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Computer-aided diagnosis (CAD) has been a major field of research for the past few decades. CAD
uses machine learning methods to analyze imaging and/or nonimaging patient data and makes assess-
ment of the patient’s condition, which can then be used to assist clinicians in their decision-making
process. The recent success of the deep learning technology in machine learning spurs new research
and development efforts to improve CAD performance and to develop CAD for many other complex
clinical tasks. In this paper, we discuss the potential and challenges in developing CAD tools using
deep learning technology or artificial intelligence (AI) in general, the pitfalls and lessons learned
from CAD in screening mammography and considerations needed for future implementation of CAD
or AI in clinical use. It is hoped that the past experiences and the deep learning technology will lead
to successful advancement and lasting growth in this new era of CAD, thereby enabling CAD to deli-
ver intelligent aids to improve health care. © 2019 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.13764]
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1. INTRODUCTION

In computer-aided diagnosis (CAD), machine learning meth-
ods are utilized to analyze imaging and nonimaging data
from past case samples of a patient population and develop a
model to associate the extracted information with certain dis-
ease outcome. The developed model is expected to predict
the outcome of a new unknown case when data from a new
case are input. If properly trained and validated, the CAD
prediction may be used as a second opinion or supporting
information in a clinician’s decision-making process. The
approach of using machine learning technology to analyze
patient data for decision support is applicable to any patient
care process, such as disease or lesion detection, characteriza-
tion, cancer staging, treatment planning, treatment response
assessment, recurrence monitoring, and prognosis prediction.
More often than not, imaging data play a major role in each
of these stages and thus image analysis is a main component
in CAD.

Prior to the 1980s, a few studies had attempted to develop
computerized methods for automated lesion detection in radi-
ologic images; these studies did not attract strong interest,
probably due to the limitations in computational power and
in accessing high-quality digitized or digital images. System-
atic research and development of CAD methods for various
diseases started in the early 1980s in the Kurt Rossmann Lab-
oratory at the University of Chicago.1 Chan et al. developed a
computer-aided detection (CADe) system for clustered micro-
calcifications on digitized mammograms2 and conducted the
first observer study3 to demonstrate the potential that CADe
as a second opinion to radiologists can improve their perfor-
mance. In 1998, the U. S. Food and Drug Administration
(FDA) approved the first commercial CADe system for use as
a second reader to assist in the detection of breast cancer in
screening mammography. Research in various areas of CAD

has been increasing over the years.4–8 Although the majority
of the work is directed at detection and characterization of
various types of diseases on images, there are increasing
interests and efforts in applying CAD methods to the quanti-
tative image analysis of tumor heterogeneity, correlation of
image phenotypes with underlying genetic and biological
processes, differentiation of cancer subtypes, cancer staging,
treatment planning, and response assessment. The CAD area
of quantitative analysis of image features in these applications
has been called radiomics in recent years.

2. MACHINE LEARNING/ARTIFICIAL
INTELLIGENCE IN COMPUTER-AIDED DIAGNOSIS
(CAD)

Machine learning is a broad field in computer science with
applications to many areas such as face recognition, text and
speech recognition, robotics, satellite imagery analysis, and
target detection and characterization in military or civilian
use. Machine learning makes use of knowledge and tech-
niques from multidisciplinary fields to analyze the input imag-
ing or nonimaging data or a combination of both and extract
relevant information to interpret the data or predict the out-
come for a given task. For example, mathematics and statistics
are important tools to develop new machine learning methods
and build predictive models from the data, understanding of
biological pathways, and genetics is critical to guide the analy-
sis of radiomics and genomics associations, and domain
knowledge of a specific type of diseases and how they mani-
fest in a given medical imaging modality is needed to guide
feature design and extraction. With deep learning that does
not require hand-engineered features, domain knowledge is
even more important for understanding whether the machine
has learned relevant features, interpreting the output and cor-
relating it with the clinical condition of the patients.
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To develop a robust machine learning system for a given
task, one has to collect a sufficiently large and representative
set of sample data of each class from the population of inter-
est so that the machine learning algorithm can correctly
model the statistical properties of the population and assess
any new unknown case from the same population. For robust
training, the proportion of the classes ideally should be bal-
anced, and thus classes of rare events will require even more
effort to collect. Machine learning technology has been
evolving over time from so-called conventional methods to
the recent deep learning methods. In a conventional approach
of supervised machine learning, the features to be extracted
from the input data are usually designed by human develop-
ers based on expert domain knowledge, and the best features
and their relationships (or predictive model) are chosen statis-
tically with the guidance by the predictive performance in a
training set of labeled case samples. In unsupervised learn-
ing, the case samples are not labeled and the machine analy-
sis is expected to discover the underlying characteristics and
the relationships among the case samples, which generally
requires a much larger set of training samples.

Deep learning has emerged as the state-of-the-art machine
learning method.9 Deep learning learns multiple levels of
representations from the training data by iteratively adjusting
the layers of weights in a deep neural network architecture. It
has found success in many fields such as speech and text
recognition, natural language understanding and translation,
object detection, and classification. At present, convolutional
neural networks (CNN) are most commonly used in deep
learning for computer vision and pattern recognition tasks in
images. CNN is one type of artificial neural networks that
could find its origin from the neocognitron proposed by
Fukushima et al in the early 1980s.10 LeCun11 adapted the
method and demonstrated its application in recognition of
handwritten digits. CNN is different from other pattern clas-
sification methods in that it is a type of representation learn-
ing that discovers useful features from the input data without
the need of manually designed features. To achieve high dis-
criminative power for complex patterns, relatively large num-
ber of training samples is required. In 1993, Lo et al.12,13 first
introduced CNN into medical image analysis and applied it
to lung cancer detection in chest radiographs. Chan et al.14–16

applied CNN to the classification of true and false microcal-
cifications in a CADe system for mammography in 1993 and
trained another CNN for classification of true and false
masses in 1994.17–21 Zhang et al.22 applied a similar shift-in-
variant neural network for detection of clustered microcalcifi-
cations in 1994. Due to the limited computational power of
computers, the limited training data available, and the vanish-
ing gradient problem,23 the early CNNs contained very few
convolutional layers and very few kernels in each layer, which
limit the learning capacity of the CNN. Nonetheless, these
studies demonstrated the potential of applying CNN to pat-
tern recognition in medical imaging.

A number of factors spur the advancement of machine
learning techniques in the past decade. The popularity of
social media and personal devices drives the Information

Technology industry to develop automated and interactive
functionalities for various applications. The need to reduce
manual costs in various industries also stimulates the growth
of automation and computer-assisted technologies. In addi-
tion, the availability of low-cost graphical processing units
(GPUs) and memory from the video gaming industry makes
it possible to use CNN with large number of layers and ker-
nels. The fast internet and cloud facilitate the collection of
large data samples for training. More importantly, effective
network training strategies for deep architectures have been
developed over time,9,24 such as layer-wise unsupervised pre-
training followed by supervised fine-tuning,25–27 replacing
sigmoid-type activation functions with rectified linear unit
(ReLU),28,29 and regularization with dropout.30 These new
techniques reduce the risk of vanishing gradient and overfit-
ting and increase training convergence speed, thus enabling
deep neural networks containing millions of weights to be
trained. In 2012, Krizhevsky et al.31 showed that a “deep”
CNN (DCNN) with five convolutional layers for feature
extraction and three fully connected layers (known as the
AlexNet) could outperform other methods in an ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)32 that
required the classification of over 1000 classes of objects.
Since AlexNet, another important technique, batch normal-
ization,33 was proposed as a regularizer for network training,
which reduces the internal covariate shift, allows higher
learning rate, and reduces overfitting, thus facilitating train-
ing deeper and deeper CNN structures. It has been shown that
the errors for complex classification tasks decreased with the
depth of CNN.34 The ImageNet data set provided by the
ILSVRC contains over 1.2 million images but studies indi-
cated that the classification accuracy can further increase by
using DCNNs with deeper architecture and greater learning
capacity if even larger training set is available.35

The success of deep learning in pattern recognition and its
adaptation to various applications such as self-driving vehi-
cles, face recognition, voice recognition, chess and Go
games, and personal assistants, etc. bring strong interests in
applying deep learning to the CAD field in medicine. DCNN
has been applied to medical image analysis for various CAD
tasks despite the lack of sufficiently large medical data set
compared to nonmedical imaging data.21,36,37 Most of the
DCNNs in CAD to date are trained for differentiation of
abnormal images with disease patterns from images with nor-
mal or benign patterns for a given imaging examination.
Application of DCNN to other CAD tasks such as segmenta-
tion of organs and tumors, detection of changes in tumor size
or texture patterns in response to treatment, classification of
image patterns associated with the risk of recurrence or prog-
nosis, and differentiation of image patterns that may be pre-
dictive of high risk or low risk of developing a certain disease
or evolving into invasive disease in the future, are also being
explored. Similar CAD tasks are also applicable to optical
coherence tomography image analysis for eye diseases38 or
histopathological image analysis at the cellular level.39 The
potential of DCNN in improving the accuracy and perfor-
mance of computer-assisted decision support systems has
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created a lot of excitement in the medical imaging commu-
nity. Even though most of the current deep learning applica-
tions are still far from exhibiting the characteristics of
“intelligence” that are expected of humans, both the develop-
ers and users are contented with labeling the computer-as-
sisted technologies as “Artificial Intelligence (AI).”

3. DEEP LEARNING APPROACH TO CAD

3.A. Data collection

Deep convolutional neural network certainly brings strong
promise in advancing CAD as routine clinical decision sup-
port tools in health care and there is even prediction that AI
will replace radiologists in the near future.40 However, unre-
alistic expectations may not sustain long-term growth. Exten-
sive research effort and resources are needed to overcome
many of the hurdles in developing and integrating CAD tools
into clinical workflow. One of the major challenges in devel-
oping an accurate and generalizable DCNN for a given task
is a large well-curated data set for training. The data set has
to cover the variabilities in patient population, imaging
devices, and acquisition protocols in real-world clinical set-
tings for which the DCNN is intended to be used. Collecting
such a data set is expensive, especially that the labeling and
annotation often require the effort of more than a single
expert clinician due to the inter- and intra-reader variabilities
in image interpretation and disease assessment. Researchers
have attempted to use data mining and natural language pro-
cessing of the electronic health record (EHR) and the picture
archiving and communication system (PACS) for extracting
clinical data and diagnosis from the physicians’ and pathol-
ogy reports.41 The accuracy of the retrieved labels depends
on the methods used.42 It has been shown that automatically
mined disease labels or annotations can contain substantial
noise.43 The challenge from mining the EHR may be attribu-
ted to many factors, such as the nonstandardized reporting
and formatting in the clinical reports to date, the errors by the
data mining tools in the correlation and interpretation of the
various stages of diagnosis and patient management in com-
plicated cases, and incomplete prior or follow-up information
due to patient referral and transfer between different health
systems. It has also been reported that information from the
DICOM header of images can also be inaccurate with as
much as over 15% error in labeling body parts,44 thereby
introducing noise into automatically retrieved DICOM data
for DCNN training or testing. Collaborative efforts by the
vendors and users to standardize the reporting among the var-
ious data archiving systems are needed to facilitate mining
big data for CAD development. Furthermore, if secure elec-
tronic communication of patient records can be established
among different health systems, it may not only improve
patient care by transferring clinical data more efficiently and
accurately during patient referral, but also increase the accu-
racy of data mining of these cases.

Training with mislabeled data reduces the accuracy and
generalizability of the trained DCNN. Samala et al.45

conducted a simulation study of training a DCNN for the
classification of malignant and benign breast masses on
mammograms using a training set with corrupted labels over
a range of 0% to 50% of the training samples. It was shown
that the classification performance could reach 100% on the
training set but decreased on unknown test cases as the
amount of training label corruption increased. Methods have
been proposed for training DCNN with noisy labels.46,47 In
case a small training set with clean labels can be constructed
or is available, one approach is to first train the DCNN using
the large training set with noisy labels and then fine-tune the
DCNN using the data set with clean labels. A recent study48

proposed a multitask network that jointly learned to clean
noisy labels in the large data set and fine-tuned the network
using both the small clean data set and the large data set with
reduced label noise. Another study49 proposed a loss correc-
tion technique that used a small data set with trusted labels to
estimate the noise distribution of the label noise and showed
that the method could improve the robustness of the deep net-
works for several vision and natural language processing
tasks. Whether these methods can reduce the effort in label-
ing large data set of medical images remains to be studied.

3.B. Transfer learning

To alleviate the problems of limited data available for
training of DCNN in medical imaging, a common approach
is to use transfer learning. In transfer learning, a DCNN that
has been trained with data for a task in a source domain is
adapted to a new target task by further training it with data
from the target domain. Since a DCNN works as an auto-
matic feature extractor and many image features are com-
posed of common basic elements, a DCNN having its
weights pretrained to extract features for an imaging domain
will make it easier to be re-trained for a new imaging domain
than to train from randomly initialized weights. If the avail-
able training data in the source domain are abundant while
the training data in the target domain are scarce, transfer
learning will enable a DCNN to learn the target task with the
limited data set which may be impossible otherwise. Most of
the DCNN models in medical imaging to date were trained
by transfer learning using models pretrained with the large
ImageNet data set.32

Although transfer learning may reduce the requirement of
training sample size in the target domain to a certain extent,
the performance of the transfer-trained DCNN for the target
task still depends on the training sample size. Samala et al.50

studied the effect of training sample size on transfer learning
for the task of classifying breast masses as malignant and
benign in digital breast tomosynthesis (DBT). As DBT data
were limited, they collected a relatively large data set of mam-
mograms in addition to the small set of DBTs from different
patients. The classification of masses on mammograms is a
similar but still different task than that in DBT. From the
mammography set, 2242 unique views with 2454 regions of
interest (ROIs) containing breast masses were extracted.
From the DBT set, 324 unique views with 1585 ROIs were
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extracted and partitioned by case into a training set of 1140
ROIs and an independent test set of 445 ROIs. Several trans-
fer learning strategies were compared. The AlexNet that was
pretrained with the ImageNet data was modified by adding
two fully connected layers to adapt it to a two-class classifica-
tion task. The AlexNet was then transfer-trained either in a
single-stage with the mammography or DBT data alone, or in
two stages with mammography data followed by DBT data.
A range of training sample size ranging from 1% to 100% of
the original set was simulated by randomly sampling a subset
from the entire mammography data or the DBT training set.
In addition, the effectiveness of transfer learning was also
studied by freezing either the first convolution layer (C1)
alone or the C1-to-4th fully connected layers (C1-to-F4) of the
AlexNet. The transfer learning strategies were compared in
terms of the area under the receiver operating characteristic
curve (AUC) on the independent DBT test set. Figs. 1 and 2
summarize the results: (a) the classification performance
increases steadily as the training sample size in either stage 1
or stage 2 increases, indicating that the training sample size
has a strong impact on the robustness of the transfer-trained
DCNN even if the DCNN has been pretrained with millions
of samples from the source domain, that is, the nonmedical
image data from ImageNet (see Figs. 1 and 2), (b) when the
available data set in the target domain (DBT) is small, another
stage of pretraining using data from a similar domain

(mammography) can improve the robustness of the trained
DCNN, in comparison to transfer learning with the DBT
training set alone (see A vs B in Fig. 1 and B vs D in Fig. 2),
and (c) if too many layers of the pretrained DCNN are frozen
during transfer learning, the learning capacity of the DCNN
is restricted and not able to fully learn the information avail-
able in the training set (see B vs C in Fig. 1). On the other
hand, if the training sample size of the target domain is too
small, allowing too many layers to be re-trained can degrade
the performance compared to re-training with fewer layers
(see B vs C in Fig. 2). This study demonstrates that the per-
formance of a transfer-trained DCNN depends on the training
sample size of the target task and the potential usefulness of
multistage transfer learning.

3.C. Data augmentation

For DCNN training in medical imaging, another com-
monly used method to increase the apparent training sample
size is data augmentation, that is, to generate multiple
slightly different versions of images from each image in the
original set. Data augmentation can be implemented off-line
or online, and each of which may be implemented in many
different ways. For off-line data augmentation, for example,
all augmented versions of each image are usually pregener-
ated and mixed with the original data set before being input
to the DCNN, which then uses the data set in randomized

FIG. 1. Regions of interest-based area under the receiver operating character-
istic curve (AUC) performance on the digital breast tomosynthesis (DBT) test
set while varying the simulated mammography sample size available for
training. The data point and the upper and lower range show the mean and
standard deviation of the test AUC resulting from 10 random samplings of
the training set of a given size from the original set. “A. Stage 1 (MAM:C1)”
denotes single-stage training using mammography data and the C1-layer of
the ImageNet pretrained AlexNet frozen during transfer learning without
stage 2. “B. Stage 2 (DBT:C1)” denotes stage 2 C1-frozen transfer learning at
a fixed (100%) DBT training set size after stage 1 transfer learning (curve A).
“C. Stage 2 (DBT:C1-F4)” denotes stage 2 C1-to-F4-frozen transfer learning
at a fixed (100%) DBT training set size after stage 1 transfer learning (curve
A). [reprint with permission50].

FIG. 2. Regions of interest-based area under the receiver operating character-
istic curve (AUC) performance on the digital breast tomosynthesis (DBT) test
set while varying the simulated DBT sample size available for training. The
data point and the upper and lower range show the mean and standard devia-
tion of the test AUC resulting from 10 random samplings of the DBT training
set of a given size from the original set. “D. Stage 1 (DBT:C1)” denotes sin-
gle-stage training using DBT training set with the C1-layer of the ImageNet
pretrained AlexNet frozen during transfer learning without stage 2. “B. Stage
2 (DBT:C1)” denotes stage 2 C1-frozen transfer learning after stage 1 transfer
learning with a fixed (100%) mammography training set. “C. Stage 2 (DBT:
C1-F4)” denotes stage 2 C1-to-F4-frozen transfer learning after stage 1 trans-
fer learning with a fixed (100%) mammography training set. [reprint with
permission50].
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mini-batches for training. The augmentation techniques may
include rotating the image within a range of angles (Na), scal-
ing the image size over a range of factors (Ns), translating
and flipping the image in various directions (Nt), cropping
the image (Nc), and generating shape- and/or intensity-trans-
formed images with different methods (Nd). If all techniques
are applied in combinations, the original sample size of No

can be apparently increased to N = No 9 Na 9 Ns 9 Nt 9

Nd. For online augmentation, a common approach is to
implement the operations (e.g., rotating, scaling, translating,
flipping, cropping, transformation) as a part of the DCNN
pipeline and the user selects the range and the probability of
each type of augmentation as input parameters. The original
training set is used as input and each image in a mini-batch is
randomly altered according to the probabilities. By properly
choosing the parameters and the number of epochs for train-
ing, the augmented training set can be made statistically simi-
lar between online and off-line augmentation. The major
difference is that in online augmentation an augmented image
is unlikely to repeat itself because each type of operation (ex-
cept for flipping) is usually set up to randomly select a value
within a continuous range, whereas in off-line augmentation,
the augmented training set is repeatedly used except that the
mini-batches are randomly regrouped for each epoch. Off-
line augmentation requires more memory space and online
augmentation costs more computation time. Typically, the
choice between off-line and online augmentation depends on
the size of the data set; off-line augmentation is preferred for
small data sets and online augmentation is preferred for large
data sets especially if the augmentation can be implemented
on the GPU. Data augmentation has been shown to reduce
the risk of overfitting to a small training set and improve gen-
eralizability by introducing some variations or jittering to the
original data.31,51,52 Thus, data augmentation is a type of reg-
ularization-by-data approach, which in general also includes
other types such as dropout and data normalization.53 How-
ever, the augmented images are highly correlated and the
CNN learning is invariant to many of these small differences
so that there is only limited new knowledge the DCNN can
learn from the augmented images. Furthermore, if the origi-
nal training set lacks the representation of certain characteris-
tics of the target lesion and the surrounding tissue in the
population due to its limited size, these augmentation meth-
ods cannot create lesions with characteristics that do not exist
in the original samples. For example, if the original set does
not contain spiculated lesions, the augmentation techniques
will not be able to generate realistic spiculated lesions. Inves-
tigators are also developing more complex augmentation
methods that use DCNN such as generative adversarial net-
works (GANs) to generate altered images with mixed features
learned from different images after training on the available
sample images,54 and methods to digitally generate artificial
lesions for various purposes.55,56 These methods require
more computation time to generate each image and may not
be practical to be used in online augmentation. Further inves-
tigation is needed, especially in medical imaging applica-
tions, to study issues such as how effective the augmented

lesions or artificial lesions are compared to real independent
sample of a similar size in training DCNN, whether they pro-
vide useful new features or knowledge for the DCNN to
learn, whether the tissue texture in the artificially generated
images will improve or impede DCNN learning if texture is
an important feature for a given CAD task, how effective the
augmentation methods are compared to one another, and
whether the effectiveness depends on the classification task.

4. CAD IN RETROSPECT AND LOOKING AHEAD

4.A. Pitfalls and lessons learned from CAD to date

Although research and development of CAD in medicine
encompasses a wide range of applications in the patient care
process such as risk assessment, disease detection, treatment,
prognosis prediction, and recurrence monitoring, large scale
clinical studies on the effect of CAD are mostly focused on
CAD in screening mammography, probably because it was
the first FDA-approved CAD system for use as a second
reader and screening mammography was widely used. Never-
theless, the experience of CAD in screening mammography
may provide some useful insights to guide future CAD
development and clinical implementation in general.

CAD was initially developed as an “aid,” and not as a pre-
screener or primary decision maker. Given the limitations of
the machine learning technology in the early days of CAD,
CAD algorithms can achieve a sensitivity comparable to radi-
ologists but at the expense of relatively high false-positive
rates. However, CAD may make different types of errors than
human experts; the complementary use of CAD by clinicians
can improve the overall accuracy as demonstrated in many
observer studies.1 CAD in screening mammography was
therefore approved by FDA only as a second reader. As such,
the radiologist is expected to read as vigilant as they should
without CAD, and only uses CAD as a “spell checker” after
their own reading. They also should not dismiss their own
findings if there is no CAD mark at the suspected lesion that
they have found in their own first reading. If CAD is used as
it is intended and approved for, the disease detection sensitiv-
ity should increase or at least cannot be worse than radiolo-
gists reading alone. Since the sensitivity can be gained only if
radiologists would review the CAD marks and recall some
suspected lesions, the users should expect an increase in read-
ing time and also an increase in recalls. The amount of
increases would depend on a radiologist’s ability in distin-
guishing true from false positives on screening mammograms
and experience in using CAD.

A number of prospective and retrospective studies have
been conducted to compare breast cancer detection in screen-
ing mammography with and without CAD or to compare sin-
gle reader with CAD and double reading.57 Most prospective
clinical studies use historical statistics of performance mea-
sures as controls such as cancer detection rate and recall rate
collected over a period of time before CAD was implemented
in the clinic, and compared similar data collected after CAD
was implemented. These study designs involve a number of
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confounding factors such as changes in patient populations
and radiologists’ experiences between the two periods of time
that may contribute to differences in the performance statis-
tics in addition to the use of CAD. Some studies used a
matched design in which radiologists’ decision before and
after seeing the CAD output was recorded, which would be
more consistent with using CAD as a second opinion and
eliminate the differences in the patient cohorts and radiolo-
gists’ experiences, but there were concerns that the reader
could be influenced and become either less vigilant or overly
competitive against the computer aid. Gilbert et al.58 con-
ducted a relatively well-controlled three-center prospective
randomized clinical trial in the United Kingdom (CADET II)
to compare single reading using CAD with double reading.
Each of the three centers enrolled a comparable number of
patients at over 9,000 with a total of over 28,000. Each
patient’s screening mammogram was independently read in
the two arms and the first readers in the double reading arm
had experience matched to those of the single readers in the
CAD arm. The results showed that the sensitivity of the two
reading methods was comparable at 87.2% and 87.7%,
respectively. The recall rates in two centers were similar in
the two arms (3.7% vs 3.6% and 2.7% vs 2.7%) but the third
center had significantly higher recall rates in single reading
with CAD than in double reading (5.2% vs 3.8%), resulting
in an overall recall rate averaged over all centers at 3.9% and
3.4%, respectively, for the two arms. Gromet et al.59 con-
ducted a retrospective review in a single center to compare
double reading before CAD implementation to single reading
with CAD by the same group of high-volume radiologists. In
their double reading setting, the result from the first reading,
which could be considered a single reading, was also
recorded as a reference. The additional positive by the second
reader would be read by a third reader for a final decision on
recall. They reported that the sensitivity and recall rate from
the first reading were 81.4% and 10.2%, double reading was
88% and 11.9%, and single reading with CAD was 90.4%
and 10.6%, respectively. Single reading with CAD therefore
achieved 11% higher sensitivity than the first reading and
comparable sensitivity with double reading, and 3.9% higher
recall rate than the first reading but 12% lower than double
reading. These studies indicate that single reading with CAD
has the potential to improve cancer detection sensitivity to
the level achieved by double reading but at the cost of a mod-
erate increase in the recall rate compared to single reading
without CAD if properly used as a second reader.

The review of studies in the literature by Taylor et al.57

shows that the outcomes of radiologists using CAD in screen-
ing mammography varied over a wide range. The change in
cancer detection ranged from 0% to 19% with a weighted
average of 4% and the increase in recall rate from 0% to 37%
with a weighted average of 10%. In addition to the differences
in the study designs, the clinical environments and the experi-
ence of the radiologists, the variations may be attributed
partly to how the radiologists used CAD. Some users and
promoters might have misunderstood the limitations and
capabilities of CAD and ignore its intended use. Many users

appeared to over-rely on using the CAD marks for recall deci-
sions while others used CAD as prescreener to reduce read-
ing time and improve workflow during their readings. There
have not been systematic studies to investigate these issues
but the reported results and the discussions in some of these
studies revealed that the problems may be prevalent. Fenton
et al.60 observed a 30% increase in the recall rate and 4.5%
gain in cancer detection sensitivity, although they found in a
follow-up study61 that the increase in recall rate decreased to
6% after some time post CAD implementation but the gain in
sensitivity also decreased to 1.8%. Fenton et al.61 noted that
“radiologists with variable experience and expertise may use
CAD in a nonstandardized idiosyncratic fashion,” and “Some
community radiologists, for example, may decide not to
recall women because of the absence of CAD marks on other-
wise suspicious lesions.” Lehman et al.62 compared reading
digital mammograms with and without CAD by 271 radiolo-
gists in 66 facilities of the Breast Cancer Surveillance Con-
sortium (BCSC). They reported that the average sensitivity
decreased by 2.3% and the recall rate increased by 4.5% with
the use of CAD. They acknowledged that “Prior reports have
confirmed that not all cancers are marked by CAD and that
cancers are overlooked more often if CAD fails to mark a vis-
ible lesion” and that “CAD might improve mammography
performance when appropriate training is provided on how to
use it to enhance performance.” Unfortunately, Lehman et al.
simply concluded that insurers pay more for CAD with no
established benefit to women instead of addressing the prob-
lems. These studies showed that the lack of understanding of
the intended use and the limitations of CAD by users as well
as the lack of postmarket monitoring and regulation by FDA
on the misleading promotion and off-label use of computer
aids are significant factors that lead to improper use and
CAD “failure” to date. Furthermore, these experiences indi-
cate that a mismatch of the performance levels of the avail-
able CAD systems with the expectation and the need of the
clinicians will increase the risk of misuse and negative out-
comes.

4.B. Challenges and opportunities of CAD with
deep learning

The success of deep learning in many machine learning
tasks revives interests in research and development of various
types of CAD. In the recent challenges of developing CAD
methods for various classification tasks in medical imaging,
all winning teams used deep learning approach.63,64 Numer-
ous studies have reported promising results and many showed
significantly higher accuracy than radiologists or clinicians.
Although the enthusiasm drives a positive change for the
CAD field, the excessive optimism and high expectations
should be viewed with cautions.

While many studies have shown that deep learning can be
more accurate and robust than conventional machine learning
approach in many CAD applications, these algorithms have
not been extensively tested in routine clinical settings, where
many seemingly ideal hardware and software tools could fail
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when factors such as real-life variabilities in patient popula-
tion, data quality, user experiences, human–machine interac-
tion, and workflow efficiency play crucial roles. Although
some deep learning algorithms claimed to achieve near per-
fect AUC or better performance than expert clinicians in lab-
oratory testing,38,65,66 whether the performance can be
reproduced in clinical practice is yet to be proven. In reality,
no machine learning techniques can guarantee to be free of
false negatives and false positives, which is true also even for
the most experienced clinicians. Zech et al.67 reported large
variabilities in the generalization performance of DCNNs
when different combinations of training and test data col-
lected from three clinical sites were used. They also demon-
strated that DCNNs could learn information irrelevant to the
patient’s medical conditions and used it effectively for disease
classification. In their study, when a DCNN was trained with
case cohorts of varying disease prevalence, it would learn to
exploit the prevalence to make prediction, and thus general-
ized poorly to test cohorts that had very different prevalence
than the training cohort. A DCNN could also learn subtle dif-
ferences in the images, such as acquisition equipment and
techniques, image processing, and data compression proto-
cols, to distinguish images from different departments within
a hospital or from different hospitals, and apparently associ-
ate the differences with disease prevalence. Other studies also
reported that the DCNNs would learn features irrelevant to
the specific abnormalities of interest but correlate them with
the presence of the disease.43 These studies highlight the
importance to train and test the DCNNs properly with inter-
nal and external data sets as well as to analyze and understand
what information the DCNN has learned for a given classifi-
cation task. Researchers have developed methods to visualize
the feature maps at each convolutional layer inside the deep
learning structure68,69 and to highlight the target objects rec-
ognized by the DCNN with a class activation map.70 Initial
efforts have been made to use these tools to visualize the
detected location of abnormalities67,71 or to visualize the char-
acteristics of the deep features72 on medical images. These
efforts are the first steps toward understanding the inner-
workings of deep learning but they are still far from being
able to present the network response to clinicians with more
insightful medical interpretation, especially for more complex
applications than detection. Unlocking the black box-like pre-
diction from deep learning and discovering the correlation or
causal relationship of the machine findings with other clinical
data of the patient will be crucial areas of investigation to
enable CAD to deliver interpretable diagnosis and reasoning
to clinicians and advance CAD toward AI in medicine.

Besides proper training and testing to ensure the generaliz-
ability of a CAD tool, whether it can be successful will still
be determined by how clinicians use the CAD tool and the
overall value of implementing the tool in the clinic. Misun-
derstanding the limitations and capabilities of a CAD tool
and lack of proper training for the users can lead to unrealis-
tic expectation, misuse, and disappointment. Similar to the
use of medical devices or some medical procedures, it will be
prudent to implement quality assurance monitoring of the

performance of CAD over time and establish appropriate
metrics to track the effectiveness and efficiency of CAD in
clinical use. These outcome measures can provide useful evi-
dence to encourage wider adoption of the CAD tool or, even
if negative, can provide important data to guide further
improvement. The FDA recently proposed to reclassify medi-
cal image analysis devices, including computer-aided detec-
tion devices, that are intended to direct the clinician’s
attention to portions of an image that may reveal abnormali-
ties during interpretation of patient’s radiology images by the
clinician from class III (premarket approval) to class II (spe-
cial controls), and proposed special controls that the Agency
believes are necessary to provide a reasonable assurance of
safety and effectiveness of the device. However, the special
controls require the manufacturers to label the intended use
of the device and user training, but no postmarket monitoring
and regulations are proposed to enforce that the specified
requirements are followed during clinical use. The overhype
on AI could incite misuse of the deep learning-based CAD
devices, sending these new generation of CAD devices down
the same path as CAD in screening mammography. We have
seen early warning signs from the sensational news on acci-
dents by self-driving cars, whose drivers might have ignored
the warning that they should be the hands-on drivers, or on
machine recommending incorrect or unsafe cancer treatment
after the initial excitement about its helpfulness. The AAPM
CAD Subcommittee (renamed as AAPM Computer Aided
Image Analysis Subcommittee in 2018) has published two
opinion papers on the proper training and evaluation of CAD
devices,73 and the quality assurance and user training on
CAD devices in clinical use.74 The discussions have not
attracted much attention previously but it will be timely to
revisit these issues in view of the renewed interests in deep
learning-based CAD and computer-assisted quantitative
image analysis, or AI, in medical imaging, under the leader-
ship of organizations such as the AAPM, the American Col-
lege of Radiology (ACR) and the Radiological Society of
North America (RSNA).

In current clinical practice, workflow efficiency and costs
are major considerations. Clinicians will not be receptive to a
supplemental tool that requires additional time and/or costs
without obvious clinical benefits. It is important for CAD
researchers and developers to understand the preferred mode
of assistance by clinicians for each type of clinical tasks, and
design CAD tools and user interface appropriately by taking
into consideration the practical issues in clinical settings. In
radiology, clinicians may prefer to have CAD as a concurrent
or first reader that can help identify abnormality more effi-
ciently or reduce workload, or AI tools that can help manage
workflow by automatically triaging cases to prioritize reading
or treatment. A good example is the application of CAD in
DBT to generating synthetic mammograms (SM). DBT as an
adjunct to mammogram has been shown to be effective in
increasing sensitivity and reducing recalls in breast cancer
screening but a major concern is that it adds significant read-
ing time to each case. A synthetic mammogram is generated
from each DBT volume in replace of the two-dimensional
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(2D) mammogram to reduce radiation dose and to provide an
overview of the volume. Due to the limited depth resolution of
DBT, direct generation of a projected 2D mammogram from
DBT cannot recover all information of a true 2D mammo-
gram, especially the subtle lesions. With CAD technology, an
SM can be reconstructed with the CAD-detected suspected
lesions enhanced on the SM but no CAD marks are explicitly
shown. The CAD-detected lesions again include both true and
false positives; however, the false positives on an SM without
artificial markers seem to be less disturbing to radiologists. A
recent study75 showed that, in comparison to reading DM
alone, combo DM+DBT reading reduced recall rate without
increasing sensitivity, but DM+SM significantly increased the
sensitivity and further reduced recalls. Another recent obser-
ver study76 compared detection of breast cancer in DBT with
and without deep learning-based CAD as a concurrent reader
that marked suspected lesions and the confidence of malig-
nancy on the DBT slices. The results demonstrated that read-
ing with the CAD tool could significantly reduce the average
reading time by more than 50% for a DBT case, increase sen-
sitivity and specificity, as well as reduce recall rate. The con-
current CAD used in the study had a case-based sensitivity of
over 90% and a specificity of over 40%, which are higher than
all of the CAD tools currently used in screening DM. These
and other studies indicate that, in addition to improving the
performance of CAD tools, designing smart interfaces to deli-
ver CAD assistance or utilizing CAD to enhance visualization
and navigation that can improve reading efficiency will also
be areas of research interest to facilitate integration of CAD
into clinical workflow.

5. SUMMARY

CAD as a second reader has been shown to improve the
detection of early stage breast cancer, but the accompanied
increases in recall rate and reading time cause criticism. The
use of CAD as a concurrent reader before it is validated
results in no or little gain in cancer detection but can still
increase the recall rate. These experiences are useful lessons
to guide the evolution of CAD into practical clinical tools in
the future. The deep learning technology has demonstrated
strong potential to bring CAD to high performance levels,
opening the opportunities of adapting CAD as concurrent
reader or even first screener to improve both accuracy and
workflow, and more importantly, developing CAD for other
complex clinical tasks in the patient care process. However,
among the excessive hype and high expectations, CAD devel-
opers and users should be mindful of the importance of rigor-
ous training, validation, and independent testing, as well as
user training in clinical settings to ensure not only the gener-
alizability of the standalone performance to the real world
environment but also the effectiveness of clinicians using
CAD in practice. With proper user training and understand-
ing of the capability and limitations the deep learning tech-
nology, together with proper monitoring, objective
assessments, and constructive feedback to enable further
research and development, it can be expected that CAD

technology will continue to progress and reach the goal of
providing truly intelligent aids to improve health care.
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