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Abstract: Process regression methodology is underdeveloped relative to the frequency with

which pertinent data arise. In this article, the response is a binary indicator process represent-

ing the joint event of being alive and remaining in a specific state. The process is indexed by

time (e.g., time since diagnosis) and observed continuously. Data of this sort occur frequently

in the study of chronic disease. A general area of application involves a recurrent event with

non-negligible duration (e.g., hospitalization and associated length of hospital stay) and subject

to a terminating event (e.g., death). We propose a semiparametric multiplicative model for the

process version of the probability of being alive and in the (transient) state of interest. Under the
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proposed methods, the regression parameter is estimated through a procedure that does not re-

quire estimating the baseline probability. Unlike the majority of process regression methods, the

proposed methods accommodate multiple sources of censoring. In particular, we derive a compu-

tationally convenient variant of Inverse Probability of Censoring Weighting based on the additive

hazards model. We show that the regression parameter estimator is asymptotically normal, and

that the baseline probability function estimator converges to a Gaussian process. Simulations

demonstrate that our estimators have good finite sample performance. We apply our method to

national end-stage liver disease (ESLD) data. The Canadian Journal of Statistics xx: 1–25; 20??

c© 20?? Statistical Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t

prepare it themselves. La revue canadienne de statistique xx: 1–25; 20?? c© 20?? Société statis-

tique du Canada

1. INTRODUCTION

In biomedical applications, the response of interest can often be cast as a binary

indicator process indexed by time. We consider the setting wherein the indicator

at time t takes the value 1 (denoting ‘success’ in some form) when the patient is

alive and in a particular state, and 0 otherwise. Examples include the following:

(i) In a study of leukaemia patients, the response could be coded as 1 if the pa-

tient is alive and in remission t days following diagnosis, and 0 otherwise. (ii)

In a study of morbidity among end-stage renal disease patients, the response at

time t equals 1 if the patient is alive-and-not-hospitalized at time t, and 0 other-
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wise. (iii) An end-stage liver disease (ESLD) patient could be coded as having

response 1 if active on the liver transplant waiting list (at time t days after initial

waiting list registration), and 0 otherwise. When covariate effects are of chief

interest, temporal process regression is a natural way to cast the afore-described

data structure. Although several methods amenable to this data structure have

been developed in the last 10-15 years (beginning with Fine, Yan, & Kosorok,

2004), few modeling choices are available relative to the frequency with which

this data structure arises in practice. In this article, we develop semiparametric

process regression methods that can be used to model settings such as (i), (ii),

and (iii) above, in a flexible manner and making fewer assumptions regarding the

censoring process.

Formalizing the above-described data structure, suppose that (for a hypothet-

ical subject) D represents time of death, and E(t) is an indicator taking the value

1 if the subject is in the state of interest at follow-up time t (and 0 if not). We can

define A(t) = E(t)I(D > t), such that the survival time in the state of interest,

DA, can be written DA =
∫
[0,∞)

A(t)dt =
∫
[0,D]
E(t)dt. This can be considered

a special case of quality adjusted survival time (Gelber, Gelman, & Goldhirsch,

1989; Glasziou, Simes, & Gelber, 1990; Zhao & Wang, 2008), where ‘quality’

is defined as yes versus no (1 versus 0). In this article, we develop methods with

the goal of directly analyzing the process, E[A(t)].
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The methods we propose are motivated by the end-stage liver disease (ESLD)

setting. The preferred therapy for ESLD is deceased-donor liver transplantation.

However, due to a shortage of donor livers, medically suitable patients are placed

on a waiting list. A wait-listed patient is eligible to receive a transplant only when

‘active’; patients may be deactivated for several reasons, most of which are re-

lated to a decline in health status which renders the patient at least temporarily

unsuitable for transplantation. Hence, keeping the patient active on the waiting

list represents a successful outcome, in the sense that the patient not only contin-

ues to survive but also remains eligible for the preferred treatment. To date, there

has been little study of the probability of remaining active on the waiting list.

The response we consider could be framed as a temporal process,A(t), where

t is continuous. In contrast to a counting process, A(t) need not be a non-

decreasing function. In the context of our afore-described motivating example,

we let A(t) be the indicator of being both alive and active on the transplant wait-

ing list at time t. In several existing temporal process regression methods, the

expectation of A(t) is linked to linear components through a continuous link

function; for example, Fine, Yan,& Kosorok, 2004), Yan & Fine (2005), and Yan

& Huang (2009). This could be viewed as a generalized linear model indexed by

time. The regression coefficients β(t) could be solved at observed jump points.

In our work, we consider a semiparametric model for E[A(t)], where covari-

ates have multiplicative effects on a completely unspecified probability function
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indexed by time.

In this manuscript, we develop semiparametric regression methods for a tem-

poral process subject to dependent censoring. Two types of censoring are con-

sidered. Specifically, we let C1 denote censoring that is independent conditional

on external covariates. Dependent censoring, denoted by C2, is correlated with

the process of interest even given covariates introduced in the process regression

model. To avoid bias due to dependent censoring, we derive a variant of Inverse

Probability of Censoring Weighting (IPCW) (Robins & Rotnitzky, 1992) based

on a semiparmametric additive hazard model (Lin & Ying, 1994). We also de-

rive a stabilized version of the proposed inverse weights (Hernán, Brumback, &

Robins, 2000; Robins & Finkelstein, 2000; Zhang & Schaubel, 2011) to simplify

calculations and, hence, considerably reduce computing time in large data sets.

Analogous to a weighted partial likelihood score equation (Cox, 1972; Sasieni,

1993), the regression estimator could be estimated by the solution to an estimat-

ing equation free of the baseline probability.

Existing methods pertinent to the data structure of our interest include Scheike

& Zhang (2007), which involved directly modeling a state occupation probability

in a multi-state model. In addition, pseudo-observation approaches were devel-

oped by Andersen, Klein, & Rosthøj et al. (2003) and Grand & Putter (2016).

These methods are fully parametric and, as such, require full specification of the

baseline state occupation probability over time (unlike the proposed methods).
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Pseudo-value approaches also tend to be computationally cumbersome in large

data sets, and they tend to have rather restrictive assumptions on the censoring

mechanism.

Our methods have several novel features. First, the baseline probability func-

tion is represented in the model nonparametrically. This is a potentially big ad-

vantage, since covariate effects typically take centre stage in process regression

(and other regression settings), with little interest in modeling the baseline prob-

ability. We essentially profile out the baseline probability function, which results

in major computation reduction relative to a fully parametric probability model.

Second, the response indicator we consider is the joint event of survival and state

occupation. The limited number of process regression methods that considered

a terminating event typically modeled the state indicator conditional on survival.

Notwithstanding the utility of such approaches, it is useful to develop methods

for the joint outcome of survival and state occupation (a response for which few

methods have been developed). Third, existing process regression methods typi-

cally assume independent censoring, while the proposed methods allow for both

independent and dependent censoring. Fourth, in contrast with the vast major-

ity of methods that accommodate dependent censoring, we construct the inverse

weight under an additive hazards model.

The remainder of the article is organized as follows. We set up notation and

describe our proposed methods in the next section. In Section 3, we derive the
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asymptotic properties of the regression parameter estimator and baseline prob-

ability function estimator, with proofs provided in the Supplemental Materials

document. Simulation studies are performed to evaluate finite-sample properties

in Section 4. In Section 5, we apply the proposed methods to national ESLD

data. Finally, concluding remarks are given in Section 6. Note that R code for

carrying out the proposed methods is provided in the Supplementary Materials.

2. MODEL AND METHODS

We begin by formalizing the data structure described in Section 1. We then de-

scribe the proposed inference methods.

2.1. Notation and Assumed Models

Suppose that there are n independent subjects (i = 1, 2, . . . , n). Let Di be the

death (terminal event) time of subject i, and let Ei(t) be an indicator function

taking value 1 when subject i is occupying the state of interest at follow-up time

t. The outcome of interest is the joint event, being alive and occupying the state

of interest, which we denote by Ai(t) = Ei(t)I(Di > t). In the end-stage liver

disease example, Di represents death (in the absence of liver transplantation),

while Ei(t) = 1 if subject i is active on the liver transplant waiting list as of t

days following initial waiting list registration, and 0 otherwise. We letZi(t) be a

covariate vector, with any time-dependent elements being external (Kalbfleisch

& Prentice, 2002). The probability of interest is the probability that a subject i is
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alive and occupying the state of interest at time t,

πi(t) = P [Ai(t) = 1|Zi(t)].

We assume that the covariate Zi(t) has a multiplicative effect on a completely

unspecified baseline probability function, π0(t), such that

πi(t) = π0(t)exp[βT0Zi(t)], (1)

where β0 is the p-dimensional parameter vector of chief interest. Model (1) is

reminiscent of the Cox proportional hazards model. However, there are some

important differences, including the fact that πi(t) is interpreted as a marginal

probability, rather than a conditional probability rate, and that πi(t) need not be

monotone.

Two types of censoring are considered. Let C1i be the administrative cen-

soring, which is assumed to be conditionally independent of Ai(t) given Zi(t);

i.e.,

E[Ai(t)|Zi(t), C1i, C1i ≥ t] = E[Ai(t)|Zi(t)]. (2)

This is also known as covariate-dependent censoring, in the sense that C1i is al-

lowed to depend on the covariate employed in the model of interest. We let C2i

represent dependent censoring time; that is, C2i is not assumed to be condition-

ally independent Ai(t) given Zi(t). For example, in the context of our motivat-

ing example, a patient’s pre-transplant Ai(t) process is censored if and when the
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patient receives a liver transplant; i.e., the liver transplant hazard and mortality

hazard may be correlated, even conditional on Zi(t). We let Ci = C1i ∧ C2i rep-

resent the censoring time, where a ∧ b = min(a, b). Here we consider follow-up

time t ∈ [0, τ ], where τ is a pre-specified constant satisfying Pr(Ci ≥ τ) > 0 for

i = 1, 2, ..., n. In practice, τ could be chosen as the maximum observed censoring

time. To further characterize C2i, we letX†i (t) represent the time-dependent co-

variate at time t. Note thatX†i (t) would typically contain the elements of Zi(t),

as well as additional factors (the most important being internal time-varying co-

variates assumed to predict both Di and C2i). We denote the covariate history

as of time t by X̃ i(t) = {X†i (s), s ∈ [0, t)}. Finally, we let λC2
i (t) be the cause

specific hazard function of C2i which is defined as

λC2
i (t) = lim

δ→0

1

δ
Pr[t ≤ C2i < t+ δ|C2i ≥ t,Di ≥ t, X̃ i(t)].

We assume that, conditional on X̃ i(t), the cause-specific hazard of C2i at time t

does not further depend on the possibly unobserved, Di or Ei(u), u ∈ (t, τ ], i.e.,

λCi {t|X̃ i(t)} = λCi {t|X̃ i(t), C1i, C1i ≥ t,Di, Di ≥ t, Ei(u), u ∈ (t, τ ]}. (3)

This represents the critical ‘no unmeasured confounders’ for censoring assump-

tion (Robins, 1993; Robins & Finkelstein, 2000). The following semiparametric

additive hazards model (Lin & Ying, 1994) is assumed for C2i:

λC2
i (t;θ0) = λC2

0 (t) + θT0X i(t), (4)
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where λC2
0 (t) is the baseline hazard function for C2i and the covariate X i(t)

is chosen (e.g., through model selection techniques) to satisfy λC2
i [t|X i(t)] =

λC2
i [t|X̃ i(t)]. Note thatX i(t) need not be based on the covariate status at time t

and could, in fact, contain elements representing the covariate history. Finally, we

define ΛC2
i (t) =

∫ t
0
λC2
i (s)ds as the cumulative hazard function corresponding to

C2i, and ΛC2
0 (t) =

∫ t
0
λC2
0 (s)ds as the cumulative baseline hazard function.

Model (4) facilitates the calculation of the weight function, since the baseline

cumulative hazard cancels out after a particular stabilizing factor is introduced;

we provide specifics later. Note that model checking could proceed using tech-

niques proposed in Yin (2007).

As described, there are multiple sources of censoring. C1 is intended to rep-

resent independent censoring; e.g., administrative censoring, or random loss to

follow-up. C1 is assumed to be conditionally independent of the process A(t)

given the covariate Z(t). Note that, any time-dependent elements of Z(t) must

be external (Kalbfleisch and Prentice, 2002); e.g., air temperature, precipitation

status, etc. In contrast, C2 is intended to represent dependent censoring; e.g.,

a binary non-reversible treatment which is applied after follow-up begins. C2 is

assumed to be independent ofA(t) given X̃(t), which will contain internal time-

dependent covariates (e.g., blood pressure, serum creatinine). Covariate selection

for the C1 and C2 models should proceed separately.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:

This article is protected by copyright. All rights reserved.



20?? 11

In the next subsection, we describe the proposed methods for the scenario

where C1 is known. We then subsequently describe the proposed techniques for

the more frequently occurring set-up when C1 is not known.

2.2. Case 1: C1 Known

We first consider the case where the independent censoring time, C1i, is known

for all subjects. In such cases, C1i is known even if Di occurs first. This set-up

would apply, for example, in a clinical trial with staggered entry but no drop-out

or random loss to follow-up. This does not match most observational data, but it

is a useful starting point in terms of outlining the proposed estimation techniques.

Consider the following two estimating functions,

n∑
i=1

∫ τ

0

Zi(t)[Ai(t)− πi(t)]I(Ci ≥ t)dt,

n∑
i=1

[Ai(t)− πi(t)]I(Ci ≥ t).

These two estimating functions do not have expectation zero under assumptions

(1) and (2), since dependent censoring C2i is potentially correlated with Ai(t),

even conditional on Zi(t). To handle this issue, we utilize Inverse Probability

of Censoring Weighting (IPCW) (Robins & Rotnitzky, 1992) to accommodate

dependent censoring. Define

WA
i (t;θ0) = I(C2i ≥ t)exp{ΛC2

i [t ∧Di;θ0]} (5)
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as, heuristically, the inverse probability of being uncensored by C2i as of time

t. Note that dependent censoring cannot occur after death; this is an assumed

property of the data structure we consider. This makes sense intuitively, from the

perspective that C2i is driven by internal factors (including a subject’s survival),

which, by definition, shut down at death. For instance, in our motivating example,

a patient cannot receive a liver transplant after dying.

Now, consider the revised estimating functions

n∑
i=1

∫ τ

0

Zi(t)[Ai(t)− πi(t)]I(C1i ≥ t)WA
i (t;θ0)dt, (6)

n∑
i=1

[Ai(t)− πi(t)]I(C1i ≥ t)WA
i (t;θ0). (7)

Under the assumption given in (3), these two weighted estimating functions have

expectation zero. Basically, the proof follows from the fact that WA
i (t;θ0) can

be written as one minus a Martingale component of C2i, which is independent of

[Ai(t)− πi(t)]I(C1i ≥ t) conditional onX i(t) (Robins & Finkelstein, 2000). A

proof is provided in Section 4.6 of the Supplemental Materials.

In contrast to the majority of the existing literature, we derive a stabilizer

that is merely a function of t, which is valid, since E{g(t)[Ai(t)− πi(t)]I(C1i ≥

t)WA
i (t;θ0)|Zi(t)} = 0 will hold. We denote g(t) = exp[−ΛC2

0 (t ∧Di)] for this

purpose, such that

WB
i (t;θ0) = I(C2i ≥ t)exp

{
ΛC2
i (t ∧Di;θ0)− ΛC2

0 (t ∧Di)

}
. (8)
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Under the assumed additive hazard model from (4), WB
i (t;θ0) = I(C2i ≥

t)exp[
∫ t∧Di

0
θT0X i(s)ds], since ΛC2

0 (t) cancels out. This nice property enables us

to get unbiased estimating equations without estimating the baseline cumulative

hazard ΛC2
0 (t) and, hence, should increase computational efficiency.

Solving (7) for π0(t) by treating β as known, then substituting the estimated

π0(t) into (6) gives us the following estimating equation,

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β,W (θ0)]}I(C1i ≥ t)Wi(t;θ0)Ai(t)dt = 0, (9)

where Z̄[t;β,W (θ)] = Z(1)[t;β,W (θ)]/Z(0)[t;β,W (θ)], Z(k)[t;β,W (θ)] =

n−1
∑n

i=1Zi(t)
⊗kI(C1i ≥ t)Wi(t;θ)exp{βTZi(t)}, for k = 0, 1, 2, where

a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT , and with Wi(t;θ) set to either WA
i (t;θ) or

WB
i (t;θ). Having estimated β0 through the root of (9), denoted by β̂, we could

estimate π0(t) by solving (7),

π̂0(t) =

∑n
i=1Ai(t)I(C1i ≥ t)Wi(t;θ0)∑n

i=1 I(C1i ≥ t)Wi(t;θ0)exp[β̂
T
Zi(t)]

. (10)

Equation (10) does not constrain π̂0(t) to be≤ 1. The frequency with which out-

of-range π̂0(t) and π̂i(t) occur will be depend on the data set at hand. This issue

does not interfere with β̂ being a consistent estimator, which makes sense from

the perspective that, out-of-range or not, π̂0(t) was profiled out. Note that out-of-

range estimators have a long history of being tolerated in other areas of statistics.

Further discussion on this issue is provided in Section 6.
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We define the integral of baseline probability function up to time L,

P0(L) =

∫ L

0

π0(t)dt,

which could be interpreted as the restricted mean time survived in the state of

interest for a subject with covariate equal to the reference level for all elements.

The quantity P0(L) is estimated by P̂0(L) =
∫ L
0
π̂0(t)dt.

Based on model (4), one could estimate θ0 and dΛC2
0 (t) by θ̂ and dΛ̂C2

0 (t; θ̂).

From the works of Lin & Ying (1994), θ̂ and dΛ̂C2
0 (t; θ̂) are given by

θ̂ =

[
n∑
i=1

∫ ∞
0

Yi(t){X i(t)− X̄(t)}⊗2dt

]−1 [ n∑
i=1

∫ ∞
0

{X i(t)− X̄(t)}dNC2
i (t)

]

dΛ̂C2
0 (t; θ̂) =

∑n
i=1{dN

C2
i (t)− Yi(t)θ̂

T
X i(t)dt}∑n

i=1 Yi(t)
,

where NC2
i (t) = I(C2i ≤ t ∧Xi), dNC2

i (t) = NC2
i (t− + dt)−NC2

i (t−),

Yi(t) = I(Xi ≥ t) and Xi = Di ∧ Ci. Let X(k)(t) = n−1
∑n

i=1X i(t)
⊗kYi(t),

X̄(t) = X(1)(t)/X(0)(t). One could further estimate dΛC2
i (t;θ0) by

dΛ̂C2
i (t; θ̂) = dΛ̂C2

0 (t; θ̂) + θ̂
T
X i(t)dt. After that, the estimated weights

ŴA
i (t; θ̂) or ŴB

i (t; θ̂) can be calculated.

In general we would recommend WB
i (t; θ) over WA

i (t; θ), since the former is

more convenient computationally and generally more precise, with both charac-

teristics owing to the fact that ΛC2
0 (t) is bypassed.
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2.3. Case 2: C1 Not Known

Next we consider a more realistic scenario where independent censoring time is

random, with the randomness implying thatC1i is unknown whenDi occurs first.

Setting the missing censoring time to either Di or the maximum follow-up time,

τ , would introduce bias, since the indicator I(C1i > Di) is correlated with the

target process. As for C2i, ifDi happens first, then C2i could be treated as infinity

or considered to be subject to a dependent censoring hazard of 0 for t > Di. The

reason is that C2i relies on time varying covariate vector X i containing internal

covariates, which would shut down if death occurs. In this case, the hazard for

C2i is zero after Di. Moreover, the inverse weighting function Wi(t;θ0) remains

constant after Di if it is observed earlier than Ci.

Our solution is to impute missing C1i from its assumed model (Rubin, 2004).

Specifically, we assume that the hazard function for C1 follows the proportional

hazards model,

λC1
i (t;γ0) = λC1

0 (t)exp[γT0Zi(t)], (11)

where λC1
0 (t) is the baseline hazard and γ0 is an unknown regression parameter.

For subjects with Ci ≤ Di, we set the imputed censoring time as the known

censoring time. In themth imputed dataset, for subjects withCi > Di, we impute

Ĉ
〈m〉
1i from the estimated conditional survival function,

Ĝ(t; γ̂) = I(t ≥ Di)exp[−Λ̂C1
i (t; γ̂) + Λ̂C1

i (Di; γ̂)].
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Standard partial likelihood (Cox, 1975) techniques can be fitted to the observed

censoring time data {Xi, I(C1i ≤ Di ∧ C2i),Zi(t); t ∈ [0, τ ]}ni=1 to compute

γ̂. The baseline cumulative hazard function for ΛC1
0 (t) is estimated through

the method of Breslow (1972). Then, we set C〈m〉1i = I(Ci ≤ Di)Ci + I(Ci >

Di)Ĉ
〈m〉
1i . Note that the C〈m〉1i are bounded above at τ , with τ defined in Section

2.1. In total, we will create M imputation datasets. Within each imputed dataset

m, we substitute C〈m〉1i for C1i and set C2i as τ if Di < C1i. Estimators arising

from themth imputed data set are denoted by β̂
〈m〉

and π̂〈m〉0 (t). We then estimate

β0 and π0(t) by averaging the M imputation-specific estimators,

β̂
M

= M−1
M∑
m=1

β̂
〈m〉

; (12)

π̂M0 (t) =

∑M
m=1

∑n
i=1Ai(t)I(C

〈m〉
1i ≥ t)Wi(t;θ0)∑M

m=1

∑n
i=1 I(C

〈m〉
1i ≥ t)Wi(t;θ0)exp[Zi(t)T β̂

M
]
. (13)

Note that the multiple imputation method we employ does not sample the

parameters assumed to underly the C1 distribution but, instead, imputes C〈m〉1i

values from the same estimated survival curve. This procedure has been referred

to as Improper Imputation (Wang & Robins, 1998). As a consequence of this

choice, the well-established variance formula for multiple imputation (Rubin,

2004) does not apply, necessitating an explicit derivation of variances estimators

corresponding to (12) and (13) through the combination of several asymptotic

expansions. These issues are dealt with in the next section, along with our treat-

ment of the large-sample properties of the proposed estimators.
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Some commentary regarding our combination of inverse weighting and im-

putation is useful at this juncture. The sources of censoring, C1 and C2, have

very different implications in terms of their impact on parameter estimation.

Due to the marginal nature of πi(t), subjects contribute relevant follow-up un-

til time C1i, which may occur after Di. A similar issue arises in Gray (1988) and

Fine & Gray (1999) in the context of inference targeting the subdistribution haz-

ard function in the competing risks setting. Both Gray (1988) and Fine & Gray

(1999) used a weight function, rather than imputation. It is important to note

that the weight was not an inverse weight; if anything, it could be described as

an ‘inverse-inverse’ weight, since it corresponds to a conditional survival proba-

bility (as opposed to the inverse thereof). Essentially, the risk sets contributions

are weighted with respect the conditional probability of remaining uncensored at

time t (consider t > Di), given that Ci1 > Di. From this perspective, imputing

C1i does in fact appear consistent in spirit with the weights used in subdistribu-

tion modeling, which can be cast heuristically as mean imputation at the risk set

level. In fact, Ruan & Gray (2008) later proposed subdistribution hazard meth-

ods that involved imputing censoring times. An analogous imputation scheme

was later employed by Schaubel & Zhang (2010).

Note that C1i marks the end of relevant follow-up and, hence, is a variate we

want to observe. One could use either weighting (Ghosh and Lin, 2002) or im-

putation techniques to recover the missingness of C1i, but we choose the latter
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due to computational ease. Provided we either observe C1i or can validly impute

its value, the [0, C1i] experience could be analyzed without inverse weighting if

not for dependent censoring, C2i. In line with the setting where IPCW is typi-

cally employed, we inverse weight the uncensored experience to reflect data that

would have been observed if C1i were the only source of censoring. The events

Di and C2i serve as competing risks in the sense of Prentice et al. (1978). From

this angle, dependent censoring does not occur after Di; hence, the weight func-

tion not incrementing for t > Di, per (5).

3. ASYMPTOTIC PROPERTIES

We provide asymptotic results and proofs for the known C1 case in the Supple-

mental Materials. Here, we focus on the random C1 setting under the weight

WB
i (t;θ0).

Theorem 1. Under assumptions (1), (2), (3), and (11), β̂
M

is a consis-

tent estimator of β0, and as n→∞, n1/2(β̂
M
− β0) converges in distribu-

tion to a mean-zero normal random variable with a variance-covariance matrix

Σ(θ0,β0,γ0,M) = E[f
βB
1 (θ0,β0,γ0,M)⊗2], where

f
βB
i (θ,β,γ,M) = Ω[β,WB(θ)]−1[Φ

βB
1i (θ,β,γ,M) + Φ

βB
2i (θ,β)];

Φ
βB
1i (θ,β,γ,M) =

∫ τ

0

{Zi(t)− z̄[t;β,WB(θ)]}WB
i (t;θ)

1

M

M∑
m=1

dM
〈m〉
i (t;β,γ);

dM
〈m〉
i (t;β,γ) =

[
Ai(t)− π0(t)exp{βTZi(t)}

]
I(C

〈m〉
1i ≥ t;γ)I(C2i ≥ t)dt.
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Note that we define:

Φ
βB
2i (θ,β) = HB[β,θ,WB(θ)][ΩC2 ]−1uC2

i (θ).

For πM0 (t), we have the following result.

Theorem 2. Under assumptions (1), (2), (3), and (11), as n→∞, n1/2(π̂M0 −

π0) converges weakly to a mean-zero Gaussian process with a variance and co-

variance matrix between n1/2[π̂M0 (s)− π0(s)] and n1/2[π̂M0 (t)− π0(t)], given by

σ(s, t,θ0,β0,γ0,M) = E[ξ1(s,θ0,β0,γ0,M)ξ1(t,θ0,β0,γ0,M)], where

ξi(t,θ,β,γ,M) =
f̃π1,Bi (t,θ)− [Ef̃π1,B1 (t,θ)]f̃π2,Bi (t,θ,β,γ,M)

E[f̃π2,B1 (t,θ,β,γ,M)]
;

f̃π2,Bi (t,θ,β,γ,M) = f̃π21,Bi (t,θ,β,γ,M) + f̃π22,Bi (t,θ,β,γ,M) + f̃π23,Bi (t,θ,β);

f̃π21,Bi (t,θ,β,γ,M) =
1

M

M∑
m=1

I(C
〈m〉
1i ≥ t;γ)eβ

TZi(t)WB
i (t;θ);

f̃π22,Bi (t,θ,β,γ,M) = z(1)[t;β,WB(θ)]Tf
βB
i (θ,β,γ,M).

For computational convenience, we suggest estimating the variances given

above with the weight function treated as known. In this case, the proposed vari-

ance estimator will be tend to be conservative (Hernán, Brumback, & Robins,

2000; Pan & Schaubel, 2008; Zhang & Schaubel, 2011). We evaluate this ap-

proximation in the next section.
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4. SIMULATION STUDIES

We report on simulations to evaluate performance of our methods. The results

of three weights are evaluated: Wi(t) = 1, which does not correctly accommo-

date the censoring mechanisms and is included for comparison purposes only;

WA
i (t;θ0) defined in (5); and the stabilized weights, WB

i (t;θ0), defined in (8).

For each simulation setting, two scenarios (n = 500, n = 1, 000) are gen-

erated. The covariate Z = (Z1, Z2)
′ has elements that are Bernoulli(0.5). The

terminal event, D, is generated by the hazard function λD0 exp{α′0Z}, where

λD0 = 0.015 or 0.02, and α0 = (−0.609, 0.609)′. The target model represents

the probability of being alive and active, π(t) = π0(t)exp{β′0Z}, where π0(t) =

0.3− 0.0025t, for t = 1, 2, ..., 100. The event of being active on waiting list

given the subject is alive is sampled from the conditional probability, P{E(t) =

1|D > t,Z} = π(t)exp[λD × t].

We generated two censoring times, C1 and C2, for each individual.

The independent censoring time, C1, is generated from the hazard function

λC1
0 exp{γ ′0Z}, where λC1

0 = 0.015 and γ0 = (0.609,−0.609)′. For the depen-

dent censoring time, C2, we first generate Xt, where Xt = min{D,−40×

log[Z1ε1 + (1− Z2)(1− ε1)] + 5ε2}, ε1 =
∫ D
1

[1− A(t)] dt/100, ε2 ∼ Uni-

form(0,1). Let X(t) = I(Xt ≥ t), with X(t) being dependent on A(t) even con-

ditional on Z due to its mutual association with ε1. Next, we generate time-

dependent censoring time C2 from the hazard function λC2
0 + φ1Z1 + φ2Z2 +
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φ3X(t). Note that ε1 and ε2 are mutually independent.

We set λD0 = 0.015, λC2
0 = 0.005, φ1 = φ2 = −0.002, and φ3 = 0.025 for

heavy censoring C2, which results in about 36% of subjects being censored by

C2 and 36% of subjects censored by C1. Moreover, two magnitudes of β0 are

considered: 0.916 and 0.405. Next we consider a light censoring case for C2,

where λD0 = 0.02, λC2
0 = 0.003, φ1 = φ2 = −0.001, and φ3 = 0.015. This set-up

results in 23% of subjects are censoring by C2 and 37% of subjects are censoring

by C1. In Tables 1 and 2 we treat censoring time as random and obtain imputed

estimators based on M = 5.

In each setting, the biases of β̂ and P̂0(50) are very small for both ŴA
i (t; θ̂)

and ŴB
i (t; θ̂), indicating that our estimators are consistent. Moreover, the aver-

age asymptotic standard errors (ASEs) are generally close to, but slightly larger

than the empirical standard deviations (ESDs). This results from our treating the

estimated weight function as fixed. The empirical coverage probabilities (ECPs)

are also around 0.95, implying the accuracy of large-sample confidence intervals.

Due to the substantial biases of not adjusting for time-dependent confounders,

the unweighted method exhibits bias and has inaccurate estimated variance and

poor coverage probabilities.

Some further notes are in order. First, M = 1 is valid, unlike when the vari-

ance formula in Rubin (2004) is employed. Increasing M will generally increase

precision and improve empirical coverage probability, albeit with diminishing
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returns; this was demonstrated empirically in Zhan (2017). Second, simulation

results with n = 100 were not very good (Zhan, 2017). We do not recommend

the methods for sample sizes less than n = 500.

5. ANALYSIS OF END-STAGE LIVER DISEASE DATA

We applied the proposed methods to model the waiting list active/inactive pro-

cess using data obtained from the Scientific Registry of Transplant Recipients

(SRTR). The SRTR data system includes data on all donors, wait-listed can-

didates, and transplant recipients in the U.S., as submitted by the members of

the Organ Procurement and Transplantation Network (OPTN), and has been de-

scribed elsewhere. The Health Resources and Services Administration (HRSA),

U.S. Department of Health and Human Services provides oversight to the activ-

ities of the OPTN and SRTR contractors.

In the end-stage liver disease (ESLD) setting, the number of available

deceased-donor livers is always less than the number of patients in need of liver

transplantation. Once an ESLD patient is wait-listed, the patient’s status can os-

cillate between active and inactive based on their medical condition. A wait-

listed patient can receive deceased-donor organ offers only when active. In this

application, follow-up time t represents time since registration on the waiting

list. The process E(t) = 1 when the patient is active and 0 when inactive. We

model E[A(t)|Z], where A(t) = 1 when the patient is alive and active on the

waiting list.
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TABLE 1: Simulations results for β̂
5

with random censoring time based on M = 5, and 5, 000 replicates.

Censoring n β0 Weights Bias ASE ESD CP

Heavy 500 (0.916, -0.916) 1 (0.160, -0.051) (0.081, 0.080) (0.077, 0.075) (0.486, 0.924)

WA (0.000, 0.006) (0.098, 0.097) (0.092, 0.094) (0.958, 0.952)

WB (0.017, -0.013) (0.090, 0.089) (0.085, 0.086) (0.956, 0.950)

(0.405, -0.405) 1 (0.166, -0.053) (0.082, 0.080) (0.079, 0.077) (0.475, 0.910)

WA (0.003, 0.002) (0.106, 0.106) (0.104, 0.107) (0.949, 0.949)

WB (0.020, -0.013) (0.096, 0.097) (0.092, 0.095) (0.946, 0.947)

1,000 (0.916, -0.916) 1 (0.162, -0.051) (0.057, 0.057) (0.056, 0.053) (0.179, 0.874)

WA (0.001, 0.004) (0.070, 0.069) (0.064, 0.067) (0.964, 0.958)

WB (0.016, -0.010) (0.064, 0.064) (0.059, 0.061) (0.958, 0.955)

(0.405, -0.405) 1 (0.166, -0.055) (0.059, 0.057) (0.057, 0.055) (0.183, 0.857)

WA (0.001, 0.006) (0.076, 0.077) (0.073, 0.075) (0.955, 0.953)

WB (0.017, -0.012) (0.069, 0.070) (0.064, 0.067) (0.952, 0.952)

Light 500 (0.916, -0.916) 1 (0.097, -0.062) (0.090, 0.089) (0.085, 0.086) (0.824, 0.902)

WA (-0.006, 0.007) (0.103, 0.103) (0.098, 0.097) (0.958, 0.962)

WB (0.010, -0.009) (0.098, 0.098) (0.093, 0.094) (0.958, 0.954)

(0.405, -0.405) 1 (0.107, -0.071) (0.091, 0.091) (0.088, 0.088) (0.793, 0.885)

WA (0.013, -0.012) (0.107, 0.107) (0.103, 0.106) (0.950, 0.953)

WB (0.025, -0.025) (0.101, 0.101) (0.096, 0.096) (0.950, 0.949)

1,000 (0.916, -0.916) 1 (0.099, -0.059) (0.064, 0.063) (0.061, 0.060) (0.665, 0.865)

WA (-0.006, 0.008) (0.073, 0.073) (0.067, 0.069) (0.964, 0.953)

WB (0.005, -0.004) (0.070, 0.070) (0.064, 0.065) (0.968, 0.963)

(0.405, -0.405) 1 (0.108, -0.071) (0.065, 0.064) (0.062, 0.062) (0.614, 0.818)

WA (0.013, -0.013) (0.076, 0.076) (0.071, 0.073) (0.957, 0.954)

WB (0.020, -0.023) (0.072, 0.072) (0.067, 0.068) (0.958, 0.950)
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A patient’s active process may be censored by liver transplantation, with such

censoring representing dependent censoring due to mutual correlation between

A(t) and liver transplantation. Note that, due to the nature of the liver allocation

system in the U.S., a patient’s rank on the waiting list is determined by their

Model for End-stage Liver Disease (MELD) score. In particular, the waiting list

is sequenced in decreasing order of (current) MELD score. Since higher MELD

scores correspond to higher pre-transplant mortality, a model of pre-transplant

outcomes based on baseline (time zero) patient characteristics will generally be

subject to dependent censoring via deceased-donor liver transplantation, C2. Pa-

tients are subject to independent right censoring due to administrative censor-

ing and living donor transplantation, aggregated into C1. Note that living-donor

transplants are not allocated using the MELD system and, as such, are not deter-

mined by internal time-varying covariates.

The sample size of this study is n = 53, 991. There were 13,180 subjects ob-

served to die, 17,982 patients who were independently censored, and 22,829

subjects who were dependently censored. Baseline covariates include blood type,

gender, race, BMI status, hospitalization, age, region, and values at wait-listing

for MELD score, serum albumin, and serum sodium. Comorbid conditions are

also included, for example hepatitis C, noncholestatic, cholestatic, acute hepatic

necrosis, metastatic disease, and malignant neoplasm. The covariate information

at time zero is used to characterize the process of being alive and active on the
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waiting list, and to implement the imputation of C1. As for time dependent co-

variates, we include more predictors to the baseline covariates set: MELD all

score, albumin levels, sodium, ascites, encephalitis, and dialysis status; we ex-

clude baseline MELD, baseline albumin, and baseline sodium. Moreover, con-

tinuous variables are centred at their mean values.

The stabilized weights, WB(t;θ), were used to remove bias due to dependent

censoring. To further mitigate the impact of outliers, the weights were capped by

150. For subjects with observed death, we imputed C1 as described in Section 2.

Due to the size of the data set, we used M = 1.

Covariate effects along with P -values are listed in Table 3. Each 5-year

increase in age at wait-listing was associated with a significant 2% decrease

in alive/active probability. Relative to the United Network for Organ Sharing

(UNOS) Region with the greatest number of wait-listed patients (Region 5), Re-

gions 1, 10, and 11 had significant reductions in alive/active probability, at 17%,

6%, and 16%, respectively. Region 7 had a 6% increase (p = 0.01). The proba-

bility of being alive and active on the waiting list decreased by 1% for each (in-

teger) increase in MELD score, and increased by 9% per unit increase in serum

albumin.

The estimated baseline probability function is plotted in Figure 1. We esti-

mated the integral of baseline probability of being alive and active over [0, 5] at

3.92 years; this indicates that a ‘baseline’ patient (i.e., a patient with all covariates
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FIGURE 1: Estimated baseline probability of the probability of being and alive and active on the waiting

list (solid line), along with point-wise 95% confidence intervals (dashed line).

equal to the reference) would be expected to be alive and active on the waiting

list for approximately 4 of the first 5 years after wait-listing, in the absence of

liver transplantation. Point-wise 95% confidence interval of π̂0(t) calculated at

each day is also shown.

6. CONCLUDING REMARKS

In this article, we propose semiparametric temporal process regression methods.

Relative to existing process regression methods, our methods are distinguished

by several features. In particular, the baseline probability (as a function of time)

is unspecified and is essentially profiled out in the estimation of the regression
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coefficient (presumably of chief interest in most studies). The method accommo-

dates dependent right censoring, and it does so through a computationally attrac-

tive additive hazards model. In our context, the additive hazard model facilities

the calculation of weight function, since the baseline cumulative hazard function

cancels out. Moreover, the proposed methods accommodate independent right

censoring through imputation rather than a weight function.

The logit link function used in direct binomial regression (e.g., Schieke &

Zhang, 2007) may be preferable to the log link function used in the proposed

method, since the estimated baseline probability, π̂0(t) in (10), is not bounded by

1. Several considerations are important in this regard. First, out-of-range fitted

values may or may not be a problem; this depends on the data at hand. Second,

fitted values are frequently of little or no interest to clinical and epidemiologic in-

vestigators. Third, our regression parameter estimator is consistent even if fitted

values are out of range, owing to the fact that π0(t) is profiled out of the estimat-

ing equation for β̂; this phenomenon was demonstrated through simulation in

Zhan & Schaubel (2018). Fourth, our model is semiparametric, with an unspec-

ified baseline probability. Direct binomial regression, being fully parametric, re-

quires correct specification of the baseline probability (often of little interest in

applications). Use of the log link is central to the computational techniques that

enable not specifying the baseline probability in our approach. Use of the log

link in (1) enables the use of proportional hazards software (e.g., coxph in R
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(Therneau T, 2015) and proc phreg in SAS (SAS Institute Inc.)) after appropriate

data augmentation, since (9) is analogous to a weighted Cox score function.

Our methods make the distinction between independent censoring, C1, and

dependent censoring, C2. This is necessary since the variates play very different

roles in our framework. C1 represent the end of a subject’s potential follow-up.

This is the case in several existing methods, including the popular subdistribution

hazard modeling of Fine & Gray (1999). The methods of Fine & Gray (1999) do

not impute unobserved C1 but, instead, apply a weight function which represents

the conditional probability of being uncensored (given that the subject was un-

censored at the time of death). This weight function is essentially playing the

same role as our imputation of C1. In contrast, C2 is a nuisance process, with its

corresponding inverse weight seeking to recover the data that would be observed

if the process underlying C2 were absent.
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Epidemiology, Birkhäuser, Boston, MA, 297-331.

Ruan, P. K. & Gray, R. J. (2008). Analyses of cumulative incidence functions via nonparametric

multiple imputation. Statistics in Medicine, 27, 5709–5724.

Rubin, D. B. (2004). Multiple Imputation for Nonresponse in Surveys, Vol. 81 of Wiley Classics

Library, John Wiley & Sons, Hoboken, New Jersey.

SAS Institute Inc., Version 9.3, Cary, NC, USA.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:

This article is protected by copyright. All rights reserved.



20?? 31

Sasieni, P. (1993). Maximum weighted partial likelihood estimators for the cox model. Journal

of the American Statistical Association, 88, 144–152.

Schaubel, D. E. & Zhang, M. (2010). Estimating treatment effects on the marginal recurrent

event mean in the presence of a terminating event. Lifetime Data Analysis, 16, 451–477.

Scheike, T. H. & Zhang, M. J. (2007). Direct modelling of regression effects for transition prob-

abilities in multistate models. Scandinavian Journal of Statistics, 34, 17–32.

Therneau, T. (2015). A Package for Survival Analysis in S. version 2.38, https://CRAN.R-

project.org/package=survival.

Wang, N. & Robins, J. M. (1998). Large-sample theory for parametric multiple imputation pro-

cedures. Biometrika, 85, 935–948.

Yan, J. & Fine, J. P. (2005). Functional association models for multivariate survival processes.

Journal of the American Statistical Association, 100, 184–196.

Yan, J. & Huang, J. (2009). Partly functional temporal process regression with semiparametric

profile estimating functions. Biometrics, 65, 431–440.

Yin, G. (2007). Model checking for additive hazards model with multivariate survival data. Jour-

nal of Multivariate Analysis, 98, 1018–1032.

Zhan, T. (2017). Ph.D Dissertation, University of Michigan, Department of Biostatistics.

Zhan, T., & Schaubel, D. E. (2018). Semiparametric temporal process regression of survival-out-

of-hospital. Lifetime Data Analysis, 25, 1–19.

Zhang, M. & Schaubel, D. E. (2011). Estimating differences in restricted mean lifetime using

observational data subject to dependent censoring. Biometrics, 67, 740–749.

Zhao, Y. & Wang, H. (2008). Empirical likelihood inference for the regression model of mean

quality-adjusted lifetime with censored data. Canadian Journal of Statistics, 36, 463–478.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique

This article is protected by copyright. All rights reserved.



32 ZHAN AND SCHAUBEL Vol. xx, No. yy

Received 9 July 2009

Accepted 8 July 2010

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:

This article is protected by copyright. All rights reserved.



20?? 33

TABLE 2: Simulations results for P̂ 5
0 (50) with random censoring time based on M = 5, and 5, 000

replicates.

Censoring Π0(50) n β0 Weights Bias ASE ESD CP

Heavy 11.812 500 (0.916, -0.916) 1 -1.871 0.748 0.715 0.296

WA 0.069 0.968 0.888 0.963

WB -0.319 0.899 0.864 0.931

(0.405, -0.405) 1 -1.906 0.750 0.721 0.286

WA 0.063 0.957 0.886 0.963

WB -0.336 0.896 0.840 0.932

1,000 (0.916, -0.916) 1 -1.896 0.531 0.512 0.062

WA 0.015 0.683 0.627 0.962

WB -0.324 0.641 0.596 0.927

(0.405, -0.405) 1 -1.901 0.533 0.516 0.058

WA 0.012 0.673 0.623 0.966

WB -0.311 0.638 0.586 0.932

Light 11.812 500 (0.916, -0.916) 1 -1.162 0.852 0.812 0.714

WA 0.138 1.009 0.931 0.961

WB -0.204 0.953 0.907 0.943

(0.405, -0.405) 1 -1.153 0.858 0.825 0.719

WA 0.128 1.008 0.947 0.960

WB -0.201 0.955 0.904 0.949

1,000 (0.916, -0.916) 1 -1.193 0.604 0.572 0.491

WA 0.089 0.714 0.657 0.965

WB -0.186 0.678 0.629 0.953

(0.405, -0.405) 1 -1.179 0.608 0.580 0.506

WA 0.078 0.711 0.665 0.962

WB -0.175 0.678 0.625 0.954
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TABLE 3: Analysis of Liver transplant data: Covariate effects on being active on the waiting list and being

alive (based on M = 1 imputation)

Covariate Value β̂ ŜE(β̂) p exp(β̂)

Blood type (v.s. O) A 0.0113 0.0140 0.421 1.01

AB -0.0057 0.0390 0.8843 0.99

B 0.0160 0.0202 0.4265 1.02

Gender Female 0.0234 0.0131 0.0748 1.02

Race (v.s. White) Black 0.0036 0.0257 0.8898 1.00

Hispanic 0.0266 0.0182 0.1441 1.03

Asian 0.0284 0.0291 0.3287 1.023

Other -0.0396 0.0698 0.5707 0.96

Diagnosis HCV -0.0245 0.0215 0.2544 0.98

Noncholestatic 0.0388 0.0204 0.0568 1.04

Cholestatic 0.0450 0.0256 0.0792 1.05

Acute hepatic necrosis 0.1116 0.0429 0.0094* 1.12

Metastatic disease 0.0246 0.0500 0.6229 1.03

Malignant neoplasm -0.1130 0.0464 0.0149* 0.89

BMI (v.s. (20, 25)) [0, 20] 0.0178 0.0277 0.5217 1.02

[25, 30) -0.0011 0.0159 0.9436 1.000

[30,∞) -0.0513 0.0169 0.0024* 0.95

Hospitalization status ICU 0.1652 0.0500 0.001* 1.18

(v.s. not hospitalized) Not ICU -0.0279 0.0323 0.3868 0.97

Age per 5 years -0.0205 0.0030 <.0001* 0.98

Region (v.s. 5) 1 -0.1924 0.0453 <.0001* 0.83

2 0.0204 0.0213 0.3394 1.02

3 -0.0259 0.0276 0.3493 0.97

4 -0.0423 0.0222 0.0572 0.96

6 -0.0646 0.0479 0.1772 0.94

7 0.0611 0.0248 0.0135* 1.06

8 -0.0511 0.0304 0.0932 0.95

9 -0.0130 0.0232 0.5771 0.99

10 -0.0587 0.0285 0.0397* 0.94

11 -0.1753 0.0328 <.0001* 0.84

MELD per unit score -0.0078 0.0016 <.0001* 0.99

Albumin per mmol/L 0.0850 0.0107 <.0001* 1.09

Sodium per g/dL 0.0026 0.0018 0.1481 1.00
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