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Abstract Haffer’s (Science 165: 131–137, 1969) Pleistocene refuge theory has
provided motivation for 50 years of investigation into the connections between
climate, biome dynamics, and neotropical speciation, although aspects of the orig-
inal theory are not supported by subsequent studies. Recent advances in paleocli-
matology suggest the need for reevaluating the role of Quaternary climate on
evolutionary history in tropical South America. In addition to the many repeated
large-amplitude climate changes associated with Pleistocene glacial-interglacial
stages (~40 kyr and 100 kyr cyclicity), we highlight two aspects of Quaternary
climate change in tropical South America: (1) an east-west precipitation dipole,
induced by solar radiation changes associated with Earth’s precessional variations
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(~20 kyr cyclicity); and (2) periods of anomalously high precipitation that persisted
for centuries-to-millennia (return frequencies ~1500 years) congruent with cold
“Heinrich events” and cold Dansgaard-Oeschger “stadials” of the North Atlantic
region. The spatial footprint of precipitation increase due to this North Atlantic
forcing extended across almost all of tropical South America south of the equator.
Combined, these three climate modes present a picture of climate change with
different spatial and temporal patterns than envisioned in the original Pleistocene
refuge theory.

Responding to these climate changes, biomes expanded and contracted and
became respectively connected and disjunct. Biome change undoubtedly influenced
biotic diversification, but the nature of diversification likely was more complex than
envisioned by the original Pleistocene refuge theory. In the lowlands, intermittent
forest expansion and contraction led to species dispersal and subsequent isolation,
promoting lineage diversification. These pulses of climate-driven biotic interchange
profoundly altered the composition of regional species pools and triggered new
evolutionary radiations. In the special case of the tropical Andean forests adjacent to
the Amazon lowlands, new phylogenetic data provide abundant evidence for rapid
biotic diversification during the Pleistocene. During warm interglacials and intersta-
dials, lowland taxa dispersed upslope. Isolation in these disjunct climate refugia led
to extinction for some taxa and speciation for others.

Keywords Refugia · Tropical South America · Quaternary · Paleoclimate ·
Phylogenetics · Geogenomics

1 Introduction

Publication of Haffer’s (1969) Pleistocene refuge theory encouraged researchers to
seek connections between climate-biome dynamics and neotropical diversification.
Based on centers of modern endemism identified respectively for birds and lizards,
Haffer (1969) and Vanzolini and Williams (1970) independently proposed that
pulses of forest contraction and expansion in the Amazon basin, driven by Pleisto-
cene glacial-interglacial climate cycles, forced population isolation and divergence,
promoting allopatric speciation in forest refugia. This model assumed large-
magnitude drying of the Amazon during the global ice ages that produced the
contraction of wet tropical forest into isolated patches with replacement of interven-
ing forest by vast expanses of savanna. In recent years, the Pleistocene refuge theory
for Amazonia has been rejected by some who found little evidence either for
significant Pleistocene aridity or for forest fragmentation (Colinveaux et al. 1996;
Bush et al. 2004). The contention was also made that crown-group ages in some
groups of organisms date to the Neogene, in disagreement with the temporal
framework of diversification implied in the Pleistocene refuge theory (Moritz et al.
2000; Hoorn et al. 2010; Prates et al. 2015). Yet phylogenetic studies across a wide
range of plant and animal taxa increasingly point to the fact that many neotropical

52 P. A. Baker et al.



sister species did actually diverge in the Pleistocene (Richardson et al. 2001; Hughes
and Eastwood 2006; Madriñán et al. 2013; Garzón-Orduña et al. 2014; Koenen et al.
2015; Byrne et al. 2016), opening the possibility of a role for Quaternary climate
variation in the diversification of these biota (Rangel et al. 2018; Wheatley et al.
2019, but see Rull and Carnaval 2019 and Vargas and Dick 2019).

In this contribution, we first review major advances in our knowledge of the
nature of Quaternary paleoclimate variation at scales relevant to community com-
positional change and biotic diversification in tropical South America. We address if,
and how, Quaternary climate variation affected forest distribution (Fig. 3.1) and
composition, to the limited extent that we know either. Finally, we briefly discuss the
evidence from biogeographic and phylogenetic studies relevant to the question of
how regional taxa may have evolved during, and in response to, periods of Quater-
nary climate change.

Fig. 3.1 Biome map of tropical South America depicting the distribution of highland habitats
(paramo and montane forests in the Andes and Guiana Shield region), rain forests (including
Amazonia, Chocó, and the Brazilian Atlantic Forest), Patagonian steppes, grasslands (including
the Cerrado, Chaco, Pampas, and Venezuelan Llanos), dry forests, xeric scrublands (including the
Brazilian Caatinga), wetlands (including the Brazilian Pantanal), and Chilean Matorral scrublands
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2 Climate Variability During the Quaternary

2.1 Was Amazonia Drier During the Last Glacial Maximum
(and Other Glacial Intervals of the Quaternary) Than It Is
Today?

We start our discussion of Quaternary climate variability by addressing the first
question that has been oft revisited, but never definitively answered. Earth’s global
climate was stunningly different only 20,000 years ago, at the Last Glacial Maxi-
mum (LGM), compared to today. Atmospheric CO2 was reduced to ~180 ppmv;
large ice sheets were present across boreal continental regions, particularly in North
America; global eustatic sea level dropped 120 m below present; and global air
temperatures averaged ca. 5 !C colder than modern. In tropical South America,
Andean snow lines lowered approximately 1 km and glacial erosion greatly
increased the sediment load of Andean rivers and sediment delivery to inland basins
(Fritz et al. 2007) and to the Atlantic Ocean. The Amazon continental shelf was
exposed subaerially and likely became vegetation covered (Leite et al. 2016), and the
Amazon river incised its course for nearly 300 km across the shelf, delivering much
of its sediment load to the Amazon deep-sea fan (Nace et al. 2014). These changes
during the LGM were only the latest manifestation of some 50 prior glacial stages
that occurred over the past 2.6 million years: lower-amplitude warm-cold cycles
every 40 kyr from 2.6 to ca. 0.8 Ma and higher-amplitude cycles every 100 kyr since
(Lisiecki and Raymo 2005).

A common and persistent misconception about Amazon paleoclimate is that the
LGM (and earlier glacial stages) was drier than present throughout all of Amazonia.
Whereas thermodynamics informs that ca. 35% less water vapor can be held in
saturated air due to the ca. 5 !C air temperature lowering deduced for the LGM in
tropical South America (Stute et al. 1995), atmospheric dynamics can compensate
for lower water vapor content by increasing low-level winds bringing moisture from
its Atlantic source into the Amazon. Such an increase could have been brought about
both by a southward shift of the zonal mean position of the western Atlantic Inter-
tropical Convergence Zone (ITCZ) during the LGM (Black et al. 1999; Peterson
et al. 2000; Baker et al. 2001a) and the posited strengthening of the northeast Trades
(McGee et al. 2018). Summer insolation over South America was at a maximum
during the LGM and intensified the South American summer monsoon (SASM)
(Baker et al. 2001a, b; Cruz et al. 2005). Together, these three factors (ITCZ, trade
winds, insolation) led to a generally high rate of precipitation, perhaps similar to
modern, during the LGM in the SASM-region, i.e. the tropical central Andean
region, the western Amazon, and subtropical South America. That conclusion is
based on multiple lacustrine (e.g., Baker et al. 2001a, b; Baker and Fritz 2015) and
speleothem (e.g., Cruz et al. 2005; Cheng et al. 2013) records of LGM climate from
sites around the western and southern periphery of the Amazon (Fig. 3.2), from
which we infer that western Amazon precipitation was high (i.e. comparable to
modern) during the LGM (Table 3.1).
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Fewer paleoclimate records of the LGM exist from locations within the central
and eastern parts of the Amazon basin and northeastern Brazil. Yet within the last
decade, new speleothem records from northeastern Brazil (Cruz et al. 2009) and the
eastern Amazon (Wang et al. 2017) indicate significant spatial variation of precip-
itation at orbital time scales across tropical South America. Specifically, Cruz et al.
(2009) uncovered a precipitation dipole between the western Amazon/tropical
central Andes and northeastern Brazil, varying with precessional (20 kyr) periodicity
(Fig. 3.3). This finding was reinforced by a speleothem record from eastern Ama-
zonia (Wang et al. 2017). Thus, in the western pole (western Amazonia, the tropical
central Andes, the subtropics), precipitation increased during periods of increased
summer insolation, while in the eastern pole (northeastern Brazil, the eastern Ama-
zon), precipitation decreased during the same periods of higher summer insolation.

The spatial footprint of this precipitation dipole is not well defined, because of the
limited number of paleoclimate sites. Moreover, the longest speleothem record from
the eastern dipole region (Wang et al. 2017) only extends back to 45,000 years
before present. Although no terrestrial paleoclimate records that are presently avail-
able can confirm its long-term persistence, the existence of the east-west precipita-
tion dipole is a robust feature of many different climate models (Fig. 3.4) forced by

Fig. 3.2 Location of sites discussed in the text superimposed on a digital elevation model of South
America. See Table 3.1 for site key and additional site details
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Table 3.1 Paleoclimate proxy records shown on the map in Fig. 3.2. The location and type of
record, the measured proxy, and the authors responsible for each study are included

Site
# Archive Record Proxies References Lat.

Long
!W

Elev.
(m)

1 Marine Caraico,
Venezuela

Color Peterson et al.
(2000)

10.5!N 65 0

2 Speleothem Santiago,
Ecuador

δ18O Mosblech et al.
(2012)

3.02!S 78.13 980

3 Speleothem Diamante,
Perú

δ18O Cheng et al.
(2013)

5.73!S 77.5 960

Speleothem El Condor,
Perú

δ18O Cheng et al.
(2013)

5.93!S 77.3 860

4 Speleothem Pacupahuain,
Perú

δ18O Kanner et al.
(2012)

11.24!S 75.82 3800

5 Lake Titicaca,
Bolivia/Perú

δ13C Baker et al.
(2001a, b), Fritz
et al. (2007,
2010)

16!S 68.5 3810

6 Lake Uyuni,
Bolivia

Gamma Baker et al.
(2001a, b)

20!S 68 3653

7 Speleothem Botuverå,
Brazil

δ18O Cruz et al. (2005) 27.22!S 49.15 230

8 Speleothem Rio Grande,
Brazil

δ18O Cruz et al. (2009) 5.6!S 37.73 100

9 Groundwater Maranhao,
Brazil

Noble
gas

Stute et al. (1995) 7!S 41.5 400

10 Speleothem Paraíso,
Brazil

δ18O Wang et al.
(2017)

4.07!S 55.45 60

11 Lake Hill of Six
Lakes, Brazil

Pollen Bush et al. (2004) 0.30!N 66.67 75

12 Lake Bella Viata,
Bolivia

Pollen Punyasena et al.
(2008),
Burbridge et al.
(2004)

13.62!S 61.55 225

Lake Champlain,
Bolivia

Pollen Punyasena et al.
(2008),
Burbridge et al.
(2004)

14.47!S 61.07 225

13 Lake Carajas,
Brazil

Pollen Absy et al.
(1991),
Hermanowski
et al. (2012), Reis
et al. (2017)

6.4!S 50.42 730

14 Lake Cacó, Brazil Pollen Ledru et al.
(2006)

2.97!S 43.42 0

15 Marine CDH-86,
Brazil

XRF Nace et al. (2014) 0.33!S 44.21 0

16 Marine GeoB-
16,205,
Brazil

Pollen Bouimetarhan
et al. (2018)

1.21!S 43.05 0

(continued)
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precessionally induced changes in insolation (Prado et al. 2013; Liu and Battisti
2015).

Wang et al. (2017) calculated on the basis of their speleothem isotopic record that
precipitation during the LGM was 58% of modern in the eastern Amazon region,
supporting the idea of a drier eastern Amazon at this time. However, they failed to
adjust speleothem oxygen isotopic values for the estimated 5 !C cooling at the LGM
(Stute et al. 1995) and changes in seawater δ18O (Schrag et al. 2002). When their

Table 3.1 (continued)

Site
# Archive Record Proxies References Lat.

Long
!W

Elev.
(m)

17 Marine GeoB-3912,
Brazil

XRF Arz et al. (1998) 3.67!S 37.43 0

Marine GeoB-3104,
Brazil

Pollen Behling et al.
(2000)

3.67!S 37.43 0

18 Marine GeoB-3910,
Brazil

Pollen Dupont et al.
(2010)

4.25!S 36.34 0

Western

Amazon

Eastern

Amazon

0 10 Ka 20 Ka

Wet

Dry

Fig. 3.3 Sketch of the
temporal evolution of
precipitation of the eastern
and western Amazon
through one precession
(20 kyr) cycle

Fig. 3.4 A map of the east
to west precipitation dipole
in tropical South America
on precession time scales
(20 kyr) that shows the
difference in DJF
precipitation (mm d"1)
observed between low
summer insolation (218 Ka)
and high summer insolation
(207 Ka) experiments. From
Liu and Battisti (2015)
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speleothem record is corrected for these two effects (by subtracting ~2‰ from the
LGM speleothem δ18O value, see Baker and Fritz 2015), LGM δ18O values nearly
match modern δ18O values in the same speleothem, from which we conclude that
LGM precipitation was nearly equal to modern levels. That is, LGM precipitation in
the eastern Amazon was similar to modern precipitation in that region, although
relatively low compared to contemporaneous precipitation levels from regions
farther west. The corrected record indicates that it was the early-to-mid Holocene
time period (~9000–5000 years before present) that had exceptional levels of
precipitation. This period was evidently far wetter-than-modern in the eastern
Amazon, while far drier-than-modern in the western Amazon (Punyasena et al.
2008) and tropical central Andes (Baker et al. 2001a; Cross et al. 2001).

In conclusion, data and models agree that there were large-amplitude fluctuations
in precipitation amount on precessional time scales for the past 40,000 years in the
near-equatorial regions, with drier conditions in the east accompanied by wetter
conditions in the west, and vice versa. Furthermore, models suggest that that this
east-west precipitation dipole existed throughout the entire Quaternary and prior to
that. However, the exact spatial footprint of the dipole, the magnitude of precipita-
tion change, and its impact on the forest and associated biota, all remain to be
determined. Whereas it is evident from the data that spatially variable regions of
climate change and forest expansion/contraction (e.g. Cheng et al. 2013) did not
resemble the patterns envisioned by Haffer (1969), it is expected that climate-driven
variation of forest biomes during the Quaternary had a profound influence on biotic
dispersal, gene flow, and divergence (see below).

2.2 Short-Term (Millennial) Extreme Precipitation Events:
Were They Sufficient to Establish or Destroy Forested
Habitat?

Some of the intervals of most extreme precipitation change in tropical South
America during the late Quaternary are not tied to gradual variations in insolation
driven by orbital forcing but instead were shorter-duration anomalies, persisting for
several hundred to a few thousand years. This “millennial variability” is associated
with large changes in sea surface temperatures in the North Atlantic region.

One example of such millennial variability, predominantly present during the last
glacial stage, is Dansgaard-Oeschger (D-O) cyclicity. D-O cycles were first identi-
fied in the oxygen isotopic record of Greenland ice cores and determined to be warm-
cold oscillations of air temperature (Dansgaard et al. 1993). Approximately 25 D-O
cycles occurred between 90 and 10 Ka (Rahmstorf 2002). D-O cyclicity is also
present in Antarctic ice cores (Steig and Alley 2002), where temperatures are anti-
phased with Greenland (the “bipolar seesaw”) and amplitudes are of lower magni-
tude (see Pedro et al. 2018 and references therein). D-O cyclicity is recorded in
sea-surface temperature proxies from North Atlantic sediment and is widespread
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elsewhere in the Northern Hemisphere (Voelker 2002). D-O cyclicity affected
precipitation across the Neotropics: cold periods in the North Atlantic are associated
with an apparent intensification of the SASM and increased precipitation everywhere
in tropical South America south of the equator (Fritz et al. 2010; Kanner et al. 2012;
Cheng et al. 2013;Wang et al. 2017), with the possible exception of the Pacific coast.
How this persistent millennial variation during glacial stages impacted biotic com-
munities in the heart of Amazonia remains to be addressed. The regional instability
associated with the occurrence of at least a couple dozen pulses of alternating
increased and decreased precipitation over such a short period (i.e., ~80 ky) may
have led to recurrent extirpation of forest organisms in northeastern Brazil. This
dynamic may explain a pattern of lower species richness in eastern, as compared to
the climatically more stable western, Amazonia (e.g., Jenkins et al. 2013).

Heinrich events are a second type of millennial climate variability during glacial
stages, closely related to D-O stadials (“stadials” are the cold phases of the D-O
cycles). Heinrich events appear to occur only during the most extreme D-O stadials.
Heinrich events are characterized by the massive discharge of icebergs, primarily
derived from the Laurentide Ice Sheet, into the North Atlantic Ocean (Broecker
1994). Subsequent melting of the icebergs significantly decreased sea-surface salin-
ity of the North Atlantic, possibly shutting down the Atlantic meridional overturning
circulation and increasing the abundance of sea ice in the North Atlantic. Although
both the causes and the consequences of Heinrich events are still debated, there is no
doubt that large-scale climate impacts, synchronous with the Heinrich events, were
felt in many far-field regions (Hemming 2004; Vellinga and Wood 2002).
Paleoceanographic records from the Brazilian continental margin (Arz et al. 1998;
Nace et al. 2014) document large increases of river runoff in northeastern Brazil
synchronous with Heinrich events. On the Altiplano of Bolivia, Heinrich Event
1 (H1) brought about flooding and major expansion of now dry lakes (Sylvestre et al.
1999; Baker et al. 2001b). And Heinrich events coincide with the most negative
δ18O values (indicating peak wet conditions) in speleothem records from the central
Andes of Peru (Kanner et al. 2012), the western Amazon (Mosblech et al. 2012;
Cheng et al. 2013), and the eastern Amazon (Wang et al. 2017).

Thus, D-O stadials and Heinrich events had similar impacts on tropical South
American climate (Fig. 3.5), although Heinrich events were apparently associated
with more extreme climates than were the D-O stadials (Zhang et al. 2017),
consistent with the fact that the former represented more extreme cold conditions
in the North Atlantic region. Paleoclimate data show that wet climates associated
with these North Atlantic cold events occurred simultaneously across all of tropical
South America, south of the equator, in both eastern and western regions. Some of
these wet events lasted as long as 5000 years (Nace et al. 2014), although most were
shorter in duration. It seems likely that these North Atlantic warm-cold swings,
associated respectively with large amplitude dry-wet swings in tropical South
America, brought about profound changes in forest composition and extent. Eco-
logical studies have found that the recovery of rain forest following disturbance
happens quickly, within only a couple hundred years (Liebsch et al. 2008). More-
over, vertebrate species can diffuse through thousands of kilometers of suitable
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habitat within only a few decades, as suggested by ecological studies of amphibian,
mammal, and bird species (Phillips et al. 2007; Stodart and Parer 1988; Wehtje
2003). As a result, the temporal scale of the climatic shifts implicated in D-O stadials
and Heinrich events certainly was sufficient to lead to pronounced changes in habitat
and species distributions in northern South America.

3 Biological Responses to Quaternary Climate Variation

3.1 Biome Expansions and Contractions in Response
to Orbital and Millennial Climate Change: Was
Pleistocene Climate Variability Responsible
for Speciation?

Paleoecological data compiled over the last few decades suggest that tropical forest
composition was dynamic in response to changes in climate, but there remains little
evidence of large-scale shifts in the geographic distribution of major Amazonian
biomes on glacial to interglacial time scales as envisioned by Haffer (Bush et al.
2004). The apparent persistence of wet tropical forest in the western to central
Amazon (e.g., Cheng et al. 2013) has major implications for evolutionary studies
of other organisms associated with forest settings. For instance, some animal
populations may have remained stable even when faced with temporal turnover of

Fig. 3.5 A sketch of the impact of millennial cold and warm variability in the North Atlantic region
on the position of the ITCZ and trade winds and on precipitation throughout tropical South
America. See text for additional details
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tree species, as long as the structural forest environment remained similar over time.
Yet, the paucity of sites in present-day Amazon forest and of records that date back
more than ~60,000 years means that we still have a very incomplete picture of
variability in the distribution and species composition of regional biomes through
time (Fig. 3.1). While the available information points to stability of wet tropical
forests in western to central Amazonia, there is clear evidence of biome expansion
and contraction near rainforest-savanna ecotones in the southern and eastern Ama-
zon regions (Absy et al. 1991; Burbridge et al. 2004; Hermanowski et al. 2012; Reis
et al. 2017).

Pollen data also suggest vegetation responses to the large wet millennial events of
the late-Quaternary in regions marginal to, but outside of, Amazonia. In areas of
northeastern Brazil now occupied by semi-arid Caatinga, humid gallery forests
apparently expanded during Heinrich 1 and the Younger Dryas events (Behling
et al. 2000; Ledru et al. 2006; Dupont et al. 2010; Bouimetarhan et al. 2018). This
forest expansion may have been sufficiently extensive to have produced a landscape
mosaic with wet forest corridors connecting the Atlantic and eastern Amazon forests
(Cheng et al. 2013; Bouimetarhan et al. 2018). However, phylogenetic evidence of
dispersal events through gallery forests in the open habitats of central and northern
Brazil is currently lacking.

Phylogenetic patterns in distinct organisms suggest links between Quaternary
climate variation and population divergence. Patterns of genetic structure in species
that colonized the Atlantic Forest from Amazonia indicate population genetic dif-
ferentiation following forest contraction and biome separation (Dal-Vechio et al.
2018; Prates et al. 2018). These climate-driven events of population divergence,
inferred to have happened recently, provide a mechanism to explain speciation and
new evolutionary radiations also at deeper timescales. For example, a pattern of
sister relationships between species and clades from Amazonia and the Atlantic
Forest in several bird and small mammal groups (Costa 2003; Batalha-Filho et al.
2013) is consistent with the hypothesis that expansion of open and dry habitats (i.e.,
Caatinga dry forest and Cerrado savanna) following intervals of wet forest expansion
favored speciation of rainforest organisms.

Lastly, climatic stability may contribute to the accumulation of biodiversity at
regional spatial scales. In an example from the Atlantic Forest region, Carnaval et al.
(2009, 2014) tested whether vertebrate phylogenetic endemism was related to forest
persistence over the last 120 kyr. Their analysis, using climate model output,
suggests that forest stability was a necessary factor for maintaining high levels of
lineage endemism. However, different factors best explain patterns of endemism in
the northern and southern regions of the Atlantic Forest; whereas lineage endemism
is better predicted by climatic stability through time in the north, spatial climatic
heterogeneity was a more important predictor of lineage endemism in the south.
Such examples of integration of geologic and genetic approaches (geogenomics,
sensu Baker et al. 2014) provide a potentially powerful means of testing models of
how climatic history has affected evolutionary history and shaped current spatial
patterns of biodiversity.
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3.2 Shifts in Community Composition Through
Climate-Mediated Dispersal

Studies of diversification in Amazonian organisms have often emphasized in situ
speciation, but the composition of local species pools is also strongly affected by
migration between regions (Wiens 2004; Antonelli et al. 2018), and several exam-
ples of climate-mediated dispersal during the Quaternary have been proposed for
Amazonia. For instance, a stepping-stone like corridor of dry vegetation formations
may have favored migration of dry-adapted tree species (Bush 1994) and viperid
snakes (Quijada-Mascareñas et al. 2007) through an otherwise wet forest matrix.
Similarly, climate-driven geomorphic processes that affected the distribution of
sandy soils may have created corridors for dispersal of dry-adapted taxa (D’Apolito
et al. 2017); alternatively, drier conditions may have permitted dispersal of white
sand forest specialists within a former non-analog forest matrix (Capurucho et al.
2013). The patchy distribution and low species endemism of the physiognomically
distinctive white sand flora across the Amazon basin (Adeney et al. 2016) support
the latter idea. In addition, pollen records suggest that cold-adapted upland tree taxa
(e.g. Podocarpus) descended to the lowlands and expanded through the Amazon
forest in response to past climate cooling (Colinveaux et al. 1996), creating assem-
blages that have no modern analog (Bush et al. 2004; Reis et al. 2017). These
episodes of range expansion, followed by subsequent extinction within a wetter
Amazon, could explain plant disjunctions between the Guiana Shield and Andean
slopes (Berry and Riina 2005).

Climate-driven opportunities for dispersal may have produced large-scale bio-
geographic interactions between Amazonia and other South American biomes, with
pronounced effects on the composition of regional assemblages. For instance,
reconstructions of population history on the basis of genetic data from vertebrate
taxa point to the establishment of rainforest corridors connecting eastern Amazonia
with the northern Atlantic Forest in northeastern Brazil during the Pleistocene
(Batalha-Filho et al. 2013; Dal-Vechio et al. 2018; Prates et al. 2016a, b, 2018).
This finding is consistent with reconstructed pulses of increased precipitation on the
basis of speleothem records, as discussed above (Cheng et al. 2013). Thus, climate-
driven habitat shifts may have affected biotic composition and associated gene pools
in Amazonia and adjacent regions by favoring dispersal.

3.3 Perspectives on Climate, Topography, Soils,
and Diversification in the Quaternary

An increasing number of studies support a direct link between Pleistocene climatic
variability, dispersal, and speciation in tropical South America. Several groups of
lowland rain forest and Andean taxa diversified during the Pleistocene (e.g., Rich-
ardson et al. 2001; Kay et al. 2005; Hughes and Eastwood 2006; Lavin 2006; Erkens
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et al. 2007; Pouchon et al. 2018), and patterns of phylogenetic structure in birds,
mammals, and reptiles support pulses of forest expansion that are spatially congruent
across taxa, such as in present-day northeastern Brazil (Batalha-Filho et al. 2013;
Costa 2003; Dal-Vechio et al. 2018; Prates et al. 2016b). The timing of population
divergence and speciation for many taxa, as well as the inferred routes of range
shifts, match expectations derived from the known variability of Pleistocene climate.
These large-amplitude climate shifts extended not only into the Amazon basin but
also into higher elevations in the tropical Andes.

Pleistocene climate variability superimposed upon pre-existing Andean topogra-
phy provides a mechanism for driving speciation in high relief terrains. It has been
suggested for plants (Gentry 1982) and frogs (Santos et al. 2009) and recently
modeled (Rangel et al. 2018; Wheatley et al. 2019) that a significant proportion of
the taxonomic diversification of tropical South America has arisen in the tropical
Andes. Although Neogene and earlier history may explain some of this diversity
(Luebert and Wiegend 2014; Antonelli et al. 2009), many Andean diversification
events are recent, overlapping with the timing of Quaternary climatic dynamism (van
der Hammen and Cleef 1986; Madriñán et al. 2013). Under interglacial or intersta-
dial warm conditions, montane forest and alpine taxa colonize upslope, where
populations may be disjunct from each other because of topographic isolation—
valleys form genetic barriers whose taxon-specific effective porosity is related to
their width, depth, and the physiological tolerances of different organisms (e.g.,
Wiens 2004). Subsequent cooling can reconnect isolated populations as they dis-
perse downhill, encouraging genetic exchange between formerly disjunct
populations, but also introducing newly divergent species back into the lowlands.
Mountain tops thus serve as real climate refugia promoting allopatric speciation
boosted by biotic interactions and ecological divergence (Lagomarsino et al. 2016;
Vargas and Simpson 2019).

The Andes are only the most extreme of the mountains that circumscribe the
Amazon. Lower-elevation ranges, such as the Guianan tablelands and Roraima to
the north, the Serra do Divisor to the west, the Serra dos Gradaus and Serra do
Cachimbo to the south, virtually surround the central Amazon basin. Pleistocene
climate variability is known to have strongly impacted the biota of at least some of
these regions (e.g., Reis et al. 2017), and new species may have arisen in these
regions by climate-driven dispersal followed by isolation on mountain tops, a
mechanism similar to that proposed for the Andes. Moreover, novel taxa originating
in these high elevation habitats adjacent to Amazonia may have dispersed down-
ward, providing lineages to central Amazonia (Santos et al. 2009).

Another important layer needed to improve our understanding of how Quaternary
climate change affected neotropical biotas is the synergistic influence of geological
substrate and soils. For example, although it has been posited that seasonally dry
forests are currently restricted into their “refugia” and were more broadly distributed
during the LGM (Pennington et al. 2000), the absence of rich, high pH soils between
contemporary dry forests would have hindered their broad expansion. Although the
distribution of soils has been poorly mapped in the Andes-Amazon region, the
functional response of the tree canopy to spatially-varying substrate has been
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resolved at local scales and mapped over large biogeographic areas (Asner et al.
2015), providing new tools for assessing potential edaphic and nutrient influences on
biodiversity and its origins.

Climate variability may also help to explain attributes of ecological communities.
This is the case, for instance, in the observation that many tree species in the Amazon
region are rare. It is possible that the low abundances of these species represent
population declines in response to climatic shifts, while more favorable climates in
the past may have sustained larger populations. Similarly, periodic mixing and
population changes associated with spatio-temporal climate variability may explain
why Amazon tree communities are widely dispersed and appear to have little
community phylogenetic structure (Dexter et al. 2017). Lastly, climate variability
may also help to explain how drought-tolerant and drought-intolerant plant species
come to reside in the same forests (Esquivel-Muelbert et al. 2019).

4 Conclusions

Although Haffer (1969) posited large climate and biome variation during the
Quaternary, at the time of his publication he could not marshal supporting paleocli-
matic or paleobiotic information. Paleoclimatic studies during the intervening
decades have fully established that there was very large, extrinsically forced, coher-
ent, climate variation during the Quaternary across the Amazon, northeastern Brazil,
subtropical Brazil, and the tropical Andes. It is now clear that the Amazon basin as a
whole was not uniformly drier-than-modern during Pleistocene glacial intervals. For
instance, the western Amazon, the central Andes, and the southeastern sub-tropics
were similarly wet as at present during the LGM, whereas the eastern Amazon/
northeast Brazil region was similarly dry as today. Past wet and dry intervals of the
Quaternary occurred on both orbital and millennial timescales, and the spatial
footprints of wet and dry regions also varied, both east-west and north-south. In
particular, large precipitation and effective moisture increases occurred coherently
on millennial timescales across all of tropical South America, south of the equator,
concurrent with cold “Heinrich events” and D-O stadials of the North Atlantic
region. In short, Quaternary climate variation was neither monolithic nor necessarily
contemporaneous solely with global glacial-interglacial cycles; rather the pacing and
spatial footprint of past climates varied on both orbital and sub-orbital timescales.

Genetic evidence from a range of taxa is consistent with the hypothesis that
alternately wet and dry conditions during the Quaternary brought about pulses of
forest expansion and contraction. Biogeographic investigations of forest taxa recov-
ered population changes and speciation events within the temporal and spatial scales
implicated in climatic change associated with the precession cycles, Heinrich events,
and D-O stadials. These pulses of climate-driven habitat shifts had dramatic effects
on the composition of regional species pools and likely contributed to diversifica-
tion. For instance, changes in habitat distribution led to connections and biogeo-
graphic exchange among presently distinct neotropical biomes, such as Amazonia
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and the Atlantic Forest. Moreover, forest contraction concomitant with the expan-
sion of open and dry regions (such as the Cerrado and Caatinga) led to separation of
major forested regions; isolated in these “mega-refugia”, forest populations diverged
and became new species, and species became new clades. The genetic evidence also
supports that Quaternary climate variation promoted explosive radiations in the
regions of high topographic relief surrounding central Amazonia, which subse-
quently provided lineages and increased the diversity of lowland forests. New
biological and paleoenvironmental data convincingly support that Quaternary cli-
mate variation played a major role in evolutionary diversification in tropical South
America. The responses of co-distributed organisms to these climate dynamics may
have been mediated, to some extent, by distinct ecological tolerances and their
underlying physiological and life history traits (Prates et al. 2016a, b).
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