; and (d) 60%.

We compare the performance of the MLE with the approximate estimators proposed

in Chapter 3. Figures 4.4(a) and 4.4(b) show the estimation results of penetration rates

and queue length distributions based on the two methods under different true penetration

rates, respectively. In general, for penetration rate estimation, the approximate estimators

perform slightly better when the penetration rate is low, whereas the proposed MLE has

the edge over the AE when the penetration rate is higher than 25%. When it comes to the

estimation of queue length distributions, the MLE outperforms the approximate estimators

significantly. The results also indicate that increasing the penetration rate will improve
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estimation accuracy.
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Figure 4.4: The comparison of the AE and the MLE: (a) estimation of penetration rates
and (b) estimation of queue length distributions.

4.4.3 Sensitivity Analysis

The impact of sample size

To investigate the impact of sample size on estimation accuracy, we fix the true queue

length distribution to Poisson(λ = 5) and use 100, 200, 500, and 1000 cycles of simulated

probe vehicle data to estimate the parameters, respectively. Figure 4.5 shows the comparison

of the results generated using different sample sizes. For both parameters, better estimation

accuracy is achieved when a larger sample size is used.
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Figure 4.5: The impact of sample size on the estimation results for: (a) penetration rates
and (b) queue length distributions.

The impact of the average arrival rate in the red phase

To investigate how the average arrival rate in the red phase influences the estimation

accuracy, we set the average arrival rate to 3, 5, 7, and 10 in four experiments, respectively.

In each experiment, 1000 cycles of probe vehicle data are used. Figure 4.6 shows a comparison

of the results under different arrival rates. For penetration rates, better estimation accuracy

is achieved when the average arrival rate is higher. The reason is that a higher arrival rate

implies more probe vehicle samples. However, for queue length distributions, the results

show the opposite when the accuracy is measured by the Hellinger distance. It is because

when the arrival rate is higher, Lmax tends to be larger, and therefore, the number of decision

variables in the optimization problem also grows, which makes it harder to estimate π.
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Figure 4.6: The impact of arrival rates on the estimation results for: (a) penetration rates
and (b) queue length distributions.

4.5 Conclusions

Many probe vehicle based cycle-by-cycle queue length estimation methods require the

knowledge of the probe vehicle penetration rate and queue length distribution at the studied

intersection. However, the estimation of the two parameters has not been extensively studied.

This chapter proposes a maximum likelihood estimation method to estimate the parameters

using historical probe vehicle data. Due to the non-concavity of the log-likelihood function,

we apply the EM algorithm to solve the problem iteratively. We validate the proposed

method and study the impacts of the sample size and the average arrival rate by conducting

numerical experiments.

There are certain limitations of the proposed method. For instance, the estimation

methods proposed in this chapter and Chapter 3 take the stopping positions of the probe

vehicles as the features to infer the penetration rate and the queue length distribution.

However, there might not be queues forming at non-signalized intersections or in right-turn

movements. Also, the queueing patterns in the shared left-through (right-through) lanes

could be different from other left-turn (right-turn) lanes or through lanes.
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There are also a few directions one may explore to further improve the estimation accu-

racy. In this chapter, only the stopping locations of the queueing probe vehicles are used

for estimation. The estimation accuracy might be improved by taking into account the time

when the vehicles join the queue. In general, this chapter takes a frequentist approach by

applying maximum likelihood estimation to give point estimates of the parameters. One may

introduce prior distributions of the parameters and approach the problem from a Bayesian

perspective. Finally, the focus of this chapter is on queues that are independent and identi-

cally distributed. In the next chapter, we will deal with the case where queues in different

cycles are correlated.
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Chapter 5

Parameter estimation for dependent queues: maximum

likelihood estimation

5.1 Introduction

5.1.1 Background

Understanding the queueing processes at signalized intersections can help with traffic

management and control. Most of the existing studies introduced in Section 1.4.1 focused

on isolated intersections under light or moderate traffic conditions and treated the queues in

different cycles independently. However, there are many common scenarios where the queue

lengths in different cycles are dependent, for example, overflow queues. In these scenarios,

considering the correlations can potentially improve the queue length estimation accuracy,

as the information in adjacent cycles can also be used for estimation. In Chapter 2, we

proposed a hidden Markov model to deal with such scenarios. With only probe vehicle

data, the real queue lengths might not be directly observable. Therefore, the queue lengths

are considered as hidden states of the HMM. For each queue, the pattern of the stopping

positions of probe vehicles can be observed. The observed patterns are considered as the

observations of the HMM. The model is well suited for modeling dependent queues in probe

vehicle environments. Based on the hidden Markov model, we provide two cycle-by-cycle

queue length estimation methods, which require the knowledge of the HMM parameters,

including transition probabilities, initial probabilities, and the probe vehicle penetration

rate. In the real world, however, when the methods are implemented, the parameters of
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the HMM are not given. Instead, the parameters should be estimated from historical probe

vehicle data.

5.1.2 Contribution and organization of the chapter

In this chapter, we focus on estimating the parameters of the HMM from historical probe

vehicle data. Similar to the i.i.d. case, we formulate the problem as a maximum likelihood

estimation problem and obtain the solutions by applying the EM algorithm. We also validate

the cycle-by-cycle estimation methods proposed in Chapter 2 using the parameters estimated

from historical probe vehicle data.

The rest of this chapter is organized as follows. In Section 5.2, we formulate the maximum

likelihood estimation problem, of which the objective function is non-concave because of the

hidden variables. In Section 5.3, we solve the problem by combining the EM algorithm and

dynamic programming. Considering that the data collected in real life usually span multiple

days, we also extend the solutions to the multi-day case. In Section 5.4, we validate the

proposed algorithm by a case study, of which the simulation settings are consistent with the

one in Chapter 2. We also analyze the impact of the sample size on estimation accuracy.

Finally, in Section 5.5, we provide some concluding remarks.

5.2 Maximum likelihood estimation of the HMM parameters

In order to carry out the cycle-by-cycle estimation methods introduced in Section 2.4, we

need to estimate the parameters of the hidden Markov model from historical probe vehicle

data. This section elaborates on the maximum likelihood estimation of the parameters

θ = (π, T, p).

Given the collection of observations q = {q1, q2, . . . , qC}, the likelihood function of θ is

L(θ; q) =
∑
l

P (q, l; θ) =
∑
l

P (l1)
C∏
i=2

P (li | li−1)
C∏
i=1

P (qi | li). (5.1)
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The likelihood function is marginalized due to the existence of the hidden variables, namely,

the queue length sequence l = {l1, l2, . . . , lC}. After substituting the parameters into equa-

tion (5.1), the log-likelihood function can be expressed as

logL(θ; q) = log

(∑
l

πl1

C∏
i=2

Tli−1li

C∏
i=1

pni(1− p)li−ni
)

(5.2)

The maximum likelihood estimation of θ can be formulated as the following optimization

problem.

maximize log

(∑
l

πl1

C∏
i=2

Tli−1li

C∏
i=1

pni(1− p)li−ni
)

(5.3)

subject to πj ≥ 0,∀j = 0, 1, . . . , Lmax (5.4)
Lmax∑
j=0

πj = 1 (5.5)

Tjk > 0,∀j, k = 0, 1, . . . , Lmax (5.6)
Lmax∑
k=0

Tjk = 1,∀j = 0, 1, . . . , Lmax (5.7)

0 < p < 1. (5.8)

The objective is to maximize the log-likelihood function logL (θ; q). The decision variable

is θ = (π, T, p). Constraints (5.4) and (5.5) ensure the validity of the initial probabilities.

Constraints (5.6) and (5.7) guarantee the validity of the transition probabilities. Constraint

(5.8) states that the penetration rate should be between 0 and 1.

However, due to the existence of hidden states, the objective function is not concave

w.r.t. θ. Therefore, we resort to the EM algorithm (Dempster et al., 1977) to solve the

maximum likelihood estimation problem.
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5.3 The EM algorithm

5.3.1 E-step

Following the standard EM algorithm, in the E-step, we evaluate the expectation of the

complete data log-likelihood function, under the posterior distribution of hidden states based

on the current estimate of the parameters θ(t), which is

Q
(
θ; θ(t)

)
= El|q;θ(t) logP (q, l; θ) (5.9)

=
∑
l

P
(
l | q; θ(t)

)(
log πl1 +

C∑
i=2

log Tli−1li +
C∑
i=1

(ni log p+ (li − ni) log (1− p))

)
.

(5.10)

5.3.2 M-step

In the M step, we obtain a new estimate of the parameters, θ(t+1), by maximizing

Q
(
θ; θ(t)

)
subject to the constraints, which is

maximize Q
(
θ; θ(t)

)
(5.11)

subject to πj ≥ 0,∀j = 0, 1, . . . , Lmax (5.12)
Lmax∑
j=0

πj = 1 (5.13)

Tjk > 0,∀j, k = 0, 1, . . . , Lmax (5.14)
Lmax∑
k=0

Tjk = 1, ∀j = 0, 1, . . . , Lmax (5.15)

0 < p < 1. (5.16)

The objective function of the M-step is concave, and all the constraints are convex.

The analytical solutions to the problem can be obtained by setting the derivatives of the

corresponding Lagrangian to zero. Specifically, the solutions are
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π
(t+1)
j =

∑
l:l1=j P

(
l | q; θ(t)

)∑
l P (l | q; θ(t))

,∀j = 0, 1, . . . , Lmax; (5.17)

T
(t+1)
jk =

∑
l P
(
l | q; θ(t)

)∑
i:2≤i≤C,li−1=j,li=k

1∑Lmax
m=0

∑
l P (l | q; θ(t))

∑
i:2≤i≤C,li−1=j,li=m

1
,∀j, k = 0, 1, . . . , Lmax; (5.18)

p(t+1) =

∑C
i=1 ni∑

l P (l | q; θ(t))
∑C

i=1 li
. (5.19)

The detailed solving process can be found in Appendix C. Nevertheless, the calculation of

the solutions given by equations (5.17)-(5.19) requires enumerating all the possible sequences

of the hidden states l, which is intractable. Thus, we resort to dynamic programming to

carry out the solutions (Baum et al., 1970).

5.3.3 The forward-backward algorithm

Define two sets of auxiliary variables

α
(t)
j (i) = P

(
q1, q2, . . . , qi, li = j; θ(t)

)
,∀j = 0, 1, . . . , Lmax,∀i = 1, 2, . . . , C, (5.20)

β
(t)
j (i) = P

(
qi+1, qi+2, . . . , qC | li = j; θ(t)

)
, ∀j = 0, 1, . . . , Lmax,∀i = 1, 2, . . . , C. (5.21)

The solutions in equations (5.17)-(5.19) can be reformulated as

π
(t+1)
j =

α
(t)
j (1)β

(t)
j (1)∑Lmax

k=0 α
(t)
k (1)β

(t)
k (1)

,∀j = 0, 1, . . . , Lmax; (5.22)

T
(t+1)
jk =

∑C−1
i=1 α

(t)
j (i)T

(t)
jk E

(t)
kqi+1

β
(t)
k (i+ 1)∑Lmax

m=0

∑C−1
i=1 α

(t)
j (i)T

(t)
jmE

(t)
mqi+1β

(t)
m (i+ 1)

,∀j, k = 0, 1, . . . , Lmax; (5.23)

p(t+1) =

∑Lmax
j=0

∑C
i=1 α

(t)
j (i)β

(t)
j (i)ni∑Lmax

j=0

∑C
i=1 α

(t)
j (i)β

(t)
j (i)j

. (5.24)
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After the reformulation, the intractable enumeration of all possible l is avoided. The update

rules for (π, T, p) now become tractable. The auxiliary variables defined in equations (5.22)-

(5.24) can be carried out by dynamic programming using the following equations.

α
(t)
j (1) = π

(t)
j E

(t)
jq1
,∀j = 0, 1, . . . , Lmax; (5.25)

α
(t)
j (i) =

Lmax∑
k=0

α
(t)
k (i− 1)T

(t)
kj E

(t)
jqi
,∀j = 0, 1, . . . , Lmax,∀i = 2, 3, . . . , C. (5.26)

β
(t)
j (C) = 1,∀j = 0, 1, . . . , Lmax, (5.27)

β
(t)
j (i) =

Lmax∑
k=0

T
(t)
jk E

(t)
kqi+1

β
(t)
k (i+ 1),∀j = 0, 1, . . . , Lmax,∀i = 1, 2, . . . , C − 1. (5.28)

5.3.4 Considering the data of different days

The results above are for the case where the observations are collected in consecutive

traffic signal cycles. In this subsection, we generalize the results to the case where probe

vehicle data of the same TOD are collected for D days with C cycles per day, which is a

common scenario in the context of probe vehicle based parameter estimation.

Given the collection of observations {qdi,∀d = 1, 2, . . . , D, ∀i = 1, 2, . . . , C}, the update

rules of the parameters can be derived following the same procedures as the previous sub-

section.

π
(t+1)
j =

∑D
d=1

1∑Lmax
m=0 α

(t)
m (d,C)

α
(t)
j (d, 1)β

(t)
j (d, 1)∑D

d=1
1∑Lmax

m=0 α
(t)
m (d,C)

∑Lmax
j=0 α

(t)
j (d, 1)β

(t)
j (d, 1)

, ∀j = 0, 1, . . . , Lmax; (5.29)

T
(t+1)
jk =

∑D
d=1

1∑Lmax
m=0 α

(t)
m (d,C)

∑C−1
i=1 α

(t)
j (d, i)T

(t)
jk E

(t)
kqd,i+1

β
(t)
k (d, i+ 1)∑D

d=1
1∑Lmax

m=0 α
(t)
m (d,C)

∑Lmax
k=0

∑C−1
i=1 α

(t)
j (d, i)T

(t)
jk E

(t)
kqd,i+1

β
(t)
k (d, i+ 1)

, (5.30)

∀j, k = 0, 1, . . . , Lmax;
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p(t+1) =

∑D
d=1

1∑Lmax
m=0 α

(t)
m (d,C)

∑Lmax
j=0

∑C
i=1 α

(t)
j (d, 1)β

(t)
j (d, 1)ndi∑D

d=1
1∑Lmax

m=0 α
(t)
m (d,C)

∑Lmax
j=0

∑C
i=1 α

(t)
j (d, i)β

(t)
j (d, i)j

. (5.31)

∀j = 0, 1, . . . , Lmax,∀i = 1, 2, . . . , Cd,∀d = 1, 2, . . . , D, the auxiliary variables are defined as

α
(t)
j (d, i) = P

(
qd1, qd2, . . . , qdi, ldi = j; θ(t)

)
, (5.32)

β
(t)
j (d, i) = P

(
qd,i+1, qd,i+2, . . . , qdC | ldi = j; θ(t)

)
. (5.33)

∀d = 1, 2, . . . , D, the auxiliary variables can be carried out recursively as follows.

α
(t)
j (d, 1) = π

(t)
j E

(t)
jqd1

,∀j = 0, 1, . . . , Lmax; (5.34)

α
(t)
j (d, i) =

Lmax∑
k=0

α
(t)
k (d, i− 1)T

(t)
kj E

(t)
jqdi
,∀j = 0, 1, . . . , Lmax,∀i = 2, 3, . . . , C; (5.35)

β
(t)
j (d, C) = 1,∀j = 0, 1, . . . , Lmax, (5.36)

β
(t)
j (d, i) =

Lmax∑
k=0

T
(t)
jk E

(t)
kqd,i+1

β
(t)
k (d, i+ 1),∀j = 0, 1, . . . , Lmax,∀i = 1, 2, . . . , C − 1. (5.37)

The results in this subsection will degenerate to the results in Section 5.3.3 if we set the

number of days D to 1.

5.4 Case studies

5.4.1 Simulation settings

The focus of this case study is to validate that the maximum likelihood estimator proposed

in this chapter can successfully estimate the parameters of the HMM from historical probe

vehicle data, and the estimated parameters can be used for cycle-by-cycle queue length

estimation. The simulation settings are the same as the case study in Section 2.5, where we

demonstrated how to estimate queue lengths cycle by cycle if the parameters of the HMM are
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given. Specifically, we generate queue sequences using the overflow queue model proposed

by Viti and Van Zuylen (2010). The penetration rate of probe vehicles is set to be 20%.

According to the overflow queue model and the simulation settings, we generate a dataset

containing the queues of 30 days. To simulate the amount of data that can be collected for a

one-hour TOD, we generate 30 cycles of data for each day, considering the length of a traffic

signal cycle is roughly two minutes. Then, from the generated queue data, we perform

Bernoulli trials to determine if each vehicle in the queues is a probe vehicle or a regular

vehicle. The data of the probe vehicles are used as the input to the estimation algorithm.

5.4.2 Parameter estimation

We apply the proposed method to the simulated probe vehicle data of 30 days. We

generate the initial guess of the parameters randomly and then update the parameters it-

eratively through equations (5.29)-(5.31) until the estimated values converge or the number

of iterations reaches a preset threshold. Figure 5.1(a) is a visualization of the transition

matrix estimated from the historical data, which captures the key features of the ground-

truth transition matrix shown in Figure 5.1(b). Figure 5.1(c) illustrates the convergence of

the penetration rate during the estimation process. The figure indicates that the parameter

estimation algorithm converges to the estimated value very quickly. Figure 5.1(d) shows

the comparison of the estimated initial probabilities and their true values. In general, the

estimated distribution is close to the true distribution.
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Figure 5.1: The estimation results of the parameters: (a) the estimated transition matrix;
(b) the true transition matrix; (c) the estimation process of the penetration rate; and (d)
the estimated initial probabilities compared to the true values.

With the estimated parameters of the hidden Markov model, we again apply the cycle-

by-cycle queue length estimation methods to a 30-cycle observation sequence. Figure 5.2

shows the corresponding estimation results. As introduced in Chapter 2, the HMM decod-

ing method represents the maximum likelihood estimator corresponding to equation (2.10),

and the HMM expectation method corresponds to equation (2.11). Compared with the re-

sults shown in Figure 2.5, the proposed methods still outperform the baseline methods. It

is concrete evidence of the effectiveness of the two cycle-by-cycle queue length estimation

methods and the parameter estimation algorithm proposed in this chapter.
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Figure 5.2: Cycle-by-cycle queue length estimation results using the learned parameters by:
(a) maximum likelihood estimation (decoding); and (b) expectation conditional on sequential
observations.

5.4.3 The impact of penetration rates

The results above illustrate the performance of the algorithms in one example. We run

the experiments repeatedly to get the average estimation accuracy under different probe

vehicle penetration rates. Figure 5.3 shows the results. Obviously, a larger penetration rate

implies a higher estimation accuracy. When the penetration rate is very low, for example,

5%, it is hard for the algorithm to estimate the parameters accurately. Therefore, the queue

length estimation accuracy of the HMM-based methods is undermined. Nevertheless, the

HMM expectation method still outperforms the baseline methods. It indicates that the
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estimated parameters can be used for queue length estimation under different penetration

rates. Compared to the performance when the parameters are given, which is shown in Figure

2.6, the HMM-based methods here achieve almost the same accuracy when the penetration

rate is higher than 20%.
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Figure 5.3: The comparison of the proposed methods and two baseline methods when the
parameters of the HMM are estimated from historical data.

5.4.4 The impact of sample size

To investigate the impact of sample size on the estimation results, we use 5, 15, 30, and

60 days of historical probe vehicle data to estimate the parameters of the HMM and then

estimate the queue length using the estimated parameters. Figures 5.4(a) and 5.4(b) show

the performance of the two HMM-based queue length estimation methods, respectively. The

results suggest that the more historical data we use, the better the estimation results will

be. However, it is worth noting that the effect of the sample size would be marginal if more

than 30 days of data are used.
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Figure 5.4: The impact of sample size when the parameters of the HMM are estimated
from historical data: (a) maximum likelihood estimation (decoding); and (b) expectation
conditional on sequential observations.

5.5 Conclusions

The dependent queue scenario is common in the real world. The correlation of the queues

in different traffic signal cycles may come from two sources: the existence of overflow queues

or the dependence of the numbers of arrivals in different cycles. However, this kind of

scenario has not been well studied in the context of probe vehicles by the existing literature.

In Chapter 2, we proposed a hidden Markov model to model the queueing process and the

observation process in probe vehicle environments. The hidden states of the HMM are the

queue lengths, and the observations are the stopping positions of probe vehicles. The HMM

is governed by the transition probabilities, initial probabilities, and the penetration rate of

probe vehicles. Based on the HMM, we proposed two cycle-by-cycle queue length estimation

methods, which require the knowledge of the parameters mentioned above.

Since the parameters are not available beforehand in real life, in this chapter, we focus

on estimating the required parameters using historical probe vehicle data. We estimate the

parameters by applying maximum likelihood estimation to the queue sequences collected

in multiple cycles. Because the corresponding log-likelihood function is non-concave, we
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resort to the EM algorithm. The update rules generated by the EM algorithm are not

tractable mathematically. Therefore, we convert the update rules by applying dynamic

programming techniques. We validate the proposed estimation method using a case study

of overflow queues. The validation results show that the proposed parameter estimation

algorithm can adequately learn the parameters of the HMM from historical probe vehicle

data, and the proposed cycle-by-cycle queue length estimation methods still outperform the

baseline methods even with the estimated parameters. Finally, we analyze the effects of the

penetration rate and sample size on estimation accuracy.
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Chapter 6

Traffic volume estimation by data fusion

6.1 Introduction

6.1.1 Background

Traffic volume information plays a critical role in transportation planning, roadway de-

sign, and traffic signal control. In conventional transportation systems, traffic volumes are

primarily measured by fixed-location sensors, such as loop detectors. Although widely ap-

plied, loop detectors have the following two drawbacks. The first drawback is that the

collected data often contain missing values, which might be caused by hardware malfunc-

tion. Another drawback of loop detectors is that they usually only cover a small subset

of links in a transportation network, due to the high installation and maintenance costs

(Zhan et al., 2016). Therefore, loop detectors usually measure very limited traffic volume

information, which restrains our understanding of the traffic at the network level.

To tackle the first problem, the missing data problem, abundant literature applied data

imputation methods to loop detector data. The key idea of these methods is to exploit the

spatiotemporal correlation of the traffic volume data. The methods can be roughly divided

into three categories. The first category is based on the variants of principal component

analysis (PCA), which includes probabilistic PCA, kernel probabilistic PCA (KPPCA), and

Bayesian PCA (BPCA) (Qu et al., 2008, 2009; Ilin and Raiko, 2010; Li et al., 2013b; Asif

et al., 2016). The second category is based on the matrix (tensor) completion. The methods

in this category usually represent traffic volume data as a matrix (tensor) and impute the
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traffic data by matrix (tensor) decomposition (Tan et al., 2013; Asif et al., 2016; Ran et al.,

2016; Goulart et al., 2017; Chen et al., 2019a,b). The third category mainly contains data-

driven machine learning methods, including neural networks (Duan et al., 2016; Zhuang

et al., 2018; Chen and Levin, 2019), k-nearest neighbors (Tak et al., 2016), and CoKriging

methods (Bae et al., 2018).

When it comes to the second drawback of loop detectors, the low coverage problem,

using solely loop detector data is not sufficient to solve the problem. If loop detectors are

not installed at the location where the traffic volume information is of our interest, the

data imputation methods introduced above could not be applied, because all of the methods

require at least one observed data point for each location. We introduced some probe vehicle

based traffic volume methods in Section 1.4.2. For the methods without considering the

spatiotemporal correlations in traffic volumes, it is difficult to achieve good accuracy with

low penetration rate probe vehicle data alone. For the methods which take the correlation

into account, usually, multiple data sources, such as POI data and meteorology data, are

required to construct the similarity between different roads and time slots.

6.1.2 Contribution and organization of the chapter

In this chapter, we propose to simultaneously address the two challenges, namely, the

missing data problem and the low coverage problem, by combining loop detector data and

probe vehicle data. On the one hand, despite the low coverage, when loop detectors function

well, they could give the complete vehicle counts at specific locations. On the other hand,

although the penetration rate of probe vehicles is low currently, probe vehicles usually have

broad coverage and do not suffer from the maintenance issues. Therefore, the fusion of the

two data sources makes their advantages complementary to each other.

Noticing that probe vehicles can be considered as samples of the entire traffic, we first ap-

ply singular value decomposition to probe vehicle data and obtain an approximated low-rank

structure of traffic volumes, which captures the spatiotemporal correlation. The low-rank
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structure is then used for estimating the unknown traffic volumes. To further improve the

accuracy, we propose a second data fusion method based on the framework of the probabilis-

tic principal component analysis. The PPCA-based model finds the low-rank structure by

using both probe vehicle data and loop detector data, which turns out to be more robust.

The rest of the chapter is organized as follows. In Section 6.2, we introduce the matrix

representation of loop detector data and probe vehicle data. In Section 6.3, we present an

SVD-based data fusion method that captures the correlation of traffic volumes by matrix

factorization and reconstructs the unknown traffic volumes by minimizing the reconstruction

error of the loop detector measurement. In Section 6.4, we describe the distributions of

loop detector data and probe vehicle data and extend the classical PPCA framework by

considering both data sources. We also elaborate on how to find the low-rank structure

behind traffic data based on the model and how to reconstruct the unknown traffic volumes

using the estimated parameters. In Section 6.5, we validate the proposed methods using a

real-world loop detector dataset and a probe vehicle dataset generated by simulation in both

the missing data scenario and low coverage scenario. Finally, we summarize this chapter in

Section 6.6.

6.2 Matrix representation of loop detector data and probe vehicle

data

For a specific time-of-day, suppose we are interested in the traffic volume information at

d locations during N days. Denote the traffic volumes by a matrix X ∈ Rd×N , of which

the element xij in the ith row and jth column represents the traffic volume at location i on

day j. Due to the low coverage of loop detectors, the values in some rows of X may not

be available. Similarly, due to the malfunction of loop detectors, some entries of X may be

missing as well. Define an indicator matrix W , such that wij = 1 if the traffic volume data

xij is not available, otherwise 0.

Suppose at the d locations of our interest, the penetration rate of probe vehicles is p. In
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other words, when a vehicle is arbitrarily selected, its probability of being a probe vehicle is

p. From the trajectory data of probe vehicles, we can extract the number of probe vehicles

passing by each location on each day. Denote the traffic volume of probe vehicles by a matrix

Y , which has the same size as X. For location i and day j, the probe vehicle volume yij is

a fraction of the entire traffic volume xij. In particular, yij follows a binomial distribution

B (xij, p).

In this chapter, we assume the penetration rate of probe vehicles in all the d locations are

the same. In the real world, as Figure 3.9 suggests, the penetration rate in different places

can be different. To satisfy the assumption, we can classify the locations we are interested

in into several groups according to the estimated penetration rate, so that the penetration

rate within each group is more or less the same.

6.3 Data fusion by singular value decomposition

Since traffic volumes are correlated spatially and temporally, the traffic volume matrix

X introduced above can be approximated by a low-rank matrix (Qu et al., 2009; Tan et al.,

2013; Coogan et al., 2017; Feng et al., 2018). If we know the low-rank structure, for instance,

the principal components, then we can easily reconstruct the missing entries in X. However,

in real life, obtaining the low-rank structure of X can be difficult, due to the missing data

problem and the low coverage problem. To obtain the low-rank structure, we resort to the

probe vehicle data. First, the traffic volume matrix Y of probe vehicles is complete. Second,

since probe vehicles are samples of the entire traffic, Y should share a similar low-rank

structure with X. Especially when the penetration rate is high or when the traffic volume

is large, Y is almost a linearly scaled-down version of X.

We apply the SVD to find the low-rank representation of the probe vehicle traffic volume

matrix Y . The SVD of Y is

Y = UΣV T =
d∑

k=1

σkukv
T
k . (6.1)
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The column vectors in U = [u1, u2, . . . , ud] form a orthogonal basis of Rd. V = [v1, v2, . . . , vN ]

is also an orthogonal matrix. Σ is a diagonal matrix with nonnegative singular values σ1,

σ2, . . . , σd of Y sorted in descending order on the diagonal. Because of the correlation in

traffic volumes, the traffic volume vector xn or yn lie very close to the span of the first r

orthogonal column vectors Ur = [u1, u2, . . . , ur], where r < d. In other words, the probe

vehicle traffic volume matrix Y can be approximated by

Y ≈
r∑

k=1

σkukv
T
k . (6.2)

The approximation not only captures the main features in the original data but also discards

noises hidden in the traffic volume fluctuation.

We now use the low-rank structure of Y to reconstruct the missing values in X. For each

column xn ofX, we hope to find its projection x̂n = Urαn on the subspace span{u1, u2, . . . , ur}

by solving the following optimization problem.

minimize ‖wn ∗ (xn − Urαn)‖2 (6.3)

subject to 0 � Urαn � vmax1, (6.4)

where the operator “∗” represents the Hadamard product (entry-wise product). The decision

variable is αn, which can be regarded as the coordinates of x̂n in the subspace. vmax denotes

the upper bound of traffic volumes. When the number of non-missing entries in xn is smaller

than r, we add a regularization term ν ‖αn‖2 to the objective function to avoid overfitting.

The optimization problem basically finds the coordinates of xn in the subspace by minimizing

the reconstruction error of the non-missing entries.

When each column of X is projected to the subspace, the estimated traffic volume matrix

is then X̂ = Ur[α1, α2, . . . , αN ]. We then take the corresponding entries in X̂ as the estima-

tion of the missing values in X. For convenience, we abbreviate the proposed SVD-based

data fusion method as SVD-DF.
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6.4 Data fusion by probabilistic principal component analysis

6.4.1 PPCA fundamentals

Besides the SVD-DF model, we propose another method based on the probabilistic prin-

cipal component analysis. The PPCA model (Tipping and Bishop, 1999) assumes that each

d-dimensional vector xn, which is the nth column of X, depends on a r-dimensional latent

vector tn through the following linear-Gaussian model

xn = Λtn + µx + εn, (6.5)

where the latent vector tn follows an isotropic multivariate Gaussian distribution N (0, I),

and Λ is a d × r projection matrix. µx represents the mean of all columns, and εn is a d-

dimensional isotropic Gaussian noise following N (0, σ2I), where σ2 indicates the magnitude

of the noise. The intuition behind the formulation is that with r < d, the original d-

dimensional sample data can be represented in a sparse way by mapping a r-dimensional

vector in the latent variable space to the sample data space using the projection matrix Λ.

According to the model, given the latent variable tn, the conditional distribution of xn is

xn|tn ∼ N
(
µx + Λtn, σ

2I
)
. (6.6)

The distribution of xn is

xn ∼ N
(
µx,ΛΛT + σ2I

)
. (6.7)

6.4.2 Distribution of probe vehicle traffic volumes

The traffic volume of probe vehicles represents the number of probe vehicles passing

by a location during a specific period. As mentioned in the previous sections, given the

penetration rate p, the traffic volume of probe vehicles at location i on day j follows the

binomial distribution yij ∼ B (xij, p). The binomial distribution can be approximated by
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a Gaussian distribution with the same mean and variance (Shiryayev, 1984). Therefore,

the probe vehicle traffic volume vector yn, the nth column of Y , approximately follows the

Gaussian distribution

yn ∼ N (xnp, diag (xnp (1− p))) . (6.8)

One reason why we approximate the binomial distribution using a Gaussian is that the PPCA

framework applies to continuous random variables, whereas real-world traffic volumes can

only take integer values. The Gaussian approximation makes it easy to consider the loop

detector data and probe vehicle data together.

We further approximate the distribution of yn for mathematical simplification. First,

we substitute a prior, x̄, for traffic volume vector xn in the covariance of the distribution.

For example, the prior can be the average traffic volume
∑N

i=1 xn/N . Second, we decouple

the mean and covariance by replacing p (1− p) with η2. Consequently, the approximated

probability distribution of the probe vehicle traffic volume becomes

yn ∼ N
(
xnp, diag

(
x̄η2
))
. (6.9)

The approximation significantly reduces the mathematical complexity of the model and leads

to efficient solving processes, as will be shown later.

6.4.3 Traffic volume reconstruction by data fusion

In the missing data scenario, some of the entries in X might be missing due to loop

detector malfunction. The missing entries mostly show a random pattern. In the low coverage

scenario, loop detectors are not installed in some locations of our interest, and the entries

of the corresponding rows in X will also be empty. Our goal is to reconstruct the missing

values of X in both scenarios by fusing the non-missing values of X and the probe vehicle

data Y .

For each column xn of X, we divide xn into two parts xmn and xon, following the notation
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in Marlin (2008), where xmn refers to the missing part, and xon represents the non-missing

part. Then, the latent variables of the PPCA model are xmn and tn. Given the observed data

xon, the parameters Λ, µx, σ
2 of the PPCA model can be estimated by maximum likelihood

estimation. The objective of the PPCA-based method (Marlin, 2008) is to maximize the

log-likelihood function

logL
(
Λ, µx, σ

2;xon
)

=
N∑
n=1

logPΛ,µx,σ2 (xon) . (6.10)

In this study, we incorporate probe vehicle data into the PPCA framework and propose

a PPCA-based data fusion (PPCA-DF) model. The observed data include not only the

non-missing loop detector data xon but also the probe vehicle data yn, ∀n = 1, 2, . . . N . The

latent variables remain the same, i.e., xmn and tn, but the parameters of the model become

Λ, µx, σ
2, p, and η2. For conciseness, we denote the collection of parameters by θ. The

PPCA-DF model estimates the parameters by maximizing the log-likelihood function

logL (θ;xon, yn) =
N∑
n=1

logPθ (xon, yn) (6.11)

=
N∑
n=1

log

(∫ ∫
Pθ (xmn , x

o
n, yn, tn) dxmn dtn

)
. (6.12)

The complete-data likelihood function in the marginal log-likelihood function (6.12) can

be expressed as

Pθ (xmn , x
o
n, yn, tn) = Pθ (xn, yn, tn) (6.13)

= Pθ (tn)Pθ (xn|tn)Pθ (yn|xn, tn) (6.14)

= Pθ (tn)Pθ (xn|tn)Pθ (yn|xn) . (6.15)

Equation (6.14) is converted to equation (6.15) because yn is independent of tn given xn.
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The probability density functions of tn, xn|tn, and yn|xn under parameter θ are

Pθ (tn) = (2π)−
r
2 e−

1
2
tTn tn , (6.16)

Pθ (xn|tn) =
(
2πσ2

)− d
2 e−

1
2σ2

(xn−Λtn−µx)T (xn−Λtn−µx), (6.17)

Pθ (yn|xn) =
1√

Πd
i=1x̄i

(
2πη2

)− d
2 e−

1
2

(yn−pxn)T [diag(x̄η2)]
−1

(yn−pxn). (6.18)

Note that in the missing data scenario, x̄ in equation (6.18) can be obtained by averaging

the non-missing values in each row of X. In the low coverage scenario, when there is no loop

detector installed at location i, we approximate x̄i by scaling up the average probe vehicle

traffic volume using the penetration rate.

By substituting the probability density functions into equation (6.15), the complete-data

log-likelihood function can be expressed as

logPθ (xn, yn, tn) = −(r + 2d)

2
log (2π)− 1

2
tTn tn −

d

2
log
(
σ2
)

− 1

2σ2
(xn − Λtn − µx)T (xn − Λtn − µx)−

1

2

d∑
i=1

log
(
x̄iη

2
)

− 1

2
(yn − pxn)T

[
diag

(
x̄η2
)]−1

(yn − pxn) (6.19)

Substituting equation (6.19) into equation (6.12) gives a non-concave objective function of

the maximum likelihood estimation problem. Therefore, we apply the EM algorithm to solve

it (Dempster et al., 1977).

6.4.4 The EM algorithm

In the E-step, we evaluate the expectation of the complete-data log-likelihood function

under the posterior distribution of the latent variables given the current estimate θ(k). Math-

ematically, the expectation can be expressed as Etn,xmn |xon,yn;θ(k) [logL (θ;xn, yn, tn)], where

logL (θ;xn, yn, tn) = logPθ (xn, yn, tn).

To get the probability density function of the posterior distribution, we first derive the
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joint distribution of xn, yn, and tn, which is

(xn, yn, tn) ; θ(k) ∼ N





µ
(k)
x

µ
(k)
y

0


,



Σ
(k)
xnxn Σ

(k)
xnyn Σ

(k)
xntn

Σ
(k)
ynxn Σ

(k)
ynyn Σ

(k)
yntn

Σ
(k)
tnxn Σ

(k)
tnyn Σ

(k)
tntn




, (6.20)

where the covariance matrix can be expressed as



(σ2)(k)I + Λ(k)
(
Λ(k)

)T
p(k)

(
(σ2)(k)I + Λ(k)

(
Λ(k)

)T)
Λ(k)

p(k)
(

(σ2)(k)I + Λ(k)
(
Λ(k)

)T)T
diag

(
x̄(η2)(k)

)
+
(
p(k)
)2 (

(σ2)(k)I + Λ(k)
(
Λ(k)

)T)
p(k)Λ(k)

(
Λ(k)

)T
p(k)

(
Λ(k)

)T
I


.

(6.21)

Then, according to the Gaussian conditional distribution formula, the conditional distribu-

tion of the latent variables xmn and tn given the observed data xon and yn is still Gaussian.

For conciseness, we denote the distribution of
(
tn, x

m
n |xon, yn; θ(k)

)
by q(k)

n (tn, x
m
n ), which is

q(k)
n (tn, x

m
n ) : tn, x

m
n |xon, yn; θ(k) ∼ N



µ

(k)
tn|xon,yn

µ
(k)
xmn |xon,yn

 ,


Σ
(k)
tn|xon,yn

Σ
(k)
tnxmn |xon,yn(

Σ
(k)
tnxmn |xon,yn

)T
Σ

(k)
xmn |xon,yn


 ,

(6.22)

where


µ

(k)
tn|xon,yn

µ
(k)
xmn |xon,yn

 =


0

µ
(k)
xmn

+


Σ

(k)
tnxon

Σ
(k)
tnyn

Σ
(k)
xmn x

o
n

Σ
(k)
xmn yn




Σ
(k)
xonx

o
n

Σ
(k)
xonyn

Σ
(k)
ynxon

Σynyn


−1


xon

yn

−

µ

(k)
xon

µ
(k)
y


 ,

(6.23)
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Σ
(k)
tn|xon,yn

= Σ
(k)
tntn −

[
Σ

(k)
tnxon

Σ
(k)
tnyn

]
Σ

(k)
xonx

o
n

Σ
(k)
xonyn

Σ
(k)
ynxon

Σ
(k)
ynyn


−1 [

Σ
(k)
tnxon

Σ
(k)
tnyn

]T
, (6.24)

Σ
(k)
tnxmn |xon,yn

= Σ
(k)
tnxmn
−

[
Σ

(k)
tnxon

Σ
(k)
tnyn

]
Σ

(k)
xonx

o
n

Σ
(k)
xonyn

Σ
(k)
ynxon

Σ
(k)
ynyn


−1 [

Σ
(k)
xmn x

o
n

Σ
(k)
xmn yn

]T
, (6.25)

Σ
(k)
xmn |xon,yn

= Σ
(k)
xmn x

m
n
−

[
Σ

(k)
xmn x

o
n

Σ
(k)
xmn yn

]
Σ

(k)
xonx

o
n

Σ
(k)
xonyn

Σ
(k)
ynxon

Σ
(k)
ynyn


−1 [

Σ
(k)
xmn x

o
n

Σxmn yn

]T
. (6.26)

Finally, we evaluate the expected complete-data log-likelihood function under the poste-

rior distribution q(k)
n (tn, x

m
n ), which is

E
q
(k)
n

[logL (θ;xn, yn, tn)]

=

∫ ∫
q(k)
n (tn, x

m
n ) (logP (tn) + logP (xn|tn) + logP (yn|xn)) dxmn dtn

=− (r + 2d)

2
log (2π)− 1

2
E
q
(k)
n

[
tTn tn

]
− d

2
log
(
σ2
)

− 1

2σ2
E
q
(k)
n

[
(xn − Λtn − µx)T (xn − Λtn − µx)

]
− 1

2

d∑
i=1

log
(
x̄iη

2
)

− 1

2
E
q
(k)
n

[
(yn − pxn)T

[
diag

(
x̄η2
)]−1

(yn − pxn)
]
. (6.27)

In the M-step, taking into account all the available loop detector data and probe vehicle

data, we maximize the sum of the expectation in terms of the parameters θ, which is

Q
(
θ; θ(k)

)
=

N∑
n=1

E
q
(k)
n

[logL (θ;xn, yn, tn)] . (6.28)
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The solutions to the optimization problem are

µ(k+1)
x =

1

N

N∑
n=1

(
E
q
(k)
n

[xn]− Λ(k)E
q
(k)
n

[tn]
)
, (6.29)

Λ(k+1) =

(
N∑
n=1

(
E
q
(k)
n

[
xnt

T
n

]
− µ(k)

x E
q
(k)
n

[tn]T
))( N∑

n=1

E
q
(k)
n

[
tnt

T
n

])−1

, (6.30)

(
σ2
)(k+1)

=
1

Nd

N∑
n=1

(
tr
(
E
q
(k)
n

[
xnx

T
n

])
+
(
µ(k)
x

)T
µ(k)
x + tr

((
Λ(k)

)T
Λ(k)E

q
(k)
n

[
tnt

T
n

])
−2
(
µ(k)
x

)T E
q
(k)
n

[xn]− 2tr
(

Λ(k)E
q
(k)
n

[
xnt

T
n

]T)
+ 2

(
µ(k)
x

)T
Λ(k)E

q
(k)
n

[tn]
)
, (6.31)

p(k+1) =

(
N∑
n=1

yTndiag
(
x̄
(
η2
)

(k)
)−1 E

q
(k)
n

[xn]

)(
N∑
n=1

tr
(
E
q
(k)
n

[
xnx

T
n

]
diag

(
x̄
(
η2
)

(k)
)−1
))−1

,

(6.32)(
η2
)(k+1)

=
1

Nd

N∑
n=1

d∑
i=1

1

x̄i

(
y2
ni − 2p(k)yniEq(k)n

[xn]i +
(
p(k)
)2 E

q
(k)
n

[
xnx

T
n

]
ii

)
. (6.33)

The solutions are concisely expressed in terms of expectations derived from equation (6.22).

The detailed solving process and the expressions of the expectations are in Appendix D.

6.4.5 Estimating the unknown traffic volumes

Performing the update rules given above iteratively leads to the convergence of the esti-

mated θ. With the estimated parameters of the PPCA-DF model, the posterior predictive

distribution of the missing data is a Gaussian distribution given by

xmn |xon, yn ∼ N
(
µxmn |xon,yn ,Σxmn |xon,yn

)
, (6.34)

98



where

µxmn |xon,yn = µxmn +

[
Σxmn x

o
n

Σxmn y

]
Σxonx

o
n

Σxonyn

Σynxon Σynyn


−1


xon

yn

−

µxon

µy


 , (6.35)

Σxmn |xon,yn = Σxmn x
m
n
−

[
Σxmn x

o
n

Σxmn yn

]
Σxonx

o
n

Σxonyn

Σynxon Σynyn


−1 [

Σxmn x
o
n

Σxmn yn

]T
. (6.36)

We can estimate the unknown traffic volumes in the nth column of X by the mean µxmn |xon,yn .

6.5 Case studies

In this section, we first introduce the ground-truth dataset we use for validation and how

we generate the input to the models from the ground truth. Then, we validate the proposed

methods using the generated input in different scenarios and compare their performance with

the baseline methods.

6.5.1 Ground-truth dataset

To evaluate the performance of the proposed traffic volume estimation methods, we need

a ground-truth traffic volume dataset. The ground-truth dataset used here is the PORTAL

Arterial Data (https://portal.its.pdx.edu/fhwa) collected from the loop detectors on 82nd

Ave in Portland, Oregon. We aggregate the data to 15-min intervals in the preprocessing

stage. The specific 15 loop detectors we use are of IDs 253, 254, 255, 256, 409, 410, 411,

412, 414, 415, 416, 712, 713, 714, and 715. We use the data of 15 workdays spanning from

October 21 to November 10, 2011. Figure 6.1 shows the average traffic volumes over the

15 workdays collected by the 15 loop detectors. In general, the traffic volumes at different

locations fluctuate in a similar trend, which implies strong correlations.
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Figure 6.1: The average traffic volumes at the 15 locations.

6.5.2 Experimental settings

Probe vehicle data

Since we do not have access to the real-world probe vehicle data collected from the studied

locations, for validation purposes, we generate the probe vehicle data through sampling. For

a given penetration rate p and a specific TOD, the probe vehicle traffic volume yij at location

i on day j is sampled from the ground-truth whole-population traffic volume. Sampling from

the binomial distribution is equivalent to performing Bernoulli trials for all the vehicles to

determine if they are probe vehicles or regular vehicles. After this step, we obtain the

simulated probe vehicle traffic volume matrix Y .

Loop detector data with missing entries

We simulate two missing data patterns to characterize the two different scenarios of our

interest, namely, the missing data scenario and the low coverage scenario. For the missing

data scenario, given a missing ratio, we perform a Bernoulli trial to decide if each entry

in the ground-truth traffic volume matrix is missing or not. The process simulates missing

data caused by the occasional loop detector malfunction. For the low coverage scenario,
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we randomly remove several rows of the ground-truth traffic volume matrix. This process

simulates the situation where loop detectors only cover a subset of locations. After this step,

we obtain the simulated loop detector traffic volume matrix X. In this case study, for each

TOD, the size of X and Y is 15× 15, as there are 15 loop detectors and 15 days.

Measure of accuracy

We evaluate the performance of the proposed methods by the root mean square error

(RMSE). Only the missing entries are taken into account when calculating the RMSE. For

both methods, we reconstruct the traffic volumes for each TOD separately and then combine

all the results to calculate the overall performance measure.

6.5.3 Results of the missing data scenario

Figure 6.2 illustrates the estimation process in the missing data scenario. The input data

include the loop detector data X with randomly missing entries and the probe vehicle traffic

volume matrix Y . Using the SVD-DF model or the PPCA-DF model, we can reconstruct

the missing traffic volumes. Since this case study is concerned with traffic volume estimation

for 15-min intervals, we set r = 1 for both methods. For a larger interval such as 60 min,

increasing the rank might give rise to better performance.

Data fusion

Loop detector data 𝑋

Probe vehicle data 𝑌

Ground truthReconstructed data

Figure 6.2: Traffic volume reconstruction for the missing data scenario.
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The impact of missing ratios and penetration rates

We enumerate the missing ratio from 5% to 95%, with a step size of 5%. At the same

time, we test the methods under different penetration rates, including 1%, 5%, 20%, and

50%. Figures 6.3(a) and 6.3(b) show the estimation results of the two proposed methods

under different conditions, respectively. In general, for both models, the estimation accuracy

decreases as the missing ratio increases. It is because when the missing ratio is low, non-

missing entries can provide sufficient information for us. By contrast, when the missing ratio

is high, the number of remaining entries is very limited, which results in inaccuracy when

estimating the unknown traffic volumes.

The probe vehicle penetration rate is another critical parameter that influences the per-

formance of the methods. The results indicate that the proposed methods can already

reconstruct traffic volumes accurately when the penetration rate is only 10%. However, with

a higher penetration rate, the spatiotemporal correlation of the traffic volume data can be

better retained in the probe vehicle data; therefore, the performance is even better. Con-

sidering the practical applicability, we will use the 10% penetration rate in the following

experiments.
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Figure 6.3: Performance of the two models under different penetration rates and different
missing ratios in the missing data scenario: (a) SVD-DF and (b) PPCA-DF.
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Comparison with the existing methods

We compare the proposed methods with two baseline methods. The first baseline method

is the direct scaling method, which reconstructs the unknown traffic volumes by scaling up

the traffic volumes of the probe vehicles using the penetration rate directly. The second

method is the probabilistic principal component analysis used by Qu et al. (2009) and Li

et al. (2013b), which captures the low-rank structure by solving a maximum likelihood

estimation problem. Figure 6.4 shows the comparison results.

5 15 25 35 45 55 65 75 85 95
Percentage of missing data (%)

0

5

10

15

20

25

30

35

RM
SE

 (v
eh

/1
5m

in
)

Direct scaling
PPCA
SVD-DF
PPCA-DF

Figure 6.4: Comparison of different methods in the missing data scenario.

As the results suggest, the proposed methods consistently outperform the direct scaling

method. The reason is that scaling up the probe vehicle traffic volume directly will amplify

its variance, especially when the penetration rate is not high enough. However, the direct

scaling method does not use any information from other locations and time slots to reduce

the variance. The proposed methods also yield better performance than the PPCA method

for most missing ratios. Especially when the missing ratio is high, the PPCA baseline method

cannot reconstruct the missing values accurately with limited information. It implies that

the probe vehicle data is an appropriate data source for finding the embedded spatiotemporal

correlations. The results validate the idea that incorporating probe vehicle data can provide

a robust approach to the reconstruction of traffic volumes.
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Figure 6.5 shows the errors of the methods in different TODs. The figure corresponds to

the scenario when the percentage of missing data is 50%. The proposed methods outperform

the baseline methods in almost all the TODs. The performance of the PPCA-DF model

slightly outperforms the SVD-DF model. The RMSE is smaller in the night time compared

to the day time. It is because the ground-truth traffic volumes are much smaller in the night

time, as shown in Figure 6.1. The ratio between the error and the ground truth is actually

larger in the night time, due to the smaller sample size of probe vehicle data.
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Figure 6.5: The accuracy of different methods in different TODs.

6.5.4 Results of the low coverage scenario

The low coverage scenario is more challenging. In this case, not all the locations we study

are covered by loop detectors. In other words, an entire row of the traffic volume matrix

X can be missing. Figure 6.6 illustrates the whole process of traffic volume reconstruction

in the low coverage scenario. Similar to the missing data scenario, the input data include

the loop detector data X with missing rows and the probe vehicle data Y . The proposed

methods estimate the unknown traffic volumes by fusing the two data sources.
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Data fusion

Loop detector data 𝑋

Probe vehicle data 𝑌

Ground truthReconstructed data

Figure 6.6: Traffic volume reconstruction for the low coverage scenario.

The impact of missing ratios and penetration rates

Figures 6.8(a) and 6.8(b) show the estimation results of the two proposed methods under

different missing ratios and penetration rates. Similar to the missing data scenario, for

both methods, a lower missing ratio or a higher penetration rate leads to better estimation

accuracy. Even in the scenario where multiple locations are not covered with loop detectors,

a 10% penetration rate can still enable the proposed methods to reconstruct traffic volumes

accurately. Again, considering practical conditions, we use the 10% penetration rate in the

following experiments to compare our methods with the benchmark.
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Figure 6.7: Performance of the two models under different penetration rates and different
numbers of missing rows in the low coverage scenario: (a) SVD-DF and (b) PPCA-DF.

Comparison with the existing method

Since the PPCA method cannot deal with the low coverage scenario, we only use the

direct scaling method as the baseline method. The comparison results are shown in Figure

6.8. From the results, we can see that the performance of the SVD-DF method and the

PPCA-DF method is very close. When the number of locations without loop detectors is

small, the SVD-DF model outperforms PPCA-DF slightly; when the number of missing rows

is large, PPCA-DF performs better instead. Compared to the direct scaling method, both

of the proposed methods perform better significantly. It is because the proposed methods

consider the spatiotemporal correlation in the traffic volume data, whereas the direct scaling

method considers each location and each time slot independently.
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Figure 6.8: Comparison of different methods in the low coverage scenario.

Figure 6.9 shows the errors of the methods in different TODs. The figure corresponds

to the scenario where loop detectors only cover seven out of the 15 locations. The proposed

methods outperform the baseline methods in almost all the TODs. In general, the SVD-DF

model slightly outperforms the PPCA-DF model. The trend of the error in a day is similar

to the missing data scenario, which is shown in Figure 6.5.

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

0

5

10

15

20

25

30

35

40

RM
SE

 [v
eh

/1
5m

in
]

Direct scaling
SVD-DF
PPCA-DF

Figure 6.9: The accuracy of different methods in different TODs.
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6.6 Conclusions

In this chapter, we propose two data fusion methods for traffic volume reconstruction by

exploiting the low-rank structures contained in traffic data. The first method is based on

the singular value decomposition. It first utilizes the probe vehicle data to approximate the

low-rank structure of the loop detector data and then leverage the non-missing loop detector

data to carry out the traffic volume reconstruction. The second method is a probabilistic

model, which extends the framework of the probabilistic principal component analysis to

include both loop detector data and probe vehicle data in the formulation. The proposed

methods offer a unified framework to deal with the two challenges of loop detectors, namely,

the missing data problem and the low coverage problem.

We examine the performance of the SVD-DF and PPCA-DF methods using a real-world

loop detector dataset. The results show that both methods can achieve excellent performance

when dealing with the two problems. The validation results also demonstrate that the

proposed methods outperform the baseline methods, even when the penetration rate of

probe vehicles is only 10%. Therefore, the proposed methods have enormous potentials for

practical applications.
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Chapter 7

Summary and future directions

7.1 Summary of the thesis

The tremendous amount of probe vehicle data collected from connected vehicles, ride-

hailing vehicles, and vehicles using online navigation systems provide us a new perspective on

traffic state estimation. Although there has been extensive literature on probe vehicle based

travel time and travel speed estimation, the estimation of queue lengths and traffic volumes

has not been well studied. This thesis aims to develop innovative traffic state estimation

methodologies that can be implemented in real life, with a focus on queue length and traffic

volume estimation. Specifically, this thesis has mainly covered the following topics.

First, we studied the estimation of queue lengths, under the assumption that queues

in different traffic signal cycles are independent and identically distributed. Some existing

studies already pointed out a few methods for estimating queue lengths cycle by cycle under

this assumption. However, the parameters needed by the methods, including the penetration

rate of probe vehicles and the queue length distribution, are not available beforehand in real

life, which makes the existing methods hard to be implemented on a large scale. To overcome

the limitations, we proposed a series of approximate estimators and a maximum likelihood

estimator to estimate the required parameters. We validated the proposed methods using

both simulation and real-world datasets, which showed that the proposed methods could

achieve good estimation accuracy even with low-penetration-rate probe vehicle data.

Second, by relaxing the i.i.d. assumption usually imposed by relevant literature, we sys-

tematically studied the estimation of queue lengths when the queues in different cycles are
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correlated. The correlation of queue lengths is a common phenomenon in the real world;

however, it was ignored by most literature studying probe vehicle based traffic state esti-

mation. Studying the estimation of queue lengths in such scenarios is of both theoretical

and practical significance. We approached the problem by modeling the queueing process

and observation process using a hidden Markov model. Based on the hidden Markov model,

we were able to estimate queue lengths cycle by cycle in the non-i.i.d. case and estimated

all the required parameters of the HMM from historical probe vehicle data. It turned out

that considering the correlation of different cycles could improve the queue length estimation

accuracy.

In the third part of the thesis, we focused on the estimation of traffic volumes, which

are critical for ITS applications as well. Noticing that traffic volumes are correlated not

only in the temporal dimension but also in the spatial dimension, we proposed to extract the

hidden structure behind traffic volumes by applying low-rank representation techniques. The

proposed SVD-DF and PPCA-DF models both enabled us to capture the correlation and

estimate the unknown traffic volumes. Validation results showed that the proposed methods

are promising for real-world applications.

In summary, this thesis presented a series of methods for probe vehicle based traffic state

estimation. The proposed methods paved the way for some critical ITS applications based

on probe vehicle data, which can help us better understand real-world urban traffic and solve

traffic problems.

7.2 Future directions

This thesis not only provides a series of methodologies and solutions to critical traffic state

estimation problems but also points out several research questions that should be addressed

in the future.

First, most existing research on probe vehicle data based traffic state estimation usually

only provide estimation methods; however, the theoretical limit of the probe vehicle data for
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ITS applications has not been studied systematically. Considering that the penetration rate

of probe vehicles in most places is still low currently, if we replace the fixed-location sensors

with probe vehicle data, the reliability of the new system should be evaluated.

Second, besides probe vehicle data and fixed-location sensor data studied in this thesis,

there are diverse data sources that can be used for traffic monitoring. For example, a traveler

may report an accident and complain about the traffic congestion on social media; a sudden

change of weather may imply a change in traffic demand. Transportation management agen-

cies may own different types of data as well, such as traffic counts, image data, trajectory

data, and incident reports. Although there is abundant literature on traffic condition infer-

ence from a single data source, how to take advantage of different data sources and improve

the estimation quality has not been well studied. Another related research question is about

the optimal deployment of traffic sensors. As different data sources have different strengths

and weaknesses, given a limited budget, a transportation agency may need to deploy a com-

bination of sensors and collect traffic data from multiple sources. A thorough understanding

of data fusion would allow transportation agencies to make better decisions on investment.

Third, the use of probe vehicle data sometimes raises privacy concerns, as the data

may contain some privacy-sensitive information. In nature, ITS applications only require

the knowledge of the overall traffic, regardless of personal mobility patterns. Ideally, if we

preprocess probe vehicle data appropriately, the processed data should still pertain useful

traffic information while getting ride of the privacy-sensitive information. A systematic study

of privacy-aware methods for processing probe vehicle data is needed.

Fourth, traffic state estimation is just one step in the process of solving traffic problems.

The development of probe vehicle technologies also brings tremendous opportunities to other

ITS applications. There have been some efforts on other probe vehicle based applications,

such as map generation (Ahmed et al., 2015), curbside management (He et al., 2018), and

adaptive traffic signal control (Feng et al., 2015; Zheng and Liu, 2020). Nevertheless, the

potential of probe vehicle data has not been fully explored. With the growth of probe vehicle
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market penetration, we expect to see probe vehicle data play an even more important role

in solving real-world traffic problems.
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Appendix A

Proof of the observable queue theorems

Definitions

For k, n ∈ N and n ≥ k,

Ck
n =

n!

k!(n− k)!
, (A.1)

Akn =
n!

(n− k)!
. (A.2)

Theorem 1

For conciseness, li, ni, si, ti are represented by l, n, s, t, respectively.

E(s | n, l) =
l + 1

n+ 1
, (A.3)

E(l | n) = E(s | n)(n+ 1)− 1, (A.4)

where n ≥ 1.

Proof:

E(s | n, l) =
l−n+1∑
s=1

P (s | n, l)s (A.5)

=
l−n+1∑
s=1

nCs−1
l−nA

s−1
s−1A

l−s
l−s

All
s (A.6)

=
l−n+1∑
s=1

nAn−1
l−s

Anl
s (A.7)
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=
n

Anl

l−n+1∑
s=1

An−1
l−s s (A.8)

=
n

Anl

l−n∑
k=0

An−1
n+k−1(l − n+ 1− k) (A.9)

=
n

Anl

l−n∑
k=0

An−1
n+k−1(l + 1)− n

Anl

l−n∑
k=0

An−1
n+k−1(n+ k) (A.10)

= (l + 1)
l−n∑
k=0

(n+ k − 1)!(l − n)!n!

k!l!(n− 1)!
− n

Anl

l−n∑
k=0

Ann+k (A.11)

=
l + 1

Cn
l

l−n∑
k=0

Cn−1
n+k−1 −

n

Cn
l

l−n∑
k=0

Cn
n+k (A.12)

= (l + 1)
Cn
l

Cn
l

− n
Cn+1
l+1

Cn
l

(A.13)

= (l + 1)− n l + 1

n+ 1
(A.14)

=
l + 1

n+ 1
. (A.15)

Chu’s theorem (Merris, 2003) is applied when converting equation (A.12) to equation

(A.13).

Then, based on the results above,

E(s | n) =
Lmax∑
s=1

P (s | n)s (A.16)

=
Lmax∑
s=1

Lmax∑
l=s+n−1

P (s | n, l)P (l | n)s (A.17)

=
Lmax∑
l=n

l−n+1∑
s=1

P (s | n, l)P (l | n)s (A.18)

=
Lmax∑
l=n

P (l | n)
l−n+1∑
s=1

P (s | n, l)s (A.19)

=
Lmax∑
l=n

P (l | n)E(s | n, l) (A.20)

=
Lmax∑
l=n

P (l | n)
l + 1

n+ 1
(A.21)
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=
1

n+ 1

Lmax∑
l=n

P (l | n)(l + 1) (A.22)

=
1

n+ 1
(E(l | n) + 1) . (A.23)

This is equivalent to

E(l | n) = E(s | n)(n+ 1)− 1. (A.24)

Theorem 2

For conciseness, li, ni, si, ti are represented by l, n, s, t, respectively.

E(t | n, l) = n
l + 1

n+ 1
, (A.25)

E(l | n) = E(l | n)
n+ 1

n
− 1, (A.26)

where n ≥ 1.

Proof:

E(t | n, l) =
l∑

t=n

P (t | n, l)t (A.27)

=
l∑

t=n

nC l−t
l−nA

t−1
t−1A

l−t
l−t

All
t (A.28)

=
l∑

t=n

nAn−1
t−1

Anl
t (A.29)

= n

l∑
t=n

Ant
Anl

(A.30)

= n
l∑

t=n

Cn
t

Cn
l

(A.31)

=
n

Cn
l

l−n∑
k=0

Cn
n+k (A.32)

=
nCn+1

l+1

Cn
l

(A.33)
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= n
l + 1

n+ 1
. (A.34)

Then, based on the results above,

E(t | n) =
Lmax∑
t=n

P (t | n)t (A.35)

=
Lmax∑
t=n

Lmax∑
l=t

P (t | n, l)P (l | n)t (A.36)

=
Lmax∑
l=n

l∑
t=n

P (t | n, l)P (l | n)t (A.37)

=
Lmax∑
l=n

P (l | n)
l∑

t=n

P (t | n, l)t (A.38)

=
Lmax∑
l=n

P (l | n)E(t | n, l) (A.39)

=
Lmax∑
l=n

P (l | n)n
l + 1

n+ 1
(A.40)

=
n

n+ 1

Lmax∑
l=n

P (l | n)(l + 1) (A.41)

=
n

n+ 1
(E(l | n) + 1) . (A.42)

This is equivalent to

E(l | n) = E(t | n)
n+ 1

n
− 1. (A.43)

Theorem 3

For conciseness, li, ni, si, ti are represented by l, n, s, t, respectively.

E(l | n ≥ 1) = E(s | n ≥ 1) + E(t | n ≥ 1)− 1. (A.44)

Proof:
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First of all,

P (t = l − s+ 1 | n ≥ 1, l) = p(1− p)l−(l−s+1) (A.45)

= p(1− p)s−1 (A.46)

= P (s | n ≥ 1, l), if 1 ≤ s ≤ l. (A.47)

Then,

E(s | n ≥ 1) =
Lmax∑
s=1

P (s | n ≥ 1)s (A.48)

=
Lmax∑
s=1

Lmax∑
l=s

P (s | n ≥ 1, l)P (l | n ≥ 1)s (A.49)

=
Lmax∑
l=1

l∑
s=1

P (s | n ≥ 1, l)P (l | n ≥ 1)s (A.50)

=
Lmax∑
l=1

l∑
s=1

P (t = l − s+ 1 | n ≥ 1, l)P (l | n ≥ 1)s (A.51)

=
Lmax∑
l=1

l∑
t=1

P (t | n ≥ 1, l)P (l | n ≥ 1)(l − t+ 1), (A.52)

E(t | n ≥ 1) =
Lmax∑
t=1

P (t | n ≥ 1)t (A.53)

=
Lmax∑
t=1

Lmax∑
l=t

P (t | n ≥ 1, l)P (l | n ≥ 1)t (A.54)

=
Lmax∑
l=1

l∑
t=1

P (t | n ≥ 1, l)P (l | n ≥ 1)t. (A.55)

Therefore,

E(s | n ≥ 1) + E(t | n ≥ 1)− 1 =
Lmax∑
l=1

l∑
t=1

P (t | n ≥ 1, l)P (l | n ≥ 1)(l − 1) + 1 (A.56)

117



=
Lmax∑
l=1

P (l | n ≥ 1)(l − 1) + 1 (A.57)

=
Lmax∑
l=1

P (l | n ≥ 1)l (A.58)

= E(l | n ≥ 1). (A.59)

Alternatively, Theorem 3 can also be proved by combining Theorem 1 and Theorem 2.
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Appendix B

Analytical solution of the EM algorithm in Chapter 4

The solutions can be calculated by constructing the Lagrangian. Alternatively, we can

eliminate the equality constraint by substituting πLmax = 1−
∑Lmax−1

k=0 πk into the objective

function, that is,

Q
(
θ; θ(t)

)
=

C∑
i=1

Lmax−1∑
j=|qi|

π
(t)
j (ni log p+ (j − ni) log(1− p) + log πj)∑Lmax

k=|qi| (1− p(t))
k−j

π
(t)
k

(B.1)

−
C∑
i=1

π
(t)
Lmax

(
ni log p+ (Lmax − ni) log(1− p) + log

(
1−

∑Lmax−1
k=0 πk

))
∑Lmax

k=|qi| (1− p(t))
k−Lmax π

(t)
k

.

(B.2)

The first order derivatives are

∂Q
(
θ; θ(t)

)
∂p

=
C∑
i=1

Lmax∑
j=|qi|

π
(t)
j∑Lmax

k=|qi| (1− p(t))
k−j

π
(t)
k

(
ni

1

p
− (j − ni)

1

1− p

)
; (B.3)

∀j = 0, 1, 2, ..., Lmax − 1,

∂Q
(
θ; θ(t)

)
∂πj

=
C∑

i:|qi|≤j

π
(t)
j(∑Lmax

k=|qi| (1− p(t))
k−j

π
(t)
k

)
πj
−

C∑
i=1

π
(t)
Lmax(∑Lmax

k=|qi| (1− p(t))
k−Lmax π

(t)
k

)
πLmax

.

(B.4)
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Therefore, setting the derivatives to zero gives

∂Q
(
θ; θ(t)

)
∂p

∣∣∣∣∣
p=p(t+1)

= 0⇔ p(t+1) =

∑C
i=1

∑Lmax
j=|qi|

π
(t)
j ni∑Lmax

k=|qi|(
1−p(t))

k−j
π
(t)
k∑C

i=1

∑Lmax
j=|qi|

π
(t)
l l∑Lmax

k=|qi|(
1−p(t))

k−j
π
(t)
k

, (B.5)

∂Q
(
θ; θ(t)

)
∂πj

∣∣∣∣∣
πj=π

(t+1)
j

= 0⇔ E
(t)
Lmax

π
(t+1)
j = E

(t)
j π

(t+1)
Lmax

,∀j = 0, 1, 2, . . . , Lmax − 1, (B.6)

where E(t)
j =

∑C
i:|qi|≤j

π
(t)
j∑Lmax

k=|qi|(
1−p(t))

k−j
π
(t)
k

,∀j ∈ {0, 1, . . . , Lmax}. Combining with the fact∑Lmax
j=0 π

(t+1)
j = 1 gives

π
(t+1)
j =

E
(t)
j∑Lmax

k=0 E
(t)
k

,∀j = 0, 1, 2, . . . , Lmax. (B.7)

It can be easily verified that as long as θ(t) satisfies the constraints, the newly generated

estimate θ(t+1) will satisfy the constraints as well.
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Appendix C

Analytical solution of the EM algorithm in Chapter 5

The Lagrangian can be constructed as follows

J (θ;λ, ν) = Q(θ; θ(t)) + λ

(
Lmax∑
l=0

πl − 1

)
+

Lmax∑
j=0

νj (Tjk − 1) , (C.1)

where λ and νj,∀j = 0, 1, . . . , Lmax are multipliers. The first derivatives of the Lagrangian

are
∂J

∂πj
=
∑
l:l1=j

P
(
l | q; θ(t)

) 1

πj
+ λ,∀j = 0, 1, . . . , Lmax, (C.2)

∂J

∂Tjk
=
∑
l

P
(
l | q; θ(t)

) ∑
i:2≤i≤C,li−1=j,li=k

1

Tjk
+ vj,∀j, k = 0, 1, . . . , Lmax, (C.3)

∂J

∂p
=
∑
l

P
(
l | q; θ(t)

) C∑
i=1

(
ni
p
− li − ni

1− p

)
. (C.4)

Setting the first derivatives to zero gives the update rules

π
(t+1)
j =

∑
l:l1=j P

(
l | q; θ(t)

)∑Lmax
k=0

∑
k:l1=k P (l | q; θ(t))

=

∑
l:l1=j P

(
l | q; θ(t)

)∑
l P (l | q; θ(t))

,∀j = 0, 1, . . . , Lmax, (C.5)

T
(t+1)
jk =

∑
l P
(
l | q; θ(t)

)∑
i:2≤i≤C,li−1=j,li=k

1∑Lmax
k=0

∑
l P (l | q; θ(t))
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Appendix D

Analytical solution of the EM algorithm in Chapter 6

The solutions can be obtained by setting the derivatives of Q
(
θ; θ(k)

)
to zero.

∂Q
(
θ; θ(k)

)
∂µx

=
N∑
n=1

1

(σ2)(k)

(
E
q
(k)
n

[xn]− Λ(k)E
q
(k)
n

[tn]− µx
)

= 0, (D.1)

∂Q
(
θ; θ(k)

)
∂Λ

=
N∑
n=1

1

(σ2)(k)

(
E
q
(k)
n

[(
xn − µ(k)

x

)
tTn
]
− ΛE

q
(k)
n

[
tnt

T
n

])
= 0, (D.2)

∂Q
(
θ; θ(k)

)
∂σ2

=
N∑
n=1

(
d

σ2
− 1

σ4
E
q
(k)
n

[(
xn − Λ(k)tn − µ(k)

x

)T (
xn − Λ(k)tn − µ(k)

x

)])
= 0, (D.3)

∂Q
(
θ; θ(k)

)
∂p

=
N∑
n=1

E
q
(k)
n

[(
diag

(
x̄
(
η2
)

(k)
)−1

(yn − pxn)
)T

xn

]
= 0, (D.4)

∂Q
(
θ; θ(k)

)
∂η2

=
N∑
n=1

(
d

η2
− 1

η4
E
q
(k)
n

[(
yn − p(k)xn

)T
diag (x̄)−1 (yn − p(k)xn

)])
= 0. (D.5)

Solving the equations above yields the update rules of the parameters.
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where the five expectations can be expressed as
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