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Abstract
1. Juvenile survival to first breeding is a key life-history stage for all taxa. Survival 

through this period can be particularly challenging when it coincides with harsh 
environmental conditions such as a winter climate or food scarcity, leading to 
highly variable cohort survival. However, the small size and dispersive nature of 
juveniles generally make studying their survival more difficult.

2. In territorial species, a key life-history event is the acquisition of a territory. A 
territory is expected to enhance survival, but how it does so is not often identi-
fied. We tested how the timing of territory acquisition influenced the winter sur-
vival of juvenile North American red squirrels Tamiasciurus hudsonicus, hereafter 
red squirrels, and how the timing of this event mediated the sources of mortality. 
We hypothesized that securing a territory prior to when food resources become 
available would reduce juvenile susceptibility to predation and climatic factors 
overwinter.

3. Using 27 years of data on the survival of individually marked juvenile red squirrels, 
we tested how the timing of territory acquisition influenced survival, whether the 
population density of red squirrel predators and mean temperature overwinter 
were related to individual survival probability, and if territory ownership mediated 
these effects.

4. Juvenile red squirrel survival was lower in the years of high predator abundance 
and in colder winters. Autumn territory owners were less susceptible to lynx Lynx 
canadensis and possibly mustelid Mustela and Martes spp., predation. Autumn ter-
ritory owners had lower survival in colder winters, but surprisingly non-owners 
had higher survival in cold winters.

5. Our results show how the timing of a life-history event like territory acquisi-
tion can directly affect survival and also mediate the effects of biotic and abiotic 
factors later in life. This engenders a better understanding of the fitness conse-
quences of the timing of key life-history events.
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1  | INTRODUC TION

The juvenile age class, when individuals are no longer completely 
dependent on the parent but not yet sexually mature, is a crucial 
life-history stage for all taxa (Ferguson & Fox, 1984; Gaillard, Festa-
Bianchet, & Yoccoz, 1998; Searcy & Sponaugle, 2001). A large com-
ponent of reproductive success is surviving to sexual maturity, hence 
juvenile survival can be a key determinant of lifetime fitness, and 
so variation in survival can dictate population dynamics (McAdam, 
Boutin, Sykes, & Humphries, 2007; Oli & Dobson, 2003). For ex-
ample, rates of juvenile survival in mammals can be highly variable 
year-to-year and may be the key determinant of population dynam-
ics (Gaillard, Festa-Bianchet, Yoccoz, Loison, & Toïgo, 2000; Millar & 
McAdam, 2001; Morrison & Hik, 2007). Understanding the causes 
of variation in juvenile survival and the selection such variability fa-
cilitates therefore shapes how we expect populations to change over 
time.

The time period between juvenile independence and first breed-
ing poses novel challenges to survival, as individuals at this stage 
must survive in the absence of the parental care on which they were 
previously dependent (Galef, 1981). Climatic factors can have strong 
effects on survival of juveniles (Fuller, Stebbins, & Dyke, 1969; 
Schorr, Lukacs, & Florant, 2009) through a combination of limited 
food availability and increased thermoregulatory costs (Jackson, 
Trayhurn, & Speakman, 2001; Rödel et al., 2004), particularly over-
winter. Due to their small size and lack of experience, as well as their 
dispersive nature, juveniles can also be particularly vulnerable to 
predation (Garrett & Franklin, 1988; Rödel et al., 2015). Various be-
havioural and physiological responses such as adjusting metabolic 
rate (Wunder, Dobkin, & Gettinger, 1977), activity (Merritt, 1986) or 
food caching (Morrison, Pelchat, Donahue, & Hik, 2009) can mitigate 
this risk. Understanding how these mediating traits alter juvenile 
survival is necessary to understand how selection has resulted in the 
phenotypes we observe in the wild.

The acquisition of a territory is a key life-history event that 
can mediate the sources of mortality in some species, by provid-
ing access to space, refuges and food stores. Timing of life-history  
stages, such as birth or hatching (Rodríguez, van Noordwijk, Álvarez, 
& Barba, 2016), or developmental rate (van der Jeugd & Larsson, 
1998) can have strong effects on survival at later life stages 
(O'Connor, Norris, Crossin, & Cooke, 2014). Territory acquisition is 
one such event: predation risk is elevated while searching for ter-
ritories (Larsen & Boutin, 1994), and territory ownership also leads 
to increased food availability, particularly in food caching species. 
Earlier acquisition of a territory should, therefore, improve the 
probability of survival by reducing these risks earlier in life. It is 
well known that acquiring a territory provides benefits (reviewed in 

Carpenter, 1987; e.g. Whitham, 1986). However, despite the poten-
tial importance of understanding how the timing of territory acqui-
sition modifies juvenile survival and mediates sources of mortality, 
this has not yet occurred, in part due to the difficulty in collecting 
such data.

North American red squirrels Tamiasciurus hudsonicus are an ideal 
organism to study how the timing of territory acquisition influences 
survival and mediates sources of juvenile mortality. Red squirrels in 
Yukon, Canada defend exclusive individual territories with a central 
cache of white spruce Picea glauca cones, their primary food source 
(Smith, 1968). Holding a territory with a cache of food is considered 
necessary for red squirrels in these populations to survive overwin-
ter (Larsen & Boutin, 1994; Smith, 1968), as cached resources are 
essential for annual survival and reproduction (Fletcher et al., 2013; 
LaMontagne et al., 2013). White spruce cones ripen in early August, 
when caching begins and finishes once snow falls (Archibald et al., 
2013; Fletcher et al., 2010), typically at the end of September. We 
hereafter refer to this period of time (mid-August to snowfall) as ‘au-
tumn’. Those juveniles with territories before this cone ripening oc-
curs are able to take advantage of that year's cone crop and increase 
their hoard size, whereas those that settle on territories later in the 
season will acquire what is left from the previous owner but have 
no opportunity to secure further resources before winter (Fisher 
et al., 2019). Red squirrels may take advantage of periods of super 
abundant white spruce cones (‘mast’ years) to create new territo-
ries (Kelly, 1994; LaMontagne & Boutin, 2007; Silvertown, 1980), in 
which case they only have access to what they can cache before 
snowfall. Vacant territories are typically rare, hence many juveniles 
cannot acquire one early or even at all (Fisher et al., 2017; Larsen & 
Boutin, 1994).

Juvenile annual winter survival is low, with an average of 26.4% of 
all juveniles born surviving their first winter (McAdam et al., 2007), but 
this is highly variable annually (3%–43%; McAdam & Boutin, 2003). 
Annual adult survival in this population is high (80% for 2-year-old 
females; steadily decreasing with age; Descamps, Boutin, Berteaux, 
& Gaillard, 2008), thus much of the variation in lifetime reproduc-
tive success is linked to juvenile overwinter mortality (McAdam 
et al., 2007). Acquiring a territory is therefore a key life-history event. 
However, the main causes of juvenile mortality, and how they are in-
fluenced by the timing of territory acquisition, remain unknown.

Observational studies, while relatively limited, have identi-
fied lynx Lynx canadensis (Stuart-Smith & Boutin, 1995), goshawks 
Accipiter gentilis (Larsen & Boutin, 1994) and mustelids (Kerr & 
Descamps, 2011; O'Donoghue, Boutin, Hofer, & Boonstra, 2001) as 
predators of juvenile red squirrels (Goheen & Swihart, 2005; Haines 
et al., 2018; Smith, 1968; Steele, 1998). Owning a territory, and thus 
having access to nests or tunnels, could act as spatial refugia and 
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reduce vulnerability to predators (Cowlishaw, 1997; Everett & Ruiz, 
1993). Furthermore, red squirrels with smaller caches have lower 
winter survival (LaMontagne et al., 2013; Larivée, Boutin, Speakman, 
McAdam, & Humphries, 2010), suggesting that resource limitation is 
a source of overwinter mortality. Owning a territory, and so regular 
use of nests, would provide thermal refugia during low temperatures 
(Greenwood & Harvey, 1982; Studd, Boutin, McAdam, Krebs, & 
Humphries, 2015). It therefore seems that a territory could both di-
rectly influence survival and change the suite of selection pressures 
that act on a juvenile red squirrel.

We aimed to better understand how the timing of territory ac-
quisition affects juvenile overwinter survival and mediates sources 
of mortality. To do so we used 27 years of longitudinal data to as-
sess how holding a territory before autumn influences survival and 
the susceptibility of a juvenile to predation or low temperatures 
overwinter.

Our first hypothesis was that earlier territory acquisition would 
result in higher overwinter survival compared to later territory ac-
quisition (Berteaux & Boutin, 2000). We further hypothesized 
that cold temperatures and predators pose a mortality risk, so that 
overwinter survival of juveniles would be lower in colder winters 
and when predators are abundant. Our key hypothesis is that tim-
ing of territory acquisition would moderate these effects, so that 
juveniles obtaining territories before autumn would be less suscep-
tible to predators (e.g. Cowlishaw, 1997) and adverse weather (e.g. 
Greenwood & Harvey, 1982) overwinter.

2  | MATERIAL S AND METHODS

2.1 | Data collection

Our study was part of the Kluane Red Squirrel Project, an ongo-
ing long-term study of a wild population of North American red 
squirrels within the Champagne and Aishihik First Nations tradi-
tional territory along the Alaska Highway in southwestern Yukon, 
Canada (61°N, 138°W). We collected data from two study areas 
(~40 hectares each) separated by the Alaska Highway from 1989 to 
2015. We conducted population censuses biannually in May (spring) 
and August (autumn) to identify all individuals and assign territory 
ownership. The latter census roughly corresponds to the timing of 
caching; individuals can acquire territories after the August census, 
but these individuals would not be able to store cones from that 
year's production (Larivée et al., 2010). We assigned territory own-
ership based on territorial vocalizations (‘rattling’; Lair, 1990) and 
behavioural observations. We also identified red squirrels that did 
not own territories in autumn through trapping and behavioural ob-
servations. Adult red squirrels rarely relocate, other than through 
bequeathals by mothers where all or a part of her territory is given 
to offspring (Berteaux & Boutin, 2000; around 19% of females do 
this each year; Lane et al., 2015; Larsen & Boutin, 1994). Average 
juvenile dispersal distance is short (M = 92–102 m; Berteaux & 
Boutin, 2000; Cooper et al., 2017) relative to the size of our study 

areas. Some juveniles do disperse off our study areas, and would 
not be included as survivors in our analysis. If this dispersal were 
skewing our estimates of survival, we would expect to see lower 
apparent survival of juveniles born at the edge of the study area 
compared to those born in the core. This is not the case: juveniles 
born on the edge have equivalent survival to those born in the core 
(26% vs. 27%; McAdam et al., 2007). However, we cannot com-
pletely discern between mortality and long-distance dispersal as 
some long-distance dispersal has been documented (A.R. Martinig, 
unpubl. data).

We used Tomahawk traps (Tomahawk Live Trap Co.) baited with 
peanut butter on each individual's territory or that of its mother to 
trap them. When handled for the first time, we gave each individual 
numbered ear tags (Monel #1; 5 digits) with a unique combination 
of coloured wires or pipe cleaners to facilitate future identification 
without handling. We recorded body mass, sex and reproductive sta-
tus at each capture. We radio-collared reproductive females (model 
PD-2C, 4 g; Holohil Systems Limited) to find nests. Females typically 
give birth to three pups (range: 1–7; Humphries & Boutin, 2000) in 
the spring (median birth date: 23 April). We removed juveniles from 
the nest after birth, and a second time at ~25 days old, to record 
litter size, pup mass and sex, and to tag them. We calculated growth 
rate (g/day) as the linear increase in mass between the nest entries. 
We calculated growth rates only for juveniles that weighed less than 
50 g at the first nest entry and less than 100 g at the second nest 
entry (to ensure approximate linearity of the growth curve; McAdam 
& Boutin, 2003), and only for juveniles where the two weight mea-
sures were >5 days apart. Juvenile red squirrels emerge from the 
nest around 42–50 days old (A.R. Martinig, unpubl. data) and wean 
around 70 days (Larsen & Boutin, 1994). We considered juveniles 
surviving to the spring following the year of their birth to have re-
cruited into the population, as we have done previously (McAdam 
& Boutin, 2003). This research was approved by the University of 
Guelph Animal Care Committee (AUP 1807), the University of 
Alberta Animal Care and Use Committee for Biosciences, and the 
University of Michigan Institutional Animal Care and Use Committee 
(PRO00007805).

2.2 | Predator and temperature data collection

Our available temperature and predator data are annual, regional 
measures, so for this analysis we considered all juveniles born in 
the same year to be experiencing the same conditions. We obtained 
monthly temperature records from Environment Canada's online 
historical weather database for the Haines Junction weather station 
(Climate ID 2100630, 60.77°N, 137.57°W), approximately 35 km SE 
of our study area. We used mean temperature overwinter, as we ex-
pected that climate would primarily influence overwinter survival by 
increasing thermoregulatory costs as opposed to extreme weather 
events or precipitation. We averaged the monthly temperatures 
from October of a juvenile's birth year to the following March to 
obtain an annual average winter temperature.
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We considered potential mammalian predators: mustelids (short-
tailed weasel Mustela erminea, least weasel M. nivalis and marten 
Martes americana) and lynx. We obtained abundance data for pred-
ators and their alternate prey from population monitoring in our 
region, first as part of the Kluane Boreal Forest Ecosystem Project 
(Krebs, 2001), and after 1996 as part of the Community Ecological 
Monitoring Program (data available at http://www.zoolo gy.ubc.
ca/~krebs /kluane.html). Repeated snow track counts along set tran-
sects during winter provided an index of species abundance as the 
mean number of snow tracks per 100 km of transect for each year. 
We do not estimate population sizes from these track counts, but 
instead use them as indices for relative comparisons between years. 
As the monitoring protocol was consistent throughout the study, we 
do not expect a directional bias in these estimates. We used the sum 
of short-tailed weasel, least weasel and marten tracks as an index of 
the total mustelid abundance for each year. The population densities 
of snowshoe hares Lepus americanus and red-backed voles Myodes 
rutilis were estimated with live trapping and mark–recapture (Krebs, 
Boonstra, Kenney, & Gilbert, 2018), providing measures of alternate 
prey availability for these predators. We chose these combinations 
as lynx are known snowshoe hare specialists (O'Donoghue, Boutin, 
Krebs, Murray, & Hofer, 1998), while weasels (the majority of the 
mustelids) are known vole specialists (Boonstra & Krebs, 2006), and 
both populations follow the cycles of their preferred prey (Boutin 
et al., 1995). While birds of prey such as goshawks and great horned 
owls Bubo virginianus are known predators of red squirrels (Larsen & 
Boutin, 1994), we were not able to include them in our analysis be-
cause density indices were not available. Such birds of prey primar-
ily prey on snowshoe hares, and so their populations typically track 
those of snowshoe hares, as lynx populations do (Boutin et al., 1995). 
Therefore, the effect of lynx abundance may somewhat represent 
the overall effect of snowshoe hare predators on red squirrels.

2.3 | Statistical analyses of survival

We used a binomial mixed effects model to test how predation 
and temperature interacted with autumn territory ownership to 
affect juvenile survival overwinter. From 1989 to 2015, our analy-
sis considered whether those juveniles that survived to the begin-
ning of autumn (n = 1,305 squirrels) were still alive the following 
spring.

For our main question—does territory ownership mediate how 
predators and climate affect overwinter survival—we included ter-
ritory ownership in autumn as a binary predictor with temperature 
and predator abundance as numeric predictors, and fit interactions 
between autumn ownership and each of temperature, lynx and 
mustelid abundances separately. We included separate interactions 
between the abundance of lynx and snowshoe hares, and mustelids 
and voles, so the effect of predators on red squirrels depended on 
the availability of preferred prey. Temperature and species abun-
dances were standardized as z-scores across years. This improves 
model convergence and interpretability of regression coefficients 

(Schielzeth, 2010). We included random effects of litter identity 
and year to account for variation in survival due to sibling and ma-
ternal interactions, as well as otherwise unaccounted for annual 
variation.

We also included several factors previously shown to affect 
juvenile survival in our system (Descamps et al., 2008): these in-
cluded adult population density (number of adults within a set 
38 ha area that remained consistent over the entire study period), 
white spruce cone availability (annual index of cones produced on 
a consistent subset of trees on each study area; see LaMontagne, 
Peters, & Boutin, 2005), a fixed effect of study area to account for 
any differences between the two study areas, birth date, growth 
rate and sex. Growth rate, birth date, adult population density and 
cone availability were standardized as z-scores for each study area 
in each year.

We also fitted a separate model with the interactions of juvenile 
birth date and growth rate with predators and temperature, to de-
termine whether these traits influence these sources of mortality. 
We used a different model in order to avoid overfitting due to too 
many terms in our initial model. We present these results in the sup-
porting information (Table S1); we found no evidence of predator 
abundance or temperature overwinter acting as agents of selection 
on either of these traits.

We have provided the correlations between predictor variables 
(Table S2) and variance inflation factors (Table 2). We note here that 
correlations between predictor variables and the resulting larger 
standard error for an estimate are not necessarily problematic (see 
Morrissey & Ruxton, 2018). We interpret each of our estimates in 
light of the fact that they are estimated given the other effects in the 
model. As each continuous variable was mean centred, estimates are 
effectively given for the mean value of all other variables.

We conducted all statistical analyses using R version 3.3.3 
(R Core Team, 2017), with the packages lme4 (version 1.1-19; Bates, 
Maechler, Bolker, & Walker, 2015) and lmerTest (version 2.0–33; 
Kuznetsova, Brockhoff, & Christensen, 2017). Reported estimates 
are M ± SE.

3  | RESULTS

3.1 | Overwinter survival

We found that an average of 60% of juveniles alive in autumn 
(n = 1,305) survived to spring, but this was highly variable (21.4%–
94.1%; Table 1). Juvenile overwinter survival was higher with increased 
cone availability (β = 0.38 ± 0.11, z = 3.45, p < 0.001; Table 2) and 
years of lower adult population density (β = −0.69 ± 0.15, z = −4.45, 
p < 0.001). Juvenile females were more likely to survive overwin-
ter than males (β = 0.49 ± 0.16, z = 3.1, p = 0.002), as were juve-
niles with higher growth rates (β = 0.22 ± 0.10, z = 2.13, p = 0.033). 
Birth date had no effect on overwinter survival (β = −0.01 ± 0.09, 
z = −0.08, p = 0.936), nor were there any differences between study 
areas (β = 0.19 ± 0.18, z = 1.06, p = 0.289). The random effect of litter 

http://www.zoology.ubc.ca/~krebs/kluane.html
http://www.zoology.ubc.ca/~krebs/kluane.html
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identity explained a significant amount of variation (σ2 = 0.665; likeli-
hood ratio test χ2 = 7.867, df = 20, p = 0.005), but the random year 
effect did not contribute to the model (σ2 < 0.001; likelihood ratio test 
χ2 = 0, df = 20, p = 1) given the inclusion of litter identity.

3.2 | Territory ownership and overwinter survival

About 61% of juveniles alive in autumn owned a territory, and territory 
owners were more likely (79%) to survive overwinter than those who 
did not own a territory (33%; β = 2.78 ± 0.23, z = 12.06, p < 0.001). 
Increased lynx abundance was associated with a decrease in the 

overwinter survival of juveniles without territories (β = −0.68 ± 0.28, 
z = −2.41, p = 0.016), but had no effect on the overwinter survival 
of juveniles that held territories by autumn (interaction between 
lynx abundance and territory ownership, β = 0.99 ± 0.23, z = 4.22, 
p < 0.001; Figure 1). Mustelid abundance was somewhat more 
strongly (interaction between mustelid abundance and territory own-
ership: β = 0.31 ± 0.18, z = 1.75, p = 0.080) associated with lower 
winter survival for juveniles without a territory (β = −0.38 ± 0.14, 
z = −2.70, p = 0.007) than for juveniles that held territories by autumn 
(β = −0.07 ± 0.14, z = −0.49, p = 0.624; Figure 2). The effects of preda-
tors on juvenile survival overwinter were not associated with the 
abundance of alternate prey (lynx by hare interaction, p = 0.187; mus-
telid by vole interaction, p = 0.203), but both the hare (β = 0.40 ± 0.20, 
z = 1.99, p = 0.046) and vole (β = −0.59 ± 0.13, z = −4.57, p < 0.001) 
abundances influenced juvenile overwinter survival.

TA B L E  1   Probability of overwinter survival for juvenile red 
squirrels alive in August 1989–2015 (n = 1,305), with adult density 
for each year (individuals/ha), number of juveniles alive in autumn 
(cohort size) and proportion of juveniles with territories in autumn 
(autumn territory owners)

Year

Adult 
population 
density 
(individuals/
ha)

Autumn 
cohort 
size

Autumn 
territory 
owners (%)

Juvenile 
survival (%)

1989 1.25 6 100 66.7

1990 1.30 13 76.9 61.5

1991 1.18 28 82.1 85.7

1992 1.31 46 32.6 30.4

1993 1.23 121 59.5 71.1

1994 2.20 28 89.3 21.4

1995 1.60 75 84.0 82.7

1996 1.88 15 80.0 60.0

1997 1.86 51 88.2 94.1

1998 2.14 78 74.4 82.1

1999 3.93 25 64.0 36.0

2000 2.56 24 62.5 58.3

2001 1.84 56 60.7 51.8

2002 1.63 49 67.4 51.0

2003 1.22 34 88.2 70.6

2004 1.02 44 61.4 61.4

2005 1.05 98 38.8 66.3

2006 2.02 47 74.5 46.8

2007 1.40 72 54.1 55.6

2008 1.40 30 86.7 43.3

2009 0.94 44 59.1 50.0

2010 0.73 100 35.0 66.0

2011 1.75 32 87.5 81.3

2012 1.86 50 46.0 46.0

2013 1.73 54 63.0 63.0

2014 1.57 150 71.3 71.3

2015 3.15 18 44.4 44.4

Average ± SE 1.69 ± 0.13 51 ± 6.6 65.4 ± 4.1 60.0 ± 3.4

TA B L E  2   Mixed effects binomial model of juveniles red squirrel 
overwinter survival (n = 1,305), testing whether territory ownership 
by autumn mediates effects of predators and temperature on 
overwinter survival, including random effects of litter ID and year 
(conditional R2 = 0.44). Variance inflation factor (VIF), a measure of 
collinearity between variables, was calculated for each predictor. 
Estimates of predator and temperature effects indicate effects for 
the reference category of juveniles without territories in autumn

Term Estimate ± SE z p VIF

Std. density −0.69 ± 0.15 −4.45 <0.001 1.96

Std. cones 0.38 ± 0.11 3.45 <0.001 1.76

Std. growth rate 0.22 ± 0.10 2.13 0.033 1.02

Std. birth date −0.01 ± 0.09 −0.08 0.936 1.16

Grid (SU) 0.19 ± 0.18 1.06 0.289 1.17

Sex (male) −0.49 ± 0.16 −3.1 0.002 1.03

Autumn owner (yes) 2.78 ± 0.23 12.06 <0.001 1.70

Std. lynx 
(non-owners)

−0.68 ± 0.28 −2.41 0.016 4.22

Std. hares 0.40 ± 0.20 1.99 0.046 3.71

Std. mustelid 
(non-owners)

−0.38 ± 0.14 −2.7 0.007 2.71

Std. voles −0.59 ± 0.13 −4.57 <0.001 2.30

Std. temperature 
(non-owners)

−0.35 ± 0.18 −1.99 0.047 2.16

Std. lynx: Std. hares 0.12 ± 0.09 1.32 0.187 1.64

Std. mustelid: Std. 
voles

0.14 ± 0.11 1.27 0.203 2.26

Autumn owner (yes): 
Std. lynx

0.99 ± 0.23 4.22 <0.001 2.26

Autumn owner (yes): 
Std. mustelid

0.31 ± 0.18 1.75 0.080 2.03

Autumn owner (yes): 
Std. temperature

1.11 ± 0.21 5.31 <0.001 1.62

Random effects Variance

Litter ID 0.665

Year 0.000
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Temperature had opposing effects on survival for juveniles 
with and without territories by autumn (Figure 3). Juveniles with-
out territories by autumn were less likely to survive warm winters 
(β = −0.35 ± 0.18, z = −1.99, p = 0.047), but this effect reversed 
for autumn territory owners (interaction β = 1.11 ± 0.21, z = 5.31, 
p < 0.001), which were more likely to survive warm winters 
(β = 0.76 ± 0.13, z = 5.31, p < 0.001).

4  | DISCUSSION

Juvenile red squirrels that acquired territories by autumn were far 
more likely to survive the winter than those that had not yet ac-
quired a territory. Average survival of juveniles that acquired ter-
ritories before the start of cone caching (79%) was comparable to 
survival of early life adults in this population (80%; McAdam et al., 
2007). Juveniles without territories by autumn had much lower sur-
vival (33%). Although it is possible that juveniles without a territory 
had in fact moved off our study area, we cannot test this with our 
available dataset. However, the effect of long-distance dispersal is 
expected to be small as survival is equal between juveniles originat-
ing from the centre of the study area and those at the edge (Kerr, 
Boutin, LaMontagne, McAdam, & Humphries, 2007).

Territory ownership also affected how susceptible juveniles were 
to predators and weather overwinter. Juveniles without territories 
by autumn were more susceptible to predators than those that had 
already settled. Territory ownership provides access to arboreal 
nests, tunnels and increased familiarity with the local habitat (Clarke 

et al., 1993). Juveniles without territories by autumn may be travel-
ling more through potentially high-risk environments as they forage 
for food or search for territories overwinter, thereby increasing their 
vulnerability to predators (Garrett & Franklin, 1988; Metzgar, 1967). 
Higher rates of litter loss in red squirrels during years of high mustelid 
abundance (Studd et al., 2015) suggest that mustelids may enter red 
squirrel nests (and likely tunnels), whereas lynx cannot access these 
structures. This may explain why the relationship between mustelid 
abundance and overwinter survival was not as strongly influenced by 
territory acquisition as was the relationship between lynx abundance 
and survival.

Survival of juveniles without a territory was higher in colder 
winters, with the opposite being true for juveniles holding a ter-
ritory by autumn. We predicted that cold winters would lead to 
lower overwinter survival of territory owners, and we expected 
this to be magnified for non-territory owners, not reversed. There 
are some situations in which colder winters lead to higher survival, 
such as in hibernating species (bats Chalinolobus tuberculatus; Pryde, 
O'Donnell, & Barker, 2005; jumping mice Zapus hudsonicus preblei; 
Schorr et al., 2009) where this leads to less frequent arousal from 
hibernation (Humphries, Thomas, & Speakman, 2002). Red squirrels 
are non-hibernating, so this mechanism cannot explain why non- 
territory owners would benefit from colder winters.

We can suggest two alternative but non-mutually exclusive ex-
planations for why juveniles that acquired a territory late would have 
higher survival over colder winters. First, in colder years the incidence 
of nest sharing among non-territory owners might be higher. Nest 

F I G U R E  1   Overwinter survival of juvenile North American 
red squirrels Tamiasciurus hudsonicus (n = 1,305) that had or had 
not acquired a territory by autumn. Juveniles without territories 
had lower survival when lynx Lynx canadensis were abundant (not 
yet acquired territory: β = −0.68 ± 0.28, z = −2.41, p = 0.016), 
whereas the survival of juveniles with territories was unaffected 
by lynx abundance (acquired territory: β = 0.31 ± 0.21, z = 1.49, 
p = 0.14; interaction β: = 0.99 ± 0.23, z = 4.22, p < 0.001). Points 
represent mean survival ± SE for each quintile of standardized lynx 
abundance estimates. These points are shown only for illustrative 
purposes; lynx abundance was analysed as a continuous variable in 
all analyses
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F I G U R E  2   Overwinter survival of juvenile North American red 
squirrels Tamiasciurus hudsonicus (n = 1,305) that had or had not 
acquired a territory by autumn was lower when mustelids (short-
tailed weasel Mustela erminea, least weasel M. nivalis and marten 
Martes americana) were abundant. Juveniles without territories by 
autumn were somewhat more affected by mustelid abundance (not 
yet acquired territory: β = −0.38 ± 0.14, z = −2.70, p = 0.007) than 
territory owners (acquired territory: β = −0.07 ± 0.14, z = −0.49, 
p = 0.624; interaction β = 0.31 ± 0.18, z = 1.75, p = 0.080). Points 
represent mean survival ± SE for each quintile of standardized 
mustelid abundance estimates. These points are shown only 
for illustrative purposes; mustelid abundance was analysed as a 
continuous variable in all analyses
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sharing, typically between kin, occurs in 19% of female territory own-
ers in this system, and is more common in colder winters (Williams 
et al., 2013). We speculate that juveniles without territories in autumn 
may be more likely to share nests with fellow non-territory owners or 
their mothers (Larsen & Boutin, 1994; A.R. Martinig, pers. obs.), and 
this may improve their survival relative to juveniles with territories in 
autumn. Second, the higher mortality of juvenile territory owners in 
colder winters creates vacancies, which may allow juveniles without 
territories prior to autumn a greater opportunity to claim a territory 
with cached food, enhancing survival (Dunham, Warner, & Lawson, 
1995). This would give them relatively improved survival compared to 
warmer years where fewer juvenile territory owners would die. Which, 
if either, of these mechanisms accounts for the differential effect of 
winter temperature remains to be tested.

We found both lynx and mustelid abundances were negatively 
associated with juvenile overwinter survival. Previous work found 
that predation does not exert a strong influence on red squirrel 

populations in the boreal forest (Boonstra, Boutin, et al., 2001). 
However, in this study, the relative effects of annual lynx and 
mustelid abundance on overwinter juvenile survival (−0.68 and 
−0.32 for those without territories by autumn) were comparable 
in strength to the effect of cone availability (0.38), which is the 
primary driver of red squirrel population dynamics (LaMontagne 
et al., 2013). The relatively strong effects of predator abundances 
on overwinter survival in this study might appear contradictory to 
previous findings, but two distinctions can be made. First, overall 
population size and individual probability of survival are not directly 
comparable. While red squirrel population size may be dictated by 
the availability of food and territories, predation could still affect 
which individuals survive (‘compensatory predation’; Errington, 
1946). Second, this study was concerned with overwinter survival 
of only juveniles, and predator abundances had the strongest ef-
fect on the 39% of juveniles that did not have territories by autumn. 
The probability of survival of these juveniles is already low, so vari-
ation in survival in this subset is not likely to have a large impact on 
the total population size.

We predicted that the effects of lynx and mustelid abundances 
on juvenile survival would be mediated by the availability of their 
alternate prey, but we did not find any detectable two-way interac-
tions of either predator–prey pairing on red squirrel survival. One 
potential explanation for this could be that predator populations 
closely track their prey. The positive correlation between lynx and 
snowshoe hare abundances (0.73) makes the detection of an inter-
action difficult. For example, there were few years in our dataset 
with high predator and low prey abundances with which to evaluate 
these interactions. Additionally, although lynx switch from snow-
shoe hares to red squirrels when the former are rare (O'Donoghue, 
Boutin, Krebs, Zuleta, et al., 1998), lynx and mustelids may predate 
on juvenile red squirrels opportunistically if juveniles, particularly 
those without territories by autumn, are more susceptible to preda-
tion regardless of alternate prey availability.

We did not anticipate that the abundance of voles and hares 
would be associated with winter survival of juvenile red squirrels. 
High snowshoe hare abundance was associated with increased juve-
nile survival overwinter, while years with high vole abundances had 
lower juvenile survival. Red squirrels will opportunistically predate 
on snowshoe hare leverets in the spring and summer (O'Donoghue, 
1994), but this additional food source should not have a strong effect 
overwinter. Voles are not in strong competition with juveniles for re-
sources, given red squirrels access arboreal food sources unavailable 
to voles, and red-backed voles are broad omnivores, feeding on veg-
etation, fungi and arthropods (Boonstra, Krebs, Gilbert, & Schweiger, 
2001). The effect of snowshoe hare abundance on juvenile winter 
survival could also be a statistical artefact of the correlation be-
tween lynx and hare abundance. Vole and mustelid abundances are 
weakly correlated (0.27), so it is less likely that this explanation holds 
for the negative affect of vole abundance on red squirrel overwinter 
survival. These species' abundances may also covary with another 
factor that influences juvenile survival not included in our analysis, 
but what this factor might be remains unclear.

F I G U R E  3   Overwinter survival of juvenile North American 
red squirrels Tamiasciurus hudsonicus (n = 1,305) that had or had 
not acquired a territory by autumn. Autumn territory owners 
survived better in warmer years (acquired territory: β = 0.76 ± 0.13, 
z = 5.87, p < 0.001), whereas warmer winters decreased survival of 
juveniles without territories at this time (not yet acquired territory: 
β = −0.35 ± 0.18, z = −1.99, p = 0.047; interaction β = 1.11 ± 0.21, 
z = 5.31, p < 0.001). Points represent mean survival ± SE for each 
quintile of standardized winter temperatures. These points are 
shown only for illustrative purposes; winter temperature was 
analysed as a continuous variable in all analyses
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In our survival model, juveniles with higher growth rates were more 
likely to survive to spring, but birth date had no effect. Previous work 
in this population has observed strong selection on both birth date and 
growth rate in annual survival of juveniles (Dantzer et al., 2013; Fisher 
et al., 2017; McAdam & Boutin, 2003; Williams, Lane, Humphries, 
McAdam, & Boutin, 2014). In preliminary models not including terri-
tory ownership, there was a detectable effect of birth date on winter 
survival. Once accounting for territory ownership, birth date stopped 
being important. This implies that early born juveniles are likely to ac-
quire a territory sooner, but there are no further benefits of birth date 
for survival overwinter. Both earlier birth dates and higher growth rates 
are thought to be beneficial in territory acquisition, but there was still 
an effect of growth rate on overwinter survival after accounting for ter-
ritory ownership (Table 2). Furthermore, larger juveniles in the autumn 
are more likely to survive to spring (Larivée et al., 2010). Among juve-
niles for which we have body mass measurements in autumn (n = 757), 
juveniles with higher relative growth rates were larger (β = 7.95 ± 1.61, 
t = 4.93, p < 0.001), but earlier birth dates also influenced body mass 
in autumn (β = −8.89 ± 1.25, t = −7.11, p < 0.001) so this does not 
explain why growth rate provides further benefits overwinter but birth 
date does not. Presumably, growth rate may be associated with other 
life-history and behavioural traits (Biro & Stamps, 2008; Réale et al., 
2010; Stamps, 2007) that could affect winter survival.

5  | CONCLUSIONS

We have identified how the timing of a life-history event—territory 
acquisition—influences juvenile overwinter survival, and how it me-
diates biotic and abiotic factors that influence survival. This gives us 
insight into how one trait can affect the opportunity for selection on 
others, and therefore the functional links between phenotypes and 
fitness. We encourage more researchers to study life stages such 
as the juvenile period, when survival is highly variable and so the 
opportunity for selection is high, to better understand how selec-
tion acts on traits in populations. As this study was primarily con-
cerned with overwinter dynamics, investigations of juveniles during 
their search for territories and before settlement, and which traits 
or conditions are associated with territorial acquisition would be in-
formative in further explaining the mechanisms behind some of the 
patterns we observed.

ACKNOWLEDG EMENTS
We acknowledge that the lands on which we have conducted our re-
search for the past 30 years are within the traditional territory of the 
Champagne and Aishihik First Nations. We thank Agnes MacDonald 
for providing access to her trapline. We thank the people who have 
been involved in data collection over the years within the Kluane 
Red Squirrel Project, and many thanks to Charles Krebs and the 
Kluane Boreal Forest Ecosystem Project and Community Ecological 
Monitoring Program for making their data freely available to the 
public. The Natural Sciences and Engineering Council of Canada, the 
National Science Foundation and the Northern Scientific Training 

Program provided research support. We have no conflict of interest. 
This is paper number 107 of the Kluane Red Squirrel Project.

AUTHORS'  CONTRIBUTIONS
J.G.H. and D.N.F. conceived the ideas and conducted the analyses; 
J.G.H., D.N.F. and A.R.M. led the writing of the manuscript; S.B., 
B.D., J.E.L. and A.G.M. managed long-term data collection and re-
vised initial drafts and analyses. All the authors contributed critically 
to the drafts and gave final approval for publication.

DATA AVAIL ABILIT Y S TATEMENT
Data used to evaluate juvenile overwinter survival, along with code 
to recreate analyses and figures, are available on Dryad Digital 
Repository: https://doi.org/10.5061/dryad.q2bvq 83g0 (Hendrix 
et al., 2020). Note the dataset is embargoed for 1 year from the date 
of publication.

ORCID
Jack G. Hendrix  https://orcid.org/0000-0002-8606-1239 
David N. Fisher  https://orcid.org/0000-0002-4444-4450 
April Robin Martinig  https://orcid.org/0000-0002-0972-6903 
Stan Boutin  https://orcid.org/0000-0001-6317-038X 
Ben Dantzer  https://orcid.org/0000-0002-3058-265X 
Andrew G. McAdam  https://orcid.org/0000-0001-7323-2572 

R E FE R E N C E S
Archibald, D. W., Fletcher, Q. E., Boutin, S., McAdam, A. G., Speakman, J. R., 

& Humphries, M. M. (2013). Sex-specific hoarding behavior in North 
American red squirrels (Tamiasciurus hudsonicus). Journal of Mammalogy, 
94(4), 761–770. https://doi.org/10.1644/12-MAMM-A-213.1

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear 
mixed-effects models using lme4. Journal of Statistical Software, 67, 
1–8. https://doi.org/10.18637 /jss.v067.i01

Berteaux, D., & Boutin, S. (2000). Breeding dispersal in female North 
American red squirrels. Ecology, 81(5), 1311–1326. https://doi.
org/10.1890/0012-9658(2000)081[1311:BDIFN A]2.0.CO;2

Biro, P. A., & Stamps, J. A. (2008). Are animal personality traits linked 
to life-history productivity? Trends in Ecology & Evolution, 23(7), 361–
368. https://doi.org/10.1016/j.tree.2008.04.003

Boonstra, R., Boutin, S., Byrom, A., Karels, T. I. M., Hubbs, A., Stuart-
Smith, K., … Antpoehler, S. (2001). The role of red squirrels and arc-
tic ground squirrels. In C. J. Krebs, S. Boutin, & R. Boonstra (Eds.), 
Ecosystem dynamics of the boreal forest: The Kluane project (pp. 179–
215). New York, NY: Oxford University Press.

Boonstra, R., & Krebs, C. J. (2006). Population limitation of the north-
ern red-backed vole in the boreal forests of northern Canada. 
Journal of Animal Ecology, 75(6), 1269–1284. https://doi.org/ 
10.1111/j.1365-2656.2006.01149.x

Boonstra, R., Krebs, C. J., Gilbert, B., & Schweiger, S. (2001). Voles and 
mice. In C. J. Krebs, S. Boutin, & R. Boonstra (Eds.), Ecosystem dynamics  
of the boreal forest: The Kluane project (pp. 215–239). New York, NY:  
Oxford University Press.

Boutin, S., Krebs, C. J., Boonstra, R., Dale, M. R. T., Hannon, S. J., Martin, 
K., … Schweiger, S. (1995). Population changes of the vertebrate 
community during a snowshoe hare cycle in Canada's boreal forest. 
Oikos, 74(1), 69. https://doi.org/10.2307/3545676

Carpenter, F. L. (1987). Food abundance and territoriality: To defend or 
not to defend? Integrative and Comparative Biology, 27(2), 387–399. 
https://doi.org/10.1093/icb/27.2.387

https://doi.org/10.5061/dryad.q2bvq83g0
https://orcid.org/0000-0002-8606-1239
https://orcid.org/0000-0002-8606-1239
https://orcid.org/0000-0002-4444-4450
https://orcid.org/0000-0002-4444-4450
https://orcid.org/0000-0002-0972-6903
https://orcid.org/0000-0002-0972-6903
https://orcid.org/0000-0001-6317-038X
https://orcid.org/0000-0001-6317-038X
https://orcid.org/0000-0002-3058-265X
https://orcid.org/0000-0002-3058-265X
https://orcid.org/0000-0001-7323-2572
https://orcid.org/0000-0001-7323-2572
https://doi.org/10.1644/12-MAMM-A-213.1
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1890/0012-9658(2000)081%5B1311:BDIFNA%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081%5B1311:BDIFNA%5D2.0.CO;2
https://doi.org/10.1016/j.tree.2008.04.003
https://doi.org/10.1111/j.1365-2656.2006.01149.x
https://doi.org/10.1111/j.1365-2656.2006.01149.x
https://doi.org/10.2307/3545676
https://doi.org/10.1093/icb/27.2.387


1416  |    Journal of Animal Ecology HENDRIX Et al.

Clarke, M. F., Burke, K., Lair, H., Pocklington, R., Clarke, M. F., Burke, 
K., … Robert, L. (1993). Familiarity affects escape behaviour of the 
Eastern chipmunk, Tamias striatus. Oikos, 66(3), 533–537. https://doi.
org/10.2307/3544949

Cooper, E. B., Taylor, R. W., Kelley, A. D., Martinig, A. R., Boutin, S., 
Humphries, M. M., … McAdam, A. G. (2017). Personality is correlated 
with natal dispersal in North American red squirrels (Tamiasciurus 
hudsonicus). Behaviour, 154, 939–961. https://doi.org/10.1163/15685 
39X-00003450

Cowlishaw, G. (1997). Refuge use and predation risk in a desert ba-
boon population. Animal Behaviour, 54(2), 241–253. https://doi.
org/10.1006/anbe.1996.0466

Dantzer, B., Newman, A. E. M., Boonstra, R., Palme, R., Boutin, S., 
Humphries, M. M., & McAdam, A. G. (2013). Density triggers ma-
ternal hormones that increase adaptive offspring growth in a wild 
mammal. Science, 340(6137), 1215–1217. https://doi.org/10.1126/
scien ce.1235765

Descamps, S., Boutin, S., Berteaux, D., & Gaillard, J.-M. (2008). Age-
specific variation in survival, reproductive success and offspring 
quality in red squirrels: Evidence of senescence. Oikos, 117(9), 1406–
1416. https://doi.org/10.1111/j.0030-1299.2008.16545.x

Dunham, M. L., Warner, R. R., & Lawson, J. W. (1995). The dynam-
ics of territory acquisition: A model of two coexisting strategies. 
Theoretical Population Biology, 47, 347–364. https://doi.org/10.1006/
tpbi.1995.1016

Errington, P. L. (1946). Predation and vertebrate populations. The Quarterly 
Review of Biology, 21(2), 144–177. https://doi.org/10.1086/395220

Everett, R. A., & Ruiz, G. M. (1993). Coarse woody debris as a refuge from 
predation in aquatic communities: An experimental test. Oecologia, 
93(4), 475–486. https://doi.org/10.1007/BF003 28954

Ferguson, G. W., & Fox, S. F. (1984). Annual variation of survival ad-
vantage of large juvenile side-blotched lizards, Uta stansburiana: 
Its causes and evolutionary significance. Evolution, 38(2), 342–349. 
https://doi.org/10.1111/j.1558-5646.1984.tb002 92.x

Fisher, D. N., Boutin, S., Dantzer, B., Humphries, M. M., Lane, J. E., & 
McAdam, A. G. (2017). Multilevel and sex-specific selection on com-
petitive traits in North American red squirrels. Evolution, 71(7), 1841–
1854. https://doi.org/10.1111/evo.13270

Fisher, D. N., Haines, J. A., Boutin, S., Dantzer, B., Lane, J. E., Coltman, 
D. W., & McAdam, A. G. (2019). Indirect effects on fitness between 
individuals that have never met via an extended phenotype. Ecology 
Letters, 22(4), 697–706. https://doi.org/10.1111/ele.13230

Fletcher, Q. E., Boutin, S., Lane, J. E., LaMontagne, J. M., McAdam, A. G., 
Krebs, C. J., & Humphries, M. M. (2010). The functional response of 
a hoarding seed predator to mast seeding. Ecology, 91(9), 2673–2683. 
https://doi.org/10.1890/09-1816.1

Fletcher, Q. E., Landry-Cuerrier, M., Boutin, S., McAdam, A. G., Speakman, 
J. R., & Humphries, M. M. (2013). Reproductive timing and reliance on 
hoarded capital resources by lactating red squirrels. Oecologia, 173(4), 
1203–1215. https://doi.org/10.1007/s0044 2-013-2699-3

Fuller, W. A., Stebbins, L. L., & Dyke, G. R. (1969). Overwintering of small 
mammals near Great Slave Lake Northern Canada. Arctic, 22(1),  
34–55. https://doi.org/10.2307/40507757

Gaillard, J. M., Festa-Bianchet, M., & Yoccoz, N. G. (1998). Population 
dynamics of large herbivores: Variable recruitment with constant 
adult survival. Trends in Ecology and Evolution, 13(2), 58–63. https://
doi.org/10.1016/S0169 -5347(97)01237 -8

Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N. G., Loison, A., & Toïgo, C. 
(2000). Temporal variation in fitness components and population dy-
namics of large herbivores. Annual Review of Ecology and Systematics, 
31(1), 367–393. https://doi.org/10.1146/annur ev.ecols ys.31.1.367

Galef, B. G. (1981). The ecology of weaning: Parasitism and the achieve-
ment of independence by altricial mammals. In D. J. Gubernick & P. H. 
Klopfer (Eds.), Parental care in mammals (pp. 211–241). Boston, MA: 
Springer. https://doi.org/10.1007/978-1-4613-3150-6_6

Garrett, M. G., & Franklin, W. L. (1988). Behavioral ecology of dispersal 
in the black-tailed prairie dog. Journal of Mammalogy, 69(2), 236–250. 
https://doi.org/10.2307/1381375

Goheen, J. R., & Swihart, R. K. (2005). Resource selection and 
predation of North American red squirrels in deciduous forest 
fragments. Journal of Mammalogy, 86(1), 22–28. https://doi.org/ 
10.1644/1545-1542(2005)086<0022:rsapo n>2.0.co;2

Greenwood, P. J., & Harvey, P. H. (1982). The natal and breeding dispersal 
of birds. Annual Review of Ecology and Systematics, 13, 1–21. https://
doi.org/10.1146/annur ev.es.13.110182.000245

Haines, J. A., Coltman, D. W., Dantzer, B., Gorrell, J. C., Humphries, M. 
M., Lane, J. E., … Boutin, S. (2018). Sexually selected infanticide by 
male red squirrels in advance of a mast year. Ecology, 99(5), 1242–
1244. https://doi.org/10.1002/ecy.2158

Hendrix, J. G., Fisher, D. N., Martinig, A. R., Boutin, S., Dantzer, B., Lane, 
J. E., & McAdam, A. G. (2020). Data from: Territory acquisition me-
diates the influence of predators and climate on juvenile red squir-
rel survival. Dryad Digital Repository, https://doi.org/10.5061/dryad.
q2bvq 83g0

Humphries, M. M., & Boutin, S. (2000). The determinants of optimal litter 
size in free-ranging red squirrels. Ecology, 81(10), 2867–2877. https://
doi.org/10.1890/0012-9658(2000)081[2867:TDOOL S]2.0.CO;2

Humphries, M. M., Thomas, D. W., & Speakman, J. R. (2002). Climate-
mediated energetic constraints on the distribution of hibernating 
mammals. Nature, 418(6895), 313–316. https://doi.org/10.1038/
natur e00828

Jackson, D. M., Trayhurn, P., & Speakman, J. R. (2001). Associations be-
tween energetics and over-winter survival in the short-tailed field 
vole Microtus agrestis. Journal of Animal Ecology, 70(4), 633–640. 
https://doi.org/10.1046/j.1365-2656.2001.00518.x

Kelly, D. (1994). The evolutionary ecology of mast seeding. Trends in 
Ecology & Evolution, 9(12), 465–470. https://doi.org/10.1016/0169-
5347(94)90310 -7

Kerr, T. D., Boutin, S., LaMontagne, J. M., McAdam, A. G., & Humphries, 
M. M. (2007). Persistent maternal effects on juvenile survival in 
North American red squirrels. Biology Letters, 3(3), 289–291. https://
doi.org/10.1098/rsbl.2006.0615

Kerr, T. D., & Descamps, S. (2011). Why do North American red squir-
rel, Tamiasciurus hudsonicus, mothers relocate their young? A pre-
dation-based hypothesis. Canadian Field-Naturalist, 122(1), 65–66. 
https://doi.org/10.22621 /cfn.v122i1.546

Krebs, C. J. (2001). General introduction. In C. J. Krebs, S. Boutin, & R. 
Boonstra (Eds.), Ecosystem dynamics of the boreal forest: The Kluane 
project (pp. 3–8). New York, NY: Oxford University Press. https://doi.
org/10.1016/S0006 -3495(64)86921 -6

Krebs, C. J., Boonstra, R., Kenney, A. J., & Gilbert, B. S. (2018). Hares and 
small rodent cycles: A 45-year perspective on predator-prey dynam-
ics in the Yukon boreal forest. Australian Zoologist, 39(4), 724–732. 
https://doi.org/10.7882/AZ.2018.012

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest 
package: Tests in linear mixed effects models. Journal of Statistical 
Software, 82(13). https://doi.org/10.18637 /jss.v082.i13

Lair, H. (1990). The calls of the red squirrel—A contextual analysis of func-
tion. Behaviour, 115(3), 254–282. https://doi.org/10.1163/15685 
3990X 00608

LaMontagne, J. M., & Boutin, S. (2007). Local-scale synchrony and variabil-
ity in mast seed production patterns of Picea glauca. Journal of Ecology, 
95(5), 991–1000. https://doi.org/10.1111/j.1365-2745.2007.01266.x

LaMontagne, J. M., Peters, S., & Boutin, S. (2005). A visual index for 
estimating cone production for individual white spruce trees. 
Canadian Journal of Forest Research, 35(12), 3020–3026. https://doi.
org/10.1139/x05-210

LaMontagne, J. M., Williams, C. T., Donald, J. L., Humphries, M. M., 
McAdam, A. G., & Boutin, S. (2013). Linking intraspecific varia-
tion in territory size, cone supply, and survival of North American 

https://doi.org/10.2307/3544949
https://doi.org/10.2307/3544949
https://doi.org/10.1163/1568539X-00003450
https://doi.org/10.1163/1568539X-00003450
https://doi.org/10.1006/anbe.1996.0466
https://doi.org/10.1006/anbe.1996.0466
https://doi.org/10.1126/science.1235765
https://doi.org/10.1126/science.1235765
https://doi.org/10.1111/j.0030-1299.2008.16545.x
https://doi.org/10.1006/tpbi.1995.1016
https://doi.org/10.1006/tpbi.1995.1016
https://doi.org/10.1086/395220
https://doi.org/10.1007/BF00328954
https://doi.org/10.1111/j.1558-5646.1984.tb00292.x
https://doi.org/10.1111/evo.13270
https://doi.org/10.1111/ele.13230
https://doi.org/10.1890/09-1816.1
https://doi.org/10.1007/s00442-013-2699-3
https://doi.org/10.2307/40507757
https://doi.org/10.1016/S0169-5347(97)01237-8
https://doi.org/10.1016/S0169-5347(97)01237-8
https://doi.org/10.1146/annurev.ecolsys.31.1.367
https://doi.org/10.1007/978-1-4613-3150-6_6
https://doi.org/10.2307/1381375
https://doi.org/10.1644/1545-1542(2005)086%3C0022:rsapon%3E2.0.co;2
https://doi.org/10.1644/1545-1542(2005)086%3C0022:rsapon%3E2.0.co;2
https://doi.org/10.1146/annurev.es.13.110182.000245
https://doi.org/10.1146/annurev.es.13.110182.000245
https://doi.org/10.1002/ecy.2158
https://doi.org/10.5061/dryad.q2bvq83g0
https://doi.org/10.5061/dryad.q2bvq83g0
https://doi.org/10.1890/0012-9658(2000)081%5B2867:TDOOLS%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081%5B2867:TDOOLS%5D2.0.CO;2
https://doi.org/10.1038/nature00828
https://doi.org/10.1038/nature00828
https://doi.org/10.1046/j.1365-2656.2001.00518.x
https://doi.org/10.1016/0169-5347(94)90310-7
https://doi.org/10.1016/0169-5347(94)90310-7
https://doi.org/10.1098/rsbl.2006.0615
https://doi.org/10.1098/rsbl.2006.0615
https://doi.org/10.22621/cfn.v122i1.546
https://doi.org/10.1016/S0006-3495(64)86921-6
https://doi.org/10.1016/S0006-3495(64)86921-6
https://doi.org/10.7882/AZ.2018.012
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1163/156853990X00608
https://doi.org/10.1163/156853990X00608
https://doi.org/10.1111/j.1365-2745.2007.01266.x
https://doi.org/10.1139/x05-210
https://doi.org/10.1139/x05-210


     |  1417Journal of Animal EcologyHENDRIX Et al.

red squirrels. Journal of Mammalogy, 94(5), 1048–1058. https://doi.
org/10.1644/12-MAMM-A-245.1

Lane, J. E., McAdam, A. G., Charmantier, A., Humphries, M. M., Coltman, 
D. W., Fletcher, Q., … Boutin, S. (2015). Post-weaning parental care 
increases fitness but is not heritable in North American red squir-
rels. Journal of Evolutionary Biology, 28(6), 1203–1212. https://doi.
org/10.1111/jeb.12633

Larivée, M. L., Boutin, S., Speakman, J. R., McAdam, A. G., & Humphries, 
M. M. (2010). Associations between over-winter survival and resting 
metabolic rate in juvenile North American red squirrels. Functional 
Ecology, 24(3), 597–607. https://doi.org/10.1111/j.1365-2435.2009. 
01680.x

Larsen, K. W., & Boutin, S. (1994). Movements, survival, and settlement 
of red squirrel (Tamiasciurus hudsonicus) offspring. Ecology, 75(1), 
214–223. https://doi.org/10.2307/1939395

McAdam, A. G., & Boutin, S. (2003). Variation in viability selection among 
cohorts of juvenile red squirrels (Tamiasciurus hudsonicus). Evolution, 
57(7), 1689–1697. https://doi.org/10.1111/j.0014-3820.2003.tb003 
74.x

McAdam, A. G., Boutin, S., Sykes, A. K., & Humphries, M. M. (2007). Life 
histories of female red squirrels and their contributions to popula-
tion growth and lifetime fitness. Ecoscience, 14(3), 362. https://doi.
org/10.2980/1195-6860(2007)14[362:LHOFR S]2.0.CO;2

Merritt, J. F. (1986). Winter survival adaptations of the short-tailed shrew 
(Blarina brevicauda) in an Appalachian montane forest. Journal of 
Mammalogy, 67(3), 450–464. https://doi.org/10.2307/1381276

Metzgar, L. H. (1967). An experimental comparison of screech owl pre-
dation on resident and transient white-footed mice (Peromyscus 
leucopus). Journal of Mammalogy, 48(3), 387–391. https://doi.org/ 
10.2307/1377771

Millar, J. S., & McAdam, A. G. (2001). Life on the edge: The demography 
of short-season populations of deer mice. Oikos, 93, 69–76. https://
doi.org/10.1034/j.1600-0706.2001.930107.c

Morrison, S. F., & Hik, D. S. (2007). Demographic analysis of a declining 
pika Ochotona collaris population: Linking survival to broad-scale cli-
mate patterns via spring snowmelt patterns. Journal of Animal Ecology, 
76, 899–907. https://doi.org/10.1111/j.1365-2656.2007.01276.x

Morrison, S. F., Pelchat, G., Donahue, A., & Hik, D. S. (2009). Influence 
of food hoarding behavior on the over-winter survival of pikas in 
strongly seasonal environments. Oecologia, 159(1), 107–116. https://
doi.org/10.1007/s0044 2-008-1197-5

Morrissey, M. B., & Ruxton, G. D. (2018). Multiple regression is not 
multiple regressions: The meaning of multiple regression and the 
non-problem of collinearity. Philosophy, Theory, and Practice in Biology, 
10, 003. https://doi.org/10.3998/ptpbio.16039 257.0010.003

O'Connor, C. M., Norris, D. R., Crossin, G. T., & Cooke, S. J. (2014). 
Biological carryover effects: Linking common concepts and mech-
anisms in ecology and evolution. Ecosphere, 5(3), 28. https://doi.
org/10.1890/ES13-00388.1

O'Donoghue, M. (1994). Early survival of juvenile snowshoe hares. 
Ecology, 75(6), 1582–1592. https://doi.org/10.2307/1939619

O'Donoghue, M., Boutin, S., Hofer, E. J., & Boonstra, R. (2001). Other 
mammalian predators. In C. J. Krebs, S. Boutin, & R. Boonstra 
(Eds.), Ecosystem dynamics of the boreal forest: The Kluane project  
(pp. 325–336). New York, NY: Oxford University Press.

O'Donoghue, M., Boutin, S., Krebs, C. J., Murray, D. L., & Hofer, E. J. 
(1998). Behavioural responses of coyotes and lynx to the snowshoe 
hare cycle. Oikos, 82, 169–183. https://doi.org/10.2307/3546927

O'Donoghue, M., Boutin, S., Krebs, C. J., Zuleta, G., Dennis, L., Donoghue, 
M. O., … Hofer, E. J. (1998). Functional responses of coyotes and lynx 
to the snowshoe hare cycle. Ecology, 79(4), 1193–1208. https://doi.
org/10.1890/0012-9658(1998)079[1193:FROCA L]2.0.CO;2

Oli, M. K., & Dobson, F. S. (2003). The relative importance of 
life-history variables to population growth rate in mammals: Cole's  

prediction revisited. The American Naturalist, 161(3), 422–440. 
https://doi.org/10.1086/367591

Pryde, M. A., O'Donnell, C. F. J., & Barker, R. J. (2005). Factors influenc-
ing survival and long-term population viability of New Zealand long-
tailed bats (Chalinolobus tuberculatus): Implications for conservation. 
Biological Conservation, 126(2), 175–185. https://doi.org/10.1016/ 
J.BIOCON.2005.05.006

R Core Team. (2017). R: A language and environment for statistical com-
puting. Vienna, Austria: R Foundation for Statistical Computing. 
Retrieved from https://www.R-proje ct.org/

Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & 
Montiglio, P.-O. (2010). Personality and the emergence of the pace-
of-life syndrome concept at the population level. Philosophical 
Transactions of the Royal Society of London. Series B, Biological Sciences, 
365(1560), 4051–4063. https://doi.org/10.1098/rstb.2010.0208

Rödel, H. G., Bora, A., Kaetzke, P., Khaschei, M., Hutzelmeyer, H., & von 
Holst, D. (2004). Over-winter survival in subadult European rabbits: 
Weather effects, density dependence, and the impact of individual 
characteristics. Oecologia, 140(4), 566–576. https://doi.org/10.1007/
s0044 2-004-1616-1

Rödel, H. G., Zapka, M., Talke, S., Kornatz, T., Bruchner, B., & Hedler, C. 
(2015). Survival costs of fast exploration during juvenile life in a small 
mammal. Behavioral Ecology and Sociobiology, 69(2), 205–217. https://
doi.org/10.1007/s0026 5-014-1833-5

Rodríguez, S., van Noordwijk, A. J., Álvarez, E., & Barba, E. (2016). A rec-
ipe for postfledging survival in great tits Parus major: Be large and be 
early (but not too much). Ecology and Evolution, 6(13), 4458–4467. 
https://doi.org/10.1002/ece3.2192

Schielzeth, H. (2010). Simple means to improve the interpretability 
of regression coefficients. Methods in Ecology and Evolution, 1(2),  
103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

Schorr, R. A., Lukacs, P. M., & Florant, G. L. (2009). Body mass and win-
ter severity as predictors of overwinter survival in Preble's meadow 
jumping mouse. Journal of Mammalogy, 90(1), 17–24. https://doi.
org/10.1644/07-MAMM-A-392.1

Searcy, S. P., & Sponaugle, S. (2001). Selective mortality during the larval—
Juvenile transition in two coral reef fishes. Ecology, 82(9), 2452–2470. 
https://doi.org/10.1890/0012-9658(2001)082[2452:SMDTL J]2. 
0.CO;2

Silvertown, J. W. (1980). The evolutionary ecology of mast seeding in 
trees. Biological Journal of the Linnean Society, 14(2), 235–250. https://
doi.org/10.1111/j.1095-8312.1980.tb001 07.x

Smith, C. C. (1968). The adaptive nature of social organization in the 
genus of tree squirrels Tamiasciurus. Ecological Monographs, 38(1), 
31–64. https://doi.org/10.2307/1948536

Stamps, J. A. (2007). Growth-mortality tradeoffs and “personal-
ity traits” in animals. Ecology Letters, 10(5), 355–363. https://doi.
org/10.1111/j.1461-0248.2007.01034.x

Steele, M. A. (1998). Tamiasciurus hudsonicus. Mammalian Species, 
586(586), 1–9. https://doi.org/10.1890/0012-9623(2004)85

Stuart-Smith, A. K., & Boutin, S. (1995). Predation on red squirrels 
during a snowshoe hare decline. Canadian Journal of Zoology, 73(4),  
713–722. https://doi.org/10.1139/z95-083

Studd, E. K., Boutin, S., McAdam, A. G., Krebs, C. J., & Humphries, M. M. 
(2015). Predators, energetics and fitness drive neonatal reproduc-
tive failure in red squirrels. Journal of Animal Ecology, 84(1), 249–259. 
https://doi.org/10.1111/1365-2656.12279

van der Jeugd, H., & Larsson, K. (1998). Pre-breeding survival of bar-
nacle geese Branta leucopsis in relation to fledgling characteristics. 
Journal of Animal Ecology, 67, 953–966. https://doi.org/10.1046/ 
j.1365-2656.1998.67609 53.x

Whitham, T. G. (1986). Costs and benefits of territoriality: Behavioral and 
reproductive release by competing aphids. Ecology, 67(1), 139–147. 
https://doi.org/10.2307/1938512

https://doi.org/10.1644/12-MAMM-A-245.1
https://doi.org/10.1644/12-MAMM-A-245.1
https://doi.org/10.1111/jeb.12633
https://doi.org/10.1111/jeb.12633
https://doi.org/10.1111/j.1365-2435.2009.01680.x
https://doi.org/10.1111/j.1365-2435.2009.01680.x
https://doi.org/10.2307/1939395
https://doi.org/10.1111/j.0014-3820.2003.tb00374.x
https://doi.org/10.1111/j.0014-3820.2003.tb00374.x
https://doi.org/10.2980/1195-6860(2007)14%5B362:LHOFRS%5D2.0.CO;2
https://doi.org/10.2980/1195-6860(2007)14%5B362:LHOFRS%5D2.0.CO;2
https://doi.org/10.2307/1381276
https://doi.org/10.2307/1377771
https://doi.org/10.2307/1377771
https://doi.org/10.1034/j.1600-0706.2001.930107.c
https://doi.org/10.1034/j.1600-0706.2001.930107.c
https://doi.org/10.1111/j.1365-2656.2007.01276.x
https://doi.org/10.1007/s00442-008-1197-5
https://doi.org/10.1007/s00442-008-1197-5
https://doi.org/10.3998/ptpbio.16039257.0010.003
https://doi.org/10.1890/ES13-00388.1
https://doi.org/10.1890/ES13-00388.1
https://doi.org/10.2307/1939619
https://doi.org/10.2307/3546927
https://doi.org/10.1890/0012-9658(1998)079%5B1193:FROCAL%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079%5B1193:FROCAL%5D2.0.CO;2
https://doi.org/10.1086/367591
https://doi.org/10.1016/J.BIOCON.2005.05.006
https://doi.org/10.1016/J.BIOCON.2005.05.006
https://www.R-project.org/
https://doi.org/10.1098/rstb.2010.0208
https://doi.org/10.1007/s00442-004-1616-1
https://doi.org/10.1007/s00442-004-1616-1
https://doi.org/10.1007/s00265-014-1833-5
https://doi.org/10.1007/s00265-014-1833-5
https://doi.org/10.1002/ece3.2192
https://doi.org/10.1111/j.2041-210X.2010.00012.x
https://doi.org/10.1644/07-MAMM-A-392.1
https://doi.org/10.1644/07-MAMM-A-392.1
https://doi.org/10.1890/0012-9658(2001)082%5B2452:SMDTLJ%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082%5B2452:SMDTLJ%5D2.0.CO;2
https://doi.org/10.1111/j.1095-8312.1980.tb00107.x
https://doi.org/10.1111/j.1095-8312.1980.tb00107.x
https://doi.org/10.2307/1948536
https://doi.org/10.1111/j.1461-0248.2007.01034.x
https://doi.org/10.1111/j.1461-0248.2007.01034.x
https://doi.org/10.1890/0012-9623(2004)85
https://doi.org/10.1139/z95-083
https://doi.org/10.1111/1365-2656.12279
https://doi.org/10.1046/j.1365-2656.1998.6760953.x
https://doi.org/10.1046/j.1365-2656.1998.6760953.x
https://doi.org/10.2307/1938512


1418  |    Journal of Animal Ecology HENDRIX Et al.

Williams, C. T., Gorrell, J. C., Lane, J. E., McAdam, A. G., Humphries, M. 
M., & Boutin, S. (2013). Communal nesting in an ‘asocial’ mammal: 
Social thermoregulation among spatially dispersed kin. Behavioral 
Ecology and Sociobiology, 67(5), 757–763. https://doi.org/10.1007/
s0026 5-013-1499-4

Williams, C. T., Lane, J. E., Humphries, M. M., McAdam, A. G., & Boutin, 
S. (2014). Reproductive phenology of a food-hoarding mast-seed con-
sumer: Resource- and density-dependent benefits of early breeding 
in red squirrels. Oecologia, 174(3), 777–788. https://doi.org/10.1007/
s0044 2-013-2826-1

Wunder, B. A., Dobkin, D. S., & Gettinger, R. D. (1977). Shifts of ther-
mogenesis in the prairie vole. Oecologia, 29, 11–26. https://doi.
org/10.1007/BF003 45359

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Hendrix JG, Fisher DN, Martinig AR, et 
al. Territory acquisition mediates the influence of  
predators and climate on juvenile red squirrel survival.  
J Anim Ecol. 2020;89:1408–1418. https://doi.
org/10.1111/1365-2656.13209

https://doi.org/10.1007/s00265-013-1499-4
https://doi.org/10.1007/s00265-013-1499-4
https://doi.org/10.1007/s00442-013-2826-1
https://doi.org/10.1007/s00442-013-2826-1
https://doi.org/10.1007/BF00345359
https://doi.org/10.1007/BF00345359
https://doi.org/10.1111/1365-2656.13209
https://doi.org/10.1111/1365-2656.13209

