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Aims: This review paper intends to summarize the application of machine learning to radiotherapy
outcome modeling based on structured and un-structured radiation oncology datasets.
Materials and methods: The most appropriate machine learning approaches for structured datasets in
terms of accuracy and interpretability are identified. For un-structured datasets, deep learning algorithms
are explored and a critical view of the use of these approaches in radiation oncology is also provided.
Conclusions: We discuss the challenges in radiotherapy outcome prediction, and suggest to improve
radiation outcome modeling by developing appropriate machine learning approaches where both
accuracy and interpretability are taken into account. © 2019 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.13570]
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1. INTRODUCTION

Machine learning (ML), which evolved from the study of
pattern recognition and computational learning theory in
artificial intelligence, intends to explore the study and con-
struction of algorithms that can learn from data.1 Recently,
there is a tremendous increase in the use of ML in differ-
ent areas of radiation oncology, such as treatment planning
optimization,2,3 segmentation,4 radiation physics quality
assurance,5–7 contouring or image-guided radiotherapy.8,9

In this paper, we focus on ML for radiation outcome
modeling.10–12

Radiation outcome modeling includes survival analysis,
local tumor control probability (TCP), and normal tissue
complication probability (NTCP) (e.g., radiation pneu-
monitis, cardiac toxicity, and esophagitis). In the past,
these approaches relied on analytical models that assumed
a defined relationship between the dose and the specific
outcome (e.g., linear quadratic model for tumor control
probability13 or the Lyman model for normal tissue com-
plication probability14). Also, they were limited to only
considering dosimetric factors. For analytical models, if
the underlying assumptions and simplifications are not
correct as it is usually the case, then prediction accuracy
suffers. In contrast, with the use of ML algorithms, differ-
ent relationships between dose and outcome can be auto-
matically investigated. Additionally, nondosimetric factors
such as comorbidities, age, performance status, imaging,
and genetic information, etc., can be easily incorpo-
rated,10–12 and they have different representations, where
age and imaging are described by continuous variables,
dose-volume histogram (DVH) bins, performance status,

and single-nucleotide polymorphisms (SNPs) are denoted
by ordinal variables, and gender and chemotherapy are
indicated by binary variables. The radiation outcomes
depend on all these characteristics included in them may
result in more accurate models but this impose a challenge
in terms of data size. Essentially, each patient is being
characterized by a high-dimensional feature vector but the
number of samples available to learn a valid relationship
is comparatively smaller in radiation oncology compared
to other fields. In order to enhance generalization or
reduce overfitting, either redundant or irrelevant features
may need to be removed without incurring much loss of
the information, which is called “feature selection” in ML.
Basically, wrappers, filters, and embedded methods are
three main categories of feature selection algorithms.15

While wrapper approaches use a predictive model to score
feature subsets and filter approaches use a proxy measure
instead of the error rate to score a feature subset, embed-
ded approaches are a catch-all group of techniques to per-
form feature selection as part of the model construction
process. When filters and wrappers are used, a common
mistake is to reuse the same observations used to select
the variables to build and report the accuracy of the final
model. Therefore, recently embedded methods like least
absolute shrinkage and selection operator (LASSO) seem
to be preferred because they perform feature selection
internally and there is smaller chance of information leak-
age from the training to the testing datasets.16

For radiation outcome modeling, supervised ML is the
main approach. In supervised learning, the ML algorithm is
provided with input features (normally in the form of a
matrix with each row corresponding to a patient and each
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column corresponding to a feature) and outcome (in the
form of a vector) as shown in Table I. With this data, a
specific loss function is written and by minimizing it, the
optimal mapping between the input features and the out-
come is found. In this paper, we will review the challenges,
pros and cons of using these algorithms to model outcome
data in radiation oncology.

2. MACHINE LEARNING APPROACHES FOR
RADIATION OUTCOME MODELING

Several ML algorithms have been investigated for radia-
tion therapy outcome modeling. If the input features have
meaning by themselves (called in the ML literature structured
or tabular data), then ML algorithms like logistic regression
with penalization, decision trees (DTs), Bayesian networks
(BNs), random forests (RFs), and gradient boosting are pre-
ferred, although algorithms that do representational learning
(design features or concepts) like neural networks can still be
used in our field and outside for the analysis of the structured
data. If the input variables are unstructured (images, text),
then neural network-based deep learning (DL) algorithms are
preferred.

2.A. Machine learning approaches for structured
data

The observed radiation treatment outcome can be consid-
ered as the result of the interaction of several dosimetric, clin-
ical, or biological variables.17 ML algorithms intend to
develop data-driven models by fitting parameters using the
collected clinical and dosimetric data.18 For structured data-
set, ML approaches have already been employed for several
treatment sites such as lung,19 prostate,20 head & neck can-
cer,21 or meningioma.11 In all cases, many different ML algo-
rithms, such as linear regression, artificial neural network
(ANN), support vector machine (SVM), BNs, DT, RFs, or
gradient boosting machine (GBM), have been explored.
Below, we will attempt to cover previous publications using
these algorithms (nonexhaustive).

Linear regression models the relationship between the
response and one or more independent variables as a linear
equation. Systems biology is the computational and mathe-
matical modeling of complex biological systems. In order to
develop a systems biology understanding of radiosensitivity
to enhance our ability to identify radiation-specific biomark-
ers for lung, colon, and breast cancers,22 linear regression
was employed to correlate gene expression with survival. In

another study, the impact of overall treatment time on patient
outcome in non-small-cell lung cancer was studied using lin-
ear regression and Cox proportional hazard models.23

Artificial neural networks are multilayer nonlinear models
that use gradient descent and back propagation to find the
optimal coefficients. An ANN is based on a collection of
connected nodes called artificial neurons. Each connection
between nodes can transmit a signal from one neuron to
another. There is a weight associated with each connection,
and the weight increases or decreases the strength of the sig-
nal at a connection which is adjusted as learning proceeds. In
a study to predict symptomatic lung injury based on pre-ra-
diotherapy, biological, and physical data,24 a nonlinear, feed-
forward ANNs was trained to predict the radiation outcome.
The ANN approach was also used to predict radiation pneu-
monitis following radiotherapy.25 Three ANNs, each with
three layers, were developed for this classification task. A
growing/pruning-based ANN approach was developed to pre-
dict Grade 2 + radiation pneumonitis (RP2), starting from
the smallest possible network until a satisfactory solution was
found.26 While the input of the first ANN was limited to the
patient lung dose–volume data only, the second study showed
that the addition of non-dosimetric features can significantly
improve the generalization capability of the network.

A SVM is a class of ML algorithm that attempts to find a
feature space where the data can be linearly separated using a
kernel function to do the transformation. In a study to predict
patient’s complication risk for personalized treatment plan-
ning,27 a nonlinear kernel-based SVM method was used to
learn complex interactions between the observed toxicities
and treatment, anatomical, and patient-related variables. In
the same study, the value of feature transformation using prin-
ciple component analysis (PCA) to visualize high-dimen-
sional data and determine proper kernel type was also
demonstrated. It was demonstrated that linear models proba-
bly work well and nonlinear methods are unnecessary when
responses may be separated along a linear ridge in a PCA
plot, and nonlinear features generated via kernel/SVM meth-
ods may improve the model prediction when there is no such
linear ridge under PCA analysis.

Bayesian networks are a type of probabilistic graphical
model to represent a set of variables and their conditional
dependencies via a directed acyclic graph. In a new treatment
planning model for more outcome-focused decision-making,
a BN was employed to model the radiation therapy process of
prostate cancer and treatment outcomes such as distant
metastasis, rectal, and bladder complications using expert
opinion, results of clinical trials, and published research.
Then, the quality-adjusted life expectancy of a patient can be
evaluated based on the BN.28 In order to explore the biophys-
ical relationship among radiation treatment, patients’ charac-
teristics (age, comorbidities, etc), and radiation outcomes,
BN were employed to predict radiation pneumonitis,29,30

local control,31 or both.32 Figure 1 shows an example of a
pretreatment joint BN to predict lung cancer tumor local con-
trol (LC) and radiation pneumonitis toxicity Grade 2 or above
(RP2) simultaneously.32 The most important features for

TABLE I. Patients' input features and radiation treatment outcome.

Patients' ID Local control Tumor dose Age Chemo

Patient #1 1 (yes) 75.60 78 0 (no)

Patient #2 0 (no) 71.39 70 1 (yes)

Patient #3 1 (yes) 66.00 56 1 (yes)
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radiation outcome prediction including tumor and lung gener-
alized Equivalent Uniform Dose (gEUDs), one SNP (cxcr1-
Rs2234671), two miRNAs (miR-20a-5p and miR-191-5p),
one pretreatment PET radiomics feature metabolic tumor vol-
ume (MTV), and three pretreatment cytokines (IL-15, IL-4,
and IL-10) were selected from a high-dimensional retrospec-
tive dataset as indicated by the nodes in the BN. The edges of
the BN, identified with different colors, represent the bio-
physical relationships between the variables analyzed. BNs
can be used to explore biophysical cause–effect relationship
from retrospective dataset, but it is limited by inference com-
plexity, and its computational cost grows exponentially as the
number of nodes increases.

As mentioned above, one problem that limits the explo-
ration of biological connections with BN is dataset size.
Since most datasets in radiation oncology tend to be small,
sharing data among different institutions might be necessary.
Distributed learning is a technique that can allow the learning
of predictive models on data originating from multiple hospi-
tals without the data leaving the hospital. A BN model was
adapted for distributed learning to predict dyspnea by com-
bining data originating from multiple hospitals. It was shown
that it is possible to use the distributed learning approach to
train the BN model without the specific datasets leaving the
individual hospital.33 This results open a venue for data shar-
ing among multiple hospitals without violating privacy
laws.33

Decision trees are constructed using recursive partitioning
analysis to optimize successive dichotomisation of input vari-
ables. The resulted tree-like structure had been used to aug-
ment prediction of the classic Lyman NTCP,14

pneumonitis,10,34 chest wall pain,12 salvage high-dose-rate
brachytherapy (sHDRB)35 and meningioma.11 An advantage
of DTs is that they are highly interpretable. Their biggest

disadvantage is that they are not the most accurate algorithm
on expectation. MediBoost is a single tree technique based
on boosting that attempts to improve accuracy while still
building interpretable trees. Since it uses weighted versions
of all cases to derive splits at each point in the tree, it can be
advantageous for relatively small datasets. MediBoost has
been used to predict both pneumonitis and biochemical fail-
ure after sHDRB surpassing RF performance in some cases
but not all.11,35

Random forest is considered one of the best out of the
shelves ML algorithms. It improves trees’ accuracy by build-
ing a large number of deep trees (ensemble) and averaging
them which reduces variance and improves accuracy. In addi-
tion to predicting the above mentioned outcomes,10–12,35 the
RF approach was also employed to predict rectal toxicity fol-
lowing prostate cancer radiotherapy,36 and xerostomia after
IMRT treatments.37 Random survival forest (RSF) is a RF
method for the analysis of right-censored survival data. Not
only it incorporates all univariate and multivariate effects
automatically, but also it can find influential covariates in
highly correlated subsets, which is particularly useful in high-
dimensional covariate selection problems.38,39 The RSF had
been employed to explore single and multivariable models of
overall survival (OS) and progression-free survival (PFS).40

Gradient boosting machines (GBMs) is another popular
ensemble ML technique usually use with DTs. It uses gradient
boosting, a way to improve any ML model by iteratively train-
ing new models that specialize on the weak points of the previ-
ous ones. GBMs have been used in radiotherapy to predict
radiation-induced pneumonitis10 and meningioma local fail-
ure.11 A version of GBM, XGBoost, consistently wins most
Kaggle competitions that involve structured data today.10,41

Kaggle is an online platform where private and public entities
open data science projects for third parties to compete.

FIG. 1. A joint pretreatment Bayesian networks for local control and 2+ radiation pneumonitis (RP2) prediction.
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With all these algorithms previously used, an important
question is which algorithm or algorithms should be pre-
ferred? It is important to note that it has been proven mathe-
matically that no algorithm is guaranteed to be best in all
problems.42 However, general recommendations can be made
to point out which algorithms are more likely to work better
on average. If accuracy is the goal, and provided that there is
enough data, RF and GBM are on average the best algorithms
for the analysis of structured data.43,44 On the contrary, if
interpretation and understanding are the goals, linear models,
DTs, and BNs are inherently visual, and relationship between
variables can be possibly interpreted.44,45 In the case of radia-
tion oncology datasets, which tend to be smaller than those
analyzed in other fields, it was shown than on average linear
models are competitive to RF and GBM.46 Therefore, it is
our advised that at least these three algorithms should be
explored.

2.B. Machine learning approaches for unstructured
data (images and text)

Currently, many parts of the medical datasets collected in
radiation oncology have unstructured format (e.g., medical
notes, images). Understanding how much knowledge can be
extracted from them is a challenging and exciting task.47–51

Deep learning (DL) is a specific subfield of ML that learns
representations from data and it is perfectly suited to handle
unstructured data like images or text. The “deep” in DL
stands for the idea of the application of successive layers of
representations (mathematical operations) as shown in Fig. 2.

Although we usually refer to them with one term, deep
neural network (DNN) encompasses many different algo-
rithms. Convolutional neural networks (CNNs), a special
kind of DNN, are best known for image-related prediction.
Their name stemmed from the successful application of the
signal processing operation of convolution. Recurrent neural
networks (RNNs) are another variant of DNN specifically
useful for learning sequential data, such as voice or text data.
The values of DNNs have also been explored in radiotherapy.
A DNN was proposed to predict quality of life scores for
prostate stereotactic body radiation therapy (SBRT) patients
using DVH data.52 In a study predicting 2-yr local failure fol-
lowing SBRT,53 a multi-DNN approach analyzing both
patient CT simulation scans and clinical risk factors, was

shown to outperform logistic regression, RF, and SVM. To
retrieve and classify multimodal medical images (MR, CT,
PET) for 24 body organs with different levels of data extrac-
tion,54 a CNN framework was developed, obtaining an excel-
lent prediction accuracy performance. Additionally, CNNs
were used to predict survival risks for rectal cancer patients
based on imaging data showing improvement over other
approaches.55 Also, DNNs were used to explore state transi-
tion probabilities for building an autonomous clinical deci-
sion support system to adapt patient dose per fraction in a
response-adapted treatment setting.56 Finally, a DNN algo-
rithm was also shown to outperform other approaches in rec-
ognizing clinical texts in medical documents57 or learning
radiomic features for survival prediction in lung and head &
neck cancers.58

In general, DL methods appear to be promising for out-
come prediction in radiotherapy since it has relatively high
prediction performance.58 However, high-quality big data size
is the key for successful application of the DL algorithms.
For instance, Google brain explicitly recommended to not
use DL with less than thousands of data points even when
transfer learning, an approach that reuses parameters of a
model trained on another task with more available data, is
used.59 These recommendations stem from the fact that DL
models usually contain millions of parameters. With many
more parameters to tune than other algorithms, overfitting in
the cross-validation space is more likely to occur. Therefore,
the field of radiotherapy should proceed with caution when
these algorithms are explored in small datasets.59

2.C. Interpretability and causal inference

The challenges of creating human-like intelligence in
machines remain greatly underestimated. Current ML sys-
tems lack the essence of human intelligence: understanding
the situations we experience or being able to grasp their
meaning.60 Most ML algorithms today find correlation and
not causation.61 For instance, an ANN (a noninterpretable
algorithm) that was developed to triage patients with pneu-
monia for hospital discharge was found to inadvertently label
asthmatic patients as low risk.62–64 Colon cancer screening or
abnormal breast finding were found to be highly correlated
with the risk of having a stroke with no apparent clinical justi-
fication.65 A CNN was found to be using the hospital system,

FIG. 2. A neural network structure for deep learning.
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department or the label “portable” to improve their prediction
of pneumonia while disregarding the true findings in the
image.66 Besides the issue of data quality, current state-of-
the-art methods lack the interpretability that is essential for
patient stratification and safe clinical decision-making,
although ML techniques afford better-than-human perfor-
mance in numerous domains.

Both clinicians and medical physicists should hesitate to
apply prediction models based on black box algorithms.67,68

Unfortunately, there is a tradeoff between interpretability and
accuracy in ML algorithms. DTs, BNs, and logistic regres-
sions69–71 are among the preferred choices in medicine72–80

because they create models that are highly interpretable.
However, they are consistently outperformed in terms of
accuracy by “black box” algorithms used in many other
fields, including ensemble methods, meta-algorithms, and
DNNs.81–84 The tradeoff between accuracy and interpretabil-
ity represents a long-standing problem in ML, and it is an
active area of research from both practical and theoretical
points of view.64,85–88 Additionally, techniques to interpret
black boxes have been created but researchers and clinicians
should be aware of their limitations. For instance, variable
importance (or pixel importance for images) has limited
capability to address how specific variables interact in a
highly nonlinear function to build predictive model for a
specific patient. Moreover, algorithms designed to explain
the black box models do not provide a faithful representation
of the original model. As such, the medical physics commu-
nity should follow with attention recent theoretical develop-
ments on causality and interpretability of ML algorithms
before we fully deploy the models mentioned above.

3. DISCUSSIONS AND CONCLUSION

Radiotherapy plays an increasingly dominant role in the
comprehensive multidisciplinary management of cancer.
About half of all cancer patients will receive radiotherapy
either as a part of the initial treatment with curative intent or
as palliative treatment.89 Improved modeling accuracy for
normal tissue complications and tumor control probability is
highly important and still one of biggest challenges of physi-
cists in radiation therapy today.35,90 In this paper, we
reviewed a variety of ML approaches for radiation outcome
modeling based on structured and unstructured data. Consid-
ering a relatively large number of features as the input, ML-
based methods have the potential to improve radiation out-
come modeling compared to analytical methods. Addition-
ally, complex algorithms like RF, GBM, DL can outperform
previously used models like DT, BN, and logistic regression
in terms of accuracy. However, both clinicians and medical
physicists should proceed with caution when employing these
relative new algorithms due to their lack of interpretability.
The accuracy on a test set is not a good representation of true
performance because the complex algorithms can take advan-
tage of spurious correlation (e.g., asthma status for pneumo-
nia patients). Therefore, we would like to emphasize the need
for the development of accurate and interpretable algorithms

as decision support tools for clinical radiation treatment deci-
sion making. The use of MediBoost in radiation oncology
represents pioneering work in this direction.44

We also need to highlight that limited clinical outcomes,
inappropriate toxicity classification, genomics data, variation
in dose, and fractionation directly affect the accuracy of cur-
rent models. In fact, most models reported above have accu-
racy that oscillates around area under ROC curve of 0.70
which is suboptimal for their clinical use. Therefore, a con-
scientious effort needs to be done in the field to collect better
and bigger datasets but many challenges wait ahead.91,92 Pos-
sible ways to remove these obstacles include, but are not lim-
ited to, standardization of processes and data structures,
information sharing across institutions, distributed learning,
transfer learning, or synthetic data generation using genera-
tive adversarial networks.93 Imbalanced data is another intrin-
sic problem of applying ML approaches for radiation
outcome prediction. For instance, if only 10% of patients
develop certain toxicity, an algorithm that naively predicts
that nobody develops the toxicity is 90% accurate. Balancing
the imbalanced event rate during cross-validation and report-
ing balanced accuracy is necessary, and many techniques can
be used to achieve this goal.94–96

Additionally, imaging information is widely used in radia-
tion oncology treatment planning, from dose calculation to
implementation of the treatment. Quantitative features, such
as radiomics and radiogenomics, extracted from these images
can provide useful information about tumor characteristics
habitats or evolution with the treatment. Therefore, these fea-
tures have a potential to improve radiation outcome predic-
tion for precision and personalized radiotherapy through
advanced machine and deep learning techniques. As the num-
ber of features increases in the era of Big Data, feature selec-
tion and dataset size plays an even important role though.

Summarizing, the overwhelming evidence shows that the
quality of reporting of prediction model studies is poor today.
Although ML algorithms are a powerful tool, their complex-
ity and higher chances of overfitting can result in poor repli-
cability and generalization of studies. Then, model validation
is critical for predictive models to be used in the clinical set-
ting. While cross-validation and bootstrapping intend to
avoid overfitting in developing the predictive models, exter-
nal validation through reserved testing dataset or other hospi-
tal’s datasets is necessary to evaluate their prediction
performance. A set of recommendation, named transparent
reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis, has been developed.97 We strongly
encourage journals and researchers to follow these recom-
mendations and clear specify the level of validation of each
study. Moreover, as it current stands, theoretical advances in
current ML algorithms are also necessary for the wide accep-
tance of these models into clinical practice. Since most ML
algorithms find correlation and not causation, careful exami-
nation and testing needs to be performed before deploying
models into clinical practice. As such, further development
on causal modeling and/or interpretability of algorithms is
necessary.
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