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Recent years have witnessed tremendous growth in the application of machine learning (ML) and
deep learning (DL) techniques in medical physics. Embracing the current big data era, medical
physicists equipped with these state-of-the-art tools should be able to solve pressing problems in
modern radiation oncology. Here, a review of the basic aspects involved in ML/DL model building,
including data processing, model training, and validation for medical physics applications is pre-
sented and discussed. Machine learning can be categorized based on the underlying task into super-
vised learning, unsupervised learning, or reinforcement learning; each of these categories has its
own input/output dataset characteristics and aims to solve different classes of problems in medical
physics ranging from automation of processes to predictive analytics. It is recognized that data size
requirements may vary depending on the specific medical physics application and the nature of the
algorithms applied. Data processing, which is a crucial step for model stability and precision, should
be performed before training the model. Deep learning as a subset of ML is able to learn multilevel
representations from raw input data, eliminating the necessity for hand crafted features in classical
ML. It can be thought of as an extension of the classical linear models but with multilayer (deep)
structures and nonlinear activation functions. The logic of going “deeper" is related to learning com-
plex data structures and its realization has been aided by recent advancements in parallel computing
architectures and the development of more robust optimization methods for efficient training of these
algorithms. Model validation is an essential part of ML/DL model building. Without it, the model
being developed cannot be easily trusted to generalize to unseen data. Whenever applying ML/DL,
one should keep in mind, according to Amara’s law, that humans may tend to overestimate the abil-
ity of a technology in the short term and underestimate its capability in the long term. To establish
ML/DL role into standard clinical workflow, models considering balance between accuracy and
interpretability should be developed. Machine learning/DL algorithms have potential in numerous
radiation oncology applications, including automatizing mundane procedures, improving efficiency
and safety of auto-contouring, treatment planning, quality assurance, motion management, and out-
come predictions. Medical physicists have been at the frontiers of technology translation into medi-
cine and they ought to be prepared to embrace the inevitable role of ML/DL in the practice of
radiation oncology and lead its clinical implementation. © 2020 American Association of Physicists
in Medicine [https://doi.org/10.1002/mp.14140]
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1. INTRODUCTION

Applications of machine learning (ML) and deep learning
(DL), as a branch of intelligence (AI) in medical physics have
witnessed rapid growth over the past few years. These tech-
niques have been studied as effective tools for a wide range
of applications in medicine and oncology, including com-
puter-aided detection and diagnosis,1,2 image segmentation3,4

knowledge-based planning,5–7 quality assurance,8,9 radiomics

feature extraction,10,11 and outcomes modeling.12–16 Numer-
ous studies, as summarized in Fig. 1, demonstrate the poten-
tial application of ML and DL models to clinical problems
combined with the ongoing efforts toward ushering radiation
oncology into the era of Big data analytics17–21 and serve as
evidence that ML and DL are poised to revolutionize the
fields of medical physics and radiation oncology. Given the
unique role of the medical physicist as a bridge between the
clinical team and clinical technology and as a driving force
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toward developing new technological innovations in medi-
cine, it stands to reason that medical physicists are the most
appropriate member of the clinical team to lead this AI-dri-
ven digital revolution for the medical community.

There has been several reviews of AI/ML/DL in the medi-
cal literature, introducing its basic concepts and potential
roles,22–27 but with little focus on the personnel that will be
tasked to lead its implementation in the field. Therefore, the
main goal of this review article is to equip medical physicists
(who may have little to no prior experience with ML/DL
techniques) with the basic foundational knowledge and exam-
ples necessary to develop and analyze models for application
to a broad range of problems in medical physics and radiation
oncology. While this publication is by no means a compre-
hensive cookbook of ML algorithms, it should serve as useful
resource to help novices answer the question: “where should
I start with my AI task?,” in regards to what ML/DL models
they should select to answer specific research questions in
medical physics and what data processing and model valida-
tion best practices are recommended to ensure robust results.
In addition, this article provides an overview of the underly-
ing practical and ethical issues pertaining to ML/DL applica-
tions in radiation oncology. The rest of this tutorial/review is
organized as follows: Section 2 provides a general overview
of ML and DL algorithms. Section 3 provides a description
of data requirements for ML/DL models, such as sample size
and necessary pre-processing steps to ensure that the models
will perform as intended. Section 4 provides an overview of
classical ML techniques, while in Section 5 DL methods are
presented. Section 6 discusses how to validate model perfor-
mance on new and out-of-sample datasets. Section 7
describes the role of humans in the development and use of
ML and DL models, while Section 8 discusses the known
limitations and pitfalls of these methods. Finally, Section 9
envisions the role of the medical physicist in this new era of
AI-guided radiation oncology clinics.

2. WHAT ARE MACHINE AND DEEP LEARNING?

Machine learning28 is the scientific study that builds math-
ematical models and computer algorithms to perform specific
tasks by learning patterns and inferences from data using
computers, without being explicitly programmed to conduct
these tasks. ML algorithms differ in (a) their types of input/
output data and (b) the types of problems they are intended to
solve. They can be divided accordingly into three cate-
gories:29 supervised learning, unsupervised learning, and
reinforcement learning (RL). Table I provides an visual over-
view of the main categories of ML and their common appli-
cations in medical physics and radiation oncology.

Supervised learning30 requires a labeled dataset, as it is
intended to learn the relationship between input variables and
outputs (labels). For instance, prediction of radiotherapy out-
comes (e.g., tumor control or normal tissue toxicity)31 is a
supervised learning task. First, one collects relevant patient
information (e.g., dosimetric information and clinical vari-
ables) together with the treatment outcomes (labels). Then, a
supervised learning algorithm is applied to learn the mapping
from this patient information to the labeled outcomes. Once
the model is obtained, it can be adopted to predict response

FIG. 1. Frequency counts of published PubMed studies in radiation oncol-
ogy/medical physics by machine and deep learning.

TABLE I. Common taxonomy for machine learning and deep learning
algorithms

Classification of ML and DL algorithms

Learning style Definition
Radiation oncology

applications

Supervised Learns relationship
between input
data and labels

Diagnosis,1,2 image
segmentation,3,4

radiotherapy outcomes
prediction12–16

Requires labeled dataset

Unsupervised Learns patterns in
input data

Anomaly detection for QA,8,9

radiomics feature
extraction10,11

Uses unlabeled dataset

Used for clustering or
data reduction

Reinforcement Learns to perform
actions in response to
environment to maximize
a reward function

Decision-making in
adaptive radiotherapy19

Data interaction Definition Examples

Classical ML An ML algorithm that
would require manual
feature extraction and
selection to
perform its task

Supervised: GLM,75

SVMs,33 RFs34

Unsupervised: k-means
clustering, PCA,39 t-SNE40

Reinforcement: Q-learning

DL Can learn feature
representation
from raw input data
and perform
learning tasks

Supervised: U-NET96

Unsupervised: VAE,57

GAN58

Reinforcement: DQN45

Nonspecific: MLP, CNN,47

RNN48
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to treatment and be applied to new patients in order to per-
sonalize their prescription. Examples of typical supervised
learning algorithms are logistic regressions,32 support vector
machines (SVMs),33 random forests (RFs),34 and neural net-
works (NNs).35

Unsupervised learning36 operates on an input dataset
without the need for labels. Its goal is to try to draw infer-
ences and identify patterns within the unlabeled data space,
for the purposes of clustering or data reduction. For instance,
clustering37 is a typical task of unsupervised learning, which
can be applied for quality assurance (QA) in radiotherapy.38

In this case, one can distinguish outliers or unacceptable
treatment plans from acceptable ones by applying the cluster-
ing algorithm to the feature set. Other typical unsupervised
learning tasks include dimensionality reduction such as prin-
cipal component analysis (PCA),39 t-SNE,40 and autoen-
coders.41 These can be used for visualization of complex data
in higher dimensions or applied before supervised learning,
as a way of learning a more compact data representation for
solving complex supervised learning problems.

Reinforcement learning42 is a ML extension of classical deci-
sion-making schemes, Markov Decision Processes (MDPs).43 It
is concerned with how software agents can take actions when
interacting with a given environment. Usually the agent needs to
achieve a definite goal via maximizing a cumulative reward
function,42 for example, therapeutic index in radiotherapy. The
famous Google AlphaGO44 is an RL application, where an
agent learns how to take actions under different situations to win
a board game. In radiotherapy, RL can be applied to adaptive
treatment planning, for example, how to optimize prescriptions
for patients by learning from during treatment information.45 In
this case, an agent will learn how to adapt dose fractionation
(action) based on the current condition of the patient undergoing
radiotherapy (environment) to achieve the goal (reward) of better
treatment response.

Deep learning,46 which recently demonstrated tremendous
success in image recognition problems47 and natural lan-
guage processing,48 is a subcategory of the broad family of
ML algorithms. It is generally based on NN architectures,35

using multiple layers to gradually extract higher level features
from the raw inputs; eliminating the necessary and typically
problematic feature engineering process49 in classical ML,
and hence showing superior performances. This is a key
advancement in multivariable and statistical prediction mod-
eling, where data representation and task learning can be
effectively achieved in the same framework. Training a deep
NN (DNN) was challenging before and during the 1990s to
2000s due to limitations in computational capacity and lack
of robust optimization techniques. The modern framework of
DNNs originated from earlier work on restricted Boltzmann
machines (RBMs, 1985),50 deep belief networks (DBNs,
2006),51 and later the efficient improvement in activation
functions using rectified linear unit (ReLU, 2010),52,53 among
others. Certainly, the huge leap in computing power using
graphics processing units (GPUs) and advancement in opti-
mization techniques54 were also critical. Today, a residual
network (ResNet55) is among the deepest network that can be

trained. With its 152 layers, it won the championship of the
ILSVRC 2015 classification competition with a top-5 error
rate of 3.57%, only rivaling that of human cognitive ability.

Some of the most common architectures of DL include
convolutional NNs (CNNs),47 recurrent NNs (RNNs),56 varia-
tional autoencoders (VAEs),57 and generative adversarial NNs
(GANs)58 as shown in Figs. 11–13, 15. Convolutional neural
network are typically designed for image recognition and com-
puter vision applications. They largely reduce the number of
free parameters compared to standard fully connected NNs.
They have shown competitive results in medical imaging anal-
ysis, including cancer cell classification, lesion detection,59

organ segmentation60 and image enhancement. RNNs are usu-
ally applied for natural language processing (NLP) and audio
recognition problems, as they can exhibit temporal dynamic
behavior that can be exploited for sequential data analysis.56

This property also makes RNNs valuable for aiding fraction-
ated radiotherapy, effectively taking advantage of a variety of
previously unused temporal information generated during the
treatment course. A VAE is an unsupervised learning algo-
rithm that is able to learn the distribution of compressed data
representations from a high-dimension dataset. In another
words, it is the equivalent of PCA analysis but for DL applica-
tions. It can be widely applied in radiation oncology consider-
ing the prevalence of high-dimension data due to the limitation
of patient sample sizes.14 Similar to a VAE, a GAN is also a
generative model61 that can learn the multivariate distribution
and describe how the data are generated. GANs learn the dis-
tribution by an adversarial competition between its generator
and its discriminator. They have been successfully applied in
some medical imaging tasks, mapping magnetic resonance
imaging (MRI) into computed tomography (CT) images (syn-
thetic CT)62 or in adaptive radiotherapy45 for generating syn-
thetic data and enriching the sample size.

3. WHAT DATA ARE NEEDED FOR ML/DL
APPLICATIONS?

3.A. What training sample size is required?

When building machine or DL models for solving practi-
cal medical problems, one should first consider how much
data is needed for successful training, that is, not under- or
overfitting the data. Often, the answer can be complicated as
there are no off-the-shelf recipes for ML/DL algorithms as
compared to traditional power analysis in statistics. Instead,
one needs to examine the specific problem/learning algorithm
and perform some simulation experimentation using so called
Learning Curves (LC) on the existing data to determine
whether there is a sufficient sample to meet the training
requirements of the ML/DL algorithm at hand.

Empirically, the more complex the problem/learning algo-
rithm (e.g., larger number of free parameters), the more data
will be naturally required. A simple linear model with two
unknown parameters will only require two “perfect” samples
to fit, while a complicated nonlinear modern DL architecture
may need thousands of data points to train. Applying a small
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dataset to train a complex algorithm can be problematic, as it
may lead to overfitting pitfalls,63 where the complex algo-
rithm starts to fit noise or errors in the limited-size training
set, in other words, the algorithm memorizes the data rather
than learns from it. Under this circumstance, generalization64

of the model is usually not good, that is, the model performs
poorly on new, unseen out-of-sample datasets. Mathemati-
cally, we can understand this as a trade-off between variance
and bias, colloquially referred to in the ML literature as the
bias-variance dilemma.65 Specifically, suppose f describes
the underlying real relationship of the data; f̂ is the model
approximation that being trained on a certain dataset. The
amount of f̂ that changes as training sets vary is called vari-
ance. The difference between f and the model f̂ is defined as
bias. It is proven that, in a unseen test dataset, both bias and
variance add to the total errors of model, moreover, there is a
trade-off between the two as in Fig. 2. As the model complex-
ity (e.g., the number of free parameters) increases, the bias
(i.e., the training fitting error) decreases, but the variance
(i.e., the testing generalizability error on out-of-sample data)
increases. The optimal trade-off point between bias and vari-
ance or training and testing can be quantified using so called
the Vapnik–Chervonenkis (VC) dimension,66 however, this is
still currently a theoretical rather than a practical measure of
model complexity.

A learning curve (LC)67 is a practical graphical tool that
can be used to evaluate whether there are enough data empiri-
cally. Note that there exist other versions of learning curves
for different purposes, for example, determining the training
epochs (the number of times that the learning algorithm work
through the entire training dataset). However, the idea behind
those learning curves is the same; splitting the dataset into
training, validation, and testing. Then, one can plot the model
performance metric for training/validation separately as a
function of the number of the samples to determine a suffi-
cient number of samples for training the ML/DL algorithm
before evaluating its generalizability on the testing data. As
shown in Fig. 3, when there is a significant change in the per-
formance error for training or validation, it may indicate a lar-
ger sample size may be required until they both plateau.

To unlock the usage of more sophisticated models, it is
always a good idea to have more training/validation data as

long as they are not too noisy. However, if collecting more
data becomes infeasible, one can alternatively perform data
augmentation or apply transfer learning approaches. Data
augmentation68 is an effective way to increase the data size
and diversity for the training model by cropping, padding,
shifting, flipping, and rotation, which are widely applied in
DNNs to support imaging tasks. Transfer learning69 is
another important tool in ML/DL to solve the problem of
insufficient training data by trying to transfer knowledge from
a source domain to the target domain. This approach has been
successfully applied to medical image segmentation problems
by transferring knowledge from natural image applications
(e.g., Google ImageNet database).70 This idea can be
extended to other tasks, where Zhen et al. demonstrated a
CNN for predicting rectal toxicity in cervical cancer radio-
therapy by fine-tuning a pretrained network (VGG-16) on the
natural images from ImageNet.71

3.B. How to process the data?

Data are the fuel of ML/DL algorithms, where models are
the combustion engines. Only the combination of a good
engine and good fuel can bring out the most powerful perfor-
mance, where the case of “garbage in garbage out” is the least
desirable result. Thus, it is important to have high quality data
that are properly curated and processed for successful ML
applications. At face value, this may seem to contradict the cur-
rent notion of Big data analytics. However, this is accounted for
by the fact that larger sized datasets, though noisy, will benefit
from variance reduction by virtue of the law of large numbers.

Depending on the experimental designer’s objectives and
choices, tabular, text, or imaging data can be represented as
vectors, matrices Eq. (1) or even higher-rank tensors.

xi ¼ðx1;x2; . . .;xnÞ 2Rn;xi;¼
x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
..
. ..

. ..
. . .

. ..
.

xd1 xd2 xd3 . . . xdn

2Rd�n

(vector) (matrix)

(1)

For example, two-dimensional (2D) images are usually pre-
sented by a matrix when fed into a CNN, but are usually rep-
resented by a long vector when serving as an input to SVMsFIG. 2. The trade-off between bias and variance with model complexity.

FIG. 3. The learning curve example for diagnostic purpose of data size.
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or fully connected NNs. This causes a loss of spatial informa-
tion, which is another reason for the superior performance of
CNNs in imaging tasks. Vectors and matrices are only two
special cases of tensors (rank 1 and 2, respectively), where a
general rank k tensor T is defined as a k-linear functional
from a vector space V, T : V � � � � � V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ðktimesÞ
! R. The choice of

representation is problem-dependent and determined by the
complexity of problem and the size of available data. For
instance, a video or a three-dimensional (3D) volume medical
image such a CT or an MRI can be presented by a tensor
component, if the spatial arrangement is necessary for learn-
ing the task at hand (e.g., detection or classification), then
Tijk with (i,j,k)=(1� dimx,1� dimy,1� dimz), see Fig. 4. In
supervised learning, the collection of input data along with
ground truths (labels) are denoted by:
X ¼ fðxðiÞ; ŷðiÞÞjxðiÞ 2 Rk1�k2����; ŷðiÞ 2 Rl; i ¼ 1; . . .; ng. In
unsupervised learning setting, the data are represented by
X ¼ fðxðiÞÞjxðiÞ 2 Rk1�k2����i ¼ 1; . . .; ng, as no label infor-
mation is required. When the dataset contains features (x)
highly varying in magnitudes and unit, it is important to stan-
dardize the feature values,72 otherwise, model numerical sta-
bility and estimation precision may be degraded. Some
common standardization methods include Z-score normaliza-
tion and Min-Max scaling as in Eq. (2):

Z-score xnew ¼ x� lðxÞ
stdðxÞ

Min-Max xnew ¼ x�minðxÞ
maxðxÞ �minðxÞ

(2)

It should be emphasized that standardization techniques are
especially beneficial73 for learning by DNNs, which is gener-
ally a challenging task. During the training, standardization
of input data will help the optimizer to find good local mini-
mum more easily and faster by mitigating numerical instabil-
ity errors. Another big concern when applying ML/DL to
medical data is how to deal with missing data. Of course, one
can always drop the cases with incomplete information, but it
would further reduce the sample size which may already be
small. To fully make use of the available data, imputation
methods,74 that is, replacing missing values with statistical
estimates, are usually applied before analyzing the full data-
set. Some simple imputation methods include mean or med-
ian imputation. More sophisticated imputation methods also
exist based on maximum likelihood estimation (MLE), for
instance. However, one should keep in mind, that imputation
is also dependent on the quality of observed values, therefore,
imputation should be applied with caution, as the imputed
values may be inaccurate and noisy. Alternatively, one may
consider data augmentation or transfer learning when dealing
with insufficient training data, as discussed earlier.

4. WHAT CLASSICAL MODELS EXIST?

Aside from modern DL methods, classical machine learn-
ing algorithms such as SVMs, RFs, Naive Bayes, K-nearest

neighbor, and so forth are also worth considering when
designing applications for radiotherapy. Due to space limita-
tion, the following section will mainly focus on linear models
and generalized linear models (GLMs), as they are the foun-
dations of current DL models. Other common classical
machine learning methods, including SVMs and RFs will be
briefly reviewed in the section that follows.

4.A. Linear models and generalized linear model
(GLM)

A linear model fwð�Þ considered to be linear in unknown
parameter w (w 2 Rm), has the form,

y ¼ fwðxÞ ¼ wTx (3)

Note that a linear model is not necessarily a linear function
of predictors xðx 2 RmÞ. A model which has polynomial and
interaction terms as in Eq. (4) is also considered as a “gener-
alized” linear model,

y ¼ fwðxÞ ¼ w0 þ w1x
2
1 þ w2x1x2 þ w3x

2
2 (4)

as one can simply re-define x in a way that the model satisfies
the general form in Eq. (3). A linear model uses straight lines
or linear planes to fit data (see Fig. 5). The fitting process
usually involves calculating the optimal estimator b̂ by mini-
mizing a designated loss function, for example, squared error
or likelihood function,

ŵ ¼ arg min
Xn
i¼1

ðyðiÞ � ðxðiÞÞTwÞ2 (5)

where n is the sample size and i is the index of sample. The
best estimator, ŵ, from Eq. (5) is called least squared estima-
tor which has a closed form,

ŵ ¼ ðXTXÞ�1XTY (6)

where X ¼ ðxð1Þ; xð2Þ; :::; xðnÞÞTðX 2 Rn�mÞ is called a design
matrix and Y ¼ ðyð1Þ; yð2Þ; :::; yðnÞÞT ðY 2 RnÞ is a vector of
labels.

A linear model is concise and easy to implement, how-
ever, it assumes Y is normally distributed, that is,
YjX�Nð0; r2Þ and there is an identity mapping [Eq. (8)]
between Y and Xw, which is usually not the case in prac-
tice. To alleviate these issues, a generalized linear model
(GLM)75 was proposed.

A GLM is defined by three components: a random compo-
nent, which specifies the distribution of Y given X (Y|X); a
systematic component, which is a linear part relating a
parameter g to a predictor X (i.e., g=Xw); and a link function
that connects the expected value of Y to g. In GLMs, the dis-
tribution of Y|X typically belongs to the exponential family,
for example, normal, exponential, Bernoulli and categorical
distribution. Some commonly used link functions include
identify, negative inverse, log, and Logit.

Logistic regression32 which is used for binary classifica-
tion is a special case of GLM that has Bernoulli distribution
and Logit link function, that is,
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g ¼ Xw ¼ log
p

1� p
; Y jX�BernoulliðpÞ (7)

One can rewrite the above to arrive at p ¼ 1
1þexpð�XwÞ,

where p is the predicted probability of Y=1. Note that p=sig-
moid(Xw), see Eq. (8); hence, the logistic model can be seen
as a simple NN (in Section 5.A) with only two layers (input/
output) and a sigmoid activation function (Fig. 6),

rðz1;z2;...;zmÞ

identity¼ðz1;...;zmÞ ðRm-regressionÞ
sigmoid¼ 1

1þe�zm ðm¼1binary classificationÞ

softmax¼ ez1Pm

j¼1
ezj
;...; ezmPm

j¼1
ezj
;

� �
ðm[1classificationÞ

8>>><
>>>:

(8)

where m is the dimension of output. A GLM model is usually
optimized via MLE techniques. For logistic regression, this is
equivalent to minimizing a binary cross-entropy loss:

LðwÞ ¼ � 1
N

XN
i¼1

yðiÞ log pðiÞ (9)

In NNs, cross-entropy is also usually applied as a loss func-
tion for the classification problem. This is due to its favorable
numerical and theoretical properties, as will be further
explained below.

4.B. Model regularizations

Often one wishes to suppress overfitting of a model when
feeding data corrupted with noise by adding a penalty term: h
(w) into the loss functions LðwÞ such as in Eq. (9)

~LðwÞ ¼ LðwÞ þ hðwÞ (10)

where h(w) only depends on the model w (not data) for regu-
larization.76 Typical choices are:

(Elastic)hðwÞ ¼ k1kwkL1 þ k2kwk2L2
(Ridge) hðwÞ ¼ k2kwk2L2 ði.e., k1 ¼ 0Þ
(LASSO)hðwÞ ¼ k1kwkL1 ði.e., k2 ¼ 0Þ

(11)

In fact, this trick can be widely played in other ML/DL tech-
niques (e.g. SVM, DNNs) leading to better solutions. This is
particularly true, if the problem is ill-posed as is commonly
the case in many ML/DL applications in medical physics,
where small errors in the training may lead to large variations
in the estimated ML/DL model.

4.C. Nonlinear classical machine learning

There is a whole host of nonlinear machine learning algo-
rithms that have been applied to medical physics/radiotherapy
applications.38 Two of the most common ones are briefly
reviewed here: SVMs and RFs. SVMs represent data samples
as points in space, mapped (/) in a way that samples from
the different classes can be separated by a margin (gap) that
needs to be made as wide as possible, that is, maximized in
higher dimensional space, a trick known as the kernel map-
ping. In practice, it is usually not feasible to completely sepa-
rate samples, particularly when the data are noisy; hence,
some tolerance errors are allowed. A SVM is inherently a
binary classifier, which has a hinge loss function. To make
the optimization process numerically easier, the non-convex
primal problem is usually converted into a convex dual prob-
lem defined as follows:

max
ai � 0

Xn
i¼1

ai � 1
2

Xn
j¼1

Xn
k¼1

ajakykyjKðxj; xkÞ

0� ai �C; 8iXn
i¼1

aiyi ¼ 0

(12)

FIG. 4. An magnetic resonance image [left] (along slice planes) is usually represented by a rank three tensor (component) [right].

FIG. 5. Geometry intuition of linear regression by Eq. (5), where one wishes
to find a straight line fit such that the sum of all residual errors is smallest.
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where Kðxj; xkÞ ¼ /ðxjÞT/ðxkÞ is known as a kernel, which is
an inner product of feature maps / and acts as a cross-simi-
larity metric in the feature (Hilbert) space. Various types of
kernels exists, such as linear, polynomial, and radial basis
function (RBF) depending on the desired data support. For
instance, polynomials have finite data support while RBFs
have infinite data support and is thus commonly used despite
being more computationally expensive. Penalty terms such as
ridge loss are usually added to the loss function for regular-
ization purposes and for preventing overfitting pitfalls. Sup-
port vector machines have been very popular ML techniques
due to their global optimal solutions for classification and
regression are widely applied to radiation oncology problems.
However, as a classical ML approach, they require features to
be extracted and selected prior to training.

A RF uses an ensemble of decision trees to solve classifi-
cation or regression problems. A decision tree has a flow-
chart-like structure where each node represents a test on
attributes, splitting examples into different branches. From
root nodes to leaf nodes, the decision is gradually made by
multilevel classification rules, which make them quite easy to
interpret and desirable to use but with limited predictive
power. Hence, the corresponding ensemble approach RFs,
that is, combining multiple weak classifiers (decision trees)
to achieve a stronger classification, is usually applied instead.
The splitting at nodes is usually based on a Gini Index,
entropy function, or information gain. The ensemble is based
on so called bagging, that is, averaging. Recently, a gradient
boosting, weighted averaging approach for RFs has been

proposed with improved performance.77 As an ensemble
method, RF usually reduces variance and improves general-
ization compared to a single decision tree but with the caveat
of reduced interpretability.

4.D. Example implementations

As a demonstrative implementation example, a logistic
regression model application to breast cancer diagnosis is
presented here. The dataset (Table II), which contains 569
breast cancer diagnosis cases, was created in 1995 by
researchers at the University of Wisconsin. Each case
includes 30 features computed from a digitized image of a
fine needle aspirate (FNA) of a breast mass and a binary
diagnosis label with “M" indicating “malignant" and “B"
indicating “benign.”

Let the mean-value features (first 10 in all 30) plus a fea-
ture x11 ¼ 1 (serving as intercept term) be the predictor
parameters in the trained logistic model. Using
p ¼ 1

1þexpð�XwÞ as in Eq. (7), the logistic regression model
will take the design matrix XðX 2 R569�11Þ as input and out-
put prediction p which is the probabilities of diagnosis Y = 1
(malignant). The associated Python code for the reader refer-
ence can be found in https://github.com/sunancui/breast-ca
ncer-diagnosis. As mentioned, logistic regression can be
regarded as a simple NN with only a single input/output layer
and a sigmoid activation function. We also compared logistic
regression and NN in the code from this perspective; one
would notice that they yield similar estimation of prediction

TABLE II. A snippet from a dataset of 569 breast cancer diagnosis with 30 image extracted features

id diagnosis radius_mean texture_mean perimeter_mean . . . fractal_dimension_worst

842302 M 17.99 10.38 122.8 . . . 0.1189

842517 M 20.5 17.77 132.9 . . . 0.08903

84300903 M 19.69 21.25 130 . . . 0.08758

84358301 M 11.42 20.38 77.58 . . . 0.173

84348402 M 20.29 14.34 135.1 . . . 0.07678

8510426 B 13.54 14.36 87.46 . . . 0.07259

FIG. 6. Activation functions: [Left]r(z)=z for regression; [Middle]rðzÞ ¼ 1
1þe�z for classification. [Right]r(z)=max(0,x) for deep learning.
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parameters (w). A summary of the prediction results of breast
cancer diagnosis by logistic regression is presented in Fig. 7
with the ground truth labels shown for comparison.

5. WHAT DEEP LEARNING MODELS EXIST?

5.A. Neural networks

Neural networks in principle35 can be considered as natural
generalizations of linear models (Section 4.A). If we modify
Eq. (3) by adding a so-called activation function r [Eq. (8)],

xðjþ1Þ ¼ rðjÞ wðjÞ � xðjÞ þ bðjÞ
� �

(13)

j=0,1,. . ., and let it iterate recursively over itself L times, with
the upper-right index (0),(1),. . .,(L) (Fig. 8), one then has a
composite function

fwðxÞ¼xðLÞ

¼rðL�1Þ wðL�1Þ �rðL�2Þ wðL�2Þ ���þbðL�2Þ
� �

þbðL�1Þ
� �

(14)

This is known as a NN, where now the number of structures
is renamed as the number of layers (Fig. 9). In particular, the
first layer (0) and the last layer (L) are called the input layer
and output layer, respectively. Any layer (j) with 0 < j < L is
called a hidden layer. Moreover, it is in general referred to as
a DNN if L > 4 (i.e., more than two hidden layers), which is
the fundamental building block for DL. Hence, conceptually,
a NN is merely an extension of a linear model. Thus the con-
cept of activation functions in Eq. (8) and loss functions (9)
discussed in Section 4.A can be applied to DL without any
changes. This is known as a NN, where now the number of
structures is renamed as the number of layers. In particular,
the first layer (0) and the last layer (L) are called the input
layer and output layer, respectively. Any layer (j) with
0 < j < L is called a hidden layer. Moreover, it is in general
referred to as a DNN if L > 4 (i.e., more than two hidden lay-
ers), which is the fundamental building block for DL. Hence,
conceptually a NN is merely an extension of a linear model.
Thus the concept of activation functions in Eq. (8) and loss
functions (9) discussed in Section 4.A can be applied to DL
without any changes.

However, the nonlinear activation function now plays a
prominent role in (deep) NNs as it is the source of nonlinear-
ity, that is, mapping the data into higher dimensions. If the
activation function between any two layers, Eq. (13), is an
identity map in Eq. (8), then the two layers can be merged
since

xðjþ1Þ ¼ rðjÞ wðjÞ � wðj�1Þ � xðj�1Þ þ bðj�1Þ
� �

þ bðjÞ
� �

¼ rðjÞ ~wðjÞ � xðj�1Þ þ ~bðjÞ
� �

(15)

with ~wðjÞ ¼ wðjÞ � wðj�1Þ and ~bðjÞ ¼ wðjÞ � bðj�1Þ þ bðjÞ. Thus,
one sees clearly from above discussion that the node xðj�1Þ

directly connects to node xðjþ1Þ via ~wðjÞ; ~bðjÞ
� �

as if middle

layer (j) vanishes. In an extreme case where all activations are
identities in Eq. (14), such a NN simply reduces to a linear
model Eq. (3) no matter how many layers (deep) it has.
Therefore, this argument provides an insight why activation
functions are the primary source of nonlinearity of NNs. It is
thought that with each nonlinear activation, an additional fold
(manifold) in the data can be achieved allowing for better
representation or capturing of highly complex relationships.
As for NNs’ hyperparameters, for example, number of layers
L and number of nodes in a specific layer, Bayesian meth-
ods78 can be used to optimize their number. However, most
of the current procedures still rely on trial and error schemes.

5.B. Why and how to go deeper?

The Universal Approximation Theorem (UAT) developed
by Hornik79 states that mathematically a NN with one hidden
layer of sufficient nodes can approximate any measurable
(and hence continuous) function on compact sets under cer-
tain mild conditions on the activation functions. This fact
explains why NNs are suitable for fitting complex functions
and datasets. However, based on this, one probably wonders
why we would bother going deeper? In fact, the theorem has
several constraints. First, we need to have a “sufficient” (can
be infinite) number of nodes. Secondly, it does not guarantee
the theoretical performance can be achieved through opti-
mization in practice due to local minima and convergence
issues. Thus, it still depends on experimentally designing the
right architecture (e.g., activation function, regularization,
number and size of layers, etc.) and adopting an appropriate
training process (e.g., optimization method) in order to possi-
bly achieve the theoretical performance estimates.80

Practically, adding more layers to a NN has been shown to
provide a good architecture design vs increasing the number
of nodes as suggested by UAT. A NN with more layers will
show better performance than a single layer NN that has the
same number of parameters. Intuitively, this is possibly
because each layer will transform its input, that is, folding,
and creating a new representation of the data (appropriate
manifold). The multilevel abstraction that is being learned
through multiple layers can be hard coded into a single layer
with the same number of nodes. Or formally speaking, the
multilayer structures enable NNs to recognize the entangled
manifolds of the data more easily, so as to solve the desig-
nated task.81

However, adding too many layers, the performance of a
NN can actually be degraded as well. The phenomenon was
identified as the vanishing gradient problem by Hochreiter’s
Ph.D thesis82 and has been a major obstacle of DL studies for
a long time. Vanishing gradient is a problem occurring dur-
ing optimizing NN weights83 with gradient-based learning
methods, where the gradient will become too small through
multiplication of many layers, effectively preventing the
weight from changing its value. In the modern deep architec-
tures, there exist several mechanisms to prevent such prob-
lems, for example, residual blocks, ReLU activation,52 batch
normalization.84 Hence, they help the architectures grow
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deeper and more powerful without encountering such issue.
For instance, the residual NN architecture (ResNet)55 adds
one extra term to the usual NN Eq. (13),

xðjþ1Þ ¼ rðjÞ wðjÞ � xðjÞ þ bðjÞ þ xðj�1Þ|ffl{zffl}
skipconnection

0
@

1
A ðResNetÞ;

(16)

where the additional term is called the skip connection.
Heuristically, it adds an extra path or shortcut to another neu-
ron that was not connected previously. During the back-prop-
agation process, the network will skip some subnetworks,
directly forwarding the gradient from higher to lower layers,
eliminating the gradient vanishing problem. The new activa-
tion functions ReLU in Fig. 6[Right] and its variants85 elimi-
nate vanishing gradients by avoiding squishing a large input
space between 0 and 1 as in Sigmoid activation, thus prevent-
ing extremely small gradients from occurring at the edge.
Using batch normalization layers between other layers to nor-
malize the intermediate inputs is another solution. This
ensures the values of intermediate inputs are inside the range
that has the effective gradients, hence, the gradient values
will not become too small.

The next question that comes to mind when designing an
architecture is how to guarantee good generalization. As the
model becomes extremely complex, overfitting can be a main
concern. Intuitively, regularization techniques can resolve ill-

posed problems by suppressing the noise in the training data.
Besides adding a weight penalty as shown in Section 4.B,
one can adopt the dropout, another neuroscience inspired
trick,86 as a regularization technique. As shown in Fig. 10,
during the training, dropout will randomly select some por-
tion (dropout rate, e.g., 20%–50%) of nodes being ignored.
They will not affect updated weights, as their contribution to
the activation of downstream neurons is temporally removed.
Indeed, dropout is currently a very effective ensemble
method, performing averaging with NNs while mitigating the
risk of memorizing the data. Hence, the resulting NN with
many layers (DNN) is capable of better generalization to
unseen data and is less likely to overfit (memorize) the train-
ing data.

More advanced optimization techniques will also be
required when training a “deeper” NN. As compared with the
simple case of logistic regression, whose loss function is con-
vex, the deeper NN will tend to have a more sophisticated
loss landscape, making finding even the close-to-global opti-
mal solution more difficult.80 Many efforts have been made
to develop effective optimization algorithms87 for such large-
scale nonlinear problems primarily based on gradient descent
techniques, including the use of stochastic approaches with
momentum, which accelerate learning by increasing the gra-
dient vectors in the direction that past gradients accumulated
(velocity). In the adaptive rate scheme, the algorithm will
adopt various learning rates per parameter according to their
history of momenta and gradients. The common optimization
techniques including Adam,54, RMSProp87 are popular
choices in DL studies as surrogates for the classical stochastic
gradient descent techniques.

5.C. Prevalent architectures

5.C.1. Convolutional neural networks

CNNs47 are best known of late for image recognition and
image-related predictions, which borrow the concept of con-
volution from classical linear system filtering, where a 2D
image I : R2 ! C is convolved with a given kernel function
w : R2 ! R such that the output image is of the form,

~IðxÞ ¼
Z
R2

wðx� yÞIðyÞdy (Fourier convolution)

(17)

Therefore, the concept of convolution is naturally blended
into NNs to develop the so-called CNN when image-like data
are concerned.

FIG. 7. Plot of fitting of breast cancer diagnosis by logistic regression, cases
with malignant (Y = 1), and benign (Y = 0) diagnosis were denoted.

FIG. 8. Self-iterations of linear transformations.
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A CNN typically consists of several convolutional layers
(filtering), pooling layers (down-sampling aimed for reducing
dimensionality), and activation functions, where the convolu-
tion layer is the core component that operates convolution on
an image field to capture its relevant features and contribute
to the data representation for the following layers, which is
fed subsequently into a fully connected layer to perform the
learning task (e.g., detection or classification). In most practi-
cal implementations, the “convolution" in CNN is replaced
by a cross-correlation operator rather than Eq. (17), for
speed-up purposes. In the case of input as a 2D image (size
L1 � L2) with multicolor channels (C1) represented by a 3D

tensor I ¼ I i;j;a
	 
L1;L2;C1

i¼1;j¼1;a¼12 R3, a convolutional layer with

stride s and kernel size m 9 n will produce an output image
~I (of size ~L1 � ~L2 with C2 channels) as below,

~I k;‘;b ¼
Xm;n;C1

i;j;a

wi;j;a;b � I sðk�1Þþi;sð‘�1Þþj;a

ðk ¼ 1; . . .; ~L1; ‘ ¼ 1; . . .; ~L2; b ¼ 1; . . .C2Þ
(18)

here w ¼ wi;j;a;b
	 
m;n;C1;C2

i¼1;j¼1;a¼1;b¼12 R4 is a four-tensor convo-
lutional filter (kernel). With stride s > 1, the output size
would be roughly reduced to 1

s of the original input size.
Implementing a pooling layer of kernel size s will have the
same effect.

One can understand that using kernels in NNs as being
equivalent to template matching or “seeing” local information
of a neighborhood while blocking information from far apart
or less related regions, as depicted in Fig. 11 (left). This can
be also visualized by vectorizing the input and the output as
in Fig. 11 (right), from which one can realize CNNs only con-
nect to certain nodes within a layer when compared to a fully
connected NN; this is called local connectivity property.
Overall, a CNN is a locally connected NN as it only considers
local relations (receptive field) while it decouples information
far away in space and/or time allowing for efficient data rep-
resentation and improved task learning.

The property that makes a CNN distinguishable from
other locally connected networks is that CNNs force the
weights (kernel) to be repeatedly used, that is,
wi;j;a;b

	 
m;n
i¼1;j¼12 R2 is used everywhere in the input feature

map (e.g., I ). This parameter sharing scheme effectively
takes advantage of the spatial invariance property of the
imaging data, largely reducing the number of free parameters
in the architecture.

5.C.2. Recurrent neural networks

Recurrent neural networks (RNNs)88 are another variant
of NNs especially useful for sequential (time series) data
learning, such as voice, text data. Although, a 1D CNN can
also model such data by taking into account local sequential
relationships, the parameters (kernel) sharing scheme by
CNNs is too simple and “shallow” for complex learning
objectives. RNNs manage another way of sharing parameters
but in a deeper and more sophisticated sense. Suppose we
have a sequential data fxðtÞ 2 Rnjt 2 Tg as input and
f~yðtÞ 2 Rmjt 2 Tg as the corresponding labels where T
denotes an index set labeling separation across time steps.
Note that we only consider one sample here for convenience,
the superscript no longer stands for sample index. The goal
of an RNN is to learn the relation between data fxðtÞg and
labels f~yðtÞg via hidden units fhðtÞ 2 Rkg. In RNNs, two
functions fh : R

k � Rm � Rn ! Rk and
g/ : Rk � Rm � Rn ! Rm, relating fxðtÞg, f~yðtÞg, fhðtÞg
parameterized by NNs’ weights h,/, are imposed to search
for the recurrence relations,

hðtÞ ¼ fh hðt�1Þ; yðt�1Þ; xðtÞ
� �

2 Rk

yðtÞ ¼ g/ hðt�1Þ; yðt�1Þ; xðtÞ
� �

2 Rm
(19)

FIG. 9. A graphic plot of Fig. 8 and Eq. (14).

FIG. 10. Illustration of dropout techniques.

Medical Physics, 47 (5), May 2020

e136 Cui et al.: ML/DL for medical physicists e136



where h and / serving as unknown neural weights to be opti-
mized. As these parameters are shared across different time
points, free parameters in an RNN are largely reduced. Two
common RNN architectures were invented in the early devel-
opments of RNNs, they are known as Elman89 and Jordan90

networks, which are simple RNNs that differed in their con-
nection scheme.

These simple RNNs were known to suffer from two major
disadvantages, (a) their back-propagation gradients tended to
vanish or explode quickly and (b) the information farther
apart cannot be connected. These two problems are resolved
by using the so called long short-term memory (LSTM) archi-
tecture.56

An LSTM is a state-of-the-art RNN model composed of
basic building blocks denoted as gated units, which learns by
itself to store and forget internal memories when needed such
that it is capable of creating long-term dependencies and
paths through a time series as in Fig. 12. An LSTM has the
following construction. Specify fh ¼ fLSTM, g/ ¼ gLSTM in
Eq. (19) by

hðtÞ ¼ fLSTM hðt�1Þ; yðt�1Þ; xðtÞ
� �

¼ GðtÞ
1 � hðt�1Þ

yðtÞ ¼ gLSTM hðt�1Þ; yðt�1Þ; xðtÞ
� �

¼ GðtÞ
3 � r3 	 hðtÞ

� � ; (20)

where⊙ denotes the component-wise multiplication, (i.e., for
two m9n matrices A and B, A⊙B will produce another m9n

matrix C, where Ci;j ¼ Ai;j � Bi;j). And ∘ denotes the compo-
nent-wise functional composition, that is, the ith element in the
resulting vector of function is the functional composition
between the ith elements of the two input vector of function.
The affine transformation is defined by,

AffW;U;b n; gð Þ :¼ W � nþ U � gþ b

W 2 Rp�q;U 2 Rp�r; b 2 Rr; n 2 Rq; g 2 Rrð Þ (21)

In Eq. (20), three additional units GðtÞ
a , where a = 1,2,3

denotes the forget gate, the input gate and the output gate,
respectively,

GðtÞ
a ¼ ra 	 AffWa;Ua;ba xðtÞ; yðt�1Þ

� �
2 Rk (22)

are used to control and determine when and how much
should the previous information be kept or forgotten. Total
unknown parameters of an LSTM are ðWh;Uh; bhÞ and
fðWa;Ua; baÞja ¼ 1; 2; 3g. A simplified version of LSTM is
called a gated recurrent units (GRU),where the number of
gates is reduced to two, namely, reset and update gates, and
hence more computationally efficient.91

5.C.3. Attention awareness

Attention awareness92 is a special mechanism that equips
NNs with the ability to focus on a subset of a feature map,

FIG. 11. Illustration of convolutional neural network. (Left) a kernel acts as a mask to consider only neighboring information (pixels) yet block information far
part. For example, z11 in the convolved output is generated by applying 3 9 3 kernel on the receptive field (denoted) at the left upper corner. In the view from
the right, one sees clearly that utilizing kernels (filters) is essentially another implementation of locally connected networks.
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which is particularly useful when tailoring the architecture for
specific tasks. Suppose, the input of an attention network fwð�Þ
is x and its output is a; ai;j 2 ½0; 1
. After applying it on the
feature map z, it will produce an attention glimpse g as below:

a ¼ fwðxÞ; g ¼ a� z; (23)

where ⊙ is a component-wise multiplication. The attention
mechanism assigns weights a to the input feature map. When
a is restricted to be either 0 or 1, it is hard attention93; When
a is between 0 and 1, it is called soft attention.94

Attention was first implemented in RNNs94 for lan-
guage translation tasks. In the classical Seq2Seq model, a
context vector will be built out of the last hidden state
from an encoder RNN, which takes source sequence as
input, then a decoder RNN would take the context vector
as input and generate target sequences. However, the
model tends to “forget” the early part of source sequences
when generating target sequences. Hence, attention net-
works are proposed to be applied on all the hidden states
(z) of encoder RNN to learn which part of source
sequences should be focused on when generating a certain
piece of a target sequence (g).

Attention mechanisms can be applied to fuse and align
information from heterogeneous data. For instance, by adopt-
ing an attention mechanism, the relation between an image
and its caption can be learned.95 Specifically, the imaging
information extracted from a CNN can be consumed by the
RNN, for each position of the caption, an attention mecha-
nism fuses the information and generate the desired caption
on a word by word basis.

5.C.4. Other interesting architectures

We have introduced two fundamental architectures for DL
algorithms, that is, CNNs and RNNs, together with fully

connected NNs. These three basic architectures comprise
almost all the deep architectures used today. Other architec-
tures fall into these three categories or are a combination of
them.

For instance, a variational autoencoder57 is a special type
of CNN or fully connected NN which has a bottleneck struc-
ture and is employed for data compression applications. As
Fig. 13 suggests, its input and output dimension are exactly
the same and the dimension of its latent variables is usually
significantly smaller than its input size. In a VAE, latent vari-
ables are sampled from a designate distribution, for example,
Gaussian distribution, which is parameterized by the encoder.
The decoder is responsible for re-constructing the original
input from the latent variables. The loss function of a VAE is
defined as a lower bound of the data log-likelihood function.
It turns out to be a combination of two terms; one penalizes
reconstruction error as in a plain autoencoder, the other
forces the similarity [Kullback–Leibler divergence (KL)]
between the learned distribution and true prior distribution.
The additional KL-term of VAE can be regarded as a way of
regularization. Contrasted with the deterministic autoencoder,
it helps suppressing the noise in data.

U-Net,96 which has been successfully applied in many
medical imaging segmentations, is also CNN based, with its
name derived from its “U” shape as shown in Fig. 14. U-Net
is composed of three sections: contraction, bottleneck, and
expansion sections. The contraction (encoding) section is
made of several blocks of convolutional layers and max pool-
ing layers. It is responsible for learning complex features.
The bottleneck section is the bottommost layer mediating
between the contraction and expansion layers. The heart of
U-net lies in the expansion (decoding) section, which consists
of several blocks of convolutional layers and an upsampling
layer. Particularly, it appends the outputs from the contraction
section to their corresponding components in the expansion

FIG. 12. The diagram of a gated units of long short-term memory, which is consisted of input, output and forget gates.
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section. Such a design helps preserve the structural integrity
of the image and reduces distortion enormously. The loss
function of U-net is defined as energy function computed by
a pixel-wise soft-max over the final feature map combined
with the cross-entropy loss function.

A generative adversarial networks (GAN)58 is another
popular NN architecture and is considered among the most
exciting breakthroughs in DL of the past decade. Numerous
GAN variants have been invented for different purposes fol-
lowing their invention by Ian Goodfellow in 2014. Like a
VAE, a GAN is also a generative model,61 which aims to
learn the true data distribution from the training set so as to
generate new data points. However, unlike VAEs, which try
to minimize the lower bound of likelihood function, GANs
learn the data distribution through pitting a competition
between two adversarial components, so-called generator
and discriminator networks in some form of a game. The

basic idea is that the generator tries to generate new data
from random noise to mimic the real data, while the dis-
criminator tries to distinguishable any fake data from the
real data in an analogy to a Turing machine. The two parts
are alternately trained to compete with each other and over-
time the performance of both will be boosted. The original
GAN as shown in Fig. 15 works on the dataset without
labels (unsupervised learning) and is based on fully con-
nected architectures. However, its idea can be directly
applied to CNNs or other architectures to create a deep con-
volution GAN (DCGAN),97 which has had wide applica-
tions in the imaging domain such as sequence generation. A
cGAN98 is a GAN variant that can be used to learn multi-
modal data models and can be used for generation of syn-
thetic data for training of limited sample outcome prediction
models, for instance. Its generator and discriminator are both
trained conditioning on the label/other information.

FIG. 13. The diagram of a variational autoencoders, which is composed of encoder and decoder networks.

FIG. 14. The diagram of a U-net consisting of contraction, bottleneck, and expansion section. The size of output is L1 � L2 � a, where L1 � L2 is the size of
original image, and a is the number of structure that needs to be contoured.
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InfoGAN99 is an version of GAN that learns meaningful
codes of unlabeled data. CycleGANs100 were invented for
domain image transfer; they can accomplish one-to-one
translation with unpaired datasets such as synthetic CT gen-
eration from MR images.101

5.D. Example implementations

We implemented a fully connected NN in pytorch for a
binary classification problem. The dataset in Table III con-
tains 45 patients in TCGA-LUAD and TCGA-LUSC who
received external beam radiotherapy for a primary tumor as
adjuvant therapy. Only the patients who have complete dose
and treatment outcome information were kept. In addition to
dose, six clinical variables were selected for local control pre-
diction (progressive = 1/local control = 0).

Before training the model, all the variables were converted
into numerical values and were Z-score normalized to avoid
numerical instability. The dataset is randomly split into train-
ing and testing sets. The code is available for the reader refer-
ence at https://github.com/sunancui/lung_TCGA_prediction,
where the history of training/test losses is plotted and model
performance is evaluated with area under receiver operating
curve (AUC). In Fig. 16, AUC results of both training/testing
data are shown.

Another implementation of deep U-Net for liver tumor
segmentation is also provided for the reader reference at
https://github.com/sunancui/liver_segmentation. The dataset
is from the Liver Tumor Segmentation Challenge (LiTS),

containing 131 training/70 test 3D CT images of size (512,
512, 74�784). The last dimension of images varied, as
patients have different numbers of slices. During the training,
each slice from patients was taken as individual inputs.
Hence the input of U-Net will be a 2D image. The U-Net is
applied to classify each pixel into three different classes:
liver, lesion, something else. Dice similarity was used for
evaluation and is calculated for the three classes to evaluate
the resulting classification models. The code was imple-
mented to split the 131 training patients into training/valida-
tion sets. The model was trained up to 17 epochs and was
evaluated on the validation set. Some sample results are
shown in Fig. 17. Interested readers are also encouraged to
play with the architecture definitions in the code and test their
final models on the 70 hold-out patients.

5.E. Reinforcement learning

Reinforcement learning is the third category of machine
learning apart from supervised and unsupervised. It is
designed to achieve a definite goal by optimizing a “reward”
function. The learning process of an RL is through interac-
tion with an “environment” so that RL user (also called an
agent) tries to earn the most reward to obtain the designated
goal.

Reinforcement learning is based on the MDP, five-tuple
ðS;A;P; c;RÞ. S ¼ ðx1; . . .; xnÞ 2 Rnf g is used to describe
an environment, it is the space of its all possible states. A is a
collection of all actions the agent can take. R : X ! R is the

FIG. 15. A generative adversarial neural network which learns data distribution through the competition between two adversarial components.

TABLE III. A snippet of a dataset containing the six predictor for local control prediction

id Gender pathologic_N pathologic_stage pathologic_T other_dx tobacco_smoking_history

1 Male N0 Stage IIIB T3 No 4

2 Male N1 Stage IIA T1b No 3

3 Female N2 Stage IIIA T1 No 2

4 Female NX Stage IB T2 No 4
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reward function given on the product space X ¼ S�A� S,
that is, the reward is determined by actions and states.
c 2 [0,1] is the discount factor representing the possible
rewards that propagate from future back to the present. And
P : F ! ½0; 1
 is a probability describing the transition

between states. The probability mass function (pmf) (s,a,t)
↦P(s,a,t) denotes the transition probability from state s 2 S
to another t 2 S under an action a 2 A. Consequently, this
induces the condition probability:

PsaðtÞ � Probðtjs; aÞ � Pðs; a; tÞ=Pðs; aÞ (24)

on space of next states t conditioned on previous state s and
current action a.

An MDP is also called an “environment” in modern
machine learning development. Each element si 2 S is called
a “state” representing a configuration in MDP. An action
ai 2 A corresponds to a control or a move to be exerted. The
purpose of an agent in the RL algorithm is to find a sequence
of actions fa0; a1; . . .g such that the following path in S col-
lects maximum rewards:

s0 �!a0
p

s1 �!a1
p

s2 �!a2
p

�s3 � � � (25)

In other words, an agent is a policy function p : S ! A who
provides an action a = p(s) under a state s. There are mainly
two ways to construct a policy function by policy-based and
value-based methods in RL where the former tries to find a
policy function directly102 via pðhÞ while the latter finds a pol-
icy implicitly via a Q-function defined by,

FIG. 16. Area under receiver operating curves of local control prediction in
lung cancer by neural network.

FIG. 17. Example results from the validation set with dice similarity coefficient shown, where “nan" indicates no such structure existing in the ground truth label.
(first column: original image slice, second column: ground truth label, third column: prediction).
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Qpðs; aÞ ¼ E
X1
k¼0

ckRðsk; pðskÞÞ
���p; s0 ¼ s; a0 ¼ a

" #
(26)

An optimal policy p� : S ! A is then derived by maximiz-
ing the Q-function such that Qp� ¼ maxp Qp. Such RL algo-
rithms that use Q-functions are called Q-learning. A practical
way to compute the Q-function Eq. (26) is via the Bellman’s
iteration defined by:

~Qiþ1ðs; aÞ ¼ Et�Psa Rðs; aÞ þ cmax
b2A

~Qiðt; bÞ
� 

: (27)

such a sequence has a unique converging point where
f~Qig1i¼1 ! Qp� and so

~Q�ðs; aÞ ¼ Et�Psa Rðs; aÞ þ cmax
b2A

~Qastðt; bÞ
� 

: (28)

Consequently, the optimal value Qp�� can be easily computed
by Bellman’s equation f~Qig1i¼1instead.

RL serves as an independent ML field separate from
supervised and unsupervised learning in the sense that it does
not rely on observed data nor comparing its outputs with any
data labels. It is designed to make an optimal decision or a
control action and therefore it is particularly suitable for adap-
tive treatment planning and optimizing sequential decision-
making. An implementation in radiotherapy to optimize dose
adaptation can be found in.45

6. HOW TO VALIDATE?

When building a model one would like to know how good
it is. This is particularly true in the context of ML/Dl, where
the models have tremendous ability to overfit (memorize) the
training data and one would like to confirm that the model
can actually have a good generalization, that is, perform well
on out-of-sample or unseen data.

Common validation methods are based on statistical re-
sampling techniques and include cross-validation (CV) and
bootstrapping. CV65 (e.g., K-Fold CV, leave-one-out CV) is a
widely used resampling technique in classification/regression
model internal validation analysis. In CV, one would system-
atically split the data into training/testing sets, train the model
on training sets, then test a selected performance metrics (ac-
curacy, area under receiver operating curve, specificity, sensi-
tivity) on the test datasets in a round-robin fashion and
average the results. Stratified K-fold CV is usually applied for
a imbalanced classification problem, where each fold in CV
contains roughly the same number of positive/negative cases.

Bootstrapping103 is an inherently computationally more
intensive procedure than CV but generates more realistic
results. Typically, a bootstrap pseudo-dataset is generated by
randomly making copies of original data samples, similar to
Monte Carlo techniques, with an estimated inclusion proba-
bility of 63%. The bootstrap often works acceptably well even
when datasets are small or unevenly distributed. To achieve
valid results this process must be repeated many times,

typically several hundred or thousand times depending on the
original dataset size.

However, in practice, the notion of a comprehensive valida-
tion process is more complicated than just implementing CV
considering various scenarios of sample size and requirements.
The Transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD)104 guidelines
provide a detailed list of different trustworthy-level model vali-
dation pipelines. Specifically, it categorizes model validation
into four types, from type 1 to type 4, where the validation
rules become more stringent. Type 1 uses the whole dataset to
develop the model and test its performance, whether using a
resampling method or not. Type 2 uses only parts of the data
to develop a model and reserve the rest for testing, the split can
be either random (subtype a) or by location/time (subtype b).
Types 3 and 4 are both refer to external (independent) valida-
tion, both using a separate dataset to evaluate the model. Par-
ticularly, type 4 further requires the model has been already
published and is being evaluated in a meta-analysis like
scheme . In all, developers have the responsibility to figure out
the best validation pipeline for their specific studies, while
higher-level validation is usually desirable when possible to
achieve acceptance from the community and demonstrate fea-
sibility for clinical implementation.

7. ARE YOU THE HUMAN STILL RELEVANT?

The human community of ML and DL developers and
users will play a decisive role (knowingly or unknowingly) in
the continued advancement of machine learning technologies
and on the ultimate impact these technologies will have on
society including medical physics and radiation oncology. In
considering our future role in shaping these technologies,
some perspective can be gained by considering Amara’s
Law105: “We tend to overestimate the effect of a technology
in the short run and underestimate the effect in the long run.”
Fig. 18 provides a visual representation of this disconnect
between human expectations and how technological produc-
tivity develops. It can be conjectured that ML/DL technology
is currently in the tail-end of the overestimation phase. The
development of ML paradigms and applications has seen
explosive growth over the past twenty years,106 and reports
on AI can sometimes overinflate its potential. However,
despite the current hype, it is suggested that, based on past
trends in this field, the research community’s (and eventually
by extension the general public’s) interest in AI will begin to
diminish in the coming decade,106 even as progress is made
to address its most significant limitations. Future develop-
ment of these technologies will depend on continuing efforts
and investments in (a) curation of high quality, accessible
datasets, (b) developing algorithms to make high accuracy
predictions using available datasets, and (c) buy-in from
prospective users.

With respect to medical and radiation oncology commu-
nity, this user buy-in ultimately needs to come from clinicians
in order to establish ML and DL techniques as a standard of
care within the clinical workflow. To gain acceptance from
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the clinical team, a new technology must prove itself to be
useful in a clinical setting, as well as to not subject patients to
the risk of unnecessary harm. As a matter of ethical account-
ability, ML/DL techniques for clinical workflows need to be
transparent enough to allow human experts to be part of the
decision loop.

7.A. Why interpretability matters?

Although ML/DL have shown promising accuracy in solv-
ing practical problems in radiation oncology, interpretability
is a necessary requirement for ML and DL to be viable clini-
cal tools. Accuracy in this clinical context refers to the ability
of the ML and DL algorithms to perform the tasks they are
assigned either as well, or better than what a human could
accomplish. Interpretability refers to the ability of the clini-
cian to confidently understand and interpret the results of an
algorithm, without necessarily having to understand the min-
ute details of its mechanics.107 This concept of interpretabil-
ity is particularly important in a clinical setting because it can
help act as a fail-safe against instances in which algorithms
may produce results that are flawed due to inherent bias in
the training data or other unforeseen bugs.

Algorithms which are both accurate and interpretable are
able to gain a clinician’s trust as clinical tools because they can
be expected to perform their function correctly most of the time
and do not require the clinician to blindly accept their results.
Existing ML and DL techniques are recognized to suffer from
a tradeoff between accuracy and interpretability, and therefore
more work is necessary to develop ML/DL methods which can
achieve a better balance between these two qualities, such as
the use of gradient maps or proxy models with DNN or human
in the loop with ML approaches as discussed below.107

7.B. How to handle human–computer interactions
in decision-making?

To meet the needs of practical clinical scenarios in radia-
tion oncology, it is important to involve humans in the loop
of model development and decision-making. Human-in-the-
loop (HITL) is a practical guide to optimize the entire

learning process by incorporating human-computer interac-
tion into the system. Machines are known for their great
capabilities of learning from vast datasets, while humans are
much better at making decision with scarce information.
Human–computer interaction is expected to combine best
human intelligence and machine intelligence to make robust
and accurate decisions. To develop a robust system to sup-
port decision-making in clinical practice, it is important to
investigate both (a) how to make machines more accurate
with physicians/physicists’ input and (b) how to improve a
physician/physicist’s task with the aid of a machine. The
previous one helps leverage human intelligence into AI algo-
rithms for more accurate and robust decisions. The latter
one is the real decision-making scenario in practice. During
this process, the uncertainty of predictions made by human/
machine needs to be estimated. The performance of machine
versus machine-aided human should be thoroughly investi-
gated. Specifically, in the scenarios where physicians/physi-
cists and machine make different decisions, a scheme should
be designed to resolve the disagreement and to make best
use of both physicians/physicists and machine intelligence,
which is going to be better than either alone.

8. WHAT PITFALLS MAY EXIST?

There are caveats to be mindful of when medical physi-
cists develop or deploy ML/DL models to solve practical
problems in medicine or radiation oncology: bias, data qual-
ity, data sharing, and data privacy, to name a few. Biases in
the data including age, gender and race,108 or other sources of
underrepresented components in the AI algorithm training
may potentially aggravate health care disparities. That is,
models developed with bias may lead to misleading diagnosis
or poor decision support for patients in minority groups
whose members have not been sufficiently included in the
dataset that is used to develop the models. It is found that
some genetic variants, which are more common among black
Americans than white Americans, were mis-classified as
pathogenic in a study with insufficient inclusion of black
Americans in control cohorts.109 Patients with melanoma and
lung cancer treated with the same immunotherapy regimen
may respond differently based on sex, with higher remission
probability for male patients.110 A segmentation algorithm
designed for one anatomic site may still produce (erroneous,
fake) contours if inappropriately applied to the wrong ana-
tomic site. Thus, AI Algorithms can take whatever informa-
tion we feed into them and output a result that needs to be
carefully scrutinized/tested before clinical implementation to
mitigate such bias. It is physicists’ responsibility to under-
stand ML/DL algorithms’ scope of application as well as their
limitations and to conduct a thorough battery of quality assur-
ance (QA) on software tools that are used in the clinic. Physi-
cists are also responsible for eliminating any potential bias by
ensuring that implemented ML/DL algorithms continue to
perform as expected from an accuracy and clinical context
perspective as well by monitoring their performance and con-
ducting routine QA tests monthly or yearly, for instance.

FIG. 18. Graphical representation of Amara’s law and today’s current state of
machine learning and deep learning technologies.
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Data quality is another important concern when develop-
ing and applying ML/DL tools. There are many aspects of
data quality, including accuracy, completeness and reliability
etc. Accuracy means the data that have been collected are of
original source data. Completeness refers to the fact that all
required data elements are present. Reliability requires that
data remain consistent and the information generated is
understandable. Medical physicists should examine the accu-
racy of data before training new models, for example, filter-
ing out any abnormal outliers, double checking whether
patients are correctly linked to their information, etc. By gath-
ering complete high quality data that cover patients with dif-
ferent age, genders and race, medical physicists may also help
avoid potential bias in the algorithms. Medical physicists
should also inspect the readability of data, that is, data yield
the same results on repeated collections, processing, storing
and display of information in different medical records.
Quantitatively, the Shapley value metric111 was proposed as a
tool for evaluating quality of healthcare data for use in Ml/DL
algorithms. It interprets whether the presence of an individual
data can help or hurt the overall performance of the ML/DL
predictive model. Such a quantitative tool can be useful and
may provide guidance for medical physicists to assure data
quality in the future.

Data of large volumes are always desirable in the era of
precision medicine and predictive analytics. However, proper
data sharing protocols are a precondition for generating large
volumes given the limited sample size at an individual radia-
tion oncology department. Medical physicists should be
aware with some thorny issues including data privacy, data
security and data interoperability112 when involving in multi-
institutional studies and assist with other stake holders toward
providing secure and safe data lake exchange platforms for
radiation oncology applications.

9. WHAT DOES THIS ML ERA IMPLY FOR MEDICAL
PHYSICISTS?

Machine and deep learning technologies are promising
tools to introduce substantial positive changes to the medical
physics workflow and is likely to become an indispensable
component of its future. Ml/DL are likely to automate many
of the mundane procedures as well as some of the essential
processes involving treatment planning and quality assurance
to name of few. This is likely to lead to changes in the future
role of the medical physicist in the clinic. Medical physicists
as vanguards of technology in medicine are at the forefront of
embracing ML role and its potential. However, this also
requires that medical physicists become more acquainted
with ML/DL, its algorithms and their implementations, and
lead the process of acceptance and commissioning of such
algorithms in their clinic. These issues are likely to require
changes in the medical physicist training and their job profile.
Nevertheless, the benefits are expected to significantly out-
weigh some of the possible downsides, including achieving
better efficiency, improved safety, and potentially better

quality of care for patients, which is the ultimate goal of med-
ical practice.

10. CONCLUSIONS

Machine learning/DL algorithms have witnessed increas-
ing applications in treatment planning and quality assurance
to improve efficiency and safety in radiation oncology. These
tools can also improve outcome prediction and personalizing
of radiation oncology treatment. To utilize these tools effec-
tively, medical physicists need to define the problem at hand,
know its corresponding category in the ML/DL lexicon,
determine suitable algorithms/models to utilize, collect data
of appropriate size and conduct validation in the proper way
to ensure generalization to unseen data while being mindful
of possible pitfalls and how to avoid them. This article aims
to serve as a tutorial and stepping stone in that direction.
Moreover, establishing ML/DL algorithms into standard clin-
ical workflow will require additional attention to balancing
accuracy and interpretability in development of these models.
Medical physicists are encouraged to be informed of the latest
ML/DL’s developments as part of their continued education,
get more acquainted with ML/DL literature and become lea-
der of the processes of accepting and commissioning ML/DL
for routine clinical practice.
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