
Early Quality of Service Prediction via Interface-level
Metrics, Code-level Metrics, and Antipatterns

Chaima Abida, Marouane Kessentinia, Hanzhang Wangb

aUniversity of Michigan, USA
beBay Inc., USA

Abstract

Context: With the current high trends of deploying and using web services in

practice, effective techniques for maintaining high quality of Service are becom-

ing critical for both service providers and subscribers/users. Service providers

want to predict the quality of service during early stages of development before

releasing them to customers. Service clients consider the quality of service when

selecting the best one satisfying their preferences in terms of price/budget and

quality between the services offering the same features. The majority of existing

studies for the prediction of quality of service are based on clustering algorithms

to classify a set of services based on their collected quality attributes. Then,

the user can select the best service based on his expectations both in terms of

quality and features. However, this assumption requires the deployment of the

services before being able to make the prediction and it can be time-consuming

to collect the required data of running web services during a period of time.

Furthermore, the clustering is only based on well-known quality attributes re-

lated to the services performance after deployment. Objective: In this paper,

we start from the hypothesis that the quality of the source code and interface

design can be used as indicators to predict the quality of service attributes

without the need to deploy or run the services by the subscribers. Method:

We collected training data of 707 web services and we used machine learning

Email addresses: cabid@umich.edu (Chaima Abid), marouane@umich.edu (Marouane
Kessentini), hanzwang@ebay.com (Hanzhang Wang)

Preprint submitted to Journal of LATEX Templates May 10, 2020

to generate association rules that predict the quality of service based on the

interface and code quality metrics, and antipatterns. Results: The empirical

validation of our prediction techniques shows that the generated association

rules have strong support and high confidence which confirms our hypothesis

that source code and interface quality metrics/antipatterns are correlated with

web service quality attributes which are response time, availability, throughput,

successability, reliability, compliance, best practices, latency, and documenta-

tion. Conclusion: To the best of our knowledge, this paper represents the first

study to validate the correlation between interface metrics, source code metrics,

antipatterns and quality of service. Another contribution of our work consists of

generating association rules between the code/interface metrics and quality of

service that can be used for prediction purposes before deploying new releases.

Keywords: Quality of Service, web services, interface metrics, code quality,

Performance prediction, anti-patterns.

1. Introduction

Web services are nowadays increasingly used in most of industrial software

systems [1, 2, 3]. Thus, it is critical to maintain high quality standards in

terms of reliability, reusability, extendability etc. when designing and evolving

services such as Google, Amazon, eBay, PayPal, FedEx, etc. The quality of5

service, related to the code and interface, is important for both the providers

and subscribers/users. The providers may want to ensure a high quality of

service before releasing them to the users. The users/subscribers prefer to use

the service with the best quality of service and reasonable price among those

offering the same features. Large-scale web services run on complex systems,10

spanning multiple data centers and distributed networks, with quality of ser-

vice depending on diverse factors related to systems, networks, and servers [4].

This dynamic, distributed, and unpredictable nature of the web services infras-

tructure makes estimating and predicting the quality of service (QoS) metrics

challenging, time-consuming, and expensive task.15

2

Several studies have been conducted in the literature to predict the quality

of web services based on a set of quality attributes (response time, availability,

throughput, successability, reliability, compliance, best practices, latency, and

documentation) [5, 6]. The majority of existing work help users selecting the

best services based on their preferences and expectations [7, 8, 9, 10]. Clustering20

algorithms were adapted to classify existing services into multiple preferences

then the user can select the cluster of services to investigate based on his pre-

ferred quality attributes. Thus, these studies are not actually dedicated to make

prediction of services before deployment to potential users so they are not useful

for services providers but mainly beneficial for subscribers. Some other studies25

are related to the prediction of the evolution of web services interface from the

history of previous releases’ metrics [11]. In another category of work, several

approaches have been proposed to detect quality issues such as antipatterns for

web services [12, 13, 14]. Antipatterns are defined as commonly occurring de-

sign solutions to problems that lead to negative consequences [15]. Ouni et al.30

[14] defined a set of rules manually based on a combination of quality metrics

to identify antipatterns. However, to the best of our knowledge, the problem

of predicting the quality of service based on the interface and code quality at-

tributes was not addressed before this paper, which represents the main gap of

existing literature.35

In this paper, we start from the hypothesis that source code and interface

metrics and antipatterns are early indicators for the quality of service (QoS).

We focused on the following types of antipatterns: Multi Service, Nano Service,

Chatty Service, Data Service and Ambiguous Service. The source code/interface

metrics and antipatterns can be used as an early detector of potential QoS issues40

before the service gets deployed on the cloud. For example, low cohesion of a

web service may induce a high response time and a low availability due to

the large number of calls between operations at multiple web services that will

be generated whenever a request/query is submitted. Another motivation to

validate our hypothesis is that service interface attributes, such as the number45

of port types or messages, can be measured relatively easily compared with

3

measuring the QoS attributes that requires the deployment of the service.

Based on the above hypothesis, we empirically validated that source code

and interface level metrics can be used to predict the quality of service (QoS)

attributes. Thus, we proposed a novel approach for predicting quality of service50

by mining interface and code level metrics and antipatterns of 707 services

extracted from an existing QoS benchmark [16].

In our approach, we adapted an Apriori clustering algorithm [17] to gener-

ate association rules that link source code and interface level metrics with the

quality of service. We considered a two-step approach. The first step consists55

of extracting association rules between interface/code metrics and quality of

service attributes. Then, the second step extracts rules that link antipatterns

with interface/code/quality metrics. We divided our approach into two steps

since the types of antipatterns are limited, not often easy to detect due to their

subjectivity, and could vary from one service to the other. We made the dataset60

that we created to validate all these new hypotheses available in the following

link 1 so it can be used by other researchers and practitioners to answer the

following research questions :

• RQ1: To what extent code/interface quality metrics can predict the QoS

attributes?65

• RQ2: To what extent code/interface can predict the QoS attributes of

services with antitpatterns?

• RQ3: To what extent the severity of different types of antipattern can be

estimated based on their impact on the QoS?

Our contributions are not limited to only a prediction technique but also70

to validate a new scientific knowledge to the community about the connections

between the code/interface/antipatterns and execution of services. The main

contributions of this paper can be summarized as follows:

1http://kessentini.net/tscdataset.zip

4

1. We propose an approach to predict the quality of service based on an-

tipatterns and code/interface level quality metrics. our approach is based75

on understanding the relationships between code/interface metrics and

quality of services unlike most of the existing work for QoS prediction

which are more based on the clustering of services based on the quality

attributes.

2. Our results confirm that several of the antipatterns and code/interface80

quality metrics are correlated with quality of service attributes based on

an extensive empirical validation over 707 web services.

3. We have also identified in our empirical validation the antipatterns that

negatively affects QoS attributes the most.

The remainder of this paper is organized as follows: Section 2 is dedicated to85

background material related to this research. Section 3 surveys relevant related

work. Section 4 presents the description of our machine learning approach

to identify the association rules between the quality of service metrics and the

interface and code quality metrics of web services and antipatterns while Section

5 contains the results of our methodology. Section 5 discusses threats to validity.90

Finally, we conclude and outline our future research directions in Section 7.

2. Background

In this section, we provide a brief overview of related concepts, including

inputs and outputs, used in our study. We will define the different interface/-

code metrics, antipatterns and quality of service attributes considered by our95

approach.

2.1. Quality Metrics Level: Interface, Code and Service

In our work, we identified a set of metrics that can be divided into three

categories: interface, code and quality of service attributes. Interface level met-

rics are used to measure the complexity and the usage of service interfaces (e.g.100

WSDL files) such as the number of operations. Code level metrics are more

5

related to measure the quality of the source code of the services using mainly

static analysis. It is possible for any web service to extract the pseudo code of

the implementation of the operations in the interface which is enough to get

code level static metrics such as coupling and cohesion.105

As Web service technology suggests that the Web service is accessible only

through its WSDL, we use the JavaTM API for XML Web Services (JAX-WS)2

to generate the Java artifacts of the Web service including: Depth of Inheritance

Tree (DIT), Weighted Methods per Class (WMC), and Coupling Between Ob-

jects (CBO). Our approach is based on the ckjm tool (Chidamber & Kemerer110

Java Metrics)3. Note that for all code-level metrics were extracted using our

parser implemented in our previous work [18].

Table 1 summarizes all the used metrics at different levels.

Table 1: Web service metrics [11]

Metric Name Definition Metric Level

NPT Number of port types Interface

NOPT Average number of operations in port types Interface

NBS Number of services Interface

NIPT Number of identical port types Interface

NIOP Number of identical operations Interface

ALPS Average length of port-types signature Interface

AMTO Average meaningful terms in operation names Interface

AMTM Average meaningful terms in message names Interface

AMTMP Average meaningful terms in message parts Interface

AMTP Average meaningful terms in port-type names Interface

NOD Number of operations declared Code

NAOD Number of accessor operations declared Code

ANIPO Average number of input parameters in operations Code

Continued on next page

2http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
3http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

6

http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

Table 1 – continued from previous page

Metric Name Definition Metric Level

ANOPO Average number of output parameters in operations Code

NOM Number of messages Code

NBE Number of elements of the schemas Code

NCT Number of complex types Code

NST Number of primitive types Code

NBB Number of bindings Code

NPM Number of parts per message Code

COH Cohesion: The degree of the functional relatedness of the

operations of the service

Code

COU Coupling: A measure of the extent to which inter-

dependencies exist between the service modules

Code

ALOS Average length of operations signature Code

ALMS Average length of message signature Code

Response Time Time taken to send a request and receive a response QoS

Availability How often is the service available for consumption QoS

Throughput Total Number of invocations for a given period of time QoS

Successability Number of response / number of request messages QoS

Reliability Ratio of the number of error messages to total messages QoS

Compliance The extent to which a WSDL document follows WSDL

specification

QoS

Best Practices The extent to which a web service follows WS-I Basic

Profile

QoS

Latency Time taken for the server to process a given request QoS

Documentation Measure of documentation (i.e. description tags) in

WSDL

QoS

2.2. Service Antipaterns115

Service antipatterns are examples of recurrent bad design solutions that designers

and developers use when implementing a service [15]. They initially appear to be

7

appropriate and effective solutions to a problem, but they end up having bad conse-

quences that outweigh any benefits. Software engineers often introduce antipatterns

unintentionally during the initial design or during software development due to bad120

design decisions, ignorance or time pressure [14]. Antipatterns make the maintenance

and the evolution of services hard and time-consuming. Most of these antipatterns

can be detected using the interface and code quality metrics that were defined in the

previous sub-section [14]. We selected the following types of antipatterns extracted

from previous work [14]:125

• Multi Service: Also called god object web service, represents a service imple-

menting a multitude of methods related to different business and technical ab-

stractions. This service aggregates too many methods into a single service, and

it is not easily reusable because of the low cohesion of its methods and is often

unavailable to end-users because it is overloaded [19]130

• Nano Service: Is a too fine-grained service whose overhead (communications,

maintenance, and so on) outweighs its utility. This antipattern refers to a small

web service with few operations implementing only a part of an abstraction. It

often requires several coupled web services to complete an abstraction, resulting

in higher development complexity, reduced usability [19]135

• Chatty Service: Represents an antipattern where a high number of operations,

typically attribute-level setters or getters, are required to complete one abstrac-

tion. This antipattern may have many fine-grained operations, which degrades

the overall performance with higher response time [20, 21]

• Data Service: An antipattern that contains typically accessor operations, i.e.,140

getters and setters. In a distributed environment, some web services may only

perform some simple information retrieval or data access operations. A Data

web service usually deals with very small messages of primitive types and may

have high data cohesion [12]

• Ambiguous Service: Is an antipattern where developers use ambiguous or mean-145

ingless names for denoting the main elements of interface elements (e.g., port-

types, operations, and messages). Ambiguous names are not semantically and

syntactically sound and affect the discoverability and the reusability of a web

service [22]

8

These five antipatterns are the most frequently occurring ones in service based150

systems based on recent studies [12, 23, 24].

In the next section, we will describe our adaptation of a machine learning algorithm

to identify the possible correlations and causalities between the different levels of

code/interface quality metrics, antipatterns, and QoS attributes. While several studies

have been proposed to detect antipatterns and predict QoS [14, 13, 25, 26, 27], it is155

not clear if and how code/interface quality metrics and antipatterns may impact the

dynamic QoS attributes or what could be the most severe antipatterns on QoS.

3. Related Work

We summarize, in this section, the existing work on studying performance evalu-

ation and QoS prediction of Web services.160

Most of the existing studies in the area of the prediction of QoS for web services

can be classified in two categories: web services recommendations and web services

evolution.

3.1. QoS Prediction for QoS-driven Web services Recommendation

For this category of Web services recommendation, the goal is to predict the un-165

known QoS values between different service users and different web services, with

partially available information, as the result, the optimal web service with the best

QoS value can be recommended to the service user for composition [7, 28, 29, 30, 31].

The common approach to recommend web service using QoS prediction is collabora-

tive filtering which includes two main sets of algorithms: Model-based approaches and170

memory-based approaches [32, 33, 34, 35, 36, 37, 38, 39, 40].

In collaborative filtering, the goal is to calculate the similarities between service

users to make prediction for the missing QoS data. Model-based approaches utilize

machine learning, pattern recognition and data mining algorithms in order to predict

the unknown QoS values. In memory-based collaborative filtering the similarity be-175

tween users or services is calculated using a user-item rating matrix and then making

prediction using a certain algorithm [41].

Shao et al. use [42] collaborative filtering to find the users similarity and predict

the unknown QoS of the web services using the available invocation history for similar

users. Zhang et al. [43] present another collaborative filtering method to rank the180

9

web services using QoS query information. The authors in [44] take an extra step

and combine the user-based approach and item-based approach to propose a hybrid

collaborative filtering, called WSRec, to predict the QoS in order to recommend a

web service based on a computed rank for the QoS values. WSrec has been shown to

achieve a good overall prediction accuracy, however it depends on historical QoS data185

and can suffer from the sparsity problem.

Some other studies [45, 46, 47, 48] predict the quality of web services to recommend

web services with acceptable throughput or response time. Zhang et al. [49] propose

a fuzzy clustering approach to predict the QoS of a web service in order to make

web service recommendation staisfying the user requirements without sacrificing the190

quality. The work in [50] presents an example of model-based QoS prediction that

uses a pattern recognition method. There are also studies focusing on the use of QoS

for composing multiple services [8, 9, 10].

Zhu et al. [7] proposed an approach that takes a set of fixed landmarks as ref-

erences. These references monitor QoS values of all the available web services. The195

approach clusters all the available services around the references. To predict the QoS

value of the users in one cluster, the algorithm uses the QoS information of the similar

landmarks in that cluster. The main shortcoming of the collaborative filtering meth-

ods is that they heavily depend on the historical web service invocation information.

Although, in practice, each user only invokes one or several web services. Therefore,200

the user-service invocation information is sparse when the number of services is large.

Most of the existing work focus on predicting web service performance based on

other consumers’ experiences to target the problem of web service recommendation.

They use clustering-based approach to predict the quality of service. Their approach is

based on the assumption that the consumers, who have similar historical experiences205

on some services, would have similar experiences on other services which is not always

true. They ignore the large heterogeneity among users’ views on the QoS. Furthermore,

the clustering method presented in their work applies the hard technique that includes

the use of a number of computers, known as landmarks, to perform the gathering of

the real time QoS data, which is different from our mining technique proposed in this210

paper.

10

3.2. Prediction of Web services Evolution

Another category of related work in the area of web services prediction is to pre-

dict the evolution of web services. WSDLDiff [51] is a tool that uses structural and

textual similarity metrics to detect the changes between different versions of a web ser-215

vices interface. VTracker, a tracking tool suggested in [52], detects changes in WSDL

documents using XML differencing techniques. However, these tools are capable of de-

tecting changes between Web Service releases, they do not provide any future changes

prediction or recommendation on quality of service interface to the users. In order to

address this challenge, [11] proposes a machine learning approach using an Artificial220

Neural Network to predict the evolution of web services interface from the history of

previous release’s metric. They utilized these predicted interface metrics to predict

and estimate the risk and the quality of the studied web services.

In the area of code quality, there are some studies focusing on antipattern detection

in Service-Oriented architecture (SOA) and web services. Rotem-Gal-Oz described the225

symptoms of a range of SOA antipatterns [53]. Kral et al. [23] listed seven “popular”

SOA antipatterns that violate accepted SOA principles. A number of research works

have addressed the detection of such antipatterns. Moha et al. [26] have proposed a

rule-based approach called SODA for SCA systems (Service Component Architecture).

Later, Palma et al. [12] extended this work for Web service antipatterns in SODA-W230

using declarative rule specification based a domain-specific language (DSL) to speci-

fy/identify the key symptoms that characterize an antipattern using a set of WSDL

metrics. Rodriguez et al. [54] and Mateos et al. [55] provided a set of guidelines

for service providers to avoid bad practices while writing WSDLs based on eight bad

practices in the writing of WSDL for web services. Recently, Ouni et al. [14] proposed235

a search-based approach based on standard GP to find regularities, from examples of

web service antipatterns, to be translated into detection rules.

Mateos et al. [56] as an attempt to provide the developers with some metrics as

early indications of services interfaces with low quality, low maintainability or high

complexity at development time, they have investigated the statistical correlation be-240

tween complexity/quality and maintainability related WSDL-level service metrics and

traditional code-level Object Oriented (OO) quality metrics and they confirmed a

significant correlation. In their analysis, for the OO quality metrics they have in-

cluded Modularity, Adaptability, Reusability, Testability, Portability, and Conformity

11

attributes.245

To automate the process of predicting the performance of the web services, Li et

al. [57] proposed WebProphet. They extract the dependencies, compute the metrics

and then predict the performance. They infer dependencies between web objects

by perturbing the download times of individual objects. The shortcoming of this

techniques is that, it is time consuming and imprecise.250

Tariq et.al. in [58] introduce a tool called What-If Scenario Evaluator (WISE) to

predict the response time based on packet traces from web transactions. However the

downside of their proposed tool is that they’re not taking into account some of the

client-side factors affecting the response time experienced by users.

In another study, in order to predict the response time, Chen et al.[59] introduced a255

new metric, called Link-Gradients to measure the affect of logical link latency on end-

to-end response time for distributed applications. However to compute this metric,

they assume all the individual changes are independent from each other in the system

which can be a correct assumption in smaller application, but not necessarily applicable

to more complex web services. They use this metric to predict the response time for260

untested configuration as well.

To summarize, none of the above studies analyzed the relationships between code/in-

terface metrics/antipatterns and the QoS attributes which is the main contribution of

this paper.

4. Approach265

In this section, we present an overview of our approach and then we provide details

about the algorithm used and how we adapted it for the prediction of the quality of

web services.

4.1. Overview

As described in Figure 1, our approach has two main outcomes: 1) the association270

rules between the code/interface quality metrics and QoS attributes, and 2) the as-

sociation rules between the Service antipatterns, and code/interface/QoS attributes.

Thus, we generate two different predictive models. The outcome of the second predic-

tive model is also important to understand the severity of antipatterns since no prior

work investigated it.275

12

F
ig

u
re

1
:

A
p

p
ro

a
ch

O
v
er

v
ie

w

13

To generate these outputs, our approach takes as inputs the set of code/inter-

face/QoS metrics calculated on a large data-set of web services along with a list of

antipatterns detected on the same data-set using our existing tool [14]. The detection

rules used in that tool are described in Table 2. Then, the best association rules are

found based on mining the inputs.280

Association rules mining is one of the widely studied techniques of data mining

[60, 61, 62, 63]. The generated rules represent possible correlations, causality, and

redundant patterns between the different dimensions of the analyzed data (e.g. web

services quality metrics and antipatterns). In our study, the generated rules take

the following template M ⇒ Q, where M represents either a set of the interface285

quality metrics or antipatterns, Q is a set of the performance quality attributes (QoS).

Therefore, we have M ∩Q = ∅.

To generate the association rules, the algorithm needs to find, first, the most

common itemsets then these patterns will be formalized as a set of rules. The itemset

represents the set of our input metrics related to the interface and source code. The290

frequent itemsets have a high support value which is the percentage of data points in

the training data of web services that contain both M and Q. This support value of

frequent itemsets should be above the threshold defined as minimum support. Once

these frequent itemsets are identified, we adopted the k-fold cross validation method

for the association rules generation.295

We selected an algorithm called Apriori [17] based on the size and type of data

manipulated in our study and the successful application of Apriori to address similar

problems [64, 65, 66]. In the next subsections, we present an overview of this algorithm

and describe its adaptation to our QoS prediction problem.

4.2. The Apriori Algorithm300

The Apriori algorithm was proposed by Agrawal and Srikant in 1994 [17] and

has been widely used for frequent itemset mining and association rules learning in

databases. The name of the algorithm is Apriori, because it uses the prior knowledge

of the frequent itemset properties. It computes the frequent itemsets in the training

set through several iterations. Apriori uses the monotonicity property of the support305

measure to reduce the search space especially with the large data-set of quality metrics

and services used in this paper. This rule indicates that all subsets of a frequent itemset

14

must be frequent. Consequently, if an itemset is infrequent then all of its supersets

will be infrequent as well. This way, it can eliminate many of the itemsets that are

not able to participate in a frequent itemset; and therefore, reduces considerably the310

running time of the algorithm. There are many versions of Apriori algorithm that

improves the performance of association rule mining [67, 61].

The pseudo code for the algorithm is given below for the training set D that

consists of the list of metrics, and a support threshold of ε . The Apriori algorithm

iteratively find frequent item sets with cardinality from 1 to k (k-itemset). In each315

iteration, k-frequent item sets are used to find k+1 item sets. For example, we first

find the set of frequent 1-itemsets by scanning the dataset, accumulating the count

for each item and keeping only those that satisfy minimum support. The results is

denoted L1. Next, L1 is used to find L2 the set of frequent 2-itemsets, which is used

to find L3, and so on, until no more frequent Then, it uses the frequent item sets to320

generate association rules. Ck is the candidate set for level k.

Algorithm 1 Pseudo code of the Apriori Algorithm

1: Input: A transaction database D, and a support threshold of ε .

2: Output: Association rules of support ≥ ε .

3: L1= { large1 - itemsets }

4: k= 2

5: while (Lk−1 6= ∅) do

6: Ck = {a ∪ {b}|a ∈ Lk−1 ∧ b /∈ a} − {c|{s|s ⊆ c ∧ |s| = k − 1} * Lk−1 }

7: for transaction d ∈ D do

8: Dt = {c|c ∈ Ck ∧ c ⊆ t}

9: for candidates c ∈ Dt do

10: count[c] = count[c] + 1

11: end for

11: Lk = {c|c ∈ Ck ∧ count[c] ≤ ε }

11: k=k+1

12: end for

13: end while

14: return
∞⋃
i=1

Li =0

15

We describe, in the next sub-section, our adaptation of the Apriori algorithm to

our problem.

4.3. Adaptation of the Apriori Algorithm

Figure 1 presents an overview of our adaptation of the Apriori Algorithm. The325

algorithm is executed twice: a first execution to extract the rules between the code/in-

terface metrics and QoS attributes and a second execution to generate the rules be-

tween the antipatterns and QoS attributes. We used Apriori because it is the first

proposed algorithm to mine frequent patterns and has been widely used, studied, and

is easily accepted. The rules generated by this algorithm are easy to understand and330

apply. We did not need to use an optimized version of the Apriori because our dataset

is relatively small and does not require special computational power or memory. the

goal of our paper is to validate the correlations between interface/code metrics and

QoS attributes then our plan later is compare which prediction algorithm could be

better.335

The first execution takes as input an exhaustive list of QoS attributes, presented in

Table 1, of a large set of web service releases provided by eBay, Amazon, Yahoo!, etc.

and their code/interface quality metrics as detailed later in the experiments section.

The output of this step is association rules that predict the performance of web services

(QoS).340

The second execution of the Apriori learning algorithm takes as input the same

data of the first execution along with a list of antipatterns detected on a data-set

of web services. The antipatterns are detected using our previous work [14] based

on a set of rules presented in Table 2. We selected this detection tool because of

the high accuracy and the low false positive as reported in [14]. The output of this345

step is a set of association rules that can predict the QoS attributes based on the

detected antipatterns. This output can be used to understand the severity of different

antipattern types on QoS attributes. The two steps of our approach are independent.

The goal of the first step is to extract association rules between interface/code metrics

and quality of service. The goal of the second step is to generate association rules350

between antipatterns and quality of service.

Both executions follow almost the same pattern. We took inspiration from an

existing study [68]. In their work, the authors partition the database into two subsets.

16

As a first step, they choose one of the subsets for training, and leave the other for

testing. After that, they mine frequent itemsets from the training subset and use355

testing subset to compute itemsets’ support in whole database. Then, They switch

the subsets, so that the previous training set becomes the test set and vice versa.

Again, they mine frequent itemsets from training subset and use the testing set to

compute supports in whole database. We extended the theorem described in [68] to a

more general case by using 5-fold cross-validation based on the number of dimensions360

(metrics and antipatterns) in the data considered in this paper. Since we have a

relatively small dataset size, we used cross-validation as it was proven to be a powerful

preventative technique against overfitting [69, 70]. Our approach also guarantees the

elimination of the itemsets that are not µ-frequent relative to the whole data set.

The training set D is randomly divided into 5 mutually exclusive subsets (the folds)365

D1, D2, . . . , D5 of approximately equal size where D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 = D.

Partitioning the original data in several different ways helps us avoid the possible bias

introduced by relying on any one particular partition into test and train components.

After the partitioning step, Apriori algorithm is used to find the set FµD/D1
, FµD/D2

,

FµD/D3
, FµD/D4

and FµD/D5
. It contains all µ-frequent itemsets relative respectively to370

D/D1,D/D2,D/D3,D/D4 and D/D5. It is possible that some of them are not µ-

frequent relative to the whole transaction data set D. Itemsets that are µ-frequent in

a subset of the partitions, but not µ-frequent in T are eliminated in the next step.

For every i ∈ { 1, 2, . . . , 5}, We calculate the support of each itemset from

FµD/Di
relative to D. Those itemsets that have suppcountD ≥µ are µ-frequent rela-375

tive to D. They are stored in FµD/Di,Di
. The set FµD/Di,Di

, contains all µ-frequent

itemsets relative to D that appear and are also µ-frequent in D /Di. We end up

with FµD/D1,D1
, FµD/D2,D2

, FµD/D3,D3
, FµD/D4,D4

and FµD/D5,D5
that contain itemsets

respectively from FµD/D1
, FµD/D2

, FµD/D3
, FµD/D4

and FµD/D5
that are also µ-frequent

relative to D. Finally, we obtain the set FµD = FµD/D1,D1
∪ FµD/D2,D2

∪ FµD/D3,D3
380

∪ FµD/D4,D4
∪ FµD/D5,D5

with µ-frequent itemsets in D. Generally, sets FµD/D1,D1
,

FµD/D2,D2
, FµD/D3,D3

, FµD/D4,D4
and FµD/D5,D5

are not disjoint.

At the end of our process, we obtain our association rules that predict the QoS

from the metrics and the detected quality issues of the web services. The outcome of

this research will help both service clients and providers know more about the quality385

of their web services with the least cost based only on interface and code metrics.

17

Figure 2: Antipattern Detection rules [14]

To the best of our knowledge, this is the first study aiming to empirically validating

the relationships between code/interface quality metrics (or antipatterns) and QoS

attributes.

5. Experiment and results390

In this section, we cover the data collection and experimental settings. Then, we

summarize and discuss the obtained results.

5.1. Data Collection and Evaluation Measures

To answer the different research questions, we built our prediction model for QoS

using a large data-set of 707 releases of web services provided by eBay, Amazon,395

Yahoo!, etc. Besides code and interface metrics, the raw data contains antipatterns

detection results of each web service extracted using our previous work as described

in the previous section. An important step in generating the association rules is the

pre-processing phase for the Apriori algorithm. We did the discretization of the data

using a combination of strategies: equal interval width, equal frequency, k-means400

clustering and categories specifies interval boundaries. We also removed the outliers

whenever necessary. To remove the outliers, we performed data visualization (box

plot, scatter plot, etc.)and we removed points that are very separate/different from

the crowd. Table 2 gives a summary of the considered training set in our experiments

that includes a total of 707 services. We selected these 707 active services by contacting405

each of the web services from that existing benchmark [16] and we found that several

of them are not active anymore. Since the existing benchmark is limited to QoS

18

attributes [16], we extended it by calculating the interface/code metrics using a parser

that was implemented as part of our previous work [54]. [18]. The new dataset

is available at the link 4. The first file, Dataset1.csv, contains the dataset used to410

generate association rules linking the code/interface metrics and different quality of

service (QoS) attributes. The second file, Dataset2.csv, contains the dataset used

to generate association rules linking the code/interface metrics and different quality

of service (QoS) attributes for each type of antipattern. It contains code/interface

metrics, quality of service (QoS) attributes and the antipatterns detection results. we415

used the “apriori” function from the “arules” library of R for the apriori algorithm

and the “discretize” function from the same library for the discretization. Thus, the

experiments are conducted mainly using the R language.

Table 2: Web services used in our dataset

Category #services # antipatterns

Financial 107 126

Science 74 104

Search 63 98

Shipping 73 131

Travel 103 154

Weather 53 109

Media 106 214

Education 49 97

Messaging 38 54

Location 41 93

Total 707 1180

To answer RQ1 and RQ2, we validate, first, the proposed approach using a 5-fold

cross validation [68], to check if there is significant correlations between the metric-420

s/antipatterns and QoS thus the ability to generate association rules. A small K value

for the cross validation means less variance (more bias) while a large K value means

more variance (lower bias). We tried different values of k in the cross-validation and we

found that k=5 gives the best results in terms of number, meaning and consistency of

the rules. The dataset was randomly partitioned into 5 equal size subsamples, again,425

to avoid any bias. We did take into account the metrics values in the pre-processing

4http://kessentini.net/tscdataset.zip

19

phase for the Apriori algorithm by performing the discretization of data. To this end,

we used the following evaluation metrics:

Support: Support is the statistical significance of an association rule interpreting

as the ratio (in percentage) of the web services that contain M1∪M2 (metrics/antipat-430

tern types with their thresholds) to the total number of web services in the data-set.

Therefore, if that the support of a rule is 5% then it means that 5% of the total web

services contain M1 ∪M2. In other words,

support(M1⇒M2) = P (M1 ∪M2) (1)

, where P(M1) is the probability of cases containing M1.

Confidence: For a specific number of web services in the data-set, confidence is435

defined as the ratio of the number of web services that contain M1∪M2 to the number

of web services that contain M1. Thus, if we say that a rule has a confidence of 85%, it

means that 85% of the covered web services containing M1 also contain M2. In other

words,

confidence(M1⇒M2) = P (M2|M1)

=
P (XM1 ∪M2)

P (M1)

(2)

, where P(M1) is the probability of cases containing M1. The confidence of a rule440

indicates the degree of correlation in the dataset between the different types of met-

rics/antipatterns and QoS attributes. The Confidence level is considered as a measure

to evaluate the strength of the rule. A high confidence is required for the selected

association rules.

Lift: Another important measure to evaluate the generated association rules is the445

lift defined as the confidence of the rule divided by the expected level of confidence.

In other words,

lift(M1⇒M2) =
confidence(M1⇒M2)

P (M2)

=
P (M1 ∪M2)

P (M1) ∗ P (M2)

(3)

, where P(M1) is the probability of cases containing M1.

20

In general, we consider a lift value that is higher than 1 as an indication that the

occurrence of M1 has a positive effect on the occurrence of M2 or it confirms that450

positive correlation between M1 and M2.

If the lift score is smaller than 1, it is considered as an indication that M1 and M2

are not appearing frequently thus the occurrence of M1 has a negative effect on the

occurrence of M2 and M1 is negatively correlated with M2. A lift value almost equal

to 1 indicates that we cannot conclude about the correlation of M1 and M2.455

After validating the correlations to be able to generate statistically significant

association rules, we qualitatively validated the rules by identifying the most important

interface and code metrics for each of the quality of service QoS attributes. Since this

is the first study to generate these association rules, we were not able to compare with

any existing studies.460

To answer RQ3, we evaluated the impact of the 5 different types of antipattern

on the QoS attributes by checking the average severity score on each of the QoS

attributes. The severity score is defined as the average value of the quality attribute

in web services of our data set that did not contain a specific antipattern type divided

by the average value of the quality attribute on the web services of our data set465

containing that antipattern type. We normalized all the quality attributes between 0

and 1 using the min-max normalization (to be minimized). Thus, the highest value is

the most severe indication of the impact of an antipattern on each of the quality of

service.

5.2. Results470

Results for RQ1. Table 5 summarizes the list of the best three association rules

linking the code/interface metrics and three different quality of service (QoS) attributes

related to response time, reliability and compliance. These rules are obtained by

using 5 fold cross validation as described in [68]. We also tried, by trial and error,

other values of k for the cross validation but 5 folds gave us the best results. Our475

model was able to find positive correlations mainly with three out of the eight well-

know QoS attributes: response time, availability, throughput, successability, reliability,

compliance, latency and documentation. It is expected that not all these quality

attributes can be predicted using code and interface level metrics. In fact, some

quality attributes such as availability may depend more on hardware requirements480

21

but not the quality of the code/interface implementation. Thus, we believe that the

results are consistent.

Table 6 contains the average, max and min support, confidence and lift of each

rule in table 5. When generating the rules, we used the value 0.6 as a threshold for

the support and confidence.485

It is clear that the three rules are confirming the strong correlation between re-

sponse time, compliance and reliability; and many of the quality metrics. For instance,

a high response time is correlated with low coupling, an acceptable number of opera-

tions per interface (around 12), and high cohesion. Typically, the estimation of these

quality of service requires to deploy and run the service then the values will be cal-490

culated during a period of time. However, the outcomes of RQ1 confirms that it is

possible to predict three of the QoS attributes from the quality of the implementation.

The outcome of the first research question is important for service providers so they

can estimate the impact of the quality of their code/interface on the QoS attributes

before approving new releases for the users. The generated association rules can be495

used for reviewing any new pull requests by linking the quality of the code on the QoS

attributes.

To summarize, there are strong correlations between three QoS attributes and the

quality of the code/interface of services.

Results for RQ2. Table 4 summarizes our findings. All the different five types500

of antipatterns are strongly correlated with different types of QoS attributes. These

rules are obtained using the same fold cross validation to answer RQ1. The table shows

the activate rule for each antipattern and the associated QoS attributes. Ambiguous

Service antipatterns are experiencing, in general, a high response time which is under-

standable due to the low reusability and the high coupling in these services. Chatty505

services and Multi services have the highest negative impact on quality attributes: re-

sponse time, latency, availability and successability. In fact, these two antipatterns are

related to large services including high number of operations and low cohesion which

increase the probability of decreasing the quality. Nano service is also correlated based

on three different association rules with low best practices and latency due to the small510

size of these services including few operations.

Table 3 contains the average, max and min support, confidence and lift of each

rule in table 4. We also used 0.6 as a threshold for the support and confidence when

22

Rule

ID

average

support

max

support

min

support

average

confi-

dence

max

confi-

dence

min

confi-

dence

average

lift
max lift min lift

4 0.66 0.715 0.6125 0.674493 0.731304 0.626087 1 1.021739 0.98913

5 0.783992 0.922045 0.66232 0.789475 0.922045 0.66232 0.999714 1 0.995068

6 0.726667 0.8 0.633333 0.726667 0.8 0.633333 1 1 1

7 0.811288 0.899159 0.718348 0.893765 0.91536 0.872267 0.998636 1.003929 0.992246

8 0.770913 0.947742 0.613238 0.786026 0.966349 0.625359 1.000092 1.00559 0.997162

9 0.810105 0.831005 0.789204 0.941341 0.96561 0.917072 0.999718 1.000758 0.998679

10 0.815322 0.939007 0.618464 0.840257 0.967647 0.637442 1.001737 1.005185 0.999242

Table 3: Support, confidence and lift of the rules that predict QoS from anti-patterns

generating the rules. The way we read the rules in table 4 is the following: when we

know we have one of the antipatterns and one of the left hand sides of the corresponding515

rules is true, then the right hand side of that rule is also true. For example, when

we know we have the antipattern Ambiguous Service and we have AMTO in the

range of [0,0.6] then we can conclude that Response Time is in the range of [80.4,368],

Successability is within [86.8,100] and Reliability is in the range of [63.8,76.6].

To conclude, we found that the five types of antipatterns have negative impacts520

on the performance of services and can be used to predict the QoS.

Results for RQ3: Table 4 shows that the most severe antipattern in terms of

response time is the Data Service. Among Chatty Service, Data Service, Nano Service

and Multi Service, the most severe antipattern in terms of latency is Nano Service. To

better investigate the severity of the antipatterns, we compare between the average525

values of the quality attributes in web services containing a specific type of antipattern

comparing to the quality attributes average for the ones without antipatterns. Figure

3 summarizes the severity of antipatterns results. It is clear that the response time

quality is the main attribute negatively impacted by most of the antipattern types.

Ambiguous services have a high severity on the reliability comparing to the remaining530

types of antipattern. Chatty services decreased all the quality of service attribute

based on the obtained results. Response time, successability and latency are heavily

decreased comparing to the remaining quality of service attributes. The results of RQ3

can be used by the service providers to identify the types of antipattern to be fixed

23

Rule ID Anti-Pattern QoS Prediction Rules

4 Ambiguous Service AMTO = [0, 0.6)⇒ ResponseT ime = [80.4, 368) & Successability =

[86.8, 100] & Reliability = [63.8, 76.6)

5 Chatty Service (COH = [0.21, 0.42]) OR (NOM = [47, 85]) OR (NCT =

[51, 69]) OR (RAOD = [0.55, 0.74]) OR (NOD = [23, 42]) OR (NPT =

[1, 3])⇒ ResponseT ime = [55.5, 401) & Latency = [0.33, 58.9) & Compliance =

[86.9, 100] & Successability = [87.7, 100] & Reliability = [63, 75.9)

6 Data Service ANOPO = [5.32, 28.5] OR NOM = [84, 462] OR COH =

[0.36, 0.98] OR NAOD = [18, 141]⇒ Latency = [1.23, 58.7) & ResponseT ime =

[227, 1290) & Successability = [91.9, 100] & Documentation =

[4, 28.3) & Availability = [90.7, 100]

7 Multi Service NOPT = [7.8, 78] OR NCT = [32, 287] OR COH = [0.01, 0.43) OR NOD =

[17, 231]⇒ ResponseT ime = [55.5, 574) & Latency = [0.33, 89.7)

8 NST = [0, 8)⇒ Successability = [89.6, 100] & BestPractices =

[79.6, 93] & Latency = [0.33, 227) & ResponseT ime = [46, 635)

9 Nano Service COUP = [0.36, 0.99]⇒ ResponseT ime = [46, 635) & Latency = [0.33, 227)

10 NPT = [0, 2)⇒ ResponseT ime = [46, 635) & Latency =

[0.33, 227) & BestPractices = [79.6, 93]

Table 4: Rules to predict QoS from anti-patterns

based on which quality attribute they want to improve.535

In summary, data service, chatty service and multi service are among the severest

antipattern types on the quality of service attributes.

6. Threats To Validity

In our experiments, construct validity threats are related to the absence of similar

work based on machine learning to predict the QoS. Thus, we were not able to compare540

our results with any of existing studies. A construct threat can also be related to the

fact that we had to manually choose the best discretization method for every metric

and train our model based on that.

24

Figure 3: The average severity score of the different types of antipattern on the QoS attributes

based on our data set of web services

Internal threats to validity are related to the fact that, in our approach, the predic-

tion is made for each QoS property separately. This isolated prediction is reasonable545

when the QoS properties are independent, but many QoS properties are correlated,

such as response time and latency. The same observation is also valid for the pos-

sible combination of multiple antipattern types to predict some quality of service

attributes. For instance, multiple instances of both Multi-Service and Chatty-Service

can be grouped to predict some quality attributes. We are planning to extend our550

work to consider such dependencies.

External validity refers to the generalization of our findings. In this study, we

performed our experiments on more than 700 web services. A larger dataset is needed

to give more reliable results. Since existing studies have confirmed that the program-

ming language affects the quality of the software [71, 72], the impact of antipatterns555

on the quality of the code might vary from one programming language to another.

This can affect the generalization of our results since all Web services considered in

our study are written in Java. In our future work, we are planning to include Web

services written in other programming languages.

25

Rule ID Right hand side of the rule: Performance Metric Left hand side of the rule: Interface Metrics

1 ResponseT ime = [46, 617) ALMS = [1, 4.24) OR ALOS = [1, 2.77) OR NBB =

1 OR COH = [1.00e− 02, 7.46e− 01) OR NPT =

1 OR NPM = [0.5, 1.58) OR NBE = [0, 16.1) OR NIOP =

[0, 4.62) OR NAOD = [0, 16.2) OR NOPT =

[0.33, 12.59) OR ANIPO = [0, 4.75) OR NOM = [2, 29.5)

2 Compliance = [86.7, 100] NBB = 1 OR ALMS = [1, 4.24) OR NPT = 1 OR ALOS =

[1, 2.77) OR COH = [1.00e− 02, 7.46e− 01) OR NIOP =

[0, 4.62) OR NPM = [0.5, 1.58) OR NAOD = [0, 16.2)

3 Reliability = [66.1, 89] NBE = [0, 16.1) OR NOPT = [0.33, 12.59) OR NOM =

[2, 29.5) OR NAOD = [0, 16.2) OR NIOP =

[0, 4.62) OR NPM = [0.5, 1.58)

Table 5: Rules to predict QoS

Rule

ID

Average

Sup-

port

Max

Sup-

port

Min

Sup-

port

Average

Confi-

dence

Max

Confi-

dence

Min

Confi-

dence

Average

Lift

Max

Lift

Min

Lift

1 0.73063 0.872308 0.647052 0.924195 0.949536 0.901303 1.00808 1.03572 0.98310

2 0.668805 0.713046 0.615475 0.802937 0.875489 0.726074 1.086702 1.18489 0.982685

3 0.694400 0.754661 0.619794 0.861134 0.934675 0.784948 1.13252 1.22924 1.032310

Table 6: Support, confidence and lift of the Rules to predict QoS

7. Conclusion and Future Work560

We propose, in this paper, a novel approach to predict QoS with the least cost

using code/interface quality metrics and antipatterns. The output of our approach

consists of 10 association rules that predict the performance of web services. We used

5 fold cross validation to evaluate the rules. The obtained results based on 707 web

services confirm the correlation between both code/interface metrics/antipatterns and565

the QoS attributes. This important outcome can be used to understand the severity

of antipatterns and predict the quality of the services based on the current quality of

the implementation.

Our results show that data service, chatty service and multi service are the most

severe antipatterns types on the quality of service attributes among the studied an-570

26

tipatterns. All the QMOOD metrics are affected by antipatterns at different levels.

Best practices, availability and compliance are the quality metrics deteriorated the

most by antipatterns.

As part of our future work, we plan to extend our work to consider other types

of antipatterns (such as Redundant PortTypes (RPT), CRUDy Interface (CI) and575

Maybe It is Not RPC (MNR) [18]) and metrics (such as Performance, Integrity and

Usability [6]). Furthermore, we are planning to try other machine learning algorithms

such as decision trees for generating association rules and compare their outputs with

this work. Finally, we will extend our work to consider the correlation between metrics

when predicting the QoS using dimensionality reduction techniques.580

References

[1] Pei Guo et al. “Cloud-Based Life Sciences Manufacturing System: Integrated

Experiment Management and Data Analysis via Amazon Web Services”. In: IN-

FORMS International Conference on Service Science. Springer. 2019, pp. 149–

159.585

[2] Athanasios P Kalogeras et al. “Vertical integration of enterprise industrial sys-

tems utilizing web services”. In: IEEE International Workshop on Factory Com-

munication Systems, 2004. Proceedings. IEEE. 2004, pp. 187–192.

[3] Jieun Jung et al. “Design of smart factory web services based on the industrial

internet of things”. In: Proceedings of the 50th Hawaii International Conference590

on System Sciences. 2017.

[4] Albert Greenberg et al. “The cost of a cloud: research problems in data center

networks”. In: ACM SIGCOMM computer communication review 39.1 (2008),

pp. 68–73.

[5] Aziz Nasridinov, Jeong-Yong Byun, and Young-Ho Park. “A QoS-aware per-595

formance prediction for self-healing web service composition”. In: 2012 Second

International Conference on Cloud and Green Computing. IEEE. 2012, pp. 799–

803.

[6] Ramakanta Mohanty, Vadlamani Ravi, and Manas Ranjan Patra. “Web-services

classification using intelligent techniques”. In: Expert Systems with Applications600

37.7 (2010), pp. 5484–5490.

27

[7] Jieming Zhu et al. “A clustering-based QoS prediction approach for Web ser-

vice recommendation”. In: Object/Component/Service-Oriented Real-Time Dis-

tributed Computing Workshops (ISORCW), 2012 15th IEEE International Sym-

posium on. IEEE. 2012, pp. 93–98.605

[8] Valeria Cardellini et al. “Flow-based service selection for web service compo-

sition supporting multiple qos classes”. In: Web Services, 2007. ICWS 2007.

IEEE International Conference on. IEEE. 2007, pp. 743–750.

[9] Joyce El Haddad et al. “QoS-driven selection of web services for transactional

composition”. In: 2008 IEEE International Conference on Web Services. IEEE.610

2008, pp. 653–660.

[10] Zibin Zheng and Michael R Lyu. “A distributed replication strategy evaluation

and selection framework for fault tolerant web services”. In: Web Services, 2008.

ICWS’08. IEEE International Conference on. IEEE. 2008, pp. 145–152.

[11] Hanzhang Wang, Marouane Kessentini, and Ali Ouni. “Prediction of web ser-615

vices evolution”. In: International Conference on Service-Oriented Computing.

Springer. 2016, pp. 282–297.

[12] Francis Palma et al. “Specification and detection of SOA antipatterns in web

services”. In: European Conference on Software Architecture. Springer. 2014,

pp. 58–73.620

[13] Ali Ouni et al. “Search-based web service antipatterns detection”. In: IEEE

Transactions on Services Computing 10.4 (2017), pp. 603–617.

[14] Ali Ouni et al. “Web service antipatterns detection using genetic programming”.

In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation. ACM. 2015, pp. 1351–1358.625

[15] William H Brown et al. AntiPatterns: refactoring software, architectures, and

projects in crisis. John Wiley & Sons, Inc., 1998.

[16] Eyhab Al-Masri and Qusay H Mahmoud. The qws dataset. 2008.

[17] Rakesh Agrawal, Ramakrishnan Srikant, et al. “Fast algorithms for mining asso-

ciation rules”. In: Proc. 20th int. conf. very large data bases, VLDB. Vol. 1215.630

1994, pp. 487–499.

28

[18] Ali Ouni et al. “Search-based web service antipatterns detection”. In: IEEE

Transactions on Services Computing 10.4 (2015), pp. 603–617.

[19] Bill Dudney et al. J2EE antipatterns. John Wiley & Sons, 2003.

[20] Jose Luis Ordiales Coscia et al. “Anti-pattern free code-first web services for635

state-of-the-art Java WSDL generation tools”. In: (2013).

[21] Cristian Mateos et al. “Detecting WSDL bad practices in code-first Web Ser-

vices”. In: International Journal of Web and Grid Services 7.4 (2011), p. 357.

[22] José Luis Ordiales Coscia et al. “Refactoring code-first Web Services for early

avoiding WSDL anti-patterns: Approach and comprehensive assessment”. In:640

Science of Computer Programming 89 (2014), pp. 374–407.

[23] Jaroslav Král and Michal Žemlicka. “Popular SOA antipatterns”. In: Future

Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009.

COMPUTATIONWORLD’09. Computation World: IEEE. 2009, pp. 271–276.

[24] Jaroslav Kral and Michal Zemlicka. “The most important service-oriented an-645

tipatterns”. In: Software Engineering Advances, 2007. ICSEA 2007. Interna-

tional Conference on. IEEE. 2007, pp. 29–29.

[25] Foutse Khomh et al. “BDTEX: A GQM-based Bayesian approach for the detec-

tion of antipatterns”. In: Journal of Systems and Software 84.4 (2011), pp. 559–

572.650

[26] Naouel Moha et al. “Specification and detection of SOA antipatterns”. In: In-

ternational Conference on Service-Oriented Computing. Springer. 2012, pp. 1–

16.

[27] Marouane Kessentini et al. “Design defects detection and correction by exam-

ple”. In: 2011 IEEE 19th International Conference on Program Comprehension.655

IEEE. 2011, pp. 81–90.

[28] Marin Silic et al. “Scalable and accurate prediction of availability of atomic web

services”. In: IEEE Transactions on Services Computing 7.2 (2013), pp. 252–

264.

[29] Jieming Zhu et al. “Carp: Context-aware reliability prediction of black-box web660

services”. In: 2017 IEEE International Conference on Web Services (ICWS).

IEEE. 2017, pp. 17–24.

29

[30] Zibin Zheng et al. “Qos-aware web service recommendation by collaborative

filtering”. In: IEEE Transactions on services computing 4.2 (2010), pp. 140–

152.665

[31] Marin Silic, Goran Delac, and Sinisa Srbljic. “Prediction of atomic web services

reliability for QoS-aware recommendation”. In: IEEE Transactions on services

Computing 8.3 (2014), pp. 425–438.

[32] Marouane Kessentini, Philip Langer, and Manuel Wimmer. “Searching models,

modeling search: On the synergies of SBSE and MDE”. In: 2013 1st Interna-670

tional Workshop on Combining Modelling and Search-Based Software Engineer-

ing (CMSBSE). IEEE. 2013, pp. 51–54.

[33] Marouane Kessentini, Rim Mahaouachi, and Khaled Ghedira. “What you like

in design use to correct bad-smells”. In: Software Quality Journal 21.4 (2013),

pp. 551–571.675

[34] Ali Ouni et al. “Prioritizing code-smells correction tasks using chemical reaction

optimization”. In: Software Quality Journal 23.2 (2015), pp. 323–361.

[35] Boukhdhir Amal et al. “On the use of machine learning and search-based soft-

ware engineering for ill-defined fitness function: a case study on software refac-

toring”. In: International Symposium on Search Based Software Engineering.680

Springer, Cham. 2014, pp. 31–45.

[36] Adnane Ghannem, Ghizlane El Boussaidi, and Marouane Kessentini. “On the

use of design defect examples to detect model refactoring opportunities”. In:

Software Quality Journal 24.4 (2016), pp. 947–965.

[37] Usman Mansoor et al. “Multi-view refactoring of class and activity diagrams685

using a multi-objective evolutionary algorithm”. In: Software Quality Journal

25.2 (2017), pp. 473–501.

[38] Hanzhang Wang, Marouane Kessentini, and Ali Ouni. “Bi-level identification of

web service defects”. In: International Conference on Service-Oriented Comput-

ing. Springer, Cham. 2016, pp. 352–368.690

[39] Ali Ouni et al. “MORE: A multi-objective refactoring recommendation approach

to introducing design patterns and fixing code smells”. In: Journal of Software:

Evolution and Process 29.5 (2017), e1843.

30

[40] Martin Fleck et al. “Model transformation modularization as a many-objective

optimization problem”. In: IEEE Transactions on Software Engineering 43.11695

(2017), pp. 1009–1032.

[41] Qi Xie et al. “Personalized context-aware QoS prediction for web services based

on collaborative filtering”. In: International Conference on Advanced Data Min-

ing and Applications. Springer. 2010, pp. 368–375.

[42] Lingshuang Shao et al. “Personalized qos prediction forweb services via col-700

laborative filtering”. In: Web Services, 2007. ICWS 2007. IEEE International

Conference on. IEEE. 2007, pp. 439–446.

[43] Qiong Zhang, Chen Ding, and Chi-Hung Chi. “Collaborative filtering based ser-

vice ranking using invocation histories”. In: Web Services (ICWS), 2011 IEEE

International Conference on. IEEE. 2011, pp. 195–202.705

[44] Zibin Zheng et al. “Wsrec: A collaborative filtering based web service recom-

mender system”. In: Web Services, 2009. ICWS 2009. IEEE International Con-

ference on. IEEE. 2009, pp. 437–444.

[45] Lu Li, Mei Rong, and Guangquan Zhang. “A web service qos prediction ap-

proach based on multi-dimension qos”. In: Computer Science & Education (ICCSE),710

2011 6th International Conference on. IEEE. 2011, pp. 1319–1322.

[46] Liang Chen et al. “An enhanced qos prediction approach for service selection”.

In: Services Computing (SCC), 2011 IEEE International Conference on. IEEE.

2011, pp. 727–728.

[47] Yechun Jiang et al. “An effective web service recommendation method based on715

personalized collaborative filtering”. In: 2011 IEEE International Conference on

Web Services. IEEE. 2011, pp. 211–218.

[48] Xi Chen et al. “Regionknn: A scalable hybrid collaborative filtering algorithm

for personalized web service recommendation”. In: Web Services (ICWS), 2010

IEEE International Conference on. IEEE. 2010, pp. 9–16.720

[49] Meng Zhang et al. “A web service recommendation approach based on qos pre-

diction using fuzzy clustering”. In: Services Computing (SCC), 2012 IEEE Ninth

International Conference on. IEEE. 2012, pp. 138–145.

31

[50] Jike Ge et al. “Web service recommendation based on qos prediction method”.

In: Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on.725

IEEE. 2010, pp. 109–112.

[51] Daniele Romano and Martin Pinzger. “Analyzing the evolution of web services

using fine-grained changes”. In: Web Services (ICWS), 2012 IEEE 19th Inter-

national Conference on. IEEE. 2012, pp. 392–399.

[52] Marios Fokaefs et al. “An empirical study on web service evolution”. In: Web730

Services (ICWS), 2011 IEEE International Conference on. IEEE. 2011, pp. 49–

56.

[53] Juan Manuel Rodriguez et al. “Automatically detecting opportunities for web

service descriptions improvement”. In: Conference on e-Business, e-Services and

e-Society. Springer. 2010, pp. 139–150.735

[54] Juan Manuel Rodriguez et al. “Best practices for describing, consuming, and

discovering web services: a comprehensive toolset”. In: Software: Practice and

Experience 43.6 (2013), pp. 613–639.

[55] Cristian Mateos, Juan Manuel Rodriguez, and Alejandro Zunino. “A tool to

improve code-first Web services discoverability through text mining techniques”.740

In: Software: Practice and Experience 45.7 (2015), pp. 925–948.

[56] Cristian Mateos et al. “Keeping web service interface complexity low using an

oo metric-based early approach”. In: 2016 XLII Latin American Computing

Conference (CLEI). IEEE. 2016, pp. 1–12.

[57] Zhichun Li et al. “WebProphet: Automating Performance Prediction for Web745

Services.” In: NSDI. Vol. 10. 2010, pp. 143–158.

[58] Mukarram Tariq et al. “Answering what-if deployment and configuration ques-

tions with wise”. In: ACM SIGCOMM Computer Communication Review. Vol. 38.

4. ACM. 2008, pp. 99–110.

[59] Shuyi Chen et al. “Link gradients: Predicting the impact of network latency on750

multitier applications”. In: INFOCOM 2009, IEEE. IEEE. 2009, pp. 2258–2266.

[60] Sergey Brin, Rajeev Motwani, and Craig Silverstein. “Beyond market baskets:

Generalizing association rules to correlations”. In: Acm Sigmod Record 26.2

(1997), pp. 265–276.

32

[61] Hannu Toivonen et al. “Sampling large databases for association rules”. In:755

VLDB. Vol. 96. 1996, pp. 134–145.

[62] Mohammed J Zaki et al. “Parallel algorithms for discovery of association rules”.

In: Data mining and knowledge discovery 1.4 (1997), pp. 343–373.

[63] Wenmin Li Jiawei Han Jian Pei et al. “CMAR: Accurate and efficient classifi-

cation based on multiple class-association rules”. In: ICDM-2004 (2001).760

[64] M Ilayaraja and T Meyyappan. “Mining medical data to identify frequent dis-

eases using Apriori algorithm”. In: 2013 International Conference on Pattern

Recognition, Informatics and Mobile Engineering. IEEE. 2013, pp. 194–199.

[65] Shiju Sathyadevan, Surya Gangadharan, et al. “Crime analysis and prediction

using data mining”. In: 2014 First International Conference on Networks & Soft765

Computing (ICNSC2014). IEEE. 2014, pp. 406–412.

[66] Aditya Methaila et al. “Early heart disease prediction using data mining tech-

niques”. In: Computer Science & Information Technology Journal (2014), pp. 53–

59.

[67] Ashok Savasere, Edward Robert Omiecinski, and Shamkant B Navathe. An effi-770

cient algorithm for mining association rules in large databases. Tech. rep. Geor-

gia Institute of Technology, 1995.

[68] Savo Tomović and Predrag Stanǐsić. “Cross Validation Method in Frequent Item-

set Mining”. In: CECIIS-2011. 2011.

[69] David F Ransohoff. “Rules of evidence for cancer molecular-marker discovery775

and validation”. In: Nature Reviews Cancer 4.4 (2004), p. 309.

[70] Paul D Adams et al. “Cross-validated maximum likelihood enhances crystallo-

graphic simulated annealing refinement”. In: Proceedings of the National Academy

of Sciences 94.10 (1997), pp. 5018–5023.

[71] Baishakhi Ray et al. “A large scale study of programming languages and code780

quality in github”. In: Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering. 2014, pp. 155–165.

[72] Lutz Prechelt. “An empirical comparison of seven programming languages”. In:

Computer 33.10 (2000), pp. 23–29.

33

	Introduction
	Background
	Quality Metrics Level: Interface, Code and Service
	Service Antipaterns

	Related Work
	QoS Prediction for QoS-driven Web services Recommendation
	Prediction of Web services Evolution

	Approach
	Overview
	The Apriori Algorithm
	Adaptation of the Apriori Algorithm

	Experiment and results
	Data Collection and Evaluation Measures
	Results

	Threats To Validity
	Conclusion and Future Work

